BRARY

MANCE LI

DANNY GOODMAN’S

.p‘-

THE MACINTOSH PERFO

o ot

™

DEVELOPERS GUIDE

Covers Version 1.2

Danny Goodman's
HyperCard
Developer's Guide

Danny Goodman's
HyperCard
Developer's Guide

Danny Goodman

Danny Goodman'’s HyperCard Developer’s Guide
A Bantam BookJuly 1988

All Rights Reserved
Copyright © 1988 by Danny Goodman
Couver design © 1988 by Bantam Books, Inc.
Interior design by Nancy Sugihara
Produced by Micro Text Productions, Inc.

This book may not be reproduced in whole or in part, by mimeograph or any
other means, without permission. For information address: Bantam Books, Inc.

Apple, ImageWriter, LaserWriter, and MacPaint are registered trademarks of Apple
Computer, Inc.

Finder, HyperCard, HyperTalk, Macintosh, MultiFinder, and StackWare are trademarks
of Apple Computer, Inc.

APDA is a trademark of A.P.P.L.E. Co-op.

Turbo Pascal is a trademark of Borland International.

DiskTop is a trademark of C.E. Software.

MacRecorder, HyperSound and SoundEdit are trademarks of Farallon Computing, Inc.
SoundWave is a trademark of Impulse, Inc.

Stack Exchange is a trademark of Heizer Software.

Icon Factory is a trademark of HyperPress Publishing Corp.

VideoWorks is a trademark of Macromind, Inc.

Visual Interactive Programming is a trademark of Mainstay.

HyperDA is a trademark of Symmetry Corp.

LightSpeed C and LightSpeed Pascal are trademarks of Think Technologies.

VideoStack is a trademark of The Voyager Company.

NOTE

BANTAM AND THE AUTHOR SPECIFICALLY DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE WITH RESPECT TO DEFECTS IN THE PROGRAM LISTINGS IN THE
BOOK, AND/OR THE TECHNIQUES DESCRIBED IN THE BOOK, AND IN NO
EVENT SHALL BANTAM OR THE AUTHOR BE LIABLE FOR ANY LOSS OF
PROFIT OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHER DAM-
AGES.

ISBN 0-553-34576-1

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. Its
trademark, consisting of the words "Bantam Books" and
the portrayal ofa rooster, is registered in US. Patent and
Trademark Office and in other countries. Marca Regis-
trada, Bantam Books, Inc. 666 Fifth Avenue, New York,
New York 10103

PRINTED IN THE UNITED STATES OF AMERICA
0 9 87 6 5 4 3

Contents

Acknowledgments xi
A Note to My Friends xiii
Introduction. When Is HyperCard the Right Choice? 1

A Range of Developers ® “Developer” Defined ¢ Stack Categories ® Infor-

mation Publishing e Information Management ¢ External Device Control ¢

Utility Stacks ® Other Than HyperCard ¢ Flat File Databases * Relational

Databases ¢ Relational Basics ®* HyperCard vs. Relational Databases ®

Database or HyperCard? e Traditional Programming Environments ¢ The
* "Final Choice * The Next Step

PART ONE

Key Stack Developer Issues

1 Issue 1: How HyperCard Literate is the User? 27
Difficult Concepts ® Installation Routines ¢ Pathname Settings ¢ Inside the
Stack Button ® Hands Off the Home Stack ¢ User-Friendly Front Ends
Printing Cards ¢ Script-Writing Scripts ® Customization Front End ¢ Front
End Visuals ® The Watch Cursor ¢ Anticipating Macintosh Literacy

2 Issue 2: Designing for all Macintosh Models 47
Execution Speed Concerns ¢ Macintosh Plus ® Macintosh SE ¢ Macintosh
II » What About Floppies? « Multimegabytes of RAM ¢ Screen and Card
Size ® Screens and Menus ¢ Timing ¢ Ticks, Seconds and Delays ® When
Delays Are Necessary * Animation

3 Issue 3: What About the Macintosh User Interface? 59
The Menubar ¢ Inapplicable Menus ® When to Show Menus ¢ Buttons,
Icons, and Clicking ¢ Of Mice and Clicks ® Single Clicks Do All ¢ Trapping
Double Clicks ® Icon Buttons ® Button Feedback * When to Highlight

vi HYPERCARD DEVELOPER'S GUIDE

Radio and CheckBox Button Highlighting ¢ Feedback Problem ¢ Choose
the Correct Button Style ® Taking a Stand

4 Issue 4: Screen Aesthetics 75
My 80/20 Aesthetics Rule ® Macintosh Artists and Screen Artists ¢ Icon
Design ¢ Finding an Artist ® Paying for Art ® Working With the Artist *
When to Hire the Artist ®* Key Design Guidelines

5 Issue 5: Stack Structure 89
Internal and External Structures ® Homogeneous and Heterogeneous
Stacks ¢ Navigation Flow ® The Straight Line ® The Tree Structure ¢ The
Cobweb ¢ Hybrid Structures ® Stack Systems and Non-linearity ¢ Decid-
ing Stack Structure ¢ Heterogeneous Stack Advantages ® External Struc-
ture ¢ Floppy Disk Concerns ¢ Focal Point Strategy ® Business Class
Strategy ® CD-ROM Structure

6 Issue 6: Converting Existing Databases to HyperCard 113
Is HyperCard the Right Environment? ¢ Field Structure ¢ Replicating
Narrow Sorts ® To Combine or Not To Combine Fields ¢ Multiple-Lined
Fields ® A Case for Single Fields * Field Design Tricks ® Importing Data-
base Data ¢ Preparing the Data ® The Script ® Changing the Field Struc-
ture Importing Word Processing Data ® Handling Long Text Blocks ¢
Long Text Import Scripts

7 Issue 7: Stack Protection 133
Why Protect? ® Private Access Protection ¢ Stack Delete Protection ® Can’t
Modify Stack Protection ® User Level Protection ® Protection Problem
When to Lock the User Level ® When NOT to Lock the User Level ¢ Com-
mercial Proprietary Secrets ¢ True Protection ¢ Buying and “Borrowing”
XCMDs

8 Issue 8: Engaging the Couch Potato 145
Make Stacks Inviting e Articles of Engagement ¢ Present an Opening
Screen or Sequence ® Use Visual Effects Wisely ® Make Buttons Look Like
Buttons ¢ Use the Appropriate Structure ® Transform Data Entry Into
Mouse Clicks ® Build Magic Into the Application

9 Issue 9: Making Stacks Customizable 155
Leaving Clues ¢ Customizing Front Ends ¢ Building and Extending Dated

Contents vii

Stacks ¢ Customizing User Preferences ® Inside the Preferences Card
Button Customization ¢ Inside the Button Customization

10 Issue 10: Stackware is Software 167
Software Design ¢ A Functional Specification ® Prototypical Focal Point ¢
Provide On-Line Help * Help In Context ¢ Introduction and Stack Over-
view ¢ Intercepting Help ¢ Include a Good Manual ® Who Reads It? ¢
Who Should Write It? ¢ When to Write It ¢ How Should It Look? ¢ Pro-
vide Data Importing ® Test, Test, Test ¢ Start Testing Early ¢ Testing
Procedures ® Be Smart About Marketing ® The Retail Channel ¢ Low-Cost
Publishing e Self-Publishing ® Open Channels ¢ Choosing the Channel

11 How to Build a Stack 187
Different Methods ® Information Publishing Stacks ¢ Information Manage-
ment Stacks ¢ External Device Control Stacks ® How to Go Wrong

PART TWO

HyperTalk Techniques for Developers

12 A Different Approach to HyperTalk 201
A Working Laboratory
13 Scripts and the Object Hierarchy 209

The Hierarchy—Two Perspectives ® Making the Chapter’s Stack ® The
Target and Me e Short, Medium, and Long Target Names ¢ Target Deci-
sions ® Naming Objects and Target Names ® When to Use the Target ® The
Target and Me ® Choosing the Appropriate Level ¢ Reducing Handlers
The Ultimate Handler Reduction ® One Handler Fits All ¢ CloseField
Handlers ¢ Lateral Hierarchy e Stack-to-Stack Hierarchy ¢ Background-to-
background hierarchy ¢ Bypassing the Hierarchy

14 More About System Messages 243
Who Gets Which Message ® Mouse Messages ¢ Press-and-Hold Buttons ¢
Remote Control of Buttons ¢ Field Messages ® A “Field” Experiment ¢ To
Close or Not to Close ® Taxing Returns ¢ Open and Close Object Messages
¢ Keyboard Messages ® Keyboard Trapping in Fields ¢ Field Entry Valida-
tion ¢ The Text Arrows Property ® ArrowKey Messages ® The ControlKey

viii HYPERCARD DEVELOPER’S GUIDE

¢ Function Keys ¢ DoMenu ¢ Suspend and Resume ¢ StartUp and Quit ¢
Help ¢ Idle ¢ Idle in Business Class * Idle in Focal Point ® Controlling
Navigation ¢ Button Navigation ® Arrow Key Navigation ®* Menu Naviga-
tion ® Message Box Navigation

15 Sending Your Own Messages 275
Commands and Messages ® Why a Custom Handler? ¢ Stack Commands

¢ Convenience Handlers ¢ Naming Your Messages ® Modifying Hyper-
Talk Commands e Passing Parameters ® Passing Multiple Parameters
Parameter Variables and the Param Function ® Parameters and Global
Variables

16 User-Defined Functions 293
What User-Defined Functions Do ¢ Functions and the Hierarchy ¢ Func-
tion Syntax ¢ Returned Values ® Function Modularity ® Simple Functions
¢ Passing Parameters ® Multiple Parameters ¢ Using Your Function Li-

brary

17 Diving Deeper Into Control Structures 303
Control Basics ¢ If-Then-Else Constructions ¢ If-Then-Else Style ¢ If-Then-
Else Reduction ® Repeat Basics ® Repeat With Constructions ¢ Looping
Through Object Names ® Naming Sequential Objects ¢ Number Formats
and Object Names ® Nested Loops ® Repeat Forever ® Repeat Performance

18 Setting Up Linked Cards 325
Suite Examples ® Multiple-Lined Containers—Arrays * More About
Arrays ¢ Type A Suites: Hub and Spokes ® Type B Suites: Rolling Hub and
Spokes ¢ Linking on the Fly ¢ Type C Suites: The Accordion ¢ Adding and
Deleting From the Accordion Suite

19 Working With Date and Time 351
HyperTalk Functions and Commands ® Seconds—The Common Thread ¢
Adding Time ¢ Times Include Dates ® The Handler ® World Time Conver-
sion e Foreign Daylight Saving Time ¢ Elapsed Time Counter ¢ Days
Between Two Dates ¢ Dates Before Deadlines ® International Dates

20 Solving Searching and Sorting Mysteries 373
Workbook Stack ¢ Entering Sample Data ¢ Simple Finding ¢ Finding By
Field ¢ Find in Field Workaround ¢ Boolean Finds ¢ Find Whole and Find

Contents ix

String ¢ Plain Sorting ® Sorting By Field ¢ “Dual Key” Sorts ® Sorting Card
Suites

21 Authoring and Debugging Tools 385
Home Stack Tools ¢ Author Tool Shortcuts ® Using Scripts to Build Stacks
* Debugging ¢ Check the Script Editor ® Heed the Error Dialogs ® Tracing
Variable Values ¢ Testing If-Then Constructions

22 HyperTalk Script Style and Practice 401
Practice and Style Guidelines ® Readability ® The Preamble ¢ Line Spacing
¢ Command Lines ¢ Efficiency ® Timing Tests ® Comprehension

PART THREE
Resources For Stack Developers

23 A Resource Crash Course 413
The Resource Concept ® Macintosh Files—Data and Resources ¢ Anatomy
of a Resource ®* HyperCard Resources ® Resources and the Hierarchy ¢
Resource Tools ® Using ResEdit ® ResCopy

24 Icon Resources 429
Icon Basics ¢ Creating an Icon Resource ¢ Preparations ® Applying the Art
¢ Make a New Resource ® Commercial Tools ® Extracting Icons

25 Sound Resources 447
Why Sounds? ¢ Using Sound in a Program ¢ Digitized Sound ¢ Macintosh
Sound Resources ® Converting Existing Sounds ¢ HyperSound ¢ Produc-
ing Sound Stacks

26 Introduction to XCMD and XFCN Resources 455
What is an XCMD? ¢ Why XCMDs? ¢ Writing Your Own XCMDs e Learn-
ing Library ¢ Before You Go Off to Learn a Language ¢ In Case You Know
a Little Pascal ¢ Calling an XCMD—What Happens ® What You Need to
Compile XCMDs ® What APDA Sends You ¢ Calling an XCMD—Object
Hierarchy ¢ About the Following XCMDs

x HYPERCARD DEVELOPER’S GUIDE

27 An About Box XCMD 469
The Stack ¢ Calling Conventions ® Design Assumptions ® The XCMD e
How the XCMD Works ¢ Error Handling ® Creating the DLOG Resource ¢
Further Ideas

28 A Pop-Up Menu XFCN 497
The Pop-Up Menu Interface ® Pop-Ups and HyperCard * The Stack ¢
Calling Conventions ® Getting Items in the Menus ¢ What the XFCN
Returns ¢ Design Assumptions ® The XFCN Project ® How the XFCN
Works ¢ Creating the MENU Resource

29 A Serial Port XCMD 523
What Comm Can Do ¢ The Stack ¢ Calling Conventions ¢ Opening and
Closing Serial Ports ¢ Writing and Reading ® Connecting to a Service ¢
The Communications Session ¢ Dialing and Logging On ¢ Getting the
Weather ¢ Logging Off « How the XCMD Works e Further Ideas

30 A Final Word 553
Appendix A. Sources 555
Appendix B. Interactive Sound in HyperCard by Tim Oren 559
Appendix C. Writing XCMDs in LightSpeed Pascal 581
Appendix D. Writing XCMD:s in LightSpeed C 597
Appendix E. Writing XCMDs in Turbo Pascal 619
Appendix F. Writing XCMDs in Mainstay V.LP. 627

Index 635

Acknowledgments

While the actual writing of a book is a lonely task, this particular volume had
what Hollywood would call “a cast of thousands.” SomeI've had the pleasure
of meeting in person; others I've met only through their electronic message
questions or by exploring their HyperCard stacks. Hearing questions about
stack design and implementation from thereal world dramatically broadened
my views.

Many of the opinions in this book, especially in Part One, came to life as a
result of speaking engagements around North America since the release of
HyperCard. The forums provided by local Apple offices in Portland, Pitts-
burgh, and Denver, Ellen Leanse of Apple’s User Group Connection, the
Software Entrepreneurs’ Forum, and numerous Macintosh user groups helped
me codify these ideas in what I believe is meaningful language.

I was fortunate to receive enormous technical help in areas that were new
to me. Chris Knepper, who wrote the XCMDs in Part Three, went to the
trouble of getting a half-dozen signatures (including Jean-Louis Gassée’s) to
allow him to write the code on his own time, on his own machine, in his own
home. Mark Baumwell contributed heartily to the serial port XCMD, while
Chris Derossi and Steve Maller offered many valuable suggestions for all
three XCMDs.

Additional help in various forms from Apple Computer came from Mike
Holm, Moira Cullen, Peggy Redpath, Lynn Knerr, Olivier Bouley, and Mimi
Obinata.

Outside the halls of Apple, I received wonderful support from Darrell
Leblanc at Think Technologies, David Intersimone at Borland International,
and Tom Nalevanko at Mainstay.

I also wish to thank my aesthetic guiding spirit, David Smith, the finest
Macintosh screen designer I've ever encountered.

Neither this book, nor the Handbook before it, would have been possible, of
course, without Bill Atkinson’s vision of what HyperCard would mean to
personal computing. And Dan Winkler’s teachings on HyperTalk have done
me well. ’ .

Through itall, Linda again proved to be my greatest supporter, sharing my
enthusiasm for HyperCard and its promise.

A Note to My Friends

I've written this book for readers of The Complete HyperCard Handbook who
want to learn more about stack development.

If you're a Handbook reader, then you and I have already spent a good deal
of time together—700+ pagesis no quick read. We may have already met face-
to-face at a Macworld Expo or user group meeting. In a way we’re friends.
And I'm glad you're here to renew our friendship.

This book is divided into three sections:

Stack Development Issues
HyperTalk Techniques
Resources

You may jump around the book’s chapters as you please, but I strongly
recommend reading Part One before anything else. What I have to say about
the 10 key development issues will influence how you apply what you'll learn
in the rest of the book.

Many of the examples are taken from my first two commercial stack
products, Business Class and Focal Point 1.0, both of which are published by
Activision, Inc. In a few instances, I have updated some HyperTalk scripts for
this book. Don’t be alarmed if you examine a product and find a slight
difference between scripts in the book and in the software. While it’s not
essential that you have these products at your side when reading the book, let
me introduce each product to you.

Business Class comes packed with information for those who conduct
business with people in other countries—whether by travel, telephone, or
mail. It has lots of maps (which you click on to zoom into one of 63 countries
covered in the product) and information cards for 13 categories. For instance,
you can calculate what time and day it must be in your office to telephone
someone in Tokyo at 11:00 am on Friday, Tokyo time. You can also get a
rundown on visa and customs requirements for a country you plan to visit.
It's a very graphic environment, and you browse through it almost entirely
with the mouse.

Focal Point is quite different. It is an organizer and planner for appoint-
ments, to do items, clients, vendors, projects, proposals, expenses, names and
addresses, telephone records, and several other items that are normally a
nuisance to manage day-to-day. I wrote Focal Pointinitially for myself to help
me manage the parts of my business that Idon’t like to worry about. Thereare
a total of 18 stacks, into which you enter your information. Links among all

xiv HYPERCARD DEVELOPER’S GUIDE

the stacks automatically post important data where you expect it, and my
guiding principle is that you should never have to retype anything. Thanks
to HyperCard, you can customize Focal Point to any vertical business appli-
cation you like.

As you’ll see in this book, both products are treasure chests of HyperTalk
structure and scripting examples (all scripts are unlocked), while being
practical programs at the same time. They are living applications of my so-
called “ten commandments” of stack design, which you’ll learn about in Part
One of this book. My greatest hope is that these two products serve as the
baseline definition of quality stacks, and that your stacks will be even better.

I'd like to hear from you if you have questions or comments about the
Handbook or this Developer’s Guide. You may write to me in care of Bantam
Books (666 Fifth Avenue, New York, NY 10103) or, for amuch faster response,
contact me electronically on CompuServe (address 75775,1731) or AppleLink
(address X0576).

Welcome back.

Danny Goodman
May, 1988

INTRODUCTION

I—

When is HyperCard
the Right Choice?

After hearing from many readers of The Complete HyperCard Hand-
book, I am especially sensitive to the diversity of expertise among
active HyperCard users. By “active users” I mean those who
actually make an effort to build stacks for themselves or others. For
some, the Handbook represents a mountain of knowledge to be
scaled slowly, sometimes presenting difficult passes toward the
top. Others not only reach the top quickly, but wish to soar even
higher. Fortunately, the vast majority find the content to be just the
right combination of challenge and reward. Still, the fact remains
that for many reasons, no two HyperCard users acquire identical
facility with the program’s powers and possibilities even after

reading the same source material.

2 HYPERCARD DEVELOPER’S GUIDE

A Range of Developers

This holds very true for stack developers as well. In fact, the distance between
theleast and most knowledgeable stack developer is far greater than the same
categories of everyday HyperCard user. At one end are those who bring to
HyperCard expert knowledge about a business, academic, or real world
situation, yet whose knowledge of HyperCard scripting and stack design is
quite small. At the opposite end are truly experienced Macintosh program-
mers who wish to use HyperCard as a “front end” to complex systems
developed in traditional Macintosh development environments. But people
atboth ends and everyone in between may be classified as serious HyperCard
stack developers.

Interestingly, the success of a stack is not necessarily dependent upon
technical expertise. Success, of course, is measured in several different ways.
Success may be the financial reward of a stack in the commercial software
marketplace; it may be a warm reception to a stack from the limited audience
ina company or classroom to whichit is directed; it may also be that hundreds
or thousands of people use a stack you design for distribution in the public
domain.

A successful stack needn’t be a technical tour de force if it communicates its
content well to the user. If the content is well illustrated and the organization
is inviting, the stack’s technical foundation may be built onlittle more than Go
To commands and thoughtfully positioned visual effects.

Higher up the technical scale, developers can accomplish surprisingly
remarkable applications using the HyperTalk scripting language built into
HyperCard. Despite its simple vocabulary, the language is capable of
performing enough “big time” software effects to suitmany a stack developer.
For example, with the exception of one command, everything you see taking
place in the first releases of Business Class and Focal Point is written solely in
HyperTalk. Spreadsheet-like calculations, world time conversions, creation
of linked sets of cards, and pop-up lists of clients for selection and input by the
mouse—they’re all possible with HyperTalk alone.

At the very technical end of the stack development scale, you may extend
the command and function vocabulary of HyperCard or even link HyperCard
to powerful freestanding software engines by adding external code resources
to astack. Commonly called X-Commands (a name derived from the XCMD
and XFCN resource types for external commands and external functions),
these add-on chunks of computer code may be written in any traditional
programming language and development environment of your choice—
Pascal, C, Assembler, or any language capable of being compiled into a
Macintosh resource (we’ve reserved Part III of the book for the subject of
resources).

Introduction 3

“Developer” Defined

WhenI talk abouta stack developer, the definition includes a variety of people
in the HyperCard community. Basically, a stack developer is anyone who
designs a HyperCard stack that one or more other people will be using. That
includes corporate stacks developed for in-house use, perhaps as training
vehicles or as the basis for departmental information management services.
In academic circles, a stack developer may be a student who writes a stack for
other students in class or an instructor who develops teaching and simulation
tools for students. A stack developer is a computer consultant whose charter
is to create information tools for clients, whether the tools be for time and
money management or a freestanding kiosk of trade show exhibitors and
products. Many individuals who have identified information needs or wish
to share their expertise with others of similar interests are joining the ranks of
stack developers every day. Finally, some traditional software developers
look at HyperCard as a way to involve more Macintosh users in a customi-
zable environment for accessing their software and as a vehicle for on-line
help systems and tutorials for their products.

Stack Categories

In the brief history of HyperCard development, four categories of stack
products have emerged: information publishing, information management,
external device control, and utilities. Let’s examine each one.

Information Publishing

A potentially huge category of stacks is one in which the stacks come jam-
packed with information. Business Class is one example, in that it comes
loaded with travel-related information for 63 countries. The user browses
through the information by clicking on maps and buttons. Figures i-1a
through i-1f demonstrate a typical browsing sequence to find information
aboutJapan. But Business Class represents only a tiny fraction of the possibili-
ties of using HyperCard stacks as an information publishing medium.
Taking the “publishing” term seriously, some HyperCard entrepreneurs
have begun stack-based magazines, like HyperNews (Figure i-2). With good
design behind it, this medium offers an enjoyable experience for the user.
HyperNews, for instance, offers several different subject sections, just like a
magazine—features, interviews, reviews, and so on. Even MacWeek, the
weekly tabloid magazine, started offering a stack version of the publication in
early 1988, although its purpose is primarily for reference. The printed

4 HYPERCARD DEVELOPER’S GUIDE

Concept & Programming by Danny Goodman
Program Artwork by David Smith

Copyright @ 1987 by Danny Goodman ATl Rights Reserved

Figure i-1a A typical browsing sequence in Activision’s Business Class stack product.
Starting at the world view, you work your way toward information cards about a specific

S

12:04 PM

)

HHHHW ..

6 HYPERCARD DEVELOPER’S GUIDE

All of Japan is in the same time zone,
which is 9 hours later than Greenwich
Mean Time (GMT).

Time in Time Time in
San Francisco GMT Tokyo

12:05 PM 8:05 PM 5:05 AM

Sunday Sunday Monday

Time Converter

Enter time in San Francisco

[10:30 AM 5

Time in Tokyo
2:30 AM (next day)
Enter Time in Tokyo

[6:15 PM | +

Time in San Francisco
2:15 AM (same day)

TRAVEL DOCUMENTS

VISAS

Anyone entering Japan to do business there
must have a visa issued by a Japanese
diplomatic mission. Yisitors from most
European countries, Canada, Australia and

New Zealand do not need visas for non-
business trips (length of stay varies with
country). Cruise ship and airline through
passengers don't need visas for 72-hour stays.

HEALTH CERTIFICATES
None required for entry into Japan.

Japan
CUSTOMS

You may bring in 400 cigarettes, 100
cigars, or 50 gr tobacco; 3 bottles of liquor;
2 0z perfume; two timepieces valued at less
than ¥30,000 (plus one you wear) ; other
goods bringing total value to no more than
¥100,000.

Up to ¥5 million may be exported from
Japan.

Most Japanese goods may be purchased tax-
free, but only in stores designated as
offering goods sold only for export.

Introduction 7

Figure i-2 HyperNews is an information publishing stack that comes loaded with Hyper-
Card-related news and information.

magazine is still the primary information delivery vehicle.

Any kind of instructional stacks also falls in this category. This is where a
number of stack opportunities lie. With the proliferation of Macintoshes on
college campuses, the possibilities for classroom instruction are endless. Self-
help programs for language instruction are already available. In-house
corporate training is another important stack subject. Interactive tutorials for
new employees can describe the various policies and benefits packages
available to them. A new hire may select the package that best suits his needs,
right on the stack. And, because the HyperCard environment is so much
easier to manipulate than traditional programming environments, the job of
updating a corporate training stack can be handled in-house by the people
who know the subject matter. Updates can be made quickly and efficiently.

Informational stacks for the general public are also good candidates. An
early stack on the AIDS disease has been well received and widely circulated.
Freestanding kiosks for public access of information are a natural for Hyper-
Card stacks. For example, scattered throughout the exhibit halls at Macworld
Expos in Boston and San Francisco are Macintosh SE computers set up to help
attendees locate booths for particular products and vendors. Running on the
Macs is an information stack that entertainingly brings you to a menu of

8 HYPERCARD DEVELOPER’S GUIDE

information about the event, including places to eat and sights to see outside
the show. Figures i-3a to f show excerpts from the opening screen sequence.
There’s no reason such an idea should be limited to a trade show. Information
machines in a corporate lobby, at information points on a college campus, in
a retail store and shopping mall, or other public sites are great ideas.

Within the computer industry, we're already seeing product demonstra-
tions, tutorials, and on-line help systems being built as HyperCard stacks.
Because of the potentially interactive nature of a HyperCard stack, these stack
applications usually turn out to be more engaging and meaningful than the
previous read-only formats of demos, help, and tutorials. Now, too, those in
the Macintosh community with good instructional skills have the power to
convert those skills into a program that runs on the computer. In the past, the
programming barrier held many great ideas hostage.

Information Management

To distinguish information management stacks from the information pub-
lishing stacks, above, I start off by saying that information management stacks
come “empty.” Empty of information, yes, but not empty of power or content.

Welcome to

Click on the World

Figure i-3a The MacWorld Expos feature a helpful HyperCard stack with this engaging
opening sequence (excerpt).

Introduction 9

i-3b

igure

F

Figure i-3c

10 HYPERCARD DEVELOPER'S GUIDE

Figure i-3d

NN EEEEEE

Figure i-3e

Introduction 11

Restart

Figure i-3f

Well-conceived information management stacks provide powerful frame-
works within which the user stores, manipulates, and accesses his or her own
information. The framework contains intelligently planned connections or
links between information that the user enters into the system. In Focal Point,
for instance, the To Do List stack is preprogrammed so that when you select
a person’s name in the list of people to call and then click on the Outgoing
Phone Log button with the Option key pressed, Focal Point automatically
looks up the person’s name in the Directory stack, dials the phone number,
and generates a time-and-date-stamped call log card. All the links are there.
All you do is provide your own information. Then the preprogrammed
framework does its wonders on your information.

Other styles of information management stacks include various kinds of
record keeping for business and personal use. Macintosh consultants and in-
house corporate stack developers are building such stacks daily. They’re in
use in hospital emergency rooms, on retail sales floors, and on secretaries’
desks.

Information management stacks lend themselves particularly well to ver-
tical market applications, in which expertise in a discipline or knowledge
abouta company’s modus operandi is more valuable than Macintosh program-
ming experience. When you identify a problem in your work that no one has

12 HYPERCARD DEVELOPER'S GUIDE

yet solved with software, HyperCard often provides an avenue to a solution.
Then, if you keep the design of the stack versatile, it may become a marketable
entity to the narrow segment of the business universe with similar problems.
That's how a software company often starts: computerizing a system origi-
nally developed on paper.

External Device Control

The category of controlling external devices is one that has not been widely
explored yet in the HyperCard community, but its time has come (in fact, one
of the XCMDs later in the book gives you the tools to explore it yourself).

Among the external devices you may wish to control with HyperCard are
telephone modems, CD-ROM players, videodisc players, electric light and
appliance timers, computer interface equipped radio gear, and virtually any
equipment that offers a serial (RS-232C) interface for computer control. With
more sophisticated interfacing tools attached to HyperCard, it is feasible to
control devices on an AppleTalk network as well as hardware peripherals
connected to the Macintosh SCSI port.

Chances are that you’ve come into contact with the combination of the
HyperCard Dial command and a modem to dial telephone numbers from an
address stack. But with a more powerful link between a HyperCard stack and
the serial port (as offered by the Comm XCMD in Chapter 29), you can use
HyperCard to build user-friendly “front ends” to on-line commercial tele-
communications services or corporate mainframe computers. There is an
enormous opportunity for this type of stack to help inexperienced computer
users overcome the genuinely complex aspects of linking two computers over
the telephone and gaining access to computer-based information.

CD-ROM (Compact Disc-Read Only Memory) is a relatively new method
of storing and distributing information. Identical in appearance to the
compact digital audio discs, CD-ROMs can hold more than 500 megabytes of
data (equivalent to 25 Apple HD-20SC hard disks), but the data must be
stamped into the disks at a compact disk pressing plant. In other words, the
disks are for reading only (hence the ROM part of its name), and the disks
require a special CD-ROM disk drive to work with your Macintosh. When a
stack developer places aread-only stack on a CD-ROM disk in the HyperCard
stack file format, there is no special requirement for controlling the CD-ROM
disk player—HyperCard “sees” the disk as if it were a very large, locked
floppy disk. But in those cases in which a stack developer wishes to use
HyperCard as a front end to an existing CD-ROM database and indexing
(searching) scheme, then the developer must include an XCMD that acts as a
bridge between the HyperCard front end stack and the player hardware. It's
a control issue completely separate from the information content of the disk.

Introduction 13

Several HyperCard developers have already had experience with joining
HyperCard to a videodisc player (Figure i-4). As the stack screen offers
interactive computer “play,” the stack is also controlling high-quality stilland
motion laser disc video on a standard color television screen. A pioneer in
linking HyperCard and laser. discs, The Voyager Company, now offers a
developer’s toolkit, called VideoStack. With help like this there will surely be
more development in this area. Together, the computer and video media can
create a strong instructional environment, each greatly enhancing the other.

Any other device that can be controlled through a serial interface, including
the possibility of factory process controls, are potential targets for HyperCard
stacks in this category. That includes exporting stack data directly from your
Macintosh to a laptop computer (even an MS-DOS laptop) via a serial cable
linking the two machines.

If external device control appeals to you for potential development, be
smart in the way you use HyperCard to perform the controlling. There is
nothing more wasteful of an opportunity than to use HyperCard merely as an
expensive remote control panel for a laser disc player or other device. A user
needn’t spend a couple thousand dollars for the privilege of clicking on screen
buttons replicating the handheld remote control.

KINGDOM:
Animalia
sub: Eumetazoa

... 16941 Lioness, Panthera leo; feeding

... 16940 Lioness, Panthera leo; feeding PHYLUM:
_____ 16937 Mountain lion, Felis concolor Chordate
_______ 18581 Mountain lion, Felis concolor sub: Vertebrata
,,,,, 18582 Mountain lion, Felis concolor CLASS:

. 16835 African wild cat, Felis lybica super: Tetrapoda
,,,,, 16939 Cheetahs, Acinonyx jubatus; feeding Y onitralis
______ 16938 Cheetah, Acinonyx jubatus; feeding siub: Buthesls
_______ 16832 Cheetah, Acinonyx jubatus CJ.RDER'

... 16833 Leopard, Panthera pardus y

.. 16834 Tiger, Panthera tigris Camivora
,,,,,,, 16935 # Bobeat, Lynx rufus; feeding FAMILY:
_______ 16936 Bobcat, Lynx rufus; feeding Felidae

SearchWords: Vertebrate, mammal, warmblooded, fur-bearing, Classification
carmivorous About Cat

T sels
LOE1E Plants | Low Life | Biomes

Figure i-4 A Stack by The Voyager Company interacts with a videodisc player to display
high-quality video on a nearby television screen.

14 HYPERCARD DEVELOPER’S GUIDE

Instead, design a stack or card that engages the user or supplements what
is happening on the external device with interactive material on the Hyper-
Card /Macintosh screen. This is especially true of laser disc control. Capture
the attention and imagination of the user on the HyperCard screen. Then let
the control part of the stack work miracles behind the scenes, almost magically
causing things to happen on the external device. If the external device is
presenting instructional material, add value to that material by engaging the
user within the stack, questioning or challenging the user to use the knowl-
edge gained from the other device.

Utility Stacks

The final category of HyperCard stacks we see today is called utilities. This
term goes way back to the early days of computing, when programmers had
little programs that helped them do their programming jobs. That’s still the
case with HyperCard utilities—they’re stacks that make the life of an active
HyperCard user much easier.

My favorite example of a quality utility stack is Script Report, written by
Eric Alderman (Figure i-5). This stack systematically goes through the

#* STACK SCRIPT
on OpenStack

global interval

reset paint

put "D, H,M,¥Y,1" into interval
end OpenStack

on closeStack

global interval

put empty into interval
end closeStack

on openCard

global interval

put item 5 of interval into temp

put item temp of interval into field "interval”
end openCard

-— replicate Prev and Next button actions on keyboard.

== = _1f I Another ,

Figure i-5 Script Report is an excellent example of a HyperCard utility stack product. It
retrieves, formats, displays, and prints scripts from your stack for review and analysis.

Introduction 15

HyperTalk scripts in every nook and cranny of a HyperCard stack, gathering
alonglist of thescripts and the names of the objects to which they are attached.
You may then print the listings or view them in an outline format with Living
Videotext’'s MORE program. Script Report is invaluable to the serious stack
developer (who may, of course, write his own version or adapt the canonical
edition). Since part of creating a complex stack is experimenting with various
methods, it’s very possible to leave handlers and experimental objects scat-
tered throughout a stack. Script Report is like an X-ray photo of the stack that
reveals if you've left any instruments in the patient before you sew it up.

Other Than HyperCard

It is easy to get caught up in the hullabaloo about HyperCard to the exclusion
of other development systems available on the Macintosh. HyperCard is not
the do-all, end-all development system, despite its built-in powers. You still
have the choice of developing in a flat file manager type of database program,
a high-end relational database environment or in a traditional programming
language. Thereare cases in which these other environments are better suited
to a task than HyperCard is. Knowing when to use a database program
instead of HyperCard—and vice versa—is crucial to developing an applica-
tion that lives up to your expectations.

Flat File Databases

All too often HyperCard is defined as a database program. I suppose this
comes largely from the fact that cards have fields on them, just like database
program screens have fields for text and numeric information. The more you
try to stretch the database paradigm by saying that cards are equivalent to
database records and that stacks are equivalent to database files, the farther
away from HyperCard you roam.

While a HyperCard on-screen card and a database entry form may look
alike, the way each treats the information you enter into fields is quite
different—a difference that points up the reasons for chcosing one environ-
ment over the other. Each time you enter information into a HyperCard card
field, the text is stored as data accompanying the card. In other words, the
entire card is stored on the disk. Of course, shared background graphics and
otherattributes aren’t stored with each card—just those items that distinguish
one card from the next, like its name, id number, HyperTalk script, text, and
so on.

In most databases, there aren’t on-screen cards, but rather an entry format
that acts like a template for information you enter or recall for display. The

16 HYPERCARD DEVELOPER’S GUIDE

template forms remind me of the carnival attraction in which you have your
picture taken when you poke your head through a hole from behind a painted
picture. All during the day, the body in the painting stays the same, but
different faces fill the hole.

When you type data into the fields of an entry form and “enter” the data by
pressing the Enter key, thedatais saved in the database file in a list-like format.
A good way to visualize a database file on the disk is to think of it as stored in
a columnar list, much like a spreadsheet (Figure i-6 top). The fields of
information from a single entry form are kept together as a record (one row
of the list). When it comes time to look at that data in the same screen format
as that in which it was entered, a recordful of data is fetched from the database
file, and each field’s data is plugged into the screen template of fields (Figure
i-6, bottom).

There is an inherent advantage to storing information this way if you need
to view your data in selected lists on the screen—something HyperCard
cannot do onits own. For instance, in a database program, you can design an
on-screen (and printed) report format that reveals only some of the fields
associated with a record, like only the name, city, state, and telephone
numbers of a detailed name and address database. In the report, therefore,
thereare “holes” in the template to view only some of the fields of each record.
Using the selection capabilities of the database program, you may then
request to view a specific selection of records from the entire database—all
records whose ZIP code field contains numbers ranging from 60600 to 60699,
for example, to list those people in the city of Chicago.

Hame |Company Address City State|ZIP _ |Telephone
| |Andrew Foobar __ IFoobar Assoolates |00 MainSt. Cleveland 1OH 149295 513-559-5821,
2|Sally Rhodes National Air CorporatiS000 Industrial Blvd. {Bayonne NJ 01443 :201-555-2000

K] Jeffrey Hounds {Seven Mile Realty {2033 Seven Mile RoadiRoyal Dak | {42010 i303-555-0012

NameJdeffreg Hounds

Company |Seven Mile Realty

Address r2033 Seven Mile Road

City [Royal Dak ||state [Mi][ziP [42010

ITelephone | 303-555-00TZI @

Figure i-6 Databases store information in lists. You view the data through a template.

Introduction 17

Relational Databases

HyperCard is also often compared to relational databases, such as the high-
end packages Omnis 3 (Blyth Software), Double Helix (Odesta), dBase Mac
(Ashton-Tate), and Fourth Dimension (ACIUS). While HyperCard can per-
form relation-like actions, it is not intended to replace relational databases,
any more than it is meant to replace simpler database programs.

Relational Basics

If you're not familiar with relational databases, let me provide you with a
simple example of how such a system works. The underlying structure of a
relational database system is a method of connecting largely distinct data-
bases. For instance, a company might keep all customer information (name,
address, phone number, credit rating, etc.) ina customer database. A separate
database would be used for order entry: Each order submitted by a customer
is typed into an Order Form (Figure i-7).

Therelational partcomes into play when the order entry keyboard operator
needs to input the customer’s name, billing address, and so on. With a
relational database, the entry operator can type a customer’s ID number into

Customer Record
bcust & | 231 | [credit Limit | $12,500 |

Customer Name |YWoodrow Construction Compa
Address |P.0. Box 23102

City | Atlanta J|state |oa |[ziP | 30023
[Telephone [404-555-1291 |
Order Form

(order Date [4-6-89 ||Salesperson [Halperin |

Customer 8 |231 |

Address | A0, Box 23102
City [4tnts [[state [64 |[ziP [2023

Quantity |]
Description |]
Price Each | 1

ﬁ'ota’l l |

Figure i-7 A relational database may be structured to retrieve data from its primary
location, and display copies in other templates when needed. The information, however, is
stored only in its primary location.

18 HYPERCARD DEVELOPER’S GUIDE

one field of the order entry form. Pre-established links between the order
entry form and the customer database automatically use the ID number as a
way to look up pertinent customer data in the customer database, and insert
that data into the order entry form for the operator. In Figurei-7, for instance,
when the user types “231” into the Order Form field for customer number, the
database retrieves several fields of data from the record of customer 231. That
data is automatically entered into their corresponding fields in the Order
Form.

What makes this operation different in a relational database than in a
HyperCard equivalent (HyperCard can imitate the above action without any
difficulty) is the manner in which the information is stored among the files. In
most relational database implementations of this order entry system, the
customer data (except for the ID number) does not get stored with the order
information. Customer data remains solely in the customer database. When-
ever a form appears on the screen that needs the customer data, the relational
database looks up the data and inserts it into the appropriate fields on the
form. Relational databases are optimized for these kinds of lookups and
insertions.

Things are different in HyperCard. If your order entry HyperCard stack
were to look up the customer data in a customer stack and display the data in
the order entry fields, the data would actually be stored in the order entry
stack, as well as in the original customer stack. Depending on the design of
your stack systems, the storage of data in multiple places may have a distinct
advantage. After all, once the data is in the field, it can’t get damaged, even
if the customer stack should be damaged. No stack is dependent on another
for display of field data. Moreover, each stack becomes a standalone bank of
data, which may be carried to another computer or used by others who do not
have access to any other stacks of your system.

HyperCard vs. Relational Databases

The primary disadvantage of the HyperCard method, however, is that if the
information changes in one stack, the change does not take effect in the other
stacks, unless you’ve programmed it to do so. For instance, in the customer
and order entry example, if a customer notifies you of a shipping address
change after several orders have been entered into the stack, you’d have to
change the address in the customer data stack and on every pending order in
the system. In the case of a relational database, one change in the customer
database would ripple through the entire system, including other databases
or reports that generate shipping labels, invoices, and so on. Sincetheaddress
data is not summoned except when needed for display or printing, the most
current data is guaranteed to be available for output.

Introduction 19

In a highly structured HyperCard stack environment, a change like the one
just mentioned can be accommodated by a carefully planned script that goes
into action when important fields in the customer database change. But since
HyperCard stacks are likely candidates for customization by the user, a stack
developer cannot assume that the structure imposed at the outset will survive.
Moreover, the tendency indeveloping a HyperCard stack should be to free the
developer and the user from the kind of rigid on-screen structure that formal
databases have forced us to use for years. We'll go deeper into how structure
affects design later in the book.

Limitations imposed by the comparatively rigid structure of relational
database environments open the way for one of HyperCard'’s great strengths:
its ability to establish rather arbitrary links between bases of data. When
building a relational database model, you need to exercise care in establishing
the way one database section will look up information in another. How a
database is to be accessed often dictates how it is structured, like whether the
customer ID number is the ruling feature that distinguishes one record from
another within that collection. If you later determine that you need another
way of accessing that database, such as looking up a customer name based on
a telephone number, you may be out of luck (or require very sophisticated
programming within the database’s procedural language). With HyperCard,
however, there are no structures that dictate how a stack of cards must be
organized. You may retrieve data from a stack by searching for text in any
field; you may post data into a specific card in another stack based on any
lookup or search criteria you wish, even after multiple links to that stack have
been established from other stacks.

Focal Point is an example of the preference for the unstructured approach to
linking information. After failing to implement a system like Focal Point on
one of the high-end relational databases, I found HyperCard to offer the kind
of flexibility that my ideas required. For example, the Deadlines stack, which
collates all unfinished to-do items from proposals and projects records,
fetches data from those two stacks, some of which originally came from yet
another stack, the Client stack (Figure i-8). Because the design of the Focal
Point system called for client data to be posted to projects and proposals
records, the lookup tasks of the Deadlines stack were simplified, and let me
focus on thedirect link, rather than trying to establish some multistepped link
through several stacks. Operation is not only simpler, but faster as well. At
the same time, I established other links in the reverse direction, so that if the
user checks off a Deadline item as being completed, its line item in the
Proposal or Projects stack is checked off, and other parts of those stacks are
updated accordingly. Also, by selecting the text of the deadline item, the user
may go directly to the detail card in the Project or Proposals stack by clicking

20 HYPERCARD DEVELOPER’S GUIDE

Client Record

Stack
1 |
i [|
Projects Proposals
Stack Stack

) Deadlines
Stack

Figure i-8 Information flows among HyperCard stacks may be arbitrary, and are not
limited by a relational structure.

onasinglebutton. And, despite the complex network of linkages among these
stacks, the stage is still set for yet other links as the user cares to expand the
system to meet specific needs his or her business requires.

Database or HyperCard?

Databases of any kind are primarily list-oriented. HyperCard, on the other
hand, is a browsing environment, in which the data is best served by residing
in on-screen cards and in which it is comfortable to access these cards in a
linear, sequential order or in a non-linear, hop-skip-and-jump order. Oddly
enough, the same body of information may be suited to either the traditional
database or HyperCard based not on its content, but on the manner in which
the user must interact with the information.

Forexample, consider HyperCard and Omnis 3 versions of a form designed
to hold customer information. In addition to the standard name, address, and
telephone fields, there is also a field that contains a running total of the orders
made by that customer during the year (the mechanics for’keeping this total
would be built into a separate order form stack). Except for visual character-
istics inherent in both HyperCard and Omnis 3, the screens would look very

Introduction 21

similar, especially since both have the same field structure.

Before going any further, however, please note that the running total field
in the Omnis database would notbe stored with the customer information, but
would be calculated by a formula in that field. The job of that formula is to
retrieve from the order entry database all order totals for the customer whose
number appears in the Customer ID field.

You should favor putting this application in HyperCard if access to the
information is throughbrowsing—sequential searching orusing HyperCard’s
very fast Find command. Sinceit’s a trivial matter to place adialing button on
the HyperCard version, the person who uses this stack might use it like a
rolodex. Searching first for the customer’s name, the person clicks on the
dialing button to dial the number in the telephone number field. The Find
command may be used to browse quickly through all customer cards whose
telephone numbers have the 212 area code. By typing Find “(212)” into the
Message Box, the user may repeatedly press the Return or Enter key to view
only those customers in that area code. More sophisticated, but slower,
searching techniques may be built into a special button. The script for that
button might, for instance, go to each card (with the screen locked), and test
whether the last order date is 30 days or more prior to today’s date. When the
test proves true, the script ends, and the user may view a card meeting that
criteria. To resume the search, the user presses that custom search button
again.

The database version is preferable, however, if the user needed to view
selections of the customer data in various on-screen and printed reports—
usually in a list format. The key difference, however, is that a database
program provides the user with the ability to perform “multiple selects” on
the entire database. Therefore, the user may specify that he see only records
whose telephone field contains 415 and 213, whose last name field begins with
letters A through M, and whose last order date is earlier than March 1, 1988.
Selecting search criteria like this is like masking all other data in the file. You
probably won’t be able to see other data in the file until you disable the
selection criteria.

Where the database version shines is in obtaining on-screen and printed
reports of the selected data. A salesperson about to leave on a trip for Boston
could obtain a list of all customers in the 617 area code whose order level is
above $5000. With that list, the salesperson can be sure to check up on the
company’s big customers while in their town.

In all fairness to HyperCard, report selection and printing is now available
as an add-on product, called Reports, published by Activision, Inc. The gap
between HyperCard and databases is closing.

22 HYPERCARD DEVELOPER'S GUIDE

Traditional Programming Environments

Publishers of traditional programming languages—the Lightspeed series
from Think Technologies/Symantec, Turbo Pascal from Borland, TML Pas-
cal, Consulair C, Apple’s MPW series, and others—should have nothing to
fear from HyperCard’s programming prowess. In fact, I was amazed at the
long-running furor coming from several of these companies over the release
and bundling of HyperCard with all Macintosh hardware. They saw Hyper-
Card as a threat to traditional programming languages and development
systems. On the contrary, HyperCard actually opens up an entirely new
market of future programmers in Pascal, C, and Assembler, as HyperCard
developers seek to extend the power of HyperCard through external com-
mands—commands that must be written and compiled in one of these
language environments.

There’sno way HyperCard will be the platform for the next word processor
or desktop publishing system. Fundamental, high-powered applications
programs, especially in the graphics and number crunching worlds, will
continue to be developed in the traditional programming environments.
Many types of programs simply don’t fit well into the card metaphor of
HyperCard.

Butas anyone with experience in these programming areas will tell you, it’s
no simple part-time endeavor to program a Macintosh application from
scratch. First, it takes a complete understanding of the five encyclopedic
volumes of Inside Macintosh, Apple’s bible of what goes on inside the Macin-
toshROM Toolbox and system. Bill Atkinson, who is no slouch when it comes
to learning a computer’s inner capabilities, is quick to tell you that it takes a
year to learn enough of Inside Macintosh to start serious programming. Then,
of course, you also need to know one of the programming languages. Allin
all, it's an area best left to the professionals, or at least to those part-timers who
have acquired extensive experience over the years.

Just the same, HyperCard and the traditional programming systems are a
great teamtogether. If you’ve wanted to get your feet wet in programming the
Macintosh’s ROM Toolbox, HyperCard is the perfect way to start, because
you can begin writing small external commands in Pascal, C, or Assembler,
and experiment with various parts of the Toolbox. Because you use Hyper-
Card as the primary platform, you don’t have to write an entire program from
scratch to learn a small Toolbox point. HyperCard gets you right up to the
point at which your external code can execute. Gradually you will gain
experience with the Toolbox with far fewer problems than diving straight into
writing an entire program.

Eventhough the HyperTalk language is very powerful on its own, I believe
HyperCard will provide the gateway for many interested parties to work their

Introduction 23

way into full-fledged Macintosh programming. Later in this book, you'll see
some examples of external code that should get you a long way into writing
your own code.

The Final Choice

If there were a simple formula into which you could plug the variables of your
intended application, it would be easy to see if HyperCard were the right
environment. Of course, it’s not that easy. But here are some questions to ask
yourself:

1. Canthe application’s information be conveniently divided into screen-
sized cards?
While HyperCard offers scrolling fields, which may hold up to 32,000
textcharacters, Iam not fond of putting long text blocks into these fields.
First of all, it’s boring for the user to scroll through fields. Second, the
card metaphor of HyperCard works best when the user—who is often
just abrowser or simple typist—can see all pertinent information at one
glance when a card appears on the screen. This is not to say that you
should cram field after field of 9-point type onto each card. Just the
opposite. Keep the amount of information on a card to a minimum.
Break up related information into card-length packets and create intel-
ligent links between them to ease the user’s journey to various parts of
the information. I'll have more to say about this in Chapter 6.

2. Istheneed forreporting limited oratleastmademanageable by external
report-generating HyperCard add-ons?
Over time, this will become less of an issue as both HyperCard and
outside programs assist in gathering data for printing and on-screen
display of list-like reports. Activision’s Reports is a breakthrough in
thatregard. Future releases of HyperCard may also improve reporting
facilities. Don’t forget, too, that HyperCard’s fast search operation,
with repeated Find command execution by pressing the Return key, is
often faster and more inviting than a dull list of selected data.

3. Do you want your application to be fun and inviting to use, especially
for non-computer or non-Macintosh literate users?
Since HyperCard lets you design the entire screen interface, there are
many opportunities to develop interesting applications, including those
that non-Macintosh users can use without any training, as in freestand-

24 HYPERCARD DEVELOPER’S GUIDE

ing kiosk locations (more about this in Chapter 3).

4. Do you want the user to be able to customize the application?

Oneof HyperCard's greatest strengths is that the “insides” of a stack are
largely accessible to the user, if you so desire. Since it is rare for a
developer to know exactly how each user performs the tasks covered by
an application, the ability to customize a HyperCard stack makes it all
the more marketable. Most high-end software written in traditional
languages or developed by relational database consultants are not user-
customizable. Stack applications are inherently democratic, in that
they give the user control over his or her destiny. To paraphrase an
Apple advertising slogan, HyperCard gives you “the power to be
yourself.”

If you answer “yes” to any of these questions, then HyperCard is the right
choice to pursue the dream of the application in your mind, even if the
potential audience is a small one.

The Next Step

Once you've decided on using HyperCard as the development environment,
you still have much to think about in designing the application, before you
write a handler for your first button. Part One, which follows, explores 10
issues you must face as you begin to lay out your application. The earlier you
confront these issues in the design stage, the easier development will be in the
home stretch.

Key Stack
Developer
Issues

1

———

How HyperCard
Literate is the User?

I’ve got good new and bad news. The good news is that HyperCard is
packaged in every Macintosh box out of the factory. The bad news is
that not every new Macintosh owner knows what HyperCard is. The
troubleis that a HyperCard developer might easily assume thatanyone
who makes an effort to look at a stack is HyperCard literate—HyperLit-
erate, if you will. Thisis wrong, wrong, wrong. You cannot assume that
users of your stack are HyperLiterate. This obviously puts a much
greater burden on your role as stack developer, but by following this

rule you will attract a much wider audience than if you ignore it.

28 HYPERCARD DEVELOPER’S GUIDE

Difficult Concepts

Our jobs as HyperCard stack developers is to shield the user community from
the parts of HyperCard that may confuse or bewilder the first-time Hyper-
Card user. Here are some of the difficult concepts you should design around.

1.

Icon buttons on the Home Card. If you're lucky, the person using your
stacks is at least MacLiterate enough to recognize that an icon represents an
application or document, as it does on the Macintosh desktop. But thatuser
is in for a rude awakening when he looks at the HyperCard Home Card and
tries to move the icons around as on the desktop. The idea that those icons
are buttons takes some getting used to. Consequently, the last thing anew
user will easily comprehend is that in order to have an icon on the Home
Card that links to the stack, he’ll have to copy the button from the stack and
paste it into the Home Card.

. Stack, document, and application pathnames. In a Macintosh desktop

world of folders and icons, the three pathname cards in the Home Stack are
as mysterious as an MS-DOS C>command prompt. If you never let the user
get within sight of these cards while setting up your stack, all the better.

. Object hierarchy. An inexperienced HyperCard user will have never

heard of the object hierarchy, and will not know why you’d want to copy
a resource or handler to the Home stack. For that matter, you should not
even assume that a HyperCard user has the same kind of Home stack that
youdo. The customizable nature of HyperCard leads HyperLiterate folks
to treat their Home stacks as personal playgrounds. It’s not nice to fool with
somebody’s Home stack unless you're invited.

. Button scripts. Just because you know that a HyperCard button generally

has a button script attached to it doesn’t mean that your user will know a
script from a ROM routine. If actions in your stack entail the creation of
buttons that tailor the operation of the stack to the user’s wishes, don’t
expect the user to know how to write such a script. Provide user-friendly
front ends to such things. HyperTalk gives you the power in one script to
write the script of another object (or even the same object).

. Stack structure and stack-to-stack delays. After designing a few Hyper-

Card stacks that rely on data in other stacks, you soon learn to accept the
delays inherent in stack-to-stack lookups. Perhaps for you the sound of the
disk drive is enough to soothe the impatience that normally pervades com-

How HyperCard Literate is the User? 29

puter use. But an inexperienced user may hear the disk drive whirring,
while seeing nothing happening on the screen and thus panic in thinking
something in the computeris “hung up.” Before you know it, the user turns
off the computer in the middle of file access, probably trashing the stack file
forever.

These are the major concepts to plan around. Now, let’s look at examples of
how you can make the user feel as much at home in your stack as in a
standalone Macintosh application.

Installation Routines

Since the Home Card acts as adesktop to other HyperCard stacks, you provide
a good service to your users by supplying an installation routine with your
stack that does two things: 1) copies anicon button to the person’s Home Card;
and 2) enters the proper pathname listings in the “look for stacks” card of the
Home stack.

Figure 1-1 shows the installation card that comes with Business Class. 1
chose to place this installation routine in its own one-card stack. That way, the
user could discard the installation function once the installation was com-
plete.

Note that several key points appear about this card. First, there are some
simple instructions on the card. They tell the user what will happen during
installation. There are no surprises for the experienced user. For the novice,
thereis an air of authority that leads him to believe that whatever goes on here
must be the right way to do things.

Next, a sample of the button appears on the card. Thls, too, is a kind of
preconditioning. The user knows before returning to the Home card what the
button will look like. In fact, the placement of the sample button in that
location on the card was no accident. Midway through the installation
procedure, a copy of this button will appear on the Home Card—in exactly the
same spot. From there, the user may adjust its location.

Notice that there is a Cancel button on this card. As you certainly must
know from poking around new parts of software, you expecta way to back out
of a procedure that looks like it may beirreversible. Perhaps you're notready
to go through with the installation because you're previewing the software on
someone else’s computer; or perhaps you want to set up your folders differ-
ently before carrying out the full installation. Whatever the reason, offer a
Cancel button for any significant action. In the case of the Business Class
Installer, the Cancel button brings the user back to the Home Card, from which
the Installer stack was most likely opened.

30 HYPERCARD DEVELOPER’S GUIDE

& File Edit Go Tools Objects |

Business Class
Installer

To install Business Class on your HyperCard Home Card, click the
“Install” button below.

This action copies the Business Class button (lower right) to your Home
Card, and adds the appropriate pathnames to the Stacks card in your
Home Stack.

This is what the button will be:
Busines Clss

. 7

Figure 1-1 The installation screen (a one-card stack) for Business Class. The Install
button contains a script to copy the Business Class button and modify the Home stack’s
pathnames list.

When you click on the Install button, an answer-style HyperCard dialog
box appears, asking whether you wish to install the stack in a hard disk or
floppy disk system (Figure 1-2). Again, there is another Cancel opportunity
to back out, returning you to the instant before you clicked on the Install
button.

Pathnames Settings

Offering two choices for installation has to do with the pathname part of
installation. Due to the structure of Business Class’ stack files, the installer
stack must write two lines to the stack pathnames card in the Home stack
(covered in more detail in Chapter 5 on stack structure). Running the stacks
from floppy disks entails an entirely different pathname than running them
from a hard disk. The answer from this dialog box determines how the text
lines that eventually go into the stacks list are assembled.

The installation routine, contained entirely in the mouseUp handler of the
Install button, is relatively simple. Its basic structure is shown below (this is

How HyperCard Literate is the User? 31

& File Edit Go Tools Objects

Business Class
Installer

Are you installing for floppy or hard disk?

(Hard niskD (“rioppy) [(_cancer]

This is what the button will be:
s

Figure1-2 Pathnames may be different for hard disk and floppy disk installations.
Business Class offers an easy way to select how the user wishes to use the product.

not the actual script, but rather an outline of the actions taken in the handler):

onh mouseUp
display dialog requesting disk type
if "Cancel” then exit this handler
if “Floppy” then assembie floppy-based pathnames
if "Hard Disk" then assemble hard disk pathnames
select the sample button with the Button tool
copy the button into the clipboard
go to the "Look for stacks in..." card of the Home stack
add the pathnames to the end of the list
go to the Home Card
paste the button from the clipboard
display instruction in the Messaga Box to “drag the button to
the desired location, and press Command-Tab" (to return
to the Browse tool.
end mouseUp

Since writing the original routine, I've thought of improvements to smooth
out what I consider arough edge at the tail end of the handler. Therough edge

32 HYPERCARD DEVELOPER'S GUIDE

hasto do withinstructing the user to position the button while it is still selected
(i.e., while the button tool is chosen) and then getting the user to choose the
browse tool, either knowingly or unknowingly (Command-Tab restores the
browse tool from any tool you're using).

So far, the method I like best is shown in the handler below. This handler
does not show the pathname part of an installation routine, just the handling
of the button copying, pasting, positioning, and restoration of thebrowsetool,
while providing needed on-screen instructions in the Message Box at the
crucial moment.

on mouseUp
choose button tool
click at the loc of button "Stack Button” -- selects the button
doMenu "Copy Button” -— puts it in clipboard

go to "Home"
doMenu “Paste Button®

repeat
set the loc of button "Stack Button” to the nouselLoe

put the mouseLoc into oldlLoc

put "Position the button where you’d like it, and then click.”

wait until the mouselLoc » oldLoc -- hide msg at first movement
put empty into msg

hide msg

repeat until the mouseClick -- drag without clicking

set the loc of button "Stack Button” to the mouselLee
end repaat

choose browse tool -- see the button as it will be

gnswer “Is it at the desired location?” with "No” or "Yes”
if It is "Yes” then exit repeat
else choose button tool

end repeat
end mouseUp

The handler begins by choosing the button tool to perform some button
maneuvers, such as clicking on it to select it and copying it to the clipboard.
Then the handler takes you to the Home Card and pastes the button in the

How HyperCard Literate is the User? 33

same spot from which it was copied on the installation card.

In the outermost repeat loop that follows, the button (still selected after the
paste command) zips to the location of the cursor. Thatlocation is temporarily
stored in a local variable, oldLoc, for use a couple lines later. Instructions
about positioning the pointer and clicking are then placed into the Message
Box to guide the user along with the installation. A Wait command suspends
execution of the handler until you move the mouse—thelocation of the mouse
not being equal to the original mouse position. At that point, presumably you
have read the instructions and are ready to position the button. Thus, the
instructions are removed from the Message Box (so you won’t see them again
if another stack should show the Message Box upon opening) and the box is
hidden from sight.

The small repeat loop that follows simply places the center of the selected
button at the location of the mouse. As you move the mouse around the
screen, the selected button tracks the pointer. It does this until you click the
mouse button (a click being equivalent to a mouseDown, nota mouseUp). To
see how the button looks in its new position, the handler chooses the browse
tool to remove the rectangle around the button’s icon. But an answer dialog
also gives you another chance, in case the position is not quite right or you
didn’t get the instructions the first time around. If you click on the No button
of the answer dialog, the entire outer repeat loop starts over, giving you
another opportunity to read the directions and carefully place the button.
Once you are sure that the location is right, and you click the Yes button in the
answer dialog, the handler ends, and you're all set.

Inside the Stack Button

Installation routines for multistack HyperCard applications, like Business
Class and Focal Point, serve another important function. The button installed
on the Home Card should be preloaded with a handler that brings the user to
thecorrectstartup stack in the system. If your stack system requires thesetting
of certain global variables based on user preferences, then it is imperative that
you direct the user to start your stack system in the prescribed manner. By
installing the preloaded button on the Home Card for the user, you assure that
each time he goes to your stack from Home, the operation will run as you
designed it. Figure 1-3, for example, shows the Focal Point stack button’s
script, which performs interesting visual effects on the way to a specific stack.
An openStack handler in stack FPeStartup gathers the global variables and
moves onto the first productive stack, the Daily Appointment stack.
Fortunately, too, when you copy and paste a button from the installation

34 HYPERCARD DEVELOPER'S GUIDE

Script of card button id 77 = "Focal Point"

on mousalp
visual effect dissolve to black
visual effect dissolve
go “FPeStartup”

end mouselp

(Find } (Print)

Figure 1-3 The Home Card button that is installed for Focal Point contains a script with
special visual effects.

stack to the Home stack, HyperCard also copies and pastes the ICON
resource. Artattached to the button follows the button wherever it goes. The
user may then copy and paste your button from his Home stack to any other
stack on his hard disk, in case he wants instant access to your stack from
something he’s developed or otherwise incorporated into his daily Macintosh
work.

Hands Off the Home Stack

Outside of installing a stack button and adding pathnames to the Home
stack—items that are visible to even the browser-level HyperCard user—I
avoid modifying the user's Home stack at all cost. Certainly, there are
advantages for the developer to put often-called handlers, functions, and
resourcesinto the Home stack, but I believe it’s inviting trouble to do so, unless
you offer sufficient warnings.

Perhaps the biggest hazard to modifying the user’s Home stack is that any
modification you make may impinge on a modification that either the user or
another, less friendly application has made. For instance, if your stack’s
installation routine appends a custom handler called printWeek (the handler
would beginon printleek), itis conceivable that the user or another stack

How HyperCard Literate is the User? 35

has also added a handler with the same name. When that happens, your stack
will expect to find the one you designed. But since HyperCard executes the
first handler it finds in a script with a matching name, HyperCard will never
find your handler. Instead, it will execute the earlier handler with that name,
causing, well, unpredictable (if not disastrous) results.

Conversely, if your handler is the first one with that name in the Home card
stack script, it preempts the user from writing a handler with that name for his
stack script. If he doesn’t know that you’ve “reserved” that handler name, it
will make for a frustrating debugging session. Therefore, I believe it’s unfair
to make changes to scripts in the Home stack without warning, since such
changes won't be obvious to the user and could interfere with the user’'s own
stack development. These kinds of changes to the Home stack also presume
the user fully understands the hierarchy of objects and message passing
within HyperCard—something you cannot assume.

Idon’t even like the idea of secretly copying resources, like icons, sounds,
fonts, and XCMDs to the user’s Home stack. For example, if you have many
custom-made icon buttons in your stack, and you copy them to the Home
stack at installation time, then every time the knowledgeable user creates a
new icon button for his or her own stack, all your icons will appear in the icon
dialog box, ripe for the picking. You may quickly lose control over the art you
so carefully crafted for your stack application, as the user, thinking the icons
are part of HyperCard, freely plugs them into stacks that may go anywhere.

This means, of course, that all stacks in a multiple stack HyperCard system,
like Business Class and Focal Point, have identical sets of icon resources for all
the buttons that permeate the system. It’s true that they take up extra disk
space, but keeping the resources local to the stack means that the icons will
always be in those stacks, even if the user transfers the stacks to a new
computer running a virgin copy of HyperCard and a fresh Home Stack.

That’s not to say that the Home stack should be kept squeaky clean as it
comes out of the HyperCard box. On the contrary, the Home stack should be
the repository of all kinds of resources and handlers that you, personally, use
within your own stacks or during stack development. I'll have several
examples of Home stack tidbits you should add in Chapter 21 on debugging
HyperTalk scripts.

User-Friendly Front Ends

If you assume that a potential user of your stack is not HyperLiterate, you
must also realize that he will not understand anything about HyperTalk
commands, scripts or objects containing scripts. Therefore, if your stack

36 HYPERCARD DEVELOPER’S GUIDE

features operations that usually entail writing scripts or issuing commands
from the Message Box, then you should design a simple front end to those
features. Here are three examples derived from Business Class and Focal Point.

Printing Cards

Printing individual cards from a variety of stacks is relatively simple when
doing the job manually from the Message Box. You start by typing open
printing with dialog, and adjusting the Print dialog box settings for the
number of cards you wish to print on a page. Then navigate through the stack
as you normally do to reach the cards you wish to print. Each time you reach
acard you wish tosend tothe printer, typeprint this card intotheMessage
Box. Actually, you only have to type this command once. Since it stays in the
Message Box (until you type something else there or a script puts text there),
you can use the mouse to navigate to each card and then simply press the
Return or Enter keys to print the card. When you've sent all cards to the
printer, then type close printing. That’sall thereis to it. Not much foran
experienced stack writer. But for inexperienced users, this is a terrifying
ordeal. The good news is that a good stack will cover up all vestiges of
HyperTalk commands and present the printing concepts in an easy-to-
understand context.

Figure 1-4 illustrates the printing card from Business Class. The card gives
the user the option of selecting individual information cards for a given
country or one click to select all cards. The interface to selecting information
categories is the familiar check box style button.

Attached to the OK button is a handler that looks through all the checkbox
buttons to see which ones’ highlight properties are set to true. Armed with
that knowledge, and the name of the country from the pseudo-scrolling field
of country names, the handler goes to the country’s map card and begins
electronically clicking onsubject buttons (using the send mouseUp to button
x command)and issuingthe print this card commanduponreachingthe
desired cards. Once all cards have been sent to the printer, the handler issues
the close printing command and returns the user to the view of the
printing card.

Script-Writing Scripts

A second example, derived from Focal Point, demonstrates how to soften the
blow of writing button scripts for the non-HyperLiterate user. One of Focal
Point’s stacks, the Document Launcher, offers two ways to group Macintosh
documents from any application and then lets the user open those documents
directly from Focal Point (Figure 1-5). The tricky part is that a button opening

How HyperCard Literate is the User? 37

BUSINESS CLASS™ PRINTING

You may print — in a variety of sizes and formats —
any or all information cards for the country of your choice

» Click the arrows 10 select the country: { }| Czechoslovakia b
® Select the information card(s) you wish to print:
S ALL CARDS FOR — CIAL . POSTAL
L THIS COUNTRY R & SUsTOMS .E‘I:; = RATES
URRE NATIONAL =i
X < i HOLIDAYS
[J AIR TRAVEL [0 cLIMATE

= TELEPHONE
] E § & DIRECTORY

[Concer [OK |

Figure 1-4 A friendly front end to complex printing of information cards is recom-
mended. This is the one that is built into Business Class

GROUND T
E TRANSPORTATION E KERGENCY

D TRAVEL
DOCUMENTS

Documents

Annual Report

Report Budget
Photo Assignments
Assembly Schedule

Annual Report Text |
Annual Report Layout
5, Letter to Stockholders f

B cover art

| [A internal Chart 1
B internal chert 2
. B internal chart 3

Board Member Invitations. .
Agenda

Figure 1-5 The Focal Point Documents stack creates buttons and writes those buttons’
scripts without the user even having to see the Script Editor.

38 HYPERCARD DEVELOPER’S GUIDE

a document must have a mouseUp handler written for it, bearing the name of
the document and the application program.

In the early design stages of this application, I was very concerned that the
only way to get the user to create these button handlers was to actually open
up the script editor for a new button and modify a template of the command,
which I'd present there. The script would also contain substantial commen-
tary about how to go about entering the document and application names into
the script. This would be all the more complicated for application names that
used special characters like the bullet, trademark and copyright symbols,
which, while available on the Macintosh keyboard, are not standard charac-
ters everyone knows how to access.

Fortunately, the application (or rather the sanity of potential users) was
rescued by an external function written by Steve Maller of Apple Computer.
Called filename, this public domain function presents a Standard File Dialog
Box—something with which all Macintosh users are familiar—that lets the
user select a file name in an acceptable manner (Figure 1-6). That function
provided the stack’s button creation handlers with all the necessary informa-
tion to create those document launching buttons all behind the scenes. A

& File Edit Go Tools Objects

Documents

D ASM Speech {+| © Hard Disk
0O ComTem
D Operating Statement'85.xl (CEject) ts

0O P&L--1987

T e

=@ Select the document you wish to open with a new Documents button.

Figure 1-6 With the help of Steve Maller’s filename() external function (XFCN), the
user sees familiar Macintosh surroundings to select documents and applications for the
button scripts.

How HyperCard Literate is the User? 39

script from one of these new buttons looks like this:

on mouseUp
if the ShiftKey is down then clearButton
else open "HD-20:Correspondence:envelope”-
with "HD-20:Rpplications:MS-UWord”

end mouseUp

The user never knows that those buttons are gaining custom scripts crafted
from their clicked responses in the standard file dialog boxes. Suddenly anew
button appears on the screen, and they can position it where they want. It's
an appealing kind of magic added to the stack.

Customization Front End

The third example of a friendly front end also comes from Focal Point. In this
case, it’s the part of the help system that lets the user customize the array of
application buttons that flank the screens in the applications. Focal Point ships
with 16 of its 18 applications pre-installed as shown in Figure 1-7. Since user
customization was to bea top feature of the program, there had tobe provision
for changing the order of buttons or swapping one or two of the pre-installed
buttons for buttons to the other stacks that come with the package.

Given the fact that some Focal Point stacks have as many as six different
backgrounds, the idea of changing the order of buttons among all the stacks
“mounted” into Focal Point would surely scare away users. Not only were
there a lot of buttons to copy and paste into their right holes, but the script
attached to a particular icon button changed, depending on which stack that
button was in. For example, when you are in the Daily Appointment stackand
you click on the To Do list button, the To Do List button not only goes to that
stack, but it also searches for the card whose date matches the date on the Daily
Appointment card you were viewing. The handler for the To Do List button
is different from the Document Launcher. It simply goes to the To Do List
stack and searches for today’s card.

So there you have it: the need to change as many as 11 buttons (the first five
buttons are hard wired into all stacks) in each of 22 possible backgrounds, and
not all buttons are the same for all backgrounds. Trying to make a change to
these buttons by hand would be a nightmare, sure to cause the hapless user
to make some mistakes along the way.

To head off possible consternation among Focal Point users, I created a front
end to the entire process (Figure 1-8). With this button installation card, the
user clicks on a button and holds the mouse button as all possible Focal Point
button icons and stack descriptions appear in the button location. The user

40 HYPERCARD DEVELOPER’S GUIDE

® File Edit Go Tools Objects
DAY

1 da 5 : D8 8

5E 1
[Fonta] | 7 2
| | E 7

+ 80
+ W

| Budget Review Meeting

2R

+8

™
+
+ O |+

Figure 1-7 The standard alignment of 16 applications in Focal Point. Each button on
the left and right edges links to a different application.

releases the mouse button when the target application appears in that button
location. Once all the buttons are in the desired order, the user clicks on the
Install Buttons button. Inside of three minutes (less on a Macintosh II), the
substantial handler behind that button copies icon numbers and scripts (the
scripts are in a series of cards at the end of this stack) for pasting into the
buttons situated in all the stacks of the Focal Point system.

These kinds of front ends to HyperCard’s inner workings are essential if
you wish the masses to adopt your stack.

Front End Visuals

Our final discussion on the subject has much to do with the hardware you use
to design and run your stacks, so we'll save most of the discussion for the next
chapter. But in the meantime, if you design a system of stacks thatrely heavily
on stack-to-stack communication, do something to entertain the user while
time marches on without any apparent action taking place.

In one sense, things should look like they’re frozen, at least as the screen
display goes. Ibelieve it is very confusing for a user to see stack screens flash

How HyperCard Literate is the User? 41

[& File Edit Go Tools Objects]
72 il had Customizing Focal Point Application Buttons S

=N i DALY APPOINTMENTS DEADLIRES H
il iDAILY TO DO LIST Click on any button...
{except the top five on the
1aft edge) to cycle through
MORNTHLY CALENDAR all available Focal Point
applications. Set them up

in the order that makes the
most sense to you and your
business. You may leave

OUTGOING PHONE LOS buttons blank.

DIRECTORY & DIALER

Y when the buttons are
Ml | TUME SHEET arranged as you like, click
on “Inatall Buttons” below.

VENDOR MEETIRGS The instellation takes

several minutes.

1 i BLANK

i M = o
| Home || contents || Revert L] glions |

Figure 1-8 The most complex script in Focal Point is devoted to letting the user choose a
different application button alignment and then installing the icons and scripts in all the
Focal Point stacks.

for a second or two as a handler goes toanother stack, looks up a card, gets the
data, and returns to the original stack. Those kinds of distractions are
inexcusable, inlight of HyperCard’s ability tolock thescreen(se t lockScreen
to true). Notonly willlocking the screen reduce screen confusion, butitalso
speeds the process, because writing information to the screen takes valuable
fractions of seconds. Add up the time devoted to refreshing the screen in a
stack-to-stack exchange, and the net result is quite noticeable.

If extensive stack-to-stack exchanges take place in your stack system, then
be sure to offer visual feedback to the user that something is going on, even if
the screen doesn’t seem to change.

For very slow operations, I find it useful to use the Message Box or a
temporary card field to communicate the steps taking place while operation
seems to be at a standstill. A casein point is the Deadlines stack of Focal Point.
A handler in that stack goes to all the Follow Ups cards of each unfinished
projectand proposal. As the handler performs such functions as retrievingall
the deadline dates from the projects, it displays a message in the Message Box
to that effect (Figure 1-9). In fact, as each Follow Ups card is read, an extra
arrow appears in the Message Box. The user sees telling action of some kind,

42 HYPERCARD DEVELOPER'S GUIDE

€ File Edit Go Tools Objects

Last Update: Monday, March 7, 19868 at 8:10 AM

Gathering Project Deadlines—>—>

Figure 1-9 To let users know that a long handler is at work, the Focal Point Deadlines
stack provides a progress report in the Message Box.

even though the screen is frozen. Messages during the procedure are:

Gathering Projects Records
Gathering Proposals Records
Sorting Deadl ines

Merging Deadl ines

You must exercise care, however, when designing messages like this, because
the need for such messages depends very much on the hardware the stack will
be running (see Chapter 2 for more details).

The Watch Cursor

One very important element you can add to a handler that involves much
stack-to-stack transfer of heavy duty number and text crunching is to change
the screen cursor to the watch cursor while the handler is running (Figure 1-
10). There’s something psychologically soothing about seeing the watch
cursor when the Mac is churning away. We suddenly become much more
patient with a comparatively slow procedure as long as the watch cursor is on

How HyperCard Literate is the User? 43

Figure 1-10 The Watch cursor (set cursor to 4) is a good psychological tool to help the
user be patient with a time-consuming operation.

the screen. Isuppose it means that the Macintosh is working as fast as it can,
and it will let you know when control has returned to you.

Many of my more involved handlers have a common start to them. First
they change the cursor to the watch and then lock the screen, as in:

on mouselp
set cursor to 4 -- the watch cursor number
set lockScreen to true -- freeze on-screen action

end mouseUp

You don’t have to reset either the cursor or lockScreen properties, because
when the handler ends, and HyperCard begins sending idle messages again,
the cursor returns to the appropriate HyperCard cursor (either the browse
tool or the text entry tool) and the lockScreen property returns to false.

The Beachball Cursor

Starting with HyperCard version 1.2, you may program your stack to display
the rotating beachball cursor when a long handler is working. The nature of
the beachball is such that it should be used primarily inside repeat loops.
Fortunately, the mechanism for rotating the beachball is built into Hyper-
Card. All your script needs to do is set the cursor to “busy” inside the loop.
Each time the loop repeats, the beachball advances 45 degrees (one-eighth of
acomplete rotation). Thus, you’d put the beachball to work in a loop like this:

on mouseUp
repeat with x = 1 to 100
set cursor to busy

44 HYPERCARD DEVELOPER’S GUIDE

[your other work within the loopl
end repeat)
end mouselp

If your repeat loops are complex scripts, you, as stack author, can recognize
each 45-degree rotation as a spin through the repeat loop. If you can see the
ball turning rather slowly, the repeat loop’s performance may need to be
improved (discussions about improving performance will come later).

Anticipating Macintosh Literacy

One last note about HyperLiteracy. While you can’t expect the user to be
HyperLiterate, you can expect the user to be Macintosh literate (even if some
are not). This means that you must anticipate some of the Macintosh-like
things that a Mac-literate is inclined to do. Take the double click, for instance.

The Macintosh desktop and many applications have put us in the habit of
double-clicking the mouse pointer on things to get some operation going.
Double-clicking on an application icon in the desktop starts the program
without having to choose Open from the File menu. In many dialog boxes in
Microsoft Excel, if you double click on a radio button to select a preference, it
is the same as clicking once to select an option and then clicking on the OK
button to make the option effective.

After you’ve used HyperCard forawhile, especially as adeveloper, you feel
secure that single clicks are sufficient to initiate action. After all, they are the
only kinds of actions your button and locked field mouseUp handlers recog-
nize. Buta non-HyperLiterate Macintosh user will tend to doubleclick onicon
buttons and certain other buttons that set action in motion.

In Chapter 3 you'll see how to trap for double clicks when they produce
unwanted results with background buttons. But for now bear in mind that
HyperCard and Macintosh literacy are two different disciplines. You can’t
expect the former, and you may have to guard against the latter.

One complaint that often caused fumbling for HyperCard stack users of all
literacy levels has beenrepaired. Prior to HyperCard version 1.2, the only way
to advance the text pointer from field to field from the keyboard was with the
Tab key. While experienced database users might be comfortable with that,
it was a cause for concern when a user pressed the Return key in a single-line
field. Instead of moving the cursor to the next field, the Return key advanced
the cursor to the next line of the first field—out of view.

The autoTab field property, which premiered in version 1.2, lets the Return
key be used to advance the cursor to the next field. If less than one-half the
height of the next line of a field is visible, the Return key acts identically to the

How HyperCard Literate is the User? 45

Tab key—otherwiseitadvances the cursor to the next line, which you'd expect
of multiple line fields. For database-style HyperCard cards, I recommend
turning on autoTab for all fields. Your users, however, must be using
HyperCard 1.2 or later for this to work.

By now I hope you have a good idea of what it means to design your stack
around the non-HyperLiterate individual. It certainly requires more plan-
ning than writing for stackheads, but it also means you're getting good
experience at designing small parts of man-machine interfaces. Your users
will appreciate the effort.

2

Designing for all
Macintosh Models

In the early days of Macintosh (they’re not quite “the old days”), it was
relatively easy for a software designer tomap out oneinterface for every
machine out there. He could count on a fixed execution speed and a
fixed screen size. But that comfort is now gone. Software must run on
a Macintosh Plus, Mac SE, and MacIl. The designer must be prepared
to have his programs operate on the standard 9-inch internal mono-
chrome monitors, as well as gigantic color monitors. HyperCard
developers have these same concerns.

When you work on a particular Macintosh hardware configuration,
itis very easy to become myopic about the hardware that other folks are
using. Asaresult, you tend todesign for the machine you use and forget

that others are running faster or slower computers, or have larger or

48 HYPERCARD DEVELOPER’S GUIDE

smaller screens. These two factors—speed and screen size—impact the
design of HyperCard stacks. If you know for sure that your stacks will be run
or demonstrated only on one hardware configuration for time immemorial,
then you can afford to be nearsighted in your design. I doubt, however, that
many of us have that luxury.

Execution Speed Concerns

Stack execution speed in HyperCard is dependent upon three hardware
elements: the microprocessor, the ROM, and the disk drive. Let’s see how
these elements affect each of the three main Macintosh models.

Macintosh Plus

The oldest Macintosh computer capable of running HyperCard is the Macin-
tosh Plus (or equivalent upgrade). This machine contains a Motorola 68000
microprocessor and a ROM chip set that represented the first major ROM
upgrade for the Macintosh line. While this is not the forum to debate the
relative speed or slowness of the 68000 in the microprocessor world, suffice it
to say that the 68000 in the Mac Plus is the slowest microprocessor chip inside
any Macintosh. The ROMs, too, are the slowest of current Macs in the way
they execute a number of important time-consuming duties, like refreshing
the screen. Despite this, execution speed of the Mac Plus is acceptable when
running typical (but not all) HyperCard stacks.

Because HyperCard is so disk intensive—text entered into a field of a
typical stack is immediately saved—the speed of disk drive access becomes a
critical factor in the perceived execution speed of HyperCard and stacks
running on HyperCard. Since the Mac Plus has been around the longest, it is
likely there are still many in use today that have hard disks connected via
either the serial port (the first generation of hard disks, actually predating the
Mac Plus) or the floppy disk port (like Apple’s original HD-20 hard disk).
Between the two styles, the HD-20 style is probably the more prevalent in
these older systems.

With the advent of the Mac Plus, however, the Macintosh gained the SCSI
(Small Computer Systems Interface) port that allowed much faster data
transfer between the Macintosh and external devices, such as hard disks. In
fact, soon after the release of the Mac Plus Apple changed over from the floppy
disk ported HD-20 to the SCSI ported HD-20SC to take advantage of this extra
speed. Many third-party hard disk drive manufacturers also produced SCSI
hard disks, and that’s the standard today.

Among hard disk drives, as you’re probably aware, there are noticeable

Designing for All Macintosh Models 49

differences in access speed. Typically, the greater the hard disk capacity (up
to about 150 megabytes), the faster the access, due largely to the manner in
which data is spread across multiple disk platters in high-capacity drives.
HyperCard users, therefore, will get greater perceived performance from a
Mac Plus with a high-capacity SCST hard disk drive than with the original HD-
20. But in fairness to potential users of your stack whose hardware configu-
ration may be held in check at the Mac Plus/HD-20 level, you should consider
these users in your stack design.

On the screen side of the Mac Plus, the machine comes with its own built-
in 9-inch, 512 x 342 pixel monochrome monitor. Since this is the smallest
screen size you'll have to address, make sure that if you design your stack on
a large screen it works the way you expect it does—graphically—on a 9-inch
screen. I'll have more to say about this later in the chapter.

The Macintosh SE

While the Mac SE runs the same 68000 microprocessor as the Mac Plus, its
ROMs are of a newer design, which, among other things, refreshes the screen
more quickly. That accounts for a noticeable improvement in speed when
running any kind of Macintosh program on the SE versus the Mac Plus.
HyperCard stacks, which also do a lot of refreshing of the screen (as in going
from card to card), run faster on the SE than on the Plus.

Most SEs also have built-in hard disks. Whether the user has an internal or
external SCSI hard disk, expect your stacks to run approximately 25% faster
on an SE than on a Plus.

It's safe to say that most SE users have the single, built-in 9-inch mono-
chrome display, but the availability of the expansion slot inside the computer
tempts owners to add large screens, like those from Radius, E-Machines,
Micrographics, and others. The expansion slot also accepts one of several
accelerator boards now available. Such boards include a faster microproces-
sor, which may be just a faster version of the SE’s 68000 (running twice as fast
and maintaining software compatibility) or a version of the Mac II's 68020 that
runs at twice Mac II speed (but may also present software compatibility
problems with non-Mac II-friendly software). Many accelerator boards also
contain sockets for other chips that speed up calculations and other operations
even further. Owners of the fast 68020 accelerator boards claim that their
Macintosh SEs run faster than the Mac IL.

All this speed, however, can affect the design of your stack, as we'll see later
in the chapter.

50 HYPERCARD DEVELOPER’S GUIDE

The Macintosh 1I

At the top of the heap is the dream machine of many Macintosh owners, the
Macintosh II. Dave Winer of Living Videotext once described the Mac Il as the
“infinity machine,” because it can be expanded to do great things we haven't
even thought of.

At the core of the Mac II is an 8-MHz Motorola 68020 microprocessor, a
speedy chip compared to the 68000 chips running in the other Macs. Coming
to a Mac II from either the Plus or standard SE, the speed improvement is
remarkable. Conversely, if you work all day on a Mac I and then have to sit
before a Plus or SE at home, execution speed seems interminably slow on the
smaller machines. As such, Ibelieve it is a real hazard to develop stacks ona
Mac I, and use its execution speed of intensive stack-to-stack manipulations
as an acceptable benchmark. If an operation takes “just the right amount” of
time on a Mac IJ, it may be unacceptably slow on other machines.

Screen sizes on the Mac II vary widely, but one thing you can count on for
sure: No Mac Il user has anything smaller than the 640 x 480 pixel screen of the
low-end Apple monitors. That means that the HyperCard window will be a
free-floating entity on the screen, not taking up the entire screen. The
menubar stretches across the top of the monitor, outside the HyperCard
window. And the user sees the title bar of the HyperCard window, including
changes in the stack name being accessed in a stack-to-stack exchange, even
when the screen is locked (Figure 2-1).

You can also count on hard disks for the Mac II to be fast. It’s rare to find
a Mac II out there with anything smaller than a 40-megabyte hard disk, while
the average hard disk size in the community will grow very quickly as 80-
megabyteand larger hard disks become the norm in the Macintosh Il environ-
ment.

What About Floppies?

Word amid the Macintosh community is that approximately 70 percent of the
Macintoshes in use today are linked up with a hard disk of some kind. Despite
that penetration, there are enough floppy disk-only users in the world to make
you think twice about designing a stack system strictly for hard disk owners.
In some fashion, you’ll have toaccommodate those who have two 800K floppy
disk drives on their Mac Plus or Mac SE.

There will be more specifically about structuring your stacks for floppy
disks in Chapter 5, but it’s important to realize that stacks distributed on
magnetic disk media (as opposed to optical CD-ROM or streaming tape
media) must be organized carefully for ease of installation on a hard disk and
ease of use when used strictly from floppy disk drives.

Designing for All Macintosh Models 51

& File Edit 6o Tools Objects

+9 |+@ |+ |+

o

=]
*

e

Figure 2-1 In large monitors, HyperCard appears as a window on the desktop. The
menubar is located at the top of the screen, detached from the stack window.

Multimegabytes of RAM

The near simultaneous release of HyperCard and MultiFinder presented a
seductive software pair. On the one hand, HyperCard can be used as a
repository of every bit of information you need at your fingertips during the
day. On the other hand, MultiFinder lets you access that HyperCard treasure
chest in its entirety even while another application is running—provided, of
course, that you have enough RAM in your Macintosh to accommodate it all.

Since HyperCard likes to have 750K of RAM all to itself, you need a
minimum of 2 megabytes of RAM to use HyperCard along with MultiFinder
and another application. If your suite of hour-by-hour applications contains
a few applications programs, then even 2 or 2.5 megabytes won’t do. It's 4 or
more megabytes for you.

MultiFinder is an attractive setting for doing stack development, particu-
larly if your stack creation draws on artistic tools of outside graphics pro-
grams or you are testing text importing and exporting. But since most
Macintoshes are still equipped with only 1 megabyte of memory, you cannot
assume that a wide audience for your stack has MultiFinder capability while
running HyperCard (unless you are doing an in-house stack for a specific
bank of multimegabyte Macs). You are free, of course, to limit the appeal of

52 HYPERCARD DEVELOPER’S GUIDE

your stack by stating as a system requirement that your stack requires
MultiFinder. In fact, there are certainly cases where this will be true. But for
mass appeal stacks, assume the user has 1 megabyte of RAM and no concur-
rent operation of HyperCard and MultiFinder.

That's not to say you should ignore those with multiple megabytes. Their
ranks will grow slowly at first, but then speed up as 2 or more megabytes
become standard memory configurations for Macintoshes and the high-
capacity memory modules (1 megabit SIMMs) resume the customary price
cuts of RAM chips. Therefore, in stack documentation and on-line help, be
sure to acknowledge how your stack can be used best in a multiple application
environment.

Screen and Card Size

Through version 1.2 of HyperCard, card size has been limited to the standard
512 x 342 pixel Macintosh Plus and Macintosh SE screen. What users of those
computers don’t see, however, was that the active area of the card is actually
inside a fixed size Macintosh window. The title bar is positioned “above” the
top of the screen, out of view. When viewed on a larger screen, like the 640 x
480 pixel color and monochrome monitors Apple offers for the Macintosh II,
the idea that a card is a Macintosh window hits home, since you can see the
title bar, and the HyperCard window sort of floats in mid-air on the screen,
unless you drag it around.

Bill Atkinson’s original rationale for restricting the HyperCard card size to
512 x 342 pixels was that a card designed on any Mac model would be
completely visible on every other machine. That makes perfect sense to me.
It would bea significant inconvenience to the user who came toa 9-inch screen
Macintosh and had to scroll around in search of buttons or fields on a larger
card.

A future release of HyperCard will probably give the stack developer the
freedom to make cards larger than 512 x 342. Power-hungry developers will
probably disagree with me, but I feel strongly that stacks intended for a wide
Macintosh audience should be no larger than the 512 x 342 pixel size of the
original HyperCard card. Ialso believe you do yourself a disservice by laying
out huge cards whose design integrity is lost on the majority of users, who
have small screens.

The time to take advantage of the larger card size is when you know the
stack will be used on a very specific hardware setup. For example, if you are
designing a stack for a freestanding kiosk situation, you have control over the
screen size at these stations. If the screen is a 640 x 480 pixel monitor, thenit’s

Designing for All Macintosh Models 53

safe, if not preferable, to design the stack with cards of that size. My advice,
therefore, is to be conservative in expanding your card sizes.

You'll also probably be able to make cards smaller than the 512 x 342 screen
size. When used on large monitors, there is a distinct advantage to having
stacks appear in small windows if the information content doesn’t normally
fill the standard card size. Small cards can prove very helpful ina MultiFinder
environment when the user has a 640 x 480 monitor. Since that monitor is too
small to display a typical application window and a standard HyperCard
window side by side, a smaller HyperCard stack window could clean up what
normally looks like a hodgepodge of overlapping windows.

Screens and Menus

One design element you must always be sensitive to is the interaction of the
menubar and your card design on various size monitors. If your application
leaves the menubar showing, it covers the topmost 20 rows of pixels on a 9-
inch internal Macintosh monitor. On a larger screen, the menubar appears
distinct from the HyperCard window, at the top of whatever size monitor
you're using. Very often, you can tell what kind of monitor the stack author
has by trying out the stack on both the internal and the external, larger
monitor.

Figure 2-2 shows the result of a stack designed on a large monitor when
displayed on an internal 9-inch monitor. My guess is that because the
menubar never impinged on the card layout area on the stack author’s large
screen, he never expected the menubar to cover any of the card. Conse-
quently, there is no Hide Menubar command in the openStack handler of this
stack. But on a 9-inch monitor, the menubar covers part of the intended full-
screen desi

In designing Focal Point, which has the menubar showing throughout, I
discovered the opposite effect. The screens had been laid out on an internal
9-inch monitor. Below the menubar is a black bar, which contains navigation
buttons and the name of the stack (Figure 2-3a). When I first demonstrated a
prerelease version of the product on a Macintosh II and its 640 x 480 pixel
monitor, I was astonished to see a blank white band between the HyperCard
window’s title bar and the black bar of the card (Figure 2-3b). Not only that,
but the top of the black bar looked unfinished because the bottom black row
of pixels of the menubar had given the appearance of a border between the
black bar and the menubar. I had forgotten to take into account the area under
the menubar, because on the monitors that my screen artist and I were using,
the menubar was always there, eating into the active area of each card design.

54 HYPERCARD DEVELOPER'S GUIDE

[& File Edit Go Tools
> o Hh
tour of the high- Map of this 4
lights of this stack stack of cards
__lndex. Look up and
jump to topics of in- Help. Info on
8 terest how to use this
stack
Left arvow. Go to pre-
vious card
Home., 7
Right amow. Go Done. %:tt
to next card Amscray
Retum. Go back to
previous fork in road

Figure 2-2 An obvious case of a stack being designed on a large-screen display. The
menubar should have been hidden upon opening the stack to let the full screen art show
through.

Knowing that my audience would be using all monitor sizes, Iadded some
art to the background underneath the menubar. First, I balanced the top
border of the black bar to match the bottom border. Then I filled in the top
blank space with a gray fill pattern. The gray would be less distracting that
an empty space under the window’s title bar (Figure 2-3c).

The lesson learned from this experience, therefore, is that if you intend to
use the HyperCard menubar, you must plan for its presence and absence in
your card design. Don’t design with active elements in the area that goes
underneath the menubar on a 9-inch monitor. But don’t leave the big monitor
folks with a gaping hole where the menubar appears on small screens.

I believe we will see HyperCard applications that generate their own
menubars (via XCMDs), probably within the stack window. They will, in one
sense, be easier to design, because the screen designer can count on the menus
being there, no matter what size monitor the user has connected to his
Macintosh.

Designing for All Macintosh Models 55

& File Edit Go Tools
1

(A)
[E===———==Word Disk: Hard Disk:
To | f To f
Dof|| Dol
(B) (C)

Figure 2-3 Focal Point was designed on a 9-inch monitor (A). When viewing it ona
large screen for the first time, the area under the menubar looked unfinished (B). Some
additional artwork gives the card a more finished look when viewed on a large screen (C).

Timing

My first demonstration of a development version of Focal Point ona Macintosh
I held another surprise for me. A data manipulation handler in one stack was
taking so long on my Mac Plus that I displayed a message in the Message Box
about what was going on. This, I figured, would put the user’s mind to rest
that the program was, indeed, working, and had not frozen. But when Iran
that operation on a Mac II, the Message Box came and went so fast that I
couldn’t even read the message. On the Mac II there was little reason to tell
the user to be patient if the operation was going to be completed before they
could read the patience message.

That experience caused me to dig deeper into that handler and the opera-
tions it was performing to find a more efficient way so that the user on the Mac
Plus would not need a patience message. In one case, however, I left the
message in because the operations took long enough on a Mac II to make the
message meaningful. The situation is in the Deadlines stack of Focal Point,
which updatesits listing by going through many different cards in the Projects
and Proposals stacks, performs some bubble sorts, and then formats the text
so it isreadable in the destination field. Messages that appear in the Message
Box do more than simply tell the user to wait a moment. They describe the
progress the handler is making in extracting, sorting, and formatting the data,
as detailed in the previous chapter.

56 HYPERCARD DEVELOPER’S GUIDE

Ticks, Seconds and Delays

In designing Business Class and Focal Point, I had built in a brief delay at the
opening of each product’stitlecard. On the MacPlus it was just about theright
amount of time to see the title and scan the author and artist credits. From
there, the program continued to the first screen of the active programs. I was
in for a shock, however, when I first demonstrated the product on a Mac II.
The title screens went by way too fast.

For timing the delay, I had used the Wait command, specifying a number
of ticks to delay. My first inclination was to think that the Mac Il counted ticks
differently than the Mac Plus or SE—more than the specified 60 ticks per
second. Upon further investigation that proved wrong. Here is the handler
that shot down my original thesis:

on mouselp

get the ticks

wait 1 second

put the ticks - it
end mouseUp

No matter on which machine I ran this handler, the indication was that there
are 60 ticks to the second universally.

The difference in delay speeds was due, it turns out, to the fact that all other
operations in a handler are much faster on the MacII. What I thought was a
part of the programmed delay on the Mac Plus was more a factor of compara-
tively slow screen refresh and handler execution. OnaMacII, theactual delay
is just as long as on a Mac Plus, but all the handler and screen action getting
to that delay is nearly twice as fast.

What I also discovered is that the longer you make the delay (on the order
of several seconds), the less the apparent disparity between Mac Plus and Mac
II. The reason, obviously, is that the fixed delay becomes a larger percentage
of the total execution time for the handler. But that leads to another question:
Is a delay something you should program into a stack?

When Delays Are Necessary

Wait loops are hotly contested among experienced HyperTalk programmers.
Some hate them, others use them sparingly. I fall into the second category.
Still, I'll never use a Wait command to intentionally slow things down. A wait
loop like this:

wait S seconds

Designing for All Macintosh Models 57

can be frustrating for the user, because the only way to break out of the waiting
period is to interrupt the handler by typing Command-Period. If you need to
build a delay of some kind, like showing a title screen for a short time, then
make it possible for the user to break out of the delay by some action, like
clicking the mouse. Here, for example, is part of the openStack handler for
Focal Point that shows the title card for five seconds or until the user clicks the
mouse anywhere on the screen:

on openStack

put the seconds into mark
repeat until the mouseClick or the seconds - mark > 5
end repeat

end openStack

Note that this timing loop does not even use the Wait command. Instead, it
puts thecurrent clock setting into a local variable, mark. The repeatloop keeps
whirling around either until the user clicks the mouse or until the difference
between the clock’s seconds and the number of seconds just put into the mark
variable is greater than five—meaning five seconds have elapsed. Even
thougha MacII may go through the repeatloop more than three times as often
as a Mac Plus, the effect on all Macintosh hardware is identical.

Animation

If you've ever seen Bill Atkinson’s standard HyperCard demonstration, you
were probably amazed at the near animation quality survey through his clip
art stack. His demo has a couple of things working in his favor. First, he’s
running on a Mac II. Second, he pre-caches the clip art stack into his
multimegabyte RAM before showing the audience (to pre-cache the images,
he shows all cards without anyone looking).

Regardless of how he does it, you can’t help but think of the possibilities of
using HyperCard to create animation sequences in a stack. If you have a Mac
Il and lots of memory, you can do it. But the moment you try the stack ona
Mac Plus or unaccelerated SE, the results will be disappointing. The primary
reason is that screen refresh rates are slower on the smaller machines.
Unfortunately, there is no simple way to make animation run at the same
speed on all Mac models.

The hard way is to use an XCMD to find out which machine the stack is
running on, and branch to a slide show handler tailored to that machine’s

58 HYPERCARD DEVELOPER’S GUIDE

speed. But that presupposes that you'd allow the Mac II animation to be
artificially slowed to make it work at the same speed as a Mac Plus. That’s
unlikely—you should always want the fastest animation possible.

If your animation is of the variety that uses HyperTalk scripts to control
HyperCard painting tools, then HyperCard version 1.2 will speed things up
for you on all machines. HyperCard now switches between painting tools
much faster. You will still experience different execution speeds on different
hardware models, but at least now some of your ideas may be feasible on the
Macintosh Plus.

An alternative to HyperCard-only animation is to employ an animation
program driver. MacroMind, creators of VideoWorks II, offers a driver and
XCMD that lets your stack display VideoWorks animations inside a stack—
even in color on a color monitor. Play VideoWorks, as the system is called, is
more reliable across all machine speeds and all the art rests in a VideoWorks
file, rather than in your stack. This is the preferred method of including high-
quality animation in your stacks.

To distribute a stack that plays VideoWorks movies, you'll have to license
the driver from MacroMind. The company has a sliding scale of one-time
licensing fees to include the driver with your product. The user of your stack
must copy the drive file to the same folder level as your HyperCard applica-
tion, but the animation files may be nested in other folders as you please.

In summary, then, be sure to test your stacks on machines from both ends
of the speed and screen spectrum. You’ll learn a lot about your stacks in the
process, and probably find ways to make them work better on all machines.

3

—

What About the
Macintosh User
Interface?

HyperCard created a kind of furor among many experienced Macin-
tosh program designers and users because, they claimed, HyperCard
did not adhere to the User Interface Guidelines. The basic elements of
the Macintosh user interface—elements such as pull down menus, win-
dows, and click-and-drag text selection—date back to an Apple docu-
ment written in 1982 for early Macintosh developers. So when Bill
Atkinson appeared to throw away the manual, some in the community
felt it was like fooling with Mother Nature.

I don’t agree with the purists who decry HyperCard's abandonment
of the user interface guidelines. As a Macintosh program, HyperCard
does adhere quite closely to the guidelines. It has pull-down menus. Its
dialog boxes and buttons inside dialog boxes behave like any Macintosh

60 HYPERCARD DEVELOPER'S GUIDE

dialog box and button. It even introduces a new interface extension about
which few people quibble: the tear-off menu.

Interface purists expect all Macintosh programs to be displayed in grow-
able, scrolling windows. While HyperCard does use a standard window for
its display (you don’t realize this unless you see it on a large-screen monitor),
the user may not resize the window at will, because thereis no grow box at the
bottom right corner of the window. Most programs, other than HyperCard
applications, tend to revolve around documents that may be larger than the
standard 512 x 342 pixel Macintosh internal monitor. These documents are
on-screen replicas of the kinds of paper documents from the physical world,
whether they be filled with words, numbers, or drawings. But because the on-
screen metaphor of HyperCard’s information unit is a card, it makes sense to
me that the window to the HyperCard applications should be the size of that
card. A “card” also conveys a finite, tight information package, which should
be seen at a single glance. You shouldn’t have to scroll around a card to find
abutton or field—a card’s content should be obvious in one visual scan of the
card. Thatbeing the case, growable windows and scroll bars aren’t required.
And non-growable windows are a predefined window type in the Macintosh
toolbox. There’s nothing special going on in that regard.

No, HyperCard, itself, does not wander far from the guidelines. But
admittedly the applications you can create with HyperCard canappear to toss
the guidelines into the wastebasket. This becomes, then, an important issue
that any stack developer must address before setting out on a stack project.

Let’s look first at the kinds of deviations from the user interface guidelines
that HyperCard allows. Then we’ll see where deviating from the guidelines
might be okay.

The Menubar

Except for some game programs, virtually every Macintosh program pro-
videsamenubaracross the top of thescreen. Even the simplest programs offer
the Apple, File, and Edit menus. The Apple menu, of course, lists the desk
accessories installed on the current System File you’re running. The File
menu, atleast, offers such basic items as Open, Save, Print, and Quit. The Edit
menu, as prescribed by the guidelines, offers selections for copying, cutting,
and pasting selected items in the document, plus a selection for undoing a cut
or paste.

As we've come to expect in Macintosh applications, the menubar is where
we turn to initiate some action, whether it be to open a document, start a
spelling checker, or change the outline thickness of a graphic object. In a

What About the Macintosh User Interface? 61

HyperCard stack, however, the tendency is to initiate action by clicking on
screen buttons. You even have the choice of hiding the menubar from view
in an application. In its current stage of evolution, HyperCard does not
provide for a custom menubar to replace the HyperCard menubar.

How you handle the menubar issue in your stack often has a lot to do with
the Macintosh and HyperCard literacy of your audience. There are two issues
here: whether to show the menubar at all and, if so, how much of it to show.

If the intended audience for your stack is guaranteed not to be Macintosh
literate, as in freestanding information stations available to the public, then
pull-down menus probably won’t mean anything to them. In fact, the user
probably wouldn’t know how to use the mouse to pull down a menu or what
to do with that menu once it was pulled down. To experienced Macintosh
users, menus are second nature; to non-computer folks, a menubar can be
mysterious. Such stacks, then, should hide the HyperCard menubar and
create on-screen buttons that look like things you should press (even clicking
on a button won’t be natural at first, but a simple on-screen instruction is all
that’s needed). A button should both look inviting and be clearly labeled as
to the action resulting from a press of that button.

Inapplicable Menus

The difficulty with leaving HyperCard menus showing for Macintosh-liter-
ate, HyperCard-illiterate users is that some of the menu items may not apply
to your stack. To help reduce the confusion, the menus change as you adjust
the user level of the stack. Therefore, in a browsing or typing level, only three
menus (plus the Apple menu) appear on the menubar. And, while these
menus are shorter than they are at higher levels, they still might contain menu
items that don’t apply to your stack. For example, if your stack is not meant
for printing of any kind, the application still appears to offer three printing
options—Print Stack, Print Card, and Print Report. Even though you can use
HyperTalk to trap for these menu items so they never execute, it is still unfair
to the user to have items on the menu that don’t do anything. How frustrated
do you get when you go to a restaurant and order something listed on the
menu, only to learn from the waiter that the item is not available that evening?
It's the same for a stack user.

If you are creating a browse-only stack, several items in the Edit menu
makes no sense. By setting the user level to 1, there is no chance that the
browser will be able to select text (except in the Message Box), graphics, or any
object to cut, copy, or paste. The Go menu, too, may be a problem for users,
especially if you, as stack designer, would prefer they not have access to the
Message Box or to the Find command in the Message Box. Again, you’d have
to trap for these menu items. You could successfully intercept the Find menu

62 HYPERCARD DEVELOPER’S GUIDE

item and put up an Answer dialog box to prompt the user for a search string,
but the Message item in the Go menu would produce either nothing or a
dialog that states the item is not available. Yet the navigation items in the Go
menu may be incredibly useful to your design.

Showing the full menubar (as when the user level is set to 4 or 5) presents
even more potential confusion for the user, unless you know the audience has
an appreciation for HyperCard and needs access to the object and scripting
tools to customize the application. Focal Point 1.0 shipped with all menus
showing, because the user is invited to customize the look and actions of
everything in the stack system. At the same time, the initial audience for this
application was largely HyperLiterate and thus was eager to investigate the
internal machinery. Future releases, however, will not display the Hyper-
Card menu automatically, because a greater percentage of new Focal Point
customers will be less HyperLiterate. The profusion of irrelevant menus and
menu items will only confuse this audience (but the application will still
maintain its previous level of customizability and accessibility for the Hyper-
Literate).

The point of this discussion is that the menus appearing on the HyperCard
menubar—at any level-—are HyperCard menus, not menus for your stack.
That makes a big difference in the way the menus are perceived by the user.
The “HyperCard-ness” of the application starts to show through, and may
distract attention from your application content. I believe the application
should be the center of attention, not the fact that it is running on HyperCard.

When to Show Menus

As long as the audience for your stack is Macintosh literate, then pull-down
menus make excellent sense. In particular, they let you place the equivalent
of many buttons in a convenient, yet uncluttered place in your application.
The tendency to clutter screens with buttons for the most trifling, infrequent
action is something to be avoided. Those kinds of actions should be hidden
until needed—hidden in a pull-down menu. Therefore, I believe we'll see
more HyperCard applications coming along with their own menus, whether
they be in the traditional menubar format or as pop-up menus in the middle
of screens. For either type of menu to behave with the same speed and
interface as Macintosh menus, they must be created as external commands
and functions. In Chapter 28, we show you how to create an external function
to generate pop-up menus.

If you develop an XCMD to display traditional menus, however, the
burden falls on you as the stack designer to make sure that custom menus
adhere as closely as possible to the Macintosh User Interface Guidelines. If
youare making a stack look like a Macintosh application, then the users of that

What About the Macintosh User Interface? 63

stack will expect it to behave like a true Macintosh product. Keep menu items
short. Group menu items logically, separating groups of related functions by
dotted lines. If you are doing your own menubar, then be sure it has an Apple
menu listing installed desk accessories, and that other menubar conventions
are followed, like putting the Quit item in the File menu.

Buttons, Icons, and Clicking

Icanjust about guarantee that every experienced Macintosh user wrinkled his
or her brow (as I did) when working with the HyperCard Home Card for the
first time. First of all, we assume that the Home Card is like a desktop to other
HyperCard applications, and those little snippets of art are icons representing
those applications. But clicking on one of those “icons” does not select it
visually—it does not invert. In fact, a single click causes the application to
start, not a double click as in the Finder. And then, how do you select an icon
and drag it around the card? It was a mind-bending experience. To make
things even worse, we learn later that what we believe are icons connected to
applications are nothing more than bit-mapped art drawn on the card,
covered by transparent buttons. Wild stuff.

This, I believe, is where the user interface critics of the Macintosh world
come down hard on HyperCard for violating the rules. Frankly, I can’t
disagree with them that the familiar feel of the Finder and double-clicking
icons are not here. It troubled me at first. But then other questions arise—
questions that must be answered with a broader view than that of an
experienced Macintosh user.

Of Mice and Clicks

Macintosh experience counts for a lot when it comes to knowing how to use
the mouse and act on things appearing on the screen. Experienced Macintosh
users think in terms of single clicks and double clicks. For example, consider
this inconsistency that most of us don’t even realize exists.

When the cursor is the text insertion pointer, we know that a single click
plants the flashing text cursor in the spot at which we click. A double click
selects the entire word surrounding the location of the click. One click insert;
double click select. In other situations, such as in the Finder, a single click
selects an item, while a double click causes some majoraction. One click select;
double click act. Selecting text occurs with a double click; selecting an object
occurs with a single click. But that doesn’t bother us. We know how this all
works, so it’s no big deal.

What stack developers must remember, however, is that not all stack

64 HYPERCARD DEVELOPER'S GUIDE

users—especially users of information publishing kinds of stacks—will be
familiar with the concepts of selecting or double-clicking on something to
cause anaction. Thinkabout it. How intuitive is adoubleclick? Not very. Yet
experienced Mac users rely on the double click for initiating all kinds of action.
In fact, having learned the power of double clicking in the Finder and in other
applications, many users tend to double click before even trying a single click
(we’ll talk about this more in a moment).

Single Clicks Do All

HyperTalk is largely responsible for the “single click-ness” of HyperCard.
Recall that when you press themouse button, HyperCard sends a mouseDown
message; while the button is held down, HyperCard sends mouseStillDown
messages; and when you release the button, HyperCard sends the mouseUp
message. There is no collective “click” message, much less a “doubleClick”
message when you press and release the mouse button (the mouseClick
function simply lets you test for the action of pressing the mouse button, but
no message is generated as a result).

As noted in the Handbook, the distinction among the three mouse-related
messages gives youadded flexibility in the kinds of mouse response you wish
to build into your stack, plus it corresponds to the way the mouse works in
traditional Macintosh toolbox-based programs. A click, like on an OK button,
takes effect only when you release the mouse button with the pointer atop the
same button over which you pressed the mouse button. Thus, you can press
and hold themouse button atop a button (Figure 3-1b), drag the mouse pointer
away from the screen button and release the mouse button without activating
that OK (Figure 3-1c). It's a subtle but important user interface point that lets
us retract an erroneous mouse action before it’s too late.

Trapping Double Clicks

The norm in HyperCard is the single click. That doesn’t sit well with
everyone, but for simplicity’s sake, a single click is a good solution, especially
for non-Macintosh-literate users. What you, as stack developer, must remem-
ber is that experienced Mac users may double click on buttons. HyperCard,
itself, discards the second click of a double click on card layer buttons, but not
on background buttons (this may change in a future release). In some cases,
thatcan be disastrous, or at least cause unexpected results. Forexample, if you
double click on the right arrow navigational button on a card, the button gets
the first mouseUp message, acts on it according to instructions in its mouseUp
handler, then gets the second mouseUp message, and handles it again. In
other words, click twice on the right arrow button, and you advance two cards

What About the Macintosh User Interface? 65

i Cancel i

Cancel

0 0K 0
% Cancel %
(A) (B)

(C)

Figure 3-1 In the Macintosh User Interface, when you click on a button, it highlights
(B). If you then drag the cursor out of a highlighted button, the button returns to normal

(©).

File Edit Go Tools Objects

i To Do Calls
Write Johnston Proposs] 1 Judy Reston El
Mm,t.ﬁ.mmh -I.l. Hal Anderson i T
1 nch re: ex | bie Wolf / - i,l
’hn.[zg.l.lgtrin Joe Templeton £
Remind Tony of quality problems i Steadly Industries re: qualitycard | |
Review customer complaint file for April ~1Tom Upchurch re:shippingdelay | |
Set up meeting with Customer Service i Everett re: his 5/300etter |¥
Order Laguna project t-shirts Billu's Teacher 555-50%0 &4
Notify Shipping of vacation shut down ~| Racquetball club £
Abe Weisenstein -
Bruce Harrison K4
Richard Stephens -
R NEXT DA
il Monthly Reminder
Figure 3-2 Double-clicking on the Carry Over button (bottom) would cause data to
be copied to each of the next two days’ To Do cards. The handler had to trap for double
clicks, ignoring the second click.
in the stack.

It’s not too serious if a navigation button doesn’t intercept double clicks. If

the user double clicks on a left or right arrow button, then the damage can be

undone with one click of the opposite arrow or a press of the Back (tilde) or

arrow key. But when data is being manipulated as the result of a click, then
a double click can be more of a nuisance. For instance, in the To Do list stack
of Focal Point, there is a button near the bottom of the screen that automatically
posts unfinished to-do items to the next day’s card (Figure 3-2). In testing, I

66 HYPERCARD DEVELOPER'S GUIDE

discovered that new Focal Point users sometimes double clicked on this
button. When they did, the unfinished items were posted to thenext two days’
cards, because the Carry Over button acted if it had been clicked twice: once
on the starting card, and once again on the second day’s card. Since undoing
the posting of data to the third day was an undesirable job, the button had to
include a timing scheme to make sure that double clicks would not inadver-
tently double post items. Here’s an excerpt from that button’s script:

on mouselp
global lastClick

-- trap inadvertent double clicks
if the seconds - lastClick < § then exit mouselUp
else put the seconds into lastClick

end mouseUp

The script utilizes a global variable, lastClick, to capture the time (in seconds)
when this button’s mouseUp handlerlast ran. Then at the start of this handler,
the time stored in that global variable is compared against the current time
(also in seconds) from the Macintosh internal clock. If the difference is less
than five seconds, the handler senses a double click has occurred, and the
second execution of the mouseUp handler ends before posting information to
thethird card. Iarrived at five seconds after much testing on aMacintosh Plus.
It took a maximum of five seconds (on a Mac Plus) for the carryover mecha-
nism to extract all unchecked items from long lists, go to the next card, and
post them there. Specifying an interval any shorter often resulted in the
second mouseUp message being handled, because the actual elapsed time
between the first mouseUp message and the reception of the second mouseUp
message was longer than the double click interval. In other words, if the
specification called for a second mouseUp message to be ignored if it occurred
within two seconds of the first, and it took three seconds to execute the works
of the first mouseUp handler, the button would figure it’s okay to process the
second time, which it definitely was not.

Icon Buttons

One of the interface shocks to the experienced Macintosh user is the fact that
you cannot simply drag what appear to be icons around the screen like you
can on the desktop. To drag a button, you must first select the button tool.
First-time HyperCard users are not likely to discover that right away, espe-
cially since HyperCard comes out of the box set to user level 2, which hides the

What About the Macintosh User Interface? 67

existence of a tool palette. But even if the novice user learns about the button
tool, there s yet one more shock: The art behind the buttons on the Home Card
is not attached to any of the buttons. The buttons aren’t icon buttons at all, but
transparent buttons atop card layer graphics. To move a button and its art
requires two different moves, with two different tools.

Given the cut-and-paste ability of true HyperCard icon buttons, in one
sense I was amazed at the decision to make those buttons transparent atop
background art. In defense of that decision, the button art was both unique
(i.e., not part of the library of icons pre-installed into HyperCard’s Home
stack) and larger than the 32-pixel square limit on true icons. I have no
problem with the quality of the art, but I felt that the concept of buttons
separated from their art might be a little much for the newcomer.

If that experience taught me anything, it was that whenever possible, art-
based buttons on customizable stacks should be icon buttons. It makes it
easier for the user to adjust the location of the button to suit personal tastes.
For details on creating icons for icon buttons, see Chapter 24.

Button Feedback

Something else that may surprise new users of the HyperCard Home Card is
that when they click on one of the buttons, nothing happens to the button to
indicate that it has been clicked. Were it not for the disk activity associated
with going to the stack linked to that button, the user might think that the
button was a fake or the mouse click didn’t register.

Typically, buttons in other Macintosh environments, including dialog
boxes, offer some kind of visual feedback that you are clicking on them. The
most common feedback is an inversion of the pixels of that button. Black turns
white and white turns black (Figure 3-1b). From a user’s point of view, it’s
very comforting to see something happen on the screen as the mouse button
is pressed.

HyperCard button settings give the author a choice between providing
visual feedback—it’s called auto-highlighting. Figure 3-3 shows the setting
checkbox of the Button Info dialog box. The default setting for a new button
(either by choosing New Button from the Objects menu or by dragging a new
button with the button tool) is for auto-highlighting to be turned off—no
feedback.

Turning auto-highlighting on for some styles of buttons may present
unexpected results. Therefore, while I strongly endorse visual feedback for
buttons, it is not always wise or possible to do it every time you wish.

68 HYPERCARD DEVELOPER'S GUIDE

Button Name: [hEINR:TRRGT

j

Card button number: 1
Card button 1D; 1

X show name
%Huto hilite

Figure 3-3 Setting a button’s auto-hilite property to true causes buttons to invert when
clicked.

When to HighLight

Auto-highlighting works best on button styles other than transparent buttons
that encompass background or card layer graphics. Here’s why.

When you size a transparent button’s rectangle (all buttons except round
rectanglebuttons are rectangles), the entire rectangular area inverts when you
click on it with auto-highlighting turned on. That differs greatly from the
same kind of button assigned icon art. Assigning an icon to a transparent
button restricts inversion to the art of the icon (see Figure 3-4 for a comparison
of four button styles). Inversion of the icon art mimics the kind of feedback
you get by clicking once (selecting) an icon in the Desktop. While inversion
of the rectangle around non-icon art does invert the art, the extra inversion
area may be distracting, if not surprising to someone expecting feedback from
an icon-like situation.

Most other button styles should have auto-highlighting turned on, espe-
cially those styles derived directly from the Macintosh treasure chest: round
rectangle, radio button, and check box styles. But the last two have special
auto-highlighting behavior that differs slightly from other button styles.

Radio and Check Box Button Highlighting

Auto-highlighting for radio buttons causes part of the interior area of the
button to highlight, as it does onradio buttons you’d find in a dialog box. This
does not, however, cause the black dot inside the button to appear when you
release the mouse button. It is up to you to install HyperTalk scripts in the
group of radio buttons to handle the highlighting of the chosen button and
unhighlighting of the others. Remember, radio buttons are used to make a
single choice from among two or more choices. Only one radio button in an
associated group may be highlighted at one time.

What About the Macintosh User Interface? 69

Hilite False Hilite True

Transparent:

Shadow: Shadow Knows Shadow Knouws
Round Rect: OkeeDokee OkeeDokee

Figure 3-4 Different button styles react differently to highlighting. Transparent buttons
invert their entire rectangle, while icon buttons invert only the icon art and the button
name. Shadow and Round Rect buttons invert in their entirety (but not their drop shad-
ows).

Check boxes behave differently. With auto-highlighting turned on, a click
of the mouse button places an “X” inside the check box. A subsequent click
of the mouse button removes that “X”. That’s good news, because it removes
the responsibility from the stack author of writing handlers for all the check
box buttons to turn highlighting on and off in response to mouseUp messages.
Thebutton, itself, handles it all. That’s fine for the standard application of the
checkbox user interface, too, because check box buttons allow you to choose
more than one item from two or more check box items. Another button, like
an “OK” button, then checks the condition of all the check box buttons to see
which ones have their hilite properties set to true. The handler in the OK
button proceeds based on that information.

Feedback Problem

Unfortunately, now that I've carried the banner for button visual feedback,
there’s some bad news that complicates the issue. In early versions of
HyperCard, clicking on an auto-highlighted button causes any text selection
in a field to become deselected (Figure3-5). For example, if you write abutton
mouseUp handler to get the selection, go to another stack, and find the text
that had been selected, that handler will work as planned only if the button

70 HYPERCARD DEVELOPER’S GUIDE

‘ Get Selection!il Get Selection

Four score and Four score and
seven years ago, our seven years age, our
forefathers brought forefathers brought
forth a new nation, forth a new nation,
conceived in liberty conceived in liberty
and dedicated to and dedicated to

the proposition the proposition

that BIIRGENGING) that jall men are
created equal. R created equal |

(A) (B)

Figure 3-5 Auto-hiliting is not always desirable. HyperCard de-selects any selected text
when you click on a button that highlights. This will be repaired in some future release of
HyperCard.

does nothighlight when you click oniit. Ifthe button’sauto-highlight is turned
on, and you click on that button, the inverted, selected text in any text field on
the card will become instantly deselected. The handler, when ittries to get the
selection, finds that the selection is empty, and thus cannot perform the search
in the other stack as you expected.

If you have even one handler in your stack or stack system that relies on a
text selection as source material for further execution, you must give serious
thought to the button highlighting you set up for the entire application. It is
important to be as consistent as possible. I don’t believe it makes sense for
some icon buttons to have auto-highlighting turned on because they don’t
utilize selected text, and others to have it turned off because their handlers act
onselected text. Inconsistency like this can make fora very confusing time for
the user, for if he or she sees one icon button highlight, and another not, then
the thought that something is wrong with the application will be quite
prominent. Therefore, if even one icon button depends on a text selection,
then none of your icon buttons should have auto-highlighting turned on.

That’s not to say that all buttons should be have auto-highlighting turned
off, but belogical about it. If a series of buttons perform similar operationsand
stands by itself (and doesn’t rely on selected text), then it’s permissible to turn
on auto-highlighting for those buttons. Figure 3-6 shows a card from the
Outgoing Phone Log stack of Focal Point. Because all the icon buttons along
the left edge of the card work with selected text, none of those buttons have
auto-highlighting turned on. But the buttons at the right edge, which close out
a call, all perform similar tasks, and appear nowhere else in the Focal Point
system except here. These buttons have auto-highlighting turned on. Note,

What About the Macintosh User Interface? 71

& File Edit Go Tools Objects

Phone Log

|[[Outgoing_» Outgoing e Outgoing e+ _Dutgoing e Outgoing ||

Date Tuesdauy, March 8, 1988 |
1Sy
BEGIN 443 PM . Call Timer Elapsed |
END | [[Restut | |

Person Called Steve Heedy -

Phone Number 312-555-0828 SR

Charge To
Items Discussed

4

Search Records

Figure 3-6 None of the icon buttons on the left edge invert when clicked, because their
actions are dependent on selected text. The related group of buttons on the right, however,
highlight when clicked.

too, that the buttons are transparent atop rectangular art in the background
graphics layer. By carefully positioning the rectangle of the transparent
button atop the rectangle of the art, the illusion is one of a rectangle button that
shows its name. But by using background art, the font of the button is one that
few Macintosh systems might have (Garamond), yet the text of the button
appears the same on all systems.

Choose the Correct Button Style

HyperCard gives the author enough latitude to go far afield in conceiving
button designs, especially when you consider transparent buttons atop any
kind of bit-mapped art in a graphic layer. Even a part of a map may be a
button, as shown in the excerpt from Business Class in Figure 3-7. Therefore,
youare not obligated in any way to use standard buttons in your stacks. But—
and this is a big BUT—if you use standard Macintosh buttons, you had better
use them as they were meant to be.

72 HYPERCARD DEVELOPER'S GUIDE

Figure 3-7 Sometimes it takes several rectangular buttons (each with the same handler or
button name) to cover an irregular area. Transparent buttons, like those in the Business
Class maps, turn any region into an active button area.

The biggest button sins I've seen committed in early HyperCard stacks
revolve around improper use of radio buttons and check box buttons. I've
seen examples of both styles being used toinitiateactions. That’s not how they
are used in traditional Macintosh situations, and that’s not how they should
be used in a HyperCard application. Both styles of buttons are for establishing
settings of some kind: only one of a group of radio buttons; any combination
of check boxes. These kinds of buttons must be accompanied by some other
button or action starter, which, in turn, acts according to the selections made
with the radio or check box buttons. What this comes down to is a rule—one
of the few hard and fast rules about HyperCard design which you must
follow:

If you use Macintosh user interface objects, then those objects
must behave the same way in your stack product as they do in
other Macintosh products.

Thebest way to learn how these items work in traditional Macintosh products
is to observe them in action. A good playground for buttons is any fully

What About the Macintosh User Interface? 73

featured dialog box, including the dialog boxes within HyperCard. The font
dialog box shows examples of correct usage of check box and radio buttons
(Figure 3-8). Additional commentary on button interfaces may be found in
Inside Macintosh, Volume 1, amid other discussions about the Macintosh User
Interface Guidelines—good reading for any stack designer.

Taking a Stand

As you can see, the question of user interface in HyperCard is a complex one,
primarily because HyperCard lets you be as free-form or as rigid as you like.

What it all means, however, is that no matter which way you go—even if
you choose a middle ground—you have to be very aware of how you intend
to adopt or shun the Macintosh User Interface Guidelines in your stack
product. There is nothing in the rulebooks saying you must “toe the line” in
stack design. In fact, as pointed out earlier, the standard user interface means
nothing to some audiences for stacks. For them the interface may be more
confusing than an interface you devise from scratch.

If you decide to hide the menubar completely in your stack, then make sure
the user has ample instruction or other visual clues on the screen to help him
navigate through the stack. Make buttons (or other “click-me” areas on the
screen) inviting and intuitive.

If, on the other hand, you prefer to adhere more closely to the Macintosh
interface guidelines in an attempt to give the impression of a free-standing
Mac application, then don’t blow it by careless application of the guidelines.

Style

(X Bold

O 1talic

X Underiine
[J Outline
O shadow

(] Condense
X Extend

Align
O Left
Center
ight

Figure 3-8 The font dialog box demonstrates proper usage of checkbox and radio buttons
in Macintosh applications. Their behaviors should be emulated in a HyperCard stack.

74 HYPERCARD DEVELOPER'S GUIDE

Aboveall, when you use tried and true interface elements, like radio buttons,
make sure they behave the way an experienced Macintosh user would expect
them to work.

Finally, you may also strike a balance between something completely new
and the familiar. As long as you don’t misuse accepted interface elements,
there’s no reason you cannot create your own interface extensions that work
best in your application. I believe there is a genuine opportunity in Hyper-
Card for creative people to develop valuable extensions to the Macintosh user
interface. Had we not had HyperCard, the Mac interface might have re-
mained stagnant or in the hands of just a few. Now we all have a say in it.
Successful implementations will be imitated by others, perhaps working their
way into the accepted Macintosh user interface of tomorrow.

Screen Aesthetics

Aesthetics is a philosophy about the concept of beauty. It may sound
odd, then, to be discussing such things in a book concerned with
computer programs and programming. Butin theHyperCard develop-
ment environment, the subject of aesthetics is vitally important if you

expect others to perceive value in your work.

My 80/20 Aesthetics Rule

Early in my experience with HyperCard, I had theopportunity to watch
the results of talented Macintosh artists like Kristee Kreitman and
Marge Boots as they designed prototypes for a number of HyperCard
applications. They were taking full advantage of the bit-map painting

76 HYPERCARD DEVELOPER’S GUIDE

tools in HyperCard and creating wonderful metaphors of real world objects
on the screen—flip charts, note pads, open books, and so on.

Then I got the idea to work on what eventually became Business Class and
Focal Point. The basic concepts—what information would be on the screen,
how the user would interact with it, how the user would navigate through the
information—were pretty firm in my mind after awhile. When it came time
to mock up these applications, however, it was clear that as a non-artist, I was
not equipped to make them look like “real” applications. Very early in the
development process, at a time when there were no real stack developers, I
recognized an 80/20 rule that still holds true today:

A user will want to use a stack 80% for its information content or
information handling ability and 20% for its visual appeal, but
the initial perceived value of the stack will be 80% predicated on
its visual appeal and 20% on its information abilities.

In other words, a person will be in search of a solution for a particular
information problem. Finding that solution is the primary motivation for
searching out an application. But when taking first looks at several stacks of
comparable information handling prowess, the most visually pleasing stack
will make the best impression in the mind of the potential user. The prettier
face will look to be the best value.

You should stop short, however, of calling a stack’s aesthetic appeal a
“glitz” factor, because the underlying information handling characteristics
must be in the product. If the functionality is not sound, then the pretty face
of the product will be seen as the thin facade it was probably intended to be.

HyperCard stacks are inherently graphic, or at least they encourage devel-
opers to think in graphic terms. The fact that adding bit-mapped graphics to
a stack is so easy is certainly an important factor. Whereas traditional
Macintosh productivity applications tend to look a bit “dry” on the screen, it’s
rare to find any kind of HyperCard stack that hasn’t been embellished in some
fashion with the author’s flair for incorporating original or derivative graph-
ics.

Even buttons tend to be graphic. The ease of adding icon art from the built-
in library of button icons encourages this universal, visual approach to stack
screen design.

All this flexibility, however, can also create a serious problem for the stack
developer. Unless care is given to the graphic design of a stack—whether
information publishing, information management, external device control, or
HyperCard utility—the screens can become barren, overcrowded, overpow-
ering, barely readable, unfinished, non-intuitive, or any combination of these.

Screen Aesthetics 77

Macintosh Artists and Screen Artists

Since the release of HyperCard, I have met many artistically inclined indi-
viduals who were pursuing stack development. That, to me, is exciting,
because they may bring new levels of artistic brilliance to Macintosh program
design. But that talent is rare. More typically, a stack developer is someone
who has a great idea for an application because his or her expertise is in some
specialized business or academic area—not in screen design. That was clearly
my case.

In my search for an artist, I discovered something unexpected. While there
are many qualified people who justifiably claim to be Macintosh artists, they
are not all qualified to design Macintosh screens. That may seem like a crazy
distinction, but it is very true.

The majority of Macintosh artists these days started theirart careers in other
artistic media. Enamored by the graphics abilities of the Mac, they use the
Macintosh as another artistic tool, like they use pen and ink as a tool. In the
vast majority of cases, these artists use the Macintosh to produce works that
ultimately show up in printed media, such as newspaper charts and graphs,
magazine and book illustrations, posters, calendars, restaurant menus, an-
nual reports, concert programs, and so on. Quite often, these artists are
successful, if not swamped with work, thanks to the sophisticated products
coming from their Macintoshes and laser printers.

Designing for the Macintosh screen, however, is an entirely different
discipline—a discipline that, today, very few Macintosh artists practice with
success. When a program’s art is not tailored to the screen, the result can be
less pleasing, even though the quality of the basic art is good. For example,
there is a shareware HyperCard-based entertainment product, called Tilt.
Based on jousting sport of days gone by, the screens included very elaborate
Arthurian bit-mapped art (Figure 4-1). While the art, in and of itself, is very
good, to memuch of it seems out of place on the Macintosh screen, even within
the context of the game.

Icon Design

Good screen design also encompasses good icon design, if your program
plans call for icon buttons. Icons are bit maps that fit inside a 32 x 32 pixel
square. For an artist, that can be a very confining chunk of screen real estate,
but the opportunity to tell a long story in such a small space should be worth
the challenge. I personally prefer icon buttons over named buttons when
given the choice. Named buttons in any of the typical button styles (rectangle,

78 HYPERCARD DEVELOPER’S GUIDE

fl Romance, legends, pageantry and panoplg,:'
the stories of the Round Table have it all. [}
For hundreds of years people
unquestioningly accepted King Arthur,
1 Guinevere, Lancelot du Lac and even the
Lady of the Lake as historical persons.
Today, while few historians would admit
to being swayed by Romance, the search
for the "true” site of Camelot continues.
%4 And, in the past year, no fewer than two
popular books have been published on who
“was” King Arthur and the other
4 u personages who figure in the legends
“ which, all together, make up what is

Figure 4-1 Art should be appropriate and in scale to the information of a card. Even
high quality art can seem inappropriate for a screen design, as in this game screen.

shadow, round rectangle) often take up more room on the card than an icon
does. Moreover, an icon can convey a lot of meaning with a tiny picture.
Figure 4-2, for instance, shows the icon buttons in Business Class and the names
of the categories to which they lead. Imagine having named buttons with all
13 categories on the card. There would be little room left for the map, and the
card would end up looking like a mess of buttons. The user would be
overwhelmed at first sight.

The point is, the artist who works on your stacks should feel comfortable
working within the confines of the icon format. It’s not necessary to create the
icons in an icon design utility program. As long as the icons come to you in
bit-mapped form—created in MacPaint, SuperPaint, FullPaint, or whatever—
you will be able to transform them into icon resources (see Chapter 24) for
inclusion into your stack. Three excellent sources of inspiration for icons are:

The Symbol Sourcebook by Henry Dreyfuss (Van Nostrand, Rein-
hold, 1972)

Trademarks and Symbols by Yasaburo Kuwayama (Van Nostrand,
Reinhold, 1973)
Handbook of Pictorial Symbols by Rudolf Modley (Dover, 1976).

Screen Aesthetics 79

il WWI

b

wmmuuq

Whrm ’
'} ;
|

Il

|

Il ||” "l

— V] -1} = g —
F % IS ol spEh & R I © YiaAl
e > S= >g = 8 0wy = = @ o o
b @ . O+ =, O ¢ (=] [=) =%
E F » FE mwo == = g +
= ot F5 3 89 O et 5] o
Gl e L AERES £ -
« o a w w =
]
]
[
-

Figure 4-2 Icon buttons can convey a lot of information in a 32-pixel-square area. Had
named buttons been used in Business Class, there'd be little room left for the maps.

Finding an Artist

Locating Macintosh artists to interview for your stack project may not be an
easy task in many parts of the country. This is particularly true if you want to
find someone who has experience doing screen designs for other products.
Such artists tend to be located in the areas populated by software companies,
predominantly in major metropolitan areas like Boston, New York, Chicago,
San Francisco, and Los Angeles. A good place to start looking is at a local
Macintosh user group. While it’s not likely that many artists will be active in
these user groups, their friends and acquaintances will be. You've got to get
the word out that you're in search of a Macintosh screen designer. Another
way of contacting potential artists is through local desktop publishing service

80 HYPERCARD DEVELOPER'S GUIDE

bureaus, which seem to be popping up all over the country, even in smaller
cities. Again, the artists might not be on staff, but the firm probably knows of
free-lance Macintosh artists who have done other art and design work.

It’simportant when you interview a potential artist that you explain as fully
as possible what you have in mind for the artist to do. It may be that the
thought of designing what looks to be a series of business-oriented database
forms is just too dull a prospect for the artist, so be honest about the work
ahead. Ask to see examples of the artist’s Macintosh screen design work.
Examples from other media are of less value to you, even if they’re of excellent
quality. Of course, you may wish to help a talented Macintosh artist get
started in screen design, but prepare yourself to be more critical if the artist’s
firstattempts aren’t to yourliking. Also besupportive of those pieces that you
do like as you both learn screen design skills. You might even stage a small
competition in which you give the same instructions to all candidates for the
design of a simple screen and an icon or two. Then compare the results and
base your decision on that. Just don’t use the competition as a way to get free
art. That’s simply unfair.

Paying for Art

Financial arrangements with an artist can vary. The two most common
methods of payment are flat fee or an advance and royalty. In the flat fee
method, both of you agree onan amount for the entire project oran hourly rate
(perhaps with a ceiling).

The other method is more like an author-publisher arrangement, in which
you pay theartist an amount while work is in progress (theadvance—payable
in installments at various milestones during production). The advance is a
payment made against future royalties, the rate of which is calculated as an
agreed percentage of the revenues you collect in the sale of the product. For
example, if you pay the artist a $2500 advance against a 15% royalty, the first
$2500 of royalty payments earned from sales of the software go toward paying
you back for the advance. Once the $2500 advance is earned, the artist then
gets 15% of your revenues. Inaroyalty arrangement, you are liable forissuing
royalty statements and payments at a fixed interval (quarterly or semi-
annually arecommon terms) for the life of the product. Allsuchdetailsshould
be spelled out clearly in a written agreement between you and the artist.

Whichever financial arrangement you agree to with the artist, it is impor-
tant for you, as stack developer, to acquire exclusive rights to the artwork. By
assuming all rights to the artwork, the copyright of the entire stack product
will be yours. If your stack is eventually published or distributed by a

Screen Aesthetics 81

software publisher, the agreement you sign with the publisher will probably
insist that you have sole rights to all pieces of the product anyway.

Althoughit’sup to you, itisa gesture of good faith and cooperation to credit
the artist (and other contributors) somewhere in your product. If your stack
has an About box or title screen, give credit to the artist there. If a printed
manual accompanies the product, then acknowledge the artist there, too.
Keep reminding yourself about the 80/20 rule, and you shouldn’t have
trouble remembering to mention the artist prominently.

Working With the Artist

The old maxim, “form follows function,” is as true for HyperCard card design
as it is for any other kind of product. As stack creator, it is your job to define
the function; leave it to the artist to define the form based on the function.

That’s not to say that the developer shouldn’t try his hand at laying out
elements on a card. There must be a draft or sketch of at least the elements—
fields, buttons, graphics content—from which to start. It would be virtually
impossible to start designing the function of a stack without such a sketch,
either on paper or as a trial run on the screen within HyperCard. Once you
have a skeleton of functionality working, it’s time to bring in the artist.

Explain to the artist how the various elements work together: what happens
when you click on every button; what the most important textual or graphic
information is on the card; what kind of impression the user should get when
opening a card; what the user and information flow is through the stack;
which buttons the user is likely to click the most often. I don’t believe it is
critical that the artist be fluent in HyperCard, but it is essential that the artist
fully understand the stack application: who uses it; when they are most likely
to useit; how they will use it in thecourse of a day; how the stack interacts with
other Macintosh applications. The artist must share the same vision and have
thesame enthusiasm for the product asits creator does. That commitment will
show through the product—as will a lack of commitment.

Don’t be surprised if your artist makes suggestions about the functionality
of the product. Often an artist can be a good early tester of a program idea or
functional detail. He or she will probably be one of the first testers of the
product you'll encounter. You may even be challenged to explain why a
certain feature works the way it does. Guard against becoming strictly
defensiveabout your “child.” If the artist questions something, it could be that
your intended audience may question the same feature. Listen carefully to
criticism—not just the criticism, but the basis for it. Solicit solutions. Even if
youdon’t like the one presented right away, it might stimulate other ideas for
a better implementation of a feature.

82 HYPERCARD DEVELOPER’S GUIDE

When to Hire the Artist

The timing factor—when to bring in the artist—is an interesting point. I was
once asked to consult with a software company to offer my suggestions about
a series of HyperCard stacks it was developing to support a series of its
standalone Macintosh software products. This company had hired a first-rate
Macintosh screen designer to be the Creative Director of the entire project. At
the same time, it hired individual writers to develop each of the handful of
stacks in the series. At the one meeting I attended, I couldn’t believe what I
was seeing.

The company essentially wanted the Creative Director to specify a form,
which each of the authors would follow to create the functionality of the
stacks. There was no agreement on the stack structure. Each author had his
or her own idea about what the stack presentation should be. Around all this,
the artist was supposed to develop a common “look” to the series. That,
simply put, was an impossible task. The company was asking function to
follow form—a form that had no explicit direction. The artist was not
equipped to define the form, because there was no functionality to design
around. Needless to say, the project languished and the artist left the project.
Eventually the stacks made it out, but not until after a reappraisal of the
methodology of developing the stacks and specifying the art.

Perhaps I was lucky, but the artist I found for my stack products (David
Smith of David Smith Design, Sausalito, California) turned out to be a
valuable asset in the development of both Business Class and Focal Point. It
took me several months to find him, and that occurred only after interviews
with almost a dozen Macintosh artists. Once we agreed to work together, we
didn’t always see eye to eye on issues, and sometimes each of us felt like we
were talking to stone walls. But theintellectual exchanges were excellent,and
now we both believe the results are far better than if each of us had worked
independently—it was synergism in action. The key ingredient for our
teamwork, I believe, was respect for the other’s talents. We also shared the
same visions in creating what we believed were useful and fun products.

Key Design Guidelines

Remember, however, that the visual formulas that worked for us in Business
Class and Focal Point may not work in your stacks. A different kind of stack
structure (see Chapter 5) will probably call for different visual elements. And
for me to impose design guidelines on you or your artist is risky business,
because the HyperCard environment is too new to burden it with aesthetic

Screen Aesthetics 83

design rules. Acknowledging that risk, here are a few general comments that
might help direct the design team for your stack (that includes you):

1. Keep screens as simple as possible. Occasionally, I see information
management stack screens composed of so many buttons and scrolling
fields that I get too confused to figure out what I'm supposed to do next.
If a screen requires supplemental information, find ways of nesting the
extra data (covered in detail in Chapter 18).

2. Let the information be the star. Since your stack more than likely stores
anddisplays information, the center of the screen should be devoted to that
information. Place buttons that perform ancillary actions or link to other
stacks at the periphery of the screen. That lets the user’s eye focus on the
information. Just as Macintosh users tend to forget about the menubar
until it is needed, buttons at the edges of the screen fall outside the view of
a person concentrating on the information content.

3. Choose screen fonts carefully. While some of this discussion might seem
better suited to desktop publishing, the selection of fonts on a HyperCard
screen is equally important. If your card has fields the user types text into,
make sure the fields are of a different font than the field labels, which most
likely will be in the background or card graphics layer. Anticipate a very
low common denominator of field fonts in the user’s System File for
editable fields. Just because you have Palatino in your System File doesn’t
mean that everyone does. Play it safe with standard fonts, like Geneva,
New York, Monaco and Chicago. Field labels, generated as bit-mapped
characters in the graphics layer, may be of more exotic fonts if appropriate,
because the user need not have those fonts installed for them to appear as
you designed them. Also exercise care in specifying font sizes. Not
everyone who uses the Mac has an easy time reading 9-point, closely
leaded fonts. Either choose a large enough font for the original design, or
leave enough space in the field for the user to adjust the font up a size or
two.

4. Make the graphics appropriate to the subject. Unless the stack is designed
to show off some special art, avoid overpowering the viewer with art that
does not contribute to the stack’s information content. A little ornamenta-
tion on an otherwise simple card may be alright, but don’t overdo it.

5. Be consistent. If cards of one background or one stack of a stack system
have navigation buttons in one place, then make sure similar buttons on
other backgrounds or other stacks are in the same place. I've seen cases in

84 HYPERCARD DEVELOPER'S GUIDE

which the arrow navigation buttons were shoehorned into places around
different art on cards. This is utterly confusing. The user will never feel at
home in the stack.

6. Remind the user where he is. Information cards usually need titles of some
kind to let the user know what he’s looking at. A particular background
or card style may be obvious to the stack designer, but not to the first-time
user of the stack. And, harkening back to item 5, above, be consistent in the
location of the card title. Figures 4-3 through 4-5 demonstrate the title
conventions used in Business Class, Focal Point and the Focal Point help
stack, respectively.

7. Label allfields. As the user tabs through data entry fields on a card, there
must be a title next to each one to indicate what kind of information goes
in there. In an information publishing stack, the card title may sulffice,
provided there is only one field of information on the card. If there are
multiple fields, then some rationale for their distinction must be evident
from the titles of the fields.

8. Make best use of precious screen real estate. A number of the backgrounds
that come on the HyperCard Ideas disk (in the HyperCard package) have
a vertical format to them, like an open book lying flat on a table, binding

d Thailand

CAR RENTAL

Figure 4-3 A consistent style and card titles help the user maintain spatial bearings in a
large stack system. These titles are from the information cards of Business Class.

Screen Aesthetics 85

Directory & Dialer

Figure 4-4 A similar layout and card titles keep the many applications of Focal Point in
order.

- - Table of Contents
INTRODUCTION UPDATING RECALCULATIONS
What is Focal Point?
How Focal Point is Organized PLUS BUTTONS

= DAILY APPOINTMENT BOOK
Overview

it Use this stack to plan your day's activities, hour by hour. When the stack opens, s
== OUTGOING & INCOMING TELEPHONE LOGS

The Call Timer

i “i Whenever youor Focal Point create a new Telephone Log card, the Call Timer

Figure 4-5 The Help stack of Focal Point has a look derivative of the main program, yet a
strong consistency within this 97-card stack.

86 HYPERCARD DEVELOPER'S GUIDE

down the middle of the screen. Except for very specialized information
organization, Idon’t see much value to this kind of field layout. More often
than not, you are robbing screen space for a central binding, when those
pixels might be better used for fields or buttons. If you want to employ
visual devices like spiral bindings, place them at the edges of the screen,
where they don’t take valuable screen space from the information.

9. Use the full screen. 1 believe a number of stack designs are unduly
influenced by thesample stacks that come with HyperCard in the way they
display a card metaphor atop the underlying HyperCard card metaphor.
For instance, the stack of cards shown in Figure 4-6 is redundant. The
design of the on-screen card does not enhance the meaning of the informa-
tion or the collection of data. In the meantime, there is a lot of wasted “gray
space” on the card. Sometimes, you'll need that extra room to convey
information or use it for a series of buttons. Admittedly, sometimes a
screen card metaphor can enhance the role of the information. The
Address stack, for instance, is a good introduction to the card concepts of

Article 2341: How to do Magic Tricks

The Bayview Star
March 12 \

Magic, magic stores, famous magicians,
card tricks

Qo &

Figure 4-6 A double metaphor—a graphic stack of cards in a HyperCard stack of cards—
serves little purpose here. Some graphic cards, like the rolo-style Address stack cards, do
convey the functionality of the stack.

Screen Aesthetics 87

HyperCard because of its rolo-like metaphor. Still, once the fundamental
card concept is understood, the screen metaphor is often unnecessary.

10.Be original. Use material in the HyperCard Ideas disk stacks for your own
use—like when you're mocking up astack to test functionality. Aside from
the legal implications of redistributing artistic material copyrighted by
someone else, borrowed art looks borrowed. Figure 4-7a shows a screen
from a commercial stack, and Figure 4-7b shows a card from a stack that
comes with HyperCard. To my way of thinking, it’s hard to charge money
for a design that is so unoriginal.

From the realm of screen aesthetics, we next go to the concepts of stack
structure, where the talents of a stack developer show through with blinding
clarity.

Expense Report @ o @ [+][-]Week of Fri.oct 16, 1987
Mon Tues Wed Thurs Fri Sat Sun Total

Breakfast
Lunch
Dinner
Hotel
Laundry
Phone
Car
Taxi
Travel
Gifts
Supplies
Fees

1 Entrtmt
Mileage
Gas/0il
Parking
Misc.

Figure 4-7a A glaring example of unoriginality: a card from a commercial stack (A) and
a card with almost identical look and function from the HyperCard ideas stacks (B).

88 HYPERCARD DEVELOPER’S GUIDE

Expense Report Weekof Decembers 3 B8
Mon Tues Wed Thurs Fri Sat Sun Total
Breakfast 4178 3.45 6.54 3.44 18.21
Lunch 6.78 7.55] 1047 8.99 33.79
Dinner 15.83]..25.98 12.89] .23.87 78.57
Hotel 98.00] .95.00] 98.00/(98.00 389.00
Laundry 12.00 12.00
Phone 25.46| 15.22 40.68 |

39.951..39.95]..39.95]..39.95 159.80

Supplies
Fees

Entrtmt 57.80 57.80
Mileage
Gas/0il 23.00 23.00
Parking 5.00 5.00 2.00 5.00 20.00
Misc.

Name/City/Hotel Traveler Inn/Cupertino @ >

Figure 4-7b

Stack Structure

Laying out the structure of your stack is one of the most important
steps in developing the product. This is where substantial planning
takes place to determine the organization of cards, backgrounds and, if

it's a large system, stacks.

Internal and External Structures

Structure applies to two distinct organizational issues about a stack:
internal and external structures. Internal structure is the one that
involves decisions such as whether to keep all cards in one heterogene-
ous stack of several backgrounds, divide the system up into several

homogeneous stacks, or perhaps do a combination of both. Internal

90 HYPERCARD DEVELOPER’S GUIDE

structure also pertains to the way cards and backgrounds in a stack are
linked—how the user flows through the stack. Not all link structures apply
to all types of stacks, as we’ll see shortly.

External structure is often not considered until too late. It doesn’t apply to
single stack applications, provided the stack is small enough to fit on one
floppy disk. But as any author of a large stack system can tell you, the
distribution of multiple, linked stacks on floppy disk and their potential use
on that format by the user community cause problems that need addressing
in the design stage. While the majority of Macintosh owners have hard disks,
not everyone does. If your stack product is going into the world, you must
prepare your product for use on floppy disk-based systems.

Homogeneous and Heterogeneous Stacks

Introduced in the Handbook, the concept of homogeneous and heterogeneous
stacks has caught on. Briefly, a homogeneous stack is one in which all cards
shareasinglebackground. The stack might be one card (like a calculator card)
or thousands of cards (like a well-stocked address stack). From beginning to
end, there is only one style of card. A heterogeneous stack, on the other hand,
contains more than one background. Usually, the information contained in
the different backgrounds of a stack have some common bond. While a
heterogeneous stack has multiple backgrounds, the stack should still have a
central theme running throughit. For example, the Datebook stack thatcomes
with HyperCard has three backgrounds in it: a to-do list, a weekly appoint-
ment calendar and a six-month calendar (Figure 5-1). All three have the
common thread of time and task management.

Another organizational concept you should consider is that of a stack
system. By this I mean a group of linked stacks, which, together, make up a
complete application. Both Business Class and Focal Point are stack systems.
Sometimes, as we'll see later in the chapter, it makes sense to divide one large
heterogeneous stack into several homogeneous or heterogeneous stacks to
form a stack system. Stack systems have their disadvantages, too, as we'll see
later.

Navigation Flow

Regardless of the homogeneity or heterogeneity of your stacks, you’ll have to
consider the navigational flow the user follows through the stack. I've seen
some developers plan a stack by way of elaborate block diagrams of flows,

Stack Structure 91

O ERB

Thurs. 31

11987 December & %
~--~]|ten-28

| ==19087

REBm
SHEw
-3, B

-]
BHYow
-4 . 3"
RESEw
L KX
W

o o e

e

——J Avgust

£
-3
[Z])
(=]
Bow
S8 u
EC .
L 3 %)
L R4
BRI .
C8Gow

|
bt

-————————

-
oo
RECa

3

BRZ
P2 w
11

Figure 5-1 A stack may consist of multiple backgrounds, each of which is perceived as a
distinct application. HyperCard's Datebook sample stack demonstrates this quite well.
Three buttons on the Home card link to different backgrounds of this stack, as do the
buttons at the top right of each card.

almost card by card. If that helps you visualize your stack, then go ahead and
do it. But basically there are only four ways to organize the user flow within
a stack: as a straight line, as a tree, as a cobweb and as a combination of two
or three of the others. In many cases, the kind of application you have in mind
dictates which flow model your stack will follow.

The Straight Line

Homogeneous information management stacks, such as the Address stack
that comes with HyperCard, are organized in straight lines—a linear format.
Inatypical browsing environment for such astack, you open thestack toreach
the first card, and then go through each card, one after the other, from
beginning to end (Figure 5-2). Fortunately, HyperCard’s Find command lets
you transcend this linearity and skip ahead to a desired card, but the
underlying stack structure is linear.

Information publishing stacks of ahomogeneous nature may also be linear.
HyperCard’s association with Ted Nelson’s hypertext concept is at times
unfortunate. It often leads developers of information publishing stacks to go

92 HYPERCARD DEVELOPER’S GUIDE

WYelcome, Card 2 Card3 =) Card4 =% Card 5 —A Card 6 |+

Figure 5-2 A straight line structure leads the user from start to finish down a prescribed
pathway.

out of their way to break free of linearity. While HyperCard seems to
encourage the linking of data outside rigid structures, there are still times
whena linear approach makes the most sense, particularly if your information
publishing stack is telling a story. A story has a beginning, middle, and end.
If breaking free of the story’s linearity means you’ll reach the end before the
middle, then the break harms the storyteller’s intention.

Even a linear organization can be interesting and diverse. One of the
earliest stacks in public circulation was a children’s story called Inigo Gets Out
(Inigo is pronounced “eye-nee’-go”). This stack was the first of a series of
extraordinarily well-conceived stacks by Amanda Goodenough (AmandaS-
tories).

The basic story line of this stack is the adventure of a cat, named Inigo, who
slips out of the house and is confronted by various opportunities to get into
trouble (Figure 5-3). The user determines where Inigo explores by clicking on
various areas of the screen. Even as you explore what might appear to be
branches off the main story line, the branches are small, linear units of their
own, which always bring you back to the decision spot on the main story line.
The diversions are more like loops hanging on the main line (Figure 5-4).
Because you always come back to familiar territory, you never get the feeling
of being or becoming lost in the stack, and that’s important. You quickly gain
confidence that the stack designer will take care of you on your journey.

Product demonstrations and tutorials are good candidates for information
publishing versions of linear stacks. They are much like storytelling in that
they should have a beginning, middle and end, and the stack developer
should be the guiding spirit while the user makes his way through the cards.
Allowing for occasional looping detours might help break the tedium, just as
a sidebar does for a long magazine article. But unlike Inigo’s story, you
probably want the user to experience a definite series of cards to get your
message across in its entirety. Don’t be afraid of linearity in stack design. Let
interesting visual effects, graphic elements on cards and engaging content
hold the user’s attention in an otherwise straightforward format.

The Tree Structure

A common structure for reference information stacks is the tree structure. As
its name implies, a tree structured stack has a trunk and branches. Typically,

Stack Structure 93

Figure 5-3a Inigo Gets Out (excerpts Figure 5-3b
shown here) demonstrates that a basically

linear stack structure can be anything but

boring.

Figure 5-3c¢

Figure 5-3e Figure 5-3f

the branches lead to a dead end—that is, a point from which you can go no
farther than back to the trunk. In a reference stack this kind of structureis fine,
because the user typically is looking for a single piece of information that may
be anywhere on the tree. Through one or more cards at key junctures, the user
gradually finds his way to the desired information (Figure 5-5). These
junctures are decision points.

Thelarge HyperCard Help stack system (written by Apple’s Carol Kaehler)
is a good example of a tree-structured stack. The title card presents several
tabs at the bottom of the screen—decision points to branch you to more
specific information (Figure 5-6). Click on the HyperTalk button, for instance,

94 HYPERCARD DEVELOPER'S GUIDE

Bunny & Fish Tree Episode

Episode

Figure 5-4 Short, linear detours from the straight line path of Inigo Gets Out always
return the browser to a familiar screen. There’s no chance of getting disoriented.

® Sec. A
® Sec. B

i | il | i

Figure 5-5 A tree structure is useful when the information lies at the end of a series of
decision paths. From that final information card, you usually exit the stack or return to the
top card to follow a different path.

Stack Structure 95

HyperCard
Help

QO Introduction

Click the Browse tab below
after you've seen the '
Introduction.

Figure 5-6 The HyperCard Help stack is a fine example of a predominantly tree-
structured stack.

and you arriveat the beginning of the HyperTalk branch. Once there, youmay
choose to see more detail about a specific command by clicking on its word.
While in the HyperTalk section, you may move linearly if you want to get an
overview of all the commands. But more typically, as a reference, you find the
information you’re looking for at the end of a branch, and you're done. From
there, you return to the command summary, the beginning of the Help stack,
or back to the stack from which you originally came.

Information management stacks may also be tree structured, if the informa-
tionrequires it. For instance, the Projects stack (the stack name is FP e Projects)
in Focal Point has an unusual way of linking cards into branches (Figure 5-7).
There are six backgrounds for information cards in the Projects stack. One
background is a summary card, through which the user typically moves in a
linear fashion (or bypasses linearity with the Find command). In fact, I
encourage the user to flip through the summary cards one by one to get an
overview of the status of all current projects.

The other five backgrounds are detail cards that support the information on
the summary card. Instead of the internal structure branching off to a linear
collection of each of the backgrounds, the stack tightly links one of each style
of background card to one summary card. From a summary card, you click

96 HYPERCARD DEVELOPER’S GUIDE

Project
Summary

Specs.

-

Labor j

Matls.

| Follow- A
UDS A <

Invoices
& Pmts. |

ry

Figure 5-7 Information stacks, like Focal Point’s Project stack, may also be tree-struc-
tured. From any detail card, the only way out is back to the summary card.

on a button that takes you to that project’s specifications, labor worksheet,
materials worksheet, followup schedule and financials cards. When you view
one of these supporting cards, you may not navigate linearly to any other
project’s supporting cards, because you’d soon get lost. It is better to focus
your perusal through supporting cards all within the realm of a single project.
In fact, each of the supporting cards gives you only one navigation option
within the Projects stack: to return to the summary card. You might also
visualize this branch as a star, rather than a hierarchy (Figure 5-8). The
HyperTalk links that make this possible are maintained in hidden fields on
each of the cards. Details about this structure are featured in Chapter 18.

A genuine hazard within extended tree structure stacks, like the Hyper-
Card Help stack, is that unless you design the stack carefully, the user can
becomelost. A kind of spatial disorientation can occur, and the user is left with
no hope but to return to the starting point or exit the stack altogether and
return to the Home Card. Ibelieve the Help stack is a good example of a tree
structure, because no matter how deeply you roam through the system, there
are enough navigation buttons (tabs and arrows primarily) to get you back to
familiar territory in a flash. That was not the case, however, with the first
attempt at writing a HyperCard stack to supplement the 1987 Annual Report
of none other than Apple Computer, Inc. (Figure 5-9). I'll save a detailed
examination of this stack for Chapter 7, where you'll learn about making an

Stack Structure 97

l...éIZZZZZZZZIZL’”.Z.".L‘.""’
Invoices Jj
& Pmts.

R
v
Project
Summary
r,i:“«m““““”"":“ W S———
Labor i Follow-
I Ups
Matls.

Figure 5-8 Another way to visualize the tree structure of the Projects stack. Linear
browsing is accomplished in the Summary card.

€ File Edit Go Tools Objects
Index

To move through this interactive supplement, simply point to parts
of the Macintosh® screen and click.

Clicking on graphics and words in bold type on the screen—
names, dates, pictures, or arrows—can lead you to more information.

The main sections are pictured below.

Just point to the one you’d like to see, and click.

Timeline Products Finances Strategies Markets Quit

_

Figure 5-9 A stack designed to supplement an Apple annual report was tree-structured,
although it should have been less restrictive in movement across information areas. You
must come back to this Index card to go from subject to subject.

98 HYPERCARD DEVELOPER’S GUIDE

information publishing stack inviting and engaging—which this stack should
have been. Suffice it to say, the stack was tree-structured but made me feel like
I was falling through a time-and-space warp at times. I could not get my
bearings. The problem, I think, was that instead of telling a more linear story,
the stack designers made this standalone stack a reference, without enough
clues as to what to do next. Something tells me that this stack started out as
a block diagram on a white board in an Apple meeting room. The team got
too caught up in structure and forgot the content along the way.

The Cobweb

I specifically avoided the term “spider web” for this third, non-linear stack
structure, because that term may actually connote a well-defined, symmetri-
cal structure, which the spiders outside my office window occasionally
weave. But a cobweb, appearing magically in a corner of the ceiling, looks
more like the visualizations of neural networks inside the brain—a severely
intertwined (“intertwinkled,” Ted Nelson would say) network of links.
HyperCard stacks can take on this structure, but there aren’t many ex-
amples of it so far. In such a stack, there would be no particular beginning,
middle, or end. In fact, it would be all middle, with several buttons on each
card leading to a variety of other cards elsewhere in the stack (Figure 5-10).
One of the stacks that comes with HyperCard, the ClipArt stack, reveals the
potential power of a non-linear stack. When you open this stack, you see one
of the many cards containing bit-mapped art, like a representation of a huge

N _

Figure 5-10 A non-linear, cobweb-style stack may have a beginning, but from there,
navigation can go in several directions from any card. Extreme care must go into prevent-
ing the user from becoming spatially disoriented.

Stack Structure 99

clip art library. When you click on the eye of the fish, the transparent button
atop that eye takes you to the nearest card in the stack that also has an eye on
it (Figure 5-11). Click on the wheel of the horse-drawn carriage, and you zip
to another card with the picture of a wheel on it.

There is no special magic in this stack, although viewers seeing Bill
Atkinson demonstrate this stack gasp at what's going on here. Inreality, there
is a field on each card with key words about major elements in the card’s art—
eye, wheel, hat, and so on. The button atop the fish’s eye has a simple
command in it that says:

Find "eye

This summons HyperCard'’s search abilities to find the next occurrence of the
word “eye” in that field, completely disregarding any structure (or lack
thereof) in the stack. The links that join the few cards in this sample stack run
all over the place, like the silky threads of a dense cobweb.

A stack like this is quite an adventure to follow. The paradigm of text

% File Edit Go Tools

Fish, eye, mouth

Figure 5-11a Perceived non-linearity is achieved by the transparent buttons atop
various parts of the graphics in the Clip Art stack. From the fish (A) you may go to one of
several cards, depending on what element you click. If it’s the eye, then you'll go to the
man (B), who also has eyes.

100 HYPERCARD DEVELOPER’S GUIDE

& File Edit Go Tuuls DhJects

Figure 5-11b

adventure games comes to mind. In thesekinds of games, you control the fate
of a character who has to make decisions at every step of the way. Each
decision causes something to happen, often leading the character to new
rooms or level of rooms in a complex labyrinth (often subterranean). Adven-
ture game players frequently keep extensive notes and make maps of where
they believe the links have taken them within the maze. Were it not fora good
memory or a good map, the user might be hopelessly lost or, upon playing the
game a second time, may not be able to find the spot where the erroneous
decision spelled disaster.

Many stack developers see the “hyper” prefix to HyperCard and try to
emulate the non-linear ways of thinking that were embodied in Ted Nelson’s
early hypertext research and writing. It should be made clear, however, that
the HyperCard name was attached to the product in the last two weeks of the
product’s three-year development. All during its gestation period, it went
under Bill Atkinson’s name for it, WildCard. When Apple Computer discov-
ered that it would be impossible to secure the rights to the WildCard name, an
alternate was sought. HyperCard was one of dozens considered. It wasn’t
everyone’s favorite name, but it was clear for copyright purposes, and the
product did allow non-linear constructions, so “HyperCard” it was.

Stack Structure 101

I mention this as a reminder that while HyperCard empowers us to
construct completely non-linear environments, non-linearity is not a pre-
requisite for a good stack, especially if the non-linearity is included at the
expense of the user’s logistical senses. There will certainly be some fabulous,
entirely non-linear stacks coming from creative people—and I encourage
research into such stacks—but be prudent in employing non-linear structures.

Hybrid Structures

Few stacks maintain a single structure throughout. More typically, a stack
will contain elements of two or three structures. A tree-structured stack will
very likely contain stretches of linearity, as the HyperCard Help stack does.
It's almost impossible to avoid. Again, don’t feel that you have to be “cute”
in your card links. Linearity is the proper choice for some stacks in their
entirety or for parts of more elaborate stacks.

Experimenting with non-linear, cobweb-style structures within a hybrid
stack might beappropriate, provided you give the user someidea of where the
current card fits within the cosmos of the stack. Perhaps a schematic map of
the overall structure and the current card or card group highlighted on the
map will help provide an orientation for the user.

Stack Systems and Non-linearity

Despite my cautions about creating non-linear stacks above, there is ample
room to apply non-linear thinking to HyperCard applications. The best
situation I've discovered so far is to link multiple stacks together in a non-
linear fashion. Focal Point provides an excellent example.

In a typical Focal Point screen, the current stack is the center of attention.
Most Focal Point stacks are entirely linear, with a few of them being hybrids of
linear and tree-structure stacks. Yet the stack system provides for non-linear
links between the current stack and any stack for which a button is visible.
Here’s an example.

While viewing a card in the To Do stack, you may select the text of
someone’s name and click on the button linked to the Directory and Dialer
stack (Figure 5-12). By clicking that button, Focal Point immediately jumps to
the Directory and Dialer stack and then searches for that person’s name
(Figure 5-13). The user sees nothing in between the Daily Appointment card
and the Directory card with that person’s name on it. The jump did not follow
any predefined tree structure, because the button doesn’t know where it will
end up each time it performs the find. The destination is solely dependent on
the name selected in the Daily Appointment card.

102 HYPERCARD DEVELOPER'S GUIDE

1 g Jece he Rig!

A To Do Calls

% File Edit Go Tools Objects
DAY

DEEEEEEEEEE

Figure 5-12 Focal Point achieves practical non-linearity by linking all stacks with text
selections. If you select text in one stack, and click on an icon button to another stack, the
button takes you to that stack and the first instance of that selected text (see Figure 5-13).

This select-and-find non-linearity pervades Focal Point. In any stack, you
can select text and click on another stack’s button to jump to the first matching
instance of that selected text. Yet the user does not getlostin any way, because
the destination stack—which is usually a simple linear stack—is well-defined
in the user’s mind by the act of clicking on its button. After the button’s script
has run, the user knows where he is and where he’s been.

Had this feature not been built into Focal Point, the process of finding
someone’s name in another stack would have required a comparatively
tedious passage through more structure. The easiest method would have
been for the user to choose Find from the Edit menu, hold down the Command
key while dragging over the person’s name (to put the name into the find
string), click on the button for the Directory Stack (which brings you to the first
card of the stack), and then press the Enter or Return key to issue the Find
command that is sitting in the Message Box.

The non-linearity introduced by the select-and-find instructions could also
have been executed within a heterogeneous stack, except that the Go To part
of the command would lead to the first card of a specific background, instead
of a separate stack. Either way, this is one method to add productive non-

Stack Structure 103

® File Edit Go Tools Objects
1 = 4= | = | Directory & Dialer
I Name & Address

[Georae Hepplewhite

650 N. Michigan Ave,
Chicago, Il 60611

Notes

[& 312-555-9880
Ext

find "George Hepplewhite”

Figure 5-13 Having selected text in one stack (Figure 5-12) and clicked on the Directory
& Dialer button, Focal Point goes directly to the card that matches that selected text.

linearity to a HyperCard stack or stack system.

Deciding Stack Structure

Once you'vesettled on your stack idea and you see that it requires two or more
active backgrounds (i.e., more than just a title card and the rest of the cards in
a single background), you have a big decision to make about structuring the
product as a heterogeneous stack or a stack system. While each case is
different, here are advantages and disadvantages of each method.

Heterogeneous Stack Advantages

1. Access to information stored on any card in the stack is faster than if the
cards are in separate stacks. In fact, you are probably aware that you can
retrieve information from a field on a particular card in the same stack

104 HYPERCARD DEVELOPER’S GUIDE

without going to that card. Such is not the case if the data is in a different
stack—you must go to that other stack, get the data, and return to the first
stack if the results interact with information on the first card you were
viewing. You can lock the screen so that you don’t see the stack switch
(although you can see the HyperCard window title bar change on larger
screens), but there is a lot of disk activity, and the process can take a few
seconds on a Macintosh Plus or SE.

2. Theentire programis in a single diskfile. If yourstack is likely to be shared
among other people via an electronic bulletin board, then the single file
makes sharing of the program easier. A single file is also easier for the user
to maneuver within folders on a hard disk. Opening the program from the
Open Stack standard file dialog box is simpler, too, because there is only
one file name to contend with. In contrast, a user must start a stack system
from a particular stack (to load global variables or retrieve other settings).
Unless the file name is labeled well enough to direct the user to it in the list
of stacks in the dialog box, the user may not enter your stack system in the
prescribed way.

3. The Find command, as entered in the Message Box, works for the entire
program. Because the Find command works only on the current stack, it
doesn’t know how to continue the search through other related stacks. You
may script a search path through several stacks in a search button handler,
but the script will have to be different for each stack in the system, because
the sequence is different from each stack’s perspective.

4. It is easy to divide a heterogeneous stack into a stack system later. By
making copies of your heterogeneous stack and deleting all cards except
those of a specific background, you can create a stack system from a
heterogeneous stack. Combining a stack system into a heterogeneous
stack is possible, but rather tedious (involving copying individual cards
from the other stacks and pasting them into the one stack designated as the
heterogeneous one).

5. Debugging scripts is simpler. Interaction among linked stacks can be a
source of difficulty until you get the bugs worked out. For instance, if some
of your stacks show the Message Box in an openStack handler, but you
don’t want it to show in others, you have to be careful to hide the Message
Box with a closeStack handler. More complex openStack, openBack-
ground, and openCard handlers may interfere with stack-to-stack infor-
mation retrieval even when the screen is locked.

Stack Structure 105

6. There is no duplication of scripting effort. If a heterogeneous version of a
stack has stack scripts that maintain watch over the user’s application of
the arrow keys, or traps for certain menu commands, these will all have to
be duplicated in the stack or background scripts of each of the individual
stacks of a stack system.

7. Compacting is more convenient. Particularly during development, but
alsoin the course of using a stack, you should occasionally choose Compact
Stack from the File menu. You can squish a heterogeneous stack with one
menu choice. A stack system requires either the manual method of going
to each stack and compacting it, or writing a script that does it for you.
Some users of Focal Point, for instance, wished the first release of the
program had included a command or button to compact the entire stack
system. Ishould have recognized that need because I had devised and
frequently used such a script during Focal Point’s development .

8. The overall size of a single stack will be smaller than the same stack
divided. A completely empty stack takes up about 5K on the disk. That
means that for every new stack you make for a stack system, you add 5K
to the total disk space occupied by the system. In practice, that extra space
grows even more. HyperCard, as you're well aware, likes to reserve disk
space for stack growth if you type any information into a field. On a hard
disk, it grabs a chunk out to the nearest 8K multiple. It is conceivable
(although unlikely) that every stack in the system could be holding 6K or
7K of disk space in reserve until you compact the stacks. In a 10-stack
system, that’s a lot of disk space unavailable for other uses.

Now for advantages to dividing a HyperCard stack into multiple, linked
stacks.

1. Each stack can be dedicated to a finite subject. In Focal Point, for instance,
there is a separate stack for each of the 18 possible applications that come
withthe program, plus some help and utility stacks. I believe knowing that
each application is its own stack helps the user maintain a concept of space
within the entire system: “I'm in the Expenses stack now, so that’s alll have
to worry about.” Just because the system is divided into multiple stacks
doesn’t mean that some or all of the stacks cannot be heterogeneous. On
the contrary. The Projects, Proposals, and Expenses stacks are all hetero-
geneous (with 6, 5, and 4 backgrounds, respectively). Thus, some of the
advantages of heterogeneous stacks can still apply to your system.

106 HYPERCARD DEVELOPER’S GUIDE

2, Eachstack is a separatefile. The advantage for many stack systems is that
the user may decide not to use all the stacks and thus can reduce the
amount of disk space occupied by the program. If there is an application
or background in a heterogeneous stack that the user doesn’t use, he or she
may be hesitant about deleting those cards from the stack.

3. Archiving of stack information is simpler. Some stacks in a stack system
may fill up faster than others or may contain information that should be
saved as an archived stack. When applications are in separate stacks, the
user can save a filled stack with a new name, and bring in a blank stack to
start storing new information. This is particularly useful for stacks
containing cards bearing daily dates. If a daily appointment book were
part of a heterogeneous stack, the stack would continue to grow, year after
year, with hundreds of outdated cards going along for the ride, needlessly
filling up your hard disk. It's far simpler to remove the filled stack from the
system, rename it, and drag into the folder a newly built stack for the next
year.

4. Adding to the system is easier. Because of the inherently modular nature
of a stack system, the user will probably find it easier to customize the
system by removing unwanted stacks that come with the product and
adding stacks that link back to the others in the system. Entry points to the
existing stacks will be much easier for the user to locate than if they were
buried in a 14-background heterogeneous stack.

5. Restricting text searches is easier. As many HyperCard authors have
discovered, HyperCard’s Find command is often difficult to work with
when the search needs to be confined to only one background. In fact, at
least through version 1.2, you cannot explicitly limit text searches to a
particular background. If a search script button limits the find to a
particular field named in the current background, HyperCard continues
its search in the field with the same field number in the other backgrounds
of the same stack. That can spell disaster if you are trying to keep some
reference cards hidden from the casual browser. A Find command might
display that card, causing all kinds of confusion. But if your stacks are
separate and homogeneous (or only lightly heterogeneous), you can better
control the way HyperCard will search for text in one or more fields.

6. Sorting is easier. Trying to sort a heavily heterogeneous stack can be
difficult, perhaps resulting in a jumbled mess. But, again, with a system of

Stack Structure 107

linked homogeneous stacks, the outcome of a Sort command can be better
anticipated.

7. Therisk of disaster is spread across more stack files. It's happened toalot
of us: Something went awry when HyperCard was writing information to
the disk, and the stack went that-a-way. The stack became damaged
beyond repair, or, rather, beyond opening. If that happens to a massive
heterogeneous stack that contains tons of information, it’s enough to make
your heart stop. If it happens to one stack amid 10, then the loss won’t be
as great. I have no technical evidence to back up the following statement,
but I always feel safer with several smaller files on my disk than one
enormous one. You do back up your hard disk, don’t you?

You see, there are many points in favor of both heterogeneous stacks and stack
systems. Most often I find that the application dictates which method works
best. A guideline I use is this: If the application involves two or more very
distinct bodies of information, I'll go with the stack system method. If the
application has one major group of cards supported by setup cards or other
ancillary information cards, then I'll put everything into a heterogeneous
stack, with as many backgrounds as necessary.

In all honesty, there are some cases in which the decision could go either
way, as was the case of Business Class. But the ultimate decision about internal
structure was heavily influenced by the necessities of external structure.

External Structure

So far we’ve been discussing the way you might collect or distribute informa-
tion in stacks. But what we haven’t said much about was how to physically
distribute stacks to others and how a user’s disk drive situation influences
organization. These concerns—essentially how your stack product fits on
floppy disks—are all part of the external structure of a stack.

One thing you can count on when distributing HyperCard stacks on floppy
disk is that every HyperCard owner has at least one 800K floppy disk drive.
HyperCard, as you're probably aware, requires at least the 128K ROM chips,
which were initially designed for the release of the Macintosh Plus. These are
also the same chips that are installed in upgrade kits that convert older 128K
and 512K Macintoshes to the 512KE and Mac Plus equivalents. Part of that
upgrade included an internal 800K double-sided disk drive, which is also the
standard disk drive on all other Macintosh models.

108 HYPERCARD DEVELOPER’S GUIDE

Floppy Disk Concerns

An 800K disk doesn’t really give you a full 800K of stack space, however. First
of all, the Macintosh operating system grabs about 7K for the disk directory
and other information it needs to consider the disk a Macintosh-formatted
diskette. But more importantly, HyperCard stacks need room to breathe, no
matter what medium they are stored on. If the user is allowed to enter
information into fields, add buttons or fields, make new cards, adjust the
graphics layers, or modify scripts, the stack will need to grow. If the stack is
being used on a practically full diskette, HyperCard may not allow some
entries to take place.

Interestingly, HyperCard is more considerate with tight floppy disk space
than withawideopendisk. Assoonas theavailabledisk spaceona disk drops
below 64K, HyperCard grows stacks in 1K increments, instead of the usual 8K
increments. Therefore, in the Stack Info dialog box, you'll see no more than
1K freeinastack’s allocated disk space when the disk starts to fill up. Still, you
must leave room on the disk for expansion if your stack accepts information
input.

If your stack application is larger than 800K to begin with, then you have to
make some tough decisions about dividing your application among disks.
Both Business Class and Focal Point come on two diskettes, but the strategy in
dividing the systems across the disks were very different due to the nature of
the products. Here’s what happened with each.

Focal Point Strategy

The “basic” Focal Point comes with 18 stack applications, plus a startup stack
that contains the title screen and a couple of global variables used in some
other stacks. From an internal structure viewpoint, the startup stack was
maintained as a separate stack even though it automatically sends the user to
the Daily Appointment stack after a brief delay of viewing the title card. By
keeping the title card and global variables in a separate stack, however, the
system is left open to change so the user may adjust the stack script to go to
a stack other than the Daily Appointment stack if he deems another one more
important to see first. Other Focal Point stacks that round out the system are
the Help stack, a Setup stack (for customizing button locations and building
or extending stacks consisting of daily cards) and an Import stack, which
contains buttons to aid importing existing database data into the Directory
and Dialer stack. Together, these stacks more than filled a single 800K disk.

Another factor cameinto play. If the program were shipped entirely empty,
it would mean that a new owner would have to build the Daily Appointment,
To Do, and one or two other daily stacks if desired. While the Setup stack

Stack Structure 109

simplified the process, it meant that the user would not be able to use the
product immediately out of the box. The setup time—making all those cards
by script—could be an hour or more, if the user decided to make a couple of
years’ worth of cards in the stacks. Iknew that I wouldn’t put up with such
a delay if I had bought the product, so the dated stacks had to be pre-installed
for at least a practical, realistic amount of time.

By putting the Help, Setup, and Import stacks on the second disk, enough
room opened up on the first disk for an eight-month collection of daily cards
for the Daily Appointment, To Do, Expenses, and Time Sheet stacks. Thus, on
asingle disk, a user had all the necessary stacks to get started. There was even
enough room on the disk for someone using a floppy disk system to start
entering data on a working copy of the original disk. In practice, many users
found that they entered more data than there was space on a single disk, so
they had to offload unused and infrequently used stacks to a third disk. With
as many as 16 growing stacks vying for what was left on the original 800K disk,
this wasn’t surprising.

On the second Focal Point disk, there was now enough space to include a
blank set of thedated stacks so users could build their own, as well as aset with
14 months in them, encompassing the end of 1987 and all of 1988 (Figure 5-14).
The range of months included in these stacks and on the first disk are adjusted
periodically so that new buyers have stacks with relevant dates in them.

For ease of installation on a hard disk, all the Focal Point stacks on disk 1 are
placed ina Focal Point folder. All the user need do is drag the folder from disk
1 to the hard disk. To get help on the line, the user then drags the Help and
Setup stacks from disk 2 to the Focal Point folder already on the hard disk.
Stack systems can get messy when they consist of dozens of stacks, so it's
incumbent upon the stack designer to make it easy for users to install the
system on a hard disk without the possibility of missing stacks in the transfer.

Business Class Strategy

Business Class presented very different structure problems during its develop-
ment. It started out as a single, heterogeneous stack, complete with maps and
information cards for the top 60 or so trading countries of the world. While
researching the information, it became clear that for purposes of maintaining
potentially volatile information stacks, it would be better to break up the
monster stack into smaller units—one for all the maps, and one each for the
information categories. Until all the maps were drawnand all the information
was gathered, I could only estimate the total disk space required for this stack.
The maps soon grew much larger than I had anticipated. Unlike certain other
graphics, which have large areas of repetitious patterns for greater bit-map
compression, these maps were very rich in their detail. The degree of

110 HYPERCARD DEVELOPER’S GUIDE

=SJ=— focal Point 2 ===
f 4items 698K in disk 87K available
K>

FPeHelp 10/87 - 12/88

[J= No Dates EQE
@ Name

@ [FPeDaily oy

) FPeExpenses

FPelmport
[) FPeTime Sheet
&l [) FPeTo Do 6
K] ==

Figure 5-14 Disk 2 of Focal Point had room for the Help system, text importing stack,
and two complete sets of dated stacks. External structure influenced what files could go on
each of the two disks.

compression was less per picture than originally expected. Space required for
the information cards was reasonable, but with 13 categories (and back-
grounds) times 63 countries, a single disk was quickly overshot.

Rather than reduce the coverage of the world, I divided the system across
two diskettes. By this time, I had one rather large map stack (about 650K) and
13 information stacks (ranging in size from 30 to 75K). The easy way out
would have been to put the map stack on disk 1 and the information stacks on
disk 2. Ah, but there’s the rub.

Imagine a floppy disk-based Business Class user journeying through the
maps, settling on Uruguay as a destination (remember, HyperCard and the
System are in the internal drive, and only one Business Class disk is in the
externaldrive). Clicking onany one of the information buttons would prompt
the user to insert another disk (with that dreaded disk swap dialog box). Not
only that, HyperCard may ask for a couple of swaps before finally reaching
the desired information card. Now, from the information card, the user could
access any other information card for Uruguay without any swapping. But to
return to the map would require more disk swaps. That just doesn’t work.

To solve this problem, I divided each of the stacks into two broad geo-
graphicregions. I placed the maps and information stacks for Europe and the
Middle East on disk 1; the maps and information cards for the rest of the world
went on disk 2. Thus, a user may browse through Europe or the contiguous
Middle East—maps and information cards—without swapping a disk.

Making those divisions entailed extra work, of course, and also extra disk
overhead for the entire system, because there were now two map stacks, two
currency stacks, and.so on. But the result was that the entire system fitted

Stack Structure 111

comfortably on two disks, which floppy disk based users could operate with
the least possible inconvenience.

Atthe sametime, it was important to organize these stacks on the two disks
so that hard disk users would not be aware of the geographical divisions of the
original disks. All the stacks for disk 1, for instance, are in a folder called
Business Class 1; stacks on disk 2 are in a folder called Business Class 2. To
install Business Class on a hard disk, the user must create a new folder called,
simply, Business Class, and then drag the folders from each of the floppy disks
into the new folder on the hard disk (Figure 5-15).

Regardless of the user’s disk medium, division of the system into two
geographical areas also placed a greater burden on the HyperTalk program-
ming aspects of locating maps of countries in the other area. For instance, if
youuse the Business Class Search box to find a country or capital city by name,
Business Class performs a HyperTalk Find on the string you type into the
dialog box. The handler that performs that find must know which geographic
group you're in, and then must search both map stacks for the name you
typed. Additionally, when you click on an area of a map that is in the other
geographic stack, Business Class must know that the desired card is in the other
stack. To see how this was done at the HyperTalk level, see Chapter 30.

The point of this Business Class detail is that restrictions of external structure
had a large impact on the internal structure of the stack system. To make the
system easy for the user to navigate, the author had to put much more thought
and effort into the system’s structure and execution. Be prepared for this if
your stack system grows large.

[EDJ=—== Business Class =—=0
3 items 17,420K in disk 1,599K available
&
P
Business Class 1 Business Class 2
BCelnstall _.‘
4
S

Figure 5-15 External structure considerations caused Business Class to be divided
geographically, with maps and information cards for certain regions of the world being
included in the Business Class 1 disk. On a hard disk, the two folders are copied to an
inclusive Business Class folder.

112 HYPERCARD DEVELOPER’S GUIDE

CD-ROM Structure

With the advent of CD-ROM connections for HyperCard, the stack structure
questions become a little different. First of all, CD-ROM stacks are read-only,
meaning that they will most likely be the information publishing variety. The
stacks won’t be posting information in other stacks, but there is the possibility
that one stack might rely on information retrieved from another stack on the
CD-ROM disk.

Access time on a CD-ROM is slower than what you expect on a hard disk,
so it may make more sense to keep information in one large heterogeneous
stack than divide data into separate stacks. If I were to put Business Class on
CD-ROM, I'd probably combine all stacks into one large one to assure the
fastest possible access to information. And, because of the nature of this
durable read-only medium, I wouldn’t be too concerned about corruption of
a stack file. HyperCard never tries to write data to stacks on a CD-ROM disk,
so evena power outage in the middle of disk drive activity can’t harm the file.

The potential of CD-ROM based stacks occupying perhaps hundreds of
megabytes is a bit mind-boggling at this early stage of development. Most of
the CD-ROM activity, I believe, will be in the business and academic environ-
ments, in which the CD-ROM drive will be a shared resource on workgroup
or larger networks. HyperCard’s forte at handling large amounts of informa-
tion will certainly be a boost for CD-ROM and other high-capacity storage
media. Wemay yetface new challenges to stack structure that we can’t foresee
until large-capacity media are more prevalent.

6

Converting Existing
Databases to HyperCard

HyperCard attracted many people who had already assembled data-
bases with the help of other programs. Between the fast full-text search
and user customizability, HyperCard often appears to be a friendly
place to move existing database applications. Before you do such a
transformation, however, there are several issues you must consider.
Among the mostimportant questions you mustask yourself are whether
the applicationisright for HyperCard, how fields should berearranged,
how reporting will be affected, and what to do with long text chunks.

114 HYPERCARD DEVELOPER'S GUIDE

Is HyperCard the Right Environment?

Deciding whether HyperCard is an acceptable environment for an existing
database digs deeply into the discussion of whether HyperCard is, in fact, a
database program. Perhaps because of the layout of text fields, which
resembles database programs, many HyperCard reviewers and commenta-
tors classify the environment as a database environment. I disagree with that
classification, even though you can create database-like applications with
HyperCard.

Just as we discussed in the Introduction to this book, not all data-intensive
applications are right for HyperCard. Moreover, it is not just the function of
the information, but rather what you intend to do with the information that
counts. When a database is designed to provide you with on-screen selected
lists of information culled from the database, then a HyperCard version won't
be of much help to you, even if it is faster in searching for information. Also,
if the database is heavily relational, in that is relies on data from other data
collections to display information, then itis better left in the database. Trying
to replicate densely relational systems on HyperCard will not likely prove
worthwhile from a performance point of view.

As a rule, then, follow the same guidelines laid down earlier for deciding
which method—database program or HyperCard—is best for your database.

If your database is a read-only environment, such as an encyclopedia on
CD-ROM or a large database available via on-line telecommunications net-
works, you'll have to examine your information’s organization to decide if it
will fit within the card-based environment of HyperCard. We'll have more to
say about this later in the chapter.

Field Structure

By their very nature, true database systems are very field intensive. Typically,
adatabase author defines a separate field for every possible chunk of informa-
tion that may be later indexed, sorted, or reported. It is not uncommon, for
example, to find someone’s name and address book stored in a database set
up in the manner shown in Figure 6-1. Each element has its own field,
including two address lines and two telephone numbers. Often the two-line
situation is caused by the database program’s inability to allow multiple line
information—each field can be one line only. I have even seen databases in
which theauthor has created separate fields for each area code and each phone
number for voice, modem, and facsimile telephone lines.

In a traditional database environment, individual fields let someone using
the database perform selections and sorts on those fields. For instance, if you

Converting Existing Databases to HyperCard 115

E[J==———= Names and Addresses

First Name lMghonse

Last Name | Simmons
Company | Ace Manufacturing Company

[Address 1 [4000 Industrial Pkwy.

Address 2 |Suite 300 _

City [Tulsa state |0k _||zIP | 79880
[Telephone 1 [918-555-2652
Telephone 2 |918-555-1001

=1

Figure 6-1 A typical name-and-address database form, which you may wish to bring into
HyperCard.

needed to sort a mailing list by ZIP code to obtain a presorted first class mail
discount, you would instruct the database to sort all the records by the ZIP
field in ascending order. Then you could print out the address labels from the
database in that order. To sort by names, you would specify the Last Name
field as the primary sort “key” and the First Name field as the secondary sort
“key,” so that the resulting list shows all names alphabetically. If there were
two Johnsons in the database, then the one whose first name comes first in the
alphabet would appear before the other. So, given the sorting and selecting
powers of databases, the individual field setup makes sense.

To an experienced database user, the intensive field nature of the database
seems natural. But to those who are more used to word processors or to no
computers at all, individual fields seem very restrictive. Thus, the Address
stack that comes with HyperCard seems natural to many new users, because
it replicates the field-less nature of the typical rolo-style card: You type in the
name and address information in one clump, then put the telephone number
in a separate spot on the card to make it easy to find.

When you decide to move an existing database to HyperCard, you should
give serious thought to modifying the field structure to a less field-intensive
layout, particularly if there is information that can be naturally grouped
together, such as the name and address data, above.

Replicating Narrow Sorts

Combining database fields into single HyperCard fields does not take away

116 HYPERCARD DEVELOPER’S GUIDE

the sorting powers you had in the database. Because you can specify
HyperCard sorts based on specific words and/or lines within a field, as well
as performmultiple sorts (multiple-key sorts in database terms), you shouldn’t
be losing flexibility in the transfer. Forinstance, in the Address book example,
you can sort by a person’s last name by issuing the command:

sort by last word of line 1 of field 1

Or you may sort by ZIP code with this command:

sort by last word of field 1

To sort by last and first names at the same time, the sort command would be:
sort by last word of line 1 of field 1 and first word of field 1

This last script, however, points up a potential problem for freeform fields,
like the one in the Address stack. If someone enters a name in the first line of
thename field and appendsadegree, like “M.D.,” then the sort fails its original
intent, because the last word of the first line is “D,” regardless of the doctor’s
real last name. Putting the “doctor” part at the front of the line won’t help
either. Unless you put a title in front of each name in the stack, such as “Dr.
This” and “Mrs. That,” in which case you’d perform the secondary sort on the
second word of the first line, “Dr. Emily Jones” will be sorted after “Brian
Jones,” because “Dr.” sorts after “Brian.”

To Combine or Not To Combine Fields

It should be clear, therefore, that it is not always the right idea to combine
database fields into single, multiple line fields in HyperCard. What you
intend to do with the information rules how your fields should be organized.
If the alphabetical sorting of your address stack is critical (it’s not permissible
for the occasional Ph.D to be out of sync with the rest), then you might want
to have a more rigid field setup in your HyperCard cards. But, on the other
hand, if you frequently copy the name and address from your HyperCard
address stack into your word processing letters (assuming you’re using
Symmetry’s HyperDA desk accessory or MultiFinder to view both your
address stack and a word processing document at the same time), then it will
be more convenient to put all name and address data in a single field. You use
the Find command to locate a card, select the entire field, Copy, and then Paste
into your document. Imagine having to copy and paste six or seven fields to
get the data into the letter.

Converting Existing Databases to HyperCard 117

Another reason to maintain the original field organization is that field
labels often help users enter the correct information—and all information—
into the card, just as they do on a database form. When the fields of a card are
not intuitive, then the field labels act as prompts for the user: The name goes
here, the street address goes here, and so on. While the Address stack’s rolo-
like card lets you use that form not just for names and addresses, but for
anything you might want to put on a rolo file, not many forms have that
characteristic. Most cards have very specific purposes, depending on the
fields that define that card.

Multiple-Lined Fields

That’s not to say you should go overboard, like the stack I saw that had
separate fields for area codes and phone numbers. For the sake of card
performance, you should try to keep the number of fields to a minimum (early
HyperCard versions had a maximum of about 128 fields—a lot, but some-
times not enough in spreadsheet-like applications). Remember, too, that
HyperCard lets you use multiple line fields freely. There is no penalty for
defining a text entry area as a multiple line field. In fact, it works to your
performance advantage to reduce several distinct fields to one multiple lined
field.

The decision to use multiple lined fields must also be predicated on how
you intend to use the information. A potential problem with multiple lined
fields is that the user may not put information in a specific line, as you
expected when you laid out the card. Therefore, if another operation or
procedure expects to find information in line 3 of a particular field, and the
person who entered the informationaccidentally added or omitted a line, then
the retrieved information may not be there or may be the wrong information.

A Case for Single Fields

As an example of how this might come up, look at the Client Record card in
Focal Point (Figure 6-2). Notice that there are separate fields for thenames and
phone numbers of the three main contacts at the client company. If the
information were not used in any other place, it could have been combined
into one three-line field, with appropriate field labels identifying the informa-
tion in each line (e.g., “Contact 1”).

But a procedure in the Proposal stack summons this information. When
you click on the Plus button next to the Client fields of a Proposal Summary
card (Figure 6-3), you seea scrolling list of clients, alist derived from the Client
Record stack. Clicking on a client from the list first pastes the client’s name,
client number, and billing rate into appropriate places on the five cards

118 HYPERCARD DEVELOPER’'S GUIDE

% File Edit Go Tools Objects

Client Record

Client Since_4-15-88__ Last Update 3/9/88

Company Name Houndstooth Industries
Division_Solvents

Address1 P0.Box 410

Address 2 _ 12032 South Commercial Avenue

City _Des Moines State _|A
Postal Code_ 61855 Country

Main Phone 515:555:9500....

Cantact #1 _Sol Minsk
Contact #2 _Abe Pinsk Phone/EXT. 5]
Contact #3 Phone/EXT.

ns Billing Rate $ _55

Figure 6-2 The Contact and Phone/EXT. fields of Focal Point's Client stack were main-
tained as separate fields. Another stack had to make sure the information was always in the
same spot for each client (see Figures 6-3 and 6-4).

associated with the proposal. The action also goes back to the Client stack,
finds the client’s card, and copies the first two contacts and their phone
numbers for insertion into the corresponding fields in the Proposal card
(Figure 6-4). The procedure relies on the correct information being in the
correct field. If there were any deviation from that format during data entry
in the Client record, the Proposal record card could be out of sync. In the field-
intensive nature of the Proposal record card, the separate fields for the
contacts and phone numbers look right.

Remember, too, that HyperCard version 1.2 makes single-line fields a bit
more friendly when the autoTab field property is set to true. A press of either
the Tab or Return keys advances the text cursor to the next field

Field Design Tricks

At the same time, you can design around a single, multiple-lined field when
it's appropriate, even tricking the eye into believing there are many fields in
asection of a card, when a single field is better from the author’s point of view.
The Focal Point Directory stack is a case in point.

Converting Existing Databases to HyperCard 119

%

File Edit Go Tools Objects

Proposals and Bids 0=z

Date Submitted ... Delivexy Date

+] Client # Client Name
None

Bologna Insurance, 102,$35

Donaldson Manufacturing,100,$45
Effingham Ltd.,101,$65
Houndstoolh@ustries, 103,855

| Make I

roject

| Multiple Submissions |

Figure 6-3 In the Proposals stack, when you click on the Plus button next to the Client #
field, a scrolling list of clients (from the Client stack) appears. You insert one by clicking
on the name.

Assuming that Focal Point owners very likely started putting information
into the Address stack that comes with HyperCard (it’s one of the readily
usable stacks), I carefully designed the Directory stack so that data could be
transferred from the Address stack to the Directory with as little trouble as
possible. Therefore, despite appearances, which make it look like the tele-
phone number section has three fields in it, all telephone numbers are stored
in one field, just as they are in the HyperCard Address stack (Figure 6-5). All
the user need do is click on a special Export/Import button in the Focal Point
Help system to watch all data being extracted from the Address stack and then
inserted, card by card, into the Focal Point Directory.

To make this work within the confines of a single field, two design elements
were called to work.

First, the positions for three telephone numbers had to be separated
graphically. The darker lines separating the three sections give the visual
sense of three distinct regions in that part of the screen. The lines had to fit
within the spacing decreed by the line height setting of the font used for that
one telephone number field.

Second, there had to be an easy way for the user to dial just one of the

120 HYPERCARD DEVELOPER'S GUIDE

File Edit Go Tools Objects
Proposals and Bids [E

Delivexy Date

[EEstimated Labor $

_| [@] Estimated Materials $
Estimated Total §

Multiple Submissions
Figure 6-4 Contact and phone number data is retrieved from specific fields in the Client
card and inserted into the Proposals card. Because of the field structure, the information
will always be correct.

numbers, even if there were three in the field. In the HyperCard Address
stack, if there is more than one phone number in the field, you must select it
before clicking on the dial button—far too many manual actions for my taste.
Thus, in Focal Point the three dialing buttons were attached to the three
sections of the field. Not only do they add to the sense that there are three
distinct telephone numbers, but they simplify the dialing. Their scripts are
identical except for specifying which line number of the field they should
dial—1, 3 or 5.

The net result of this design tactic is ease of importing and a distinct
perception that there are three phone numbers possible for each card.

Importing Database Data

In converting an information publishing database to a stack, you will be
responsible for bringing the data to HyperCard. The more you alter the field
arrangement between the original database and the HyperCard version, the
more complex the import script will be, but don’t be put off by this.

Converting Existing Databases to HyperCard 121

® File Edit Go Tools Objects
: Directory & Dialer

Figure 6-5 With careful alignment of background artwork, the single telephone number
field looks like it is three fields.

Preparing the Data

The first task in importing database data is preparing the data in the database
program. Regardless of the program, the desired outcome is a text-only file
containing the information that is to go into HyperCard. Some database
programs give you amazing flexibility in this regard, while others have only
one option.

In a simple case, like a Microsoft Works database (this also applies to
Microsoft File and other databases that let you save a database as a text-only
document), the Save As dialog box gives you the choice of saving the data as
an export file (Figure 6-6). What this means is that Works saves the data to a
file separate from the file you normally use with Works. Information from
your form is written to the file so that tab characters are placed between
information from each field, and a return (like a press of the Return key)
character is placed after the last field on the form. All the data filling one form
is called a record. Thus, you can say that Works saves data in a text-only
format as a tab-delimited field, return-delimited record file (Figure 6-7). Data
from all fields in the form are saved to the disk file.

More sophisticated databases, like Omnis 3, Double Helix and 4th Dimen-

122 HYPERCARD DEVELOPER’S GUIDE

| = HD-20 |
D fiddress
0 firea Cades
! ¥ Baagk Sheff
0} Batehaok

D bacs
J Save Document As: = HD-20 u
[Transfer Text] | (et) l
(_Ejeet)

(save] [Cancel) “

F Export File N
Save Selected Records Only

Figure 6-6 Nearly every Macintosh database program lets you save information as a text
file. This is the format HyperCard needs to import the data into a stack.

sion, provide more powerful exporting capabilities. For instance, in Omnis
you may specify which fields are to be exported, in which order they should
be written to the text file, and what special characters should be used as
delimiters between fields and records (Figure 6-8). The results are the same
as the simpler databases, except you have much more control over whichdata
you export (in case you don’t want to take every field along).

The Seript

Once the data is saved as a text-only file, you need an importing script whose
job it is to read the information from the file and put it into the desired fields
on the HyperCard card. Typically, the script is assigned as a mouseUp
handler to a button you place (temporarily) in the new stack you're building.
If your HyperCard field structure is identical to that of the original database,
theimport scriptis quite simple. Givena tab-delimited field, return-delimited
record file, and a one-for-one field alignment, the following script should
work nicely:

oh mouseUp
ask “Uhich file do you wish to import?" with "Transfer Text"
if it is empty then exit mouseUp
put it into fileName
open file fileName
go to last card

Converting Existing Databases to HyperCard 123

repeat forever
doMenu "New Card"

-= Read entire record into "it" at once
read from file fileName until return

== |If the record is empty, then get out of this loop
-- otherwise, make the last field look |ike another
-— tab-delimited field.
if it is empty then

go to first card

close file fileName

exit mouseUp
else put tab into last char of it

repeat with x = 1 to the number of fields
put char 1 to (offset (tab,it)-1) of it into field x
delete char 1 to offset (tab,it) of it
end repeat
end repeat
end mouselp

Here’s what the script does for you. First it presents a dialog box asking you
for the name of the text file you wish to import. Itdisplays a default file name,
Transfer Text. If you saved your database export file with this name, you may
just click the OK button. Otherwise, type in the file name and click OK. If you

EOC Export Data]
i i
Format 1 NAME 16 31
QO Dif 2 COMPANY 17? 32
3 ADDR1 18 33
O sylk 4 ADDR2 19 34
5 CITY 20 35
O Delimited (commas) 6 STATE 21 36
rs 21P 22 37
Qnelimited (tabs) 8 PHONE 23 38
9 24 39
O One field per line 10 25 40
11 26 41
() Graphics 12 27 42
—* 13 28 43
'© Include all records | }g %g gg
| O Select using search | 8 m
baig . List

Figure 6-8 Advanced database programs, like Omnis 3, offer you options about saving
only certain fields and which characters are inserted as delimiters in the exported text file.

124 HYPERCARD DEVELOPER'S GUIDE

click the Cancel button or delete the name in the dialog box, then the handler
quits. If you click OK, the handler uses the name in the dialog box as the name
of the text file to open. The handler then goes to the last card in the stack, so
that new cards with imported data are added at the end of the stack.

The major repeat loop is the main action of this handler. It says “repeat
forever” because there is a built-in stopper within the repeat construction, as
we’ll see ina moment. The first command the handler gives is to make a new
card. Then it reads information from the disk until it encounters a return
character—the end of the first record as saved by your database program. If
you have a database program like Omnis or Double Helix and specified a
different character to mark the end of a record prior to exporting the data, then
that character should be used here instead of the “return.” Be very careful,
however, in specifying the record delimiter: It must not be a character that
might be in your database text; it must be a unique character that will appear
only at the end of records and nowhere else.

As you may recall from your explorations with the Read command (see
Chapter 27 of the Handbook), the information HyperCard retrieves from the
disk goes into the special local variable, It. Therefore, after the first Read
command, the entire first record is in It. The Macintosh keeps track of where
in the file the Read command gets its information, and holds a metaphorical
thumb in the spot of the last Read. Therefore, after the first Read command,
there is an invisible bookmark placed at the beginning of the second record.
Thenext time the Read command comes around (within the repeat structure),
HyperCard will retrieve the second record from the disk, and mark the
beginning of the third, and so on. After all the records have been read, the
Read command won’t be able to go any further, because the bookmark doesn’t
cyclearound to the beginning of the file. Instead, the Read command will put
an empty string into It. Thus, a short if-then construction always tests for
whether the Read command pulled in any data. If not (It being empty), then
the file closes, and the handler quits—it has finished reading in all the data.
That’s the way out for the “forever” repeat loop.

But when there is data coming from the disk, the rest of the handler
continues. The next thing that happens is that the return character at the end
of the record (remember, the complete record is in It) is replaced with a tab
character. This will simplify the next repeat construction, whichrelies on atab
character being at the end of every field, including the last one of a record.

In the final repeat construction, the data previously read from the disk is
placed into the fields of the current (new) card. The style of repeat structure
hereusesalocal variable, x, as a gradually incrementing number to refer to the
HyperCard field number, corresponding to the number of the database field.
The first time through the repeat loop, for example, all the characters from the

Converting Existing Databases to HyperCard 125

first character of It to the character just before the first tab are placed into the
HyperCard card’s first field. Then the entire first field, including the tab
character at its end, is deleted from It. That leaves the second field at the head
of the queue, so to speak. The second time through the loop, x takes on the
value 2. The second database field (in It) is placed into field 2, deleted from
It, and so on until all the fields of the card are full.

You must preplan the field structure carefully, because if the HyperCard
stack has one fewer field than tab-delimited fields saved by the database
program, the data for the last field will not get into the HyperCard stack. It will
still be safe in the text-only file, but you’ll have a more difficult time trying to
get thatdata into anewly created field once the cards haveall been created and
filled. It may be easier to do the entire import over again with the corrected
HyperCard field arrangement.

Changing the Field Structure

Importing data into a different field arrangement, as mentioned earlier,
requires a more complex import script. There is no way I can show you the
precise script you'll need to accomplish the modified import you need,
because I don’t know the field setup of your database nor the field setup of
your HyperCard stack and how you wish to combine previously separate
fields into multiple line fields.

What I can do, however, is show you an example of a name and address
database that is to go into Focal Point. The sample database looks like the one
in Figure 6-9, complete with 11 different fields, which will be combined into
three in the Focal Point Directory and Dialer stack, as shown in Figure 6-10.
Here's the script:

oh mouseUp
global oneRecord
ask "Which file do you wish to import?" with "Transfer Text"
if it is empty then exit mouseUp
put it into fileName
open file fileName
go to last card

repeat foraver
doMenu “New Card"

read from file fileName until return

if it is not empty then
put tab into last char of it
put it into oneRecord

else
doMenu “Delete Card”

126 HYPERCARD DEVELOPER’S GUIDE

go to first card
close file fileName
exit mouseUp

end if

put dataExtract(> && dataExtract()> into holder
put dataExtract(> into line 2 of holder

put dataExtract() into line 3 of holder

put dataExtractc> & return & dataExtract()-
into line 4 of holder

get dataExtract(> & ", " & dataExtract() && dataExtract()>
if line 5 of holder is tab

then put it into line S5 of holder

else put it into line 6 of holder

put holder into field 1

put dataExtract() & return & return & dataExtract()-
into field 2
put dataExtract(> into field 3

end repeat
ehnd mouseUp

function dataExtract

global oneRecord
get char 1 to Coffset(tab,oheRecord)-1)> of oneRecord
delete char 1 to offset(tab,oneRecord? of oneRecord
return it

end dataExtract

The opening of this script is identical to the one just before it, except that it
declares a global variable, oneRecord, which will be used by the dataExtract
function, which is a second handler within the import button’s script. After
the Read command, the script differs markedly from the earlier script.

Anif-then-else construction tests for the contents of It—that is, thedata read
in from the text-only file. If It is not empty, meaning that HyperCard was able
to retrieve data from the disk, then the return character at the end of the record
is replaced by a tab character, and the entire record is placed into the global
variable, oneRecord. As with the previous script, if there is no more data in
the file, the file closes, and the handler ends.

The balance of the handler must dissect the record and place various pieces
of it in very specific spots on the Directory card, sometimes in specific lines of
a field or even in a specific order on a single line, as when combining the first
and last name fields into one line. To assist in this dissection and recombina-
tion, there is a separate function (a user-definable function, in HyperCard
terms) that extracts one field from the record and deletes that field from the
record in preparation for the next extraction. The decision to make this

Converting Existing Databases to HyperCard 127

[ECJ=== Names and Addresses l

First Hame IMphonse

Last Name |Simmons

Company I Ace Manufacturing Company
Address 1 |4000 Industrial Pkwy.
Address 2 |Suite 300
City [Tulsa _|lstate |ok |[zIP [79880
Telephone 1 |918-555-2652
Telephone 2 |918-555-1001

Comments [Met at trade show 1/88; wife's name: Saﬂgl

Figure 6-9 For our example, we'll use this typical database. In traditional database style,
each item is in its own field.

& File Edit Go Tools Objects

:I | t l D:mctory & Dialer

Name & Address

Alphonse Simmons
_Ace Manufacturing Company
4000 Industrial Pkwuy.
Suite 300
Tulsa, 0K 79880

mdiib&x.lmﬁﬁ..m

ia

To

7

B

I

918-5959-2002
Ext.
918-555-1001
Ext
2
Ext.

Figure 6-10 The destination card is the Directory & Dialer card of Focal Point, which has
the same three-field arrangement as HyperCard’s Address stack (although the third field is
larger here).

128 HYPERCARD DEVELOPER’S GUIDE

extract-and-delete activity a function was predicated on the fact that we
would have to call these operations once for every field of data in the record.
Extracting the data and deleting it for each field would add at least two lines
of HyperTalk code for each field in the record. By turning this operation into
a function, the mouseUp handler can reuse those lines over and over, thus
making the entire import procedure more compact and faster.

Because the record is read in the mouseUp handler and then extracted and
chopped away in the function, the record data must be placed in a global
variable—one that can be accessed by both the mouseUp handler and the
dataExtract function handler. The acticn performed within the dataExtract
function is identical to the action taken in the repeat loop of the earlier import
script, with one slight modification. Instead of putting the extracted data
directly into the field on the Directory card, the function extracts the data with
a Get command, which, in turn, places the field data into the function’s local
variable, It. Then the function returns the value of It. Thus, whenever we use
the dataExtract() function in the mouseUp handler (user-definable functions
must have a set of parentheses after the function name), the function plugs in
the field data.

Therefore, in the first line of the mouseUp handler to use the dataExtract
function, the script calls the function twice, putting the results into a local
variable, called holder. The Put command treats the results of the dataExtract
functions just like containers, putting the first field and the second field into
holder, separated by a space. Remember that each time the dataExtract
function is called, the data is both extracted and deleted from the entire record,
leaving the next field ready for extraction by the next call of the function.

In the fourth line of the data extraction routines, the handler extracts the
equivalent of fields Address 1 and Address 2, placing them in separate lines
(forced by thereturn character between the fields). Then thecity, stateand ZIP
fields are retrieved, but placed temporarily in the mouseUp handler’s It local
variable. The handler must first check to see if there are one or two address
lines in the card before determining which line of the field the city, state and
ZIP code information should go. If the second address line (line 5 of the field)
contains only a tab (which dataExtract would return if there were no data in
that position), then it means there is only one address line, and the city, state,
and ZIP code data belongs in line 5. If there is other data in line 5, then the city,
state, and ZIP code belong in line 6. Once the information for field 1 is
assembled in the holder variable, the data is placed into the field in one blow.
As we'll explore in more detail in Chapter 22, it is faster to manipulate
information in variables than repeatedly fetching and storing data in fields.
The remaining two command lines of the mouseUp handler place the tele-
phone numbers into field 2, separated by a blank line (two return characters),

Converting Existing Databases to HyperCard 129

and the Comments field into field 3 of the card.

These two examples should give you plenty of guidance in importing
database information into a HyperCard version of a database. Importing a
collection of word processing text is a slightly different matter. It may be
moved into HyperCard in two ways: by script or manually. But either way,
you should give some thought as to the text’s organization in the card style
format of HyperCard stacks.

Importing Word Processing Data

One of the best examples of why you might wish to convert a word processed
set of data into HyperCard would be to create a card system based on
boilerplate text. For example, a lawyer might place various clauses and
paragraphs of contracts into separate cards in a stack. With the help of a
button on the cards, the attorney or legal secretary could assemble the text of
acontract by finding the desired segments’ cards and letting a script build the
entire document, ready for printing or exporting to a text file for printing by
aword processor. The point of having the boilerplate segments in HyperCard
is to make it easy and quick to assemble the final document without typing a
key.

Many other databases, especially those that contain excerpts, abstracts, or
even full documents, are stored today in word processing formats. The allure
of HyperCard for organizing and finding desired data is quite real.

Handling Long Text Blocks

A potential difficulty with creating a stack of this nature, is that the chunks of
text may be very large—certainly larger than a single card on a 9-inch
Macintosh screen can handle. That means, of course, that the text would
probably go into a scrolling text field.

When the design of a stack assumes that the user will be browsing through
the stack, card by card, then scrolling fields are not particularly appealing,
especially if the browsing is to be not by card title, but by the content of the
large field. Long text that is intended for reading should be divided into card-
sized chunks, with ample navigation buttons around to facilitate moving
through the text. Card-by-card browsing implies that the user can see an
entire card’s contents just by going to that card. Scrolling is inconvenient for
reading. Ialso believe that scrolling fields are just plain unattractive and end
up being less well-integrated into a card design than other types of fields.

130 HYPERCARD DEVELOPER’S GUIDE

Froma functional standpoint, scrolling fields are permissible when thedata
in them is not meant for card-by-card reading. If access to the textual data in
along field is by the Find command, then its location in a long, scrolling field
is not critical. When HyperCard finds the text, it automatically sets the scroll
of the field so that the matching text appears at once—no scrolling necessary.

You should also feel free to use scrolling fields when the user will not see
the fields. For example, in the legal contract boilerplate example, cited earlier,
ifthestack designer created a friendly front end to thestack that lets the person
assembling a contract click on buttons corresponding to names of the compo-
nents, the user may never need to look at the actual content of each compo-
nent, atleast notonaregularbasis. Thestack would then fetch the long chunks
of text from their scrolling fields, even though the screen is locked, and the
user doesn’t see the cards from which the data comes.

Long Text Import Scripts

The methodology for importing word processing data by script depends
largely on how the information is divided in the first place. Of course, before
you could import it into a HyperCard stack, the text must be saved as a text-
only file from the word processing program used to create the file.

Probably the only time a script-based import routine would be worthwhile
isif the text you want to import needs to be divided from onelarge text file into
a number of stack cards. If that’s the case, then using the word processing
program (before saving it as a text-only file) you will have to place some
unique text character at the end of each chunk that is to go on a single card.
Let’s say, for instance, that the character you wish to use as a delimiter is the
bullet (Option-8 on the Macintosh keyboard). Go through the original text
and insert the bullets between what will become each card’s text, and save the
file in the text-only format. In your HyperCard stack, create a temporary
button with the following script:

on mouselUp
ask “Hhich file do you wish to import?” with "Transfer Text”
if it is empty then exit mouseUp
put it into fileName
open file fileName
go to last card

repeat forever
doMenu "New Card"
read from file fileName until "e"

if it is empty then
go to first card
close file fileName

Converting Existing Databases to HyperCard 131

exit mouseUp
else delete last char of it
put it into field "mainText”
end repeat
end mouseUp

This simple handler reads each bullet-delimited chunk one at a time from the
disk and puts it into the main text field you’ve designed for the card.

Another method of importing word processing text involves the use of any
desk accessory text editor, like MockWrite (CE Software). You may open up
the text-only file (as saved by your word processing program) in an editing
window atop the HyperCard card. Then select and copy the desired section
into the Clipboard. Click on the HyperCard card, position the text insertion
pointer to the desired spot, and paste the text into the field. If your boilerplate
sections are scattered about in many different fields, then this method may
actually be faster than trying to import the text by script, even though you
need to invoke the desk accessory each time you want to open a text-only file
(this isn’t necessary on large screens, however, because the editor window
will remain open behind the HyperCard window—position the two windows
so you can click on one or the other, as you need each window).

A HyperCard text field can hold up to 32,000 characters. Unless the field
or card is generally hidden from view, avoid placing large chunks of text into
atextfield. It makes it difficult to read and inconvenient to browse. If you find
itimpossible to divide large text blocks into card-sized chunks, then either the
database shouldn’t be converted to HyperCard or the HyperCard version will
offer an incentive to create a user-friendly front end to a huge bank of textual
data. The latter would certainly be more interesting to pursue.

7

Stack Protection

One of the biggest differences between the HyperTalk language and
other Macintosh programming environments is that HyperTalk is very
much an open system. HyperTalk program code is stored on disk in a
relatively easily accessible format—straight ASCII text. Therefore, even
if you believe the stack protection facilities built into HyperCard will
preventlurkers from prowling through yourscripts (and it'simpossible
to keep them out anyway), they’ll be available to anyone with a file
editing tool, like John Mitchel’s FEdit disk utility.

134 HYPERCARD DEVELOPER’S GUIDE

Why Protect?

In the early days of personal computers, it was very common for enthusiasts
to share their experiences and hard work with others in computer clubs. Since
a lot of the activity was the result of a hobby interest in computing, there was
little to lose by revealing the program listings to friends and colleagues. In
fact, it was more like show-and-tell, or even a bit of a boast to show others how
you conquered the machine for a particular application or operation.

As the computer industry matured, programming became more of a
business, and programmers started to be protective about their code. They
didn’t want someone lifting an idea that had taken much time and effort to
create, and turn it into a commercial product before the originator could.
Commercial competition, sometimes even within the same company, has
created a generation of programmers who jealously guard the contents of
their programs—the source code listings that are compiled into freestanding
programs.

Along comes HyperCard, designed by a gentle spirit who still recalls “the
old days” of sharing and openness. He designs a product with the idea that
when people share ideas about creating stacks that the effect will be like
compounded interest—users’ facility with the program will increase dramati-
cally in a short time. Only when existing software companies received
prerelease copies of HyperCard to explore commercial product possibilities
did the request—make that “demand”—for stack protection come loud and
strong. Let’s examine in detail the kind of protection available in HyperCard.

Private Access Protection

One method of protecting a stack is to forbid entry into the stack, unless the
user knows a password. When you choose Protect Stack from the File menu,
the resulting dialog box offers several choices about how the stack should be
protected (Figure 7-1). The option we’re considering here is Private Access.
With this check box selected, you may then click on the Set Password button
to assign a password to the stack. To test out the password, you'll have to quit
HyperCard and then try to re-open the stack. You'll be prompted for the
password. An incorrect password won’t allow you access to the stack. A
correct password lets you in. As long as you don’t quit HyperCard after
entering the correct password, you will be given instant access to that stack
without having to enter the password.

Private access protection is not a good solution when running HyperCard
on a multi-user network. If an authorized user successfully opens the
password protected stack, then anyone on the network will be able to open

Stack Protection 135

Protect Stack: Limit user level to:
O Browsing

(1 Can't modify stack O Typing

[J can't delete stack O Painting

QO Ruthoring
%Priuate ficcess @ Scripting

(Set Password |

Figure 7-1 The Protect Stack dialog box lets you adjust a stack’s user level as well as
request a password when opening for the first time within a HyperCard session.

that stack thereafter, until someone quits HyperCard (presuming HyperCard
is running on the file server).

Incidentally, the first release of HyperCard reportedly presented difficul-
ties for some users who had protected their stacks for private access. A
handful of users who had assigned passwords were unable to open their
stacks, even with the correct password. HyperCard 1.1 supposedly solved
that problem.

Stack Delete Protection

Another checkbox in the Protection dialog box lets you set whether the user
will be able to delete the stack. Deletion, then, is password protected. Only
people who know the password would be allowed to delete the stack.

In tightly controlled circumstances, such as in a network situation or in-
house distributed processing system, this protection might be advisable,
because the stack author won’t want anyone to “accidentally” delete a
valuable stack. But for a stack that is to be distributed to the world as public
domain, shareware, or commercial product, this kind of protection is not
advisable. Remember, too, that even though you use a password to protect a
stackagainst deletion, the filemay be dragged to the Trash in the Finder. And,
while you can prevent a user from quitting HyperCard via the Quit Hyper-
Card menu item (see below), the resourceful HyperCard snooper will know
how to restart the Macintosh and bypass any Set Startup setting you've
created to automatically go into the stack.

136 HYPERCARD DEVELOPER’S GUIDE

Can’t Modify Stack Protection

The third choice in the Protect Stack dialog is whether you want to let the user
or a script permanently modify the stack (added with version 1.2). This is
different from the user level protection (below), because in concert with the
userModify global property (also new with 1.2), you may let users paint or
entertext ona locked stack (a padlock iconappears to the right of the last menu
title when the stack cannot be modified). But because the checkbox in this
dialog is checked, none of the changes made by the user or by any script will
be saved to the disk (lock your Home stack and notice that the idle handler
clock in the lower left corner no longer writes to your hard disk with each
advancing minute).

This setting and the userModify global property are primarily of interest to
those running HyperCard stacks on locked media (like CD-ROM) or in
networked environments in which stacks might be locked to allow multiple
access to the stack. Any changes you type into fields or make with painting
tools may help in navigation or printing (HyperCard prints what’s on the
screen when you do a Print Card), but as a tool to keep snoopers out of your
stack, it won’t beany more effective than other HyperCard protection schemes.

User Level Protection

A stack author may set the user level of a stack, independent of the user level
setting of the user's own HyperCard Home stack. Thus, if the user of your
stack has the user level setting in the Home stack set to level 5 (scripting), you
can still reduce the level in your stack by setting the user level to, say, 2 in the
Protect dialog box. If you choose to password protect that setting, then the
user will need to know two things: 1) the trick about holding down the
Command key (at user levels 1 and 2) to access the Protect Stack item in the
File menu; and 2) the password to access the Protect dialog box.

At first, the prospect of locking the user to alow userlevel sounds attractive
if you want to keep your scripts to yourself. If you set thelevel to anything less
than 5, then the user won't be able to summon the Script Editor for any object.
Your scripts are safe from prying eyes, right? Well, no, they’re not.

It turns out that even though you cannot see a script in the Script Editor with
these settings, you may still access the script via another script. In other
words, if you have a script that retrieves the script of a button (the script of any
object is a property), then you can put the retrieved script into a container, like
a field in a different stack, and print it out from there. That, in fact, is how
utility products like Script Report work. They go into astack, lift copies of each
object’s script, and then reassemble the scripts for printing or viewing. One

Stack Protection 137

script can also write the script for another object (e.g., set the script of a button),
so even though you thought you locked down your scripts, a knowledgeable
HyperCard user can dissect and modify the stack, difficult though it may be,
without using the Script Editor.

Protection Problem

Locking the user level with the Protect dialog box can present a big problem
for some stacks. The problem will surface early on provided you test your
stack with the user level set to the low level.

Whenever a script in a stack needs to utilize a tool that is at a level higher
than that set in the Protect dialog box, the script won’t be able to access that
tool. For example, in the Daily Appointment book of Focal Point, there is a
script that summons a painting tool to literally draw a small box around the
plus mark of an hour’s label to indicate that there is text hidden in an
associated field (Figure 7-2). For the script to draw that box, it needs the
rectangle tool in the painting tool palette. The only way thescript may use that
toolisiftheuserlevel is set to 3 (painting) or higher. If the Protect dialog limits
the user level to 1 or 2, then the script will produce an error dialog, indicating
that the desired tool is not available at the current user level setting (Figure 7-
3). Moreover, the nature of the Protect dialog setting is such that it overrides
any change of the user level your script may command. Therefore, to try to
set the user level to 3 in the drawing script would be useless if the Protect
dialog setting had been set to 1 or 2. The same is true when your scripts need
access to either the button or text tools. For access to those tools, the user level
needs to be at 4 or 5.

Wednesday, Marc
S r1 S

1 Lunch with Stan
+

.................. 2 |-Monthly.Staff Meeting...
37
Figure 7-2 In Focal Point’s Daily Appointment stack, you may add information to a

normally hidden field by clicking on the hour’s number. If any data is in that field, the
stack draws a square around the plus mark to remind you date is in there.

138 HYPERCARD DEVELOPER’S GUIDE

® File Edit Go

1 P v g]]]

DAY

1 |-Lunch with Stan

+ &

+w
H
i

That tool is not available at the current
user level.

+ 00

+ 9

=

+
+N [+ ¥+

EVENING

Figure 7-3 If the stack is locked below the Painting level when it needs the painting tool,
the script is interrupted by an alert box. You may not use HyperTalk script to change a
user level set in the Protect Stack dialog box.

When to Lock the User Level

Even though it looks as if it may be futile to password protect the user level
setting, those user levels are there fora reason, and they make sense for certain
kinds of stacks in special environments. Here are some examples.

Locking the user level prevents inadvertent modifications to stacks. There-
fore, in a stack that might be used in a freestanding kiosk location, at which
users are invited to browse through read-only material, it would be advanta-
geous to lock the user level to 1. This prevents someone from accessing even
the text insertion tool to modify a field that may have been left unlocked. It
also prevents casual HyperCard users from modifying the painting layers,
buttons, or fields. If the stack displays the menu bar, its choices are limited,
thus being less overwhelming to a novice user.

The reduced menubar is also a good environment in an in-house corporate
oracademic setting, in which the people who use the stacks day in, day out are
using the stack as a browsing and information entry system. By locking the
user level to 2 (typing), the user won’t be burdened by any more than the three
main menu items (plus the Apple desk accessory menu), and the menus that

Stack Protection 139

do appear are shorter than usual.

When NOT to Lock the User Level

Whenever I talk about stack protection with experienced HyperCard users,
the prevailing sentiment is that locked stacks are a nuisance, if not frustrating.
HyperTalk-literate users seem to be forever curious about how a stack author
structured various parts of the stack and how the scripts scattered throughout
the stack are built. Moreover, if a user finds that the stack is useful enough to
keep around on the hard disk, chances are that he or she will want to make
some modifications to the stack. Typical modifications might be the addition
of buttons that link to existing stacks in the user’s collection. Many users also
have established ways of going from stack to stack, which may entail changing
visual effects. Useful stacks may also be blended into an existing stack system,
so the user needs access to your stack’s scripts to effect the necessary links
between your stack and the rest.

To me the supreme advantage of using HyperCard applications is that the
stack or stack system can be customized or enhanced to suit my needs. That’s
the essence of democratization that HyperCard brings to personal computing.
No other applications give you that flexibility. For an author to restrict the
addition of fields and buttons, or otherwise prevent the user from tailoring the
application to his or her way of work is simply not in the spirit of HyperCard.
That is one big reason why both Business Class and Focal Point come out of the
box already set to user level 5. I even go overboard a bit, because I invite
everyone to look at and learn from the scripts scattered about the stack
systems. As a result, I often hear back from users about the ways they’ve
modified the stacks for themselves, providing ideas for future enhancements
to both products.

Something psychological also affects users of general audience stacks who
encounter password protection to the scripts. It reminds me of two nearly
identical houses ina suburban subdivision. One house stands there, like your
basic house. The onenextdoor has floodlights lighting the grounds, iron gates
and brick walls surrounding the house, and intimidating signs about analarm
system that summons the county sheriff if an intruder should sneeze in the
wrong direction. While the casual burglar would choose the unguarded
house as the path of least resistance, the experienced burglar suspects that
there must be something really worth stealing inside the fully armed house.
Thus, when I start poking around a stack and find a request for a password to
change the user level, I figure the author must be hiding something really neat
or is perhaps ashamed of sloppy scripting. In either case, the lockout only
peaks my curiosity and determination further. Instead of a casual glance ata
few handlers, I'll be sure to take apart the entire stack and inspect every

140 HYPERCARD DEVELOPER’S GUIDE

HyperTalk word. I'm not alone, either.

Even if you get a kick out of slowing down entry into protected stacks, be
aware that the public domain already contains utility stacks that disengage
stack passwords. Where there’s a will, there’s a way.

The entire discussion about protecting HyperTalk scripts really comes
down to one question: why bother? Since there is no secure way to keep
determined eyes out of your stacks, it doesn’t seem to make sense to protect
stacks that go out to the world. On in-house stacks, as mentioned earlier,
where casual users are the target audience, you can protect the stack primarily
to save the users from accidentally getting into trouble. But that’s about the
only reason I can see to password protect the scripts of a HyperCard stack.

Commercial Proprietary Secrets

When I make statements like the one above, most traditional software devel-
opers and publishers shudder. They envision their works being dissected like
a biology class frog. An open stack is like an invitation for others to steal
scripts and scripting techniques for their own stacks. This is a legitimate
concern.

One protection that developers have in this regard is the copyright law that
protects original intellectual property. While there is no stopping an individ-
ual from incorporating your script in a stack for his or her own use, it is illegal
for that person to use yourscripts in a product that is redistributed, unless you
have agreed to thearrangement. This is just like the copyright protection that
covers printed material in books and magazines. If an author wishes to
excerpt a selection from a book in another book, then that author must get
permission from the original copyright holder to reprint that material.
Sometimes the right to reprint entails payment of a licensing fee; other times
the original copyright holder agrees to it in return for the proper credit line
attached to the excerpt (in hopes that the excerpt will convince readers to buy
the original work).

There’s no question this still leaves a gray area. Can a stack developer
modify someone else’s script and claim its his own for publication in a new
product? How many changes to the script’s characters does it take before the
original is no longer the original. And what about stack artwork? How many
pixels can be changed to make it no longer a copy of the original?

Purists in the legal profession would say that if a work is derived from the
original, then the second work infringes on the copyright of the original work.
Truly original work must be just that: original. Atthe same time, some scripts
will surely be copied and modified to such an extent that there is little trace of

Stack Protection 141

the original script, even though everything was derived from a copyrighted
work. And in other cases, there may be only one elegant way to perform a
certain operation. Two or two hundred stack developers may come up with
theidea independently. How can you say or prove that one developer copied
that script from another?

Unfortunately, the realm of copyright protection in stacks, as it is in
software, will probably be tested in litigation before long. The safest way to
avoid problems is to be original. If you contract out for artwork or HyperTalk
programming, make sure that the agreement between you and the vendor
states that the work is to be original (and that the contractor warrants such).
HyperCard makes it inviting to borrow liberally, for not only are there scripts,
card art, and icon art, but there are external commands, external functions,
and sounds to worry about. Unscrupulous stack developers will try to
“borrow” copyrighted work. If you're concerned about your scripts or other
stack elements being ripped off, then it is up to you to monitor the stacks that
reach the market through various channels and pursue those developers and
publishers who use your work without permission.

True Protection

While I've made it clear that there is no way to protect scripts or other open
elements of a HyperCard stack, you can still protect important algorithms that
youdesign. If a portion of the operations taking place in a HyperCard stack
are in the form of external commands or functions, that code is as protected
from view as you can get.

As you’ll learn more in Part ITI, external commands and functions (XCMDs
for short) are written in Pascal, C, or Assembler and then compiled into a
resource that attaches to your stack. These compiled chunks of code are in the
same form as standalone programs written in these languages. For someone
to decipher what is in an XCMD, he must disassemble the code, which
generally provides an assembly language equivalent of the program. Disas-
sembly, incidentally, is how engineers investigate programs in search of ways
to defeat copy protection or learn how a computer’s operating system per-
forms certain operations. The first thing many seasoned hackers do when
they get a new computer is to disassemble the ROM to look for clues to
undocumented features or possible enhancements. In any case, I believe if
someone is smart enough to disassemble an XCMD, they’re entitled to the
knowledge (although not entitled to copy it and re-sell it themselves).

Rest assured that disassembly of compiled code is not for the faint hearted.
The typical Pascal and C programmers, who might want to see how you

142 HYPERCARD DEVELOPER’S GUIDE

accomplished operations in an XCMD, are not likely to disassemble your code
unless they’re desperate and determined. An XCMD is a relatively safe place
to put algorithms that you’d prefer not be in the hands of the world.

Fortunately, XCMDs can communicate with fields and objects in a Hyper-
Card stack, so you could practically write the equivalent of a HyperTalk script
in an XCMD. If much of the functionality relies on HyperTalk commands
(instead of doing the information manipulation yourself in the XCMD), the
performance may not be what you'd expect. But if you can replicate the
functionality in an XCMD and keep communication with the card to a
minimum, you may actually see a performance improvement—such as in a
large math calculation.

Therefore, when a prospective stack developer asks me about protecting
scripts, my advice is twofold. First I ask the reasons for protecting the scripts.
If the response discloses a general feeling that no one should be able to look
inside, I try to counsel against protecting the scripts. Second, if the developer
has unique algorithms that should be protected, then I strongly suggest they
be written as XCMD:s for attachment to the stack. Do the bulk of the simple
work in open HyperTalk; do the secret stuff in the compiled XCMD.

Buying and “Borrowing” XCMDs

If you’re not yetinto programming XCMDs in those other languages, then you
can obtain XCMDs in two legitimate ways: get permission to use existing
code; and contract the work for new code.

It's so easy to incorporate an XCMD into a stack, that it is often tempting to
“borrow” a resource that is attached to someone else’s stack or is offered for
everyone’s use in the public domain. Remember that copyright protection
applies even to work distributed in the public domain. For you to incorporate
such an XCMD in a stack for distribution to others, you must obtain the
permission of the copyright holder. That’s what I did in Focal Point. When I
needed the standard file dialog box in the Document Launcher stack to make
button creation simple, I found the filename XFCN written by Steve Maller.
Even though Steve worked for Apple, he received permission to distribute the
work in the publicdomain. Iwrote to him, explaining why I would like to use
the function and how I would credit the work within the product. Steve was
happy to oblige, giving me permission to include the function in a commercial
product.

If you cannot find a public domain or shareware XCMD that meets your
needs, then it may be worthwhile finding someone who can write an XCMD
for you. User groups often have knowledgeable Macintosh programmers

Stack Protection 143

whoare capable of writing short snippets of code that go into XCMDs. As with
an artist, negotiate a price based on the time it takes for the programmer to
write the XCMD, or come up with a flat fee. If the XCMDs represent a major
part of the product, you and the programmer may agree on a royalty
agreement. As with working with an artist for graphics, be sure you obtain all
rights to the source code of the XCMD. This will simplify matters if your stack
product is marketed by a publisher or if someone wishes to license the XCMD
from you.

I believe the future of commercial HyperCard stacks will depend on
creative XCMDs made a part of creative stacks. That means that the talents of
good artists, traditional programmers, and people with expertise in special
interests will make for coming generations of outstanding HyperCard appli-
cations for narrow and broad audiences. As XCMDs begin holding more of
the “gold” of a HyperCard stack, the worries about stack protection will
diminish. It’s better to spend more creative energy on the stack than on ways
of keeping people out of it.

8

Engaging the
Couch Potato

An information stack assumes a burden from the very outset. It must
invite the user to start browsing, hold the user’s interest, and leave the
user with the feeling that the journey through the information was
rewarding. The value of an information stack is directly proportional to
the user’s desire to return to the stack—to retrieve or store additional
information.

In many respects, an information stack is like a television show. A
good program captures its viewers with some kind of “grabber” in the
first minute or two, prevents viewers from changing channels mid-
stream, and then leaves the viewers with a good enough feeling to make
them want to come back next week for more. In the world of HyperCard

stack production, the developer is the producer and director (and

146 HYPERCARD DEVELOPER’S GUIDE

writer), while the information is the star. It’s the job of the director to make
the star look good, to shape it into something that viewers—make that
“users”—enjoy.

Make Stacks Inviting

To that end, I believe a good guideline to follow when building a stack is to
makethe stack inviting enough to interest people who would normally not get
involved with computers—computer couch potatoes. Not to be confused
with television couch potatoes, computer couch potatoes either have a predis-
position against computers or simply have not been exposed to them. They’re
a tough audience. But if you can engage such a person enough to click the
mouse button even once, then you stand a chance of converting a computer
couch potato to a computer user.

As computer software designers target products for the computer couch
potato, the rest of the computer community will benefit. The Macintosh
started out as being “the computer for the rest of us.” Its primary goal,
although not stated in these terms, was to engage a new generation of
computer users who were intimidated by the likes of MS-DOS computers and
computer toys. A lot of that early Macintosh simplicity is now gone, but its
original idea helped bring many people into computing who might never
have made it before, at least not with the same enthusiasm and reward as the
Macintosh community. Computing, in general, benefited from the underly-
ing concepts of Macintosh’s design. The same can happen from astack written
to engage a new type of user.

HyperCard and the Macintosh are well positioned for advances in couch-
potato-friendly software, because the HyperCard developer community
consists of a much more diverse group than what I call the programming
priesthood. People in the arts, humanities, social sciences, and other disci-
plines now have access to a programming tool—a tool on a sophisticated
computer. The results can be sophisticated software, bearing the expertise of
its creators. That expertise would never find an outlet without a development
environment like HyperCard. The people who know best how to engage
computer couch potatoes are now in control of program design. There’s huge
potential in that.

Articles of Engagement

As much as we’d all like some easy formula to follow, it’s not that easy. So
much depends on the kind of information you’re publishing or managing,

Engaging the Couch Potato 147

how the art treatment blends with the information, the complexity of your
structure, and other intangible elements, including the tone of the language in
an information publishing stack. The challenge of making a stack inviting is
where many of the points covered in previous chapters come together. Here
are some suggestions to help make a stack inviting and engaging:

1. Present an opening screen or sequence. Tell the user right away what your
stack is, who wrote it, and perhaps what it’s for, if the stack is meant to
attract passersby at a freestanding kiosk. The title screen or sequence
should be a visual masterpiece, because it sets the tone for the rest of the
stack. Inthe few seconds thetitle screen or sequencedisplays, you can grab
or lose your audience. Ifit’s inviting enough, the user will hang in there for
more.

An excellent opening sequence example is the one used for the Macworld
Expo stacks (refer to Figure i-3 in the Introduction). If you want to view
them, they are available from many user group stack collections. Inthe one
for Boston 1987 and San Francisco 1988, the first six cards begin looping in
sequence to present an effect that a small globe on the card is spinning. If
you're walking down the aisle past one of the machines, the spinning globe
cannot help but draw you into it. Then, when you click on the world, a
series of 22 more cards zoom you in from outer space to the location of the
exhibition hall.

Focal Point and Business Class, as examples of commercial stacks, present
the user with title screens, which announce the name of the stack system
the user is about to enter (Figure 8-1). Since these stacks, especially Focal
Point, are intended for daily business use, the opening sequence was
maintained as a single screen (although with interesting dissolve visual
effects) that can be bypassed quickly by a click of the mouse. To force the
user to sit through a 5 or 10-second flashy intro several times a day would
not endear the user to the product after long.

2. Usevisual effects wisely. Evenin abusiness software environment, users
prefer to be intelligently entertained, as long as the entertainment value
does not overpower the informational task of the program. HyperCard's
visual effects add a great deal of entertainment value, even when the effects
are there to help the user gain some spatial perception of what action a
buttonincites. Those users who may have experience on the Macintosh but
little in HyperCard will be “wowed” by quality visual effects in the right
spot.

148 HYPERCARD DEVELOPER'S GUIDE

® File Edit Go Tools Objects

Concept & Programming by Danny Goodman
Program Artwork by David Smith

COPYRIGHT ©) 1987 DANNY GOODMAN ALL RIGHTS RESERVED

Personalized for Danny Goodman

ACTIVISION,

Release 1.0

e

Figure 8-1 An opening screen, like the one for Focal Point, helps orient the user about the
stack or stack system he is about to enter.

For instance, while the title cards of Focal Point and Business Class are
single cards, they come to life for the user because of a special combination
of two dissolve visual effects—a dissolve to black followed by a normal
dissolve. By adding the dissolve to black, the dissolve is much stronger
because the black sets up a more distinct divider between the previous
screen (usually the Home Card) and the Focal Point system. A regular
dissolve by itself may actually be confusing, because it might imply a
transition between two related screens, rather than two very dissimilar
screens. I've seen one Focal Point user also attach a sound resource to his
Home stack so that when you click on the Focal Point button, the computer
issues the Star Trek Transporter sound. Justlike the Transporter dissolves
a person in one place and reassembles the molecules in another, so does the
Focal Point button bring you into a different domain.Within a stack, visual
effectscan play abig roleina person’s enjoyment. Selecting the right visual
effect is not a task to take lightly. It should be done only with extensive
experimentation and comparative testing on users. Turning pages, for
example, can be accomplished with a few different visual effects—scroll-
ing, wiping, and zooming. On some cards, the effect of scrolling is not as
dramatic as you may first think, especially if the information content in

Engaging the Couch Potato 149

fields is sparse. The change from one card to the next may not be big
enough for the scrolling to be visually effective. Wipes usually work best
for going to next or previous cards. But when you use them, remember that
the wipe direction is opposite to the direction the user is progressing
through the stack. For example, when the user clicks on a right-facing
arrow to go to the next card, the wipe directionis to the left, just like turning
the page of a book to the left to advance to the next page (Figure 8-2).

Zooming is an effect that must be used carefully. HyperCard acknowl-
edges the location of the mouse click that triggers a Zoom Open visual
effect. The zoom action emanates from the click location. This is what you
probably want. But be aware that when the Zoom Close visual effect
occurs, it zooms back toward the center of the screen. There is no
connection to the spot from which the last Zoom Open visual effect took
place. This might be confusing to the user, depending on your screen
design. If the card designs are different enough, the user probably won’t
recognize that the zoom closing is focused on the center of the card, because
the Zoom Open made a significant spatial impression in the first place.

Barn doors and irises are useful effects when changing levels within a
tree structure. Use the Open parameter to these visual effects when diving
down a level; use Close when resurfacing to a higher level.

So far I have yet to see a respectable example of either the checkerboard
or venetian blind effects, but there must be good stacks out there some-
where that put these effects to good use. I believe with a carefully planned
series of cards designed especially for these effects, some striking visuals
are possible. You can also expect to see additional visual effects added to

AEE .
ES B
8¥s.
o -
e a
BHbO D
5 aw
H!G'iu -
b
=
2
—

g

)
1l
17
™

o -
N W -
R Ba
SEZZ2a
BRZ

1B
a9
13 16
28
» 0

Figure 8-2 When clicking on the right arrow to advance through a stack, the visual effect
should go to the left.

150 HYPERCARD DEVELOPER’S GUIDE

HyperCard as it evolves, primarily to aid the effects of flipping from card
to card in a linear sequence.

Also be sure to exploit the Lock Screen and Unlock Screen commands
that are new to HyperCard version 1.2. Because these commands (which
are different from setting the lockScreen property) may be used in concert
with visual effects, you can create interesting ways of hiding and showing
objects on a single card. For example, a background button might trigger
a dissolve effect that shows a card layer graphic and a button:

on mouseUp
lock screen
set the visible of card field “Instructions”-
to not the visible of card field "Instructions”
unlock secreen with dissolve

end mouselp

The effect that used to take two cards may now be donein one. Youmay
even combine visual effects for going to a card and visual effects for hiding
or showing an object in the same script. For example:

==Version 1.2 has four new script shortcuts for objects:

-- bg = background
-~ ed = card

~~ fld = field

-- pict = pleture

oh mouseUp

visual effect iris open

go to card t of bg "Detail”

lock screen

show cd pict

show cd fld "Timer"

unlock screen with barn door open
end mouselUp

Notice that the visual effect for showing the objects comes with the
unlocking of the screen, and is independent of the Go visual effect.

3. Make buttons look like buttons. When trying to attract computer couch
potatoes to information publishing stacks, it is vital that on-screen buttons
look so much like buttons that the user must click on them to satisfy even
a tinge of curiosity. I've seen cases in which extensive artwork was
produced to try to invite people into clicking areas of the screen, but to my
eye the attempt failed. Figure 8-3, for instance, shows a screen from the

Engaging the Couch Potato 151

Megacorp demonstration stack that Apple commissioned for the release of
HyperCard. Thehuge bars may beattractive in their three-dimensionality,
but are they buttons? To some users perhaps, but not to everyone.

That’s not to say every button must look like a round rectangle button
(which only experienced Macintosh users would recognize as a button).
Skillfully crafted icon art attached to buttons invite clicking. So do on-
screen representations of buttons from machines or common electrical and
electronic devices.

On this subject, I'll have to admit that the opening screen of Business Class,
which shows a world map, is not intuitive enough to invite the first-time
user into the system. Is it natural for someone to want to click on a region
of the world? To anyone who has used the system even once, the answer
is “yes.” Butto someone seeing Business Class in a freestanding display, say
at a travel agency, I'm not sure the need to click on a part of the world is
compelling enough. Perhaps a simple message of some kind or even blocks
around the possible regions would be more inviting. These two possibili-
ties are shown in Figures 8-4 and 8-5. Which do you think would be more
inviting to the person walking by the machine? Or is there yet a better way?

M E N U

CALENDAR

TELEPHONE SYSTEM

T

Figure 8-3 Are these buttons? The art overpowers the message that these should be
clicked by the mouse.

152 HYPERCARD DEVELOPER'S GUIDE

4. Usetheappropriate structure. By allmeans don’t be so cleverin yourstack
structure that the uninitiated HyperCard user will get lost within myriad
backgrounds, treebranches, and non-linear extensions. If the stack is being
designed to help a user find a particular piece of information, simplify the
pathway to that information. If thestack s telling a story, don’t let the user
wander far afield from your linear track.

Asnoted earlier, one of the most highly visible stacks yet with one of the
worst examples of appropriate structure was the HyperCard supplement
to Apple’s 1987 Annual Report. I feel as though it leads medown dead end
paths, and I never know when I've seen the whole stack.

5. Transform data entry into mouse clicks. A welcome technique for data
entry kinds of stacks is to find a way to codify the entries that fields require.
The more you can limit the information in very specific fields, the easier it
is to create pull-down lists or selections of buttons that enter data into the
fields with a click of the mouse. Figure 8-6 shows two methods of
simplifying this kind of data entry. In one, a HyperTalk generated list of
options and radio buttons lets a user select one choice for entry into the
field. The list appears whenever the user clicks on the field title. In the

Figure 8-4 Perhaps the opening map-menu of Business Class should have had an instruc-
tion on it about what to do...

Engaging the Couch Potato 153

Figure 8-5 ...or things that looked like buttons to press.

second example, an XCMD (described in Chapter 28) presents a pop-up
menu of items when the user clicks and holds the mouse button on the field
title. Choosing an item for entry into the field is done the same way you
choose an item in a pull-down menu.

No matter how you do it, if you can eliminate typing of data into fields,
then the users of your stack will bemorelikely toadopt theapplication, and
feel like they’re getting more work done with less energy.

CEULGELCE 300

® Buyer
O Seller
O Renter

0K

1800
2400
3600
4800
7200
9600
19200
57600

Figure 8-6 Reducing the fear of typing is possible by making date entry the result of
clicking on buttons (left) or with the help of XCMD-manufactured pop-up menus (right).

154 HYPERCARD DEVELOPER’'S GUIDE

6. Build magic into the application. When I think about the concept of
putting magic in a stack, the first visions to come to mind are the fantastic-
ally elaborate domino toppling exhibitions that appear in the television
news from time to time. That’s where the push of one domino sets in
motion the most amazing display of gravity in action you've ever seen.
These displays can run for 20 minutes or more, involving literally millions
of dominos that form multicolor mosaics, set off toy rockets, “climb” stairs,
and much more. All of that is magic because it starts with the press of a
single domino.

Therefore, a stack that contains magic has lots of activity connected to
some simple operations, whether they be triggered by closing a field or by
clicking a button. Magic, of course, can come in many guises, depending
on the stack application. It could be as simple as triggering a recalculation
of an on-screen spreadsheet replica, with the totals filling in one by one. It
may involve information entered into one field being posted in a related,
linked stack that doesn’t even appear on the screen—all the user knows is
that the information will be in the other stack when it’s needed.

One of the tests I use to determine the amount of magic in a stack is
whether I ask myself, “How did the author do that?” or “How did the
author know I needed that information here?” That Ol’ Stack Magic
requires extra work and planning on the author’s part. Anticipation of the
user’s needs is critical. Thus, it helps that the author be a user of the
application, not just a distant designer of someone else’s basic idea. When
the author designs a stack for his own use, the fine touches, the anticipated
features, the convenience—the magic—usually find their way into the
application.

These are the elements that make stacks inviting and engaging. How
well does your design measure up?

Another part of the magic that becomes more magic for fellow stack
authors than for the user is building customizability into your stacks.
Users will come to expect it, but it’s not always so easy to accommodate,
as we see in the next chapter.

9

ﬁ

Moaking Stacks
Customizable

Someone once asked me whether I'd prefer to have Focal Point pro-
grammed in a traditional programming environmentinstead of Hyper-
Card. Presumably he was concerned by some intensive arithmetic
operations which were relatively slow with HyperCard 1.1 and earlier,
perhaps about the extra second or two that it takes to go from one stack
to another, and perhaps about the limited report printing abilities
inherent in HyperCard. WhileI'd like to see all these improved (as they
will be in future releases of Focal Point and HyperCard), nothing could
sway me from keeping this organizational system riding on top of

HyperCard.

156 HYPERCARD DEVELOPER’S GUIDE

The reason is that such systems must be customizable by the user, and
HyperCard opens the door to the widest possible customizing pathways
anyone can imagine.

When you design a stack for general consumption, a stack that will become
the repository of the user’s information, it would be presumptuous on your
part to impose a card layout that every user must use. This kind of stack has
two potential customers: 1) those who already do what your stack does (either
on paper or in another program); and 2) those who adopt your stack to
organize previously unorganized information.

To appeal to the group that already has a notion of working with the
information in an organized fashion, your stack must first of all offer some
vast improvement over existing systems. From a marketing perspective, your
product must be different enough to draw the interest of those who already
know what the product should bedoing. If the differences and improvements
are compelling enough, you will turn many tire-kickers into buyers.

But new owners already have a way of handling the information that may
be slightly different from the system that works perfectly for you. For
example, if their previous system includes a client database, they may have a
field for a category code. Some client database designers prefer a two-
character code number to distinguish categories, while others prefer fuller
descriptions. If you design the database around a two-character number, then
the user should have the option of lengthening the field to accommodate his
or her longer coding system.

Leaving Clues

While adding or extending the length of a field on a card is not particularly
difficult to do, more detailed modifications may require deep investigations
into the scripts of your stacks. Have a heart, and place comments in critical
areas of your scripts to help modifying users find their way through your
handlers.

Documenting your stack internally is especially important when the han-
dlersthat react to themajor mouseand field messages (mouseUp, mouseDown,
mouseDown, closeField, openField) are in the background. For example, in
the Monthly calendar stack of Focal Point, one background handler responds
to the closeField message, which is initially sent to any of the two-line fields
in a day’s box. The handler copies the short text typed into a day’s box and
transfers it to the Monthly Reminder fields of the corresponding day’s Daily
Appointment and To Do list cards. Rather than have virtually identical
handlers in each of the two-line fields of the card (there are 37 in anticipation

Making Stacks Customizable 157

of all possible combinations of datelocations in a month), the one background
closeField handler figures out which day of the month is connected to the text
entered into a field. The fields have no handlers atall. To help the user figure
out what’s going on, there is a brief comment at the top of the background
closeField handler to identify its purpose within the stack (Figure 9-1). The
same is true for the mouseUp handler, which responds to clicks of the day’s
numbers on the calendar to go to the Daily Appointment or To Do cards for
that date. We’ll have more to say about positioning handlers in backgrounds
and commenting style later in the book.

Customizing Front Ends

In Chapter 1, we looked briefly at the button customization card that lets Focal
Point users define which applications buttons should be on their cards. Even
for HyperLiterate users, certain customizing chores are tedious at best.
Therefore, I strongly favor including friendly front ends to complex custom-
izing tasks.

Building a friendly front end is not always simple, but the long term benefits
far outweigh the work that goes into it. To give you a better idea of what can
be involved in creating a front end to stack customization, we’ll look closely

Script of background id 2293

on clogeField ~-- update note in Baily ond To Do stacks
sat cursor to 4

gat the short name of the targat

put "Doy * & word 2 of it into whichFiald

if fileld whichField is empty then exit closeField
put the value of the target into transferData

click at the loc of bkgnd field whichField
put transferData into field "Reminder”
send mouselUp to bkgnd button "ToToDo”
put transferData into field “Reminder”

pop card into it
pop card
end closefield

[Find) [Print) (ok] (Cancel]

Figure 9-1 Label scripts that are in odd places—like this closeField handler attached to a
background—so that script readers and customizers will understand who does what.

158 HYPERCARD DEVELOPER’S GUIDE

at the two customizing front ends built into Focal Point and one built into
Business Class. The simpler of the two Focal Point front ends lets the user build
or extend stacks that have a card for each day of the year. From Business Class
comes a front end to setting the user’s local time zone so that all time
conversions work correctly. Then we'll take a closer look at the Focal Point
button customization system, since it represents one of the most complex
customizing routines you're likely to encounter.

Building and Extending Dated Stacks

Among the 18 Focal Point stacks are four that have cards for each day of the
year: Daily Appointment, To Do, Expenses, and Time Sheet. Of these four
stacks, three are homogeneous, while the Expenses stack has four back-
grounds. As noted earlier, these stacks come in three different configurations:
empty, filled to 8 months, and filled to 14 months. Intypical use, the Focal Point
user will start putting data into the 8-month stacks, because they’re the ones
that come to the screen without any special manipulation of the stack files.
When the user reaches the end of the 8-month section, he has the option of
archiving the existing files and building new ones, or simply extending the
current files. In either case the process of filling out the dated stacks is best
handled automatically by HyperTalk scripts, which are part of the Focal Point
help system.

The Build or Extend Stacks card (Figure 9-2) lets the user specify a starting
and ending date for the build process, as well as a way to signify which stacks
should be so built. For example, if the user does not use the Time Sheet stack,
then it would be a waste of time and disk space to build that stack. To select
the stacks for building, the user clicks on the name of each desired stack so that
a checkmark appears next to its name. Those that are checked will be built.
Clicking the Build or Extend button starts the procedure.

All stack building is conducted by a long handler, plus some special
handlers that help with the multiple backgrounds of the Expenses system.
Depending on the condition of the checked fields atop the stack names in the
Build/Extend card, the handler carries out commands for only the selected
stacks.

After the stacks are built, the handler adds one more finishing touch to
make the system more friendly for the next time the user needs to build or
extend these stacks. The handler calculates the date one day after the ending
date, and then puts that date into the starting date field. Thus, the next time
stacks need building, the start date is already there, and the user need not look
back on the stacks to see how far the previous build went.

The Expenses stack needs special treatment. While the other stacks have
one day per card, and the long date plugged into a field on each card, the

Making Stacks Customizable 159

[& File Edit Go Tools Objects
| Build or Extend Dated Card Stacks

Several stacks must be built or extended with one dated card for each day or week
in the year. Focal Point will create and date those cards for you. In the blanks
below, enter the starting and ending dates for these stacks. We suggest aspanof 6
months or 8 ysar to start.

Please onter the STARTING date: _11724/89F
Please onter the ERDING date: _12/31/68

|
|

Click to check the steck(s) you wish to build or extend.

J][Daily Appointments [/ [[Expenses

[iTo Do List me Shee

Figure 9-2 Building or extending dated stacks in Focal Point is greatly simplfied with this
front end. Type two dates and click on a couple stack names. The Build or Extend button
(bottom) does the rest.

Expenses stack has a weekly summary card, which must be dated with the
Sunday of each week, and daily cards, which carry their own dates. Moreover,
the stack building handler must establish hard links between each week'’s
summary card and the daily cards for that week (and vice versa). Doing this
kind of stack creation manually would be a nightmare, even for an experi-
enced HyperCard user. The front end to this stack building was essential.

Customizing User Preferences

The first time you start Business Class, you come to the stack system’s
Preferences card (Figure 9-3). In this card, the user must make several settings
that affect other parts of the system. By far the most important is the time zone
in which the user’s Macintosh is operating. Business Class must know this to
accurately display the day/night lines in the main menu card showing the
world map, as well as calculate foreign times in the often-used time conver-
sion cards.

Time zones are mysterious subjects to many people, including frequent
globe-trotters, so it was important to design a front end to setting the time zone

160 HYPERCARD DEVELOPER’'S GUIDE

% BUSINESS CLASS™PREFERENCES

1l

[

|

Welcome!
On this card we ask you to adjust several settings to YOUR local area, These settings
influence time and currency conversions throughout Business Class™,

o Click the arrows to find your local time zone relative to Greenwich Mean Time (GMT).

GO iy
Use these cities 25 a guide to finding your zone:
i Junesu, Vancouver, San Francisco, Los Angeles]

o Enter the name of your city or metropolitan area: { San Francisco }

e Click the arrows to find your Iocal currency, 0‘”-3 Dollar]G
and enter today's conversion factor relative
to the U.S. Dollar (available from most newspaper financial pages):i ! |

o IsSummer(Daylight Savings) Time now in effect in your area?) Yes m
@® No

Figure 9-3 Adjusting user preferences should be made simple, as in the time zone setting

of Business Class. A list of large cities in each time zone helps the user pick the right offset
from GMT.

so that the user didn’t have to know anything more about time zones than the
time zone of the nearest large city, anyplace in the world.

Two fields on the card offer help in setting the local time zone. Both fields
change as you click on the left or right arrow buttons on either side of the top
field. Clicking on the right button summons time zones east of Greenwich
Mean Time (GMT); a click on the left button increments through time zones
west of GMT. The top time field shows the actual number of hours difference
thereisbetween any time zone in the world and the world standard time zone,
Greenwich Mean Time. In other words, the time zone in the United Kingdom
is plus zero hours from GMT. Eastern Standard Time in North and South
America is minus five hours, meaning that it is five hours earlier in, say, New
York City than it is in the United Kingdom (Chapter 19 goes into these
calculations in detail).

All this plus and minus stuff can get confusing, however, especially when
dealing with time in Australasia. To simplify matters for non-time-zone
fanatics, there is a second field in the Preferences card that displays sample
major cities as reference points to help out. Therefore, if you know that the city
you're located is in the same time zone as Denver, then you’ve found the

Making Stacks Customizable 161

correct setting when you see “Denver” in the cities field.

Inside the Preferences Card

For those who want to know how this front end is constructed, all the data that
appears in the two time zone setting fields is contained in a hidden field in the
Preferences card. That field is displayed for you in Figure 9-4. Eachlineof the
field contains many items: the offset from GMT; the sample cities (each of
which is an item because of the commas separating them); and an index
number representing the number of the line on which the first two items are
located. Item 1is displayed in the time zone offset field, while all other items,
including the last item—the index number—are shownin thelong field. Extra
spaces are placed in the names of the cities to make sure that the third item,
the index number, does not appear within the “window” of the long field on
the card.

When a user clicks on the right arrow button next to the time zone offset
field, the handler for that button looks to the index number to see which line

._____ BUSINESS CLASS™PREFERENCES

("l"llllllllli
[t

_London, DubTin, Lisbon, Rabat, Accra 1
On this cal~l-—sfall 10!'.95..!33? VM lzese se"jngs
=2 Mid-Atlantic Ocean
24 3uen°§AirGS. ésn,,evfﬁe?.ﬁxmnwo s,
e S o
L] Click thB an :M"\o[mgrg;&g‘ chigﬁ]jﬁg&g’, §| . 1Time (GMI‘)-
Cg:ﬁ‘ lazru, e .os.n...x.. 1)
£ ;2,\491;3:;",392%@!'4 o, Los Angeles]
=10__ .11 ,Anchorage, H
1T TR 2T —
[Juneau, V[E1ZT 13 Vemnq*om.ﬁy.gkmd %ristehum@va]
B
[+10 51‘;&4«2!.\3,.. or Leu.ummoume“ N]
e Enter the nf¥9 __,16.Tok eou]
+8 17 Beijing, Tainel, l:!onglsqng.$1nmare
708 Novosﬁﬁir i, Chenaty, B: *W]
* Click the a125, itashmtﬁ* ambamsﬂm&usgjymbo {}
and enter 1 «F%'i:é’l ‘G‘y:%xio!_;_g' ;b hi . *""““"MW'..:::]
‘“ 4 ¥ I AL A .-
to the U.S +3 23 M%';qg" " ‘ ad, Walr o
224, Helsinki,. ﬁthens, Dorvrrrserssscmemnssnssmessomon
o IsSummoer{*1 25.5tockholm, Berlin, Paris, Rome, Madrid, L3Go5.]
N

Figure 9-4 A large hidden field contains all the information that drives the time zone
settings. Items 1 and 2 of a line are put into the small field (between the arrows), while the
city names go info the long field. The second item, an index number of the line, heops keep
the arrows working correctly.

162 HYPERCARD DEVELOPER'S GUIDE

item is currently displayed. Then it retrieves the items in the next line and
deposits them in the appropriate fields on the card. The left arrow does the
same, except it looks for the items in the line previous to the one currently
displayed.

Internally, Business Class keeps track of the number of hours difference from
GMT (plus or minus). When needed, the program uses that information and
the current setting of the Macintosh’s internal clock to calculate the location
of the light and dark areas on the world map and to calculate the current time
at GMT and in the capital city of the country you're inspecting. All that goes
on behind the scenes, and once you set the Preferences card, you don’t have
to come back unless you change time zones or when you shift to or from
daylight savings time in your area.

A similar front end is also provided for setting the local currency of the
Macintosh owner. Another hidden field lists 40 different currencies in
alphabetical order. Clicking on thearrowbuttons to eitherside of the currency
name cycles through all available currencies in the list. The currency name
reappears when the user goes to any currency information card.

Button Customization

So far, the two customization front ends we’ve looked at were pretty much
self-contained. All dataand handlers for the customizing process were on the
same card that the user interacts with. Focal Point’s application button
customizing procedure, on the other hand, entails many cards that the user
never sees in the course of customizing the system.

To refresh your recollection of what goes on here, a Focal Point user may
adjust the location of 11 of the 16 applications buttons that line the two sides
of thestack cards (Figure9-5). Thefirstfive on theleftside are hard-wired into
all stacks, so they may not be changed with the automatic customization
procedure supplied with Focal Point (although they may be medified manu-
ally). To change the location of a button, the user clicks and holds on abutton
until the button icon and application name cycle through all possible selec-
tions. Once all button icons are as the user wishes, he clicks on the Install
Buttons button. Focal Point then takes over and installs the buttons in all the
stacks of the system.

There are actually two parts to this customization procedure. The first
involves setting the icons in the desired sequence on the card. The data forthe
icon and stack names is contained in a hidden field, the contents of which are
shown in Figure 9-6. There are also hidden fields connected with each of the
11 customizable buttons on this card. Here’s how it all works.

Making Stacks Customizable 163

52 | Rl | Customizing Focal Point Application Buttons

=I=] IDAILY APPOINTMENTS DEADLINES

To =
F2.2| oAy 10 DO LIST Click on any button... PROJECT RECORDS

FoRTH] (except the top five on the
Teft edge) to cycle through e
l l MONTHLY CALENDAR all available Focal Point PROPOSALS AND BIDS jHliZ =
- applications. Set them up
| in the order that makes the

CLIENT RECORDS

T
Py DIRECTGRY & DIALER most sense to you anrd your
/4

business. You may leave
40U1] | cUTGOING PHONE LOG buttons blank. CLIENT MEETIRBS

When the buttons are .
INCOMING PHONE LOG arranged as you like, click VERDOR RECORDS ;}[IidH

on “Install Buttons” below.
% NOTES The installation takes EXPEHSE SYSTEM

several minutes.
DOCUMENT LAUNCHER AUTOMOBILE MILEAGE

: Hcme c::f?,,il Rcve:(] B!;?tst‘o‘rl;ls , wpﬁ:&rd % Exit ;im

Figure 9-5 Focal Point allows you to adjust the location of all icon buttons except the top

left five. Just click and hold on any button, while the icons and stack names cycle through

Inside the Button Customization

When a user clicks on one of the prototypebuttons, the handler begins tocycle
through the icons and Focal Point applications names as listed in the large
hidden field. The methodology of using an index numberis very similar to the
way the time zone system works in Business Class. In this case, theicon button,
itself, is the trigger button. It works its way down the list when you click on
the button, or works its way up the list when you hold the Shift key and click
on the button.

Each time a new icon and application name appear in one of the button
locations, the index to the line of the large field is inserted into item 1 of the
small hidden field attached to that button. Item 2 of that field contains the
index to the data before you clicked on the button to look for other icons. That
second item, incidentally, is used to recreate your original setup with the
Revert button, in case you change your mind about modifying the buttons.
Clicking on the Install Buttons button really gets things going.

At the heart of the button installation routines is a series of cards in this
setup stack that contain scripts for each of the possible buttons that might go

164 HYPERCARD DEVELOPER'S GUIDE

[& File Edit 6o Tools Objects
TRl Customizing Focal Point Application

§ DALY APPOINT]TRCOHING PIONE LOG.FPe 12505.1 DEADLIRES
' Ei%‘*-’*‘m 7 -
bl {DARLY TODO L E{g'umﬁrﬁmﬁ SYSTEM,FPeExpenses.31445.4 cT RECORDS
& AUTOMOBILE MILEAGE FPeAuto, 261955 [s.5 i
MOKTHLY CALE{TIME SHEET FPeTime Sheot,- 68676
[DEADLINES. FPeDeadlines.= 139817

DIRECTORY & D PROPOSALS AND BIDS FPeProposs
RECORDS FPeClients 405710

'NT" GS, FPeC Meatings 7
I} | GUTGOMG PHONYENDOR RECORDS FPe nam.mo.._zw_,,,m-
'..'.‘J' MEE x.,l“- FPe! Meetings

Figure 9-6 The list is maintained in a hidden field, along with icon numbers, stack names
and index numbers to the lines. Smaller hidden fields next to each icon hold the current
setting of the stacks (item 2) and the proposed setting made by clicking and cycling through
buttons (item 1).

into each of the stacks of the Focal Point system. The cards look like the one in
Figure 9-7, which contains all possible scripts that can go into stack buttons on
the Projects stack. Cards bear the names of the stack (without the “FPe”
prefix), and each scrolling field on the card contains the script that belongs to
buttons linked to the other Focal Point applications. For example, in the field
under “Outgoing” is the script that goes into the Outgoing stack’s button
within the Projects stack.

The massive handler that runs this installation routine first determines
which stack buttons you want installed. Then it goes to each of the hidden
script cards whose stacks you’ve selected, picks up the scripts to only those
stacks you want installed, goes to the first stack of your system, sets the icons
and scripts accordingly, and then repeats the procedure for each of the stacks
in your system. Those Focal Point stacks not installed are ignored. And when
a stack has multiple backgrounds, the installation procedure sets the icons
and scripts for the buttons in all the backgrounds.

Finally, when all the button icons and scripts are set, the handler returns to
the installation card and updates the small hidden fields attached to each

Making Stacks Customizable 165

€ File Edit Go Tools Objects
Projects Scrints
Deadlines Client Meet
on mouseUp {}] on mouselp > on mouselp N
: hide msg hide msg hide msg
tnooming get the selection D get the selection . get the selection .
push card L¥| push oard ﬁ push card . %
on mouseUp (3] 90 to stack "FPeDeadlines”|(}] g0 10 last card of stack * |3
hide msg Projects Yendors
Notes get the selection on mouseUp &
push card {y| if the name of this bkgnd msg]
on mouseUp > contains “Summary” then get the selection
hide msg go to last card of this push card L
{Documents q,:h the s:leotion g bkgnd o set lookSer to true
it Proposals Vendor Meet
on mouseUp {>[on mouseUp {3lon
hidemsg D hide msg hide msg
Expenses | 9ot l:he s:leotwn S get the selection get the selection
push car push card push card
on mouse go to stack "FPeProposals go to last card of stack “FP&:
hide m,;” <O if it is not empty then find [T Vendor Meetings”
Auto get the selection Clients Blank)
push card Y| on mouseUp {}| on mousellp O
on mouseUp if the optionKey is down . end mouseUp i‘
hide msg then put true into special
Time Sheet| get the selection E else put false into special i
push card < ... O 0

Figure 9-7 The button customization script looks up a card like this for precise scripts to
assign to installed buttons on each stack. Each field contains the script to a particular stack
from the stack whose name is listed in the large field at the top.

button. The index number (item 2 of each field) is set to the same as item 1.

While it may take a bit longer to show all the cards as the installation
procedure progresses (i.e., notlocking the screen), it is fun to watchand shows
the user that something is really happening. If it appears that nothing is
happening all this time, the user may believe the computer is frozen and will
turn off the machine. Doing that may permanently damage the current stack
the routine was in.

This button installation facility is without question the most complex part
of Focal Point. Yet it has nothing to do with the day-to-day operation of the
program. Without it, however, the fanfare of customization would have been
subject to criticism, because one of the most difficult personalization aspects
of the product would have been almost impossible for the non-HyperLiterate
user. The relative complexity of this front end does not surprise me. In fact
it reminds me of the difficulty that Macintosh software, in general, presents
itsauthors. For a program to honestly claim ease of use, user friendliness, and
all the other advertising catch phrases, much more work must go into the
program—work that doesn’t necessarily touch on the basic functionality of
the program. It’s the fine touches of user interface and front ends to typically

166 HYPERCARD DEVELOPER’S GUIDE

complex tasks that take time, thought, and energy to produce.
It should be no different in a quality HyperCard stack.

10

Stackware is Software

From the first day of HyperCard’s release to the world, the marching
cry of the HyperCard community was its ease of programming. There
were even fully functional prototypes of applications running at the
Boston Macworld Expo where HyperCard greeted the publicin August
of 1987. Still, it took another three months for the first commercial
programs in retail distribution (Business Class and Focal Point) to ship.
Other commercial packages written in and around HyperCard took
another several months to ship. In critics’ minds, there was alegitimate
question about how easy HyperCard was to program. Having been on
the inside of the stack development process, I learned an important
lesson about creating stack products good enough to release to the

general public. While HyperTalk coding and debugging is simpler than

168 HYPERCARD DEVELOPER’S GUIDE

in other programming environments, all other facets of producing software
apply equally to a stack product. In this chapter, we'll look at the non-
HyperCard issues that affect your stack production.

Software Design

Just because a HyperCard stack can be whipped into a functional prototype
in as little as a few hours (for a simple application), that doesn’t mean that a
HyperCard stack can be slapped together one day, packaged the next, and
shipped the third. Before that first prototype, a lot of planning and thought
should go into the design of the product.

One disadvantage that the legions of new HyperCard developers have is
that they have not gone through the process of planning a software product
in the same manner as the “big boys” have with mainstream commercial
products. The first real life example I ever saw of what a major software
company does to plan a product was watching Aldus develop PageMaker. As
a contributing editor to Macworld, 1 was able to see an early prototype of
PageMaker before its name had even been determined. After the private
demonstration, the Aldus president, Paul Brainerd, supplied me with a hefty
document that was labeled a “functional specification” for the product.

A Functional Specification

As its name implies, the functional specification described how the program
worked, what the screens looked like, how the user interacted with the
various parts of the program and tools, and other factors. This document
evolved over several months, getting bigger and more specific with each
revision, It served as an example to follow when I started specifying a
standalone software product for myself in 1985—a product that ultimately
became Focal Point.

The product specification I developed for the product gave an overview of
theentire system—like Focal Point, it was many applications linked together—
plus sample screens showing what information went into the system and
descriptions of the actions taken by menu items. An important lesson I
learned was that writing a specification for a product forces you to think
through how the program is to work. It forces you to account for every piece
of information, each menu item, each button on the screen.

When you start thinking about a stack application, often several ideas float
around in your head, and you may have an intuitive hunch that things are

Stackware is Software 169

going to work out the way you hope. But until you can set down on paper
exactly how that program is going to work, the ideas tend to be ephemeral.
They’re sort of there, but not really.

Because HyperTalk coding of most applications is relatively simple, more
time and effort should probably go into planning and design than into the
coding. Asyou start programming, of course, you may run into snags or come
upon other ideas that change the original specification. There’s nothing
wrong with that atall. In factit’s rare that the final product will look identical
to the very first functional specification you draw up. Your ideas for the
product must evolve with it.

Prototypical Focal Point

As mentioned earlier, originality is an important element in a stack’s design.
You can produce a specification for a program long before you bring in an
artist to make the product pretty. For example, in writing the design
specification for Focal Point I modified one of the stack backgrounds that were
a part of prototypical HyperCard, as shown in Figure 10-1 (you may laugh at
any time). While the overall design is not very exciting, it was enough to give
all people involved with the project (the publisher, the artist, and myself) a
sufficient idea of the product’s functionality. Even at that early stage, the

(m January 1987 o ; Thu
P January 8, 1987

"TeBo Today

Call Dick
Change Macwopld address and
phone in rolo.

4 5| 6 8] 9
11]12{13]14{15|16
18]19|20(21{22|23

Figure 10-1 A prototype screen of Focal Point served as a tool to flesh out the idea and
explain it to publishers and artists.

170 HYPERCARD DEVELOPER'S GUIDE

direction toward one stack per application was well entrenched. For the sake
of the product specification document, designs for cards were temporarily
lifted from the card designs that Kristee Kreitman had worked up as examples
of HyperCard's possibilities.

With the functional specification well in hand, it was then easier for
everyone to do his part in developing Focal Point further. The publisher was
able to develop marketing ideas; David Smith, the artist, was able to get an
overall picture of the entire product while working on individual pieces, and
Iwasableto identify spots where better linking and front ends could beadded
to improve the product.

Writing a functional specification for a proposed stack product—even if it
is one that is to be used in an in-house corporate environment—should be the
first formal stage of designing a stack. And it takes just as long to specify a
quality stack as it does quality software, because stackware is software.

Provide On-Line Help

Every self-respecting software publisher these days includes some form of
instructions or other help that the user can access while in the program. Since
HyperCard, itself, will probably be used quite often in the future for on-line
help systems in standalone commercial products, there is no excuse for
omitting an on-line help facility for a HyperCard stack product.

The help system should be tailored to the complexity of the stack. In other
words, if the stack is a simple one, then the help might be no more than a single
card that highlights the basic operation of the stack. More complex stacks, of
course, may require several cards or, perhaps, a separate stack that is practi-
cally an application in itself. Remember that users are more likely to start
using your product immediately, without reading any manual that comes
with the product. In fact, there is even the good chance that the user won't
reach for your on-line help if the product is exceptionally intuitive. Butnotall
users are up to the same level of intuition, so if there is a chance that the user
can get confused, there must be help available. If it’s only one click or menu
selection away, there’s a good chance the personin search of “what to do next”
will find your help system long before he reaches for the manual.

Help In Context

This idea of “what to do next” brings up a point about on-line help that not
many stack developers have paid attention to so far. In any stack that has
multiple backgrounds or multiple stacks, the user is probably faced with
different tasks “to do next” based on the background of the card currently on

Stackware is Software 171

thescreen. It is very disruptive to the user to ask for help about a certain kind
of card only to discover that he must now search the help cards or stack for
clues about “what to do next.”

The correct way to handle help in a multibackground or multistack envi-
ronment is to design the help system so it is “context sensitive.” This means
that when the user asks for help, the assistance is directly relevant to the
background card style currently on the screen. Let’s look at Focal Point’s help
system to see one way to handle context sensitivity.

From any stack within Focal Point, you summon help by choosing Help in
the Go menu. Normally, this menu command brings you to HyperCard Help,
but all the Focal Point stacks intercept the Help message before it reaches
HyperCard.

Focal Point maintains the bulk of its on-line help in a separate stack. Some
setup functions, namely the button customization and dated stack building or
extending, are in yet a different stack file. The Help stack has a title card, a
four-card table of contents, and 97 cards of help, divided into groups accord-
ing to each Focal Point application.

. Interestingly, the only time you see the title card is when you open the stack
via the Open Stack choice of the File menu or when casually browsing through
the stack and you happen upon the first card of the stack (Figure 10-2). While
it's an attractive card—note that the art is a subtle replica of the typical Focal
Point card, but with the feeling you're diving underneath the facade—it’s not
terribly important that the user sees it, because it takes a deliberate call for help
to reach this stack in the first place. Yet if someone opens the stack with the
Open Stack menu item, the title card plainly describes what the stack is all
about.

The Table of Contents (Figure 10-3) lists the Focal Point applications in bold
faceand the names of the cards (and the names of the help on the cards) in each
section. These table of content cards are covered with transparent buttons that
contain hard links directly to the help cards bearing the names. Therefore,
when you click on the “Menus” selection under the Navigating Focal Point
heading, you go directly to the “Menus” card (Figure 10-4).

Introduction and Stack Overview

Note that the first section of this stack is an introduction to Focal Point. This
section is written as a short tutorial. It presents an overview of the entire
system and then describes in detail the user interface points that all stacks
share, particularly navigation and information entry. This introduction
provides yet a different “entry point” for the user to the set of printed and on-
line help supplied with the product.

In the event that a user wishes to print out the help stack, I had to make sure

172 HYPERCARD DEVELOPER'S GUIDE

([& File Edit Go Tools Objects

Figure 10-2 The lead card of the Focal Point Help System.
€ File Edit Go Tools Objects

- - Table of Contents

INTRODUCTION UPDATING RECALCULATIONS

Yhat is Focal Point?

How Focal Point is Organized PLUS BUTTONS
NAYIGATING FOCAL POINT POP-UP LISTS

The Return Button

Left and Right Arrow Buttons ZOOM BUTTONS

nus
e ﬁ TELEPHONE DIALING o
CREATING NEW CARDS
PRINTING

FINDING INFORMATION

In the Same Stack

In Other Focal Point Stacks BUILDING/EXTENDING STACKS
ENTERING INFORMATION CUSTOMIZING INSTRUCTIONS

CHECKING OFF COMPLETED ITEMS

Help Olstnme
Cortents I Buttons II'*"‘"""""

Figure 10-3 One of four Table of Contents pages from the Focal Point help system. The
user clicks on any title or subject to go directly to that card.

Stackware is Software 173

€ File Edit Go Tools Objects
| == Navigating through Applications

MENUS

Two HyperCard monu itsms will help you navigate. If you ever get completely lost
within Focal Point or wish to end your Focal Point session, choose Home from the
Go menu. This, or its Command-H keyboard eguivalent, takes you to the Home Card.

& File Edit J{{iQ Tools
Back

|
%

You may resch Help for any stack by choosing Help from the Go menu. You may
also type Command- ? to reach the Focal Point Help system. f you need HyperCard
Help, you may resch it via the Focal Point Help system.

Figure 10-4 A subject card in the Focal Point help system.

that all text was in fields, rather than bit-mapped text. Thus, when printing
on a LaserWriter, the fonts would print as high quality laser fonts. Since the
version of HyperCard used to design Focal Point did not allow mixed text
styles in a field, the effect of bold faced headlines and plain text subheads
(indented) had to be done with two transparent fields for each column (Figure
10-5). Keeping the text in fields also makes maintenance and modification of
the table of contents cards much simpler.

Intercepting Help

Whenever you are in a stack and choose Help from the Go menu, a stack or
background script intercepts the Help message (which HyperCard sends
when this menu item is chosen) and directs you to the first card of the help
stack section for that Focal Point application. Where appropriate, the Help
menu item brings you even more closely to the desired information. For
example, the Expense stack is linked to three different cards in the Help stack.
If you are viewing the Weekly Summary card of the Expense stack, the Weekly
Summary help card is what you see after choosing Help; the Daily Expense
cardsare linked to the corresponding help card; and so on. Wherever possible,
the stack anticipates where the user will need help, and directs the link

174 HYPERCARD DEVELOPER’S GUIDE

& File Edit 6o Tools Objects

Figure 10-5 To effect mixed plain and bold text in the Table of Contents (and elsewhere),
there are two fields per column: one for boldface text, one for plain text.

accordingly.

Onceat any help stack card, the user may return directly to the card in Focal
Point from which help was sought (by clicking on the Exit button or the Return
button at the top left corner). Other options include going to the table of
contents to search further for help; an introduction to Focal Point; either of the
two sections of the setup stack (button customization or dated stack building/
extending); or HyperCard Help (provided it’s on the user’s disk).

At 180K, the Focal Point Help stack is not particularly small in disk space.
While there is a lot of text, the bulk of the space is taken up by artwork that is
interspersed throughout the stack. By illustrating the help cards, the user can
usually bypass the printed manual for quick help. Ilustrations also make the
Help stack inviting enough to encourage the user to browse through (Figure
10-6). Anytime you can get the user toread any part of your documentation—
printed or on-line—you help reduce the need for product support of simple
problems that are already well covered. That’s a goal you should reach for
because stackware is software.

Stackware is Software 175

[& Flle Edit Go Tools Objects
* OUTGOING & INCOMING TELEPHONE LOGS

The Call Timer

Whenever you or Focal Point cresate a new Telephone Log card, the Call Timer
starts ticking sway, slthough the time does not appear on the screen.

Call Timer
00:05:46

To see the elapsed time of a call Call Timer |
anytime during the call, click on ~05- 1
the Elapsed button. 90:05:46

If you need to restart the timer for
billing purposes, click the Restart Call Timer sed

button. This sets the timer back to -
00:00:00 snd starts counting again. 00:00:00

Home co'k:’mg Set u,% mmi% HyperCard %m
Figure 10-6 A help system is more enjoyable when the text is punctuated with graphics
from the stack.

Include a Good Manual

Because so much of the early stack products to appear in the universe were
distributed via shareware and the public domain, there may be the erroneous
perception that stacks don’t need manuals. Wrong! If you rate your stack
product on the same level as software, then the user will insist on a good
manual.

Who Reads It?

Computer hardware and software documentation is a study unto itself. Many
people earn their livelihoods writing documentation and nothing else. De-
spite the personal reward of feeling you’ve written a good manual, documen-
_ tation writing is most often a thankless task. I think that’s because good
documentation is virtually invisible to the user, while bad documentation
shows up like an ugly weed on a golf course’s 18th-hole green. In a product
review by a magazine, a good manual will pass by barely noticed; a bad
manual will be ripped to shreds in severe detail. Add to this the fact that
users—especially Macintosh users—report that they seldom read manuals.

176 HYPERCARD DEVELOPER'S GUIDE

So if the user doesn’t read manuals, why does the user insist on a good
manual?

I'believe that while the user community generally doesn’t read manuals, I
take that to mean they don’t read manuals like you read a novel—from cover
to cover. Instead, they insert the diskand fire up the program beforeremoving
the shrink wrap from the manual. But very few programs are so intuitive that
every nuance of the program is self-evident or even described in sufficient
detail within the on-line help. When questions arise or when the user is ina
jam, the first thing to reach for is the manual.

A good manual will have an excellent table of contents and index so that the
user can focus on finding an answer to the problem at hand. If the desired
information is not in the manual, impossible to find, or explained in any
language other than the user’s native tongue, then the manual will be tossed
across the room to the verbal abuse of its owner. A bad manual is clearly
visible. It reminds me of the electrical utility. We think nothing of it during
the day for months on end. But when the power flickers for a second, and it
costs us a half-hour’s computer work not yet saved to disk, then we hurl
invectives about the reliability of a so-called utility.

Who Should Write It?

The greatest temptation for a stack developer—especially one who comes
from outside the programming priesthood—is to write the manual after
finishing the product. I believe that is bad methodology on several counts.

First, it is not good policy for the same person to develop a product and
write the manual for it. A program creator develops an attachment to the
product just as any creative person does: a sculptor for his sculpture; a writer
for his writing; a musician for his music. The creator approaches the work
from an angle that has been molded and defired over a long period of time.
What the creator deems “simple” and “intuitive” may be something quite
different to a new user trying to learn the program. A manual needs the
perspective of a third party—a qualified documentation writer—to present
the work to the user audience.

That’s not to say that the creator should have no input on the content of the
manual. Hardly. The documentation writer will likely prefer to seean outline
for the manual from the creator, whether the outline be the formal product
specification or a separate document. The developer must teach the writer
everything he knows about the product. But then he must let the writer
develop a formal method for teaching the user about the product and
providing appropriate reference material.

Stackware is Software 177

When to Write It

Manual writing should begin before the product is finished. Too often—this
has happened so many times in the industry, the world has lost count—the
manual is begun only after the product is nearly finished. Disks are ready to
ship, but manual production is holding up delivery. To get product out the
door, the manual is rushed through with errors or sloppy design. Inshort, the
manual looks cheap and thus cheapens the product.

By starting the manual process earlier, the documentation writer and
program creator can work more closely together in producing a complete
package. The documentation writer must work through every feature of the
product and will often uncover bugs in the program that regular testing does
not find. Moreover, if the writer gets in the project early enough, he or she may
uncover inconsistencies in the way things work, based on the inconsistent
ways procedures have to be explained in writing (I've seen this happen in the
development of major Macintosh applications programs currently on the
market). The documentation writer, therefore, can be an important member
of the development team. The earlier on board, the better.

It is the obligation of the documentation writer, of course, to submit drafts
of themanual to the creator and others on the team. The program creator must
recognize the importance of the manual and should therefore take the time to
review drafts as they come in, and recommend corrections as needed. An
open line of communication between manual writer and creator is essential.

How Should It Look?

Documentation production varies with the channels of stack product distri-
bution. For publicdomain and shareware products, which typically find their
ways onto the disks of users via electronic bulletin boards, manuals may be
text of MacWrite documents included with the stack product. To reduce
downloading time via telecommunications services such as CompuServe,
Delphi, GEnie, MacNet and others, multiple files may be packed togetherinto
one compressed file using one of two popular packing utility programs, called
Pack-It and Stuff-It. These products, themselves, are available as shareware
programs on the bulletin boards.

When you receive a packed file, either via a bulletin board, on a user group
disk, or directly from a shareware publisher, theicon of the fileis a descendant
of the packing program used to pack the files together in the first place. The
icons for Pack-It, Stuff-It, and the packed files they create are shown in Figure
10-7.

To show you what it’s like to pack files with Stuff-It, Figure 10-8 shows a
typical grouping of files into one Stuff-It Archive file, as it’s called. You first

178 HYPERCARD DEVELOPER'S GUIDE

Stuff-It Pack-It

S
Application Icon %

Stuffit 1.20 Packlt 1l

[

1

===

Packed File Icon

Great Stack sit Great Stack.pit

Figure 10-7 If you download a stack from a bulletin board, it may be “stuffed” or
“packed.” These files need to be unstuffed or unpacked with the corresponding compression

program, Stuff-It or Pack-It.
[EO==—=== oreat Stack.sit ==
Great Sto : 5
Great Stackl STAK WILD 201421 268
Great Stack Manual HORD MACA 9318 208

O

2 files, 154K compressed, 206K decompressed.

(Add...) (Exfract...) @elete..) (infa) Bename)

(Multiple Add...) Hord Disk:881k free.

Figure 10-8 Stuff-It compresses files so that they may be transmitted over telephone lines
more quickly. Here, a stack and MacWrite documentation files are combined into one

Stuff-It archive, called Great Stack. sit.

provide a name for the Archive file, and then select the files from your disk
that you wish packed into thearchive. The original files are left intact. Packing
typically reduces the size of files by a third or more. Thus, you can cram more

than a megabyte of standard files on one 800K diskette.

Stackware is Software 179

MacWrrite files are more desirable than standard text files, because the
MacWrite format lets you be more creative with the layout of the pages and
include graphics pasted from the clipboard. Text files are bland, single-font
files that are pretty dull to read when displayed on the screen or printed out.
Moreover, just about every Macintosh word processor can accept and convert
MacWrrite files. Therefore, aslong as the user has a word processing program,
the manual can be printed out with the same formatting and graphics you
designed in originally.

In-house stack manuals needn’t be as finished as a commercial product’s
manual. Some care should go into the formatting of pages to make the
information pleasing to read. Distribution asa bound booklet orin aloose-leaf
binder is essential. The more durable the packaging, the less you'll have to
worry about replacing or repairing manuals damaged by excessive use or, at
the other end of the spectrum, by neglect.

Finally, commercial programs need commercial-quality documentation.
Text should be of typeset quality. That means that unless you or your printer
has mastered the photo reduction of LaserWriter printed output for increased
resolution, you should produce the master pages with traditional typesetting
or output from a high-resolution PostScript-compatible phototypsetting
machine (such as the Linotronic 100). Imagewriter output is a sign of a quick
job, without much attendant care to the manual.

In a commercial product especially, the quality of the product on the disk
is often linked to the quality of the manual in the box. It's no coincidence that
expensive software programs have expensive-looking documentation. The
design and layout of the manual carries a lot of weight in the user’s sense of
value and in validating the purchase. All this holds very true for stack
products, because stackware is software.

Provide Data Importing

Genuine Macintosh programs that rely on textual information almost always
allow for the importation of existing text data. A text-intensive stack product
should be no exception. And, although HyperTalk gives ample flexibility in
adjusting the data in a text-only file before planting it in various fields on a
card, the possibilities make for potentially difficult times.

If there is a strong likelihood that the user of your stack has been accumu-
lating in his own stack the same kind of data your stack uses, then it’s up to
you, the developer, to smooth the way for your customers into your stack.
Recall that it’s unfair to assume your users will know how to whip up an
importing script on their own.

180 HYPERCARD DEVELOPER’S GUIDE

In chapter 6 we’ve already covered the difficulties in trying to design a
universal importing script that will work for all comers. Because you don’t
know the field makeup of the original stack, and because your stack may
combine previously distinct fields into one large field, it’s rare that you can
include a universal script, short of something like Steve Michel’s Port Author-
ity (Heizer Software).

Onekind of help you can provide is a well-documented script that the user
can use as a model for a script of his own. In Focal Point, for instance, I was
faced with the possibility of users wishing to import their rolodex data from
one of three sources: 1) the Address stack that comes with HyperCard; 2)
Borland’s SideKick address book application; and 3) any Macintosh database
program, like FileMaker, Microsoft File, or one of the high-end relational
databases.

To meet these three requirements, Focal Point provides three import scripts.
The first one is a double-duty script, exporting data from the HyperCard
Address stack to a text file and then importing that text file into the Focal Point
Directory stack (Figure 10-9). The second one is specially tailored for SideKick
files. Because SideKick exports its data in a pre-ordained format, it was easy
for me to design a script that massages the fields just the way the Focal Point

)

[& File Edit Go Tools Objects
- DIRECTORY AND DIALER

Importing and Exporting Information

L

If you started collecting names, addresses, and phone numbers on the Address stack
that comes with HyperCard, you may use the button below to EXPORT data from the
old stack and IMPORT that data into Focal Point.

There's no need to copy and paste the butten anywhere. Simply click on it right
here. f—

EXPORT/IMPORT

|

To import names and phone numbers from exter nal database programs, consult
Chapter 00 of the Focal Point User's Guide for some suggestions.

Introduction

Hel
Comgﬂs SetUp

Figure 10-9 Focal Point offers three ways to import data into the Directory stack. Here,a
click of one button copies all data from the HyperCard Address stack into the Focal Point.

Stackware is Software 181

Directory stack likes them.

The third script was a model script for those who have to import from their
own databases. In addition to comments within the script, there are explana-
tions about the way databases need to be exported and how the script needs
to be modified based on the set up of the fields in the original database. This
information is located both in the Import stack and in the manual.

Justas all Macintosh word processing programs let you read MacWrite files
and all databases let you import and export field data, stacks that rely on text
data should provide for text importing because stackware is software.

Test, Test, and Test

HyperTalk is a simple language compared to most, but it is often deceptively
simple. The more complex the stack, especially with multiple backgrounds or
multiple stacks in a stack system, the more chance there is for certain scripts
to collide with each other as you begin building the script. That’s why stack
products need just as much testing as any software product. Nearly everyone
in the personal computer user community has witnessed standalone software
products that are announced by their publishers, only to be delayed many
months due to bugs found during testing. It's hazardous to release a product
without sufficient testing, only to let customers uncover all kinds of bugs.
Computer magazines and newspapers arerife with these kinds of stories from
time to time.

Start Testing Early

Software testing should begin the minute you have a working prototype, or
even one section of the program. Early testing like this is not the same as
formalized testing later in development. Rather, early testing should be
conducted to discover if there are major conceptual difficulties or flaws in
your basic design. Show your design to people who would understand the
subject area of the stack (under a written non-disclosure agreement, if you
deem it necessary), and watch very carefully how they interact with the
product. Listen closely to their questions about what something on the screen
means or where they feel they’re getting lost. These are important clues for
you. If enough comments come through along the same design elements, then
you probably have a design problem, and should devote energy to improve
it. It's easy to let your creative ego dismiss negative comments with sayings
like, “you don’t understand the application.” If enough people don’t under-
stand the application, then your potential users or customers won’t get it
either.

182 HYPERCARD DEVELOPER’S GUIDE

Once the product is functionally complete—there are no new features you
intend to add—it’s time to begin formal testing for bugs. Hopefully, youand
others have been using the program while still in development to uncover the
more serious bugs, but formal testing will help find even more. “
|
Testing Procedures

Formal testing procedures vary from developer to developer. Some delmeate
two major stages of the testing procedure with the names “alpha” and “bets
These terms, and the version numbers often associated with them (e.g., release
Beta 7) are very imprecise, usually reflecting more the wishes of thedeveloper
to be done with the project than the solidity of the code. Other program
developers avoid the alpha and beta notation entirely by releasing new
versions bearing dates of their release. |

Ideal testers are those who would normally use the product on a day-to-day
basis. They’re the ones who will start applying real data in real quantities to
the stack or who will be browsing through the stack in ways you may havenot
anticipated. All of that kind of testing is important. It’s also a good idea to get
the product into the hands of a HyperCard fanatic, who will try to trip up your
scripts by testing all kinds of key and mouse operations you know to avoid
when you use it—but operations that untrained users are likely to do.

Gather written reports from testers on a regular basis (at least weekly)
Then work to fix the bugs. When you feel you've made substantial progress
in treating bugs (or even tweaking features that testers indicate they’d like),
provideall testers with anew release. Accompany each release with a written
set of release notes. These notes should itemize the bugs you have repaire
s0 testers can return to their previous test reports and double-check yoﬁlr
repairs.

Eventually, youshould reacha pointat which the testers nolonger find new
bugs. Unfortunately, by this time the testers usually have a methodology to
testing the product, and are not likely to try new torture tests for it. That mea
that there may still be bugs in the program, but the most likely and potentially
most damaging ones have probably been caught. In traditional software
publishing houses, the in-house testers are the last ones to sign off on a
product before releasing it for disk duplication. If you are producing a
product in that environment, the program will not be truly complete until the
testers find no more bugs.

The model of the traditional software houses is a good one to follow for

testing, because stackware is software. |
|

Stackware is Software 183

Be Smart About Marketing

HyperCard and the HyperTalk language dramatically lower the barrier
between a person’s dreams for a Macintosh application and the implementa-
tion of the dream. But as we've seen in this chapter, the other parts of
developing software are no different. That includes the marketing end of
developing a software product.

Determining the distribution channel is one of the most important deci-
sions you can make as your stack idea comes into focus. The market for stack
products is still very new, and there are few rules set in stone. But a little
common sense is also in order.

The Retail Channel

The most romantic of the marketing channels for stack products is in retail
stores and mail order channels. Let’s face it, it's exciting to see a product of
yours on the shelf at the corner software shop. Gaining a foothold in the retail
channel without the help of an established publisher is very difficult and
costly. It requires in-depth knowledge by someone on your staff of the pricing
strategies, promotion requirements and distributor relationships that exist in
the retail channel. It's not impossible to achieve, but it takes a sincere
commitment and healthy financial backing to break into that channel on your
own. The financial rewards are substantially higher if you become the
publisher and achieve widespread distribution, but so are the risks and initial
investment.

Getting help into the retail and mail order channel by way of mainstream
publishers is another opportunity. Be aware, however, that such publishers
arelooking for high-volume products that appeal to a wide audience. Vertical
market applications are not likely prospects for the likes of Activision,
Electronic Arts, and others. Their dealers need to know that the products will
attracta vast crowd and appeal to a wide audience. Of course, that means that
if you can produce a broad-based tool that may be customized for individual
needs, then that would be a likely candidate for submitting to a mainstream
publisher for consideration.

In the meantime, I believe the trend for the bulk of HyperCard based
products will, indeed, be directed more toward vertical market applications.
That’s where HyperCard's strengths lie, in my estimation. That leaves a
number of other distribution strategies open to you.

Low Cost Publishing
One of the best opportunities would be to offer the stack product through a

184 HYPERCARD DEVELOPER'S GUIDE

publisher like Heizer Software. Heizer offers its products (HyperCard stacks,
Microsoft Works and Excel templates) through a direct mail catalog targeted
at Macintosh owners. The catalog, called the Stack Exchange, currently boasts
many vertical market applications for dozens of industries. As customers
place orders for various products, Heizer copies the files to as many disks élre
needed to fill the order. In other words, your product does not have its own
diskette and label, nor does it havea printed manual. You supply the manual
in the form of a HyperCard stack or word processing file.

Heizer software generally sells at a lower price than retail packages—a $25
vertical market package is typical—but the author generally receives a much
higher royalty percentage of the selling price than a product sold through a
mainstream publisher. A supreme advantage to the Heizer approach is that
other than your development costs, there are no further costs to get your
product to market. Heizer does its own promotion and catalogs based on t
cut from the sale of products.

Self-Publishing

Another option for a vertical market stack application is to market
program yourself via mail order or one-on-one selling, setting yourself up

a software publisher. One benefit of selling to a vertical market is that it is
comparatively easy to find mailing lists and other advertising vehicles that
target the market. You should get more mﬂeage for your promotional dollars
because the vast majority of the people receiving your message will have an
interest in what you offer.

Selling software directly to the end user offers the most potential for profit
per unit sold. Since you sell the product at a price that is representative of its
value, youdon’t have to worry aboutdiscounts to distributors or retailers.
the other hand, you are your own sales force, and you must keep promoting
the product to find new customers. Promotion takes capital. Many a new
business has failed by expecting early sales to finance operations. Becoming
a software publisher means creating a business plan, seeking relatlonshlps
with bankers, and perhaps seeking venture capital to get started. It's'a
commitment, to be sure, but perhaps one worth making if you believe in your
product and have other ideas just waiting to turn into stack products.

Open Channels

Thelast two channels are often spoken of together, but they are really two very
different channels: shareware and public domain.

Shareware is a concept made popular by the late Andrew Fluegelman, who
wrote PC-Talk III, an early telecommunications program for the ﬂedglmg

Stackware is Software 185

IBM PC. The concept is simple: Try the software forawhileand pay theauthor
if you decide to use it. The amount you pay is comparatively small for
software, ranging from $5 to perhaps $35. It obviously depends on the honor
system, but for Andrew and several others since then, it has worked.

It doesn’t always work, however. For every successful shareware author—
success being measured by turning a pastime into a software business—there
are hundreds of unsuccessful ones. There is no magic formula that can make
a successful program, but the ones that have succeeded have been just plain
great programs that filled a need when nothing else was out there. The
authors also made the commitment to support those folks who sent in their
shareware fees by providing a printed manual, periodic free updates of the
program, and telephone support. If shareware sounds a lot like the real
software business, well, it is if you plan to make a go of it.

For a shareware program to have a real chance at making money, it must
notonly bea great program, but it must beone that people use very frequently.
It must be one of those programs that the user can’t be without. This is partly
due to the fact that guilt often enters into the shareware formula. When users
feel that a program is very useful to them, they just might feel guilty enough
tosend in the shareware fee. Some have even dubbed shareware “guiltware.”

There are also examples of good shareware stacks that didn’t bring in the
bucks for the author, even though the user community adopted it almost as
a standard. Eric Alderman’s Script Report utility (described in chapter 2)
started out as a shareware product with a $15 fee. Despite the stack’s ready
acceptance and consummate practicality, only a handful of users sent in their
checks. While that experience may have completely soured some authors,
Eric now distributes the product via the Heizer Software catalog.

There is another shareware story you must hear about—a HyperCard
shareware strategy that was doomed from the outset. Someone had created
a utility stack that imported SideKick address data into the HyperCard
Address stack. Distributing it on a major bulletin board, he requested a $5
shareware fee if the user liked the program. Now, five bucks is not a lot of
money, to be sure, but a person is probably going to use this stack only once,
just enough to transfer data from SideKick into HyperCard. By trying the
program out (which shareware encourages), you're already done with it. You
have no further use for the program. How guilty will you be about having
used a program once? Probably not at all. I don’t decry the author trying to
recoup the time he spent on the stack, but I think it was unrealistic of him to
expect anyone to submit a fee for a one-time use shareware product. The
concept violates the “repeated functionality” rule of shareware. That stack
should have been distributed strictly as public domain software.

New stack authors may have suspicions about the public domain method

186 HYPERCARD DEVELOPER'S GUIDE

of distribution due to concerns about copyright. The impression one gets from
the term “public domain” is that there is no copyright protection for the
author. That's not true. Provided the author clearly states copyright owner-
ship in the product, an author maintains copyright on the product. As such,
no one may resell or redistribute that product or parts of the product (like
scripts, icons, background art, or XCMD resources) without the author’s
permission. Technically, a public domain stack uploaded to an electronic
bulletin board may not be carried to another board or distributed on disk by
user groups unless the author says it’s okay on the stack. Buta good stack will
make its way around the boards and user groups on its own in short order.

Choosing the Channel (

Determining which method of distribution applies best to your program. is
something you should do early in the stack development process. When the
decision is to pursue distribution through a mainstream publisher or set
yourself up as a publisher, the marketing planning then becomes as important
as product planning. It can take many months to put all the marketing pieces
in order. Don’t forget, too, that if you plan to run ads in any of the monthly
Macintosh magazines that their deadlines can run two and three months
ahead of publication date. You may not be able to afford that lag time after the
product is finished. Somehow, you have to bring the product and marketing
together so every element of the package is on the same timetable.

Making these important marketing decisions may be new to you, but
they’re no different than what traditional software developers go through.
Don’t get caught in a trap by thinking that you can be more casual because
you're dealing with a HyperCard stack, because stackware is software. |

11

—

How to Build a Stack

Deep within the preceding 10 chapters are many techniques about the
process of designing and building a HyperCard stack. In this chapter,
we'll bring those elements together and present some new ideas while
offering suggestions about how stacks come into being. Much of what
is described in this chapter is the result of building two commercial
stacks, many personal stacks, and helping others build their stacks. The
procedures detailed here applied to the projects I was working on, but
they probably don’t apply to everyone’s modus operandi. But if you fret
over where to begin and how to proceed from there, then use this
chapter as a guide to get you started. As you work on more stack
projects, you'll develop your own strategies and timetables that work

best for you.

188 HYPERCARD DEVELOPER’S GUIDE

Different Methods ‘
In one way or another, I've participated in the creation of stacks for three
categories: information publishing, information management and control of
external devices. Desxgmng a stack for each of these categories is significantly
different, especially in the planning stages. Therefore, we’ll approach the
“how to” aspect of stack design separately for each type of stack. The prim
difference is in the way you approach the stack structure, as you'll see. Then
there are technical factors that distinguish each of the three types of stacks.

Information Publishing Stacks

The most typical applications for information publishing stacks are: |

¢ Training and Education

¢ Reference Works ‘
* Product Demonstrations \
¢ Catalogs \
¢ Paper Publication Substitutes

These are almost entirely browse-only kinds of stacks, in which you prov1de
all the information that the application requires. Itis up to you to orgamze,
present and help users navigate through the information. ‘

The supreme advantage in designing an information publishing stack ii is
that the author has complete control over every text character and every
graphics pixel that appears in the stack. You know from the outset what kmd
of reference data, message or story the stack is to convey. The idea for creating
the stack in the first place comes as a result of an existing body of mformahL%n
that you want to make accessible in an inviting and enjoyable way.

Stack structure must fit the information like a hand-tailored suit fits its
owner. Justlike you don’t havea suit made for you and then adjust your body
toit, so would it be a mistake to devisea stack structure and then come up w1$
the information to fit that structure. I

Drawing a schematic diagram of the basic structure of your information is
one of the best ways to start picturing an information publishing stack. The
diagram should resemble a map to the entire stack. For example, the map to
the HyperCard Help system, shown in Figure 11-1, is one way to draw such
a diagram. As a reference work, this stack system is best treated as a tree-
structure stack. \‘

In your first draft of a structural map, of course, you needn’t be so literal

How to Build a Stack 189

€ File Edit Go Tools Objects

—|_| l‘g]= Current location
"’lﬁ Click any location 10 o to it.

Browsing How to Use Help

y i L
Commands

Painting

g

Copying

_' HyperTalk
Menus __]

Operators

Reference

Properties il

Index (:5

Figure 11-1 Mapping out the proposed structure of a stack system is an important early
step. Here's the map to Hypercard's Help stacks.

Start = - End

=

L4

Optional Optional

Figure 11-2 The structure map of Inigo Gets Out.

with the card metaphor in your diagram. For instance, Figure 11-2 demon-
strates how I envision the structure of Inigo Gets Out (this is not necessarily
the way the author designed the stack). In chapter 5, you'll recall, we saw how
linear the structure of this story is, with occasional side trips off the main path.

190 HYPERCARD DEVELOPER’S GUIDE

Those side trips are represented as loops in the structure diagram. ‘

Non-linear stack structure can become difficult to sketch out, especially
when the links to various sections of a stack go all over the place. For example,
Figure 11-3 shows the basic structure of the Macworld Expo stack systemL a
relatively non-linear stack that offers users ways around the various stacks
without having to always return to a main menu.

As you create your structure diagram, beware of structures that end up
looking like a single hub followed by a number of dead-end spokes, like the
one shown in Figure 11-4. This indicates a dull stack that always forces tge
user to return to an index page or table of contents to progress through the
stack. Such a structure may be significantly enhanced with links among the
various spokes, as shown in Figure 11-5. The added links provide a sense of
non-linearity and speed the user’s progress through the information.

If you are unsure about whether to create a heterogeneous stack or divide
things up into several stacks, it's best to start out with everything in one stack.
You may have the same experience as I did with Business Class, in which the
stack grew larger than anticipated, and made division into separate stacks
practical. |

With the stack structure in good order, create some mock-ups of cards
containing real information. Now is the time to experiment with the formét—

Product
Listing

LA
=y

Figure 11-3 The structure map of a non-linear stack system, the Boston MacWorld
program.

Start

How to Build a Stack 191

Start

Figure 11-4 The makings of dull stack are revealed by this map. A single start card is the
only avenue to several other sections.

[]]

Start

Figure 11-5 By increasing the number of links across stack lines, the new map reveals a
more inviting stack.

ting of text and division of long text chunks to see how much information you
intend to put on each card. The exact “look” of the card is not critical at this
stage, but the information content should reflect what the final data will be on
any given card. If you plan toadd graphics to the cards, make sure you leave
adequate room for them.

Once you have a notion of the stack structure and sample cards, it’s time to
write the functional specification for the product. Foran information publish-
ing stack, it is important that you explain how the browser progresses through
astack, noting what options are available at every kind of card or background.
Understanding the flow through the stack is critical. As noted in Chapter 10,
writing the functional specification will help you find loose ends in your

192 HYPERCARD DEVELOPER’S GUIDE

design concepts before you accidentally back yourself into a corner. |

At this point in development, do not delay in bringing in an artist to help
with the look for the cards (unless, of course, you are the artist). Acquaint the
artist with the structure, the functionality and representative samples of the
textual information that must go into thestack. A consistent look throughout
the stack or stack system is important for a product to exude quality design.
Be sure to give the artist a free hand in recommending fonts, font sizes, line
spacing, text characteristics (bold faced headlines, for instance), and the
interplay between supporting graphics and the text. Formatting of textlilal
information can make or break the usefulness of a stack. If the information
isn’t pleasantly laid out and easy to read, the experience of browsing through
the stack will not be enjoyable.

As soon as the formatting of the screens is completed, it’s then time for the
most tedious part of assembling an information publishing stack: entering the
textual data. If thedata is froman existing source, you may beableto automate
its input by way of an importer script. But if the source is from printed
material, there’s little choice but to do it manually. In some cases, optical
character recognition (OCR) equipment may be able to scan printed material
and turn it into text, which may then be imported into your stacks, but you
must have permission to do so from the copyright holder.

With the card format already defined, it often makes it easier to input fresh
data, such as that written for a demonstration, on-line help, or instruction'?l
stack. It is easier for some people to write within the confines of the format
rather than envisioning it while writing the material in a word processing
system.

I've input data both ways for different stacks. For Business Class data, in
which the data came largely from questionnaires received from embassies
and tourist bureaus, it was more convenient entering the data into the
preformatted forms of the cards. At the same time, the data was arriving at
random, so the preformatted cards also helped indicate where the holes in the
information were. On the other hand, I wrote the help cards for Focal Point in
a word processor, particularly because the content had to drive the card
layout. Once I had drafted the text (indicating how much was to go on each
card), Thanded the text to the artist, who came up with not only the formattin;
scheme, but also theidea of inserting graphics to illustrate the points. With thE
card design back in my machine, I was then able to import the text of the cards
via an importing script. i

Be prepared for one surprise. No matter how carefully you anticipate
oddball chunks of information in an otherwise smooth series of information
cards, some non-standard data will comealong to challenge thedesign you've
established. It seems that even if you plan for a worst-case data scenario, whex“1

How to Build a Stack 193

you start inputting real data, you encounter something “worse than the
worst.” The most typical example is when one card needs to contain more text
data than there’s room for in the format. Unfortunately, there is no magic
incantation that makes the problem go away. Occasionally, you can make
slight modifications to the width or depth of a text field to accommodate the
weird text. Other times, you'll have to truncate the text data to make it all fit.
Whatever you do, however, do not compromise consistency to make room for
one oddball data event.

All during the data entry time period, you and others should be testing the
program, making sure that the browsing flow is natural and intuitive. Find
reviewers who will be candid and unafraid to criticize your work if they think
some improvement is needed. Watch people work with your product,
especially early in the development cycle to see where they stumble or seem
confused. Even if they’re polite in their comments, their uneasiness with parts
of the program should be clear signals to you that changes are needed.

Information Management Stacks

Unlike information publishing stacks, information management stacks gen-
erally count on the author creating a framework in which the user will store
and access his own information. The initial design phases are different,
because the author does not always know the extent of information to be
stored in the stack.

The idea for a stack in this category generally grows out of a frustration in
trying to access or manage information on a regular basis. In your business,
for instance, there are perhaps dozens of information tasks that are not being
covered well by existing software or by a larger computer in the company.
You intuitively feel that your Macintosh should be able to help you with
managing the data, so you turn to HyperCard as a possible solution. If the
need is broad based enough, you may decide to turn your idea into a product
that you and others can benefit from.

From my experience developing Focal Point, I found it very valuable to
work first in perfecting the information content of each card style, then the
links between the stacks. Only after the functionality was stabilized did I call
in David Smith to work on the art. I preferred this route because there was a
great deal of experimentation going on as to what fields to place on each card
and how extensive the links would be between applications. Testing began
long before the stacks looked pretty. It was more important to get feedback
on the functionality, which was under my direct control.

Since the development of Focal Point,] have also beeninvolved in the design
of other information management stacks, and have been more conscious of

194 HYPERCARD DEVELOPER’'S GUIDE

the design methodology at the very early stages. Here’s the way I generally
approach a stack of this type.

The first order of business for me s to establish the stack structure. For most
applications of any substance, the need for multiple stacks in a unified stqck
system is omnipresent. Flexibility and archivability usually demand the
division of information into separate stacks. Deciding on the division is not
always easy. In a case like Focal Point, each application deserves its own stack
largely because each one is, indeed, an individual application. The To Do List
and Project database are not two stacks you’'d consider related enough to place
in the same stack file.

In another case, however, the situation called for numerous departments to
fill out forms that were similar to each other. The content of the forms was
created partially by a different stack, which, in a sense, created templates ﬁor
the other stacks. Once the departments filled out their forms, the data was
then pulled together into yet a different stack for reporting purposes. Flgu
11-6 demonstrates the work flow.

Because of the number of departments, and the fact thata “set” of forms for
each department consisted of as many as a dozen linked cards (and there
could be 30 or 40 sets active within a department at any time), I thought it best
todevoteaseparatestack to each department. A division of labor like thisalso

(A) Admin. i

(B)

L 4

Final
Report

)

Figure 11-6 A map of an information management stack that starts with one administra-
tor, whose stack creates cards in other departments’ stacks. Information from the depart- |
ment stacks is retreived for a final report. i

How to Build a Stack 195

reduces the possibility of data loss for the entire company if the forms were in
one stack that somehow became corrupted. In fact, adamaged stack could be
restored manually from the data posted elsewherein the system. The tradeoff,
however, was that stack-to-stack communications made the entire system
slower than if everything were in one stack. Still, the safety and archivability
of dividing the system overrode the speed factor. As HyperCard evolves, it
can only get faster; but if the company loses all its data in one crash, then it
doesn’t matter how fast the system is.

After determining the underlying stack structure, I continue by sketching
on paper what the major screens of each stack will look like. These are not
necessarily suggestions for the artist, but rather an overview of what fields
and buttons each card needs, and where information passes along the contin-
uum of use—when data is to be fetched from one stack or posted to another.
As I sketch and review these cards, I mentally walk through the work flow,
imagining where I'd like to branch from each card I see, and what should
happen when I branch.

From the sketches I start making a prototype for each stack, building in all
the functionality required of the basic system. Buttons tend to be text buttons
for identification purposes (leaving icons for later), and fields are generally
Geneva font. Sometimes thereality of a stack differs from the dream on paper,
and adjustments are necessary to thedesign from the sketches. Also, working
with the real thing sometimes causes additional ideas to pop up in my head,
adding new functions or reducing the work of the ultimate user of the stack.
Witha working prototype in hand, it’s then time to write the formal functional
specification, using the screens that have been patched together so far. The
point is that you'll be able to explain the functionality from experience,
knowing that the pieces do, in fact, work together.

Once your prototype is working as specified—all fields are active, all links
are working, all data is being posted or retrieved from other stacks correctly—
then it’s time to bring in the artist to make your cards inviting. As with any
kind of stack, the written product specification should help guide the artist,
who may not fully understand the inner workings of the stack. Be as specific
as possible as to the amount of data various fields will be holding. If various
buttons on your prototype screens should be physically grouped together for
ease of use, then make sure the artist knows that. Ask for suggestions as to
where icon button art would be appropriate. And let the artist recommend
font specifications, as noted above in the information publishing stacks.

More so in information management stacks than anywhere, it is vitally
important that the program be put into the hands of typical users (after the
artwork treatment) for strenuous testing. While you may think you know
what kind of information people should be putting into various fields, your

196 HYPERCARD DEVELOPER’S GUIDE

users will surprise you with the ways they’ll interpret your intentions. You
may discover that afield is inappropriately labeled or that itisn’tlarge enough
to display the data some people use in the real world. You also want to make
sure that real world users agree with your estimation of needs for links you've
established throughout the system. Typically called “beta testing,” this
testing method can prove to be both enlightening and helpful in preventlp
what users consider obvious errors or omissions to slip out with the product.
While the product is in beta testing, it’s a good time to put a script utility to
work on your stack system. Irecommend Script Report . Print out all the scripts
from all your stacks and look for inconsistencies or handlers that you made
obsolete with newer code. Also use this time to annotate the code in your
scripts. Add comments wherever you believe the user may need help:in
understanding what you're up to. If your HyperTalk code is open to the
user—as I hope it is—then it should be clear how to customizeit. Jot down the
comments on the script printout, then go back into the stacks and add the
comments to the actual scripts. \

External Device Control Stacks |

The steps involved in assembling a stack that controls external devices are
similar to those for information management stacks, just mentioned. The
main difference is that for a control stack, you must precede development
with a bit of experimentation and research to make sure the control you have
in mind will actually work.

Firstof all, controlhng external devices will require the assistance of one or
more XCMDs that give you access to the serial or SCSI ports of the Macmtosh
Serial port controllers are more common so far, and we show you how to rnake
one in Chapter 29. ‘

Not all serial controller XCMDs work the same. Some let you set up an
interactive terminal within HyperCard, so that you can communicate wit a
remote computer or device just like you would with a dedicated telecommu-
nications program. One window (HyperCard card) displays incoming infor-
mation as well as the information you type on your keyboard to send out.
Other types, including the one in this book, are used primarily as components
of a “front end” to an external device. It lets a HyperTalk script examine
mcommg data for specific key words, like “Enter Password: ” or store
incoming data into fields on cards for archiving purposes. HyperTalk can alﬁo
send information out to the remote device.

Long before you start designing screens or building functional prototype§,
you will probably create a “dummy” stack and start working somewhat
manually with the serial XCMD. If the device you're communicating with

How to Build a Stack 197

sends and receives data, you will check out how the incoming data can be
tested by a HyperTalk script and how the script can respond to various
messages the device sends. If the device primarily accepts serial commands
from your stack, you'll need to become familiar with the command language
of the device so you can work them into HyperTalk scripts. For instance, one
device I control with a HyperCard stack is a shortwave communications
receiver that has a serial interface as an option. It accepts about a dozen
commands that do things such as change the frequency, load frequencies into
memories, and so on. The command to set the frequency to 9515 kilohertz (one
of the frequencies for the BBC in London) is

FA0009515000;

which means that the command must beconstructed out of the frequency field
and several characters appended before and after the characters in the
frequency field. To design a stack around this receiver’s commands, I had to
be fluent in the command language (including the series of confusing parame-
ters for each command).

Only by knowing how you can communicate with the device or service at
the other end of the serial connector can you begin sketching screens and
assembling a prototype, just as you would for an information management
stack, as noted earlier. Testing during development is particularly important
when thestack is acting as a front end toanother computer or communications
service. Your scripts must anticipate a wide number of possible errors caused
by the other computer, delays in the network linking your machine with the
other, and general communications errors between your computer and the
local telecommunications phone number. Telecommunications front ends
are supposed to be invisible to the user, which means your stack has to be
ready for the worst, and handle it gracefully. The only way you’ll discover
where the traps are is to test the front end often, thus adding to the probability
that communications or other external errors will try to trip up your stack.

For this kind of stack I proceed through the rest of development as outlined
for information management stacks, above.

How to Go Wrong

The worst way to start developing a stack is to jump in and start designing
willy-nilly. I've seen stacks that started that way, and it’s very evident if you
start examining the stack from front to back. A haphazard construction

198 HYPERCARD DEVELOPER’S GUIDE

usually forces you to navigate through the stack with buttons rather than
keyboard arrows, because a sequential foray through the stack will reveal
how much of a hodge-podge it is. When that happens, you spend too much
of your scripting time figuring out how to keep the organization straxght
while the stack grows in peculiar directions.

The more planning you do before diving into the background, field ar\d
button making—tempting though it may be—the better off you’ll be

creating and maintaining your stack in the long run. Have patience, and plan
ahead.

Hyperlalk

for Stack
Developers

i

12

——

A Different Approach
To Hyperlalk

About one-half of The Complete HyperCard Handbook is devoted to the
HyperTalk language. Because the book is both an introduction and
ready reference to the various commands, functions, and properties of
I_-IyperTalk and HyperCard, most of the HyperTalk discussions are
ofganized around the pieces of the language. Thus, there are separate
chapters on action commands, arithmetic commands, functions, and so
on. Tohelp keep youfocused on the meaning of a particular word of the
HyperTalk language, the discussions had to operate in a kind of
vacuum. Only with the application examples in the last part of the book
is there an attempt to bring the pieces of the languages together.In this
part of the Developer’s Guide, we approach the HyperTalk language—

including messages, commands, functions, properties, constants, and

202 HYPERCARD DEVELOPER’S GUIDE

control (if-then-else and repeat) structures—from a different direction. As a
HyperCard developer, you may fully understand the inner workings of
numerous individual commands, but encounter difficulty in drawing to-
gether your knowledge of several related aspects of HyperTalk in a real
apphcatxon Therefore, the sub]ects in this part of the book come from
programming questions I've heard since the release of HyperCard and from
problems I've seen in scripts within stacks from a variety of sources. Even if
you're comfortable with HyperTalk, a number of the following chapters wlll
offer some insights and suggestions you may not have heard before. At the
same time, I don’t assume that the following chapters will tackle absolutely
every problem you've encountered. These are the predominant ones that I’y ve
heard about or inferred from scripts I've seen.

Throughout these HyperTalk chapters, I will be stressing compactness‘ of
scripts—making as few lines as possible do the most work as possible. Dan
Winkler, the person most responsible for the syntax and inner workings of
HyperTalk, believes a good HyperTalk script should look and sound li
poetry. Of course, if you set two poets before the same sunset, the poems tk at
each writes will be quite different. Similarly, two HyperTalk programmérs
pursuing the same functionality will likely code the solution differently. In
few cases is there “the one best way” to write a HyperTalk handler, so it’s
difficult to pursue perfection in that manner. But if you can refine a handler
so that it works faster in fewer lines, then the second generation is much better
than the first. It is unfair to you and your stack to slap together a script and
ignore it thereafter. Go back to it later, study it, and look for ways to make it
simpler, more elegant, more like poetry. The following chapters should help
you do that.

A Working Laboratory

To fully understand many of the concepts presented in this part of the book,
it is essential that you try out the scripts and simple stacks that will be
presented to you. It's a hands-on way of learning that cannot be beat. Slmply
watching static screens on the pages and trying to imagine what happe%s
when you click a button won't bring the ideas home.

Because you’ll be writing a lot of handlers and creating a lot of buttons in
the following chapters, I've devised a two-background sample stack that will
be used in all hands-on demonstrations. The stack is not a real application.
The subjects covered in this part are too diverse to appear in a single
application. Rather than forcing demonstrations into either an information
publishing or management stack—or worse yet, trying to contrive a “real”

A Different Approach to HyperTalk 203

application that encompasses both types—we’ll make copies of the original
stack in various chapters to work on numerous HyperTalk programming
problems and opportunities.

Before we can get started, however, you'll have to build the original stack.
The raw material for the stack are in the Stack Ideas stack that comes on the
HyperCard Ideas disk of HyperCard. Here’s how to make the stack:

1. Open the Stack Ideas stack. There is a button on the original Home Card

that links directly to this stack. Or you may open it via the Open Stack
choice in the File menu.

2. Click on the right-hand pointer until you see card four of the index (Figure
12-1).

3. Click on the miniature card labeled “Divided Card.” This card is named
in the stack, so you may also type

go to card “"divided card”

& File Edit Go Tools Objects

Hardware Index Layout Open book 1

Openbook 2 Library Index Open book 3 Book page Spiral page

Flip book Flip book 2 Shipping label News Letter sizel Letter size 2

| Click ona picture to go to that card G114

Figure 12-1 The fourth card of the Stack Ideas index.

204 HYPERCARD DEVELOPER'S GUIDE

in the Message Box.

This card (Figure 12-2) will be good for demonstrations, because it has ﬁve
background fields (with which to test various text handling abilities of
HyperTalk) and only four standard background buttons. The box at the
upper right corner holding the fish picture will be a good work area for
experimenting with buttons.

4. Choose New Stack from the File menu.

5. Type the name “Developers Guide Master” into the file name field. Be
sure the check box, “Copy current background,” is checked (Figure 12-3).

6. Click the OK button or press the Return key.

The new stack is created, and you are brought to that stack. All card-
specific information stored in the prototype card from the Ideas stack
disappears, leaving blank text fields and an empty boxat the top right. The
buttons and their scripts carry over, as does the background script that

Fish of ponds and
rivers

Rivers and other inland
waters throughout the world
| support arich and varied fish
| population, but it is chiefly in
{ the Northern Hemisphere that

Golden Perch *

freshwater fish are favored as YRR

| Golden Perch ‘
1] or callop Lakes and Rivers

Fish farming
|| Plectroplites Commerial fishing |

a popular source of food. This
is probably because of the
much larger areas of

| continental land mass in the
{ Northern Hemisphere, which
| result in greater fish

| distribution ininland waters.

£ ambiguus

| The Golden Perch,

also known as callop,

is indigenous to
4 Australian rivers.

Fish of the ocean ‘

© Random House i
Encyclopedia, |
New York, 1977

> D)

B

Figure 12-2 This is the card layout that we'll use for all experiments.

A Different Approach to HyperTalk 205

[& MM Edit 6o Tools Objects

Fish of —
rivers
| © Hard Disk |

Rivers and| |& Rpplications

t [Books
waters thrl |~ gysiness Class

support a [Consulting
populatior| | Correspondence
the Northg
freshwate
a popular s
is probabl
much large QCopg current background
continenta

Northern Hemisphere, which The Golden Perch, © Random House
result in greater fish Hiokhownagealion,) SR

is indigenous to
i S

fripe

New stack name:
[Developers Guide Master | Cancel

the ocean

distribution in inland waters. Australian rivers.

Figure 12-3 Create a new stack, using this background, and call it Developers Guide
Master.

was in the original.

7. PresstheTilde key or choose Back from the Go menu to return to the Ideas
stack.

8. Type Command-1 or choose First from the Go menu to return to the first
card of the Ideas stack.

9. Locate the miniature card labeled Address Card 3, and click on that mini-
card (Figure 12-4).

This address card will become the second background in the new stack
you're creating. The card comes with 10 background buttons, three
background fields and one hidden card field.

10. Choose Copy Card from the Edit menu.

11. Choose Open Stack from the File menu and open the “Developers Guide
Master” stack you just made.

206 HYPERCARD DEVELOPER'S GUIDE |

€ File Edit Go Tools Objects

Royce Walthrop

217 Crocker Lane
Hillsdale, Ohio 44704

R (216) 555-3452

Figure 12-4 The sample stack will also have a new background—the rolo-style card from
the Stack Ideas stack.

12. Choose Paste Card from the Edit menu.

This pastes the copy of the address card into the stack. Because we copied
theentire card, its card-specific data comes along with it, including the text

in fields and the hidden card field. If you want to see that hidden field,
type |

show card field 1
into the message box. When you're finished with the field, type
hide card field 1

into the message box.

13. Remove the text from the two large fields.

The script that is part of this card’s background automatically inserts
today’s date into the third field. Leaves this script in place for now.

A Different Approach to HyperTalk 207

In most of the chapters of this part, you'll be making a copy of this master stack
and modifying it to demonstrate and experiment with various HyperCard
concepts and techniques. Let’s get started with the subject of the HyperCard
hierarchy, and determining where to put handlers, how to use target names
and how I turned literally hundreds of mouse handlers into just one.

13

ﬁ

Scripts and the Object
Hierarchy

Perhaps the single most perplexing concept facing stack developers
has to do with where along HyperCard’s object hierarchy various
scripts belong. The thought first comes, I believe, when you design a
stack and realize that two or more buttons have the same or nearly the
same scripts behind them. Intuitively, youbelieve there mustbe abetter
way, but it may not be easy to discover the method that solves the
problem. In this chapter, we'll dissect the object hierarchy and play a bit
with the way messages work their way through the hierarchy. We'll
also examine how you can detect information about an object in another
hierarchy level—using the Target function—for tremendous flexibility

in your script placement.

210 HYPERCARD DEVELOPER'S GUIDE |
1

The Hierarchy—Two Perspectives

It is vital that you fully understand the object hierarchy of HyperCard if you
hope to design efficient stacks. While a full knowledge of the hxerarchy
doesn’tnecessarily show throughinastack, alack of knowledge sticks out like
a sore thumb.

HyperCard's hierarchy consists of seven distinctly different objects, each of
which has its own place within the hierarchy. The objects are arranged as
shown in Figure 13-1. I prefer to show the hierarchy with HyperCard at the
top and other objects below it. I'll alert you that this perspective is different
than the way outlined in Apple’s HyperCard technical documentation and by
other authors. In many of those documents, the hierarchy is illustrated with
HyperCard at the very bottom, and other objects above it.

It's important enough to describe both perspectives, because they may help
more people understand the concept. I prefer the organization with Hyper-
Card at the top, because I conceive of the objects in the order in which I
encounter them in working with HyperCard. When I start HyperCard,
HyperCard itself is the first object to take charge, then the Home Stack, then
the current stack, and so on, down to the most nested object, either a field or
button. When you click the mouse button atop a screen button, I prefer to
envision the mouseUp message taking an active role in search of a matching
handlerin objects on its way to HyperCard. The matching handler, then, traP
the message before it gets any higher up the hierarchy.

From the other point of view, messages go in the other direction. Rather
than imagining a message actively in search of a handler, you may think of a

HyperCard \
1 |
Home Stack !
T
Stack
1
Background
1
Card
e N
Button Field

Figure 13-1 The basic HyperTalk object hierarchy, with HyperCard at the top.

Scripts and the Object Hierarchy 211

message using “gravity” to makes its way through the hierarchy. If a
mouseUp message doesn’t find a matching handlerin the current button, then
the message “falls through” to the next level of the hierarchy, the card, and so
on toward the very bottom, HyperCard. You can still say that a message
handler traps a message, but here it’s before the message reaches the bottom.
Perhaps, too, this perspective sees HyperCard as the foundation upon which
other objects rely: backgrounds rely on stacks; cards rely on backgrounds;
fields and buttons rely on cards.

Now that you've seen both perspectives, be aware that I prefer the one with
HyperCard at the top, and will use this perspective throughout the book, as
I did in the Handbook. Messages in my “system” work their way up the
hierarchy.

Making the Chapter’s Stack

Before we go on, it’s time to make the stack we’ll be using as a working
laboratory for this chapter’s concepts. We'll also add two general purpose
handlers to your Home stack, which will come in handy not only for this
chapter, but in your stack development, as well.

First, make the stack:

1. Open the Developer’s Guide Master stack.
2. Choose Save a Copy from the File menu.

3. Type “Chapter 13 Stack” into the file dialog box.
This makes the copy, but leaves you in the original master stack.

4. Open the Chapter 13 Stack using the Open item of the File menu.

5. To distinguish this stack from the master and others to be created
throughout this book, choose the text tool from the Paint tools palette.

6. Choose Background from the Edit menu, or type Command-B.

7. Type”Chap.13” into the upper right corner of the bordered box on the card
(Figure 13-2).

8. While still in the background editing mode, go to the second card in the
stack, the address card.

212 HYPERCARD DEVELOPER’S GUIDE

Figure 13-2 Type “Chap. 13" into the background graphics layer of the first background.

9. Type “Chap. 13" into the upper right corner, as shown in Figure 13-3 \‘

|
10. Chooe the Browse tool.

This also removes you from background editing mode.

11. Go to the Home card.

We're now ready to enter two small Home stack handlers you'll find useful
throughout your HyperCard days. Choose Stack Info from the Objects menu
and click on the Script button. Scroll down to the bottom of the script editing
window and type in the following handlers: ‘

on lockFields
repeat with x = 1| to the nunber of bkgnd fields
set lockText of bkgnd field x to true
end repeat

repeat with x = 1 to the nunber of card fields
set lockText of card field x to true
end repeat
end lockFields

on unlockFields ‘
repeat with x = 1 to the nunber of bkgnd fields ‘
set lockText of bkgnd field x to false \

end repeat !

repeat with x = 1| to the nunber of card fields
set lockText of card field x to false 1
end repeat
end unlLockFlelds

Scripts and the Object Hierarchy 213

Figure 13-3 Type “Chap. 13" into the background graphics layer of the second back-
ground.

With these two handlers in your Home stack script, you may type the message
names, lockFields andunlLockFields, into the Message Box of any stack
you'rein (youmay also include the messages in scripts you write for yourown
stacks). The handlers let you quickly lock and unlock all fields on the card, no
matter how many or how few fields you have. Developing information
publishing stacks, in particular, is quickened by these handlers for editing
errors in cards with locked fields.

As an alternate, you could combine these two handlers into one, provided
you pass along a “true” or “false” along with the message. That handler
would look like this:

on lockFields setting
repeat with x = 1 to the number of bkgnd fields
set lockText of bkgnd field x to setting
end repeat

repeat with x = 1 to the number of card fields
set lockText of card field x to setting
end repeat
end lockFields

The message you would type into the Message Box to lock all fields would be
lockFields true; to unlock all fields, you'd type lockFields false.
While the second example is more compact, if you cannot remember that you
need to type the parameter along with the message name, then it may be better
to leave the handlers separate, since their names clearly indicate what you're
trying to accomplish. Ina couple of chapters from now, we’ll have more to say
about the concepts surrounding custom messages and handlers, plus the
passing of parameters, like the true and false, above.

214 HYPERCARD DEVELOPER’S GUIDE |

The Target and Me \

Two of the most helpful terms in understanding the fine points of hierarchy
and message passing are the function, the target, and a special word, me. Of ‘ he
two words, the Target is more useful in streamlining the way one or two
handlers can be in charge of many objects, while Me is understood best by the
way it differs from the Target.

(We'll be discussing the Target and Me primarily as functions. W?th
HyperCard version 1.2, both words may be used as containers referring| to
their objects. For example, a closeField handler could examine the new
contents of a field and report back in the field if the number entered is out of
range, by saying put "Out of range" into ne. Thetextgoesintothe fiéld
referred to by Me. Target may be used the same way.) |

As a function, the Target returns a value of some kind. What it returns is
the name of the object to which a message is originally sent. There is an
example from the business world to illustrate the concept.

Let’s say a soap manufacturer has a Consumer Affairs department, where
customer complaints are handled. An angry customer may not know that
such a department exists, but instead goes to the library and finds the name
of the company president. The customer writes a letter to the president, who
reads it and passes it along to the Consumer Affairs department to handle.
The people in Consumer Affairs see that the letter was originally addressed
to the big boss, so the letter gets prompt attention. The president, then, was
the target of the letter, and the Consumer Affairs department could see who
the target was. If another dissatisfied customer sees the name of a regional
sales manager in a local newspaper, that second customer may write a
complaint letter to the local manager, since it’s better to write to a name than
acompany. When that manager passes the complaint to the Consumer Affairs
department at headquarters, chances are that the folks in the department will
not act quite so promptly because the target of the letter is less important than
the target of the first letter.

Two important things are going on in the above illustration. First, each
recipient of a letter is a target—the one to whom a letter was originally
directed. Second, the only place real action occurs to remedy the complaint
is in the Consumer Affairs department, which was set up just for that purpose.

Now let’s see how this applies to HyperCard.

The first inclination when designing a stack is to put a mouseUp handler in
each button on the card. The same goes for closeField handlers when some
action is to occur as the result of entering text into a field. This is natural,
because HyperCard tends to be very modular, and you usually design one
button or field action at a time. But when you recognize that several buttons

Scripts and the Object Hierarchy 215

are doing the same or similar kind of action, you can put the handler for that
action in a higher level, like the background, and reduce the total number of
handlers in your stack.

For one handler in the background to perform the work of several buttons,
the handler must be able to identify which button was clicked. A handleruses
the Target function to find out which button needs the action. Let’s play a bit
with the target function.

1. Open the Chapter 13 Stack

2. Show the Message Box, and reposition it on the screen so you can see the
four buttons at the lower right corner (Figure 13-4).

3. Type the message that locks all fields (if you followed the directions
above, it will be either lockFields orlockFields true),

4. Hold down the Shift key while choosing Background Info from the
Objects menu.
This whisks you right to the script editor for the current background.

€ File Edit Go Tools Objects

Figure 13-4 Position the Message Box so you have access to the four buttons at the lower
right.

216 HYPERCARD DEVELOPER’S GUIDE

5. Remove the openBackground handler, which was carried over from ﬁhe
original background found in the Ideas stacks.

6. Enter the following handler into the background script:

on nouselithin
put the target
end nouselithin

7. Click OK or press Enter to close the Script Editor. \
The handler you just entered traps the mouseWithin message, which Hyper-
Card sends whenever the screen cursor is inside the confines of a button or
field. Remember that HyperCard sends the mouseWithin message to ghe
button or field under the cursor. Therecipient of the message is the target, and
the Target function returns the name of the object that last received the
message of the current handler (mouseWithin in this case).

Move the cursor around the screen slowly (don’t press the mouse buttop),
and watch the Message Box. The handler puts the name of the target (recipient
of the mouseWithin message) into the Message Box. As you move the mouse
over various fields and buttons, the names of those objects appear in the
Message Box.

Note that when you move the mouse to an area of the card not covered by
afield or button HyperCard appears not to send the mouseWithin message to
the card itself. If it did, the name of the card would be the target and would
be shown in the Message Box. To prove that, let's modify the background
handlerjust entered. Changeit fromamouseWithin handlertoamouseDown
handler, like this:

on nouseDouwn
put the target
end mouseDouwn

Now, carefully click the mouse button in various places on the screen, but do
not release the mouse button atop any screen button (that will cause the
mouseUp handlers in those buttons to activate, which we don’t want right
now). You can press the mouse button atop one of the buttons and drag the
cursor away from the button to avoid triggering the button’s mouseUp
handlers. Note here that the card receives a mouseDown message from
HyperCard, as evidenced by the card id showing up in the Message Box.

Scripts and the Object Hierarchy 217

Short, Medium, and Long Target Names

As you experiment with the mouseDown background handler, pay special
attention to the form in which the target names are displayed in the Message
Box. When a card has no name, as is the case here, the target returns

card id 3071

whichidentifies the card’s id number (it may be different in your stack) within
this stack. The same goes for the background fields, which are identified as

bkgnd field id 2

or whatever number field you click on.

The buttons, however, return something slightly different. Because these
buttons have names attached to them, the target function returns the type of
object it is and its given name, as in

bkgnd button "Honme"

when you trigger a mouseDown message on the Home icon button. Thesame
would be true for any object, including fields and cards, when they have
names. If, for instance, the first field at the top left of the card was named
“Title,” the target function would return

bkgnd field "Title"

in the identical manner to the named buttons in the current stack.
Incidentally, when you send a message from the Message Box, it goes
straight to the current card, instead of any buttons or fields. Therefore, if you

type

the target

into the Message Box, HyperCard sees that the last message (the command in
the Message Box) was sent to the current card. Thus, the target of the last
message is, again, the current card.

The Target function returns a kind of medium strength detail about the
object that received the current message. In other words, from the Target
function, you know whether an object is a card, a background field or a card
button. You can also obtain more information about the place of that object
within your HyperCard world by asking for the long name of the target. This

218 HYPERCARD DEVELOPER’S GUIDE |
!

|
version of the target function returns not only the name of the object, but the
name of the stack, complete with its complete hard disk path name. Try thls
yourself. Type |

the long name of the target

into the Message Box. You'll see a long string of characters identifying the
precise object in terms of everything stored on your disk. If you have your
stack deeply nested within several levels of folders, the full name of the target
mayextend beyond theright edgeof theMessage Box. Change themouseDown
handler in the background to

on nmouseDoun
put the long nane of the target
end nouseDoun

and watch your Message Box fill with huge names of objects each time you
trigger a mouseDown message in them.

Justas there isalong name of the target, thereis also ashortname. The short
name, however, is different from the plain target only when the object hasf a
name given to it. For instance, when you type

the short name of the target

into the Message Box, the short name of an unnamed card (or other object)jis
strictly its IDnumber. You cannot shorten that nameand expect to know what
kind of object it is. If you have a card, field and button that all have the same
ID number (this is theoretically possible), you need the identification like
“card” or “field” to tell them apart.

Retrieving only the short name of the target is useful when the object has a
name. In that case, the short name returns only the name you've given t:je
object, and no other data information about it. For instance, the Home butt .
would return just the word, Home, and nothing else. To experiment with th1§
change the mouseDown handler in the background to |
on mouseDoun |

put the short nane of the target) }
end nouseDoun |

and press the mouse button atop several objects. Notice that the card and
fields (all unnamed) return the same as the plain target function. All four
buttons, however, return just their given names.

Scripts and the Object Hierarchy 219

Target Decisions

When you name an object, you can extract thatnam with the Target function,
and use it for many different purposes. In other words, a handler higher up
the hierarchy can test the name of the object (as derived from the Target
function) and perform actions accordingly.

Tobegin our experimentsinextracting target names, replace the mouseDown
background handler with the following:

on nouselp
if the target is “bkgnd field id 1"
then put the tine into field S
else put enpty into field S
pass mouselp
end nouselp

A simple if-then-else construction here tests for the results of the target
function. If you click on the locked field whose id is 1 (that’s the first field at
the top left of the card), then the handler places the time into field 5 (Figure 13-
5). If the target is anything but “bkgnd field id 1” then the handler clears the
field. Note that each of the four buttons on the card has its own mouseUp
handler, which traps the mouseUp message before it reaches the background.
Therefore, the background handler responds only when you click on the
locked fields or on a spot that has a clear shot to the card.

That means, however, that if you click on the card (outside of any field or
button), the time is removed from the card, because the target is the card, not
any field or button. You can let the handler respond only to mouseUp
messages sent to the locked fields by limiting the actions taken in those cases.
To ignore mouseUp messages that come from the card, another if-then-else
construction is needed, as follows:

on nmouselp
get the target -- puts the target into 'it'
if it contains “field" then
if it contains 1
then put the tinme into field 5
else put enpty into field 5
end if
pass mouselp
end nouselp

When you click on the card, the target returns “card id 3707.” If the target
name doesn’t contain the word “field” then nothing happens to field 5. Only

220 HYPERCARD DEVELOPER’S GUIDE

& File Edit Go T

Figure 13-5 Clicking in the first field (bkgnd field ID 1) causes the time to appear in
field 5.

when the target is, in fact, a field does anything further happen to the card. ﬁ&t
that point, the second if-then-else construction looks to see if the target name
contains a “1,” which the target of bkgnd field id 1 does. If so, then the date
goes into field 5; otherwise, the field is emptied. Please note, however, that
with this specific example, I knew ahead of time that of all the backgrounb
fields of this card, only one of them had a “1” in its ID number. If another of
the ID numbers had been “12,” the test for whether the target contained a “1”
would proven true both for field ID 1 and field ID 12. |

Naming Objects and Target Names '

How you name an object can have a great impact on the elegance of your
scripts, especially when handlers make decisions based on target names.
More importantly, you can use the names, themselves, to supply information
about what the handler should be doing with the message.

The best way to see what we mean is to create a series of four round
rectangle buttons in the upper corner workspace of our card. Name each of
them “Blinker” along with a number, ranging from 1 to 4, as shown in Figuré

Scripts and the Object Hierarchy 221

13-6. Do not enter any handlers in the buttons’ scripts. Now insert three script
lines into the background handler as shown below:

on mouselp
get the target -- puts the target into 'it'
if it contains "field" then
if it contains 1
then put the time into field 5
else put enpty into field 5
else
if it contains "blinker"
then flash last word of it
end if
pass mouselp
end mouselp

The additional lines to the mouseUp handler look for mouseUp messages that
come from any object whose target name contains “blinker.” Since all
messages from all fields are trapped earlier in the handler (by the first part of

€ File Edit Go Tools Objects

Figure 13-6 A handler can derive information from the names of targets, like numbers
from the Blinker buttons.

222 HYPERCARD DEVELOPER’S GUIDE

|

the if-then-else construction), the only possible objects that could send the
mouseUp message would be the card ora button. Only blinker-named ob]ects
get trapped here, however.

The key principle of this demonstration is that part of the object namq is
used as part of the Flash command, which is an external command (XCMP)
that comes attached to HyperCard. The Flash command takes a number asa
parameter, indicating how many times the entire screen should invert black
and white pixels (actually invert and invert again to retum it to normal
viewing). Thus, a flash 1 command causes the entire screen to invert forabrief
instant—a flash. You can tell the Flash command to invert the screen as often
as you wish, by specifying a different number as a parameter to the Flash
command. In the handler, however, instead of a fixed numberas a parameter,
the parameter is determined from the name of the target of the blinker button.
Let’s follow this through step-by-step:

1. The name of the target is placed into the local variable, It.
In the case of the Blinker 3 button, the name of the target (“card button
‘Blinker 3”) is placed into It.

2. SinceItdoesn’t contain the word “field,” the handler passes over the pa p
of the if-then-else construction concerned with putting or removing t
time.

3. Every value of It that does not contain the word “field” is tested whether
It contains the word “blinker.”

4. Ifthetargetwas, indeed, a blinker button, then the handlersends the Flash
command up the hierarchy, using the last word of the target name—the
number—as a parameter. 1

5. The Flash XCMD HyperCard traps the command, and executes it, flashing
the screen the number of times specified by the last word of the target
button’s name.

Something else is worth noting about this handler. Communication between
thehandlerand various objects is kept ata minimum. Scripts tend to run fast:

if you can reach out to objects only once and manipulate the dataina vanabl‘e
within the handler. Thus, at the very begmmng of thehandler, the name of the
target is putintoIt. Afterthat, all comparisonsand derivationsare performed
from the copy of the name in It, rather than going to fetch the target each time.
The shorter variable name is also much easier to read on script lines than

Scripts and the Object Hierarchy 223

longer, multiple-word phrases.

You can take this idea of applying target names to other purposes one step
further. For instance, if you change the names of the blinker buttons to flash
buttons, as shown in Figure 13-7, then you can use the short name of the button
targets as commands in themselves. The handler to take care of this would be:

on mouselp

get the short name of Lhe target
“field® then
if it contains 1
then put the time into field 5
else put empty into field 5

if it contains

else
if it contains "flash"
then do it

end if

pass mouselp
end mouselp

-- puts the target into 'It'

-- e.g., do "flash 3"

€ File Edit Go Tools Objects

Figure 13-7 Object names themselves may be used as commands, when retrieved with the

short name of the Target function.

|

224 HYPERCARD DEVELOPER’S GUIDE ‘

I
1

Because the fields in this card are not named, the short names of those targets
still contain the word “field,” so the first part of the if-then-else construction
is unchanged. The big difference is in the button part. Since the short name
of the target of, say, button Flash 1 is “Flash 1,” the handler must test for the
presence of the word “flash” to see if it is one of the four flash buttons. Then,
since the short name of the target is a valid command (including parameter),
the handler sends the contents of It as a command up the hierarchy. The flash
XCMD doesn’t care where the command came from or how it was ccﬁn—
structed—it carries out the command anyway. |

|

\
When to Use the Target |

As mentioned earlier, the initial tendency in building a stack application is ito
puta mouseUp handler in each button on the screen. You can also plan ahead
for cases in which a thoughtful series of button or field names can be instituted
from the outset. For instance in an application I wrote for an article in
Macworld, there is a card in a stack that has a series of 12 identical-looking
buttons adjacent to a multiple-lined field (Figure 13-8). A click of each button
triggers aGo command in the mouseUp handler, using the corresponding line
of a hidden field that contains the card IDs of linked cards. Thus, when you
click on the second button down the column, it looks up the card ID in the
second line of the hidden field and goes to that card. ~
All 12 buttons in this column are under the guidance of one mouseUp
handler in the background. The buttons are named “Go 1,” “Go2,” and so on.
A bug in HyperCard 1.0.1 caused the original version of this handler to wox*k
around problems in extracting the number from the target name. The proper

way to set up this handler (it works in version 1.1) is this:

on nouselp

get the target

if it contains “"go"

then go to line (last vord of it) of field "Links"® ‘
end aouselp |
The last word of It is a number corresponding to which button down the
column was clicked. That number tells the handler which line number of thl
hidden field, called “Links,” contains the ID of the card to which the butto
should lead the user. Since each line of that hidden field contains the text of
a valid destination (e.g., “card id 32987”), the handler simply needs to say th‘e
equivalent of “go to line 2 of field Links” to initiate the jump to that card (we'll

Scripts and the Object Hierarchy 225

& File Edit Go Tools Objects

Follow Up Today = =

((Jodey) Friday.March 11,1988 .

J
@
@
@
@
@
@
@
@

Figure 13-8 Each of the round button's names is used to direct navigation. One handler,

using the target function, does the job for all 12 buttons. This stack, the Tickler, originally
appeared in Macworld magazine.

see more examples of this kind of linking in Chapter 18).

The Target and Me

HyperTalk has a shortcut word you can use in a handler to refer to the object
in which a handleris located: Me. It’s not exactly a function, because it doesn’t
return a value. But you can use it in some ways as you would use the Target
function when referring to the very same object that contains the handler.

Let’s say you assign a handler in the Flash 1 button that must retrieve the
hilite property of that button. In such a situation, the following two handlers
yield the same results:

on mouselp
put the hilite of button "Flash 1"
end mouselp

on nmouselp
put the hilite of ne
end mouselp

226 HYPERCARD DEVELOPER’S GUIDE ‘\

When you read thescripts aloud, the first sounds very impersonal, like talklp
to a friend in the third person: “How is Theodore Cleaver today"” The Me
version, however, gives you a better feel for where the object is in relationito
the handler. Only one object in a handler can have the honor of being called
Me, so its presence stands out when reading a script.

When you use Me, you cannot use the word by itself, as you can the Target
function. Instead, you must refer to specific properties of Me, just as you
would any object. Thus, you can get and set text properties, locations, styles,
and any other property of an object by referring to the <property name> of me.

It’s important to recognize that the Me does not travel beyond the object in
which a handler is located. For instance, if you add the following line to the
background handler of our Chapter 13 stack

put the name of ae

any time you click on a Flash button, field, or card, this handler will put into
the Message Box the name of the background in which the handler is located.
Try it. The target might be a button, field, or card, but in a background
handler, Me refers to that background.

This also means that within an object’s handler, Me can stand in for the
target, provided you specify the property you're looking for. Here’s a table
to help you understand the correlation between Me and the Target within ‘a

handler of the target object: ‘

the nane of ne the target

the nane of the target
the long nane of ne the long nane of the target
the short nane of ne the short namne of the target

Therefore, my recommendation is to use the Target function whenever a
handler needs information about an object other than the one containing the
handler; use Me when working on an object’s properties from a handler
attached to that object. |

|

Choosing the Appropriate Level |

Now that you’ve seen some tricks of the trade, it’s time to examine where the
best placeis in the hierarchy to put various handlers. It'sdifficult to generalize

Scripts and the Object Hierarchy 227

on such matters, because the organization of a stack often has much influence
on the placement of common handlers. While many handlers have obvious
locations (e.g., openStack in the stack script), we'll focus here on the more
variable ones: mouse and field handlers.

Before getting too deep into handler placement, I should stress that it is
often very appropriate to mix the location of handlers based on theactions that
various buttons or fields instigate. In the Chapter 13 Stack we’ve been
working with so far, we’ve said nothing about moving the locations of the
mouseUp handlers attached to the four icon buttons that came with the stack.
Each button has its own distinct visual effect and a single action command to
either go some place or pop a card. Because the specific actions of these
handlers are so different from each other, shifting them to a background or
stacklevel mouseUp handler would be more trouble thanits worth. Infactthe
resulting handler would have so many if-then-else constructions in it to direct
thedesired visual effect and action, thatit could easily turn into a maintenance
nightmare if some additional mouseUp action were added to the background.
No, it’s best to leave these short handlers inside the buttons.

Conversely, I don’t often recommend putting mouseUp handlers at the
stack script level. The primary reason for this is that even if a stack starts out
in design as a homogeneous stack, with a single background, the likelihood
of adding another background, even for a title card or group of index cards,
is very high. Any other background you add will have a different set of
buttons that do very different things. The chance that your mouseUp handler
in the stack script will be valid for the buttons in the new background is small.
By putting the handlers in the background to begin with, you leave yourself
more open to an expanding stack without having to reposition your mouse
handlers.

Reducing Handlers

It's very possible that a stack might have complex button handlers that share
nothing with other button handlers. In such a case, it is most appropriate to
keep all mouseUp handlers in their respective buttons. There’s nothing
wrong with that if the occasion calls for it. The situations to watch out for are
when there is a series of similar buttons, as illustrated earlier in the Macworld
stack, or when you notice that a number of buttons have nearly identical
handlers.

To work with the second situation, I suggest placing the handler in the
background level. About the only time I'd recommend putting a mouse
handler in a card script is if the card is now and always will be a single card

|
228 HYPERCARD DEVELOPER’S GUIDE g
unto itself. Even then, if the card is the only card of a background, thenI'd still
tend to put the handler in the background just in case another card is added
later to the background, sharing the same buttons.

When you recognize that several buttons have similar handlers, you should
try to write a background mouseUp handler that uses the target names of the
similar buttons to differentiate the actions of each button. Use numbers in
concert with letters for button names (as in the Go 1, Go 2 series, above), or tie
the name to the action that makes one button behave differently from another.
For instance, if there are the same (or no) visual effects for going to the
previous and next cards in a stack, consider using the names “Prev” and
“Next” as button names. Then the handler would use the button names (short
names of the target) to perform the action, as in the following script exceth:

on nouselp
if the target contains “button” then
get the short name of the target
visual effect checkerboard
go it
end if
pass mouselp
end nouselp

Here, the very name of the button dictates how the handler acts, by going to
the previous or next card, as the case may be.

The Ultimate Handler Reduction |

Now is as good a time as any to demonstrate the ultimate in reducing literally
hundreds of individual mouseUp handlers to a single background mouseUp
handler. It occurs in Business Class. The scheme that made this work was #a
careful system of naming cards and buttons to accommodate a wide variety
of button choices on a Business Class card.

While Business Class was in development, I started putting individual
mouseUp handlers into each button on every card or background. That meant
that for a map card like the one in Figure 13-9 (which shows the button
locations), there were dozens of mouseUp handlers for the card. Initially, th
reasoning was sound, because the buttons on the map not only go to a
partlcular country’smap, but italso hasaspecifickind of visual effect—a wxpe
in one of four directions, depending on therelative location of the nelghbonng

Scripts and the Object Hierarchy 229

-

l (il e
dliviriheg -

Figure 13-9 One handler controls navigation on every transparent button in
Business Class. The names of the buttons dictate the destination of a Go command.

country you click on. A typical handler looked like this:

on mouselp
visual effect wipe down
go to card "Belgiun”
end nmouselp

Remember, too, that the Business Class maps are divided into two geographi-
cal groups. Stack names for these two groups are Business Class 1 and
Business Class 2. Therefore, when you are viewing a map that has a button
linked to a map located in the other stack, the handler would look like this:

on mouselp

visual effect wipe up

go to card "Horocco" of stack "Business Class 2"
end mouselp

Add to that the possibility that the user could click on the miniature regional

230 HYPERCARD DEVELOPER’S GUIDE

map in the upper left corner that not only goes to the regional map, but also
has a completely different visual effect, an Iris Close.

Finally, there is therow of buttons at the bottom of each country map. Th se
buttons must know which country’s map you’re viewing, and then go to that
country’s information card in the appropriate stack. To simplify this part of
the operation, I had established very early in the creation process a global
variable that was set to the country’s name each time a country map card
opened. That global variable, called currentCountry, played a big role in the
background button scripts for each of the information buttons in eale
versions. A typical script looked like this: |
on nouselp !

global currentCountry

go to card currentCountry of stack "BCleClinate"
end mouselp

for the countries whose maps are contained in the Business Class 1 portion of
the world (Europe and the Middle East). As with the map cards, each
information card within an information stack is named with the country
name. Thus, there is a card named “France” in the Climate, Currency, Time,
Travel Documents, and every other information stack in the Business Class
stack system. \
All in all, it meant that there were a lot of buttons, each with its own
mouseUp handler. And I was running out of disk space, even with the
division of the world into two sections. Intuitively, I knew I'd save a ton of
disk bytes if I could combine all those buttons into far fewer handlers. In each
of the map stacks, there are approximately 350 background and card buttons.
Evenataconservative average of 75 handler characters per button, that mea'T\t
the scripts were eating up more than 26K per disk. |
|

One Handler Fits All !

The supreme solution was to create a single background handler that took
care of possibilities for any kind of button that could appear on a map card.
While the handler isn’t particularly complex, it helped to map outa strategy
for naming the buttons so that the target names would assist in detenmmqg
where the handler sends the user.

The scheme was as follows. Each transparent button on a map would be
named with the name of the country to which the user would gowhen chckmg
on that button. The button name would also contain the direction of the wipe
visual effect. If the visual effect part of thename is “close,” that means that the

|
\
|

Here, the stack name, “BC1¢Climate,” indicates the climate information carr

Scripts and the Object Hierarchy 231

effect is an iris, as opposed to a wipe. The handler was also to intercept
mouseUp messages from buttons linked to information cards. The names of
those buttons (they’re background buttons, because they’re the same for all
country map cards) simply contained the name of the information card stack
to which the user would go. All parts of the handler relied on the name of
current country, which, as before, is automatically put into the global variable,
currentCountry, when each map card opens.

Therefore, the handler must distinguish among three types of buttons:
those with information stack names (all of which contain a bullet in their
name), those with country names and wipe directions, and those with
regional map names and iris close visual effects. The handler must also be
prepared to switch stacks from Business Class 1 to Business Class 2, and vice
versa, if the country button clicked on points to a country in the other
geographic collection. In those cases, yet another character is added to the
button name: the number 1 or 2, whichever is the other stack collection.

To demonstrate what some of these button names look like, consider the
map of Spain card in Figure 13-10, which shows what the card looks like with
the button tool selected. Note that Spain is in the map stack Business Class 1.

AT ST T

3

fla.

Madrid
SPAIN — R B 4
: et
- + Valencia

o Seville

Figure 13-10 Even adding the buttons to information cards didn't affect the single
handler that controls navigation from every button (except Home and Help) in Business
Class's map and information cards.

232 HYPERCARD DEVELOPER’S GUIDE :

Both of the rectangular buttons atop Portugal to the left of Spain have the
button name

Portugal right
while the three buttons atop the corner of France are named |

France douwn

Thebuttons covering the northern tip of Africa point to cards in the map stack
Business Class 2. The name of the long button at the lower right is named

Algeria up 2

indicating that the wipe will be up, and that the handler must switch to tf\e
other map stack before going to the Algeria card.

It is difficult to see, but there is a transparent button on top of the numature
map of Europe in the upper left corner. When a user clicks on this map, he
should zoom out to the Europe regional map. That button’s name is

Europe close

And along thebottom row, information card buttons have informative names,
like T

BCteCurrency

for the button at the left end of the row.
Now to the handler that knows what to do with all these button names.
Here’s what the core of it looks like:

on nouselp
global currentCountry
if "button® is not In the target then pass mouselp

get the short name of the targst

if it contains "e" then
ssl cursor to ¢
push card
visual effect wips up
go card currentCountry of stack it
else
|

Scripts and the Object Hierarchy 233

if last word of it is "2" then
put " of stack® && quote & "Business Class 2" & quote =
into switch
delete last word of it

else put empty into switch

if last word of it is “close” then put "iris close®” into type
else put "wipe" & (last word of it) into type

visual effect type

get “card" 88 quote & word 1 -~

to (nunber of words of it - 1) of it & quote
put switch after it
go it

end if

end mouselp

After declaring the global variable, currentCountry, the handler tests to make
sure that it is handling button mouseUp messages only. All others are passed
up the hierarchy. Next, the short name of the target—just the name you assign
to the button—is put into to It.

The first test of the major if-then-else construction is whether the button
name contains a bullet. If so, that means that the button is linked to an
information card. That button name contains the name of the stack, and the
visual effect to all information cards is a wipe up. All that’s left is to go to the
card bearing the name of the current country (from the global variable) in the
stack.

All other buttons go to map cards either in the same stack or in the
companion map stack. Thus, the first test for the rest of the buttons is whether
the last word of the name contains a “2,” which indicates that the map is in
Business Class 2 (this handler in the Business Class 2 stack looks instead for
a”1,” which points to the Business Class 1 stack). If the “2” is part of the name,
then the handler assembles the last part of the eventual Go command, which
reads,

of stack "Business Class 2"

and places it into a local variable, called switch. Because the handler is
finished with the “2,” it deletes that last word of It, because the rest of the
handler expects only two pieces of information: the visual effect and the name
of the country.

The next few lines of the handler deal with the visual effect, which is the last
word of It. If the effect is “close” then it means that the effect is an Iris Close.

234 HYPERCARD DEVELOPER’S GUIDE

variable called type. This variable contains the visual effect, whether it bean
Iris Close or Wipe with a modifier.

As we draw near the end of the handler, a comparatively long script lme
assembles the name of the card that the Go command will need. That name
must include the word “card” and the name of the card. Some countries,
button names, and country card names contain more than one word, so the
name assembly includes word 1 through as many words as thereareinIt, less
the one at the end containing the visual effect direction. For instance, 1f It
contains “New Zealand left,” then the card name the handler must prepare is

Otherwise, the effect is added to the word “wipe” and placed into a lo‘rl

card "New Z2ealand®

with quotation marks and all. Note that by using the Get command,
handler reuses It by pulling the desired text from it and adding some fr%th
material to come up with the desired card name. ‘
The switch variable, you'll recall, is either empty if there are no numbers
after the button name, or contains the name of the other map stack. Thus,
switch is added to the end of It to round out the destination. From the Spain
map, for instance, if you clicked on the Morocco button, at this point of the
handler It would contain r
card "Horocco” of stack "Business Class 2° |

It's now a simple matter to go to that card. The It variable contains the full
“address” of the destination, even if it's in a different stack.

By replacing all those separate 350 handlers per map stack with one alll-
purpose mouseUp handler, Business Class was able to ship comfortably on
800K diskettes as planned. Had the extra space not been found, the stack
system would have been missing a couple of countries.

CloseField Handlers |

Where you place closeField handlers is very dependent on your application.
Ifyou haveany closeField handlers at all, you must evaluate how the ones you
wish to control differ from the ones you don’t care about. For instance, in the
address card background of Chapter 13 Stack, a background level closeFleld
handler puts today’s date into the third field. Of the three fields on the card,
only two are open for text editing. Appropriately enough, a change to elth‘er
field should be reflected in an updated field 3. |

There will be times, however, when a card has many fields on it, but only

Scripts and the Object Hierarchy 235

one or two fields’ closing is of any consequence. In those cases, it is still not
clear at which level the handlers belong. If the handlers are first placed in
individual fields and they are significantly different, then they should stay in
their fields. But if the actions of a few closeField handlers are the same or
nearly so, then consider placing a closeField handler in the background. If
closing every field causes the handler to execute—when you only want a
couple fields to trigger the handler—youneed a way to filter out the closeField
messages. You should also do it quickly so that the normal tabbing progres-
sion isn’t slowed by needless handler execution. To do this, name the action
fields with at least one common element that only those field names share.
Then, early in the background closeField handler test for that element in the
target name. If it's not there, then pass the closeField message immediately,
as in the following:

on closeField
If “magic” is not in the target then pass closeField

[do your stuff for the "nagic” naned fields]

end closeField

For one thing, you know for sure that closeField messages are sent only to
fields, so your handler needn’t test for whether the target contains “field,” as
you do for mouse messages.

As aliving example of putting a closeField handler in the background that
affects only certain fields, let’s turn to the Daily Appointment stack of Focal
Point (Figure 13-11). For each hour of the day, the card offers a two-line field
to note appointments. When you need to write down some additional data
about an appointment, you may click on the button to the left of the two-line
field. This shows a large detail field. There is one large detail field for each
hour of the day.

The design of the stack is such that when you hide the detail field, the stack
checks to see if the content of the field has changed. If so, and if the field went
from empty to not empty, then another handler draws a small box around the
plus mark. Thus, the next time you come to the card, you get a visual clue that
there is additional data one level below. While you can hide the field by
clicking on the button again, I also allow the user to close the field by pressing
the Enter key, which sends a closeField message to that field. None of those
detail fields have closeField handlers in them. Instead, the message works its
way up the hierarchy to the background closeField handler, which is:

236 HYPERCARD DEVELOPER’S GUIDE

€ File Edit Go Tools Objects
] 1 fi } e P D e i D88

Bring the following:

®12 copies of printed agenda
o forecast transparencies

+ O
+

7 e department budget requests
+
h
8
+
= 1, P PN
9 Xl,gfa,cme..n,dmpmmeemﬁm 4
B +
1015 5
i * UEHDORS
11 6
+ +
12 Lunch with Jim Anderson 7
+ +
EVENING
Monthly Reminder s

Figure 13-11 By naming the hidden fields and the hourly buttons identically, it isa

simple task to have a closeField message sent to the field trigger a mousellp message in the
button to hide the field.

on closefField
if "Zoom" is not in the target then exit closeField

send mouseUp to bkgnd button (the short name of Lhe target)
end closeField

|
What happens here is that the closure of one of those “Zoom” fields triggers
the equivalent of clicking on the button for that hour, which, not coinciden-
tally, has the same name as the Zoom field. Thus, the short name of the field
(the target) becomes the name of the background button to which a mouseUp
message gets sent. That mouseUp handler (which is also in the background)
draws or erases the little square, depending on the contents of the Zoom field.

Lateral Hierarchy

In this section we cover an advanced topic, but one that is relevant to the
subject of object hierarchy and the way in which messages are passed during
the execution of a handler. There are two scenarios that we’ll investigate:

Scripts and the Object Hierarchy 237

executing a handler that takes you to a different background; and one that
takes you to a different stack. What we’ll be looking at in particular is what
happens when a mouseUp handler that takes you to one of these places then
sends a message. Because there may be two possible backgrounds or stacks,
how does the message flow up the hierarchy?

For example, let’s say that a stack consists of two quite different back-
grounds. Ineachbackground, however, is a calculation handler that performs
addition on various fields. The calculations are very different, so the decision
is to keep the handlers in the backgrounds, rather than build them both into
a single stack script handler. Now, let’s say a button in Background A picks
upanumber in a field of the current Background A card, goes to a correspond-
ing card in Background B, and then uses that number in a calculation together
with data in the card in Background B. The button’s handler would be

on mouselp
get field “Balance” -- in a card of bkgnd A
go to card "Final Invoice®” -- in bkgnd B
put It into field "Balance Forward"
calculate
end mouselUp

where “calculate” is the name of ahandler in the background of the card “Final
Invoice.” If there is also a different calculate handler in the background of the
original card (from which the Balance field was taken), which calculate
handler prevails, considering that it is called by a button in the first card’s
background?

When a handler goes to another background or another stack and then
sends a message of its own—whether itbea HyperCard command oracustom
message—the traditional hierarchical order is slightly different than when all
action takes place on a single card. The precise order varies, too, depending
on whether the action is in a different stack or just in a different background.
When the scene is in a different background, there are then two possible
hierarchy orders. First, however, we'll look at what happens when changing
stacks within a handler.

Stack-to-Stack Hierarchy

What we’re about to describe is not simple, primarily becauseall the hierarchy
rules you've learned so far get jumbled a bit the instant a handler jumps to
another stack. For purposes of illustration, we'll use the calculation handler
idea mentioned earlier. We'll assume that the mouseUp handler that gets
things rolling also contains a calculate message. Here’s the handler:

238 HYPERCARD DEVELOPER’S GUIDE

on nouselp

get field "Balance” -- in stack "Details”

go to card "lnvoice Calculator” of stack "lnvoices”

put it into field "Balance Foruward"®

calculate ;
end nouselp !
The button containing this handler is in the first stack, “Details.” It picks up
the value of a field (“Balance”), goes to a specific card in a second stack, inse]
the value into a field in that other stack’s card, and finally issues the Calculate
message.

If there were no calculate handler anywhere in the hierarchy of either stack
the message would follow the hierarchical path illustrated in Figure 13-12in
search of the handler. Note that the message first exhausts all posmbllmes'm
the stack that contains the mouseUp handler, even though the handler has
already brought you to the second stack. If nothing is found up through the
stack script of the first stack, then the search starts at the card script level of the
second stack. From there it works its way up the traditional hierarchy in the
second stack, continuing to the Home stack as a last resort. r

The importance of knowing this special hierarchy comes when you use
identically named handlers in different stacks that do not perform identical

i

|

HyperCard

1
Home Stack

&

—
Stack A Stack B

T 1 |
Background Background ‘

1 1
L Card _ — Card ‘
/ A Z N |
Button Field Button Field ;

Figure 13-12 The hierarchy is extended when your script takes you to another stack and |
sends you a message of its own. It first exhausts all possibilities in its own stack, then in
the new stack before heading to the Home stack.

Scripts and the Object Hierarchy 239

operations. In the calculate message example, above, if you had a calculate
handler in the background or stack script of the first stack, that’s the handler
that would be executed during the mouseUp handler, even though you may
have expected the calculate handler in the second stack to be the operation.
Duplicate handler naming may be intentional or accidental. Either way, you
should understand that hierarchies behave a bit differently when switching
stacks.

Background-to-Background Hierarchy

If a handler goes to a card in a different background in the same stack as the
original handler, the hierarchy acts unexpectedly. If you have handlers of the
same name in both backgrounds, you'll be headed for trouble. Here’s what
happens.

Using our earlier example of going to a card in a second background of the
same stack, let’s say that you have calculate handlers in both background
scripts. When you run themouseUp handler that sends the calculate message,
the hierarchy runs like the one shown in Figure 13-13. In other words, if there
is a calculate handler in any object belonging to the first background (button,
field, card, or background script), or if the handler is in the stack script, the
message never gets a chance to look for a match in the second background’s
scripts.

When no calculate handler is in the first background’s objects or the stack
script, then the message goes to the card and background scripts of the second
background in search of a match. This is illustrated in Figure 13-14.

For the most part, you needn’t worry much about these anomalies to the
traditional object hierarchy of HyperCard, but you certainly should be aware
of them in case you get somestrange results. If you ever find the error message
that the handler cannot find a certain field, click on the Script button to see
exactly which object’s script is causing the difficulty. You may discover that
the handler is in one background or stack when you thought the handler in
another should be at work.

Bypassing the Hierarchy

In addition to sending a HyperCard message along the various hierarchical
paths—traditional and “lateral”—you can also be very specific if you want a
message to go to a particular object that may be out of the ordinary order. For
a demonstration, we can take a chapter out of Focal Point.

In the Projects stack, for example, a doMenu handler intercepts the New
Card menu option, because generating a new card also entails generating a

240 HYPERCARD DEVELOPER’S GUIDE

HyperCard ‘
T ‘
Home Stack
1
Stack |
I |
Background Background ‘
1 t |
Card Card
/ A Z A
Button Field Button Field

Figure 13-13 When a handler goes to a card in another background and sends a message,
it first looks all the way to the stack script for a match. '

|
HyperCard |
= ‘
Home Stack

1 |
Stack 3
4 sa Y)

| |
Background Background |
1 1 |
Card > Card '
P A\ e A\ ;
Button Field Button Field |

Figure 13-14 If there is no matching handler in the stack script, then it looks in

the card and background scripts of the second background before continuing up the
hierarchy.

Scripts and the Object Hierarchy 241

number of linked cards. Therefore, whenever the user chooses New Card
from the Edit menu (or types Command-N), a handler in the stack follows an
involved sequence that generates new cards from each of the six backgrounds
and maintains a system of hard links among the various cards (described in
Chapter 18).

Within that handler, I must often generate a new card. If thehandler simply
sent the message,

doMenu “New Card"®

that would be the same as choosing New Card from the Edit menu, which
would start the handler again. Eventually the situation would get sorecursive
as to tie up the stack in a knot. To create the new cards, the handler must
bypass the regular hierarchy and send the messagedirectly to HyperCard. By
sending the message to HyperCard, there is no way it will be intercepted by
any other object along the way. Thus, the message becomes

send “"doMenu New Card" to HyperCard

whenever the handler must create a new card in its magical workings.

“HyperCard” is a valid object name. If you send a message to any other
kind of object, like a stack or background, be sure you use a valid name for the
object, such as its ID number or its given name.

Thediscussions in this chapter should give you plenty to think about. How
you treat the HyperCard hierarchy has much to do with the structure of your
stacks and how handlers should be placed throughout. From here we can
explore various HyperCard system messages to discover how the stack
author can maintain control over such things as navigation through a hetero-
geneous stack, without the browser being aware of how much you’'re saving
him from total confusion.

14

More About System
Messages

System messages, you'll recall, are messages that HyperCard sends to
various objects, usually as theresult of some action. For instance, when
you click the mouse button at an average down-and-up pace, Hyper-
Card sends three messages to the screen button: mouseDown, mouseS-
tillDown, and mouseUp. HyperCard has a vocabulary of 39 messages

it sends at various times.

Who Gets Which Message

HyperCard sends messages to only three types of objects: buttons,
fields, or cards. Precisely to which object the message goes depends

largely on action the user takes. Forexample, the mouseUp message

244 HYPERCARD DEVELOPER’S GUIDE

\
goes to a button when you click the mouse with the cursor atop a scr:een
button. But if you click the mouse button with the cursor atop a locked text
field, the mouseUp message goes to that field. And if you click the mouse
button when the cursor “sees” the card—with no intervening field or button
layers—then the mouseUp message goes to the card. |

Table 14-1 lists all 39 HyperCard system messages and shows which ob]ects
may be the recipient of these messages. What may seem confusing at firi
that several messages that relate to backgrounds and stacks are sent initiall
to the card level of the hierarchy. The card level is merely an “entry point”| for
HyperCard messages along the hierarchy. With the entry point at the card
level, you may experiment with sending system messages from the Message
Box, because anything you type into the Message Box goes to the current c%rd
first.

Table 14-1.

To Button: newButton, deleteButton, mouseDown,
mouseStillDown, mouseUp, mouseEnter, mouseWithin,
mouseLeave |

To Field: newgField, deleteField
openField, closeField
mouseDown, mouseStillDown, mouseUp
mouseEnter, mouseWithin, mouseLeave w
returnInField, enterInField

To Card: newCard, deleteCard
openCard, closeCard
newBackground, deleteBackground
openBackground, closeBackground
newStack, deleteStack |
openStack, closeStack
mouseDown, mouseStillDown, mouseUp
returnKey, enterKey, tabKey, arrowKey
suspend, resume, startup, quit
help, idle, doMenu

As an example, let’s say that you are at work on a handler that puts todays
date into the first card of a stack when the stack opens. You need to trap for
the openStack system message, which HyperCard sends immediately after
opening the stack. The best place for an openStack handler (or any stack-
related handler) is in the stack script.

More About System Messages 245

While you're building an openStack handler, you certainly want to test it to
make sure everything is working as planned. The hard way to test it would
be to go to another stack and then reopen the stack you were working on. The
fast way would be to send an openStack message manually from the key-
board. If you type

openStack

into the Message Box, that message first goes to the current card. From there
it works its way up the hierarchy, until it finds the openStack handler in the
stack script. You can use this technique to test any handler in stack, back-
ground, or card scripts.

While most other aspects of system messages are covered well in the
Handbook, I've developed a number of strategies and techniques for using
system messages in stacks. I've also seen cases in which system messages
have been used improperly. In the following sections, we’ll look at the finer
points of system messages.

Mouse Messages

Perhaps the biggest misconception about mouseDown, mouseStillDown, and
mouseUp messages is that they belong only in buttons. Far from it. Those
three mouse messages may also be sent to fields and cards. Let’s see how.

Text fields are often a puzzlement for new HyperCard authors, because the
behavior of the cursor and HyperTalk is different for fields than for other
objects. For instance, if you lock the field (check the locked text button in the
Field Info dialog box), the cursor remains the Browse tool when drawn across
the field. As long as you can see that little browsing hand, the field will
respond to mouse clicks just as buttons do. Therefore, you may turn an entire
text field into the equivalent of a button by locking the field. You may then put
mouseUp or similar handlers into the field script, just as you would into a
button script.

When a field is not locked, however, the cursor turns into an I-beam cursor,
identical to the kind you find in word processing programs. A click of the
mouse button plants the flashing text insertion pointer into the field, showing
you where the next character you type will appear. That click, however, did
not send a mouse message to that field. Yet the field is not inert when
unlocked, for the act of planting the text insertion pointer into the field sentan
openField message to thatfield. Inasense, youare opening the field foraction.
Butany mouseDown, mouseStillDown, or mouseUp handlers you place inan
unlocked field script will never be found.

246 HYPERCARD DEVELOPER’S GUIDE

All fields and buttons, however, may trap mouseEnter, mouseWithin, and
mouseLeave messages, even if a field is unlocked. The sending of these
messages is not dependent on clicking the mouse. I've seen a couple of stacks
that use these messages in a potentially dangerous way. I suppose one author
did not want the browser of a demonstration program to be burdened with
clicking the mouse on screen buttons. With a mouseWithin handler in
buttons, the user triggers actions simply by moving the cursor within the
rectangle of the button. Perhaps this method is appropriate for some ea ly
leammg and entertainment stacks, but I believe this can become very co
ing for an unsuspecting user. If the novice user tries to accustom hlmself to
using the mouse, he will probably draw the cursor all over the screen,
including atop one of these mouseWithin buttons. When the screen shlfts as
the result of no apparent or deliberate action, I believe the user will think he
stack is automated—acting on its own. A deliberate click of the mouse 1}
better trigger for action.

Alsonote that the card is a valid recipient of mouseDown, mouseStillDown,
and mouseUp messages. That means that as long as no other objects on a card
have those mouse handlers in them, you can place any of those handlers in the
card script. This would be in lieu of drawing a full-card sized button and
placing a mouse handler in the button. Such a button would be a waste of an
object, and every object you add to a card slows the card’s opening and closing
time. To emphasize this point: There is no need to create a full-card-sized
button, because you can put a mouseUp handler in the card’s script. ’

Therefore, if you are creating an information publishing stack in which the
user is supposed to click anywhere on the screen to continue, do these three
things:

1. Lock all text fields.

2. Make sure no buttons or fields have a mouseUp handler in them.

3. Put the mouseUp handler in the card script.

Press-and-Hold Buttons

While we’re on the subject of mouse handlers, there’s a technique Ideveloped
for Focal Point to take the place of the traditional mouseUp handler in certain
situations. The problem I had was that when in stacks like the Dally
Appointment Book, in which you may need to click ahead several days,

More About System Messages 247

found the repeated mouse clicking to be a nuisance. While clicking on the
rightarrow button, I felt that it would be more natural if I could click and hold
the arrow button down, while the cards flashed by one at a time. The arrow
would bemore analogous to the arrows you find in scroll bars. When youclick
and hold those arrows, the scroll bar thumb continues to increment until you
let up on the arrow.

While the problem of making a button continue to act while holding the
mouse button down was not particularly difficult, it took a special combina-
tion of two handlers to also let single clicks act the way you’d expect. Thetwo
handlers are mouseStillDown and mouseDown handlers. Here's how they
work.

The mouseStillDown handler is the handler that does all of the work that
the arrow button should be doing, like going to the next card. In some Focal
Point stacks, the actions are more complicated (like knowing how many cards
to advance depending on the Daily, Weekly, Monthly, Yearly interval button
setting), but the same basic handler structure applies. In a simpler stack, like
the Notes stack, the mouseStillDown handler for the right arrow button is

on nouseStillDoun
go next

end mouseStillDown

That was the easy part.

Complicating matters is that on the slower machines, like the Macintosh
Plus, or in stacks that have a large number of buttons, it was easy to click the
mouse atop one of the arrow buttons—one complete mouseDown and
mouseUp cycle—so quickly that HyperCard never had a chance to send a
mouseStillDown message. That meant that the user might click on a button
and get no response. That, of course, was unacceptable.

The solution was to force a mouseStillDown message every time the user
pressed the button. In other words, inside a handler for one of the other two
mouse click messages would be the message nouseStiliDown. That mes-
sage would be trapped by the mouseStillDown handler in the same button
script. At first, I erroneously tried putting the mouseStillDown message in a
mouseUp handler. While it worked fine for the slower machines (although
there wasa very slight hesitation before jumping into action), it was disastrous
on the MacII. Since the Mac II responds so fast, and is able to squeeze more
messages per second, it sent a mouseStillDown message within a medium-
length click. Then the mouseUp handler sent another mouseStillDown
message, triggering another “gonext.” It was likea runaway train that always
overshot the desired station by one.

248 HYPERCARD DEVELOPER’S GUIDE

Thefinalanswer was to put themouseStillDown messageintoamouseDown
handler. Even on a Macintosh II, as long as you release the mouse button as
the next card scrolls into view, HyperCard won't send a mouseStillDown
message to trigger another scroll. Thus, the entire script for a nght arrow
button in the Notes stack of Focal Point is

on nouseStillDooun
go next
end nouseStillDoon

on aousecDoun
mouseStilliDown !
end mouseDouwn 1

There is no mouseUp handler of any kind in the button.

Remote Control of Buttons |
In multiple-stack systems, you may need access to button scripts to perfox‘;m
operations by remote control. For instance, the Deadlines stack in Focal Point
is linked to the Projects stack so that if you check off a deadline item as being
finished in the Deadlines stack, its corresponding listing in the Projects stack
is also checked off as being completed (Figure 14-1). But when that happe?s
some updating in the Projects stack is also necessary. While the user does not
see this interaction with the Projects stack (the screen is locked the entire tunf
someone must click on an Update button in the Projects stack to take care of
housekeeping.

The operation that is performed by the Update button could have been
incorporated into the handler that posts the check mark in the Projects stack,
but why duplicate efforts? The procedure works fine when you manual y
click theUpdatebutton in the Projects stack. All youneed isa way to click t
button, even though you re doing it from a handler in the Deadlines staclq

The way you do it is to send a mouseUp message to that button, like thl‘s

send “nouselp” to bkgnd button "Update”

Like we discussed in the last chapter, the Send command traverses the rules
of hierarchy. But, as you see here, it can do even more. |
Sending mouseUp messages to specific buttons is a common occurrence in
Focal Point, especially in the scripts attached to the various applicatio
buttonsalong the card’s left and right edges. Forinstance, whenyouareinthe

More About System Messages 249

D.
== Last Update: Saturday, March 12, 1988 at 8:34 AM

i
Dol PROJECTS eo<<———Thursday, December 24, 19870 <«<———
+ | MetaSystems Int Spring Promotion Arrange for in-store photography

PROJECTS o ««———Tuesday, January 5, 1988e<««———
H!'!l MetaSystems Int Spring Promotion Meet with merchandising to hear

Project #1003 .

Figure 14-1 Checking off a follow-up item in the Deadlines stack eventually triggers a
remote control pressing of the Update button in the Projects or Proposals stack.

Daily Appointment stack, its own icon button contains a script that finds
today’s card. When coming to this stack from most other Focal Point stacks,
the system presumes that you want to see (or at least start with) today’s
appointment card. But when coming from the To Do or Monthly Calendar
stacks, it is more likely that the destination appointment card is some day
other than today. As a result, I could not place an openStack handler that
automatically finds today’s cards—it would not apply to every opening of the
Stack. Instead, I placed the message

send mouselUp to bkgnd button "Day"

in the scripts of the Daily Appointment stack icon button in most of the other
stacks. Importantly, those buttons send the message only if there is no text
selected in the original card to be searched for in the Daily Appointment stack.
For example, the script of the Daily Appointment book icon button from the
Directory and Dialer stack is

250 HYPERCARD DEVELOPER'S GUIDE

on nouselp

get the selection

push card |
go to "FPeDaily" -- stack name for the Appointaent book |
if it is enpty |
then send nouselUp to bkgnd button "Day"”
else find it

end nouselp

Remote button clicking doesn’t apply only to stack-to-stack operations. |It
works just as well in any situation, even card-to-card operations, when y#:
can call upon a button handler that’s already been written.

Field Messages

Of all the messages that apply to fields, the ones we’ll be concerned with he e
are the openField and closeField messages. These messages are sent when
fields are left unlocked.

The openField message is always sent to the field that you tab to or click on
with the I-Beam cursor. The message is always sent, regardless of the content,
or lack thereof, of the field.

The closeField message is a bit peculiar in the manner it gets sent. First of
all, the only time a closeField message could ever possibly be sent is when the
contents of the field are different when it closes (i.e., when you tab, press t:}e
Enter key, or click outside the field). If you modify the text after opening it,
and then restore the contents to its exact original state before closing, no
closeField message gets sent to the field.

CloseField messages don’t always come when you expect them, however.
Through HyperCard version 1.2, the closeField message exhibits what ap-
pears to be anomalous behavior. To see if your current version of HyperCard
behaves this way, or to see for yourself how it works, let's make a new staﬁk
for this chapter and experiment away.

To make the stack:

1. Open the Developer’s Guide Master stack, created in Chapter 12.
2. Choose Save a Copy from the File menu. }
3. Type “Chapter 14 Stack” into the file dialog box.

4. Open Chapter 14 Stack via the Open Stack choice of the File menu.

More About System Messages 251

5. With the text painting tool, type “Chap. 14" into the card graphics layer
of the first card.

To help with the experiments, name the five fields of this card. You canbe as
cute and clever as you see fit. For the purposes of this demonstration,
however, we’ll name them “theFirst,” “theSecond,” and so on.

You'll also need two new buttons (they may be in the card or background
layers).

1. Choose New Button from the Objects menu.

2, Dragtheselected new buttonto theupperrightbox, and,in the Button Info
dialog box, rename it “No Hilite.”

3. Clone that button by holding down the Option key and dragging a copy
of that button directly below the first.

4. IntheButtonInfo dialogbox,namethebutton “Hilite” and check the Auto
Hilite check box (Figure 14-2).

€ File Edit Go Tools Objects

Chap.14

Button Name: [N [fite)
Card button number: 2 Style:
Card button ID: 3 O transparent
X Show name O opaque
[%nutu hilite O rectangle

(O shadow

@ round rect
O check box

LinkTo... (O radio button
Q=] @

Figure 14-2 The second experimental button should have auto-hiliting turned on.

252 HYPERCARD DEVELOPER’S GUIDE

Thelast instruments we need for this experiment are two handlers that should
go into the stack script of Chapter 14 Stack. The handlers are:

on openField \
put the target && "opened” \
end openField ‘

on closeField
put the target &8& “closed”
end closeField

These two handlers will put the name of the field into the Message Box, alo | g
with a description of what happened to that field (if anything). Thus, wh¢n
you open the first field, the Message Box will show

bkgnd field "theFirst® opened

to tell you what’s going on. i

|

A “Field” Experiment |

For the first experiment, simply press the Tab key repeatedly while watchmg
the Message Box. Each time you press the Tab key, the text insertion pointer
moves to the next field in the field order, opening the field for action. Note that
because nothing changes in the fields as you tab through them, there are no
closeField messages being sent. If you click the mouse with the cursor
anywhere outside of a field (including on a button), no closeField messagqs
are sent then either.

Next, press the Tab key until the text insertion pointer is in the first field
Type a word in the field, and press the Tab key while watching the Message
Box very closely. For a brief instant, the Message Box indicates that the first
field closed. You’'ve just seen how the Tab key can close a field whose content
has been changed. ‘

With the text insertion pointer still flashing in the second field, type some
more text. Press the Return key a few times. Notice that the Return key doei
not trigger the closure of a field (see later in this chapter for more about th
Return key). Now press the Enter key. The Message Box indicates that the
second field was closed.

Press the Tab key once. Because there is text already in the first field, the
entire text is selected when you tab to such a field. Remember the exact
spelling of the word you typed into this field and press the Backspace key to
remove the text. Without clicking the mouse button or pressing the Enter ke})w‘

|

More About System Messages 253

retype the word into that first field exactly as it was before. Now press the
Enter key to close the field. Because the text of the field did not change from
the instant it opened, there is no closeField message sent to the field.

Now press the Tab key twice to select the text in field 2. Press the Backspace
key, followed by the Enter key. Because you removed the text and changed
the contents of the field, the Message Box indicates that a closeField message
was sent to that field.

Now onto what I perceive to be anomalous closeField behavior.

To Close Or Not To Close

Make a change to the first field contents and leave the text insertion pointer
flashing in the field. Now click anywhere in the upper right box except on
either of the two buttons. Note that clicking on the card caused a closeField
to be sent to the first field, as you'd expect. The same would be true if you
locked one of the other fields and clicked on it. The closeField message would
still be sent to the changed field.

Things are different when clicking on buttons, however. Change the text
again in the first field. Then click on the No Hilite button. Not only is there
no closeField message sent to the field, but the text insertion pointer is still
flashing there. This is not necessarily a bug, since there is utility in having
access to the text insertion point when clicking on a button, such as using the
button to insert boilerplate text into key points in a field. So, the field stays
open until you press the Tab or Enter keys, or click on the card. That's easy
enough to remember, I suppose, especially with the insertion pointer still
flashing away.

The problem occurs, however, when you click ona button whose autoHilite
property is set to true. Change the text in the field again, and click on the Hilite
button. The text insertion pointer goes away. It just doesn’t become invisible,
still in the field, for if you start typing, the text from the keyboard goes into the
Message Box, as it would whenever no field is open. So did the field close
when you clicked the highlighted button? According to HyperCard, no. No
closeField message was sent to the field, yet every other indication is that the
field closed. Ibelieve this problemis related to the one in whichaa text selection
becomes de-selected when you click on anauto-hilite button. A future version
of HyperCard will probably resolve the problem, but the field will probably
remain open, as it does when clicking on a non-auto-hiliting button.

If your stack design is such that you’re concerned about users clicking on
buttons when you need a closeField message sent to a particular field, you can
trigger a closeField message artificially with the help of a global variable and
a few short handlers. The first handlers go in the stack script:

254 HYPERCARD DEVELOPER’S GUIDE

on openField |
global fieldOpened ‘
put the torget into fieldOpened

end openField

on closeField

global fieldOpened

put enpty into fieldOpened
end closeField

At the beginning of every mouseUp handler, then, you need to add the
following script lines:

on nouselp
global fieldOpened
if fieldOpened is not enpty
then send closeField to fieldOpened

This series of handlers uses a global variable to hold the name of the field last
opened by any method. The additions to the mouseUp handler check to see
if a field is currently open when the mouseUp message was sent by Hyper-
Card. If so, then a closeField message is sent to that opened field. Presuming
your field needs that closeField message foracloseField handler, that closeFle*d
handler must also pass closeField so that the stack script closeField handler,
shown above, sets the global variable to empty—meaning that no field is
open.

Taxing Returns “

As long as we have our field message laboratory operating, let’s look at one
other point that may cause some headscratching. First, clear the contents of
the second field on the card and close the field. You'll see the correspondin
open and close notices in the Message box. Now, click the mouse button wit
the I-Beam cursor somewhere near the middle of thefield. Then click with the
browse tool somewhere in the upper right box, but not on one of the buttons.
You may wonder why the Message Box indicates that the second field closed
even though you don’t see anything in there, and the field was empty to staT
with.

The reason is that there are text characters in that field, even though yotl
cannot see them. To prove it, type

the nunber of chars of field 2

More About System Messages 255

into the Message Box. You'll see that there are around six characters in the
field. Those characters are carriage return (end of line) characters, automati-
cally entered into the field when you clicked in its middle.

These invisible return characters are cause for concern in a design issue I
encounter in some stacks. When I create a stack that has pop-up fields
attached to buttons, I like to make some graphic change to the button
whenever there is text in one of those hidden, pop-up fields. That way, a
browser knows that there is something buried there, and where to click to get
it. As anexample, the Daily Appointment stack in Focal Point provides pop-
up note fields for each of the day’s hours. When you click on the button
containing the hour number, the corresponding notes field pops into view
(Figure 14-3). During testing, it occurred that users sometimes clicked in the
middle of the pop-up fields (sometimes accidentally), because it wasn’t clear
wheretostart typing. The user might then type a few characters in the middle
of the field, backspace to get rid of them, and click the number button to hide
what was supposed to bean empty field. Yet a few return characters were still
in the field. Upon hiding the field, the script noticed that the field was not
empty, and therefore drew a small box around the plus mark, signifying that
there was a note there.

o 12 copies of printed egenda
o forecast transparencies
o department budget requests

Figure 14-3 If a user clicks the text pointer in the middle of a blank detail field (when not
hidden), he unknowingly inserts Return characters. Upon closing the field, Focal Point
thinks there’s text in the field, and draws a square around the plus symbol. But the user
would see no characters when showing the field.

i

256 HYPERCARD DEVELOPER’S GUIDE

One way I used to prevent most accidental insertions of return characters
was to insert a Click At command each time the field pops up. As coordinates
fortheClick Atcommand, I used the top left corner of the rectangle of the field.
That always places the flashing text insertion pointer at the left margin of the
first line of the field (Figure 14-4). Then, if a user wants to experiment by
typing in text, he or she must press the Return key a few times to move the
cursorlower in the field. To remove the text, the tendency will thenbe to keep
backspacing until the cursor is back at the top left corner.

Open and Close Object Messages |

Cards, backgrounds and stacks all receive open and close messages whgn
they, well, open and close. Opening and closing does not necessarily mean
that you see one of these objects on the screen. If you lock the screen to go to
another background or another stack and then return to the original spot,
many open and close messages are sent. For instance, in the following
mouseUp handler from a hypothetical stack named “Table of Contents”

on mouselp
set lockScreen to true
push card
go to card "Index 1" of stack "Art History®
get field "Last Update®
pop card
put it into field "AH Update"
end nouselp

look at how many open and close messages are sent:

Monday, July 11, 1988

Figure 14-4 By the script clicking at the top left corner of the hidden field when the field is
shown, the tendency is to backspace all the way to the top to remove accidental characters.

More About System Messages 257
message location
closeCard current card with button in it
closeBackground current background
closeStack stack “Table of Contents”
openStack stack “Art History”
openBackground background containing card “Index 1”
openCard card “Index 1”
closeCard card “Index 1”
closeBackground background containing card “Index 1”
closeStack stack “Art History”
openStack stack “Table of Contents”
openBackground background containing original card
openCard card with button on it

That's 12 open and close messages just to fetch a field in another stack. If the
screen is locked or unlocked, the same messages still fly.

While it’s true that all these open and close messages go to the card level
first, itmakes the most sense to place openand close stack handlers in the stack
script and open and close background handlers in the background script.
Card handlers, however, may be best placed at levels other than the card.
About the only time you’d consider placing an openCard or closeCard
handler in the card script was if the handler pertained to that single card only.
More likely, you write an openCard or closeCard handler to control the
opening and closing of a series of cards, either in the same background of a
heterogeneous stack (in which case the handlers would go into the back-
ground script) or in the stack of a homogeneous stack (in which case the
handler could go in either the background or stack script).

It's particularly important to recognize that open and close object messages
are sent even with the screen locked, because these messages could adversely
affect the posting or retrieval of information in a card, background, or stack
other than the one locked on the screen. For example, if a mouseUp handler
in one stack needs to retrieve data from a card in another stack, the openStack
or openBackground handler of that other stack could perform some updating
or other housekeeping tasks that may interfere or slow down the information
retrieval. Fortunately, there is a way around these messages.

When you wish to bypass open and close object handlers in an information
posting/retrieval situation, you can set the lockMessages property to true, as
in

set lockHessages to true

258 HYPERCARD DEVELOPER’S GUIDE

at the start of the handler that fetches the data. When this global property is
set to true, HyperCard suspends all system messages (except idle) until you
set lockMessages to false or the current handler ends and HyperCard sends

an idle message. ‘
|
‘\
|

Keyboard Messages

There are just eight keyboard messages, of which only six make any sense m
a stack product that will be distributed widely. This is because two keyboard
messages, functionKey and controlKey, require keyboards other than the
lowest common denominator keyboard of the Macintosh Plus. Both newer
keyboards for the Macintosh SE and II have a Control key, while only t e
Macintosh Extended Keyboard has function keys. Before we get to these
special key messages, let’s take care of the four common ones.

Three keyboard messages, returnKey, enterKey, and tabKey, are rather
straightforward. Each time you press those keys (Return, Enter, and Tab,
respectively) while no field is open, their corresponding messages go to the
current card. The only caution is that when you are editing text in a field—
when the text insertion pointer is flashing in a field—these keys do not send
their messages to the current card. Instead, while in text editing mode, these
keys have very different functions, such as inserting areturn characterinaline
of text, or closing a field. Fortunately, you can still trap for the Return and
Enter keys when editing a text field. |

!
|
1
|

Keyboard Trapping in Fields

Early HyperCard stack developers desired a way to trap for theuser’s pressing
of the Return or Enter keys while editing a field. Beginning with version 1.2,
HyperCard sends two system messages, returnInField and enterInField,
whenever the user presses the Return and Enter key while the text cursor is
ﬂashmg in the field (i.e., when the field is open). You can use these messages
in two very different ways, depending on the nature of the fieldsand how you
want the user to enter data into them.

If your only goal is to prevent the text cursor from jumping to a line below
the last visible line of the field, then you’ll be better served by turning on the
Auto-Tab property in the field's info dialog box. For one-line fields, therefore,
the Auto-Tab property may be all you'll need to prevent the user from addmg
text below the visible field area.

Inamultiple-line field, you may wish to prevent the user from adding more

More About System Messages 259

than a single HyperCard line of text. Recall that a HyperCard line of text
begins at a left margin and continues until it encounters a return character,
even if the line wraps within the field. To restrict the text to one line you must
not allow the user to type a return character into the field. To do that, you’d
trap for the returnInField system message in a field script like this:

on returninField
end returninField

No return character will ever reach this field. But it also means that Auto-Tab
(which requires the return key) will not work for this field, nor will pressing
the Return key close the field.

Field Entry Validation

One clear advantage of being able to trap for Return and Enter key presses
withina field is to perform tests on the text within a field to make sure the entry
consists of valid information. For instance, if you want to make sure thata user
enters only numbers into a field, then you can create a returnInField handler
for that field to test the contents of the field before allowing the user to proceed
to the next field.

Here is an example of a returnInField handler that compares each character
of a text field against a list of all numbers plus a decimal:

on returninField
repeat with x = 1 to the length of ae
if not (char x of me is in "0123456789.") then
beep
answer "Entry nust be a nunber only."
select text of ae
exit returninField
end if
end repeat
pass returninField
end returninField

If one of the characters is not a number or decimal point, then the handler
beeps, presents an answer dialog box with a clue about what's wrong with the
entry, selects the text in the field for quick re-entry of the data, and exits the
handler. Only if all characters in the field are valid does the returnInField
message get passed to HyperCard. Be sure to pass the message if you have
Auto-Tab turned on—if HyperCard doesn’t see the returnInField message,
the cursor won’t “tab” to the next field.

260 HYPERCARD DEVELOPER'S GUIDE

|
|
|

In the above situation, and in any situation in which you modify the actién
of the returnInField system message, it is generally desirable to make a press
of the Enter key perform the same action as the Return key. Given a returnIn-
Field handler like the one above, you can mimic its action with the Enter key
by adding this simple handler to the field script:

on enteriInField

returninField
end enterinField

|
If you plan to offer different actions for each key, consider this move carefully
I'm not sure how intuitive this setup will be for the user. Some databaﬁe
programs use this system to advance the cursor through fields with the Return
key, and advance to the next record (“card” in HyperCard terminology) with
the Enter key. What works in a database program, however, may not l#e
appropriate for a HyperCard stack. “
The Text Arrows Property

Our discussion about arrowKey messages must be preceded by a discussion
of a global property added to HyperCard 1.1—textArrows. When this
property is set to false, as it essentially was in HypexCard version 1.0.1, the
arrow keys are strictly stack navigation keys (except in the Script Editor,
where they move the text cursor). Adding the textArrows property, and
setting it to true turns the arrow keys into text cursor movers, rather than
navigationkeys. Even with textArrows turned on, you can use thearrow keyg
as navigation aids by holding the Option key at the same time.

I have mixed feelings about this property. On the one hand, I've gro
accustomed to reaching for the arrow keys to navigate through many stacks‘.
Having to hold down the Option key means a change of habit. On the other
hand, I fully appreciate the desire to move the text insertion cursor in a ﬁeld
via the arrow keys, as you can in most word processors. Word processors, of
course, also let you move the cursor in word jumps, which HyperCard does
not. There is a tradeoff.

Perhaps the most disturbing part of textArrows being turned on is that the
arrow keys aredead unless a text cursor is flashing somewherein a field or the
Message Box. They do nothing.

The way I treat this property in my stacks is to ignore it. When necessary,
my scripts trap for arrow keys as navigation aids. Ileave it up to the user and
the Home stack preferences setting to figure out how the arrow keys work.

More About System Messages 261

ArrowKey Messages

The arrowKey message is often a source of confusion for new HyperTalk
programmers, because it's one of very few messages that comes with a
parameter (left, right, up, or down). Any handler that is to trap for an arrow
key press must be written to accommodate the parameter.

By way of explanation, you should remember that a press of the left arrow
key actually sends the two-word message

arrouKey left

The word I e ft is a parameter to the arrouKkey message. The handler that is
to trap for the arrowKey message must present a variable name into which the
message parameter goes. Therefore, in the handler

on arrouvkKey whichKey
if whichKey is "right® then
visual effect wipe left
go to next card
else if whichKey is "left” then
visual effect wipe right
go to previous card
end if
end arrouKey

the arrowKey message parameter is placed in a local variable, called which-
Key. That variable may then be used within the handler to be tested against
specific directions you're looking for. Note, too, that in the above handler,
since the arrowKey message is not passed beyond the handler, the up and
down arrow keys will be inert on the keyboard. Only the left and right arrow
keys will do anything in this stack.

The Control Key

The Control key on the new keyboards (for the Macintosh SE and Macintosh
II only) is there largely for the purpose of being compatible with IBM
keyboards, just in case you use your Macintosh to emulate an IBM PC with co-
processor boards or as a terminal to a mainframe computer. The Control key
is nothing more than another modifier key, like the Option and Command
keys on all Macintosh keyboards. In other words, you use the Control key in
concert with one or more keys on the keyboard to issue some kind of
command.

262 HYPERCARD DEVELOPER’S GUIDE

Unlike the Option and Command keys, however, the Control key issues a
HyperCard system message to the current card when it is pressed. The Option
and Command keys, you'll recall, may be tested by way of functions (the
optionKey and the commandKey) to see if they’re being held down while a
handleris running, but you cannot trap for someone typmg Command-Q, for
instance. With the Control key, however, you can issue commands of any
kind from the keyboard, because you can trap for a press of the Control key
and another character.

The controlKey message is different than most messages, because not only
does it send a parameter along with it, but the parameter is a code number for
a character accessible from the keyboard. The code number is the character’s
ASCII code. Thereis an ASCII code for each character you can type from the
Macintosh keyboard, including special characters accessed only with the
Option key. To find the ASCII code for a particular character, you can look it
up inan ASCII table or uncover it the more fun way by using HyperTalk in the
Message Box. Just type the CharToNum function and the character whose
code you wish to look up. Here are several functions you can try in the
Message Box:

the charToNum of "C®
the charToNun of “"¢”
the charToNun of “e° -~ Option-8

the charToNun of "G -- Option-Shift-C

You may wish to set up some Control-key equivalents to summon various
painting tools from the tools palette, like a quick way to summon the button
tool without pulling down or showing the palette. Here’s a controlKey
handler you could use in that instance:

|
on controlKey whichKey |

if whichKey is 98 -- "b"
then choose button tool ‘
else if whichKey is 102 -- f" i

then choose field tool ‘
pass controlKey
end controlKey

Importantly, the parameter passed along with the controlKey message s case-
sensitive. In other words, the ASCII codes for “a” and “A” are different

numbers. Ifthere is the chance that a user will issue the Control key sequenl
with the CapsLock key down, then your handler had better test for both upper
and lower case instances of the parameter. A handler that tests for many

More About System Messages 263

Control-key sequences might have a conversion routine at the beginning that
converts the case of characters to all lower case or all upper case.

Function Keys

The Apple Extended Keyboard has arow of 12 function keys across the top of
the keyboard. These keys are there to emulate IBM AT keyboards. Each key
is labeled with its number. Each time you press one of these keys, HyperCard
sends a functionKey message to the current card, along with a parameter
consisting of the number of the key. Keys 1 through 4 are preset to take care
of the four common editing functions: Undo, Cut, Copy and Paste, so if you
like these functions on those keys, you can leave them. Apple’s user interface
guidelines would prefer it that way.

You have full license to program the actions of all 12 keys, including the
preprogrammed ones. Allit takes is to write a functionKey handler that traps
for the desired key numbers. A typical functionKey handler might be

on functionKey whichKey

If shichKey < 6 then pass functionKey

else if whichKey is 6 then dollenu "Neuw Card"

else if whichKey is 7 then doHenu "Delete Card”

else if whichKey is 8 then lockFields

else if whichKey is 9 then unLockFields

else if whichKey is 11 then dollenu “Conpact Stack”
end functionKey

In the above example, you'll notice that you can use a function key to trigger
any kind of action, like the locking and unlocking of fields, whose handlers
you may have in your Home stack.

Unless you know for sure that every user of your stack willhave new Apple
keyboards, it’s not wise to program the controlKey or functionKey handlers
into your stack or rely on those keys alone to trigger key operations. These
keys do, however, let you program many stack development shortcuts for
yourself. For additional tips on authoring shortcuts and debugging tools, see
Chapter 21.

DoMenu

A very powerful message that HyperCard sends—and therefore lets you trap
for—is the doMenu message. Each time you choose an item in a menu,
HyperCard sends the doMenu message along with the exact text of the menu

\
‘1
264 HYPERCARD DEVELOPER'S GUIDE

item as a parameter. When I say “exact text,” I mean it. If a menu item has an
ellipsis (three periods) after it, then the parameter has three periods at the end
of it (they’re three periods, not the ellipsis character, Option-semicolon, found
in some fonts).

The reason trapping for menu items is so important is that your stacks cén
let the user make menu choices from the HyperCard menus, but you can
modify or amplify the operations triggered by certain menu choices. For
example, in several Focal Point stacks, I intercept the New Card menu
command because that operation entails creating several cards (from differ-
entbackgrounds) and establishing links among them. Rather than trap for the
newCard message, which comes only after one card has been created, my
handler keeps mein complete control of the new card (series) creation process.
It also means, as demonstrated in the previous chapter, that whenIneed a rea 1
new card, the handler must send a doMenu New Card message to Hype{
Card, itself, thus bypassing my own doMenu handler.

Another example of why you'd like to trap for menu items is the nav1gat10n
choices in the Go menu. In a heterogeneous stack, you usually don’t want the
user to keep going to the next card until he breaks into the next background.
That could really confuse the user. Better to restrict navigation to a particular
background. This you can do by trapping for the Previous and Next items in

the Go menu and modifying their action. Thus, the handler would be “
|

on doMenu whichlten }
If whichltem is "Prev"® ‘
then go to previous card of this bkgnd
else if whichltem is “"Next®
then go to next card of this bkgnd
else pass dollenu

end dollenu

Thisis]ust ahint of what's to come later in the chapter, when we examine how
you stay in navigation control of the stack. |
One facet of the doMenu message and associated handler cannot be
overemphasized. Your handler must pass doMenu for all menu choices other
than the ones you’re trapping for. If you fail to pass the message, you'll be
locked out of all menu items, including Quit HyperCard or getting the Info
boxes for the background orstack. If you’ve placed adoMenu handler in your
background or stack and find that the pass doMenu line is not working
properly (thus preventing you from using the menus), then there is a last
resort. If the Message Box is showing, then type |

More About System Messages 265

edit script of bkgnd -- if dollenu handler is in the background
or
edit script of stack -- if the handler is in the stack script

This will bring up the Script Editor for the appropriate object, and you may
repair the script.

If the Message Box is not showing, you won’t be able to bring it into view
by typing Command-M, because that’s the menu equivalent of Messagein the
Go menu—and all menus are locked out. Make sure the Blind Typing
property is set to true in your Home stack and blindly type

shou msg

to bring the Message Box into view. Then you may type the appropriate edit
script command, as shown above (or you may blindly typeedit script if
you’'re confident in your typing abilities).

Suspend and Resume

The suspend and resune messages are sent when HyperCard launches
another application and returns from another application, respectively.
Suspending is considered different than quitting HyperCard. That’s because
when you suspend HyperCard, the next time HyperCard opens, it comes to
the card from which you suspended operation. But because HyperCard “goes
away” when it suspends (when not using MultiFinder), no global variables
are automatically saved. That’s something you have to take care of in your
HyperTalk scripts.

If your stack or stack system offers facilities for launching outside pro-
grams, chances are that it’s done from a very specific place, like a special stack,
background, or card. If so, consider using the suspend message as a trigger
to save the state of various global variables and other settings into a field on
thatcard. For instance, if the user has adjusted thelocation of the Message Box
on the screen, your program should save that location in a hidden field when
suspending the program. Upon resumption, the location of the Message Box
should be set to the coordinates saved previously. Addingsucha touch makes
your stack seem much more intelligent than HyperCard itself. Because you
know that upon resume HyperCard will open to the very card from which it
left, a field is a safe place for the data to be carried over. The Document

266 HYPERCARD DEVELOPER’S GUIDE

Launcher of Focal Point saves several states prior to launching an exterx‘wl
application, and restores them upon resume.

One key point to remember about a resume handler is that the Home stack
contains a very important resume handler—itself. That handler sets key
global variables for looking up pathnames and also sets several system-wide
parameters (e.g., userLevel) to settings in the Home Stack. Therefore, always
pass resume at the end of your resume handler.

StartUp and Quit |

Somewhat analogous to the resume and suspend messagesare startUpand
qu | t. These messages, however, represent more drastic actions on the part‘ of
the user. The startUp message is the one HyperCard sends when the program
starts up from the Finder, from scratch. Quit, at the opposite end, is the
message HyperCard sends when you choose Quit HyperCard from the Fpe
menu.

In the Homesstackisa startUp handler that calls along handler, getSysInfo
This handler, alluded to in the last section, puts together the global vanablles
for the stack, document, and application pathnames, as well as setting gloQal
properties of user level, power keys, text arrows and blind typing. In very
tightly controlled circumstances, in which the author is in charge of stack
pathnames within handlers, controls the user level and never lets the user
have direct access to HyperCard, the startUp handler can omit the getSysInfo
handler, but this is not generally recommended.

The startUp message goes to the current card first, so if you havea startUp
script in your stack and launch the stack from the Finder by double-clicking
on the stackicon, your stack will trap for the startUp message before the Honlnrl
stack will. Therefore, it is important that any startup handler you include i
your stack pass start up up the hierarchy so the Home stack can do its
important getSysInfo tasks. ;

|

Help

The help message is the message HyperCard sends when you choose Hel‘p
from the Go menu. Because help is its own message, you may trap for it by
name, rather than by trapping for it under the guise of a doMenu handler.,
Trapping for help is important if your stack contains on-line help cards. In
stacks that show the HyperCard menu bar, a single Help menu item ca
provide access to the stack’s help cards and HyperCard help (via a button in

More About System Messages 267

the stack’s help system). Getting to a stack’s own help system via the Help
menu item makes the stack application feel more like a freestanding program,
since the menu item seems to work within your own stack, and not just with
HyperCard.

Idle

The idle message is a troublesome critter, because it can be both powerful
and dangerous at the same time—powerful because it can make things
happen with the computer unattended and; dangerous because it can rob the
user of control over text editing. Therefore, idle handlers must be used with
special care.

HyperCard sends idle messages over and over anytime nothing else is
going on in the stack. It's like the HyperCard motor always running, with the
gear in neutral. In the idle state—called “idle time”—HyperCard sets a
number of properties to false, especially all the locks on screens, message
passing, and painting of miniature cards into the Recent box. Alsoatidletime,
any pending visual effects are flushed from the list. Idle time, therefore, is an
important time for HyperCard.

One of the most common applications of the idle message is trapping for it
and displaying a running timer in a field on a card. It's not a bad idea. Even
the Home Card, as it ships from the factory, has just such an idle handler in it.

Difficulty arises, however, when authors attempt to combine idle handlers
and cards that have user-accessible text fields in them. Specifically, the
problem comes from the commands within the idle handler, commands
which usually put the time into a specific field. If a user is trying to enter data
into one field, and the idle handler puts the time into another field, the user
loses the battle for the text insertion pointer. If the clock is updating the time
every second, it will be virtually impossible for the user to enter anything into
other fields. Even if the time being put into the field is from the Short Time
function, the idle handler robs the user of the text insertion pointer once each
minute. If you've tried to coexist with this arrangement, you quickly discover
thatit’s a very frustrating experience. I've never encountered an idle handler
in an interactive card that I've liked.

Idle handlers are useful, however, when placed in a proper environment.
Specifically, any card that has click-only interactivity is a fine candidate for an
idle handler, if one is necessary. I'll show you two diverse examples of how
I've used idle handlers in Business Class and Focal Point.

268 HYPERCARD DEVELOPER’S GUIDE

Idle in Business Class '
As an extension of the simple clock field, like the one in the Home cax!'d,
Business Class puts the idle handler to even more time-keeping work. The
main world map (Figure 14-5) uses two large highlighted buttons to track the
location of nighttime (the time between 6 pm and 6 am). The location of those
buttons shifts as the day progresses (sometimes you can’t even see one of the
buttons—its coordinates are set to off the screen).

While I could have settled on locating the buttons at the time the card
opened and left them there, I made the card come to life. If you are watchis g
this card as the hour changes, you'll see the night/day lines shift one tin
zone. Anidle handler keeps track of this as well as the local clock in the upper
right corner.

Idle in Focal Point

A very different problem confronted me in the Deadlines stack of Focal Point
(Figure 14-6). Here there are two fields, both of which must scroll in
synchronization with each other. One field is the skinny one at the left which

Figure 14-5 With no text fields for data entry, the map menu card of Business Class is a
suitable candidate for an idle handler to keep its clock and day/night lines “alive.”

More About System Messages 269

&€ File Edit Go Tools Objects
B

Last Update: Saturday, March 12, 1988 at 8:34 AM

II‘;‘

[0

PROJECTS e®<«———Thursday, December 24, 19878 <<———
~ | MetaSystems Int Spring Promotio Arrange for in-store photography

|

PROJECTS e««<———Tuesday, January 5, 1988e <«<———
MetaSystems Int Spring Promotio Meet with merchandising to hear

1

PROJECTS e <<———5unday, January 10, 19880 <¢———
MetaSystems Int Spring Promotio Collateral from artist due

HE

PROPOSALS L1 Tuesday, January 12, 1988e<<———
~ |ATD Corporation Annual Report Call Paul about getting the job

PROPOSALS e<«——=Thursday, January 14, 19888 (¢<———
ATD Corporation Annual Report Get final quote on printing
+ |InfoSys Interna Annual Report Call Paul about getting the job

CAlE

PROJECTS e««<———Friday, January 15, 1988e<«<———

Figure 14-6 An idle handler keeps the two fields of this card in sync (the checkoff field has
a scroll bar, but it's hidden beneath the larger field).

contains check marks inserted by clicking on the field next to an item you’ve
completed. The other field contains the items due on all days listed in the
Projects and Proposals stacks.

To make both fields scroll in sync, I first covered the scroll bar of the skinny
field with the larger field, making sure the latter had a higher field number,
and was thus in a layer closer to the viewer. Then a