
- .
THE MACINTOSH PERFORMANCE LIBRARY

Danny Goodman's
HyperCard

Developer's Guide

Danny Goodman's
HyperCard

Developer's Guide

Danny Goodman

BANTAM BOOKS

IDRONTO • NEW YORK • LONDON • SYDNEY • AUCKLAND

Danny Goodman's HyperCard Det1eloper's Guide
A Bantam Book/July 1988

All Rights Reseroed
Copyright © 1988 by Danny Goodman

Cot1er design © 1988 by Bantam Books, Inc.
Interior design by Nancy Sugihara

Produced by Micro Text Productions, Inc.

This book may not be reproduced in whole or in part, by mimeograph or any
other means, without permission. For information address: Bantam Books, Inc.

Apple, Image Writer, Laser Writer, and MacPaint are registered trademarks of Apple
Computer, Inc.
Finder, HyperCard, HyperTalk, Macintosh, MultiFinder, and StackWare are trademarks
of Apple Computer, Inc.
APDA is a trademark of A.P.P.L.E. Co-op.
Turbo Pascal is a trademark of Borland International.
Disk Top is a trademark of C.E. Software.
MacRecorder, HyperSound and SoundEdit are trademarks of Farallon Computing, Inc.
SoundWat1e is a trademark of Impulse, Inc.
Stack Exchange is a trademark of Heizer Software.
Icon Factory is a trademark of HyperPress Publishing Corp.
Video Works is a trademark of Macromind, Inc.
Visual Interactive Programming is a trademark of Mainstay.
HyperDA is a trademark of Symmetry Corp.
LightSpeed C and Light Speed Pascal are trademarks of Think Technologies.
VideoStack is a trademark of The Voyager Company.

NOTE

BANTAM AND THE AUTHOR SPECIACALL Y DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WAR­
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR­
POSE WITH RESPECT TO DEFECTS IN THE PROGRAM LISTINGS IN THE
BOOK, AND/OR THE TECHNIQUES DESCRIBED IN THE BOOK, AND IN NO
EVENT SHALL BANTAM OR THE AUTHOR BE LIABLE FOR ANY LOSS OF
PROAT OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT
LIMITED TO SPECIAL, INODENT AL, CONSEQUENTIAL OR OTHER DAM­
AGES.

ISBN 0-553-34576-1

Published simultaneously in the United States and Canada

Bantam Books arc published by Bantam Books, Inc. Its
trademark. consisting of the words •san tam Books" and
the portrayal of a rooster, Is registered In US. Patent and
Trademark Office and In other countries. Marca Regis­
trada. Bantam Books, Inc. 666 Flfth Avenue, New York.
New York 101m

PRINTED IN THE UNITED STATES OF AMERICA
0 9 8 7 6 5 4 3

Contents

Acknowledgments xi

A Note to My Friends xili

Introduction. When Is HyperCard the Right Choice? 1
A Range of Developers • "Developer'' Defined • Stack Categories • Infor­
mation Publishing • Information Management • External Device Control •
Utility Stacks • Other Than HyperCard • Flat File Databases • Relational
Databases • Relational Basics • H ypetCard vs. Relational Databases •
Database or HyperCard? • Traditional Programming Environments • The

• · Final Choice • The Next Step

PART ONE

Key Stack Developer Issues

1 Issue 1: How HyperCard Literate is the User? 27
Difficult Concepts • Installation Routines • Pathname Settings • Inside the
Stack Button • Hands Off the Home Stack • User-Friendly Front Ends •
Printing Cards • Script-Writing Scripts • Customization Front End • Front
End Visuals • The Watch Cursor • Anticipating Macintosh Literacy

2 Issue 2: Designing for all Macintosh Models 47
Execution Speed Concerns • Macintosh Plus • Macintosh SE • Macintosh
ll • What About Floppies? • Multimegabytes of RAM • Screen and Card
Size • Screens and Menus • Timing • Ticks, Seconds and Delays • When
Delays Are Necessary • Animation

3 Issue 3: What About the Macintosh User Interface? 59
The Menubar • Inapplicable Menus • When to Show Menus • Buttons,
Icons, and Clicking • Of Mice and Clicks • Single Clicks Do All • Trapping
Double Qicks • Icon Buttons • Button Feedback • When to Highlight •

vi HYPERCARD DEVELOPER'S GUIDE

Radio and CheckBox Button Highlighting • Feedback Problem • Choose
the Correct Button Style • Taking a Stand

4 Issue 4: Screen Aesthetics 75
My 80/20 Aesthetics Rule • Macintosh Artists and Screen Artists • Icon
Design • Finding an Artist • Paying for Art • Working With the Artist •
When to Hire the Artist • Key Design Guidelines

5 Issue 5: Stack Structure 89
Internal and External Structures • Homogeneous and Heterogeneous
Stacks • Navigation Flow • The Straight Line • The Tree Structure • The
Cobweb • Hybrid Structures • Stack Systems and Non-linearity • Decid­
ing Stack Structure • Heterogeneous Stack Advantages • External Struc­
ture • Floppy Disk Concerns • Focal Point Strategy • Business Class
Strategy • CD-ROM Structure

6 Issue 6: Converting Existing Databases to HyperCard 113
Is HyperCard the Right Environment? • Field Structure • Replicating
Narrow Sorts • To Combine or Not To Combine Fields • Multiple-Lined
Fields • A Case for Single Fields • Field Design Tricks • Importing Data­
base Data • Preparing the Data • The Script • Changing the Field Struc­
ture • Importing Word Processing Data • Handling Long Text Blocks •
Long Text Import Scripts

7 Issue 7: Stack Protection 133
Why Protect? • Private Access Protection • Stack Delete Protection • Can't
Modify Stack Protection • User Level Protection • Protection Problem •
When to Lock the User Level • When NOT to Lock the User Level • Com­
mercial Proprietary Secrets • True Protection • Buying and ·"Borrowing''
XCMDs

8 Issue 8: Engaging the Couch Potato 145
Make Stacks Inviting • Articles of Engagement • Present an Opening
Screen or Sequence • Use Visual Effects Wisely • Make Buttons Look Like
Buttons • Use the Appropriate Structure • Transform Data Entry Into
Mouse Clicks • Build Magic Into the Application

9 Issue 9: Making Stacks Customizable 155
Leaving Oues • Customizing Front Ends • Building and Extending Dated

Contents vii

Stacks • Customizing User Preferences • Inside the Preferences Card •
Button Customization • Inside the Button Customization

10 Issue 10: Stackware is Software 167
Software Design • A Functional Specification • Prototypical Focal Point •
Provide On-Line Help • Help In Context • Introduction and Stack Over­
view • Intercepting Help • Include a Good Manual • Who Reads It? •
Who Should Write It? • When to Write It • How Should It Look? • Pro­
vide Data Importing • Test, Test, Test • Start Testing Early • Testing
Procedures • Be Smart About Marketing • The Retail Channel • Low-Cost
Publishing • Self-Publishing • Open Channels • Choosing the Channel

11 How to Build a Stack 187
Different Methods • Information Publishing Stacks • Information Manage­
ment Stacks • External Device Control Stacks • How to Go Wrong

PART TWO

HyperTalk Techniques for Developers

12 A Different Approach to HyperTalk
A Working Laboratory

201

13 Scripts and the Object Hierarchy 209
The Hierarchy-Two Perspectives • Making the Chapter's Stack • The
Target and Me • Short, Medium, and Long Target Names • Target Deci­
sions • Naming Objects and Target Names • When to Use the Target • The
Target and Me • Choosing the Appropriate Level • Reducing Handlers •
The Ultimate Handler Reduction • One Handler Fits All • CloseField
Handlers • Lateral Hierarchy • Stack-to-Stack Hierarchy • Background-to­
background hierarchy • Bypassing the Hierarchy

14 More About System Messages 243
Who Gets Which Message • Mouse Messages • Press-and-Hold Buttons •
Remote Control of Buttons • Field Messages • A "Field" Experiment • To
Oose or Not to Close • Taxing Returns • Open and Close Object Messages
• Keyboard Messages • Keyboard Trapping in Fields • Field Entry Valida­
tion • The Text Arrows Property • Arrow Key Messages • The ControlKey

viii HYPERCARD DEVELOPER'S GUIDE

• Function Keys • DoMenu • Suspend and Resume • StartUp and Quit •
Help • Idle • Idle in Business Class • Idle in Focal Point • Controlling
Navigation • Button Navigation • Arrow Key Navigation • Menu Naviga­
tion • Message Box Navigation

15 Sending Your Own Messages 275
Commands and Messages • Why a Custom Handler? • Stack Commands
• Convenience Handlers • Naming Your Messages • Modifying Hyper­
Talk Commands • Passing Parameters • Passing Multiple Parameters •
Parameter Variables and the Param Function • Parameters and Global
Variables

16 User-Defined Functions 293
What User-Defined Functions Do • Functions and the Hierarchy • Func­
tion Syntax • Returned Values • Function Modularity • Simple Functions
• Passing Parameters • Multiple Parameters • Using Your Function Li­
brary

17 Diving Deeper Into Control Structures 303
Control Basics • If-Then-Else Constructions • If-Then-Else Style • If-Then­
Else Reduction • Repeat Basics • Repeat With Constructions • Looping
Through Object Names • Naming Sequential Objects • Number Formats
and Object Names • Nested Loops • Repeat Forever • Repeat Performance

18 Setting Up Linked Cards 325
Suite Examples • Multiple-Lined Containers-Arrays • More About
Arrays • Type A Suites: Hub and Spokes • Type B Suites: Rolling Hub and
Spokes • Linking on the Fly • Type C Suites: The Accordion • Adding and
Deleting From the Accordion Suite

19 Working With Date and Time 351
HyperTalkFunctionsandCommands • Seconds-The Common Thread •
Adding Time • Times Include Dates • The Handler • World Time Conver­
sion • Foreign Daylight Saving Time • Elapsed Time Counter • Days
Between Two Dates • Dates Before Deadlines • International Dates

20 Solving Searching and Sorting Mysteries 373
Workbook Stack • Entering Sample Data • Simple Finding • Finding By
Field • Find in Field Workaround • Boolean Finds • Find Whole and Find

Contents ix

String • Plain Sorting • Sorting By Field • "Dual Key" Sorts • Sorting Card
Suites

21 Authoring and Debugging Tools 385
Home Stack Tools • Author Tool Shortcuts • Using Scripts to Build Stacks
• Debugging • Check the Script Editor • Heed the Error Dialogs • Tracing
Variable Values • Testing If-Then Constructions

22 HyperTalk Script Style and Practice 401
Practice and Style Guidelines • Readability • The Preamble • Line Spacing
• Command Lines • Efficiency • Timing Tests • Comprehension

PART THREE

Resources For Stack Developers

23 A Resource Crash Course 413
The Resource Concept • Macintosh Files-Data and Resources • Anatomy
of a Resource • HyperCard Resources • Resources and the Hierarchy •
Resource Tools • Using ResEdit • ResCopy

24 Icon Resources 429
Icon Basics • Creating an Icon Resource • Preparations • Applying the Art
• Make a New Resource • Commercial Tools • Extracting Icons

25 Sound Resources 447
Why Sounds? • Using Sound in a Program • Digitized Sound • Macintosh
Sound Resources • Converting Existing Sounds • HyperSound • Produc­
ing Sound Stacks

26 Introduction to XCMD and XFCN Resources 455
What is an XCMD? • Why XCMDs? • Writing Your Own XCMDs • Learn­
ing Library • Before You Go Off to Learn a Language • In Case You Know
a Little Pascal • Calling an XCMD-What Happens • What You Need to
Compile XCMDs • What APDA Sends You • Calling an XCMD-Object
Hierarchy • About the Following XCMDs

x HYPERCARD DEVELOPER'S GUIDE

27 An About Box XCMD 469
The Stack • Calling Conventions • Design Assumptions • The XCMD •
How the XCMD Works • Error Handling • Creating the DLOG Resource •
Further Ideas

28 A Pop-Up Menu XFCN 497
The Pop-Up Menu Interface • Pop-Ups and HyperCard • The Stack •
Calling Conventions • Getting Items in the Menus • What the XFCN
Returns • Design Assumptions • The XFCN Project • How the XFCN
Works • Creating the MENU Resource

29 A Serial Port XCMD 523
What Comm Can Do • The Stack • Calling Conventions • Opening and
Closing Serial Ports • Writing and Reading • Connecting to a Service •
The Communications Session • Dialing and Logging On • Getting the
Weather • Logging Off • How the XCMD Works • Further Ideas

30 A Final Word

Appendix A. Sources

Appendix B. Interactive Sound in HyperCard by Tim Oren

Appendix C. Writing XCMDs in LightSpeed Pascal

Appendix D. Writing XCMDs in LightSpeed C

Appendix E. Writing XCMDs in Turbo Pascal

Appendix F. Writing XCMDs in Mainstay V.I.P.

Index

553

555

559

581

597

619

627

635

Acknowledgments

While the actual writing of a book is a lonely task, this particular volume had
what Hollywood would call"a cast of thousands." Some I've had the pleasure
of meeting in person; others I've met only through their electronic message
questions or by exploring their HyperCard stacks. Hearing questions about
stack design and implementation from the real world dramatically broadened
my views.

Many of the opinions in this book, especially in Part One, came to life as a
result of speaking engagements around North America since the release of
HyperCard. The forums provided by local Apple offices in Portland, Pitts­
burgh, and Denver, Ellen Leanse of Apple's User Group Connection, the
Software Entrepreneurs' Forum, and numerous Macintosh user groups helped
me codify these ideas in what I believe is meaningful language.

I was fortunate to receive enormous technical help in areas that were new
to me. Chris Knepper, who wrote the XCMDs in Part Three, went to the
trouble of getting a half-dozen signatures (including Jean-Louis Gassee's) to
allow him to write the code on his own time, on his own machine, in his own
home. Mark Baumwell contributed heartily to the serial port XCMD, while
Chris Derossi and Steve Maller offered many valuable suggestions for all
three XCMDs.

Additional help in various forms from Apple Computer came from Mike
Holm, Moira Cullen, Peggy Redpath, Lynn Knerr, Olivier Bouley, and Mimi
Obinata.

Outside the halls of Apple, I received wonderful support from Darrell
Leblanc at Think Technologies, David Intersimone at Borland International,
and Tom Nalevanko at Mainstay.

I also wish to thank my aesthetic guiding spirit, David Smith, the finest
Macintosh screen designer I've ever encountered.

Neither this book, nor the Handbook before it, would have been possible, of
course, without Bill Atkinson's vision of what HyperCard would mean to
personal computing. And Dan Winkler's teachings on HyperTalk have done
me well.

Through it all, Linda again proved to be my greatest supporter, sharing my
enthusiasm for HyperCard and its promise.

A Note to My Friends

I've written this book for readers of The Complete HyperCard Handbook who
want to learn more about stack development.

If you're a Handbook reader, then you and I have already spent a good deal
of time together-700+ pages is no quick read. We may have already met face­
to-face at a Macworld Expo or user group meeting. In a way we're friends.
And I'm glad you're here to renew our friendship.

This book is divided into three sections:

Stack Development Issues
HyperTalk Techniques
Resources

You may jump around the book's chapters as you please, but I strongly
recommend reading Part One before anything else. What I have to say about
the 10 key development issues will influence how you apply what you'll learn
in the rest of the book.

Many of the examples are taken from my first two commercial stack
products, Business Class and Focal Point 1.0, both of which are published by
Activision, Inc. In a few instances, I have updated some H yperTalk scripts for
this book. Don't be alarmed if you examine a product and find a slight
difference between scripts in the book and in the software. While it's not
essential that you have these products at your side when reading the book, let
me introduce each product to you.

Business Class comes packed with information for those who conduct
business with people in other countries-whether by travel, telephone, or
mail. It has lots of maps (which you click on to zoom into one of 63 countries
covered in the product) and information cards for 13 categories. For instance,
you can calculate what time and day it must be in your office to telephone
someone in Tokyo at 11:00 am on Friday, Tokyo time. You can also get a
rundown on visa and customs requirements for a country you plan to visit.
It's a very graphic environment, and you browse through it almost entirely
with the mouse.

Focal Point is quite different. It is an organizer and planner for appoint­
ments, to do items, clients, vendors, projects, proposals, expenses, names and
addresses, telephone records, and several other items that are normally a
nuisance to manage day-to-day. I wrote Focal Point initially for myself to help
me manage the parts of my business that I don't like to worry about. There are
a total of 18 stacks, into which you enter your information. Links among all

xiv HYPERCARD DEVELOPER'S GUIDE

the stacks automatically post important data where you expect it, and my
guiding principle is that you should never have to retype anything. Thanks
to HyperCard, you can customize Focal Point to any vertical business appli­
cation you like.

As you'll see in this book, both products are treasure chests of HyperTalk
structure and scripting examples (all scripts are unlocked), while being
practical programs at the same time. They are living applications of my so­
called "ten commandments" of stack design, which you'll learn about in Part
One of this book. My greatest hope is that these two products serve as the
baseline definition of quality stacks, and that your stacks will be even better.

I'd like to hear from you if you have questions or comments about the
Handbook or this Developer's Guide. You may write to me in care of Bantam
Books (666 Fifth Avenue, New York, NY 10103) or, for a much faster response,
contact me electronically on CompuServe (address 75775,1731) or AppleLink
(address X0576).

Welcome back.

Danny Goodman
May,1988

INTRODUCI'ION

When is HyperCard
the Right Choice?

After hearing from many readers of The Complete HyperCard Hand­

book, I am especially sensitive to the diversity of expertise among

active HyperCard users. By "active users" I mean those who

actually make an effort to build stacks for themselves or others. For

some, the Handbook represents a mountain of knowledge to be

scaled slowly, sometimes presenting difficult passes toward the

top. Others not only reach the top quickly, but wish to soar even

higher. Fortunately, the vast majority find the content to be just the

right combination of challenge and reward. Still, the fact remains

that for many reasons, no two HyperCard users acquire identical

facility with the program's powers and possibilities even after

reading the same source material.

2 HYPERCARD DEVELOPER'S GUIDE

A Range of Developers
This holds very true for stack developers as well. In fact, the distance between
the least and most knowledgeable stack developer is far greater than the same
categories of everyday HyperCard user. At one end are those who bring to
HyperCard expert knowledge about a business, academic, or real world
situation, yet whose knowledge of HyperCard scripting and stack design is
quite small. At the opposite end are truly experienced Macintosh program­
mers who wish to use HyperCard as a "front end" to complex systems
developed in traditional Macintosh development environments. But people
at both ends and everyone in between may be classified as serious HyperCard
stack developers.

Interestingly, the success of a stack is not necessarily dependent upon
technical expertise. Success, of course, is measured in several different ways.
Success may be the financial reward of a stack in the commercial software
marketplace; it may be a warm reception to a stack from the limited audience
in a company or classroom to which it is directed; it may also be that hundreds
or thousands of people use a stack you design for distribution in the public
domain.

A successful stack needn't be a technical tour de force if it communicates its
content well to the user. If the content is well illustrated and the organization
is inviting, the stack's technical foundation may be built on little more than Go
To commands and thoughtfully positioned visual effects.

Higher up the technical scale, developers can accomplish surprisingly
remarkable applications using the HyperTalk scripting language built into
HyperCard. Despite its simple vocabulary, the language is capable of
performing enough ''big time" software effects to suit many a stack developer.
For example, with the exception of one command, everything you see taking
place in the first releases of Business Class and Foml Point is written solely in
HyperTalk. Spreadsheet-like calculations, world time conversions, creation
of linked sets of cards, and pop-up lists of clients for selection and input by the
mouse-they're all possible with HyperTalk alone.

At the very technical end of the stack development scale, you may extend
the command and function vocabulary of HyperCard or even link HyperCard
to powerful freestanding software engines by adding external code resources
to a stack. Commonly called X-Commands (a name derived from the XCMD
and XFCN resource types for external commands and external functions),
these add-on chunks of computer code may be written in any traditional
programming language and development environment of your choice­
Pascal, C, Assembler, or any language capable of being compiled into a
Macintosh resource (we've reserved Part III of the book for the subject of
resources).

Introduction 3

#Developer" Defined
When I talk about a stack developer, the definition includes a variety of people
in the HyperCard community. Basically, a stack developer is anyone who
designs a HyperCard stack that one or more other people will be using. That
includes corporate stacks developed for in-house use, perhaps as training
vehicles or as the basis for departmental infonnation management services.
In academic circles, a stack developer may be a student who writes a stack for
other students in class or an instructor who develops teaching and simulation
tools for students. A stack developer is a computer consultant whose charter
is to create information tools for clients, whether the tools be for time and
money management or a freestanding kiosk of trade show exhibitors and
products. Many individuals who have identified information needs or wish
to share their expertise with others of similar interests are joining the ranks of
stack developers every day. Finally, some traditional software developers
look at HyperCard as a way to involve more Macintosh users in a customi­
zable environment for accessing their software and as a vehicle for on-line
help systems and tutorials for their products.

Stack Categories
In the brief history of HyperCard development, four categories of stack
products have emerged: information publishing, information management,
external device control, and utilities. Let's examine each one.

Information Publishing

A potentially huge category of stacks is one in which the stacks come jam­
packed with information. Business Class is one example, in that it comes
loaded with travel-related information for 63 countries. The user browses
through the information by clicking on maps and buttons. Figures i-la
through i-lf demonstrate a typical browsing sequence to find information
about Japan. But Business Class represents only a tiny fraction of the possibili­
ties of using HyperCard stacks as an information publishing medium.

Taking the "publishing" term seriously, some HyperCard entrepreneurs
have begun stack-based magazines, like HyperNews (Figure i-2). With good
design behind it, this medium offers an enjoyable experience for the user.
HyperNews, for instance, offers several different subject sections, just like a
magazin~features, interviews, reviews, and so on. Even MacWeek, the
weekly tabloid magazine, started offering a stack version of the publication in
early 1988, although its purpose is primarily for reference. The printed

4 HYPERCARD DEVELOPER'S GUIDE

Figure i-la A typical browsing sequence in Activision's Business Class stack product.
Starting at the world view, you work your way toward infonnation cards about a specific
country.

Figure i-lb

Introduction 5

Figure i-lc

Figure i-ld

6 HYPERCARD DEVELOPER'S GUIDE

All of Japan is in the same time zone,
'Which is 9 hours later than Green'w'ich
MeanTime (GMT).

T1me in T1me
Sen Frencisco GMT

12:05 PM 8:05 PM
Sunday Sunday

Figure i-le

Time 1n
Tokyo

5:05 RM
Monday

TRAVEL

VISAS

Anyone enter! ng Japan to do business there
must have a visa issued by a Japanese
diplomatic mission. Visitors from most
European countries, Canada, Australia and
Ne'w' Zealand do not need visas for non­
business trips (length of stay varies 'With
country) . Cruise ship and airline through
passengers don't need visas for 72- hour stays.

HEALTH CERTIFICATES

None required for entry into Japan.

Figure i-1£

Japan

Time Converte1

Enter time in Sen Francisco

._I1;....;:;0..:..;;;:3....;;.0....;..A"'"'"M~ _ ___.I • [:j
Time in Tot\IO

2:30 AM (next dey)

Enter Time in Tol<yo

o...;:;.;....:...::.....;..;..;. ___ ___.l • r··j 16:1 5 PM .

Time in San Francisco

2: 15 AM (seme dey)

Japan
CUSTOMS

You may bring in 400 cigarettes, 100
cigars, or 50 gr tobacco; 3 bottles of liquor;
2 oz perfume; t'w'o timepieces valued at less
than ¥30,000 (plus one you 'Wear) ; other
goods bringing total vel ue to no more than
¥100,000.

Up to ¥5 million may be exported from
Japan.

Most Japanese goods may be purchased tax­
free, but only in stores designated as
offering goods sold only for export.

Introduction 7

The Monthly H'YJ)erCard Newsletter

A TRU Publication

Catalo

Figure i-2 HyperNews is an information publishing stack that comes loaded with Hyper­
Card-related news and information.

magazine is still the primary information delivery vehicle.
Any kind of instructional stacks also falls in this category. This is where a

number of stack opportunities lie. With the proliferation of Macintoshes on
college campuses, the possibilities for classroom instruction are endless. Self­
help programs for language instruction are already available. In-house
corporate training is another important stack subject. Interactive tutorials for
new employees can describe the various policies and benefits packages
available to them. A new hire may select the package that best suits his needs,
right on the stack. And, because the HyperCard environment is so much
easier to manipulate than traditional programming environments, the job of
updating a corporate training stack can be handled in-house by the people
who know the subject matter. Updates can be made quickly and efficiently.

Informational stacks for the general public are also good candidates. An
early stack on the AIDS disease has been well received and widely circulated.
Freestanding kiosks for public access of information are a natural for Hyper­
Card stacks. For example, scattered throughout the exhibit halls at Macworld
Expos in Boston and San Francisco are Macintosh SE computers set up to help
attendees locate booths for particular products and vendors. Running on the
Macs is an information stack that entertainingly brings you to a menu of

8 HYPERCARD DEVELOPER'S GUIDE

information about the event, including places to eat and sights to see outside
the show. Figures i-3a to f show excerpts from the opening screen sequence.
There's no reason such an idea should be limited to a trade show. Information
machines in a corporate lobby, at information points on a college campus, in
a retail store and shopping mall, or other public sites are great ideas.

Within the computer industry, we're already seeing product demonstra­
tions, tutorials, and on-line help systems being built as HyperCard stacks.
Because of the potentially interactive nature of a HyperCard stack, these stack
applications usually turn out to be more engaging and meaningful than the
previous read-only formats of demos, help, and tutorials. Now, too, those in
the Macintosh community with good instructional skills have the power to
convert those skills into a program that runs on the computer. In the past, the
programming barrier held many great ideas hostage.

Information Management

To distinguish information management stacks from the information pub­
lishing stacks, above, I start off by saying that information management stacks
come" empty." Empty of information, yes, but not empty of power or content.

Figure i-3a The Mac World Expos feature a helpful HyperCard stack with this engaging
opening sequence (excerpt).

Introduction 9

Figure i-3b

Figure i-3c

Introduction 11

Figure i-3£

Well-conceived information management stacks provide powerful frame­
works within which the user stores, manipulates, and accesses his or her own
information. The framework contains intelligently planned connections or
links between information that the user enters into the system. In Focal Point,
for instance, the To Do List stack is preprogrammed so that when you select
a person's name in the list of people to call and then click on the Outgoing
Phone Log button with the Option key pressed, Focal Point automatically
looks up the person's name in the Directory stack, dials the phone number,
and generates a time-and-date-stamped call log card. All the links are there.
All you do is provide your own information. Then the preprogrammed
framework does its wonders on your information.

Other styles of information management stacks include various kinds of
record keeping for business and personal use. Macintosh consultants and in­
house corporate stack developers are building such stacks daily. They're in
use in hospital emergency rooms, on retail sales floors, and on secretaries'
desks.

Information management stacks lend themselves particularly well to ver­
tical market applications, in which expertise in a discipline or knowledge
about a company's modus operandi is more valuable than Macintosh program­
ming experience. When you identify a problem in your work that no one has

12 HYPERCARD DEVELOPER'S GUIDE

yet solved with software, HyperCard often provides an avenue to a solution.
Then, if you keep the design of the stack versatile, it may become a marketable
entity to the narrow segment of the business universe with similar problems.
That's how a software company often starts: computerizing a system origi­
nally developed on paper.

External Device Control

The category of controlling external devices is one that has not been widely
explored yet in the HyperCard community, but its time has come (in fact, one
of the XCMDs later in the book gives you the tools to explore it yourself).

Among the external devices you may wish to control with HyperCard are
telephone modems, CD-ROM players, videodisc players, electric light and
appliance timers, computer interface equipped radio gear, and virtually any
equipment that offers a serial (RS-232C) interface for computer control. With
more sophisticated interfacing tools attached to HyperCard, it is feasible to
control devices on an Apple Talk network as well as hardware peripherals
connected to the Macintosh SCSI port.

Chances are that you've come into contact with the combination of the
HyperCard Dial command and a modem to dial telephone numbers from an
address stack. But with a more powerful link between a HyperCard stack and
the serial port (as offered by the Comm XCMD in Chapter 29), you can use
HyperCard to build user-friendly ''front ends" to on-line commercial tele­
communications services or corporate mainframe computers. There is an
enormous opportunity for this type of stack to help inexperienced computer
users overcome the genuinely complex aspects of linking two computers over
the telephone and gaining access to computer-based information.

CD-ROM (Compact Disc-Read Only Memory) is a relatively new method
of storing and distributing information. Identical in appearance to the
compact digital audio discs, CD-ROMs can hold more than 500 megabytes of
data (equivalent to 25 Apple HD-20SC hard disks), but the data must be
stamped into the disks at a compact disk pressing plant. In other words, the
disks are for reading only (hence the ROM part of its name), and the disks
require a special CD-ROM disk drive to work with your Macintosh. When a
stack developer places a read-only stack on a CD-ROM disk in the HyperCard
stack file format, there is no special requirement for controlling the CD-ROM
disk player-HyperCard "sees" the disk as if it were a very large, locked
floppy disk. But in those cases in which a stack developer wishes to use
HyperCard as a front end to an existing CD-ROM database and indexing
(searching) scheme, then the developer must include an XCMD that acts as a
bridge between the HyperCard front end stack and the player hardware. It's
a control issue completely separate from the information content of the disk.

Introduction 13

Several HyperCard developers have already had experience with joining
HyperCard to a videodisc player (Figure i-4). As the stack screen offers
interactive computer "play," the stack is also controlling high-quality still and
motion laser disc video on a standard color television screen. A pioneer in
linking HyperCard and laser. discs, The Voyager Company, now offers a
developer's toolkit, called VideoStack. With help like this there will surely be
more development in this area. Together, the computer and video media can
create a strong instructional environment, each greatly enhancing the other.

Any other device that can be controlled through a serial interface, including
the possibility of factory process controls, are potential targets for HyperCard
stacks in this category. That includes exporting stack data directly from your
Macintosh to a laptop computer (even an MS-DOS laptop) via a serial cable
linking the two machines.

If external device control appeals to you for potential development, be
smart in the way you use HyperCard to perform the controlling. There is
nothing more wasteful of an opportunity than to use HyperCard merely as an
expensive remote control panel for a laser disc player or other device. A user
needn't spend a couple thousand dollars for the privilege of clicking on screen
buttons replicating the handheld remote control.

16941 Lioness, Panthera leo; feeding
16940 Lioness, Panthera leo; feeding
16937 Mountain lion, Felis concolor
18581 Mountain lion, Felis concolor
18582 Mountain lion, Felis concolor
16835 African wild cat, Felis lybica
16939 Cheetahs, Acinonyx jubatus; feeding
16938 Cheetah, Acinonyx jubatus; feeding
16832 Cheetah, Acinonyx jubatus
16833 Leopard, Panthera pard us
16834 Tiger, Panthera tigris

....... 16935 +Bobcat, Lynx rufus; feeding
16936 Bobcat, rufus;

~~e)
Plants Low Life Biomes

KINGDOM:
Animalia

sub: Eumetazoa
PHYLUM:
Chordata

sub: Vertebrata
CLASS:

super: Tetrapoda
Mammalia

sub: Eutheria
ORDER:

Carnivora
FAMILY:
Felidae

Figure i-4 A Stack by The Voyager Company interacts with a videodisc player to display
high-quality video on a nearby television screen.

14 HYPERCARD DEVELOPER'S GUIDE

Instead, design a stack or card that engages the user or supplements what
is happening on the external device with interactive material on the Hyper­
Card/Macintosh screen. This is especially true of laser disc control. Capture
the attention and imagination of the user on the HyperCard screen. Then let
the control part of the stack work miracles behind the scenes, almost magically
causing things to happen on the external device. If the external device is
presenting instructional material, add value to that material by engaging the
user within the stack, questioning or challenging the user to use the knowl­
edge gained from the other device.

Utility Stacks

The final category of HyperCard stacks we see today is called utilities. This
term goes way back to the early days of computing, when programmers had
little programs that helped them do their programming jobs. That's still the
case with HyperCard utilities-they're stacks that make the life of an active
HyperCard user much easier.

My favorite example of a quality utility stack is Script Report, written by
Eric Alderman (Figure i-5). This stack systematically goes through the

.. SCRIPT REPORT FOR STACK: FP•Dally

•• STACK SCRIPT **••••••••••••••••••••••••••••••••••
on OpenStac:k

global Interva l
re5et paint
put " D,~,M , Y, 1" Into Interval

end OpenStac:k

on c:loseStac:k
global Interval
put empty Into Interval

end c:lo5eStac:k

on openCard
global Interval
put Item 5 of Interval Into temp
put Item temp of Interval Into field " Interval "

end openCard

A~~
~ W Another

Figure i-5 Script Report is an excellent example of a HyperCard utility stack product. It
retrieves, formats, displays, and prints scripts from your stack for review and analysis.

Introduction 15

HyperTalkscripts in every nook and cranny of a HyperCard stack, gathering
a long list of the scripts and the names of the objects to which they are attached.
You may then print the listings or view them in an outline format with Living
Videotext's MORE program. Script Report is invaluable to the serious stack
developer (who may, of course, write his own version or adapt the canonical
edition). Since part of creating a complex stack is experimenting with various
methods, it's very possible to leave handlers and experimental objects scat­
tered throughout a stack. Script Report is like an X-ray photo of the stack that
reveals if you've left any instruments in the patient before you sew it up.

Other Than HyperCard
It is easy to get caught up in the hullabaloo about HyperCard to the exclusion
of other development systems available on the Macintosh. HyperCard is not
the do-all, end-all development system, despite its built-in powers. You still
have the choice of developing in a flat file manager type of database program,
a high-end relational database environment or in a traditional programming
language. There are cases in which these other environments are better suited
to a task than HyperCard is. Knowing when to use a database program
instead of HyperCard-and vice versa-is crucial to developing an applica­
tion that lives up to your expectations.

Flat File Databases

All too often HyperCard is defined as a database program. I suppose this
comes largely from the fact that cards have fields on them, just like database
program screens have fields for text and numeric information. The more you
try to stretch the database paradigm by saying that cards are equivalent to
database records and that stacks are equivalent to database files, the farther
away from HyperCard you roam.

While a HyperCard on-screen card and a database entry form may look
alike, the way each treats the information you enter into fields is quite
different-a difference that points up the reasons for choosing one environ­
ment over the other. Each time you enter information into a HyperCard card
field, the text is stored as data accompanying the card. In other words, the
entire card is stored on the disk. Of course, shared background graphics and
other attributes aren't stored with each card--just those items that distinguish
one card from the next, like its name, id number, HyperTalk script, text, and
soon.

In most databases, there aren't on-screen cards, but rather an entry format
that acts like a template for information you enter or recall for display. The

16 HYPERCARD DEVELOPER'S GUIDE

template forms remind me of the carnival attraction in which you have your
picture taken when you poke your head through a hole from behind a painted
picture. All during the day, the body in the painting stays the same, but
different faces fill the hole.

When you type data into the fields of an entry form and "enter'' the data by
pressing the Enter key, the data is saved in the database file in a list-like format.
A good way to visualize a database file on the disk is to think of it as stored in
a columnar list, much like a spreadsheet (Figure i-6 top). The fields of
information from a single entry form are kept together as a record (one row
of the list). When it comes time to look at that data in the same screen format
as that in which it was entered, a recordful of data is fetched from the database
file, and each field's data is plugged into the screen template of fields (Figure
i-6, bottom).

There is an inherent advantage to storing information this way if you need
to view your data in selected lists on the screen-something HyperCard
cannot do on its own. For instance, in a database program, you can design an
on-screen (and printed) report format that reveals only some of the fields
associated with a record, like only the name, city, state, and telephone
numbers of a detailed name and address database. In the report, therefore,
there are "holes" in the template to view only some of the fields of each record.
Using the selection capabilities of the database program, you may then
request to view a specific selection of records from the entire database-all
records whose ZIP code field contains numbers ranging from 60600 to 60699,
for example, to list those people in the city of Chicago.

Nam• Company IAddrus !City !Sht•IZIP IT•l•phon• I

1 ~~~r.~'!'. !.~~.~...-..... f?.~~~r .. ~~~.~~~~~~--- J~-~~- !':'~.i~. ~~: :· -1 ~-1~-~!)~~-~. ·I'~-~ - ... i~-~~-~~- ~ ~-~ ~::~~~:-.~?.~!.1
2 Sally RhodPs National A1r Corporatj5000 lndustnal Blvd. Bayonne NJ j01443 i201-555-2000.I
3 Jeffrey Hounds !Seven Mile Realty !2033 Seven Mile Road iRoyal Oak !MI i42010 !303-555-0012

Figure i-6 Databases store information in lists. You view the data through a template.

Introduction 17

Relational Databases

HyperCard is also often· compared to relational databases, such as the high­
end packages Omnis 3 (Blyth Software), Double Helix (Odesta), dBase Mac
(Ashton-Tate), and Fourth Dimension (ACIUS). While HyperCard can per­
form relation-like actions, it is not intended to replace relational databases,
any more than it is meant to replace simpler database programs.

Relational Basics

If you're not familiar with relational databases, let me provide you with a
simple example of how such a system works. The underlying structure of a
relational database system is a method of connecting largely distinct data­
bases. For instance, a company might keep all customer information (name,
address, phone number, credit rating, etc.) in a customer database. A separate
database would be used for order entry: Each order submitted by a customer
is typed into an Order Form (Figure i-7).

The relational part comes into play when the order entry keyboard operator
needs to input the customer's name, billing address, and so on. With a
relational database, the entry operator can type a customer's ID number into

Customer Record

~ rtfcustomer • 1231 llcrRdit Limit I $12 15oo 1

Customer Namt' I \'/oodrow Construction Company I
Address I P.O. Box 23102 I
Citu I Atlanta Ustate loA llzap 130023 I
IT•leehone 1404-555-1291 I

Order Eorm

!order Datel4-6-89 lls~l•sperson I Ha!p•rfn I
....__

Custom~r • 1231 I
Ship to Hamel ~"~··· Lm~lrtA:fiM L1m'tNfW
Addnss I P.O. /AJ.'t· :tWD.t"

Citg I AfJmf~ Jlstate)OA IIZIP 1400.:?~

IOuantitiiJ I I
:Description I I
IPric• Each I I

ITot.all I

Figure i-7 A relational database may be structured to retrieve data from its primary
location, and display copies in other templates when needed. The information, however, is
stored only in its primary location.

18 HYPERCARD DEVELOPER'S GUIDE

one field of the order entry form. Pre-established links between the order
entry form and the customer database automatically use the ID number as a
way to look up pertinent customer data in the customer database, and insert
that data into the order entry form for the operator. In Figure i-7, for instance,
when the user types "231" into the Order Form field for customer number, the
database retrieves several fields of data from the record of customer 231. That
data is automatically entered into their corresponding fields in the Order
Form.

What makes this operation different in a relational database than in a
HyperCard equivalent (HyperCard can imitate the above action without any
difficulty) is the manner in which the information is stored among the files. In
most relational database implementations of this order entry system, the
customer data (except for the ID number) does not get stored with the order
information. Customer data remains solely in the customer database. When­
ever a form appears on the screen that needs the customer data, the relational
database looks up the data and inserts it into the appropriate fields on the
form. Relational databases are optimized for these kinds of lookups and
insertions.

Things are different in HyperCard. If your order entry HyperCard stack
were to look up the customer data in a customer stack and display the data in
the order entry fields, the data would actually be stored in the order entry
stack, as well as in the original customer stack. Depending on the design of
your stack systems, the storage of data in multiple places may have a distinct
ad vantage. After all, once the data is in the field, it can't get damaged, even
if the customer stack should be damaged. No stack is dependent on another
for display of field data. Moreover, each stack becomes a standalone bank of
data, which may be carried to another computer or used by others who do not
have access to any other stacks of your system.

HyperCard vs. Relational Databases

The primary disadvantage of the HyperCard method, ho-never, is that if the
information changes in one stack, the change does not take effect in the other
stacks, unless you've programmed it to do so. For instance, in the customer
and order entry example, if a customer notifies you of a shipping address
change after several orders have been entered into the stack, you'd have to
change the address in the customer data stack and on every pending order in
the system. In the case of a relational database, one change in the customer
database would ripple through the entire system, including other databases
or reports that generate shipping labels, invoices, and so on. Since the address
data is not summoned except when needed for display or printing, the most
current data is guaranteed to be available for output.

Introduction 19

In a highly structured HyperCard stack environment, a change like the one
just mentioned can be accommodated by a carefully planned script that goes
into action when important fields in the customer database change. But since
HyperCard stacks are likely candidates for customization by the user, a stack
developer cannot assume that the structur~ imposed at the outset will survive.
Moreover, the tendency in developing a HyperCard stack should be to free the
developer and the user from the kind of rigid on-screen structure that formal
databases have forced us to use for years. We'll go deeper into how structure
affects design later in the book.

Limitations imposed by the comparatively rigid structure of relational
database environments open the way for one ofH yperCard' s great strengths:
its ability to establish rather arbitrary links between bases of data. When
building a relational database model, you need to exercise care in establishing
the way one database section will look up information in another. How a
database is to be accessed often dictates how it is structured, like whether the
customer ID number is the ruling feature that distinguishes one record from
another within that collection. If you later determine that you need another
way of accessing that database, such as looking up a customer name based on
a telephone number, you may be out of luck (or require very sophisticated
programming within the database's procedural language). With HyperCard,
however, there are no structures that dictate how a stack of cards must be
organized. You may retrieve data from a stack by searching for text in any
field; you may post data into a specific card in another stack based on any
lookup or search criteria you wish, even after multiple links to that stack have
been established from other stacks.

Focal Point is an example of the preference for the unstructured approach to
linking information. After failing to implement a system like Focal Point on
one of the high-end relational databases, I found HyperCard to offer the kind
of flexibility that my ideas required. For example, the Deadlines stack, which
collates all unfinished to-do items from proposals and projects records,
fetches data from those two stacks, some of which originally came from yet
another stack, the Client stack (Figure i-8). Because the design of the Focal
Point system called for client data to be posted to projects and proposals
records, the lookup tasks of the Deadlines stack were simplified, and let me
focus on the direct link, rather than trying to establish some multistepped link
~hrough several stacks. Operation is not only simpler, but faster as well. At
the same time, I established other links in the reverse direction, so that if the
user checks off a Deadline item as being completed, its line item in the
Proposal or Projects stack is checked off, and other parts of those stacks are
updated accordingly. Also, by selecting the text of the deadline item, the user
may go directly to the detail card in the Project or Proposals stack by clicking

20 HYPERCARD DEVELOPER'S GUIDE

Client Record
Stack

~ .. ~ ,.
I

I I

Projects Proposals
Stock Stack

"" ""
"" "" 1- 1-

4 !" .. ,..

.. Deadlines I~ . Stack I"'

Figure i-8 lnfonnation flows among HyperCard stacks may be arbitrary, and are not
limited by a relational structure.

on a single button. And, despite the complex network of linkages among these
stacks, the stage is still set for yet other links as the user cares to expand the
system to meet specific needs his or her business requires.

Database or HyperCard?
Databases of any kind are primarily list-oriented. HyperCard, on the other
hand, is a browsing environment, in which the data is best served by residing
in on-screen cards and in which it is comfortable to access these cards in a
linear, sequential order or in a non-linear, hop-skip-and-jump order. Oddly
enough, the same body of information may be suited to either the traditional
database or HyperCard based not on its content, but on the manner in which
the user must interact with the information.

For example, consider HyperCard and Omnis 3 versions of a form designed
to hold customer information. In addition to the standard name, address, and
telephone fields, there is also a field that contains a running total of the orders
made by that customer during the year (the mechanics forkeeping this total
would be built into a separate order form stack). Except for visual character­
istics inherent in both HyperCard and Omnis 3, the screens would look very

Introduction 21

similar, especially since both have the same field structure.
Before going any further, however, please note that the running total field

in the Omnis database would not be stored with the customer information, but
would be calculated by a formula in that field. The job of that formula is to
retrieve from the order entry database all order totals for the customer whose
number appears in the Customer ID field.

You should favor putting this application in HyperCard if access to the
information is through browsing-sequential searching or using HyperCard's
very fast Find command. Since it's a trivial matter to place a dialing button on
the HyperCard version, the person who uses this stack might use it like a
rolodex. Searching first for the customer's name, the person clicks on the
dialing button to dial the number in the telephone number field. The Find
command may be used to browse quickly through all customer cards whose
telephone numbers have the 212 area code. By typing Find "(212)" into the
Message Box, the user may repeatedly press the Return or Enter key to view
only those customers in that area code. More sophisticated, but slower,
searching techniques may be built into a special button. The script for that
button might, for instance, go to each card (with the screen locked), and test
whether the last order date is 30 days or more prior to today' s date. When the
test proves true, the script ends, and the user may view a card meeting that
criteria. To resume the search, the user presses that custom search button
again.

The database version is preferable, however, if the user needed to view
selections of the customer data in various on-screen and printed reports­
usually in a list format. The key difference, however, is that a database
program provides the user with the ability to perform "multiple selects" on
the entire database. Therefore, the user may specify that he see only records
whose telephone field contains 415 and 213, whose last name field begins with
letters A through M, and whose last order date is earlier than March 1, 1988.
Selecting search criteria like this is like masking all other data in the file. You
probably won't be able to see other data in the file until you disable the
selection criteria.

Where the database version shines is in obtaining on-screen and printed
reports of the selected data. A salesperson about to leave on a trip for Boston
could obtain a list of all customers in the 617 area code whose order level is
above $5000. With that list, the salesperson can be sure to check up on the
company's big customers while in their town.

In all fairness to HyperCard, report selection and printing is now available
as an add-on product, called Reports, published by Activision, Inc. The gap
between HyperCard and databases is closing.

22 HYPERCARD DEVELOPER'S GUIDE

Traditional Programming Environments
Publishers of traditional programming languages-the Lightspeed series
from Think Technologies/Symantec, Turbo Pascal from Borland, TML Pas­
cal, Consulair C, Apple's MPW series, and others-should have nothing to
fear from HyperCard's programming prowess. In fact, I was amazed at the
long-running furor coming from several of these companies over the release
and bundling of HyperCard with all Macintosh hardware. They saw Hyper­
Card as a threat to traditional programming languages and development
systems. On the contrary, HyperCard actually opens up an entirely new
market of future programmers in Pascal, C, and Assembler, as HyperCard
developers seek to extend the power of HyperCard through external com­
man~ommancls that must be written and compiled in one of these
language environments.

There's no way HyperCard will be the platform for the next word processor
or desktop publishing system. Fundamental, high-powered applications
programs, especially in the graphics and number crunching worlds, will
continue to be developed in the traditional programming environments.
Many types of programs simply don't fit well into the card metaphor of
HyperCard.

But as anyone with experience in these programming areas will tell you, it's
no simple part-time endeavor to program a Macintosh application from
scratch. First, it takes a complete understanding of the five encyclopedic
volumes of Inside Macintosh, Apple's bible of what goes on inside the Macin­
tosh ROM Toolbox and system. Bill Atkinson, who is no slouch when it comes
to learning a computer's inner capabilities, is quick to tell you that it takes a
year to learn enough of Inside Macintosh to start serious programming. Then,
of course, you also need to know one of the programming languages. All in
all, it's an area best left to the professionals, or at least to those part-timers who
have acquired extensive experience over the years.

Just the same, HyperCard and the traditional programming systems are a
great team together. If you've wanted to get your feet wet in programming the
Macintosh's ROM Toolbox, HyperCard is the perfect way to start, because
you can begin writing small external commands in Pascal, C, or Assembler,
and experiment with various parts of the Toolbox. Because you use Hyper­
Card as the primary platform, you don't have to write an entire program from
scratch to learn a small Toolbox point. HyperCard gets you right up to the
point at which your external code can execute. Gradually you will gain
experience with the Toolbox with far fewer problems than diving straight into
writing an entire program.

Even though the H yperTalk language is very powerful on its own, I believe
HyperCard will provide the gateway for many interested parties to work their

Introduction 23

way into full-fledged Macintosh programming. Later in this book, you'll see
some examples of external code that should get you a long way into writing
your own code. ·

The Final Choice
If there were a simple formula into which you could plug the variables of your
intended application, it would be easy to see if HyperCard were the right
environment. Of course, it's not that easy. But here are some questions to ask
yourself:

1. Can the application's information be conveniently divided into screen­
sized cards?
While HyperCard offers scrolling fields, which may hold up to 32,000
text characters, I am not fond of putting long text blocks into these fields.
First of all, it's boring for the user to scroll through fields. Second, the
card metaphor of HyperCard works best when the user-who is often
just a browser or simple typist-can see all pertinent information at one
glance when a card appears on the screen. This is not to say that you
should cram field after field of 9-point type onto each card. Just the
opposite. Keep the amount of information on a card to a minimum.
Break up related information into card-length packets and create intel­
ligent links between them to ease the user's journey to various parts of
the information. I'll have more to say about this in Chapter ·6.

2. Is the need for reporting limited or at leastmade manageable by external
report-generating HyperCard add-ons?
Over time, this will become less of an issue as both HyperCard and
outside programs assist in gathering data for printing and on-screen
display of list-like reports. Activision' s Reports is a breakthrough in
that regard. Future releases of HyperCard may also improve reporting
facilities. Don't forget, too, that HyperCard's fast search operation,
with repeated Find command execution by pressing the Return key, is
often faster and more inviting than a dull list of selected data.

3. Do you want your application to be fun and inviting to use, especially
for non-computer or non-Macintosh literate users?
Since HyperCard lets you design the entire screen interface, there are
many opportunities to develop interesting applications, including those
that non-Macintosh users can use without any training, as in freestand-

24 HYPERCARD DEVELOPER'S GUIDE

ing kiosk locations (more about this in Chapter 3).

4. Do you want the user to be able to customize the application?
One ofH yperCard' s greatest strengths is that the "insides" of a stack are
largely accessible to the user, if you so desire. Since it is rare for a
developer to know exactly how each user performs the tasks covered by
an application, the ability to customize a HyperCard stack makes it all
the more marketable. Most high-end software written in traditional
languages or developed by relational database consultants are not user­
customizable. Stack applications are inherently democratic, in that
they give the user control over his or her destiny. To paraphrase an
Apple advertising slogan, HyperCard gives you "the power to be
yourself."

H you answer ''yes" to any of these questions, then HyperCard is the right
choice to pursue the dream of the application in your mind, even if the
potential audience is a small one.

The Next Step
Once you've decided on using HyperCard as the development environment,
you still have much to think about in designing the application, before you
write a handler for your first button. Part One, which follows, explores 10
issues you must face as you begin to lay out your application. The earlier you
confront these issues in the design stage, the easier development will be in the
home stretch.

Key Stack
Developer

Issues

1

How HyperCard
Literate is the User?

I've got good new and bad news. The good news is that HyperCard is

packaged in every Macintosh box out of the factory. The bad news is

that not every new Macintosh owner knows what HyperCard is. The

trouble is that a HyperCard developer might easily assume that anyone

who makes an effort to look at a stack is HyperCard literate-Hyper Lit­

erate, if you will. This is wrong, wrong, wrong. You cannot assume that

users of your stack are HyperLiterate. This obviously puts a much

greater burden on your role as stack developer, but by following this

rule you will attract a much wider audience than if you ignore it.

28 HYPERCARD DEVELOPER'S GUIDE

Difficult Concepts
Our jobs as HypetCard stack developers is to shield the user community from
the parts of HyperCard that may confuse or bewilder the first-time Hyper­
Card user. Here are some of the difficult concepts you should design around.

1. Icon buttons on the Home Card. H you're lucky, the person using your
stacks is at least MacLiterate enough to recognize that an icon represents an
application or document, as it does on the Macintosh desktop. But that user
is in for a rude awakening when he looks at the HyperCard Home Card and
tries to move the icons around as on the desktop. The idea that those icons
are buttons takes some getting used to. Consequently, the last thing a new
user will easily comprehend is that in order to have an icon on the Home
Card that links to the stack, he'll have to copy the button from the stack and
paste it into the Home Card.

2. Stack, document, and application pathnames. In a Macintosh desktop
world of folders and icons, the three pathname cards in the Home Stack are
as mysterious as anMS-OOSC> command prompt. If you never let the user
get within sight of these cards while setting up your stack, all the better.

3. Object hierarchy. An inexperienced HyperCard user will have never
heard of the object hierarchy, and will not know why you'd want to copy
a resource or handler to the Home stack. For that matter, you should not
even assume that a HyperCard user has the same kind of Home stack that
you do. The customizable nature of HyperCard leads Hyper Literate folks
to treat their Home stacks as personal playgrounds. It's not nice to fool with
somebody's Home stack unless you're invited.

4. Button scripts. Just because you know that a HyperCard button generally
has a button script attached to it doesn't mean that your user will know a
script from a ROM routine. If actions in your stack entail the creation of
buttons that tailor the operation of the stack to the user's wishes, don't
expect the user to know how to write such a script. Provide user-friendly
front ends to such things. HyperTalk gives you the power in one script to
write the script of another object (or even the same object).

5. Stack structure and stack-to-stack delays. After designing a few Hyper­
Card stacks that rely on data in other stacks, you soon learn to accept the
delays inherent in stack-to-stack lookups. Perhaps for you the sound of the
disk drive is enough to soothe the impatience that normally pervades com-

How HyperCard Literate is the User? 29

puter use. But an inexperienced user may hear the disk drive whirring,
while seeing nothing happening on the screen and thus panic in thinking
something in the computer is "hung up." Before you know it, the user turns
off the computer in the middle of file access, probably trashing the stack file
forever.

These are the major concepts to plan around. Now, let's look at examples of
how you can make the user feel as much at home in your stack as in a
standalone Macintosh application.

Installation Routines
Since the Home Card acts as a desktop to other HyperCard stacks, you provide
a good service to your users by supplying an installation routine with your
stack that does two things: 1) copies an icon button to the person's Home Card;
and 2) enters the proper pathname listings in the ''look for stacks" card of the
Home stack.

Figure 1-1 shows the installation card that comes with Business Class. I
chose to place this installation routine in its own one-card stack. That way, the
user could discard the installation function once the installation was com­
plete.

Note that several key points appear about this card. First, there are some
simple instructions on the card. They tell the user what will happen during
installation. There are no surprises for the experienced user. For the novice,
there is an air of authority that leads him to believe that whatever goes on here
must be the right way to do things.

Next, a sample of the button appears on the card. This, too, is a kind of
preconditioning. The user knows before returning to the Home card what the
button will look like. In fact, the placement of the sample button in that
location on the card was no accident. Midway through the installation
procedure, a copy of this button will appear on the Home Card-in exactly the
same spot. From there, the user may adjust its location.

Notice that there is a Cancel button on this card. As you certainly must
know from poking around new parts of software, you expect a way to back out
of a procedure that looks like it may be irreversible. Perhaps you're not ready
to go through with the installation because you're previewing the software on
someone else's computer; or perhaps you want to set up your folders differ­
ently before carrying out the full installation. Whatever the reason, offer a
Cancel button for any significant action. In the case of the Business Class
Installer, the Cancel button brings the user back to the Home Card, from which
the Installer stack was most likely opened.

30 HYPERCARD DEVELOPER'S GUIDE

• File Edit Go Tools Objects

Business Class
Installer

To install Business Class on your HyperCard Home Card, click the
"Install" button below.

This action copies the Business Class button (lower right) to your Home
card, and adds the appropria~ patbnames to the Stacks card in your
Home Stack.

(Instal~

(Cancel)

This is owhat the button will be:

Business Class

Figure 1-1 The installation screen (a one-card stack) for Business Class. The Install
button contains a script to copy the Business Class button and modify the Home stack's
pathnames list.

When you click on the Install button, an answer-style HyperCard dialog
box appears, asking whether you wish to install the stack in a hard disk or
floppy disk system (Figure 1-2). Again, there is another Cancel opportunity
to back out, returning you to the instant before you clicked on the Install
button.

Pathnames Settings
Offering two choices for installation has to do with the pathname part of
installation. Due to the structure of Business Class' stack files, the installer
stack must write two lines to the stack pathnames card in the Home stack
(covered in more detail in Chapter 5 on stack structure). Running the stacks
from floppy disks entails an entirely different pathname than running them
from a hard disk. The answer from this dialog box determines how the text
lines that eventually go into the stacks list are assembled.

The installation routine, contained entirely in the mouse Up handler of the
Install button, is relatively simple. Its basic structure is shown below (this is

How HyperCard Uterateis the User? 31

• File Edit Go Tools Objects

Business Class
Installer

Rre you Installing for floppy or hard disk?

nusac e~~~~~
card.. (Hard Disk l (Floppy) n Cancel)J
Home~======~==~======~~==================~

(Install) This ts ..,hat the button 'w'tll be:

(Cancel) Businus Clus

Figure 1-2 Pathnames may be different for hard disk and floppy disk installations.
Business Qass offers an easy way to select how the user wishes to use the product.

not the actual script, but rather an outline of the actions taken in the handler):

on raouseUp
display dialog requesting disk type
if "Cancel" then exit this handler
I f ·· F I oppy ·• then assemb I e f I oppy-based pa thnames
If "Hard Disk" then assemble hard disk pathnames
select the sample button with the Button tool
cop~ the button Into the clipboard
go to the "Look for stacks ln ... " card of the Home stack
add the pathnames to the end of the list
go to the Home Card
paste the button from the clipboard
display Instruction In the Message Box to "drag the button to

the desired location, and press Command-Tab"" <to return
to the Browse tool.

end mouseUp

Since writing the original routine, I've thought of improvements to smooth
out what I consider a rough edge at the tail end of the handler. The rough edge

32 HYPERCARD DEVELOPER'S GUIDE

has to do with instructing the user to position the button while it is still selected
(i.e., while the button tool is chosen) and then getting the user to choose the
browse tool, either knowingly or unknowingly (Command-Tab restores the
browse tool from any tool you're using).

So far, the method I like best is shown in the handler below. This handler
does not show the pathname part of an installation routine, just the handling
of the button copying, pasting, positioning, and restoration of the browse tool,
whlle providing needed on-screen instructions in the Message Box at the
crudal moment.

on raouseUp
choose button tool
click at the loc of button "Stack Button"-- selects the button
donenu ··copy Button·· -- puts It In clipboard

go to "Home••
donenu "Paste Button"

repeat
set the loc of button "Stack Button" to the raouseloc
put the raouseloc Into oldloc

put "Position the button where you'd like It# and then click."

walt until the mouseloc- oldloc --hide rasg at first movement
put empty Into rasg
hide rasg

repeat until the mouseCIIck --drag without clicking
set the loc of button "Stack Button" to the raouseloc

end repeat

choose browse tool --see the button as it will be

answer ""Is It at the desired location?"" wl th ••tto•• or "Yes··
If It Is "Yes" then exit repeat
else choose button tool

end repeat
end mouseUp

The handler begins by choosing the button tool to perform some button
maneuvers, such as clicking on it to select it and copying it to the clipboard.
Then the handler takes you to the Home Card and pastes the button in the

How HyperCard Uterate is the User? 33

same spot from which it was copied on the installation card.
In the outermost repeat loop that follows, the button (still selected after the

paste command) zips to the location of the cursor. That location is temporarily
stored in a local variable, oldLoc, for use a couple lines later. Instructions
about positioning the pointer and clicking are then placed into the Message
Box to guide the user along with the installation. A Wait command suspends
execution of the handler until you move the mouse-the location of the mouse
not being equal to the original mouse position. At that point, presumably you
have read the instructions and are ready to position the button. Thus, the
instructions are removed from the Message Box (so you won't see them again
if another stack should show the Message Box upon opening) and the box is
hidden from sight.

The small repeat loop that follows simply places the center of the selected
button at the location of the mouse. As you move the mouse around the
screen, the selected button tracks the pointer. It does this until you click the
mouse button (a click being equivalent to a mouseDown, nota mouseUp). To
see how the button looks in its new position, the handler chooses the browse
tool to remove the rectangle around the button's icon. But an answer dialog
also gives you another chance, in case the position is not quite right or you
didn't get the instructions the first time around. If you click on the No button
of the answer dialog, the entire outer repeat loop starts over, giving you
another opportunity to read the directions and carefully place the button.
Once you are sure that the location is right, and you click theY es button in the
answer dialog, the handler ends, and you're all set.

Inside the Stack Button
Installation routines for multistack HyperCard applications, like Business
Class and Focal Point, serve another important function. The button installed
on the Home Card should be preloaded with a handler that brings the user to
the correct startup stack in the system. If your stack system requires the setting
of certain global variables based on user preferences, then it is imperative that
you direct the user to start your stack system in the prescribed manner. By
installing the preloaded button on the Home Card for the user, you assure that
each time he goes to your stack from Home, the operation will run as you
designed it. Figure 1-3, for example, shows the Focal Point stack button's
script, which performs interesting visual effects on the way to a specific stack.
An openStack handler in stack FP•Startup gathers the global variables and
moves onto the first productive stack, the Daily Appointment stack.

Fortunately, too, when you copy and paste a button from the installation

34 HYPERCARD DEVELOPER'S GUIDE

Script of card button ld 77 • •focal Point•
on .auseUp

visual effect dissolve to black
visual effect dissolve
go "FPeStc:rtup•

end mouseUp

Find) (Print)

Figure 1-3 The Home Card button that is installed for Focal Point contains a script with
special visual effects.

stack to the Home stack, HyperCard also copies and pastes the ICON
resource. Art attached to the button follows the button wherever it goes. The
user may then copy and paste your button from his Home stack to any other
stack on his hard disk, in case he wants instant access to your stack from
something he's developed or otherwise incorporated into his daily Macintosh
work.

Hands Off the Home Stack
Outside of installing a stack button and adding pathnames to the Home
stack-items that are visible to even the browser-level HyperCard user-1
avoid modifying the user's Home stack at all cost. Certainly, there are
advantages for the developer to put often-called handlers, functions, and
resources into the Home stack, but I believe irs inviting trouble to do so, unless
you offer sufficient warnings.

Perhaps the biggest hazard to modifying the user's Home stack is that any
modification you make may impinge on a modification that either the user or
another, less friendly application has made. For instance, if your stack's
installation routine appends a custom handler called print Week (the handler
would begin on pr i n tWeek) , it is conceivable that the user or another stack

How HyperCard Literate is the User? 35

has also added a handler with the same name. When that happens, your stack
will expect to find the one you designed. But since HyperCard executes the
first handler it finds in a script with a matching name, HyperCard will never
find your handler. Instead, it will execute the earlier handler with that name,
causing, well, unpredictable (if not disastrous) results.

Conversely, if your handler is the first one with that name in the Home card
stack script, it preempts the user from writing a handler with that name for his
stack script. If he doesn't know that you've "reserved" that handler name, it
will make for a frustrating debugging session. Therefore, I believe it's unfair
to make changes to scripts in the Home stack without warning, since such
changes won't be obvious to the user and could interfere with the user's own
stack development. These kinds of changes to the Home stack also presume
the user fully understands the hierarchy of objects and message passing
within HyperCard-something you cannot assume.

I don't even like the idea of secretly copying resources, like icons, sounds,
fonts, and XCMDs to the user's Home stack. For example, if you have many
custom-made icon buttons in your stack, and you copy them to the Home
stack at installation time, then every time the knowledgeable user creates a
new icon button for his or her own stack, all your icons will appear in the icon
dialog box, ripe for the picking. You may quickly lose control over the art you
so carefully crafted for your stack application, as the user, thinking the icons
are part of HyperCard, freely plugs them into stacks that may go anywhere.

This means, of course, that all stacks in a multiple stack HyperCard system,
like Business Class and Focal Point, have identical sets of icon resources for all
the buttons that permeate the system. It's true that they take up extra disk
space, but keeping the resources local to the stack means that the icons will
always be in those stacks, even if the user transfers the stacks to a new
computer running a virgin copy of HyperCard and a fresh Home Stack.

That's not to say that the Home stack should be kept squeaky clean as it
comes out of the HyperCard box. On the contrary, the Home stack should be
the repository of all kinds of resources and handlers that you, personally, use
within your own stacks or during stack development. I'll have several
examples of Home stack tidbits you should add in Chapter 21 on debugging
HyperTalk scripts.

User-Friendly Front Ends
If you assume that a potential user of your stack is not HyperLiterate, you
must also realize that he will not understand anything about HyperTalk
commands, scripts or objects containing scripts. Therefore, if your stack

36 HYPERCARD DEVELOPER'S GUIDE

features operations that usually entail writing scripts or issuing commands
from the Message Box, then you should design a simple front end to those
features. Here are three examples derived from Business Class and Focal Point.

Printing Cards

Printing individual cards from a variety of stacks is relatively simple when
doing the job manually from the Message Box. You start by typing open
pr i n t i ng w i th d i a I og, and adjusting the Print dialog box settings for the
number of cards you wish to print on a page. Then navigate through the stack
as you normally do to reach the cards you wish to print. Each time you reach
a card you wish to send to the printer, type print this card into the Message
Box. Actually, you only have to type this command once. Since it stays in the
Message Box (until you type something else there or a script puts text there),
you can use the mouse to navigate to each card and then simply press the
Return or Enter keys to print the card. When you've sent all cards to the
printer, then type c I ose printing • That's all there is to it. Not much for an
experienced stack writer. But for inexperienced users, this is a terrifying
ordeal. The good news is that a good stack will cover up all vestiges of
HyperTalk commands and present the printing concepts in an easy-to­
understand context.

Figure 1-4 illustrates the printing card from Business Class. The card gives
the user the option of selecting individual information cards for a given
country or one click to select all cards. The interface to selecting information
categories is the familiar check box style button.

Attached to the OK button is a handler that looks through all the checkbox
buttons to see which ones' highlight properties are set to true. Armed with
that knowledge, and the name of the country from the pseudo-scrolling field
of country names, the handler goes to the country's map card and begins
electronicallyclickingonsubjectbuttons(usingthe send mouseUp to but ton
x command) and issuing the print this card command upon reaching the
desired cards. Once all cards have been sent to the printer, the handler issues
the c I ose pr in t i ng command and returns the user to the view of the
printing card.

Saipt-Writing Scripts

A second example, derived from Focal Point, demonstrates how to soften the
blow of writing button scripts for the non-HyperLiterate user. One of FoC'Ill
Point's stacks, the Document Launcher, offers two ways to group Macintosh
documents from any application and then lets the user open those documents
directly from FoC'Ill Point (Figure 1-5). The tricky part is that a button opening

How HyperCard Literate is the User? 37

BUSINESS C Till PRINTING

You may print - in a variety of sizes and fonnats -
aey or all informatk::ln cards for the coontry of yoor cbolce

• cllck the mows to select the country: O~.-l __ c_z_e_c_h_o_sl_o_v_e_l<_1e __JIO
• Select the informatk::ln card(s) you wish to print:

IHJ 0 ALL CARDS FOR
: : : : THIS COUNTRY

§) 181 SOCIAL
CUSTOMS Ill 0 POSTAL

RATES

~ 181 CURRENCY !Iii] 0 NATIONAL
HOLIDAYS ~ 181 HOTELS

~I 0 AIRTRA.VEL ~ 0 CLIMATE IJ 181 ELI!CTRICAL

IHI~II 181 ~=~~RTATION 1+1181 EMERGENCY ral 181 TELEPHONE
DIRECTORY

[I) 0 TRAVEL
DOCUMENTS 181 TIMI!

Figure 1-4 A friendly front end to complex printing of information cards is recom­
mended. This is the one that is built into Business Class

~ ~

~ ~ ~

" ~

rtd ~ ~

il ~ ~
~
~

Figure 1-5 The Focal Point Documents stack creJJtes buttons and writes those buttons'
scripts without the user even having to see the Script Editor.

38 HYPERCARD DEVELOPER'S GUIDE

a document must have a mouse Up handler written for it, bearing the name of
the document and the application program.

In the early design stages of this application, I was very concerned that the
only way to get the user to create these button handlers was to actually open
up the script editor for a new button and modify a template of the command,
which I'd present there. The script would also contain substantial commen­
tary about how to go about entering the document and application names into
the script. This would be all the more complicated for application names that
used special characters like the bullet, trademark and copyright symbols,
which, while available on the Macintosh keyboard, are not standard charac­
ters everyone knows how to access.

Fortunately, the application (or rather the sanity of potential users) was
rescued by an external function written by Steve Maller of Apple Computer.
Called filename, this public domain function presents a Standard File Dialog
Box-something with which all Macintosh users are familiar-that lets the
user select a file name in an acceptable manner (Figure 1-6). That function
provided the stack's button creation handlers with all the necessary informa­
tion to create those document launching buttons all behind the scenes. A

le~~ Consulting I
D RSM Speech
D ComTem

CJ Hord Disk

t:}e<t

Driue

Open~]
Concel)

Select the document you wtsh to open with e new Documents button.

Figure 1-6 With the help of Steve Maller's filename() external function (XFCN), the
user sees familiar Macintosh surroundings to select documents and applications for the
button scripts.

How HyperCard Uterate is the User? 39

script from one of these new buttons looks like this:

on mouseUp
If the ShiftKey is down then clearButton
else open "HD-20:Correspondence:enuelope"~
with "HD-20:Rpplications:MS-WordN

end mouseUp

The user never knows that those buttons are gaining custom scripts crafted
from their clicked responses in the standard file dialog boxes. Suddenly a new
button appears on the screen, and they can position it where they want. Irs
an appealing kind of magic added to the stack.

Customization Front End

The third example of a friendly front end also comes from Focal Point. In this
case, irs the part of the help system that lets the user customize the array of
application buttons that flank the screens in the applications. Foazl Point ships
with 16 of its 18 applications pre-installed as shown in Figure 1-7. Since user
customization was to be a top feature of the program, there had to be provision
for changing the order of buttons or swapping one or two of the pre-installed
buttons for buttons to the other stacks that come with the package.

Given the fact that some Focal Point stacks have as many as six different
backgrounds, the idea of changing the order of buttons among all the stacks
"mounted" into Focal Point would surely scare away users. Not only were
there a lot of buttons to copy and paste into their right holes, but the script
attached to a particular icon button changed, depending on which stack that
button was in. For example, when you are in the Daily Appointment stack and
you click on the To Do list button, the To Do List button not only goes to that
stack, but it also searches for the card whose date matches the date on the Daily
Appointment card you were viewing. The handler for the To Do List button
is different from the Document Launcher. It simply goes to the To Do List
stack and searches for today' s card.

So there you have it: the need to change as many as 11 buttons (the first five
buttons are hard wired into all stacks) in each of22 possible backgrounds, and
not all buttons are the same for all backgrounds. Trying to make a change to
these buttons by hand would be a nightmare, sure to cause the hapless user
to make some mistakes along the way.

To head off possible consternation among Focal Point users, I created a front
end to the entire process (Figure 1-8). With this button installation card, the
user clicks on a button and holds the mouse button as all possible Focal Point
button icons and stack descriptions appear in the button location. The user

40 HYPERCARD DEVELOPER'S GUIDE

Figure 1-7 The standard alignment of 16 applications in Focal Point. Each button on
the left and right edges links to a different application.

releases the mouse button when the target application appears in that button
location. Once all the buttons are in the desired order, the user clicks on the
Install Buttons button. Inside of three minutes Oess on a Macintosh ll), the
substantial handler behind that button copies icon numbers and scripts (the
scripts are in a series of cards at the end of this stack) for pasting into the
buttons situated in all the stacks of the Focal Point system.

These kinds of front ends to HyperCard's inner workings are essential if
you wish the masses to adopt your stack.

Front End Visuals
Our final discussion on the subject has much to do with the hardware you use
to design and run your stacks, so we'll save most of the discussion for the next
chapter. But in the meantime, if you design a system of stacks that rely heavily
on stack-to-stack communication, do something to entertain the user while
time marches on without any apparent action taking place.

In one sense, things should look like they're frozen, at least as the screen
display goes. I believe it is very confusing for a user to see stack screens flash

How HyperCard Literate is the User? 41

Click on an" button ...
(except the top five on the
left edge) to cycle throuQh
all available focal Po1 nt
applications. Set them up
in the order that makes the
most sense to \lOU and your
bust ness. You may leave
buttons blank.

When the buttons are
arranQed as tJOU 1i Ice, cltck
on "Install Buttons" belcr.r.

The t nstallation takes
several minutes.

lnsta'D
Buttons

PROPOSALS AND BIDS

Figure 1-8 The most complex script in Focal Point is devoted to letting the user choose a
different application button alignment and then installing the icons and scripts in all the
Focal Point stacks.

for a second or two as a handler goes to another stack, looks up a card, gets the
data, and returns to the original stack. Those kinds of distractions are
inexcusable,inlightofHypetCard'sabilityto lock the screen (set I oc::kScreen
to true >. Not only will locking the screen reduce screen confusion, but it also
speeds the process, because writing information to the screen takes valuable
fractions of seconds. Add up the time devoted to refreshing the screen in a
stack-to-stack exchange, and the net result is quite noticeable.

H extensive stack-to-stack exchanges take place in your stack system, then
be sure to offer visual feedback to the user that something is going on, even if
the screen doesn't seem to change.

For very slow operations, I find it useful to use the Message Box or a
temporary card field to communicate the steps taking place while operation
seems to be at a standstill. A case in point is the Deadlines stack of Focal Point.
A handler in that stack goes to all the Follow Ups cards of each unfinished
project and proposal. As the handler performs such functions as retrieving all
the deadline dates from the projects, it displays a message in the Message Box
to that effect (Figure 1-9). In fact, as each Follow Ups card is read, an extra
arrow appears in the Message Box. The user sees telling action of some kind,

42 HYPERCARD DEVELOPER'S GUIDE

Figure 1-9 To let users know that a long handler is at work, the Focal Point Deadlines
stack provides a progress report in the Message Box.

even though the screen is frozen. Messages during the procedure are:

Gathering Projects Records
Gathering Proposals Records
Sorting Deadlines
Merging Deadlines

You must exercise care, however, when designing messages like this, because
the need for such messages depends very much on the hardware the stack will
be running (see Chapter 2 for more details).

The Watch Cursor

One very important element you can add to a handler that involves much
stack-to-stack transfer of heavy duty number and text crunching is to change
the screen cursor to the watch cursor while the handler is running (Figure 1-
10). There's something psychologically soothing about seeing the watch
cursor when the Mac is churning away. We suddenly become much more
patient with a comparatively slow procedure as long as the watch cursor is on

How HyperCard Literate is the User? 43

•••••• •••••• •••••• •••••• • • • • • • • • • • •• • ••• •• • • • • • • •••••• •••••• •••••• ••••••
Figure 1-10 The Watch cursor (set cursor to 4) is a good psychological tool to help the
user be patient with a time-consuming operation.

the screen. I suppose it means that the Macintosh is working as fast as it can,
and it will let you know when control has returned to you.

Many of my more involved handlers have a common start to them. First
they change the cursor to the watch and then lock the screen, as in:

on mouseUp
set cursor to 4
set lockScreen to true

end mouseUp

the watch cursor number
freeze on-screen action

You don't have to reset either the cursor or lockScreen properties, because
when the handler ends, and HyperCard begins sending idle messages again,
the cursor returns to the appropriate HyperCard cursor (either the browse
tool or the text entry tool) and the lockScreen property returns to false.

The Beachball Cursor

Starting with HyperCard version 1.2, you may program your stack to display
the rotating beachball cursor when a long handler is working. The nature of
the beachball is such that it should be used primarily inside repeat loops.

Fortunately, the mechanism for rotating the beachball is built into Hyper­
Card. All your script needs to do is set the cursor to ''busy'' inside the loop.
Each time the loop repeats, the beachball advances 45 degrees (one-eighth of
a complete rotation). Thus, you'd put the beach ball to work in a loop like this:

on mouseUp
repeat with x a 1 to 100

set cursor to busy

44 HYPERCARD DEVELOPER'S GUIDE

[your other work within the loop]
end repeat

end mouseUp

H your repeat loops are complex scripts, you, as stack author, can recognize
each 45-degree rotation as a spin through the repeat loop. If you can see the
ball turning rather slowly, the repeat loop's perfonnance may need to be
improved (discussions about improving performance will come later).

Anticipating Macintosh Literacy
One last note about HyperLiteracy. While you can't expect the user to be
HyperLiterate, you can expect the user to be Macintosh literate (even if some
are not). This means that you must anticipate some of the Macintosh-like
things that a Mac-literate is inclined to do. Take the double click, for instance.

The Macintosh desktop and many applications have put us in the habit of
double-clicking the mouse pointer on things to get some operation going.
Double-clicking on an application icon in the desktop starts the program
without having to choose Open from the File menu. In many dialog boxes in
Microsoft Excel, if you double click on a radio button to select a preference, it
is the same as clicking once to select an option and then clicking on the OK
button to make the option effective.

After you've used HyperCard for awhile, especially as a developer, you feel
secure that single clicks are sufficient to initiate action. After all, they are the
only kinds of actions your button and locked field mouse Up handlers recog­
nize. But a non-HyperLiterate Macintosh user will tend to double click on icon
buttons and certain other buttons that set action in motion.

In Chapter 3 you'll see how to trap for double clicks when they produce
unwanted results with background buttons. But for now bear in mind that
HyperCard and Macintosh literacy are two different disciplines. You can't
expect the former, and you may have to guard against the latter.

One complaint that often caused fumbling for HyperCard stack users of all
literacy levels has been repaired. Prior to HyperCard version 1.2, the only way
to advance the text pointer from field to field from the keyboard was with the
Tab key. While experienced database users might be comfortable with that,
it was a cause for concern when a user pressed the Return key in a single-line
field. Instead of moving the cursor to the next field, the Return key advanced
the cursor to the next line of the first field-out of view.

The auto Tab field property, which premiered in version 1.2, lets the Return
key be used to advance the cursor to the next field. If less than one-half the
height of the next line of a field is visible, the Return key acts identically to the

How HyperCard Literate is the User? 45

Tab key-otherwise it advances the cursor to the next line, which you'd expect
of multiple line fields. For database-style HyperCard cards, I recommend
turning on autoTab for all fields. Your users, however, must be using
HyperCard 1.2 or later for this to work.

By now I hope you have a good idea of what it means to design your stack
around the non-HyperLiterate individual. It certainly requires more plan­
ning than writing for stackheads, but it also means you're getting good
experience at designing small parts of man-machine interfaces. Your users
will appreciate the effort.

2

Designing for all
Macintosh Models

In the early days of Macintosh (they're not quite "the old days"), it was

relatively easy for a software designer to map out one interface for every

machine out there. He could count on a fixed execution speed and a

fixed screen size. But that comfort is now gone. Software must run on

a Macintosh Plus, Mac SE, and Mac ll. The designer must be prepared

to have his programs operate on the standard 9-inch internal mono­

chrome monitors, as well as gigantic color monitors. HyperCard

developers have these same concerns.

When you work on a particular Macintosh hardware configuration,

it is very easy to become myopic about the hardware that other folks are

using. As a result, you tend to design for the machine you use and forget

that others are running faster or slower computers, or have larger or

48 HYPERCARD DEVELOPER'S GUIDE

smaller screens. These two factors-speed and screen size-impact the
design of HyperCard stacks. H you know for sure that your stacks will be run
or demonstrated only on one hardware configuration for time immemorial,
then you can afford to be nearsighted in your design. I doubt, however, that
many of us have that luxury.

Execution Speed Concerns
Stack execution speed in HyperCard is dependent upon three hardware
elements: the microprocessor, the ROM, and the disk drive. Let's see how
these elements affect each of the three main Macintosh models.

Macintosh Plus

The oldest Macintosh computer capable of running HyperCard is the Macin­
tosh Plus (or equivalent upgrade). This machine contains a Motorola 68000
microprocessor and a ROM chip set that represented the first major ROM
upgrade for the Macintosh line. While this is not the forum to debate the
relative speed or slowness of the 68000 in the microprocessor world, suffice it
to say that the 68000 in the Mac Plus is the slowest microprocessor chip inside
any Macintosh. The ROMs, too, are the slowest of current Macs in the way
they execute a number of important time-consuming duties, like refreshing
the screen. Despite this, execution speed of the Mac Plus is acceptable when
running typical (but not all) HyperCard stacks.

Because HyperCard is so disk intensive-text entered into a field of a
typical stack is immediately saved-the speed of disk drive access becomes a
critical factor in the perceived execution speed of HyperCard and stacks
running on HyperCard. Since the Mac Plus has been around the longest, it is
likely there are still many in use today that have hard disks connected via
either the serial port (the first generation of hard disks, actually predating the
Mac Plus) or the floppy disk port (like Apple's original HD-20 hard disk).
Between the two styles, the HD-20 style is probably the more prevalent in
these older systems.

With the advent of the Mac Plus, however, the Macintosh gained the SCSI
(Small Computer Systems Interface) port that allowed much faster data
transfer between the Macintosh and external devices, such as hard disks. In
fact, soon after the release of the Mac Plus Apple changed over from the floppy
disk ported HD-20 to the SCSI ported HD-20SC to take advantage of this extra
speed. Many third-party hard disk drive manufacturers also produced SCSI
hard disks, and that's the standard today.

Among hard disk drives, as you're probably aware, there are noticeable

Designing for All Madntosh Models 49

differences in access speed. Typically, the greater the hard disk capacity (up
to about 150 megabytes), the faster the access, due largely to the manner in
which data is spread across multiple disk platters in high-capacity drives.
HyperCard users, therefore, will get greater perceived performance from a
Mac Plus with a high-capacity SCSI hard disk drive than with the originalHD-
20. But in fairness to potential users of your stack whose hardware configu­
ration may be held in check at the Mac Plus/HD-20 level, you should consider
these users in your stack design.

On the screen side of the Mac Plus, the machine comes with its own built­
in 9-inch, 512 x 342 pixel monochrome monitor. Since this is the smallest
screen size you'll have to address, make sure that if you design your stack on
a large screen it works the way you expect it does-graphically-on a 9-inch
screen. I'll have more to say about this later in the chapter.

The Macintosh SE

While the Mac SE runs the same 68000 microprocessor as the Mac Plus, its
ROMs are of a newer design, which, among other things, refreshes the screen
more quickly. That accounts for a noticeable improvement in speed when
running any kind of Macintosh program on the SE versus the Mac Plus.
HyperCard stacks, which also do a lot of refreshing of the screen (as in going
from card to card), run faster on the SE than on the Plus.

Most SEs also have built-in hard disks. Whether the user has an internal or
external SCSI hard disk, expect your stacks to run approximately 25% faster
on an SE than on a Plus.

It's safe to say that most SE users have the single, built-in 9-inch mono­
chrome display, but the availability of the expansion slot inside the computer
tempts owners to add large screens, like those from Radius, E-Machines,
Micrographics, and others. The expansion slot also accepts one of several
accelerator boards now available. Such boards include a faster microproces­
sor, which may be just a faster version of theSE's 68000 (running twice as fast
and maintaining software compatibility) or a version of the Mac IT's 68020 that
runs at twice Mac IT speed (but may also present software compatibility
problems with non-Mac IT-friendly software). Many accelerator boards also
contain sockets for other chips that speed up calculations and other operations
even further. Owners of the fast 68020 accelerator boards claim that their
Macintosh SEs run faster than the Mac IT.

All this speed, however, can affect the design of your stack, as we'll see later
in the chapter.

50 HYPERCARD DEVELOPER'S GUIDE

The Macintosh II

At the top of the heap is the dream machine of many Macintosh owners, the
Macintosh IT. Dave Winer of Living Videotext once described the Mac IT as the
"infinity machine," because it can be expanded to do great things we haven't
even thought of.

At the core of the Mac n is an 8-MHz Motorola 68020 microprocessor, a
speedy chip compared to the 68000 chips running in the other Macs. Coming
to a Mac n from either the Plus or standard SE, the speed improvement is
remarkable. Conversely, if you work all day on a Mac nand then ~veto sit
before a Plus or SEat home, execution speed seems interminably slow on the
smaller machines. As such, I believe it is a real hazard to develop stacks on a
Mac n, and use its execution speed of intensive stack-to-stack manipulations
as an acceptable benchmark. If an operation takes "just the right amount'' of
time on a Mac IT, it may be unacceptably slow on other machines.

Screen sizes on the Mac n vary widely, but one thing you can count on for
sure: No Mac n user has anything smaller than the 640 x 480 pixel screen of the
low-end Apple monitors. That means that the HyperCard window will be a
free-floating entity on the screen, not taking up the entire screen. The
menubar stretches across the top of the monitor, outside the HyperCard
window. And the user sees the title bar of the HyperCard window, including
changes in the stack name being accessed in a stack-to-stack exchange, even
when the screen is locked (Figure 2-1).

You can also count on hard disks for the Mac n to be fast. It's rare to find
a Mac n out there with anything smaller than a 40-megabyte hard disk, while
the average hard disk size in the community will grow very quickly as SO­
megabyte and larger hard disks become the norm in the Macintosh n environ­
ment.

What About Floppies?
Word amid the Macintosh community is that approximately 70 percent of the
Macintoshes in use today are linked up with a hard disk of some kind. Despite
that penetration, there are enough floppy disk-only users in the world to make
you think twice about designing a stack system strictly for hard disk owners.
In some fashion, you'll have to accommodate those whohavetwo BOOK .floppy
disk drives on their Mac Plus or Mac SE.

There will be more specifically about structuring your stacks for floppy
disks in Chapter 5, but it's important to realize that stacks distributed on
magnetic disk media (as opposed to optical CD-ROM or streaming tape
media) must be organized carefully for ease of installation on a hard disk and
ease of use when used strictly from floppy disk drives.

Designing for All Macintosh Models 51

Figure 2-1 In large monitors, HyperCard appears as a window on the desktop. The
menu bar is located at the top of the screen, detached from the stack window.

Multimegabytes of RAM
The near simultaneous release of HypeiCard and MultiFinder presented a
seductive software pair. On the one hand, HyperCard can be used as a
repository of every bit of information you need at your fingertips during the
day. On the other hand, MultiFinder lets you access that HyperCard treasure
chest in its entirety even while another application is running-provided, of
course, that you have enough RAM in your Macintosh to accommodate it all.

Since HypeiCard likes to have 750K of RAM all to itself, you need a
minimum of 2 megabytes of RAM to use HyperCard along with MultiFinder
and another application. If your suite of hour-by-hour applications contains
a few applications programs, then even 2 or 2.5 megabytes won't do. It's 4 or
more megabytes for you.

MultiFinder is an attractive setting for doing stack development, particu­
larly if your stack creation draws on artistic tools of outside graphics pro­
grams or you are testing text importing and exporting. But since most
Macintoshes are still equipped with only 1 megabyte of memory, you cannot
assume that a wide audience for your stack has MultiFinder capability while
running HyperCard (unless you are doing an in-house stack for a specific
bank of multimegabyte Macs). You are free, of course, to limit the appeal of

52 HYPERCARD DEVELOPER'S GUIDE

your stack by stating as a system requirement that your stack requires
MultiFinder. In fact, there are certainly cases where this will be true. But for
mass appeal stacks, assume the user has 1 megabyte of RAM and no concur­
rent operation of HyperCard and MultiFinder.

That's not to say you should ignore those with multiple megabytes. Their
ranks will grow slowly at first, but then speed up as 2 or more megabytes
become standard memory configurations for Macintoshes and the high­
capacity memory modules (1 megabit SIMMs) resume the customary price
cuts of RAM chips. Therefore, in stack documentation and o~-1ine help, be
sure to acknowledge howyourstackcan be used best in a multiple application
environment.

Screen and Card Size
Through version 1.2 of HyperCard, card size has been limited to the standard
512 x 342 pixel Macintosh Plus and Macintosh SE screen. What users of those
computers don't see, however, was that the active area of the card is actually
inside a fixed size Macintosh window. The title bar is positioned "above" the
top of the screen, out of view. When viewed on a larger screen, like the 640 x
480 pixel color and monochrome monitors Apple offers for the Macintosh n,
the idea that a card is a Macintosh window hits home, since you can see the
title bar, and the HypetCard window sort of floats in mid-air on the screen,
unless you drag it around.

Bill Atkinson's original rationale for restricting the HyperCard card size to
512 x 342 pixels was that a card designed on any Mac model would be
completely visible on every other machine. That makes perfect sense to me.
It would be a significant inconvenience to the user who came to a 9-inchscreen
Macintosh and had to scroll around in search of buttons or fields on a larger
card.

A future release of HyperCard will probably give the stack developer the
freedom to make cards larger than 512 x 342. Power-hungry developers will
probably disagree with me, but I feel strongly that stacks intended for a wide
Macintosh audience should be no larger than the 512 x 342 pixel size of the
original HypetCard card. I also believe you do yourself a disservice by laying
out huge cards whose design integrity is lost on the majority of users, who
have small screens.

The time to take advantage of the larger card size is when you know the
stack will be used on a very specific hardware setup. For example, if you are
designing a stack for a freestanding kiosk situation, you have control over the
screen size at these stations. If the screen is a 640 x 480 pixel monitor, then it's

Designing for All Macintosh Models 53

safe, if not preferable, to design the stack with cards of that size. My advice,
therefore, is to be conservative in expanding your card sizes.

You'll also probably be able to make cards smaller than the 512 x 342 screen
size. When used on large monitors, there is a distinct advantage to having
stacks appear in small windows if the infonnation content doesn't normally
fill the standard card size. Small cards can prove very helpful in a MultiFinder
environment when the user has a 640 x 480 monitor. Since that monitor is too
small to display a typical application window and a standard HypetCard
window side by side, a smaller HyperCard stack window could clean up what
normally looks like a hodgepodge of overlapping windows.

Screens and Menus
One design element you must always be sensitive to is the interaction of the
menu bar and your card design on various size monitors. H your application
leaves the menubar showing, it covers the topmost 20 rows of pixels on a 9-
inch internal Macintosh monitor. On a larger screen, the menubar appears
distinct from the HypetCard window, at the top of whatever size monitor
you're using. Very often, you can tell what kind of monitor the stack author
has by trying out the stack on both the internal and the external, larger
monitor.

Figure 2-2 shows the result of a stack designed on a large monitor when
displayed on an internal 9-inch monitor. My guess is that because the
menubar never impinged on the card layout area on the stack author's large
screen, he never expected the menubar to cover any of the card. Conse­
quently, there is no Hide Menubar command in the openStack handler of this
stack. But on a 9-inch monitor, the menubar covers part of the intended full­
screen design.

In designing Foad Point, which has the menubar showing throughout, I
discovered the opposite effect. The screens had been laid out on an internal
9-inch monitor. Below the menubar is a black bar, which contains navigation
buttons and the name of the stack (Figure 2-3a). When I first demonstrated a
prerelease version of the product on a Macintosh n and its 640 x 480 pixel
monitor, I was astonished to see a blank white band between the HypetCard
window's title bar and the black bar of the card (Figure 2-3b). Not only that,
but the top of the black bar looked unfinished because the bottom black row
of pixels of the menubar had given the appearance of a border between the
black bar and the menubar. I had forgotten to take into account the area under
the menubar, because on the monitors that my screen artist and I were using,
the menubar was always there, eating into the active area of each card design.

54 HYPERCARD DEVELOPER'S GUIDE

Bus. Take Qtided
tOW" of the~ Map of this=~--.---·
lights of thb stack stack of carda

IDdex. Look ._, and
joolp to topics of In- Help. nfo on
terest how to use this

Lift llli'8W. Go to pre­
vious card

Rlgbt llli'8W. Go
to next card

Retura. Go back to
previous fork in r~

Figure 2-2 An obvious case of a stack being designed on a large-screen display. The
menubar should have been hidden upon opening the stack to let the full screen art show
through.

Knowing that my audience would be using all monitor sizes, I added some
art to the background underneath the menubar. First, I balanced the top
border of the black bar to match the bottom border. Then I filled in the top
blank space with a gray fill pattern. The gray would be less distracting that
an empty space under the window's title bar (Figure 2-3c).

The lesson learned from this experience, therefore, is that if you intend to
use the HyperCard menubar, you must plan for its presence and absence in
your card design. Don't design with active elements in the area that goes
underneath the menu bar on a 9-inch monitor. But don't leave the big monitor
folks with a gaping hole where the menubar appears on small screens.

I believe we will see HyperCard applications that generate their own
menu bars (via XCMDs), probably within the stack window. They will, in one
sense, be easier to design, because the screen designer can count on the menus
being there, no matter what size monitor the user has connected to his
Macintosh.

Designing for All Macintosh Models 55

(A)

(B) (C)

Figure 2-3 Focal Point was designed on a 9-inch monitor (A). When viewing it on a
large screen for the first time, the area under the menubar looked unfinished (B). Some
additional artwork gives the card a more finished look when viewed on a large screen (C).

Timing
My first demonstration of a development version of Focal Point on a Macintosh
II held another surprise for me. A data manipulation handler in one stack was
taking so long on my Mac Plus that I displayed a message in the Message Box
about what was going on. This, I figured, would put the user's mind to rest
that the program was, indeed, working, and had not frozen. But when I ran
that operation on a Mac II, the Message Box came and went so fast that I
couldn't even read the message. On the Mac II there was little reason to tell
the user to be patient if the operation was going to be completed before they
could read the patience message.

That experience caused me to dig deeper into that handler and the opera­
tions it was performing to find a more efficient way so that the user on the Mac
Plus would not need a patience message. In one case, however, I left the
message in because the operations took long enough on a Mac II to make the
message meaningful. The situation is in the Deadlines stack of Focal Point,
which updates its listing by going through many different cards in the Projects
and Proposals stacks, performs some bubble sorts, and then formats the text
so it is readable in the destination field. Messages that appear in the Message
Box do more than simply tell the user to wait a moment. They describe the
progress the handler is making in extracting, sorting, and formatting the data,
as detailed in the previous chapter.

56 HYPERCARD DEVELOPER'S GUIDE

Ticks, Seconds and Delays

In designing Business Class and Focal Point, I had built in a brief delay at the
opening of each product's title card. On the Mac Plus it was just about the right
amount of time to see the title and scan the author and artist credits. From
there, the program continued to the first screen of the active programs. I was
in for a shock, however, when I first demonstrated the product on a Mac ll.
The title screens went by way too fast.

For timing the delay, I had used the Wait command, specifying a number
of ticks to delay. My first inclination was to think that the Mac n counted ticks
differently than the Mac Plus or SE-more than the specified 60 ticks per
second. Upon further investigation that proved wrong. Here is the handler
that shot down my original thesis:

on mouseUp
get the ticks
wait 1 second
put the ticks- it

end mouseUp

No matter on which machine I ran this handler, the indication was that there
are 60 ticks to the second universally.

The difference in delay speeds was due, it turns out, to the fact that all other
operations in a handler are much faster on the Mac ll. What I thought was a
part of the programmed delay on the Mac Plus was more a factor of compara­
tively slow screen refresh and handler execution. On a Mac ll, the actual delay
is just as long as on a Mac Plus, but all the handler and screen action getting
to that delay is nearly twice as fast.

What I also discovered is that the longer you make the delay (on the order
of several seconds), the less the apparent disparity between Mac Plus and Mac
n. The reason, obviously, is that the fixed delay becomes a larger percentage
of the total execution time for the handler. But that leads to another question:
Is a delay something you should program into a stack?

When Delays Are Necessary

Wait loops are hotly contested among experienced HyperTalk programmers.
Some hate them, others use them sparingly. I fall into the second category.
Still, I'll never use a Wait command to intentionally slow things down. A wait
loop like this:

wait S seconds

Designing for All Macintosh Models 57

can be frustrating for the user, because the only way to break out of the waiting
period is to interrupt the handler by typing Command-Period. If you need to
build a delay of some kind, like showing a title screen for a short time, then
make it possible for the user to break out of the delay by some action, like
clicking the mouse. Here, for example, is part of the openStack handler for
Focal Point that shows the title card for five seconds or until the user clicks the
mouse anywhere on the screen:

on openStack

put the seconds into mark
repeat until the mouseCiick or the seconds- mark> 5
end repeat

end openStack

Note that this timing loop does not even use the Wait command. Instead, it
puts thecurrentclocksetting into a local variable, mark. The repeat loop keeps
whirling around either until the user clicks the mouse or until the difference
between the clock's seconds and the number of seconds just put into the mark
variable is greater than five-meaning five seconds have elapsed. Even
though a Mac n may go through the repeat loop more than three times as often
as a Mac Plus, the effect on all Macintosh hardware is identical

Animation
If you've ever seen Bill Atkinson's standard HyperCard demonstration, you
were probably amazed at the near animation quality survey through his clip
art stack. His demo has a couple of things working in his favor. First, he's
running on a Mac II. Second, he pre-caches the clip art stack into his
multimegabyte RAM before showing the audience (to pre-cache the images,
he shows all cards without anyone looking).

Regardless of how he does it, you can't help but think of the possibilities of
using HyperCard to create animation sequences in a stack. If you have a Mac
nand lots of memory, you can do it. But the moment you try the stack on a
Mac Plus or unaccelerated SE, the results will be disappointing. The primary
reason is that screen refresh rates are slower on the smaller machines.
Unfortunately, there is no simple way to make animation run at the same
speed on all Mac models.

The hard way is to use an XCMD to find out which machine the stack is
running on, and branch to a slide show handler tailored to that machine's

58 HYPERCARD DEVELOPER'S GUIDE

speed. But that presupposes that you'd allow the Mac II animation to be
artifidally slowed to make it work at the same speed as a Mac Plus. That's
unlikely-you should always want the fastest animation possible.

H your animation is of the variety that uses HyperTalk scripts to control
HyperCard painting tools, then HyperCard version 1.2 will speed things up
for you on all machines. HyperCard now switches between painting tools
much faster. You will still experience different execution speeds on different
hardware models, but at least now some of your ideas may be feasible on the
Macintosh Plus.

An alternative to HypetCard-only animation is to employ an animation
program driver. MacroMind, creators of Video Works II, offers a driver and
XCMD that lets your stack display Video Works animations inside a stack­
even in color on a color monitor. Play Video Works, as the system is called, is
more reliable across all machine speeds and all the art rests in a Video Works
file, rather than in your stack. This is the preferred method of including high­
quality animation in your stacks.

To disbibute a stack that plays Video Works movies, you'll have to license
the driver from MacroMind. The company has a sliding scale of one-time
licensing fees to include the driver with your product. The user of your stack
must copy the drive file to the same folder level as your HyperCard applica­
tion, but the animation files may be nested in other folders as you please.

In summary, then, be sure to test your stacks on machines from both ends
of the speed and screen spectrum. You'll learn a lot about your stacks in the
process, and probably find ways to make them work better on all machines.

3

What About the
A4acintosh tlser
Interface?

HyperCard created a kind of furor among many experienced Macin­

tosh program designers and users because, they claimed, HyperCard

did not adhere to the User Interface Guidelines. The basic elements of

the Macintosh user interface-elements such as pull down menus, win­

dows, and click-and-drag text selection-date back to an Apple docu­

ment written in 1982 for early Macintosh developers. So when Bill

Atkinson appeared to throw away the manual, some in the community

felt it was like fooling with Mother Nature.

I don't agree with the purists who decry HyperCard's abandonment

of the user interface guidelines. As a Macintosh program, HyperCard

does adhere quite closely to the guidelines. It has pull-down menus. Its

dialog boxes and buttons inside dialog boxes behave like any Macintosh

60 HYPERCARD DEVELOPER'S GUIDE

dialog box and button. It even introduces a new interface extension about
which few people quibble: the tear-off menu.

Interface purists expect all Macintosh programs to be displayed in grow­
able, scrolling windows. While HyperCard does use a standard window for
its display (you don't realize this unless you see it on a large-screen monitor),
the user may not resize the window at will, because there is no grow box at the
bottom right corner of the window. Most programs, other than HypetCard
applications, tend to revolve around documents that may be larger than the
standard 512 x 342 pixel Macintosh internal monitor. These documents are
on-screen replicas of the kinds of paper documents from the physical world,
whether they be filled with words, numbers, or drawings. But because the on­
screen metaphor of HyperCard's information unit is a card, it makes sense to
me that the window to the HyperCard applications should be the size of that
card. A "card" also conveys a finite, tight information package, which should
be seen at a single glance. You shouldn't have to scroll around a card to find
a button or field-a card's content should be obvious in one visual scan of the
card. That being the case, growable windows and scroll bars aren't required.
And non-growable windows are a predefined window type in the Macintosh
toolbox. There's nothing special going on in that regard.

No, HyperCard, itself, does not wander far from the guidelines. But
admittedly the applications you can create with HypetCard can appear to toss
the guidelines into the wastebasket. This becomes, then, an important issue
that any stack developer must address before setting out on a stack project.

Let's look first at the kinds of deviations from the user interface guidelines
that HyperCard allows. Then we'll see where deviating from the guidelines
might be okay.

TheMenubar
Except for some game programs, virtually every Macintosh program pro­
vides a menubar across the top of the screen. Even the simplest programs offer
the Apple, File, and Edit menus. The Apple menu, of course, lists the desk
accessories installed on the current System File you're running. The File
menu, at least, offers such basic items as Open, Save, Print, and Quit. The Edit
menu, as prescribed by the guidelines, offers selections for copying, cutting,
and pasting selected items in the document, plus a selection for undoing a cut
or paste.

As we've come to expect in Macintosh applications, the menubar is where
we turn to initiate some action, whether it be to open a document, start a
spelling checker, or change the outline thickness of a graphic object. In a

What About the Macintosh User Interface? 61

HyperCard stack, however, the tendency is to initiate action by clicking on
screen buttons. You even have the choice of hiding the menubar from view
in an application. In its current stage of evolution, HyperCard does not
provide for a custom menubar to replace the HypetCard menubar.

How you handle the menu bar issue in your stack often has a lot to do with
the Macintosh and HypetCard literacy of your audience. There are two issues
here: whether to show the menubar at·all and, if so, how much of it to show.

If the intended audience for your stack is guaranteed not to be Macintosh
literate, as in freestanding information stations available to the public, then
pull-down menus probably won't mean anything to them. In fact, the user
probably wouldn't know how to use the mouse to pull down a menu or what
to do with that menu once it was pulled down. To experienced Macintosh
users, menus are second nature; to non-computer folks, a menubar can be
mysterious. Such stacks, then, should hide the HyperCard menubcir and
create on-screen buttons that look like things you should press (even clicking
on a button won't be natural at first, but a simple on-screen instruction is all
thars needed). A button should both look inviting and be clearly labeled as
to the action resulting from a press of that button.

Inapplicable Menus

The difficulty with leaving HyperCard menus showing for Macintosh-liter­
ate, HyperCard-illiterate users is that some of the menu items may not apply
to your stack. To help reduce the confusion, the menus change as you adjust
the user level of the stack. Therefore, in a browsing or typing level, only three
menus (plus the Apple menu) appear on the menubar. And, while these
menus are shorter than they are at higher levels, they still might con~ menu
items that don't apply to your stack. For example, if your stack is 'not meant
for printing of any kind, the application still appears to offer three printing
options--Print Stack, Print Card, and Print Report. Even though you can use
HyperTalk to trap for these menu items so they never execute, it is still unfair
to the user to have items on the menu that don't do anything. How frustrated
do you get when you go to a restaurant and order something listed on the
menu, only to learn from the waiter that the item is not available that evening?
Irs the same for a stack user.

If you are creating a browse-only stack, several items in the Edit menu
makes no sense. By setting the user level to 1, there is no chance that the
browser will be able to select text (except in the Message Box), graphics, or any
object to cut, copy, or paste. The Go menu, too, may be a problem for users,
especially if you, as stack designer, would prefer they not have access to the
Message Box or to the Fmd command in the Message Box. Again, you'd have
to trap for these menu items. You could successfully intercept the Find menu

62 HYPERCARD DEVELOPER'S GUIDE

item and put up an Answer dialog box to prompt the user for a search string,
but the Message item in the Go menu would produce either nothing or a
dialog that states the item is not available. Yet the navigation items in the Go
menu may be incredibly useful to your design.

Showing the full menubar (as when the user level is set to 4 or 5) presents
even more potential confusion for the user, unless you know the audience has
an appreciation for HyperCard and needs access to the object and scripting
tools to customize the application. Focal Point 1.0 shipped with all menus
showing, because the user is invited to customize the look and actions of
everything in the stack system. At the same time, the initial audience for this
application was largely H yperLiterate and thus was eager to investigate the
internal machinery. Future releases, however, will not display the Hyper­
Card menu automatically, because a greater percentage of new Focal Point
customers will be less Hyper Literate. The profusion of irrelevant menus and
menu items will only confuse this audience (but the application will still
maintain its previous level of customizability and accessibility for the Hyper­
Literate).

The point of this discussion is that the menus appearing on the HypetCard
menubar-at any level-are HypetCard menus, not menus for your stack.
That makes a big difference in the way the menus are perceived by the user.
The 11HyperCard-ness" of the application starts to show through, and may
distract attention from your application content. I believe the application
should be the center of attention, not the fact that it is running on HyperCard.

When to Show Menus

As long as the audience for your stack is Macintosh literate, then pull-down
menus make excellent sense. In particular, they let you place the equivalent
of many buttons in a convenient, yet uncluttered place in your application.
The tendency to clutter screens with buttons for the most trifling, infrequent
action is something to be avoided. Those kinds of actions should be hidden
until needed-hidden in a pull-down menu. Therefore, I believe we'll see
more HyperCard applications coming along with their own menus, whether
they be in the traditional menubar format or as pop-up menus in the middle
of screens. For either type of menu to behave with the same speed and
interface as Macintosh menus, they must be created as external commands
and functions. In Chapter 28, we show you how to create an external function
to generate pop-up menus.

H you develop an XCMD to display traditional menus, however, the
burden falls on you as the stack designer to make sure that custom menus
adhere as closely as possible to the Macintosh User Interface Guidelines. H
you are making a stack look like a Macintosh application, then the users of that

What About the Mlldntosh User Interface? 63

stack will expect it to behave like a true Macintosh product. Keep menu items
short. Group menu items logically, separating groups of related functions by
dotted lines. If you are doing your own menubar, then be sure it has an Apple
menu listing installed desk accessories, and that other menubar conventions
are followed, like putting the Quit item in the File menu.

Buttons, Icons, and Clicking
I can just about guarantee that every experienced Macintosh user wrinkled his
or her brow (as I did) when working with the HyperCard Home Card for the
first time. First of all, we assume that the Home Card is like a desktop to other
HyperCard applications, and those little snippets of art are icons representing
those applications. But clicking on one of those 11icons" does not select it
visually-it does not invert. In fact, a single click causes the application to
start, not a double click as in the Finder. And then, how do you select an icon
and drag it around the card? It was a mind-bending experience. To make
things even worse, we learn later that what we believe are icons connected to
applications are nothing more than bit-mapped art drawn on the card,
covered by transparent buttons. Wild stuff.

This, I believe, is where the user interface critics of the Macintosh world
come down hard on HyperCard for violating the rules. Frankly, I can't
disagree with them that the familiar feel of the Finder and double-clicking
icons are not here. It troubled me at first. But then other questions arise­
questions that must be answered with a broader view than that of an
experienced Macintosh user.

Of Mice and Clicks

Macintosh experience counts for a lot when it comes to knowing how to use
the mouse and act on things appearing on the screen. Experienced Macintosh
users think in terms of single clicks and double clicks. For example, consider
this inconsistency that most of us don't even realize exists.

When the cursor is the text insertion pointer, we know that a single click
plants the flashing text cursor in the spot at which we click. A double click
selects the entire word surrounding the location of the click. One click insert;
double click select. In other situations, such as in the Finder, a single click
selects an item, while a double click causes some major action. One click select;
double click act. Selecting text occurs with a double click; selecting an object
occurs with a single click. But that doesn't bother us. We know how this all
works, so irs no big deal.

What stack developers must remember, however, is that not all stack

64 HYPERCARD DEVELOPER'S GUIDE

users-especially users of information publishing kinds of stacks-will be
familiar with the concepts of selecting or double-clicking on something to
causeanaction. Thinkaboutit. Howintuitiveisadoubleclick? Notvery. Yet
experienced Mac users rely on the double click for initiating all kinds of action.
In fact, having learned the power of double clicking in the Finder and in other
applications, many users tend to double click before even trying a single click
(we'll talk about this more in a moment).

Single Oicks Do All

HyperTalk is largely responsible for the "single click-ness" of HyperCard.
Recall that when you press the mouse button, HyperCard sendsamouseDown
message; while the button is held down, HyperCard sends mouseStillDown
messages; and when you release the button, HyperCard sends the mouseUp
message. There is no collective "click" message, much less a "doubleClick''
message when you press and release the mouse button (the mouseClick
function simply lets you test for the action of pressing the mouse button, but
no message is generated as a result).

As noted in the Handbook, the distinction among the three mouse-related
messages gives you added flexibility in the kinds of mouse response you wish
to build into your stack, plus it corresponds to the way the mouse works in
traditional Macintosh toolbox-based programs. A click, like on an OK button,
takes effect only when you release the mouse button with the pointer atop the
same button over which you pressed the mouse button. Thus, you can press
and hold the mouse button atop a button (Figure 3-lb), drag the mouse pointer
away from the screen button and release the mouse button without activating
that OK (Figure 3-lc). It's a subtle but important user interface point that lets
us retract an erroneous mouse action before it's too late.

Trapping Double Clicks

The norm in HyperCard is the single click. That doesn't sit well with
everyone, but for simplicity's sake, a single click is a good solution, especially
for non-Macintosh-literate users. What you, as stack developer, must remem­
ber is that experienced Mac users may double click on buttons. HypetCard,
itself, discards the second click of a double click on card layer buttons, but not
on background buttons (this may change in a future release). In some cases,
that can be disastrous, or at least cause unexpected results. For example, if you
double click on the right arrow navigational button on a card, the button gets
the first mouse Up message, acts on it according to instructions in its mouse Up
handler, then gets the second mouseUp message, and handles it again. In
other words, click twice on the right arrow button, and you advance two cards

What About the Macintosh User Interface? 65

(A) (B) (C)

Figure 3-1 In the Macintosh User Interface, when you click on a button, it highlights
(B). If you then drag the cursor out of a highlighted button, the button returns to nonnal
(C).

Figure 3-2 Double-clicking on the Carry Over button (bottom) would cause data to
be copied to each of the next two days' To Do cards. The handler had to trap for double
clicks, ignoring the second dick.

in the stack.
It's not too serious if a navigation button doesn't intercept double clicks. If

the user double clicks on a left or right arrow button, then the damage can be
undone with one click of the opposite arrow or a press of the Back (tilde) or
arrow key. But when data is being manipulated as the result of a click, then
a double click can be more of a nuisance. For instance, in the To Do list stack
of Focal Point, there is a button near the bottom of the screen that automatically
posts unfinished to-do items to the next day's card (Figure 3-2). In testing, I

66 HYPERCARD DEVELOPER'S GUIDE

discovered that new Focal Point users sometimes double clicked on this
button. When they did, the unfinished items were posted to the next two days'
cards, because the Carry Over button acted if it had been clicked twice: once
on the starting card, and once again on the second day's card. Since undoing
the posting of data to the third day was an undesirable job, the button had to
include a timing scheme to make sure that double clicks would not inadver­
tently double post items. Here's an excerpt from that button's script:

on mouseUp
global lastCiick

--trap inadvertent double clicks
if the seconds- lastCiick < 5 then exit mouseUp
else put the seconds into lastCiick

end mouseUp

The script utilizes a global variable, lastClick, to capture the time (in seconds)
when this button's mouse Up handler last ran. Then at the start of this handler,
the time stored in that global variable is compared against the current time
(also in seconds) from the Macintosh internal clock. If the difference is less
than five seconds, the handler senses a double click has occurred, and the
second execution of the mouse Up handler ends before posting information to
the third card. I arrived at five seconds after much testing on a Macintosh Plus.
It took a maximum of five seconds (on a Mac Plus) for the carryover mecha­
nism to extract all unchecked items from long lists, go to the next card, and
post them there. Specifying an interval any shorter often resulted in the
second mouseUp message being handled, because the actual elapsed time
between the first mouseUp message and the reception of the second mouseUp
message was longer than the double click interval. In other words, if the
specification called for a second mouse Up message to be ignored if it occurred
within two seconds of the first, and it took three seconds to execute the works
of the first mouseUp handler, the button would figure it's okay to process the
second time, which it definitely was not.

Icon Buttons

One of the interface shocks to the experienced Macintosh user is the fact that
you cannot simply drag what appear to be icons around the screen like you
can on the desktop. To drag a button, you must first select the button tool.
First-time HyperCard users are not likely to discover that right away, espe­
cially since HyperCard comes out of the box set to user level2, which hides the

What About the Macintosh User Interface? 67

existence of a tool palette. But even if the novice user learns about the button
tool, there is yet one more shock: The art behind the buttons on the Home Card
is not attached to any of the buttons. The buttons aren't icon buttons at all, but
transparent buttons atop card layer graphics. To move a button and its art
requires two different moves, with two different tools.

Given the cut-and-paste ability of true HyperCard icon buttons, in one
sense I was amazed at the decision to make those buttons transparent atop
background art. In defense of that decision, the button art was both unique
(i.e., not part of the library of icons pre-installed into HyperCard's Home
stack) and larger than the 32-pixel square limit on true icons. I have no
problem with the quality of the art, but I felt that the concept of buttons
separated from their art might be a little much for the newcomer.

If that experience taught me anything, it was that whenever possible, art­
based buttons on customizable stacks should be icon buttons. It makes it
easier for the user to adjust the location of the button to suit personal tastes.
For details on creating icons for icon buttons, see Chapter 24.

Button Feedback
Something else that may surprise new users of the HyperCard Home Card is
that when they click on one of the buttons, nothing happens to the button to
indicate that it has been clicked. Were it not for the disk activity associated
with going to the stack linked to that button, the user might think that the
button was a fake or the mouse click didn't register.

Typically, buttons in other Macintosh environments, including dialog
boxes, offer some kind of visual feedback that you are clicking on them. The
most common feedback is an inversion of the pixels of that button. Black turns
white and white turns black (Figure 3-lb). From a user's point of view, it's
very comforting to see something happen on the screen as the mouse button
is pressed.

Hype!Card button settings give the author a choice between providing
visual feedback-it's called auto-highlighting. Figure 3-3 shows the setting
checkbox of the Button Info dialog box. The default setting for a new button
(either by choosing New Button from the Objects menu or by dragging a new
button with the button tool) is for auto-highlighting to be turned off.-no
feedback.

Turning auto-highlighting on for some styles of buttons may present
unexpected results. Therefore, while I strongly endorse visual feedback for
buttons, it is not always wise or possible to do it every time you wish.

68 HYPERCARD DEVELOPER'S GUIDE

Button Nome:
'------1

Cord button number: 1

Cord button I D: 1

181 Show nome

~Auto hlllte

(Icon...)

Figure 3-3 Setting a button's auto-hilite property to true causes buttons to invert when
clicked.

When to HighLight

Auto-highlighting works best on button styles other than transparent buttons
that encompass background or card layer graphics. Here's why.

When you size a transparent button's rectangle (all buttons except round
rectangle buttons are rectangles), the entire rectangular area inverts when you
click on it with auto-highlighting turned on. That differs greatly from the
same kind of button assigned icon art. Assigning an icon to a transparent
button restricts inversion to the art of the icon (see Figure 3-4 for a comparison
of four button styles). Inversion of the icon art mimics the kind of feedback
you get by clicking once (selecting) an icon in the Desktop. While inversion
of the rectangle around non-icon art does invert the art, the extra inversion
area may be distracting, if not surprising to someone expecting feedback from
an icol)-like situation.

Most other button styles should have auto-highlighting turned on, espe­
cially those styles derived directly from the Macintosh treasure chest: round
rectangle, radio button, and check box styles. But the last two have special
auto-highlighting behavior that differs slightly from other button styles.

Radio and Check Box Button Highlighting

Auto-highlighting for radio buttons causes part of the interior area of the
button to highlight, as it does on radio buttons you'd find in a dialog box. This
does not, however, cause the black dot inside the button to appear when you
release the mouse button. It is up to you to install HyperTalk scripts in the
group of radio buttons to handle the highlighting of the chosen button and
unhighlighting of the others. Remember, radio buttons are used to make a
single choice from among two or more choices. Only one radio button in an
associated group may be highlighted at one time.

What About the Macintosh User Interface? 69

Htltte F1lse

TriDIPireat:

Ice a:

SMdev: I Shadow Knows I

RouDd Rect: (OkeeDokee)

•

Htltte True

II
[JJ

Shadow Knows

OkeeOokee

Figure 3-4 Different button styles react differently to highlighting. Transparent buttons
intJert their entire rectangle, while icon buttons invert only the icon art t~nd the button
name. Shaduw and Round Rect buttons intJert in their entirety (but not their drop shad­
ows).

Check boxes behave differently. With auto-highlighting turned on, a click
of the mouse button places an "X" inside the check box. A subsequent click
of the mouse button removes that "X". That's good news, because it removes
the responsibility from the stack author of writing handlers for all the check
box buttons to tum highlighting on and off in response to mouseUp messages.
The button, itself, handles it all. That's fine for the standard application of the
checkbox user interface, too, because check box buttons allow you to choose
more than one item from two or more check box items. Another button, like
an ''OK" button, then checks the condition of all the check box buttons to see
which ones have their hllite properties set to true. The handler in the OK
button proceeds based on that information.

Feedback Problem

Unfortunately, now that I've carried the banner for button visual feedback,
there's some bad news that complicates the issue. In early versions of
HypetCard, clicking on an auto-highlighted button causes any text selection
in a field to become deselected (Figure3-5). For example, if you write a button
mouseUp handler to get the selection, go to another stack, and find the text
that had been selected, that handler will work as planned only if the button

70 HYPERCARD DEVELOPER'S GUIDE

(Get Selec:tlo~

Four score and
seven years ego,
forefathers brought
forth e new nation,
concetved tn liberty
end dedtceted to
the Uton
the

(A)

Get Sele,ction

Four score end
seven yeers ego. our
forefathers brought
forth a new nat1on,
concetved tn Uberty
end dedtcated to
the propostt1on
that (811 men are
created equal.l

(B)

Figure 3-5 Auto-hiliting is not always desirable. HyperCard de-selects any selected text
when you click on a button that highlights. This will be repaired in some future release of
HyperCard.

does not highlight when you click on it. If the button' sauto-highlight is turned
on, and you click on that button, the inverted, selected text in any text field on
the card will become instantly deselected. The handler, when it tries to get the
selection, finds that the selection is empty, and thus cannot perform the search
in the other stack as you expected.

H you have even one handler in your stack or stack system that relies on a
text selection as source material for further execution, you must give serious
thought to the button highlighting you set up for the entire application. It is
important to be as consistent as possible. I don't believe it makes sense for
some icon buttons to have auto-highlighting turned on because they don't
utilize selected text, and others to have it turned off because their handlers act
on selected text. Inconsistency like this can make for a very confusing time for
the user, for if he or she sees one icon button highlight, and another not, then
the thought that something is wrong with the application will be quite
prominent. Therefore, if even one icon button depends on a text selection,
then none of your icon buttons should have auto-highlighting turned on.

That's not to say that all buttons should be have auto-highlighting turned
off, but be logical about it. If a series of buttons perform similar operations and
stands by itself (and doesn't rely on selected text), then it's permissible to turn
on auto-highlighting for those buttons. Figure 3-6 shows a card from the
Outgoing Phone Log stack of Focal Point. Because all the icon buttons along
the left edge of the card work with selected text, none of those buttons have
auto-highlighting turned on. But the buttons at the right edge, which close out
a call, all perform similar tasks, and appear nowhere else in the Focal Point
system except here. These buttons have auto-highlighting turned on. Note,

Wlult About the Macintosh User Interface? 71

Da~ Tuesday. March 8. 1988

BEGIN 4:43 PM
END _ __ _

ledllmer
I

Penoo caned _,.s~telt..'lv..)(.e..uH~eel<.>d.,..y _______ _

Phooe Number 312-555-0828

0\arge To-----------­
Iteau Discussed

IM:IUNI

Figure 3-6 None of the icon buttons on the left edge invert when clicked, because their
actions are dependent on selected text. The related group of buttons on the right, however,
highlight when clicked.

too, that the buttons are transparent atop rectangular art in the background
graphics layer. By carefully positioning the rectangle of the transparent
button atop the rectangle of the art, the illusion is one of a rectangle button that
shows its name. But by using background art, the font of the button is one that
few Macintosh systems might have (Garamond), yet the text of the button
appears the same on all systems.

Choose the Correct Button Style
HypetCard gives the author enough latitude to go far afield in conceiving
button designs, especially when you consider transparent buttons atop any
kind of bit-mapped art in a graphic layer. Even a part of a map may be a
button, as shown in the excerpt from Business Class in Figure 3-7. Therefore,
you are not obligated in any way to use standard buttons in your stacks. But­
and this is a big BUT -if you use standard Macintosh buttons, you had better
use them as they were meant to be.

72 HYPERCARD DEVELOPER'S GUIDE

Figure 3-7 Sometimes it takes several rectangular buttons (each with the same handler or
button name) to cuver an irregular area. Transparent buttons, like those in the Business
Class maps, turn any region into an active button area.

The biggest button sins I've seen committed in early HyperCard stacks
revolve around improper use of radio buttons and check box buttons. I've
seen examples of both styles being used to initiate actions. That's not how they
are used in traditional Macintosh situations, and that's not how they should
be used in a HyperCard application. Both styles of buttons are for establishing
settings of some kind: only one of a group of radio buttons; any combination
of check boxes. These kinds of buttons must be accompanied by some other
button or action starter, which, in turn, acts according to the selections made
with the radio or check box buttons. What this comes down to is a rule--one
of the few hard and fast rules about HyperCard design which you must
follow:

If you use Macintosh user interface objects, then those objects
must behave the same way in your stack product as they do in
other Macintosh products.

The best way to learn how these items work in traditional Macintosh products
is to observe them in action. A good playground for buttons is any fully

What About the Macintosh User Interface? 73

featured dialog box, including the dialog boxes within HyperCard. The font
dialog box shows examples of correct usage of check box and radio buttons
(Figure 3-8). Additional commentary on button interfaces may be found in
Inside Macintosh, Volume 1, amid other discussions about the Macintosh User
Interface Guidelines-good reading for any stack designer.

Taking a Stand
As you can see, the question of user interface in HyperCard is a complex one,
primarily because HyperCard lets you be as free-form or as rigid as you like.

What it all means, however, is that no matter which way you go-even if
you choose a middle ground-you have to be very aware of how you intend
to adopt or shun the Macintosh User Interface Guidelines in your stack
product. There is nothing in the rulebooks saying you must "toe the line" in
stack design. In fact, as pointed out earlier, the standard user interface means
nothing to some audiences for stacks. For them the interface may be more
confusing than an interface you devise from scratch.

If you decide to hide the menubarcompletely in your stack, then make sure
the user has ample instruction or other visual clues on the screen to help him
navigate through the stack. Make buttons (or other "click-me" areas on the
screen) inviting and intuitive.

If, on the other hand, you prefer to adhere more closely to the Macintosh
interface guidelines in an attempt to give the impression of a free-standing
Mac application, then don't blow it by careless application of the guidelines.

Style
181 Bold
D Italic
181 Underline
D Outline
0Shadow
ocondense
181 EHtend

Align
QLeft
@..Center
(JtRight

Figure 3-8 The font dialog box demonstrates proper usage of checkbox and radio buttons
in Macintosh applications. Their behaviors should be emulated in a HyperCard stack.

74 HYPERCARD DEVELOPER'S GUIDE

Above all, when you use tried and bue interface elements, like radio buttons,
make sure they behave the way an experienced Macintosh user would expect
them to work.

Finally, you may also strike a balance between something completely new
and the familiar. As long as you don't misuse accepted interface elements,
there's no reason you cannot create your own interface extensions that work
best in your application. I believe there is a genuine opportunity in Hyper­
Card for creative people to develop valuable extensions to the Macintosh user
interface. Had we not had HyperCard, the Mac interface might have re­
mained stagnant or in the hands of just a few. Now we all have a say in it.
Successful implementations will be imitated by others, perhaps working their
way into the accepted Macintosh user interface of tomorrow.

4
Screen Aesthetics

Aesthetics is a philosophy about the concept of beauty. It may sound

odd, then, to be discussing such things in a book concerned with

computer programs and programming. But in the HyperCard develop­

ment environment, the subject of aesthetics is vitally important if you

expect others to perceive value in your work.

My 80/20 Aesthetics Rule

EarlyinmyexperiencewithHyperCard,Ihad the opportunity to watch

the results of talented Macintosh artists like I<ristee Kreitman and

Marge Boots as they designed prototypes for a number of HyperCard

applications. They were taking full advantage of the bit-map painting

76 HYPERCARD DEVELOPER'S GUIDE

tools in HypeiCard and creating wonderful metaphors of real world objects
on the screen-flip charts, note pads, open books, and so on.

Then I got the idea to work on what eventually became Business Class and
Focal Point. The basic concepts-what information would be on the screen,
how the user would interact with it, how the user would navigate through the
information-were pretty firm in my mind after awhile. When it came time
to mock up these applications, however, it was clear that as a non-artist, I was
not equipped to make them look like "real" applications. Very early in the
development process, at a time when there were no real stack developers, I
recognized an 80/20 rule that still holds true today:

A user will want to use a stack 80% for its information content or
information handling ability and 20% for its visual appeal, but
the initial perceived value of the stack will be 80% predicated on
its visual appeal and 20% on its information abilities.

In other words, a person will be in search of a solution for a particular
information problem. Finding that solution is the primary motivation for
searching out an application. But when taking first looks at several stacks of
comparable information handling prowess, the most visually pleasing stack
will make the best impression in the mind of the potential user. The prettier
face will look to be the best value.

You should stop short, however, of calling a stack's aesthetic appeal a
"glitz" factor, because the underlying information handling characteristics
must be in the product. H the functionality is not sound, then the pretty face
of the product will be seen as the thin facade it was probably intended to be.

HyperCard stacks are inherently graphic, or at least they encourage devel­
opers to think in graphic tenns. The fact that adding bit-mapped graphics to
a stack is so easy is certainly an important factor. Whereas traditional
Macintosh productivity applications tend to look a bit "dry'' on the screen, it's
rare to find any kind of HyperCard stack that hasn't been embellished in some
fashion with the author's flair for incorporating original or derivative graph­
ics.

Even buttons tend to be ~aphic. The ease of adding icon art from the built­
in library of button icons encourages this universal, visual approach to stack
screen design.

All this flexibility, however, can also create a serious problem for the stack
developer. Unless care is given to the graphic design of a stack-whether
information publishing, infonnation management, external device control, or
HyperCard utility-the screens can become barren, overcrowded, overpow­
ering, barely readable, unfinished, non-intuitive, or any combination of these.

Screen Aesthetics 77

Macintosh Artists and Screen Artists
Since the release of HyperCard, I have met many artistically inclined indi­
viduals who were pursuing stack development. That, to me, is exciting,
because they may bring new levels of artistic brilliance to Macintosh program
design. But that talent is rare. More typically, a stack developer is someone
who has a great idea for an application because his or her expertise is in some
specialized business or academic area-not in screen design. That was clearly
my case.

In my search for an artist, I discovered something unexpected. While there
are many qualified people who justifiably claim to be Macintosh artists, they
are not all qualified to design Macintosh screens. That may seem like a crazy
distinction, but it is very true.

The majority of Macintosh artists these days started their art careers in other
artistic media. Enamored by the graphics abilities of the Mac, they use the
Macintosh as another artistic tool, like they use pen and ink as a tool. In the
vast majority of cases, these artists use the Macintosh to produce works that
ultimately show up in printed media, such as newspaper charts and graphs,
magazine and book illustrations, posters, calendars, restaurant menus, an­
nual reports, concert programs, and so on. Quite often, these artists are
successful, if not swamped with work, thanks to the sophisticated products
coming from their Macintoshes and laser printers.

Designing for the Macintosh screen, however, is an entirely different
discipline-a discipline that, today, very few Macintosh artists practice with
success. When a program's art is not tailored to the screen, the result can be
less pleasing, even though the quality of the basic art is good. For example,
there is a shareware HypetCard-based entertainment product, called Tilt.
Based on jousting sport of days gone by, the screens included very elaborate
Arthurian bit-mapped art (Figure 4-1). While the art, in and of itself, is very
good, to me much of it seems out of place on the Macintosh screen, even within
the context of the game.

Icon Design
Good screen design also encompasses good icon design, if your program
plans call for icon buttons. Icons are bit maps that fit inside a 32 x 32 pixel
square. For an artist, that can be a very confining chunk of screen real estate,
but the opportunity to tell a long story in such a small space should be worth
the challenge. I personally prefer icon buttons over named buttons when
given the choice. Named buttons in any of the typical button styles (rectangle,

78 HYPERCARD DEVELOPER'S GUIDE

'J11e Boob of P£aye

ON THE MATTER OF BRITAIN

Romance, legends, pageantry and panoply,
the stories of the Round Table have it all.
For hundreds of years people
unquestioningly accepted King Arthur,
Guinevere, Lancelot duLac and even the
Lady of the Lake as h1 stori ca 1 persons.
Today, while few historians would admit
to being swayed by Romance, the search
for the "true" site of Camelot continues.
And, 1n the past year, no fewer than two
popular books have been published on who
"was" King Arthur and the other
personages who figure in the 1 egends

a 11 ether make what is

Figure 4-1 Art should be appropriate and in scale to the information of a card. Even
high quality art can seem inappropriate for a screen design, as in this game screen.

shadow, round rectangle) often take up more room on the card than an icon
does. Moreover, an icon can convey a lot of meaning with a tiny picture.
Figure 4-2, for instance, shows the icon buttons in Business Class and the names
of the categories to which they lead. Imagine having named buttons with all
13 categories on the card. There would be little room left for the map, and the
card would end up looking like a mess of buttons. The user would be
overwhelmed at first sight.

The point is, the artist who works on your stacks should feel comfortable
working within the confines of the icon format. It's not necessary to create the
icons in an icon design utility program. As long as the icons come to you in
bit-mapped form~eated in MacPaint, Super Paint, FullPaint, or whatever­
you will be able to transform them into icon resources (see Chapter 24) for
inclusion into your stack. Three excellent sources of inspiration for icons are:

The Symbol Sourcebook by Henry Dreyfuss (Van Nostrand, Rein­
hold, 1972)
Trademarks and Symbols by Yasaburo Kuwayama (Van Nostrand,
Reinhold, 1973)
Handbook of Pictorial Symbols by Rudolf Modley (Dover, 1976).

Screen Aesthetics 79

::n - "'C -!I) -!I) -!I) Ql -!I) Ql ::n !/) - Ql .-.
(J Ql co Cll..- .~ E CD::n ... CDQl E (J - CD c .:K
c > :::::J·- >c CCD CD c Ql (J 0 c

CD 0 ... 1\DQl (J 0 0"0 E Cll CD - Ql ... 'C CD Ql t- .c
t: ... I..ID "-E o..- ·- :.~ Cl 0 0.. -t- c,:)t tl)!/)

... _ ·- ... ::z::: ... cc t-:::::1 - (J Ql
:::::1 :::::1 !Do (,) Ql 0 (J (,) z::z::: Ql -(,) ·- E Ql

< 0.. 0 Gj t-!/) Q 1.6.1
c
CD ...
t-

Figure 4-2 Icon buttons can convey a lot of information in a 32-pixel-square area. Had
named buttons been used in Business Class, there'd be little room left for the maps.

Finding an Artist
Locating Macintosh artists to interview for your stack project may not be an
easy task in many parts of the country. This is particularly true if you want to
find someone who has experience doing screen designs for other products.
Such artists tend to be located in the areas populated by software companies,
predominantly in major metropolitan areas like Boston, New York, Chicago,
San Francisco, and Los Angeles. A good place to start looking is at a local
Macintosh user group. While it's not likely that many artists will be active in
these user groups, their friends and acquaintances will be. You've got to get
the word out that you're in search of a Macintosh screen designer. Another
way of contacting potential artists is through local desktop publishing service

80 HYPERCARD DEVELOPER'S GUIDE

bureaus, which seem to be popping up all over the country, even in smaller
cities. Again, the artists might not be on staff, but the firm probably knows of
free-lance Macintosh artists who have done other art and design work.

It's important when you interview a potential artist that you explain as fully
as possible what you have in mind for the artist to do. It may be that the
thought of designing what looks to be a series of business-oriented database
forms is just too dull a prospect for the artist, so be honest about the work
ahead. Ask to see examples of the artist'·s Macintosh screen design work.
Examples from other media are of less value to you, even if they're of excellent
quality. Of course, you may wish to help a talented Macintosh artist get
started in screen design, but prepare yourself to be more critical if the artist's
first attempts aren't to your liking. Also be supportive of those pieces that you
do like as you both learn screen design skills. You might even stage a small
competition in which you give the same instructions to all candidates for the
design of a simple screen and an icon or two. Then compare the results and
base your decision on that. Just don't use the competition as a way to get free
art. That's simply unfair.

Paying for Art
Financial arrangements with an artist can vary. The two most common
methods of payment are flat fee or an advance and royalty. In the flat fee
method, both of you agree on an amount for the entire project or an hourly rate
(perhaps with a ceiling).

The other method is more like an author-publisher arrangement, in which
you pay the artist an amount while work is in progress (the advance-payable
in installments at various milestones during production). The advance is a
payment made against future royalties, the rate of which is calculated as an
agreed percentage of the revenues you collect in the sale of the product. For
example, if you pay the artist a $2500 advance against a 15% royalty, the first
$2500 of royalty payments earned from sales of the software go toward paying
you back for the advance. Once the $2500 advance is earned, the artist then
gets 15% of your revenues. In a royalty arrangement, you are liable for issuing
royalty statements and payments at a fixed interval (quarterly or semi­
annually are common tenns) for the life of the product. All such details should
be spelled out clearly in a written agreement between you and the artist.

Whichever financial arrangement you agree to with the artist, it is impor­
tant for you, as stack developer, to acquire exclusive rights to the artwork. By
assuming all rights to the artwork, the copyright of the entire stack product
will be yours. H your stack is eventually published or distributed by a

Screen Aesthetics 81

software publisher, the agreement you sign with the publisher will probably
insist that you have sole rights to all pieces of the product anyway.

Although it's up to you, it is a gesture of good faith and cooperation to credit
the artist {and other contributors) somewhere in your product. If your stack
has an About box or title screen, give credit to the artist there. If a printed
manual accompanies the product, then acknowledge the artist there, too.
Keep reminding yourself about the 80/20 rule, and you shouldn't have
trouble remembering to mention the artist prominently.

Working With the Artist
The old maxim, "form follows function," is as true for HyperCard card design
as it is for any other kind of product. As stack creator, it is your job to define
the function; leave it to the artist to define the form based on the function.

That's not to say that the developer shouldn't try his hand at laying out
elements on a card. There must be a draft or sketch of at least the elements­
fields, buttons, graphics content-from which to start. It would be virtually
impossible to start designing the function of a stack without such a sketch,
either on paper or as a trial run on the screen within HyperCard. Once you
have a skeleton of functionality working, it's time to bring in the artist.

Explain to the artist how the various elements work together: what happens
when you click on every button; what the most important textual or graphic
information is on the card; what kind of impression the user should get when
opening a card; what the user and information flow is through the stack;
which buttons the user is likely to click the most often. I don't believe it is
critical that the artist be fluent in HyperCard, but it is essential that the artist
fully understand the stack application: who uses it; when they are most likely
to use it; how they will use it in the course of a day; how the stack interacts with
other Macintosh applications. The artist must share the same vision and have
the same enthusiasm for the product as its creator does. That commitment will
show through the product-as will a lack of commitment.

Don't be surprised if your artist makes suggestions about the functionality
of the product. Often an artist can be a good early tester of a program idea or
functional detail. He or she will probably be one of the first testers of the
product you'll encounter. You may even be challenged to explain why a
certain feature works the way it does. Guard against becoming strictly
defensive about your" child." If the artist questions something, it could be that
your intended audience may question the same feature. Listen carefully to
criticism-not just the criticism, but the basis for it. Solicit solutions. Even if
you don't like the one presented right away, it might stimulate other ideas for
a better implementation of a feature.

82 HYPERCARD DEVELOPER'S GUIDE

When to Hire the Artist
The timing factor-when to bring in the artist-is an interesting point. I was
once asked to consult with a software company to offer my suggestions about
a series of HyperCard stacks it was developing to support a series of its
standalone Macintosh software products. This company had hired a first-rate
Macintosh screen designer to be the Creative Director of the entire project. At
the same time, it hired mdividual writers to develop each of the handful of
stacks in the series. At the one meeting I attended, I couldn't believe what I
was seeing.

The company essentially wanted the Creative Director to specify a form,
which each of the authors would follow to create the functionality of the
stacks. There was no agreement on the stack structure. Each author had his
or her own idea about what the stack presentation should be. Around all this,
the artist was supposed to develop a common "look'' to the series. That,
simply put, was an impossible task. The company was asking function to
follow form-a form that had no explicit direction. The artist was not
equipped to define the form, because there was no functionality to design
around. Needless to say, the project languished and the artist left the project.
Eventually the stacks made it out, but not until after a reappraisal of the
methodology of developing the stacks and specifying the art.

Perhaps I was lucky, but the artist I found for my stack products (David
Smith of David Smith Design, Sausalito, California) turned out to be a
valuable asset in the development of both Business Class and Focal Point. It
took me several months to find him, and that occurred only after interviews
with almost a dozen Macintosh artists. Once we agreed to work together, we
didn't always see eye to eye on issues, and sometimes each of us felt like we
were talking to stone walls. But the intellectual exchanges were excellent, and
now we both believe the results are far better than if each of us had worked
independently-it was synergism in action. The key ingredient for our
teamwork, I believe, was respect for the other's talents. We also shared the
same visions in creating what we believed were useful and fun products.

Key Design Guidelines
Remember, however, that the visual formulas that worked for us in Business
Class and Focal Point may not work in your stacks. A different kind of stack
structure (see Chapter 5) will probably call for different visual elements. And
for me to impose design guidelines on you or your artist is risky business,
because the HyperCard environment is too new to burden it with aesthetic

Screen Aesthetics 83

design rules. Acknowledging that risk, here are a few general comments that
might help direct the design team for your stack (that includes you):

1. Keep screens as simple as possible. Occasionally, I see information
management stack screens composed of so many buttons and scrolling
fields that I get too confused to figure out what I'm supposed to do next.
If a screen requires supplemental information, find ways of nesting the
extra data (covered in detail in Chapter 18).

2. Let the information be the star. Since your stack more than likely stores
and displays information, the center of the screen should be devoted to that
information. Place buttons that perform ancillary actions or link to other
stacks at the periphery of the screen. That lets the user's eye focus on the
information. Just as Macintosh users tend to forget about the menubar
until it is needed, buttons at the edges of the screen fall outside the view of
a person concentrating on the information content.

3. Choose screen fonts carefully. While some of this discussion might seem
better suited to desktop publishing, the selection of fonts on a HyperCard
screen is equally important. If your card has fields the user types text into,
make sure the fields are of a different font than the field labels, which most
likely will be in the background or card graphics layer. Anticipate a very
low common denominator of field fonts in the user's System File for
editable fields. Just because you have Palatino in your System File doesn't
mean that everyone does. Play it safe with standard fonts, like Geneva,
New York, Monaco and Chicago. Field labels, generated as bit-mapped
characters in the graphics layer, may be of more exotic fonts if appropriate,
because the user need not have those fonts installed for them to appear as
you designed them. Also exercise care in specifying font sizes. Not
everyone who uses the Mac has an easy time reading 9-point, closely
leaded fonts. Either choose a large enough font for the original design, or
leave enough space in the field for the user to adjust the font up a size or
two.

4. Make the graphics appropriate to the subject. Unless the stack is designed
to show off some special art, avoid overpowering the viewer with art that
does not contribute to the stack's information content. A little ornamenta­
tion on an otherwise simple card may be alright, but don't overdo it.

5. Be consistent. If cards of one background or one stack of a stack system
have navigation buttons in one place, then make sure similar buttons on
other backgrounds or other stacks are in the same place. I've seen cases in

84 HYPERCARD DEVELOPER'S GUIDE

which the arrow navigation buttons were shoehorned into places around
different art on cards. This is utterly confusing. The user will never feel at
home in the stack.

6. Remind the user where he is. Information cards usually need titles of some
kind to let the user know what he's looking at. A particular background
or card style may be obvious to the stack designer, but not to the first-time
user of the stack. And, harkening back to item 5, above, be consistent in the
location of the card title. Figures 4-3 through 4-5 demonstrate the title
conventions used in Business Class, Focal Point and the Focal Point help
stack, respectively.

7. Label all fields. As the user tabs through data entry fields on a card, there
must be a title next to each one to indicate what kind of information goes
in there. In an information publishing stack, the card title may suffice,
provided there is only one field of information on the card. If there are
multiple fields, then some rationale for their distinction must be evident
from the titles of the fields.

8. Make best use of precious screen real estate. A number of the backgrounds
that come on the HyperCard Ideas disk (in the Hypex<::ard package) have
a vertical format to them, like an open book lying flat on a table, binding

CURRENCY

tm Thailand

GROUND TRANS P 0 RTATI ON
..____ Thailand

INTERCITY BUS CAR RENTAL

Figure 4-3 A consistent style and card titles help the user maintain spatial bearings in a
large stack system. These titles are from the information cards of Business Class.

Screen Aesthetics 85

Date _____ , ___ Location. -·--·--

!±} Oient # Oient NaJne ··--·······-············-····························

Figure 4-4 A similar layout and card titles keep the many applications of Focal Point in
order.

[-··~·~ .,. .. Table of Contents L·-·:::::::i
~: .:::::::!!:: •• ::::::::::-::::::::::::::::::.:.:::::::::::::::::::::::::::::::.:.:::::::.:::.-.::::::::m:::=::.:.::.:::.::.:::.:::::::::m::;:m:::::::::.:.:.:::::mru::::.:.::==::::::::.::::::::::::::::::i j ~

[
:::-..::::=!! INTRODUCTION UPDATING RECALCULATIONS !;::~.:::::::::1

!! What is Focal Point? !j i
i! Ho'w' Focal Point is Organized PLUS BUTTONS !j 1

--~: :---·

!1l~ DAILY APPOINTMENT BOOK ~ ; -=~

l
11''""'"''·:·::, ... ,,, ,,.,=, ,, ~ 11 I

.== ;! l=l=l Overv1ew 1: -~;
I ;; == ;; ;
! !I u: :is steele to plan your day's activities, hour by hour. When the steele opens, I! --·!
_ =iJ~ OUTGOING & INCOMING TELEPHONE LOGS ~ 1 --::.::~
~ ! l"'""""·''""""'·""""""·''"'''''""""'"""''''''''''''''""'""""'"'"''"""""'"'"'''''''''''''''"'''''=••==··---m""'""''""'"'"""""i1 j
~~ ~ ~" The Call Timer 1: -!

D i OUT ~ H : ' :· :
1 n !

,:::::=~! Whenever you or Focal Point create a ne'w' Telephone Log card, the Call Timer ! ~::::::::::::::(

Figure 4-5 The Help stack of Focal Point has a look derivative of the main program, yet a
strong consistency within this 97-card stack.

1

r

I

86 HYPERCARD DEVELOPER'S GUIDE

down the middle of the screen. Except for very specialized information
organization, I don't see much value to this kind of field layout. More often
than not, you are robbing screen space for a central binding, when those
pixels might be better used for fields or buttons. If you want to employ
visual devices like spiral bindings, place them at the edges of the screen,
where they don't take valuable screen space from the information.

9. Use the full screen. I believe a number of stack designs are unduly
influenced by the sample stacks that come with HyperCard in the way they
display a card metaphor atop the underlying HyperCard card metaphor.
For instance, the stack of cards shown in Figure 4-6 is redundant. The
design of the on-screen card does not enhance the meaning of the informa­
tion or the collection of data. In the meantime, there is a lot of wasted "gray
space" on the card. Sometimes, you'll need that extra room to convey
information or use it for a series of buttons. Admittedly, sometimes a
screen card metaphor can enhance the role of the information. The
Address stack, for instance, is a good introduction to the card concepts of

Article 2341: How to do Magic Tricks

The Bayview Star
March 12 ¥
Magic, magic stores, famous magicians,
card tricks

Figure 4-6 A double metaphor-il graphic stack of cards in a HyperCard stack of cards­
serves little purpose here. Some graphic cards, like the rolcrstyle Address stack cards, do
convey the functionality of the stack.

Screen Aesthetics 87

HyperCard because of its rolo-like metaphor. Still, once the fundamental
card concept is understood, the screen metaphor is often unnecessary.

10.Be original. Use material in the HyperCard Ideas disk stacks for your own
use-like when you're mocking up a stack to test functionality. Aside from
the legal implications of redistributing artistic material copyrighted by
someone else, borrowed art looks borrowed. Figure 4-7a shows a screen
from a commercial stack, and Figure 4-7b shows a card from a stack that
comes with HyperCard. To my way of thinking, it's hard to charge money
for a design that is so unoriginal.

From the realm of screen aesthetics, we next go to the concepts of stack
structure, where the talents of a stack developer show through with blinding
clarity.

Expense Report ¢ ¢ ?J GO Week of Fri oct LQ •. 198.1_

Brealcfast
Lunch
Dinner
Hotel
Laundry
Phone
Car
Taxi
Travel
Gifts
Supplies
fees
Entrtmt
Mileage
Gas/Oil
Parlcing
Misc.

Mon Tues Wed Thurs Fri Sat Sun Total
-·-----1---1---------+---lf----1

·----· ···-·-----· --- ·----···- ---1---1·--- 1----1

1---1·--·--- - ··-·1---1-··········- ······-··-···-···· ····-- ·-----·
···----···· ···--··----·· ·---· -·--·-··- -···-·- ----·- ·---1----·

Nome -------·-·-··················-····-··-·--
·i (Clear)(Calc) 1'------'

Figure 4-7a A glaring example of unoriginality: a card from a commercial stack (A) and
a card with almost identical look and function from the HyperCard ideas stacks (B).

88 HYPERCARD DEVELOPER'S GUIDE

Expense Report Week of ~embers ~ II

Breekfest
Lunch
Dinner
Hotel
Laundry
Phone
Cer
Tex1
Travel
Glfb
Supplies
fee3
Entrtmt
Mileage
Ges/011
Perking
Misc.

Mon Tues Wed Thurs Frl Sat Sun Total
478 3.45 6.5!f. -~:~~- 1!;1~~~-6.78 7.55 10.47 33.

15.83 25.98 12.89 z~.!H 7!;!.57
98.00 S!§.QQ --2.e...O..Q. r~:g~- M9, .. Q.Q.

12.00
25.46 .15.22 40.68

39.95 39.95 39.95 -~~---- ---W~2J;~..o.
---·

·-·-·---· ····-· .. ·--········ --····--····· ····-·--· ·····--·--
57 80 57.80

·-Z~ Q.!l
·--5.00 --····· ·---· -- -~~:.Q.Q ..

5.00 .. - 5.oo· §,QQ 20.00

Name/City/Hotel ..lr:..l;I.Y_~Jlli.rml.Cupertino (recalc) 9 ~ ~

Figure 4-7b

5

Stack Structure

Laying out the structure of your stack is one of the most important

steps in developing the product. This is where substat:ttial planning

takes place to determine the organization of cards, backgrounds and, if

it's a large system, stacks.

Internal and External Structures

Structure applies to two distinct organizational issues about a stack:

internal and external structures. Internal structure is the one that

involves decisions such as whether to keep all cards in one heterogene­

ous stack of several backgrounds, divide the system up into several

homogeneous stacks, or perhaps do a combination of both. Internal

90 HYPERCARD DEVELOPER'S GUIDE

structure also pertains to the way cards and backgrounds in a stack are
linked-how the user flows through the stack. Not all link structures apply
to all types of stacks, as we'll see shortly.

External structure is often not considered until too late. It doesn't apply to
single stack applications, provided the stack is small enough to fit on one
floppy disk. But as any author of a large stack system can tell you, the
distribution of multiple, linked stacks on floppy disk and their potential use
on that format by the user community cause problems that need addressing
in the design stage. While the majority of Macintosh owners have hard disks,
not everyone does. If your stack product is going into the world, you must
prepare your product for use on floppy disk-based systems.

Homogeneous and Heterogeneous Stacks
Introduced in the Handbook, the concept of homogeneous and heterogeneous
stacks has caught on. Briefly, a homogeneous stack is one in which all cards
share a single background. The stack might be one card (like a calculator card)
or thousands of cards (like a well-stocked address stack). From beginning to
end, there is only one style of card. A heterogeneous stack, on the other hand,
contains more than one background. Usually, the information contained in
the different backgrounds of a stack have some common bond. While a
heterogeneous stack has multiple backgrounds, the stack should still have a
central theme running through it. For example, the Datebook stack that comes
with HyperCard has three backgrounds in it: a to-do list, a weekly appoint­
ment calendar and a six-month calendar (Figure 5-1). All three have the
common thread of time and task management.

Another organizational concept you should consider is that of a stack
system. By this I mean a group of linked stacks, which, together, make up a
complete application. Both Business Class and Focal Point are stack systems.
Sometimes, as we'll see later in the chapter, it makes sense to divide one large
heterogeneous stack into several homogeneous or heterogeneous stacks to
form a stack system. Stack systems have their disadvantages, too, as we'll see
later.

Navigation Flow
Regardless of the homogeneity or heterogeneity of your stacks, you'll have to
consider the navigational flow the user follows through the stack. I've seen
some developers plan a stack by way of elaborate block diagrams of flows,

Stack Structure 91

To Do • 0 ~ m ~ m
------------ ------------------- ------------ . ------------------------ ·- 1 987 December • 0 ~ m ~ m --------- r-t»n.28 Thurs. 31

------------------- --------------------------- ----- :o ~ ~ ~ m ------ 1987 •• ·--- ------ .
-- ----- Julg s 1 ' ~ : 1: 1:

~ J s a October - Tues.29 ~ o&SI,BtlG --- ---- i2 Sl U. i5 S. l'l 11 : U S2 S8 u, i5 Sl l'l

·----- -----· J9311J l'liiiB\IJ:J ~ lBl931JJ a am
16G'JUIB!IS1 ~ IS 16 G'J 1118 IB !I S1 ---- ------ --- J s :at~ • ,November --- ----- August I J ' 5 • ' ~ Wed. 3D a 9SIUS!aStl'il
' sa u 22 st Lt 111 i5 S6 S? lt 19 II S1 ------ S6 S'J LB 19 II Ql 1111 c 1Dt!llt:WI251115.1'J211 ---- 18~2:J.I7:112t : n to --- 3111 3l c ---- September
6

., i Q t Ill 5 : l • ~ 111 s December ---- t 9 U lS ll 6 7 • t son 1:1
JJ Jt l:J 16 l7 ll lP * l3 Jt l!il ll• 11 J8 19
ID ~ 121 113 _. 25 Ill' ~ IIO!tl!li212!!Mi521&
1'1.2,10 121 18 29 tO IS I

t!
¢ ~0 (!)

Figure 5-1 A stack may consist of multiple backgrounds, each of which is perceived as a
distinct application. HyperCard's Datebook sample stack demonstrates this quite well.
Three buttons on the Home card link to different backgrounds of this stack, as do the
buttons at the top right of each card.

almost card by card. If that helps you visualize your stack, then go ahead and
do it. But basically there are only four ways to organize the user flow within
a stack: as a straight line, as a tree, as a cobweb and as a combination of two
or three of the others. In many cases, the kind of application you have in mind
dictates which flow model your stack will follow.

The Straight Line

Homogeneous information management stacks, such as the Address stack
that comes with HyperCard, are organized in straight lines-a linear format.
In a typical browsing environment for such a stack, you open the stack to reach
the first card, and then go through each card, one after the other, from
beginning to end (Figure 5-2). Fortunately, HyperCard's Find command lets
you transcend this linearity and skip ahead to a desired card, but the
underlying stack structure is linear.

Information publishing stacks of a homogeneous nature may also be linear.
HyperCard's association with Ted Nelson's hypertext concept is at times
unfortunate. It often leads developers of information publishing stacks to go

92 HYPERCARD DEVELOPER'S GUIDE

'"'·'··-H Card 2 H Cord 3 H Card 4 H Card 5 H Card 6 r
Figure 5-2 A straight line structure leads the user from start to finish down a prescribed
pathway.

out of their way to break free of linearity. While HyperCard seems to
encourage the linking of data outside rigid structures, there are still times
when a linear approach makes the most sense, particularly if your information
publishing stack is telling a story. A story has a beginning, middle, and end.
If breaking free of the story's linearity means you'll reach the end before the
middle, then the break harms the storyteller's intention.

Even a linear organization can be interesting and diverse. One of the
earliest stacks in public circulation was a children's story called Inigo Gets Out
(Inigo is pronounced "eye-nee'-go"). This stack was the first of a series of
extraordinarily well-conceived stacks by Amanda Goodenough (AmandaS­
tories).

The basic story line of this stack is the adventure of a cat, named Inigo, who
slips out of the house and is confronted by various opportunities to get into
trouble (Figure 5-3). The user determines where Inigo explores by clicking on
various areas of the screen. Even as you explore what might appear to be
branches off the main story line, the branches are small, linear units of their
own, which always bring you back to the decision spot on the main story line.
The diversions are more like loops hanging on the main line (Figure 5-4).
Because you always come back to familiar territory, you never get the feeling
of being or becoming lost in the stack, and that's important. You quickly gain
confidence that the stack designer will take care of you on your journey.

Product demonstrations and tutorials are good candidates for information
publishing versions of linear stacks. They are much like storytelling in that
they should have a beginning, middle and end, and the stack developer
should be the guiding spirit while the user makes his way through the cards.
Allowing for occasional looping detours might help break the tedium, just as
a sidebar does for a long magazine article. But unlike Inigo's story, you
probably want the user to experience a definite series of cards to get your
message across in its entirety. Don't be afraid of linearity in stack design. Let
interesting visual effects, graphic elements on cards and engaging content
hold the user's attention in an otherwise straightforward format.

The Tree Structure

A common structure for reference information stacks is the tree structure. As
its name implies, a tree structured stack has a trunk and branches. Typically,

Stack Structure 93

; \

Figure 5-3a Inigo Gets Out (excerpts Figure 5-3b
shown here) demonstrates that a basically
linear stack structure can be anything but
boring.

Figure 5-3c Figure 5-3d

Figure 5-3e Figure 5-3f

the branches lead to a dead end-that is, a point from which you can go no
farther than back to the trunk. In a reference stack this kind of structure is fine,
because the user typically is looking for a single piece of information that may
be anywhere on the tree. Through one or more cards at key junctures, the user
gradually finds his way to the desired information (Figure 5-5). These
junctures are decision points.

The large HyperCard Help stack system (written by Apple's Carol Kaehler)
is a good example of a tree-structured stack. The title card presents several
tabs at the bottom of the screen-decision points to branch you to more
specific information (Figure 5-6). Click on the H yperTalk button, for instance,

94 HYPERCARD DEVELOPER'S GUIDE

Bunnu & Fish
Episode

Tree Episode

Figure 5-4 Short, linear detours from the straight line path of Inigo Gets Out always
return the browser to a familiar screen. There's no chance of getting disoriented.

Figure 5-5 A tree structure is useful when the information lies at the end of a series of
decision paths. From that final information card, you usually exit the stack or return to the
top card to follow a different path.

HyperCard
Help

D Introduction

Stack Structure 95

Figure 5-6 The HyperCard Help stack is a fine example of a predominantly tree­
structured stack.

and you arrive at the beginning of the HyperTalk branch. Once there, you may
choose to see more detail about a specific command by clicking on its word.
While in the HyperTalk section, you may move linearly if you want to get an
overview of all the commands. But more typically, as a reference, you find the
information you're looking for at the end of a branch, and you're done. From
there, you return to the command summary, the beginning of the Help stack,
or back to the stack from which you originally came.

Information management stacks may also be tree structured, if the informa­
tion requires it. For instance, the Projects stack (the stack name is FP • Projects)
in Focal Point has an unusual way of linking cards into branches (Figure 5-7).
There are six backgrounds for information cards in the Projects stack. One
background is a summary card, through which the user typically moves in a
linear fashion (or bypasses linearity with the Find command). In fact, I
encourage the user to flip through the summary cards one by one to get an
overview of the status of all current projects.

The other five backgrounds are detail cards that support the information on
the summary card. Instead of the internal structure branching off to a linear
collection of each of the backgrounds, the stack tightly links one of each style
of background card to one summary card. From a summary card, you click

96 HYPERCARD DEVELOPER'S GUIDE

r .. ···--······-.. ···················-
1

1._---r"A

r----·

~~-~ , .. -

~---....

Project
Summary

Specs.

Labor

Matls.

Follow­
Ups

Invoices
& Pmts.

r···

,

l l ___ ...,

r .. · .. ·-·····--·-·~
~---~ r
i
t, ___,
[....................... _

i, ___

Figure 5-7 Infonnation stacks, like Focal Point's Project stack, may also be tree-struc­
tured. From any detail card, the only way out is back to the summary card.

on a button that takes you to that project's specifications, labor worksheet,
materials worksheet, followup schedule and financials cards. When you view
one of these supporting cards, you may not navigate linearly to any other
project's supporting cards, because you'd soon get lost. It is better to focus
your perusal through supporting cards all within the realm of a single project.
In fact, each of the supporting cards gives you only one navigation option
within the Projects stack: to return to the summary card. You might also
visualize this branch as a star, rather than a hierarchy (Figure 5-8). The
HyperTalk links that make this possible are maintained in hidden fields on
each of the cards. Details about this structure are featured in Chapter 18.

A genuine hazard within extended tree structure stacks, like the Hyper­
Card Help stack, is that unless you design the stack carefully, the user can
become lost. A kind of spatial disorientation can occur, and the user is left with
no hope but to return to the starting point or exit the stack altogether and
return to the Horne Card. I believe the Help stack is a good example of a tree
structure, because no matter how deeply you roam through the system, there
are enough navigation buttons (tabs and arrows primarily) to get you back to
familiar territory in a flash. That was not the case, however, with the first
attempt at writing a HyperCard stack to supplement the 1987 Annual Report
of none other than Apple Computer, Inc. (Figure 5-9). I'll save a detailed
examination of this stack for Chapter 7, where you'll learn about making an

... r::::~~:::::::::::::::::

Specs.

Project
Summary

Stack Structure 97

... 1::::::::=:::::::::~···

Figure S.S Another way to visualize the tree structure of the Projects stack. Linear
browsing is accomplished in the Summary card.

• File Edit Go Tools Objects

Index

To move through this interactive supplement, simply point to parts
of the Macintosh® screen and click.

Clicking on graphics and words in bold type on the screen­
names, dates, pictures, or arrows-can lead you to more infonnation.

1he main sections are pictured below.

just point to the one you,d like to see, and click.

iii . ~8 ~~ E!~:J 1~ :· ~<
Timeline Products Finances Strategies Markets Quit

Figure S.9 A stack designed to supplement an Apple annual report was tree-structured,
although it should have been less restrictive in movement across information areas. You
must come back to this Index card to go from subject to subject.

98 HYPERCARD DEVELOPER'S GUIDE

information publishing stack inviting and engaging-which this stack should
have been. Suffice it to say, the stack was tree-structured but made me feel like
I was falling through a time-and-space warp at times. I could not get my
bearings. The problem, I think, was that instead of telling a more linear story,
the stack designers made this standalone stack a reference, without enough
clues as to what to do next. Something tells me that this stack started out as
a block diagram on a white board in an Apple meeting room. The team got
too caught up in structure and forgot the content along the way.

The Cobweb

I specifically avoided the term "spider web" for this third, non-linear stack
structure, because that term may actually connote a well-defined, symmetri­
cal structure, which the spiders outside my office window occasionally
weave. But a cobweb, appearing magically in a comer of the ceiling, looks
more like the visualizations of neural networks inside the brain-a severely
intertwined ("intertwinkled," Ted Nelson would say) network of links.

HyperCard stacks can take on this structure, but there aren't many ex­
amples of it so far. In such a stack, there would be no particular beginning,
middle, or end. In fact, it would be all middle, with several buttons on each
card leading to a variety of other cards elsewhere in the stack (Figure 5-10).

One of the stacks that comes with HyperCard, the Clip Art stack, reveals the
potential power of a non-linear stack. When you open this stack, you see one
of the many cards containing bit-mapped art, like a representation of a huge

Figure 5-10 A non-linear, cobweb-style stack may have a beginning, but from there,
navigation can go in several directions from any card. Extreme care must go into prevent­
ing the user from becoming spatially disoriented.

Stack Structure 99

clip art library. When you click on the eye of the fish, the transparent button
atop that eye takes you to the nearest card in the stack that also has an eye on
it (Figure 5-11). Click on the wheel of the horse-drawn carriage, and you zip
to another card with the picture of a wheel on it.

There is no special magic in this stack, although viewers seeing Bill
Atkinson demonstrate this stack gasp at what's going on here. In reality, there
is a field on each card with key words about major elements in the card's art­
eye, wheel, hat, and so on. The button atop the fish's eye has a simple
command in it that says:

Find "eye"

This summons HyperCard's search abilities to find the next occurrence of the
word "eye" in that field, completely disregarding any structure (or lack
thereof) in the stack The links that join the few cards in this sample stack run
all over the place, like the silky threads of a dense cobweb.

A stack like this is quite an adventure to follow. The paradigm of text

Fish, eye, mouth

Figure 5-lla Perceived non-linearity is achieved by the transparent buttons atop
various parts of the graphics in the Clip Art stack. From the fish (A) you may go to one of
several cards, depending on what element you click. If it's the eye, then you'll go to the
man (B), who also has eyes.

100 HYPERCARD DEVELOPER'S GUIDE

Man, fishing hat, pipe, hand, eyes, mouth

Figure 5-llb

adventure games comes to mind. In these kinds of games, you control the fate
of a character who has to make decisions at every step of the way. Each
decision causes something to happen, often leading the character to new
rooms or level of rooms in a complex labyrinth (often subterranean). Adven­
ture game players frequently keep extensive notes and make maps of where
they believe the links have taken them within the maze. Were it not for a good
memory or a good map, the user might be hopelessly lost or, upon playing the
game a second time, may not be able to find the spot where the erroneous
decision spelled disaster.

Many stack developers see the "hyper'' prefix to HyperCard and try to
emulate the non-linear ways of thinking that were embodied in Ted Nelson's
early hypertext research and writing. It should be made clear, however, that
the HyperCard name was attached to the product in the last two weeks of the
product's three-year development. All during its gestation period, it went
under Bill Atkinson's name for it, WildCard. When Apple Computer discov­
ered that it would be impossible to secure the rights to the WildCard name, an
alternate was sought. HyperCard was one of dozens considered. It wasn't
everyone's favorite name, but it was clear for copyright purposes, and the
product did allow non-linear constructions, so "HyperCard" it was.

Stack Structure 101

I mention this as a reminder that while HyperCard empowers us to
construct completely non-linear environments, non-linearity is not a pre­
requisite for a good stack, especially if the non-linearity is included at the
expense of the user's logistical senses. There will certainly be some fabulous,
entirely non-linear stacks coming from creative people--and I encourage
research into such stacks-but be prudent in employing non-linear structures.

Hybrid Structures

Few stacks maintain a single structure throughout. More typically, a stack
will contain elements of two or three structures. A tree-structured stack will
very likely contain stretches of linearity, as the HyperCard Help stack does.
It's almost impossible to avoid. Again, don't feel that you have to be "cute"
in your card links. Linearity is the proper choice for some stacks in their
entirety or for parts of more elaborate stacks.

Experimenting with non-linear, cobweb-style structures within a hybrid
stack might be appropriate, provided you give the user some idea of where the
current card fits within the cosmos of the stack. Perhaps a schematic map of
the overall structure and the current card or card group highlighted on the
map will help provide an orientation for the user.

Stack Systems and Non-linearity
Despite my cautions about creating non-linear stacks above, there is ample
room to apply non-linear thinking to HyperCard applications. The best
situation I've discovered so far is to link multiple stacks together in a non­
linear fashion. Focal Point provides an excellent example.

In a typical Focal Point screen, the current stack is the center of attention.
Most Focal Point stacks are entirely linear, with a few of them being hybrids of
linear and tree-structure stacks. Yet the stack system provides for non-linear
links between the current stack and any stack for which a button is visible.
Here's an example.

While viewing a card in the To Do stack, you may select the text of
someone' s name and click on the button linked to the Directory and Dialer
stack (Figure 5-12). By clicking that button, Focal Point immediately jumps to
the Directory and Dialer stack and then searches for that person's name
(Figure 5-13). The user sees nothing in between the Daily Appointment card
and the Directory card with that person's name on it. The jump did not follow
any predefined tree structure, because the button doesn't know where it will
end up each time it performs the find. The destination is solely dependent on
the name selected in the Daily Appointment card.

102 HYPERCARD DEVELOPER'S GUIDE

Figure 5-12 Focal Point achieves practical non-linearity by linking all stacks with text
selections. If you select text in one stack, and click on an icon button to another stack, the
button takes you to that stack and the first instance of that selected text (see Figure 5-13).

This select-and-find non-linearity pervades Focal Point. In any stack, you
can select text and click on another stack's button to jump to the first matching
instance of that selected text. Yet the user does not get lost in any way, because
the destination stack-which is usually a simple linear stack-is well-defined
in the user's mind by the act of clicking on its button. After the button's script
has run, the user knows where he is and where he's been.

Had this feature not been built into Focal Point, the process of finding
someone's name in another stack would have required a comparatively
tedious passage through more structure. The easiest method would have
been for the user to choose Find from the Edit menu, hold down the Command
key while dragging over the person's name (to put the name into the find
string), click on the button for the Directory Stack (which brings you to the first
card of the stack), and then press the Enter or Return key to issue the Find
command that is sitting in the Message Box.

The non-linearity introduced by the select-and-find instructions could also
have been executed within a heterogeneous stack, except that the Go To part
of the command would lead to the first card of a specific background, instead
of a separate stack. Either way, this is one method to add productive non-

Stack Structure 103

..ll.2-.~-~:;i-9e.e.9 ______ ·--·--------·--·-····

:::==; .. ::

Hepplewhite"

Figure 5-13 Having selected text in one stack (Figure 5-12) and clicked on the Directory
& Dialer button, Focal Point goes directly to the card that matches that selected text.

linearity to a HyperCard stack or stack system.

Deciding Stack Structure
Once you've settled on your stack idea and you see that it requires two or more
active backgrounds (i.e., more than just a title card and the rest of the cards in
a single background), you have a big decision to make about structuring the
product as a heterogeneous stack or a stack system. While each case is
different, here are advantages and disadvantages of each method.

Heterogeneous Stack Advantages

1. Access to information stored on any card in the stack is faster than if the
cards are in separate stacks. In fact, you are probably aware that you can
retrieve information from a field on a particular card in the same stack

104 HYPERCARD DEVELOPER'S GUIDE

without going to that card. Such is not the case if the data is in a different
stack-you must go to that other stack, get the data, and return to the first
stack if the results interact with information on the first card you were
viewing. You can lock the screen so that you don't see the stack switch
(although you can see the HyperCard window title bar change on larger
screens), but there is a lot of disk activity, and the process can take a few
seconds on a Macintosh Plus or SE.

2. The entire program is in a single disk file. If your stack is likely to be shared
among other people via an electronic bulletin board, then the single file
makes sharing of the program easier. A single file is also easier for the user
to maneuver within folders on a hard disk. Opening the program from the
Open Stack standard file dialog box is simpler, too, because there is only
one file name to contend with. In contrast, a user must start a stack system
from a particular stack (to load global variables or retrieve other settings).
Unless the file name is labeled well enough to direct the user to it in the list
of stacks in the dialog box, the user may not enter your stack system in the
prescribed way.

3. The Find command, as entered in the Message Box, works for the entire
program. Because the Find command works only on the current stack, it
doesn't know how to continue the search through other related stacks. You
may script a search path through several stacks in a search button handler,
but the script will have to be different for each stack in the system, because
the sequence is different from each stack's perspective.

4. It is easy to divide a heterogeneous stack into a stack system later. By
making copies of your heterogeneous stack and deleting all cards except
those of a specific background, you can create a stack system from a
heterogeneous stack. Combining a stack system into a heterogeneous
stack is possible, but rather tedious (involving copying individual cards
from the other stacks and pasting them into the one stack designated as the
heterogeneous one).

5. Debugging scripts is simpler. Interaction among linked stacks can be a
source of difficulty until you get the bugs worked out. For instance, if some
of your stacks show the Message Box in an openStack handler, but you
don't want it to show in others, you have to be careful to hide the Message
Box with a closeStack handler. More complex openStack, openBack­
ground, and openCard handlers may interfere with stack-to-stack infor­
mation retrieval even when the screen is locked.

Stack Structure 105

6. There is no duplication of scripting effort. If a heterogeneous version of a
stack has stack scripts that maintain watch over the user's application of
the arrow keys, or traps for certain menu commands, these will all have to
be duplicated in the stack or background scripts of each of the individual
stacks of a stack system.

7. Compacting is more convenient. Particularly during development, but
also in the course of using a stack, you should occasionally choose Compact
Stack from the File menu. You can squish a heterogeneous stack with one
menu choice. A stack system requires either the manual method of going
to each stack and compacting it, or writing a script that does it for you.
Some users of Focal Point, for instance, wished the first release of the
program had included a command or button to compact the entire stack
system. I should have recognized that need because I had devised and
frequently used such a script during Focal Point's development .

8. The overall size of a single stack will be smaller than the same stack
divided. A completely empty stack takes up about SK on the disk. That
means that for every new stack you make for a stack system, you add SK
to the total disk space occupied by the system. In practice, that extra space
grows even more. HyperCard, as you're well aware, likes to reserve disk
space for stack growth if you type any information into a field. On a hard
disk, it grabs a chunk out to the nearest 8K multiple. It is conceivable
(although unlikely) that every stack in the system could be holding 6K or
7K of disk space in reserve until you compact the stacks. In a 10-stack
system, that's a lot of disk space unavailable for other uses.

Now for advantages to dividing a HyperCard stack into multiple, linked
stacks.

1. Each stack can be dedicated to a finite subject. In Focal Point, for instance,
there is a separate stack for each of the 18 possible applications that come
with the program, plus some help and utility stacks. I believe knowing that
each application is its own stack helps the user maintain a concept of space
within the entire system: "I'm in the Expenses stack now, so that's all I have
to worry about." Just because the system is divided into multiple stacks
doesn't mean that some or all of the stacks cannot be heterogeneous. On
the contrary. The Projects, Proposals, and Expenses stacks are all hetero­
geneous (with 6, 5, and 4 backgrounds, respectively). Thus, some of the
advantages of heterogeneous stacks can still apply to your system.

106 HYPERCARD DEVELOPER'S GUIDE

2. Each stack is a separate file. The advantage for many stack systems is that
the user may decide not to use all the stacks and thus can reduce the
amount of disk space occupied by the program. If there is an application
or background in a heterogeneous stack that the user doesn't use, he or she
may be hesitant about deleting those cards from the stack.

3. Archiving of stack information is simpler. Some stacks in a stack system
may fill up faster than others or may contain information that should be
saved as an archived stack. When applications are in separate stacks, the
user can save a filled stack with a new name, and bring in a blank stack to
start storing new information. This is particularly useful for stacks
containing cards bearing daily dates. If a daily appointment book were
part of a heterogeneous stack, the stack would continue to grow, year after
year, with hundreds of outdated cards going along for the ride, needlessly
filling up your hard disk. It's far simpler to remove the filled stack from the
system, rename it, and drag into the folder a newly built stack for the next
year.

4. Adding to the system is easier. Because of the inherently modular nature
of a stack system, the user will probably find it easier to customize the
system by removing unwanted stacks that come with the product and
adding stacks that link back to the others in the system. Entry points to the
existing stacks will be much easier for the user to locate than if they were
buried in a 14-background heterogeneous stack.

5. Restricting text searches is easier. As many HyperCard authors have
discovered, HyperCard's Find command is often difficult to work with
when the search needs to be confined to only one background. In fact, at
least through version 1.2, you cannot explicitly limit text searches to a
particular background. If a search script button limits the find to a
particular field named in the current background, HyperCard continues
its search in the field with the same field number in the other backgrounds
of the same stack. That can spell disaster if you are trying to keep some
reference cards hidden from the casual browser. A Find command might
display that card, causing all kinds of confusion. But if your stacks are
separate and homogeneous (or only lightly heterogeneous), you can better
control the way HyperCard will search for text in one or more fields.

6. Sorting is easier. Trying to sort a heavily heterogeneous stack can be
difficult, perhaps resulting in a jumbled mess. But, again, with a system of

Stack Structure 107

linked homogeneous stacks, the outcome of a Sort command can be better
anticipated.

7. The risk of disaster is spread across more stack files. It's happened to a lot
of us: Something went awry when HyperCard was writing information to
the disk, and the stack went that-a-way. The stack became damaged
beyond repair, or, rather, beyond opening. If that happens to a massive
heterogeneous stack that contains tons of information, it's enough to make
your heart stop. If it happens to one stack amid 10, then the loss won't be
as great. I have no technical evidence to back up the following statement,
but I always feel safer with several smaller files on my disk than one
enormous one. You do back up your hard disk, don't you?

You see, there are many points in favor of both heterogeneous stacks and stack
systems. Most often I find that the application dictates which method works
best. A guideline I use is this: If the application involves two or more very
distinct bodies of information, I'll go with the stack system method. If the
application has one major group of cards supported by setup cards or other
ancillary information cards, then I'll put everything into a heterogeneous
stack, with as many backgrounds as necessary.

In all honesty, there are some cases in which the decision could go either
way, as was the case of Business Class. But the ultimate decision about internal
structure was heavily influenced by the necessities of external structure.

External Structure
So far we've been discussing the way you might collect or distribute informa­
tion in stacks. But what we haven't said much about was how to physically
distribute stacks to others and how a user's disk drive situation influences
organization. These concerns-essentially how your stack product fits on
floppy disks-are all part of the external structure of a stack.

One thing you can count on when distributing HyperCard stacks on floppy
disk is that every HyperCard owner has at least one BOOK floppy disk drive.
HyperCard, as you're probably aware, requires at least the 128K ROM chips,
which were initially designed for the release of the Macintosh Plus. These are
also the same chips that are installed in upgrade kits that convert older 128K
and 512K Macintoshes to the 512KE and Mac Plus equivalents. Part of that
upgrade included an intemal800K double-sided disk drive, which is also the
standard disk drive on all other Macintosh models.

108 HYPERCARD DEVELOPER'S GUIDE

Floppy Disk Concerns

An BOOK disk doesn't really give you a full800K of stack space, however. First
of all, the Macintosh operating system grabs about 7K for the disk directory
and other information it needs to consider the disk a Macintosh-formatted
diskette. But more importantly, HyperCard stacks need room to breathe, no
matter what medium they are stored on. If the user is allowed to enter
information into fields, add buttons or fields, make new cards, adjust the
graphics layers, or modify scripts, the stack will need to grow. If the stack is
being used on a practically full diskette, HyperCard may not allow some
entries to take place.

Interestingly, HyperCard is more considerate with tight floppy disk space
than with a wide open disk. As soon as the available disks pace on a disk drops
below 64K, HyperCard grows stacks in 1K increments, instead of the usual8K
increments. Therefore, in the Stack Info dialog box, you'll see no more than
1K free in a stack's allocated disk space when the disk starts to fill up. Still, you
must leave room on the disk for expansion if your stack accepts information
input.

If your stack application is larger than BOOK to begin with, then you have to
make some tough decisions about dividing your application among disks.
Both Business Class and Focal Point come on two diskettes, but the strategy in
dividing the systems across the disks were very different due to the nature of
the products. Here's what happened with each.

Focal Point Strategy

The 11basic'' Focal Point comes with 18 stack applications, plus a startup stack
that contains the title screen and a couple of global variables used in some
other stacks. From an internal structure viewpoint, the startup stack was
maintained as a separate stack even though it automatically sends the user to
the Daily Appointment stack after a brief delay of viewing the title card. By
keeping the title card and global variables in a separate stack, however, the
system is left open to change so the user may adjust the stack script to go to
a stack other than the Daily Appointment stack if he deems another one more
important to see first. Other Focal Point stacks that round out the system are
the Help stack, a Setup stack (for customizing button locations and building
or extending stacks consisting of daily cards) and an Import stack, which
contains buttons to aid importing existing database data into the Directory
and Dialer stack. Together, these stacks more than filled a single BOOK disk.

Another factor came into play. If the program were shipped entirely empty,
it would mean that a new owner would have to build the Daily Appointment,
To Do, and one or two other daily stacks if desired. While the Setup stack

Stack Structure 109

simplified the process, it meant that the user would not be able to use the
product immediately out of the box. The setup time-making all those cards
by script-could be an hour or more, if the user decided to make a couple of
years' worth of cards in the_ stacks. I knew that I wouldn't put up with such
a delay if I had bought the product, so the dated stacks had to be pre-installed
for at least a practical, realistic amount of time.

By putting the Help, Setup, and Import stacks on the second disk, enough
room opened up on the first disk for an eight-month collection of daily cards
for the Daily Appointment, To Do, Expenses, and Time Sheet stacks. Thus, on
a single disk, a user had all the necessary stacks to get started. There was even
enough room on the disk for someone using a floppy disk system to start
entering data on a working copy of the original disk. In practice, many users
found that they entered more data than there was space on a single disk, so
they had to offload unused and infrequently used stacks to a third disk. With
as many as 16 growing stacks vying for what was left on the original800Kdisk,
this wasn't surprising.

On the second Focal Point disk, there was now enough space to include a
blank set of the dated stacks so users could build their own, as well as a set with
14 months in them, encompassing the end of 1987 and all of 1988 (Figure 5-14).
The range of months included in these stacks and on the first disk are adjusted
periodically so that new buyers have stacks with relevant dates in them.

For ease of installation on a hard disk, all the Focal Point stacks on disk 1 are
placed in a Focal Point folder. All the user need do is drag the folder from disk
1 to the hard disk. To get help on the line, the user then drags the Help and
Setup stacks from disk 2 to the Focal Point folder already on the hard disk.
Stack systems can get messy when they consist of dozens of stacks, so it's
incumbent upon the stack designer to make it easy for users to install the
system on a hard disk without the possibility of missing stacks in the transfer.

Business Class Strategy

Business Class presented very different structure problems during its develop­
ment. It started out as a single, heterogeneous stack, complete with maps and
information cards for the top 60 or so trading countries of the world. While
researching the information, it became clear that for purposes of maintaining
potentially volatile information stacks, it would be better to break up the
monster stack into smaller units-one for all the maps, and one each for the
information categories. Until all the maps were drawn and all the information
was gathered, I could only estimate the total disk space required for this stack.
The maps soon grew much larger than I had anticipated. Unlike certain other
graphics, which have large areas of repetitious patterns for greater bit-map
compression, these maps were very rich in their detail. The degree of

110 HYPERCARD DEVELOPER'S GUIDE

~D Focal Point 2
i 4 itrms 6981< in disk 871< availablt

~ CJ
FP•H•lp 10/87- 12/88

~0§ No Dotes ~0~
li Namr

[) FP•Daily

FPelmport [) FP•Exptnsu
1=-r-------------1 [) FP•Timr Shut

~-------------! [) FP•ToDo

Figure 5-14 Disk 2 of Focal Point had room for the Help system, text importing stack,
and two complete sets of dated stacks. External structure influenced what files could go on
each of the two disks.

compression was less per picture than originally expected. Space required for
the information cards was reasonable, but with 13 categories (and back­
grounds) times 63 countries, a single disk was quickly overshot.

Rather than reduce the coverage of the world, I divided the system across
two diskettes. By this time, I had one rather large map stack (about 650K) and
13 information stacks (ranging in size from 30 to 75K). The easy way out
would have been to put the map stack on disk 1 and the information stacks on
disk 2. Ah, but there's the rub.

Imagine a floppy disk-based Business Class user journeying through the
maps, settling on Uruguay as a destination (remember, HyperCard and the
System are in the internal drive, and only one Business Class disk is in the
external drive). Clicking on any one of the information buttons would prompt
the user to insert another disk (with that dreaded disk swap dialog box). Not
only that, HyperCard may ask for a couple of swaps before finally reaching
the desired information card. Now, from the information card, the user could
access any other information card for Uruguay without any swapping. But to
return to the map would require more disk swaps. That just doesn't work.

To solve this problem, I divided each of the stacks into two broad geo­
graphic regions. I placed the maps and information stacks for Europe and the
Middle East on disk 1; the maps and information cards for the rest of the world
went on disk 2. Thus, a user may browse through Europe or the contiguous
Middle East-maps and information cards-without swapping a disk.

Making those divisions entailed extra work, of course, and also extra disk
overhead for the entire system, because there were now two map stacks, two
currency stacks, an~. on. But the result was that the entire system fitted

Stack Structure 111

comfortably on two disks, which floppy disk based users could operate with
the least possible inconvenience.

At the same time, it was important to organize these stacks on the two disks
so that hard disk users would not be aware of the geographical divisions of the
original disks. All the stacks for disk 1, for instance, are in a folder called
Business Class 1; stacks on disk 2 are in a folder called Business Class 2. To
install Business Class on a hard disk, the user must create a new folder called,
simply, Business Class, and then drag the folders from each of the floppy disks
into the new folder on the hard disk (Figure 5-15).

Regardless of the user's disk medium, division of the system into two
geographical areas also placed a greater burden on the HyperTalk program­
ming aspects of locating maps of countries in the other area. For instance, if
you use the Business Class Search box to find a country or capital city by name,
Business Class performs a HyperTalk Find on the string you type into the
dialog box. The handler that performs that find must know which geographic
group you're in, and then must search both map stacks for the name you
typed. Additionally, when you click on an area of a map that is in the other
geographic stack, Business Class must know that the desired card is in the other
stack. To see how this was done at the HyperTalk level, see Chapter 30.

The point of this Business Class detail is that restrictions of external structure
had a large impact on the internal structure of the stack system. To make the
system easy for the user to navigate, the author had to put much more thought
and effort into the system's structure and execution. Be prepared for this if
your stack system grows large.

=o Business Class 0s
3 items 17 1420K in disk 11599K available

~

CJ CJ
Business Class 1 Business Class 2

~
BC•Install

Q
01 IQ 121

Figure 5-15 External structure considerations caused Business Class to be divided
geographically, with maps and information cards for certain regions of the world being
included in the Business Class 1 disk. On a hard disk, the two folders are copied to an
inclusive Business Class folder.

112 HYPERCARD DEVELOPER'S GUIDE

CD-ROM Structure
With the advent of CD-ROM connections for HyperCard, the stack structure
questions become a little different. First of all, CD-ROM stacks are read-only,
meaning that they will most likely be the information publishing variety. The
stacks won't be posting information in other stacks, but there is the possibility
that one stack might rely on information retrieved from another stack on the
CD-ROM disk.

Access time on a CD-ROM is slower than what you expect on a hard disk,
so it may make more sense to keep information in one large heterogeneous
stack than divide data into separate stacks. If I were to put Business Class on
CD-ROM, I'd probably combine all stacks into one large one to assure the
fastest possible access to information. And, because of the nature of this
durable read-only medium, I wouldn't be too concerned about corruption of
a stack file. HyperCard never tries to write data to stacks on a CD-ROM disk,
so even a power outage in the middle of disk drive activity can't harm the file.

The potential of CD-ROM based stacks occupying perhaps hundreds of
megabytes is a bit mind-boggling at this early stage of development. Most of
the CD-ROM activity, I believe, will be in the business and academic environ­
ments, in which the CD-ROM drive will be a shared resource on workgroup
or larger networks. HyperCard's forte at handling large amounts of informa­
tion will certainly be a boost for CD-ROM and other high-capacity storage
media. We may yet face new challenges to stack structure that we can't foresee
until large-capacity media are more prevalent.

6

Converting Existing
Databases to HyperCard

HyperCard attracted many people who had already assembled data­

bases with the help of other programs. Between the fast full-text search

and user customizability, HyperCard often appears to be a friendly

place to move existing database applications. Before you do such a

transformation, however, there are several issues you must consider.

Among the most important questions you must ask yourself are whether

the application is right for HyperCard, how fields should be rearranged,

how reporting will be affected, and what to do with long text chunks.

114 HYPERCARD DEVELOPER'S GUIDE

Is HyperCard the Right Environment?
Deciding whether HyperCard is an acceptable environment for an existing
database digs deeply into the discussion of whether HyperCard is, in fact, a
database program. Perhaps because of the layout of text fields, which
resembles database programs, many HyperCard reviewers and commenta­
tors classify the environment as a database environment. I disagree with that
classification, even though you can create database-like applications with
HyperCard.

Just as we discussed in the Introduction to this book, not all data-intensive
applications are right for HyperCard. Moreover, it is not just the function of
the information, but rather what you intend to do with the information that
counts. When a database is designed to provide you with on-screen selected
lists of information culled from the database, then a HyperCard version won't
be of much help to you, even if it is faster in searching for information. Also,
if the database is heavily relational, in that is relies on data from other data
collections to display information, then it is better left in the database. Trying
to replicate densely relational systems on HyperCard will not likely prove
worthwhile from a performance point of view.

As a rule, then, follow the same guidelines laid down earlier for deciding
which method-database program or HyperCard-is best for your database.

H your database is a read-only environment, such as an encyclopedia on
CD-ROM or a large database available via on-line telecommunications net­
works, you'll have to examine your information's organization to decide if it
will fit within the card-based environment of HyperCard. We'll have more to
say about this later in the chapter.

Field Structure
By their very nature, true database systems are very field intensive. Typically,
a database author defines a separate field for every possible chunk of informa­
tion that may be later indexed, sorted, or reported. It is not uncommon, for
example, to find someone' s name and address book stored in a database set
up in the manner shown in Figure 6-1. Each element has its own field,
including two address lines and two telephone numbers. Often the two-line
situation is caused by the database program's inability to allow multiple line
information-each field can be one line only. I have even seen databases in
which the author has created separate fields for each area code and each phone
number for voice, modem, and facsimile telephone lines.

In a traditional database environment, individual fields let someone using
the database perform selections and sorts on those fields. For instance, if you

Converting Existing Databases to HyperCard 115

D Names and Addresses

I First Name I Alphonse

I Last Name I s;mmons

I company I Ace Manufactur;ng Company

I Address 1 14000 lndustr;a 1 Pkwy .

I Address 2 I Su;te 300

I City I Tulsa II State I OK II zIP 179880

IT e lephone 1 1918-555-2652

!Telephone 21918-555-1001

Figure 6-1 A typical name-and-address database form, which you may wish to bring into
HyperCard.

needed to sort a mailing list by ZIP code to obtain a presorted first class mail
discount, you would instruct the database to sort all the records by the ZIP
field in ascending order. Then you could print out the address labels from the
database in that order. To sort by names, you would specify the Last Name
field as the primary sort ''key" and the First Name field as the secondary sort
''key," so that the resulting list shows all names alphabetically. If there were
two Johnsons in the database, then the one whose first name comes first in the
alphabet would appear before the other. So, given the sorting and selecting
powers of databases, the individual field setup makes sense.

To an experienced database user, the intensive field nature of the database
seems natural. But to those who are more used to word processors or to no
computers at all, individual fields seem very restrictive. Thus, the Address
stack that comes with HyperCard seems natural to many new users, because
it replicates the field-less nature of the typical rolo-style card: You type in the
name and address information in one clump, then put the telephone number
in a separate spot on the card to make it easy to find.

When you decide to move an existing database to Hyp·ereard, you should
give serious thought to modifying the field structure to a less field-intensive
layout, particularly if there is information that can be naturally grouped
together, such as the name and address data, above.

Replicating Narrow Sorts

Combining database fields into single HyperCard fields does not take away

116 HYPERCARD DEVELOPER'S GUIDE

the sorting powers you had in the database. Because you can specify
HypetCard sorts based on specific words and/ or lines within a field, as well
as perform multiple sorts (multiple-key sorts in database tenns), you shouldn't
be losing flexibility in the transfer. For instance, in the Address book example,
you can sort by a person's last name by issuing the command:

sort by last word of line 1 of field 1

Or you may sort by ZIP code with this command:

sort by last word of field 1

To sort by last and first names at the same time, the sort command would be:

sort by last word of line 1 of field 1 and first word of field 1

This last script, however, points up a potential problem for freeform fields,
like the one in the Address stack. If someone enters a name in the first line of
the name field and appends a degree, like "M.D.,'' then the sort fails its original
intent, because the last word of the first line is "D," regardless of the doctor's
real last name. Putting the "doctor'' part at the front of the line won't help
either. Unless you put a title in front of each name in the stack, such as ''Dr.
This" and "Mrs. That," in which case you'd perform the secondary sort on the
second word of the first line, "Dr. Emily Jones" will be sorted after "Brian
Jones," because "Dr." sorts after "Brian."

To Combine or Not To Combine Fields

It should be clear, therefore, that it is not always the right idea to combine
database fields into single, multiple line fields in HyperCard. What you
intend to do with the information rules how your fields should be organized.
If the alphabetical sorting of your address stack is critical or s not permissible
for the occasional Ph.D to be out of sync with the rest), then you might want
to have a more rigid field setup in your HyperCard cards. But, on the other
hand, if you frequently copy the name and address from your HyperCard
address stack into your word processing letters (assuming you're using
Symmetry's HyperDA desk accessory or MultiFinder to view both your
address stack and a word processing document at the same time), then it will
be more convenient to put all name and address data in a single field. You use
the Find command to locate a card, select the entire field, Copy, and then Paste
into your document. Imagine having to copy and paste six or seven fields to
get the data into the letter.

Converting Existing Databases to HyperCard 117

Another reason to maintain the original field organization is that field
labels often help users enter the correct information-and all information­
into the card, just as they do on a database form. When the fields of a card are
not intuitive, then the field labels act as prompts for the user: The name goes
here, the street address goes here, and so on. While the Address stack's rolo­
like card lets you use that form not just for names and addresses, but for
anything you might want to put on a rolo file, not many forms have that
characteristic. Most cards have very specific purposes, depending on the
fields that define that card.

Multiple-Lined Fields

That's not to say you should go overboard, like the stack I saw that had
separate fields for area codes and phone numbers. For the sake of card
performance, you should try to keep the number of fields to a minimum (early
HyperCard versions had a maximum of about 128 fields-a lot, but some­
times not enough in spreadsheet-like applications). Remember, too, that
HyperCard lets you use multiple line fields freely. There is no penalty for
defining a text entry area as a multiple line field. In fact, it works to your
performance advantage to reduce several distinct fields to one multiple lined
field.

The decision to use multiple lined fields must also be predicated on how
you intend to use the information. A potential problem with multiple lined
fields is that the user may not put information in a specific line, as you
expected when you laid out the card. Therefore, if another operation or
procedure expects to find information in line 3 of a particular field, and the
person who entered the information accidentally added or omitted a line, then
the retrieved information may not be there or may be the wrong information.

A Case for Single Fields

As an example of how this might come up, look at the Oient Record card in
Focal Point (Figure 6-2). Notice that there are separate fields for the names and
phone numbers of the three main contacts at the client company. If the
information were not used in any other place, it could have been combined
into one three-line field, with appropriate field labels identifying the informa­
tion in each line (e.g., "Contact 1").

But a procedure in the Proposal stack summons this information. When
you click on the Plus button next to the Client fields of a Proposal Summary
card (Figure 6-3), you see a scrolling list of clients, a list derived from the Client
Record stack. Clicking on a client from the list first pastes the client's name,
client number, and billing rate into appropriate places on the five cards

118 HYPERCARD DEVELOPER'S GUIDE

Address 2 _) .. ~.Q.~.?_South ~!1.l!!.m.~r:.~t.1.!!L~'@l-Y~.--.-----------
a.ty _j)es MQln~L State lA

Postal Qxte -~-L~.l?..~---··-·-····- Country .. --··········-·-··--·---·-····-·······
Main Phone ~-L~.:: .. ~.l?..~.::.9._?..Q.Q __

Figure 6-2 The Contact and Phone/EXT. fields of Focal Point's Client stack were main­
tained as separate fields. Another stack had to make sure the information was always in the
same spot for each client (see Figures 6-3 and 6-4).

associated with the proposal. The action also goes back to the Client stack,
finds the client's card, and copies the first two contacts and their phone
numbers for insertion into the corresponding fields in the Proposal card
(Figure 6-4). The procedure relies on the correct information being in the
correct field. If there were any deviation from that format during data entry
in the Client record, the Proposal record card could be out of sync. In the field­
intensive nature of the Proposal record card, the separate fields for the
contacts and phone numbers look right.

Remember, too, that HyperCard version 1.2 makes single-line fields a bit
more friendly when the auto Tab field property is set to true. A press of either
the Tab or Return keys advances the text cursor to the next field

Field Design Tricks

At the same time, you can design around a single, multiple-lined field when
it's appropriate, even tricking the eye into believing there are many fields in
a section of a card, when a single field is better from the author's point of view.
The Focal Point Directory stack is a case in point.

Converting Existing Databases to HyperCard 119

Oient
None
BolOQna Insurance, 102,$35
Donaldson Manufecturi ng, 1 00,$45
Effi nghem Ltd., 1 01,$65
Houndstooth~ustries, 103,$55

Figure 6-3 In the Proposals stack, when you click on the Plus button next to the Client #
field, a scrolling list of clients (from the Client stack) appears. You insert one by clicking
on the name.

Assuming that Focal Point owners very likely started putting information
into the Address stack that comes with HyperCard (it's one of the readily
usable stacks), I carefully designed the Directory stack so that data could be
transferred from the Address stack to the Directory with as little trouble as
possible. Therefore, despite appearances, which make it look like the tele­
phone number section has three fields in it, all telephone numbers are stored
in one field, just as they are in the HyperCard Address stack (Figure 6-5). All
the user need do is click on a special Export/Import button in the Focal Point
Help system to watch all data being extracted from the Address stack and then
inserted, card by card, into the Focal Point Directory.

To make this work within the confines of a single field, two design elements
were called to work.

First, the positions for three telephone numbers had to be separated
graphically. The darker lines separating the three sections give the visual
sense of three distinct regions in that part of the screen. The lines had to fit
within the spacing decreed by the line height setting of the font used for that
one telephone number field.

Second, there had to be an easy way for the user to dial just one of the

120 HYPERCARD DEVELOPER'S GUIDE

l±l Oient # J_Q.~·--·-··-··--····· Oient Name .. !:!Q.!!.!l.~~.t9.l1.tbJ!l~.!!.~~r.!.~L _ .. , ___ ,,_,_

Conbd ·~-~.!!Lt!i..t~_~_L -........ ,_ _,_,,, Telephane -~..1 .. ~.:..§_!?.~.:..2-~?j_
Conbd Ill .. ~.~.!Lf-i.nsJL ---.............. _,,_,_,,,_,_,,,,_.,, Telephane .. ~ .. !..~.:..~_!;)_~.:,.~_!;)_~Q-

If&j) Project Name .,.,_,_,_.,.,_.,., ___ ,_.,.,.,
00

.,.,.,.,.,.,, __ .,.,.,.,.,.,.,.,.,.,,

~ .---lf&j)-E_s_tima ____ ~-d-a-~---$-_-------.

lf&j) Next Follow-Up- ·---·--·---- lf&j) Estima~d Ma~rials $ --........ _ .. __
E stima~d Total $ -........ --... -.......

Multiple Submissions

Figure 6-4 Contact and phone number data is retrieved from specific fields in the Client
card and inserted into the Proposals card. Because of the field structure, the information
will always be correct.

numbers, even if there were three in the field. In the HyperCard Address
stack, if there is more than one phone number in the field, you must select it
before clicking on the dial button-far too many manual actions for my taste.
Thus, in Focal Point the three dialing buttons were attached to the three
sections of the field. Not only do they add to the sense that there are three
distinct telephone numbers, but they simplify the dialing. Their scripts are
identical except for specifying which line number of the field they should
dial-1, 3 or 5.

The net result of this design tactic is ease of importing and a distinct
perception that there are three phone numbers possible for each card.

Importing Database Data
In converting an information publishing database to a stack, you will be
responsible for bringing the data to HyperCard. The more you alter the field
arrangement between the original database and the HyperCard version, the
more complex the import script will be, but don' t be put off by this.

Converting Existing Databases to HyperCard 121

Figure 6-5 With careful alignment of background artwork, the single telephone number
field looks like it is three fields.

Preparing the Data

The first task in importing database data is preparing the data in the database
program. Regardless of the program, the desired outcome is a text-only file
containing the information that is to go into HyperCard. Some database
programs give you amazing flexibility in this regard, while others have only
one option.

In a simple case, like a Microsoft Works database (this also applies to
Microsoft File and other databases that let you save a database as a text-only
document), the Save As dialog box gives you the choice of saving the data as
an export file (Figure 6-6). What this means is that Works saves the data to a
file separate from the file you normally use with Works. Information from
your form is written to the file so that tab characters are placed between
information from each field, and a return (like a press of the Return key)
character is placed after the last field on the form. All the data filling one form
is called a record. Thus, you can say that Works saves data in a text-only
format as a tab-delimited field, return-delimited record file (Figure 6-7). Data
from all fields in the form are saved to the disk file.

More sophisticated databases, like Omnis 3, Double Helix and 4th Dimen-

122 HYPERCARD DEVELOPER'S GUIDE

c::::::::l HD-20

[) flddr<~~s
D flrea (:ode~
D Book Sh~lt
D Da1 eb<tok
D Do<s

Saue Document As:

jTronsfer TeH~

(Soue) (Cancel

~ EHport File
~ Saue Selected Records Only

I

Figure 6-6 Nearly eoery Macintosh database program lets you save information as a text
file. This is the format HyperCard needs to import the data into a stack.

sion, provide more powerful exporting capabilities. For instance, in Omnis
you may specify which fields are to be exported, in which order they should
be written to the text file, and what special characters should be used as
delimiters between fields and records (Figure 6-8). The results are the same
as the simpler databases, except you have much more control over which data
you export (in case you don't want to take every field along).

The Script

Once the data is saved as a text-only file, you need an importing script whose
job it is to read the information from the file and put it into the desired fields
on the HyperCard card. Typically, the script is assigned as a mouse Up
handler to a button you place (temporarily) in the new stack you're building.
If your HyperCard field structure is identical to that of the original database,
the import script is quite simple. Given a tab-delimited field, return-delimited
record file, and a one-for-one field alignment, the following script should
work nicely:

on mouseUp
ask "Uhlch file do you wish to Import?" with "Transfer Text"
If It Is empty then exit mouseUp
put It Into fileName
open file fileName
go to last card

Converting Existing Databases to HyperCard 123

repeat forever
doMenu "New Card"

--Read entire record Into " i t" at once
read fro~ file fileName untl I return

If the record is empty, then get out of this loop
-- otherwise, make the last fie ld look I ike another
- - tab-delimited field.
if it is empty then

go to first card
close file fi l eName
exit mouseUp

e l se put tab into last char of it

repeat with x = 1 to the number of fields
put char 1 to <offset <tab, lt>-1> of it into field x
delete char 1 to offset <tab,lt> of it

end repeal
end repeat

end mouseUp

Here's what the script does for you. First it presents a dialog box asking you
for the name of the text file you wish to import. It displays a default file name,
Transfer Text. If you saved your database export file with this name, you may
just click the OK button. Otherwise, type in the file name and click OK. If you

li . Field lis ·'
Format 1 NAME 16 31

0 Dif 2 COMPANY 17 32
3 ADDRl 18 33

0 Syllc 4 ADDR2 19 34
5 CITY 20 35

0 Delimited (commas) 6 STATE 21 36
7 ZIP 22 37

~Delimited (tabs) 8 PHONE 23 38
9 24 39

0 One field per line 10 25 40
11 26 41

0 Graphics 12 27 42
13 28 43

® Include oil records 14 29 44
15 30 45

0 Select using search

Moin file LIST Stort

Figure 6-8 Advanced database programs, like Omnis 3, offer you options about saving
only certain fields and which characters are inserted as delimiters in the exported text file.

124 HYPERCARD DEVELOPER'S GUIDE

click the Cancel button or delete the name in the dialog box, then the handler
quits. If you click OK, the handler uses the name in the dialog box as the name
of the text file to open. The handler then goes to the last card in the stack, so
that new cards with imported data are added at the end of the stack.

The major repeat loop is the main action of this handler. It says "repeat
forever" because there is a built-in stopper within the repeat construction, as
we'll see in a moment. The first command the handler gives is to make a new
card. Then it reads information from the disk until it encounters a return
character-the end of the first record as saved by your database program. If
you have a database program like Omnis or Double Helix and specified a
different character to mark the end of a record prior to exporting the data, then
that character should be used here instead of the "return." Be very careful,
however, in specifying the record delimiter: It must not be a character that
might be in your database text; it must be a unique character that will appear
only at the end of records and nowhere else.

As you may recall from your explorations with the Read command (see
Chapter 27 of the Handbook), the information HyperCard retrieves from the
disk goes into the special local variable, It. Therefore, after the first Read
command, the entire first record is in It. The Macintosh keeps track of where
in the file the Read command gets its information, and holds a metaphorical
thumb in the spot of the last Read. Therefore, after the first Read command,
there is an invisible bookmark placed at the beginning of the second record.
The next time the Read command comes around (within the repeat structure),
HyperCard will retrieve the second record from the disk, and mark the
beginning of the third, and so on. After all the records have been read, U:te
Read command won't be able to go any further, because the bookmark doesn't
cycle around to the beginning of the file. Instead, the Read command will put
an empty string into It. Thus, a short if-then construction always tests for
whether the Read command pulled in any data. If not (It being empty), then
the file closes, and the handler quits-it has finished reading in all the data.
That's the way out for the "forever'' repeat loop.

But when there is data coming from the disk, the rest of the handler
continues. The next thing that happens is that the return character at the end
of the record (remember, the complete record is in It) is replaced with a tab
character. This will simplify the next repeat construction, which relies on a tab
character being at the end of every field, including the last one of a record.

In the final repeat construction, the data previously read from the disk is
placed into the fields of the current (new) card. The style of repeat structure
here uses a local variable, x, as a gradually incrementing number to refer to the
HyperCard field number, corresponding to the number of the database field.
The first time through the repeat loop, for example, all the characters from the

Converting Existing Databases to HyperCard 125

first character of It to the character just before the first tab are placed into the
HyperCard card's first field. Then the entire first field, including the tab
character at its end, is deleted from It. That leaves the second field at the head
of the queue, so to speak. The second time through the loop, x takes on the
value 2. The second database field (in It) is placed into field 2, deleted from
It, and so on until all the fields of the card are full.

You must preplan the field structure carefully, because if the HyperCard
stack has one fewer field than tab-delimited fields saved by the database
program, the data for the last field will not get into the HyperCard stack. It will
still be safe in the text-only file, but you'll have a more difficult time trying to
get that data into a newly created field once the cards have all been created and
filled. It may be easier to do the entire import over again with the corrected
HyperCard field arrangement.

Changing the Field Structure

Importing data into a different field arrangement, as mentioned earlier,
requires a more complex import script. There is no way I can show you the
precise script you'll need to accomplish the modified import you need,
because I don't know the field setup of your database nor the field setup of
your HyperCard stack and how you wish to combine previously separate
fields into multiple line fields.

What I can do, however, is show you an example of a name and address
database that is to go into Focal Point. The sample database looks like the one
in Figure 6-9, complete with 11 different fields, which will be combined into
three in the Focal Point Directory and Dialer stack, as shown in Figure 6-10.
Here's the script:

on mouseUp
global oneRecor-d
ask "~hich file do you wish to impor-t?" with "Tr-ansfer- Text"
if it is empty then exit mouseUp
put it into fileName
open file fileName
go to last car-d

r-epeat for-ever­
doMenu "New Car-d"

r-ead fr-om file fileName until r-etur-n

if it is not empty then
put tab Into last char- of It
put it into oneRecor-d

else
doMenu "Delete Car-d"

126 HYPERCARD DEVELOPER'S GUIDE

go to fl~sl ca~d
close file fileName
exit mouseUp

end if

put dataExt~act<> && dataExt~act<> into holde~
put dataExt~act<> into line 2 of holde~
put dataExt~act<> Into line 3 of holde~
put dataExt~act<> & ~etu~n & dataExt~act(),
Into line 4 of holde~

get dataExt~act<> & ", " & dataExt~act<> && dataExt~act<>
if line 5 of holde~ is tab
then put It Into line 5 of holde~
else put It Into line 6 of holde~
put holde~ Into field 1

put dataExt~act<> & ~etu~n & ~etu~n & dataExt~act(),
into field 2
put dataExt~act<> into field 3

end ~epeat
end mouseUp

function dataExt~act
global oneReco~d
get cha~ 1 to Coffset<tab,oneReco~d>-1> of oneReco~d
delete cha~ 1 to offset<tab,oneReco~d) of oneReco~d
~etu~n it

end da taEx t~ac t

The opening of this script is identical to the one just before it, except that it
declares a global variable, oneRecord, which will be used by the dataExtract
function, which is a second handler within the import button's script. After
the Read command, the script differs markedly from the earlier script.

An if-then-else construction tests for the contents of It-that is, the data read
in from the text-only file. If It is not empty, meaning that HyperCard was able
to retrieve data from the disk, then the return character at the end of the record
is replaced by a tab character, and the entire record is placed into the global
variable, oneRecord. As with the previous script, if there is no more data in
the file, the file closes, and the handler ends.

The balance of the handler must dissect the record and place various pieces
of it in very specific spots on the Directory card, sometimes in specific lines of
a field or even in a specific order on a single line, as when combining the first
and last name fields into one line. To assist in this dissection and recombina­
tion, there is a separate function (a user-definable function, in HyperCard
terms) that extracts one field from the record and deletes that field from the
record in preparation for the next extraction. The decision to make this

Converting Existing Databases to HyperCard 127

D Names and Addresses
lrirst Name I Al2honse ~
!Last Name I simmons

lcom2any I Ace ManufacturinQ Com2an1.1

!Address 1 14000 Industria 1 Pkwy .

!Address 2 I Suite 300

I city I Tulsa II state loK II ziP 179880

IT e le2hone 1 1918-555-2652 I
lrelel!hone 21918-555-1001 I
!comments I Met at trade show 1/88; wife 's name: Sally I

~
Figuxe 6-9 For our example, we'll use this typical database. In traditional dafllbase style,
each item is in its own field.

i: ..

find ••

J:!~il1.1r..§.~~!lQ:-t!J.L~.!i!~­
'"'ife'~ name:Sell u

Figuxe 6-10 The destination card is the Directory & Dialer card of Focal Point, which has
the same three-field arrangement as HyperCard's Address sfllck (although the third field is
larger here).

128 HYPERCARD DEVELOPER'S GUIDE

extract-and-delete activity a function was predicated on the fact that we
would have to call these operations once for every field of data in the record.
Extracting the data and deleting it for each field would add at least two lines
of HyperTalk code for each field in the record. By turning this operation into
a function, the mouseUp handler can reuse those lines over and over, thus
making the entire import procedure more compact and faster.

Because the record is read in the mouseU p handler and then extracted and
chopped away in the function, the record data must be placed in a global
variable-one that can be accessed by both the mouseUp handler and the
dataExtract function handler. The action performed within the dataExtract
function is identical to the action taken in the repeat loop of the earlier import
script, with one slight modification. Instead of putting the extracted data
directly into the field on the Directory card, the function extracts the data with
a Get command, which, in turn, places the field data into the function's local
variable, It. Then the function returns the value of It. Thus, whenever we use
the dataExtract() function in the mouse Up handler (user-definable functions
must have a set of parentheses after the function name), the function plugs in
the field data.

Therefore, in the first line of the mouse Up handler to use the dataExtract
function, the script calls the function twice, putting the results into a local
variable, called holder. The Put command treats the results of the dataExtract
functions just like containers, putting the first field and the second field into
holder, separated by a space. Remember that each time the dataExtract
function is called, the data is both extracted and deleted from the entire record,
leaving the next field ready for extraction by the next call of the function.

In the fourth line of the data extraction routines, the handler extracts the
equivalent of fields Address 1 and Address 2, placing them in separate lines
(forced by the return character between the fields). Then the city, state and ZIP
fields are retrieved, but placed temporarily in the mouse Up handler's It local
variable. The handler must first check to see if there are one or two address
lines in the card before determining which line of the field the city, state and
ZIP code information should go. If the second address line (line 5 of the field)
contains only a tab (which dataExtract would return if there were no data in
that position), then it means there is only one address line, and the city, state,
and ZIP code data belongs in line 5. If there is other data in line 5, then the city,
state, and ZIP code belong in line 6. Once the information for field 1 is
assembled in the holder variable, the data is placed into the field in one blow.
As we'll explore in more detail in Chapter 22, it is faster to manipulate
information in variables than repeatedly fetching and storing data in fields.
The remaining two command lines of the mouseUp handler place the tele­
phone numbers into field 2, separated by a blank line (two return characters),

Converting Existing Databases to HyperCard 129

and the Comments field into field 3 of the card.
These two examples should give you plenty of guidance in importing

database information into a HyperCard version· of a database. Importing a
collection of word processing text is a slightly different matter. It may be
moved into HyperCard in two ways: by script or manually. But either way,
you should give some thought as to the text's organization in the card style
format of HyperCard stacks.

Importing Word Processing Data
One of the best examples of why you might wish to convert a word processed
set of data into HyperCard would be to create a card system based on
boilerplate text. For example, a lawyer might place various clauses and
paragraphs of contracts into separate cards in a stack. With the help of a
button on the cards, the attorney or legal secretary could assemble the text of
a contract by finding the desired segments' cards and letting a script build the
entire document, ready for printing or exporting to a text file for printing by
a word processor. The point ofhaving the boilerplate segments in HyperCard
is to make it easy and quick to assemble the final document without typing a
key.

Many other databases, especially those that contain excerpts, abstracts, or
even full documents, are stored today in word processing formats. The allure
of HypetCard for organizing and finding desired data is quite real.

Handling Long Text Blocks
A potential difficulty with creating a stack of this nature, is that the chunks of
text may be very large-certainly larger than a single card on a 9-inch
Macintosh screen can handle. That means, of course, that the text would
probably go into a scrolling text field.

When the design of a stack assumes that the user will be browsing through
the stack, card by card, then scrolling fields are not particularly appealing,
especially if the browsing is to be not by card title, but by the content of the
large field. Long text that is intended for reading should be divided into card­
sized chunks, with ample navigation buttons around to facilitate moving
through the text. Card-by-card browsing implies that the user can see an
entire card's contents just by going to that card. Scrolling is inconvenient for
reading. I also believe that scrolling fields are just plain unattractive and end
up being less well-integrated into a card design than other types of fields.

130 HYPERCARD DEVELOPER'S GUIDE

From a functional standpoint, scrolling fields are permissible when the data
in them is not meant for card-by-card reading. If access to the textual data in
a long field is by the Find command, then its location in a long, scrolling field
is not critical. When HyperCard finds the text, it automatically sets the scroll
of the field so that the matching text appears at once-no scrolling necessary.

You should also feel free to use scrolling fields when the user will not see
the fields. For example, in the legal contract boilerplate example, cited earlier,
if the stack designer created a friendly front end to the stack that lets the person
assembling a contract click on buttons corresponding to names of the compo­
nents, the user may never need to look at the actual content of each compo­
nent, at least not on a regular basis. The stack would then fetch the long chunks
of text from their scrolling fields, even though the screen is locked, and the
user doesn't see the cards from which the data comes.

Long Text Import Scripts

The methodology for importing word processing data by script depends
larg~ly on how the information is divided in the first place. Of course, before
you could import it into a HyperCard stack, the text must be saved as a text­
only file from the word processing program used to create the file.

Probably the only time a script-based import routine would be worthwhile
is if the text you want to import needs to be divided from one large text file into
a number of stack cards. H that's the case, then using the word processing
program (before saving it as a text-only file) you will have to place some
unique text character at the end of each chunk that is to go on a single card.
Let's say, for instance, that the character you wish to use as a delimiter is the
bullet (Option-S on the Macintosh keyboard). Go through the original text
and insert the bullets between what will become each card's text, and save the
file in the text-only format. In your HyperCard stack, create a temporary
button with the following script:

on mouseUp
ask "~hich file do you wish to import?" with "Transfer Text"
if it Is empty then exit mouseUp
put It Into fileName
open file fileName
go to last card

repeat forever
doMenu "New Card"
read from file fileName until "•"

if it is empty then
go to first card
close file fileName

Converting Existing Databases to HyperCard 131

exit rnouseUp
else delete last ~har of It
put it Into field "rnainText"

end repeat
end rnouseUp

This simple handler reads each bullet-delimited chunk one at a time from the
disk and puts it into the main text field you've designed for the card.

Another method of importing word processing text involves the use of any
desk accessory text editor, like Mock Write (CE Software). You may open up
the text-only file (as saved by your word processing program) in an editing
window atop the HyperCard card. Then select and copy the desired section
into the Clipboard. Click on the HyperCard card, position the text insertion
pointer to the desired spot, and paste the text into the field. If your boilerplate
sections are scattered about in many different fields, then this method may
actually be faster than trying to import the text by script, even though you
need to invoke the desk accessory each time you want to open a text-only file
(this isn't necessary on large screens, however, because the editor window
will remain open behind the HyperCard window-position the two windows
so you can click on one or the other, as you need each window).

A HyperCard text field can hold up to 32,000 characters. Unless the field
or card is generally hidden from view, avoid placing large chunks of text into
a text field. It makes it difficult to read and inconvenient to browse. If you find
it impossible to divide large text blocks into card-sized chunks, then either the
database shouldn't be converted to HyperCard or the HyperCard version will
offer an incentive to create a user-friendly front end to a huge bank of textual
data. The latter would certainly be more interesting to pursue.

7

Stack Protection

One of the biggest differences between the HyperTalk language and

other Macintosh programming environments is that HyperTalk is very

much an open system. HyperTalk program code is stored on disk in a

relatively easily accessible format-straight ASCIT text. Therefore, even

if you believe the stack protection facilities built into HyperCard will

prevent lurkers from prowling through your scripts (and irs impossible

to keep them out anyway), they'll be available to anyone with a file

editing tool, like John Mitchel's FEdit disk utility.

134 HYPERCARD DEVELOPER'S GUIDE

Why Protect?
In the early days of personal computers, it was very common for enthusiasts
to share their experiences and hard work with others in computer clubs. Since
a lot of the activity was the result of a hobby interest in computing, there was
little to lose by revealing the program listings to friends and colleagues. In
fact, it was more like show-and-tell, or even a bit of a boast to show others how
you conquered the machine for a particular application or operation.

As the computer industry matured, programming became more of a
business, and programmers started to be protective about their code. They
didn't want someone lifting an idea that had taken much time and effort to
create, and turn it into a commercial product before the originator could.
Commercial competition, sometimes even within the same company, has
created a generation of programmers who jealously guard the contents of
their programs-the source code listings that are compiled into freestanding
programs.

Along comes HyperCard, designed by a gentle spirit who still recalls "the
old days" of sharing and openness. He designs a product with the idea that
when people share ideas about creating stacks that the effect will be like
compounded interest-users' facility with the program will increase dramati­
cally in a short time. Only when existing software companies received
prerelease copies of HyperCard to explore commercial product possibilities
did the request-make that "demand"-for stack protection come loud and
strong. Let's examine in detail the kind of protection available in HyperCard.

Private Access Protection
One method of protecting a stack is to forbid entry into the stack, unless the
user knows a password. When you choose Protect Stack from the File menu,
the resulting dialog box offers several choices about how the stack should be
protected (Figure 7-1). The option we're considering here is Private Access.
With this check box selected, you may then click on the Set Password button
to assign a password to the stack. To test out the password, you'll have to quit
HyperCard and then try to re-open the stack. You'll be prompted for the
password. An incorrect password won't allow you access to the stack. A
correct password lets you in. As long as you don't quit HyperCard after
entering the correct password, you will be given instant access to that stack
without having to enter the password.

Private access protection is not a good solution when running HyperCard
on a multi-user network. If an authorized user successfully opens the
password protected stack, then anyone on the network will be able to open

Protect Stock:

D Can't modify stock

D Can't delete stock

~ Prluote Recess

(Set Password)

Stack Protection 135

Limit user leuel to:

QBrowslng
QTyplng
0 Pointing
0 Authoring
®Scripting

n OK)J (Cancel J

Figure 7-1 The Protect Stack dialog box lets you adjust a stack's user leoel as well as
request a password when opening for the first time within a HyperCard session.

that stack thereafter, until someone quits HyperCard (presuming HyperCard
is running on the file server).

Incidentally, the first release of HyperCard reportedly presented difficul­
ties for some users who had protected their stacks for private access. A
handful of users who had assigned passwords were unable to open their
stacks, even with the correct password. HyperCard 1.1 supposedly solved
that problem.

Stack Delete Protection
Another checkbox in the Protection dialog box lets you set whether the user
will be able to delete the stack. Deletion, then, is password protected. Only
people who know the password would be allowed to delete the stack.

In tightly controlled circumstances, such as in a network situation or in­
house distributed processing system, this protection might be advisable,
because the stack author won't want anyone to "accidentally'' delete a
valuable stack. But for a stack that is to be distributed to the world as public
domain, shareware, or commercial product, this kind of protection is not
advisable. Remember, too, that even though you use a password to protect a
stack against deletion, the file may be dragged to the Trash in the Finder. And,
while you can prevent a user from quitting HyperCard via the Quit Hyper­
Card menu item (see below), the resourceful HyperCard snooper will know
how to restart the Macintosh and bypass any Set Startup setting you've
created to automatically go into the stack.

136 HYPERCARD DEVELOPER'S GUIDE

Can't Modify Stack Protection
The third choice in the Protect Stack dialog is whether you want to let the user
or a script permanently modify the stack (added with version 1.2). This is
different from the user level protection (below), because in concert with the
userModify global property (also new with 1.2), you may let users paint or
enter text on a locked stack (a padlock icon appears to the right of the last menu
title when the stack cannot be modified). But because the checkbox in this
dialog is checked, none of the changes made by the user or by any script will
be saved to the disk Oock your Home stack and notice that the idle handler
clock in the lower left comer no longer writes to your hard disk with each
advancing minute).

This setting and the userModify global property are primarily of interest to
those running HyperCard stacks on locked media (like CD-ROM) or in
networked environments in which stacks might be locked to allow multiple
access to the stack. Any changes you type into fields or make with painting
tools may help in navigation or printing (HyperCard prints what's on the
screen when you do a Print Card), but as a tool to keep snoopers out of your
stack, it won't be anymore effective than other HyperCard protection schemes.

User Level Protection
A stack author may set the user level of a stack, independent of the user level
setting of the user's own HyperCard Home stack. Thus, if the user of your
stack has the user level setting in the Home stack set to levelS (scripting), you
can still reduce the level in your stack by setting the user level to, say, 2 in the
Protect dialog box. If you choose to password protect that setting, then the
user will need to know two things: 1) the trick about holding down the
Command key (at user levels 1 and 2) to access the Protect Stack item in the
File menu; and 2) the password to access the Protect dialog box.

At first, the prospect of locking the user to a low user level sounds attractive
if you want to keep your scripts to yourself. H you set the level to anything less
than 5, then the user won't be able to summon the Script Editor for any object.
Your scripts are safe from prying eyes, right? Well, no, they're not.

It turns out that even though you cannot see a script in the Script Editor with
these settings, you may still access the script via another script. In other
words, if you have a script that retrieves the script of a button (the script of any
object is a property), then you can put the retrieved script into a container, like
a field in a different stack, and print it out from there. That, in fact, is how
utility products like Script Report work. They go into a stack, lift copies of each
object's script, and then reassemble the scripts for printing or viewing. One

Stack Protection 137

script can also write the script for another object (e.g., set the script of a button),
so even though you thought you locked down your scripts, a knowledgeable
HyperCard user can dissect and modify the stack, difficult though it may be,
without using the Script Editor.

Protection Problem

Locking the user level with the Protect dialog box can present a big problem
for some stacks. The problem will surface early on provided you test your
stack with the user level set to the low level.

Whenever a script in a stack needs to utilize a tool that is at a level higher
than that set in the Protect dialog box, the script won't be able to access that
tool For example, in the Daily Appointment book of Focal Point, there is a
script that summons a painting tool to literally draw a small box around the
plus mark of an hour's label to indicate that there is text hidden in an
associated field (Figure 7-2). For the script to draw that box, it needs the
rectangle tool in the painting tool palette. The only way the script may use that
tool is if the user level is set to 3 (painting) or higher. If the Protect dialog limits
the user level to 1 or 2, then the script will produce an error dialog, indicating
that the desired tool is not available at the current user level setting (Figure 7-
3). Moreover, the nature of the Protect dialog setting is such that it overrides
any change of the user level your script may command. Therefore, to try to
set the user level to 3 in the drawing script would be useless if the Protect
dialog setting had been set to 1 or 2. The same is true when your scripts need
access to either the button or text tools. For access to those tools, the user level
needs to be at 4 or 5.

UJednesdoy, More

: .
i.!.................. I .. ~.YI!~.b .. ~j.!.~ .. ~.t~.O ~

:
i·················· + ···1
==.= 2 .. t1.Q.O!.bl.Y .. ~J.~ff .. t.:1~.~!i.OQ. J

I i + ... 1

!;
Figure 7·2 In Focal Point's Daily Appointment stack, you may add information to a
normally hidden field by clicking on the hour's number. If any data is in that field, the
stack draws a square around the plus mark to remind you date is in there.

138 HYPERCARD DEVELOPER'S GUIDE

That tool Is not auallable at the current
user leuel.

n OK n

EVENING -····-------··---
+

Figure 7-3 If the stack is locked below the Painting level when it needs the painting tool,
the script is interrupted by an alert box. You may not use HyperTalk script to change a
user level set in the Protect Stack dialog box.

When to Lock the User Level

Even though it looks as if it may be futile to password protect the user level
setting, those user levels are there for a reason, and they make sense for certain
kinds of stacks in special environments. Here are some examples.

Locking the user level prevents inadvertent modifications to stacks. There­
fore, in a stack that might be used in a freestanding kiosk location, at which
users are invited to browse through read-only material, it would be advanta­
geous to lock the user level to 1. This prevents someone from accessing even
the text insertion tool to modify a field that may have been left unlocked. It
also prevents casual HyperCard users from modifying the painting layers,
buttons, or fields. If the stack displays the menu bar, its choices are limited,
thus being less overwhelming to a novice user.

The reduced menu bar is also a good environment in an in-house corporate
or academic setting, in which the people who use the stacks day in, day out are
using the stack as a browsing and information entry system. By locking the
user level to 2 (typing), the user won't be burdened by any more than the three
main menu items (plus the Apple desk accessory menu), and the menus that

Stack Protection 139

do appear are shorter than usual.

When NOT to Lock the User Level

Whenever I talk about stack protection with experienced HyperCard users,
the prevailing sentiment is that locked stacks are a nuisance, if not frustrating.
H yperTalk-literate users seem to be forever curious about how a stack author
structured various parts of the stack and how the scripts scattered throughout
the stack are built. Moreover, if a user finds that the stack is useful enough to
keep around on the hard disk, chances are that he or she will want to make
some modifications to the stack. Typical modifications might be the addition
of buttons that link to existing stacks in the user's collection. Many" users also
have established ways of going from stack to stack, which may entail changing
visual effects. Useful stacks may also be blended into an existing stack system,
so the user needs access to your stack's scripts to effect the necessary links
between your stack and the rest.

To me the supreme advantage of using HyperCard applications is that the
stack or stack system can be customized or enhanced to suit my needs. That's
the essence of democratization that HyperCard brings to personal computing.
No other applications give you that flexibility. For an author to restrict the
addition of fields and buttons, or otherwise prevent the user from tailoring the
application to his or her way of work is simply not in the spirit of HyperCard.
That is one big reason why both Business Class and Focal Point come out of the
box already set to user levelS. I even go overboard a bit, because I invite
everyone to look at and learn from the scripts scattered about the stack
systems. As a result, I often hear back from users about the ways they've
modified the stacks for themselves, providing ideas for future enhancements
to both products.

Something psychological also affects users of general audience stacks who
encounter password protection to the scripts. It reminds me of two nearly
identical houses in a suburban subdivision. One house stands there, like your
basic house. The one next door has floodlights lighting the grounds, iron gates
and brick walls surrounding the house, and intimidating signs about an alarm
system that summons the county sheriff if an intruder should sneeze in the
wrong direction. While the casual burglar would choose the unguarded
house as the path of least resistance, the experienced burglar suspects that
there must be something really worth stealing inside the fully armed house.
Thus, when I start poking around a stack and find a request for a password to
change the user level, I figure the author must be hiding something really neat
or is perhaps ashamed of sloppy scripting. In either case, the lockout only
peaks my curiosity and determination further. Instead of a casual glance at a
few handlers, I'll be sure to take apart the entire stack and inspect every

140 HYPERCARD DEVELOPER'S GUIDE

HyperTalk word. I'm not alone, either.
Even if you get a kick out of slowing down entry into protected stacks, be

aware that the public domain already contains utility stacks that disengage
stack passwords. Where there's a will, there's a way.

The entire discussion about protecting HyperTalk scripts really comes
down to one question: why bother? Since there is no secure way to keep
determined eyes out of your stacks, it doesn't seem to make sense to protect
stacks that go out to the world. On in-house stacks, as mentioned earlier,
where casual users are the target audience, you can protect the stack primarily
to save the users from accidentally getting into trouble. But that's about the
only reason I can see to password protect the scripts of a HyperCard stack.

Commercial Proprietary Secrets
When I make statements like the one above, most traditional software devel­
opers and publishers shudder. They envision their works being dissected like
a biology class frog. An open stack is like an invitation for others to steal
scripts and scripting techniques for their own stacks. This is a legitimate
concern.

One protection that developers have in this regard is the copyright law that
protects original intellectual property. While there is no stopping an individ­
ual from incorporating your script in a stack for his or her own use, it is illegal
for that person to use your scripts in a product that is redistributed, unless you
have agreed to the arrangement. This is just like the copyright protection that
covers printed material in books and magazines. H an author wishes to
excerpt a selection from a book in another book, then that author must get
permission from the original copyright holder to reprint that material.
Sometimes the right to reprint entails payment of a licensing fee; other times
the original copyright holder agrees to it in return for the proper credit line
attached to the excerpt (in hopes that the excerpt will convince readers to buy
the original work).

There's no question this still leaves a gray area. Can a stack developer
modify someone else's script and claim its his own for publication in a new
product? How many changes to the script's characters does it take before the
original is no longer the original. And what about stack artwork? How many
pixels can be changed to make it no longer a copy of the original?

Purists in the legal profession would say that if a work is derived from the
original, then the second work infringes on the copyright of the original work.
Truly original work must be just that: original. At the same time, some scripts
will surely be copied and modified to such an extent that there is little trace of

Stack Protection 141

the original script, even though everything was derived from a copyrighted
work. And in other cases, there may be only one elegant way to perform a
certain operation. Two or two hundred stack developers may come up with
the idea independently. How can you say or prove that one developer copied
that script from another?

Unfortunately, the realm of copyright protection in stacks, as it is in
software, will probably be tested in litigation before long. The safest way to
avoid problems is to be original. H you contract out for artwork or HyperTalk
programming, make sure that the agreement between you and the vendor
states that the work is to be original (and that the contractor warrants such).
H ypetCard makes it inviting to borrow liberally, for not only are there scripts,
card art, and icon art, but there are external commands, external functions,
and sounds to worry about. Unscrupulous stack developers will try to
''borrow'' copyrighted work. H you're concerned about your scripts or other
stack elements being ripped off, then it is up to you to monitor the stacks that
reach the market through various channels and pursue those developers and
publishers who use your work without permission.

True Protection
While I've made it clear that there is no way to protect scripts or other open
elements of a HypetCard stack, you can still protect important algorithms that
you design. H a portion of the operations taking place in a HypetCard stack
are in the form of external commands or functions, that code is as protected
from view as you can get.

As you'll learn more in Part m, external commands and functions (XCMDs
for short) are written in Pascal, C, or Assembler and then compiled into a
resource that attaches to your stack. These compiled chunks of code are in the
same form as standalone programs written in these languages. For someone
to decipher what is in an XCMD, he must disassemble the code, which
generally provides an assembly language equivalent of the program. Disas­
sembly, incidentally, is how engineers investigate programs in search of ways
to defeat copy protection or learn how a computer's operating system per­
forms certain operations. The first thing many seasoned hackers do when
they get a new computer is to disassemble the ROM to look for clues to
undocumented features or possible enhancements. In any case, I believe if
someone is smart enough to disassemble an XCMD, they're entitled to the
knowledge (although not entitled to copy it and re-sell it themselves).

Rest assured that disassembly of compiled code is not for the faint hearted.
The typical Pascal and C programmers, who might want to see how you

142 HYPERCARD DEVELOPER'S GUIDE

accomplished operations in an XCMD, are not likely to disassemble your code
unless they're desperate and determined. An XCMD is a relatively safe place
to put algorithms that yoU:' d prefer not be in the hands of the world.

Fortunately, XCMDs can communicate with fields and objects in a Hyper­
Card stack, so you could practically write the equivalent of a HyperTalk script
in an XCMD. H much of the functionality relies on H yperTalk commands
(instead of doing the information manipulation yourself in the XCMD), the
performance may not be what you'd expect. But if you can replicate the
functionality in an XCMD and keep communication with the card to a
minimum, you may actually see a performance improvement-such as in a
large math calculation.

Therefore, when a prospective stack developer asks me about protecting
scripts, my advice is twofold. First I ask the reasons for protecting the scripts.
H the response discloses a general feeling that no one should be able to look
inside, I try to counsel against protecting the scripts. Second, if the developer
has unique algorithms that should be protected, then I strongly suggest they
be written as XCMDs for attachment to the stack. Do the bulk of the simple
work in open HyperTalk; do the secret stuff in the compiled XCMD.

Buying and #Borrowing" XCMDs
H you're not yet into programming XCMDs in those other languages, then you
can obtain XCMDs in two legitimate ways: get permission to use existing
code; and contract the work for new code.

It's so easy to incorporate an XCMD into a stack, that it is often tempting to
"borrow'' a resource that is attached to someone else's stack or is offered for
everyone's use in the public domain. Remember that copyright protection
applies even to work distributed in the public domain. For you to incorporate
such an XCMD in a stack for distribution to others, you must obtain the
permission of the copyright holder. That's what I did in Focal Point. When I
needed the standard file dialog box in the Document Launcher stack to make
button creation simple, I found the filename XFCN written by Steve Maller.
Even though Steve worked for Apple, he received permission to distribute the
work in the public domain. I wrote to him, explaining why I would like to use
the function and how I would credit the work within the product. Steve was
happy to oblige, giving me permission to include the function in a commercial
product.

H you cannot find a public domain or shareware XCMD that meets your
needs, then it may be worthwhile finding someone who can write an XCMD
for you. User groups often have knowledgeable Macintosh programmers

Stack Protection 143

who are capable of writing short snippets of code that go into XCMDs. As with
an artist, negotiate a price based on the time it takes for the programmer to
write the XCMD, or come up with a flat fee. If the XCMDs represent a major
part of the product, you and the programmer may agree on a royalty
agreement. As with working with an artist for graphics, be sure you obtain all
rights to the source code of the XCMD. This will simplify matters if your stack
product is marketed by a publisher or if someone wishes to license the XCMD
from you.

I believe the future of commercial HyperCard stacks will depend on
creative XCMDs made a part of creative stacks. That means that the talents of
good artists, traditional programmers, and people with expertise in special
interests will make for coming generations of outstanding HyperCard appli­
cations for narrow and broad audiences. As XCMDs begin holding more of
the "gold" of a HyperCard stack, the worries about stack protection will
diminish. It's better to spend more creative energy on the stack than on ways
of keeping people out of it.

8

Engaging the
Couch Potato

An information stack assumes a burden from the very outset. It must

invite the user to start browsing, hold the user's interest, and leave the

user with the feeling that the journey through the information was

rewarding. The value of an information stack is directly proportional to

the user's desire to return to the stack-to retrieve or store additional

information.

In many respects, an information stack is like a television show. A

good program captures its viewers with some kind of "grabber" in the

first minute or two, prevents viewers from changing channels mid­

stream, and then leaves the viewers with a good enough feeling to make

them want to come back next week for more. In the world ofH yperCard

stack production, the developer is the producer and director (and

146 HYPERCARD DEVELOPER1S GUIDE

writer), while the information is the star. It's the job of the director to make
the star look good, to shape it into something that viewers-make that
"users" -enjoy.

Make Stacks Inviting
To that end, I believe a good guideline to follow when building a stack is to
make the stack inviting enough to interest people who would normally not get
involved with computers-computer couch potatoes. Not to be confused
with television couch potatoes, computer couch potatoes either have a predis­
position against computers or simply have not been exposed to them. They're
a tough audience. But if you can engage such a person enough to click the
mouse button even once, then you stand a chance of converting a computer
couch potato to a computer user.

As computer software designers target products for the computer couch
potato, the rest of the computer community will benefit. The Macintosh
started out as being "the computer for the rest of us." Its primary goal,
although not stated in these terms, was to engage a new generation of
computer users who were intimidated by the likes ofMS-OOScomputers and
computer toys. A lot of that early Macintosh simplicity is now gone, but its
original idea helped bring many people into computing who might never
have made it before, at least not with the same enthusiasm and reward as the
Macintosh community. Computing, in general, benefited from the underly­
ing concepts of Macintosh's design. The same can happen from a stack written
to engage a new type of user.

HyperCard and the Macintosh are well positioned for advances in couch­
potato-friendly software, because the HyperCard developer community
consists of a much more diverse group than what I call the programming
priesthood. People in the arts, humanities, social sciences, and other disci­
plines now have access to a programming tool-a tool on a sophisticated
computer. The results can be sophisticated software, bearing the expertise of
its creators. That expertise would never find an outlet without a development
environment like HyperCard. The people who know best how to engage
computer couch potatoes are now in control of program design. There's huge
potential in that.

Articles of Engagement
As much as we'd all like some easy formula to follow, it's not that easy. So
much depends on the kind of information you're publishing or managing,

Engaging the Couch Potato 147

how the art treatment blends with the information, the complexity of your
structure, and other intangible elements, including the tone of the language in
an information publishing stack. The challenge of making a stack inviting is
where many of the points covered in previous chapters come together. Here
are some suggestions to help make a stack inviting and engaging:

1. Present an opening screen or sequence. Tell the user right away what your
stack is, who wrote it, and perhaps what it's for, if the stack is meant to
attract passersby at a freestanding kiosk. The title screen or sequence
should be a visual masterpiece, because it sets the tone for the rest of the
stack. In the few seconds the title screen or sequence displays, you can grab
or lose your audience. If it's inviting enough, the user will hang in there for
more.

An excellent opening sequence example is the one used for the Macworld
Expo stacks (refer to Figure i-3 in the Introduction). If you want to view
them, they are available from many user group stack collections. In the one
for Boston 1987 and San Francisco 1988, the first six cards begin looping in
sequence to present an effect that a small globe on the card is spinning. If
you're walking down the aisle past one of the machines, the spinning globe
cannot help but draw you into it. Then, when you click on the world, a
series of 22 more cards zoom you in from outer space to the location of the
exhibition hall.

Focal Point and Business Class, as examples of commercial stacks, present
the user with title screens, which announce the name of the stack system
the user is about to enter (Figure 8-1). Since these stacks, especially Focal
Point, are intended for daily business use, the opening sequence was
maintained as a single screen (although with interesting dissolve visual
effects) that can be bypassed quickly by a click of the mouse. To force the
user to sit through a 5 or 10-second flashy intro several times a day would
not endear the user to the product after long.

2. Use visual effects wisely. Even in a business software environment, users
prefer to be intelligently entertained, as long as the entertainment value
does not overpower the informational task of the program. HyperCard's
visual effects add a great deal of entertainment value, even when the effects
are there to help the user gain some spatial perception of what action a
button incites. Those users who may have experience on the Macintosh but
little in H YP.erCard will be "wowed" by quality visual effects in the right
spot.

148 HYPERCARD DEVELOPER'S GUIDE

I ACTIVISION~I
Figure 8-1 An opening screen, like the one for Focal Point, helps orient the user about the
stack or stack system he is about to enter.

For instance, while the title cards of Focal Point and Business Class are
single cards, they come to life for the user because of a special combination
of two dissolve visual effects-a dissolve to black followed by a normal
dissolve. By adding the dissolve to black, the dissolve is much stronger
because the black sets up a more distinct divider between the previous
screen (usually the Home Card) and the Focal Point system. A regular
dissolve by itself may actually be confusing, because it might imply a
transition between two related screens, rather than two very dissimilar
screens. I've seen one Focal Point user also attach a sound resource to his
Home stack so that when you click on the Focal Point button, the computer
issues the Star Trek Transporter sound. Just like the Transporter dissolves
a person in one place and reassembles the molecules in another, so does the
Focal Point button bring you into a different domain. Within a stack, visual
effects can play a big role in a person's enjoyment. Selecting the right visual
effect is not a task to take lightly. It should be done only with extensive
experimentation and comparative testing on users. Turning pages, for
example, can be accomplished with a few different visual effects-scroll­
ing, wiping, and zooming. On some cards, the effect of scrolling is not as
dramatic as you may first think, especially if the information content in

Engaging the Couch Potato 149

fields is sparse. The change from one card to the next may not be big
enough for the scrolling to be visually effective. Wipes usually work best
for going to next or previous cards. But when you use them, remember that
the wipe direction is opposite to the direction the user is progressing
through the stack. For example, when the user clicks on a right-facing
arrow to go to the next card, the wipe direction is to the left, just like turning
the page of a book to the left to advance to the next page (Figure 8-2).

Zooming is an effect that must be used carefully. HyperCard acknowl­
edges the location of the mouse click that triggers a Zoom Open visual
effect. The zoom action emanates from the click location. This is what you
probably want. But be aware that when the Zoom Close visual effect
occurs, it zooms back toward the center of the screen. There is no
connection to the spot from which the last Zoom Open visual effect took
place. This might be confusing to the user, depending on your screen
design. If the card designs are different enough, the user probably won't
recognize that the zoom closing is focused on the center of the card, because
the Zoom Open made a significant spatial impression in the first place.

Bam doors and irises are useful effects when changing levels within a
tree structure. Use the Open parameter to these visual effects when diving
down a level; use Close when resurfacing to a higher level.

So far I have yet to see a respectable example of either the checkerboard
or venetian blind effects, but there must be good stacks out there some­
where that put these effects to good use. I believe with a carefully planned
series of cards designed especially for these effects, some striking visuals
are possible. You can also expect to see additional visual effects added to

July
5

, ,

1211 u
1931111
116!1!11

September ,
7

:

1~ lt "
ID !II. fl
17 21 2t

Jllnuary 5 , , ~ : 1: 1:

12 II I' ~ II I? II
19 311 11 liZ A Ill U
116!l!U..,S19l

February
2 1

,
5 1 7

~

9 10 II 12 II 11 "
I& I? II 19 II 21 II
18 ::IC 2S X a? 21 21
~p 31

March I :~ ' 4 s
6 ? I 9 II 11 ll
1~ 1• " 16 17 II If
ID !II. fl 2:1 101 15 U
17 21 " 10

4 5 1
, ~ :

1
: April

U 12 II U ~ II I?
11119211111:1 a 111
15116!1! II..,)I llil

1 II 1 t :! ' 7 May
a 911 11 ~ u 14
~ 16 I? .. 19 ll Ill
!DII9!111151161'liS

1 1 :. 4 s June
6 711 10 1112

l3 ll 1~ I. 17 11 "
VO II !1§ 13 1M 15 121&

l:n 18 2t tO II I

Figure 8-2 When clicking on the right arrow to advance through a stack, the visual effect
should go to the left.

150 HYPERCARD DEVELOPER'S GUIDE

HyperCard as it evolves, primarily to aid the effects of flipping from card
to card in a linear sequence.

Also be sure to exploit the Lock Screen and Unlock Screen commands
that are new to HyperCard version 1.2. Because these commands (which
are different from setting the lockScreen property) may be used in concert
with visual effects, you can create interesting ways of hiding and showing
objects on a single card. For example, a background button might trigger
a dissolve effect that shows a card layer graphic and a button:

on mouseUp
lock screen
set the visible of card field "Instructions",
to not the visible of card field "Instructions"
unlock screen with dissolve

end mouseUp

The effect that used to take two cards may now be done in one. You may
even combine visual effects for going to a card and visual effects for hiding
or showing an object in the same script. For example:

--Version 1.2 has four new script shortcuts for objects:
-- bg background
-- cd = card
-- fld = field
-- pict = picture
on mouseUp

visual effect Iris open
go to card 1 of bg "Detail"
lock screen
show cd pict
show cd fld "Timer"
unlock screen with barn door open

end mouseUp

Notice that the visual effect for showing the objects comes with the
unlocking of the screen, and is independent of the Go visual effect.

3. Make buttons look like buttons. When trying to attract computer couch
potatoes to information publishing stacks, it is vital that on-screen buttons
look so much like buttons that the user must click on them to satisfy even
a tinge of curiosity. I've seen cases in which extensive artwork was
produced to try to invite people into clicking areas of the screen, but to my
eye the attempt failed. Figure 8-3, for instance, shows a screen from the

Engaging the Couch Potato 151

Megacorp demonstration stack that Apple commissioned for the release of
HyperCard. The huge bars may be attractive in their three-dimensionality,
but are they buttons? To some users perhaps, but not to everyone.

That's not to say every button must look like a round rectangle button
(which only experienced Macintosh users would recognize as a button).
Skillfully crafted icon art attached to buttons invite clicking. So do on­
screen representations of buttons from machines or common electrical and
electronic devices.

On this subject, I'll have to admit that the opening screen of Business Class,
which shows a world map, is not intuitive enough to invite the first-time
user into the system. Is it natural for someone to want to click on a region
of the world? To anyone who has used the system even once, the answer
is "yes." But to someone seeing Business Class in a freestanding display, say
at a travel agency, I'm not sure the need to click on a part of the world is
compelling enough. Perhaps a simple message of some kind or even blocks
around the possible regions would be more inviting. These two possibili­
ties are shown in Figures 8-4 and 8-5. Which do you think would be more
inviting to the person walking by the machine? Or is there yet a better way?

Figure 8-3 Are these buttons? The art overpowers the message that these should be
clicked by the mouse.

152 HYPERCARD DEVELOPER'S GUIDE

4. Use the appropriate structure. By all means don' t be so clever in your stack
structure that the uninitiated HyperCard user will get lost within myriad
backgrounds, tree branches, and non-linear extensions. If the stack is being
designed to help a user find a particular piece of information, simplify the
pathway to that information. If the stack is telling a story, don' t let the user
wander far afield from your linear track.

As noted earlier, one of the most highly visible stacks yet with one of the
worst examples of appropriate structure was the HyperCard supplement
to Apple's 1987 Annual Report. I feel as though it leads me down dead end
paths, and I never know when I've seen the whole stack.

5. Transform data entry into mouse clicks. A welcome technique for data
entry kinds of stacks is to find a way to codify the entries that fields require.
The more you can limit the information in very specific fields, the easier it
is to create pull-down lists or selections of buttons that enter data into the
fields with a click of the mouse. Figure 8-6 shows two methods of
simplifying this kind of data entry. In one, a HyperTalk generated list of
options and radio buttons lets a user select one choice for entry into the
field. The list appears whenever the user clicks on the field title. In the

Figure 8-4 Perhaps the opening map-menu of Business Class should have had an instruc­
tion on it about what to do .. .

Engaging the Couch Potato 153

Figure 8-5 ... or things that looked like buttons to press.

second example, an XCMD (described in Chapter 28) presents a pop-up
menu of items when the user clicks and holds the mouse button on the field
title. Choosing an item for entry into the field is done the same way you
choose an item in a pull-down menu.

No matter how you do it, if you can eliminate typing of data into fields,
then the users of your stack will be more likely to adopt the application, and
feel like they' re getting more work done with less energy.

@Buyer
0 Seller
0 Renter

OK 2400
3600
4800
7200
9600
19200
57600

Figure 8-6 Reducing the fear of typing is possible by making date entry the result of
clicking on buttons (left) or with the help of XCMD-manufactured pop-up menus (right).

154 HYPERCARD DEVELOPER'S GUIDE

6. Build magic into the application. When I think about the concept of
putting magic in a stack, the first visions to come to mind are the fantastic­
ally elaborate domino toppling exhibitions that appear in the television
news from time to time. That's where the push of one domino sets in
motion the most amazing display of gravity in action you've ever seen.
These displays can run for 20 minutes or more, involving literally millions
of dominos that form multicolor mosaics, set off toy rockets, "climb" stairs,
and much more. All of that is magic because it starts with the press of a
single domino.

Therefore, a stack that contains magic has lots of activity connected to
some simple operations, whether they be triggered by closing a field or by
clicking a button. Magic, of course, can come in many guises, depending
on the stack application. It could be as simple as triggering a recalculation
of an on-screen spreadsheet replica, with the totals filling in one by one. It
may involve information entered into one field being posted in a related,
linked stack that doesn't even appear on the screen-all the user knows is
that the information will be in the other stack when it's needed.

One of the tests I use to determine the amount of magic in a stack is
whether I ask myself, ''How did the author do that?" or ''How did the
author know I needed that information here?" That 01' Stack Magic
requires extra work and planning on the author's part. Anticipation of the
user's needs is critical. Thus, it helps that the author be a user of the
application, not just a distant designer of someone else's basic idea. When
the author designs a stack for his own use, the fine touches, the anticipated
features, the convenience-the magic-usually find their way into the
application.

These are the elements that make stacks inviting and engaging. How
well does your design measure up?

Another part of the magic that becomes more magic for fellow stack
authors than for the user is building customizability into your stacks.
Users will come to expect it, but it's not always so easy to accommodate,
as we see in the next chapter.

9

Making Stacks
C ustomizable

Someone once asked me whether I'd prefer to have Focal Point pro­

grammed in a traditional programming environment instead of Hyper­

Card. Presumably he was concerned by some intensive arithmetic

operations which were relatively slow with HyperCard 1.1 and earlier,

perhaps about the extra second or two that it takes to go from one stack

to another, and perhaps about the limited report printing abilities

inherent in HyperCard. While I'd like to see all these improved (as they

will be in future releases of Focal Point and HyperCard), nothing could

sway me from keeping this organizational system riding on top of

HyperCard.

156 HYPERCARD DEVELOPER'S GUIDE

The reason is that such systems must be customizable by the user, and
HyperCard opens the door to the widest possible customizing pathways
anyone can imagine.

When you design a stack for general consumption, a stack that will become
the repository of the user's information, it would be presumptuous on your
part to impose a card layout that every user must use. This kind of stack has
two potential customers: 1) those who already do what your stack does (either
on paper or in another program); and 2) those who adopt your stack to
organize previously unorganized information.

To appeal to the group that already has a notion of working with the
information in an organized fashion, your stack must first of all offer some
vast improvement over existing systems. From a marketing perspective, your
product must be different enough to draw the interest of those who already
know what the product should be doing. H the differences and improvements
are compelling enough, you will tum many tire-kickers into buyers.

But new owners already have a way of handling the information that may
be slightly different from the system that works perfectly for you. For
example, if their previous system includes a client database, they may have a
field for a category code. Some client database designers prefer a two­
character code number to distinguish categories, while others prefer fuller
descriptions. H you design the database around a two-character number, then
the user should have the option of lengthening the field to accommodate his
or her longer coding system.

Leaving Clues
While adding or extending the length of a field on a card is not particularly
difficult to do, more detailed modifications may require deep investigations
into the scripts of your stacks. Have a heart, and place comments in critical
areas of your saipts to help modifying users find their way through your
handlers.

Documenting your stack internally is especially important when the han­
dlers that react to themajormouseandfieldmessages (mouseUp,mouseDown,
mouseDown, closeField, openField) are in the background. For example, in
the Monthly calendar stack of Focal Point, one background handler responds
to the closeField message, which is initially sent to any of the two-line fields
in a day's box. The handler copies the short text typed into a day's box and
transfers it to the Monthly Reminder fields of the corresponding day's Daily
Appointment and To Do list cards. Rather than have virtually identical
handlers in each of the two-line fields of the card (there are 37 in anticipation

Making Stacks CustomizAble 157

of all possible combinations of date locations in a month), the one background
closeField handler figures out which day of the month is connected to the text
entered into a field. The fields have no handlers at all. To help the user figure
out what's going on, there is a brief comment at the top of the background
closeField handler to identify its purpose within the stack (Figure 9-1). The
same is true for the mouseUp handler, which responds to clicks of the day's
numbers on the calendar to go to the Daily Appointment or To Do cards for
that date. We'll have more to say about positioning handlers in backgrounds
and commenting style later in the book.

Customizing Front Ends
In Chapter 1, we looked briefly at the button customization card that lets Focal
Point users define which applications buttons should be on their cards. Even
for HyperLiterate users, certain customizing chores are tedious at best.
Therefore, I strongly favor including friendly front ends to complex custom­
izing tasks.

Building a friendly front end is not always simple, but the long tenn benefits
far outweigh the work that goes into it. To give you a better idea of what can
be involved in creating a front end to stack customization, we'll look closely

Script of background ld 2293

on closeFleld - update note In DaliiJ and To Do stacks
At CW'SOr to 4

get the short na111e of the target
put -~ • & IIOrd 2 of l t Into whlchFleld
l f field llhlchFleld Is emptiJ then aMI t closaf'leld
put the ua lue of the target l nto transferData

click at tha loc of bkp field whlchField
put transferData Into field •Relltndar•
sand .auseUp to bkgnd but ton ·roroOo·
put ~ferData Into field •Re.tnder•

pop~ Into It
pop card

.net closefield

(Find) (Print) OK (Cancel)

Figure 9-1 lAbel scripts that are in odd places-like this closeField handler attached to a
background-so that script readers and customizers will understand who does what.

158 HYPERCARD DEVELOPER'S GUIDE

at the two customizing front ends built into Focal Point and one built into
Business Class. The simpler of the two Focal Point front ends lets the user build
or extend stacks that have a card for each day of the year. From Business Class
comes a front end to setting the user's local time zone so that all time
conversions work correctly. Then we'll take a closer look at the Focal Point
button customization system, since it represents one of the most complex
customizing routines you're likely to encounter.

Building and Extending Dated Stacks

Among the 18 Focal Point stacks are four that have cards for each day of the
year: Daily Appointment, To Do, Expenses, and Time Sheet. Of these four
stacks, three are homogeneous, while the Expenses stack has four back­
grounds. As noted earlier, these stacks come in three different configurations:
empty, filled to 8 months, and filled to 14 months. In typical use, the Focal Point
user will start putting data into the 8-month stacks, because they're the ones
that come to the screen without any special manipulation of the stack files.
When the user reaches the end of the 8-month section, he has the option of
archiving the existing files and building new ones, or simply extending the
current files. In either case the process of filling out the dated stacks is best
handled automatically by HyperTalk scripts, which are part of the Focal Point
help system.

The Build or Extend Stacks card (Figure 9-2) lets the user specify a starting
and ending date for the build process, as well as a way to signify which stacks
should be so built. For example, if the user does not use the Time Sheet stack,
then it would be a waste of time and disk space to build that stack. To select
the stacks for building, the user clicks on the name of each desired stack so that
a checkmark appears next to its name. Those that are checked will be built.
Clicking the Build or Extend button starts the procedure.

All stack building is conducted by a long handler, plus some special
handlers that help with the multiple backgrounds of the Expenses system.
Depending on the condition of the checked fields atop the stack names in the
Build/Extend card, the handler carries out commands for only the selected
stacks.

After the stacks are built, the handler adds one more finishing touch to
make the system more friendly for the next time the user needs to build or
extend these stacks. The handler calculates the date one day after the ending
date, and then puts that date into the starting date field. Thus, the next time
stacks need building, the start date is already there, and the user need not look
back on the stacks to see how far the previous build went

The Expenses stack needs special treatment. While the other stacks have
one day per card, and the long date plugged into a field on each card, the

D
D
D
D
D
D

Making Stacks Customizable 159

Several stacks must be built or extended ..nth one dated card for each day or veek
tn the ~r. focal Point ..nn creete and date those cards for you. In the blanks
belw, enter the starting and ending dates for these stacks. We sUGQest a span of 6
months or a year to start.

Pleale eaterU. STARTlE c11tr. _1a..~1~..~.1.-.24,../_.8..._7 ___ _

Please enter tbe EHDIIG dldD: --a..~12.,./_.3:.a.1 a...l/8~~.~8~----

Click to check the steck(s) JI)U ...tsh to build or extend.

TimeSheet

Figure 9-2 Building or extending dated stacks in Focal Point is greatly simplfied with this
front end. Type two dates and click on a couple stack names. The Build or Extend button
(bottom) does the rest.

Expenses stack has a weekly summary card, which must be dated with the
Sunday of each week,anddailycards, whichcarrytheirowndates. Moreover,
the stack building handler must establish hard links between each week's
summary card and the daily cards for that week (and vice versa). Doing this
kind of stack creation manually would be a nightmare, even for an experi­
enced HyperCard user. The front end to this stack building was essential.

Customizing User Preferences

The first time you start Business Class, you come to the stack system's
Preferences card (Figure 9-3). In this card, the user must make several settings
that affect other parts of the system. By far the most important is the time zone
in which the user's Macintosh is operating. Business Class must know this to
accurately display the day /night lines in the main menu card showing the
world map, as well as calculate foreign times in the often-used time conver­
sion cards.

Time zones are mysterious subjects to many people, including frequent
globe-trotters, so it was important to design a front end to setting the time zone

160 HYPERCARD DEVELOPER'S GUIDE

BUSINESS CLA PREFERENCES

Welcome!
On this cam we ask you to adjust several sett~ to YOtm local area. These settings

influence time and currency conversions throughout Business cJassn~.

• Click the an-ows to find your local time zone relative to Greenwich Mean Time (GMT).

<:JG.J~
Use these cities as a guide to fmding your zone:

~n8"8U:va~~ouY.~r, .. ffi.~-;:ra~:£!.~~~~·"L·~.~".~n9_~.!.~.~.-"-=··"-·····-··=:J
• Enter the name of your city or metropolitan area: ~rs_··a_n_F_ra";...n_c_1 s_c_o _____ ---JI
• Click the amJWS to fmd your local currency, tJ L-1 U_.S_._D_o_ll_ar ______ ~l 0

and enter today's conversion factor relative
to the U.s. Dollar (available from most newspaper fmancial pages):l 1 __

• Is SUmm.er(Daylight Savings)Time naw in effect in your area? 0 Yes
®No

Figure 9-3 Adjusting user preferences should be made simple, as in the time zone setting
of Business Class. A list of large cities in each time zone helps the user pick the right offset
from GMT.

so that the user didn't have to know anything more about time zones than the
time zone of the nearest large city, anyplace in the world.

Two fields on the card offer help in setting the local time zone. Both fields
change as you click on the left or right arrow buttons on either side of the top
field. Oicking on the right button summons time zones east of Greenwich
Mean Time (GMT); a click on the left button increments through time zones
west of GMT. The top time field shows the actual number of hours difference
there is between any time zone in the world and the world standard time zone,
Greenwich Mean Time. In other words, the time zone in the United Kingdom
is plus zero hours from GMT. Eastern Standard Time in North and South
America is minus five hours, meaning that it is five hours earlier in, say, New
York City than it is in the United Kingdom (Chapter 19 goes into these
calculations in detail).

All this plus and minus stuff can get confusing, however, especially when
dealing with time in Australasia. To simplify matters for non-time-zone
fanatics, there is a second field in the Preferences card that displays sample
major cities as reference points to help out. Therefore, if you know that the city
you're located is in the same time zone as Denver, then you've found the

Making Stacks Customizable 161

correct setting when you see "Denver" in the cities field.

Inside the Preferences Card

For those who want to know how this front end is constructed, all the data that
appears in the two time zone setting fields is contained in a hidden field in the
Preferences card. That field is displayed for you in Figure 9-4. Each line of the
field contains many items: the offset from GMT; the sample cities (each of
which is an item because of the commas separating them); and an index
number representing the number of the line on which the first two items are
located. Item 1 is displayed in the time zone offset field, while all other items,
including the last item-the index number-are shown in the long field. Extra
spaces are placed in the names of the cities to make sure that the third item,
the index number, does not appear within the "window'' of the long field on
the card.

When a user clicks on the right arrow button next to the time zone offset
field, the handler for that button looks to the index number to see which line

BUSINESSCLASS~PREFERENCES

•

+0 .. Ll:.9.Ddoo,.P.,.YI)~.Jl ~ isbon Rabat ~pra
On this ca :-J.._..~.J.!~.2Ul J::"~p.!" ... !t~• Is.

1-- settings .:.~--1-f'.id-A l~n.\J.9J1.ttlD. _ in1h .:.~5 ... ~.Y.~!?·~t•s .. l:19.n!t.Y~!?.J.i::;zi§71.r.~ ~s= .
- .:L......6 tl.i!J.l!JX....Nill&Y!~~ s ~~~.~.oUt~-

Click the ar ::f-:t QjjJ.'tf.! -~o~M .9.~:R.t~·'-•••'!!l9!!?!'!.:o.t:lrot1!lm! I al:mL.§.~ Time (GMr) • ~~.i~.lliP.!.CJ ... £bm.C1~tlJJ~..A.tl~M Uy
i~q~Y. ... l?.t.tr:!.~ Jill .. ~ J~~~"

!-:::----' ... Y..YD.U~U.... n fr<lflO fCO .Jr.21 An9.tJ.u._ ..
~~.Q .• Daw~.9.D--- _ -:tMJ. ~D.9.b.?:l!9.~ .. J~M.9.!\!J.Y...f!p..u!L. '"

I Juneau, V .;b_J.~ r!2m!.t..:..~*·g~"'"'"-··-.... ·"~ I .t~ .. ~~g~gn .. ~~.!.ll~.h.~lj.'-!!?.bY!9.b --··---
~11_, .~ ... r:fJ .., ~!11-J!ro!t'L~~:(u.I!J.trl~.'-.. ~-·-.. -·
~J.Q__fE§TQY.!~~r:u Y.®!Y.....tlt C?.Yr..llt-... - J Enter the r. ~__...;~ !?.t- . ~.2Y. . - "_ ~.,_...r ~i.illl39.rii~.1P •. t.J..... 9.a~9.....§1.o9.~1?.2J:! ---_+ _ § !?..~.9.~.1!l.r..l~~b.tD.CJ!Y. ~i.l.l9.~9!L__ - - _,_ .. 10 Click the a .±.~r.:~ .. 6!.~b.ls!'l~~..\, ~.t..... !k\d ~9N.m)"_ .. __ , .. __ ..

and enter :fi5."~§J.#.t.l11?.tJ~:.li9!Tl}.~y £ . it. !?. Y.ml~9-.... -
~"· .Y"~'~'- !.Cl9.bL-.-.......... --... - I to the U.S .t.~t--~· ,Qgr ... Y Y.P..M.Ii!L~r .. ·a;·:· _,"'"-...... --...... --

.±~__...~~ .. t:1!?.l!?.9.:'!! ... ~i-9.~~.~~.Ji•i .. r..9 1. •••••• _ - ... - ... - __ , __

Is SUmmer .t~ .. -~~ ~.tJ."j.old ~b.t.1f.... ·~Et~rf .. t.ir..9. C.~P..t.tJn "-"·"·--

[g) .±'-~ .. §!9.9.!m9.lme.o...r s . !?.m.t lj.t~r.! bi.~ --..

~" ... "

•

•

•

Figure 9-4 A large hidden field contains all the information that drives the time zone
settings. Items 1 and 2 of a line are put into the small field (between the arrows), while the
city names go into the long field. The second item, an index number of the line, heops keep
the arrows working correctly.

162 HYPERCARD DEVELOPER'S GUIDE

item is currently displayed. Then it retrieves the items in the next Une and
deposits them in the appropriate fields on the card. The left arrow does the
same, except it looks for the items in the line previous to the one currently
displayed.

Internally, Business Class keeps track of the number of hours difference from
GMT (plus or minus). When needed, the program uses that information and
the current setting of the Macintosh's internal clock to calculate the location
of the light and dark areas on the world map and to calculate the current time
at GMT and in the capital dty of the country you're inspecting. All that goes
on behind the scenes, and once you set the Preferences card, you don't have
to come back unless you change time zones or when you shift to or from
daylight savings time in your area.

A similar front end is also provided for setting the local currency of the
Macintosh owner. Another hidden field lists 40 different currencies in
alphabetical order. Clicking on the arrow buttons to either side of the currency
name cycles through all available currencies in the list. The currency name
reappears when the user goes to any currency information card.

Button Customization

So far, the two customization front ends wf!ve looked at were pretty much
self-contained. All data and handlers for the customizing process were on the
same card that the user interacts with. Focal Point's application button
customizing procedure, on the other hand, entails many cards that the user
never sees in the course of customizing the system.

To refresh your recollection of what goes on here, a Focal Point user may
adjust the location of 11 of the 16 applications buttons that line the two sides
of the stack cards (Figure9-5). The first five on the left side are hard-wired into
all stacks, so they may not be changed with the automatic customization
procedure supplied with Focal Point (although they may be modified manu­
ally). To change the location of a button, the user clicks and holds on a button
until the button icon and application name cycle through all possible selec­
tions. Once all button icons are as the user wishes, he clicks on the Install
Buttons button. Focal Point then takes over and installs the buttons in all the
stacks of the system.

There are actually two parts to this customization procedure. The first
involves setting the icons in the desired sequence on the card. The data for the
icon and stack names is contained in a hidden field, the contents of which are
shown in Figure 9-6. There are also hidden fields connected with each of the
11 customizable buttons on this card. Here's how it all works.

Click on aniJ button ...
(except the top five on the
left ed~e) to cycle through
an available Focal Potnt
appltcettons. Set them up
t n the order that makes the
most sense to you and your
bust ness. You may leave
buttons blank.

When the buttons are
arranged as you lt ke, click
on ·1 nstall Buttons" belo'w'.

The i nstallatton takes
several mt nutes.

Making Stacks Customizable 163

Figure 9-5 Focal Point allows you to adjust the location of all icon buttons except the top
left five. Just click and hold on any button, while the icons and stack names cycle through
the list.

Inside the BuHon Customization

When a user clicks on one of the prototype buttons, the handler begins to cycle
through the icons and Focal Point applications names as listed in the large
hidden field. The methodology of using an index number is very similar to the
way the time zone system works in Business Class. In this case, the icon button,
itself, is the trigger button. It works its way down the list when you click on
the button, or works its way up the list when you hold the Shift key and click
on the button.

Each time a new icon and application name appear in one of the button
locations, the index to the line of the large field is inserted into item 1 of the
small hidden field attached to that button. Item 2 of that field contains the
index to the data before you clicked on the button to look for other icons. That
second item, incidentally, is used to recreate your original setup with the
Revert button, in case you change your mind about modifying the buttons.
Clicking on the Install Buttons button really gets things going.

At the heart of the button installation routines is a series of cards in this
setup stack that contain scripts for each of the possible buttons that might go

164 HYPERCARD DEVELOPER'S GUIDE

Figure 9-6 The list is maintained in a hidden field, along with icon numbers, stack names
and index numbers to the lines. Smaller hidden fields next to each icon hold the cu"ent
setting of the stacks (item 2) and the proposed setting made by clicking and cycling through
buttons (item 1).

into each of the stacks of the Focal Point system. The cards look like the one in
Figure 9-7, which contains all possible scripts that can go into stack buttons on
the Projects stack. Cards bear the names of the stack (without the ''FP•"
prefix), and each scrolling field on the card contains the script that belongs to
buttons linked to the other Focal Point applications. For example, in the field
under "Outgoing" is the script that goes into the Outgoing stack's button
within the Projects stack.

The massive handler that runs this installation routine first determines
which stack buttons you want installed. Then it goes to each of the hidden
script cards whose stacks you've selected, picks up the scripts to only those
stacks you want installed, goes to the first stack of your system, sets the icons
and scripts accordingly, and then repeats the procedure for each of the stacks
in your system. Those Focal Point stacks not installed are ignored. And when
a stack has multiple backgrounds, the installation procedure sets the icons
and scripts for the buttons in all the backgrounds.

Finally, when all the button icons and scripts are set, the handler returns to
the installation card and updates the small hidden fields attached to each

Making Stacks Customizable 165

• File Edit Go Tools Objects

IX.D..t.~JaLS.~;.[j D 11
Deadlines Client ~~t

onmoustUp ~ onmouseUp ~ on moustUp ~
Incoming hidt msg hide msg hide m59

get tM seltotion

~
get tht st ltotion

I
get tM selection

I push card push card push card

onmoustUp ~
go to stack "FP•Deadlines• 0 go to last card ~f stack • 0

hide msg Projects Vendors
Notes CJet the selection

~
onmouseUp ~ onmoustUp ~ push card if the name of this bkgnd hidt msg

onmoustUp ~
contains -summary• tMn •· get tht stltotion

~ hide msg go to last card of this

~
push card

~ DocumMts get tM seltotion b~~~- stt loclcScrttn to true

~ No.I. - _ ... I,_

push card Proposals YMdorMeet
on moustUp ~ onmoustUp ~ onmoustUp ~ hide msg hide msg hide msg

Expenses get the seltotion

<>
get tht selection

I
get the selection

I push card push card push card
onmouseUp ~

go to stack "FP•Proposals" go to last card of stack "FP4
hide msg if it is not empty then find 0 Vendor Mtttings• ro

Auto get tht selection ~ Clients Blank
push card 1.0 on mouseUp ~ onmoustUp ~ on mous.Up ~

if the optionKel,l is dovn endmouseUp
hide msg thtn put true into speoial

I I TfrM Sheet get tht selection i<)
tlst put false into sptoial

push card
L • .O. 0 0

Figure 9-7 The button customization script looks up a card like this for precise scripts to
assign to installed buttons on each stack. Each field contains the script to a particular stack
from the stack whose name is listed in the large field at the top.

button. The index number (item 2 of each field) is set to the same as item 1.
While it may take a bit longer to show all the cards as the installation

procedure progresses (i.e., not locking the screen), it is fun to watch and shows
the user that something is really happening. Hit appears that nothing is
happening all this time, the user may believe the computer is frozen and will
tum off the machine. Doing that may permanently damage the current stack
the routine was in.

This button installation facility is without question the most complex part
of Focal Point. Yet it has nothing to do with the day-to-day operation of the
program. Without it, however, the fanfare of customization would have been
subject to criticism, because one of the most difficult personalization aspectS
of the product would have been almost impossible for the non-HyperLiterate
user. The relative complexity of this front end does not surprise me. In fact
it reminds me of the difficulty that Macintosh software, in general, presents
its authors. For a program to honestly claim ease of use, user friendliness, and
all the other advertising catch phrases, much more work must go into the
program-work that doesn't necessarily touch on the basic functionality of
the program. It's the fine touches of user interface and front ends to typically

166 HYPERCARD DEVELOPER'S GUIDE

complex tasks that take time, thought, and energy to produce.
It should be no different in a quality HyperCard stack.

10
Stackware is Software

From the first day of HyperCard's release to the world, the marching

cry of the HyperCard community was its ease of programming. There

were even fully functional prototypes of applications running at the

Boston Macworld Expo where HyperCard greeted the public in August

of 1987. Still, it took another three months for the first commercial

programs in retail distribution (Business Class and Focal Point) to ship.

Other commercial packages written in and around HyperCard took

another several months to ship. In critics' minds, there was a legitimate

question about how easy HyperCard was to program. Having been on

the inside of the stack development process, I learned an important

lesson about creating stack products good enough to release to the

general public. While HyperTalk coding and debugging is simpler than

168 HYPERCARD DEVELOPER'S GUIDE

in other programming environments, all other facets of producing software
apply equally to a stack product. In this chapter, we'll look at the non­
HypetCard issues that affect your stack production.

Software Design
Just because a HyperCard stack can be whipped into a functional prototype
in as little as a few hours (for a simple application), that doesn't mean that a
HypetCard stack can be slapped together one day, packaged the next, and
shipped the third. Before that first prototype, a lot of planning and thought
should go into the design of the product.

One disadvantage that the legions of new HypetCard developers have is
that they have not gone through the process of planning a software product
in the same manner as the ''big boys" have with mainstream commercial
products. The first real life example I ever saw of what a major software
company does to plan a product was watching Aldus develop PageMaker. As
a contributing editor to Macworld, I was able to see an early prototype of
PageMaker before its name had even been determined. After the private
demonstration, the Aldus president, Paul Brainerd, supplied me with a hefty
document that was labeled a "functional specification" for the product.

A Functional Specification

As its name implies, the functional specification described how the program
worked, what the screens looked like, how the user interacted with the
various parts of the program and tools, and other factors. This document
evolved over several months, getting bigger and more specific with each
revision. It served as an example to follow when I started specifying a
standalone software product for myself in 1985--a product that ultimately
became Focal Point.

The product specification I developed for the product gave an overview of
the entire system-like Focal Point, it was many applications linked together­
plus sample screens showing what information went into the system and
descriptions of the actions taken by menu items. An important lesson I
learned was that writing a specification for a product forces you to think
through how the program is to work. It forces you to account for every piece
of information, each menu item, each button on the screen.

When you start thinking about a stack application, often several ideas float
around in your head, and you may have an intuitive hunch that things are

Stackware is Software 169

going to work out the way you hope. But until you can set down on paper
exactly how that program is going to work, the ideas tend to be ephemeral.
They're sort of there, but not really.

Because HyperTalk coding of most applications is relatively simple, more
time and effort should probably go into planning and design than into the
coding. As you start programming, of course, you may run into snags or come
upon other ideas that change the original specification. There's nothing
wrong with that at all. In fact it's rare that the final product will look identical
to the very first functional specification you draw up. Your ideas for the
product must evolve with it.

Prototypical Focal Point

As mentioned earlier, originality is an important element in a stack's design.
You can produce a specification for a program long before you bring in an
artist to make the product pretty. For example, in writing the design
specification for Focal Point I modified one of the stack backgrounds that were
a part of prototypical HyperCard, as shown in Figure 10-1 (you may laugh at
any time). While the overall design is not very exciting, it was enough to give
all people involved with the project (the publisher, the artist, and myself) a
sufficient idea of the product's functionality. Even at that early stage, the

Chcnge M8CW~ d cddress end
phone 1n rolo.

Figure 10-1 A prototype screen of Focal Point served as a tool to flesh out the idea and
explain it to publishers and artists.

170 HYPERCARD DEVELOPER'S GUIDE

direction toward one stack per application was well entrenched. For the sake
of the product specification document, designs for cards were temporarily
lifted from the card designs that Kristee Kreitman had worked up as examples
of HyperCard's possibilities.

With the functional specification well in hand, it was then easier for
everyone to do his part in developing Focal Point further. The publisher was
able to develop marketing ideas; David Smith, the artist, was able to get an
overall picture of the entire product while working on individual pieces, and
I was able to identify spots where better linking and front ends could be added
to improve the product.

Writing a functional specification for a proposed stack product-even if it
is one that is to be used in an in-house corporate environment-should be the
first formal stage of designing a stack. And it takes just as long to specify a
quality stack as it does quality software, because stackware is software.

Provide On-Line Help
Every self-respecting software publisher these days includes some form of
instructions or other help that the user can access while in the program. Since
HyperCard, itself, will probably be used quite often in the future for on-line
help systems in standalone commercial products, there is no excuse for
omitting an on-line help facility for a HyperCard stack product.

The help system should be tailored to the complexity of the stack. In other
words, if the stack is a simple one, then the help might be no more than a single
card that highlights the basic operation of the stack. More complex stacks, of
course, may require several cards or, perhaps, a separate stack that is practi­
cally an application in itself. Remember that users are more likely to start
using your product immediately, without reading any manual that comes
with the product. In fact, there is even the good chance that the user won't
reach for your on-line help if the product is exceptionally intuitive. But not all
users are up to the same level of intuition, so if there is a chance that the user
can get confused, there must be help available. If it's only one click or menu
selection away, there's a good chance the person in search of 11What to do next''
will find your help system long before he reaches for the manual.

Help In Context

This idea of "what to do next" brings up a point about on-line help that not
many stack developers have paid attention to so far. In any stack that has
multiple backgrounds or multiple stacks, the user is probably faced with
different tasks "to do next'' based on the background of the card currently on

Sflu:kware is Soft'ware 171

the screen. It is very disruptive to the user to ask for help about a certain kind
of card only to discover that he must now search the help cards or stack for
clues about "what to do next."

The correct way to handle help in a multibackground or multistack envi­
ronment is to design the help system so it is "context sensitive." This means
that when the user asks for help, the assistance is directly relevant to the
background card style currently on the screen. Let's look at FOCill Point's help
system to see one way to handle context sensitivity.

From any stack within Focal Point, you summon help by choosing Help in
the Go menu. Normally, this menu command brings you to HyperCard Help,
but all the Focal Point stacks intercept the Help message before it reaches
HyperCard.

Focal Point maintains the bulk of its on-line help in a separate stack. Some
setup functions, namely the button customization and dated stack building or
extending, are in yet a different stack me. The Help stack has a title card, a
four-card table of contents, and 97 cards of help, divided into groups accord­
ing to each Focal Point application.

Interestingly, the only time you see the title card is when you open the stack
via the Open Stack choice of the Ftlemenuorwhencasually browsing through
the stack and you happen upon the first card of the stack (Figure 10-2). While
irs an attractive card-note that the art is a subtle replica of the typical Focal
Point card, but with the feeling you're diving underneath th~ facade-irs not
terribly important that the user sees it, because it takes a deliberate call for help
to reach this stack in the first place. Yet if someone opens the stack with the
Open Stack menu item, the title card plainly describes what the stack is all
about.

The Table of Contents (Figure 10-3) lists the Focal Point applications in bold
face and the names of the cards (and the names of the help on the cards) in each
section. These table of content cards are covered with transparent buttons that
contain hard links directly to the help cards bearing the names. Therefore,
when you click on the ''Menus" selection under the Navigating Focal Point
heading, you go directly to the ''Menus" card (Figure 10-4).

Introduction and Stack Overview

Note that the first section of this stack is an introduction to Focal Point. This
section is written as a short tutorial. It presents an overview of the entire
system and then describes in detail the user interface points that all stacks
share, particularly navigation and information entry. This introduction
provides yet a different ''entry point'' for the user to the set of printed and on­
line help supplied with the product.

In the event that a user wishes to print out the help stack, I had to make sure

172 HYPERCARD DEVELOPER'S GUIDE

Figure lD-2 The lead card of the Focal Point Help System.

INTRODUCTION
Whet is Foeti Pol nt?
Hw Foeti Pol nt Is Organized

NAVIGATING FOCAL POINT
The Return Button
Left end Right Arrw Buttons
~nus

CREATING NEW CARDS

FINDING INFORMATION
In the Seme Steele
In Other Foeti Point Steeles

ENTERING INFORMATION

CHECKING OFF COMPLETED ITEMS

THble of Contents

UPDATING RECALCULATIONS

PLUS BUTTONS

POP-UP LISTS

ZOOM BUTTONS

TELEPHONE DIALING

PRINTING

BUI LDI NG/EXTENDI NG STACKS

CUSTOMIZING INSTRUCTIONS

Figure to-3 One of four Table of Contents pages fram the Focal Point help system. The
user clicks on any title or subject to go directly to that card.

Sfllckwareis Software 173

lications

MENUS
Tw HyperCard menu Items Ylll help IJOU navigate. If IJOU ever oet completely lost
Ylthin Focal Potnt or Ylah to end vour Focal Potnt seaaton, choose Home from the
Go menu. This, or tts Command-H keyboard equivalent, takes you to the Home Card.

• File Edit

Vou may reach Help for any stack by chooaincJ Help from the Go menu. Vou may
also type Command-? to reach the Focal Point Help s..,stem. If IJOU need HyperCard
Help, uou may reach tt vta the Focal Point Help system.

Figure 10-4 A subject card in the Focal Point help system.

that all text was in fields, rather than bit-mapped text. Thus, when printing
on a LaserWriter, the fonts would print as high quality laser fonts. Since the
version of HyperCard used to design FoCill Point did not allow mixed text
styles in a field, the effect of bold faced headlines and plain text subheads
(indented) had to be done with two transparent fields for each column (Figure
10-5). Keeping the text in fields also makes maintenance and modification of
the table of contents cards much simpler.

Intercepting Help

Whenever you are in a stack and choose Help from the Go menu, a stack or
background script intercepts the Help message (which HyperCard sends
when this menu item is chosen) and directs you to the first card of the help
stack section for that FoCill Point application. Where appropriate, the Help
menu item brings you even more closely to the desired information. For
example, the Expense stack is linked to three different cards in the Help stack.
If you are viewing theW eeklySummary card of the Expense stack, the Weekly
Summary help card is what you see after choosing Help; the Daily Expense
cards are linked to the corresponding help card; and so on. Wherever possible,
the stack anticipates where the user will need help, and directs the link

174 HYPERCARD DEVELOPER'S GUIDE

D
D
D
D
D
D
D
Figure to-s To effect mixed plain and bold text in the Table of Contents (and elsewhere),
there are two fields per column: one for boldface text, one for plain text.

accordingly.
Once at any help stack card, the user may return directly to the card in Foml

Point from which help was sought (by clicking on the Exit button or the Return
button at the top left comer). Other options include going to the table of
contents to search further for help; an introduction to Foml Point; either of the
two sections of the setup stack (button customization or dated stack building/
extending); or HyperCard Help (provided it's on the user's disk).

At 180K, the Foml Point Help stack is not particularly small in disk space.
While there is a lot of text, the bulk of the space is taken up by artwork that is
interspersed throughout the stack. By illustrating the help cards, the user can
usually bypass the printed manual for quick help. illustrations also make the
Help stack inviting enough to encourage the user to browse through (Figure
10-6). Anytime you can get the user to read any part of your documentation­
printed or on-line-you help reduce the need for product support of simple
problems that are already well covered. That's a goal you should reach for
because stackware is software.

Stackware is Software 175

& INCOMING TELEPHONE LOGS

&IPA The Call Timer

Whenever .,u or focel Po1 nt create a nev Telephone Log card# the can Tt mer
starts ttcktnQ WIIJ 6 althoUQh the time does not appear on the screen.

"c:.:: d
To see the elapsed tt me of a can ,, CaD Timer d ~ aniJti me durt ng the can# cltclc on 00:05:46 the Elapsed button.

If IJOU need to restart the timer for
btntno purposes# cltclc the Restart II CaD Timer II !5'"'-~ button. This sets the timer beck to 00:00:00 00:00:00 and starts countt ng agat n. :Re5blt

't

lntroCactien

Figure lo-6 A help system is more enjoyable when the text is punctuated with graphics
fromthestack.

Include a Good Manual
Because so much of the early stack products to appear in the universe were
distributed via shareware and the public domain, there may be the erroneous
perception that stacks don't need manuals. Wrong! If you rate your stack
product on the same level as software, then the user will insist on a good
manual.

Who Reads It?

Computer hardware and software documentation is a study unto itself. Many
people earn their livelihoods writing documentation and nothing else. De­
spite the personal reward of feeling you've written a good manual, documen­
tation writing is most often a thankless task. I think that's because good
documentation is virtually invisible to the user, while bad documentation
shows up like an ugly weed on a golf course's 18th-hole green. In a product
review by a magazine, a good manual will pass by barely noticed; a bad
manual will be ripped to shreds in sev~e detail. Add to this the fact that
use~pecially Macintosh users-report that they seldom read manuals.

176 HYPERCARD DEVELOPER'S GUIDE

So if the user doesn't read manuals, why does the user insist on a good
manual?

I believe that while the user community generally doesn't read manuals, I
take that to mean they don't read manuals like you read a novel-from cover
to cover. Instead, they insert the disk and fire up the program before removing
the shrink wrap from the manual. But very few programs are so intuitive that
every nuance of the program is self-evident or even described in sufficient
detail within the on-line help. When questions arise or when the user is in a
jam, the first thing to reach for is the manual.

A good manual will have an excellent table of contents and index so that the
user can focus on finding an answer to the problem at hand. If the desired
information is not in the manual, impossible to find, or explained in any
language other than the user's native tongue, then the manual will be tossed
across the room to the verbal abuse of its owner. A bad manual is clearly
visible. It reminds me of the electrical utility. We think nothing of it during
the day for months on end. But when the power flickers for a second, and it
costs us a half-hour's computer work not yet saved to disk, then we hurl
invectives about the reliability of a so-called utility.

Who Should Write It?

The greatest temptation for a stack developer-especially one who comes
from outside the programming priesthood-is to write the manual after
finishing the product. I believe that is bad methodology on several counts.

Fust, it is not good policy for the same person to develop a product and
write the manual for it. A program creator develops an attachment to the
product just as any creative person does: a sculptor for his sculpture; a writer
for his writing; a musician for his music. The creator approaches the work
from an angle that has been molded and defined over a long period of time.
What the creator deems "simple" and "intuitive" may be something quite
different to a new user trying to learn the program. A manual needs the
perspective of a third party-a qualified documentation writer-to present
the work to the user audience.

That's not to say that the creator should have no input on the content of the
manual. Hardly. The documentation writer will likely prefer to see an outline
for the manual from the creator, whether the outline be the formal product
specification or a separate document. The developer must teach the writer
everything he knows about the product. But then he must let the writer
develop a formal method for teaching the user about the product and
providing appropriate reference material.

Stackware is Software 177

When to Write It

Manual writing should begin before the product is finished. Too often-this
has happened so many times in the industry, the world has lost count-the
manual is begun only after the product is nearly finished. Disks are ready to
ship, but manual production is holding up delivery. To get product out the
door, the manual is rushed through with errors or sloppy design. In short, the
manual looks cheap and thus cheapens the product.

By starting the manual process earlier, the documentation writer and
program creator can work more closely together in producing a complete
package. The documentation writer must work through every feature of the
product and will often uncover bugs in the program that regular testing does
not find. Moreover, if the writer gets in the project early enough, he or she may
uncover inconsistencies in the way things work, based on the inconsistent
ways procedures have to be explained in writing Q've seen this happen in the
development of major Macintosh applications programs currently on the
market). The documentation writer, therefore, can be an important member
of the development team. The earlier on board, the better.

It is the obligation of the documentation writer, of course, to submit drafts
of the manual to the creator and others on the team. Theprogramcreatormust
recognize the importance of the manual and should therefore take the time to
review drafts as they come in, and recommend corrections as needed. An
open line of communication between manual writer and creator is essential.

How Should It Look?

Documentation production varies with the channels of stack product distri­
bution. For public domain and shareware products, which typically find their
ways onto the disks of users via electronic bulletin boards, manuals may be
text of MacWrite documents included with the stack product. To reduce
downloading time via telecommunications services such as CompuServe,
Delphi, GEnie, MacNet and others, multiple files may be packed together into
one compressed file using one of two popular packing utility programs, called
Pack-It and Stuff-It. These products, themselves, are available as shareware
programs on the bulletin boards.

When you receive a packed file, either via a bulletin board, on a user group
disk, or directly from a shareware publisher, the icon of the file is a descendant
of the packing program used to pack the files together in the first place. The
icons for Pack-It, Stuff-It, and the packed files they create are shown in Figure
10-7.

To show you what it's like to pack files with Stuff-It, Figure 10-8 shows a
typical grouping of files into one Stuff-It Archive file, as it's called. You first

178 HYPERCARD DEVELOPER'S GUIDE

Stuff-It Poclc-lt

Applicotion Icon ~ 8i
Stufflt 1 .20 Packlt Ill

Pocked F11 e I con m ~
Grtit Stiok.sit Grtit Stack.pit

Figure 10.7 If you download a stack from a bulletin board, it may be "stuffed" or
"packed." These files need to be unstuffed or unpacked with the corresponding compression
program, Stuff-It or Pack-It.

2 fllu, 1541< COIIpi"'UHd, 206K dec:OIIpf'Used.

[Rdd ...) [EB1r<t< t ... I [Dele1e ...) I Info Jl=n-eo_ll_m_e-.1
[Multiple Rdd ...) Herd Dlsk: 881k free .

Figure lo-8 Stuff-It compresses files so that they may be transmitted over telephone lines
more quickly. Here, a stack and Mac Write documentation files are combined into one
Stuff-It archive, called Great Stack. sit.

provide a name for the Archive file, and then select the files from your disk
that you wish packed into the archive. The original files are left intact. Packing
typically reduces the size of files by a third or more. Thus, you can cram more
than a megabyte of standard files on one BOOK diskette.

Sfllckwareis Software 179

MacWrite files are more desirable than standard text files, because the
Mac Write format lets you be more creative with the layout of the pages and
include graphics pasted from the clipboard. Text files are bland, single-font
files that are pretty dull to read when displayed on the screen or printed out.
Moreover, just about every Macintosh word processor can accept and convert
Mac Write files. Therefore, as long as the user has a word processing program,
the manual can be printed out with the same formatting and graphics you
designed in originally.

In-house stack manuals needn't be as finished as a commercial product's
manual. Some care should go into the formatting of pages to make the
information pleasing to read. Distribution as a bound booklet orin a loose-leaf
binder is essential. The more durable the packaging, the less you'll have to
worry about replacing or repairing manuals damaged by excessive use or, at
the other end of the spectrum, by neglect.

Finally, commercial programs need commercial-quality documentation.
Text should be of typeset quality. That means that unless you or your printer
has mastered the photo reduction ofLaserWriter printed output for increased
resolution, you should produce the master pages with traditional typesetting
or output from a high-resolution PostScript-compatible phototypsetting
machine (such as the Linotronic tOO). Imagewriter output is a sign of a quick
job, without much attendant care to the manual.

In a commercial product espedally, the quality of the product on the disk
is often linked to the quality of the manual in the box. It's no coincidence that
expensive software programs have expensive-looking documentation. The
design and layout of the manual carries a lot of weight in the user's sense of
value and in validating the purchase. All this holds very true for stack
products, because stackware is software.

Provide Data Importing
Genuine Macintosh programs that rely on textual information almost always
allow for the importation of existing text data. A text-intensive stack product
should be no exception. And, although HyperTalk gives ample flexibility in
adjusting the data in a text-only file before planting it in various fields on a
card, the possibilities make for potentially difficult times.

If there is a strong likelihood that the user of your stack has been accumu­
lating in his own stack the same kind of data your stack uses, then it's up to
you, the developer, to smooth the way for your customers into your stack.
Recall that it's unfair to assume your users will know how to whip up an
importing script on their own.

180 HYPERCARD DEVELOPER'S GUIDE

In chapter 6 we've already covered the difficulties in trying to design a
universal importing script that will work for all comers. Because you don't
know the field makeup of the original stack, and because your stack may
combine previously distinct fields into one large field, it's rare that you can
include a universal script, short of something like Steve Michel's Port Author­
ity (Heizer Software).

One kind of help you can provide is a well-documented script that the user
can use as a model for a script of his own. In Focal Point, for instance, I was
faced with the possibility of users wishing to import their rolodex data from
one of three sources: 1) the Address stack that comes with HyperCard; 2)
Borland's SideKick address book application; and 3) any Macintosh database
program, like FileMaker, Microsoft File, or one of the high-end relational
databases.

To meet these three requirements, Focal Point provides three import scripts.
The first one is a double-duty script, exporting data from the HyperCard
Address stack to a text file and then importing that text file into the Focal Point
Directory stack (Figure 10-9). The second one is specially tailored for SideKick
files. Because SideKick exports its data in a pre-ordained format, it was easy
for me to design a script that massages the fields just the way the Focal Point

i:p::: -~~· Importing and Exporting Information

·~~ J' If \IOU started collectl ng names. addresses. end phona numbers on the Addreoa stack

DIRECTORY AND DIALER

• that comes \v'ith HyperCard~ you may use the button belo\v' to EXPORT data from the

:D
~~~ old stack and IMPORT that data into focal Point. 

There·s no need to copy and paste the button any\\'here. Simply click on it right 
here. 

D 
D 
Dl=: To import names end phone numbers from external database programs~ consult 

Chapter 00 of the focal Point User·s Guide for some suggestions. 

r-, 
I I 
L .. - . ..1 

lntroctuction 

Figure 10-9 Focal Point offers three ways to import data into the Directory stack. Here, a 
click of one button copies all data from the HyperCard Address stack into the Focal Point. 



Slllckware is Software 181 

Directory stack likes them. 
The third script was a model script for those who have to import from their 

own databases. In addition to comments within the script, there are explana­
tions about the way databases need to be exported and how the script needs 
to be modified based on the set up of the fields in the original database. This 
information is located both in the Import stack and in the manual. 

Just as ali Macintosh word processing programs let you read Mac Write files 
and all databases let you import and export field data, stacks that rely on text 
data should provide for text importing because stackware is software. 

Test, Test, and Test 
HyperTalk is a simple language compared to most, but it is often deceptively 
simple. The more complex the stack, especially with multiple backgrounds or 
multiple stacks in a stack system, the more chance there is for certain scripts 
to collide with each other as you begin building the script. That's why stack 
products need just as much testing as any software product. Nearly everyone 
in the personal computer user community has witnessed standalone software 
products that are announced by their publishers, only to be delayed many 
months due to bugs found during testing. It's hazardous to release a product 
without sufficient testing, only to let customers uncover all kinds of bugs. 
Computer magazines and newspapers are rife with these kinds of stories from 
time to time. 

Start Testing Early 

Software testing should begin the minute you have a working prototype, or 
even one section of the program. Early testing like this is not the same as 
formalized testing later in development. Rather, early testing should be 
conducted to discover if there are major conceptual difficulties or flaws in 
your basic design. Show your design to people who would understand the 
subject area of the stack (under a written non-disclosure agreement, if you 
deem it necessary), and watch very carefully how they interact with the 
product. Listen closely to their questions about what something on the screen 
means or where they feel they're getting lost. These are important clues for 
you. If enough comments come through along the same design elements, then 
you probably have a design problem, and should devote energy to improve 
it. It's easy to let your creative ego dismiss negative comments with sayings 
like, "you don't understand the application." If enough people don't under­
stand the application, then your potential users or customers won't get it 
either. 



182 HYPERCARD DEVELOPER'S GUIDE 
I 

Once the product is functionally complete-there are no new features ~pu 
intend to add-it's time to begin formal testing for bugs. Hopefully, you and 
others have been using the program whlle still in development to uncover the 
more serious bugs, but formal testing will help find even more. I 

I 

i 

Testing Procedures 

Formal testing procedures vary from developer to developer. Some delineate 
two major stages of the testing procedure with the names "alpha" and ''be*." 
These terms, and the version numbers often associated with them (e.g., rei~ 
Beta 7) are very imprecise, usually reflecting more the wishes of the developer 
to be done with the project than the solidity of the code. Other pro~ 
developers avoid the alpha and beta notation entirely by releasing n¢w 
versions bearing dates of their release. I 

Ideal testers are those who would normally use the product on a day-t~y 
basis. They're the ones who will start applying real data in real quantities

1

to 
the stack or who will be browsing through the stack in ways you may have~ot 
anticipated. All of that kind of testing is important. It's also a good idea to ~et 
the product into the hands of a HyperCard fanatic, who will try to trip up yo,ur 
scripts by testing all kinds of key and mouse operations you know to avoid 
when you use it-but operations that untrained users are likely to do. :

1 

Gather written reports from testers on a regular basis (at least weekly). 
Then work to fix the bugs. When you feel you've made substantial progr~ 
in treating bugs (or even tweaking features that testers indicate they'd like), 
provide all testers with a new release. Accompany each release with a wri~n 
set of release notes. These notes should itemize the bugs you have repair~ 
so testers can return to their previous test reports and double-check yopr 
repairs. 

Eventually, you should reach a point at which the testers no longer find n'1w 
bugs. Unfortunately, by this time the testers usually have a methodology ~o 
testing the product, and are not likely to try new torture tests for it. That meal'S 
that there may still be bugs in the program, but the most likely and potentially 
most damaging ones have probably been caught. In traditional software 
publishing houses, the in-house testers are the last ones to sign off onl:' a 
product before releasing it for disk duplication. If you are producing a 
product in that environment, the program will not be truly complete until t: 
testers find no more bugs. 

The model of the traditional software houses is a good one to follow f9r 
testing, because stackware is software. 'i 

I 



Stackware is Software 183 

Be Smart About Marketing 
HyperCard and the HyperTalk language dramatically lower the barrier 
between a person's dreams for a Macintosh application and the implementa­
tion of the dream. But as we've seen in this chapter, the other parts of 
developing software are no different. That includes the marketing end of 
developing a software product. 

Determining the distribution channel is one of the most important deci­
sions you can make as your stack idea comes into focus. The market for stack 
products is still very new, and there are few rules set in stone. But a little 
common sense is also in order. 

The Retail Channel 

The most romantic of the marketing channels for stack products is in retail 
stores and mail order channels. Let's face it, it's exciting to see a product of 
yours on the shelf at the corner software shop. Gaining a foothold in the retail 
channel without the help of an established publisher is very difficult and 
costly. It requires in-depth knowledge by someone on your staff of the pricing 
strategies, promotion requirements and distributor relationships that exist in 
the retail channel. It's not impossible to achieve, but it takes a sincere 
commitment and healthy financial backing to break into that channel on your 
own. The financial rewards are substantially higher if you become the 
publisher and achieve widespread distribution, but so are the risks and initial 
investment. 

Getting help into the retail and mall order channel by way of mainstream 
publishers is another opportunity. Be aware, however, that such publishers 
are looking for high-volume products that appeal to a wide audience. Vertical 
market applications are not likely prospects for the likes of Activision, 
Electronic Arts, and others. Their dealers need to know that the products will 
attract a vast crowd and appeal to a wide audience. Of course, that means that 
if you can produce a broad-based tool that may be customized for individual 
needs, then that would be a likely candidate for submitting to a mainstream 
publisher for consideration. 

In the meantime, I believe the trend for the bulk of HyperCard based 
products will, indeed, be directed more toward vertical market applications. 
That's where HyperCard's strengths lie, in my estimation. That leaves a 
number of other distribution strategies open to you. 

Low Cost Publishing 

One of the best opportunities would be to offer the stack product through a 



184 HYPERCARD DEVELOPER'S GUIDB 
I 

I 

publisher like Heizer Software. Heizer offers its products (HypetCard stac~, 
Microsoft Works and Excel templates) through a direct mall catalog targe~ 
at Macintosh owners. The catalog, called the Stack Exchange, currently ~ts 
many vertical market applications for dozens of indusbies. As custom~ 
place orders for various products, Heizer copies the files to as many disks~ 
needed to fill the order. In other words, your product does not have its o~ 
diskette and label, nor does it have a printed manual. You supply the man~ 
in the form of a HyperCard stack or word processing file. , 

Heizer software generally sells at a lower price than retall packages-a~ 
vertical market package is typical-but the author generally receives am~ 
higher royalty percentage of the selling price than a product sold throug~ a 
mainstream publisher. A supreme advantage to the Heizer approach is that 
other than your development costs, there are no further costs to get yopr 
product to market. Heizer does its own promotion and catalogs based on ~ts 
cut from the sale of products. • 

Self-Publishing 

Another option for a vertical market stack application is to market ~e 
program yourself via mail order or one-on-one selling, setting yourself up as 
a software publisher. One benefit of selling to a vertical market is that itiis 
comparatively easy to find mailing lists and other advertising vehicles that 
target the market. You should get more mileage for your promotional dollats, 
because the v~t majority of the people receiving your message will have~ 
interest in what you offer. · 

Selling software directly to the end user offers the most potential for profit 
per unit sold. Since you sell the product at a price that is representative of ~ts 
value, you don't have to worry about discounts to disbibutors orretallers. qn 
the other hand, you are your own sales force, and you must keep promotil;lg 
the product to find new customers. Promotion takes capital. Many a ne~ 
business has failed by expecting early sales to finance operations. Becoming 
a software publisher means creating a business plan, seeking relationshiPs 
with bankers, and perhaps seeking venture capital to get started. Irs! a 
commitment, to be sure, but perhaps one worth making if you believe in yo~ 
product and have other ideas just waiting to turn into stack products. 

Open Channels 

The last two channels are often spoken of together, but they are really two very 
different channels: shareware and public domain. · 

Shareware is a concept made popular by the late Andrew Fluegelman, w~o 
wrote PC-Talk m, an early telecommunications program for the fledg~g 



Stackware is Software 185 

mM PC. The concept is simple: Try the software for awhile and pay the author 
if you decide to use it. The amount you pay is comparatively small for 
software, ranging from $5 to perhaps $35. It obviously depends on the honor 
system, but for Andrew and several others since then, it has worked. 

It doesn't always work, however. For every successful shareware author­
success being measured by turning a pastime into a software business-there 
are hundreds of unsuccessful ones. There is no magic formula that can make 
a successful program, but the ones that have succeeded have been just plain 
great programs that filled a need when nothing else was out there. The 
authors also made the commitment to support those folks who sent in their 
shareware fees by providing a printed manual, periodic free updates of the 
program, and telephone support. If shareware sounds a lot like the real 
software business, well, it is if you plan to make a go of it. 

For a shareware program to have a real chance at making money, it must 
not only be a great program, but it must be one that people use very frequently. 
It must be one of those programs that the user can't be without. This is partly 
due to the fact that guilt often enters into the shareware formula. When users 
feel that a program is very useful to them, they just might feel guilty enough 
to send in the shareware fee. Some have even dubbed shareware 11guiltware." 

There are also examples of good shareware stacks that didn't bring in the 
bucks for the author, even though the user community adopted it almost as 
a standard. Eric Alderman's Script Report utility (described in chapter 2) 
started out as a shareware product with a $15 fee. Despite the stack's ready 
acceptance and consummate practicality, only a handful of users sent in their 
checks. While that experience may have completely soured some authors, 
Eric now distributes the product via the Heizer Software catalog. 

There is another shareware story you must hear about-a HyperCard 
shareware strategy that was doomed from the outset. Someone had created 
a utility stack that imported SideKick address data into the HyperCard 
Address stack. Distributing it on a major bulletin board, he requested a $5 
shareware fee if the user liked the program. Now, five bucks is not a lot of 
money, to be sure, but a person is probably going to use this stack only once, 
just enough to transfer data from SideKick into HyperCard. By trying the 
program out (which shareware encourages), you're already done with it. You 
have no further use for the program. How guilty will you be about having 
used a program once? Probably not at all. I don't decry the author trying to 
recoup the time he spent on the stack, but I think it was unrealistic of him to 
expect anyone to submit a fee for a one-time use shareware product. The 
concept violates the 11repeated functionality'' rule of shareware. That stack 
should have been distributed strictly as public domain software. 

New stack authors may have suspicions about the public domain method 



186 HYPERCARD DEVELOPER'S GUIDE 

of distribution due toconcemsaboutcopyright. The impression one gets &qm 
the term "public domain" is that there is no copyright protection for tre 
author. That's not true. Provided the author clearly states copyright own,r­
ship in the product, an author maintains copyright on the product. As such, 
no one may resell or redistribute that product or parts of the product O¥ce 
scripts, icons, background art, or XCMD resources) without the authors 
permission. Technically, a public domain stack uploaded to an electro~c 
bulletin board may not be carried to another board or distributed on disk ~y 
user groups unless the author says it's okay on the stack. But a good stack Will 
make its way around the boards and user groups on its own in short ord~. 

! 

Choosing the Channel 

Determining which method of distribution applies best to your program: is 
something you should do early in the stack development process. When iJte 
decision is to pursue distribution through a mainstream publisher or set 
yourself up as a publisher, the marketing planning then becomes as impo~t 
as product planning. It can take many months to put all the marketing piec~ 
in order. Don't forget, too, that if you plan to run ads in any of the mon~y 
Macintosh magazines that their deadlines can run two and three mon~ 
ahead of publication date. You may not be able to afford that lag time after ~e 
product is finished. Somehow, you have to bring the product and marketblg 
together so every element of the package is on the same timetable. \ 

Making these important marketing decisions may be new to you, bht 
they're no different than what traditional software developers go through. 
Don't get caught in a trap by thinking that you can be more casual beca~ 
you're dealing with a HyperCard stack, because stackware is software. 



11 

How to Build a Stack 

Deep within the preceding 10 chapters are many techniques about the 

process of designing and building a HyperCard stack. In this chapter, 

we'll bring those elements together and present some new ideas while 

offering suggestions about how stacks come into being. Much of what 

is described in this chapter is the result of building two commercial 

stacks, many personal stacks, and helping others build their stacks. The 

procedures detailed here applied to the projects I was working on, but 

they probably don't apply to everyone's modus operandi. But if you fret 

over where to begin and how to proceed from there, then use this 

chapter as a guide to get you started. As you work on more stack 

projects, you'll develop your own strategies and timetables that work 

best for you. 



188 HYPERCARD DEVELOPER'S GUIDE 

Different Methods 
!I 

In one way or another, I've participated in the creation of stacks for th~ee 
categories: information publishing, information management and control :of 
external devices. Designing a stack for each of these categories is significan~ly 
different, especially in the planning stages. Therefore, we'll approach ~e 
"how to" aspect of stack design separately for each type of stack. The prim 
difference is in the way you approach the stack structure, as you'll see. Th n 
there are technical factors that distinguish each of the three types of stackS. 

Information Publishing Stacks 

The most typical applications for information publishing stacks are: 

• Training and Education 
• Reference Works 
• Product Demonstrations 
• Catalogs 
• Paper Publication Substitutes 

These are almost entirely browse-only kinds of stacks, in which you provide 
all the information that the application requires. It is up to you to organi2le, 
present and help users navigate through the information. I 

The supreme advantage in designing an information publishing stack lis 
that the author has complete control over every text character and every 
graphics pixel that appears in the stack. You know from the outset what kind 
of reference data, message or story the stack is to convey. The idea for creat;·1

1 

g 
the stack in the first place comes as a result of an existing body of infonnati n 
that you want to make accessible in an inviting and enjoyable way. 

Stack structure must fit the information like a hand-tailored suit fits its 
owner. Just like you don't have a suit made for you and then adjust your boqy 
to it, so would it be a mistake to devise a stack structure and then come up wi~h 
the information to fit that structure. ~1 

Drawing a schematic diagram of the basic structure of your information ~s 
one of the best ways to start picturing an information publishing stack. Tl)e 
diagram should resemble a map to the entire stack. For example, the map to 
the HyperCard Help system, shown in Figure 11-1, is one way to draw su9h 
a diagram. As a reference work, this stack system is best treated as a tree-
structure stack. I 

I 

In your first draft of a structural map, of course, you needn't be so literal 



o---~ 
Browsing How to Use Help 

~1 
l""" ----j 
L..-----•1 ~ 

0 
Painting 

Help 

g-~ 

How to Build a Stack 189 

I~ I= Current location 
Click any location to go to it. 

QDands 

0 
Functions 

LJ 
Opwators 

0 
Pr~rtiu 

L]1 
GlossariJ 

0 
Index ~ 

Figure 11-1 Mapping out the proposed structure of a stack system is an important early 
step. Here's the map to Hypercard's Help stacks. 

Optional Optional 

Optional Optional 

Figure 11-2 The structure map of Inigo Gets Out. 

with the card metaphor in your diagram. For instance, Figure 11-2 demon­
strates how I envision the structure of Inigo Gets Out (this is not necessarily 
the way the author designed the stack). In chapter 5, you'll recall, we saw how 
linear the structure of this story is, with occasional side trips off the main path. 



190 HYPERCARD DEVELOPER'S GUIDE 

Those side trips are represented as loops in the structure diagram. 
Non-linear stack structure can become difficult to sketch out, especiaJiy 

when the links to various sections of a stack go all over the place. For exam~e, 
Figure 11-3 shows the basic structu~e of the Macworld Expo stack system~ a 
relatively non-linear stack that offers users ways around the various stacks 
without having to always return to a main menu. 

As you create your structure diagram, beware of structures that end up 
looking like a single hub followed by a number of dead-end spokes, like tpe 
one shown in Figure 11-4. This indicates a dull stack that always forces tpe 
user to return to an index page or table of contents to progress through t~e 
stack. Such a structure may be significantly enhanced with links among the 
various spokes, as shown in Figure 11-5. The added links provide a sense :of 
non-linearity and speed the user's progress through the information. · 

If you are unsure about whether to create a heterogeneous stack or divi~e 
things up into several stacks, it's best to start out with everything in one staqk. 
You may have the same experience as I did with Business Class, in which tpe 
stack grew larger than anticipated, and made division into separate stacJ<s 
practical. 

With the stack structure in good order, create some mock-ups of cards 
containing real information. Now is the time to experiment with the format-

1 

Help 

Floor 
Plan 
Haps 

Sights 

Food 

About 
Boston 

Info. 

Figure 11-3 The structure map of a non-linear stack system, the Boston Mac World 
program. 

I• 



How to Build a Stack 191 

Figure 11-4 The makings of dull stack are revealed by this map. A single start card is the 
only avenue to several other sections. 

Figure 11-5 By increasing the number of links across stack lines, the new map reveals a 
more inviting stack. 

ting of text and division of long text chunks to see how much information you 
intend to put on each card. The exact "look" of the card is not critical at this 
stage, but the information content should reflect what the final data will be on 
any given card. If you plan to add graphics to the cards, make sure you leave 
adequate room for them. 

Once you have a notion of the stack structure and sample cards, it's time to 
write the functional specification for the product. For an information publish­
ing stack, it is important that you explain how the browser progresses through 
a stack, noting what options are available at every kind of card or background. 
Understanding the flow through the stack is critical. As noted in Chapter 10, 
writing the functional specification will help you find loose ends in your 



192 HYPERCARD DEVELOPER'S GUIDE 

design concepts before you accidentally back yourself into a comer. , 
At this point in development, do not delay in bringing in an artist to h~lp 

with the look for the cards (unless, of course, you are the artist). Acquaint t~e 
artist with the structure, the functionality and representative samples of t~e 
textual information that must go into the stack. A consistent look throughout 
the stack or stack system is important for a product to exude quality design. 
Be sure to give the artist a free hand in recommending fonts, font sizes, l~e 
spacing, text characteristics (bold faced headlines, for instance), and t~e 
interplay between supporting graphics and the text. Formatting of textUal 
information can make or break the usefulness of a stack. H the informati~n 

I 

isn't pleasantly laid out and easy to read, the experience of browsing through 
the stack will not be enjoyable. 

As soon as the formatting of the screens is completed, it's then time for the 
most tedious part of assembling an information publishing stack: entering the 
textual data. H the data is from an existing source, you may be able to automa~e 
its input by way of an importer script. But if the source is from print~d 
material, there's little choice but to do it manually. In some cases, optic~l 
character recognition (OCR) equipment may be able to scan printed material 
and tum it into text, which may then be imported into your stacks, but you 
must have permission to do so from the copyright holder. 

With the card fonnat already defined, it often makes it easier to input fre~h 
data, such as that written for a demonstration, on-line help, or instructionfl 
stack. It is easier for some people to write within the confines of the format 
rather than envisioning it while writing the material in a word processm!g 
system. 

I've input data both ways for different stacks. For Business Class data, in 
which the data came largely from questionnaires received from embassi~s 
and tourist bureaus, it was more convenient entering the data into the 
prefonnatted forms of the cards. At the same time, the data was arriving ~t 
random, so the preformatted cards also helped indicate where the holes in th:e 
information were. On the other hand, I wrote the help cards for Focal Point fu 
a word processor, particularly because the content had to drive the car~ 
layout. Once I had drafted the text (indicating how much was to go on eacp 
card), I handed the text to the artist, who came up with not only the formatting 
scheme, but also the idea of inserting graphics to illustrate the points. With the 
card design back in my machine, I was then able to import the text of the car~ 
via an importing script. 

1 

Be prepared for one surprise. No matter how carefully you anticipate 
oddball chunks of information in an otherwise smooth series of information 
cards,some non-standard data will come along to challenge the design you've 
established. It seems that even if you plan for a worst-case data scenario, when 

! 



How to Build a Stack 193 

you start inputting real data, you encounter something "worse than the 
worst." The most typical example is when one card needs to contain more text 
data than there's room for in the format. Unfortunately, there is no magic 
incantation that makes the problem go away. Occasionally, you can make 
slight modifications to the width or depth of a text field to accommodate the 
weird text. Other times, you'll have to truncate the text data to make it all fit. 
Whatever you do, however, do not compromise consistency to make room for 
one oddball data event. 

All during the data entry time period, you and others should be testing the 
program, making sure that the browsing flow is natural and intuitive. Find 
reviewers who will be candid and unafraid to criticize your work if they think 
some improvement is needed. Watch people work with your product, 
especially early in the development cycle to see where they stumble or seem 
confused. Even if they're polite in their comments, their uneasiness with parts 
of the program should be clear signals to you that changes are needed. 

Information Management Stacks 

Unlike information publishing stacks, information management stacks gen­
erally count on the author creating a framework in which the user will store 
and access his own information. The initial design phases are different, 
because the author does not always know the extent of information to be 
stored in the stack. 

The idea for a stack in this category generally grows out of a frustration in 
trying to access or manage information on a regular basis. In your business, 
for instance, there are perhaps dozens of information tasks that are not being 
covered well by existing software or by a larger computer in the company. 
You intuitively feel that your Macintosh should be able to help you with 
managing the data, so you turn to HyperCard as a possible solution. If the 
need is broad based enough, you may decide to turn your idea into a product 
that you and others can benefit from. 

From my experience developing Focal Point, I found it very valuable to 
work first in perfecting the information content of each card style, then the 
links between the stacks. Only after the functionality was stabilized did I call 
in David Smith to work on the art. I preferred this route because there was a 
great deal of experimentation going on as to what fields to place on each card 
and how extensive the links would be between applications. Testing began 
long before the stacks looked pretty. It was more important to get feedback 
on the functionality, which was under my direct control. 

Since the development of Focal Point, I have also been involved in the design 
of other information management stacks, and have been more conscious of 



194 HYPERCARD DEVELOPER'S GUIDE 

the design methodology at the very early stages. Here's the way I generally 
approach a stack of this type. ' 

The first order of business forme is to establish the stack structure. For mast 
applications of any substance, the need for multiple stacks in a unified st~ck 
system is omnipresent. Flexibility and archivability usually demand tpe 
division of information into separate stacks. Deciding on the division is not 
always easy. In a case like Focal Point, each application deserves its own staFk 
largely because each one is, indeed, an individual application. The To Do LJst 
and Projectdatabaseare not two stacks you'd consider related enough to pl~ce 
in the same stack file. 

In another case, however, the situation called 'or numerous departments;
1

to 
fill out forms that were similar to each other. The content of the forms was 
created partially by a different stack, which, in a sense, created templates for 
the other stacks. Once the departments filled out their forms, the data w~s 
then pulled together into yet a different stack for reporting purposes. Figu!re 

I 
11-6 demonstrates the work flow. 1 

Because of the number of departments, and the fact that a "set" of forms for 
each department consisted of as many as a dozen linked cards (and there 
could be 30 or 40 sets active within a department at any time), I thought it best 
to devote a separate stack to each department. A division of labor like this also 

I 

I 

(A) 

(B) 

(C) 

Admin. 

l.cem :==--, r-~~ 
ii . ~ 

Dept. 2 

1! 
I . , -I Dept. 3 

Final 
Report 

Figure 11-6 A map of an information management stack that starts with one administra~ 
tor, whose stack creates cards in other departments' stacks. Information from the depart- 1

1 

ment stacks is retreived for a final report. · 



How to Build a Stack 195 

reduces the possibility of data loss for the entire company if the forms were in 
one stack that somehow became corrupted. In fact, a damaged stack could be 
restored manually from the data posted elsewhere in the system. The tradeoff, 
however, was that stack-to-stack communications made the entire system 
slower than if everything were in one stack. Still, the safety and archivability 
of dividing the system overrode the speed factor. As HyperCard evolves, it 
can only get faster; but if the company loses all its data in one crash, then it 
doesn't matter how fast the system is. 

After determining the underlying stack structure, I continue by sketching 
on paper what the major screens of each stack will look like. These are not 
necessarily suggestions for the artist, but rather an overview of what fields 
and buttons each card needs, and where information passes along the contin­
uum of use-when data is to be fetched from one stack or posted to another. 
As I sketch and review these cards, I mentally walk through the work flow, 
imagining where I'd like to branch from each card I see, and what should 
happen when I branch. 

From the sketches I start making a prototype for each stack, building in all 
the functionality required of the basic system. Buttons tend to be text buttons 
for identification purposes Qeaving icons for later), and fields are generally 
Geneva font. Sometimes the reality of a stack differs from the dream on paper, 
and adjustments are necessary to the design from the sketches. Also, working 
with the real thing sometimes causes additional ideas to pop up in my head, 
adding new functions or reducing the work of the ultimate user of the stack 
With a working prototype in hand, it's then time to write the formal functional 
specification, using the screens that have been patched together so far. The 
point is that you'll be able to explain the functionality from experience, 
knowing that the pieces do, in fact, work together. 

Once your prototype is working as specified-all fields are active, all links 
are working, all data is being posted or retrieved from other stacks correct! y­
then it's time to bring in the artist to make your cards inviting. As with any 
kind of stack, the written product specification should help guide the artist, 
who may not fully understand the inner workings of the stack. Be as specific 
as possible as to the amount of data various fields will be holding. If various 
buttons on your prototype screens should be physically grouped together for 
ease of use, then make sure the artist knows that. Ask for suggestions as to 
where icon button art would be appropriate. And let the artist recommend 
font specifications, as noted above in the information publishing stacks. 

More so in information management stacks than anywhere, it is vitally 
important that the program be put into the hands of typical users (after the 
artwork treatment) for strenuous testing. While you may think you know 
what kind of information people should be putting into various fields, your 



196 HYPERCARD DEVELOPER'S GUIDE 

users will surprise you with the ways they'll interpret your intentions. You 
may discover that a field is inappropriately labeled or that it isn't huge enough 
to display the data some people use in the real world. You also want to m~ke 
sure that real world users agree with your estimation of needs for links you'1ve 
established throughout the system. Typically called "beta testing," t_lilis 
testing method can prove to be both enlightening and helpful in preventirg 
what users consider obvious errors or omissions to slip out with the prod~ct. 

While the product is in beta testing, it's a good time to put a script utilityj to 
work on your stack system. I recommend Script Report. Print out all the scripts 
from all your stacks and look for inconsistencies or handlers that you made 
obsolete with newer code. Also use this time to annotate the code in your 
scripts. Add comments wherever you believe the user may need help :in 
understanding what you're up to. If your HyperTalk code is open to the 
user-as I hope it is-then it should be dear how to customize it. Jot down tpe 
comments on the script printout, then go back into the stacks and add tpe 
comments to the actual scripts. 'I 

External Device Control Stacks 

II 

I 

The steps involved in assembling a stack that controls external devices ~re 
similar to those for information management stacks, just mentioned. llle 
main difference is that for a control stack, you must precede development 
with a bit of experimentation and research to make sure the control you have 
in mind will actually work. 

First of all, controlling external devices will require the assistance of one pr 
more XCMDs that give you access to the serial or SCSI ports of the Macintosp. 
Serial port controllers are more common so far, and we show you how to mafe 
one in Chapter 29. 1 

Not all serial controller XCMDs work the same. Some let you set up an 
interactive terminal within HyperCard, so that you can communicate wit~ a 
remote computer or device just like you would with a dedicated telecomm¥­
nications program. One window (HypetCard card) displays incoming inf~r­
mation as well as the information you type on your keyboard to send otit. 
Other types, including the one in this book, are used primarily as components 
of a "front end" to an external device. It lets a HyperTalk script examil)e 
incoming data for specific key words, like ''Enter Password: " or store 
incoming data into fields on cards for archiving purposes. H yperTalk can a~o 
send information out to the remote device. 1 

Long before you start designing screens or building functional prototyp~f' 
you will probably create a "dummy" stack and start working somewh~t 
manually with the serial XCMD. If the device you're communicating wi~h 



How to Build a Stack 197 

sends and receives data, you will check out how the incoming data can be 
tested by a HyperTalk script and how the script can respond to various 
messages the device sends. H the device primarily accepts serial commands 
from your stack, you'll need to become familiar with the command language 
of the device so you can work them into H yperTalk scripts. For instance, one 
device I control with a HyperCard stack is a shortwave communications 
receiver that has a serial interface as an option. It accepts about a dozen 
commands that do things such as change the frequency, load frequencies into 
memories,and so on. The command to set the frequency to 9515 kilohertz (one 
of the frequencies for the BBC in London) is 

FA0009515000; 

which means that the command must be constructed out of the frequency field 
and several characters appended before and after the characters in the 
frequency field. To design a stack around this receiver's commands, I had to 
be fluent in the command language (including the series of confusing parame­
ters for each command). 

Only by knowing how you can communicate with the device or service at 
the other end of the serial connector can you begin sketching screens and 
assembling a prototype, just as you would for an information management 
stack, as noted earlier. Testing during development is particularly important 
when the stack is acting as a front end to another computer or communications 
service. Your scripts must anticipate a wide number of possible errors caused 
by the other computer, delays in the network linking your machine with the 
other, and general communications errors between your computer and the 
local telecommunications phone number. Telecommunications front ends 
are supposed to be invisible to the user, which means your stack has to be 
ready for the worst, and handle it gracefully. The only way you'll discover 
where the traps are is to test the front end often, thus adding to the probability 
that communications or other external errors will try to trip up your stack. 

For this kind of stack I proceed through the rest of development as outlined 
for information management stacks, above. 

How to Go Wrong 
The worst way to start developing a stack is to jump in and start designing 
willy-nilly. I've seen stacks that started that way, and irs very evident if you 
start examining the stack from front to back. A haphazard construction 



198 HYPERCARD DEVELOPER'S GUIDE 

usually forces you to navigate through the stack with buttons rather t~an 
keyboard arrows, because a sequential foray through the stack will reveal 
how much of a hodge-podge it is. When that happens, you spend too much 
of your scripting time figuring out how to keep the organization straight, 
while the stack grows in peculiar directions. I 

The more planning you do before diving into the background, field ard 
button making-tempting though it may be-the better off you'll be 1 in 
creating and maintaining your stack in the long run. Have patience, and Pfn 
ahead. 1 



HyperTalk 
for Stack 

Developers 



•_': · .. : 

. ·~ ... 

.· .. 

·-."'-· 

..._~ . 



12 

A Different Approach 
To HyperTalk 

About one-half of The Complete HyperCard Handbook is devoted to the 

HyperTalk language. Because the book is both an introduction and 

ready reference to the various commands, functions, and properties of 

J:iYl'erTalk and HyperCard, most of the HyperTalk discussion~ are 

organized around the pieces of the language. Thus, there are separate 

chapters on action commands, arithmetic commands, functions, and so 

on. To help keep you focused on the meaning of a particular word of the 

HyperTalk language, the discussions had to operate in a kind of 

vacuum. Only with the application examples in the last part of the book 

is there an attempt to bring the pieces of the languages together .In this 

part of the Developer's Guide, we approach the HyperTalk language­

including messages, commands, functions, properties, constants, and 



202 HYPERCARD DEVELOPER'S GUIDE 

control (if-then-else and repeat) structures-from a different direction. ~ a 
HyperCard developer, you may fully understand the inner workings of 
numerous individual commands, but encounter difficulty in drawing to­
gether your knowledge of several related aspects of H yperTalk in a real 
application. Therefore, the subjects in this part of the book come from 
programming questions I've heard since the release of HyperCard and from 
problems I've seen in scripts within stacks from a variety of sources. Eve~ if 
you're comfortable with HyperTalk, a number of the following chapters \fill 
offer some insights and suggestions you may not have heard before. At ~he 
same time, I don't assume that the following chapters will tackle absolut~ly 
every problem you've encountered. These are the predominant ones that live 
heard about or inferred from scripts I've seen. ! 

Throughout these HyperTalk chapters, I will be stressing compactness! of 
scripts-making as few lines as possible do the most work as possible. Dan 
Winkler, the person most responsible for the syntax and inner workings\ of 
HyperTalk, believes a good HyperTalk script should look and sound l~ke 
poetry. Of course, if you set two poets before the same sunset, the poems tll\

1
. at 

each writes will be quite different. Similarly, two HyperTalk programm rs 
pursuing the same functionality will likely code the solution differently. 

1 

In 
few cases is there "the one best way'' to write a HyperTalk handler, so ~t's 
difficult to pursue perfection in that manner. But if you can refine a handler 
so that it works faster in fewer lines, then the second generation is much bet~er 
than the first. It is unfair to you and your stack to slap together a script and 
ignore it thereafter. Go back to it later, study it, and look for ways to make it 
simpler, more elegant, more like poetry. The following chapters should help 
you do that. 

A Working Laboratory 
To fully understand many of the concepts presented in this part of the boqk, 
it is essential that you try out the scripts and simple stacks that will be 
presented to you. It's a hands-on way of learning that cannot be beat. Sim:Af1

ly 
watching static screens on the pages and trying to imagine what happe 
when you click a button won't bring the ideas home. 

Because you'll be writing a lot of handlers and creating a lot of buttons ~n 
the following chapters, I've devised a two-background sample stack that ~11 
be used in all hands-on demonstrations. The stack is not a real application. 
The subjects covered in this part are too diverse to appear in a single 
application. Rather than forcing demonstrations into either an informati~n 
publishing or management stack-or worse yet, trying to contrive a "re~" 



A Different Approach to HyperTalk 203 

application that encompasses both types-we'll make copies of the original 
stack in various chapters to work on numerous HyperTalk programming 
problems and opportunities. 

Before we can get started, however, you'll have to build the original stack. 
The raw material for the stack are in the Stack Ideas stack that comes on the 
HyperCard Ideas disk of HyperCard. Here's how to make the stack: 

1. Open the Stack Ideas stack. There is a button on the original Home Card 
that links directly to this stack. Or you may open it via the Open Stack 
choice in the File menu. 

2. Click on the right-hand pointer until you see card four of the index (Figure 
12-1). 

3. Click on the miniature card labeled "Divided Card." This card is named 
in the stack, so you may also type 

go to card " divided card " 

DL[] .. •• ~~a - . ..:il - -~.,.,..--=-::: :::::::::: Iii. . 
General Layout 1 General Layout 2 • • • • • Hardware 

~ 
Index Lay out Open book 1 

CJrnrnrnoo 
Open book 2 Librar y lndt>x Open book 3 Spiral book Book pag• Spiral pagt 

DDI:IDTIDEI 
Flip book nip book 2 Shipping label News Lt tttr sin 1 Lttttr sizt 2 

Clfclc on a picture to 90 to that card 

Figure 12-1 The fourth card of the Stack Ideas index. 



204 HYPERCARD DEVELOPER'S GUIDE 

in the Message Box. 

This card (Figure 12-2) will be good for demonstrations, because it has ve 
background fields (with which to test various text handling abilitie of 
HyperTalk) and only four standard background buttons. The box at he 
upper right comer holding the fish picture will be a good work area 
experimenting with buttons. 

4. Choose New Stack from the File menu. 

5. Type the name "Developers Guide Master" into the file name field. Be 
sure the check box, "Copy current background," is checked (Figure 12-3). 

6. Click the OK button or press the Return key. 
The new stack is created, and you are brought to that stack. All card­
specific information stored in the prototype card from the Ideas st~ck 
disappears, leaving blank text fields and an empty box at the top right. lfhe 
buttons and their scripts carry over, as does the background script that 

a File Edit Go Tools Objects 

Fish of ponds and 
rtvers 
Rivers and other inland 
waters throughout the world 
support a rich and varied fish 
population, but it is chiefly in 
the Northern Hemisphere that 
freshwater fish are favored as 
a popular source of food. This 
is probably because of the 
much larger areas of 
continental land mass in the 
Northern Hemisphere, which 
result in greater fish 
distribution in inland waters. 

Golden Percb 

Golden Perch 
or callop 
Plectroplites 
ambiguus 

The Golden Perch, 
also lcno"w"n es cellop, 
is indigenous to 
Australien rivers. 

See also: 
Lakes and Rivers 
Fish farming 
Commerial fishing 
Fish of the ocean 

@ Random Hous• 
Enc11clopt>dia . 
Nt>,.. York, 1977 

Figure 12-2 This is the card layout that we'll use for all experiments. 



jc:> Hard Disk I 
CJ Rpplications 
CJ Books 
0 Business Class 
CJ Consulting 
0 Correspondence 

New stock nome: 

A Different Approach to HyperTalk 205 

"" c:> Hard Disk ~ 

E,lec1 

New 

I Oeuelopers Guide Moster I 
Copy current background 

Cancel 

continen~.~========= 
Northern Hemisphere, which 
result in greater fish 
distribution in inland waters. 

The Golden Perch, 
also lcno'w'n as callop, 
is indigenous to 
Australian rivers. 

@ Random Houn 
Enc\lclop• dla . 
N•w York, 1977 

Figure 12-3 Create a new stack, using this background, and call it Developers Guide 
Master. 

was in the original. 

7. Press the Tilde key or choose Back from the Go menu to return to the Ideas 
stack. 

8. Type Command-1 or choose First from the Go menu to return to the first 
card of the Ideas stack. 

9. Locate the miniature card labeled Address Card 3, and click on that mini­
card (Figure 12-4). 

This address card will become the second background in the new stack 
you're creating. The card comes with 10 background buttons, three 
background fields and one hidden card field. 

10. Choose Copy Card from the Edit menu. 

11. Choose Open Stack from the File menu and open the "Developers Guide 
Master" stack you just made. 



206 HYPERCARD DEVELOPER'S GUIDE 

Royce Walthrop 

21 7 Crocker Lane 
Hillsdale, Ohio 44 704 

Figure 12-4 The sample stack will also have a new background-the rolo-style card from 
the Stack Ideas stack. 

12. Choose Paste Card from the Edit menu. 
This pastes the copy of the address card into the stack. Because we rnrnPn 

the entire card, its card-specific data comes along with it, including the 
in fields and the hidden card field. If you want to see that hidden 
type 

show card fie ld 1 

into the message box. When you're finished with the field, type 

hide card field 1 

into the message box. 

13. Remove the text from the two large fields. 
The script that is part of this card's background automatically lnc:..:>r.rc:. 

today's date into the third field. Leaves this script in place for now. 



A Different Approach to HyperTalk 207 

In most of the chapters of this part, you'll be making a copy of this master stack 
and modifying it to demonstrate and experiment with various HyperCard 
concepts and techniques. Let's get started with the subject of the HyperCard 
hierarchy, and determining where to put handlers, how to use target names 
and how I turned literally hundreds of mouse handlers into just one. 



13 
Scripts and the Object 
Hierarchy 

Perhaps the single most perplexing concept facing stack developers 

has to do with where along HyperCard's object hierarchy various 

scripts belong. The thought first comes, I believe, when you design a 

stack and realize that two or more buttons have the same or nearly the 

same scripts behind them. Intuitively, you believe there must be a better 

way, but it may not be easy to discover the method that solves the 

problem. In this chapter, we'll dissect the object hierarchy and play a bit 

with the way messages work their way through the hierarchy. We'll 

also examine how you can detect information about an object in another 

hierarchy level-using the Target function-for tremendous flexibility 

in your script placement. 



210 HYPERCARD DEVELOPER'S GUIDE 

The Hierarchy-Two Perspectives 
It is vital that you fully understand the object hierarchy of HyperCard if rpu 
hope to design efficient stacks. While a full knowledge of the hierarcpy 
doesn't necessarily show through in a stack, a lack of knowledge sticks out JU<e 
a sore thumb. · 

HyperCard's hierarchy consists of seven distinctly different objects, eac~ of 
which has its own place within the hierarchy. The objects are arranged!as 
shown in Figure 13-1. I prefer to show the hierarchy with HyperCard at the 
top and other objects below it. I'll alert you that this perspective is different 
than the way outlined in Apple's HyperCard technical documentation and by 
other authors. In many of those documents, the hierarchy is illustrated with 
HyperCard at the very bottom, and other objects above it. 

It's important enough to describe both perspectives, because they may h~lp 
more people understand the concept. I prefer the organization with Hyp~r­
Card at the top, because I conceive of the objects in the order in whi~ I 
encounter them in working with HyperCard. When I start HyperCatd, 
HyperCard itself is the first object to take charge, then the Home Stack, then 
the current stack, and so on, down to the most nested object, either a field lor 
button. When you click the mouse button atop a screen button, I prefer (to 
envision the mouseUp message taking an active role in search of a matchipg 
handler in objects on its way to HyperCard. The matching handler, then, trafs 
the message before it gets any higher up the hierarchy. 

1 

From the other point of view, messages go in the other direction. Rat~er 
than imagining a message actively in search of a handler, you may think of a 

I HyperCard I 
t 

I Home Stack I 
t 

Stack 
t 

I Background I 
t 

Card 

Button I C Field I 
Figure 13-1 The basic HyperTalk object hierarchy, with HyperCard at the top. 

I 

I 

.I 

I, 



Scripts and the Object Hierarchy 211 

message using "gravity'' to makes its way through the hierarchy. If a 
mouse Up message doesn't find a matching handler in the current button, then 
the message "falls through" to the next level of the hierarchy, the card, and so 
on toward the very bottom, HypetCard. You can still say that a message 
handler traps a message, but here it's before the message reaches the bottom. 
Perhaps, too, this perspective sees HypetCard as the foundation upon which 
other objects rely: backgrounds rely on stacks; cards rely on backgrounds; 
fields and buttons rely on cards. 

Now that you've seen both perspectives, be aware that I prefer the one with 
HypetCard at the top, and will use this perspective throughout the book, as 
I did in the Handbook. Messages in my "system" work their way up the 
hierarchy. 

Making the Chapter's Stack 
Before we go on, it's time to make the stack we'll be using as a working 
laboratory for this chapter's concepts. We'll also add two general purpose 
handlers to your Home stack, which will come in handy not only for this 
chapter, but in your stack development, as well. 

First, make the stack: 

1. Open the Developer's Guide Master stack. 

2. Choose Save a Copy from the File menu. 

3. Type ''Chapter 13 Stack" into the file dialog box. 
This makes the copy, but leaves you in the original master stack. 

4. Open the Chapter 13 Stack using the Open item of the File menu. 

5. To distinguish this stack from the master and others to be created 
throughout this book, choose the text tool from the Paint tools palette. 

6. Choose Background from the Edit menu, or type Command-B. 

7. Type "Chap.13" into the upper right comer of the bordered box on the card 
(Figure 13-2). 

8. While still in the background editing mode, go to the second card in the 
stack, the address card. 



212 HYPERCARD DEVELOPER'S GUIDE 

Chap. 13 

Figure 13-2 Type "Chap. 13" into the background graphics layer of the first backgroun~. 

9. Type uchap.13" into the upper right corner, as shown in Figure 13-3.j 
! 

10. Chooe the Browse tool. 
I, 

This also removes you from background editing mode. 

11. Go to the Home card. 

We're now ready to enter two small Home stack handlers you'll find useful 
throughout your HyperCard days. Choose Stack Info from the Objects menu 
and click on the Script button. Scroll down to the bottom of the script edit~g 
window and type in the following handlers: , 

on lockFields 
repeat with x a 1 to the number of bkgnd fields 

set lockText of bkgnd field x to true 
end repeat 

repeat with x a 1 to the number of card fields 
set lockText of card field x to true 

end repeat 
end lockFields 

on unlockFields 
repeat with x a 1 to the number of bkgnd fields 

set lockText of bkgnd field x to false 
end repeat 

repeat with x = 1 to the number of card fields 
set lockText of card field x to false 

end repeat 
end unlockFields 



Scripts and the Object Hierarchy 213 

Figure 13-3 Type "Chap. 13" into the background graphics layer of the second back­
ground. 

With these two handlers in your Home stack script, you may type the message 
names, I o c k F i e I d 3 and unLock F I e I d s , into the Message Box of any stack 
you're in (you may also include the messages in scripts you write for your own 
stacks). The handlers let you quickly lock and unlock all fields on the card, no 
matter how many or how few fields you have. Developing information 
publishing stacks, in particular, is quickened by these handlers for editing 
errors in cards with locked fields. 

As an alternate, you could combine these two handlers into one, provided 
you pass along a "true" or "false" along with the message. That handler 
would look like this: 

on lockFields setting 
repeat with x = 1 to the number of bkgnd fields 

set lo ckle xt of bkgnd field x to setting 
end repeat 

repeat with x = 1 to the number of card fields 
set lockle x t of card field x to setting 

end repeat 
end lockFie ld s 

The message you would type into the Message Box to lock all fields would be 
I o c k F I e I d s t r u e; to unlock all fields, you'd type I o c k F i e I d s fa I 3 e . 
While the second example is more compact, if you cannot remember that you 
need to type the parameter along with the message name, then it may be better 
to leave the handlers separate, since their names clearly indicate what you're 
trying to accomplish. In a couple of chapters from now, we'll have more to say 
about the concepts surrounding custom messages and handlers, plus the 
passing of parameters, like the true and false, above. 



214 HYPERCARD DEVELOPER'S GUIDE 

The Target and Me 
I 

I, 

Two of the most helpful terms in understanding the fine points of hierar<thy 
and message passing are the function, the target, and a special word, me. Of the 
two words, the Target is more useful in streamlining the way one or tbro 
handlers can be in charge of many objects, while Me is understood best by 'he 
way it differs from the Target. .l 

(We'll be discussing the Target and Me primarily as functions. Wrth 
HyperCard version 1.2, both words may be used as containers referring! to 
their objects. For example, a closeField handler could examine the nfw 
contents of a field and report back in the field if the number entered is ou~ of 
range, by saying p u t II o u t o f r a n g e II i n t o 11 e. The text goes into the fi'ld 
referred to by Me. Target may be used the same way.) i 

As a function, the Target returns a value of some kind. What it return!) is 
the name of the object to which a message is originally sent. There is ~n 
example from the business world to illustrate the concept. 

Let's say a soap manufacturer has a Consumer Affairs department, wh~re 
customer complaints are handled. An angry customer may not know tryat 
such a department exists, but instead goes to the library and finds the narne 
of the company president. The customer writes a letter to the president, wpo 
reads it and passes it along to the Consumer Affairs department to hand~e. 
The people in Consumer Affairs see that the letter was originally addressed 
to the big boss, so the letter gets prompt attention. The president, then, was 
the target of the letter, and the Consumer Affairs department could see w~o 
the target was. H another dissatisfied customer sees the name of a regio:qal 
sales manager in a local newspaper, that second customer may write': a 
complaint letter to the local manager, since it's better to write to a name than 

I 

a company. When that manager passes the complaint to the Consumer Affairs 
department at headquarters, chances are that the folks in the department wjll 
not act quite so promptly because the target of the letter is less important th~n 
the target of the first letter. 

Two important things are going on in the above illustration. First, each 
recipient of a letter is a target-the one to whom a letter was originally 
directed. Second, the only place real action occurs to remedy the complaint 
is in the Consumer Affairs department, which was set up just for that purpos·e. 

Now let's see how this applies to HyperCard. 
The first inclination when designing a stack is to put a mouse Up handler in 

each button on the card. The same goes for closeField handlers when SOllle 
action is to occur as the result of entering text into a field. This is natural, 
because HyperCard tends to be very modular, and you usually design one 
button or field action at a time. But when you recognize that several buttons 



Scripts and the Object Hierarchy 215 

are doing the same or similar kind of action, you can put the handler for that 
action in a higher level, like the background, and reduce the total number of 
handlers in your stack. 

For one handler in the background to perform the work of several buttons, 
the handler must be able to identify which button was clicked. A handler uses 
the Target function to find out which button needs the action. Let's play a bit 
with the target function. 

1. Open the Chapter 13 Stack 

2. Show the Message Box, and reposition it on the screen so you can see the 
four buttons at the lower right corner (Figure 13-4). 

3. Type the message that locks all fields (if you followed the directions 
above, it will be either I o c k F I e I d :~ or I o c k F I e I d :~ t ,.. u e ) • 

4. Hold down the Shift key while choosing Background Info from the 
Objects menu. 
This whisks you right to the script editor for the current background. 

a File Edit Go Tools Objects 

Chap. 13 

---------------·-·--------·-----

Figure 13-4 Position the Message Box so you have access to the four buttons at the lower 
right. 



216 HYPERCARD DEVELOPER'S GUIDE 

5. Remove the openBackground handler, which was carried over from the 
original background found in the Ideas stacks. 1: 

6. Enter the following handler into the background script: 

on •ousetllthln 
put the target 

end mousetllthln 

7. Click OK or press Enter to close the Script Editor. 
I 

The handler you just entered traps the mouse Within message, which Hyp~r­
Card sends whenever the screen cursor is inside the confines of a button 1or 
field. Remember that HyperCard sends the mouseWithin message to tpe 
button or field under the cursor. The recipient of the message is the target, a~d 
the Target function returns the name of the object that last received the 
message of the current handler (mouse Within in this case). 1

• 

Move the cursor around the screen slowly (don't press the mouse butto~), 
and watch the Message Box. The handler puts the name of the target (recipient 
of the mouse Within message) into the Message Box. As you move the mo~e 
over various fields and buttons, the names of those objects appear in t~e 
Message Box. , 

Note that when you move the mouse to an area of the card not covered l;>y 
a field or button HyperCard appears not to send the mouse Within message to 
the card itself. If it did, the name of the card would be the target and would 
be shown in the Message Box. To prove that, let's modify the backgrou~d 
handler just entered. Change it from a mouse Within handler to a mouseDown 
handler, like this: I 

on 11ouseDown 
put the target 

end mouseDown 

Now, carefully click the mouse button in various places on the screen, but do 
not release the mouse button atop any screen button (that will cause tl)e 
mouseUp handlers in those buttons to activate, which we don't want right 
now). You can press the mouse button atop one of the buttons and drag the 
cursor away from the button to avoid biggering the button's mouseUp 
handlers. Note here that the card receives a mouseDown message from 
HyperCard, as evidenced by the card id showing up in the Message Box. 



Scripts and the Object Hierarchy 217 

Short, Medium, and Long Target Names 
As you experiment with the mouseDown background handler, pay special 
attention to the form in which the target names are displayed in the Message 
Box. When a card has no name, as is the case here, the target returns 

card ld 3071 

which identifies the card's id number (it may be different in your stack) within 
this stack. The same goes for the background fields, which are identified as 

bkgnd field ld 2 

or whatever number field you click on. 
The buttons, however, return something slightly different. Because these 

buttons have names attached to them, the target function returns the type of 
object it is and its given name, as in 

bkgnd button •Ho~e· 

when you trigger a mouseDown message on the Home icon button. The same 
would be true for any object, including fields and cards, when they have 
names. If, for instance, the first field at the top left of the card was named 
''Title," the target function would return 

bkgnd field •Title" 

in the identical manner to the named buttons in the current stack. 
Incidentally, when you send a message from the Message Box, it goes 

straight to the current card, instead of any buttons or fields. Therefore, if you 
type 

the target 

into the Message Box, HyperCard sees that the last message (the command in 
the Message Box) was sent to the current card. Thus, the target of the last 
message is, again, the current card. 

The Target function returns a kind of medium strength detail about the 
object that received the current message. In other words, from the Target 
function, you know whether an object is a card, a background field or a card 
button. You can also obtain more information about the place of that object 
within your HyperCard world by asking for the long name of the target. This 



218 HYPERCARD DEVELOPER'S GUIDE 
,I 

version of the target function returns not only the name of the object, but 'he 
name of the stack, complete with its complete hard disk path name. Try this 
yourse~ Type ' [ 

the I ong na11e of the target 

I 

I 

into the Message Box. You'll see a long string of characters identifying tpe 
precise object in terms of everything stored on your disk. If you have yq\rr 
stack deeply nested within several levels of folders, the full name of the target 
may extend beyond the rightedgeoftheMessage Box. Change themouseDo"Wn 
handler in the background to 

on raouseDown 
put the long name of the target 

end 11ouseDown 

and watch your Message Box fill with huge names of objects each time you 
trigger a mouseDown message in them. 

Just as there is a long name of the target, there is also a short name. The shqrt 
name, however, is different from the plain target only when the object ha~ a 
name given to it. For instance, when you type 

the short na11e of the target 

I 

into the Message Box, the short name of an unnamed card (or other object) \is 
strictly its ID number. You cannot shorten that name and expect to know whrt 
kind of object it is. If you have a card, field and button that all have the sa~e 
ID number (this is theoretically possible), you need the identification like 
"card" or "field" to tell them apart. \ 

Retrieving only the short name of the target is useful when the object has a 
name. In that case, the short name returns only the name you've given tfte 
object, and no other data information about it. For instance, the Home butt9n 
would return just the word, Home, and nothing else. To experiment with th~, 
change the mouseDown handler in the background to 

on 11ouseDown 
put the short na11e of the target 

end 11ouseDown 

and press the mouse button atop several objects. Notice that the card an~ 
fields (all unnamed) return the same as the plain target function. All foUr 
buttons, however, return just their given names. 



Scripts and the Object Hierarchy 219 

Target Decisions 

When you name an object, you can extract that nam with the Target function, 
and use it for many different purposes. In other words, a handler higher up 
the hierarchy can test the name of the object (as derived from the Target 
function) and perform actions accordingly. 

To begin our experiments inextractingtargetnames,replace the mouseDown 
background handler with the following.: 

on mouseUp 
if the target is abkgnd field ld ,. 
then put the time Into field 5 
else put empty Into field 5 
pass mouseUp 

end mouseUp 

A simple if-then-else construction here tests for the results of the target 
function. If you click on the locked field whose id is 1 (that's the first field at 
the top left of the card), then the handler places the time into field 5 (Figure 13-
5). H the target is anything but "bkgnd field id 1" then the handler clears the 
field. Note that each of the four buttons on the card has its own mouseUp 
handler, which traps the mouse Up message before it reaches the background. 
Therefore, the background handler responds only when you click on the 
locked fields or on a spot that has a clear shot to the card. 

That means, however, that if you click on the card (outside of any field or 
button), the time is removed from the card, because the target is the card, not 
any field or button. You can let the handler respond only to mouseUp 
messages sent to the locked fields by limiting the actions taken in those cases. 
To ignore mouseUp messages that come from the card, another if-then-else 
construction is needed, as follows: 

on mouseUp 
get the target -- puts the target Into • it • 
If It contains "fieldn then 

If It contains 1 
then put the time Into field 5 
else put empty Into field 5 

end If 
pass mouseUp 

end mouseUp 

When you click on the card, the target returns "card id 3707." H the target 
name doesn't contain the word "field" then nothing happens to field 5. Only 



220 HYPERCARD DEVELOPER'S GUIDE 

Chap. 13 

9:29AM 

Figure 13-5 Clicking in the first field (bkgnd field ID 1) causes the time to appear in 
field 5. 

when the target is, in fact, a field does anything further happen to the card. 
that point, the second if-then-else construction looks to see if the target 
contains a "1," which the target of bkgnd field id 1 does. If so, then the da 
goes into field 5; otherwise, the field is emptied. Please note, however, t 
with this specific example, I knew ahead of time that of all the 
fields of this card, only one of them had a "1" in its 10 number. If another 
the ID numbers had been "12," the test for whether the target contained a 
would proven true both for field ID 1 and field ID 12. 

Naming Objects and Target Names 

How you name an object can have a great impact on the elegance of 
scripts, especially when handlers make decisions based on target "~"""'"';: 
More importantly, you can use the names, themselves, to supply informa 
about what the handler should be doing with the message. 

The best way to see what we mean is to create a series of four 
rectangle buttons in the upper comer workspace of our card. Name each 
them ''Blinker" along with a number, ranging from 1 to 4, as shown in 



Scripts and the Object Hierarchy 221 

13-6. Do not enter any handlers in the buttons' scripts. Now insert three script 
lines into the background handler as shown below: 

on llOUseUp 
get the target -- puts the target Into 'it' 
If it contains " field " then 

If It contains 1 
th e n put the t i•e into field 5 
else put e~apty Into field 5 

else 
If It c ontain s "blinker " 
then flash last •ord of It 

end I f 
pass aouseUp 

end ~aouseUp 

The additional lines to the mouse Up handler look for mouse Up messages that 
come from any object whose target name contains "blinker." Since all 
messages from all fields are trapped earlier in the handler (by the first part of 

• File Edit Go Tools Objects 

( Bllnlcer 1 ) 
Chap. 13 

( Bllnlcer 2 ) 
( Blinlcer 3 ) 
( Bllnlcer 4~ 

~,. , ::: . 

[@] 
.. -, PP .. . _ ... 

9:31AM ~ g-...... 
.·,·m DC .. .. . . 

~ 
·---···----· ··--······-··--- [G 

.m. ~ Q ~ 

Figure 13-6 A handler can derive information from the names of targets, like numbers 
from the Blinker buttons. 



222 HYPERCARD DEVELOPER'S GUIDE 

the if-then-else construction), the only possible objects that could send ~he 
mouseUp message would be the card or a button. Only blinker-named obj~ 
get trapped here, however. I 

The key principle of this demonstration is that part of the object nam~ is 
used as part of the Flash command, which is an external command (XCMp> 
that comes attached to HyperCard. The Flash command takes a number a~ a 
parameter, indicating how many times the entire screen should invert bl~ck 
and white pixels (actually invert and invert again to return it to normal 
viewing). Thus, a flash 1 command causes the entire screen to invert for a brief 
instant-a flash. You can tell the Flash command to invert the screen as oft~ 
as you wish, by specifying a different number as a parameter to the Fl~h 
command. In the handler, however, instead of a fixed number as a parameter, 
the parameter is determined from the name of the target of the blinker butt9n. 
Let's follow this through step-by-step: ! 

1. The name of the target is placed into the local variable, It. 
In the case of the Blinker 3 button, the name of the target ("card button 
'Blinker 3"') is placed into It. 

2. Since It doesn't contain the word "field," the handler passes over the part 
of the if-then-else construction concerned with putting or removing the 
t . I 
~~ ! 

3. Every value of It that does not contain the word "field" is tested whether 
It contains the word "blinker." 

4. If the target was, indeed, a blinker button, then the handler sends the Fla~h 
command up the hierarchy, using the last word of the target name-tHe 
number-as a parameter. I 

i 

5. The Flash XCMD HyperCard traps the command, and executes it, flashing 
the screen the number of times specified by the last word of the target 
button's name. 

Something else is worth noting about this handler. Communication between 
the handler and various objects is kept at a minimum. Scripts tend to run fast~ 
if you can reach out to objects only once and manipulate the data in a variabl¢ 
within the handler. Thus, at the very beginning of the handler, the name of th~ 
target is put into It. After that, all comparisons and derivations are performed 
from the copy of the name in It, rather than going to fetch the target each time. 
The shorter variable name is also much easier to read on script lines than 



Scripts and the Object Hierarchy 223 

longer, multiple-word phrases. 
You can take this idea of applying target names to other purposes one step 

further. For instance, if you change the names of the blinker buttons to flash 
buttons, as shown in Figure 13-7, then you can use the short name of the button 
targets as commands in themselves. The handler to take care of this would be: 

on mouseUp 

gel the short naae of the target 

if it contains "field" then 

i f it contains 1 

then put the time into field 5 

else put eaply into field 5 

else 

if it contains "flosh" 

then do It 

end if 

pass mouseUp 

end mouseUp 

• File Edit Go Tools Objects 

puts the target into 'It' 

--e.g., do "flash J" 

( Flash 1 ) 
Chap. 13 

( Flash 2 ) 
( Flash 3 ) 
c;,Fiash 4 ) 

9:33AM 

Figure 13-7 Object names themselves may be used as commands, when retrieved with the 
short name of the Target function . 



224 HYPERCARD DEVELOPER'S GUIDE 

Because the fields in this card are not named, the short names of those targFts 
still contain the word "field," so the first part of the if-then-else constructipn 
is unchanged. The big difference is in the button part. Since the short name 
of the target of, say, button Flash 1 is "Flash 1," the handler must test for ~e 
presence of the word "flash" to see if it is one of the four flash buttons. Then, 
since the short name of the target is a valid command (including paramet~r), 
the handler sends the contents of It as a command up the hierarchy. The ~h 
XCMD doesn't care where the command came from or how it was ccjn-
structed-it carries out the command anyway. I 

When to Use the Target 

As mentioned earlier, the initial tendency in building a stack application is i

1

to 
put a mouseUp handler in each button on the screen. You can also plan ahe'd 
for cases in which a thoughtful series of button or field names can be institut¢ 
from the outset. For instance in an application I wrote for an article in 
Macworld, there is a card in a stack that has a series of 12 identical-lookit)g 
buttons adjacent to a multiple-lined field (Figure 13-8). A click of each button 
triggers a Go command in the mouse Up handler, using the corresponding li~e 
of a hidden field that contains the card IDs of linked cards. Thus, when ydu 
click on the second button down the column, it looks up the card ID in th\ e 
second line of the hidden field and goes to that card. 

All12 buttons in this column are under the guidance of one mouse-yp 
handler in the background. The buttons are named "Go 1," "Go 2," and so on. 
A bug in HyperCard 1.0.1 caused the original version of this handler to wo~k 
around problems in extracting the number from the target name. The prop~r 
way to set up this handler (it works in version 1.1) is this: ' 

on IIOUSeUp 
get the target 
If it contains .. go" 
then go to I ine (last word of It) of field 11 Links 11 

end 11ouseUp 
I, 

I 

The last word of It is a number corresponding to which button down the 
column was clicked. That number tells the handler which line number of thF 
hidden field, called "Links," contains the ID of the card to which the butto~, 
should lead the user. Since each line of that hidden field contains the text df 
a valid destination (e.g., "card id 32987"), the handler simply needs to say thb 
equivalent of" go to line 2 of field Links" to initiate the jump to that card ( we'~l 



Scripts and the Object Hierarchy 225 

~ a File Edit Go Tools Objects 

Follow Up Today ~ 
EiliJP 011' 

( Today ) ____ I.rJ.d~tY.. M~.rch 1 L1..9.8 .. 8. ___ ....... ( Tomorrow ) 

(i) .. !!f.Q.119.Y.f .. ..\.!.P. ... QD. .. 8.~.~-m?. ... !l.!;..~.Q.Y.n.t._ .......... -----·--·-···-···-··-···· ....... . 
@ •Wri te o .. ~P-.artm~nt!li ri ng_memo ------·-·-·-·- _{._ 
~ .Pl.~.tLVJ!.!;..~JJ..Q!:U1.l.~.!l.L~hutQ.QY.f..O .. .§.~.!:l.~.~-YJ..!L ............. - .................... . ...... . 

(i) ==:====::~~:~-=:=~~-=:=-~:=~=:~====:~=:== ~::::~ 
<® -··--·········-······································-···········-·-···---·--·-···············-·····-····················--······· ········ 
<® --······----·--··········-·-···--·-·-··--·-··-·-··--···--··-··············-·-···-----·-·······-······ ....... . 
® ....................................................................................................................................................................... . 
<® ······················································-···············-·---·······-·--····················-····-···································· ....... . 
® ........................................................................................................................................................................ . 
® ........................................................................................................................................................................ . 
® ........................................................... -...... - ............. -............................................................... .. ..... . 

Figure 13-8 Each of the round button's names is used to direct navigation. One handler, 
using the target function, does the job for all12 buttons. This stack, the Tickler, originally 
appeared in Macworld magazine. 

see more examples of this kind of linking in Chapter 18). 

The Target and Me 

HyperTalk has a shortcut word you can use in a handler to refer to the object 
in which a handler is located: Me. It's not exactly a function, because it doesn' t 
return a value. But you can use it in some ways as you would use the Target 
function when referring to the very same object that contains the handler. 

Let's say you assign a handler in the Flash 1 button that must retrieve the 
hilite property of that button. In such a situation, the following two handlers 
yield the same results: 

on raouseUp 
put the hilit e of but ton " Flash 1 " 

end raouseUp 

on raouseUp 
put the hi I ite of ra e 

end ra ou se Up 



226 HYPERCARD DEVELOPER'S GUIDE 

I 

When you read the scripts aloud, the first sounds very impersonal, like ta~g 
to a friend in the third person: ''How is Theodore Cleaver today?" The lYfe 
version, however, gives you a better feel for where the object is in relation ito 
the handler. Only one object in a handler can have the honor of being called 
Me, so its presence stands out when reading a script. 

When you use Me, you cannot use the word by itself, as you can the Target 
function. Instead, you must refer to specific properties of Me, just as y~u 
would any object. Thus, you can get and set text properties, locations, stylr, 
and any other property of an object by referring to the <property name> of111e. 

It's important to recognize that the Me does not travel beyond the object ~n 
which a handler is located. For instance, if you add the following line to t~e 
background handler of our Chapter 13 stack I 

I 

put the name of me 

any time you click on a Flash button, field, or card, this handler will put in~o 
the Message Box the name of the background in which the handler is located. 
Try it. The target might be a button, field, or card, but in a background 
handler, Me refers to that background. 

This also means that within an object's handler, Me can stand in for t~e 
target, provided you specify the property you're looking for. Here's a table 
to help you understand the correlation between Me and the Target within \a 
handler of the target object: i 

I 

the name of me the target 
the name of the target 

the long nalle of me the long na11e of the target 
the short na11e of lie the short na11e of the target 

Therefore, my recommendation is to use the Target function whenever ~ 
handler needs information about an object other than the one containing the 
handler; use Me when working on an object's properties from a handler 
attached to that object. I 

I 

Choosing the Appropriate Level 
'I 

Now that you've seen some tricks of the trade, it's time to examine where th~ 
best place is in the hierarchy to put various handlers. It's difficult to generalize 



Scripts and the Object Hierarchy 227 

on such matters, because the organization of a stack often has much influence 
on the placement of common handlers. While many handlers have obvious 
locations (e.g., openStack in the stack script), we'll focus here on the more 
variable ones: mouse and field handlers. 

Before getting too deep into handler placement, I should stress that it is 
often very appropriate to mix the location of handlers based on the actions that 
various buttons or fields instigate. In the Chapter 13 Stack we've been 
working with so far, we've said nothing about moving the locations of the 
mouse Up handlers attached to the four icon buttons that came with the stack. 
Each button has its own distinct visual effect and a single action command to 
either go some place or pop a card. Because the specific actions of these 
handlers are so different from each other, shifting them to a background or 
stack level mouse Up handler would be more trouble than its worth. In fact the 
resulting handler would have so many if-then-else constructions in it to direct 
the desired visual effect and action, thatit could easily turn into a maintenance 
nightmare if some additional mouse Up action were added to the background. 
No, it's best to leave these short handlers inside the buttons. 

Conversely, I don't often recommend putting mouseUp handlers at the 
stack script level. The primary reason for this is that even if a stack starts out 
in design as a homogeneous stack, with a single background, the likelihood 
of adding another background, even for a title card or group of index cards, 
is very high. Any other background you add will have a different set of 
buttons that do very different things. The chance that your mouse Up handler 
in the stack script will be valid for the buttons in the new background is small. 
By putting the handlers in the background to begin with, you leave yourself 
more open to an expanding stack without having to reposition your mouse 
handlers. 

Reducing Handlers 
It's very possible that a stack might have complex button handlers that share 
nothing with other button handlers. In such a case, it is most appropriate to 
keep all mouseUp handlers in their respective buttons. There's nothing 
wrong with that if the occasion calls for it. The situations to watch out for are 
when there is a series of similar buttons, as illustrated earlier in the Macworld 
stack, or when you notice that a number of buttons have nearly identical 
handlers. 

To work with the second situation, I suggest placing the handler in the 
background level. About the only time I'd recommend putting a mouse 
handler in a card script is if the card is now and always will be a single card 



228 HYPERCARD DEVELOPER'S GUIDE 

unto itself. Even then, if the card is the only card of a background, then I'd s~ill 
tend to put the handler in the background just in case another card is add¢d 
later to the background, sharing the same buttons. j 

When you recognize that several buttons have similar handlers, you sho1ld 
try to write a background mouse Up handler that uses the target names of tr.e 
similar buttons to differentiate the actions of each button. Use numbers1in 

I 

concert with letters for button names (as in the Go 1, Go 2 series, above), or tie 
the name to the action that makes one button behave differently from anoth~r. 
For instance, if there are the same (or no) visual effects for going to the 
previous and next cards in a stack, consider using the names "Prev' aJild 
''Next" as button names. Then the handler would use the button names (short 
names of the target) to perform the action, as in the following script exceit: 

on mouseUp I 

If the target contains "button" then 
get the short name of the target 
visual effect checkerboard 
go it 

end if 
pass mouseUp 

end mouseUp 

Here, the very name of the button dictates how the handler acts, by going to 
the previous or next card, as the case may be. : 

The Ultimate Handler Reduction 
I 

Now is as good a time as any to demonstrate the ultimate in reducing literally 
hundreds of individual mouseUp handlers to a single background mouseqp 
handler. It occurs in Business Class. The scheme that made this work was \a 
careful system of naming cards and buttons to accommodate a wide variety 
of button choices on a Business Class card. 

While Business Class was in development, I started putting individual 
mouse Up handlers into each button on every card or background. That meant 
that for a map card like the one in Figure 13-9 (which shows the buttor 
locations), there were dozens of mouse Up handlers for the card. Initially, thje 
reasoning was sound, because the buttons on the map not only go to ~ 
particular country's map, but it also has a specific kind of visual effect-a wi~e 
in one of four directions, depending on the relative location of the neighborin~ 



Scripts and the Object Hierarchy 229 

Figure 13-9 One handler controls navigation on every transparent button in 
Business Class. The names of the buttons dictate the destination of a Go command. 

country you click on. A typical handler looked like this: 

on raouseUp 
visual effect wipe down 
go to card "Belg lura " 

end raouseUp 

Remember, too, that the Business Class maps are divided into two geographi­
cal groups. Stack names for these two groups are Business Class 1 and 
Business Class 2. Therefore, when you are viewing a map that has a button 
linked to a map located in the other stack, the handler would look like this: 

on taouseUp 
visual effect wipe up 
go to card "Mo rocco " of stack "Bus ines s Class 2" 

end raouseUp 

Add to that the possibility that the user could click on the miniature regional 



230 HYPERCARD DEVELOPER'S GUIDE 

map in the upper left comer that not only goes to the regional map, but also 
has a completely different visual effect, an Iris Close. 1

1 

Finally, there is the row of buttons at the bottom of each country map. Th~se 
buttons must know which country's map you're viewing, and then go to t~at 
country's information card in the appropriate stack. To simplify this part1 of 
the operation, I had established very early in the creation process a glo~al 
variable that was set to the country's name each time a country map card 
opened. That global variable, called currentCountry, played a big role in ~e 
background button scripts for each of the information buttons in eatly 
versions. A typical script looked like this: I 

on 11ouseUp 
global currentCountry 
go to card currentCountry of stack •BC1•CI imate• 

end 11ouseUp 

! 

I 

! 

Here, the stack name, "BC1•Climate," indicates the climate information carps 
for the countries whose maps are contained in the Business Class 1 portion ~~f 
the world (Europe and the Middle East). As with the map cards, eafh 
information card within an information stack is named with the country 
name. Thus, there is a card named "France" in the Climate, Currency, Time, 
Travel Documents, and every other information stack in the Business Clfs 
stack system. I 

All in all, it meant that there were a lot of buttons, each with its o~ 
mouseUp handler. And I was running out of disk space, even with t~e 
division of the world into two sections. Intuitively, I knew I'd save a ton of 
disk bytes if I could combine all those buttons into far fewer handlers. In each 
of the map stacks, there are approximately 350 background and card buttons. 
Even at a conservative average of 75 handler characters per button, that mear' t 
the scripts were eating up more than 26K per disk. I 

I 

One Handler Fits All 

The supreme solution was to create a single background handler that took 
care of possibilities for any kind of button that could appear on a map car~. 
While the handler isn't particularly complex, it helped to map out a strategy 
for naming the buttons so that the target names would assist in detennini~g 
where the handler sends the user. 1

: 

The scheme was as follows. Each transparent button on a map would qe 
named with the name of the country to which the user would go when clicki~g 
on that button. The button name would also contain the direction of the wipe 
visual effect. H the visual effect part of the name is "close," that means that the 

i 

I 

i 



Scripts and the Object Hierarchy 231 

effect is an iris, as opposed to a wipe. The handler was also to intercept 
mouse Up messages from buttons linked to information cards. The names of 
those buttons (they're background buttons, because they're the same for all 
country map cards) simply contained the name of the information card stack 
to which the user would go. All parts of the handler relied on the name of 
current country, which, as before, is automatically put into the global variable, 
currentCountry, when each map card opens. 

Therefore, the handler must distinguish among three types of buttons: 
those with information stack names (all of which contain a bullet in their 
name), those with country names and wipe directions, and those with 
regional map names and iris close visual effects. The handler must also be 
prepared to switch stacks from Business Class 1 to Business Class 2, and vice 
versa, if the country button clicked on points to a country in the other 
geographic collection. In those cases, yet another character is added to the 
button name: the number 1 or 2, whichever is the other stack collection. 

To demonstrate what some of these button names look like, consider the 
map of Spain card in Figure 13-10, which shows what the card looks like with 
the button tool selected. Note that Spain is in the map stack Business Class 1. 

Figure 13-10 Even adding the buttons to information cards didn 't affect the single 
handler that controls navigation from every button (except Home and Help) in Business 
Class's map and information cards. 



232 HYPERCARD DEVELOPER'S GUIDE 

Both of the rectangular buttons atop Portugal to the left of Spain have t;he 
button name 

Port uga I r i ghl 

while the three buttons atop the comer of France are named 

France doam 

The buttons covering the northern tip of Africa point to cards in the map sta~k 
Business Oass 2 The name of the long button at the lower right is named 

Algeria up 2 
i 

indicating that the wipe will be up, and that the handler must switch to the 
other map stack before going to the Algeria card. 1

1 

It is difficult to see, but there is a transparent button on top of the minia~e 
map of Europe in the upper left comer. When a user clicks on this map, lte 
should zoom out to the Europe regional map. That button's name is 

Europe close 

And along the bottom row, information card buttons have informative namT' , 
like 

BC1•Currency 

for the button at the left end of the row. 
Now to the handler that knows what to do with all these button nam~s. 

Here's what the core of it looks like: 

on mouseUp 
global currentCountry 
If •button• Is not In the target then pass mouseUp 

gel the short name of the target 

If it contains ••• then 
set cursor to i 
push card 
ulsual effect wipe up 
go card currenlCounlry of slack It 

else 



Scripts and the Object Hierarchy 233 

if last mord of it Is •2• then 
put • of stack• && quote & •auslness Class 2• & quote ~ 

Into switch 
delete last mord of It 

else put empty into switch 

if last mord of It Is •close• then put •tr-is close• Into type 
e I s e put • u I p e • && ( I as t m or d o f I t ) I n t o t y p e 
ulsual effect type 

get •card• && quote & word 1 ~ 

to (number of mords of It - 1) of it & quote 
put smitch after It 
go it 

end if 
end mouseUp 

After declaring the global variable, currentCountry, the handler tests to make 
sure that it is handling button mouse Up messages only. All others are passed 
up the hierarchy. Next, the short name of the target-just the name you assign 
to the button-is put into to It. 

The first test of the major if-then-else construction is whether the button 
name contains a bullet. If so, that means that the button is linked to an 
information card. That button name contains the name of the stack, and the 
visual effect to all information cards is a wipe up. All that's left is to go to the 
card bearing the name of the current country (from the global variable) in the 
stack. 

All other buttons go to map cards either in the same stack or in the 
companion map stack. Thus, the first test for the rest of the buttons is whether 
the last word of the name contains a "2," which indicates that the map is in 
Business Class 2 (this handler in the Business Class 2 stack looks instead for 
a "1," which points to the Business Class 1 stack). If the "2" is part of the name, 
then the handler assembles the last part of the eventual Go command, which 
reads, 

of stack •auslness Class 2• 

and places it into a local variable, called switch. Because the handler is 
finished with the "2," it deletes that last word of It, because the rest of the 
handler expects only two pieces of information: the visual effect and the name 
of the country. 

The next few lines of the handler deal with the visual effect, which is the last 
word oflt. If the effect is "close" then it means that the effect is an Iris Close. 



234 HYPERCARD DEVELOPER'S GUIDE 

Otherwise, the effect is added to the word "wipe" and placed into a lof.al 
variable called type. This variable contains the visual effect, whether it be an 
his Close or Wipe with a modifier. 

1 

As we draw near the end of the handler, a comparatively long script line 
assembles the name of the card that the Go command will need. That name 
must include the word "card" and the name of the card. Some countrl.¢s, 
button names, and country card names contain more than one word, so ~he 
name assembly includes word 1 through as many words as there are in It, l~ss 
the one at the end containing the visual effect direction. For instance, i~ It 
contains "New Zealand left," then the card name the handler must prepar~ is 

card •Hew Zealand• 

with quotation marks and all. Note that by using the Get command, tre 
handler reuses It by pulling the desired text from it and adding some fr~h 
material to come up with the desired card name. ! 

The switch variable, you'll recall, is either empty if there are no numbers 
after the button name, or contains the name of the other map stack. Thus, 
switch is added to the end of It to round out the destination. From the Sp~in 
map, for instance, if you clicked on the Morocco button, at this point of tr· e 
handler It would contain 

I 

'! 

card •norocco• of stack •Business Class 2• 

It's now a simple matter to go to that card. The It variable contains the full 
"address" of the destination, even if it's in a different stack. 

1 

By replacing all those separate 350 handlers per map stack with one an­
purpose mouseUp handler, Business Class was able to ship comfortably on tWo 
BOOK diskettes as planned. Had the extra space not been found, the sta~k 
system would have been missing a couple of countries. 

CloseField Handlers I 

Where you place closeField handlers is very dependent on your applicati~n. 
If you have any closeField handlers at all, you must evaluate how the ones yqu 
wish to control differ from the ones you don't care about. For instance, in t);te 
address card background of Chapter 13 Stack, a background level closeFieJd 
handler puts today' s date into the third field. Of the three fields on the catd, 
only two are open for text editing. Appropriately enough, a change to eith~r 
field should be reflected in an updated field 3. I 

There will be times, however, when a card has many fields on it, but onJy 



Scripts and the Object Hierarchy 235 

one or two fields' closing is of any consequence. In those cases, it is still not 
clear at which level the handlers belong. If the handlers are first placed in 
individual fields and they are significantly different, then they should stay in 
their fields. But if the actions of a few closeField handlers are the same or 
nearly so, then consider placing a closeField handler in the background. If 
closing every field causes the handler to execute-when you only want a 
couple fields to trigger the handler-you need a way to filter out the closeField 
messages. You should also do it quickly so that the normal tabbing progres­
sion isn't slowed by needless handler execution. To do this, name the action 
fields with at least one common element that only those field names share. 
Then, early in the background closeField handler test for that element in the 
target name. If it's not there, then pass the closeField message immediately, 
as in the following: 

on closeField 
If .. 111agic" Is not In the target then pass closeField 

[do your stuff for the "111aglc" na111ed fields] 

end closeField 

For one thing, you know for sure that closeField messages are sent only to 
fields, so your handler needn't test for whether the target contains "field," as 
you do for mouse messages. 

As a living example of putting a closeField handler in the background that 
affects only certain fields, let's tum to the Daily Appointment stack of Focal 
Point (Figure 13-11). For each hour of the day, the card offers a two-line field 
to note appointments. When you need to write down some additional data 
about an appointment, you may click on the button to the left of the two-line 
field. This shows a large detail field. There is one large detail field for each 
hour of the day. 

The design of the stack is such that when you hide the detail field, the stack 
checks to see if the content of the field has changed. If so, and if the field went 
from empty to not empty, then another handler draws a small box around the 
plus mark. Thus, the next time you come to the card, you get a visual clue that 
there is additional data one level below. While you can hide the field by 
clicking on the button again, I also allow the user to close the field by pressing 
the Enter key, which sends a closeField message to that field. None of those 
detail fields have closeField handlers in them. Instead, the message works its 
way up the hierarchy to the background closeField handler, which is: 



236 HYPERCARD DEVELOPER'S GUIDE 

+ 

Figure 13-11 By 111lming the hidden fields and the hourly buttons identically, it is a 
simple task to have a closeField message sent to the field trigger a mouse Up message in 
button to hide the field . 

on closeField 
If "2oom" is not In th e ta r get then e x i t closeF i eld 
send aouseUp t o bkgnd bu t ton (t h e shor t na ~ e of the target ) 

end close Field 

What happens here is that the closure of one of those "Zoom" fields 
the equivalent of clicking on the button for that hour, which, not '-"•··--··"'"~' 
tally, has the same name as the Zoom field. Thus, the short name of the 
(the target) becomes the name of the background button to which a 
message gets sent. That mouse Up handler (which is also in the~~·~~'~"~ 
draws or erases the little square, depending on the contents of the Zoom 

Lateral Hierarchy 
In this section we cover an advanced topic, but one that is relevant to 
subject of object hierarchy and the way in which messages are passed 
the execution of a handler. There are two scenarios that we'll in 



Scripts and the Object Hierarchy 237 

executing a handler that takes you to a different background; and one that 
takes you to a different stack. What we'll be looking at in particular is what 
happens when a mouse Up handler that takes you to one of these places then 
sends a message. Because there may be two possible backgrounds or stacks, 
how does the message flow up the hierarchy? 

For example, let's say that a stack consists of two quite different back­
grounds. In each background, however, is a calculation handler that performs 
addition on various fields. The calculations are very different, so the decision 
is to keep the handlers in the backgrounds, rather than build them both into 
a single stack script handler. Now, let's say a button in Background A picks 
up a number in a field of the current Background A card, goes to a correspond­
ing card in Background B, and then uses that number in a calculation together 
with data in the card in Background B. The button's handler would be 

on mouseUp 

get field •Balance• -- In a card of bkgnd A 

go to card •Final Invoice• -- in bkgnd B 

put It Into field •Balance ForUJard• 

calculate 

end mouseUp 

where "calculate" is the name of a handler in the background of the card ''Final 
Invoice." If there is also a different calculate handler in the background of the 
original card (from which the Balance field was taken), which calculate 
handler prevails, considering that it is called by a button in the first card's 
background? 

When a handler goes to another background or another stack and then 
sends a message of its own-whether it be a HyperCard command or a custom 
message-the traditional hierarchical order is slightly different than when all 
action takes place on a single card. The precise order varies, too, depending 
on whether the action is in a different stack or just in a different background. 
When the scene is in a different background, there are then two possible 
hierarchy orders. First, however, we'll look at what happens when changing 
stacks within a handler. 

Stack-to-Stack Hierarchy 

What we're about to describe is not simple, primarily because all the hierarchy 
rules you've learned so far get jumbled a bit the instant a handler jumps to 
another stack. For purposes of illustration, we'll use the calculation handler 
idea mentioned earlier. We'll assume that the mouseUp handler that gets 
things rolling also contains a calculate message. Here's the handler: 



238 HYPERCARD DEVELOPER'S GUIDE 

on mouseUp 
get field "Balance" in stack "Details" 
go to card "Invoice Calculator• of stack "Invoices• 
put It Into field "Balance Forward" 
calculate 

end mouseUp 

The button containing this handler is in the first stack, "Details." It picks l-IP 
the value of a field (''Balance"), goes to a specific card in a second stack, inseF 
the value into a field in that other stack's card, and finally issues the Calcu~te 
message. I! 

If there were no calculate handler anywhere in the hierarchy of either sta~k, 
the message would follow the hierarchical path illustrated in Figure 13-12\in 
search of the handler. Note that the message first exhausts all possibilities\in 
the stack that contains the mouseUp handler, even though the handler ~as 
already brought you to the second stack. If nothing is found up through tpe 
stack script of the first stack, then the search starts at the card script level of tpe 
second stack. From there it works its way up the traditional hierarchy in tre 
second stack, continuing to the Home stack as a last resort. 

The importance of knowing this special hierarchy comes when you $e 
identically named handlers in different stacks that do not perform identiqal 

HyperCard 
t 

I Home Stack I 
T 

Stack A Stack B 

t I Background I t I Background I 
t t 

I Card I Card 

/ 
I f 
~ 

I I But to~ II :Field I Button Field 

Figure 13-12 The hierarchy is extended when your script takes you to another stack and 
sends you a message of its own. It first exhausts all possibilities in its own stack, then in 
the new stack before heading to the Home stack. 



Scripts and the Object Hierarchy 239 

operations. In the calculate message example, above, if you had a calculate 
handler in the background or stack script of the first stack, that's the handler 
that would be executed during the mouseUp handler, even though you may 
have expected the calculate handler in the second stack to be the operation. 
Duplicate handler naming may be intentional or accidental. Either way, you 
should understand that hierarchies behave a bit differently when switching 
stacks. 

Background-to-Background Hierarchy 

H a handler goes to a card in a different background in the same stack as the 
original handler, the hierarchy acts unexpectedly. If you have handlers of the 
same name in both backgrounds, you'll be headed for trouble. Here's what 
happens. 

Using our earlier example of going to a card in a second background of the 
same stack, let's say that you have calculate handlers in both background 
scripts. When you run the mouse Up handler that sends the calculate message, 
the hierarchy runs like the one shown in Figure 13-13. In other words, if there 
is a calculate handler in any object belonging to the first background (button, 
field, card, or background script), or if the handler is in the stack script, the 
message never gets a chance to look for a match in the second background's 
scripts. 

When no calculate handler is in the first background's objects or the stack 
script, then the message goes to the card and background scripts of the second 
background in search of a match. This is illustrated in Figure 13-14. 

For the most part, you needn't worry much about these anomalies to the 
traditional object hierarchy of HyperCard, but you certainly should be aware 
of them in case you get some strange results. If you ever find the error message 
that the handler cannot find a certain field, click on the Script button to see 
exactly which object's script is causing the difficulty. You may discover that 
the handler is in one background or stack when you thought the handler in 
another should be at work 

Bypassing the Hierarchy 
In addition to sending a HyperCard message along the various hierarchical 
paths-traditional and "lateral" -you can also be very specific if you want a 
message to go to a particular object that may be out of the ordinary order. For 
a demonstration, we can take a chapter out of Focal Point. 

In the Projects stack, for example, a doMenu handler intercepts the New 
Card menu option, because generating a new card also entails generating a 



240 HYPERCARD DEVELOPER'S GUIDE 

I Curd I 

HyperCard 
t 

I Home Stuck I 
t 
Stuck 

t 
&-----J··---

B11ck gr-<>und 

I C~d I 
Buttof ~~ ~J~~l 

I 

Figure 13-13 When a handler goes to a card in another background and sends a messag~, 
it first looks all the way to the stack script for a match. 

l Curd I 
Buttof ~~=Field 

HyperCard I 
t 

Curd 

I Buttof )~I 
Figure 13-14 If there is no matching handler in the stack script, then it looks in 
the card and background scripts of the second background before continuing up the 
hierarchy. 



Scripts and the Object Hierarchy 241 

number of linked cards. Therefore, whenever the user chooses New Card 
from the Edit menu (or types Command-N), a handler in the stack follows an 
involved sequence that generates new cards from each of the six backgrounds 
and maintains a system of hard links among the various cards (described in 
Chapter 18). 

Within that handler, I must often generate a new card. If the handler simply 
sent the message, 

that would be the same as choosing New Card from the Edit menu, which 
would start the handler again. Eventually the situation would get so recursive 
as to tie up the stack in a knot. To create the new cards, the handler must 
bypass the regular hierarchy and send the message directly to HyperCard. By 
sending the message to HyperCard, there is no way it will be intercepted by 
any other object along the way. Thus, the message becomes 

send udoMenu Hew Cardu to HyperCard 

whenever the handler must create a new card in its magical workings. 
"HyperCard" is a valid object name. If you send a message to any other 

kind of object, like a stack or background, be sure you use a valid name for the 
object, such as its ID number or its given name. 

The discussions in this chapter should give you plenty to think about. How 
you treat the HyperCard hierarchy has much to do with the structure of your 
stacks and how handlers should be placed throughout. From here we can 
explore various HyperCard system messages to discover how the stack 
author can maintain control over such things as navigation through a hetero­
geneous stack, without the browser being aware of how much you're saving 
him from total confusion. 



. ~. 
. •· .. _;-;._. 

_·.,· 

?.-·. 

·:· ..... 

) _· ~ 

:.-. ; \ ~; ' . -~ . ; .. 

'·::':I 

\ .-- .-

.. ·; 
: •• #~ ; • 

.· ~ : .. _:-· 

~- .· . 

.-: .. ' : .... 
,L,' •• :",•:; 

,"t;.., 

' -.~. 

' ...... - . 

!·· 

;_.,· ... 

'i:-:. 

·- .. 

: ...... _. : ~ . . ' . 

. - ., 
~ : 

~ -... ' ,.. 

.... ·­
·.- .. 

.. -. ::·.·· -... l 

. ; ~ 

.·i _ ... : . ...:;_: .·· ·_. "-.· 
. <· 

... : ~ . 



14 
More About System 
Messages 

System messages, you'll recall, are messages that HyperCard sends to 

various objects, usually as the result of some action. For instance, when 

you click the mouse button at an average down-and-up pace, Hyper­

Card sends three messages to the screen button: mouse Down, mouseS­

tillDown, and mouseUp. HyperCard has a vocabulary of 39 messages 

it sends at various times. 

Who Gets Which Message 

HyperCard sends messages to only three types of objects: buttons, 

fields, or cards. Precisely to which object the message goes depends 

largely on action the user takes. For example, the mouse Up message 



244 HYPERCARD DEVELOPER'S GUIDE 

i 

goes to a button when you click the mouse with the cursor atop a scr~en 
button. But if you click the mouse button with the cursor atop a locked text 
field, the mouseUp message goes to that field. And if you click the mo:USe 
button when the cursor "sees" the card-with no intervening field or bu,on 
layers-then the mouseUp message goes to the card. 1 

Table 14-1lists a1139 HyperCard system messages and shows which objects 
may be the recipient of these messages. What may seem confusing at fir~t is 
that several messages that relate to backgrounds and stacks are sent initially 
to the card level of the hierarchy. The card level is merely an "entry point" ifor 
HyperCard messages along the hierarchy. With the entry point at the card 
level, you may experiment with sending system messages from the Message 
Box, because anything you type into the Message Box goes to the current ctrd 
first. 

Table 14-1. 

To Button: newButton, deleteButton, mouseDown, 
mouseStillDown, mouseUp, mouseEnter, mouseWithin, 
mouse Leave 

To Field: newField, deleteField 
openField, closeField 
mouseDown, mouseStillDown, mouseUp 
mouseEnter, mouseWithin, mouseLeave 
retumlnField, enterlnField 

To Card: newCard, deleteCard 
openCard, closeCard 
newBackground, deleteBackground 
openBackground, closeBackground 
newStack, deleteStack 
openStack, closeStack 
mouseDown, mouseStillDown, mouseUp 
returnKey, enterKey, tabKey, arrowKey 
suspend, resume, startup, quit 
help, idle, doMenu 

As an example, let's say that you are at work on a handler that puts todayts 
date into the first card of a stack when the stack opens. You need to trap f?r 
the openStack system message, which HyperCard sends immediately aft~r 
opening the stack. The best place for an openStack handler (or any stack­
related handler) is in the stack script. 



More About System Messages 245 

While you're building an openStack handler, you certainly want to test it to 
make sure everything is working as planned. The hard way to test it would 
be to go to another stack and then reopen the stack you were working on. The 
fast way would be to send an openStack message manually from the key­
board. If you type 

openStack 

into the Message Box, that message first goes to the current card. From there 
it works its way up the hierarchy, until it finds the openStack handler in the 
stack script. You can use this technique to test any handler in stack, back­
ground, or card scripts. 

While most other aspects of system messages are covered well in the 
Handbook, I've developed a number of strategies and techniques for using 
system messages in stacks. I've also seen cases in which system messages 
have been used improperly. In the following sections, we'll look at the finer 
points of system messages. 

Mouse Messages 
Perhaps the biggest misconception about mouseDown, mouseStillDown, and 
mouseUp messages is that they belong only in buttons. Far from it. Those 
three mouse messages may also be sent to fields and cards. Let's see how. 

Text fields are often a puzzlement for new HyperCard authors, because the 
behavior of the cursor and HyperTalk is different for fields than for other 
objects. For instance, if you lock the field (check the locked text button in the 
Field Info dialog box), the cursor remains the Browse tool when drawn across 
the field. As long as you can see that little browsing hand, the field will 
respond to mouse clicks just as buttons do. Therefore, you may turn an entire 
text field into the equivalent of a button by locking the field. You may then put 
mouseUp or similar handlers into the field script, just as you would into a 
button script. 

When a field is not locked, however, the cursor turns into an 1-beam cursor, 
identical to the kind you find in word processing programs. A click of the 
mouse button plants the flashing text insertion pointer into the field, showing 
you where the next character you type will appear. That click, however, did 
not send a mouse message to that field. Yet the field is not inert when 
unlocked, for the act of planting the text insertion pointer into the field sent an 
openField message to that field. In a sense, you are opening the field for action. 
But any mouseDown, mouseStillDown, or mouse Up handlers you place in an 
unlocked field script will never be found. 



246 HYPERCARD DEVELOPER'S GUIDE 

All fields and buttons, however, may trap mouseEnter, mouse Within, ~d 
mouseLeave messages, even if a field is unlocked. The sending of thf.se 
messages is not dependent on clicking the mouse. I've seen a couple of stafks 
that use these messages in a potentially dangerous way. I suppose one autl;lor 
did not want the browser of a demonstration program to be burdened With 
clicking the mouse on screen buttons. With a mouseWithin handler: in 
buttons, the user triggers actions simply by moving the cursor within the 
rectangle of the button. Perhaps this method is appropriate for some ea~ly 
learning and entertainment stacks, but I believe this can become very co~­
ing for an unsuspecting user. If the novice user tries to accustom himseU to 
using the mouse, he will probably draw the cursor all over the screen, 
including atop one of these mouse Within buttons. When the screen shiftsi, as 
the result of no apparent or deliberate action, I believe the user will think~1he 
stack is automated-acting on its own. A deliberate click of the mouse · a 
better trigger for action. 

Also note that the card is a valid recipient ofmouseDown, mouseStillDown, 
and mouse Up messages. That means that as long as no other objects on a c~d 
have those mouse handlers in them, you can place any of those handlers in tre 
card script. This would be in lieu of drawing a full-card sized button afd 
placing a mouse handler in the button. Such a button would be a waste of an 
object, and every object you add to a card slows the card's opening and closihg 
time. To emphasize this point: There is no need to create a full-card-sized 
button, because you can put a mouseUp handler in the card's script. 

1 

Therefore, if you are creating an information publishing stack in which tpe 
user is supposed to click anywhere on the screen to continue, do these three 
things: I 

1. Lock all text fields. 

2. Make sure no buttons or fields have a mouse Up handler in them. 

3. Put the mouse Up handler in the card script. 

Press-and-Hold Buttons 
While we're on the subject of mouse handlers, there's a technique I develop~ 
for Focal Point to take the place of the traditional mouse Up handler in certa~ 
situations. The problem I had was that when in stacks like the Da~y 
Appointment Book, in which you may need to click ahead several days,\ I 



More About System Messages 247 

found the repeated mouse clicking to be a nuisance. While clicking on the 
right arrow button, I felt that it would be more natural if I could click and hold 
the arrow button down, while the cards flashed by one at a time. The arrow 
would be more analogous to the arrows you find in scroll bars. When you click 
and hold those arrows, the scroll bar thumb continues to increment until you 
let up on the arrow. 

While the problem of making a button continue to act while holding the 
mouse button down was not particularly difficult, it took a special combina­
tion of two handlers to also let single clicks act the way you'd expect. The two 
handlers are mouseStillDown and mouse Down handlers. Here's how they 
work. 

The mouseStillDown handler is the handler that does all of the work that 
the arrow button should be doing, like going to the next card. In some Focal 
Point stacks, the actions are more complicated (like knowing how many cards 
to advance depending on the Daily, Weekly, Monthly, Yearly interval button 
setting), but the same basic handler structure applies. In a simpler stack, like 
the Notes stack, the mouseStillDown handler for the right arrow button is 

on mouseStll IDown 
go next 

end mouseStiiiDown 

That was the easy part. 
Complicating matters is that on the slower machines, like the Macintosh 

Plus, or in stacks that have a large number of buttons, it was easy to click the 
mouse atop one of the arrow buttons-one complete mouseDown and 
mouseUp cycle-so quickly that HyperCard never had a chance to send a 
mouseStillDown message. That meant that the user might click on a button 
and get no response. That, of course, was unacceptable. 

The solution was to force a mouseStillDown message every time the user 
pressed the button. In other words, inside a handler for one of the other two 
mouse click messages would be the message mouses t i 1 1 o own • That mes­
sage would be trapped by the mouseStillDown handler in the same button 
script. At first, I erroneously tried putting the mouseStillDown message in a 
mouseUp handler. While it worked fine for the slower machines (although 
there was a very slight hesitation before jumping into action), it was disastrous 
on the Mac II. Since the Mac ll responds so fast, and is able to squeeze more 
messages per second, it sent a mouseStillDown message within a medium­
length click. Then the mouseUp handler sent another mouseStillDown 
message, triggering another "go next." It was like a runaway train that always 
overshot the desired station by one. 



248 HYPERCARD DEVELOPER'S GUIDE 

The .final answer was toputthemouseStillDownmessageintoamouseDQwn 
handler. Even on a Macintosh ll, as long as you release the mouse buttori as 
the next card scrolls into view, HyperCard won't send a mouseStillDoWn 
message to trigger another scroll. Thus, the entire script for a right arrpw 
button in the Notes stack of Focal Point is · ' 

on mouseStl I I Down 
go next 

end mouseStl I IDown 

on 11ouseOown 
mouseSt Ill Down 

end mouseDown 

There is no mouseUp handler of any kind in the button. 

Remote Control of Buttons I 

II 

In multiple-stack systems, you may need access to button scripts to perfoljm 
operations by remote control. For instance, the Deadlines stack in Focal Pofnt 
is linked to the Projects stack so that if you check off a deadline item as being 
finished in the Deadlines stack, its corresponding listing in the Projects sta~k 
is also checked off as being completed (Figure 14-1). But when that happe~, 
some updating in the Projects stack is also necessary. While the user does not 
see this interaction with the Projects stack (the screen is locked the entire tim~), 
someone must click on an Update button in the Projects stack to take care 

1

0f 
housekeeping. ' 

The operation that is performed by the Update button could have been 
incorporated into the handler that posts the check mark in the Projects stack, 
but why duplicate efforts? The procedure works fine when you manualJy 
dick the Update button in the Projects stack. All you need is a way to click thlit 
button, even though you're doing it from a handler in the Deadlines stac~. 

The way you do it is to send a mouseUp message to that button, like this: 
I 

send AmouseUp• to bkgnd button •update• 

Like we discussed in the last chapter, the Send command traverses the rul~s 
of hierarchy. But, as you see here, it can do even more. '

1 

Sending mouse Up messages to specific buttons is a common occurrence ~n 
Focal Point, especially in the scripts attached to the various applications 
buttons along the card's left and right edges. For instance, when you are in t~e 



More About System Messages 249 

• « --Thursday, December 24, 1987•« --­
Spri ng Promotion Arrange for In-store photography 

PROJECTS • «---Tuesday, January 5, 1988•« ---
MetaSystems I nt Spring Promotion Meet 'w'ith merchandising to hear 

Figure 14-1 Checking off a follow-up item in the Deadlines stack eventually triggers a 
remote control pressing of the Update button in the Projects or Proposals stack. 

Daily Appointment stack, its own icon button contains a script that finds 
today's card. When coming to this stack from most other Focal Point stacks, 
the system presumes that you want to see (or at least start with) today's 
appointment card. But when coming from the To Do or Monthly Calendar 
stacks, it is more likely that the destination appointment card is some day 
other than today. As a result, I could not place an openStack handler that 
automatically finds today's cards-it would not apply to every opening of the 
Stack. Instead, I placed the message 

send mouseUp to bkgnd button "D ay" 

in the scripts of the Daily Appointment stack icon button in most of the other 
stacks. Importantly, those buttons send the message only if there is no text 
selected in the original card to be searched for in the Daily Appointment stack. 
For example, the script of the Daily Appointment book icon button from the 
Directory and Dialer stack is 



250 HYPERCARD DEVELOPER'S GUIDE 

on mouseUp 
get the selection 
push card 
go to "FP•Oally" stack name for the Appointment book 
If It is empty 
then send mouseUp to bkgnd button "Day• 
else find It 

end mouseUp 

Remote button clicking doesn't apply only to stack-to-stack operations. 1 It 
works just as well in any situation, even card-to-card operations, when YfU 
can call upon a button handler that's already been written. ·• 

~ield lv.fessa~es 

Of all the messages that apply to fields, the ones we'll be concerned with here 
are the openField and closeField messages. These messages are sent wh'n 
fields are left unlocked. I 

The openField message is always sent to the field that you tab to or click on 
with the 1-Beam cursor. The message is always sent, regardless of the content, 
or lack thereof, of the field. 

The closeField message is a bit peculiar in the manner it gets sent. First ~f 
all, the only time a closeField message could ever possibly be sent is when ~e 
contents of the field are different when it closes (i.e., when you tab, press e 
Enter key, or click outside the field). If you modify the text after opening t, 
and then restore the contents to its exact original state before closing, rio 
closeField message gets sent to the field. 

OoseField messages don't always come when you expect them, howeve,. 
Through HyperCard version 1.2, the closeField message exhibits what ap­
pears to be anomalous behavior. To see if your current version of HyperCatp 
behaves this way, or to see for yourself how it works, let's make a new stadk 
for this chapter and experiment away. I. 

To make the stack: ' 

1. Open the Developer's Guide Master stack, created in Chapter 12. 

2. Choose Save a Copy from the File menu. 

3. Type "Chapter 14 Stack" into the file dialog box. 

4. Open Chapter 14 Stack via the Open Stack choice of the File menu. 



More About System Messages 251 

5. With the text painting tool, type "Chap. 14" into the card graphics layer 
of the first card. 

To help with the experiments, name the five fields of this card. You can be as 
cute and clever as you see fit. For the purposes of this demonstration, 
however, we'll name them "theFirst," "theSecond," and so on. 

You'll also need two new buttons (they may be in the card or background 
layers). 

1. Choose New Button from the Objects menu. 

2. Drag the selected new button to the upper right box, and, in the Button Info 
dialog box, rename it "No Hilite." 

3. Clone that button by holding down the Option key and dragging a copy 
of that button directly below the first. 

4. In the Button Info dialog box, name the button "Hi lite" and check the Auto 
Hilite check box (Figure 14-2) . 

• File Edit Go Tools Objects 

Chep.14 

Button Name: ~ mite ) 
Card button number: 2 Style: 
Card button 10: 3 0 transparent 

181 Show name 0 opaque lite ) 

~ Ruto hilite 0 rectangle 
0 shadow 
@round rect 

( Icon ••• ) 0 check bow 

( LinlcTo ••• ) 0 radio button 

( Script ..• ) ( OK l) ( Cancel ) 

~1¢1 11 ~11 ~ 

Figure 14-2 The second experimental button should have auto-hiliting turned on. 



252 HYPERCARD DEVELOPER'S GUIDE 

The last instruments we need for this experiment are two handlers that shoqld 
go into the stack script of Chapter 14 Stack. The handlers are: 

on openField 
put the target && "opened" 

end openField 

on closeField 
put the target && "closed" 

end closeField 
I 

These two handlers will put the name of the field into the Message Box, alo~g 
with a description of what happened to that field (if anything). Thus, wh~n 
you open the first field, the Message Box will show · 

bkgnd field "theFirst" opened 

to tell you what's going on. 

A 11Field" Experiment 

For the first experiment, simply press the Tab key repeatedly while watch~g 
the Message Box. Each time you press the Tab key, the text insertion pointer 
moves to the next field in the field order, opening the field for action. Note th~t 
because nothing changes in the fields as you tab through them, there are ~o 
closeField messages being sent. If you click the mouse with the cursdr 
anywhere outside of a field (including on a button), no closeField messag~ 
are sent then either. 1, 

Next, press the Tab key until the text insertion pointer is in the first fielq. 
Type a word in the field, and press the Tab key while watching the Message 
Box very closely. For a brief instant, the Message Box indicates that the first 
field closed. You've just seen how the Tab key can dose a field whose conterit 
has been changed. 1

1 

With the text insertion pointer still flashing in the second field, type some 
more text. Press the Return key a few times. Notice that the Return key doe~ 
not trigger the closure of a field (see later in this chapter for more about th~ 
Return key). Now press the Enter key. The Message Box indicates that the 
second field was closed. 

Press the Tab key once. Because there is text already in the first field, the 
entire text is selected when you tab to such a field. Remember the exact 
spelling of the word you typed into this field and press the Backspace key t~ 
remove the text. Without clicking the mouse button or pressing the Enter key, 

II 



More About System Messages 253 

retype the word into that first field exactly as it was before. Now press the 
Enter key to close the field. Because the text of the field did not change from 
the instant it opened, there is no closeField message sent to the field. 

Now press the Tab key twice to select the text in field 2. Press the Backspace 
key, followed by the Enter key. Because you removed the text and changed 
the contents of the field, the Message Box indicates that a closeField message 
was sent to that field. 

Now onto what I perceive to be anomalous closeField behavior. 

To Close Or Not To Close 

Make a change to the first field contents and leave the text insertion pointer 
flashing in the field. Now click anywhere in the upper right box except on 
either of the two buttons. Note that clicking on the card caused a closeField 
to be sent to the first field, as you'd expect. The same would be true if you 
locked one of the other fields and clicked on it. The closeField message would 
still be sent to the changed field. 

Things are different when clicking on buttons, however. Change the text 
again in the first field. Then click on the No Hilite button. Not only is there 
no closeField message sent to the field, but the text insertion pointer is still 
flashing there. This is not necessarily a bug, since there is utility in having 
access to the text insertion point when clicking on a button, such as using the 
button to insert boilerplate text into key points in a field. So, the field stays 
open until you press the Tab or Enter keys, or click on the card. That's easy 
enough to remember, I suppose, especially with the insertion pointer still 
flashing away. 

The problem occurs, however, when you click on a button whose autoHilite 
property is set to true. Change the text in the field again, and click on the Hilite 
button. The text insertion pointer goes away. It just doesn't become invisible, 
still in the field, for if you start typing, the text from the keyboard goes into the 
Message Box, as it would whenever no field is open. So did the field close 
when you clicked the highlighted button? According to HyperCard, no. No 
closeField message was sent to the field, yet every other indication is that the 
field closed. I believe this problem is related to the one in which a text selection 
becomes de-selected when you click on an auto-hilite button. A future version 
of HyperCard will probably resolve the problem, but the field will probably 
remain open, as it does when clicking on a non-auto-hiliting button. 

If your stack design is such that you're concerned about users clicking on 
buttons when you need a closeField message sent to a particular field, you can 
trigger a closeField message artificially with the help of a global variable and 
a few short handlers. The first handlers go in the stack script: 



254 HYPERCARD DEVELOPER'S GUIDE 

on openField 
global fieldOpened 
put the target Into fIe I dOpened 

end openField 

on closeField 
global fieldOpened 
put empty into fieldOpened 

end closeField 

I 

I 

I 

At the beginning of every mouseUp handler, then, you need to add the 
following script lines: 

1 

on mouseUp 
global fleldOpened 
If fleldOpened Is not empty 
then send closeField to fieldOpened 

This series of handlers uses a global variable to hold the name of the field l~t 
opened by any method. The additions to the mouseUp handler check to s~e 
if a field is currently open when the mouseUp message was sent by Hyper­
Card. If so, then a closeField message is sent to that opened field. Prestunit1g 
your field needs thatcloseFieldmessage for a closeField handler, thatcloseFiefd 
handler must also pass closeField so that the stack script closeField handl~r, 
shown above, sets the global variable to empty-meaning that no field is 
open. 

Taxing Returns 

As long as we have our field message laboratory operating, let's look at one 
other point that may cause some headscratching. First, clear the contents qf 
the second field on the card and close the field. You'll see the corresponding 
open and close notices in the Message box. Now, click the mouse button with 
the I-Beam cursor somewhere near the middle of the field. Then click with th!e 
browse tool somewhere in the upper right box, but not on one of the button~. 
You may wonder why the Message Box indicates that the second field closeq, 
even though you don't see anything in there, and the field was empty to sta~t 
wi~ I 

The reason is that there are text characters in that field, even though you 
cannot see them. To prove it, type 

the number of chars of field 2 



More About System Messages 255 

into the Message Box. You'll see that there are around six characters in the 
field. Those characters are carriage return (end of line) characters, automati­
cally entered into the field when you clicked in its middle. 

These invisible return characters are cause for concern in a design issue I 
encounter in some stacks. When I create a stack that has pop-up fields 
attached to buttons, I like to make some graphic change to the button 
whenever there is text in one of those hidden, pop-up fields. That way, a 
browser knows that there is something buried there, and where to click to get 
it. As an example, the Daily Appointment stack in Focal Point provides pop­
up note fields for each of the day's hours. When you click on the button 
containing the hour number, the corresponding notes field pops into view 
(Figure 14-3). During testing, it occurred that users sometimes clicked in the 
middle of the pop-up fields (sometimes accidentally), because it wasn't clear 
where to start typing. The user might then type a few characters in the middle 
of the field, backspace to get rid of them, and click the number button to hide 
what was supposed to be an empty field. Yet a few return characters were still 
in the field. Upon hiding the field, the script noticed that the field was not 
empty, and therefore drew a small box around the plus mark, signifying that 
there was a note there. 

•1 2 copies of printed agenda 
• forecast transparencies 
• department budget requests 

Figure 14-3 If a user clicks the text pointer in the middle of a blank detail field (when not 
hidden), he unknowingly inserts Return characters. Upon closing the field, Focal Point 
thinks there's text in the field, and draws a square around the plus symbol. But the user 
would see no characters when showing the field. 



256 HYPERCARD DEVELOPER'S GUIDE 

One way I used to prevent most accidental insertions of return characters 
was to insert a Oick At command each time the field pops up. As coordina~es 
for the Click At command, I used the top left comer of the rectangle of the fie,d. 
That always places the flashing text insertion pointer at the left margin of tpe 
first line of the field (Figure 14-4). Then, if a user wants to experiment ~y 
typing in text, he or she must press the Return key a few times to move the 
cursor lower in the field. To remove the text, the tendency will then be to ke~p 
backspacing until the cursor is back at the top left corner. 

Open and Close Object Messages i 

Cards, backgrounds and stacks all receive open and close messages when 
they, well, open and close. Opening and closing does not necessarily me~n 
that you see one of these objects on the screen. If you lock the screen to go to 
another background or another stack and then return to the original spdt, 
many open and close messages are sent. For instance, in the following 
mouseUp handler from a hypothetical stack named ''Table of Contents" , 

on 111ouseUp 
set I ockScreen to true 
push card 
go to card "Index 1" of stack "Art History• 
get field "Last Update• 
pop card 
put it into field "RH Update• 

end mouseUp 

look at how many open and close messages are sent: 

Figure 14-4 By the script clicking at the top left corner of the hidden field when the field is 
shown, the tendency is to backspace all the way to the top to remove accidental characters. 



message 
closeCard 
close Background 
closeS tack 
openS tack 
openBackground 
openCard 
closeCard 
closeBackground 
closeS tack 
openStack 
open Background 
open Card 

More About System Messages 257 

location 
current card with button in it 
current background 
stack "Table of Contents" 
stack "Art History'' 
background containing card "Index 1" 
card "Index 1" 
card "Index 1" 
background containing card "Index 1" 
stack "Art History'' 
stack "Table of Contents" 
background containing original card 
card with button on it 

That's 12 open and close messages just to fetch a field in another stack. If the 
screen is locked or unlocked, the same messages still fly. 

While it's true that all these open and close messages go to the card level 
first, it makes the most sense to place open and close stack handlers in the stack 
script and open and close background handlers in the background script. 
Card handlers, however, may be best placed at levels other than the card. 
About the only time you'd consider placing an openCard or closeCard 
handler in the card script was if the handler pertained to that single card only. 
More likely, you write an openCard or closeCard handler to control the 
opening and closing of a series of cards, either in the same background of a 
heterogeneous stack (in which case the handlers would go into the back­
ground script) or in the stack of a homogeneous stack (in which case the 
handler could go in either the background or stack script). 

It's particularly important to recognize that open and close object messages 
are sent even with the screen locked, because these messages could adversely 
affect the posting or retrieval of information in a card, background, or stack 
other than the one locked on the screen. For example, if a mouse Up handler 
in one stack needs to retrieve data from a card in another stack, the openS tack 
or openBackground handler of that other stack could perform some updating 
or other housekeeping tasks that may interfere or slow down the information 
retrieval. Fortunately, there is a way around these messages. 

When you wish to bypass open and close object handlers in an information 
posting/ retrieval situation, you can set the lockMessages property to true, as 
in 

set lockMessages to true 



258 HYPERCARD DEVELOPER'S GUIDE 

at the start of the handler that fetches the data. When this global propeey is 
set to true, HyperCard suspends all system messages (except idle) until you 
set lockMessages to false or the current handler ends and HyperCard senps 
an idle message. 

Keyboard Messages 
There are just eight keyboard messages, of which only six make any sense in 
a stack product that will be distributed widely. This is because two keyboard 
messages, functioni<ey and controlKey, require keyboards other than the 
lowest common denominator keyboard of the Macintosh Plus. Both new~r 
keyboards for the Macintosh SE and ll have a Control key, while only t?e 
Macintosh Extended Keyboard has function keys. Before we get to the!e 
special key messages, let's take care of the four common ones. 

Three keyboard messages, returni<ey, enterKey, and tabKey, are rath r 
straightforward. Each time you press those keys (Return, Enter, and Ta~, 
respectively) while no field is open, their corresponding messages go to the 
current card. The only caution is that when you are editing text in a field-' 
when the text insertion pointer is flashing in a field-these keys do not se~d 
their messages to the current card. Instead, while in text editing mode, the~e 
keys have very different functions, such as inserting a return character in a ~e 
of text, or dosing a field. Fortunately, you can still trap for the Return anti 
Enter keys when editing a text field. \ 

! 

Keyboard Trapping in Fields 
Early HyperCard stack developers desired a way to trap for the user's pressing 
of the Return or Enter keys while editing a field. Beginning with version 1.~, 
HyperCard sends two system messages, returnlnField and enterinFielq, 
whenever the user presses the Return and Enter key while the text cursor ~ 
flashing in the field (i.e., when the field is open). You can use these messager 
in two very different ways, depending on the nature of the fields and how you 
want the user to enter data into them. 1

, 

If your only goal is to prevent the text_cursor from jumping to a line beloW 
the last visible line of the field, then you'll be better served by turning on the 
Auto-Tab property in the field's info dialog box. For one-line fields, therefore, 
the Auto-Tab property may be all you'll need to prevent the user from adding 
text below the visible field area. ' 

In a multiple-line field, you may wish to prevent the user from adding more 
1, 



More About System Messages 259 

than a single HyperCard line of text. Recall that a HyperCard line of text 
begins at a left margin and continues until it encounters a return character, 
even if the line wraps within the field. To restrict the text to one line you must 
not allow the user to type a return character into the field. To do that, you'd 
trap for the returnlnField system message in a field script like this: 

on returnlnField 
end returnlnFleld 

No return character will ever reach this field. But it also means that Auto-Tab 
(which requires the return key) will not work for this field, nor will pressing 
the Return key close the field. 

Field Entry Validation 
One clear advantage of being able to trap for Return and Enter key presses 
within a field is to perform tests on the text within a field to make sure the entry 
consists of valid information. For instance, if you want to make sure that a user 
enters only numbers into a field, then you can create a returnlnField handler 
for that field to test the contents of the field before allowing the user to proceed 
to the next field. 

Here is an example of a returnlnField handler that compares each character 
of a text field against a list of all numbers plus a decimal: 

on returnlnField 
repeat filth X a 1 to the length of 11e 

If not (char x of 11e Is in "0123456789.") then 
beep 
answer •Entry must be a number only." 
select text of me 
exit returnlnField 

end If 
end repeat 
pass returnlnField 

end returnlnField 

H one of the characters is not a number or decimal point, then the handler 
beeps, presents an answer dialog box with a clue about what's wrong with the 
entry, selects the text in the field for quick re-entry of the data, and exits the 
handler. Only if all characters in the field are valid does the returninField 
message get passed to HypetCard. Be sure to pass the message if you have 
Auto-Tab turned on-if HyperCard doesn't see the returnlnField message, 
the cursor won't "tab" to the next field. 



260 HYPERCARD DEVELOPER'S GUIDE 

I 

In the above situation, and in any situation in which you modify the acti<?n 
of the returnlnField system message, it is generally desirable to make a press 
of the Enter key perform the same action as the Return key. Given a retu~­
Field handler like the one above, you can mimic its action with the Enter k~y 
by adding this simple handler to the field script: 

on enterlnField 
return InField 

end enterlnField 
I 

If you plan to offer different actions for each key, consider this move carefully. 
I'm not sure how intuitive this setup will be for the user. Some databa~e 
programs use this system to advance the cursor through fields with theRe~ 
key, and advance to the next record ("card" in HyperCard terminology) witih 
the Enter key. What works in a database program, however, may not ~e 
appropriate for a HyperCard stack. , 

I 

The Text Arrows Property 

Our discussion about arrow Key messages must be preceded by a discussion 
of a global property added to HyperCard 1.1-textArrows. When this 
property is set to false, as it essentially was in HyperCard version 1.0.1, th~ 
arrow keys are strictly stack navigation keys (except in the Script Edito~, 
where they move the text cursor). Adding the textArrows property, ana 
setting it to true turns the arrow keys into text cursor movers, rather than 
navigation keys. Even with textArrows turned on, you can use the arrow key~ 
as navigation aids by holding the Option key at the same time. 1

1 

I have mixed feelings about this property. On the one hand, I've gro~ 
accustomed to reaching for the arrow keys to navigate through many stac~. 
Having to hold down the Option key means a change of habit. On the other 
hand, I fully appreciate the desire to move the text insertion cursor in a fielq 
via the arrow keys, as you can in most word processors. Word processors, of 
course, also let you move the cursor in word jumps, which HyperCard doe~ 
not. There is a tradeoff. · 

Perhaps the most disturbing part of textArrows being turned on is that the 
arrow keys are dead unless a text cursor is flashing somewhere in a field or the 
Message Box. They do nothing. 

The way I treat this property in my stacks is to ignore it. When necessary, 
my scripts trap for arrow keys as navigation aids. I leave it up to the user and 
the Home stack preferences setting to figure out how the arrow keys work. 



More About System Messages 261 

ArrowKey Messages 

The arrow Key message is often a source of confusion for new H yperTalk 
programmers, because it's one of very· few messages that comes with a 
parameter Oeft, right, up, or down). Any handler that is to trap for an arrow 
key press must be written to accommodate the parameter. 

By way of explanation, you should remember that a press of the left arrow 
key actually sends the two-word message 

arrowKey I eft 

The word I e f t is a parameter to the a r r o 11 Key message. The handler that is 
to trap for the arrow Key message must present a variable name into which the 
message parameter goes. Therefore, in the handler 

on arrooKey whlchKey 
if whichKey is •right• then 

visual effect wipe left 
go to next card 

else if whichKey is •teft• then 
visual effect wipe right 
go to previous card 

end If 
end arro11Key 

the arrow Key message parameter is placed in a local variable, called which­
Key. That variable may then be used within the handler to be tested against 
specific directions you're looking for. Note, too, that in the above handler, 
since the arrowKey message is not passed beyond the handler, the up and 
down arrow keys will be inert on the keyboard. Only the left and right arrow 
keys will do anything in this stack. 

The Control Key 

The Control key on the new keyboards (for the Macintosh SE and Macintosh 
ll only) is there largely for the purpose of being compatible with ffiM 
keyboards, just in case you use your Macintosh to emulate an mM PC with co­
processor boards or as a terminal to a mainframe computer. The Control key 
is nothing more than another modifier key, like the Option and Command 
keys on all Macintosh keyboards. In other words, you use the Control key in 
concert with one or more keys on the keyboard to issue some kind of 
command. 



262 HYPERCARD DEVELOPER'S GUIDE 

Unlike the Option and Command keys, however, the Control key issuef a 
HyperCard system message to the current card when it is pressed. The Opti~n 
and Command keys, you'll recall, may be tested by way of functions (the 
optioni<ey and the commandi<ey) to see if they're being held down while a 
handler is running, but you cannot trap for someone typing Command-Q, for 
instance. With the Control key, however, you can issue commands of any 
kind from the keyboard, because you can trap for a press of the Control k~y 
and another character. ~. 

The controlKey message is different than most messages, because not ot¥y 
does it send a parameter along with it, but the parameter is a code number fpr 
a character accessible from the keyboard. The code number is the charactef s 
ASCIT code. There is an ASCII code for each character you can type from t~e 
Macintosh keyboard, including special characters accessed only with t~e 
Option key. To find the ASCII code for a particular character, you can loo~: it 
up in an ASCII table or uncover it the more fun way by using HyperTalk in the 
Message Box. Just type the CharToNum function and the character who~e 
code you wish to look up. Here are several functions you can try in the 
Message Box: ! 

the charToHum of •c• 
the charToHum of •c• 
the charToHum of ••• 
the charToHum of "C" 

Opt ion-6 
Option-Shift-C 

You may wish to set up some Control-key equivalents to summon variotis 
painting tools from the tools palette, like a quick way to summon the button 
tool without pulling down or showing the palette. Here's a controlKey 
handler you could use in that instance: II 

! 

on controiKey whichKey 
if whichKey is 96 "b• 
then choose button tool 
else If whlchKey Is 102 •r• 
then choose field tool 
pass controiKey 

end controiKey 

Importantly, the parameter passed along with the controlKey message is cas~ 
sensitive. In other words, the ASCII codes for "a" and "A" are differetit 
numbers. If there is the chance that a user will issue the Control key sequenc~ 
with theCapsLockkeydown, then your handler had better test for both uppet 
and lower case instances of the parameter. A handler that tests for many 



More About System Messages 263 

Control-key sequences might have a conversion routine at the beginning that 
converts the case of characters to all lower case or all upper case. 

Function Keys 

The Apple Extended Keyboard has a row of 12 function keys across the top of 
the keyboard. These keys are there to emulate mM AT keyboards. Each key 
is labeled with its number. Each time you press one of these keys, HyperCard 
sends a functionKey message to the current card, along with a parameter 
consisting of the number of the key. Keys 1 through 4 are preset to take care 
of the four common editing functions: Undo, Cut, Copy and Paste, so if you 
like these functions on those keys, you can leave them. Apple's user interface 
guidelines would prefer it that way. 

You have full license to program the actions of all 12 keys, including the 
preprogrammed ones. All it takes is to write a functionKey handler that traps 
for the desired key numbers. A typical functionKey handler might be 

on functionKey whichKey 
If whichKey < 6 then pass func~lonKey 
else If whlchKey Is 6 then doMenu •Hew Card• 
else if whlchKey Is 1 then doMenu •oetete Card• 
else if whlchKey Is 8 then lockFields 
else if whlchKey Is 9 then unlockFlelds 
else if whlchKey Is 11 then doMenu •compact Stack• 

end functlonKey 

In the above example, you'll notice that you can use a function key to trigger 
any kind of action, like the locking and unlocking of fields, whose handlers 
you may have in your Home stack. 

Unless you know for sure that every user of your stack will have new Apple 
keyboards, it's not wise to program the controlKey or functionKey handlers 
into your stack or rely on those keys alone to trigger key operations. These 
keys do, however, let you program many stack development shortcuts for 
yourself. For additional tips on authoring shortcuts and debugging tools, see 
Chapter21. 

Do Menu 
A very powerful message that HyperCard sends-and therefore lets you trap 
for-is the doMenu message. Each time you choose an item in a menu, 
HyperCard sends the doMenu message along with the exact text of the menu 



264 HYPERCARD DEVELOPER'S GUIDE 

item as a parameter. When I say" exact text," I mean it. If a menu item has ~n 
ellipsis (three periods) after it, then the parameter has three periods at the end 
of it (they're three periods, not the ellipsis character, Option-semicolon, fo~d 
in some fonts). ; 

The reason trapping for menu items is so important is that your stacks c+n 
let the user make menu choices from the HyperCard menus, but you :.'fn 
modify or amplify the operations triggered by certain menu choices. F9r 
example, in several Focal Point stacks, I intercept the New Card me~u 
command because that operation entails creating several cards (from diff¢r­
ent backgrounds) and establishing links among them. Rather than trap for the 
newCard message, which comes only after one card has been created, DlY 
handler keeps me in complete control of the new card (series) creation proce~. 
It also means, as demonstrated in the previous chapter, that when I need a rerl 
new card, the handler must send a doMenu New Card message to Hyper-
Card, itself, thus bypassing my own doMenu handler. : 

Another example of why you'd like to trap for menu items is the navigatiqn 
choices in the Go menu. In a heterogeneous stack, you usually don't want tne 
user to keep going to the next card until he breaks into the next background. 
That could really confuse the user. Better to restrict navigation to a particul¥ 
background. This you can do by trapping for the Previous and Next items ih 
the Go menu and modifying their action. Thus, the handler would be 1

1 

on doMenu whichltem 
if whichltem is •Preu• 
then go to previous card of this bkgnd 
else if uhichltam Is •Haxt• 
then go to next card of this bkgnd 
else pass doManu 

and doManu 

I 

I 

! 

I 

I 

This is just a hint of what's to come later in the chapter, when we examine hoJ 
you stay in navigation control of the stack. [ 

One facet of the doMenu message and associated handler cannot be 
overemphasized. Your handler must pass doMenu for all menu choices othJ 
than the ones you're trapping for. H you fail to pass the message, you'll be 
locked out of all menu items, including Quit HyperCard or getting the Info 
boxes for the background or stack. H you've placed a doMenu handler in your 
background or stack and find that the pass doMenu line is not workin~ 
properly (thus preventing you from using the menus), then there is a last 
resort. H the Message Box is showing, then type ! 

I 

I 



More About System Messages 265 

edit script of bkgnd -- if doMenu handler Is in the background 

or 

edit script of slack -- if the handler is in the stack script 

This will bring up the Script Editor for the appropriate object, and you may 
repair the script. 

H the Message Box is not showing, you won't be able to bring it into view 
by typing Command-M, because that's the menu equivalent of Message in the 
Go menu-and all menus are locked out. Make sure the Blind Typing 
property is set to true in your Home stack and blindly type 

shoaJ msg 

to bring the Message Box into view. Then you may type the appropriate edit 
script command, as shown above (or you may blindly type e d I t s c r i p t if 
you're confident in your typing abilities). 

Suspend and Resume 
The suspend and resume messages are sent when HyperCard launches 
another application and returns from another application, respectively. 
Suspending is considered different than quitting HyperCard. That's because 
when you suspend HyperCard, the next time HyperCard opens, it comes to 
the card from which you suspended operation. But because HyperCard "goes 
away" when it suspends (when not using MultiFinder), no global variables 
are automatically saved. That's something you have to take care of in your 
HyperTalk scripts. 

H your stack or stack system offers facilities for launching outside pro­
grams, chances are that it's done from a very specific place, like a special stack, 
background, or card. H so, consider using the suspend message as a trigger 
to save the state of various global variables and other settings into a field on 
that card. For instance, if the user has adjusted the location of the Message Box 
on the screen, your program should save that location in a hidden field when 
suspending the program. Upon resumption, the location of the Message Box 
should be set to the coordinates saved previously. Adding such a touch makes 
your stack seem much more intelligent than HyperCard itself. Because you 
know that upon resume HyperCard will open to the very card from which it 
left, a field is a safe place for the data to be carried over. The Document 



266 HYPERCARD DEVELOPER'S GUIDE 

Launcher of Focal Point saves several states prior to launching an exte¥ 
application, and restores them upon resume. 

One key point to remember about a resume handler is that the Home sblck 
contains a very important resume handler-itself. That handler sets ~ey 
global variables for looking up pathnames and also sets several system-w~de 
parameters (e.g., user Level) to settings in the Home Stack. Therefore, always 
pass resume at the end of your resume handler. 

StartUp and Quit 
Somewhat analogous to the resume and suspend messages are s t art up aitd 
q u I t. These messages, however, represent more drastic actions on the part\ of 
the user. The startUp message is the one HyperCard sends when the progr~ 
starts up from the Finder, from scratch. Quit, at the opposite end, is tpe 
message HyperCard sends when you choose Quit HyperCard from the Ffle 
~~ ~ 

In the Home stack is a startUp handler that calls a long handler, getSyslnfo. 
This handler, alluded to in the last section, puts together the global variables 
for the stack, document, and application pathnames, as well as setting glo~al 
properties of user level, power keys, text arrows and blind typing. In verr 
tightly controlled circumstances, in which the author is in charge of staCk 
pathnames within handlers, controls the user level and never lets the us~r 
have direct access to HyperCard, the startUp handler can omit the getSysinfo 
handler, but this is not generally recommended. ! 

The startUp message goes to the current card first, so if you have a startUp 
script in your stack and launch the stack from the Finder by double-click~g 
on the stack icon, your stack will trap for the startUp message before the Ho~e 
stack will. Therefore, it is important that any startup handler you include ~ 
your stack pass start up up the hierarchy so the Home stack can do its 
important getSyslnfo tasks. 

Help 
The help message is the message HyperCard sends when you choose Help 
from the Go menu. Because help is its own message, you may trap for it by 
name, rather than by trapping for it under the guise of a doMenu handler. 

Trapping for help is important if your stack contains on-line help cards. In 
stacks that show the HyperCard menu bar, a single Help menu item cap 
provide access to the stack's help cards and HyperCard help (via a button ip 



Idle 

More About System Messages 267 

the stack's help system). Getting to a stack's own help system via the Help 
menu item makes the stack application feel more like a freestanding program, 
since the menu item seems to work within your own stack, and not just with 
HyperCard. 

The 1 d 1 e message is a troublesome critter, because it can be both powerful 
and dangerous at the same time-powerful because it can make things 
happen with the computer unattended and; dangerous because it can rob the 
user of control over text editing. Therefore, idle handlers must be used with 
special care. 

HyperCard sends idle messages over and over anytime nothing else is 
going on in the stack. It's like the HyperCard motor always running, with the 
gear in neutral. In the idle state-called "idle time"-HyperCard sets a 
number of properties to false, especially all the locks on screens, message 
passing, and painting of miniature cards into the Recent box. Also at idle time, 
any pending visual effects are flushed from the list. Idle time, therefore, is an 
important time for HyperCard. 

One of the most common applications of the idle message is trapping for it 
and displaying a running timer in a field on a card. It's not a bad idea. Even 
the Home Card, as it ships from the factory, has just such an idle handler in it. 

Difficulty arises, however, when authors attempt to combine idle handlers 
and cards that have user-accessible text fields in them. Specifically, the 
problem comes from the commands within the idle handler, commands 
which usually put the time into a specific field. If a user is trying to enter data 
into one field, and the idle handler puts the time into another field, the user 
loses the battle for the text insertion pointer. If the clock is updating the time 
every second, it will be virtually impossible for the user to enter anything into 
other fields. Even if the time being put into the field is from the Short Time 
function, the idle handler robs the user of the text insertion pointer once each 
minute. If you've tried to coexist with this arrangement, you quickly discover 
that it's a very frustrating experience. I've never encountered an idle handler 
in an interactive card that I've liked. 

Idle handlers are useful, however, when placed in a proper environment. 
Specifically, any card that has click-only interactivity is a fine candidate for an 
idle handler, if one is necessary. I'll show you two diverse examples of how 
I've used idle handlers in Business Class and Focal Point. 



268 HYPERCARD DEVELOPER'S GUIDE 

Idle in Business Class 

As an extension of the simple clock field, like the one in the Home 
Business Class puts the idle handler to even more time-keeping work. 
main world map {Figure 14-5) uses two large highlighted buttons to track 
location of nighttime (the time between 6 pm and 6 am). The location of 
buttons shifts as the day progresses (sometimes you can't even see one of 
buttons-its coordinates are set to off the screen). 

While I could have settled on locating the buttons at the time the 
opened and left them there, I made the card come to life. If you are 
this card as the hour changes, you'll see the night/ day lines shift one 
zone. An idle handler keeps track of this as well as the local clock in the 
right corner. 

Idle in Focal Point 

A very different problem confronted me in the Deadlines stack of Focal 
(Figure 14-6). Here there are two fields, both of which must scroll 
synchronization with each other. One field is the skinny one at the left 

Figure 14-5 With rw text fields for data entry, the map menu card of Business Class is a 
suitable candidate for an idle handler to keep its clock and day/night lines "alive." 



More About System Messages 269 

•«---Thursday, December 24, 1987•« --­
Sprl n9 Promotio Arran9e fori n-store photography 

PROJECTS • «--Tuesday, Jenuary 5, 1988•«---
MetaSystems lnt SprlnQ Promotio Meet ...,ith merchandising to hear 

PROJECTS •«---Sunday, January 10, 1988•«---
MetaSystems I nt Sprl 09 Promotio Collateral from artist due 

PROJECTS 

• « ---Tuesday, Jenuary 12, 1988•«--­
Annual Report Cell Paul about 9etti n9 the job 

•«---Thursday, January 14, 1988•«--­
Annual Report Get final quote on printing 

Annual Report Cell Paul about gettl ng the job 

•«---friday, January 15, 1986•« ---

Figure 14-6 An idle handler keeps the two fields of this card in sync (the checkoff field has 
a scroll bar, but it's hidden beneath the larger field). 

contains check marks inserted by clicking on the field next to an item you've 
completed. The other field contains the items due on all days listed in the 
Projects and Proposals stacks. 

To make both fields scroll in sync, I first covered the scroll bar of the skinny 
field with the larger field, making sure the latter had a higher field number, 
and was thus in a layer closer to the viewer. Then an idle handler continually 
sets the scroll of the skinny field to the scroll of the larger field. The handler 
is simply: 

on i dIe 
set the scrol I of field 1 to the scrol I of field 2 
pass idle 

end idle 

On slower Macintoshes, there is a slight delay between the scrolling of the two 
fields. In other words, the scroll of the second field doesn't adjust itself until 
the user lets up on the scroll bar of the larger field, thus allowing an idle 
message to makes its way up the hierarchy. Typically, however, the jerky look 
to the scrolling check marks in the left column aren't troublesome, because all 



270 HYPERCARD DEVELOPER'S GUIDE 

I 

checked items are removed from the list the next time you update tpe 
Deadlines list-they're rarely there. 

Overall, my advice on inserting idle messages in your stacks is to use them 
only on cards that do not involve text entry. Browse-only stacks, however, a!re 
fair game, provided you have a legitimate purpose for the idle handler. 1 

Controlling Navigation 
Given the diversity of system messages available for your trapping, you apt 
maintain remarkable control over the way your users move through a stacr­
Stack navigation is accomplished three ways: through on-screen buttollS; 
through arrow keys; and through Go menu choices. 

BuHon Navigation , 
I 

The ultimate in control over your user's stack navigation is with the buttol)S 
you design into your cards. When a stack has linear progression-or per­
ceived linear progression, as explained in a moment-then traditional arrolv' 
buttons are appropriate. It seems that a kind of HyperCard standard~ 
evolving, in which the left and right arrows indicate previous and next cards, 
while a right angle arrow returns you to some previous stack or card. In so?1e 
layouts, like flip card on-screen metaphors, a pair of up-down arrows aisp 
seems to be acceptable, with the down arrow signifying motion to the neit 
card, the up arrow to the previous card. 

In a homogeneous stack, linear navigation is pretty cl~ar and simple. In ~ 
heterogeneous stack, however, you probably want to be m more control ov~r 
how on-screen navigation buttons behave. One or more backgrounds of 'a 
heterogeneous stack should be perceived to be linear, even though they may 
be scattered a bit throughout the stack. The aforementioned commands tp 
limit the navigation to cards of the same background come into play her~. 
Thus, your right arrow handler may be: 

on. 11ouseUp 
visual effect wipe left 
go to next card of this background 

end 11ouseUp 

I 

No matter how the user clicks on those screen buttons, he'll stay within that 
background. That gives the impression that cards of the same look are 
grouped together, as if banded together in the shoebox. I 

'! 



More About System Messages 271 

H the backgrounds of a heterogeneous stack are linked together, then there 
should also be navigation buttons pointing in the right direction and back 
again. For example, in the six-background Projects stack of Focal Point, the 
Summary card features what I call Zoom buttons that link to detail cards in a 
particular category (Figure 14-7). On the detail cards is a single navigation 
button, a return arrow, which takes the user back to the Summary card (Figure 
14-8). The left and right arrow buttons on the Summary card restrict access to 
previous and next cards in the Summary card's background only. 

Arrow Key Navigation 

The keyboard arrow keys, in my opinion, should mimic the arrow keys on the 
screen. Therefore, if your main navigation buttons are left and right arrows, 
and they limit access to cards of a single background, then the left and right 
arrow keys should act identically. If you have up and down arrow buttons, 
then up and down arrow keys should mimic those buttons. 

I believe the best way to handle this is for your arrow Key handler to send 
mouse messages to the navigation buttons on the screen. That way, if you 

File Edit Go Tools Objects 

· ~1 .. 1~1 _____ -~ 
Project fJ . .Q.Q.Q._···--·· .. -·- Sblt Dd:e .9.=J.::.!!.J_._··· »- D.te .J...1 .. : . .L0..: .. !!.1. .......... __ 

Dd:e Completecl -·----····-··-·- ·--

l±l <lient# l..QJ Client NameJ.!\t~!!.f.L __ ···· ··----· 
~ l'rojed -~·(!Y) ronmental RW!::..;rt.__ ___ _ 

~timated Labor $ ..... _ ....... ~.?..~.Q ... Q.9_ 
~Next Pollow-Up_~.i.-:::.!..:..? .. Q.:J!.!! ..... ~ ted Materials $·······-····························· 

Estimated Total $ __ ~.?..50 .00 

~ Invoiced to Date $_1j_[~.OQ_ .. _ ... 

~Payments to Date $ .. ?_~_0Jt.Q.Q.......... Net Outstanding $11675.00 

Receivables 

Figure 14-7 Zoom buttons control navigation fro1!1 summary cards to specific detail cards 
in the Projects stack of Focal Point. 



272 HYPERCARD DEVELOPER'S GUIDE 

Project Name Environ~!!!~~r\...-_ _ _ _ 

My hours .... __ ll;t~ .. @ ....... - ........... J?.!;L per hour = --·-·~.?.P..QJ;l .. Q .. 
Subcontractor A-hours__l .. Q .. @ -·-·--~-Q- per hour = --~Q£L.QQ. 
Subcontractor B-hours @ per hour= O.QO 

Total Labor$L .......... J?.?..~.Q,.Q.Q .. I 
13 VelUM" A # .. [QJ ___ .......... Vendor Name .. ~.~llYl.!l..t!!l.~.n_. __ ............................... . 
13 Vendor B ~---·-- Vendor Name -·-···-······-····-······· .... ·······--·····-···--················-·· 

Figure 14-8 A click on the Zoom button next to the Labor Estimate field on the summary 
card brings you to the Labor Worksheet card for the same project. From here the only 
navigation within the stack is back to the summay card. You may jump to any other stack, 
hawever. 

make a change in the way the screen buttons work, keyboard navigation will 
work the new way without any changes. For example, if you recall the 
mouseDown/mouseStillDown navigation button arrangement in Focal Point 
(earlier in this chapter), the main navigation is done in response to the 
mouseStillDown message. Therefore, in the stack scripts of most stacks is the 
following handler: 

on arrowKey whichKey 
if whlchKey is "left" 
then send ~ouseSt I I I Down to bkgnd button "Prev" 
if whlchKey is "right " 
then send aouseSti I IDown to bkgnd button "Next" 

end arrowKey 

In the case of the backgrounds of heterogeneous stacks, like the Projects stack, 
in which there are no left or right navigation buttons, a handler in the 
background script traps for all arrowKey messages, but does nothing with 



them: 

on arro11Key 
end arro11Key 

More About System Messages 273 

This handler won't let the user navigate in any way with the arrow keys, 
which is exactly what I had in mind for these backgrounds. I wanted to direct 
the user back to the Summary card via the return arrow button on the screen. 
Note, too, that in the earlier arrow Key handler that I do not pass the arrow Key 
message. I trap the up and down arrow Key messages right there. The default 
actions of those keyboard keys (push card and pop card) is usually too 
confusing for novice users. A slip of the finger could cause great confusion. 
Better to disable the keys altogether. 

Menu Navigation 

The final way most users have access to stack navigation is through the Go 
menu. If you are overly concerned about the user getting out of line by using 
the Go menu choices, then you may also trap for the doMenu messages that 
those menu items send. 

If you plan to trap for these·menu items, then I suggest they act the same 
way the left and right arrow buttons and the left and right arrow keys operate. 
Again, the safest way to assure consistency is to send mouse messages to the 
arrow buttons. 

Some information publishing stacks, like Business Class, do not have navi­
gation buttons on their cards. All action is accomplished by clicking on maps 
or icon buttons on the screen. Since strictly linear access to the stack would not 
serve any purpose, I disabled the menu navigation items with this simple 
handler fragment: 

on doMenu whlchlte~ 

If •First,Last,Hext,Prev• contains whichltem 
then exit doMenu 
pass doMenu 

end doMenu 

If any of those four menu items are chosen, the do Menu handler exits without 
passing the doMenu message up the hierarchy. You may use this technique 
to trap for any menu item or items in a single if-then construction, even if the 
menu items are in different menus. 



274 HYPERCARD DEVELOPER'S GUIDE 

Message Box Navigation 

The last category of navigation-giving direct commands via the Message 
Box-is for the more experienced HyperCard user. In other words, even after 
you write limiting arrow button handlers, direct arrow key presses to imitate 
the button handlers, direct Go menu items to the same button handlers, or 
disable both the arrow keys and Go menu items, an experienced user may still 
type navigation commands into the Message Box. With Blind Typing en­
abled, the user may even do so without the Message Box showing on the 
screen. 

For the most part, I've decided to leave this option available to experienced 
HyperCard users. No matter how I resbict or direct navigation through 
buttons, arrow keys, or the Go menu, I leave Message Box navigation open. I 
could always trap for command words, like Go, but I'd end up spending more 
time and script space trying to frustrate an experienced user than in working 
on the productive parts of the stack. Besides, why infuriate someone who 
might be a potential convert to your program? 

One other advantage to leaving the Message Box navigation method open 
is that you can use it during stack development. After you've installed your 
carefully directed navigation system, you may still bypass it all by sending all 
kinds of Go messages via the Message Box. 

Our discussion in this chapter does not exhaust all the possibilities of 
managing system messages or controlling navigation by message manage­
ment. But there should be enough examples here to get you started thinking 
about others for your special needs. In the next chapter, we go into what is a 
mysterious area for many newcomers: writing your own messages and 
passing parameters to them. 



15 
Sending Your Own 
Messages 

In previous chapters, we've already seen instances of writing custom 

handlers that respond to messages other than system messages. For 

instance, when you entered the handlers in your Home stack that locked 

and unlocked all fields on the screen, you wrote custom handlers. The 

messages you type into the Message Box to make those handlers work 

are for all practical purposes commands, just like the commands that 

make up the HyperTalk vocabulary. In this chapter, we'll look more 

closely at the rationale for writing your own handlers and messages, 

how to pass parameters to these handlers, and where such handlers 

belong in your stack product. 



276 HYPERCARD DEVELOPER'S GUIDE 

Commands and Messages 
Everything that goes on in the course of HyperTalk execution is the result of 
messages flowing among various objects. System messages are those gener­
ated by HyperCard in response to some action, like opening a card or clicking 
the mouse atop a button. HyperTalk commands, too, are messages, except 
they usually originate within a handler. 

A simple example would be the following handler 

on mouseUp 
go to next card 

end mouseUp 

The command line in that handler, go to next card, starts with the Go 
command. That command is actually a message sent by this mouseUphan­
dler. On its way up the hierarchy, the message starts looking for a Go handler 
in the button script. In most cases, HyperCard commands like this one reach 
HyperCard unimpeded. Only when you wish to intercept a command and 
modify it in some way would there be a handler ready to trap it along the way, 
as we'll see later. 

Why a Custom Handler? 
With so much of a HyperCard stack's activity driven by user interaction­
tabbing through fields, clicking buttons, opening and closing cards or stacks­
it may seem that all action in a stack would be adequately covered within 
handlers that respond to system messages. But there are times when it is more 
convenient to write a handler that responds to a message whose name you 
invent. 

One case, like the Home stack handlers earlier, surfaces when you wish to 
initiate a particular string of actions that are independent of the stack. Stack 
developers commonly place utility handlers in the Home stack. By typing the 
message into the Message Box from any stack, that operation may be per­
formed in the same manner as a standard H yperTalkcommand. Instead of the 
command reaching HyperCard, however, the command gets only as far as the 
Home stack handler of the same name. U that command should slip past the 
Home stack-perhaps you mistype the command in the Message Box-it will 
go all the way to HyperCard. But since that message is not in HyperCard's 
vocabulary, HyperCard will complain in a dialog box that it does not under­
stand that message. 

What you're doing, however, is essentially extending the command vo-



Sending Your Own Messages 277 

cabulary of your version of HyperCard. Since the command is always 
available to you (by virtue of its location in the Home stack), you are adding 
to the HyperCard command language. But remember that because the 
handler is in your Home stack only, that command will not work in other 
people's stacks, unless they have the identical handler in their own Home 
stack or in the stack they're using. 

Stack Commands 

Another reason for writing your own messages and handlers is to add a 
command to a particular stack-a command that you may access by typing 
the message into the Message Box only in a certain stack. In the Monthly 
Calendar stack of Focal Point is a stack script handler that is available to those 
who wish to print out two adjacent months on a single sheet of paper. The 
handler is this 

on twoPrlnt 
open printing 
print this card 
go to next card 
print this card 
close printing 

end twoPrlnt 

The way you use this handler is to navigate to the first month you wish 
printed. Show the Message Box (or type blindly if you're up to the task) and 
type 

twoPrlnt 

That message goes to the current card first, but eventually finds the twoPrint 
handler in the stack script, and carries out the command. 

Convenience Handlers 

Probably the most valuable way to use your own messages and handlers is to 
write small modules of code that many other handlers in your stack may use. 
Such a module acts as what programmers call a subroutine: a separate module 
that another module's execution takes a detour through, as illustrated in 
Figure 15-1. 

The idea of modular construction has a lot of merit. For one thing, 
HyperCard itself is set up that way, dividing a stack's entire palette of actions 
into small handlers, rather than one giant program. Secondly, when you write 



278 HYPERCARD DEVELOPER'S GUIDE 

on mouseUp 
If field "Tax Rate• is empty 
then answer "Enter tax rate first." r on.ca .. lculate 
else calculate -
get field "Total" +• -------. (commands to calculate) 
go to card "HI story" L · · · 
put return & It after field "Invoices" end calculate 

end mouseUp 

Figure 15-1 Your own handler is like a subroutine, to which another handler temporarily 
branches. When the custom handler is finished, the execution in the original handler picks 
up where it left off. 

small modules, they may often be reused in other stacks. After awhile, you 
may accumulate an impressive library of handlers that find their way into 
many of your stacks. The more you can make the modules generic-relying 
on parameters being passed instead of calling specific objects in a stack by 
name or ID-the more likely you'll be able to use the handlers "as is" in 
another stack. 

As an example of how modular handler programming can be a convenience 
in writing a stack, let's look inside the Client Meeting Record stack of Focal 
Point (Figure 15-2). In this stack, a user creates a new card for each meeting he 
has with a client. The starting and ending times of the meetings are noted in 
their respective fields. When a client is selected from a pop-up list of clients, 
the billing rate is automatically posted to the Billing Rate field in the calcula­
tion box. The instant both starting and ending times are entered into their 
fields, a substantial handler, on c a I c u I at e, figures out the elapsed time (in 
decimal number of hours) and calculates the total billing amount. 

This calculate handler is called as the result of system messages being sent 
to various objects. For instance, whenever a closeField system message is sent 
to the Starting Time, Ending Time, and Billing Rate fields, it is necessary to 
recalculate the total amount. Thus, each of those fields has the following 
handler in it 

on closeField 
calculate 

end closeField 

Closing any other fields on the card does not affect the calculation, so their 
closeField messages are not intercepted. 

There is one more handler that sends the calculate message. Whenever you 
click on the Plus button next to the Client# field, a scrolling text field appears, 
listing all the clients stored in Focal Point's Client stack (Figure 15-3). That field 
is locked, and the user is to click on the name of the client with whom this 
meeting occurs. Among the various things that happen in that field's 



Sending Your Own Messages 279 

File Edit Go Tools Objects 

Date Novem!>~19~.!:l_Location. _l:ly_Qffi&~-----

ffi Oient # .... 19.~---·---·- Oient Name .J:!9.!!.!l.~~J.Q9.i~ .. .l..!l~J!,Jr::!.~.\L_ .................... __ 
lB l'roject# .... .l.P.Q .. L ... _,_ Project _l:..!..§.Q.Q..Mam!.!!L._._ ..................... - ........... __ 

Starting Time ............. 9..;.~.Q .. I!.!!l_ 

Ending Time ~.? .... I!.!!L Elapsed Time 2.25 

[±} Billing Rate ___ .. ____ !?_5_ 

Billing Amount sl t23.75 I 
l:nvc~Ked? D.!!!] 

Planned schedule for manual production. 

Figure 15-2 A custom handler in the Client Meeting stack of Focnl Point calculates 
the elapsed time and total billing amount. This handler is called by many different 
objects, making it convenient to have all calculations in a single handler. 

mouse Up handler is a check to make sure an elapsed time has been calculated, 
meaning that the starting and ending times have already been inserted into 
their respective fields. If the elapsed time has been calculated, then because 
this handler also enters the client's hourly billing rate into the Billing Rate 
field, there is sufficient information to calculate the total billing amount. Thus, 
the calculate message is also sent from that field's mouseUp handler. 

Near the end of development of this stack, I added a plus button next to the 
Billing Rate field. Clicking on this button causes a kind of dialog to appear, 
revealing six radio button choices about the bilHng interval-how often the 
cash register rings, in a manner of speaking (Figure 15-4). Because it is possible 
that the user may adjust this setting after calculations have already been 
completed, it was necessary to trigger a recalculation when the OK button is 
pressed. That was a simple task, because I simply added the Calculate 
command to the handler (in the OK button) that hid the pop-up field and 
buttons. 

The importance of putting the calculate handler in the background is that 
it is present in the stack only one time. Five different objects-four fields and 
one button-rely on that recalculation function, but it would have been very 



280 HYPERCARD DEVELOPER'S GUIDE 

Da~ No~m~r~~aa __ ~tion~M~u~O=ffi=lc=e ________ _ 

I±} Oient II Oient Name 
None 
Abbott Graphics, 1 07,$65 
American Novelty, 1 09,$47.50 
ATD Corporation, 114,$65 
ErqoTronix Corporation, 113,$55 
forbes Music Compeny, 100,$45 
Houndstooth lndUUI.!es, 103,$55 
lnfoSys lnternatloU, 104,$75 
LabSoft, 1 01 ,$50 
Laser Systems, 111,$90 
MetaSystems I nternatlonal, 112,$75 
Ne-w Wave fashions, 102,$65 
Putnam Soft...,are 1 OS 50 

Figure 15-3 Selecting a client (and its billing rate) is cause to trigger the calculate custom 
handler. 

wasteful to place that handler in the script of each object. Moreover, if the user 
wishes to customize the calculation card by adding another factor into the 
formula (and another field to the card), the adjustment to the recalculation 
operation is done in one place, not in the handlers of five or six objects. 

This points to ways you can recognize the need for a separate handler that 
other objects call. If you notice that you are writing many of the same lines of 
HyperTalkcode inside system message handlers of several objects in the same 
stack, that common code can probably be placed more conveniently in a 
handler of its own. 

Convenience and Then Some 

Remember that when you send a message from an object, such as a field or 
button, to a custom handler, all the concepts about the target function apply. 
As a result, information about the target is available to the custom handler. 

To demonstrate what I mean, I'll show you a shortcut to programming the 
highlighting of a group of radio buttons on a card. Until I thought of this 
custom handler, programming radio buttons was a nuisance of setting hilite 
properties of various buttons in the group to true and false, depending on 



Sending Your Own Messages 281 

Date .... ~9.Y~.m.~L4..J .. 'i!.!HL .. I...ocati.on _.t).!l.Qf.f.!.!;.~. -·--·-··---·--·····-·-·-----··-·-···----··­

l±) Oient # _ 1 . .Q.~--······-·· Oient Name _t1 Q.!:J.!l.g~.!.9.Q.!.~.J..!l~.Y.;!!.r.i.~.L---·-··-·--·-
I±) Project# _ LQ!U. ............... Project ... .I.::-. .L!?..Q.Q .. t!~.!:l.Y.~L-... --···············---···············-·····-· 

Starting Time ··---··9..;.~.Q .. ~.m ... . 

Ending Time ... _!.J..:.~.?. .. ~.m .. . 

0 Euery 1 minute 

0 Euery 5 minutes 

0 Euery 1 0 minutes 

( Cancel ) 

Elapsed TiJUe ················--····g,,g.?. .... 
Rate 

~ Euery 15 minutes 

0 Euery 30 minutes 

0 Euery 60 minutes 

( OK ) 

Figure 15-4 Adjusting the billing increment also triggers the calculate handler. If 
the calculation handler needs changing, it doesn't have to be repaired in several places. 

which button was clicked. Now, one custom handler takes care of the entire 
group. And the good thing about this method is that it doesn't rely on the 
radio buttons being created in any particular order or even at the same time. 
If you decide to add a button to the group later, there is a simple change to the 
custom handler. If your design calls for it, you can even have multiple groups 
of radio buttons on the card, yet they won't interfere with each other. 

The custom handler that takes care of a typical four-button group would be: 

on rad i oGroup1 
put "i9,50,51,52" into buttonli s t - - 10 numbers o f buttons 
repeal with x = 1 to the number o f i t ems of buttonlis l 

se t hilite of bkgnd button i d (item x of buttonllsl) t o false 
end repeal 

set hi I ita of the targ e t to true 

end radioGroup1 



282 HYPERCARD DEVELOPER'S GUIDE 

Each radio button in the group, then, has as its mouseUp handler: 

on mouseUp 
radloGroup1 

end mouseUp 

In the custom handler, all radio buttons in the group have their hilite 
properties set to false. Then the button just clicked has its hilite property set 
to true. Notice that the ID numbers of each button in the group are inserted 
into an itemized list within a local variable, called buttonList. If you add a 
button to this group, then simply add its ID number to the itemized list in the 
first line of the handler. 

I named this handler radioGroupl to emphasize that you can have as many 
radio button groups on a card as you need. Each group would have its own 
custom handler, with a different name and with the IDs of the buttons 
belonging to that group. 

There is one more tip about how to use this handler effectively. Since an OK 
button or other action button usually checks the settings of a radio button 
group before acting on the setting, I'd use the radioGroup handler to put the 
number name of the target button into a hidden field or global variable. Thus, 
when the action button is clicked, the user won't have to wait while its handler 
checks the hilite properties of all buttons in the group. It can retrieve the 
current setting from the hidden field or global variable. 

Naming Your Messages 
You may assign virtually any name to your own message and handler, 
provided you follow two guidelines. First, unless you intend to trap a 
HyperTalkcommand and modify its execution, avoid assigning a word from 
the HyperTalk vocabulary to a message and handler. Consider all the 
commands, functions, properties, and constant names as "reserved words," 
which HyperTalk is best keeping to itself. If you use a property name, for 
instance, it might work today, whereas a future release of HyperCard may 
expect that word to work its way through the entire hierarchy. 

Second, a message name must be a single text string, without any punctua­
tion marks as part of the name. This may seem restrictive at first, because your 
message may require more than one word to describe its action fully­
something a message name should do. You have two ways around it. The 
preferred method (preferred by folks like Dan Winkler and myself) is to 
combine multiple words into a single string with capital letters at the begin­
ning of each interior word, much like the multi word system messages you've 



Sending Your Own Messages 283 

seen. Another valid way to link multiple words together in a single string is 
to join them with the underline character. Thus, the name make_ record is an 
acceptable message name. Here are some example .. of valid message names 
(including system messages you've already seen): 

openCard 
doMenu 
update 
updateCard 
update-card different from updateCard 
convert Currency 
exportCardData 
restore_sett ings 

Note that you may use HyperTalk reserved words within a longer message 
name without fear of conflict. What you really must give some thought to is 
that the name mean something to you six months from now or that someone 
who may be customizing the stack for his own use can make sense out of your 
message naming scheme. I usually find it best to begin a message name with 
a verb of some kind, indicating some action that the handler does. Use a 
second and third word to help narrow the purpose, sender, or recipient of the 
action. 

Modifying HyperTalk Commands 
HyperTalk commands tend to be simple and generic. They perform basic 
operations that are generally quite useful on their own. But that's not to say 
they don't need help sometimes in being more specific or more powerful in 
their operation. You have the power to intercept those commands and modify 
them as you see fit. 

An excellent example of how this works can be found in the Phone stack, 
which comes with HyperCard (Figure 15-5). At the core of the stack is 
HyperCard's Dial command, which lets you add some parameters about the 
telephone number, modem control, and modem commands. In an effort to 
simplify the need to specify a complex set of parameters, the Phone stack has 
a dial handler of its own,. which can intercept any dial message that passes 
through the stack. The handler accepts the telephone number as one parame­
ter. All other settings are established by radio button settings and the contents 
of a few fields on the Phone stack's dialing card. 

Among the tasks that the enhanced dial handler takes care of is stripping 
out your own area code if it's attached to a number. It also makes sure that the 



284 HYPERCARD DEVELOPER'S GUIDE 

Click ht!n ! to dial -
0 Speaker (tone dialing) 
® Modem (tone dieli ng) 
0 Modem (pulse dialing) 

Local Area Code: 

Outside 1i ne: 
Toll call : 
long distance: 
International : 

Area Codes 

9:38AM 

..2_......__ 

J.·----······· 
.. L .... ·-············ 
Jl..!.! ___ 

(1) ~ 

Figure 15-5 The HyperCard Phone stack modifies the Dial message before it gets to 
HyperCard. 

rest of the number contains valid digits, stripping out unwanted characters 
before and after the telephone number. Any prefixes you specify, like dialing 
9 to get an outside line, are inserted in front of the number. When the final 
telephone number is ready for dialing, the handler then summons the Hyper­
Card Dial command again, but this time sending it directly to HyperCard. A 
fragment of the script appears in Figure 15-6. The handler can't send the Dial 
command to the current card, because it would be intercepted by the handler 
that sent it, causing too much recursion and an error. 

Passing Parameters 
HyperTalk provides a mechanism whereby one handler may pass values to 
another handler by tacking parameters onto a message name. We saw that 
effectively in the arrow Key system message. There, the direction of the arrow 
is always sent along with the arrow Key message when one of the arrow keys 
is pressed on the keyboard. The parameter is text, just like everything in 
HyperTalk, and is plugged into a local variable at the start of the handler. 



Sending Your Own Messages 285 

Script of stack Phone 

on doOial diaiHumber 
put "How dialing: " & dlaiNumber 

If hi II te of bkgnd button "IIIOdem <tone dialing)" 
then send "dial• && quote & dialtlumber & quote && "with cnodem .. && -. 
quote & "ATSO=OOT" & quote to HyperCard 

if hi I i te of bkgnd button "IAOdem <pulse dialing)" 
then send "dial" && quote & dial Number & quote && "with modem" && -. 
quote & "ATSO=ODP" & quote to HyperCard 

if hill te of bkgnd button "speaker <tone dialing> .. 
then send "dial" && quote & dlaiNumber & quote to HyperCard 

put empty 

end doDial 

( Find J ( Print J ~~ [cancel) 

Figure 15-6 In the stack's script is a handler (doDial) that is called by a dial handler that 
intercepts nonnal HyperTalk Dial commands. After much manipulation of the phone 
number, the handler sends a Dial command directly to HyperCard. 

Therefore, you press the right arrow key on the keyboard, and your stack has 
an arrow Key handler in it like this, 

on arrowKey whichKey 

end arrowKey 

HyperCard places the word "right'' into the local variable, whichKey, at the 
beginning of the handler. To find out which key has been pressed, the handler 
must compare the value of the whichKey variable against parameters it 
expects (e.g., I f 11 h i c h Key i s • r i g h t • t hen go next car d). 

Generating a message with a parameter is simple, but perhaps examples 
you've seen have been confusing because of the way variables seem to pass 
from one variable name to another in the process. Let's take a simple (if not 
simplistic) example to see more precisely what's going on. Consider these two 
handlers: 

on mouseUp 
get field •subtotal" 
addS a I esT ax it 

end mouseUp 



286 HYPERCARD DEVELOPER'S GUIDE 

on addSalesTax amount 
put amount * .05 into field •sales Tax• 
put field •subTotal• + field •sales Tax• ~ 

Into field •Grand Total• 
end addSalesTax 

In the first handler, the subtotal amount from a fonn is put into the local 
variable, It. Then the handler sends the addSalesTax message, along with the 
value of It. The name of the parameter is of absolutely no consequence while 
the message is being sent. Only the value matters. The message could just as 
easily have been 

addSalesTax field •subTotal• 

because the value of the field is all the message cares about. 
At the addSalesTax handler, there is a local variable sitting ready to catch 

one parameter that may come along with the message. If no parameter were 
sent with the message (i.e., the message would be just adds a I esT ax ) , then the 
local variable, amount, would be empty. If a value comes along as a 
parameter, then the value is plugged into the variable. Once that value is in 
the variable, the handler treats the variable as a kind of read-only variable. 
This is an important point: Do not adjust the content of a parameter variable, 
which holds a parameter passed with a message. If you need to change values, 
like converting a date to a different type before performing some calculation 
on it, put the contents of a parameter-holding variable into yet a different local 
variable. You are free to run endless comparisons (if-then-else constructions) 
against the variable parameter, but don't convert it, add anything to it, or in 
any way alter the contents of such a variable. 

Passing Multiple Parameters 

H yperTalk offers a syntax for passing more than one parameter at a time with 
a message. Both at the message sending end and at the handler end, the 
parameters are separated by commas. To illustrate, we'll present excerpts 
from the button script in Focal Point that builds and extends stacks for which 
there is a card for each day of the year. 

To help you understand what's going on here, the card containing this 
button is shown in Figure 15-7. The button whose script we'll be describing 
is the one labeled ''Build or Extend" along the bottom row of buttons. We 
won't go through the entire handler here, but suffice it to say that the first part 
of the handler calculates how many days there are between the starting and 
ending dates that the user types into the two fields. Then the handler checks 



Sending Your Own Messages 287 

o·· 
D 
D 

Several steeles must be built or extended Yith one dated card for each day or Yeelc 
t n the year. focal Point Yill create and date those cards for you. In the blanks 
belw # enter the starti no and endi no dates for these steeles. We suggest a span of 6 
months or a year to start. 

D --tbeSfAilJIIIl- __.._11.w:/ ....... 2:...::4-=-'8=-7=------D -·DIIortr.EIIDIIIl-~12=/...,.3_.1 ... 1.=.8=8 ____ _ 

r--1 

U C11clc to check the staclc(s) ~u Yish to build or extend. 

n u 
II 
LJ 

Figure 15-7 A script in the Build or Extend button has custom handlers that pass 
multiple parameters. 

the state of each of the check marks next to the names of the four possible 
Focal Point stacks that need building or extending. If the user does not have 
all four installed in his system, then he need build or extend only those stack 
he's currently using. To select a stack for inclusion in the building process, the 
user clicks on the stack name, and a checkmark appears next to the name. The 
handler sets four local variables to true or false, depending on the check mark 
setting. If the user specifies that the Daily Appointment stack should be 
extended, then the local variable called OKDaily is set to true. 

Three of the stacks, the Daily Appointment, To Do and Time Sheet stacks, 
all use the same stack building routine, a separate handler called makeDaily­
Cards. This handler requires three parameters: the starting date, the number 
of days to build and a true or false setting as to whether some global 
information about the person's name and department should be inserted on 
each card (true only for the Time Sheets stack). The first two parameters are 
assigned to local variables in the rnouseUp handler, and then passed as 
parameters. Those values are plugged into parameter variables in the 
makeDailyCards handler. One of the parameters happens to carry the same 
name, but that is only a convenience of a good name that serves the value well 



288 HYPERCARD DEVELOPER'S GUIDE 

in both handlers. 
Here's a sketch of the mouseUp handler (statements in brackets are in 

pseudo-code, standing in for more complex HyperTalk code in the real 
handler.): 

on 11ouseUp 
put card field "Starting Date" Into startDate 
[calculate nu11ber of days between start and finish dates] 
put [total number of days] into howManyDays 

If card field •check Dai ly• contains ·~· 

then put true Into OKDal ly 
else put false Into OKDally 

[salle for each of the other three checkmark fields] 

If OKDa I I y then 
go to last card of stack •FP•Dal ly" 
11akeDal lyCards startDate,howManyDays,false 

end If 

If OKToDo then 
go to last card of stack •FP•To Do" 
11akeDai lyCards startDate,howManyDays,false 

end If 

[Instructions for Expenses stack cal Is a different handler] 

If OKTI11eSheets then 
go to last card of stack "FP•Time Sheet" 
11akeOal lyCards startDate,howManyDays,true 

end if 

[some other housekeeping tasks] 

end mouseUp 

In the same button script is this handler (simplified a bit for purposes of 
demonstration): 

on makeDal lyCards startDate,howMany,personal I zed 
global theHa11e,theDepart11ent 
put startDate Into theDate 
put startDate Into dateCounter 



repeat for howMany 
convert theDate to long date 

If persona II zed then · 
put theHame into field "Hame" 

Sending Your Own Messages 289 

put theDepartment Into field "Department" 
end if 
put theDate Into field "Date" 
add (24*60*60) to dateCounter -- add one day 
put dateCounter into theDate 
doMenu "Hew Card" 

end repeat 
end makeDal lyCards 

While the fine points about handling dates will be covered in Chapter 19, a key 
element to note about this handler is that multiple parameters were received 
by the message in the same order in which the message was sent, and that 
parameters were separated by commas. Also note that the values assigned to 
the parameter variables were unchanged during execution of the handler, 
even though they were used many times in a read-only fashion. To accommo­
date arithmetic operations on the startDate value, it was handed off to other 
local variables, theDate and dateCounter. 

Parameter Variables and the Param Function 

HyperTalk actually gives you two ways to pass parameters to a handler. One 
way is as we've been describing here, in which you assign a parameter 
variable name in the opening line of a handler (e.g., on make cards how Many). 
But if you don't declare a parameter variable name in your handler, you can 
also use the Param function to retrieve the value(s) passed with the message. 
This version would start like this: 

on makeCards 
put param ( 1) Into howMany 

end makeCards 

My preference is for named parameter variables, because it's faster (in handler 
execution) to let values pass naturally than to add a Put statement to accom­
plish the same thing. 



290 HYPERCARD DEVELOPER'S GUIDE 

Parameters and Global Variables 

Because parameter passing may be new to HyperTalk programmers, there is 
often a tendency to avoid them and pass data with global variables instead. 
Global variables, you'll recall, are containers that hold values (text or num­
bers) all during a HyperCard session. Once you set a global variable to hold 
a particular value, that value will remain there until a command in a handler 
alters the contents or you quit HyperCard. Even going from stack to stack 
does not alter the content of a global variable. 

Using lots of global variables presents some potential difficulties. For one, 
if your stack system relies on several global variables, and the user makes a 
slight detour to another stack designed by someone else, it's possible that the 
second stack could use the same global variable name, and store entirely 
different data in that variable. Upon return to your stack, the variable may 
hold the wrong kind of information a handler expects. Second, I've seen some 
complex stacks using dozens and dozens of global variables. I don't know 
how the author kept track of them all. It would seem like a developmental 
nightmare to know where all those globals are at any given moment. 

Quite often, one or more global variables are created and used when the 
data stored therein has a very short life. Yet the variable stays there until you 
quit HyperCard. If you find yourself declaring a large number of global 
variables, look for the possibility of passing parameters around during the 
execution of your handlers instead. Stack organizations and data require­
ments vary way too much for me to provide hard and fast rules about this, but 
passing parameters is a more efficient method of getting information from one 
handler to another. And you'll sleep better not having to worry about where 
your globals are. 

Don't get me wrong about global variables. There are times when they are 
the right way to go. In fact, in the previous handler, you'll note that I use two 
globals to carry the name and department of the Focal Point user throughout 
the system. These globals are first declared and given their values while the 
user is looking at the Focal Point startup screen. This information is required 
by several different stacks at various times. Globals proved to be the most 
efficient way-in time-to handle this data among the 18 Focal Point stacks. 
The alternative was time-consuming, stack-to-stack information retrieval. 

While we're on the subject of global variables, I've seen a disturbing 
tendency in some stacks to declare a raft of global variables without using 
them right away. Hear this: You don't need to declare a global variable unless 
you are using it in the same handler as the declaration. Even if you declare 
three globals together in one handler, like this 



Sending Your Own Messages 291 

on 11ouseUp 
global startTi111e, interval,cl ientllst 

end 11ouseUp 

you don't have to declare all of them again when another handler needs only 
one of them. Nor do they have to be in the same order (although for 
readability'ssakeithelpsifthey are). Therefore, in the samestackas the above 
handler, another button might start out this way: 

on 11ouseUp 
global cl lentllst,vendorllst 

end IIIOUSeUp 

One other global variable tip for multiple stack systems. If you find that you 
need to keep a global variable alive just within individual stacks of the system 
but not from stack-to-stack, then feel free to reuse the global variable name in 
each of the stacks. Just be sure that the openStack handler of each stack stores 
appropriate data for the newly opened stack in the global variable. I do this 
in five similar stacks in Focal Point: the Daily, To Do, Monthly, Expenses and 
Time Sheet stacks. A global variable, called interval, remembers which next/ 
previous card interval is selected on the stack's navigation bar. When the 
stack opens, the smallest interval is automatically inserted (monthly for the 
Monthly calendar, daily for the rest). If you click on the interval button, say 
to change from daily to monthly interval, the new value is stored in the global 
variable. The next time you click the right or left arrow navigation buttons, the 
handlers check the contents of the interval global before figuring out which 
card to advance to. 

In summary, be parsimonious with your global variables, and look for 
ways to pass parameters to your own handlers via custom messages of your 
own creation. .: 

You'll have another opportunity to think creatively, as we next explore 
user-defined functions. Get ready for some more parameters, too. 



16 
User-Defined Functions 

In your experimentation with designing stacks, I'm sure you've dis"' 

covered that HyperTalk' s built-in functions can be pretty powerful 

words in your scripts. Functions, as you'll recall, return values that 

commands may use in many ways. 

Perhaps the most common function used in information manage.­

ment stacks is the Date, which reaches into the Macintosh internal clock 

and returns the date to which the clock is set. You then use the function 

within a command, like put the date into field "Date," HyperTalk offers 

functions and date, text manipulation, mouse and cursor locations, 

keyboard modifier key conditions and more. But as powerful as 

HyperTalk's built-in functions are, a HyperCard author has still mor~ 

power available in the form of user-defined functions are, a HyperCard 



294 HYPERCARD DEVELOPER'S GUIDE 

author has still more power available in the form of user-defined functions­
functions that you design for your own script needs. 

What User-Defined Functions Do 
While most of the HyperTalk built-in functions return information about the 
system or a container (e.g., the length of a field), it may not be so clear why 
you'd want to define a function for yourself. After all, except by writing 
XCMDs, you don't have access to the Macintosh's "innards" to retrieve other 
system information. However, you may encounter situations in which you 
are repeating certain calculations. You may also wish to divide a long handler 
into modules that make the main module easy to read by you and others. 
Functions can help offload much of the technical details of the script's total 
execution, making the main handler a work of HyperTalk poetry. 

Functions and the Hierarchy 
The concept of message passing from object to object along the HyperCard 
hierarchy applies identically to functions. When a handler calls a function, 
that function name is sent up the hierarchy as a message, just like a command. 
That function message seeks a handler that starts, not with the word "on," but 
with the word ''function." Because of its relative position in a command line, 
a function message with the same name as a command message will be 
intercepted only by function handlers (although for purposes of readability 
and debugging I don't recommend you use the same names for user-defined 
functions and commands in the same stack). 

All rules about handlers intercepting messages on their way up the hierar­
chy apply to functions. That means that you could conceivably have two 
functions of the same name at different hierarchy levels-perhaps in one 
button script and in the background script. While it's not likely you'd do such 
a thing, it's comforting to know that you can pass a function just like you can 
pass a command. Therefore, if you call a function but need some slight 
modification for a particular button, the button script would look like this: 

on mouseUp 
put myFunctlon() into field 3 

end mouseUp 

function myFunction 
[special processing for this button only] 



pass myFunctlon 
end myFunction 

User-Defined Functions 295 

As you may have also guessed by now, you may also trap for HyperTalk's 
built-in functions before they reach HyperCard for execution. Be careful if 
you do this, because your modifications must not attempt to modify parame­
ters passed along with the function. Leave the contents of parameter variables 
intact. One thing you cannot do with functions that you can with commands 
is send them to a particular level to jump the normal hierarchy. 

Function Syntax 
User-defined functions are slightly more restrictive in the way you can call 
them inside a command line. Whereas most H yperTalk built-in functions 
may be summoned in two ways, as in 

the number of bkgnd buttons 

or 

number (bkgnd buttons) 

user-defined functions must use the latter format, with parentheses sur­
rounding any parameters that may be sent along with the function. When a 
function does not have any parameters, the parentheses must be there just the 
same, but with nothing between them. And user-defined functions are not 
preceded by the word,"the." Although you rarely see HyperTalk's built-in 
functions expressed with parentheses, the following functions are in valid 
formats: 

long date() 
mouseloc() 
numToChar(65) 
seconds() 

In thinking up names for your functions, it's still a good idea to consider the 
phraseology of HyperTalk' s built-in functions. For example, when a function 
requires a parameter, it is common to say the phrase, "the numToChar of 66," 
where "66" is the parameter. Functions without parameters can be thought 
of as being preceded by the word "the." As you write the command line 
containing your function, say the line aloud, with and without "'the." If either 



296 HYPERCARD DEVELOPER'S GUIDE 

version sounds like good English and the function name makes sense in the 
context of the command line, then you've got a good function name. 

Returned Values 
All functions must have a Return command line in them. This line is typically 
the last one prior to the end of the function, although some functions might 
have several if more than one outcome is possible, as in the following: 

function grade score 
if score < 75 then return .. Fa II" 
else If score< 80 then return .. Fair" 
else If score< 90 then return .. Good" 
e I se return "Exce I I ent" 

end grade 

A function can return more than a single value, even though it looks as though 
the Return command allows only a single parameter. The key is to place 
multiple words, items, or lines of text into a single local variable within the 
function handler. Then return that variable. Whatever that variable would 
naturally evaluate to (e.g., a comma-separated, itemized HyperCard string), 
that's what gets sent back to the original handler that called the function. In 
a hypothetical example, here's how multiple return values would work in a 
button script: 

on aouseUp 
get monthRndYear() 
put lte11 1 of It Into field "Month" 
put Jtea 2 of It Into field 11 Year" 

end aouseUp 

function aonthRndYear 
get the long date 
put word 2 of It into item 1 of 11onthYear 
put last word of It Into ite11 2 of 11onthYear 
return monthYear 

end monthRndYear 

Because the words for the month and year were placed into an itemized list 
within a local variable, the contents of that variable were returned verbatim 
to the handler that called the function. 



User-Defined Functions 297 

Function Modularity 
Just as you may build a library of your own commands and handlers over 
time, you are equally likely to build a library of your own functions. H you 
design several stacks in the same category (e.g., information management), 
you'll probably find yourself attacking various organizational and opera­
tional problems with similar solutions across your stacks. Development time 
will be speeded up if you break out functions from your large handlers and 
reuse them in other stacks. 

As you'll see later in this chapter, functions may call other functions. 
Therefore, it is advisable to keep function handlers as small and as modular 
as possible. You may be able to mix and match functions on different 
occasions. That means that you should try to make functions as generic as 
possible. A void calling objects by name; let the name be passed to the function 
as a parameter. And use parameter passing instead of global variables as the 
primary means of passing information to the function. You might not use the 
same global variable scheme in the next stack employing that function. 

Simple Functions 
The simplest kind of function is one similar to the non-parameter passing 
functions built into HyperCard, like date and mouse functions. A simple 
function returns a single value. 

The best way to learn about functions is to test them out, so make a stack for 
this chapter, as you did for some of the previous chapters: 

1. Open the Developer's Guide Master stack, created in Chapter 12. 

2. Choose Save a Copy from the File menu. 

3. Type "Chapter 16 Stack" into the file dialog box. 

4. Open Chapter 16 Stack via the Open Stack choice of the File menu. 

Name each of the five fields in the first card of the stack with the Field Info 
dialog box. The exact names you use won't make much difference for the 
purposes of the examples in this chapter. It's a good idea to get in the habit 
of naming objects, especially fields, buttons and backgrounds. 

Our first function goes into the background script. Here it is: 



298 HYPERCARD DEVELOPER'S GUIDE 

function allFIIIed 
repeat with x = 1 to the nu~ber of bkgnd fields - 1 

If field xis e11pty then 
put false into fllledOut 
exit repeat 

else put true into fllledOut 
end repeat 
return fllledOut 

end allFilled 

This function returns true if all fields have text in them. You might use a 
function like this !n a background containing fields that undergo substantial 
math, like an invoice form. Before proceeding with the arithmetic, presuma­
bly as the result of a button press or a closeField message, you will want to 
make sure all fields except the Grand Total field (the last field in tabbing order) 
have numbers in them. If the math calculation handler should try the 
operation and encounter a blank field, the handler will stop and display a 
HyperCard error alert box, which could confuse the non-Hyper Literate user. 
A fine point about the if-then construction: It exits the entire repeat loop when 
a field shows empty, because if one field is empty then that's all the function 
needs to know to return false. There's no need to continue rounding the repeat 
loop any more. 

To see this function in action, create a new button and place it in the upper 
right box. Assign the name Calculate to the button, and enter this handler: 

on ~ouseUp 

if not aiiFIIIed() 
then answer "Sorry, so~e infor~ation is ~lssing." 
else 

put zero into su~ 
repeat with x = 1 to 4 

add field x to su~ 

end repeat 
put su11 Into field 5 

end if 
end 11ouseUp 

This mouse Up handler depends entirely on a true or false result of the allFilled 
function. When the function returns false (ie., not allFilled), then a warning 
box appears on the screen and no calculation takes place; otherwise, the first 
four fields are added together, their total placed in field 5. The best place for 
the allFilled function handler is in the background or stack script, because 
several objects may call this function. If objects in different backgrounds call 
this general purpose function, then it definitely belongs in the stack script. 



User-Defined Functions 299 

Passing Parameters 
Our next function demonstrates how you may pass a parameter along with a 
function. The example is another general purpose kind of function that would 
go in many information management stacks in which the user enters mone­
tary numbers. Computer users who are familiar with spreadsheet programs 
are accustomed to setting a number format so that no matter what kind of 
number they type into the cell, the program always displays it as a number 
with two places to the right of the decimal-in dollars and cents. 

The two Decimal function, listed below, works in conjunction with a field or 
background level closeField handler. As soon as a user tabs or otherwise 
closes the field, the function returns the equivalent value with two digits to the 
right of the decimal The closeField handler then replaces the value that the 
user typed with the correctly formatted version. 

Here, then, are the closeField and twoDecimal function handlers. Type 
these into the background script of the first Chapter 16 Stack background. 

on closeField 
get the short na~e of the target 
put twoDeclraal (the value of the target) into field it 

end closeField 

function twoDeci~al figure 
get figure 
set nuoberFormat to •o.oo• 
add 0 to it 
return It 

end t11oDeci~al 

First, in the closeField handler, the parameter being passed with the function 
name is, itself, a function: the value of the target. Before HyperCard sends the 
twoDecimal function message on its way in search of a matching function 
handler, it evaluates the current function. In this case, it fetches the content of 
the field that generated the closeField message to begin with. Whatever the 
twoDecimal function returns will be going back into that very field. 

Inside the function handler, the parameter variable is copied into the local 
variable, It. After the number format property of HyperCard is changed 
(remember, it resumes normal format at idle time), a harmless zero is added 
to the value. This is all HyperTalk needs to apply the new number format to 
the value. Then, the newly formatted value is returned to the calling handler. 

Try this handler in the Chapter 16 stack. Enter values into any of the five 
fields on the card. As you press Tab or Enter, or click on the card, the value 
is converted into the dollars and cents format. If the dollar sign is important 



300 HYPERCARD DEVELOPER'S GUIDE 

for your display, you could also add that to the function, or, better yet, write 
a different function with a more descriptive name for the currency symbol: -

functIon do II arsAndCent s fIgure 
get figure 
set numberFormat to ·o.oo• 
add 0 to It 
return ''$" && it 

end dol larsAndCents 

Multiple Parameters 
Our next example actually demonstrates two techniques at once: passing 
more than one parameter at a time, and calling one user-defined function from 
within another user-defined function. You'll also get a touch of date arithme­
tic thrown in for good measure. 

The situation calling for these functions is a stack that needs to display the 
number of the day for today's date, like the 145th day of the year. While this 
could be written as a single function, the two modules turn out to be a logical 
approach, and each module becomes a piece of our function library. A 
function like this would probably be called from an openCard handler, so that 
the display of the day number would be automatic whenever the card came 
on the screen. Thus, the openCard handler would be 

on openCard 
put dayOfYear() into field "Day Humber" 

end openCard 

The main function, dayOfY ear, does not pass any parameters, because it takes 
its cue from the internal Macintosh clock. But the dayOfY ear function calls 
another user-defined function, called wholeMonthDays to offload some of 
the detail calculation to figure out how many days have elapsed in the 
completed months of the current year. Here are the two function handlers: 

function dayOfYear 
get the date 
convert It to date I te11s 
put wholeMonthDays (itell of itJ itera 2 of it) Into a11ount 
add ite11 3 of It to a11ount 
return amount 

end dayOfYear 



User-Defined Functions 301 

function wholeMonthDays year,month 
If year mod 1 is zero then put true Into leapYear 
else put false into leapYear 
put empty Into total 

repeat wIth X = 0 to month -
If X IZ 0 then next repeat 
If X = 2 then 

If leapYear then add 29 to total 
else add 28 to total 

else If •1,3,5,7,6,9,10,12• contains x 
then add 31 to total 
else add 30 to total 

end repeat 

return total 
end wholeMonthDays 

The first function handler extracts the year and month items (item 1 and item 
2) from the dateltems version of today' s date (see the Convert command 
discussion in the Handbook for a refresher on the dateltems format). Those two 
items are passed as parameters to the wholeMonthDays function. As In 
passing parameters with commands, the variable names assigned to parame­
ters may change in the transition between caller and "callee," because only the 
values are passed. That's great news, because the two parameters to the 
wholeMonthDays function may be renamed to something more meaningful, 
year and month, instead of 11item 1 of it" and 11item 2 of it." 

We needn't go into detail here about the inner workings of the whol­
eMonthDays function (we'll cover its command again in Chapter 19), but 
suffice it to say that the function checks for leap years, and accumulates a total 
of the days of completed months up to the previous month. The total number 
of days of completed months are then returned to the dayOfY ear function, 
which adds the current month's date to that figure. The final total is what gets 
returned back to the calling openCard handler, and the correct number of the 
current day is ready for insertion into the specified field. 

Using Your Function Library 
As a stack developer, you will likely be gathering functions and adding them 
to your library. Because functions follow the HyperCard hierarchy, the 
temptation will be to place your library of functions in your Home stack. Thus, 



302 HYPERCARD DEVELOPER'S GUIDE 

anytime you need the function, you know it's available for you in whatever 
stack you're working on. 

The hazard with this methodology is that you may forget the function is in 
your Home stack, and not in your developmental stack. When someone tries 
to test your stack on a different Macintosh, it's unlikely that your function will 
be in that person's Home stack. 

Now, I don't believe you should be so worried about this that you remove 
your functions from your Home stack. As it turns out, that's a pretty good 
place to store them. Just be sure you test your stack on a fresh Home stack or 
on other machines to make sure all your function handlers are within the stack 
itself. Otherwise it gets mighty embarrassing to demonstrate a stack on a 
strange machine and to see a "Can't understand ... " error dialog box with your 
prized function's name on display. If you follow testing guidelines described 
in Chapter 21, then you'll find holes like this very early in development. 

From functions we head into another subject that is a bit confusing for many 
first-time programmers: control structures. But experienced HyperCard 
authors should also be aware of the control structure performance issues 
explained in the next chapter. 



17 
Diving Deeper Into 
Control Structures 

The term "control structure" comes from traditional programming 

environments in which a program usually consists of a long series of 

statements (commands, for instance). In such a program, a control 

structure influences the flow of program execution-down one of two 

or more paths or in a repetitive loop. In other words, a control structure 

alters the normal, linear flow of the program statements. 

HyperTalk programs, if you can call them that, are not really long 

sequences of statements, but small modules triggered by messages 

passing up the object hierarchy. If it can be said there is any kind of 

program flow, it is predominantly within a given handler only. Unlike 

programs written in other traditional languages, when the program is 

at rest, there is usually no HyperTalk execution taking place (with the 



304 HYPERCARD DEVELOPER'S GUIDE 

exception of idle handlers). Therefore, talking about control structures in 
HyperTalk stretches the definition, or at least the intent, of the term. 

Control Basics 
H yperTalk offers several ways of altering the execution flow of a handler. The 
two basic categories are if-then-else and repeat constructions. 

H-then-else constructions perform a kind of simple decision making, pre­
senting a programming equivalent to the fork in the road, when both paths 
eventually merge into one road again later. The author determines under 
which condition(s) the handler follows one path or the other. Additionally, 
each pathway may, itself, have another fork in it. No matter how many 
decisions the handler has to make, a control structure dictates that flow 
always returns to a single path. There are some exceptions. For example, in 
a roadway metaphor, let's say the decision to make one fork in the journey 
from point A to point B is whether to take the twisty, narrow mountain pass 
or the four-lane highway. The decision factor involved is the weather. If the 
weather is clear, then take the mountain pass, otherwise take the highway. 
While taking the mountain pass route of the fork, if a previous storm left the 
pass so muddy that your car gets stuck and damaged, then a helicopter airlifts 
you and your car out of the mountains, and the journey ends. We'll see more 
illustrations and examples of if-then-else constructions later. 

Repeat constructions, although control structures, bear no resemblance to 
if-then-else constructions. Repeat constructions let you set up loops in the 
pathway of a handler's execution. Loops do just what they sound like they do: 
Execution goes round and round within a number of statements in the 
handler, sort of like driving into and getting caught in a traffic circle. Repeat 
loops are handy when you need to perform the same operation on a number 
of objects on a card. The Home stack handlers for locking and unlocking all 
fields on a card (Chapter 13) are a good example of that. 

The handler author determines under what conditions execution may exit 
the repeat construction and what happens during each time through the loop. 
Loops may be executed a specific number of times or until a certain condition 
is met. Statements in the loop generally do something slightly different each 
time or at least modify the condition of some object or value during each loop. 
For example, statements in a loop might affect a different object during each 
time through the loop, as in the lock/unlock field handlers. If nothing 
changed during loop execution, and the loop was waiting for some condition 
to end the loop, then you'd have an infinite loop, which means that handler 
execution would never pass beyond the repeat construction. You obviously 
do not want an infinite loop in your handlers. 



Diving Deeper Into Control Structures 305 

If-Then-Else Constructions 
In case you're still not sure how if-then-else constructions work, this section 
should offer help. Because these constructions impact the flow of execution 
within a handler, I believe it may help to picture some of the possibilities with 
my version of what is called a "flow chart." Flow charting-a somewhat 
archaic concept these days in computing-illustrates the pathways that a 
program takes. Some programmers might take exception to illustrating 
HyperTalk'sif-then-elseconstructions with flowcharts, but they work forme, 
and I think they'll work for you, too. 

The diagrams on the next few pages show five possible if-then-else con­
structions and the corresponding H yperTalk code. First, a few conventions 
used in the diagrams and program listings. As you should be aware by now, 
if-then-else constructions test for some condition at the very beginning. These 
tests usually involve a comparison of two numeric or text values, like whether 
the target contains the word ''button" or whether field "Total" is greater than 
10,000. Such comparisons always return either a t rue or fa I s e response. 
Therefore, immediately after the If statement in an if-then-else construction 
must be some comparison or other value that returns the H yperTalk constants 
True or False. In the diagrams, the If statement and its comparison is 
represented by a diamond. Two pathways branch from the diamond, one 
representing the path followed when the comparison yields true, the other for 
false. Then, squares represent HyperTalk statements that execute along 
various pathways. The statements are labeled with the letter "S" and a 
number to differentiate one statement from others. In the accompanying 
HyperTalk schematic example for each repeat structure, the statements are 
shown in their proper places with their numbers. Compare the S numbers in 
the code listing with their corresponding statement squares in the diagram to 
visualize how the HyperTalk handler treats various types of if-then-else 
constructions. 

Figure 17-1 shows the simplest kind of if-then-else construction. It's so 
simple, in fact, that it is just an if-then construction. There is only one possible 
detour, 51. If the condition tested by the If statement proves false, then 
execution continues unchanged. In real life, a handler with this construction 
would look like this: 

on mouseUp 
get the selection --put selected text Into It 
go to stack uAddressh 

If It is not empty then find it 
end 11ouseUp 



306 HYPERCARD DEVELOPER'S GUIDE 

false 

Figure 17-1 The simplest if-then construction. 

In Figure 17-2, we add a second possible path to the construction, by adding 
an Else statement. This is how you produce two distinctly different paths, 
depending on the outcome of the If statement comparison. Notice that the 
H yperTalk version might give the impression to inexperienced control struc­
ture users that statement S2 gets executed after statement Sl. The diagram 
shows how that is not true at all. Nonnal handler execution resumes after the 
else statement. 

We've already seen one example of an if-then-else construction: 

on mouseUp 

If card field "Check Dally" contains ".,f" 

then put true Into OKDal ly 
else put false Into OKDally 

end 11ouseUp 

Figure 17-2 The simplest if-then-else construction. 

If true 
then S1 
else S2 



Diving Deeper Into Control Structures 307 

By the time this if-then-else structure is complete, the handler will have gone 
through one path ("then") or the other(" else"). There is no possibility that the 
local variable OKDaily will be empty after this structure. 

Going up one more rung in the ladder of complexity, Figure 17-3 shows our 
first nested if-then-else construction, which means you can place an if-then­
else construction inside another one, as the logic of your decision making 
dictates. In the diagram, statement Sl executes only when the first ("outer­
most'') If statement proves true. If that If statement is false, then it immedi­
ately encounters another If statement. If the second one is true, then statement 
S2 executes. Notice, that the only way for the handler execution path to reach 
statement S2 is for the first If test to come up false and the second one true. 
Earlier in the book, we trapped for the left and right arrow keys with this kind 
of if-then-else statement: 

on arrowKey whlchKey 
If whichKey Is •left• then go to previous card 
else If whichKey is •right• then go to next card 

end arrowKey 

The only time the handler goes to the next card is when the arrow key pressed 
is NOT the left but IS the right. And, when the arrow key is up, for example, 
both If comparisons return false, and no statements execute in this handler 
when that key is pressed. Thus, the handler (intentionally) disables the up and 

True 

If true 
then S1 
else If true 
then S2 

Figure 17-3 Despite the look of the HyperTalk version, only one statement can be executed 
in this construction, and it's possible that no statement is executed (when both If tests 
return False). 



308 HYPERCARD DEVELOPER'S GUIDE 

down arrow keys. To make the handler beep when any other arrow key is 
pressed, you'd add one more else statement at the bottom: 

on arrowKey whlchKey 
If whlchKey Is •left• then go to previous card 
else If whlchKey Is •right• then go to next card 
else beep 

end arrowKey 

This additional else statement is illustrated in the diagram of Figure 17-4. Of 
all three statements in the diagram, only one statement can be executed in the 
course of the if-then-else construction, depending solely on the results of the 
if statement comparisons. 

The inverse of the structure illustrated in Figure 17-3 is worth showing in 
Figure 17-5, not because any different decision nesting is going on, but 
because the HyperTalk version looks different. You may nest an if statement 
directly beneath another if statement if the second decision point occurs along 
the TRUE path of the first decision point. 

Our last if-then-else flow diagram is Figure 17-6, which shows one way to 
replicate in HypetCard what Pascal calls the CASE statement. When a 
particular variable or field might have one of several predefined values, and 
the operation of the handler is slightly different for each value, you can nest 
sequential else-if constructions. The diagram looks more complex than the 

True 

if true 
then St 
else if true 
then S2 
else S3 

Figure 17-4 One (and only one) statement will defintely be carried out in this con­
struction. 



Diving Deeper Into Control Structures 309 

HyperTalk equivalent. The If statements down the chain would be testing the 
same variable or field against different values. For instance, here's a handler 
for a multiple-choice quiz that demonstrates the technique (psuedo-code in 
brackets): 

on mouseUp 
get field RRns~erR 

If It Is •R• then [state11ent for A's ans~er] 
else If It Is RBR then [statement forB's answer] 
else if It Is •cR then [statement for C's ans~er] 
else answer RSorry, inval ld ans~er.• 

end 11ouseUp 

As you've probably discovered in your own experimentation with if-then­
else constructions, the possibilities are almost endless. Therefore, it's not 
feasible to show you more diagrams. It's better to understand the rules that 
govern handler execution within these constructions, and then build a struc­
ture around your particular needs. 

If-Then-Else Style 
If you are about to build a complex if-then-else construction, it may be helpful 
to fit a diagram similar to the ones above to your decision paths. The key 

false 

Figure 17-5 The inverse of the construction in Figure 17-3. 

if true then 
if true then S1 

else S2 



310 HYPERCARD DEVELOPER'S GUIDE 

True 

if true then S 1 
else If true then S2 
else If true then S3 
else S4 
S5 

Figure 17-6 You can replicate Pascal CASE statements in a series of nested if-then-else 
constructions 

technique is to carefully think through each possible path through the 
construction. Imagine what happens to various values or fields in the course 
of each path. Ask yourself if the results are what you expect for each outcome 
and whether there is a conflict or duplication between any paths. 

GoodHyperTalk programming style encourages placing the shortest nested 
statements at the top of the structure. In other words, treat the simple, most 
general cases first, and leave the more complex, specific ones for the end of the 
construction. This method makes the construction easier to read when trying 
to trace execution through a complicated if-then-else structure. For example, 
the multiple-choice quiz handler above should more appropriately be written 
like this: 

on mouseUp 

gel field •Answer• 

if it is not In •A,a,c• then answer •sorry, invalid answer.• 

else If It is •A• then [statement for A's answer] 

else If it is •a• then [statement forB's answer] 

else [statement for C's answer] 

end mouseUp 



Diving Deeper Into Control Structures 311 

Another major advantage to placing the general condition at the top of the 
structure is that it perfonns faster than when it is at the bottom of the structure. 
Each time the construction needs to perform another If statement, more time 
is added to the overall execution of the handler. Thus, those at the top finish 
their job faster, and the handler ends sooner. 

If-Then-Else Reduction 
This brings up an important subject about HyperTalk, especially within if­
then-else constructions. If you are concerned about speed-and you should 
be-try to reduce the number of statements in a handler. That also means that 
you should try to combine a series of if-then constructions into a larger if-then­
else construction. 

Watching a handler makeover should be helpful to illustrate how you can 
streamline your if-then-else decisions. For example, buried deep within 
version 1.0 of Focal Point is the following absurd handler-written before I 
learned how to do it better. Warning: Do not attempt the following handler 
maneuver on your own-bad habits may accrue. 

on IIOUSeUp 

global Interval 

If lte1n 5 of Interval Is 1 then 

put 2 Into Item 5 of Interval 

open Card 

exit ~nouseUp 

end If 

If it em 5 of I nt erva I Is 2 then 

put 3 Into Item 5 of Interval 

open Card 

exit mouseUp 

end If 

If Item 5 of Interval Is 3 then 

put + into Item 5 of interval 

open Card 

exit mouseUp 

end If 

if item 5 of Interval Is i then 

put 1 Into Item 5 of Interval 

openCard 

end If 

end mouseUp 



312 HYPERCARD DEVELOPER'S GUIDE 

There is so much repetition in this handler, that it should be a dead giveaway 
something is amiss. Note that the If comparisons are all against the same 
thing: item 5 of the global variable called interval. The exit mouseUp 
statements had to be in this construction, otherwise the instant one Hconstruc­
tion put another value into item 5 of interval, the next If statement might trap 
it, when the purpose of this handler was one adjustment per trip. No, this 
handler is far better served using nested if-then-else statements, as in the 
following: 

on 11ouseUp 
global Interval 
get lte11 5 of interval 

if it Is then put 2 into item 5 of interval 
else If it is 2 then put 3 Into Item 5 of Interval 
else If It Is 3 then put 4 Into Item 5 of Interval 
else put 1 Into Item 5 of Interval 

openCard 
end IIOUSeUp 

There is no need to exit the mouseUp handler midway, because only one of 
those "put" statements can possibly be executed in the course of this handler. 
Then a single openCard statement concludes the handler, since all possible 
results lead to this statement anyway. The last Else statement omits an If 
comparison, because the only way execution would wind up down there 
would be for the value of it to be 4 in this very controlled environment. Why 
waste time testing for it if that's the only value it could be? 

Incidentally, due to the arithmetical relationships among the various pieces 
in the above handler, it may be shortened even more: 

on mouseUp 
global Interval 
get Item 5 of Interval 

If It Is 4 then put 1 Into Item 5 of Interval 
else add 

openCard 
end mouseUp 

to item 5 of Interval 

Be on the lookout for repetition in your handlers as well as a series of two or 
more if-then constructions that rely on a comparison of a single object. There's 



Diving Deeper Into Control Structures 313 

a big clue there that you can condense the construction into a single structure, 
and perhaps enhance the performance of your handler at the same time. 

One added tip, which also applies to the next discussions about repeat 
constructions, is that getting data out of, and putting data into, fields is a 
comparatively time-consuming task for HyperTalk. The same is true, but to 
a lesser degree, for getting and setting object properties. When you find 
repeated H statement comparisons (including else-ifs) revolving around the 
contents of a field, a property, or a chunk of a variable (e.g., "line 3 of bucket"), 
then do those manipulations only once. At the beginning of a handler or 
immediately preceding a control structure, retrieve whatever information 
you need and place the data in It or another local variable. On the other end 
of the handler, if you're assembling lines and words of text that ultimately go 
into a field, then assemble the text in a local variable first. When it's all set, then 
put the contents of that container into the field. We'll see some examples of 
how much this can improve performance later in this chapter. 

Repeat Basics 
H you've ever addressed Christmas cards or put stamps on envelopes to pay 
the monthly bills, then you have lived through a repeat loop. In a typical 
repeat loop in real life and in a HyperTalk handler, you go through the same 
steps more than once, but usually with some slight twist in execution each 
time. In addressing Christmas cards, it's writing a different name and address 
on each envelope; in a handler, it could be checking the condition of fields with 
different field names. 

The number of times a HyperTalk repeat construction loops through its 
lines depends on the very first statement of the construction, the one with the 
word Repeat in it. Parameters to that statement indicate how many times to 
repeat. Sometimes it's for a fixed number of times, as in 

repeat 10 times 

When the repeat is based on a number of objects that may change over time, 
the author would best make the number of repetitions dependent on the 
number of objects: 

repeat for the number of cards 

Another indefinite repeat counter may be defined on comparisons of two 
values. In other words, the repeat construction should keep looping until a 



314 HYPERCARD DEVELOPER'S GUIDE 

certain condition is met: 

repeat until field •oate• Is the long date 

The opposite of the previous one is a repeat loop that continues to go round 
and round only while a certain condition is true: 

repeat whl le the name of the background Is •summary• 

It may also be helpful in your script for your handler to know how many times 
the loop is going around. You may set up a counting mechanism-a local 
variable, actually-that keeps a count along with each time through the loop. 
You may refer to that variable as often as you like within the repeat loop, and 
even use it to reference a sequence of buttons, fields, or chunk text expressions: 

repeat with x a 1 to the number of bkgnd fields 

Finally, you may set a repeat loop going on its own without any bounds. If 
there is no mechanism within the loop to stop it-to exit the repeat-the loop 
will go on forever. Normally in such situations, your handler is checking the 
condition of another object so it may break out of this potentially infinite loop. 
This structure is so infinite, it is even called 

repeat forever 

And we all know that forever is a long, long time. 
Repeat constructions may be nested inside one another. There is no 

restriction on mixing repeat loop types in a nested construction. 
Since the basic considerations about repeat constructions are well-covered 

in the Handbook, we'll spend time here focusing on more potentially confusing 
concepts: Repeat With constructions; nested loops; and Repeat Forever con­
structions. 

Repeat With Constructions 
In my experience building some heavy-duty stacks, I've found that the Repeat 
With construction has been more influential over stack design than perhaps 
any other HyperTalk command or construction. Whenever I am faced with a 
large calculation or data movement situation, I now look immediately to the 
Repeat With construction for ways of condensing what might otherwise be a 
massive operation. 



Diving Deeper Into Control Structures 315 

You've already been exposed to a Repeat With loop in the utility handlers 
that lock and unlock fields (Chapter 13). Let's look at one of those handlers 
again and examine what's going on. 

on lockFields 
repeat with x a 1 to the number of bkgnd fields 
set lockText of field x to true 
end repeat 

end lockFields 

The deciding factor about how many times the loop will execute is the range 
defined in the first line of the repeat loop. This loop uses a local variable, x, 
to maintain a count of the number of times through the loop. You may use any 
valid (i.e., single, non-reserved word) for a variable name in these repeat 
constructions. The first time through the loop, x will be assigned a value of 1. 
The loop will continue to run, invisibly adding 1 to the value of x each time, 
until the value of x is equal to that of the number of background fields. 
Therefore, if there are five background fields, this loop will run five times, 
with the value ofx incrementing by one each time through. Note that the loop 
executes in its entirety five times-one for each increment of the variable. This 
setup also means that if the first line read 

repeat with x a 3 to the number of bkgnd fields 

then the repeat loop would execute only three times, as the value of x goes 
from 3 to 4 to 5. 

We're not using this Repeat With construction just to figure out how many 
times to run the loop. If we just wanted to limit the number of repetitions, we'd 
use the Repeat For construction, as in 

repeat for the number of bkgnd fields 

or, in the case of wanting to do it two times fewer than the number of fields, 

repeat for the number of bkgnd fields - ? 

No, there is a very specific reason for using the Repeat With construction and 
assigning a variable to hold the counter. Our handler can use that variable to 
help it in its execution. 

Follow the execution of the lockFields handler as its loop repeats five times. 
The first time through, the local variable is assigned the value of 1. In the next 
line, that x is used to help identify a background field. Because the value of 



316 HYPERCARD DEVELOPER'S GUIDE 

xis 1, the field whose lockText property gets set to true is background field 1. 
The End Repeat statement tells HyperCard that it is to return to the top of the 
repeat construction and start again, but this time incrementing the value of x 
by 1, making it 2. The second time through the repeat loop, the lockText 
property of background field 2 is set. And so it goes until all five fields are set. 
At the end of the fifth time through the loop, the End Repeat statement sends 
execution back to the top once more. But since incrementing x one more (to 
6) puts it over the number of background fields, the repeat loop is not executed 
again. Instead, flow returns to the statement immediately after the End 
Repeat statement. 

Looping Through Object Names 

While it's fine to refer to objects by their numbers when you don't know which 
specific objects are to be called in a handler (as in the lockFields case), you 
should play it safe by referring to objects within a stack by either their ID 
numbers or names. From a debugging and development point of view, 
referring to objects by names in repeat loops is a better strategy, because you 
are then free to add or subtract objects at any time without disturbing your 
handler more than by a couple of characters. H, on the other hand, you try 
using ID numbers in repeat loops, you must first be sure you create the fields 
or buttons in sequence so that the ID numbers come up in numeric order. If 
you wait until tomorrow to add another object in the series, its ID number will 
probably be out of the series, making your repeat construction practically 
worthless without a major overhaul. 

While I have done some repeat handlers in which the controlling variable 
is used to reference ID numbers, as in 

repeat with counter a iS to 54 
get field ld counter 

end repeat 

I'll show you how to name objects properly for this task, and how to call them 
from a repeat loop. There are a couple of non-intuitive tricks you have to play 
to pull this off properly. 

Naming Sequential Objects 

First of all, the names of the objects in a series must have a number as part of 
their names. HyperTalk may get very confused if you start the name of an 
object with a number. Therefore, it's best to start the name with a word or two, 



Diving Deeper Into Control Structures 317 

followed by a number. The number may be the last character of the name, or, 
for better readability, it may be separated from the name by a space. In Figure 
17-7, you see the Materials Worksheet from Focal Point's Projects stack. Like 
a spreadsheet, each cell is its own field. The names of the fields in the leftmost 
column are named 

Qty 1 
Qty2 
Qty3 

and so on. All fields in the same row have the same number appended to them. 
Therefore, across the first row of the worksheet, the fields are named: 

Qty 1 Item 1 Cost 1 Markup 1 Total1 

The handler that calculates extensions for each item is a Repeat For loop that 
uses the variable to address each row's cells. The schematic for that handler 
is 

File Edit Go Tools Objects 
. • I ..,. 

Last Up~ _t.Q./..~.~./.J\.7.. .. _ 

Oient Name 1 nfoS.Y.~...!.D!!\.t!l&tio.rt!!.L_ ..... ---·-··--
Project Name A.n!l.Y!!.LR.~P.!!.r..L ................ - ........................ --·- ·--· 
Qn· ITEM COST +% TOTAL 

Figure 17-7 Calculation of the spreadsheet in the Focal Point Materials Worksheet is done 
via a Repeat With construction. Field names were impacted by the numberFormat setting 
to accommodate dollars and cents (see text). 



318 HYPERCARD DEVELOPER'S GUIDE 

on •ouseUp 
repeat 18 ti•es --the number of rows 

put Qty field * Coot field Into subTotal 
put subTotal * Markup Fleld/100 Into markUp 
put subTotal + markUp Into Total field 

end repeat 
end 11ouseUp 

One difficulty you'll encounter with HyperTalk in assembling the actual 
working handler is that you cannot build the field names out of text and the 
variable as simply as you call an object by its number. In the lockFields 
handler, for instance, you referred to each field as "bkgnd field x" and that was 
that. Carrying the syntax over to a field name, you'd think, should be just as 
easy, as in "field Qty && x." But such is not the case. Field names containing 
a variable value must be build like this: 

field (•Qty • & x) 

that is, with the field name and variable within parentheses. HyperCard 
needs these parentheses to help it evaluate the two items together as a single 
field name. 

Therefore, the repeat handler that takes care of the field names would be 
something like this: 

repeat with x = 1 to 18 
put field (•Qty • & x) * field (•cost • & x) Into subtotal 
put subtotal * (field (•Markup • & x)/100) Into 11arkup 
put subtotal +markup Into field (•Total • & x) 

end repeat 

As an explanation for the arithmetic around the Markup field, the user enters 
whole numbers of the percentage of markup for a particular line item, such as 
15%. For arithmetic purposes, that must be converted to 0.15, or divided by 
100, to be accurate. 

Number Formats and Object Names 

In the above example, we've made no provision for the handling of dollars 
and cents, with number formatting of two places to the right of the decimal. 
As it turns out, setting the numberFonnat property to dollars and cents 
wreaks havoc with the scheme to create field names out of fixed text and a 
variable number. Here's what happens. 



Diving Deeper Into Control Structures 319 

If you set the number Format to "0.00" and then build a field name with a 
variable counter, the number part of the name takes on the number format. 
Therefore, in the following version of the handler, 

set numberFormat to •o.oo• 
repeat with x = 1 to 18 

put field ("Qty • & x) * field ("Cost " & x) Into subtotal 
put subtotal * (field (•narkup " & x)/100) Into markup 
put subtotal +markup Into field ( 11 Total '' & x) 

end repeat 

the Qty field name would be assembled as "Qty. 1.00," with two digits to the 
right of the decimal. Because field names are treated very literally, the field 
"Qty 1.00" is different than the field's real name, "Qty 1." An error dialog box 
will tell you that the handler cannot find field Qty 1.00. Even if you try to reset 
the numberFormat property to empty for the first two lines of the repeat 
construction, you must set the format correctly before putting the total 
amount into the Total field, whose name would be called as "Totall.OO." 

The way I usually work around this is to name all the fields just as the 
handler expects to find them, with numbers bearing two zeros to the right of 
the decimal. If you do the same, make sure you test other handlers that refer 
to those fields (or buttons in other applications) and be sure those handlers set 
the numberFormat to "0.00" before executing. 

Nested Loops 
To illustrate why we need nested repeat loops, here's a metaphorical example 
from daily life-not something you can program directly in HyperTalk. First 
of all, nested repeat loops have what is called an 110Uter loop" and an "inner 
loop" (for the case of one nested inside another). The outer loop works on a 
slower basis than the inner loop, because the inner loop must complete its 
round-and-round activity before the outer loop can start its next pass. 

For instance, 12 times each year there are monthly bills to pay. Each month, 
there are the utility, phone, rent, car payment, and other bills for which checks 
must be written. In a HyperTalk-like environment, the nested loop of these 
actions would look like this: 



320 HYPERCARD DEVELOPER'S GUIDE 

repeat 12 t i IDes 
repeat mith x = 1 to the number of bills 

write check for bi I I x 
end repeat 

mai I payment envelopes 
end repeat 

In these very few lines of instructions, we've handled the writing of checks for 
perhaps hundreds of bills. The inner loop controls the writing of checks for 
one month, while that loop is, itself, repeated 12 times. Rather than have one 
repeat handler for each month of the year, the outer loop takes over. 

Notice that even though the mailing of payments is usually done at the end 
of writing checks, that action does not belong in the inner loop, because it 
would be repeated for each of the checks you're writing. It belongs as part of 
the outer loop, because that action is repeated only 12 times-after each of the 
inner loops finishes execution. 

For a real HyperTalk example, we go to Focal Point, where I customized the 
Expenses stack to print out as many weeks' worth of daily expense detail 
sheets as I need for a trip. The handler gets some assistance from a function 
(makeSunday) to be sure the entire week of fonns is printed when I start the 
handler. Here is the entire script: 

on prlntUeek homMany 
push card 
get makeSunday (line 2 of field •oate•) 
conuert it to I ong date 
find it 
open printing with dialog 
repeat howMany times 

repeat 7 times 
print this card 
go to next card 

end repeat 
end repeat 
close printing 
pop card 

end prlntUeek 

function makeSunday testDate 
get testDate 
conuert It to dateltems 
put Item 7 of it into dayOffset 
conuert it to seconds 
subtract (2i*60*60) * (dayOffset - 1) from it 



l"elul"n it 
end makeSunday 

Diving Deeper Into Control Structures 321 

Briefly, the print Week handler takes as a parameter the number of weeks I'd 
like printed. Assuming that I type this message into the Message Box while 
viewing any card from the starting week, the handler's first task is to 
determine the starting Sunday of that week. That's what the makeSunday 
function handler does. Upon returning the Sunday's date in seconds, the 
handler finds the Sunday card and opens printing. 

There are two nested repeat loops here. The outer loop uses the how Many 
parameter to keep track of how many weeks of cards to print. The inner loop 
is repeated 7 times each time it's called, because it prints seven cards for each 
week. Therefore, if I specify 4 weeks of cards for printing, the inner loop is 
called 4 separate times, each time looping itself 7 times, for a total printing of 
28 days' cards. 

Repeat Forever 
It might seem odd that you would intentionally set an infinite loop in motion, 
but the Repeat Forever construction does come in handy in very controlled 
circumstances. I first encountered it and still use it today in text importing 
scripts. 

When importing from a text file, my scripts open the file, read from the file 
until a delimiter characters (tab or return) and then process the data that 
comes in as a result of the Read command. If there is no more data in the file­
the entire file has already been read-then the Read command puts empty 
into It The repeat loop that handles the reading can then test for when It is 
empty after a Read. When no more can be read, then the Exit Repeat statement 
bounces execution out of the repeat loop, and onto the statements below it. 

A favorite importing script of mine, in which the data in the text file is set 
up identically to the field arrangement in the destination HyperCard card is 
as follows: 

on mouseUp 

ask •Uhich file do you wish to import?• uilh •Transfer Text• 

if It is empty then exit mouseUp 

put it into fi leHame 

open file fileHame 

go to last card 



322 HYPERCARD DEVELOPER'S GUIDE 

repeat forever 
doMenu •Hew Card• 

read from file fi leHame until return 

if it is empty then 
go to first card 
close file filename 
exit mouseUp 

else put tab into last char of It 

repeat with x g 1 to the number of fields 
put char 1 to offset (tab, it) - 1 of it into field x 
delete char 1 to offset (tab, It) of It 

end repeat 
end repeat 

end mouseUp 

The failsafe to this handler is that eventually the text file will be completely 
read into the stack, and any attempt to read from it will return em p t y into It. 
That's when the entire mouseUp handler exits (after housekeeping such as 
closing the file). 

As long as we have another nested loop in the above handler, let's see how 
that's working. The outer loop reads an entire record (card) of data into It. The 
inner loop dissects It, pulling off field after field, and placing the data in 
appropriate HyperCard fields. The inner loop is executed as often as the outer 
loop is successful at bringing in a record from the text file. 

Repeat Performance 
As "neat'' as nested loops may be, they can be performance hogs, making an 
involved handler very sluggish. Bear in mind that the statements that are part 
of the repeat loop itself, Repeat and End Repeat, take time to work. And when 
using repeat loops that perform evaluations at the very top (especially Repeat 
While, Repeat Until, and Repeat With), those evaluations take additional time 
to perform. 

One speed stealer to be on the watch for in your repeat constructions is 
access to field data. At all cost you should avoid getting data from or putting 
data into the same field more than once per cycle. It will be faster to store 
intermediate results of repeated calculations in local variables, and then put 
the data into the field at the very end. In fact, if you can anticipate the getting 



Diving Deeper Into Control Structures 323 

of data outside the repeat loop entirely (and store the value in a local variable), 
then you'll do your stack's performance a big favor. 

The warning about accessing fields also applies to reading and writing text 
file data. Thus, in the handler, above, an entire record is read into It at one time, 
instead of reading the data field by field. 

Deeply nesting repeat constructions can sometimes bog down perform­
ance beyond acceptable limits. I encountered this in writing the Focal Point 
handler that customizes button icons and scripts among all the Focal Point 
stacks. My first attempts pushed nesting about three levels deep in an effort 
to keep the handler to a manageable size. Unhappy with the time it took to 
adjust all icons and scripts throughout the stack system, I experimented with 
a much less nested handler. Although the handler mushroomed in size, 
execution speed quickened by at least a factor of 5. It was a tough decision, but 
I sacrificed HyperTalk elegance for sheer speed of execution. I believed that 
non HyperLiterate users wouldn't care about the elegance, but they'd be 
disappointed at the performance. Therefore, the handler is no great example 
of HyperTalk style or poetry, but it does the job efficiently. Perhaps in further 
review of the handler at a later time, I'll find a golden mean between elegance 
and performance. 



18 
Setting Up Linked Cards 

This chapter applies predominantly to informationmanagementstacks 

and some external device control stacks. We'll be dealing with hetero­

geneous stacks whose multiple backgrounds make up what I call 

"suites" of cards. For example, a suite of cards may consist of one 

summary card and five detail cards, each from a different background 

in the same stack. When a new summary card is created by the user, the 

script must not only create new cards from the other backgrounds, but 

also link all cards together, so that the user truly feels these cards are a 

single set. 

In the organization of cards into suites, the "HyperCard-ness" of a 

stack begins to disappear for the user. The information suddenly takes 

precedence over concepts of stack structure, backgrounds, and hierar-



326 HYPERCARD DEVELOPER'S GUIDE 

chy. These are still very strong concerns for the stack developer, but the user 
begins to see the application as an application and less as a HyperCard stack. 
If your goal is to produce more Macintosh-like applications, and less Hyper­
Card-like applications, then this chapter is for you. 

Suite Examples 
From the HyperCard stack designs I've worked on that involved card suites, 
I've designed three different suite types. They'll be described in full through­
out this chapter. These certainly do not exhaust the possibilities, but there 
should be enough ideas in the three descriptions to help you build your own 
suite arrangement if the ones here don't apply. 

One type is like that used for both the Projects and the Proposals stacks in 
Focal Point. A Summary card has buttons that are hard linked to one card from 
four or five other backgrounds. For instance, in the Projects stack (Figure 18-
1), if you click on what I call a Zoom button next to the Project field label, you 

I' .0. # 08777 

I±) Oient# 103 Oient Name.Y~L.!Ll!.12.Y~.!.~Ill!__ .. 
~Project l.:.ti.9 .. Q ... t1~.Y!!.1. 

~Estimated Labor $--·---~.9.7..§,.Q.Q.. 
.:..:......:-.=::..-=-t ~Estimated Materials $ ____ . 

Estimated Total $ ............... ~.9 .. 7..§&9 .. 

~ Invoiced to Date $ ................................ .. 
~Payments to Date$ Net Outstanding $l.__ ___ ...J 

Receivables Archive Project 

Figure 18-1 The six cards in a Projects stack suite are tightly linked by way of a list of 
card IDs in a hidden field. A click of any Zoom button summons the card ID of the card to 
which navigation goes. 



Setting Up Linked Cards 327 

zip to the Project Specifications card (Figure 18-2) for the project whose 
summary card you were viewing. From this card you have only one naviga­
tion possibility within the Projects stack: clicking on the return arrow button 
to go back to the Summary card. Each Zoom button is linked to a different 
detail card from one of six possible backgrounds (the two buttons next to the 
Invoiced and Payments labels link to the same card). To the user, the 
organization of the stack is by project, not by background style. 

A second type, as demonstrated in Focal Point's Expenses stack, is a 
derivative of the first type. Here, a Weekly Summary card (Figure 18-3) has 
a row of buttons with day names (Mon, Tue, Wed, and so on) that are linked 
to Daily Expense Detail cards (Figure 18-4). Those day-name buttons are 
analogous to the Zoom buttons on the Projects stack Summary card. But when 
you reach the Daily Expense Detail, you find that you have full navigation 
powers within the background. You may move forward and backward in 
time by various increments. Even the Daily Expense Detail cards are linked 
to yet other cards, which I'll describe more fully later. 

Third is a suite that operates with two backgrounds so that a Summary card 
links to detail cards, whose quantity is not known until they are generated. 

Client Name VeL~-~L~Y~.~ID-ll --· .. ---··-·····----
Project Name .. l : . .L~.!tQ .. !:!~Il-~.!!L ................. - ...................... - .......... . 

SpecUiutions Soft'Were manuel for the ne'W T- 1 600 microcontroller. 

Figure 18-2 A project's Zoom button next to the Project Specifications field of the 
summary card always goes to the Project Specifications card for that very client and 
project. The hard links make a mistake impossible. 



328 HYPERCARD DEVELOPER'S GUIDE 

j)..§.!J.!l.Y..Y.Q.9.l!!!l!!.!J __ ,,_,_ DEPARTMENl' ........................................ - ......... - ..... _ 

Figure 18-3 A Weekly Expense Summary card has seven hard links to each day card of the 
week. 

a File Edit Go Tools Objects 

Date .... t!Q.!l~!!.Y. ........ - ......................... - ........ ---· Day Total $1._..::.9..:.4:..2.""6..:..7 ____ _. 
-~~P..t~.m.~~!?. ... J .. 9.JHt_,____ Cash Tot.l $ - .. ~.Q,.f.!L ........ _,_ .... __ 

CJuo:ce Tot.l $ ..... 9. .. 1..?. 4 ?. ................ - ................ . 

Figure 18-4 In a Daily Expense Detail card, you may go back to the week's summary (via 
a hard link) or navigate linearly through each day's detail. 



Setting Up Linked Cards 329 

Within the detail cards is a linear connection between them, but only to the 
extent that you view detail cards linked to. a single Summary card. Even after 
the detail cards are generated they may be deleted or added to, without 
affecting the flow between detail cards. 

Multiple-Lined Containers-Arrays 
At the root of all three suite types is one key concept: You may address any 
container-field or variable-by item or individual line of data. As you'll see, 
all linking information is maintained in a hidden field on every card of a suite. 
Every handler that creates a new suite of cards stores linked card addresses in 
various lines of a local variable. Each line has a specific duty in the scheme of 
things. Such containers usually have their contents placed into the hidden 
fields in the same multiline format when the creation process is finished. 

You can practice the concept of placing text into different lines of a variable 
container from the Message Box. Type the following lines into the Message 
Box, and watch the results of the last three, which read the contents of the 
variable: 

put • Four score • into II ne 1 of speech 
put •and• Into I ine 2 of speech 
put •7• Into line 3 of speech 
put •years ago• into line 4 of speech 
speech -- you see only the first I lne in the Message Box 
I ine 4 of speech 
I ine 3 of speech && I lne 4 of speech 

If you go to one of the stacks created in earlier chapters, you can see the entire 
contents of the variable by typing 

put speech into field 2 

in which case you'll see this: 

Four score 
and 
7 
years ago 

just like you put the data into the variable. 
Remembering that you can store data in a variable container and access it 



330 HYPERCARD DEVELOPER'S GUIDE 

with the same text chunk expression tools as a field may make many card suite 
creation tasks much easier than imagined. 

More About Arrays 

You've also seen that HyperCard is, indeed, capable of creating what are 
known as a"ays, or tables of information. You can build a one-dimensional 
array as many lines of single items or as one line of many comma-separated 
items like these: 

linel 
line2 
line3 
line4 

item 1, item 2, item 3, item 4 

When your array elements might contain commas, then it's best to use a 
"vertical" array, in which each element occupies its own line of a container. 
Conversely, if your data elements contain carriage returns, then use the 
"horizontal" form. 

Two-dimensional arrays are possible by combining multiple lines and 
comma-separated items, like this: 

line 1/item 1, line 1/item 2, line 1/item 3, line 1/item 4 
line 2/item 1, line 2/item 2, line 2/item 3, line 2/item 4 
line 3/item 1, line 3/item 2, line 3/item 3, line 3/item 4 
line 4/item 1, line 4/item 2, line 4/item 3, line 4/item 4 

You'd use HyperTalk chunk expressions to access a particular data element, 
such as "item 3 of line 2." Because you're using comma-separated items in the 
horizontal dimension, no data element may contain commas; and because 
you're using multiple lines in the array, no data element may have a return 
character in it. 

By adding more fields with array data in them, you can create the effect of 
a three-dimensional array. Again, address an array element using chunk 
expressions, as in "item 2 ofline 6 of field 3." Adding fields, by the way, is how 
you can also get around the carriage return or comma problem of a two­
dimensional array. H your data elements have commas in them, then create 
a number of fields, each of which has a vertical array in it. 

But let's get back to our card suites. 



Setting Up Linked Cards 331 

Type A Suite: Hub and Spokes 
Since we'll be showing the handler that creates the card suites in Focal Point's 
Projects stack, we should get acquainted with the primary components, 
namely the background names. The six backgrounds are named: 

Project Summary 
Project Specs 
Labor Worksheet 
Materials Worksheet 
Follow Ups 
Financials 

While HyperCard sees this stack as a collection of six backgrounds, each with 
an equal number of cards, the user sees a series of Project Summary cards with 
five other cards attached to each Summary card, as illustrated in Figure 18-5. 
The only place to go from any of the five detail cards is back to the associated 
Summary card. 

Let's work through what kinds of links are needed for this suite of six cards. 
The Project Summary card needs a reference list of the five detail cards 
attached to it fora given project. Each of the detail cards needs a reference back 
to the summary card so it may return to the summary card when the return 
arrow button is pressed. I prefer hard links in all these cases, including the 
return button. While the push card/ pop card or even the Go Back command 
would work, the hard link works every time, including when the user starts 

Specs. 

Labor 

Project 
Summary 

Matls. 

Invoices 
& Pmts. 

Follow­
Ups 

Figure 18-5 The hub-and-spoke suite of the Projects stack in Focal Point. 



332 HYPERCARD DEVELOPER'S GUIDE 

self-navigating with the Go menu commands, which are purposely not 
trapped in this stack. Whenever you view a detail card, and you click on the 
return arrow, you unequivocally go back to that detail card's summary card. 

To accommodate the list of linked cards in the Project Summary card is a 
hidden background field, called ''linkList." Each line of that field will 
eventually contain a card id of a specific linked card. For example, line 1 of 
field linkList has the card address of the Project Specifications card associated 
with this Project Summary card. In each of the detail cards is another hidden 
field, called mainCard, which holds the card id of the associated Project 
Summary card. 

The basic action of creating a new suite is relatively simple. The handler 
goes to the last card of each background, creates a new card of that back­
ground, records the id of that card (in a local variable), and slowly builds a list 
of card IDs that go into the summary card's linkList field. Along the way, the 
handler also helps the user recognize the links among cards in a suite by 
posting the project number in all associated cards. Later, when the user inserts 
a project name and a client name, these bits of data are also posted to all linked 
cards (using the field linkList as a road map to all the cards). 

Without further ado, here is the Projects stack new Project handler, which 
is intentionally left as a non-repeat handler so you can see the workings of 
setting up the suite card-by-card. 

on newProject 
go to last card of bkgnd •Project Summary• 
send •doMenu Hew Card• to HyperCard bypass doMenu handler 
get card field •Next Project Humber• of card •Project list• 
put It into field •Project •• 
put it Into projectHu!Dber 
add 1 to card field •Hext Project Humber• of card •Project list• 
put the name of this card into mainCard 

push card 
set cursor to 'f 

set I ockScreen to true 

go last card of bkgnd •Project Specs• 
send •doMenu Hew Card• to HyperCard 
put the name of this card Into I ine 1 of I inklist 
put rnalnCard into field •rnalnCard• 
put projectHumber into field •Project •• 

go last card of bkgnd •labor Uorksheet• 
send •doMenu Hew Card• to HyperCard 



Setting Up Linked Cards 333 

put the name of this card Into line 2 of I inkList 
put mainCard Into field •mainCard• 
put projectHumber Into field •Project a• 

go last card of bkgnd •naterials Uorksheet• 
send •doMenu He~ Card• to HyperCard 
put the name of this card Into I lne 3 of I inklist 
put mainCard into field •mainCard• 
put projectHumber into field •Project a• 

go last card of bkgnd •Fol lou Ups• 
send •doMenu Heu Card• to HyperCard 
put the name of this card into line 4 of I inkllst 
put mainCard into field •malnCard• 
put projectHumber Into field •Project a• 

go last card of bkgnd •FtnanciaJs• 
send •doMenu Heu Card• to HyperCard 
put the name of this card Into I lne 5 of I inkllst 
put mainCard Into field •malnCard• 
put projectHumber into field •Project a• 

pop card 
put linklist into field •Jtnklist• 
type tab 

end neuProject 

This handler is called by a doMenu handler, which traps for the New Card 
menu choice. In this stack, creating a new card means creating a new suite of 
cards to record a new project. 

In the first group of statements, the new Project Summary card is appended 
to the end of the cards bearing the Project Summary background. Then, 
because the stack traps for the doMenu message, the handler bypasses the 
menu and sends a do Menu New Card message directly to HyperCard to 
actually create the card. The first card of the stack has a card field in it, called 
Next Project Number, which stores the number the next new project will be 
assigned. That figure is retrieved and inserted both into the Project # field of 
the new summary card and into a local variable, which will carry the figure 
to other new cards in the suite. One is added to the new project number field 
for the next time it is called. 

An important line of this handler puts the name of the new card into a local 
variable, called mainCard. Since new cards in this stack are not given real 
names, this statement puts the full id of the card into the variable, in the form 



334 HYPERCARD DEVELOPER'S GUIDE 

"card id xxxx," where "xxXX:' is the id number assigned by HypetCard upon 
card creation. 

The new summary card is pushed, because this where we will want to end 
up after all new cards are created. A counterbalancing pop card at the end of 
the handler will bring us back to the Summary card. To keep visual clutter to 
a minimum while alerting the user that the stack is still working, we set the 
cursor to 4 (the watch) and lock the screen. 

In the next five 5-line groups comes the creation of the new associated cards. 
We'll follow the first group statement-by-statement. 

The first order of business is to go to the last card of the background of one 
of the detail cards, Project Specs,and create a new card by sending the message 
directly to HyperCard. Now the name of the card (which reads like "card id 
4070") is placed into line 1 of a local variable called linkList. This variable will 
be the cornerstone of the links between the summary card and detail cards at 
the end of the handler. In the meantime, the handler places the address of the 
summary card (stored in the local variable mainCard) into the hidden field, 
also called "main Card." The project number is inserted into the Project# field. 

This 5-line action is repeated four more times with one difference each time: 
The address of the newly created card is put into its own line of the linkList 
variable. Into each new card goes the address of the summary card and the 
project number. 

Surprisingly, the end of the handler is quite simple. After returning to the 
summary card via a Pop Card statement, the content of the five-line linkList 
local variable is transferred to the hidden field of the same name. Then the 
handler types a tab to place the text insertion pointer into the first unlocked 
text field on the card, inviting the user to start entering data. 

With the addresses of linked cards safely stored in the hidden field,linkList, 
the action of getting to those cards is left up to the short handlers in each of the 
Zoom buttons. For example, the handler for the Project Specifications Zoom 
button is this: 

on mouseUp 
visual effect zoom open 
go line 1 of field •llnkllst• 

end mouseUp 

Because any of the first five lines of field "linkList" contains a valid card 
destination, the reference to the container chunk (line 1) is sufficient for 
HyperCard to know where to go next. Conversely, each of the return arrow 
buttons on the five detail cards have this handler: 



on mouseUp 
visual effect zoom close 
go field "malnCard" 

end mouseUp 

Setting Up Linked Cards 335 

Since only one address is in the field, the Go command simply summons the 
content of the entire field as a valid address. It is also important on the detail 
cards to control the user's navigation by keyboard arrow keys. On all detail 
cards, there are background handlers that trap for arrowKey messages, and 
do nothing with them, as in 

on arrowKey 
end arrowKey 

Because there are no statements relying on the parameters sent with the 
arrow Key messages, there is no need to grasp the arrow Key message parame­
ters for this handler. 

Type B Suites: Rolling Hub and Spoke 
You'll see a lot of similarity between the suite creation process of the Expenses 
stack and the Projects stack, above. Before we get to the script, however, look 
at Figure 18-6 to see the relationships between Weekly and Daily backgrounds, 
and then the navigational options available within each background. 

Each Weekly Summary card has seven buttons on it, located at the top of 
columns of the worksheet. When you click on, say, the WED button, you go 
to the Daily Expense Detail card for the Wednesday of that week. Once you're 
at the Daily level, however, you may navigate through cards in the back­
ground as you wish, with the same flexibility as the Daily Appointment stack. 
Importantly, the return arrow button on the Daily Expense Detail cards 

Weelc 2 Weelc 3 

Figure 18-6 The Expense stack demonstrates a rolling hub and spoke structure. Each 
week's card is hard linked to its daily cards. In the weekly or daily cards, however, the user 
is free to roam up and back in time as he wishes. 



336 HYPERCARD DEVELOPER'S GUIDE 

always zooms you out to the Weekly Summary card for the corresponding 
week. 

Just as with the Projects stack, the addresses of cards linked to the Weekly 
Summary card are maintained in a hidden field, called linkList. Of course, 
since there are seven cards linked to each summary card, the field is seven 
lines long. On the daily cards, a hidden field, called mainCard, holds the 
address of the week's summary card. In this stack the mainCard field also 
holds another number, between 1 and 7, indicating in which column of the 
weekly summary card all results from daily calculations should go. 

Creation of links is done not at the stack level, but in the setup stack that 
builds and extends dated stacks. The handlers are modules called by the main 
build-and-extend handler. As you can imagine, there is a lot of date arithmetic 
and manipulation involved in building the Expenses stack. We won't get too 
deeply involved with those calculations in this chapter (see Chapter 19), so 
we'll focus, instead, on the linking parts of the handlers. 

The process is divided into two handlers, one of which is repeatedly called 
by the other. One handler, makeCards, takes care of making each of the 
Weekly Summary cards. That handler calls another, makeDetail, which then 
creates the linked Daily cards and puts all the linking addresses in the right 
places. Here are the handlers: 

on makeCards startDale 1 howMany 
g I oba I t heHame 1 t heDepart ment 
put makeSunday(startDate) into dateCounter 
repeat for howMany 

convert dateCounter to long date 
put dateCounter into field •ueek• 
put theHame into field •Hame• 
put theOepartmenl into field •oepartment• 
makeDetai I dateCounter cal I the other handler 
convert dateCounter to seconds 
add 1 * (60*60*2+) to dateCounter 
doMenu •Hew Card• 

end repeat 
end makeCards 

on makeDetai I startDate 
g I oba I t heHame 1 t heOepartment 
put ld of this card into 1r1alnCard 
push card 



repeat mlth y g 1 to 1 

go to last card of bkgnd •oally• 
donenu •Hem Card• 

Setting Up Linked Cards 337 

put mainCard into field •malnCard• hidden field 
put y Into item 2 of field •malnCard• 
put Mo• Into field •Jnterual• 

get startDate 
conuert it to seconds 
add ( 60*60*2+) * ( y - 1) to it 
conuert It to long date 
put Item 1 of It Into line 1 of field •oate• 
put Item 2 to+ of It Into line 2 of field •oate• 

put theHame Into field •Hame• 
put theDepartment into field •Department• 

get the ld of this card 
put it into line y of llnkllst 

end repeat 

pop card 
put linklist into field •IJnklist• 

end makeDetal I 

back to Summary card 
hidden field 

The makeCards handler receives two parameters from the main handler: the 
starting date of the build and how many weeks it is supposed to build. The 
global variables contain data from the Focal Point startup card, data that 
automatically goes into the Name and Department fields at the bottom of 
every card in the stack. Next, the user-defined function, makeSunday 
(described in Chapter 16), returns the date, in seconds, of the Sunday of the 
week containing the starting date. The Expenses stack's week begins on 
Sunday, and the Sunday date goes into a field of the Weekly Summary card. 

A repeat loop works primarily with the Weekly Summary card, putting the 
date into the week's date field, and inserting the global variables in their 
respective fields. At this point, the handler calls the second handler to create 
the seven detail cards for the current week. 

Passing the Sunday date as a parameter, the call to the second handler is 
repeated for each week. H these two handlers had been combined into one, 
most of the actions of this handler would be in a nested {inner) repeat loop. 
While still at the Weekly Summary card, the handler grabs the ID of the card, 
placing it in a local variable, mainCard. 

The repeat loop employs an incrementing variable, y, to help it along its 



338 HYPERCARD DEVELOPER'S GUIDE 

seven times through. The loop begins by going to the last card of the Daily 
cards' background. This will ensure that all Daily cards' are in chronological 
order, which future navigation will require. After making the new card, the 
id of the weekly summary card (stored in variable mainCard) goes into the 
hidden field on all daily cards, also called mainCard. Because the daily card 
needs to know in which column of the weekly summary card it should put all 
calculation results, the incrementing variable, y, is put into item two of the 
hidden field. It could just as easily have gone into line 2 of that field. 

In the last line of the first group of statements, the letter D is placed into a 
field called interval. This field is the one that holds the letter representing the 
navigation interval, immediately to the right of the navigation arrow buttons. 
As you click on this locked field, the letters change to reflect other increments. 
''D'' is for day; "W" is for week; ''M" is for month; and "Y" is for year. As each 
daily card is created, the interval is preloaded with a D for daily navigation 
between cards. 

The next group of statements takes care of date calculations to make sure 
the correct date appears on each daily card. We'll leave the details for our 
chapter on date and time arithmetic (Chapter 19). Two more lines implant the 
global variables on the card. 

Two important lines of this handler follow. The id of the new card is placed . 
into the line of variable linkList corresponding to the day of the week. 
Tuesday's card, for instance, would be created on the third time through the 
repeat loop. The value of yon that tour would be 3, placing the id of Tuesday's 
card into the third line of the variable. 

Once all seven cards have been created for the week, the handler pops back 
to the weekly card, and puts a copy of the local variable into the hidden field, 
linkList. All the pieces are set. Now let's look at the buttons that navigate 
through and between these two sets of cards. 

Navigation arrow buttons in the Weekly Summary card restrict the user to 
the previous or next cards of the same background. These buttons also use the 
mouseStillDown technique described earlier, allowing continuous scrolling 
through cards when you click and hold the mouse button. The script attached 
to the right arrow button is 

on mouseStl IIDown 
If field •interval• Is •u• 
then go next card of this background 
else go tv card (number of this card + 4) of this bkgnd 

end mouseStl I IDown 

on •ouseDown 
•ouseStl I IDown 

end 11ouseDown 



on oouseUp 
end oouseUp 

Setting Up Linked Cards 339 

Notice that this script traps for the mouseUp message. That's because there 
is an important mouseUp message in the background to handle the day 
buttons at the tops of the columns. Instead of filtering out the navigation 
buttons in that handler, we just prevent the mouseUp message sent to the 
navigation buttons from ever getting any higher up the hierarchy. 

Each of the day buttons are named "To x," where "x" is the number of the 
day in the week. Thus, the WEDbuttonisnamed "To4." All the handler really 
needs from the button name is the number, which indicates which line of the 
hidden linkList field should be accessed with a Go command. A single 
mouseUp handler in the background takes care of the seven days' buttons. 

on oouseUp 
if •To• is not in the short nal'lle of the target 
then pass oouseUp 
else 

get word 2 of the short naoe of the target 
visual effect zooo open 
go to line It of field 11 linklist 1

' 

end if 
end mouseUp 

First it passes any mouseUp message that may have been sent to the card or 
locked fields on the card. Then the handler retrieves the number from the 
button name (word 2 of the short name). That turns out to be the line number 
of field linkList that contains the desired daily card address. 

Left and right navigation buttons in the Daily Expense Detail behave the 
same way as those in the weekly card, except they test for more possible letters 
in the interval field. The point is, navigation from this card is only within cards 
of the current background. No matter how the user works around the stack 
with these arrow buttons and their corresponding arrow keys, he will always 
stay within the current background. Lastly, the return arrow button on the 
daily card summons item 1 of the hidden mainCard field for the address of the 
weekly card to which this daily card belongs. Its script is similar to the return 
arrow script in the detail cards of the Project stack. 

Linking On The Fly 

What I haven't told you about the daily expense cards is that they, too, contain 
a hidden linkList field. When needed, the daily card can generate an 



340 HYPERCARD DEVELOPER'S GUIDE 

entertainment expense detail card, which is linked directly to that day's card 
(Figure 18-7). 

A third background of this stack, called "Entertainment," represents a card 
you'd use to record the details of an entertainment expense, as required by the 
I.R.S. You access it from the Daily Expense Detail by clicking on the Entertain­
ment button in the second column labels. This card's place in the Expenses 
stack scheme of things is illustrated in Figure 18-8. 

It would be a waste of disk space to generate this card for every day of the 
year when the stack is built or extended. Therefore, the button that links to the 
entertainment data builds the card (and establishes the two-way link) when 
you first click on the button of a day's detail. Once the card is created, you go 
straight to it at the click of that button. 

All handlers for going to the card and creating the card (if it's not there to 
start) are located in that Entertainment button. There are two handlers: 

~shT~$~1~13~.5~0~======~ 
0\arge T~ $.._1 ..::.2""'3. __ 4.:...5 ____ __, 

D.t2 Mond~_y__ ------
J~.P.!~.m.~.!tr::..~ • .J~_a ___ _ 

rr=l!l:;;:lc=uh=:::;-1-;::::1 :::;;:11~==:::;-1 -"""W'III-.w I llcuh I 1!11~1 

Amount .?.~ ... ~~-----·-··-·-----
Cat2pny -~.!!.m:.~ .............................•..............•...... 

--···---·----
Location .!:!iJl~.r..!l..:~ 

Guest{ s) .. ~.!!.~.Y.):'f.9.9.~~---·····-·········-···-·········· 
···-·············-·····--···---·---

ll of Guests...! ......•...... llof Guests-'-·--

Puxpose .Pi sc \!~_".f.r.LtjJlg_l!li~.Lllr.9.\!.IL_. Purpose LUI.!!!!I.r.J!iscusslo .n..e bQ.!!L_ 
~~-cl: ___________ •....• ~.O.Hnu~.!tUJ.Cl1..l!.P. .• ~!!!~I: __ _ 

NAME .•. .Q.!!n.IJ.Y .. (/.9.Q.~ID.!!.IJ ...............................•.....• DJ!PARTMJ!N:r 

Figure 18-7 The structure is set up in the Daily Expense Details card to generate a hard 
link to an Entertainment Expense Detail card for that day. This card is generated only 
when needed. 



Setting Up Linked Cards 341 

Weet 2 

Figure 18-8 The structure of the Expense stack when an entertainment card is linked 
to a daily card. 

on mouseUp 
uisual effect zoom open 
if field Alinklist" is not empty 
then go field "linklist 11 

else makeEntertainment 
end mouseUp 

on makeEntertainment 
global theHame,theDepartment 
set cursor to 4 
set I ockScreen to true 

put field "Date .. into theCate 
put the id of this card into malnCard 

go last card of bkgnd "Entertainment" 
doMenu "Hew Card" 

put theCate into field "Date" 
put theHame into field 11 Hame 11 

put theDepartment into field "Department .. 
put mainCard into field "mainCard 11 

get the id of this card 
push card 
set lockScreen to true 
go field "mainCard• 
put it into field 11 linklist 11 

end makeEntertainment 



342 HYPERCARD DEVELOPER'S GUIDE 

The mouse Up handler first checks to see if there is a card address in the hidden 
linkList field. If there is, that means that a link has already been established, 
and it's safe to go there. If not, then it's time to make an entertainment card 
and link it here. 

You'll see some familiar techniques in the makeEntertainment handler. 
Many of the lines pertain to passing data from fields in the daily card to the 
entertainment card. As far as the linking process, the daily card becomes the 
"mainCard" for the entertainment card, just as the weekly card is the "main­
Card" for the daily card. All other handling of card addresses of the new card 
and main card are identical to the ways we've been working with them in 
other suite styles. 

Interestingly, even the Entertainment Expense Detail card has a linkList 
field. That's because a user may need more than two entertainment reporting 
spaces for a given day. Thus, a fourth background of the stack looks like the 
third, but the item numbers are shown as 3 and 4 (Figure 18-9). Notice the 
fancy right arrow button near the lower right comer of the entertainment 
expense card (Figure 18-7). That's the button that looks for the contents of field 
linkList for an address of a second entertainment card. If the field is empty, 
then it creates a new card and links it back here. The handlers are identical to 

Loc.ti.on _-!o=e..::.'s _____ _ _ 

Gu.est(s) J;~JL~.!~~.!l.~ ... --...... __ ,, _ _ 
.. ~.l~..i~n~illi!__ ___ _ 

• of Guests-~--

NAME ~.nny GoQ.!!.m.!lll 

~ ·------­
CIItepny ·-····---··-·-.. --------· .... 

Loc.ti.on ---·-----

Gu.e~s) .......... - .... - ....... - ........................................ .. 

-·--·---· 

1'\apose 

DJ!PARTM.IINr 

Figure 18-9 An additional/ink to a second Entertainment Expense Detail card (notice 
items 3 and 4) is also possible when needed. 



Setting Up Linked Cards 343 

those shown above for the Entertainment button, except the background 
name for the new card is called Extension. 

Type C Suite: The Accordion 
The last linked suite we'll look at is not found in Focal Point, so we'll be making 
up a scenario to illustrate the need. The setting is a medical patient stack. 
There is at least one card for each patient, listing key patient data, like patient 
name and number, attending physician, and so on. On that first card is also 
space to note one diagnosis requiring treatment. But if the patient comes into 
the hospital with more than one diagnosis, then the stack generates a supple­
mental card linked to the first. There may be several diagnoses at time of 
admission into the hospital; other diagnoses may be added during treatment 
or after tests; existing diagnoses may be deleted as incorrect or replaced by 
more accurate findings. The links among all these cards must be able to handle 
the dynamic life of the patient's record. 

From a diagrammatic point of view, Figure 18-10 shows how the stack 
shapes up from the user's point of view. The physician has complete forward 
and backward navigation through the cards of the first background to allow 
browsing and searching for patient names. But in the supplementary cards for 

Diagnosis Diagnosis Diagnosis 
---111Card Style H---•~Card Style IN---• Card Style lit--, 

No. 1 No. 1 No. 1 

I 
~l-oi&.9nosis·! 
!jtard Style i 
t ... ~~ .... ~ .. .J 

I 
;i · oi89nosis ·

1
• 

;Icard Style i 
;f No.2 ! .. : ............ . 

I r.r· ............. , 
ii Diagnosis i 
ulcard Style 1 

t ... ~~ .... ~ .. .I 

I 
li · oi&9nosi is 
:teard Style 
,f No.2 ·=······· ...... . 

_. .... l. ..... . 
'I Diagnosis 1 
!jCard Style 1 
IL. .. ~~ ... 2 ... ..1 

I 
foi&9nosis · 
JJCard Style 

1 
!! .... ~~ .... ~ .. .i 

Figure 18-10 An accordion suite consists of a lead card plus any number of cards that 
may be browsed in a linear fashion. The number of cards may vary during the life of the 
lead card. The structure must accommodate such changes. 



344 HYPERCARD DEVELOPER'S GUIDE 

a given patient, the path is linear only within the cards for that patient. 
Because dozens of patients will be sharing the second background, it is not 
feasible to navigate through those cards just by limiting navigation to cards of 
that background only. Moreover, the cards in the second background may be 
added out of order for a given patient, especially when a diagnosis is added 
several days after the initial cards are made. Schematics of the two back­
grounds of this system are shown in Figure 18-11. 

The key to keeping all related cards attached to one another is maintaining 
a list in each card of the IDs of the card on either side of it according to the user's 
eye. Therefore, the first diagnosis card has a hidden linkList field that holds 
the address of the next card in the sequence. All subsequent cards have a two­
line linkList field in them. Into the first line goes the address of the previous 
card in the patient sequence; into the second line goes the address of the next 
card in the patient sequence. As part of the handler that actually moves to the 
next card in the sequence, if line 2 of the linkList field is empty, then an answer 
dialog notes that there are no further diagnosis cards for that patient. This 
system is diagrammed in Figure 18-12. 

To demonstrate the procedures involved in setting up a series of cards for 
a new patient, we offer the handler, below. This handler assumes several 
things. First, someone in admissions fills out information on a screen that 

(A) 

(B) 

0 
Q Patient Dignosis 

PatientNarM: No.: __ 
Attending Physician:-------­
Admittfl\9 Date:------

Page_of_ 
Dia~nosis;-.· -------­
Treatment ScMdule: 

Patient Di!!gnosis 

Patient NarM: No.: 

Page_of_ 
Diagnosis-· -------­
Treatment Schedule: 

•• 
Figure 18-11 A schematic of a lead card (A) and all subsequent cards (B) in the suite. 



hidden field 
-----. •unkList• 

Card ID 
1 

·-············-~ 
i ·················: 

~~r.~.1.(~~ .... 1 
..... ~P---1"' 

----........... --, 
Card ID ~r~.i~.L ..... 

1 20 ~~r.ti.~ .~.Q~ .. 
•••• .! .......... __ __. 

Setting Up Linked Cards 345 

Figure 18-12 Each card in the suite has a hidden field called "linkList." Line 1 of that 
field holds the ID of the previous card in the suite; line 2 holds the ID of the next card in the 
suite. Adding or deleting cards means shuffling these card references. 

gathers all patient data (name, number, physician, etc.) and a simple list of 
diagnoses. The purpose of the handler is to generate a detailed patient record 
for each patient, with a separate card for each diagnosis, which the physician 
uses to record progress and treatment. 

The new Patient handler, below, also assumes that another handler (proba­
bly a mouseUp handler attached to a button in the admissions stack) as­
sembles all the patient information in a five-line parameter, and that a list of 
diagnoses is assembled in a second parameter. The newPatient handler 
makes as many cards as there are diagnoses passed to it, starting with the first 
background, and adding more diagnoses to cards of the second background. 
Here's the handler: 

on newPatlent Pat lentOata,dlagnoses 
go to stack "Patient Records" 
go to last card of bkgnd "Diagnosis 1" 

repeat with y ~ 1 to the number of I ines of diagnoses 
If y = 2 then go to last card of bkgnd "Diagnosis 2" 

doMenu "Hew Card" 
put the ld of this card Into I ine y of I inklist 



346 HYPERCARD DEVELOPER'S GUIDE 

repeat with x "' 1 to 5 

put line x of patientData into field (•Poata • & x) 

end repeat 

put y into field •page• 
put the number of I ines of diagnoses into field •totaiPages• 
put line y of diagnoses into field •oiagnosis• 

end repeat 

go to line 1 of llnkllst 
put line 2 of llnkllst into line 2 of field •unklist• 

repeat with z 11 2 to the number of I ines of llnklist 

go to line z of llnkllsl 
put line z-1 of linklisl into line 1 of field •linklist• 

put I ine z+1 of I inklist into line 2 of field •1 inklist• 

end repeat 

end newPatient 

The handler starts by going to the appropriate stack and to the last card of the 
first background, Diagnosis 1. A repeat loop handles the creation of all cards 
associated with the patient. Since the suite needs only as many cards as there 
are diagnoses, the number of diagnoses (one per line) is the counting mecha­
nism for the loop. When the counter reaches 2, it's time to shift to the second 
background, Diagnosis 2, and build onto the end of that background. Any 
subsequent new cards to this background for this patient will automatically 
be from the end of the background, so there's no need to go to the last card of 
the background except the first time. 

Each time through the repeat loop, and after a new card is created, the id of 
that new card is added to its own line of local variable linkList. For each card 
the patient data, which passed to the handler as a five-line parameter, is put 
into the appropriate fields. 

Each card has fields for both a page number and the total number of pages. 
Thus, when a physician is looking through a patient's record, he has some 
notion of how many diagnoses are there to be treated. This method of 
numbering pages is often very helpful for the user to get some bearing about 
where he is in the stack. The current page number is derived from the loop 
counter, while the total number of pages is derived from the number of lines 
of diagnoses. Finally, the name of the diagnosis, from the parameter, is placed 
into the diagnosis field of the card. This may be done at any time within the 
repeat loop. 

Once all the cards are created, it's time to plant all the linked IDs in the 
hidden linkList fields in each card. By the end of card creation, the linkList 



Setting Up Linked Cards 347 

local variable contains a complete list of all cards in the patient's record. The 
IDs just need to be distributed among the various cards. 

To distribute the IDs, the handler returns to thl; first card of the patient's 
record and puts the ID of the second card into line 2 of field linkList. In keeping 
consistent with the line allocations of all linkList fields in this stack, the second 
line always carries the ID of the next card in the series. 

Next, a repeat loop goes to each of the remaining cards in the list, and puts 
the IDs of the previous and next cards of the series into lines 1 and 2, 
respectively, of the hidden linkList field. In the case of the last card, when the 
handler tries to put line z+ 1 of linkList into line 2 of the field, that line of the 
field remains empty, as it should. The handler of the button that normally 
brings you to the next card in a patient series is this: 

on mouseUp 
get I I ne 2 of field • I i nkl i sl • 
if it is empty 
then answer •Ho further diagnoses for this patient.• 
else 

visual effect wipe up 
go to I in e 2 of i t 

end If 
end mouseUp 

while the handler to go to the previous card in the series is, simply 

on mouseUp 
ulsual effect wipe do111n 
go to line 1 of field •linkllst• 

end 111ouseUp 

One of the distinctions between backgrounds 1 and 2 is that background 1 
does not have a button pointing to previous cards in the series (but it does need 
buttons pointing to next and previous patient summary cards for browsing 
purposes). 

Adding and Deleting From the Accordion Suite 

This type of linked suite may need provisions for adding and deleting cards. 
Such adjustments are not difficult, but you must pay attention to details in 
your scripts. Not only do you have to adjust the linked card addresses 
surrounding a new or deleted card, but the page numbers and total number 
of pages must be adjusted for all cards in the suite. Because adding and 



348 HYPERCARD DEVELOPER'S GUIDE 

deleting cards need the renumbering of all cards, I'd write that as a separate 
handler called by both the add and delete card handlers. 

Assuming a new card may be added anywhere along the suite (i.e., not just 
at the end), the handler must obtain the ID of the new card, and place it into 
the linkList fields of the cards on either side of it, while putting the addresses 
of those old cards into its own linkList field. Here's one way to handle that: 

on ad dO I agnos is 
set cursor to + 
set I ockScreen to true 

doMenu •Nem Card• 

put the ld of this card Into neuCard 

go previous card -- the one from which the neu card mas made 
put line 2 of field •Jinklist• into line 2 of linklist 
put newCard Into line 2 of field •tinklist• 

if I ine 2 of I inklist is not empty then 

go to I I ne 2 of I I nkl I st 

put line 1 of field •llnkllst• into line 1 of I inklist 

put newCard Into line 1 of field •t inklist• 

end If 

go to neuCard 
put llnkllst Into field •Jinkllst• 

renuaaberCards -- cal I handler that renumbers cards 

end addOiagnosis 

The net effect of this handler is a reordering of card addresses in the linkList 
fields of the new card and the two cards on either side of it. The if-then 
construction is inserted to accommodate the situations in which the new card 
is the last card of the suite. 

Deleting a card from the suite is just the reverse of adding one--addresses 
get shuffled in the other direction. Here's a handler to do it: 

on deleteDiagnosls 
set cursor to + 
set lockScreen to true 

get field •Jinklist• 



Setting Up Linked Cards 349 

go to line 1 of It 
put line 2 of it into I ine 2 of field •tlnklist• 

If line 2 of It Is not empty then 
go l o I i ne 2 of i l 
put line 1 of it into line 1 of field •tinklist• 

end if 

renumberCards 

end deleteDiagnosis 

Notice that this handler even accommodates the situation in which the card 
to be deleted is the first one of the second background. All the addresses are 
put in the right places, even if one of those places happens to be the very first 
card of the patient series. 
As for renumbering the cards, you have many ways to accomplish it. The 
simplest (although not necessarily the fastest) way is shown in this handler: 

on renumberCards 
push card 
repeat unti I the background is •oiagnosis 1• 

go to line 1 of field •linklist• 
end repeat 

put 1 into pageCounl 
repeat until line 2 of field •linklist• Is empty 

put pageCount into field •page• 
add 1 to pageCount 
go to I ine 2 of field •1 inklist• 

end repeat 

put pageCount into field •tolaiPages• 
repeal pageCount - 1 times 

go back 
put pageCount into field •totalPages• 

end repeat 
pop card 

end renumberCards 

This handler first works its way back to the first card of the suite, no matter 
where a new card was added or an old one deleted. Once it's back at the first 
card, it starts going to each card in the suite, placing the page number in the 
appropriate field. The page number is maintained in a local variable, 



350 HYPERCARD DEVELOPER'S GUIDE 

pageCount. By the time the numbering gets to the last card of the series, 
pageCount will contain the number of total pages for the patient. With that 
knowledge, the handler goes back (the same as pressing the tilde key or 
choosing Back from the Go menu) enough times to return it to the first card of 
the series, stopping at each card long enough to put the total page count into 
the field that displays the total number of pages for the patient. 

The examples of linked suites presented in this chapter should cover a large 
percentage of situations in dynamic information management and external 
device control stacks. Of all the techniques shown here, the most important 
is that the user should not be aware of the internal stack organization. It is the 
job of the author and his scripts to let the user focus on the information and 
how the information is linked, rather than how various cards and back­
grounds are linked. It goes a long way to helping the user get involved with 
the application, and distracting attention from the HyperCard engine beneath 
it. 



19 
Working With Date 
and Time 

At though you'd think date and time calculations would be more pre­

dominant in information management and external device control 

kinds of applications, consider that Business Class, an information 

publishing stack, has just about as much time calculation going on as 

Focal Point has date calculation. So much of the information we work 

with from day to day is dependent upon time and date, there is no 

escaping a working knowledge of how HyperCard treats both. 

HyperTalk Functions and Commands 

Despite HyperTalk' s substantial time and date calculation power, there 

are relatively few words in the language's vocabulary that pertain to the 



352 HYPERCARD DEVELOPER'S GUIDE 

subject. The two major functions are the Date (four versions) and the Time 
(two versions) functions. A lesser used function is the seconds function. 
Aside from these, the only other HyperTalk word that affects time is Convert, 
a most valuable command that lets you convert dates and times into various 
formats. 

Most time and date manipulations involve arithmetic of some kind. Per­
haps your scripts need to know the date of next Wednesday, or calculate a 
half-dozen deadline dates prior to a project due date, or add two timings of 
music selections, or calculate the elapsed time of a meeting with a client, or 
figure out what time it is right now in Sydney, Australia. All these calculations 
are possible within HyperTalk's time and date vocabulary and a little arith­
metic. 

One of the fundamental building blocks of knowledge about working with 
time in HyperCard is that everything it does is based on the built-in clock of 
the Macintosh. That clock was "born" on January 1, 1904. H your date­
keeping tasks take you back in history before this time, you'll have to perform 
some extra calculations to handle it. In other words, you wouldn't be able to 
calculate how many days the Civil War lasted, unless you modify the dates to 
the 20th century before calculation. You also won't be able to forecast past 
February 6, 2040, in HyperCard using straight, unmodified dates. 

Seconds-The Common Thread 
One element you'll see in common with just about every date or time 
calculation is a conversion to seconds. Here's why. 

When you start working with time and dates, you quickly discover that the 
irregularities of the calendar work against you. For example, no matter how 
you try to calculate a date 42 days prior to today, the only sure method is to 
subtract 42 times the number of seconds per day from the number of seconds 
the Macintosh clock returns for today. When you reconvert the answer to a 
real date fonnat, you can be assured the date is accurate, whether the month 
barriers crossed in the subtraction have 28, 29, 30, or 31 days in them. 

Therefore, in searching for solutions to your time and date problems, look 
to the seconds as a common denominator. 

Speaking of solutions, we'll present five different time and date problems 
and solutions in this chapter: 1) adding time; 2) calculating time zone differ­
ences; 3) calculating elapsed time; 4) calculating the nt,~mber of days between 
dates; and 5) figuring the scheduling dates of milestones before a project 
deadline. For each problem, we'll establish a scenario from the real world. 



Working With Date and Time 353 

Adding Time 
The setting is a classical radio station that uses a HyperCard stack to figure out 
its play lists for each hour of the broadcast day. Each card is a worksheet on 
which the Program Director can juggle discs and selections to fill out the 
available music programming time within the hour (Figure 19-1). 

The active fields in this background are: 

Label 
Total Music Time Available 
Track Time (column of fields) 
Total Track Time 
Time Left 

Field Name 
Total Available 
Track 1 to Track 8 
Track Total 
Track Left 

These fields either trigger recalculation (with a background level closeField 
handler), adjust their own display (the Total Available field), or receive the 
results of calculations. All other fields merely store data. 

One thing about time in H ypetCard. When you type a time into a field, it 
must be in the form hh:mm:ss, as in 1:25:30 for one hour, 25 minutes and 30 

• File Edit Go Tools Objects 

Play List Worksheet 

Date: .!Y 11/ ~H) ___ ·--··-·-- Time Slot: _(kQ.(L::...9..;.0.{)_u.m._ 

Total Music Time Available: _0.0.;.5..1.;.~.0.--············---·-·--·-·-···---

Disc No. Trad</SeleC'timt TrKk Time 

1 Delos CD3017 1-5/Beethoven Sumphonu •6 41:43 
2 TD 8.43053 7/Chopi n Scherzo •3 7:20 
3 DG 419 499-2 5/Rachmaninoff Prelude 32/5 2:49 
4~---------------------+6~/~R~a=c~h~m~a=n=in=o~ff~P~re~l~u~de~3~2~/~12~----r------~2~:3~3 
5~---------------+-------------------------------------------------------------------r--------~ 
'~------------------+----------------------------------------------------r-----~ 
7~----------------+-------------------------------------------r--------~ 
8~-----------~----------------------------------~====~ 

Total TrKk Time I 54:25 
Time Lett I oo:o5 

Figure 19-1 A hypothetical application for a radio station requires adding up times of 
recordings to be played within a broadcast hour. 



354 HYPERCARD DEVELOPER'S GUIDE 

seconds. If you enter a time with only one colon, HyperCard assumes it is time 
expressed as hh:mm, without any seconds. Therefore, if time is usually 
thought of in a particular application in terms of minutes and seconds (as it is 
here), then an extra "00:" must be stuck on the beginning of any time before 
it may be part of a calculation. At the same time, the handlermaywant to make 
allowances for time entries that include hours, minutes and seconds. To those 
entries, nothing should be added to the front. 

That discussion served as an introduction to the closeField handler at­
tached to the Total Available field. To aid calculations later, this handler 
preconditions the field's contents to be in the proper format immediately after 
you enter a time. Here's the handler: 

on closeField 
if the length of (the value of the target) < 6 
then put "00:" before field •Total Auai lable• 

end closeField 

If a time is entered as minutes and seconds (e.g., 25:30), the handler will tum 
it into the proper format (e.g., 00:25:30). But when the time is entered with an 
hour in it, nothing is added to the field. 

The rest of the fields are arranged in tabbing order so that the Program 
Director can enter all information about a particular selection-Disc Number, 
Track/Selection and Track Time-in sequence. Of all the disc information 
fields, only the track time fields are named here, as Track 1, Track 2, and so on 
down the column to Track 8. Most of the work of this stack is done by the 
closeField handler that is triggered by the closure of any Track time field. 
Whenever a time is entered into the field, the total track time and the amount 
of time left to program are calculated. 

Times Include Dates 

Before we get to the handler, there is one more thing you should keep in mind 
about time in HyperCard. When you type a time in a field and convert it to 
seconds, HyperCard counts that as time on the clock since midnight of the 
current day. In other words, HyperCard interprets a track time in our stack 
of one minute as 12:01:00 AM on whatever today' s date is. When you convert 
that time into seconds, HyperCard includes all the seconds from January 1, 
1904, to the very beginning of today, plus the minute in your field. To prevent 
possible disaster when performing arithmetic on time that is unconnected to 
any particular day, I believe it's best to subtract the seconds up to today' s date, 
leaving just the raw time in the field. In the script for our radio station stack, 
a function does just that. 



Working With Date and Time 355 

At the back end of a time calculation, when the resulting seconds need to 
be converted back into recognizable time, HypetCard adds some text to the 
time that we don't need for the purpose of music track timings. First of all, 
when a time converts back to less than one hour, HyperCard shows that as 
being part of the 12:00 AM hour of the day (actually of January 1, 1904). For 
example, if you add one minute and three minutes together, after all the 
arithmetic and conversion, HyperCard shows "12:04:00 AM." That means 
any script must strip off excess data, like the "12:" for times under one hour, 
and the AM designation. In the script for the radio station stack, another 
function takes care of that. 

The Handlers 

Now we may proceed with the background script that handles the time 
arithmetic for adding the times: 

on ·closeField 
if •Track" Is not in the target then pass clos~Field 
set cursor to 4 

put empty into runninglotal 
put rawSeconds(field "Total Available") Into available 

repeat with x = 1 to 8 
get field (•Track • & x) 
If It Is empty then next repeat 
If the length of it< 6 then put •oo:• before it 
add rawSeconds(it) to runningTotal 

end repeat 

put strlpExcess(runningTotal) ~ 

into field •Track Total• 
put strlpExcess(aval lable- runnlngTotal) ~ 

into field •track Left• 

if runninglotal >available 
then answer •There Isn't that much oval lable time• 

end closeField 

function rawSeconds input 
get Input 
convert It to seconds 



356 HYPERCARD DEVELOPER'S GUIDE 

put the date into history 
convert history to seconds 
return It - history 

end raUJSeconds 

function strlpExcess theTime 
get abs(theTi111e) 
convert It to I ong time 

If char 1 to 3 of It is •12:• then delete char 1 to 3 of it 
delete char offset(•m•,lt)- 2 to offset(•m•,lt) of It 

If theTime < 0 then return 
else return It 

end strlpExcess 

& ll 

The closeField handler responds only to closeField messages initially sent to 
fields whose names contain "Track." Otherwise, the message is passed up the 
hierarchy. A local variable, runningTotal, is "initialized" by putting empty 
into it. This will allow values to be added to it later on. Next, the raw seconds 
of the time entered into the Total Available field are assigned to a local 
variable, called available, which will also be used later. 

A repeat loop uses the counting variable, x, to retrieve the times in each of 
the 8 Track fields for summing to runningTotal. Early in the loop there is an 
if-then construction that short circuits the loop if a Track field is empty. This 
speeds loop execution, because several statements are not called for an empty 
Track field. For times entered as minutes and seconds (their lengths will be 
less than six characters), the obligatory "00:" characters are added to the 
beginning of that string. Then the raw seconds of that time are added to the 
runningTotal variable. 

The next two statements call the strip Excess function on the way to putting 
the results of the time arithmetic into the two bottom fields of the card. Passing 
a seconds value as a parameter, this function performs the conversion back 
into regular time format, and removes a leading "12:" if it's there, and also 
removes the "AM" designation at the end of the reconverted time. The 
function also tracks whether a value passed to it is negative, which might be 
the case when the parameter is the difference between the available time and 
the running total. A negative time passed to the function forces the function 
to return the value preceded by a negative number sign. 

One final touch of the handler is a test for whether the Program Director has 
overstepped the allotted time. An answer dialog box brings this to his 
attention in such situations. 



Working With Date and Time 357 

World Time Conversion 
If you've had a chance to see Business Class, then you know that the stack 
system has a few different world timekeeping and time calculating functions 
scattered about. Rather than reproduce that setting, let's make an entirely new 
card that a telephone globetrotting businessperson should have as part of his 
HyperCard-based set of desktop tools. On a single card will be listed the major 
cities that person frequently telephones. By going to that one card, the user 
can see at a glance what time and day it is in any of five cities and also whether 
the time in those cities is within the typical business hours of 9 a.m. to 5 p.m. 

The best way I found to handle an array of world time conversions is to 
reference all times from the world standard time zone, Greenwich Mean Time 
(GMT). This is the time zone centered on Greenwich, England, and is also 
known as Coordinated Universal Time, or UTC, as well as Zulu whel) used 
with 24-hour time (0800Z). 

Time conversion this way requires two figures for the number of hours 
(plus or minus) from GMT your own time zone is and also for the time zone 
of the target city. For example the Pacific Standard Time zone is eight hours 
earlier than GMT, so its offset is -8. Rome, on the other hand, is one hour later 
than GMT, so its offset is + 1. Offset numbers are positive east of GMT all the 
way to the International Date Line, which runs down the middle of the Pacific 
Ocean; offset numbers run negative west of GMT to the date line. Table 19-
1 shows offsets for many cities' time zones around the world (which you'll 
need for calculations). 

Table 19-1. 

Offset 
0 
-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 
-9 
-10 
-11 
+12 
+11 

Sample Cities 
London, Dublin, Lisbon, Rabat, Accra 
Azores, Cape Verde Is. 
Mid-Atlantic Ocean 
Buenos Aires, Montevideo, Rio de Janeiro 
Halifax, San Juan, Caracas, La Paz, Santiago 
Ottawa, New York, Washington, D.C., Miami, Havana, Bogota 
Winnipeg, Chicago, Dallas, Mexico City 
Calgary, Denver, Phoenix, Baja 
Vancouver, San Francisco, Los Angeles 
Anchorage, Juneau, Dawson 
Honolulu, Papeete 
Pago Pago 
Wellington, Auckland, Christchurch, Suva 
New Caledonia, Marshall Islands 



358 HYPERCARD DEVELOPER'S GUIDE 

+10 
+9 
+8 
+7 
+6 
+5.5 
+5 
+4 
+3 
+2 
+1 

Guam, Port Moseby, Sydney, Melbourne 
Tokyo, Seoul 
Beijing, Taipei, Hong Kong, Singapore 
Novosibirsk, Chengtu, Bangkok 
Tashkent, Lhasa 
New Delhi, Bombay, Calcutta, Columbo 
Sverdlovsk, Karachi 
Gorky, Abu Dhabi 
Moscow, Baghdad, Nairobi 
Helsinki, Athens, Istanbul, Cairo, Capetown 
Stockholm, Berlin, Paris, Rome, Madrid, Lagos 

The basic calculation involves figuring GMT from your time zone and then 
figuring the time of the target city offset from GMT. GMT, in other words, 
becomes a kind of pivot point for the entire calculation. 

One other factor that impacts the calculation is Daylight Saving Time (DST). 
In the United States and Canada, when DST is in effect (and not all areas of the 
countries observe DST), the offset difference between the time zone and GMT 
is one hour less. Therefore, while DST is in effect, the offset of Los Angeles to 
GMT is only -7 hours instead of -8. That part is easy to take care of in a 
conversion script. 

The difficult part is knowing when or if a target city also observes its 
equivalent to Daylight Saving Time. It is not a universal adjustment, nor do 
those countries that observe it change their clocks on the same days. And 
don't forget, when countries in the southern hemisphere change their clocks 
for DST, it's in their summer months, while it's winter in the northern 
hemisphere. While the example stack does not take a target cities' DST setting, 
I'll suggest ways to accommodate that if you plan to replicate the stack for 
yourself. 

Our example world time conversion is a one-card stack, shown in Figure 19-
2. In the upper right comer are fields for the time and day of where your 
Macintosh is. In the center of the card are fields for you to enter up to five cities 
whose time and day you'd like to have available before making international 
telephone calls. Of all the fields on the card, the only ones you need to enter 
data are the ones in the City column (plus two hidden fields we'll see in a 
second). All other fields are calculated for you. Note, too, that the names of 
cities you type in are changed to italic text style when the current time in the 
target city is a time other than 9 a.m. to 5 p.m., meaning the offices in those 
places are probably closed. This card's calculation handler is triggered by an 
idle handler, so you can display the card on your screen and watch times, 
days, and city name text change. A checkbox at the bottom of the card lets you 
indicate whether Daylight Saving Time is currently in effect for where you are 



• File Edit Go Tools Objects 

lUilrlcJ 
[llrll(lllm~'er 

City Current Time 
NeJt' Yon· 7:26 PM 

l. ondan 12:26 AM 

NeJoJ•' Delhi 5:56 AM 

Tokyo 9:26AM 

Sydney. Australia 10:26 AM 

Working With Date and Time 359 

Home Base 
4:26PM 

Friday 

Day 
Friday 

Saturday 

Saturday 

Saturday 

Saturday 

D Daylight Sauing Time 

f"' 

Figure 19-2 A world chronometer offers five cities whose current times and days may be 
viewed at a glance. When the current time in a location is outside 9am and Spm (business 
hours), the city's name is dimmed (italicized). 

in the world. 
I keep referring to "where you are in the world," because this stack can be 

used anywhere in the world. It's not "hard-wired" for any particular country 
or time zone. That's because two hidden fields (Figure 19-3) hold time zone 
offset data for you and for the target cities. Using these numbers, the 
conversion handler figures out GMT and, from GMT, the times in the target 
cities. Each of the five lines of the larger field, called Offset List, corresponds 
to the city in each of the fields in the City column. Simply select the numbers 
from Table 19-1 for the cities, and type them in the corresponding line of the 
field. Then hide the field. 

Here are the two handlers that go into the stack's background script: 

on I dIe 
If field •Ho~e Ti~e· =the ti~e then pass Idle 
else updateTime 

end Idle 



360 HYPERCARD DEVELOPER'S GUIDE 

j File Edit Go Tools Objects 

llJ(]rlrJ 
[tJr(]rJ()ml:!,l:!r 

City 
New YorA' 

London 

NeJoJ•'Oelhi 

Tokyo 

Sydney. Australia 

Current Time 
7:27PM 

12:27 AM 

5:57AM 

9:27AM 

10:27 AM 

Home Base 
4:27PM 

Friday 

Day 
Friday 

Saturday 
Saturday 

Saturday 

Saturday 

D Daylight Sauing Time 

\li 

-8 

i . 
. 

-
. 

Figure 19-3 Two hidden fields (right) hold important offset infonnation. The top field is 
the offset between your Macintosh's time zone and GMT; the bottom field lists the offsets 
from GMT for each of the five dties. 

on updateTime 
set I ockScreen to true 
put field •offset List• into offsetllst 
put 60*60 into oneHourSecs 
If the hI I It e of bkgnd butt on • Day I I ght Sau I ng TIme • 
then put true Into SummerTime 
else put false into SummerTime 

put the time Into MacTime 
conuert MacTime to seconds 
put MacTime - field •Home Base Offset• * oneHourSecs ~ 

into GMTTime 
if SummerTime then subtract oneHourSecs from GMTTime 

conuert MacTime to long date and time 
put word 5 to 6 of MacTime into field •Home Time• 
put item 1 of MacTime into field •Home Day• 

repeat with x g 1 to 5 



Working With Date and Time 361 

put GnTT i me + I i ne x of offsetl i st * oneHourSecs .., 
into ForeignTime 

convert ForeignTime to long date and time 
put ~ord 5 to 6 of ForeignTime .., 

Into field (•Foreign Time • & x) 
put item 1 of ForeignTime .. 

into field (•Foreign Day • & x) 

conuerl ForelgnTime to dateltems 
gel item i of ForeignTime 
if it < 9 or it > 16 
then set textStyle of field (•Foreign City • & x) lo italic 
else set textSlyle of field (•Foreign City • & x) to bold 

end repeat 

end updateTime 

All updating is triggered by the idle handler. It checks to see when the time 
displayed in field Home Time (in the upper right of the card) is different from 
the time returned by the system. When the two don't match, then it is time to 
update the card. 

The first group of statements of the updateTime handler perform prelimi­
nary work, like retrieving the entire five lines of field Offset List in one swoop 
(putting the field's contents into the variable, offsetList), setting the variable 
oneHourSecs we'll use as a kind of constant to represent the number of 
seconds in one hour, and then setting the variable SummerTime to true or 
false, depending on whether the Daylight Saving Time button is checked. 

In the second group of statements, GMT time is calculated. The calculation 
is rather simple: the current Macintosh clock time (in seconds) minus the offset 
for your Macintosh's location (also in seconds). Notethatthis works no matter 
which side of GMT you're on. In the case of North and South America, for 
instance, subtracting the negative offset numbers actually adds time to your 
Macintosh clock reading to arrive at GMT. To the east of GMT, the offset is 
subtracted from the Macintosh time to arrive at GMT. If you've checked the 
DSTbox, then one hour is subtracted from GMT time to make the appropriate 
adjustment in the remaining calculations. 

The two fields in the upper right comer, signifying the time and day of 
where you are, get filled in with the third group of statements. In one Convert 
command, the current time is converted both to a date and time. Then various 
words of that format are copied into the fields Home Time and Home Day. 

It's in the repeat loop that all the foreign city times are calculated, using 
some of the data created previously in the handler. The repeat loop counter 



362 HYPERCARD DEVELOPER'S GUIDE 

variable, x, acts as an index number to the line of variable offset List and to each 
of the fields in columns. Calculation work is done on one row per repetition. 

The time (in seconds) of the foreign city is calculated first, using GMT as the 
basis, plus whatever offset is in the appropriate line of the Offset List field 
(now in variable offsetList). Just as the Macintosh time was converted to the 
long date and time, so too is the foreign time for each city, with various words 
of the result going into fields for time and day. These fields are named Foreign 
Time 1, Foreign Time 2 and so on, making it easy for the repeat loop to fill them 
in row by row. 

The last set of statements inside the repeat loop convert the foreign time for 
each city into the dateltems format to test whether the current hour is less than 
9 or greater than 16-whether the current time is prior to 9 a.m. or after 5 p.m. 
If it's after business hours, then the textStyle property of the city field is 
changed to italic. A city whose time is within normal business hours is set to 
bold, just like the other text in the card. 

Foreign Daylight Saving Time 

As for accommodating Daylight Saving Time in the cities you list, you could 
provide a column of DST checkboxes to the left of the city names. When you 
know for sure that a city is observing DST, then check the box. In the 
updateTime handler, the group of statements calculating the foreign time 
would check the setting of that button (name the buttons with a name and 
number, like the fields), and add one hour's worth of seconds before convert­
ing the time to long date and time format. The modification would look like 
this: 

If the hlllte of bkgnd button ( 11 0ST .. & x) Is true 
then add oneHourSecs to ForelgnTI~e 
convert ForelgnTiae to long date and tIme 

Automating the Daylight Saving Time for the other cities would be possible 
if you know the exact time change schedule. You could program those dates 
into the update Time handler (probably using another hidden field to store the 
change dates) and not have to worry about it. Of course, some countries' time 
change systems are not so easy to program, such as the United States, which 
does it not by any particular date, but by the last Sundays in April and October. 
It's not simple, but it can be done in HyperTalk. 

If you use this kind of time conversion application to complete a call to a 
distant land, you probably want to time the call. That's where an elapsed 
timer comes in handy. 



Working With Date and Time 363 

Elapsed Time Counter 
The following example is more of an exercise than a fully powered applica­
tion. It consists of an electronic stopwatch that runs on the Macintosh clock. 
As such it is not accurate to fractions of a second, because the beginning of any 
time interval is based on the seconds counter of the Macintosh clock. But for 
many applications, such as timing a telephone call or a meeting, accuracy to 
within one second is more than adequate. 

The electronic stopwatch we'll be using to demonstrate counting elapsed 
time is shown in Figure 19-4. It has two fields, one for the total elapsed time 
since the Start button was pressed, and one for a lap counter. When the Lap 
button is pressed, the time from the main field is copied into the lap field. A 
Stop button halts timekeeping. 

This timer is designed around two global variables, which assure that the 
timer ticks away while the user goes off to another stack to look up or record 
other information. Of course, quitting HyperCard or launching an applica­
tion will break the timer's sequence, since the value of the global variables will 
be lost. In a tightly controlled stack environment, you could save the variable 
values in hidden fields in the stack upon closing the stack, and retrieving them 
upon opening the stack. That would make it look like the timer was ticking 
away, even when the Macintosh was turned off. 

We show the stopwatch as a small part of an entire HyperCard screen, 
because an elapsed timer is usually needed in another card, like a telephone 
log card. Unfortunately, for the elapsed timer to look like it's ticking through 
the seconds, and updating the display each second, the timer must be 

Stopwatch 

00:00:29 
Start Stop 

Lap A 

00:00:21 

Figure 19-4 A HyperCard stopwatch includes a lap timer. An idle handler keeps the 
displayed time ticking away on the screen. 



364 HYPERCARD DEVELOPER'S GUIDE 

triggered by the idle system message. As mentioned earlier (Chapter 14), the 
idle message is troublesome if your card requires text input. Especially in the 
case of a timer that updates the display every second, the user would almost 
never have control over the text insertion pointer long enough to type more 
than a character or two. Therefore, I don't recommend this kind of time 
counter in a text-field-based stack. On the other hand, if the card has only 
buttons (or button-like objects) on it, then there's no apparent conflict between 
the idle handler and the buttons responding to mouse clicks. 

To start looking at how the timer works, let's check out the handler in the 
stack script: 

on openStack 
global running 
If running Is e11pty 
then put false Into running 

end openStack 

This handler is necessary for the first time you start this stack in a HyperCard 
session. Since the running global variable will not have been given a true or 
false attribution yet (and the idle handler, as it's written below, expects only 
one or the other), the variable is made false, keeping the fresh stopwatch 
turned off. 

Now we can look at the handlers in each of the three buttons. First, the Start 
button's handler: 

on 11ouseUp 
global startTi11e, running 
put e11pty Into field "Ti11er" 
put e11pty into field "Lap" 
put the seconds Into startTi11e 
put true Into running 

end IIOUSeUp 

Both global variables are modified in this handler, so they are declared at the 
beginning. Both fields are emptied of any previous contents. The seconds 
reading from the Macintosh clock is placed into startTime. This becomes the 
base time from which the elapsed time counter will be measuring. Finally, the 
variable called running is given the value of true. The idle handler will need 
to know if the stopwatch is running. This variable is the "switch." 

The Stop button handler is quite simple: 



on mouseUp 
global running 
put false Into running 

end mouseUp 

Working With Date and Time 365 

The instant the next idle message is sent to the current card, the idle handler 
will bypass any further time counting. The button has, in essence, turned the 
timer off. 

As any lap timer would, the Lap button merely takes a snapshot of the time 
in the main field and copies to the lap field: 

on aouseUp 
put field •timer• into field •Lap• 

end llOuseUp 

In the background script of this application are two handlers: 

on i dIe 
global running 
If running then updatetiller 
else pass Idle 

end Idle 

on updatetiller 
global starttllle 
put the seconds - start time Into duratIon 
convert duratIon to I ong time 
delete char 9 to 11 of duration -- delete •AM" or •pnn 
If char 1 to 2 of duration a 12 
then put •oo• Into char 1 to 2 of duration 
put duration Into field •time" 

end updatetiller 

The idle handler simply checks the running global variable whether the 
switch is on (true) or off (false). Whenever the switch is on, then it calls the 
updateTimer handler. 

Using the startTime global variable as a base, the updateTimer handler 
finds the difference between the starting time and right now. Since these 
calculations are done in seconds, the number needs to be converted to the long 
time format, which provides hours, minutes, and seconds. Unfortunately, in 
12-hour time it also appends an AM or PM to the time. Those letters are 
removed immediately after conversion. 



366 HYPERCARD DEVELOPER'S GUIDE 

As you'll recall from our discussion earlier in this chapter about dealing 
with raw seconds or time, HyperCard considers an amount of time such as 3 
minutes to be 3 minutes after midnight. Therefore, the conversion to long time 
also inserts a leading "12" into the time (this occurs when the Control Panel 
is set to 12-hour time only). The next two lines of the handlers check to see if 
the first two digits are 12. H so, they're replaced with zeros. This means, of 
course, that this timer will never count past 11:59:59, because at 12 hours, the 
first two digits will be replaced with zeros. Finally, the correct elapsed time 
is put into the Timer field. 

On a Macintosh II, the system messages and handlers run fast enough to 
display the time in what appears to be an even pace, advancing in step with 
each advancing second of the Macintosh internal clock. On a slower machine, 
like the Macintosh Plus, the increments are a bit uneven. This is due to the 
slower rate at which the idle message is sent, compounded by the compara­
tively slower execution of the updateTimer handler. Every second is dis­
played, but in a stutter-step fashion. 

In Focal Point, I was faced with the problem of wanting to include a call timer 
in the Incoming and Outgoing telephone log cards. Because of the potential 
conflict with the text fields on the card, I chose a method other than constantly 
updating the timer display. Instead I installed buttons that let the user click 
to see the elapsed time of the call (Figure 19-5). When the call was completed, 
the total elapsed time was automatically inserted into the Timer field. The 
user could also restart the timer by clicking on yet a different button. 

We'll now move from calculating time by itself to calculating dates. 

Days Between Two Dates 
A common business problem is figuring the number of days between any two 
calendar dates. As one solution to this problem, we'll create a user-defined 
function that performs this calculation, provided the two dates are passed to 
it as parameters. Since you can build this function into any kind of stack-or 
even experiment with it from the Message Box-we won't put it into any 
HyperCard application context. 

The function handler is this: 

function daysBetween dateOne,dateTwo 
put dateOne Into flrstDate 
convert firstOate to seconds 
put dateTwo into secondOate 
convert secondDate to seconds 

return abs(flrstOate - secondDate)/(60*60*24) 
end daysBetween 



Working With Date and Time 367 

Date .. E.r.i.!1.!l.Y .... t!.!;l[.!;.b .... 1...1. •. ...1 .. 9..(;1 .. !;! __ .... _ .......................... _ 

BEGIN 4:.~ .. Q ... E.J:1 __ 
END ____ _ I 

Call Timer 1 ~seW 
.-I ----:::o,:.::;o=-:o~l=:.;:s 3:;...---.1 _ Restm:] 

Person caned .. $..~.r.!.§.t.Q.r. ... ~.!;l.ng.tr.~-~-....... - ............................................. . 

Phone Nllalber .. ~.Q.~.::.~.~.~.::J .. ~.Q.Q ................................................................... . 

Clu.rge To ........................................ - ........... - ......................................................... .. 

Itesru Discussed 
Expansion U.S. Route 20 through to~o~n . 

Figure 19-5 Because of interference between an idle handler inserting new times into a 
counter field each second, Focal Point solved the elapsed timer problem by asking the user to 
click on the Elapsed button to peek at the elapsed time. When a call ends, the total time is 
automatically inserted into the field. 

It's so simple, it may seem hard to believe. Other than converting each of the 
incoming dates to seconds, the real action occurs in the return statement. 
There, the one date is subtracted from the other and divided by the number 
of seconds in one day. I use the 60*60*24 as a demonstration technique 
primarily. In practice, you'd use the number 86400 as the figure. The only 
somewhat tricky part of the statement is that it returns the absolute value of 
the subtraction and division. That's because you cannot anticipate in which 
order the user will enter the dates. If the earlier date is first or second, it doesn't 
matter when the absolute value (positive value only) is calculated and 
returned. 

You might use this function in a mouseUp handler that reads dates from 
two fields, and puts the result into a third. For example: 

on 11ouseUp 
put doysBetween (field "First Dote",field "Second Dote")~ 
into field " Difference" 

end 11ouseUp 



368 HYPERCARD DEVELOPER'S GUIDE 

Or you can try the function from the Message Box by typing the function name 
and two dates as parameters, like this: 

which returns 123 days. If you need to count the days inclusively, then add 
1 to the value in the Return statement of the function. Conversely, if you don't 
wish to count either end day, then subtract 1 from the value before returning 
it. 

Dates Before Deadlines 
Another common date problem involves counting backward from a certain 
date to establish various deadline dates. Production of printed materials, for 
instance, usually has a number of milestones for the completion of various 
stages of copy, art, and so on. Given a shipping date for an item, and the 
number of days before that date various pieces must be finished, a HyperCard 
stack can calculate all the milestones-in effect, create a production schedule 
for the departments or people involved. 

Figure 19-6 illustrates a skeleton of a card that can calculate the dates before 
a deadline. If a fixed list of production items is maintained for each project, 
then the only data entry will be the project name and the shipping date. A 
closeField handler attached to the Ship Date field triggers the calculations 
backward, based on the number of days before the ship date the items must 
be completed. 

One extra consideration is that raw calculations of days before a particular 
date may mean that a deadline falls on a Saturday or Sunday. To be practical, 
the calculation should shift any weekend date back to the preceding Friday, 
to make sure the item is finished according to the set schedule. 

In the sample Production Schedule stack, the important field names are 
those holding the number of days before a deadline a particular item is due, 
the due dates and the ship date. Because of the columnar arrangement of the 
Days and Due fields, they are named with numbers indicating their position 
down the column (e.g., field "Days 1"), so a repeat construction can loop 
through the calculations in relatively few H yperTalk lines of code. 

The handler that performs the calculations is located in the background, 
and is triggered by the closeField handler of the Ship Date field. That small 
handler is: 



Working With Date and Time 369 

• File Edit Go Tools Objects 

Production Schedule 

Project: 5mJthson·s Summer Catalog 
Ship Date: .2l§.t.8e 

Days Due Date Item 

42 12/25/87 BUDGET 
37 12/31/87 1ST DRAFT COPY 
35 1/1/88 ROUGHT ART 
27 1/8/88 2ND DRAFT COPY 
27 1/8/88 ART APPROVAL 
20 1/15/88 4-COLOR SEPARATIONS 
20 1/15/88 TYPESETTING 
16 1/21/88 PROOFING 
12 1/25/88 RELEASE TO PRINTER 

Figure 19-6 Scheduling deadlines along a production schedule is simple when HyperCard 
calculates the dates based on the final shipping date. The handler even adjusts for week­
ends. 

on closeField 
calcDates 

end closeField 

which calls the calcDates handler in the background. The calcDates handler 
also calls a function, weekDay, which converts any Saturday or Sunday date 
to the preceding Friday. Here, then, is the background script for this stack: 

on calcDates 
set cursor to i 

put field •ship Date• Into deadline 
convert dead II ne to seconds 
put (60*60*24) Into oneDay 

repeat with X = 1 to 10 
get field (•Days • & x) 
If It Is e11pt y then next repeat 
else 



370 HYPERCARD DEVELOPER'S GUIDE 

get deadl lne- (It * oneDay) 
put •eekOay(lt) Into field (•Due • & x) 

end if 
end repeat 

end calcDates 

function •eekDay theDate 
get theDate 
convert It to date It ells 
If last ltea of It Is 1 then 

convert It to seconds 
subtract (2*60*60*24) fro• it 

else If last lte11 of It Is 7 then 
convert it to seconds 
subtract (60*60*24) fro11 It 

end If 

convert It to short date 
return it 

end •eekDay 

Note that all calculations of dates are performed in seconds, the only reliable · 
method. Thus, the date in the Ship Date field is converted to seconds (and into 
variable deadline), and all subtractions of dates are in intervals of one days' 
seconds. 

Inside the repeat loop is where most of the action occurs. The number of 
days prio;r to deadline for each item is retrieved from fields in the Days 
column. then its date (in seconds) is subtracted from the deadline variable. 
Before going into the Due field, the date is filtered through the weekDay 
function. 

That function must check for the day of the week of the date. Fortunately, 
the dateltems version of any date includes the day of the week (numbered 1 
through 7) as the last item. When that number is 1, that means the date is a 
Sunday, and two days' worth of seconds are chopped from the date; when the 
number is 7, then just one day need be subtracted from the Saturday. Before 
returning the value, it is once more converted, but this time into the short date 
format, which is what appears in the Due column fields. 



Working With Date and Time 371 

International Dates 
If you are developing a date- or time-intensive stack that will be used by 
Macintosh owners in other countries, you'll be in for a big surprise how 
differently times and dates are generated by Macintosh systems in other 
countries. These differences show through in HyperTalk's time and date 
functions. Localization of the System is handled by way of type itl resources, 
which specify such things as the order of date items, what kind of punctuation 
goes between items, how long and abbreviated versions are displayed, and so 
on. 

Currently, non-U.S. editions of HyperCard have an extra resource attached 
to them. Called the "Date Zero" resource (it's a resource type DATE with an 
ID number of zero), it allows the HyperTalk Convert (to seconds) command 
to operate properly with most (but not all) localized Macintosh systems. You 
may convert a U.S. date to a localized date format by converting to seconds 
and then converting to long date. Seconds, once again, become the life 
preserver in a sea of format confusion. 

Still, your scripts might have problems if they rely on elements of the time 
and date to be in certain locations in a field. For example, in the time 
calculation stacks in this chapter, we frequently add or remove characters 
connected to times in fields. But in localized versions, the time functions and 
conversions may not put "AM" or ''PM" at the end of the string. The script 
would work incorrectly. 

As an example of what the HyperTalk time and date functions do in 
localized systems, Table 19-2 demonstrates what severall~calized systems 
return. 

Table 19-2. 

Coun!r)! date abbrevdate long date 
Australian 27/3/88 Sun, 27 Mar 1988 Sunday, 27 March 1988 
British 27/3/88 Sun, Mar 27, 1988 Sunday, March27, 1988 
Danish 27/03/1988 501\ 27 mar 1988 501\dag 27 marts 1988 
French 27.03.88 Dim 27 Mar 1988 Dimanche 27 Mars 1988 
French 

Canadian 27/03/88 Dima 27 mars 1988 Dimanche 27 mars 1988 
German 27.3.1988 Son, 27. Mar 1988 Sonntag, 27. Marz 1988 
International 3/27/88 Sun, Mar 27, 1988 Sunday, March 27, 1988 
Norwegian 27-03-1988 sen 27 mar 1988 sendag 27 mars 1988 
Spanish 27/3/88 dom, 27 mar 1988 domingo, 27 marzo 1988 
Swedish 88-03-27 50n 27 mar 1988 50ndag 27 mars 1988 



372 HYPERCARD DEVELOPER'S GUIDE 

Swiss French 27.3.1988 Dim, 27 mar 1988 Dimanche, 27 mars 1988 
Swiss 

German 27.3.1988 Son, 27. Mar 1988 Sonntag, 27. Mirz 1988 
Turkish 27/3/88 Pazar, 27 I Mart/ 1988 Pazar, 27 I Mart/ 1988 
United States 3/27/88 Sun, Mar 27, 1988 Sunday, March 27, 1988 

Country time longtime dateltems 
Australian 5:36PM 5:36:48PM 1988,3,27,17 ,36,0,1 
British 5:36pm 5:36:48pm 1988,3,27,17 ,36,0,1 
Danish 17:36 17:36:48 1988,3,27,17 ,36,0,1 
French 17:36 17:36:48 1988,3,27,17 ,36,0,1 
French 
Canadian 17:36 17:36:48 1988,3,27,17 ,36,0,1 

German 17:36 Uhr 17:36:48 Uhr 1988,3,27,17 ,36,0,1 
International 5:36PM 5:36:48PM 1988,3,27,17 ,36,0,1 
Norwegian 17:36 17:36:48 1988,3,27,17 ,36,0,1 
Spanish 17:36 17:36:48 1988,3,27,17 ,36,0,1 
Swedish 17.36 17.36.48 1988,3,27,17 ,36,0,1 
Swiss French 17:36 17:36:48 1988,3,27,17 ,36,0,1 
Swiss 
German 17:36 Uhr 17:36:48 Uhr 1988,3,27,17 ,36,0,1 

Turkish 17:36 17:36:48 1988,3,27,17 ,36,0,1 
United States 5:36PM 5:36:48PM 1988,3,27,17 ,36,0,1 

Apple's international group is in the process of documenting all the possibili­
ties for time and date formats in all its localized versions. A commercial stack 
developer would be advised to get the latest information before releasing the 
product to the international market. 

As you've probably seen throughout the demonstrations in this chapter, 
HyperTalk offers enough time and date functions and commands to handle 
just about every problem you're likely to encounter in stack development. 
Even when there doesn't seem to be a direct solution, a workaround usually 
isn't that complicated or sluggish. It's a tribute to the elegance of the language 
that you can do so much with so little. 



20 
Solving Searching and 
Sorting Mysteries 

Among the most perplexing points of HyperCard facing stack authors 

are the fine points of calling Find and Sort from within scripts. The 

problems generally come from expectations that HyperCard's search­

ing and sorting should be as complete as dedicated database programs. 

To the disappointment of many, that turns out not to be the case. But 

there are some techniques that are not obvious from descriptions of the 

two commands in HyperTalk language manuals. Additionally, stacks 

with more than one background have also proven troublesome to some 

authors. In this chapter, we'll attempt to demonstrate the ins and outs 

of advanced searching and sorting. 



374 HYPERCARD DEVELOPER'S GUIDE 

Workbook Stack 
The best way to understand how Find and Sort work is to experiment in a 
controlled stack environment. For the purposes of this chapter, we'll clone the 
Master Developers Stack (Chapter 12) to provide a working laboratory for 
trying out various commands. 

To make the stack: 

1. Open the Developer's Guide Master stack, created in Chapter 12. 

2. Choose Save a Copy from the File menu. 

3. Type 11Chapter 20 Stack" into the file dialog box. 

4. Open Chapter 20 Stack via the Open Stack choice of the File menu. 

We'll be using both backgrounds of this stack for demonstration. Several 
fields need names for the experiments. In the first background, name the first 
three fields in their Field Info dialog boxes as follows: 

Last Name 
Date 
First Name 

So you know which field is which, choose Background from the Edit menu. 
Then, 

1. Choose the Text tool from the painting tool palette. 

2. As shown in Figure 20-1, type the names of the fields in the upper right 
corners of the fields on the card. 

3. Choose the Browse tool to take yourself out of background editing mode. 

Now go to the second card, which looks like a rolo-style card. Open the Field 
Info dialog box for the first field and change the name of the field to "First 
Name." Change the name of the Phone field to "Last Name." Then, with the 
Text painting tool, type the names of the First Name and Last Name fields in 
the upper right comers of the fields, as shown in Figure 20-2. 

One last setup task before entering sample data is to modify the closeField 



Solving Searching and Sorting Mysteries 375 

s File Edit Go Tools Objects 

Lost Name 

Date 

First Name 

~ 9 ~ ~ 

Figure 2o-1 For searching and sorting experiments, name and label (in the graphics layer) 
the fields of Chapter 20 Stacks. The field names are intentionally out of order. 

handler in the background script. This handler normally puts the short date 
into the third field of the card whenever one of the other two fields changes. 
For the purposes of sorting experiments later, the Date field needs to receive 
seconds counts instead of short dates. Therefore, change the handler to read: 

on closeField 
put the seco nds into field " Date " 

end closeField 

Now we're ready to create a few cards and enter some data to be searched for 
and sorted. 

Entering Sample Data 

As long· as we're still in the rolo-style background, let's add some data and 
cards. The purpose of the data will be to test various methods of finding and 
sorting. As such, we'll put a first name in the first field, and a last name in the 
second field. Enter the following names into seven rolo-style cards: 



376 HYPERCARD DEVELOPER'S GUIDE 

First Name 

Last Name 

Figure 20-2 Do the same with the second background in the Chapter 20 Stack for 
only the top two fields. 

Field "First Name" 
Bruce 
Zelda 
Charlie 
AI 
Morrie 
George 
Cecille 
George 

Field "Last Name" 
Washington 
Washington 
Washington 
Washington 
Anderson 
Anderson 
Anderson 
Washington 

Proceed to the first card of the stack, the single card of the first background. 
Into the topmost field, field "Last Name," type the name 'Washington" 
(without the quotes). 

We're all set for some tests. 

Simple Finding 
By now, you surely understand that searching for a chunk of text without any 



Solving Searching and Sorting Mysteries 377 

restrictions locates all instances of that text in a stack, even across background 
boundaries. Type 

find •uashlngton• 

into the Message Box, and keep pressing either the Return or Enter key. No 
matter where "Washington" appears in this stack, the Find command will 
stop on it. 

Find works only on the beginning of words. Therefore, you could search 
for ''Wash" and come up with the same searching results as searching for 
''Washington." However, if in this stack, you try to find "ton," there will be 
no apparent match. 

You may, however, search for characters within a word by specifying 
"chars" as a parameter to the Find command. Type 

find chars •ton• 

into the Message Box. HyperCard will stop on each instance in which the 
letters occur in a word. Finding characters is much slower than the plain Find 
command. 
H you try this on the Chapter 20 Stack, you may wonder why the Find 
command stops twice on the first card of the rolo-style card, yet you cannot 
see the rectangle surrounding the letters anywhere. The secret is that there is 
a hidden card field in the first card, and that field contains some text. To see 
its contents, type 

show card field 

into the Message Box. The word "button" is the word that stops the Find chars 
"ton" operation. 

That Find locates words in hidden fields can sometimes wreak havoc with 
a stack you've created that holds hidden fields. This is something to remem­
ber when a Find command in a script goes awry. 

Finding By Field 
In a multiple field stack design, it is often desirable in a script to limit the Find 
command to one field. For example, in a stack that acts as a client database, 
you may set up a searching routine that prompts the user for a search string 
in an Ask dialog box, as shown in Figure 20-3. Then the script limits the search 
to the client name field. H you don't restrict the search, the Find command in 



378 HYPERCARD DEVELOPER'S GUIDE 

Search for ••• 

II 
([ OK )J ( Cancel ) 

Figure 2o-3 Presenting a Search dialog box lets you control the extent of the search in a 
HyperTalk script, such as whether the search should be restricted to one field or should 
breach stack boundaries. 

your script may stop on an identically spelled word in a notes field of someone 
else's card. HypetCard, however, lets you specify a single field to search. 

H you search for a text string limited to a particular field number, Hyper­
Card will continue to search on that field number throughout the entire stack, 
even if there are multiple backgrounds, and those backgrounds' fields have an 
entirely different organization. Thus, the command, 

find "Uashlngton• In field 2 

will locate all instances of "Washington" in field 2 of all cards of the stack. 
Knowing this, many stack authors figure it should be possible to limit the 

search to a particular field of a background if the name of the field is specified, 
instead of the field number. Unfortunately, an unusual thing happens when 
you do this in a heterogeneous stack. If in the rolo-type background you type 

find •uashlngton• In field •Last Home• 

into the Message Box, you would expect HyperCard to find all instances of 
Washington in the Last Name field in the rolo card, and in the Last Name field 
of the first card of the stack. But when you try it, you discover that HyperCard 
does not find the instance in the first card, even though there is a field named 
''Last Name." What gives? 

Inside HyperCard, the Find command starts its search in the current back­
ground on the field whose name you specify in the Find command. But from 
there the command is really keying in on a field number. The name becomes 
irrelevant. Therefore, when the other background comes into view, Find 
looks for the string in field 2, not some field called "Last Name." 

Here's an experiment that will hammer this concept home. With the card 
setup specified earlier (make sure ''Washington" is entered into the top field 
of the first card, as shown in Figure 20-1), type 



Solving Searching and Sorting Mysteries 379 

find •uashlngton• In field •Last Hame• 

into the Message Box while viewing one of the rolo cards. Continue pressing 
the Return key until you have cycled through the cards at least once, to prove 
that you'll not stop on the first card with this Find restriction. 

Next, navigate to the first card of the stack (type Command-1 as a shortcut). 
Duplicate ''Washington" in both the Last Name and Date fields on the card. 
Now advance to any rolo card and issue the same Find command from the 
Message Box. Press the Return key slowly to watch what happens. 

Eventually, you reach the first card of the stack, with HyperCard finding 
Washington in the second field (despite its name being "Date"). If you press 
Return again, HyperCard sends the command anew from this card. Since this 
card has a field named ''Last Name," the command takes over, and finds the 
instance of ''Washington" on this card in field "Last Name." But since this 
field is number 1 in tabbing order, any subsequent press of the Return key to 
find ''Washington" in field Last Name will look for the text in the first field of 
other cards in this background or others within the stack. Try it. All you get 
is the first card of the stack. 

Find in Field Workaround 

This problem plagued one stack design I had. There was no question that the 
Find command that a script of mine issued had to limit search to one field in 
a particular background of a heterogeneous stack. Unfortunately, HyperCard 
does not let you limit a search to a single background. It's the whole stack or 
none. 

I felt it was like cheating, but I ended up hiding a field in the other 
backgrounds so that the Find command would not stop on any cards in those 
backgrounds. I had to make sure that the empty, hidden fields in other 
backgrounds had the same field number (in tabbing order) as the field that 
was being searched for in the primary background. Because I discovered this 
late in the development cycle, the new field in each of the secondary back­
grounds had to be pushed further into position. But once in place, the Find 
command from the primary background worked like a charm. 

Incidentally, there seems to be a bug in all versions through 1.2 that makes 
Find unusable if you're trying to limit a search to card fields. The Find will 
stop on matches in background fields as well. Therefore, until this is fixed, 
avoid searches that must be restricted to card fields. 



380 HYPERCARD DEVELOPER'S GUIDE 

Boolean Finds 
The plain Find command in HyperTalk, at least through version 1.2, allows 
only what is called AND searching, but not OR searching. AND searching 
means that if you specify two strings within the quotation marks as parame­
ters to the plain Find command, HyperCard will stop only on those cards that 
contain BOTH strings somewhere in the fields of the card. 

Some authors have asked about doing OR searches. An OR search would 
let you specify two strings, but HyperCard would find the incidence of either 
string on a card. So far, HyperCard does not allow that, nor have I seen any 
handlers that might replicate an OR search. Perhaps it's possible. I'd love to 
see it. 

Find Whole and Find String 
HyperCard got a boost in its Find capabilities with the release of version 1.2. 
Perhaps the most important addition is the Find Whole command (also 
activated from the keyboard by pressing Command-Shift-F). Whereas the 
plain Find command is sensitive only to word starts, the Find Whole com­
mand is sensitive to word starts and endings. Therefore, you may now search 
for the occurrence of two or more complete words when they appear together. 
For instance, if you wanted to find the state name ''New Mexico," the simple 
Find command would stop on any card that had the words "new" and 
''Mexico" scattered anywhere on the card. But 

find whole "Hew Mexico• 

stops only on a card that has those two words separated by a space-just as 
it appears between the quote marks. Words in the Find Whole string must be 
the complete words you're looking for. If you try 

find whole •Hew Mex• 

HyperCard will not stop on "New Mexico," because the second word does not 
end "Mex." The good news, too, is that Find Whole uses the same fast 
searching technique of the plain Find command. 

Find String, the second addition with 1.2, lets you search for any sequence 
of characters that span multiple words. Not sensitive to word starts or 
endings, the command 

find string •g n· 



Solving Searching and Sorting Mysteries 381 

would stop on ''New Mexico" as well as on "how many." You would still use 
Find Chars when the characters are in one word. 

To get the best performance out of the Find String command, specify at least 
three characters after the space. This triggers HyperCard's fast searching 
technique. 

While HyperCard's Find has a number of quirks to it, its Sort is more 
straightforward. 

Plain Sorting 
HyperTalk's Sort command demands a parameter telling it what field or 
chunk within a field to sort on. For instance, in a rolo-style stack, you can enter 
peoples' names in the normal first and last name order, as they might appear 
on an envelope. Then you can sort the stack by the last word of the first line 
of the Names field. The Sort command is intelligent enough to use only the 
last words of the first line of that field to sort. 

The Sort command also has other parameters to aid sorting. The one most 
often overlooked is the dateTime parameter. H you wish to sort cards 
according to dates or times in a particular field, you may specify date Time as 
a parameter, instead of converting each time to seconds or some such weird 
thing. A command with this parameter would look like 

sort dateTime by field •oate• 

The Handbook spells out the workings of these parameters in detail. 

Sorting by Field 
Unlike searching, HyperCard sorting works the way you'd expect when 
sorting by named fields. Let's try it with Chapter 20 Stack. 

If you followed directions to set up the stack earlier in the chapter, you have 
a few cards with the name ''Washington" in the Last Name field, and some 
with "Anderson." You also have one other card in a different background, 
with the name ''Washington" also in a field named Last Name. This Last 
Name, field, however, is field 1 in tabbing order, while all other cards place the 
Last Name field as 2 in the tabbing order. Type 

sort by field •Last Hame• 



382 HYPERCARD DEVELOPER'S GUIDE 

into the Message Box and press Return. An amazing thing happens. The lone 
card of the other background becomes mixed with the other cards based on the 
Washington value in the last Name field. One of the Anderson cards is now 
the first card in the stack. 

You may restore the stack to its original order by sorting on the Date field. 
In the rolo cards, this field contains the seconds values for the last updates to 
those cards. In the single card of the other background, that field is empty. 
Cards with empty fields in a field-specific sort are placed at the beginning of 
the stack. Try it now. Type 

sort by field •oate• 

into the Message Box. The single card of the first background comes to the 
front of the stack. 

"Dual Key" Sorts 
Database programs offer a facility to specify multiple "key fields" to sort a 
collection of data. In such a sort, the user specifies which fields are the primary 
and secondary key fields. For example, if you have a database with first and 
last names in separate fields and wish to sort the collection, you would specify 
the last name as a primary sort field, and the first name as the secondary sort 
field. That way, the database sorts initially by the last name. Then within 
records containing the same last name, the first names would be set in 
alphabetical order. 

You can specify multiple value sorts in H yperTalk without much difficulty. 
While the slow way would be to sort the stack twice-once on the primary sort 
criteria, once again on the secondary-the Sort command allows multiple 
parameters. 

To experiment with multiple sorts, let's be sure the Chapter 20 Stack is al­
phabetically mixed up. Type 

sort by field •oate• 

into the Message Box. This will put the stack in order based on the original 
entry order (unless you modified one or more cards since then), since the sort 
is on the seconds in the Date field. 

Our goal with the next Sort command is to sort the rolo cards alphabetically 
so that all the Andersons are in front of the W ashingtons, and each of the 
groups is alphabetized by first names. To do this, the Sort command needs 



Solving Searching and Sorting Mysteries 383 

two sort parameters, separated by an ampersand. Since according to logic the 
first sort we'd need would be on the last names, we'll pass field Last Name as 
the first parameter. Then we'll pass field First Name as the second parameter, 
because we want HyperCard to sort the first names after sorting the last 
names. Here's the command: 

sort by field •Last Hame• & field •First Hame• 

After that command executes, the cards are in a different order, with George 
Anderson's card at the front of the stack. As you flip through the stack, you'll 
notice that the lone card of the other background is sorted as the first card of 
the Washington group. That's because, you'll recall, the field First Name is 
empty on this card, and thus sorts first in the group. 

You may also sort on multiple keys in reverse sort order by inserting the 
Descending parameter. To flip the order of the cards just sorted, type 

sort descending by field •Last Hame" & field "First Hame• 

into the Message Box. Zelda Washington's card is now the first card of the 
stack. 

Sorting Card Suites 
As we discussed in Chapter 18, you may organize a heterogeneous stack so 
that a very specific set of cards are linked together in a linked card suite. One 
of the supreme advantages of linking cards in this manner is that a sort does 
not harm the user's navigation to the cards. Links are hard-wired into the 
system, so sorting order is completely transparent to the user. 

However, the author may wish to sort the cards for other purposes. For 
instance, you may want to collect an alphabetized list of clients from a 
heterogeneous client record stack for use elsewhere in your stack system. 
Such a sort would also keep the summary cards in alphabetical order for the 
user who wishes to browse through the summary cards for a client. 

H you sort a card suite by a field name of the summary card, there is the 
danger that the first card of the stack after the sort will not be of the summary 
card background. This would happen if the other backgrounds do not have 
a field with the name of the sort key, or they have such a field, but the fields 
are empty. 

When the other backgrounds have the same field name, it is incumbent 
upon the author to maintain control over the stack so that those fields are 



384 HYPERCARD DEVELOPER'S GUIDE 

never empty prior to a sort, while the named field of the summary card has 
data in it. It probably requires posting of data from the summary card to the 
other backgrounds, but it must be done by the script to assure consistency and 
proper sorting. 

Once a heterogeneous stack is sorted by field name, the cards could appear 
to be substantially jumbled if you were to do a sequential navigation through 
the stack. As long as your linked suite links are in good shape (and sorting 
doesn't touch them at all), then the linear order of the stack should be of no 
consequence. But if you need to retrieve data from a particular field in an 
alphabetical sequence of cards, use a repeat loop to go to the next card of the 
same background until you've made the entire circuit. 

I hope that the above explanations and examples have cleared up the 
mystique surrounding HyperCard's Find and Sort commands. With any 
luck, I've also given you some organizational ideas for your next stack. 



21 
Authoring and 
Debugging Tools 

While HyperCard does not have what other development environ­

ments would call a Debugger, HyperCard and the HyperTalk language 

provide many of the tools you need to debug troublesome scripts. 

Between a few error dialog boxes and the ability to display the contents 

of variables while a script is running, you have enough debugging tools 

to trace problems fairly quickly. Also, I mentioned earlier in the book 

that the Home stack may be used as a repository for a number of 

handlers that are of great value to stack developers. That's where we'll 

start this chapter. 



386 HYPERCARD DEVELOPER'S GUIDE 

Home Stack Tools 
Building a stack, especially one that has lots of fields or buttons, can be very 
tedious at times. The layering of individual objects in either the background 
or card domains is great for HyperCard, but is occasionally a nuisance when 
you need to shift layers around. 

A case in point is a background that has 20 fields on it. Then you suddenly 
realize that you need another field at the top of the tabbing order. In other 
words, when the user presses the Tab key, you need the text pointer to be 
flashing inside a new field you just added. Unfortunately, the new field is field 
number 21 in tabbing order. H the card also has a half-dozen buttons added 
to the stack after the fields, the new field is actually in layer 27. To get that field 
at the top of the tabbing order, you'd have to choose Send Farther from the 
Objects menu (or press Command-hyphen) 27 times. 

The real difficulty here, aside from the tedium, is that you often don't know 
exactly how many layers exist between a new object and its desired location. 
The only clue to where the field is in the layered scheme of things is the Field 
Info dialog box, which shows you which field number it is. But this doesn't 
tell you how many button layers are also involved. Therefore, if six buttons 
were added after the 20 fields, you could choose Send Farther six times 
without adjusting the field number one iota. So, you keep checking the Field 
Info dialog box over and over. 

A better way is to automate the process. I have four handlers in my Home 
Stack that let me adjust background fields and buttons in either direction. All 
I do is type the command into the Message Box, along with two parameters: 
the ID number of the object and the final number I'd like it to be among its 
peers. Those handlers are: 

on sendButton idHo,final 
choose button tool 
click at the loc of bkgnd button ld ldHo 
repeat unti I number of bkgnd button id idHo Is final 

doMenu •send Farther• 
end repeat 
choose bromse tool 

end sendButton 

on brlngButton idHo,final 
choose button tool 
click at the loc of bkgnd button id idHo 
repeat unt I I number of bkgnd butt on I d i dHo is f Ina I 

doMenu •oring Closer• 
end repeat 



choose browse tool 
end brlngButton 

on sendField idHo,final 
choose field tool 

Authoring and Debugging Tools 387 

click at the loc of bkgnd field ld ldHo 
repeat until number of bkgnd field id idHo is final 

donenu •send Farther• 
and repeat 
choose bromse tool 

end sendFiald 

on brlngFiald idHo,flnal 
choose field tool 
click at the loc of bkgnd field ld ldHo 
repeat unti I number of bkgnd field ld ldHo is final 

donanu •Bring Closer• 
and repeal 
choose bro•se tool 

end brlngField 

To push a new field (id 453) to be first in tabbing order, you type 

You'll see the fields highlighted while the field tool is selected, and the cursor 
will flicker once for each time through the loop. When the fields are no longer 
highlighted (the browse tool is in effect), then the field is in the desired 
location. 

Another Home stack development tool I use is the pair of handlers de­
scribed in Chapter 13, which lock and unlock all the fields of a card. We won't 
repeat those handlers here. But there is another field utility I use quite often 
to prepare cards for tests of closeField handlers and clearing fields of sample 
data before releasing the product. It's a handler called clearEm (as in clear 
'em), which empties all background fields in a card of their contents. 

on claarEm 
repeat mith x = 1 to the number of bkgnd fields 

put empty into field x 
end repeal 

end claarEm 

Not very complicated, but very helpful, especially when a card has hidden 
fields I needed cleared before my test or release. This handler should also be 



388 HYPERCARD DEVELOPER'S GUIDE 

used with caution in the case of hidden fields. If a hidden field has some data 
that should not be removed, this handler will not be able to discriminate, so 
use it wisely. 

Another development nightmare is testing a handler that creates a long 
series of cards in a stack. After the test, you may need to revise the script or 
just plain get rid of all the new cards. That's what the mega Delete handler 
does: 

on 11egaDelete 
set I ockScreen to true 
go to card 2 
repeat for the nu11ber of cards - 1 

doMenu •oelete Card• 
end repeat 

end 11egaDelete 

This works only for homogeneous stacks, because it deletes every card in the 
stack except the first one. Note that the handler never calls the Go command 
to go to the next card. That's because as you delete a card, the next one is front 
and center, ready to be deleted. 

I frequently change a methodology for handling a certain operation or even 
stack organization, so that many scripts are affected by the change. It is 
periodically useful to peruse all your scripts. While I strongly recommend a 
script utility,like Eric Alderman's Script Report for printing out your scripts, 
you can put a handler in your Home stack that will show you the Script Editor 
for each object that has a script in it. At the same time, information about the 
object-which background or card it's in and the identification of the object­
are displayed in the Message Box. It's a long handler, but modular enough 
that it shouldn't be too difficult to reproduce in your own Home stack. 

on 11egaEdlt 
push card 
edit script of this stack 

repeat with bg = 1 to the nu11ber of backgrounds 
go to card 1 of bkgnd bg 
put •Background • & bg 
get the script of bkgnd bg 

if it Is not empty 
then edit script of bkgnd bg 

repeat with bbn = 1 to the number of bkgnd buttons 



Authoring and Debugging Tools 389 

get the script of bkgnd button bbn 
If It Is not empty then 

put " Bkgnd Button " & bbn Into word 3 to 
5 of 11sg 
edit script of bkgnd button bbn 

end If 
end repeat 

repeat with bfd a 1 to the number of bkgnd fields 
get the script of bkgnd field bfd 
If It is not empty then 

put • Bkgnd Field • & bfd into word 3 to 5 
of 11sg 
edit script of bkgnd field bfd 

end If 
end repeat 

end repeat 

repeat 111ith c = 
put •card • & c 
go to card c 

to the number of cards 

get the script of card c 

If It Is not empty 
then edit script of card c 

repeat with cbn = 1 to the nu~aber of card buttons 
get the script of card button cbn 
If it Is not empty then 

put • Card Button • & cbn into word 3 to 5 
of msg 
edit script of card button cbn 

end If 
end repeat 

repeat 111lth cfd a 1 to the number of card fields 
get the script of card field cfd 
If It is not empty then 

put • Card Field • & cfd Into word 3 to 5 
of msg 
edit script of card field cfd 

end if 
end repeat 

end repeat 



390 HYPERCARD DEVELOPER'S GUIDE 

pop card 
answer •ue 're Done I! c• 

end 111egaEdit 

Not much that's remarkable happens in this handler. It consists of a series of 
repeat loops that open the Script Editor for each of the backgrounds, cards, 
fields and buttons that have something in their scripts. Since named objects 
have their names appear at the top of the Script Editor dialog box, the Message 
Box displays the number of the background, card, button, or field. Impor­
tantly, buttons and fields are identified by the background or field to which 
they belong. 

Using this handler on a 9-inch internal Macintosh monitor places a tight 
squeeze on space to show the Message Box. I've found that by placing the box 
so that the dotted line of the Message Box text line is just below the edge of the 
screen, I can see the object designation in the available sliver of space (Figure 
21-1). On a larger monitor, you may drag the Message Box anywhere in the 
clear. 

Here's one last tangible idea that should help developers of stack systems. 

li File Edit Go Tools Objects 

~~~--~----~~~~= 
Script of bkgnd button "Client Plus" I

on mouseUp 1Q
global cllentllst .-=..
If cllentlist Is empty then

set cursor to 4
push card
set lockScreen to true
go to "FP•CIIents"
put card field "Client List" of card "CI ient List•• Into cllentList
pop card

end If
put cllentList Into field "Client List"
show field "Client List"

and mouseUp

Find (Print J

1 Rltnnf1 R11tton 1 g

OK (cancel~

Figure 21-1 The megaEdit handler opens the Script Editor of each object in a stack.
Carefully position the Message Box so that you can see a sliver of text. The handler
displays additional information about the object whose script appears on the screen.

tel

~
I

I
I

I ~·

Authoring and Debugging Tools 391

While in the process of modifying scripts, fields and buttons, your develop­
mental stacks tend to grow quite large. Occasional compacting will free up
space on your disk and often make your stack operate a little faster. But going
to each stack in a stack system, choosing Compact Stack from the File menu
and waiting for compaction to complete for each is a waste of time.

What I've done in this department is to create a handler for the Home Stack
that goes to each stack in the system and compacts the stack (doMenu
"Compact Stack"). I first got the idea for this while working on Focal Point, a
22-stack system on my hard disk. In the Home Stack I created a handler called
megaCram, which compacted the whole system. Now, this does not speed up
the compaction process necessarily, but it does automate it. I could leave the
machine for a coffee break or a phone call, and come back to a tightly
condensed stack system. Later, I added other "cram" handlers for other stack
systems I was working on, building part of the product name into the handler
name, as in BC •Cram for compacting all of Business Class.

These are only a few examples of the kind of generic handlers you can keep
handy in your Home stack. You'll recognize the need for others when you
notice tedious operations you perform over and over in developing a stack.
For these kinds of handlers, make them as generic as possible, so you can reuse
them in other stacks. If specific data is required, as in the case of the shifting
of object layers, pass the details as parameters to the handler.

Author Tool Shortcut

If you have one of the new keyboards for the Mac SE or II, you can use Control­
key sequences (and function keys on the Extended Keyboard) to launch some
authoring tool scripts. For instance, you could write a Home stack handler
that traps the Control-C keyboard message to compact your stack; or Control­
L to lock all fields on the current card. For tools that require parameters (like
sendField), the handler could present an ask dialog box to prompt you for the
parameters.

You should also familiarize yourself with HyperCard's own tool shortcuts
to help you move in and out of various object Script Editors. Many of these
were added with HyperCard version 1.2.

While the Command-Option keyboard combo always let you peek at
button locations, you may now also click on a particular button to zoom
directly to that button's script. From the Script Editor, the same Command­
Option-Click closes the Script Editor and chooses the browse tool-no more
fumbling for the button tool and back. When you add the Shift key to this
keyboard combo, you can peek at field locations and open their scripts by
clicking on one of them.

You may also go directly to other object scripts by way of keyboard

392 HYPERCARD DEVELOPER'S GUIDE

equivalents:

Command-Option-C -> card script
Command-Option-B -> background script
Command-Option-S -> stack script

Command-Option-clicking in the Script Editor of any of these objects closes
the editor window and returns you to the browse tool.

And don't forget the two original shortcuts: Option-Tab to hide and show
the tools palette; and Command-Tab to return to the browse tool from any
other tool, including a painting tool.

Using Scripts to Build Stacks
As helpful as the Home stack utility scripts are in my stack development, I still
find a need for writing little handlers to help me build a stack. These come in
particularly handy when you change your mind about field and button
properties after you've laid them out.

For example, in a card like the one shown in Figure 21-2, it is common to
start cloning the rows and columns of fields before setting all the desired style
and text properties of the original field. Or, you may have thought that a
particular text size or text style would work, but change your mind when you
see the completed card. Manually changing the text attributes of all those
fields would be a nightmare of tedium, since you cannot select more than one
field for change at a time. The most efficient way to handle the change is to
write a custom handler that does the job. Since all these fields are in a
contiguous tabbing order, their field numbers are in a linear series. That
means we can use a Repeat With construction to make the changes in only a
few lines of HyperTalk code.

Given that the top left field of the grid is field number 4, and the field at the
bottom right of the grid is field 27, we can write a short handler for the current
card that goes:

on changeText
repeat with X a 4 to 27

set textSize of bkgnd field x to 12
set textStyle of bkgnd field x to condensed, bold

end repeat
end changelext

Authoring and Debugging Tools 393

• File Edit Go Tools Objects

Production Schedule

Project:_ --·-·······---··--············-·······················-··· ... ··-···········-·······-··
Ship Date: -----·······

Days Due Date Item

Figure 21-2 Laying out the background fields of a card like this can be automated with a
HyperTalk script. When you've set the properties of a field at the top of a column, the script
can clone the field as deep down the card as you need.

Then, by typing change Text into the Message Box, all the fields are changed
within a few seconds.

You can also name a series of fields or buttons with a similar kind of loop.
Let's say you created 10 buttons whose names are to contain the word "Shift"
and a number indicating its place in the series. A handler to do that for you
would be

on naraeButtons
repeat with X a 1 to 10

set name of bkgnd button x to (•Shift • & x)
end repeat

end nameButtons

If your card has several columns of fields, the field-making process itself may
be automated. To use the following stack-building utility, create one field at
the top of the column. Assign all properties as you wish for text and style.
Then type the name of the handler, specifying the ID number of the top field
and the number of clones you'd like in the column as parameters.

394 HYPERCARD DEVELOPER'S GUIDE

on makeFields idHo,howMany
choo~e field tool
get the rect of bkgnd field ld ldHo
put (Item 4 of it- item 2 of it)- 1 Into depth
get the loc of bkgnd field ld ldHo

repeat with X a 2 to howMany + 1
drag from It ...
to Item 1 of It, lte11 2 of It+ depth with optionKey
add depth to itera 2 of It

end repeat

choose browse tool
end 11akeFields

Therefore, whenever you're faced with a tedious development task specific to
a particular stack, think about automating it. But also be sure to check your
scripts for leftover stack building handlers you've left around. That's one of
the benefits of using Script Report and printing the scripts out. By seeing more
than one screenful of script at once, you're able to get a bigger picture of more
handlers. Those that don't belong seem to stand out better in print than in the
Script Editor.

Debugging
There's nothing more satisfying than writing a handler and having it run the
first time just as you expected it. Unfortunately, that doesn't always happen.
When things don't go as planned, however, there are several things you can
do to track down the source of the problem. Let's look at four debugging
techniques I've picked up over the last year or more of scripting.

Check the Script Editor

While HyperTalk does not have much in the way of interactive debugging
capabilities, it does let you know when you've made a major blunder before
you run the script. Just press the Tab key, and look to make sure the final End
statement hugs the left margin of the editing window. If it doesn't, several
things may be wrong.

The first item to check is whether the handler name is the same in the first
and last lines. If an Exit statement is nested in a handler, be sure the argument
is either the handler name, If, or Repeat. Next, look down the handler until

Authoring and Debugging Tools 395

you find traditionally indented statements (such as if-then and repeat con­
structions) that are not indented properly. Make sure all repeats have
balancing End Repeat statements and that those if-then-else constructions
requiring End If statements have them.

I've noticed occasionally that inserting blank lines inside some repeat
constructions causes the Script Editor to think that something is wrong. Try
cinching up a non-formatting handler to see if that helps.

If all else fails, then insert an End statement in each line of the handler,
starting with the second line. If, upon pressing the Tab key, the statement hugs
the left edge of the script window, then all is well down to that line. Cut the
line and paste it after the next line to try again until the script does not format
correctly. The problem will be in the line just above. If you find that you must
carry this out inside a control structure, you'll have to add the counterbalanc­
ing End statement for the structure as well. Eventually, you'll find the culprit
line.

Heed the Error Dialogs

The error messages that come up in the form of dialog boxes tell you a lot about
what your problem is. Moreover, they usually give you a chance to peek at
that part of the script that trips HyperCard. What do the error dialogs mean?

Perhaps the most frequent one you'll get is warning that HyperCard cannot
understand a particular word (Figure 21-3). Fortunately, HyperCard displays
what the problem word is right in the dialog box. This error message means
that the word in question is being used as a command or function, and that
HypetCard cannot find a handler to match that word anywhere in the
hierarchy. The best reason for this is that the word is misspelled in the location
HypetCard has trouble with it. Either that, or you wrote the command or
function correctly in one handler, but forgot to write the actual handler to trap
that command, and the message went all the way to HyperCard. Occasion-

Can•t understand amplify

Figure 21-3 The most common HyperTalk error message means that HyperCard received
a message that it didn't know what to do with. The message may be mistyped or you forgot
to write a handler to trap the message.

396 HYPERCARD DEVELOPER'S GUIDE

ally, too, you may use a HyperTalk reserved word incorrectly in a statement.
Oick the Script button in the error dialog and let HyperCard point out the
error. The text cursor will be positioned immediately before the word
HyperTalk is stumbling over. Investigate why that word doesn't belong
there.

Another kind of "misunderstanding" that HyperTalk can have is when a
script tries to read the contents of a variable that has never had anything stored
in it (including empty) prior to the erroneous statement. For instance, in the
simple handler,

on test
If fred then flash 1

end test

H yperTalkdoesn't know fred from Adam. Therefore, it issues the error dialog
in Figure 21-4, which indicates it doesn't understand "fred," which is the word
after "if."

HyperTalk' s internal error checking stops on the first error it finds in a
handler. Therefore, if the above handler read

on test
If fred then frobnltz 12

end test

and there was no handler called "frobnitz," then HyperT~lk would display
only the error referring to "fred." Once you solve the fred problem, Hyper­
Talk will, on the next attempt at running this handler, complain that it cannot
understand "frobnitz."

Can't understand what's after if

(Script~ n Cancel D

Figure 21-4 HyperTalk often points the way to where in the script it balks at a message or
construction. Whenever you see this error message, click the Script button to see where the
problem is.

Authoring and Debugging Tools 397

Tracing Variable Values

Perhaps the biggest sources of bugs in developmental stacks are values of
global and local variables not being what you thought they'd be when you
drafted a handler. As the handler performs further calculations on the
variable, things go from bad to worse, until nothing works right.

A nice feature of HyperTalk is that you can go into any line of a handler and
display the value of a variable at any stage of its life. The window to these
values is the Message Box, and the probe is the Put command.

Your script is most revealing about its variable disarray when a statement
in the script puts a variable into a field; only the resulting display of data is
incorrect. What you need to do at that point is trace the value of that variable
through the handler. The method is simple: Insert a Put command, with the
name of the variable as the argument, after the first line of the handler that calls
the variable. If you're satisfied that the content of the variable is as you
expected, then cut that Put command, and paste it after the next line of the
handlerthatchangesthevalueofthatvariable. Keepworkingyourwaydown
the handler until the value you see in the Message Box differs from what you
expected at that stage of handler execution. That narrows the error to a
particular line of your script-a breakthrough in debugging the script.

Sometimes a buggy script has more than one variable involved. If so, then
modify the Put command to display the values of both commands, like this

put number && counter

Then keep shifting this statement down the handler until you find an unex­
pected value in one or both variables.

So far, we've been assuming that the variable contents fit on one line-the
line of the Message Box. It's not uncommon for a variable to be more than one
line, or even change its number of lines during execution of the handler (some
field sorting routines in Focal Point use fields whose line counts change as the
items sort).

Obviously, for these kinds of variables, the Message Box won't do. To
accommodate these larger variables, you may have to create a temporary
card-level field and put the intermediate results of the rnultilined variable in
that card field, as in

put datalist into card field 1

If you need to investigate only one part of a handler without the rest executing,
remember that you can enter a "decoy'' End statement to the handler any­
where you want. That will stop the handler in its tracks, and give you a chance

398 HYPERCARD DEVELOPER'S GUIDE

to see how various fields have responded to the handler thus far.
Another boost is to insert a number of pauses throughout the handler while

it's undergoing debugging. One way to program a pause into the handler
would be to enter this line in key spots in the handler:

wait unt i I the 11ouseC I i ck

This command gives you as much time to check out the condition of the card
(and perhaps variable values displayed in the Message Box or the debugging
card field) as you need. Click the mouse button to proceed to the next pause
location. Unfortunately, there is no way to pause handler execution from the
keyboard without preprogramming it for pauses. At most, you may halt the
execution of a handler at any time (this includes what may be runaway
handlers and infinite repeat loops) by pressing Command-Period. That is one
unconditional HyperTalk halt command that no handler can trap for.

One other tip for testing the value of parameters sent to custom handlers or
functions is to use the Params function. Since this function returns the name
of the message plus the values of all parameters sent with it, you can
temporarily insert the statement

put the params

into the top of your custom handler. You'll receive a snapshot of the complete
message in the Message Box the next time you run the handler. H one of the
parameters is not what you expected, then go back to the handler that sends
the message and see why the values are being disturbed before sending the
message.

Testing If-Then Constructions

It's sometimes difficult to tell when if-then-else constructions are working
properly, because the results may not be apparent in fields on the card. The
results do show up later, but the desire is to trap the problem at the source.

If you suspect an if-then construction is not doing what it should, you need
another way to test which path through the construction handler execution is
taking. A quick way to test this is to add a Flash or Beep command to both legs
of the if-then construction. Use different parameters for the number of flashes
or beeps so that you can tell immediately which pathway the handler took.
There's a caution with using a beep as a testing device, however. If you've
altered the beep sound of your Macintosh so that the digitized audio is longer
than a traditional system beep, your system may not be able to distinguish
between a single and double beep. If the signal for a second beep (of a double)

Authoring and Debugging Tools 399

occurs while the first beep is still playing, the second beep will pass through
and never be heard. The flash, presenting a visual clue, is more reliable.

Once you're satisfied that your script is working as expected, be sure to
remove all debugging code. As a rule, I place a comment after lines of
debugging code as a reminder to delete the lines later. As you test your
product, be on the lookout for sudden displays of numbers or text in the
Message Box. You've probably left a debugging Put command in a handler
somewhere.

Sometimes it feels that debugging never ends. In one sense that's true,
because even after a stack has been released, you should return to it and find
ways of doing things more efficiently, faster and with less HyperTalk code.
And users will discover minor problems that even the best testing couldn't
find. Don't despair, because it's bound to happen in software. Stack
production, as we've said many times, is the same way.

22

HyperTalk Script Style
and Practice

H yperTalk is a forgiving language. At times it offers you several ways

to state the same thing. You can go to card 3 or the third card of a

stack, and HyperTalk will understand both. Precision capitalization of

keywords or object names is not an issue at all. If-then-else construc­

tions may be broken up into lines in a number of ways.

At the same time, HyperTalk has some straightforward rules of

syntax. All lines in a handler begin with a command (either HyperTalk' s

or one of your own). Calls to functions have their specific way of passing

parameters. Chunk text expressions must start from the most specific

to the least specific (e.g., "char 3 of word 10 of line 2 of field ~~Data").

What all this means is that if you follow some basic syntax rules

(HyperTalk will alert you if you fail to do so),andchooseoneofthe

402 HYPERCARD DEVELOPER'S GUIDE

allowable ways to perform tasks, you can get your handlers to work. Getting
your handlers to work should be your first priority when writing HyperTalk
code. After all, that's what you're there to do.

Practice and Style Guidelines
But after you've made the handler put all the right information in the right
places, it's time to recheck the handler for three factors:

Readability
Efficiency
Comprehension

Readability, to my way of thinking about H yperTalk, is not about the content
of a handler, but how easy it is to find the basic flow or modularity of a handler.
If the stack you're developing will be open to modification by others, they
must be able to see a pattern or flow in the handler to understand your
methodology for an operation. Parts of a handler, like global variables, initial
values for other variables, control structures, and other code snippets should
be in expected places and with sufficient spacing to let a reader of your script
get a quick overview of what's going on inside this handler.

Efficiency is more than just speed of execution. It also encompasses how
many statements you use in a handler, how many calls you make to objects,
how many variables (global or local) you use, and how often repetitive actions
take place outside of repeat loops. While it's true that most of these affect
execution speed, they also affect the overall number of lines of your handler,
thus impacting readability. A shorter script-especially one you can see
inside the confines of a single view of the Script Editor-is much easier to read
than one you must scroll through to see.

Comprehension is a less tangible factor, but one that often makes the
difference between spaghetti and poetry. And so, just as poetry should be
read aloud, good HyperTalk code should also be read aloud (at least to
yourself) with the intention of being able to understand what it's doing just by
hearing the words. That means objects should have names. Variables and
objects should carry names that truly identify themselves. Function names
should accurately reflect the action they perform. All statements should be
devoid of excess. And each line should contribute to the meaning of the
handler, without needless repetition. Unlike some poetry styles, HyperTalk
handlers do not need refrains ("quoth the Raven, 'exit mouseUp'").

Enough of generalities. Now onto specifics of turning a handler into a great
handler.

HyperTalk Script Style and Practice 403

Readability
Some handlers must set up certain variable values, or retrieve field data before
the real action of the handler begins. In a long handler, the cursor may have
to be changed to the watch, or the screen locked. All this preparatory stuff
should go into a part of the handler I call the preamble. Not every handler
needs a preamble, but those using global variables, assigning initial values to
local variables, or setting the scene prior to the real action need preambles.

The Preamble

Taking a tip from other programming languages, it's a good idea to declare all
global variables in the preamble. This lets a reader become familiar with non­
HyperTalkwords that will be used later in the handler. Whenever I'm reading
a handler that has declared global variables in the preamble, I'm on my guard
for those words, knowing I won't be surprised by some other globals creeping
in later in the handle. Remember that you can declare many globals at once
by separating the variable names with commas, rather than issuing one global
command for each variable ..

H your handler also uses local variables that must have some starting value
before they may be used, then assign those values in the handler's preamble.
For instance if a repeat loop later in the handler adds values to a local variable,
you must warm up that variable by putting empty or a zero into it before
anything may be added to it. Warm up that variable in the preamble.

The preamble is where you would set global properties that affect the entire
handler. Thus, cursor, lockScreen, lockMessages, lockRecent, numberFor­
mat, and user Level would be the typical properties you'd set in the preamble,
provided those settings apply to the entire handler. H they apply to only a
small part, and the settings are altered again before the handler ends (like
unlocking the screen to show the user some movement during the handler, or
changing the number format to something else), then set those properties later
in the handler so that the setting and resetting act as bookends to the code in
between.

As you'll learn in a moment, it's best to fetch data from a field as few times
as possible-once is best-in a handler. If the contents of that field are a prime
object of the handler, then the preamble is a good place to do it, because that
action will be setting a local variable (perhaps It) to the contents of that field.
It makes the most sense to include that as a preamble operation.

Line Spacing

After filling up the preamble with preparatory commands, the rest of the

404 HYPERCARD DEVELOPER'S GUIDE

handler should have ample line spacing between modules. For instance, leave
a blank line between the preamble and what follows. A long handler tends to
have various sections to it-sections that perform related actions on a variable
or a property. It is best to separate any such section from the rest by a blank
line on either side. I also tend to keep an outer repeat loop together by leaving
a blank line before and after it. Breaking a long script into sections makes it
much more readable. In a skimming of a handler so divided, a reader can get
an overview of the basic structure of what's happening in the handler. It also
helps the reader, when going through the handler in detail, to focus on one
operation at a time.

Command Lines

It is also valuable to the reader to have individual lines of scripts that are as
short as possible. Do not let a statement line run beyond the right margin of
the Script Editor window. If a line is wider than the window, put a "soft
carriage return" in the middle of a line (between H yperTalk words only) by
typing Option-Return. A special character (.)appears at the end of the
physical line, indicating that the next line of text is part of the first.

Dividing long lines into two can be done with an eye toward readability.
For example, in a long line involving a Put command, I usually divide the line
so that the Put and the Into words are at the left margin of the handler.
Therefore, the first physical line has the "what," while the second line has the
"where." As the reader scans down the handler, the Put and Into words stand
out, and the two-physical-line statement appears to be more of a whole. Such
would not be the case if the line were split so that the left margin words were
Put and Field.

Long if-then lines should always be broken so that the Then part starts on
the second line. This is an accepted construction, so it is not necessary to place
a soft carriage return at the end of the If line.

Efficiency
I have nicknamed Dan Winkler, "Mr. N-Minus-One," because it seems that
every time he looks at a handler, including one he's written, he can find a way
to make that handler perform in one less line than before. That kind of striving
for maximum efficiency is something every stack author should emulate.

In previous chapters, we've already mentioned performance issues in a
HyperTalk script. The most important one to remember is that getting data
from and putting data into a field is perhaps the most sluggish action you can
take in HyperCard. Fetch and post field data only once per field in a handler.

HyperTalk Script Style and Practice 405

All other times you need to work with the information within the handler, put
the field information into a local variable, and massage it to your heart's
content. Only when you're finished making changes to the content, should
you put the data into the field.

The same goes for getting and setting object properties, although the
performance hit on these operations are not as serious as with fields. But the
point is, if you test the state of an object property at the top of an if-then-else
construction, and later act on that setting, avoid getting that property twice.
For instance in the following handler

on mouseUp
global aiiScrlpts
If the script of the button "Calculate• Is not empty
then put the script of button •calculate• after al !Scripts

end mouseUp

the script property of the button is retrieved twice. A more efficient way to
write this handler would be

on mouseUp
global aiiScrlpts
get the script of button "Calculate"

if it is not empty then put It after aiiScrlpts
end 111ouseUp

Since the entire text of the script is placed into It, you may test it, modify it, or
post it anywhere you please without having to fetch the data from the object
again. That's the basic principle to be applied to both properties and fields.

Another performance tip is to look for ways to combine statements into
fewer statements. For example, it may be easier at first to map out a handler
by making each operation a single statement line, like this

on mouseUp
get field •subTotal"
multiply It by field "Tax Rate"
put it Into field •Total•

end 111ouseUp

But after closer inspection, you should notice that all three lines could be
combined into one statement:

406 HYPERCARD DEVELOPER'S GUIDE

on 11ouseUp
put field "SubTotal• * field •Tax Rate• Into field •Total•

end 11ouseUp

In timing tests I ran on a Macintosh Plus, the second method ran almost 40
percent faster than the first. That's an impressive tin-ae saving, and probably
will send you to your existing scripts right now to find where other lines may
be condensed.

An adage that applies to writers also applies to H yperTalk authors: Write
Tight.

Timing Tests

H you are unsure about which of two ways to code an operation is the faster,
you should perform a timing test on the two handlers and compare the results.

Insert a statement at the opening of the handler that puts the current ticks
reading (ticks are counted from the moment you power up your Macintosh)
into a local variable. At the end of the handler, a statement displays the
difference between the ticks reading at that point and the reading at the start
of the handler. In the mouseUp handler, above, here's how the handlers
looked with the timing tests built into them:

on 11ouseUp
put the ticks into startTime
get field •subTotal•
11ultiply it by field "Tax Rate"
put it Into field ''Total•
put the ticks- startTime

end 11ouseUp

on mouseUp
put the ticks into startTime
put field "SubTotal" * field "Tax Rate• into field "Totaln
put the ticks- startTime

end mouseUp

At the end of each handler's execution, the elapsed tick count appears in the
Message Box. Note that the two additional statements do not interfere with
the body of the handler we're testing. Thus, their own variable names are used
(startTime). Also very important is to make sure that the timing statements
are identical in both versions, so that the only difference in timing would be
the execution of the body of the handler.

Occasionally, you'll want to compare the timings of two methods that

HyperTalk Script Style and Practice 407

execute too quickly to give you accurate results. In such cases, you may want
to insert a repeat loop around the body of the handler. By repeating the
operation 10 times, you increase your ability to discern differences in the
results by a factor of 10.

It might also be worth keeping a log book (in a HyperCard stack, of course),
of the various techniques you test for speed, and note those methods that are
faster than others. And just because you compare two methods to find the
faster one doesn't mean there isn't a still faster way to perform the operation.
Keep an open mind, and keep exploring your scripts for greater efficiency.

Comprehension
After you've found the fastest ways to make your scripts cut through your
stack and stack information, you should concern yourself with the compre­
hension of the stack. This is how understandable the handlers would be if a
stranger were to read through your handlers. The real test would be how
readable the script would be to someone who knows nothing about Hyper­
Talk.

Comprehension is greatly linked to the way you name objects, variables,
custom messages and user-defined functions. The names should have mean­
ing, if not help the user draw a mental picture of the information stored in a
container or of the action a message or function takes. In my early days of
HyperTalk script writing, I didn't pay much attention to this factor, but the
more I write handlers and the more I read other peoples' handlers, the more
important this factor has become in my work.

The best guideline I use is literally reading aloud a handler I've written. But
I also listen carefully to what I'm saying. Would someone else in the room get
a picture of what I'm saying? Are the names clear enough to someone coming
to the handler for the first time? Is there almost a sense of story line in a long
handler?

These are important questions you should ask of every handler in a script
that will be open to the world. Even if no one else sees your scripts, the practice
you give yourself in making your stacks readable, efficient and comprehen­
sible will add to your HyperTalk scripting abilities. Your stacks will run
better, and they'll be much easier to maintain if you need to modify something
a year from now.

So ends our tour of H yperTalk issues for stack developers. We now shift
gears again, going into the subject of external resources you can add to your
stacks to make them sound great, have great icons and do things that
HyperTalk doesn't do.

Resources
for Stack

Developers

23

A Resource Crash Course

If you've been with HyperCard for any length of time, especially if you

belong to a Macintosh user group or electronic bulletin board, you have

probably heard the term "resources" bandied about freely. But unless

you're an experienced Macintosh programmer, you probably wouldn't

know a resource if it slapped you on your mouse hand. If that's the case,

then this chapter will bring you up to speed quickly on the concept of

Macintosh resources. You'll need to know what we say here if you hope

to understand icons, sounds and external commands for HyperCard.

412 HYPERCARD DEVELOPER'S GUIDE

The Resource Concept
In typical computer programs for machines other than the Macintosh, most of
the screen design elements, like menus, boxes, and so on, are defined within
the program itself. A long program listing might be divided into several units
which are compiled into one running application file.

To anyone who has used a compiler on a long program, the time it takes to
compile-perhaps a minute for small programs to over one-half hour for big
ones-feels like dead time, because there's nothing you can do while the
computer is turning hundreds or thousands of lines of Pascal, C, or Assembler
code into an executable program file. Therefore, you can see the frustration
that might accrue in a very graphics-oriented environment like the Macintosh,
in which very fine adjustments of elements such as dialog boxes, pull-down
menu wording and art for an icon or other fixed graphic element, are
necessary. Even changing the size of a dialog box by one pixel would mean
recompiling the entire program again.

That also counts for the instances when a software program needs to be
translated into another language for marketing in another country. Menu
items, window titles, dialog and alert boxes-all these elements have to be
translated into the native language of the target market. Even in English,
spellings change, as in "color" and "colour." When the text for these items is
buried within the program code, it makes translation-localization, it's called­
difficult. And you must tam per with the program code to do it.

Recognizing these difficulties, the Macintosh design team came up with a
brilliant solution: resources. The idea was to separate the specifications for
these visual elements (or other elements that might change for localization)
from the main program. In fact they're so separate that these elements may
be modified without digging inside the program code or recompiling the
program. Moreover, the Mac team designed resources in such a way that as
long as you know the format for the information the elements need, you can
write the resources without arcane programming code. Resources may also be
added, deleted, copied and pasted to files by non-programmers, provided
they have the right resource editing tools.

Macintosh Files-Data and Resources
When you see the representation of a Macintosh file on the Desktop, or see a
file name in a standard file dialog box, you consider it as a single entity. An
application or a document might have different purposes, but each appears as
a single file on the disk.

A Resource Crash Course 413

That file, however, may consist of one or two pieces, called forks. One, the
data fork, generally contains data that the user creates and saves, like the words
you type into a word processing document. The other fork, called the resource
fork, holds all the resource information and specifications for that file.

In line with this discussion, it is informative to see how different kinds of
files contain data and resource forks, for a file may contain one, the other, or
both forks. CE Software's DiskTop desk accessory lets you display disk
directories with more detail than the Macintosh Finder. In addition to the file
name and date, you can also see the name of the Creator and File Type (not
important for this discussion), plus the sizes of each fork of a file (Figure 23-
1).

A Macintosh application is usually all resource fork. That means that the
main program code, as well as specifications for things like menus, dialog
boxes, and so on, are considered resources. Resources for visual items are
separate elements, and may be changed without accessing the main code.
About the only time an application has a data fork is if it stores some user
information (global settings that the program needs) when the program quits.

A document file, like a word processing file, a spreadsheet, or a fresh

0 DislcTop

[[OIUJ) (Mot•<~) HFS c::::::l Hard Disk
IS976K Us.d 83~ (E je< t) (l)f~h~ t~) [lh~I\IUlH~ J 3500K Fne 17~

() Ia Bool< I Driue
() ()

II HCMDs
Find Sizes

0 Name T1Jp• Cr•ator Data R•sourc• Modified

D About Project QPRJ PJMM 34K 3/13/88 ~
D About.p TEXT PJMM IlK 2/28/88

I
[) About.p. txt TEXT PJMM IlK 3/2/88

D About.r TEXT QED I 2K IK 1/27/88

[) AboutStack STAK WILD 8K SK 3/13/88

Cl Chris K. 12/30 TEXT GEOL 2K 12/31/87

[) CommXFCN. .. TEXT GEOL 2K 1/11/88

I
D Comm.p TEXT PJMM 21K 3/8/88

D Comm.sit SIT! SIT! 23K 3/8/88

D CommStack STAK WILD 32K 14K 3/15/88

~ H11perCard APPL WILD 364K 3/13/88

[) HyperXCmd.p TEXT PJMM I SK IK 12/30/87

Figure 23-1 As this CE Software DiskTop display reveals, a Macintosh disk file may
consist of data only, resources only, or a combination of the two. Application programs are
usually completely resources, while documents are usually all data. HyperCard stacks
frequently contain both.

414 HYPERCARD DEVELOPER'S GUIDE

HyperCard stack is all data, and so has only a data fork in it. In HyperCard,
everything you see on the screen of most stacks in the HyperCard Stacks
folder consists of data forks only. All graphics, fields, buttons and information
in fields are information that you bring to the game, so it is all stored as data
in the data fork.

You'll learn in a moment that a HyperCard stack can also have resources
attached to them. Thus, a HyperCard stack is a case in which a file has both a
data and resource fork.

The mechanism that makes resources work is in the Macintosh Toolbox.
The Toolbox consists of software built into ROM and the System File that a
Macintosh program frequently summons for help in displaying common user
interface elements, like windows, menus, and so on When a program needs
to display a dialog box, the program calls a built-in Toolbox routine, which,
in turn, draws the dialog based on the specifications spelled out in a resource.
Each dialog box has its own resource. A program needing an About dialog,
for instance, asks the Toolbox to draw the dialog according to specification in
the About box's resource. No matter how many times you adjust and fine tune
that dialog box resource, the lines of code in the main program that call the
resource never change.

Each type of resource-alert box, font, icon, sound, and so on-has a kind
of signature attached to it, called the resource type. A resource type is a four­
character name that usually resembles the English name of the resource
category (as a convention in this book, spaces in resource-type names are filled
with an underscore character). For instance, an icon resource type is ICON.
Table 23-1 lists the common resource types and their meaning.

Table 23-1.

~
ALRT
CNTL
CODE
CURS
DITL
FOND
FONT
ICN#
ICON
MDEF
MENU
PICT

Meaning
Alert box template
Control (scroll bar, button, etc.) template
Program code
Cursor
Dialog (and Alert) item list
Font family record
Font
Icon list
Icon
Menu definition procedure
Menu
Picture

WDEF
WIND
snd_

Window definition
Window template

A Resource Crash Course 415

Sound (there is a space after the "d")

Resource type names are case sensitive, meaning that the snd_ resource type
must be in lower case letters, as shown in Table 23-1. Within a collection of
resources of the same type, each resource must have a unique number (usually
in the range of 128 to 32767 for resources created by programmers) and,
optionally, a unique text name. The fact that the number and name must be
unique only within a given resource type means that you may repeat the
number and name in other resource types, even in the same Macintosh file.
This comes in handy particularly when a resource of one type depends on
specifications from a resource of another type-yes, resources may call other
resources. It makes sense, then, to name and number the two related resources
identically for ease of maintenance at a later date.

Anatomy of a Resource
It might be instructive at this point to see exactly what information goes into
a typical resource. We'll look at what goes into specifying a simple dialog box,
like the one shown in Figure 23-2.

There are actually two separate resources that specify a dialog box. One is
called the Dialog Template (type DLOG), the other the Dialog Item List (type
DITL). We'll take these one at a time.

The DLOG specifications have to do primarily with the overall appearance
of the box outline. Therefore, the primary concern is the screen coordinates
of the dialog box. Other data that goes into the specification of a dialog is the
title of the dialog (although the title doesn't show in a standard dialog box),
a reference constant (usually set to zero), a window type (from a library of
predefined window styles in the Macintosh Toolbox) and the resource ID
number of the DITL resource that has further specifications for this dialog.
Figure 23-3 shows this information in an easy-to-use format from one of the

Printing in progress.

(Cancel) (Pause) (Continue)

Figure 23-2 This dialog box is created and displayed with the help of resources.

416 HYPERCARD DEVELOPER'S GUIDE

§0= Dialog I D = 501 from MacWrite --
Window title:

I
top 115 bottom 171

left 128 right 383

ProciD I 1 I refton 10
resiD 1501 I

181 Uisible D goRwayFiag

Figure 23-3 Specifications for a dialog box's size and window style are maintained in a
DLOG Template resource. ResEdit provides both a graphic and a textual display of the
resource. This is the textual version.

resource tools we'll be describing later.
All DLOG resources need to call a related DITL resource for information

about what goes inside the dialog specified by the DLOG. As its name implies,
the Dialog Item List is a list of all the text fields, buttons, and other items that
appear in the dialog. Each different kind of item in the list has its own suite
of specifications that the DLOG needs to display the box as desired. Round
rectangle buttons have coordinates and interior text that are part of the item
specification (Figure 23-4). In the case of text that appears in the dialog each
time it shows on the screen, those words are part of the item list for a particular
text field in the item list. So are the coordinates (within the dialog box) of the
field (Figure 23-5).

What's truly amazing is that the display of a dialog box and its contents­
once specified in the resources-is accomplished with a single statement in
the main program that refers to the DLOG resource's number. The Toolbox
takes over from there, looking up the information in the DLOG resource,
which in tum automatically fetches information from the DITL resource. The
Toolbox then knows how to turn those specifications into the dialog box we
see on the screen. There is really very little programming involved for what

®Button
0 Check boH
0 Radio control

0 Static teHt
0 Editable teHt

0 CNTL resource
0 I CON resource
0 PI CT resource

0 User item

TeHt

A Resource Crash Course 417

Edit Item #1

®Enabled
0 Disabled

top 31
1--------i

left 1 o
1--------i

bottom 51
1--------i

right 80__ _____ _.

FigUI"e 23-4 A round rectangle button is one of several dialog items. Coordinates for the
button within the dialog box are listed here in ResEdit, as is the text that goes inside the
button.

would be a complex chain of events without the help of the Toolbox.
If the dialog box doesn't turn out exactly the way you expected-perhaps

it overlaps a fixed graphic element on an underlying window in an unpleasant
manner-you simply use a resource editing tool to change the coordinates of
the dialog template. Since the DITL resource items are arranged on the screen
relative to the dialog window, those item coordinates needn't be changed
when you change a DLOG's coordinates. DITL items will shift on the screen
with the DLOG.

HyperCard Resources
If you start looking around your hard disk files with a resource editing tool,
you'll notice that most of the resources are attached to application files, as
opposed to document files. As you' ll recall, document files are usually strictly
data, with no resource forks as part of the files. But you can attach resources
to document files, which is what all the excitement is about in HyperCard. By

418 HYPERCARD DEVELOPER'S GUIDE

§0 Edit Item #4

0 Button 0 Enabled
0 Check boH ®Disabled
0 Radio control

® Static teHt top 5
0 Editable teHt

left 56
0 CNTL resource
0 ICON resource bottom 21
0 PICT resource right 230
0 User item

TeHt

Figure 23-5 In the printing dialog box, one field contains static text (i.e., it is not modifi­
able by the user in the course of running the program).

attaching resources to HyperCard stacks, you can extend the capabilities of
HyperCard.

The resource types you are most likely to add to your stacks are: ICON,
CURS,FONT,snd_,XCMDandXFCN. Occasionally,anXCMDorXFCNwill
call upon one or more other resources, such as ALRT, DLOG, DITL, MENU
and PICT types. That's because XCMD and XFCN resources are like small
applications programs, which need alert and dialog boxes, menus (or menu
derivatives) and bit-mapped pictures.

You are free, of course, to modify or add resources to the HyperCard
application file, if you so desire. Like most applications, the HyperCard
program file has more resource types than you'll normally wish to fool with,
since the program code itself is contained in several resources. The Hyper­
Card application already contains quite a few resources of the type you will
want to work with. For instance, there are 101 icon resources-all the icons
you see in the scrolling dialog box of icons when you specify an icon button.
There are also three sound resources (Silence, Harpsichord and Boing) and
one XCMD, the one that responds to the Flash command.

While there's nothing illegal about adding to the HyperCard application,

A Resource Crash Course 419

it turns out not to be a great idea. First of all, when the time comes to update
your HyperCard application to the next release {like going from 1.1 to 1.2), any
resources you have in the old version of the application will not be automati­
cally carried over to the new version. You'll have to move them with a
resource editing program before you replace the application on your hard
disk. If you forget to do this-you tend to forget about resources attached to
a file-and you don't have a backup copy of your customized HyperCard file,
you'll have lost those resources. Second, I prefer to keep application files in
their pristine form on my hard disk. If something goes awry in the operation
of the program, I'd hate to think it was the result of my tampering with the
program.

Resources and the Hierarchy
You'd think that placing commonly used custom resources in the HyperCard
application would assure that they'd be available no matter where you are in
HyperCard. But fortunately, the HyperCard object hierarchy also applies to
resources. Therefore, if you put ICON, snd_, or XCMD (or any valid type)
resources in your Home stack, all other stacks will find those resources.

For example, if you add an ICON resource to your Home stack for a
particular kind of icon button you like to use often -perhaps your version of
a Home button-you can place the resource for that ICON art in the Home
stack. Then, whenever you create a new button in another stack, and invoke
the icon dialog box to assign an icon to the button, your own creation will
appear in that window. HyperCard knows to get all ICON resources from the
current stack, the Home stack and HyperCard itself in assembling that visual
list of available icons. Summoning any resource works the same way: sounds,
cursors, or XCMDs (note: Other resources called by XCMDs must be in the
same file).

Resource Tools
Manipulating resources on HyperCard stacks is fun. They're even more fun
when you can create some of the simpler resource types, like cursors and
icons, without great trouble or programming expertise. One software tool
that is essential in any HyperCard stack developer's library is a utility called
ResEdit, which is short for Resource Editor. Produced by Apple Computer,
this program is included in most Macintosh language products (at least those
that compile code into executable programs), and is readily available from

420 HYPERCARD DEVELOPER'S GUIDE

user groups and on-line electronic bulletin boards serving the Macintosh
community.

Using ResEdit

Unfortunately, you probably won't get any documentation with ResEdit,
unless you get it as part of Apple's Macintosh Programmers Workshop
(MPW) development system. We'll get into details of some of the resource
editing powers of ResEdit in later chapters, but for now, a quick tour is in
order.

When you start up ResEdit (presuming you do so from your hard disk), you
see a window in the upper left comer of the screen, with a list of all files and
folders in the root directory of your hard disk (Figure 23-6). Miniature folder
icons represent folders, while miniature document icons represent docu­
ments at the current directory level. You'll notice that there are two styles of
document icon. The one with the short lines in it means that the document file
has a resource fork in it. If you double-click on the mini-icon, you'll begin your
journey through the file's resources. If you double-click on a file lacking a

. DBusiness Closs
D Consulting
~DeskTop

DOGs Stocks
DFocol Point
<s- HyperCord

HyperCerd Stacks
Idea Stocks

Figure 23-6 ResEdit opens, revealing the files and folders in your hard disk. Document
icons with small lines in them indicate they have resource forks already opened. You double
click on a file or folder to open it.

A Resource Crash Course 421

resource fork, you'll be asked whether you wish to create a such a fork. In
succeeding chapters, we'll see how to do this.

Opening the resource fork of a file brings up an overlapping window that
lists the resource types of all resources attached to the file (Figure 23-7).
Double-clicking on one of the resource types then opens a third window,
listing all the resources of that type in the file (Figure 23-8). For each resource,
this listing shows the resource name (if one has been assigned) and the
resource ID number, which all resources have.

At the level in which you can see listings of individual resources, you may
click once on a resource to select it, and then copy it to the eli pboard via the Edit
menu. To bring that resource to another file, you open that file's resource fork,
and paste the resource from the clipboard. That's all there is to moving an
existing resource.

From the listing of individual resources, you may double click on a single
resource to see what lies inside it. Many resource types are purely compiled
computer code, and the resulting window won't mean much to you (Figure
23-9). But several resource types do provide additional windows-some of
them graphic-to inspect, create, or modify a resource.

Let's follow the progression into a DLOG and DITL resource pair within

Figure 23-7 Opening HyperCard, you find a scrolling list of all resource types attached to
the application. Double click on one to open it.

422 HYPERCARD DEVELOPER'S GUIDE

DLOG "PrintMsg" ID = 107
DLOG "Error" I D = 1 000
DLOG "Choose leon" ID = 2012
DLOG "NewPass" I D = 21 03
DLOG "Password" I D = 2 1 02
DLOG "ProtectStk" 10 = 2007
DLOG "GetFile" ID = 4000
DLOG "ScriptSearch" ID = 30
DLOG "Complain2" ID = 1684
DLOG "DeleteField" ID = .._"."'"'''"'

Figure 23-8 Next, you see a scrolling list of all resources of the type you just opened. All
resources have ID numbers. Names are opHonal, but in HyperCard, virtually every
resource is named to make it easy to find a particular one. Naming resources is good
practice.

MacWrite (version 4.5) to see how this looks. Figures 23-10a through 23-10f
show the sequence to the actual DLOG resource dis play for one of Mac Write's
dialog boxes. The display shows a miniature representation of the final
dialog, including the items from the corresponding DITL resource. Notice
that when the DLOG resource appears (Figure 23-10e) an additional menu
item, DLOG, appears in the menu bar. There is only one menu item under this
menu, which lets you change the graphic display of the DLOG resource to a
text display, which is shown in Figure 23-11. From either the graphic or text
display, you may double click on the window to see the DITL resource (Figure
23-10f). Actually, what you see is a representation of the dialog box sized to
the specifications of the DLOG, and whatever items have been specified for
the dialog-in this case one field and three buttons.

Clicking once on any item in the window selects the item, and puts a small
grow box at the lower right comer of the object's rectangle (Figure 23-1 Of). You
may graphically resize an object by dragging the grow box. You may also
double click on any object to get yet another window, like the one shown
earlier in Figure 23-4, to define that item. The object's rectangle coordinates

00000008
00000010
00000018
00000020
00000028
00000030
00000038
00000040
00000048
00000050
00000058
00000060

040B 0138 3909 0101
0101 0101 0101 0101
0101 0102 0506 0708
OFOO 0000 0000 0000
0000 0012 0011 OE10
0000 0000 0000 0000
0000 0000 0012 OE10
0014 1516 1718 191A
1B1C 0000 101E 001F
2000 2122 2300 2425
0000 0026 0027 0011
OC14 1516 1718 191A

101E 001F

DDD89DDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD
DDDDDDDD

D! M•o$•
DDD&D'DD
DDDDDDDD
DDDDDDD

A Resource Crash Course 423

Figure 23-9 Many resources are simply computer code, like this one. Numbers down the
left column are memory addresses (counting from the beginning of the code); numbers in
the four middle columns are hexadecimal equivalents of the code; numbers in the rightmost
column are ASCII equivalents.

may be fine tuned this way, and the fixed text may be modified.
To save any changes you make to a resource, you must work your way back

up the windows (closing each one) or by closing the file's own window.
ResEdit will prompt you on whether you wish to save changes. If you prefer
to abandon the changes you've made, then click No. A click of the Yes button
makes the changes permanent (until you change them again).

Important: I strongly recommend that you make resource changes to a file
only if the file is safely backed up. If the power should dip or some other
disaster befall your Mac while messing with resources, the file will likely be
permanently damaged. Therefore, back up all files about to undergo resource
surgery.

Res Copy

Another useful tool is a utility called ResCopy, written by Steve Maller of
Apple Computer. This product is actually an XCMD, which you may
therefore call from within HyperCard. It acts like the Font/DA Mover, except

424 HYPERCARD DEVELOPER'S GUIDE

Business Class
Consultfng
DeskTop
DGs Stacks
Focal Point
HyperCard
HyperCard Stacks
Idea Stacks

Figure 23-lOa A typical ResEdit sequence leading from the hard disk window to
Mac Write's DLOG and DITL resources for a Printing In Progress dialog box.

Figure 23-lOc

Figure 23-lOd

ID = 324
ID = 325
ID = 322
ID = 32 1

A Resource Crash Course 425

426 HYPERCARD DEVELOPER'S GUIDE

Figure 23-lOe

Figure 23-10£

A Resource Crash Course 427

I I
top 115 bottom~
left 128 right 383

ProciD 1 refCon l 0 I
resJD 501

Figure 23-11 You may inspect the DLOG resource graphically or in this text version.
The DLOG menu appears when viewing the DLOG resource.

that the items you're moving about are all kinds of resources (Figure 23-12).
Though nearing completion as this is being written, ResCopy is already
finding wide circulation of prerelease copies on bulletin boards and through
user groups. It will probably be available through APDA as well.

ResCopy is aimed primarily at HyperCard stack authors, who need to
shuffle resources among stacks. To transfer a resource between two stacks,
you open two stack files. Each stack's resources appear in lists in their
respective windows. Click on the resource you wish to copy (or Shift-click to
select more than one), and then click the Copy button. In the blink of an eye,
the resource(s) is copied. Each time you click on a resource, its size, in bytes,
appears in the window to let you know how much you're adding to a stack file.

You also have a few other options. Aside from the ability to remove a
resource from any stack, you may also play HyperCard-compatible sound
resource, and both rename and renumber a resource to prevent conflicts with
resources previously in the stack. One other nice touch, if you select an icon
or cursor resource, is that ResCopy shows you the icon in its window or turns
the current cursor to the one you selected. I like this latter feature, because you
can try out a cursor from within ResCopy.

Because ResCopy is an XCMD, you can call it up by typing "ResCopy'' into

428 HYPERCARD DEVELOPER'S GUIDE

~0 ResCopg

Xf'CN •913 "fileName" ~ (>>Copy >>J XFCN • 1 2 "Comm" ~ XFCN •91 4 "NtwFileName"

•r•• 0 ••
() Remoue

(P(OIJ :.;p)

I Edit I

K> [ii 0
File: NtwFileName XFCN File: Phone
Volume: Hard Disk Volume: Hard Disk
Free: 4315K

(Help X?) Free: 4315K
~ltcted: 128 bytes Selected:

(Close) (Quit KQ) I (Close)
i

-··--·······---.. ··--"
® Apple Computer, Inc. 1 988 Version 4.0b15 15-Mar-88

by Steve Maller

Figure 23-12 ResCopy by Apple Computer's Steve Maller is an XCMD that you can call
up anywhere while in HyperCard and shift resources from one stack to another. You may
view icons and cursors, play sounds and rename or renumber resources.

the Message Box. Its own window temporarily covers the stack card you're
viewing, and suspends action on the card. The best place for this XCMD is in
the Home stack. That way, no matter what stack you're viewing, you can call
the ResCopy window by invoking it from the Message Box.

An additional power ofResCopy is that you can also transfer resources one
by one within a script. As an XCMD, ResCopy is also a command. Steve
Maller set up the XCMD so that if you pass a predefined set of parameters
along with the command, the XCMD will transfer a resource from the current
stack to any other stack you specify. Of course, unless you know for sure that
the people using your stacks have ResCopy in their Home stacks, you cannot
use that command as part of your stack's scripts.

We've flooded you with information about resources in this chapter, to be
sure. But stack developers need to know how to incorporate resources into
stacks, whether they be simple icons or complex XCMDs. Resources you
bring to a stack become the avenues to distinctive stacks-stacks that don't
look like they were thrown together using HyperCard's own icons and
sounds. They add magic to a stack ... a sense of wonder the first time through.

From here we can start getting specific about the kinds of resources you
should be investigating for your stacks. We'll also look at additional resource
tools designed for each of the key types: icons, sounds and XCMDs.

24

Icon Resources

It seems that one of the first attractions to resources by new HyperCard

developers is the ability to create custom icon buttons. The library of 101

icons built into HyperCard have enough of the basics, but application­

specific buttons have to be added by stack authors. Unfortunately,

HyperCard does not include an icon utility for making and moving icon

resources. On the other hand, ResEdit and other readily available icon

tools make it possible for non-programmers to make icon resources.

Icon Basics

The first thing you need to know about an icon is that it may be no larger

than 32 pixels square. Figure 24-1 shows enlargements of three familiar

430 HYPERCARD DEVELOPER'S GUIDE

••••••••••••••••••••••a
• a
I .••••••••••••••••. I
I • • • • • • • I I
I I • • • • • a
• • • a
• • • • • a • • • D
• • • • • D
• • • D
• • • • • • D
• • • a • • • a • ••••••••• .. ••••• I • D • • • •
I •••••••• • • • • • • • • • •••••••••••••••••••••• • • • • • • ••••••••••••••••••••••
I I

24 pixels

.,
i ...
A. -"'

••••••••••••• ••••••••••••••••••• •••••••• • ••••••• •••••• ••••••••• • ••••• •••••• ••••••••• • ••••• ••••• •••• •••• • •••• ••• ••••• • •• •• •• •• •• ••• ••••• • •• •••••• • ••••• ••••••••••••••••• ••••••••••••••••• ••••••••••••••••• ••••••••••••••••• ••• • ••
23 pixels

Figure 24-la Icons may be no more than 32 pixels square. These enlarged icons
show you their pixel counts.

•• •• •• •• •• •• •• •••• •••••••••• •• •• •• • •• • •• • • •• ••• • • • •• •• ••• •••••••• • ••• • • •• • •• 1•.. •. Ill • •• •• • •• •• •• ••••••••• • •• •• •• •• •• •• • •••••• • •• •• •• • • • ••••• • •• •• ••• •••• •• ••• • ·=·· ···=··· • •• •• •• •• •• •• ••• •• •• • • • • •• •• •• •• •• •• •• •• •• • •• •• ••• •• •• •• • •• •• •• •• • ••
32 pixels

Figure 24-lb Icons may be no more than 32 pixels square. These enlarged icons
show you their pixel counts.

icons and their pixel measurements. Depending on the message you wish the
icon to convey, the area may be sufficiently large or extremely tight. A small
telephone or arrow icon, for example, can fit nicely within that space. But in

Icon Resources 431

the case of buttons linked to applications (Focal Point, for example), those 1024
pixels must "say" a lot.

Of HyperCard's seven button styles, only the check box and radio button
styles don't display an icon that you might specify for that button. But all the
others-transparent, opaque, rectangle, shadow and round rectangle-dis­
play icons (Figure 24-2). When an icon button also displays the name of the
button (Show Name is checked in the Button Info dialog box), the name
appears in Geneva font. Only when a button is designated an icon button are
you prevented from changing the font of the button. In fact, if you create a new
button, assign an icon to it, and check Show Name, the button "thinks" its text
font is the default style, Chicago, even though the display is genuinely
Geneva. No amount of setting the textFont property of an icon button will
change that.

As you create icon buttons and attach them to various stacks on your hard
disk, icons like all resources, observe the object hierarchy of HyperCard.
Thus, if you attach an icon resource to your Home stack, all stacks on your
hard disk will have access to that icon. But if you give the stack to someone
else who doesn't have that resource in their Homes tack, the icon button in the
stack will be blank. The stack can't find a matching icon resource for the one
specified by the button.

In the real world of designing stack systems for others to use, you must
include the icon resources in each stack of a stack system. In some controlled
instances, such as in-house stack distribution in a business or academic
environment, it may be permissible to include a routine in the stack system's
installation routine to copy the resources to the Home stack's resources. But
for stacks going out to the general public, I advise against modifying the Home
stack. True, your installation program could ask for permission from the user
to modify the stack by adding icon resources, but what if the user says "No?"
The resources must be in every stack of a stack system, as they are in Focal Point
and Business Class. It may add to the overhead on the distribution disks,

Icon Button StY-les

Figure 24-2 Five of the seven button styles let you display an icon. Simply choose an icon
from the Icon dialog box. Showing the name is optional.

432 HYPERCARD DEVELOPER'S GUIDE

but it also eliminates possible product support headaches, since icon re­
sources become a non-issue.

One other point you should be aware of. The first release of HyperDA
(Symmetry Corp.), a desk accessory that lets you browse through HyperCard
stacks from within any other application, does not check for a stack's re­
sources. Thus, even if your icon resources are attached to each stack of a stack
system (or to the Home stack, for that matter), HyperDA will not show those
icons. The buttons will be active, but they'll be blank areas on the screen.

Creating an Icon Resource
Before we get to the nuts and bolts of creating icons, I must stress the
importance of naming your icon resources. In the early days of HyperCard
development, it was less important, because the ResEdit tool to move icons
was graphical in nature. But with the advent of ResCopy, the shifting of
resources from stack to stack is a much easier procedure, and resource names
make it easier to find a specific button (or other resource) in a long list. For
example, Figure 24-3 shows examples of the well-named icon resources built
into HyperCard (left) and the unnamed icon resources in the first release of

ICON °12501 lQ (<<Copy<<) ICON •21100 "Sml 'Yihite Home"

m
ICON °12502 ICON °20689 "Sml Home"
ICON °125~ Iii ICON °21847 "Minute Home"
ICON •t2504 (R~mou~) ICON °1017 .. Phone"' Jt
ICON °12505 ljilii ICON •t0610 "Touch Tone"' Jl!!!! !lllh
ICON °12506 'W'' (PlftfJ :•:P) ICON °30696 "'Old Stylt Phone"'
ICON °12507

,,,,,,
ICON °17481 "'Address Card B .. ~~

ICON °12508 ,,.!, ICON •3430 .. Address Card A" !:! . .:
ICON •12509 :,!1! I Edit I 1111'1

lrlil -· : 0
I I

r"'~ ICON °12510 .,!. ICON °4432 "To Do" I I,

ICON °12511 11!.11 ICON °20965 "'Memo" Jl ICON °12512 ~· eJ ICON °17357 "Memo-Ora.., II
ICON °12513 10 ICON °21209 '"Datebook Dau II IQ

File: FP•Dfrector\1 File: HyperCard (rtad-onl\j)
Volume: Hard Disk Volume: Hard Disk
Fret: 43111<

(Help X?) Frte: 43111<
Selected: S.lecttd: 128 b\ltts

(Close) [Quit KQ) i (Close) I -··--··-.......... _ .. _····-·-· .. -·--··-·-· .. - f-.-"-"""'"" .. --·---
45:1 Apple Computer, Inc. 1988 Vtrsfcn 4 .Ob 15 15-Mar-88

b\1 Steve Maller

Figure 24-3 Compare the list of HyperCard named icons and the list of Focal Point
unnamed icons in ResCopy. With tools like ResCopy available, it makes sense to name
all resources, like the ones in Focal Point should have been.

Icon Resources 433

Focal Point (right). While ResCopy lets me click on any icon resource and view
the icon, having names as part of the resource specification certainly makes
the job of identifying and copying icons much easier.

With that warning out of the way, we can focus on making icon resources
from scratch. The software tools you need are rather simple, it turns out:
HyperCard, the Scrapbook desk accessory and ResEdit.

Preparations

The overall sequence of events begins with creating the bit-mapped art for the
icon with the painting tools of HyperCard. Next, you copy the art into the
Scrapbook, where it automatically becomes a PICf resource in the Scrapbook
file. Opening ResEdit, you create a new, blank icon resource in the stack file
you wish the button to go. Then you copy the PICT from the Scrapbook and
paste it into the ICON resource. All that's left is naming the resource and
quitting ResEdit to save the resource to the stack file.

If you plan to do this kind of icon creation a lot, there are some preparations
you can make to ease the way for future work. First, write a small handler in
your Home stack that launches ResEdit from whichever stack you may be in.
You can give it any message name you like. Here's what that handler looks
like in my Home stack:

on resEdlt
open •Hard Oisk:Programming:Utl I itles:ResEdit•

end resEdlt

Now I can get to ResEdit by typing resEdit into the Message Box at any time.
A second preparation you can make is to create a small new stack that

features a 32-pixel square template in which you may design your icon. The
reason I like using HyperCard for this instead of Mac Paint or similar bit­
mapped paint program is that the background and card layering helps
matters. The 32-pixel square template should go into the background layer,
while you work with the icon art in the card layer.

Laying out the template requires a bit of care. First of all, it is the internal
space that must be 32 pixels on each side. That means that you should start
by drawing a square with 34 pixels on a side (Figure 24-4a). Because the solid
lines of the template may interfere with your design, you can lighten the
template outline by selecting the gray pattern from the Patterns menu and
touching the tip of the Paint Bucket tool to the outline. Instantly the template
becomes a less intrusive dotted line (Figure 24-4b).

A second part of this template goes into the card graphics layer. Using the
dotted line template in the background as a guide, draw two straight lines to

434 HYPERCARD DEVELOPER'S GUIDE

j File Edit Go Tools Point Options Patterns

.................................. ••••••••••••••••••••••••••••••••••

Figure 24-4a Create a template for icon design by drawing a 34-square-pixel rectangle in
the background graphics layer. Choose the gray fill pattern. Then touch the outer line of
the square with the paint bucket tool to dim the outline (Figure 24-4b).

cover the right and bottom sides of the template (Figure 24-5). Lasso the lines
and drag them away from the template into a safe comer of the card. Verify
that they are each a total of 34 pixels long (including the bottom right comer
pixel).

Applying the Art

Now, in the card graphics layer, you may copy and paste art from any bit
mapped art you like (desk accessories like Art Grabber or Artis to let you view
and copy selections from MacPaint and FullPaint pictures without leaving
your template card in HyperCard). Just make sure the art fits inside the dotted
line (Figure 24-6). It is important that you center the art within the template
as best you can.

The last stage of the HyperCard end of the process is to lasso and drag a
copy (hold down the Option key before dragging) of the solid line template
comer created earlier. Position the lines so they cover the dotted lines of the
template (Figure 24-7). These lines will ensure that the location you specified
for the art within the icon template will be the same location of the art in the

Icon Resources 435

• File Edit Go Tools Paint Options Patterns

Figure 24-4b

icon resource.

~·
• •
• • • • • • • • • • • • •

• • • • • • • • • • • • • :

To copy the art into the Scrapbook, choose the Selection tool, hold down the
Option key and drag a marquee around the icon art. When you release the
mouse button, the marquee will"snap to" the square of the icon art and corner
lines. Choose Copy from the Edit menu (or type Command-C). Next, open
the Scrapbook desk accessory, and choose Paste from the Edit menu (or type
Command-V). Close the Scrapbook window.

Dotted square
in background
layer

D Solid lines
in card
layer

Figure 24-S Draw solid lines in the card graphics layer to cover the right and bottom
lines of the icon template.

436 HYPERCARD DEVELOPER'S GUIDE

r~··········,
i i ,.....

_j
Figure 24·6 Select the solid lines and drag them away from the template while you work
on your icon design with the painting tools.

Figure 24-7 Position a copy of the solid lines atop the template. Lasso the entire card layer
graphic, copy it, and paste it into the Scrapbook.

Make a New Resource

If you wrote a Home stack handler to launch ResEdit, then type that handler's
message into the Message Box and press Return. Otherwise, do what you
must to open ResEdit.

For purposes of instruction, we'll assume that the icon you just created is to
be the first icon resource in a new stack. Thus, we will go through the process
of creating a resource fork in a stack, as well as making the new resource.

1. Open folders in succeeding ResEdit windows until you can see the listing
for your stack.
If there is no resource fork for the stack, the miniature document icon will
be blank inside.

2. Double click anywhere along the line of the stack name.
A beep and a dialog box greet you, indicating that the file has no resource
fork (Figure 24-8). If you click OK, that will open a resource fork. It's
important to realize that just because a file has a resource fork opened does
not mean that it contains resources. If you open the resource fork of this
file and then don't add any resources, the miniature document icon for this
file in ResEdit will show that a resource fork exists.

3. Click the OK button to open the resource fork.

The file 'World Timekeeper'
has no resource fork. Opening
It will odd one. Do you wish to
open It 1

n Cancel ll

Icon Resources 437

Figure 24-8 If you open a document file whose resource fork is not yet creDted, you'll be
alerted that you're about to creDte that fork.

Another window opens, representing the resource fork for the file (Figure
24-9). It is empty.

4. Choose New from the File menu to create a resource category.
A dialog box appears asking you to specify the name of the resource you
wish to create (Figure 24-10). You may choose from the scrolling list of
predefined resource names, or, for programmers who know how to do
such things, type in a new resource name.

5. Scroll until you see the ICON resource name and click on its name in the
list.
"ICON" is typed into the little box for you.

6. Click the OK button.
Yet another window appears. In a file that has icons already installed as
resources, the icon art for each appears in this scrolling window. Since
none have been installed for this file, the window is blank (Figure 24-11).

438 HYPERCARD DEVELOPER'S GUIDE

OK

(Concel)

Figure 24-10 To create a new resource, you may select from the list of common resource
types presented in the dialog. Here we want an ICON resource type.

Icon Resources 439

Figure 24-11 This new, empty window will list ail the icons (actually in graphical
representations) instailed on this stack. For now, choose New from the File menu.

7. Choose New from the File menu to open a new resource.
The next overlapping window that appears is blank (Figure 24-12). What
you don't know by looking at this window is that it is a bit-mapped editing
window. Click the mouse somewhere in the left two-thirds of the
window. A Fat-bit dot appears under the cursor, while a life-size repre­
sentation appears to the far right. Click and drag the cursor around the
screen. It's just like working in Fatbits mode (Figure 24-13). If you're a
good enough artist, you can actually create your icons in this window,
rather than in HyperCard or another painting program.

8. To transfer the Scrapbook picture to this window, first open the Scrap­
book-you'll notice that the content of the page holding your art is noted
as a PICT resource in the lower right corner--and copy the icon art you
just put in there.

9. Close the Scrapbook.
Fortunately, ResEdit will convert the PICT resource, which you just
copied from the Scrapbook, to art that the ICON resource can use.

440 HYPERCARD DEVELOPER'S GUIDE

Figure 24-12 Another blank window opens. But this is an icon editing window. A
resource ID number has been automatically assigned by ResEdit. The number may be
changed later.

10. Choose Paste from the Ed it menu.
Your icon art is now set, except for one thing: the name.

11. Choose Get Info from the File menu.
Yet another overlapping window appears (Figure 24-14). You can ignore
most of the settings in this window. The ones of importance are the ID
number and Name. The ID number in the box was assigned to the icon at
random when the resource was created. You may change it now, if you
like. Keep ICON resource numbers between a positive 128 and 32767.

12. Type in the name you wish to know this icon by.

13. Close the topmost two windows.
Note that the picture of the icon now shows in the window of icons for the
file (Figure 24-15). The square around the icon art means that the icon is
currently selected.

•••• •• • • • • • • • ••• • •• • • ••••••• •• • • •••• • • •• • • •• •••• •• •• ••• • • • •• • • • ••• •• • ••• • • • • • • ••• • • ••• • • •••• •• • • • • • • • •• • • • • •• •• • •••••• • • •• ••• • •••• • • • • •••••• •• •
• ••

•• • ••

Icon Resources 441

Figure 24-13 Start dragging the mouse around the left three-quarters of the screen to see
the Fatbit-style editing you have. A life-size replica of your drawing appears at the far right
of the window. Copy your art from the Scrapbook and paste it into this window.

14. Close two more windows.
You'll be prompted whether ResEdit should save the changes you made
to the file (Figure 24-16). If the icon is as you like it, then click the Yes
button. The icon resource is now a part of that file.

15. Quit ResEdit and open that HyperCard stack.

16. Create a new button and summon the list of icons.
Your icon will be in the list, ready to assign to any button in that stack
(Figure 24-17).

The first couple of times you do this procedure, it seems like a lot of steps. But
with practice, you find yourself whisking your way through ResEdit to get to
the desired window for pasting the art into the resource and naming the
resource.

442 HYPERCARD DEVELOPER'S GUIDE

Name:

ID: 1
12371

owner type

Attributes:
0 System Heap 0 Locked 0 Preload

Figure 24-14 Choose Get Info from the File menu to see the info box on this icon. You
should type a name for the resource. If the ID number is between 128 and 32767, then you
don't have to adjust the number now.

Commercial Tools
A new icon creation tool, called Icon Factory (Hyper Press Publishing), auto­
mates a lot of the process of creating an icon resource from an existing work
of bit-mapped art. It also includes useful icon editing tools. Interestingly, the
application is itself a HyperCard stack, albeit one loaded with some very
sophisticated XCMDs.

The feature I like best about Icon Factory is its SnapShot option. When you
click on the SnapShot button of the Icon Factory stack, a small window
appears, letting you navigate to other stacks. The cursor becomes a square the
size of an icon. Position the cursor atop any chunk of art you wish to tum into
an icon and click the mouse button, such as the small organization chard in
Figure 24-18. The art appears in the SnapShot window, showing you what the
resulting icon would look like.

When you return to the Icon Factory stack, you can save it to an area on the

Icon Resources 443

Figure 24-15 After passing the art into the editing window and closing windows back to
the Icons window, you now see the sole icon resource for this stack.

screen called the Icon Editing Area. Here you can edit the art pixel by pixel
in Fatbit mode (Figure 24-19). Several buttons surrounding the editing area
let you shift the image one row or column of pixels at a time, flip and rotate
the art, or reverse the art (tum white pixels to black and vice versa).

After the icon art is defined to your satisfaction, you may then use Icon
Factory to save the icon as an ICON resource to whatever stack you like. No
messing with ResEdit. If the ResEdit method of creating icon resources
becomes tedious, then it might be a good idea to buy a copy of Icon Factory
for your development arsenal.

Extracting Icons
Many exploring HyperCard authors have wanted to use the icons from
applications programs within their own stacks. This is especially true for
stacks written to act as Minifinders, launching other applications and docu­
ments. The problem has been that the icons you see in the Finder for an
application and its documents are of a different icon resource type than the

444 HYPERCARD DEVELOPER'S GUIDE

[Yes ~J
No)

Saue "World Timekeeper"
before closing?

Cancel

Figure 24-16 When you try to close the stack's ResEdit window, you'll be asked whether
you wish to save changes. Click Yes if you want to use the icon.

ones used in HyperCard stacks. Icons you see in the Finder are of the ICN#
type, which means Icon List (don't ask me how it means that, just take my
word for it). Trying to copy an ICN# resource into the clipboard or Scrapbook
and then pasting into a new ICON resource just doesn't work. Even though
they look the same, they're really apples and oranges.

Icon Factory, mentioned above, lets you grab an ICN# resource from any
file, bring it into the editing window, and then save the art as an ICON
resource to any stack file you like. It's very simple to do.

The author of Icon Factory, James L. Paul, also wrote a separate application,
called Icon Extractor, which was a precursor to a few features in Icon Factory.
Icon Extractor was distributed as a shareware product (it's a standalone
program), and is available on CornpuServe and user groups that distribute
public domain and shareware products on disk.

Icon Extractor is more of a ''brute force" method of extracting all ICN# type
resources from one file (like an application file) and tossing them all into a
HyperCard stack file as ICON resources. The program pulls all ICN#
resources from an application file at once, rather than selectively, as in Icon
Factory. In any case, this extraction feature of Icon Factory just adds to the

Icon Resources 445

I con ID: 2371 "Fat Up Rrrow"

~ 4' '~ c !i
~ ~ ~ ~ I ~ (g .

. z

~ \J ~ " ~ 9 . -'

Q ~ <0- .(). ~ ¢(1 ¢l

Q ?1 0 0 ~ ~ <:J
(None) n OK D (Cancel

Figure 24-17 The next time you specify an icon button for that stack, the new button
will be in the icon list.

Figure 24-18 Hyper Press' Icon Factory utility offers a SnapShot fadlity that lets you grab
art from any HyperCard card and tum it into an icon. Here, it's grabbing the small
organization chart from the Art Ideas stack.

446 HYPERCARD DEVELOPER'S GUIDE

a ••••••• • ..
I ••• •• Clnr Icon .. •••••••• • •

EJ ~ ••••••••••••••••••••• • • • • • • ••••••• ••••••• • •••••• • • • • • •• • • • ' • • • • • •• . ~ .. • •• • •• • ••
sn~pshot •••••••• • ••••••• • •••••• ••••••• • ••••••

El D ~
Hom• Htlp Librar11

Figure 24-19 Bringing the captured art back into Icon Factory, you may edit the art in a
Fatbit mode. Buttons let you shift art one pixel at a time in any direction, rotate, or invert
it. The program (which is a stack itself> automaticaiiy converts the art into an ICON
resource.

value of Icon Factory as a developer's tool.
Working with icons and icon buttons in HyperCard is fun. And since the

tools needed to add icon resources to your stacks don't take a degree in
computer science to use, everyone is encouraged to get creative in interesting
button design.

25

Sound Resources

Icon buttons aroused early interest in HyperCard stack resources, but

incorporating sound was a puzzle to many. While some developers

immediately discovered the power of digitizing fresh sounds and

turning them into resources, others had large sound libraries that they

wanted to bring into their stacks. They could make some sounds work,

but not others. Even sound resources that came with the Macintosh

System (4.2) didn't work with HyperCard. It was very frustrating.

While fathoming the entire scope of Macintosh sounds (including

startup sounds, beeps, and so on) is beyond the nature of the book,

HyperCard sounds are not. This chapter will attempt to identify the

problems facing sound conversion and then provide guidance in creat­

ing sounds for your HyperCard stacks.

448 HYPERCARD DEVELOPER'S GUIDE

Why Sounds?
Although the Macintosh has had a four-channel sound system built into the
hardware since the very first machine rolled off the assembly line, most
programmers have not given sound much attention (music software pro­
grammers notwithstanding). The fact is, sound is a new medium for the
computing world, largely due to the sound playing abilities of HyperCard,
and the improved sound hardware of the Macintosh II. Suddenly you can buy
external hardware devices that record live sound for use within programs.
And not just for beeps and startup sounds, but for meaningful additions to a
product's user interface.

Because sound is such a new medium, there is little in the way of a standard
in the way sound is to be used in applications. It wasn't until Volume 5 of
Inside Macintosh that the User Interface Guidelines included a section on
sound.

Using Sound in a Program
Sound, particularly in a HyperCard stack, can be used two ways. One is as a
notification device for any number of program events: getting the user's
attention after a long, automated procedure; highlighting an alert error
message; or signifying the transition between operational modes in a program
(analogous to going from card to background mode in HyperCard). In such
uses, it is critical for the sanity of the user that the sounds chosen be short, non­
melodic (how many times do you want to hear a little tune?) and not intrusive
to the operation of the program. Most importantly, don't put in so many
different sounds that the user thinks the Macintosh is a music machine,
instead of a productivity machine.

The second application of sounds is when the sound itself is the information
being stored and retrieved. For example, a series of HyperCard stacks written
by Martin Rice teaches Russian language reading and pronunciation by
including digitized voices of native speakers. A history stack may offer some
background music from a period of time covered by the text and graphics on
the screen.

With only a few exceptions, the applications of sound in HyperCard stacks
thus far have been primitive. But it's a new medium for most of us, and we'll
improve our sound skills over time, just as our graphics skills have improved
from the early Macintosh days.

Sound Resources 449

Digitized Sound
If you're new to the realm of computerized sound, then the terms "digitizing''
and "sampling'' might be foreign to you. Here are some of the basics of
Macintosh sounds.

All sounds generated by the Macintosh are digital sounds, because they are
stored as a long sequence of digital data-ones and zeros in their most basic
construction When sound is recorded by a digitizer, it takes thousands of
audio snapshots of the sound each second (coming in through a microphone
or audio line connected to a source such as a cassette tape or compact disc) and
converts the sound into a digital representation of that slice. In other words,
the sound is "sampled" thousands of times per second. The more often a
sound is sampled, the greater the fidelity, just like the more animation frames
you see per second, the smoother, more lifelike the motion is. The speed
(number of times per second) at which the sound is sampled is called its
sampling rate. The maximum sampling rate the Macintosh can handle is 22
k.iloHertz-22,000 times per second. Many of the sounds you find in sound
collections from user groups have been sampled at 11 kiloHertz, which
provides fairly good sound on the Mac. The greater the sampling rate, the
more disk storage space required for the sound. Unfortunately, sounds take
up a huge amount of disk space per second.

Audio digitizers usually come with software to help you manipulate the
sound once it has been recorded and stored in the Mac's memory. These
programs generally present a graphic representation of the sound waves
generated by the sound. If you know how to work with these sound waves
or just like to experiment, you can modify the wave with the software or
simply strip out unnecessary silence before and after the core sound you're
after. Once you're satisfied with the sound, you save it to disk as a sound data
file. These are the files that can be turned into startup and beep sounds with
the help of utility programs available from most user groups. These sound
files may not be used directly with HyperCard stacks, however.

Macintosh Sound Resources
The sounds used in programs other than music programs are generally stored
as resources. This has not always been the case, nor has there always been a
standard resource type that applications developers could count on. But
today, the Macintosh system has settled on a resource of type snd_ -lower
case letters with an extra space at the end to make up a valid name of a four­
character resource type.

450 HYPERCARD DEVELOPER'S GUIDE

There's nothing very visual about the content of a sound resource. After a
little bit of information about the resource type at the beginning of the
resource's code, the rest is predominantly code that represents the sound
itself. But to make matters even more confusing, there are actually two
different ways that snd_ resources can be formatted intemally. These are
known as Type 1 and Type 2 (also as Format 1 and Format 2}. Type 2 resources
assume that the sound is digitized, and thus only one Macintosh synthesizer
channel (the one dedicated to sampled sound} is used for the sound; a Type
1 resource opens specific cham;els (of the four} for sound output. The formats
of the two types are so different from each other that few programs can accept
both.

Now, the real sad news is that you cannot tell from the name of the resource
which type it is. In a resource utility like ResEdit or ResCopy, all such
resources appear as snd_ resources, and that's it. It takes investigation into the
actual resource code to figure out which is which.

HyperCard requires Type 2 snd_ resources (some sounds that come with
HyperCard are erroneously labeled Type 1 resources internally, yet their data
seems to be compatible with Type 2-thus Type 1 resources are not guaran­
teed to work with HyperCard, while Type 2 resources are). The snd_
resources delivered with System 4.2 are Type 1 snd_ resources (accessible only
with a Macintosh m. Steve Maller's ResCopy XCMD not only copies sound
resources from one file to another, but if it encounters a Type 1 snd_ resource
in the source file, it will try to convert it to a Type 2 before depositing it into
the HyperCard stack file. This isn't always successful, primarily due to the
complexities of some sounds. Of the four Type 1 sounds in System 4.2,
ResCopy can convert two of them-Monkey and Bong-into Type2 resources
that HyperCard can use. Just knowing that ResCopy tries to do the right thing
with sound resources is reason enough for me to stick with ResCopy to move
snd_ resources from non-HyperCard files to HyperCard stacks.

I've also encountered some sound resources that were not of type snd_. I'm
not sure where these resources came from, but they are obviously resource
types defined by early sound programs, whose designers were on the right
track of storing sounds as resources.

Converting Existing Sounds
Many of the user group disks and electronic bulletin boards have libraries of
sounds that Macintosh users have made with audio digitizers. These files for
the most part have been created with sound software called SoundCap (for
Sound Capture) or a later version of the program, called Sound Wave. Sound-

Sound Resources 451

Cap was packaged with an audio digitizer from a small company called
MacNifty. SoundWave is part of the software package that today comes with
a digitizer from Impulse Inc.

These two programs produce sound files that may be used as startup and
beep sounds for the Macintosh. You'll recognize these files when you see
them by their icons, as shown in Figure 25-1. If you check these files with
ResEdit, you'll see that they are strictly data files, with no resource forks
whatsoever. To use these sounds in HyperCard, then, you need to convert
these sound files into Type 2 snd_ resources.

Fortunately, when HyperCard was released, a package of utility tools was
also released by the Apple Programmers and Developers Association. The
package included rather technical information on creating XCMDs, and also
a sound conversion stack. This stack contained an XCMD, called SoundCap­
ToRes, which extracted sound data from SoundCap files and created a Type
2 snd_ resource with that sound.

That XCMD is still valuable today, and is included with software from
Impulse. A new stack, called Sound Convert 1.0 written by Kelly E. Major
(also available from user groups and bulletin boards), simplifies the matter of
choosing SoundCap or SoundWave files for conversion into snd_ resources
(Figure 25-2). The utility, which puts a friendly front end on top of the original
SoundCapToRes XCMD even places the new resources in a stack of your
liking.

Hyper Sound
A newer audio digitizer, the MacRecorder from Farallon Computing, includes
standalone software for manipulating sounds sampled by its digitizer, as well
as a stack that lets you record and instantly save the sound as a HyperCard
resource (Typed 2 snd_ resource), bypassing the conversion process (Figure
25-3). This program points in the direction that future sound tools for

SoundCap
File

.,.
Stooge lntro

SoundWave
File

Dog

Figure 25-1 Two common sound files and their icons: Sound Cap and Sound Wave. These
sounds may be converted into HyperCard sounds.

452 HYPERCARD DEVELOPER'S GUIDE

®2

NEW SND NAME
loog I

~ ~
Stt Sourct Stt Dutin1tion Do IT!

SOURCE FILE
"Hard Dislc:Dog"

DESTINATION FILE
"Hard Disk :DGs Stacl<s:Bool< II Staclcs:Call Timer"

Test-Return

Figure 25-2 Sound Convert 1.0 is a sound utility stack that lets you convert SoundCap or
Sound Wave files into HyperCard sound resources and attach the resources to spedfic
stacks.

HyperCard will be taking. Making the sound recording and editing process
a HyperCard stack is a natural progression. The MacRecorder and Hyper­
Sound stack are so simple to use (the handheld MacRecorder plugs into either
of the Mac's serial ports) that it's the system I prefer for making HyperCard
sounds.

Producing Sound Stacks
When sound plays an important role in your stack-primarily in information
publishing types of stacks-the integration of sound into the graphic presen­
tation is a critical issue. It practically takes the skill of a video producer with
an intimate knowledge of how HyperCard loads and plays sounds to pull it
off successfully.

The best explanation I've seen of the issues involved in such a production
is the article by Tim Oren of Apple Computer. The article appeared in two
installments in HyperAge magazine. The magazine has kindly granted

• .

Twilight Zone

Play Rev Fwd Stop

~ ~ ~.

Sound Resources 453

~~
vi~

Copy Sound to Stack SoundEdit'"

Som(!le Rote

®22KHz

011 KHz

07 KHz

05 KHz

Connection

®~ 0~

lcaaall
lffiiillEl ~

Crtate HolM Button L!.i!J'

Figure 25-3 Farallon Computing's HyperSound is a stack that works interactively with
the company's MacRecorder sound digitizing hardware. You record sound directly into
this stack, which, in turn, converts the sound into a HyperCard sound resource. This is a
first-rate implementation.

permission to reprint that article series as Appendix B. It is an important
document that all sound-oriented stack developers must read. The article also
provides hints on developing HyperTalk tools to help in the creation of a
sound-and-graphics slide show presentation.

26

Introduction to XCMD
and XFCN Resources

Adding an XCMD to a stack reminds me of adding a room to a house,

especially if that room has a special purpose. For instance, if you like to

do woodworking, at first you may try to stash some of your tools in the

garage, and work around the car the best you can. No matter how you

do it, though, using the garage for a wood shop is awkward. It's

possible, but not practical or efficient. But add a room to the house to act

as your wood shop, and suddenly you're a cabinetmaker. There's

plenty of workspace, room for better power tools-just the right envi­

ronment.

HyperCard and XCMDs are the same way. You may be able to

perform certain complex operations with HyperTalk, but they perform

slowly or don't measure up to the real goals you have in mind. But tack

456 HYPERCARD DEVELOPER'S GUIDE

an XCMD onto the stack written for those operations, and suddenly the stack
takes on the power of a real Macintosh application.

What Is An XCMD?
The term XCMD stands for "external command," while its counterpart, the
XFCN, stands for "external function." As we have done throughout the book,
we'll continue to lump both together under the term XCMD, unless stated
otherwise. The four-letter names are actually four-character resource types
(like ICON, MENU, etc.) because XCMDs, as you'll soon see, are strictly
resources.

An XCMD is a subroutine, to which your H yperTalk script jumps. It's like
detouring to a custom handler or user-defined function, except the XCMD or
XFCN is not written in H yperTalk. Instead, it is written in Pascal, C, or
Assembler and, after being processed through a compiler or assembler, at­
tached to a stack as a resource.

A H yperTalk script calls the XCMD by sending a message with the name
of the XCMD. In fact, it's as if you've added a word (either a command or a
function) to the HyperTalk vocabulary. Thanks to the inner workings of
HyperTalk, when a handler sends the message to start the XCMD, handler
execution pauses until the XCMD is finished. When an XCMD is finished
running its little program, it hands control back to HyperCard, which contin­
ues executing the original handler.

XCMD code is like a small program. Unlike HyperTalk, however, the
XCMD code is compiled, meaning that all its instructions, originally written
in languages like Pascal and C, have been converted to machine language by
a language compiler. XCMDs, therefore, tend to run very fast, compared to
HyperTalk (an interpreted language as of version 1.2). An XCMD that starts
out as thousands of lines of Pascal or C statements can execute faster than 20
lines ofHyperTalkcode(depending, of course, on the nature oftheXCMDand
HyperTalk code).

XCMD code is compiled into what is called a code resource (most language
compilers offer an option to compile code into a standalone program, a desk
accessory, an Fkey, code resource, and so on). A code resource may then be
attached to a file with a resource moving tool, just like icons and sounds. The
contents of a code resource are gibberish to all but experienced programmers.
Figure 26-1 shows the beginning of the code resource for the XCMD in the next
chapter, as revealed by ResEdit.

XCMDs can communicate with the HyperCard stack, retrieving values of
variables, fetching properties of objects, sending messages to the card, and so
on. When you think about it, that's just what HyperCard does. An XCMD,

Introduction to XCMD and XFCN Resources 457

~D~ HCMD "About .. I D = 4 from AboutStack
00000000 6000 OOOA 0000 0000 'DDDDDDD (}
00000008 0000 0000 41FA FFF2 DDDDADDD ~
00000010 21C8 09CE 6000 06AC !»D('DD-
00000018 48E7 EOCO 226F 0018 HDD~"oDD
00000020 206F 001C 2F6F 0014 oDD/oDD
00000028 001C 7000 1018 3400 DDpDDD40
00000030 1219 8200 6402 1401 DDSDdDDD
00000038 5342 6008 8308 56CA S8mD~DU
00000040 FFFC 6602 8200 4CDF DDfDSDLD
00000048 0307 508F 4E75 2FOA DDPeNu/D
00000050 226F 0008 246F OOOC "oDD$oDD
00000058 302F 0010 3400 121A O/DD4DDD
00000060 8202 6402 1401 12C2 SDdDDDD~
00000068 6002 12DA 51CA FFFC 'DDDQ DO

Figure 26-1 ResEdit reveals that an XCMD is nothing but code. Hence, when you write
an XCMD, the language compiler gives you an option to save the program as a n code
resource."

therefore, is a personal extension of HyperCard for your special purposes.

Why XCMDs?
HyperTalk is a powerful language in and of itself, and developers should not
tum away from the language if a solution isn't obvious. You can accomplish
a lot with HyperTalk alone. But HyperTalk does not do everything. If you are
trying to emulate a standalone Macintosh program, a number of Macintosh
system-level elements simply aren't available. I ran into that difficulty when
developing Focal Point.

In the Document Launcher stack, I wanted a design that would let users
create buttons that launched applications, but without forcing them to go
inside a button script to write the Open command that did the job. The
Macintosh way of doing it would be for a standard file dialog box to prompt
the user to select a document and an application. Since HyperTalk by itself
didn't have that facility, I turned to a public domain external function, called
filename(), which did that for me. H yperTalk worked seamlessly with this
function, by taking the data returned by the function (the text of the file's
name) and assembling a script for the buttons created by the handler.

458 HYPERCARD DEVELOPER'S GUIDE

What was so remarkable about thisXFCN (written by Apple' sSteve Maller)
was that a single word in a HyperTalk script summoned what amounted to
an external subroutine dozens of lines long. For example, the HyperTalk
script line

put fllena~ae() Into theFIIe

first calls up a Standard File dialog box, suspending action in the HyperTalk
handler. When the user selects a file and clicks the dialog's OK button, the full
name of that file (including pathname) is inserted into the local variable,
theFile, in the handler. While it took someone with good Macintosh program­
ming skills to write the XFCN in the first place, it didn't take any knowledge
about Macintosh programming to use that XFCN in my stack. As a resource,
the function could be moved to any stack I wished with the help of ResEdit or
ResCopy.

Similarly, hundreds of sophisticated XCMDs have been created for special
purposes in stacks, and reused in other stacks by people who know nothing
about Macintosh programming. All it takes is knowing how the resource
works in a HyperTalk script and how to use a resource mover.

Writing Your Own XCMDs
When other peoples' XCMDs aren't enough, however, it may be time to write
your own. While this is not a trivial matter for programming newcomers, it
is far easier to write an XCMD than to recreate your entire HyperCard
application as a standalone Macintosh application. Most of the program can
be in HyperCard and HyperTalk, with an occasional jump out to an XCMD for
a particular programming task that HyperTalk doesn't do or do well.

Writing an XCMD is not something a non-programmer can hope to learn
overnight. It requires a working knowledge of a programming language like
Pascal, C, or Assembler and a working knowledge of the Macintosh program­
ming environment. All of that is a tall order, and requires a healthy time
commitment. Therefore, while this book so far has not implied any fore­
knowledge of Macintosh programming, this chapter marks a departure.

Unfortunately, this is not the book to teach you Pascal or C. But once you
have a basic understanding of either language, and have an appreciation for
the issues involved in programming on the Macintosh, this chapter is where
you may start your journey through XCMDs.

Introduction to XCMD and XFCN Resources 459

LeannbngLibr~

To those who are new to Macintosh programming, I suggest you look into the
books listed below. One warning, however. The books on learning languages
are devoted to specific versions of the language. For instance, one Pascal book
is written for Macintosh Pascal, a precursor to LightSpeed Pascal, while the
other is tailored to Borland's Turbo Pascal. The book on learning Cis tailored
to the Hippo C compiler, which, as far as I can tell, is no longer available. Still,
the basic language concepts in these books apply to most compilers of the
same language. Note, too, that learning the language is only one part of the
process; learning to program in the Macintosh environment is another.

Learning Pascal: .
Pascal Primer for the Macintosh by Dan Shafer <New American Li­
brary)
Turbo Tutor (Borland International)

LeamingC:
Macintosh C Primer Plus by Stephen Prata (Bantam Computer Books)

Programming the Macintosh:
How to Write Macintosh Software by Scott Knaster (Hayden Books)
Macintosh Revealed, Volumes 1 and 2 (Second Edition), by Stephen

Chernicoff (Hayden Books)

Serious XCMD writers will also want to invest in the five-volume series,Inside
Macintosh (Addison-Wesley), the reference bible for Macintosh program­
mers. The Chernicoff series, which is Pascal-based, has most of what's in the
first three volumes of Inside Macintosh, but in a form that is highly readable and
informative. Another worthwhile volume, especially if you're working in
Macintosh· ll territory, is Macintosh Programming Secrets by Scott Knaster
(Addison-Wesley).

What I particularly like about writing XCMDs is that unlike writing a
complete Macintosh application, you don't have to devour all of Inside
Macintosh (or an equivalent) to start writing XCMDs. Most of the hard stuff
about an application is already handled by HyperCard. An XCMD is
essentially just a small routine, for which you often don't have to worry about
memory management, windows, menus, text editing, and the other interface
issues that make Macintosh programming a difficult skill to learn.

I was amazed at the time HyperCard was delivered to see how defensive
other language producers became about HyperCard. I believe they saw
HyperCard as a threat to their existence, as if HyperCard were going to
replace their products as development systems. Actually, the opposite was
true. Instead of stealing potential customers from Pascal and C, HyperCard

460 HYPERCARD DEVELOPER'S GUIDE

was likely to draw new customers to do XCMDs, who would not otherwise
bother buying a Pascal or C compiler. Well, it took several months, but
eventually the predominant language suppliers are now offering their ver­
sions of the routines that make XCMD creation simpler for their compilers.
And that's good news for you if you're new to this.

Before You Go Off To Learn a Language

Pascal, C and Assembler programming environments are different from
BASIC, in case you've had any experience there. A typical Pascal or C
development environment consists of a text editor and a compiler. You type
the actual Pascal or C language code into a text file, very much like a word
processing file. The compiler then converts that text file--called the source
code-into program code, whether it be a standalone program or a code
resource for an XCMD. In general, you won't be able to test whether the code
works until you compile it and try it. If you discover errors and modify the
source code, you must recompile the program and move the resource to your
stack to test it again. Fortunately, XCMDs are usually so small that compila­
tion time is insignificant.

To help in compiling, the language producers include a series of "units"
that are essentially prewritten source code modules that help your source
code make the calls to the Macintosh Toolbox and operating system. During
compilation, these units and your source code are combined into a single
chunk of executable ("runable") code. A friendly compiler will look through
the code being generated during compilation and alert the programmer to
syntax errors in the source code. This helps track down errors in your source
code before trying the XCMD in the stack and perhaps crashing the system.

Some language environments divide the tasks of compiling your source
code and combining it with other libraries into two tasks, called compiling and
linking. Others lump both activities together under the term compiling.

In Case You Know A Little Pascal

If you come to XCMDs with an exposure to Pascal, it is critical that you fully
understand the concepts of pointers, handles and dereferencing. This is true
for most Macintosh programming.

The source code you'll see in the following chapters is written in Light­
Speed Pascal. Each compiler has a number of different conventions in the way
other units are called and the way the XCMD source code begins. For

Introduction to XCMD and XFCN Resources 461

example, in Macintosh Programmers Workshop Pascal (MPW Pascal), the
name of the main XCMD procedure must be called EntryPoint. The Light­
Speed Pascal compiler insists that it be called Main, while Turbo Pascal prefers
the actual XCMDname. Some compilers require compiler directives (instruc­
tions to the compiler) at the top of their code (things like {$R} and {$S} plus the
code segment name), while other compilers get their instructions in other
ways. LightSpeed, for instance, lets you specify the equivalent of compiler
directives in the Project window next to each segment's name (Figure 26-2).
XCMD templates for LightSpeed Pascal, LightSpeed C, and Turbo Pascal are
provided in Appendixes C, D and E as guides to overall structure.

Calling an XCMD-What Happens
When HyperCard sees that the message you send matches an XCMD or XFCN
resource, HyperCard grabs a small chunk of memory to store what is called
a parameter block. This parameter block acts as a staging area for information
that goes back and forth between HyperCard and the resource's code. Here's
what that information can consist of:

-o Rbout Project
Oj!tions Fil• (b!j build ord•r~ Siz• Unit Nam•

~ DA Pulib 8084
M1oTr1ps 6006

D N V R XCMD lnttrflct .p 0 XCMDintf
D N V R XCMD Utilitits .p 1968 XCMDUtils
D N V R About.p 2304 AboutUnit

0
IQI IQ '2J

Figure 26-2 LightSpeed Pascal puts the equivalent of compiler directives in the Project
listing (under Options) rather than in the source code listing.

462 HYPERCARD DEVELOPER'S GUIDE

1. The number of arguments passed along with the XCMD message.
For example, the message f 1 ash 1 o contains one parameter, 10, which
rides along with the message name. Just as any HyperCard message,
multiple parameters must be separated by commas.

2. A list of handles to zero-terminated strings containing the actual argu­
ments.
On invoking the external code resource, HyperCard creates a handle for
each argument and places the content of each argument in another loca­
tion in memory, recording the handle to that location in an array (a list of
handles) within the parameter block. HyperCard builds in space for a
maximum of 16 handles to arguments, meaning that an XCMD or XFCN
may have no more than 16 arguments that your code can access.

3. A handle to the zero-terminated text to be returned to HyperCard after
execution.
XFCNs, for instance, usually return some kind of value, just like any
H yperTalk function. Since all numbers or text of a returned value are
considered as text strings by H yperTalk, the value to be returned from an
XFCN must be converted to a zero-terminated string. A handle to that
memory location is what your XFCN code must place in this part of the
parameter block. When the XFCN passes control back to HyperCard, the
return value is plugged into the HyperTalk statement in the same way a
HyperTalk function plugs a value into the statement.

An XCMD can also return a value, primarily used for error detection in
the HyperTalk script. If an XCMD places a handle to a zero-terminated
string in its return value slot of the parameter block, that text will be
retrievable with the function, the Result, and may be tested within
HyperTalk.

4. Aflag(I'R.UE or FALSE) denotingwhetherthemessageshould stop at the
resource or continue up the hierarchy.
Normally, this flag will be false. But if your XCMD is conditioning a built­
in HyperCard command, it will want to pass the message up to Hyper­
Card at the end of the XCMD execution.

5. The memory address (pointer) through which all communication between
the XCMD and HyperCard flows.
This address is like a portal through which information flows from
HyperCard to the parameter block. Your XCMD then retrieves informa­
tion from, and posts information to the parameter block in order to
communicate with the objects in a card or send messages to HyperCard.

Introduction to XCMD and XFCN Resources 463

6. The code number of a request the XCMD wishes to make of HyperCard.
HyperCard responds to 29 different requests from an XCMD. Requests
can be things like wanting to send a message to a card, obtaining the
contents of a specific field or global variable, and so on. These request
codes are assigned to constant names in one of the language units that get
compiled along with your XCMD code. Your XCMD doesn't use the
constant directly. Instead, your XCMD calls a procedure that is part of the
glue routines (described below) compiled along with your XCMD code.

7. A result code, signifying whether the call back to HyperCard was success­
ful.
HyperCard sends back to your XCMD one of three possible result code
integers (0, 1, 2) depending on whether the call back succeeded, failed, or
isn't implemented (not every request has a result code implemented).
These codes, too, are assigned constant names in the code unit compiled
with your XCMD. A successful call back, for instance, returns thexresSucc
("external result successful") constant in both Pascal and C.

8. A list of pointers to strings to be sent to HyperCard as arguments to
requests.
Some requests expect arguments, such as which field's contents tore­
trieve. Those arguments are put in strings, whose pointers are placed in
the parameter block's list of arguments going back into HyperCard (called
InArgs). There is space in the parameter block for a total of eight argument
pointers.

9. A list of pointers to argument strings coming back from HyperCard after
a request.
When a request to HyperCard yields an answer containing arguments,
like the contents of a field, pointers to those arguments are stored in the
parameter block's list of arguments coming back out from HyperCard
(called OutArgs). There is space for four argument pointers.

Once the parameter block is created in memory, HyperCard passes to the
actual XCMD code a pointer to the memory location of this block. That pointer
is the only link between the XCMD and the parameter block and, in tum,
HyperCard. In other words, all communication between your XCMD and
HyperCard goes through the parameter block staging area.

Here's a look at how Pascal sees the parameter block:

464 HYPERCARD DEVELOPER'S GUIDE

MCmdPtr ~xcmdBiock;

MCmdBiock •
RECORD

paramCount IHTEGER;
para~as: ARRAY[1 o 0 16] OF Handle;
returnUalue: Handle;

passFiag: BOOLEAH;
entryPolnt: ProcPtr;
request: IHTEGER;
result: IHTEGER;
lnArgs: RRRAY[1o 0 8] OF Longlnt;
outRrgs: ARRAY[1o 0 4] OF Longlnt;

EHD;

The above type definitions (the XCmdPtr pointer and XCmdBlock record) are
part of the units that must be compiled with your XCMD. That pointer,
XCmdPtr, is the sole argument that gets passed to the XCMD code. Your
XCMD then uses that pointer as a reference point to retrieve or put informa­
tion into the various parts of the parameter block-for communicating back
and forth with HyperCard.

For instance, to determine whether a call to an XCMD has three parameters
sent with it, your XCMDneeds to check the paramCountitem in the parameter
block. One way you'd get to it in LightS peed Pascal would be as in the
following sketch:

procedure ayProcedure (para~aPtr : XCmdPtr};
begin

If (paramPtrAoparamCount • 3} then
begin

end;
end;

By deferendng the pointer to the parameter block, you have full access to all
the items therein.

What You Need to Compile XCMDs
In addition to your XCMD source code and the compiler program (like
LightSpeed Pascal or C), you need some additional units called interfaces or
glue. The latter term comes from the fact that the information in these units

Introduction to XCMD and XFCN Resources 465

forms the binding between your XCMD code and HyperCard. XCMD glue
consists of two distinct parts: definitions and glue routines.

The definitions consist of the 29 constants for requests and three constants
for results, plus the type definitions for the parameter block and the pointer
to that block. Most compilers classify this unit as an Interface unit.

The glue routines are short functions and procedures that do the dirty work
of communicating with HyperCard. They often condition the data in your
XCMD code so that information is in the right spots of the parameter block
before jumping back into HyperCard. Let's look at one of these routines in
MPWPascal:

PROCEDURE SendCardMessage (msg: Str255);
BEGIH

UITH paramPtrA DO
BEGIH

lnArgs[1] ORD(Cimsg);
request :"" xreqSendCardMessage;
DoJsr (entryPolnt);

EHD;
EHD;

In a Pascal XCMD statement, the above procedure would be called like this:

SendCardMessage(paramPtr, 'set cursor to 4');

with paramPtr having been defined in the XCMD as the name of the pointer
to the parameter block (a par aD p t r : X c Dl d p t r a) • In other words, the
statement calls the SendCardMessage procedure, passing the pointer to the
parameter block as well as the actual string of the message as arguments. In
the SendCardMessage procedure, two of the parameter block's blanks are
filled in: one with the pointer to the message text, the other with the constant
number assigned to the SendCardMessage request code. The DoJsr statement
calls another glue routine which does the actual jump from the XCMD code
back into HyperCard, by way of the entry Point location placed into the
parameter block when the block was created.

Typically, all the glue routines and definitions are compiled along with an
XCMD, but that is not necessary. If there are only a couple of glue routines you
need, you can also bring them into your XCMD source code listing, and treat
the entire XCMD as one unit (plus the Macintosh Toolbox units that must be
compiled with all XCMDs). For convenience, all XCMDs in the following
three chapters were compiled with the complete library of definitions and
glue routines.

466 HYPERCARD DEVELOPER'S GUIDE

What APDA Sends You

It is strongly recommended that anyone developing XCMDs for HyperCard
stacks join the Apple Programmers and Developers Association (APDA) and
obtain any available XCMD and XFCN reference material and disks. These
include two example XCMDs each in Pascal and C, along with the definitions
and glue routines written for MPW.

In MPW Pascal, for example, the compiler files included with the disk
consist of a definitions file (HyperXCmd.p) and a file of all the glue routines
(XCmdGlue.inc). Both files are provided as working samples, and are not the
only way to handle communication between HyperCard and your XCMDs.
Because each compiler uses different conventions for compiler instructions
and formats for certain parts of the source code listing, these APDA files
designed for MPW will not work directly with other compilers. Each compiler
really needs its own version of these files, and they may be combined into a
single unit.

H you are using LightSpeed Pascal, LightSpeed C, or Turbo Pascal, these
compiler publishers have modified the MPW samples to work with their
respective compilers. Interface and glue routines for these three compilers are
listed in Appendixes C, D and E (and a disk with these files and samples is
available from Bantam Books-see the information page in the back of the
book).

Calling an XCMD-Object Hierarchy
In Chapter 13, we examined the traditional object hierarchy of HyperCard,
showing the way messages are passed up the hierarchy in search of a
matching handler name. Since a call to an XCMD is a message like any other,
that message also works its way up the hierarchy. But what we didn't see in
the earlier hierarchy description is that the pathway toward the HyperCard
object includes searches in external resources attached to the current stack, the
Home stack and HyperCard itself. The complete hierarchy is shown in Figure
26-3.

Notice one important element of this hierarchy arrangement. If you send
a message, it exhausts all possible alternatives before reaching HyperCard. It
checks for resources everywhere first. That means you can intercept one of
HyperCard's built-in commands before it reaches HyperCard, in case you
want to do something differently than HyperCard or wish to condition the
command before it reaches HyperCard (you can pass the message to Hyper­
Card after executing the XCMD). But most importantly, this arrangement
demonstrates that if a future release ofH yperCard should include a new built-

Introduction to XCMD and XFCN Resources 467

Stack J-.
t ~--------~

I Background I
t

Card
/ ~

===B=u=t=t=o=n:::1~ ~---F_i_e_ld--~
Figure 26-3 The HyperCard object hierarchy is more complex when you consider re­
sources, but the general flow is still the same. The only break is that System File resources
are checked before a message reaches HyperCard.

in command that is the same as one of your XCMDs, your XCMD will still
work, without being clobbered by HyperCard's command. That should give
you a bit of confidence about the longevity of your XCMD, regardless of the
advances made to HyperCard.

About the Following XCMDs
The three XCMDs (acutally two XCMDs and one XFCN) in this book were
written by Chris Knepper, a member of Apple's Macintosh Developer Tech­
nical Support (MacDTS) team. Chris obtained permission from Apple to work
on this project, provided he do so on his own time and equipment at home. He
also had some volunteer help from Chris DeRossi and Steve Maller, who took
precious free time to offer suggestions for improvement.

These three XCMDs demonstrate a great deal about making your external
code call Macintosh Toolbox routines and communicate back to HyperCard.
While the subjects were chosen for their demonstration abilities, the three
XCMDs-a real About box, a pop-up menu and a serial input/ output driver-

468 HYPERCARD DEVELOPER'S GUIDE

are also examples of frequent requests that Apple's DIS team had from early
stack developers. Our examples are intended as guides to get you started in
writing your own XCMDs.

The decision to use LightSpeed Pascal as the compiler for the XCMDs was
mine. It has long been a favorite of Pascal newcomers, is relatively inexpen­
sive and is readily available. Both LightSpeed Pascal and Borland's Turbo
Pascal are good entry-level compilers. General tips about XCMD structure
plus the glue routines for both languages are detailed in Appendixes C and E.

Note to Pascal experts: You'll see an occasional Pascal go to statement in the
following programs. Because LightSpeed Pascal does not support the Exit
(procedure> statement, as MPW Pascal does, the go to is substituted to make
printing possible on a narrow page.

Appendix D lists structual tips and glue for LightS peed C, perhaps the most
popular C compiler outside ofMPW. It, too, is readily available through most
Macintosh software outlets.

Because these XCMD chapters are written primarily for newcomers to
programming and XCMDs, Apple's MPW environment (available only
through APDA) doesn't get much attention here. It's a more complex
environment, with language modules for Pascal, C and Assembler. It is also
the environment of choice for most brand name software developers. Bill
Atkinson, in case you're interested, uses MPW (mostly Pascal). Newcomers
would do best to start with LightSpeed or Turbo and then perhaps graduate
to MPW. But there's very little extra that MPW gives you in the way of
programming power for the kinds of things you're likely to do inXCMDs. The
other packages will take you a long way.

With these basics out of the way, we can proceed to the first of three XCMDs.
It shows you how to write a resource that makes Dialog Manager toolbox calls,
accepts parameters and centers a dialog window in the HyperCard window,
even on a large monitor.

27

An About Box XCMD

For our first XCMD, we'll be adding an "About'' box to a stack. One

thing I've always wanted to do with a HyperCard stack was to show a

traditional dialog box with information about the stack, just like About

boxes in traditional programs. While there's no way for HyperTalk to

short circuit the About HyperCard ... menu item under the Apple menu

so that it lists the name of your stack, you can still call a real-looking

About box in any other fashion, such as clicking on a button.

The Stack

For this demonstration, we'll resurrect a stack used earlier in the book,

the World Chronometer stack (Chapter 19). The only cosmetic change

470 HYPERCARD DEVELOPER'S GUIDE

to the stack is the addition of a button in the upper left comer (Figure 27-1).
This icon button is the same onethat is used on many HyperCard stacks to
indicate that you can get information about the stack by clicking on it. In fact,
the name of the button is "Tell About ... ," and comes in three sizes. The version
in Figure 27-1 is the small one.

When you click on the button, it calls an XCMD, called "About." This
XCMD draws a simple dialog box with four, single-line text items, one graphic
and an OK button, as shown in Figure 27-2. If you're running this stack on a
Macintosh II with a color monitor and you have color turned on, the text
appears in red (or any color you wish to program into the XCMD).

This XCMD calls other resources, notably DLOG, DITL and PIC!' re­
sources. All contents and specifications of the dialog box are determined by
the resources, not the XCMD. Once you have the XCMD done, you can use
ResEdit to fiddle with the size, text and other contents of the box. As we go
through this XCMD, we'll also see how to create these three resources and
include them in the XCMD.

• File Edit Go Tools Objects

~ llJIJr&[j
£:&1r1Jil&Jme~~r

City Current Time
New York 1 0:30 AM

London 3:30 PM

NeJ·Jt· Pe/hi 9:00 PM

ToJ.yo 12:30 AM

SgdneJL, Australia 1 :30 AM

Home Base
7:30AM

Friday

Day
Friday

Friday

Friday

Saturday

Saturday

D Daylight Sauing Time

Figure 27-1 Adding a balloon button at the upper left is the only cosmetic change to the
World Chronometer stack.

An About Box XCMD 471

• File Edit Go Tools Objects

llJ(]ril1 Home Base

f:&lr()l1 .L I 7:32AM I
:ty I

World Chronometer Stack
City

I New~ by Danny Goodman y I
L Lond 1 Apr 88

~
y I

L Ntm··_t y_ J
Uersion 1.0

L ToA· ay I
((OK ;J L Sydneg, A ay I

D Daylight Saulng Time

Figure 27-2 That button's script calls the XCMD that displays a genuine About dialog
box. All specifications for the text, button and graphic are in DITL resources linked to the
About DLOG resource.

Calling Conventions
The About XCMD requires at least one parameter, and as many as three
parameters, depending on how much data you wish to feed to the text fields
of the dialog box.

The one parameter that must be part of the command is the name of the
DLOG resource for the box you wish to put on the screen. For example, if the
DLOG resource for your box is called "My About," then the HyperTalk
statement that would bring up that box would be

About a My About II

The DLOG resource then does the rest as far as retrieving the dialog items that
go inside the box, including any pictures and buttons.

According to the way the About XCMD was written for this chapter, you
have the option of changing the contents of the last two fields of the dialog box.
The text for those fields may be passed as additional parameters to the About
command. Therefore, if you wish to display a different date and version

472 HYPERCARD DEVELOPER'S GUIDE

number than the ones listed in the DITL resource, the command would be

With those parameters, the resulting dialog box would look like the one in
Figure 27-3.

Design Assumptions
For the purposes of the sample XCMD in this chapter, we designed the About
box so that field three is the slot for the release date of the stack, and field four
is the version number. By modifying the XCMD source code, you can make
all fields accessible by passing parameters with the About command. Con­
versely, you could remove the code that accepts parameters and force the
XCMD to use only static text elements in the DITL resource for the dialog.

While it's not a big deal to change the text of a dialog box item, the passing
of parameters for the date and version number items is a lazy man's way to
change these specifications on prerelease versions of a stack. If you place the
projected release date and version number (like "1.00") in the DITL resource,
you can keep the prerelease date and version number up to date in the
HyperTalk script. When the stack is ready to ship, then you simply remove
the two extra parameters from the button that triggers the About dialog, and
let the DITL data show through.

By showing an XCMD that performs both ways, you can see how an XCMD
can accept parameters from a HyperTalk command (an important tidbit) and
how to modify a resource "on the fly" once it's loaded into memory.

World Chronometer Stack

by Danny Goodman

25 Sept 1988

Uersion 1.4b

Figure 27·3 The XCMD is written so that you may overwrite the date and version fields
of the resource.

An About Box XCMD 473

TheXCMD
Listing 27-1 contains Chris' LightS peed Pascal source code the About XCMD.
An important procedure in this code is the one called CenterPort. This is a
useful routine that centers the About box in HyperCard's window, no matter
where the HyperCard window is positioned on a large screen monitor.
Without this procedure, the About dialog (like most dialogs in HyperCard)
appear in relation to the upper left comer of the screen, regardless of monitor
size.

Code resource units in LightS peed Pascal do not need to be named, but the
compiler expects a name of some kind at the top of the source file. Thus, in
Listing 27-1, the placeholder is called AboutUnit. It could be any single word
of your choice.

Compilers need the XCMD interfaces to make their callbacks to Hyper­
Card. For LightSpeed Pascal, those units are called XCMDintf and XCMDU­
tils. These two units are included in the compilation, as noted in the Uses
section of the Interface.

The LightS peed Pascal project for this XCMD consists of the bare minimum
XCMD files:

DAPasLib
MacTraps
XCMD Interface. p
XCMD Utilities.p
About.p

the last file being the source code file for the About XCMD.
As with all single-unit XCMD code resources, the only public procedure

that needs listing in the Interface section is the one referring to the main
procedure of the Implementation section. In LightSpeed Pascal, that proce­
dure must be named "Main." That procedure is the one that gets the pointer
to the XCMD parameter block passed to it.

How the XCMD Works

The primary procedure, called About, has some local procedures and func­
tions, so we'll start where the About procedure actually begins and look back
at the functions and procedures when they're called. Pay particular attention
to the instances when handles to the parameter block are locked (prior to
access) and unlocked. Here are the basic steps in the main procedure:

474 HYPERCARD DEVELOPER'S GUIDE

1. Check to be sure there are 1 or 3 parameters passed with the About
command, sending an error message back to HyperCard if not.

2. Save the current state of HyperCard's grafport. We'll be creating a new
window (which has its own grafport) to draw the dialog box and its
contents. When it closes, we'll have to restore the HyperCard grafport.

3. Call the GetAboutDlog function, which performs a series of calls to set up
the dialog box in memory.
a. Lock the handle to the name of the dialog box passed with the XCMD

message.
b. Make sure the name of the DLOG will become a valid Pascal string (i.e.,

is less than 255 characters long).
c. Fetch the DLOG name from the XCMD parameter block and turn it into

a Pascal string.
d. Call the Toolbox GetNamedResource to open the DLOG and get the

handle to it.
e. Using the handle to the resource as a guide, get the resource 10 number

oftheDLOG.
f. Make sure a DITL with the same resource ID is available in the stack

file.
g. Create the dialog in memory.
h. Unlock the handle to the parameter block.

4. Call the CenterPort procedure to adjust the DLOG's coordinates to be
centered in the HyperCard window.

5. If three parameters are passed with the About command, then call
SetVersionlnfo to plug parameters 2 and 3 into dialog items 5 and 6,
respectively.

6. Show the dialog box. The DLOG was set to invisible so the user doesn't
see it move or change the text. All other changes, below, require a visible
dialog.

7. Call the OutlineOK function.
a. Store the current state of the QuickDraw graphics pen, because we're

An About Box XCMD 475

about to change it for some drawing.
b Using the rectangle coordinates of the "OT<" button DITL resource,

turn a plain OK button (the first dialog item) into an outlined button,
meaning that it may be selected by pressing Enter or Return.

c. Restore the graphics pen to its original state.

8. Turn the foreground color to red for text lettering.

9. Change the cursor from whatever it is to the northwest arrow.

10. Go ito a repeat loop that calls ModalDialog to handle user interaction
with the About box. When the OK button is clicked, then the loop ends.

11. Dispose of the DLOG resource in memory.

12. Reset the current grafport to HyperCard's original grafport.

13. Release the handle to the DLOG resource.

Error Handling

Within the XCMD there is a substantial amount of error handling, primarily
there to let the stack author know that a piece of the About box mechanism is
missing. For instance, at the very beginning of the main procedure there is a
check for whether the number of parameters equals 1 or 3. If the count is
neither, then execution branches to a HandleError procedure.

This HandleError procedure lets your XCMD pass a context-sensitive error
message. In the case of the first error trap in the main procedure, the message
is that the About command must have 1 or 3 parameters.

Importantly, the error message that comes back to your stack does so via an
Alert box, just as a HyperCard error would. In fact, the XCMD uses a
HyperCard ALRT resource (ALRT resource ID 3100), which has room for a
two-line message, and provides an OK button to cancel. An Alert box
(actually the function that displays the Alert) has its own trapping for the
mouse click, so there's nothing that our XCMD needs to do other than display
the Alert box.

The content of the single field of the 3100 Alert is set with the ParamText
toolbox call. This routine stores up to four different strings for placement in
future dialogs and alerts. The strings are assigned numbers 0 through 3.

476 HYPERCARD DEVELOPER'S GUIDE

Figure 27-4 The About XCMD even calls one of HyperCard's DLOG resources for error
messages. The "0 symbol in the DITL field is a placeholder for text that may vary when the
dialog is called (see text).

Placeholders for these strings are maintained in the DITL fields by a caret and
the number, as in "0. Therefore, if you open up the ALRT 10=3100 in
HyperCard, you'll see that in the DITL field for the two-line field is the
placeholder "O (Figure 27-4). Thus, in the XCMD code for error handling that
uses that Alert, the first position is assigned the string of the error message
with the ParamText call.

Even the HandleError procedure has a bit of error handling. If the
procedure cannot find the ALRT 3100 resource, then the procedure produces
a system beep. You may optionally add code that sends a HyperCard message
to display an explanation of the error in the Message Box.

Elsewhere in the main procedure, the primary error checking is done on
whether or not the XCMD was able to find the appropriate resources required
to produce the About box. Chris uses a function of his own design, ErrOccur­
red, to take care of information that the Toolbox returns about attempts to load
resources. After each attempt, the Toolbox returns an error code, which may
be retrieved by the Res Error toolbox function. If there were no error, then that
function returns zero (equivalent to a constant called no Err). Otherwise, there

An About Box XCMD 477

are seven possible errors, each with a different number. For example, if the
resource is not found, then the error number returned by the ResError
function is -192.

The EnOcrurred function, then, takes as parameters the results of the
ResError toolbox function and the literal string of the previous resource call
(e.g., 'GetResinfo'). If the error is not zero, then the literal name of the Toolbox
call and the returned error number are sent as text to the HandleError
procedure. That text goes into the ALRT 3100 put up by that procedure.
Finally, the EnOccurred function returns a Boolean true to the main proce­
dure.

All three XCMDs in this book use the same error handling technique, so we
won't repeat it in those other code descriptions.

Creating the DLOG Resource
Since the About XCMD relies on DLOG and DITLresources,let's see how you
can go about creating these resources with ResEdit. Experienced Macintosh
programmers might prefer to build their resources "the old-fashioned way''
by writing the specifications for them in an editor and running that text file
through an early utility called RMaker. RMaker is, essentially, a resource
compiler, turning source code listings of resource specifications into code
resources for attachment to a file (that's what another utility, RMover, was
for). But I find that for standard resources, ResEdit is quick and easy.
Moreover, you can build the resource right in the file you intend it to go, like
a particular HyperCard stack.

Before digging into the resource, however, let's pick out some graphics to
include in the About box .. In the Art Ideas stack is a picture of a map projection
(Figure 27-5). To prepare it for inclusion in the About box, select it with the
rectangle selection tool and copy it into the Scrapbook. That's all there is to it
for now.

The steps for creating the DLOG and DITL resources start with getting the
PICT resource in place for use later.

1. Start ResEdit, and open the Scrapbook File until you can see its list of
resource types (Figure 27-6). The one we're interested in is the PICT type.

2. Double click on it to reveal all the PICTresources stored in the Scrapbook.
All PICTs are in the resulting window, as if in a column. You may scroll
vertically to see additional PICfs. The most recently added PICT, the map
art in our case, is at the top (Figure 27-7).

478 HYPERCARD DEVELOPER'S GUIDE

dh:t (lndeH) ¢ Q

+·~
•£$~

**
Figure 27-5 To capture the art for the dialog, first copy and paste the art into the Scrap­
book.

Figure 27-6 Art that is pasted into the Scrapbook becomes a PICT resource. Here is the
listing of my Scrapbook's resources.

An About Box XCMD 479

Figure 27-7 Opening the PIO' resources of the Scrapbook reveals a window that shows
each PICT in the file. Since the map is the last one to be pasted into the Scrapbook, it is the
top one. Copy this PICT resource.

3. Click once on the picture to select it, and choose Copy from the
Editmenu. Close all windows leading to the Scrapbook (but not the hard
disk window).

4. Open the file of the Chronometer stack (Figure 27-8). If no
resource fork has been ere a ted for this file (an alert box will tell you if that's
the case) click OK to create the resource fork.

5. Choose Paste from the Edit menu. This pastes the PICT resource into the
stack.

6. Double click on tire PICT listing in t1ratwindow to show the picture in its
own window (Figure 27-9).

7. Click once on the picture to select it, and choose Get Info from the File
menu. You may enter a name for this resource, but it's optional. Note the
resource ID of the picture (Figure 27-10). You'll need this number in a

480 HYPERCARD DEVELOPER'S GUIDE

Figure 27-8 Open the Chronometer stack file's resource fork.

Figure 27-9 Paste the PICT resource into the resource fork of the Chronometer stack.

attributes:
D System Heap
181 Purgeable

D Locked
D Protected

An About Box XCMD 481

D Preload

Figure 27-10 Choose Get Info from the File menu to see the PICT's lD number.
You'll need this later on.

moment, so jot it down. Close the PICT resource window.

8. With the Resource window of the Chronometer stack open (the same level
as shown in Figure 27-8), choose new from the File menu to open a new
resource type.

9. In the resulting dialog box, scroll the resource type list untilDLOG is in
sight and select it. Its name is automatically inserted into the small edit
window in the dialog (Figure 27-11). Click OK.

10. With the resulting overlapping empty window in view (it normally lists
all the DLOG resources forth is file), choose New once again from the File
menu to open a new D LOG resource. ResEdit will generate a new window
for the new DLOG and assign a random DLOG ID number to this resource
(Figure 27-12).

11. Choose Display As Text from the DLOG menu. In the text version of the

482 HYPERCARD DEVELOPER'S GUIDE

OK

(Cancel)

Figure 27-11 Choose New from the File menu and open a new DLOG resource.

Figure 27-12 The default DLOG resource has a title bar and close box, and is of the size
shown.

An About Box XCMD 483

I Rbout DoH

top 40 bottom 240

left 40 right 280

ProciD 1 refCon I 0 I
resiD 2100~

Figure 27-13 Change the display to the text version. Change the ProciD to 1 (standard
dialog box outline), type the DLOG ID number into the resiD field and uncheck the two
checkboxes at the bottom.

DLOG (Figure 27-13), uncheck the Visible and goAwayFlag
checkbox items. Type a 1 in the ProciD box. This specifies the standard
dialog box outline.

12. Choose Display Graphically from the DLOG menu, and see that the
window now looks like a dialog box style (Figure 27-14).

13. Double click anywhere inside the miniature dialog box. This brings up
another window, which shows the size of the default dialog box. There
is where dialog items (DITLs) will be specified.

14. Choose Get Info from the File menu. In the info dialog box, type the name
you plan to give the dialog box, and enter the sameiD numberfortheDITL
that ResEdit assigned to the DLOG (you can see the DLOG's ID in the
title bar of the DLOG window). Also, check the Purgeable attribute
button at the bottom, and close the window.

484 HYPERCARD DEVELOPER'S GUIDE

Figure 27-14 Changing the view back to graphical, the dialog has changed its appearance
to match our desires.

®Button
0 Check bOH
0 Radio control

0 Static teHt top 90 0 Editable teHt
left 90 0 CNTL resource

0 ICON resource bottom 110
0 PI CT resource right 150
0 User item

TeHt

Create the OK button as the first item in the DITL resource.

An About Box XCMD 485

15. Choose New from the File menu to bring up an Edit Item window for the
first item. The OK button is the first item to be specified. Leave the
specifications at their default settings except for the Text. Change it to
read "OK" (Figure 27-15).

16. Close the window. A selected button will appear in the center of the
prototype dialog box. Drag it to the lower right comer temporarily and
drag the gray handle in the button's lower right comer to extend it slightly
in the horizontal direction (Figure 27-16).

17. Choose New from the File menu once more. In the resulting Edit Item
window, click the PICT button, and type the picture's ID number into the
field at the bottom of the window (Figure 27-17)

18. Close the Edit Item window. A scrunched version of the art appears in the
DITL window (Figure 27-18).

19. Choose Use RSRC Rect from the DITL menu. This restores the art to its

..____o_K_~j

Figure 27-16 Lengthen the button a bit and drag it toward the bottom right corner of the
dialog.

486 HYPERCARD DEVELOPER'S GUIDE

0 Button
0 Checlc bOH
0 Radio control

0 Static teHt
0 Editable teHt

0 CNTL resource
0 I CON resource
~PICT resource

0 User Item

Res 10 130~

top 90
r------l

left 90

bottom 110
1-------t

right 150 ...__ ___ ____.

Figure 27-17 Make the PICT resource the second item. Click the PICT button and
enter the PICT' s ID number.

~~
r~ OK

Figure 27-18 At first, the PICT will be squished into a default size.

An About Box XCMD 487

Figure 27-19 Choose Use RSRC Rect from the DITL menu, and the art pops up to
normal proportions. Drag it near the OK button.

original size. You may now drag it to the desired location (Figure 27 -19).

20. For each of the text fields, choose New from the File menu. In the resulting
window, select the Static Text style and type the following text into the
appropriate items:
Edit Item #3: [the name of the program]
Edit Item #4: [your name]
Edit Item #5: [a release date of your stack]
Edit Item #6: [a version number of your stack]

After filling in each window, close that window, drag the field to the
desired location in the prototype dialog and grab the gray handle in the
field's lower right comer to stretch it to the appropriate length for all the
text to appear. You may adjust it as often as you need. Figure 27-20 shows
the results after adjusting all four field items. If you need help aligning
objects, tum on the Grid in the DITL menu.

21. If the size of the dialog box is too big for tlze items you've placed in it,

488 HYPERCARD DEVELOPER'S GUIDE

luersion 1.0

Figure 27-20 After all four fields (DITL items 3 through 6) are added and resized,
the DITL window should look like this.

return to the Dialog window and drag the lower right corner of the
miniature dialog to the desired size. You should double-dick on the
miniature box to see the DITL window once more, to make sure all items
are fully visible after your adjustment.

22. With the miniature dialog box showing in its window, choose Get Info
from the File menu. Enter the name you wish to give to this resource. This
is the name that you'll pass to the XCMD with the About command.

23. Whetl you're allfittished, close all Chronometer ResEditwittdows. When
prompted to save changes, click Yes.

That's all there is to creating the supporting resources for the About box. If the
results need some tweaking, then open ResEdit and adjust the size of the
dialog or shift the location of text, button and picture elements. You can
specify an icon as an artistic object, just as easily as a PICT resource.

Modifying the XCMD to address further fields, you can perhaps create a
completely generic dialog box and pass as much text in as many fields as you

An About Box XCMD 489

see fit, using the same box all the time, but putting different text into it
depending on the situation. That's how Alert boxes generally work, anyway.

Further Ideas
While the About box is one of the simplest methods of creating a dialog box,
a study of dialog boxes in Macintosh Revealed should help you create even more
interesting dialog boxes, including those that offer fields for text input and
even controls, such as scroll bars, radio buttons and check boxes. Offloading
some of these tasks to dialog boxes makes your stack much more Macintosh­
like.

490 HYPERCARD DEVELOPER'S GUIDE

{
{
{
{
{
{

Trtle
Author
Date
From
Publisher
Copyright

Listing 27·1

About - an XCMD to display an About box. }
Chris Knepper}
3130/88}

Danny Goodman's HyperCard Developer's Guide }
Bantam Books. Inc. }

e 1988 by Danny Goodman. All rights reserved.}

unit AboutUnit;

Interface

uses
XCMDintf,
XCMDUtils;

{ the data structures for the XCMD }
{ the glue for the HyperCard callbacks }

procedure Main (paramPtr: XCmdPtr);

Implementation

{ the entrypoint to the XCMD }

procedure About (paramPtr : XCmdPtr);
label

1; { The end of the About XCMD. Jump here if errors occur. }
canst

VERSIONDATE = 5; {The DITL item of the version date-- a static text item.}
VERSIONNUMBER = 6; { The DITL item of the version number- a static text item.}

var
pascalStr
: Str255;

myDiogHdl,
myDitiHdl
:Handle;

my Item,
myKind
:integer;

myDialog
: DialogPtr;
myRect
:Red;

save Pen
: PenState;

savePort
: GrafPtr;

{ used to convert the parameters from zero-terminated strings }

{ Stores a handle to the DLOG resource. }
{ used in calls to GetDitem }

{ item returned by ModaiDialog }
{ used in calls to GetDltem }

{ storage for the dialog pointer }

{used in calls to GetDltem}

{ to save and restore the pen while outlining the OK button }

{ to save and restore the graf port }

{ -------~---}
procedure CenterPort (whichPort, HCport : GrafPtr);
{ This procedure calls Move Window to center which Port with respect to HyperCard's }
{ port. CenterPort sets the port to whichPort when done. }

var
offset,
topleftPt,
botRightPt
:point;

begin
SetPort(HCport);
with HCport" .portRect do

begin
topleftPt.v :=top;
topleftPt.h := left;
LocaiToGiobal(topleftPt);
botRightPt.v :a bottom;
botRightPt.h :a right;
LocaiToGiobal(botRightPt);

end;
with whichPort".portRect do

begin

An About Box XCMD 491

{ store the offset from the graf port }
{ store the top and left items }
{ store the bottom and right items }

{ HyperCard's port = "local" coordinate system. }
{ Convert local coordinates to global. }

{make top, left global}

{ make bottom,right global }
{ with save Port" .portRect }
{ Calculate offsets. }

{ Compensate horizontally for the dialog. }
offset.h := (botRightPt.h + topleftPt.h) dlv 2- (right -left) dlv 2;

{ Compensate vertically for the dialog. }
offset.v := (botRightPt.v + topleftPt.v) dlv 2- (bottom+ top) dlv 2;

end; {with thisPort".portRect}
with offset do { Move the port. }

MoveWindow(whichPort, h, v, TRUE);
SetPort(whichPort); { Set the port to the DLOG's port. }

end; {Procedure CenterPort}
{ --}

procedure HandleError (myStr: Str255);
{ HandleError sets the cursor to the arrow cursor and displays an error Alert }
{informing the user of the error. This procedure assumes that the ALRT & DITL}
{ resources with id ... 3100 exist in HyperCard's resource fork, although this is a }
{ valid assumption in HyperCard versions 1.1 and 1.0.1. Calls to GetResourceO verify }
{ that these resources do, in fact, exist. H they don,, this procedure produces a beep. }

con at
ERROR= 3100; { use a HC ALRT for error messages. }

var
whichltem : integer; { stores result of the Alert function }

begin
If (GetResource('ALRT', 31 00) = nil) or (GetResource('DITL', 31 00) = nil) then

Sys8eep(60) {beep if no ALRTor DITL resource}
else

begin
lnitCursor; { set cursor to the arrow cursor }
ParamText(myStr, ", ", "); {specify the ALRT's text}
which Item := Alert(ERROR, nil); { display and handle the ALRT}
SendCardMessage(paramPtr, 'set cursor to 4'); {set back to watch cursor}

end;
end; { procedure HandleError}

492 HYPERCARD DEVELOPER'S GUIDE

{ --}
function ErrOccurred (errNum : OSErr;

routineName : Str255) : Boolean;
{ ErrOccurred determines if an error occurred by comparing errNum with NoErr. }
{If equal, ErrOccurred returns FALSE indicating that no error occurred. Otherwise,}
{ it returns TRUE, Indicating that an error occurred and creates a string from }
{ errNum and routineName which it then passes to HandleError. }

var
errStr { store error number as a Pascal string)
: Str255;

begin
If (errNum = noErr) then

ErrOccurred := FALSE { no error occurred - return FALSE}
else

begin
ErrOccurred :a TRUE; {oops, error occurred -- return TRUE }
NumToString(errNum, errStr); {convert error number to a string }
HandleError(Concat(routineName, 'returned', errStr, '.')); {inform user}

end;
end; {function ErrOccurred}

{ ---}
function SetVersionlnfo :boolean;
{ SetVersionlnfo sets both the version date and the version number. These should }
{ be passed in as the 2nd and 3rd parameters to About. H errors occur, then }
{ SetVersionlnfo returns FALSE, otherwise it returns TRUE. }

label
8; {the end of procedure SetVersionlnfo}

begin
SetVersionlnfo :=TRUE; {return TRUE indicates no errors}
with paramPtfl' do

begin
Hlock(params[2]); { lock the handles, so the callbacks don't }
Hlock(params[3)); { invalidate them }
If (StringLength(paramPtr, params[2)A) > 255) then

begin {it won't fit into a Pascal string I}
HandleError('2nd parameter to About is too long.');
SetVersionlnfo :1:1 FALSE; {return FALSE indicates function failed}
goto 8; { exit SetVersionlnfo }

end;
ZeroToPas(paramPtr, params[2)A, pascaiStr); {2nd param is version date}
If (result <> xresSucc) then { test if ZeroToPas callback succeeded }

begin
HandleError('ZeroToPas callback on 2nd parameter failed.');
SetVersionlnfo :1:1 FALSE; {return FALSE indicates function failed}
goto 8; { exit SetVersionlnfo }

end;

8:

An About Box XCMD 493

GetDitem(myDialog, VERSIONDA TE, myKind, myDitiHdl, myRect);
H (myDitiHdl = nil) then

begin { GetDitem failed}
HandleError('GetDitem failed on version date.'); { inform user}
SetVersionlnfo :=FALSE; {return FALSE indicates function failed}
goto 8; { exit SetVersionlnfo }

end;
SetiText(myDitiHdl, pascaiStr); { Set the version date. }
If (StringLength(paramPtr, params[3]") > 255) then

begin {it won1 fit into a Pascal string!}
HandleError('3rd parameter to About is too long.');
SetVersionlnfo :=FALSE; {return FALSE indicates function failed}
goto 8; { exit SetVersionlnfo }

end;
ZeroToPas(paramPtr, params[3]", pascaiStr); { 3rd param is version number}
If (result<> xresSucc) then {test if ZeroToPas callback succeeded}

begin
HandleError('ZeroToPas callback on 3rd parameter failed.');
SetVersionlnfo := FALSE; { return FALSE indicates function failed }
goto 8; { exit SetVersionlnfo }

end;
GetDitem(myDialog, VERSIONNUMBER, myKind, myDitiHdl, myRect);
If (myDitiHdl =nil) then

begin { GetDitem failed}
HandleError('GetDitem failed on the version number.'); { inform user }
SetVersionlnfo :=FALSE; {return FALSE indicates function failed}
goto 8; { exit SetVersionlnfo }

end;
SetiText(myDitiHdl, pascaiStr);

end;
{ Set the version number. }
{with paramPtr"}
{the end of procedure SetVersionlnfo }

HUnLock(paramPtr".params[2]); {unlock the handles before returning}
HUnLock(paramPtr".params[3]); { from SetVersionlnfo}

and; {procedure SetVersionlnfo}
{ ---}

function GetAboutDiog : boolean;
{ The function GetAboutDlog gets the name of the About DLOG from the 1st param }
{ to About and gets the handle to the resource from the resource fork of the stack. }
{ H there is an error, then GetAboutDiog returns FALSE, else it returns TRUE. }
{ NOTE: GetAboutDiog assumes that the DLOG resource id and its corresponding }
{ DITL's id are the same. }

label
9;

var
dlogiD
:integer;

dlogType
: ResType;

{ the end of function GetAboutDiog }

{ Stores the id of the DLOG resource. }

{Stores the type returned by GetReslnfo.}

494 HYPERCARD DEVELOPER'S GUIDE

begin
GetAboutDiog := TRUE; { TRUE means no errors occurred }
with paramPtr" do

begin
HLock(params[1]); { locking the handle ensures it's valid }
If (StringLength(paramPtr, params[1]") > 255) then

begin {it won't fit into a Pascal string!}
HandleError('1 st parameter to About is too long.');
GetAboutDiog := FALSE; { FALSE means error occurred }
goto 9; { exit GetAboutDiog }

end;
ZeroToPas(paramPtr, params[1]", pascaiStr); {1st param is DLOG name}
If (result <> xresSucc) then

begin { ZeroToPas callback failed}
HandleError('ZeroToPas callback on 1st parameter failed.');
GetAboutDiog := FALSE; { FALSE means error occurred}
goto 9; { exit GetAboutDiog }

end;
myDiogHdl :c:: GetNamedResource('DLOG', pascaiStr); { get hndl to DLOG }
If (myDiogHdl = nil) then { check for error }

begin
HandleError('GetNamedResource returned a nil handle.'); { inform user }
GetAboutDiog := FALSE; { FALSE means error occurred}
goto 9; { exit GetAboutDiog }

end;
GetReslnfo(myDiogHdl, dlogiD, dlogType, pascaiStr); {get id of DLOG}
If ErrOccurred(ResError, 'GetReslnfo') then

begin
ReleaseResource(myDiogHdl); { release handle to the DLOG}
goto 9; { exit GetAboutDiog }

end;
If (GetResource('DITL', dlogiD) = nil) then {assume DLOG id = DITL id}

begin
HandleError('The DITL is not available.'); { inform user}
GetAboutDiog := FALSE; { FALSE means error occurred}
ReleaseResource(myDiogHdl); { release handle to the DLOG}
goto 9; { exit GetAboutDiog }

end;
myDialog := GetNewDialog(dlogiD, nil, WindowPtr(-1)); { create the dialog }
If (myDiogHdl = nil) then { check for error}

begin
HandleError('GetNewDialog returned a nil handle.'); { inform user}
GetAboutDiog := FALSE; { FALSE means error occurred}
ReleaseResource(myDiogHdl); { release handle to the DLOG}

end;
end; { with paramPtr" }

An About Box XCMD 495

9 : { the end of the function GetAboutDiog }
HUnLock(paramPtr".params[1]); {unlock the handle before returning}

end; { function GetAboutDiog }
{--}

function OutlineOK: boolean;
{ The function OutlineOK outlines the OK button in the About }
{dialog and returns FALSE if an error occurs, otherwise it returns TRUE.}

var
save Pen { to save and restore the pen while outlining the OK button }
: PenState;

begin
OutlineOK :a TRUE; { TRUE indicates no error}
GetDftem(myDialog, ok, myKind, myDitiHdl, myRect); {get the OK button rect}
If (myDitiHdl a nil) then

begIn { GetDitem failed }
HandleError('GetDitem failed on OK button.'); { inform user}
OutlineOK :a FALSE; {FALSE indicates error occurred}

end
else

begin
GetPenState(savePen);
PenSize(3, 3);
lnsetRect(myRect, -4, -4);
FrameRoundRect(myRect, 16, 16);
SetPenState(savePen);

end;

{ save the old pen state }
{ make the pen fatter }
{ make the rect a little bigger }
{ draw the outline }
{ restore the old pen state }

end; {function OutlineOK}
{--}

begin {procedure About begins here}
{ Check that either 1 parameter was passed in, or that 3 parameters were passed in. }
with paramPtr" do

If (paramCount <> 1) and (paramCount <> 3) then
begin {Inform user of error.}

Handle Error(' About expects either 1 or 3 parameters.');
goto 1 ; { exit About }

end;

GetPort(savePort);
If not GetAboutDiog then

goto 1;
CenterPort(myDialog, savePort);

If (paramPtr" .paramCount = 3) then
If not SetVersionlnfo then

begin
DisposDialog(myDialog);
SetPort(savePort);

{ Save the old port. }
{ Get the ABOUT dialog. }
{exit About}
{ Center the dialog and set the port. }

{ H 3 parameters are passed in, }
{ then set the version date and number. }

{ get rid of the dialog }
{ restore the port. }

496 HYPERCARD DEVELOPER'S GUIDE

ReleaseResource(myDiogHdl);
goto 1;

end;

ShowWindow(myDialog);

If not OutlineOK then
begin

DisposDialog(myDialog);
SetPort(savePort);
ReleaseResource(myDiogHdl);
goto 1;

end;

{ Release the handle to the DLOG resource. }
{ exit About }

{ show the DLOG; the DLOG's invisible attribute is set }

{ Outline the OK button. }

{get rid of the dialog}
{ restore the port. }
{ Release the handle to the DLOG resource. }
{ exit About }

{ For fun. let's set the foreground color to red. }
{ This will display red text in the About box on a oolor monitor. }
ForeColor(redColor); { set the fore color to red for drawing }

{ Display and handle the dialog. }
lnitCursor; { set cursor to the arrow cursor }
repeat

ModaiDialog(nll. my Item); {call ModaiDialog to display and handle the dialog }
until my Item • ok; { continue repeat loop until user chooses OK}
SendCardMessage(paramPtr. 'set cursor to 4'); {Watch cursor.}

{Clean up.}
DisposDialog(myDialog);
SetPort(savePort);
ReleaseResource(myDiogHdl);

{ get rid of the dialog }
{ A last and very important step: restore the port. }
{ Release the handle to the DLOG resource. }

1 : { The end of the XCMD. }
end; {Procedure About}

{ --}
procedure Main;

{ procedure Main serves as the entrypoint for the XCMD. All it does is call About. }
begin

About(paramPtr); {call About}
end;

{ --}
end. {UNIT AboutUnit}
{---}

28
A Pop-up Menu XFCN

In Part One of this book, I suggested that a good stack designer makes

the stack inviting and, well, fun to use. One way to accomplish this is

to reduce or eliminate data entry that must be done by the keyboard.

Typing is a loathesome task, which only a few computer users truly

enjoy (I'm not one of them).

Therefore, I always look for ways in which I can lead a user to entering

data by clicking the mouse. Thus, in the Preferences card of Business

Class and several stacks of Focal Point, the user may select from a list of

items strictly by clicking the mouse on arrows or text-the stack enters

the data into appropriate fields automatically. I've also advocated the

use of hidden fields and buttons which are brought into view when

needed to make a selection from several options (see Figure 8-6 for an

498 HYPERCARD DEVELOPER'S GUIDE

example). The problem with this is that, while things run strictly within
HyperTalk, they may be slow on some machines, and take quite a bit of care
in their programming to make sure all objects are shown and hidden at the
right instant.

In this chapter, we look at an XFCN that produces a relatively new
Macintosh user interface element, called the pop-up menu. Although its
heritage is that of the pull-down menu, a pop-up menu is a slightly different
animal. But the good news is that most of the hard work of the XFCN is already
in the Macintosh Toolbox.

The Pop-Up Menu Interface
Since the pop-up menu is now a standard Macintosh interface item, it's
important that you understand its designers' intent. Just as with check boxes
and radio buttons, you should employ standard interface items in the same
way as they would appear in standalone Macintosh software.

According to the Macintosh User Interface Guidelines (Inside Macintosh,
Volume 5), a pop-up menu is one that appears someplace on the screen (other
than on the menu bar) when the user clicks on an indicated area of the screen.
The example that Apple provides shows what look like shadow fields
displaying the selected item in the menu list. Figure 28-1 is a replica of the
example provided in the user guidelines.

Terminal Settings

Baud Rate:~

Data bits: []]

Stop bits: [I]
Parity: I None

(Cancel) (OK)

Figure 28-1 A replica of the pop-up menu suggestion from Apple's user interface guide­
lines.

A PopUp Menu XFCN 499

Used primarily to make settings from a list of related items, a pop-up menu
has some special properties that differentiate itself from a traditional menubar
menu. First of all, the pop-up menu title is located to the left side of the field
holding the value (Figure 28-2). Second, when you choose an item in a pop­
up menu, it may be checked as a reference mark for the next time you pop the
menu. In other words, in Figure 28-2, when you choose the 1200 item the first
time, its value is placed in the shadow field. The next time you click on the field
to display the menu, the pop-up menu already will have scrolled to the spot
where the 1200 item is, displaying a checkmark next to it indicating that it was
the most recent setting of that menu. The Macintosh Toolbox takes care of
positioning the scrolled menu on the screen, based on the previously selected
item.

Pop-ups and HyperCard
To accomplish the pop-up menu effect in HyperCard, we'll use Chris Knepper's
PopUp XFCN (the function returns the currently selected item) in concert with
a shadow field and a transparent button.

Figure 28-3 shows the breakout of the field and button items in a Hyper­
Card replica of the dialog shown in Figure 28-1. Each field is locked and is
programmed, so that a mouse click on either the field or the menu title button
brings up the pop-up menu. The pop-up menu, when called, actually

Terminal Settings
300
450

Data bits: 4800
9600

Stop bits: 19200

Parity: I None I

(Cancel) (OK)

Figure 28-2 Popping up a menu reveals that the last item selected in this menu is
checked, and the menu is prescrolled to that spot.

500 HYPERCARD DEVELOPER'S GUIDE

Named
Transparent
Buttons

Terminal Settings

I Baud Rate: I 1200

I Data bits: I 8 I
I Stop bits: I 1 I
I Parity: I None

Locked
~-----H-- Shadow

Fields

(Cancel) (OK)

Figure 28-3 Using the PopUp XFCN, we replicate the look of Macintosh pop-up menus
with named transparent buttons and locked shadow fields.

overlays the card while you hold down the mouse button. The XFCN is
responsible for inverting the button's rectangle so that it looks just like the
"real thing." A HyperTalk script, which calls the popUp XFCN is then
responsible for placing the results of the menu call into the shadow field.

The Stack
To demonstrate an application of the pop-up menu, we'll use a stack that a real
estate salesperson might use to track prospects. In a real-life situation, the card
would probably be more complex than our example, butlers keep the stack
simple for now.

In this stack, the user keeps one card for each prospect. To ease data entry
for repetitive items, we'll put three pop-up menus to work. One lists the
possible ways the prospect found the real estate office (Figure 28-4). The
second pop-up lists the possible prospect types (Figure 28-5). And the last one
lists possible methods of following up with the client (Figure 28-6).

One supreme advantage of using pop-up menus in the manner we are here
is that important fields are guaranteed to have data entered into them in an
orderly, repeatable fashion. Therefore, if you wrote a script that saves to a disk
file the names and phone numbers of all prospects who came into the office
as a result of newspaper advertising, you could be sure the Source field will
have the words 'Newspaper Ad" in it, and use that phrase to search for cards.

A PopUp Menu XFCN 501

Dote Listed -~.:.2.::.!HL -----·

Nome ..HJ.f.r.~.~ ... P. !:!.9.!l~ .. L ... - ----.. ·-··-............. --.. . Referral
Address ..19Jl M.!t!n...Ur..~.~ -----
l:ity l:orm.Jbo State J;JL ZIP _V_(JJ_2 __

T e I e phone JtL~-S .. ~.S..:.~.9..~.Q_, __ , __

NeHt Follow Up: I Meeting Here I on 6-15-88~<-----

Notes:l--------.,.-----:------i:l'iji ml.i
!!h!l!

QQ

Figure .28-4 In our sample stack, one pop-up menu provides a list of possible sources
for a prospective client.

Figure 28-5 Another pop-up menu shows a list of prospect types.

502 HYPERCARD DEVELOPER'S GUIDE

Address
City .. C..DIIt.U..b..ft -·-······· State .. C..O..... Z I P

Figure 28-6 A third pop-up menu uses the checkmark to indicate the last item selected.
This pop-up menu is likely to be chosen many times in the life of the card.

H there weren't the pop-up menu to ensure data entry into this field, you
might type "Paper'' or 11 Ad" in a hurry I and your subsequent search for
"newspaper ad" would fail to find that caret.

Calling Conventions
The PopUp function takes two or more parameters, resulting in three basically
different ways to make the pop-up menu appear on the screen.

All calling methods require that the first parameter be a number corre­
sponding to the item in the menu list that was last selected. This is the item
that will have the checkmark displayed next to it and have the menu scrolled
to its position. This "last item" parameter must be stored somewhere, like in
a hidden field or on line 2 of the pop-up field (which is out of view), so that the
next time you come to the stack or card with the pop-up menu, that parameter
may be fed to the PopUp function. If you pass a zero as the last item parameter,
the function does not place a checkmark next to any item, and the scrolling
menu is set to the first item in the menu.

It's not a good idea to pass zero to this XFCN when the pop-up menu on a
particular card may be called more than once. That checkmark and auto­
scrolling to the currently chosen item provide important visual feedback for
subsequent showing of the menu. For instance, in the Prospects stack, the
Next Follow Up pop-up menu will probably be called several times in the
card's lifetime. If you click on its button to show the menu, the checkmarknext
to the last selected item gives you instant feedback as to which item of the list
is the currently selected one. If you drag the mouse away from the pop-up
menu and release the mouse button, you know that the current item will stay
in effect. Were that item not checked, you'd wonder if the top item of the list

A PopUp Menu XFCN 503

(which would automatically be highlighted if you clicked on the field part of
the pop-up menu mechanism) would be inserted if you moved away from the
menu and released the button. With the checkmark and auto-scroll, there is
no ambiguity.

If, on the other hand, a pop-up menu is usually called only once, as in the
Source and Type data entry items on the Prospects card, there is little reason
to store a last item selected. Passing zero as the last item parameter lets the
pop-up menu behave more like a traditional pull-down menu {in fact the
XFCN is designed to be customized into doing just that).

Getting Items in the Menus
Additional parameters to the PopUp XFCN concern themselves with the text
of the items that appear in the menu. You may pass that information in one
of three ways: via a MENU resource, a HyperCard container of comma­
separated text items, or a series of literal strings.

The pop-up menu mechanism in the Macintosh Toolbox is capable of
calling traditional Macintosh menu resources to fetch the items that are to
appear in the menu. These are the same MENU resource types that pull-down
menus use. As a parameter, you pass the name of the MENU resource, as in:

get PopUp (field "Last ltem","MyMenu")

where "MyMenu" is the name of the MENU resource containing the menu
items for the pop-up menu. This XFCN is also compatible with HyperCard's
own MENU resources. You may, therefore, specify the ShortFile MENU
resource name to pop up a list of menu items identical to the File menu under
Browsing and Typing user levels.

All attributes of pull-down menus, such as disabled items, changeable font
styles, and so on, may be set as parameters in the MENU resource {as well as
in the string parameters, below). Later in the chapter, we'll create a MENU
resource from scratch to show you how it's done in ResEdit.

You may pass an itemized list of menu items either in a container {typically
in a local or global variable consisting of items gathered from other sources in
the stack) or as a literal list of comma- or semi-colon separated strings. For
example, let's say that a personnel scheduler stack assembles an 11item-ized"
list of current store employees when the stack opens each day. That list, held
in a global variable or field, may be passed as a parameter to the PopUp
function. If the list is maintained in a card field called Roster, the call to the
PopUp XFCN would be this:

504 HYPERCARD DEVELOPER'S GUIDE

get PopUp (O,card field "Roster")

As the content of field 11Roster'' changes, so does the menu change from day
to day.

The other way to pass menu items is as literal strings. Thus, a call to PopUp
that displays a menu of several cities would look like this:

get PopUp (field Alast ltemA,~

•Hew York,Chlcago,Dal las,Los AngelesA)

To disable an item in a menu, simply place a left parenthesis before the item.
Thus, if you wish to disable the Dallas item in the above menu, the statement
would look like this:

get PopUp (field Alast ltemA,~

•Heg York,Chlcago,(Dal las,Los Angeles•)

The menu would look like the one in Figure 28-7. A disabled item shows in
the menu, but it is dimmed, and may not be selected with the mouse.

What the XFCN Returns
Because subsequent calls to PopUp require a parameter referring to the last
item chosen in that menu, the PopUp function returns that information (in the
form of a number), as well as the content of the menu item chosen. The string
that PopUp XFCN returns is a two-item string. The first item is the full text
of the menu item chosen. The second item is the number corresponding to that
item. It's up to the HyperTalkscript that calls this XFCN to put the menu and
item number information into their respective fields or variables after the
menu item has been chosen.

There is also one other piece of work that the HyperTalk script must take
care of. H the user drags the mouse away from the popped menu and releases

V"Chicago
El<tU<t~
Los Rn eles

Figure 28-7 You may disable a menu item by preceding its text with a left parenthesis.

A PopUp Menu XFCN 505

the mouse button without selecting an item, the XFCN returns a zero as the
item number and an empty string as the item text. The HyperTalk script must
trap for that occasion and make sure the current content of the shadow field
and any holder of that last item count are not touched when no item is chosen
in the menu.

Design Assumptions
To replicate the action of Toolbox pop-up menus, the HyperCard shadow field
and button must work in tandem. First of all, the XFCN is written with the
assumption that the HyperCard object making the call is a transparent button
(card or background) that contains the title of the menu. The title appears
immediately to the left of where the pop-up menu appears and where the final
item will display in a shadow field. The XFCN uses the coordinates of the
button's rectangle to highlight the menu title.

If the button is the object that calls the PopUp XFCN, then that button may
have to be pressed by remote control if the user clicks on the shadow field, as
the pop-up menu interface guideline insists. Therefore, the locked shadow
field has a mouseDown handler in it that sends a mouseDown message to the
button. In the case of the Next Follow Up pop-up menu in our Prospects stack,
the shadow field has this handler as its sole script:

on 11ouoeDown
oend •ouoeDo•n to bkgnd button •Hext Follow Up•

end 11ouoeDo•n

The button, then, has its own mouseDown handler, which takes care of the
entire pop-up menu and information handling:

on 11ouseDo•n
get popUp (field •Last Type•,•Phone,Letter,neetlng Here·,~
•neetlng There•)
If lte11 1 of it Ia not e11pty then

put lte11 1 of It Into field •Hext Follow Up 11

put lte11 2 of It Into field 11 Laat Type"
end If

end 11ouaeDown

Notice two important things about this script. First, when a list of literal menu
strings needs to be broken into two or more lines to be seen in the Script Editor
window, you must break up the list by: a) closing the quote of a complete item;
b) placing the comma separator at the end of the line; and c) after pressing

506 HYPERCARD DEVELOPER'S GUIDE

Option-Return to insert the soft carriage return (identified by the character),
starting the next line with a quotation mark. You may do this for as many lines
as you need. Just be sure the comma separator at the end of each line is outside
the end quote mark.

Secondly, notice how the handler traps for the instance when the user does
not select an item in the menu. The function will return an empty string into
item 1. When it is empty, then neither of the two fields is modified.

Because this XFCN behaves like any function, you could insert the function
into a Put statement, like this:

put Item 1 of popUp (O,•Larry,Moe,Curly,Shemp•) ~

Into field •stooge•

but that means that if the user doesn't select an item, the Stooge field will be
set to empty, erasing previous contents. I believe it's better in virtually all
cases to use the PopUp function in a Get statement, and then work with the
returned values from the It local variable.

The XFCN Project
The LightSpeed Pascal project for this XFCN is the most complicated of the
three in this book primarily because it makes a number of Toolbox calls that
the other don't. The project file lineup is:

DAPasLib
MacTraps
ROM85Lib
XQuickDraw
XMenuMgr
ROM85
XCMD Interface.p
XCMD Utilities.p
PopUp.p

The file PopUp. p is the source code file for the XFCN.

How the XFCN Works
Listing 28-1 is Chris's LightSpeed Pascal source code for the PopUp XFCN.

A PopUp Menu XFCN 507

The main PopUp procedure calls one local procedure (HandleError) and five
local .functions (ErrOccurred, GetTheTarget, CustomMenu, GetLastltem, and
PopUpOK). The two error sections you've already met in the About box, so
we won't repeat their discussion here. The GetTheTarget function finds the
coordinates of the button that called the XFCN. With these coordinates the
function knows where the rectangle on the screen is to invert (highlight) and
where to display the pop-up menu. CustomMenu adds menu items to the
menu when a MENU resource is not specified as a parameter. GetLastitem
handles the first parameter of the PopUp message to set the checkmarkeditem
in the menu. Again, pay attention to handle locking and unlocking. Also
notice in PopUpOK how Chris checks whether pop-up menus are available in
the system you're running. Since HyperCard is supposed to run on System
3.2 (on a Mac Plus), this XFCN has to as well without crashing.

Let's start with the main procedure. The basic steps are as follows:

1. Save the current grafport so we can restore it after we're done with the
pop-up menu.

2. Make sure that at least two parameters (the bare minimum) were passed
along with the PopUp function call from HyperTalk. If insufficient
parameters were sent, then use the HandleError procedure to alert the
user to the fact via the ALRT 3100 alert box.

3. Call the PopUpOK function. Pop-up menues were implemented in the
Toolbox starting with System 4.0. If you're running System 3.2, the XFCN
will not attempt a disastrous unimplemented call.

4. Call the GetTheTarget function to load coordinates of the
target button into appropriate variables. The target name {i.e., the
name of the button) must be less than about 30 characters, or else
HyperCard's own menus may get confused later on-but menu titles
should be short, anyway. This function, importantly, converts the coor­
dinates (which come with reference to the HyperCard grafport) to global
coordinates, which the PopUp Toolbox call will need to draw the menu
in the right place on the screen. Note that just prior to locking handles that
stay locked for some time, Chris calls MoveHHi. This puts the handle at
the top of the heap, thus preventing heap fragmentation if HyperCard
needs memory during a callback.

508 HYPERCARD DEVELOPER'S GUIDE

5. Call the GetLastltem function.
a. Retrieve the first parameter (the number of the last checked item) and

convert it to a Pascal string (using the ZeroToPas call, which is one of
the glue routines).

b. Test for the result of the HyperCard callback by comparing the result
of the call to the xresSucc constant (one of the constants defined in the
XCMD interface files compiled with the code).

c. Convert the parameter (currently a Pascal string) to an integer and
make sure irs not a negative number.

6. If there are more than two parameters passed with the
message, then create a new menu (with the CustomMenu
function) and insert items from the container or the literal
string list into the menu item list. This is done in a loop that uses
the number of items as a counter. Each time through the loop, the text of
the next item is appended to the menu item list, whose handle is called
popupMenuHdl.

7. If there are only two parameters (meaning that the call either
includes a MENU resource name or an itemized container), then
first try to take care of the MENU resource instance. If this fails,
then call the CustomMenu function to make menu items out of the
itemized container. This section uses a number of menu-related Toolbox
calls, but most of the statements are devoted to error checking, making
sure that the MENU resource is available and that various handles to the
menu information are retrieved properly. Importantly, if there is an error
in retrieving resource information, the handle to the MENU resource in
memory is released, thus freeing up that part of memory for later use. The
key part of this section, however, is to store the handle to the MENU items
in a variable called popupMenuHdl.

8. Invert the rectangular area of the button that called the XFCN.
We must use this route rather than simply set the hilite property of the
button to true because of a quirk in HyperCard, mentioned earlier in the
book. Setting that property to true will de-select any text selection on the
card. If the pop-up menu relies on that selection being maintained
throughout, the hilite version will not work the way you intend. By
inverting just the rectangle of the button, the selection is maintained
without any problem.

A PopUp Menu XFCN 509

9. If the last item parameter is something other than zero, then
set the item marker of the pop-up menu to the numbered item
passed along as a parameter with the PopUp function. H the item
is zerQ, then no menu item is so marked.

10. Insert the menu items into the menu list in memory. Pop-up menus are
treated as hierarchical menus in the Toolbox, so the second parameter to
the InsertMenu call is -1, the same as for hierarchical menus (see Inside
Macintosh, Volume 5).

11. Display the pop-up menu with a top left corner one pixel down and to the
right from the top right coordinate of the button. As long as the menu is
showing (i.e., before you release the mouse button), the execution of this
XFCN goes no further. When you release the button, then more things
happen. The first is that the number of the item chosen in the menu is
assigned to the variable item.

12. Remove the menu from the menu list in memory.

13. Initialize to empty the string that will be sent back to HyperCard.

14. Retrieve the text of the menu item selected by referencing the item number
against the list of text items.

15. Put the text of the menu item and the item number in a comma-separated
variable, retStr. In case you call the Apple MENU resource, this XFCN
strips out the leading null byte (ASCll zero) that is invisibly refore each
desk accessory name. A leading zero would wreak havoc in conversion
back to a zero-terminated string.

16. Invert the rectangle of the button again, to restore it to its original,
unhighlighted state.

17. Release memory allocated to the menu only if a custom (non-resource)
menu was created; otherwise, release the handle to the menu resource.

18. Put the returned value, retStr, into the parameter block (in the re-

510 HYPERCARD DEVELOPER'S GUIDE

turnValue slot) as a zero-terminated string (converted from a Pascal
string).

19. Restore the grafport to the original HyperCard grafport.

Now let's see what it takes to make a MENU resource.

Creating the MENU Resource
You can create the MENU resource that your PopUp XFCN can use to find text
that goes into the pop-up menu. Using ResEdit, creating the resource is pretty
simple. Here are the steps from scratch.

1. Start ResEdit, and open the file to which you wish to add the MENU
resource. If you are prompted about creating a resource fork on a file, click
OK.

2. Choose New from the File menu.
A dialog box will let you scroll through all the predefined resource types
that ResEdit knows. Find MENU and click on it and the OK button.
ResEdit will open a MENU resource and assign a resource ID number to
it.

menuiD 2572

width 0

height 0

prociD 0

filler 0

enableFigs $FFFFFFFF

title

...............

Figure 28-8 Creating a menu resource starts with this ResEdit window. Make sure the
enableFlags field looks like the one here. Most items are automatically taken care of by the
Toolbox. To start entering menu items, double click on the row of asterisks at the bottom.

APopUpMenuXFCN 511

3. Choose Get Info from the File menu.

4. Type the name of the MENU resource, as you will be passing with your
PopUp function call in your stack.

5. After you close the Get Info box, double click on the MENU resource
listing in the window.

6. The new window is the one in which you enter the menu specifications.
Type the resource ID number into the menuiD field.
Figure 28-8 shows how you should fill in the rest of the fields. Most are
zeros, except for enableFlgs, which tells the Macintosh to enable all items
in the menu, no matter how long the menu is (don't forget the dollar sign,
signifying the hexadecimal numbering system). Enter the name of the
menu you've assigned into the title field (although this information is not
used in a pop-up menu).

7. To start adding menu item names, double click on the row of
asterisks at the bottom of the window.
This creates a menu item, whose complete specification is shown in Figure

~MENU ·sourte" 10 • 2512 from Prospect Cords~
•••••
menultem !Referral ..
It on# D , F

key equlu D
mart Char D
Ignored ®0 01
eHtend ®0 01

,... ~

condense ®0 01
shadow ®D 01
outline ®0 01 "ti
underline ®D 01
Italic ®0 01 ~
bold ®0 01 $t ~ 0

Q

Figure 28-9 A menu item for a pop-up menu needs little more than the item's text. All
other settings are normally left at zero.

512 HYPERCARD DEVELOPER'S GUIDE

28-9. The only information you need to set here are the menultem name
(the text of the item as it is to appear in the menu) and a zero for an icon
number.

{
{
{
{
{
{

Title
Author
Date
From
Publisher
Copyright

A PopUp Menu XFCN 513

Listing 28·1

PopUp - an XFCN to handle a PopUp menu and return the item selected. }
Chris Knepper}
5/22188}
Danny Goodman's HyperCard Developer's Guide }
Bantam Books, Inc. }

@ 1988 by Danny Goodman. All rights reserved. }

unit PopUpUnit;

Interface

uses
ColorQuickDraw,
ColorMenuMgr,
ROM85, XCMDintf,
XCMDUtils;

{ this library is necessary for ColorMenuMgr }
{ library for PopUpMenuSelect }
{ the data structures for the XCMD }
{ the glue for the HyperCard callbacks }

procedure Main (paramPtr : XCmdPtr); { the entrypoint to the XFCN }

Implementation

procedure PopUp (paramPtr: XCmdPtr);
label

1;

const
MYPOPUP g 767;

var
save Port
: GrafPtr;

myHdl
:Handle;
retStr,
pascaiStr,
menu Name,
the Target
: Str255;
resourcelD,
menuiD,
last Item,
count
:integer;

popupMenuHdl
: Menu Handle;
item
: longint;

{ This marks the end of PopUp so that when errors occur, }
{ the processing jumps here. }

{the menu ID used in NewMenu (I like planes) }

{ stores the current port }

{ stores the results of calls to EvaiExpr }

{ sends a result back to HyperCard }
{ Used to convert zero-terminated strings to Pascal strings. }
{ stores the name of the menu. }
{ stores the target }

{resource ld returned by GetReslnfo}
{ menu id derived from menu data structure }
{ the last item selected by the user }
{for loop counter}

{ handle to the pop up menu }

{ the result of PopUpMenuSelect }

514 HYPERCARD DEVELOPER'S GUIDE

menu Type { Stores the resource type for the call to GetReslnfo. }
: Restype;

theRect { Stores the rect of the target. }
: Rect;

thePoint { Stores the point to pass to PopUpMenuSelect. }
:Point;

NewMenuWasCalled { flag which indicates how to clean up}
:Boolean;

{ --}
procedure HandleError (myStr : Str255);
{ Handle Error sets the cursor to the arrow cursor and displays an error Alert }
{informing the user of the error. This procedure assumes that the ALRT & DITL}
{resources with id = 3100 exist in HyperCard's resource fork. Although this is a}
{ valid assumption in HyperCard versions 1.1 and 1.0.1. Calls to GetResource() verify }
{ that these resources do, in fact, exist. If they don,, this procedure produces a beep. }

const
ERROR = 31 00; { use a HC ALRT for error messages. }

var
whichltem: integer;

begin
{ stores result of the Alert function }

If (GetResource('ALRT', 31 00) = nil) or (GetResource('DITL', 31 00) = nil) then
SysBeep(60) {beep if no ALRTor DITL resource}

else
begin

lnitCursor; { set cursor to the arrow cursor}
ParamText(myStr, ", ", "); {specify the ALRT's text}
whichltem :c Alert{ERROR, nil); {display and handle the ALRT}
SendCardMessage(paramPtr, 'set cursor to 4'); {set cursor to watch}

end;
end; {procedure HandleError}

{ ---}
function ErrOccurred (errNum : OSErr;

routineName : Str255) : Boolean;
{ ErrOccurred determines if an error occurred by comparing errNum with NoErr. }
{ If equal, ErrOccurred returns FALSE indicating that no error occurred. Otherwise, }
{ it returns TRUE, indicating that an error occurred and creates a string from }
{ errNum and routineName which it then passes to HandleError.}

var
errStr
: Str255;

begin
If (errNum = noErr) then

ErrOccurred :=FALSE
else

begin
ErrOccurred := TRUE;
NumToString(errNum, errStr);

{ store error number as a Pascal string }

{no error occurred-- return FALSE}

{ oops, error occurred -- return TRUE }
{ convert error number to a string }

A PopUp Menu XFCN 515

HandleError(Concat(routineName, ' returned ', errStr, '. ')); { inform user}
end;

end; {function ErrOccurred}
{ ---}

function GetTheTarget: boolean;
{The function GetTheTarget gets and saves the target for future access. H errors}
{occur, GetTheTarget returns FALSE, otherwise it returns TRUE.}

label
8; { The end of the function. }

var
myExpr { stores an expression evaluated by HC }
: Str255;

count { for loop counter }
:Integer;

begin
GetTheTarget :=TRUE; {return TRUE indicates no errors}
myExpr :=,he target'; {expression to evaluate}
myHdl := EvaiExpr(paramPtr, myExpr); { evaluate the expression }
with paramPtr" do

begin
If ((myHdl = nil) or (myHdl" = nil) or (result <> xresSucc)) then

begin { inform user of error }
HandleError('Can"t get the target.'); { inform user}
GetTheTarget :=FALSE; {return FALSE indicates an error occurred}
goto 8; {leave this function}

end;
MoveHHi(myHdl); {give HyperCard breathing room}
HLock(myHdl); {lock the handle before calling ZeroToPas}
ZeroToPas(paramPtr, myHdl", the Target);
DisposHandle(myHdl); { dispose of the storage allocated by EvaiExpr}
If (result <> xresSucc) then { set as a result of ZeroToPas}

begin
HandleError('ZeroToPas failed on the target.'); { inform user}
GetTheTarget :=FALSE; {return FALSE indicates an error occurred}
goto 8; {leave this function}

end;
for count := 1 to 4 do { Get the rect of the Target. }

begin
NumToString(count, pascaiStr); {convert item to string}
myExpr := Concat('item ', pascaiStr, 'of the rect of', theTarget);
myHdl := EvaiExpr(paramPtr, myExpr); {evaluate the expression}
If ((myHdl = nil) or (myHdl" = nil) or (result <> xresSucc)) then

begin {inform user of error}
HandleError(Concat('Can', get item', pascaiStr, 'of the rect of', the Target));
GetTheTarget :=FALSE; {returning FALSE indicates an error}
DisposHandle(myHdl); { dispose of the storage allocated by EvaiExpr}
goto 8; {leave this function}

end;
MoveHHi(myHdl); {give HyperCard breathing room}

516 HYPERCARD DEVELOPER'S GUIDE

8:

HLock(myHdl); {lock down the handle before calling ZeroToPas}
ZeroToPas(paramPtr, myHdl·", pascaiStr);
DisposHandle(myHdl); { dispose of the storage allocated by EvaiExpr}
If (result<> xresSucc) then {set as a result of call to ZeroToPas}

begin
NumToString(count, pascaiStr); {convert item to string}
pascaiStr := Concat('Can', convert item ', pascaiStr);
HandleError(Concat(pascaiStr, 'of CommStorage to Pascal string.'));
GetTheTarget ==FALSE; {returning FALSE indicates an error}
goto 8; { leave this function }

end;
StringToNum(pascaiStr, item); { convert to a number}
with theRect do { assign the items of the red }

case count of
1 :

left := item;
2:

begin
top:= item;
thePoint.v :=item;

end;
3:

begin
right := item;
thePoint.h :=item;

end;
4:

bottom := item;
end;

end;
LocaiToGiobal(thePoint);

end;

{ the first item is the left coordinate }

{ the second item Is the top coordinate }

{ Get the top item of the point. }

{ the third item is the right coordinate }

{ Get the right item of the point. }

{ the fourth item is the bottom coordinate }

{ case statement }
{for loop}
{ Convert thePoint to global coordinates }
{with paramPtr'}
{ The end of the function --jump here if errors}

end; {function GetTheTarget}
{ ---}

function CustomMenu : boolean;
{ The function Custom Menu creates a custom menu. Now we know that either there }
{ are more than 2 parameters passed in or that the second parameter is a list of menu items. }
{ So, create a custom menu from the items passed in. }

label
9;

var
count,
charCounter
:integer;

{ the end of function Custom Menu }

{ the for loop counter when getting the parameters }
{ the for loop counter when converting "," to ";"}

A PopUp Menu XFCN 517

scrLongint
: longint;

{scratch long integer used when calling NumToString}

procedure CustomMenuError;
{ The subprocedure CustomMenuError handles errors in CustomMenu. }

begin {procedure CustomMenuError}
HUnLock(paramPtr".params[count]); {unlock handle}
scrLongint := count; { convert to longint }
NumToString(scrLongint, pascaiStr); {convert item to string}
DisposeMenu(popupMenuHdl); { release menu's memory }

end; { procedure CustomMenuError}

begin {function CustomMenu}
CustomMenu :=FALSE; {default FALSE to indicate errors}
popupMenuHdl := NewMenu(MYPOPUP, 'C.S.K.'); { allocate a menu handle}
If (popupMenuHdl = nil) then

HandleError('NewMenu returned a nil handle') { inform user of error}
else

begin
NewMenuWasCalled :=TRUE; { TRUE indicates that NewMenu was called }
with paramPtr" do

for count := 2 to paramCount do { Add items to the menu. }
begin

{Ensure that each item passed in will fit into a Pascal string.}
MoveHHi(params[count]); {give HyperCard breathing room}
HLock(params[count]); {lock the handle before dereferencing}
If (StringLength(paramPtr, params[count]") > 255) then

begin
Custom Menu Error;
HandleError(Concat('PopUp parameter', pascaiStr, ' is too long.'));
goto 9; { exit CustomMenu }

end;
If (result <> xresSucc) then { set as a result of StringLength }

begin
Custom MenuError;
HandleError(Concat('StringLength failed on parameter', pascaiStr));
goto 9; { exit Custom Menu }

end;
ZeroToPas(paramPtr, params[count]". pascaiStr); {convert to pascal str}
If (result <> xresSucc) then { set as a result of ZeroToPas}

begin
Custom MenuError;
HandleError(Concat('ZeroToPas failed on parameter', pascaiStr));
goto 9; {exit Custom Menu}

end;

518 HYPERCARD DEVELOPER'S GUIDE

for charCounter := 1 to Length(pascaiStr) do {convert·.· to •;•}
If (pascaiStr[charCounter] = ',')then {change·.· to •;• ... }

pascaiStr[charCounter] := ';'; { ... before calling AppendMenu. }
If (pascaiStr = ") then { Ensure item isn't empty. }

begin
Custom Menu Error;
HandleError(Concat('PopUp parameter', pascaiStr, 'is empty.'));
goto 9; { exit CustomMenu }

end;
HUnlock(params[count]); { unlock handle}
AppendMenu(popupMenuHdl, pascaiStr); { Add these items to pop up menu. }

end; {for loop}
CustomMenu :=TRUE; {yay, no errors!}

end; {if popupMenuHdl=nil}
9 : { end of function Custom Menu }

end; {function Custom Menu}
{ --}

function Getlastltem : boolean;
{ Getlastltem gets the first parameter to the XFCN, which is the last item chosen }
{by the user. If there is an error, GetLastltem returns FALSE, otherwise, it}
{returns TRUE.}
begin

GetLastltem := TRUE; { TRUE means no errors}
wHh paramPtr" do

begin
HLock(params[1]); {Jock handle before dereferencing}
ZeroToPas(paramPtr, params[1]", pascalStr); {1st parameter is last item}
HUnLock(params[1]); {unlock handle}
if (result <> xresSucc) then { set as a result of call to ZeroToPas}

begin
HandleError('Can''t convert the 1st parameter to Pascal string.');
GetLastltem :=FALSE; {FALSE means errors occurred}

end
else

begin
StringToNum(pascaiStr, item); { Convert to an integer and test later. }
last Item := item;
If (Jastltem < 0) then

begin
HandleError('The last item can''t be negative.'); { inform user of error}
GetLastltem := FALSE; { FALSE means errors occurred }

end;
end;

end; {with paramPtr"}
end; { function GetLastltem }

{ --}
function PopUpOK : Boolean;
{ PopUpMenuSelect, implemented in System 4.0 and above, may not }

A PopUp Menu XFCN 519

{ be available, since HyperCard runs on System 3.2 and above. So, check if the }
{trap is implemented using the NGetTrapAddress call. Compare the results}
{of NGetTrapAddress for the PopUp Trap and the UnlmpiTrapNum. Return FALSE}
{ if not implemented, TRUE otherwise. }

const
PopUp Trap== $A808;
UnlmpiTrapNum = $9F;

var
PopUpAddress,
UnlmpiTrapAddress
: Longint;

begin

{ trap number of PopUpMenuSelect }
{ trap number of "unimplemented trap" }

{ address of PopUpMenuSelect trap }
{ address of UnlmplementedTrap}

PopUpAddress := NGetTrapAddress(PopUpTrap, TooiTrap);
UnlmpiTrapAddress := NGetTrapAddress(UnlmpiTrapNum, TooiTrap);
If (PopUpAddress <> UnlmpiTrapAddress) then

PopUpOK :=TRUE { return TRUE if implemented }
else

begin
PopUpOK :=FALSE; {return FALSE if not implemented}
HandleError('PopUpMenuSelect is not implemented.'); { inform user}

end;
end; {function PopUpOK}

{ --}
begin {procedure PopUp}

GetPort(savePort); { get and save the port}

If (paramPtr" .paramCount < 2) then { at least 2 parameters needed }
begin {inform user of error}

HandleError('Call PopUp with: <last Item>, <MENU name> 1 <COntainer> 1 <Item Ust>');
goto 1; {exit PopUp}

end;

If not PopUpOK then
goto 1;

NewMenuWasCalled := FALSE;

If not GetTheTarget then
goto 1;

If not GetLastltem then
goto 1;

with param Ptr" do
begin

If (paramCount > 2) then
begin

If not CustomMenu then
goto 1;

end

{ is PopUpMenuSelect implemented? }
{ exit PopUp }

{ boolean flag indicates how to clean up }

{ get and save the target & its rect }
{ If there are errors , exit PopUp }
(get 1st parameter-- the last Item }
(If there is an error, exit PopUp }

(if more than 2 parameters, create menu }

(Create the menu from that list of items }
(If there is an error, exit PopUp }

520 HYPERCARD DEVELOPER'S GUIDE

else
begin { 1st, assume that the MENU rsrc is in this stack }

H Lock(params(2]);
ZeroToPas(paramPtr, params(2]", menuName); {Get the MENU rsrc name.}
HUnLock(params[2]);
If (result <> xresSucc) then

begin
{set as a result of call to ZeroToPas}

HandfeError('Can''t convert the 2nd parameter to Pascal string.');
goto 1 ; { If there is an error, exit PopUp }

end;
myHdl := GetNamedResource('MENU', menuName);{ Get a handle to the MENU rsrc.}
If (ResError <> noErr) or (myHdf = nil) then

begin {an error=> the author passed in a container}
If not Custom Menu then

goto 1;
end

{ If there is an error, exit PopUp }

else
begin

popUpMenuHdl := MenuHandle(myHdl); {use type coercion to check if}
{ GetMenu has been called } If (popUpMenuHdl"" .menuProc = nil) then

begin
GetReslnfo(myHdl, resourceiD, menuType, menuName); {get the ID of the MENU}
If ErrOccurred(ResError, 'GetReslnfo') then

begin
ReleaseResource(myHdl); { clean up}
goto 1 ; { Leave the XFCN }

end;
popupMenuHdl := GetMenu(resourceiD); { Get the MENU from the rsrc fork of the stack}
If (popupMenuHdl = nil) then

begin
HandleError('GetMenu returned a nil handle.'); { inform user }
ReleaseResource(myHdl); {clean up}
g oto 1 ; { Leave the XFCN }

end; {if popUpMenuHdl =nil}
end; {if menuProc =nil}

end; { if ResError <> noErr }
end; {if paramCount = 2}

end; {with paramPtr"}

{ Display and handle the popup menu. }
lnvertRect(theRect); {Highlight the target.}
{ Decide which item to check, if the last Item :::1 0, don't check any item. If }
{the last item is too large, check the first item.}
If (lastltem <> O) then

begin
{ Ensure lastltem <:::~ number of menu items (if not, set to 1) then check it. }

If (lastltem > CountMitems(popupMenuHdl)) then
lastltem := 1; {default to 1 if last Item># menu items}

Checkltem(popupMenuHdl, lastltem, TRUE); {check last item chosen}

A PopUp Menu XFCN 521

end;
lnsertMenu(popupMenuHdl, -1); {Insert the menu into the menu list.}
CalcMenuSize(popupMenuHdl}; { b/c PopUpMenuSelect bug: System 4.0 }
with thePoint do { PopUpMenuSelect handles the pop up menu. }

item := PopUpMenuSelect(popupMenuHdl, v + 1, h + 1, last Item);
menuiD := popUpMenuHdiAA .MenuiD;
DeleteMenu(menuiD);
retStr :~::~ ";
If (HiWord(item) 1::11 0) then

retStr :a ',0'
else

{ Remove the menu from the menu list. }
{ Initialize the return Value to ". }
{ H no item is selected, then .•. }
{ text is empty and item # is 0. }

begin {Han item is selected, then ... }
item:= LoWord(item); {Low word contains menu item selected.}
Getltem(popupMenuHdl, item, retStr); {Get the text of the item selected.}
NumToString(item, pascaiStr); {Convert the item chosen to text.}
If (retStr[1] = Chr(O)) then {special case for DA's}

beg In { strip out the leading null byte }
for count:= 2 to Length(retStr) do

begin
retStr[count - 1] :a retStr[count];

end;
retStr[O) :~:~ Chr(length(retStr) - 1);

end;
retStr := Concat(retStr, •, ', pascaiStr); { Return the text,item selected. }

end;
lnvertRect(theRect);

{Clean up.}
If NewMenuWasCalled then

DisposeMenu(popupMenuHdl)
else

{ Set the highlight of the target to its original state •. J

{ see Inside Mac 1-352 for an explanation }
{ Release the memory taken by the menu. }

Checkltem(popUpMenuHdl, lastltem, FALSE); { uncheck item chosen }

{ Return retStr so that HyperTalk can access it as a result of the function. }
paramPtr".returnValue := PasToZero(paramPtr, retStr);

SetPort(savePort); { Restore the port. }

1 : { the end of the procedure PopUp}
end; {Procedure PopUp}

{---------------------------------------}
procedure Main;

{ The procedure Main is the entrypoint and simply calls the procedure PopUp. }
begin

PopUp(paramPtr); { the call to the PopUp XFCN }
end;

{ --}
end. {PopUp Unit}
{---}

29
A Serial Port XCMD

One of the largest untapped HyperCard stack categories is control of

external devices. Into this category goes using HyperCard as a friendly

front end to on-line information retrieval (through a commercial service

or a networked mainframe computer). But there are also many oppor­

tunities for controlling devices that have serial ports on them. Such

devices could be as simple as the X-10 style home light and appliance

controller or as complex as manufacturing process controls. There may

be a special purpose serial printer-like one that is sized to work with

continuous feed, one-up mailing labels-that needs ASCII characters

sent to it. A host of sophisticated laboratory test equipment can be

accessed through serial communications. Before the end of 1988, we'll

be able to control home versions of programmable laser videodisc

524 HYPERCARD DEVELOPER'S GUIDE

players through a serial connection.
HyperCard, by itself, does not offer direct control of the Macintosh serial

ports. The Comm XCMD in this chapter, however, adds that power to
HyperCard.

What Comm Can Do
Before we get too far, I should explain that Comm is not intended to be a
telecommunications tenninal program. In other words, there is no interactive
window into which you and a remote computer "converse." Instead, the
Comm XCMD is to be used as a means of sending and receiving text
infonnation through the serial port behind the scenes. You then use a
HyperTalk script to control the flow of information into and out of the
Macintosh. When infonnation comes in, your HyperTalk script can distribute
it to various cards as needed. The script may also take text you typed earlier
into an outgoing message kind of card, and send it through the serial port to
the remote computer.

As the example stack in this chapter will show, you can design a stack
around the Comm XCMD that logs onto a commercial service, retrieves
specific bits of information, logs off the service, and distributes the informa­
tion among cards so that the user can browse the information casually, when
the Macintosh is not connected to the service. The more you can automate the
information retrieval part of the exchange, the more quickly and efficiently it's
retrieved. Connect charges are kept to a minimum, because there is no
fumbling for commands to retrieve the data. Nor is the user distracted by the
information as it rolls in. Only after the information is safely stored on familiar
cards is he given access to it. And then it doesn't cost a cent to browse at will.
You can even automate the process so that information is retrieved automati­
cally overnight or while the user is at lunch. When he returns, the infonnation
stack is ready and waiting. Except for the time it takes to log onto the system
and retrieve the information, the access to remote information is practically
transparent to the user. It's almost as if the remote computer were part of the
person's HyperCard stack.

The Stack
For our example I put together a simple communications front end to one of
CompuServe's weather services. The stack is called The Weather Machine
(Figure 29-1). Among the various services is one that gives you the National

II

A Serial Port XCMD 525

The Weather Machine

Retrieves up-to-the-minute local forecasts
from National Weather Service centers

in major u.s. cities.

Click here to retr1eve forecosts.[;JJ
~

Figure 29-1 The Start card of The Weather Machine provides a field that displays call
progress messages as the stack logs on to the National Weather Service (via CompuServe)
and retrieves forecasts for up to six dties.

Weather Service local forecast for individual cities in the United States. As far
as I can tell, these are the same forecasts that the radio and television stations
and local newspapers get from the NWS. Forecasts for each city are prepared
by meteorologists in each of the NWS offices and then made available to
CompuServe subscribers.

To keep the complexity of the stack to a minimum, I' ve designed it with one
particular applications scenario in mind. The setting is someone who likes to
retrieve weather forecasts from a relatively stable list of one to six cities around
the country, perhaps once or twice a day. Frequent business travelers or
executives with branch offices in other cities may like to have this weather
information handy or retrievable within a couple of minutes.

Information retrieval is so automatic in this stack that once a few Prefer­
ences card fields are set (they only need to be set once), the user simply clicks
on one button. Call progress is displayed on the Start card. As each city's
weather is downloaded from the service, its text is placed on a separate card
for that city, along with the date and time the forecast was retrieved (Figure
29-2). A click on the city's tab of the on-screen flipbook brings up that city's
card.

526 HYPERCARD DEVELOPER'S GUIDE

Wednesday. March 16. 1988 8:36PM

DECO-DENVER METROPOLITAN FORECAST
NATIONAL ~ATHER SERVICE DENVER CO
QOO PM MST ~ MAR 16 1QS9

• •. SNOU ADVISORY TONIGHT .••

g
"F

li1 I

illill'lil.~
!il·!'

A. TONIGHT •• . PER I ODS OF LIGHT SNOU U I TH TOTAL ACCUMULATIONS OF 1 TO 3 !l!lh!
INCHES ••• BUT LOCALLY HERW SNOU ALONG THE FOOTHILLS FROM GOLDEN TO !iii'!!!
MO~~ER U I TH 6 INCHES OR MORE POSSIBLE. SNOU DECAERS I NG TOJ.IARDS 1111!11

LOUS 12 TO 18. NORTHEAST U I NOS 10 TO 20 MPH . il!j 'I
.THURSDAY .•. A 40 PERCENT CHANCE OF SNOU SHOUERS EARLY. THEN BECOMING lill! j
SUNNY. CONTINUED COLD UITH A HIGH NEAR 30. NORTH UINDS 10 TO 20 r.e

Figure 29-2 After logging off, you may browse casually (and with no on-line charges)
through the forecasts for the desired dties, each of which has been stored on its own card.

Calling Conventions
This single XCMD acts as if it were four different XCMDs, depending on the
first parameter sent along with the command. With one XCMD, we can open
the serial port (as well as optionally specify whatever communications
settings we like), close the port, read data that has come in through the port
and write data out the port.

Before getting to the Comm command in your script, however, you must
declare a global variable in all handlers that call Comm. This global must be
named "commStorage." When Comm closes the serial port, commStorage is
set to empty, but it is still declared. This global stores a few important values
that Comm needs for reading and writing data. Unfortunately, HyperCard
versions prior to 1.2 will not allow an XCMD to declare a HyperTalk global
variable, but it may get and set the contents of a previously declared Hyper­
Talk global. To accommodate users of older versions of HyperCard, the
global must be declared "manually."

A Serial Port XCMD 527

Opening and Closing Serial Ports

Opening the serial port is accomplished in one of two ways. H you are satisfied
with the default communications settings (modem port, 1200 baud, 1 stop bit,
no parity and 8 data bits), then you can open the port with this command:

Alternatively, you can make other than the default settings by sending the
entire string of settings along with the command, as in:

H you want to change only one setting from the default setting, you must
include all the settings in the string.

Since this XCMD allows for only one port open at a time, you can close that
port by sending the command

Comm 11 Ciose•

when you're finished with the communications session. Always be sure to
close the communications port when you're finished. Failing to do so may
disrupt other serial functions later on.

Writing and Reading

To send text out the serial port, you issue the Comm "write" command along
with the string you wish to write. The string may be in a container, such as a
field or variable. Therefore, if you have an outgoing message in a field, you
can send it with a command like:

Comm ••rlte•,fleld "Message•

Reading information into your stack requires a bit of explanation. While the
serial port is open, any data that comes into it from outside is temporarily
stored in a part of memory reserved for that purpose. That memory area is
called a serial buffer, because it acts as a buffer between the information inflow
and the eventual way in which you handle the information. The Comm
XCMD is set up so that if the serial buffer begins to fill up, it sends a commonly
recognized command to the sending party that it should stop (called XOFF,
and pronounced eks-of/).

The job of your HyperTalk script is to retrieve text from the serial buffer
often enough so that incoming information may continue to flow into the

528 HYPERCARD DEVELOPER'S GUIDE

buffer at an efficient rate. It doesn't do you any good to be connected to an on­
line service that charges by the minute while your serial buffer is filled. The
Comm XCMD, when accompanied by the "read" parameter, fetches data
from the serial buffer. You may then see the data that was pulled from the
buffer by using the HyperCard Result function. When the Result function is
called immediately after a Comm "read" command, the current contents of
the serial buffer are returned by the Result function. Therefore, you use
Comm "read" and the Result function as a kind of scoop to take data from the
serial buffer and put it into another container where it's safe from overflow (at
least up to 32,000 characters). Each time you perform a Comm ''read"
command, the serial buffer is cleared, ready for further input. The Result
function returns only that data taken from the buffer at the last Comm "read"
command.

Basically, then, you need a loop in your stack that continually "listens" to
what comes into the serial buffer. H your communications front end must wait
for a particular prompt before sending the password, then you keep pulling
data from the buffer and comparing it with the prompt that you expect. When
the container holding all your data contains that prompt, then your script
should know it's safe to send the password data.

Connecting to a Service
Telecommunications is not an easy subject for newcomers, because there are
so many elements to worry about. There's making sure the computer can
communicate with the modem. Then the computer must communicate with
the telecommunications service, which has its own software interface of
prompts and commands. This isn't the place to offer instruction about
telecommunications services, so I'll have to assume that you are somewhat
familiar with logging onto commercial services, like CompuServe.

Every communications program that ties into CompuServe requires user
input of key information, such as the local telephone number that the com­
puter dials to access the service. Then there are the account number and
password. For the Weather Machine stack, these important settings are stored
in fields of the Preferences card (Figure 29-3). There is also a field there for the
modem string-the signal to the modem that makes it dial the phone number.

To keep the password somewhat private-at least hidden from casual
viewers-the password you type into the apparent Password field on the card
goes into a hidden field, while a series of asterisks go into the visible field. All
this is triggered by a closeField handler attached to the Password Entry field:

A Serial Port XCMD 529

Preferences

Cltfes·
~g,Q....LL_ ___ I Modem Preflx ATLODT
Q.~.Yi9.n....Q.t!__ ~.---_____J

~!)m.gr.....C.Q __ ,_,_____ Te 1 ephone • ~5::::9=1=-5::8::4::::6===~
.S.!UJ_ErM.!;..t~.C.Q C..~-- CIS Address 75775,1731

1-----·-·-·-·---1
Pessword **************

Figure 29-3 A Preferences card lets you specify important log-on data and the names of
cities.

on closeField
put card field "Password Entry" Into card field "Password "
put "************** " Into card field "Password Entry•

end closeField

Now, if someone should happen upon this stack on your computer, the actual
password is hidden from casual view.

The Communications Session
Before looking into how the Weather Machine scripts connect and retrieve the
information, let's see what's involved in the process.

First, the stack must send a command to the modem to dial the phone. If
the modem makes the connection with the service, then the stack must send
a series of commands in response to prompts for the User ID (the person's
CompuServe address) and the password. When that transfer is successful, the
stack is officially logged onto CompuServe.

Since the purpose of this stack is to retrieve weather only, it sends the

530 HYPERCARD DEVELOPER'S GUIDE

command to access the weather section of CompuServe. In response to
prompts from CompuServe, it asks for weather forecasts for each city in turn.
As the forecast comes into the Weather Machine, it stores the text in a separate
card for each city.

Once all the weather is retrieved, the stack must log off CompuServe to
prevent any extra charges accruing to your account. To finish the process, the
stack then instructs the modem to hang up.

These three basic action blocks-log on, retrieve the data, log off-are the
foundation for any telecommunications information retrieval. Thus, in the
Weather Machine scripts, the procedures are divided into those same three
blocks. There is one major background handler that triggers several other
smaller handlers. That "outermost" handler is as follows:

on doSesslon
set cursor to 4

logOn
getUeather
logOff

end doSesslon

Each of the building blocks of a communications session has its own custom
handler.

Dialing and Logging On

The logOn handler takes care of both dialing via the modem and logging onto
the system. First, it gathers the field data from the Preferences card (storing
the information in local variables) and then starts a series of sending and
receiving.

The entire logOn handler is:

on I ogOn
global commStorage

put card field •nodem Prefix• of card •Preferences• ~

Into ~~aodemStrlng

put card field •fone Hu~ber• of card •Preferences• ~

Into foneStrlng
put card field •Account Hu~ber• of card •Preferences• ~

Into acctHo

A Serial Port XCMD 531

put card field •Paaauord• of card •preferences• ~

Into password

-- open aerial port
Coma •open•

--reset modem (remove these linea for the Apple modem)
Coma •urite•,•Arz• & return
llatenFor •01c•

--dialing, handshaking, and logon
put •oialing service ... • ~

Into card field •status• of card •start•
Comm •urite•,modemStrlng && foneString & return
I latenFor •coHHECT•
put •Logging on to service ... • ~

Into card field •status• of card •start•
ua It 1 seconds
Comm •urlte•,numToChar(3)
llatenFor •1o:•
Coma •urite•,acctHo & return
I latenFor •Paaauord:•
Coma •urite•,paaauord & return
put •Log on process complete ... • ~

Into card field •status• of card •start•
end logOn

The receiving is done with a generic handler, called listenFor. As a parameter
to the listenFor command, you may pass one or two possible prompts that the
modem or communications service may send in response to the previous
command. The listenFor handler is the one that retrieves data from the serial
port buffer and transfers it to a local variable, called buffer. Even though I've
used a similar name, this local variable is completely independent of the serial
buffer, which you cannot access directly with this XCMD. Here's the IistenFor
handler:

on I latenFor prompt1,proapt2
global commStorage
put empty Into buffer

repeat untl I buffer contains promptt or buffer contains prompt2
comm •read•
put the result after buffer

end repeat
end llatenFor

532 HYPERCARD DEVELOPER'S GUIDE

Notice that each time the listenFor handler is called, the local variable, buffer,
starts fresh and empty. Each time through the repeat loop, the serial port's
buffer is emptied into the local variable. This goes on until one of two possible
prompts from the communications service come in through the serial port.

Back in the logOn handler, the Comm commands start with opening the
serial port to its default settings. Then the handler sends the text "ATZ" and
a carriage return. This is a modem command to reset the modem (although the
Apple Personal Modem does not recognize this Hayes-standard command).
If the modem has reset correctly, it sends back an "OK." That's what the first
listenFor handler waits for.

The remaining sequences in the logOn handler continues by sending the
dialing instructions to the modem and waiting for a CONNECT signal back
from the modem. To make sure that your Macintosh and the remote computer
are tied together, the handler waits for one second before sending the special
signal that CompuServe likes to hear when you log on. That character is called
a Control-C, which you cannot reproduce from the Mac Plus keyboard. That
character turns out to be ASCII value 3. Hence the Comm "Write" command
sends the function, numToChar(3), to pass that character to the XCMD.
Finally, the handler listens for prompts for the user ID and the password,
responding with data entered into the Preferences card.

Getting the Weather

The handler that leads the way for retrieving the weather data is:

on gatUeathar
global coamStorage
put card field •cities• of card •Preferences• Into theCitles

--go to Ueather section of CompuSerue

Com• •urlte•,•go ~ea-t• & return
put •Accessing National Uaathar Section., ,• ~

Into card field •status• of card •start•

I lstanFor •choice 1•
Comm •urJta•,•Lf• & return

-- ratriaua ~aathar for each city and put Into separate card
I lstanFor •LF ID:•
repeal ~lth x g 1 to the number of I lnes of theCitlas

gat line x of theCitlas
put •Getting ~eathar for • & It ~

Into card field •status• of card •start•
Co111111 •urlte•, It & return

set lockScreen to true
go to card x of bkgnd •Forecasts•
caplureUntil •LF I D: •
put It Into field ·uhere•

A Serial Port XCMD 533

put the long date && the time Into field •uhen•
go to first card
set I ockScreen l o false

end repeat

Com~ •urlte•,return
llslenFor •choice 1•

end getUealher

The first few steps of retrieving the weather entail more waiting for prompts
and issuing commands to enter the weather section of CompuServe. When
you enter the National Weather Section of CompuServe, there is a menu that
you would normally see on screen in a live telecommunications tenninal
situation. From the menu, you need to choose "LF" for the local forecast
section.

This area has a special prompt, "LF ID:" that waits for the name of the city
you wish to retrieve. After that first LF ID: prompt, the getWeather handler
goes into a repeat loop for as many times as there are cities listed in theCities,
a local variable containing the list from the Preferences card.

Inside the loop, the handler displays a status message with the city's name
so you know what's going on. Then it sends the city name to CompuServe in
response to the original LF ID: prompt.

To make sure that the data coming in from CompuServe goes into the right
card, the screen is locked (so you only see the cover card during processing)
and one of the cards from the background series with the large field is made
the current card.

At the core of the retrieval is the captureUntil command, which calls
another custom handler that is very similar to the listenFor handler. Here it
is:

on captureUnti I prolllpt1,prompt2
global commStorage
put empty into buffer

repeal unti I buffer contains prompl1 or buffer contains prompl2

534 HYPERCARD DEVELOPER'S GUIDE

COIIIII •read•
put the result after buffer

and repeal

delete line 1 to 3 of buffer
put char 1 to (offsat(•$•,buffar) -1) of buffer Into field 2

and capturaUntll

This handler retrieves data from the serial port buffer as it does in listenFor.
But when the entire batch of data is read into the local variable, buffer, some
leading lines and trailing characters are removed from the text, and the
remaining text goes into field 2 of the current card. That's the large scrolling
field on the city cards.

Back in the getWeather handler, the city name, date, and time are inserted
into their respective fields. Before unlocking the screen, the handler returns
to the first card. We must unlock the screen and return to the first card so that
the next time through the loop the status message can be updated with the
name of the next city.

After the repeat loop, the handler sends a carriage return, which returns
CompuServe to the previous prompt level. From that level we may log off the
service.

Logging Off

After all information is stored safely in its cards, the stack must officially log
off CompuServe and hang up the modem. The logOff handler does this:

on logOff --tell CompuSarua we're leaulng
global commStoraga

put •Logging off system ... • ~

Into card field •status• of card •start•
Comm •urlta•,•off• & return

-- wake up modem for hang-up command
Comm •urlta•,•••
Comm •urlte•,•••
Comm •urlta•,•••
ualt 2 seconds
Comm •urlta•,•RrH• & return

put •usather retrieval completed.• ~

Into card field •status• of card •start•
aait 1 second

-- close aerial port
Co11111 •c l-ose•

put •ctlck here to retrleue forecasts.• ..
Into card field •status• of card •start•

end I agO f f

A Serilll Port XCMD 535

Logging off the system is as simple as sending "off' at any CompuServe
prompt. There's no need to wait for any further communication from
CompuServe.

To hang up the modem, we must first send a signal to the modem that we're
about to send it a command, as opposed to sending text through the modem.
That signal is a series of three plus signs. In working with a Hayes 2400
modem, I found that writing three plusses as a single string did not work. In
fact, modems prefer a more deliberately spaced series of plus signs. Making
each sign go by way of its own Comm "write" command did the trick. The
modem then likes you to wait a second or two before sending it the command.
The command in this case is "ATH," which hangs up the modem.

A status message alerts the user that all is well. After a brief delay and the
closing of the serial port, the status message returns to the one that prompts
the user to retrieve the weather.

How the XCMD Works
This XCMD in Listing 29-1 is far more complex than the other two for a couple
of reasons. The most obvious is that dealing with the serial port is not the
easiest part of working with the Macintosh Toolbox. Secondly, the XCMD is
doing the work of four XCMDs, depending on the parameters you send it.

Aside from the error handling procedure and function (identical to the
same routines in the two previous XCMDs), most of the other procedures and
function definitions in Comm help in communicating with the serial port­
that is, between the XCMD and the serial port. Each of the four Comm
operations (Open, Write, Read and Close) has its own procedure to keep the
code more modular. Following the execution of the Comm source code
should give you a good introduction to the workings of basic serial port
communications on the Macintosh. If you plan to explore the subject further,
Inside Macintosh is a must.

The LightS peed Pascal project for Comm is the standard XCMD setup with
the following files:

536 HYPERCARD DEVELOPER'S GUIDE

DAPasLib
Mac Traps
XCMD Interface.p
XCMD Utilities.p
Conun.p

Comm. p is the source code file for the XCMD.
As a basic outline of the main procedure in the Comm XCMD, we have:

1. Check parameters to make sure there is at least one sent along with the
Comm message.

2. Inspect the first parameter and store it as a variable named controlStr.
This variable will be compared against each of four possible parameters.
That, in turn, will direct execution to the appropriate procedure for
opening, closing, reading, or writing through the serial port.

3. Check first to see if the parameter is OPEN.

4. If so, then branch to the CommOpen procedure.
a. Be sure that either no additional parameters or five additional parame­

ters were sent along with the command.
b. Via the Clear_RefNums_SerBuffPtr function, initialize the HyperTalk

CommStorage global variable to zero.
c. Set the modem or printer port as the current serial port (via the

PrinterOrModem function).
d. Get the communications settings (via the UserConfig function)-either

the default settings or the ones passed as parameters.
e. Allocate memory space for the 2-kilobyte input buffer.
f. Open both the input and output ports (even though at the H yperTalk

level we see them together as one serial port), set their user configura­
tions, and adjust handshaking properties of both ports.

g. Cement the bond between the buffer memory space and the input serial
port with SerSetBuf.

h. Store the reference numbers in CommStorage (via
Set_RefNums_SerBuffPtr).

5. For Comm 11Write" branch to the Comm Write procedure.
a. Check to see there is a second parameter.

A Serial Port XCMD 537

b. Send the data through the output serial port (Chris addresses the
Device Manager for performance, rather than going through the File
Manager).

6. For Comm "read" branch to the CommRead procedure.
a. Be sure there are no additional parameters.
b. Allocate memory for incoming data pulled from the input buffer.
c. Read the data from the input buffer and store it in the newly allocated

memory area.
d. Go through text and strip out non-printing low value ASCIT characters,

as well as high-bit characters. This combination of conversions and
stripping removes potentially troublesome characters of some commu­
nications services, while ensuring that packet switching networks
(which often send high-bit characters) are received as readable text.

e. Convert input data to a zero-terminated string, which is the type that
must be passed back to HyperCard.

f. Return the value of the buffer to HyperCard, so that it may read it with
the Result function.

g. Check for any errors that occurred in the serial driver during the data
input.

7. If call is Comm "close," then branch to the CommClose procedure.
a. Restore the serial input buffer to its original state.
b. Set CommStorage to empty.
c. Dispose of all handles and pointers.

One reason this XCMD isn't intended for use as an interactive terminal is that
the data that is read from the serial buffer ends up coming into a HyperCard
field in chunks-three or more characters at a time (depending on the
communications baud rate). Terminal programs usually produce characters
on the screen one at a time. Moreover, in a telecommunications window, the
user can type outgoing text on the same line as, say, a prompt from a remote
computer. The CommXCMD is not set up for that kind of terminal emulation.

Further Ideas
The Weather Machine stack is rudimentary in its control over the communi­
cations process. If the stack were to become part of a real stack product, it
would require substantial error detection within the HyperTalk section to
accommodate unexpected delays from the remote computer, finicky modem

538 HYPERCARD DEVELOPER'S GUIDE

responses, busy signals from the remote computer's telephone number and
transmission errors that would corrupt prompts from the remote computer.
These can all be added to the HyperTalk script, which is the advantage of
running the front end in H yperTalk, with the XCMD handling the serial port
part of the transaction.

Controlling serial devices other than communications services tends to be
much easier. Such devices have a series of commands to which they respond,
occasionally sending back data upon request. By dissecting the information
that comes back from the device, you can display settings in various fields or
buttons as your design dictates. Your script can also piece together whatever
commands are necessary from a friendly controlling front end in HyperCard.

A Serial Port XCMD 539

Listing 29·1

Comm - a HyperCard XCMD to control a communications session. }
Chris Knepper }
3/30/88}
Danny Goodman's HyperCard Developer's Guide }
Bantam Books, Inc. }

Title
Author
Date
From
Publisher
Copyright @ 1988 by Danny Goodman. All rights reserved.}

unit CommUnit;

Interface

uses
XCMDintf,
XCMDUtils;

{ the data structures for the XCMD }
{ the glue for the HyperCard callbacks }

procedure Main (paramPtr: XCmdPtr);

Implementation

procedure Comm (paramPtr : XCmdPtr);
label

1;
const

BUFF _SIZE = $800;
var

controlStr
: Str255;

inRefNum,
outRefNum
:integer;

err
: OSErr;

count
: longint;

myBuffPtr
: Ptr;

myPBiock
: ParamBiockRec;

myHdl
:Handle;

{ the end of Comm }

{ size of the input serial buffer - 2K }

{ stores 1st param to Comm }

{ Stores input reference number }
{ Stores output reference number }

{ stores the error codes of various Device Manager calls }

{ stores the number of bytes to read/write }

{ stores a pointer to the serial input buffer }

{ Used in calls to PBRead and PBWrite. }

{Stores handle 0-terminated string}

{ --}
procedure HandleError (myStr: Str255);
{ HandleError sets the cursor to the arrow cursor and displays an error Alert }
{ informing the user of the error. This procedure assumes that the ALRT & DITL}
{resources with id = 3100 exist in HyperCard's resource fork. Although this is a}

540 HYPERCARD DEVELOPER'S GUIDE

{ valid assumption in HyperCard versions 1.1 and 1.0.1. Calls to GetResource() verify }
{ that these resources do, in fad, exist. H they don't, this procedure produces a beep. }

const
ERROR = 31 00; { use a HC ALRT for error messages. }

var
whichltem : integer;

begin
{ stores result of the Alert function }

If (GetResource('ALRT', 31 00) = nil) or (GetResource('DITL', 31 00) = nil} then
Sys8eep(60) { beep if no ALRT or DITL resource}

else
begin

lnitCursor; { set cursor to the arrow cursor }
ParamText(myStr, ", ", "); {specify the ALRT's text}
which Item := Alert(ERROR, nil); { display and handle the ALRT}
SendCardMessage(paramPtr, 'set cursor to 4'}; {set back to watch cursor}

end;
end; {procedure HandleError}

{ --}
function ErrOccurred (errNum : OSErr;

routineName : Str255) : Boolean;
{ ErrOccurred determines if an error occured by comparing errNum with NoErr. }
{ If equal, ErrOccurred returns FALSE indicating that no error occurred. Otherwise, }
{ it returns muE, indicating that an error occurred and creates a string from }
{ errNum and routineName which it then passes to HandleError. }

var
errStr
: Str255;

begin
If (errNum = noErr) then

ErrOccurred :=FALSE
else

begin

{ store error number as a Pascal string }

{no error occurred-- return FALSE}

ErrOccurred :a TRUE; { oops, error occurred - return TRUE }
NumToString(errNum, errStr); { convert error number to a string}
HandleError(Concat(routineName, ' returned ', errStr, '.')); { inform user}

end;
end; {function ErrOccurred}

{---------------------------------------}
function Clear_RefNums_SerBuffPtr : boolean;
{ Clear_RefNums_SerBuffPtr sets the Hyper Talk global "CommStorage" to empty}
{and returns muE if successful, or FALSE if not successful.}

var
pascaiStr : Str255;

begin
pascaiStr == 'put empty into CommStorage';
SendCardMessage(paramPtr, pascaiStr);
If (paramPtr".result 111 xResSucc) then

Clear_RefNums_SerBuffPtr :=TRUE

{ stores message to send to HC }

{ clear CommStorage with a ... }
{ ••. HyperTalk command}
{ test the callback }
{ SendCardMessage succeeded }

else
begin

A Serial Port XCMD 541

Clear_RefNums_SerBuffPtr := FALSE; { SendCardMessage failed}
HandleError('SendCardMessage callback failed.'); { inform user}

end;
end; {function Clear_RefNums_SerBuffPtr}

{ ---}
function Set_RefNums_SerBuffPtr (output, input : integer;

buffer: Ptr) :boolean;
{ Set_RefNums_SerBuffPtr stores the input/output refnums and a pointer to}
{the input buffer in a HyperTalk global called "CommStorage." If the function}
{fails, it returns FALSE, otherwise it returns TRUE.}

var
pasca1Str1 ,
pasca1Str2
: Str255;

begin

{converts LONGINTs, passed to PasToZero}
{converts LONGINTs}

Set_RefNums_SerBuffPtr :=TRUE; {indicate that no error occurred}
NumToString{output, pasca1Str1); {convert output refnum to Str255}
NumToString(input, pasca1Str2); { convert input refnum to Str255}
pasca1Str1 := Concat(pasca1Str1, ',', pasca1Str2); {a"," delimitted Str255}
NumToString(ORD4(buffer), pasca1Str2); {convert the serial buf ptr to Str255}
pasca1Str1 := Concat(pasca1Str1 , ', ', pasca1Str2); { a "," delimitted Str255 }

myHdl := PasToZero(paramPtr, pasca1Str1); {store Str255 in a handle}
If (paramPtr"'.result <> xResSucc) then

begin
Set_RefNums_SerBuffPtr :=FALSE; {indicate that an error occurred}
HandleError{'PasToZero callback failed.');

end
else

begin
SetGiobal(paramPtr, 'CommStorage', myHdl); { set the global}
If (paramPtrA.result <> xResSucc) then

begin
Set_RefNums_SerBuffPtr :=FALSE; {indicate that an error occurred}
HandleError('SetGiobal callback failed.');

end
end;

end; { function Set_RefNums_SerBuffPtr}
(---}

function Get_RefNums_SerBuffPtr (var output, input : integer;
var buffer : Ptr) : boolean;

{ Get_RefNums_SerBuffPtr gets the refnums which have been stored in the}
{ HyperTalk global "CommStorage." H this global is empty, then an error}
{has occurred and the function returns FALSE. Otherwise, the function}
{ gets the values in CommStorage and returns TRUE. CommStorage contains }
{ 3 items. Item 1 is the output refnum, item 2 is the input refnum, and item 3 }
{is the address of the input buffer.}

542 HYPERCARD DEVELOPER'S GUIDE

label
5;

var
which Item,
scrlnt
:Integer;

scrlongint
: Longlnt;

pascaiStr,
myExpr
: Str255;

begin
Get_RefNums_SerBuffPtr := FALSE;
myExpr :a 'CommStorage is empty';
myHdl :a EvaiExpr(paramPtr, myExpr);
If (paramPtr" .result <> xresSucc) then

begin

{ the end of Get_RefNums_SerBuffPtr}

{ used as a for loop counter }
{ used when converting strings to nums }

{ scratch longint }

{ used for local storage of Str255 }
{ used to pass a HyperTalk expression to HC }

{ return FALSE indicates errors }
{ determine if the global CommStorage ... }
{ .. .is empty}
{ result is set by EvaiExpr }

HandleError('EvaiExpr failed to test if CommStorage is empty.');
DisposHandle(myHdl); { dispose of memory EvaiExpr allocated }
goto 5; {exit Get_RefNums_SerBuffPtr}

end;
Hlock(myHdl); {lock handle before ZeroToPas}
ZeroToPas(paramPtr, myHdl", pascaiStr);
DlsposHandle(myHdl);
If (paramPtr".result <> xresSucc) then {result is set by ZeroToPas}

begin
HandleError('ZeroToPas failed while testing if CommStorage is empty.');
goto 5; { exit Get_RefNums_SerBuffPtr }

end;
If pascaiStr a ,rue' then

begin
{ is CommStorage empty? }

HandleError('CommStorage is empty.'); { inform user}
goto 5; {exit Get_RefNums_SerBuffPtr}

end;
for which Item := 1 to 3 do { Get 3 items of CommStorage}

begin
NumToString(whichltem, pascaiStr); {convert item to pascaiStr}
myExpr := Concat('item ', pascaiStr, ' of CommStorage');
myHdl :a EvaiExpr(paramPtr, myExpr); { evaluate the expression }
If ((myHdl:::: nil) or (paramPtr".result <> xresSucc)) then

begin {inform user of error}
HandleError(Concat('Can', get item', pascaiStr, 'of CommStorage'));
DisposHandle(myHdl); { dispose of memory EvaiExpr allocated }
goto 5; { exit Get_RefNums_SerBuffPtr}

end;
Hlock(myHdl); {lock handle before ZeroToPas}
Zero ToPas(paramPtr, myHdl", pascaiStr);
If (paramPtr".result <> xresSucc) then { set by ZeroToPas}

5:

A Serial Port XCMD 543

begin
NumToString(whichltem, pascaiStr); { convert item to string }
pascaiStr := Concat('Can"t convert item', pascaiStr);
HandleError(Concat(pascaiStr, • of CommStorage to Pascal string.'));
DisposHandle(myHdl); { dispose of the storage allocated by EvaiExpr}
goto 5; {exit Get_RefNums_SerBuffPtr}

end;
DisposHandle(myHdl); { dispose of the storage allocated by EvaiExpr}
StringToNum(pascaiStr, scrlongint); {convert to a number}
case whichltem of

1 : { the first item is the output refnum }
output := scrLongint;

2:
input := scrLongint;

3:
buffer := POINTER(scrLongint);

end;
end;

Get_RefNums_SerBuffPtr := TRUE;

{ the second item is the input refnum }

{ the third item is the buffer pointer}

{ case statement }
{for loop}
{ return TRUE indicates success }
{the end of Get_RefNums_SerBuffPtr}

end; {function Get_RefNums_SerBuffPtr}
{ --}

function UserConfig (var serConfig : integer) : BOOLEAN;
{ This function gets the configuration specified by the user in the parameters to }
{ Comm. 3rd parameter is baud, 4th parameter is stop bits, 5th parameter is }
{parity, 6th parameter is data bits. H no parameters are passed (besides "Open")}
{ then the default configuration is returned. If error occurs, UserConfig returns }
{FALSE, otherwise it returns TRUE. The configuration is returned in serConfig.}

label
7; { the end of UserConfig }

var
pascalStr: Str255; {used when converting to pascal strings}

begin
UserConfig :=TRUE;
serConfig :~::~ 0;
If (paramPtrA .paramCount = 1) then { Assume the 1st parameter was "open". }

serConfig := baud1200 + stop10 + noParity + data8 {Default configuration. }
else

begin
{***Get the third parameter-- Baud rate***}

HLock(paramPtrA .params(3]);
Zero ToPas(param Ptr, paramPtrA .params[3)A, pascalStr);
HUnlock(paramPtrA .params[3]);
UprString(pascaiStr, FALSE);
If (pascaiStr = '300') then

serConfig := serConfig + baud300
else If (pascaiStr = '600') then

serConfig := serConfig + baud600
else If (pascaiStr = '1200') then

544 HYPERCARD DEVELOPER'S GUIDE

serConfig := serConfig + baud1200
else If (pascaiStr = '1800') then

serConfig := serConfig + baud1800
else If (pascaJStr = '2400') then

serConfig := serConfig + baud2400
else If (pascaJStr = '3600') then

serConfig := serConfig + baud3600
else If (pascalStr = '4800') then

serConfig := serConfig + baud4800
else If (pascaiStr = '7200') then

serConfig := serConfig + baud7200
else If (pascaJStr = '9600') then

serConfig := serConfig + baud9600
else If (pascalStr = '19200') then

serConfig := serConfig + baud19200
else If (pascaiStr = '57600') then

serConfig :m serConfig + baud57600
else

begin {Error occurred in specifying baud rate.}
HandleError('Error in specifying baud rate.');
UserConfig :=FALSE;
goto 7;

end;
{ *** Get the fourth parameter -- Stop bits *** }

HLock(param Ptr" .params[4]);
Zero ToPas(paramPtr, paramPtr" .params[4]", pascalStr);
HUnlock(param Ptr" .params[4]);
UprString(pascaJStr, FALSE);
If (pascalStr = '1') then

serConfig :m serConfig + stop1 0
else If (pascaiStr m '1.5') then

serConfig :m serConfig + stop15
else If (pascaiStr = '2') then

serConfig :m serConfig + stop20
else

begin {Error occurred in specifying stop bits.}
HandleError('Error in specifying stop bits.');
UserConfig :=FALSE;
goto 7;

end;
{ *** Get the fifth parameter - Parity *** }

HLock(paramPtr" .params[5]);
Zero ToPas(paramPtr, paramPtr" .params[5]", pascaiStr);
HUnlock(paramPtr" .params[5]);
UprString(pascaiStr, FALSE);
If (pascaiStr m 'NO') then

serConfig :m serConfig + noParity

7:

else If (pascaiStr ... '000') then
serConfig := serConfig + oddParity

else If (pascaiStr = 'EVEN') then
serConfig : ... serConfig + evenParity

else

A Serial Port XCMD 545

begin {Error occurred in specifying parity.}
HandleError('Error in specifying parity.');
UserConfig :~::~FALSE;
goto 7;

end;
{ *** Get the sixth parameter -- Data bits *** }

HLock(paramPtr" .params[6]);
Zero ToPas(paramPtr, paramPtr" .params[6)", pascaiStr);
HUnlock(paramPtr" .params[6]);
UprString(pascaiStr, FALSE);
If (pascaiStr ... '5') then

serConfig :a:: serConfig + data5
else If (pascaiStr 1:1 '6') then

serConfig : ... serConfig + data6
else If (pascalStr = 7') then

serConflg :a:: serConfig + data7
else If (pascaiStr = '8') then

serConfig := serConfig + data8
else

begin {Error occurred in specifying data bits.}
HandleError('Error in specifying data bits.');
UserConfig :~::~ FALSE;

end;
end; { if one or more than one parameter }

{ label 7 is the end of UserConfig }
end; {function UserConfig}

{ ---}
function PrinterOrModem (var outputStr, inputStr : Str255) : boolean;
{ PrinterOrModem determines whether the user is opening the printer or}
{ modem ports. NOTE: cannot have BOTH the printer AND modem port open at the }
{ same time. H the user calls Comm("Open") then default to modem port. The }
{ name of printer or modem driver is returned in outputStr and inputStr. }

var
pascaiStr : Str255;

begin
PrinterOrModem :=TRUE;
If (paramPtr" .paramCount = 1) then

begin
inputStr : ... '.Ain';
outputStr := '.AOut';

end

{ used to convert args to upper case }

{ TRUE indicates no errors }

{assume 1st parameter was "open"}

546 HYPERCARD DEVELOPER'S GUIDE

else
begIn { user specifies modem or printer port}

Hlock(paramPtr" .params[2]);
Zero ToPas(paramPtr, paramPtr" .params[2]", pascaiStr);
HUnlock(paramPtr" .params[2]);
UprString(pascaiStr, FALSE); { Convert to upper case. }
If (pascaiStr = 'MODEM') then

begin
inputStr == '.Ain';
outputStr := • .A Out';

end
else If (pascaiStr = 'PRINTER') then

begin
lnputStr := '.Bin';
outputStr :r:s '.BOut';

end
else

begin {Error in specifying printer or modem.}
HandleError('Comm expects Printer or Modem.');
PrinterOrModem :sz FALSE; { Inform user second param was bad. }

end;
end; { H paramCount = 1.}

end; {function PrinterOrModem}
{---------------------------------------}

function MySerShk : SerShk;
{ Returns the serial hand shake options and other control information. }

var
tempSerShk : SerShk;

begin
with tempSerShk do

begin
fXon := 1;
fCTS := 1;
xOn := CHR(17);
xOff := CHR(19);
errs :sz 0;
evts :sz 0;
flnX := 1;

end;
MySerShk := tempSerShk;

{ stores the serial handshake settings }

{ Enable XOn/XOff output flow control. }
{ Enable CTS hardware handshake. }
{ Set to control-q for continue. }
{ Set to control-s for pause. }
{ Errors which abort input requests }

{ Enable XOn/XOff input flow control.

end; {function MySerShk}
{-------------------------------------}

procedure CheckCumErrs;
{ This procedure checks the input and output serial ports for errors. H an error}
{ occurred, then the Mac beeps. }

var
mySerStat : SerStaRec; { stores status information }

begin
err :a SerStatus(outRefNum, mySerStat);
If (mySerStat.cumErrs <> 0) then

A Serial Port XCMD 547

Sys8eep(1); {beep if errors in output port}
err :a SerStatus(inRefNum, mySerStat);
If (mySerStat.cumErrs <> 0) then

Sys8eep(1); { beep if errors in input port }
end; {procedure CheckCumErrs}

{ ---}
procedure CommOpen;
{ CommOpen opens the serial port to Initiate communication. }

label
1;

var
serConfig
:integer;

inputStr,
outputStr
: Str255;

begin

{ the end of CommOpen }

{ Stores configuration info for the port }

{ stores either '.Ain' or '.Bin'. }
{stores either '.AOut' or '.BOut'.}

{Ensure that Comm("Open" ...) was called correctly.}
If (paramPW'.paramCount <> 6) and (paramPtr" .paramCount <> 1) then

begin
HandleError('Error: Comm Open expects 1 or 6 parameters');
go to 1 ; { exit CommOpen }

end;

{ lnit CommStorage to empty -- later store inRefNum/outRefNum }
{ and a pointer to the serial input buffer here. }

If not Clear_RefNums_SerBuffPtr then
goto 1;

If not PrinterOrModem(outputStr, lnputStr) then {use the Printer or Modem port?}
go to 1; { exit CommOpen}

If not UserConfig(serConfig) then { Get the configuration for the input/output ports. }
goto 1; { exit CommOpen }

myBuffPtr := NewPtr(BUFF _SIZE); {Allocate memory for the Input buffer.}
If ErrOccurred(MemError, 'NewPtr') then

goto 1; { exit CommOpen }
err := OpenDriver(outputStr, outRefNum); { Open the output port. }
If ErrOccurred(err, 'OpenDriver') then

goto 1; { exit CommOpen }
err :a OpenDriver(inputStr, inRefNum); {Open the input port.}
If ErrOccurred(err, 'OpenDriver') then

goto 1; { exit CommOpen }
err := SerReset(outRefNum, serConfig); { Configure the output port. }

548 HYPERCARD DEVELOPER'S GUIDE

If ErrOccurred(err, 'SerReset') then
goto 1; { exit CommOpen }

err := SerHShake(outRefNum, MySerShk);{ set up output port handshake}
If ErrOccurred(err, 'SerHShake') then

goto 1; {exit CommOpen}
err := SerReset(inRefNum, serConfig); { Configure the input port. }
If ErrOccurred(err, 'SerReset') then

goto 1; { exit CommOpen }
err := SerHShake(inRefNum, MySerShk); { set up input port handshake }
If ErrOccurred{err, 'SerHShake') then

go to 1; { exit CommOpen }
err := SerSetBuf(inRefNum, myBuffPtr, BUFF _SIZE); { Set up the input buffer. }
If ErrOccurred{err, 'SerSetBuf') then

goto 1; { exit CommOpen}

{ Save the inpuVoutput port refnums and serial input buffer pointer. }
If not Set_RefNums_SerBuffPtr{outRefNum, inRefNum, myBuffPtr) then

{ do nothing, since at end }
1 : { the end of CommOpen }

end; {procedure CommOpen}
{ --}

1 :

procedure CommWrite;
{ CommWrite writes data to the serial port.}

label
1•

I

begin
{ the end of CommWrite }

If {paramPtr" .paramCount <> 2) then { ensure Comm was called correctly }
begin

HandleError{'Error: Comm Write expects 2 parameters');
goto 1 ; { exit CommWrite }

end;
{ Send the data out the serial port. }

Hlock{paramPtr" .params[2]);
count := Stringlength{paramPtr, paramPtr" .params[2]");
with myPBiock do

begin
ioRefNum :::: outRefNum;
ioBuffer :::a paramPtr".params[2]";
ioReqCount := count;
ioPosMode := 0;

end;
err := PBWrite(@myPBiock, FALSE);
HUnlock(paramPtr" .params[2]);
If ErrOccurred{err, 'PBWrite') then

end;

{write from current mark}

{do nothing since at end}
{ the end of procedure CommWrite}
{ procedure CommWrite}

{ ---·····}
procedure CommRead;
{ CommRead reads data from the serial port. }

label

A Serial Port XCMD 549

1;
var

{ the end of CommRead }

counter,
scratchlnt,
noLF_cntr
:integer;

myCharPtr
: Ptr;

begin

{ For loop counter. }
{Scratch integer necessary for BitAnd.}
{ Counts good chars, ie. no line feeds. }

{ points to chars in the input stream }

If (paramPtrA .paramCount <> 1) then { ensure Comm was called correctly }
begin

HandleError('Error: Comm Read expects only 1 parameter');
goto 1 ; { exit CommRead }

end;

{ Look at the serial input buffer •• exit if there's an error in looking at it }
{ or if there are no characters in it. }

err === SerGetBuf(inRefNum, count);
If (ErrOccurred(err, 'SerGetBuf') or (count <= 0)) then

goto 1; { exit CommRead}
{ Allocate the storage area for the result of the read. The size is equal to }
{ the number of characters in the buffer. }

myHdl :a NewHandle(count + 1); { add 1 to ensure it's a a-terminated string }
If (ErrOccurred(MemError, 'NewHandle') or (myHdl == nil)) then

goto 1; { exit CommRead}
Hlock(myHdl); { lock it during the call to PBRead }
with myPBiock do { set up the parameter block for PBRead }

begin
ioRefNum :== inRefNum;
loBuffer :== myHdiA;
ioReqCount :== count;
ioPosMode :a 0;

end;
err:= PBRead(@myPBiock, FALSE);
If ErrOccurred(err, 'PBRead') then

begin
DisposHandle(myHdl);
goto 1;

end;

{ read from the input buffer }
{ point to the storage area }
{ read as many characters as are in the buffer }
{ read from current mark }

{read I}
{ any errors during read? }
{ if so, then release the space ... }
{ ... allocated to the handle. }
{ exit CommRead}

{ Since some hosts transmit with the high-bit set, we'll turn off the high-bit for all }
{ incoming characters. Also, we'll strip all non-printing characters (ASCII $00-$1 F & $7F) }
{ except the carriage return (ASCII $00). }

noLF _cntr := 0;
for counter :== o to (myPBiock.ioActCount - 1) do

begin
myCharPtr := POINTER(ORD(myHdiA) +counter);

550 HYPERCARD DEVELOPER'S GUIDE

1 :

scratchlnt :a BitAnd(Byte(myCharPtrA), $7F); {Turn off high-bit. }
If ((scratchlnt > $1 F) or (scratchlnt = $00)) and (scratchlnt <> $7F) then

begin
myCharPtr := POINTER(ORD(myHdiA) + noLF _cntr);
myCharPtrA := Byte(scratchlnt);
noLF _cntr := noLF _cntr + 1;

end;
end;

{ make it a zero-terminated string }
If (noLF _cntr a 0) then

begin
DisposHandle(myHdl);

end
else

{ if no good characters in the input. .. }
{ .•. then return nothing I }

begin {make last byte a 0}
myCharPtr := POINTER(ORD(myHdiA) + noLF _cntr);
myCharPtrA := Byte(O);
SetHandleSize(myHdl, noLF _cntr + 1);{ set the handle to the correct size}
HUnlock(myHdl); { unlock it before passing It back to HyperCard }
paramPtrA.returnValue := myHdl; {Return the string read from the input buffer.}

and;
CheckCumErrs; {beep if there are errors in the driver}

{ the end of CommRead }
end; {procedure CommRead}

{ --}
procedure CommCiose;
{ CommCiose restores the input buffer to the default buffer and releases the }
{ memory used for Comm's input buffer. }
begin

err :a SerSetBuf(inRefNum, nil, 0); { restore the input serial buffer }
If ErrOccurred(err, 'SerSetBuf') then

{ do nothing }
If not Clear_RefNums_SerBuffPtr than

{ do nothing }
DisposPtr(myBuffPtr); { dispose of the allocated buffer }
If ErrOccurred(MemError, 'DisposPtr') then

{ do nothing }
end; {procedure CommCiose}

{ ---}
begin {procedure Comm}

{ Comm requires parameters, so check for at least one here. }
If (paramPtrA .paramCount < 1) then

begin
HandleError('No parameters were sent to Comm.');
goto 1; { ex~ Comm}

and;

A Serial Port XCMD 551 - ' . . '

{ Get the first parameter -- this controiStr indicates what Comm should-do. }
HLock(paramPtr" .params[1]);
Zero ToPas(paramPtr, paramPtr" .params[1]", controiStr);
HUnlock(param Ptr" .params[1]);
UprString(controiStr, FALSE); { Convert to upper case, strip diacriticals. }

If (controiStr. 'OPEN') then
-CommOpen { open the communications session }

else
begin

{ H we get here, the communications session has already been e~ablished, so }
{ get the refnums for the input/output ports and serial input buffer pointer. }
If not Get_RefNums_SerBuffPtr(outRefNum, inRefNum, myBuffPtr) then

goto 1 ; { exit Comm }

If (controiStr - WRITE') then
CommWrite { write to the serial port }

else If (controiStr • 'READ') then
CommRead { read from the serial port }

else If (controiStr = 'CLOSE') then
CommCiose { restore the serial port }

else
{ H we get here, the first parameter to Comm doesn't match any of }
{ the control strings, so a bad control string was passed in. }

HandleError('Comm doesn''t recognize the 1st parameter.'); (inform ~ser}
end; {H}

1 : { the end of Comm }
end; { procedure Comm }

{ --········}
procedure Main;

{ procedure Main serves as the entrypoint and simply calls the procedure Comm. }
begin

Comm(paramPtr); {call the Comm XCMD}
end;

{-------------------------------------}
end. {UNITCommUnit}
{ --}

30
A Final Word

Even if you don't plan to jump into XCMDs right away (or ever), I

believe it is very worthwhile to read through Chris Knepper's Pascal

source code and comments for the three XCMDs in this book. It may

appear to you that more lines of code were spent checking for errors that

the computer or usermightgenerate than in doing the actual work of the

XCMD. There's an important message there for HyperTalk program­

mers.

The minute your stack leaves your machine and runs under someone

else's keyboard and mouse, you lose control over how the person will

be using your precious software. Just because you know that Hyper­

Card likes the time of day entered as "3:15PM" in the United States

Macintosh System File doesn't mean that everyone will remember that.

554 HYPERCARD DEVELOPER'S GUIDE

They may try to enter it as just "3: 15" or add periods after the letters, as in "3:15
P.M." It must be up to you, the stack developer, to anticipate all these formats
and treat them in your scripts. For instance, you can reject all entries that aren't
in the proper format, or try to adjust those that are close. In the time
conversion stack of Business Class, for example, I strip out periods if the user
adds them to a time entry (HyperCard chokes when you try to convert the
time to seconds from an invalid format).

Overall, checking for errors and then guiding the user back with gentle
messages contributes a great deal to the so called user-friendliness of soft­
ware. You can't expect the user to be perfect, but the user expects you and your
software to be.

Note, too, that much of the error checking is done in the fonn of functions.
While most of the action in a function is the kind that you'd expect in a
procedure (or a HyperTalk command handler), the item is placed in a function
format so that it returns either true or false, depending on whether the action
taken within the function was successful. If the action was successful, then the
main procedure may continue; otherwise, an error message is needed or some
other corrective action must be taken. A lot of the Macintosh Toolbox routines
are written this way, as are the majority of the XCMD glue routines. I believe
there is a lesson.in this for us in HyperTalk as well.

Writing good HyperTalk takes practice and experimentation with timing
traps to find the most efficient solutions. It also helps to read as many
H yperTalkscripts as you can get your hands on. Not all of them will be poetry
from Dan Winkler or his disciples, but you should still look at them and figure
how you would improve every script you see. Make no assumptions about
how good a script might be. Ninety-nine percent of the time it can be
improved.

The same goes for stacks in general. Be critical, even of my stacks. But be
critical to become better. My reward will be to see your stack winning praise
from its intended users and admiration from the HyperCard corps. That
you've pored through 1200 pages of HyperCard literature is a sign of your
dedication. You certainly have the desire to become a good HyperCard stack
developer.

If you can give it the necessary time, I'm confident you can do it.

APPENDIX

A

Sources

Here are the addresses of companies whose products are mentioned in this
book:

Activision, Inc. (now Mediagenic)
3885 Bohannon Drive
Menlo Park, CA 94025 -1001

Addison-Wesley Publishing Co., Inc.
Route 128
Reading, MA 01867

AmandaStories
1025 Martin Road
Santa Cruz, CA 95060-9721

Apple Programmers and Developers Assn.
290 SW 43rd St.
Renton, W A 98055

556 HYPERCARD DEVELOPER'S GUIDE

CE Software
801 73rd Street
Des Moines, IA 50312

Farallon Computing
2150 Kittredge Street
Berkeley, CA 94704

Hayden Books
4300 West 62nd Street
Indianapolis, IN 46268

Heizer Software
1941 Oak Park Blvd., Suite 30
Pleasant Hill, CA 94523

HyperAge Magazine
108 E. Fremont Ave.
Suite 122
Sunnyvale, CA 94087

HyperNews
TRU, Inc.
31849 Pacific Hwy. South., Suite 115L
Federal Way, WA 98003

HyperPress Publishing Corp.
P.O. Box 8243
Foster City, CA 94404

Impulse, Inc.
6870 Shingle Creek Parkway, #112
Minneapolis, MN 55430

MacroMind, Inc.
1028 W. Wolfram St.
Chicago, IL 60657

Mainstay
5311-B Derry Ave.
Agoura Hills, CA 91301

Symmetry Corp.
761 E. University Dr.
Mesa,AZ 85203

Think Technologies
135 South Road
Bedford, MA 01730

The Voyager Company
2139 Manning Avenue
Los Angeles, CA 90025

Appendix A 557

APPENDIX

B

Interactive Sound in
HyperCard

Part One

Introduction

By Tim Oren
Apple Computer, Inc.

Reprinted with permission of
Hyper Age Magazine

You can't use HyperCard without noticing the sound. From boings to clips
of Beatles music, it seems to lurk under every button. What's not as obvious
is that simple H yperTalk scripting can extend these sound fragments into full
length synchronized sound and graphics shows. These shows achieve a feel
similar to video production, and can be played straight through or interac­
tively controlled, much like a VCR. You can use this technique to build
presentations and training materials, create narrated tours of a HyperCard
database, or design your own music videos. This is the first part of a two-

560 HYPERCARD DEVELOPER'S GUIDE

installment article explaining the scripts which make this possible, and telling
you how to set up your own HyperCard sound production studio. While
writing I have assumed that you have a basic familiarity with Macintosh,
HyperCard and HyperTalk.

HyperCard Sound Basics

First, some basics of Macintosh and HyperCard sound.

What is Sampled Sound? Mac sound is produced with a technique called
digitizing or sampling. It's the same method used in compact discs and
sampling keyboard instruments. In the digitizing process, the original sound
waveform is examined many times per second (see Figure B-1). Each time the
amplitude of the sound wave is recorded and stored in the computer,
producing a data file. Later, the digitized sound is played back by fetching the
data from the file at the same rate at which it was recorded, and driving a
loudspeaker to the recorded amplitude for each instant. This will recreate a
facsimile of the original sound waveform.

Any digitized sound has two characteristics: the frequency at which it was
sampled, and the precision with which the sound level is recorded. The best
quality sound from a Macintosh Plus or SE uses 22,000 samples per second (or
22 Kilohertz, written as 22 KHz) with a precision of one part in 256, corre­
sponding to one byte per sample. Thus, sound digitized at this rate will

----------------------_. __ .__..__.~TIME____.,_Sampling
Interval

Figure B-1 Digitizing a Sound Waveform

Appendix B 561

consume 22 Kbytes per second of playing time. Compare this to compact disc
audio, which samples at 44KHz with 16 bits precision, producing 176 Kbytes
per second for the two stereo channels.

HyperCard stores these digitized sounds in the resource fork of a stack file
with resource type "snd." Each sound is given a name unique within the stack.
H you are familiar with the use ofResEdit, try opening up a sound effects stack
and examining the digitized resources. We'll worry about how the resources
are created later- first a look at the HyperCard commands that use them.

HyperCard Sound Commands The basic HyperTalk sound command is
p I a y. Its syntax is p I a y 8 H a 11 e, where sName is the name associated with
an "snd" resource in the current stack, the home stack, or HyperCard itself.
P 1 a y loads this piece of digitized sound into the Macintosh's memory (assum­
ing there is room), and calls the Toolbox Sound Manager to begin the output.
The Sound Manager is capable of queueing up sounds in memory, so you can
issue multiple p I a y commands, and the sounds named will be heard in order.
Be warned that the p 1 a y command issues no error warnings. If the sound
named does not exist or there is insufficient room in memory, all you will hear
is silence.

An important variant on p I a y is p I a y 8 t o p, which stops the current sound
immediately and flushes it and any other queued-up sound resources from
the Macintosh's memory. You should also enter play stop if you abort a sound
using command-period, in order to flush any sound fragments from memory.

(The playcommandcanalsospecifysequencesofnotesandduration. This
is used in playing tunes with short, digitized samples of an instrument. This
variant is not used in this article; see the Help Stacks for more information.)

A companion H yperTalk function is t he 8 o u n d. This returns the name of
the sound resource that is currently being played. If there is nothing being
played, the value done is returned. This allows your script to monitor the
progress of a sound sequence.

All SCSI System A requirement of HyperCard sound is use of a system with
a SCSI hard disk. The sound stack, HyperCard, and the system itself must all
be stored on a SCSI device. This is necessary because the Mac floppies and old­
style HD20 hard disk are driven by the IWM "Integrated Woz Machine" chip.
Due to timing requirements, the chip momentarily turns off the sound when
accessing the disk. Sound played under these conditions will suffer from
buzzes, clicks and dropouts.

Memory, Sampling, and Aliasing HyperCard can play sounds which have been
sampled at four different rates: 22, 11, 7.4, or 5.5 KHz. Lower sampling rates
create fewer data points and use less memory for equivalent time. This lets

562 HYPERCARD DEVELOPER'S GUIDE

you fit more sound in memory and on disks. As we'll see, minimizing the
amount of data to be transferred between the disk and memory is also
important in continuous play.

On the other hand, low sampling rates cannot reproduce high-pitched
sounds. One-half the sampling rate is called the Nyquist frequency; sounds
above this pitch are not reproduced accurately. So a sampling rate of 5.5 KHz
will lose sounds above 2,750 Hertz. This amounts to losing everything from
the middle of the third octave over middle C. Obviously, you don't want to
use this rate for music, though it might serve for intelligible voice narration.
Throughout my examples, I will use the 11-I<Hz rate, with a Nyquist fre­
quency of 5,500 Hertz. This is adequate for most popular music and compares
favorably to the audio fidelity of video equipment, though it's much poorer
than CD sound.

Another sampling phenomenon you should be aware of is aliasing. Essen­
tially, an incoming pitch above the Nyquist frequency will be played back
falsely shifted down by the Nyquist number. For example, a steady tone at
5,600 Hertz would sound like a low hum at 100 Hertz when sampled at 11
KHz. With real music, aliasing creates an odd buzz or chirp when a high pitch
should be present. To avoid this, you must remove the high frequency part
of the audio before sampling. This is done with a low-pass filter or a graphic
equalizer. I'll discuss these devices under hardware.

A Simple Slide Show Script

The basis for continuous sound is quite simple. We'll explore it first with a
noninteractive, sound synchronized slide show.

Fundamentals of the Technique The essential trick is to use the play command
to keep two sounds in memory at all times. One is playing, the other is waiting.
The sound is called repeatedly to monitor progress. When the current sound
changes, you know that the first sound has completed and play has moved to
the second. A play is then issued to set up yet another sound for output,
reusing the memory freed by completion of the first. In this fashion, a
HyperTalk script can double buffer a continuous stream of sound resources
through the Mac without overflowing its memory.

Synchronization is achieved as a side effect of the cuts between sound
segments. During production, the break between sound resources is posi­
tioned just at the significant phrase or note. The playback script is set up to
display the appropriate card when the sound notes this transition, just before
loading a new sound.

Now look at the script "play It'' in Listing B-1. It takes one parameter, the
name of a card of background type ''Play List." A sample Play List is shown in

Appendix B 563

Figure B-2. Cards of this type associate sound cues with actions. The Play List
is read top to bottom. The leftmost column is a background field called "Cue,"
and holds the name of sound resources. Looking in the play It script, you can
see that a blank Cue line allows the PlayList to continue immediately, but a
filled in Cue line causes the Play List to pause until the sound named begins
playing. The script also checks for the value "done" as a precaution, so that
the Play List does not hang if the sound was unable to load or was misnamed.

The second column in the PlayList is background field "Do." This may
contain a single statement of HyperTalk which playlt will execute after
waiting for the corresponding Cue. Typically, this line will assign a visual
effect for an upcoming card transition, but you can also use it to perform
animation effects such as hiding and showing a button or field, or invoking
card level scripts that implement more complex actions. This field is also used
to chain between multiple PlayLists, by including the statement "playlt
nextList'' as the last line on one card, where "next List'' is replaced with actual
name of the following Play List.

The third Play List column is background field "GoToCard." If filled in with
the number or name of a card, the play It script will cause that card to appear
after any H yperTalk statement from "Do" is executed. Numbering of cards
has a slight performance edge over naming, but does require Play List changes
as slides are inserted or deleted.

On cue Do... Go To Card... and Play ...

.. ----········- -·······"-···---"··-·-·"············-·······-······- .~~····"···-- .Q.Qr~1---l
---·--· ······---··- ···········------... " -·""""-- .li~~2----a
.~''"'"'--"· .Y.~..\!!1 eff!.9.1.~~1Y..t._ _"' 2S!. 883 I-----·- !ilitt .. 9.WLfield "'LJ.~tJ..:_g.f...llt).!:lltr.~.---
1 ______ ~~•m~~ield~!~~~~~n~tx~t~ct~rd~----~-t~--..--..__11t-------~
~~--~~.m~~~fietd"b!~~~~~~~---u~~----~
882 visual tffect 2h.t.pktrboard 24 • 884

1------·n·~how card flelt.:l=.:il'l£~1.._.." --------tr----tl------1
1-----~•·~how card fi~l~t-'1.Jr.lfn~t~2·~-------n---it------l

show card field "'Lint3"
.~,83 .2~ 885
BB4 visualtffect dissolvt ,26 886
885 yjsyal effect zoom 2RtD .27.:---n·------t
r--· .. .~"8:---lt·------1
-··-·--·"- ---· --"·-----·"---·-.. "- .~9 ~~..._7_ ----1
~~·---- !ll~t .. !t.¥..tii!lU.9.P.YP..:.~!..nW"~~JJ-·--" _ .~.2....." .. --1•··"~~ :.tt:~t...----t
r---···· .. ·---··- .f.b.9.~-9.i.r.~ fie.Jsl .. ::eSP.YP..:_· -----········- -"---·· ·----~
J~l--···- P.liY.!!.::.8Jue lt\l~.!.t.~.::. _____ "_··········"-· ·-·"""-· ·-····-·--"
.......... __ _ 000000-.. H .. -H OOOOH_ ,, __ ,_ ___ OOOOOOOOOH-o _ .. ,H-000 OMOO ____ N_
" - ... - ... " .. _ _ - __ ... " .. -····"""'-····--····· ···- ,_ .. ___ . ·"-
r·"·"--··M- _ - .. - -········---~··-....... " .. _ ----... -"·"--·-
......... _____ '"""_._ _ .. "_···--·"·---···· .. ···- ----- --·--

Figure B-2 Sample PlayList Card

564 HYPERCARD DEVELOPER'S GUIDE

The final PlayList column is background field "NextUp." It is used for
naming the next sound resource to be loaded. The load takes place after
HyperTalk statement execution and card transition, if any. It is really this
coordination of sound segment changes and new sound loads that keeps the
whole system breathing.

The sample Play List given is one scene from a lengthier production. No
sound is playing when the scene begins. The first Cue is blank, so card number
22, the title, is immediately displayed and sound segment "BBl" is loaded and
begins playing. On the next line the second sound segment is loaded into
memory with no wait. On the third line we test that BBl is playing (it should
be), set up a visual effect and dissolve to the next slide. We also load the next
sound segment; these particular sounds were cut so that three segments
would fit in memory at once. The following three lines demonstrate a simple
animation; three text fields are hidden on the next card. On seeing the
transition to sound segment "BB2", the Play List does a checkboard transition
to the following card, leaves a short pause during the loading of the next
sound segment and then exposes the hidden fields one by one. You can read
through the rest of the Play List, including its transition to a following scene.

Listing B-1. Basic Sound and Slide Show Script

on playlt scl"lpt
--How many lines In thle Playllst?
put the number" of I lnes In bkgnd field •cue• of cal"d scl"lpt ~

Into cueTotal
-- Loop oual" Playl 1st I lnea
l"apeat with cueHo a 1 to cueTotal

-- Uall fol" cue if necessary
put I Ina cueHo of field •cue• of card script Into Cue
If Cue Ia not empty then

wall until the sound Ia •done• or the sound a Cue
end If
--Executa HyperTalk statement If present
put line cueHo of field •Do• of ca!"d acl"lpt into Dolt
If Dolt Ia not empty then do Dolt
--Change cal"d displayed If l"equeated
put line cueNo of field •GoToCal"d• of card script Into GoTo
If GoTo Ia not empty then go to card GoTo
-- Queue up next sound, If any
put line cueHo of field •HaxtUp• of card script into HextSound
If NextSound Is not empty then play HextSound

end repeat
end playlt

Appendix B 565

Production Hardware and Software

The minimal system configuration for HyperCard sound is a Mac Plus with
a SCSI hard disk. To get the sound into the Macintosh you will need an audio
digitizer, a peripheral which performs the actual sampling of an analog signal
under control of the CPU. Two competing models are available from Impulse
of Minneapolis and Farallon of Berkeley.

Digitizing Hardware The Impulse Audio Digitizer with SoundWave has been
available for some time at a retail price of $199. Discounts from dealers and
mail order are common. The current model of the Digitizer itself is an
anodized aluminum box with a level control, RCA jack for audio input and a
nine-pin, D-style RS-232 connector for computer control and digital. The
Digitizer requires a five-volt power supply. Since the Plus and later Macin­
tosh models use a DIN-style RS-232 connection without five volts, you will
need a power and cable adapter such as the PowerPort. The Digitizer can
sample at all four Mac rates: 22, 11, 7.5 and 5.5 KHz. It does not delete higher
frequency sounds before digitizing, so you will need to connect a graphic
equalizer or low-pass filter in the audio line ahead of the Digitizer to avoid
aliasing.

SoundWave is the name of the accompanying software. It provides the
abilities to play the incoming sound in "oscilloscope" mode for leveling, and
will then capture a segment of digitized sound up to the limitS of your Mac's
memory. The sound editor functions let you look at the sound wave in two
resolutions and select and modify sections by point-by-point editing or effects
such as amplification, ramp up or down, reverb and flange. Sound is stored
in a special file format that must be converted to HyperCard resource format.
SoundWave seems to be a reliable package with the bugs worked out.
SoundWave and the Digitizer are available from Impulse, Inc., 6870 Shingle
Creek Parkway #112, Minneapolis, MN 55430, (612) 566-0221. (Note: An
earlier version of SoundWave called Sound Cap may be available from exist­
ing users or dealers with slow turnover. This lacks many features of Sound­
Wave, but does have a useful zoom in/out feature for examining the wave­
form. However, it will work only on a Mac Plus because of an incompatibility
with the Desktop Bus system used on the SE and Macintosh IT.)

The new kid on the block is the MacRecorder from Farallon, also priced at
$199. The external hardware has all the features of the Impulse Digitizer and
then some. A microphone is built in for direct voice input. The RS-232
connector will plug directly into the new Macintoshes and no external power
is required. The unit also incorporates a low-pass filter, removing the need for
an outboard filter or equalizer. The filter correctly switches characteristics for
the different sampling frequencies.

566 HYPERCARD DEVELOPER'S GUIDE

Two pieces of software will be provided with the MacRecorder. Hyper­
Sound is a stack that allows control of the Recorder directly from H ypetCard.
Sounds can be sampled in, manipulated and stored directly into a stack in
"snd" resource form. It even generates buttons preprogrammed to play the
sound clips. One warning: HyperCard uses a lot of memory itself and may
limit the size of sounds that HyperSound can manipulate. You may find a
need for two megabytes if you do extensive production.

SoundEdit is a companion standalone application that provides more
sophisticated capabilities. It is memory based like SoundWave and includes
similar editing capabilities, plusafullzoomin/outcapability. Farallonclaims
that SoundEdit provides a more intuitive interface to the editing functions,
allowing mouse-based specification of amplification envelopes, for instance.
SoundEdit can also store its results directly into stacks in resource format.
Farallon Computing can be reached at 2150 Kittredge, Berkeley, CA 94704,
(415) 849-2331.

When the Farallon system emerges from vaporware, it will be the one to
beat. For the same price it provides greater compatibility with HyperCard
and does not require power and cable adapters or use of an equalizer. Like
most new software and hardware, some first version bugs can be expected. In
the meantime, the Impulse configuration is proven reliable and from personal
experience does quite an adequate job.

Playback System Given the fidelity limits of the sampling process, the choice
of audio components is not critical, so long as playback speed is accurate. A
consumer grade cassette deck should be adequate; avoid "boombox" ma­
chines. Likewise any component turntable or CD player should suffice. H
digitizing sound tracks from video tape, use HQ machinery only and expect
some hiss; a professional3/ 4-inch U-matic system is better. If you are using
the Impulse Digitizer, you will also require a graphic equalizer to eliminate
high frequencies. Again, consumer grade devices will serve since you are
blocking out entire bands rather than achieving precision control.

Useful Software Finally, you will find some software items to be useful. If you
are using the Impulse Digitizer, you will need a public domain stack called
SoundCapConverter written by Bill Atkinson. This takes the files produced
by SoundWave or SoundCap and inserts them into a stack in the required
"snd" format. You can obtain this stack from most HyperCard user groups,
bulletin boards, or on-line SIGs. A copy of the ResEdit program is also helpful
for checking which sounds are present in a stack and moving or deleting them.

A good quality paint program is needed for touching up scanned images
and trimming them to size. You want one that does a good job of handling

Appendix B 567

larger than screen size images, so you can pick the part that looks best for your
slide. My favorite is Super Paint; FullPaint is also a good choice. Finally, you
can keep short production plans and storyboards in your head or on scratch
paper, but you may want some planning help as things get complex. I find
More and Excel to be useful in structuring scripts and building production
plans.

Production Techniques

Producing HyperCard sound shows is similar to video production. Before
beginning work, you should prepare a storyboard containing the song lyrics
or voiceover narration juxtaposed to a sketch of the corresponding images.
This will be your guide for cutting the sound. The allowable time per image
depends on system performance and is discussed below.

You should then digitize the sound, saving out segments which correspond
to the slides in your storyboard. If you need more sound than will fit in
memory during digitizing, you may need to do some splicing. Here is a crude
but effective method: Successively select, save and delete segments from your
large sample. Eventually you will be left with a residue at the end of the sound
buffer. Display its first several hundred cycles on the screen (here's where
zoom helps), and do a screen dump to the printer. Back up the sound input
and digitize another buffer full. Select the same zoom level and match your
printout to the new screen to find the corresponding start location for the next
segment. This procedure is low tech, but amazingly accurate in avoiding pops
and clicks when splicing.

After digitizing you should prepare a sound test Play List, which simply
sequences through the sounds in order without changing the screen. This lets
you detect errors in the digitizing as well as any performance or memory
overflow problems.

Nowyouarereadytopasteupyouroriginalorcapturedimagesontocards.
Unless you are trying for special effects, use a blank background for these
cards and make your entire graphic transparent. Selecting transparent saves
HyperCard from loading an entire bit plane. Name the cards or record their
number as you work. Referring to the storyboard, put the card designators
onto the Play List line that matches the associated sound cue, and retest the
entire show.

Finally, add visual effects or animation scripts to the PlayList as desired.
Remember that visual effects, particularly those specified as slow or very
slow, consume CPU time and can affect sound performance, so retest once
again. If everything works, you have completed your first HyperCard sound
production!

568 HYPERCARD DEVELOPER'S GUIDE

Performance Considerations

As with many things, sound production and performance are not as simple as
they first appear. Memory and CPU speed limits rear their ugly heads to
complicate matters. You can follow some safe rules that I outline at the end
of this section, but if you want to use special effects and fast cuts, you should
be aware of the limits that follow.

All of these limits come from an inevitable fact: Sound playback burns 11
I<bytes per second (at my usual sampling rate). There must enough processor
and disk bandwidth available to keep the data flowing at that rate, as well as
to perform card flipping and script execution for the slide show. There must
also be enough RAM available to store the sound while it is waiting to be
played.

H these requirements are not met, the sound presentation will fail in one of
two ways, both of which cause a break in the playback. H the data cannot be
brought into memory fast enough, there will be a silent period while the Mac
catches up, but the performance will resume without a loss of sound. If there
is insufficient memory available, play will lose that sound segment, and a
silent period with loss of material will result. Noting the type of failure will
tell you which problem has occurred.

There are several factors to weigh in diagnosing and avoiding these
problems. First, consider the speed of transfer from the SCSI drive to the Mac.
Older disk drives, such as the Seagate ST225 movement used in many external
hard disks, have a slower access and transfer rate than newer disks such as the
Mac SE' s internal drive. The model of Macintosh makes a difference also. A
Mac ll is fastest, of course, but the SE' s SCSI transfer is markedly faster than
the Plus, due to a rewrite of the SCSI ROM code in the newer model.

Because you are working through both HyperCard and the HFS File
Manager, performance considerations enter at these levels. You should
periodically choose the Compact menu option for any sound stack under
production. This rearranges the stack for better performance. If you are doing
large sound productions on a small hard disk, you should check the degree of
disk fragmentation periodically, using a utility such as FEdit. A fragmented
file structure will force the hard disk to perform a seek operation frequently,
slowing the transfer of sound to memory. To fix this, copy the contents to
another drive and reformat before copying back.

You should also consider the time and space requirements of your graphics
and desired effects. Line and area graphics compress more efficiently than
dithered images, and hence load more quickly. Script-driven animations and
visual effects consume processor time.

Think about the effective memory size of the machines on which your
presentation will run. There must always be room to buffer sound segments

Appendix B 569

as specified by your Play List. On a one-megabyte machine you may need to
tum off the RAM cache. Also beware of large INIT resources that gobble up
space in the system area without warning.

Distilling all of these considerations, here are some rules of thumb I have
found to work on a base configuration of a one-megabyte Mac Plus using an
older HD 20SC, playing sound digitized at 11 KHz: Plan on turning off the
RAM cache. Cut your sound at six to eight-second intervals. You may need
to vary outside the six to eight-second limit for dramatic purposes; do so
sparingly. Sounds under four seconds take longer to load than to play; sounds
over 10 seconds may overflow memory. Keep a regular cutting rate when
possible. You can have faster image cutting rates, but not in synchrony with
sound. Time them with HyperTalk wait commands, or base them on side
effects such as the loading time of a sound segment.

The greatest influence on your production will be whether you can control
thechoiceofplaybacksystem. Ifyoucan guarantee that your fancy boardroom
presentation will be played only on a Mac IT, then you can be very ambitious
in choosing effects. If your production is for public release, you had better
assume and test with the basic configuration.

I suggest following these rules for your first trial. Then you will want to try
some special effects, so here are a few ideas. Try out all of HyperCard's visual
effect palette. Experiment with d I 8 8 o I u e t o b I a c k , • I p e t o I n u e r 8 e and
other variants.

You can create animation effects with buttons using the hide and show
commands, or by changing their location under script control. A show
command is the fastest to execute because it only causes the button to be
drawn, while hiding and movement require redraws of several graphics
planes.

Text fields can also be hidden, shown and moved. The same performance
considerations apply. You can also have your script insert characters into a
field, given the appearance of text flowing onto the screen. Each insertion
causes a redraw, however. Often, an equally dramatic effect can be created by
doing a slow wipe right to a card with graphic text, giving the impression of
typing.

Dramatic card ffipping animation can be achieved if the images are kept
simple. Again, line art or block graphics work best. You can animate a small
area of a complex image by putting the full image into the background and
changing only the smaller area on each card. HyperCard is smart enough to
load the large background only once. Finally, for blazing speed you can
"prewarm" cards in memory by locking the screen and visiting each card,
which forces it to be loaded into memory. Then return to the first card, unlock
the screen, and step through the cards at maximum speed. Be aware that this
trick competes heavily for the memory and CPU resources needed for sound,

570 HYPERCARD DEVELOPER'S GUIDE

so use it sparingly. You can also use the "prewarming" technique if you
require precise synchronization to a sound cut and are unwilling to wait for
the card to load.

This concludes the first installment of the article. The conclusion will be
presented in the next issue of HyperAge, and will describe scripting for
interactive control of sound playback as well as ideas for using these tech­
niques for realtime tours of HypetCard stacks.

Part Two

Introduction

The HyperCard sound stacks described in the first installment of this article
are useful and entertaining, but not truly interactive. Their flow is linear­
once begun, the only way to affect the play is to terminate it completely.
However, more advanced HyperTalk scripting will let you use the same
production techniques to create sound stacks which are controllable in a truly
interactive fashion. Performances can be paused, scanned forward or back
and resumed. While paused, the buttons on a displayed card are active, so that
the viewer can branch into an underlying database, returning to resume the
sound show later. In this issue of Hyper Age, I conclude this two-part article
by describing these scripting techniques, suggesting applications and oppor­
tunities for improvement, and considering the implications for the Macintosh
interface and interactive media in general.

Interactive Sound Tours

Before jumping into the scripts, take a look at the card images in Figures B-3
and B-4. The first contains one of the images to be shown during a sound
playback (it happens to be a picture of Bill Atkinson). At the bottom is a panel
of control buttons. Each display card in the interactive sound stack contains
this panel as a background element. The clear area above the panel is a "view
screen" in which graphic elements, fields and buttons are pasted.

Stack and Background Structures The control panel icons are meant to be
suggestive of those used on tape or compact disc players, and the functions are
similar. To flip forward or backward through the cards in the show, you dick
and press on the double right or left arrows, respectively. Clicking the left
arrow with bar rewinds to the beginning of the show. When the single right
arrow is clicked, it starts up sound playback at the passage associated with the

Appendix B 571

Figure B-3 Sample graphic card with controls

On Cue Do... Go To Ce rd... md Plev ...

·-----··----···············-···· ..1.. .~.!k1.'----·
······-----··········-··-· ···············-···················-······················-······--·--·--·······-······ -~·····-·····-- .e.!k!~----·············
·······-·-············-- ~.1\i.t.~Q ... -~···········-- -·····-··············-········
1.,.,.,.,..,-----1 Yl~.\!~.l.!ff~.9.!.~!.~~.2!Y..t. ---------············ -~--·--111-----·-
!!.11~-2 ____ Y!~.\!~.l.,fft~.!.iri~!IP.~.L --··-···· ~ ~.!kJ..L__
1---·----· :l!r.1\i.t!? .. Q ____ ,,,. ____ ••• _______ _

Blll3 . .l(j~_\!:l.Ltf.ft.9..\.'l!r.!P..t ... \l.~.l!ro--------····-·········· ·~ .!!!l;i"4----l

1------1 ~1\i~P~------------------·U------~~--------~
----··--· .l!.i.~lt~.l.!ff!£!.~ .. ~.2!!1..2P..!n . B~---11·--------1
.lil!lk.i.--.··················· ... _,_......... ······--··- .~Jk!~---·-·····
·-·--··············· .Y..!~.\!:l.l .. t.ff~.9.!.ir..f~ . .ll.l9.~!-....................................... _ _ .. _... -~-----·····-·· ·--····--·-·-···

i 11k5 :::~~==:: :::::::::::===~~=:==-=-::::::::::::::::::::===== ::l:i::::= :ij:U:!~---·······
=:--·················· .'l!r.!i.Lt.;?.Q __ ···--·----································----- ..!.;?. ___ ---· .
~J1k9 . ······-- ··························-----··-· . .1.~·-···-- .e.M:z--····
t;I.J1l7 J.1-----11------
don• vis.\.1~1 •ff•ct djssoln J).2)(.._ .1 ~'....---111-------1

-------------······-----11-----U·-----1
1---··- --· ···········---···--·---···············-·········-·------ ·--·-···- -·------

-----------····--··--·------
····---·····- -----····-··-···············-··-··------·· ·-·····-···--U·---·-
Previous Pl1~llst : Nexl Pliylist:

Figure B-4 Sample PlayList

572 HYPERCARD DEVELOPER'S GUIDE

current screen. After the sound has begun, clicking anywhere on the screen
stops the show and reactivates the control panel and any other buttons on the
card in view. (The stop icon is present only to complete the visual metaphor.)

As with the linear sound productions, the flow of the presentation is
controlled with one or more ''Play List'' cards hidden at the end of the stack.
A Play List is shown in Figure B-4. As before, it contains columns of sound cues
to wait for, HyperTalk commands to be executed, numbers or names of cards
to be shown and sound resources to be loaded for playing. Actions following
a cue read left to right, the whole show reads top to bottom. This Play List card
differs, however, in adding two new background fields, "Next" and "Previ­
ous." These fields will contain the names of PlayList cards that follow or
precede this one in the production. If there are no next or previous Play Lists,
the respective field is left blank.

Scripting These previous and next pointers are used to associate the various
Play Lists of a production into one long bidirectional list which can be scanned
forward and back. Looking now at the stack level scripts in Listing B-2, you
will see that the 1 o ad P 1 a y L 1 8 t handler takes the contents of a Play List and
stores them in global variables for faster access. An additional global,
now P I a y I n g, is an index to the Play List line which is currently active.

The c h an 9 e cue routine implements the virtual bidirectional list using these
globals. Given the current position and a command to move forward or
backward, it will check if the intended movement will run off the front or back
end of the current Play List. If so, chan 9 e cue will chain to another Play List as
given by the next or previous pointer. If the intended movement cannot be
completed, changeCue returns a function value off a I 8 e, otherwise it is t rue.

The main loop routine during sound output is p 1 a y T h 1 8. It is very similar
to the previous linear playback script, except thatch an g e cue is used to move
between PlayList lines, and its failure is the signal to terminate the show.
Holding the mouse button down also stops the presentation.

The real trickery comes in the p I a y Fro 11 script. This is activated when
restarting the play in the middle of a show. It assumes that the Play List which
contains the desired graphic has already been found. The job of p I a y Fro 11 is
to find the precise location of the restart graphic in the "Go To" column, to
figure out what sound is associated with that graphic, and to load and begin
playing that sound and any other required sounds before fully activating the
Play List.

The bidirection Play List list structure implemented by change cue must be
used, because the setup for a particular graphic might extend back to the
preceding Play List. Therefore, p I a y Fro 11 starts at the first line of the current
Play List and works forward until an exact match of the desired graphic card

Appendix B 573

is found. Then it works backward to find the first non-blank sound cue. (Note
that if there is no cue directly associated with the restart card, the show will
~ctually resume with the preceding cue and its associated visual.) Having
found this cue, p 1 a y Fro" continues backward until it finds where the sound
was loaded. It loads and begins playing this sound. It then works forward,
finding and loading other sound pieces which appear in the Play List before
the restart point. Notice that if p I a y Fro 11 runs off the beginning of the
Play List chain, it will simply start the show at its beginning.

Listing B-3 contains two of the control panel scripts. The play button uses
HyperCard's find function to locate the Play List that contains the number of
the current graphic card, then turns control over to p I a y Fro 11 to figure out
the exact restart sequence. (If you want to name rather than number your
cards, some simple changes to this script will be needed.) Note that if a
particular graphic card appears more than once in the presentation, this script
will restart on its first occurrence given the order in which the Play Lists are
stored in the stack.

The forward script flips through the graphic cards as long as the mouse is
down. It stops at the last card of the control panel background type. A
shortcut is provided to jump immediately to the last card when the control key
is held down. (The backward button script can be generated from this script
by replacing I a 8 t with f I r 8 t, and n e x t with p r o v I o us.)

Listing B-2. Interactive Sound Script.

on i dIe
set lockScreen to false

end Idle

on loadPiayllst script
-- set up global values for PlayList card script
global Cues,nu~Cues,Does,GoTos,Hexts,HextPL,PreuPL

put bkgnd field •cue• of card script Into Cues
put number of I lnes in Cues Into numCues
put bkgnd field •oo• of card script Into Does
put bkgnd field •GoToCard• of card script into GoTos
put bkgnd field •HextUp• of card script Into Hexts
put bkgnd field •Hext• of card script Into HextPL
put bkgnd field •Previous• of card script into PreuPL

end I oadP I ayl let

function changeCue for~ard

moue the current cue pointer
-- for~ard Is true to advance, false to go backmard

574 HYPERCARD DEVELOPER'S GUIDE

-- returns false if at end/beginning of Playllsts, elsa true
global Cuas,numCues,Doas,GoTos,Haxts,HaxtPL,PrauPL
global nomPiaying
if forward Is true than

-- Going forward. Rt end of this Playllst?
If nowPlaylng Is numCuas then

-- Rt end of at I Playllsts?
If HextPL Is empty then return false
loadPiayllst nextPL
put 1 Into nowPiaylng
return true

end If
add 1 to nowPiaylng

else
-- Going backward. Rt beginning of this Playllst?
if nowPlaylng Is 1 than

-- Rt begin of first Playllst?
if PreuPL Is empty then return false
loadPiayllat preuPL
put numCues Into nowPiaylng
return true

end if
subtract

end if
return true

and changeCua

on playThls

from nowPiaying

-- This one actually does the playing
global Cues,numCues,Does,GoTos,Hexts,HextPL,PreuPL
global nowPiaylng
hide menubar
hide mag
repeat

--Heed to wait?
put I Ina nowPiaylng of Cues Into Cue
if Cue Is not empty
then walt until the sound Is •done• ..
or the sound a Cue or the mouse is down
if the mouse Is down then

play stop
exit playThls

end if
-- Rny code to do? (Ue keep reusing local uarlable Cue)
put I ina nowPiaying of Does Into Cue

if Cue is not e~pty then do Cue
-- Any card changes?
put I lne no~Playing of GoTos Into Cue
If Cue is not e~pty then go to card Cue
-- Any sounds to load?
put I Ina nowPiaying of Hexts Into Cue
if Cue is not e~pty then play Cue
-- nore to the script?
if changaCue(trua) is false then exit repeat

end repeat
end playThis

on playlt script

Appendix B 575

-- A sl~ple entry to start the beginning of a playllst
global no~Piaylng

loadPiaylist script
put 1 Into nowPiaying
playThis

end playlt

on playFro~ scrlpt,cardHum
-- R fancy script to start/restart In the ~iddle of a playllsl
-- Cal I lng code must haua found script where cardHum occurs
global Cues,numCues,Does,GoTos,Hexls,HexlPL,PreuPL
global nowPiaylng
-- sal up script
loadPiayllst script
put 1 into nowPiaying
-- find where the card Is cal led
repeal

if I ina nowPiaylng of GoTos Is cardHum than axil repeal
If changeCue(true) Is false then exit playFrom

and repeat
-- Back up to the last cue.
repeat

if I ina nowPiaying of Cues Is not empty than axil repeat
if changeCue(false) is false than exit repeat

end repeal
put line nowPiaylng of Cues Into slarlCue
if slartCue Is not empty than

-- Back up to where the cue sound was loaded
repeal whi Ia changaCua(falsa) Is true

if I ina nowPiaying of Hexts is startCua then exit repeat
end repeal
-- Load cue sound, and alI other forward to start point

576 HYPERCARD DEVELOPER'S GUIDE

repeat
if I Ina nowPiaying of Cues Is startCue then exit repeat
if I Ina nowPiaying of Nexts Is not empty then~
play I ina nowPiaylng of Nexts
If changeCue(true) is false then exit playFrom

end repeat
end If
-- No111 posit I on ad correct I y - ro I I • em I
playThis

end playFrom

Listing B-3. Play Control Scripts

-- play button script
on DIOUSeUp

get the nuaber of this card
put It Into thlsNua
set I ockscreen to true
go to first card of bkgnd •Piayllst•
find thlaNum In bkgnd field •ooro•
If the resu It Is • not found• then

beep
go to card thlsHua
set lockscreen to false
exit aouseUp

end if
get the number of this card
go to card thlsNum
set lockscreen to false
playFrom lt,thlsNum

end aouaeUp

foruard button script
on mouseDoun

--enhanced function
If the commandKey Is down then

go to last card of this background
exit aouseDown

end if
-- else step through stack to last display card
repeat

If id of this card is ld of last card of bkgnd
then exit mousaDown
If not (the mouse Is down) then exit mouseDown

Appendix B 577

go to next card of this bkgnd
end repeat

end IDOUseDollln

Trying It Out H you have already built a sound production using the earlier
scripts, you can add interactivity by modifying your backgrounds as shown,
and replacing the sequential play stack scripts with the more complex ones.
There should be little variation in performance. If you would like to have an
example to examine and modify, I have produced a small interactive stack
called 11Bil1Sez." This contains a short audio message from Bill Atkinson and
fits on one floppy disk. It is available from CompuServe, the Well and other
networks, as well as through BMUG and many user groups. You are invited
to copy, modify and redistribute this stack as you please (though not for
profit).

Producing Graphics

The first installment of this article suggested that line and area graphics were
the most efficient for disk storage and presentation speed. However, simple
economics (and lack of artistic talent on some of our parts) mean that many of
the pictures for sound shows must be scanned from existing art. The native
HyperCard display format is the standard Macintosh screen size in 72 dot­
per-inch black and white. Two choices are available for image input.

11Contact'' scanners use a ceo array to digitize from a paper originaL They
come in feed-through and flat bed models and are capable of resolutions from
75 to 300 dots per inch. Generally, you should use a contact scanner when
legibility of type or line art on the original is important. You may need to
11tnagnify" the image using a higher resolution for the detail to show through.

A number of contact scanners are available for the Macintosh from compa­
nies such as Abaton, AST and Datacopy. Avoid feed-through models, as they
make it nearly impossible to keep vertical and horizontal lines registered. Be
sure to try a sample of your own material on the machine before buying, and
choose one with local support, if possible. Look for the abilities to scan at
multiple resolutions, and to produce a half-toned image. A scanner with a
SCSI interface to the Mac will be faster than one which uses serial communi­
cations.

Video digitizers for the Mac Plus and SE produce a black and white
dithered rendering of an incoming NTSC video signal. Video digitizing is
required when the original material is in this form, and also works well in
scanning original art with large half-toned or variable brightness areas. Art
that is video scanned should be mounted on a well-lit camera stand. Use a

578 HYPERCARD DEVELOPER'S GUIDE

good quality video camera, such as a Sony Pro 8 camcorder. Lesser equipment
may degrade the image due to poorer optics, and may lack the "macro"
capability necessary for closeup work.

There are two options for video scanning. The first is Mac Vision from PTI/
Koala ($400 list -look for cheaper prices from discounters), which was
originally created several years ago by Bill Atkinson. It is slow, several
seconds per scan, but still has the best dithering algorithm for representing
pictures in black and white dots. Because of its low speed, Mac Vision can only
be used with a still original, or with a videotape or videodisc player capable
of generating a stable, smear-free freeze frame. A new Mac Vision software
version, 20, was due to be released at the end of March. It will add gray-scale
digitizing ability with no changes to the hardware. The upgrade will be
available to owners of earlier versions for $80; current dealer stock includes a
coupon good for a free upgrade. (PTI/Koala, 269 Mount Hermon Rd., Scotts
Valley, CA 95066; 408-438-0946.)

An alternative to Mac Vision is Mac Viz digitizer, produced by Pixelogic. It
is more expensive ($595 from factory or dealers) and produces a grainier
image, but is capable of digitizing in near real-time- two video frames or 1 I
30th of a second. Choose this one if you need to capture from running video
and don't have access to a freeze frame player. (Pixelogic, 800 West Cum­
mings Park, Suite 2900, Woburn, MA 02180; 617-938-771 1.)

Be aware that some original images may not work at all. Low contrast and
fine detail can easily overwhelm the scanning and display capabilities of the
basic Macintosh. If you cannot use the entire piece of art, see if there are
scannable parts which still convey your message. A set of cardboard tem­
plates showing the screen rectangle at various scanning resolutions is a useful
homemade accessory for framing and composing these excerpts.

A good quality paint program is needed for touching up scanned images
and trimming them to size. You want one that does a good job of handling
larger than screen size images, so you can pick the part that looks best for your
slide. My favorite is Super Paint; FullPaint is also a good choice. If you'd like
to convert your scanned art into line and area graphics, take a look at Adobe
lllustrator. It is expensive and requires some learning, but can produce
stunning images which you may resize as desired before converting back to
HyperCard bitmap format. The most efficient graphics production setup
uses MultiFinder with HyperCard, your digitizing program and a graphics
editor all loaded at once, creating a true production line in one Macintosh.
This gobbles memory, though. Plan on four megabytes or more to do all of
these tasks at once.

Finally, while you can keep short production plans and storyboards in your
head or on scratch paper, you may want some planning help as things get
complex. I find More (an outlining program) and Excel (a spreadsheet) to be

Appendix B 579

useful in structuring scripts, keeping notes and building production plans.

Applications

Linear sound shows can be used to build presentations or to create personal
"MTV" productions that associate images with music. Interactive sound
considerably extends this range of application. You can create lectures that
display slides illustrating the point described, and which are also directly
linked to database stacks from which a student can retrieve further informa­
tion. A voice-over help system could describe the structure of a stack by
bringing into view cards that exhibit the features being described. HyperCard
educational "films" can be woven through reference material, using the
attractive power of animation and music to draw students' attention to
graphic and textual content which illustrate the curriculum. Industrial
training applications might use these techniques to add life to exploded
diagrams, textual instructions and parts lists. Audio sales presentations can
be fleshed out with substantiating data and examples for the potential client
to explore.

Possible Enhancements

There are many possible technical extensions of these techniques. For these
examples I have kept within the framework of a single sound stack containing
two background types. This has kept the complexity of the scripts and figures
to a level manageable in a two-part article. However, there is no reason that
these techniques cannot be extended to weave tours through multiple stacks,
or create multiple sound shows within the scope of a single stack. To
HyperCard can be added very simple XCMDs that use the Toolbox Open­
ResF ile and CloseResFile calls to allow a play command to access any sound
file in the system. Other XCMDs can "float" a modal control panel dialog over
any background type, manipulating the stack by calling back to H yperTalk as
the user clicks on the controls.

Such extensions could be powerful enough to allow the construction of an
"editing droid." Such a composing system would allow you to create and edit
sound productions by fetching graphics and audio from any part of the
system and combining the elements into a production by filling in a story­
board layout, rather than by manually creating and testing Play Lists.

HyperCard sound stacks get large very quickly. For anyone seriously
contemplating commercial applications, distribution becomes an issue. CD­
ROM (compact disc read-only memory) on the Macintosh may be a solution
to this problem. At Apple we have created test CD-ROMs containing sound
stacks such as I have described. We have found that the same production rules

580 HYPERCARD DEVELOPER'S GUIDE

outlined in the first part of this article will generate a sound stack able to run
directly from CD-ROM, even given its modest performance.

Conclusions

The uses of sound which I propose highlight a change in the style of Macintosh
user interface which HyperCard has begun. The standard Mac interface is
tool-like: the user is in control, the machine responds to external events, the
focus of the designer is on giving the user transparent access to the task at
hand, the appeal is cool and rational. In contrast, HyperCard sound exposes
the Macintosh as a hot dramatic medium, capable of evoking response at an
emotional level. The user becomes a viewer, the machine and its scripts must
seize control of the pacing and content of the experience. The content is more
art than engineering, and it cannot be created in the standard interface
paradigm.

If Macintosh can operate at both ends of this spectrum, it should work in the
middle also. But what is the middle? There are very few conventions for fluid
exchange of initiative, control and direction between human and machine.
Between the user-tool and viewer-player pairings of man and machine, there
may be a place for both to be participants in a kind of conversation.

HyperCard will force this issue to be confronted. It is capable of spanning
the range of interaction. It has been put into the hands of thousands of people
who will begin experimenting in new media with a fresh eye, without
requiring professional studios or budgets. My motive in describing these
sound techniques is to provide the ingredients for some of these experiments­
to-be. Go to it!

APPENDIX

c
Writing XCMDs in
Light Speed Pascal

The folks at Think Technologies (publishers of the LightS peed language
series) have modified the interface and glue routines originally written for
MPW by Dan Winkler so they work with the LightSpeed compilers. For
LightSpeed Pascal, they put the definitions into two files. The definitions are
in a file called "XCMD Interface.p" and the glue routines are in a file called
''XCMD Utilities. p." Move these files into your LightS peed Pascal folders.
Within these files, you learn that the names of the Pascal units for these two
sections of code are called ''XCMDintf' and ''XCMDUtils."

H you plan to use these files "as-is" in compiling your XCMD, then the files
must be added to the Project file in the order shown in Figure C-1. The DA
PasLib and MacTraps library files must be listed for all XCMDs. XCMDs that
call other parts of the Toolbox may need additional library files listed in the
project.

Your LightS peed Pascal XCMD source code must then include the names
of the two units in the Uses statement of the XCMD's interface section Also,
LightSpeed code resources require that the main procedure be called Main.
This is the procedure that has the parameter block pointer passed to it.

Thus, the basic outline of a LightSpeed Pascal XCMD is as follows:

582 HYPERCARD DEVELOPER'S GUIDE

_o Your New Project
Ol!tions Fil~ (b!j build ord~r~ Siz~ Unit Nam~ a DA Pulib 8084

M1oTr1ps 6006
D N Y R XCMD lnttrfac•.p 0 XCMDintf
D N Y R XCMD Utilitiu.p 1968 XCMDUtlls
D N Y R [IJour sourc• codt filt I 0 [YourUnit)

0
01 10 '2l

Figure C-1 The minimum listing of files that must be put into a LightSpeed Pascal
project. The order is important. Your XCMD code file would be listed at the end.

unit AnyUnlt; {any filler na ~ae will do}

Inte rface
ueee

XCMDintf, XCMDUtlle;

procedure MAIN (para111Ptr XCadPtr);

I 111 p I e 11 e n t a t I o n

procedure 11yXCMD (pa ra11Ptr XC11dPtr)
beg In

{code for your XCMD here}
e nd ;

pr ocedure Main;
bo g In

ayXCMD (paraiiiPtr)
e n d ;

e nd. (AnyUnlt)

Appendix C 583

You are free to define other procedures and functions in the implementation
section of your code, and then call them from the Main procedure.

When your XCMD source code is complete, be sure its file name is added
to the Project list. Then choose Build & Save As from the Project menu and
click on the Code Resource button in the standard file dialog. Whenever you
click this Code Resource button, you'll see a Resource Information dialog box
(Figure C-2) into which you may enter the Resource type (XCMD or XFCN),
the 10 (choose a number from 128 to 32767) and the resource name. The
resource type you assign to your code determines how HyperCard treats the
return value of your external code. The resource name is the name of the
command or function you'll be calling from your HyperTalk scripts.

LightSpeed Pascal compiles a code resource to a disk file. As it compiles
each unit, it performs error checking. If you haven't modified the XCMD
interface and glue units, they should compile without a hitch. Any obvious
bugs in your own XCMD source code will be pointed out to you by the
compiler. During compilation, LightSpeed Pascal removes unneeded glue
routines from the code. When the compile is successful, quit LightSpeed

Resource Information

Type: JHCMD 10: 1 6o9a

Name:~l ~~~~~~~~
(OK) (Cancel)

s~~~~~~~==~====~

f About Code (Cancel)

0 Application 0 Desk: Accessory
0 Library 0 Driuer
0 Compressed Project ~Code Resource

Figure C-2 Building and Saving as a code resource brings up this dialog box. Spedfy
the XCMD or XFCN type, assign it an ID number, and provide the name which you'll be
calling from your HyperTalk script.

584 HYPERCARD DEVELOPER'S GUIDE

Pascal and use Res Edit to move the resource from this code resource file to the
stack of your choice.

With reprint permission from Think Technologies Division of Symantec
Corp., here are the interface and glue units for LightSpeed Pascal:

File XCMD Interface.p

Hypercard MCMD Interface unit for Llghtspeed Pascal }

(c) 1987 Symantec Corp. THIHK Technologies Division }

Adapted for use with Llghtspeed Pascal from Information
provided by Apple Computer, Inc. }

unit MCMDintf;
Interface

co nat

result codes }
xresSucc .. 0;
xresFall .. 1;
xresHotlmp .. 2;

request codes
xreqSendCardMessage .. 1;
xreqEvaiExpr = 2;
xreqStrlnglength a 3;
xreqStrlngMatch .. 4;

xreq2eroBytes = 6;
xreqPasTo2ero a 7;
xreq2eroToPas 8;
xreqStrTolong = 9;
xreqStrToHum a 10;
xreqStrToBool a 11;
xreqStrToExt = 12;
xreqlongToStr = 13;
xreqHumToStr .. 14;
xreqHumToHex = 15;
xreqBooiToStr = 16;
xreqExtToStr a 17;
xreqGetGiobal = 18.;
xreqSetGiobal = 19;
xreqGetFieldByHame .. 20;

xreqGetFleldByNum a 21;
xreqGetFieldByiD a 22;
xreqSetFieldByName • 23;
xreqSetFieldByNum a 21;
xreqSetFieldByiD a 25;
xreqStrlngEqual a 26;
xreqReturnToPas a 27;
xreqScanToRet~rn • 28;
xreqScanTo2ero a 39; {yes, It's 39}

typo

XCmdPtr = AXCmdBlock;
XCmdBiock a RECORD

paramCount : INTEGER;
params : ARRAY[1 .• 16] OF Handle;
returnUalue : Handle;
pas sF I ag : BOOLEAN;

Appendix C 585

entryPolnt : ProcPtr; { to cal I back to HyperCard}
request : INTEGER;
result : INTEGER;
lnArgs : ARRAY[1 .. 8] OF Longlnt;
outArgs : ARRAY[1 •• 1] OF Longlnt;

on d;

end.

==
File XCMD Utilities.p

Hypercard XCMD ut Ill tIes unIt for L lght speed Pasco I }

(c) 1987 Symantec Corp. THINK Technologies Division }

{Adapted for use with Llghtspeed Pascal from Information
{ provided by Apple Computer, Inc. }

unit XCMDUt lis;

interface

586 HYPERCARD DEVELOPER'S GUIDE

uses
xcnolntf;

type
Str31 • STRIHG[31];

functIon Strlngnatch (paramPtr : MC11dPtr;
pattern : Str255;
target : Ptr) Ptr;

functIon PaaTo2ero (para11Ptr
atr : Str255)

MC11dPtr;
Handle;

procedure 2eroToPaa (para11Ptr : MC11dPtr.;
zeroStr : Ptr;
UAR pasStr : Str255);

fun c t Ion St rToLong (paramPt r : MCmdPt r;
atr : Str31) Longlnt;

fun c t Ion St rToHum (para11Pt r
str : Str31)

MC11dPtr;
Longlnt;

fun c t Ion St rToBoo I (paramPt r : MC11dPt r;
str : Str31) BOOLEAN;

functIon StrToExt (paramPtr
str : Str31)

MC11dPtr;
Extended;

functIon LongToStr (para11Ptr : MC11dPtr;
posHu11 : Longlnt) : Str31;

functIon Hu11ToStr (paramPtr : MCmdPtr;
nu11 : Longlnt) : Str31;

functIon Hu11ToHex (paramPtr : MCmdPtr;
nu11 : Longlnt;
nDiglts : INTEGER) : Str31;

functIon ExtToStr (paramPtr : MCmdPtr;
null : Extended) : Str31;

functIon BooiToStr (para11Ptr : MC11dPtr;
bool : BOOLEAN) : Str31;

procedure SendCar.dMessage (paramPt r
msg : Str255);

functIon EvalExpr (paramPtr : MCadPtr;
expr : Str255) Handle;

functIon Strlnglength (paramPtr : MC11dPtr;
atrPtr : Ptr) Longlnt;

functIon GetGiobal (para11Ptr MCmdPtr;
globHame : Str255) : Handle;

procedure SetGiobal (para111Ptr : MCmdPtr;
globHa11e : Str255;
globUalue : Handle);

fun c t Ion Get FIe I dByHame (paramPt r : MCmdPt r;
cardfleldflag : BOOLEAH;
fleldHaae: Str255): Handle;

functIon GetfleldByHu11 (paramPtr : HCmdPtr;
cardfieldFiag : BOOLEAH;
fieldHua : IHTEGER) : Handle;

functIon GetfleldByiD (paramPtr : MCmdPtr;
cardfleldflag : BOOLEAH;
fleldiD : IHTEGER) : Handle;

Appendix C 587

procedure SetfleldByHa11e (paramPtr : MCmdPtr;
cardfieldflag : BOOLEAH;
fleldHame : Str255;
fleldUal : Handle);

procedure SetfleldByHum (para11Ptr : MCmdPtr;
cardfleldflag : BOOLEAH;
fleldHum IHTEGER;
fleldUal : Handle);

procedure SetfleldByiD (paramPtr : MC11dPtr;
cardfleldflag : BOOLEAH;
fleldiD : IHTEGER;
fleldUal : Handle);

functIon StrlngEqual (paramPtr : MCmdPtr;
str1, str2 : Str255) : BOOLEAH;

588 HYPERCARD DEVELOPER'S GUIDE

procedure ReturnToPas (paramPtr: XCmdPtr;
zeroStr : Ptr;
UAR pasStr : Str255);

procedure ScanToReturn (paramPtr : XCmdPtr;
UAR scanPtr : Ptr);

procedure ScanTo2ero (para~aPtr: XCmdPtr;
UAR scanPtr : Ptr);

procedure 2eroBytes (paramPtr : XCmdPtr;
dstPtr : Ptr;
longCount : Longlnt);

l11p I e•ent at I on

procedure DoJsr (addr
In I In e

ProcPtr);

$205F, $4E90;

functIon StrlngMatch;
begin

• It h para11PtrA do

end;

begin
lnArgs[1] :a ORD(epattern);
lnArgs[2] :a ORD(target);
request :a xreqStrlngMatch;
DoJsr(entryPolnt);
StrlngMatch •a Ptr(outArgs(1]);

end;

functIon PasTo2ero;
begin

with paramPtrA do

end;

begin
lnArgs[1] :a ORD(estr);
request := xreqPasTo2ero;
DoJsr(entryPolnt);
PasTo2ero :a Handle(outArgs[1]);

end;

procedure 2eroToPas;
begin

•I t h paramPtr~ do

end;

begin
lnArgs[1] :a ORD(zeroStr);
lnArgs[2] :a ORO(&pasStr);
request :• xreq2eroToPas;
DoJsr(entryPolnt);

end;

functIon StrTolong;
begin

• It h paramPtr~ do

end;

begin
lnArgs[1] :• ORD(estr);
request :a xreqStrTolong;
DoJsr(entryPolnt);
StrTolong :a outArgs[1];

end;

functIon StrTotium;
begin

•I t h paramPtr~ do

end;

begin
lnArgs[1] := ORD(estr);
request :a xreqStrlotium;
OoJsr(entryPolnt);
Strlotium :a outArgs[1];

end;

functIon StrloBool;
begin

• It h paramPtr~ do

end;

begin
lnArgs[1] :a ORD(estr);
request := xreqStrloBool;
DoJsr(entryPolnt);
StrloBool ·= BDDLEAH(outArgs[1]);

end;

Appendix C 589

590 HYPERCARD DEVELOPER'S GUIDE

functIon StrToExt;
uar

x : Extended;
begin

111 t h paramPtr"' do

end;

begin
lnArgs[1] :a ORO(@str);
I nArgs[2] :a ORD(~x);
request :a xreqSt rToExt;
DoJsr(entryPolnt);
StrToExt :a x;

end;

functIon LongToStr;
uar

str : Str31;
begin

•I t h paramPtr"' do

end;

begin
lnArgs[1] :a postlum;
lnArgs[2] := ORD(&str);
request :a xreqlongToSt r;
OoJsr(entryPoint);
LongToStr :a str;

end;

functIon tlumToStr;
uar

str : Str31;
begin

•lth paramPtr"' do
begin

inArgs[1] :"' nu11;
lnArgs[2] :a ORD(@str);
request := xreqtlumToStr;
DoJsr(entryPoint);
tluaToStr :a str;

end;
end;

functIon tlumToHex;
var

str : Str31;
begin

•I t h paramPtr"' do

end;

begin
lnArgs[l] :a null;
lnArgs[2J :a nOiglts;
lnArgs[3J := ORO(&str);
request :a xreqtlumToHex;
OoJsr(entryPolnt);
tlumToHex •a str;

end;

functIon ExtToStr;
var

str : Str31;
begin

•lth paramPtr"' do
begin

lnArgs[lJ :a ORD(~num);
lnArgs[2J :a OAO(estr);
request :a xreqExtToStr;
DoJsr(entryPolnt);
ExtToStr :• str;

end;

functIon BooiToStr;
var

str : Str31;
begin

•I t h paramPtr"' do
begin

lnArgs[1J :a Longlnt(bool);
lnArgs[2J :a ORD(~str);
request :a xreqBooiToStr;
DoJsr(entryPolnt);
BooiToStr :a str;

end;
end;

Appendix C 591

592 HYPERCARD DEVELOPER'S GUIDE

procedure SendCardMessage;
begin

•I t h paramPtr"' do
begin

I nArgs [1] : = ORD (ctmsg);
request := xreqSendCardMessage;
DoJsr(entryPolnt);

end;
end;

functIon EvaiExpr;
begin

•lth paramPtr"' do

end;

begin
lnArgs[1] := ORD(&expr);
request : = xreqEva I Expr;
DoJsr(entryPolnt);
EvaiExpr := Handle(outArgs[1]);

end;

functIon Strlnglength;
begin

• It h paramPtr"' do
begin

lnRrgs[1] := ORD(strPtr);
request := xreqStrlnglength;
DoJsr(entryPolnt);
Strlnglength := outRrgs[1];

end;
end;

function GetGiobal;
begin

• It h para~tPtr"' do

end;

begin
lnRrgs[1] := ORD(@globHame);
request :"' xreqGet G I oba I;
DoJsr(entryPolnt);
GetGiobal := Handle(outArgs[1]);

end;

procedure SetGiobal;
begin

•I t h paramPtr"' do

end;

begin
lnRrgs[l] := ORO(eglobHame);
lnRrgs[2] := ORO(globUalue);
request : = xreqSet G I oba I;
OoJsr(entryPolnt);

end;

functIon GetFieldByHa~ae;
begin

•I t h paramPtr"' do

end;

begin
lnRrgs[l] := ORO(cardFieldFiag);
lnRrgs[2] := ORO(@fleldHame);
request := xreqGetFieldByHaae;
OoJsr(entryPolnt);
GetFieldByHa11e := Handle(outRrgs[1]);

end;

functIon GetFieldByHum;
begin

•lth paramPtr"' do

end;

begin
lnRrgs[l] := ORO(cardFieldFiag);
lnRrgs[2] := fleldHum;
request := xreqGetFieldByHum;
OoJsr(entryPolnt);
GetFieldByHum := Handle(outRrgs[l]);

end;

functIon GetFieldByiD;
begin

• It h paracaPtr"' do

end;

begin
lnRrgs[l] := ORO(cardFieldFiag);
lnRrgs[2] := fieldiD;
request := xreqGetFieldByiD;
DoJsr(entryPolnt);
GetFieldByiD ·= Handle(outRrgs[1]);

end;

Appendix C 593

594 HYPERCARD DEVELOPER'S GUIDE

procedure SetFieldByHame;
begin

wl t h paraaPtr"' do
begin

lnArgs[1] :a ORD(cardFieldFiag);
inArgs[2] :a ORD(~fleldName);
lnRrgs[3] ·• ORD(fleldUal);
request := xreqSetFieldByName;
DoJsr(entryPolnt);

end;
end;

procedure SetFieldByHum;
begin

• It h paramPtr"' do

end;

begin
lnArgs[1] := ORD(cardFieldFiag);
inArgs[2] := fleldNum;
lnArgs[3] :a ORD(fleldUal);
request := xreqSetFieldByNum;
DoJsr(entryPolnt);

end;

procedure SetFieldByiD;
begin

•lth paramPtr"' do
begin

lnArgs[1] :a ORD(cardFieldFiag);
lnArgs[2] :a fieldiD;
lnArgs[3] :a ORD(fleldUal);
request := xreqSetFieldByiD;
DoJsr(entryPoint);

end;
end;

functIon StringEqual;
bogln

11 It h paramPtrA do

ond;

begin
lnArgs[1] := ORD(~str1);

lnArgs[2] := ORD(&str2);
request : = xreqSt r I ngEqua I;
DoJsr(entryPolnt);
StrlngEqual := BOOLEAN(outArgs[1]);

end;

procedure ReturnToPas;
begin

• It h paramPtrA do
begin

lnArgs[1] := ORD(zeroStr);
lnArgs[2] := ORO(&pasStr);
request := xreqReturnToPas;
DoJsr(entryPolnt);

end;

procedure ScanToReturn;
begin

11lth paramPtr" do

end;

begin
I nArgs [1] : = ORO (&scanPt r);
request := xreqScanToReturn;
DoJsr(entryPolnt);

end;

procedure ScanTo2ero;
begin

111 t h paramPtrA do

end;

begin
lnArgs[1] := ORO(CiscanPtr);
request := xreqScanTo2ero;
DoJsr(entryPolnt);

end;

Appendix C 595

596 HYPERCARD DEVELOPER'S GUIDE

procedure 2eroBytes;
begin

•I t h paramPtr"' do

endJ
end.

begin
lnRrgs[1] := ORD(dstPtr);
I nRrgs [2] : • I ongCount;
request :a xreq2eroBytes;
DoJsr(entryPolnt);

endJ

APPENDIX

D

Writing XCMDs in
LightSpeed C

A version of the XCMD interfaces and glue routines have been converted to
LightSpeed C (LSC) by Think Technologies. The disk of these files that Think
offers seems not as polished as their Pascal version, but the pieces are there for
you to compile XCMDs in C.

The interface file, HyperXCmd.h, needs to be included as a header in your
C source code. Each of the glue routines has been broken out into its own file.
To simplify inclusion of these files into your XCMD, you should combine
these files into a separate project, with a name like XCMD.2t (using 2t as a
project file name extension is a convention used by the person who custom­
ized the XCMDs for LSC). You may then list that project as a file to be compiled
with your own code as shown in the Project listing of Figure D-1.

Each of the XCMD glue files #includes the HyperXCmd.h file, so you don't
have to list that in your project. The HyperXCmd.h file, itself, #includes
MacTypes.h, which your code needs to access the Macintosh Toolbox. All
#included files must be available on the disk before the XCMD may be
compiled.

Given the idea of loading an XCMD.2t project within your new project,
here's a basic outline of a LightSpeed C XCMD:

598 HYPERCARD DEVELOPER'S GUIDE

StringWidth.Tt
N~m• obj siz.

J StringYidth.c 112 ~
1376 t XCH~.:.! __ ·---·---- --- - - - --·---·

~
121

Figure D-1 LightSpeed C XCMD projects may include another project, like the
XCMD.rc project. StringWidth.c is a source code file for an XFCN.

Given the idea of loading an XCMD.rc project within your new project,
here's a basic outline of a LightSpeed C XCMD:

•include <QuickO~aw.h>
•include uHype~xc~d.h~

pascal vo i d
main(pa~amPt~)

XCmdBiockPt~ pa~amPt~;

{

you~ code he~e

The program must be called "main," as LightSpeed assumes code resources
are so named. If your XCMD needs other Macintosh libraries, then they may
be #included with the rest.

Before building the code resource, you must make various setting about its
name, type, and ID. Choose Set Project Type from the Project menu. The
dialog box (Figure D-2) lets you specify a Code Resource, as well as the other
important resource information. Assign an ID between 128 and 32767. The
name of the resource is the name you'll be calling from your H yperTalk script.

Think Technologies has provided a small sample XFCN, called String­
Width. It' s the one whose project has been illustrated above. Its source code
is shown in Figure D-3. This XFCN calls the TextWidth Macintosh Toolbox
call, which returns the width in pixels of a string that is passed as a parameter.

Appendix D 599

HCMD.n

"·- ob j slz•
SoolT oStr .o 5 2IQ
EvalExpr.c 46
ExiToStr.o 4 6
G•IFwldO, IO.c 60
O~IFwldB!III-.o 58
G•IFw ldBIII o 60
o.to-...al.o 46
l-gT.Str.c 46
llu .. T-x.o 54
llu .. ToStr.o 46
P•s.T.Zero.c 46
R~turnTePas.• 4 6
ScMTeRet • 40
Soa.T.Zero .o 40
Sen.C:ardH•ss o 40
S~IFwldO,IO.o 60
S•IF .. ldBtll o 58
S•IFioldO,-.o 60
s.to-...al .c 46
Striooe[.. al .o 52
S trlootL""tth.o 46
S t rlootHatolo.c 52
S t rt.Ooel .c 46
S t rT.Ext.o 4 6
StrTM.-.o 4 6
StrTollum .c 4 6
l<c.401ow.o D
z~oO,tu.o 4 6
Z.roT.ttas..e 4 6

C>

Figure D-2 The XCMD.rt project lists all the glue routines that your XCMDs might need.

0 -··- - ---·---- -- Strl ngWidth.c ::::;._ ~ --= --

Strlngllldth -- o SCilllp l e Ho,jperCc:rd user--<Mflned c:01111101'1d In C.
lloTHI ItC T.c:hnol ogl .. , Inc: . 1987
Rll Rl<jlls Ruerved .

•I nc: lucie <Qui c:kOrow . h>
•Include "Ht,!perXC01d . h "

posc:o I vo I d
110ln<~tr>
xc.cm loc:kPtr poroePtr;
{

10<>9 len;
r~lstr c:hor •str, •theStr;
Sl.r31 result;

for <st.r • theStr • •<c:hor ••)porcaPtr->poroas[OJ; • str ; s t.r++>

I* First porom Is string to return string-wi d th o f •1
len • T.xtJ.IIdth<theStr, 0 , str - th.Str>;

I* ConYer t the nu..t>er to a s l.r I ng */
Hu.ToStr<poromPtr, len, resu l t>;
~tr->returnUo l ue • PosToZero<~tr, result >;

Figure D-1 A sample LSC XFCN application showsd that the program includes the
HyperXCmd.h header file, as well as other librarires called by your external code. The main
program must be called "main."

600 HYPERCARD DEVELOPER'S GUIDE

Reprinted below (with permission from Think Technologies Division of
Symantec Corp.) are the files you need to #include in your XCMDs.

File HyperXCmd.h

I*

*I

HyperKCmd.h Definitions for cal I ing alI standard
HyperCard callback routines from C.
!!>Rpp I e Computer~ Inc. 196?
All Rights Reserved.

See CFiash.C for an example of how to Include this
module in your C program.

'Include <MacTypes.h>

typedef struct KCmdBiock
short

Handle
Handle
Boolean

paramCount;
params[16];
returnUalue;

passFiag;

uold(*antryPolnt)();
short request;
short result;
longlnRrgs[B];
longoutRrgs['f];

I* to call back to HyperCard*/

} ~CmdBiockJ *~CmdBiockPtr;

typedef unsigned char Str31[32];
I*
typedaf struct Str31 {

*I

anum

} ;

char guts[32];
} Str31 J *Str31Ptr;

xresSucc g OJ
xresFa i I J
xrestfotlmp

AppendixD 601

I* request codes *I
anum {

xreqSendCardMessage = 11

xreqEuaiExpr 1

xreqStringlength 1

xreqStringMatch 1

xreqSendHCMessage 1

xreq2eroBytes 1

xreqPasTo2ero 1

xreq2eroToPas 1

xreqStrTolong 1

xreqStrToHum 1

xreqStrToBool 1

xreqStrToExt 1

xreqlongToStr,
xreqHumToStr 1

xreqHumToHex 1

xreqBoo1ToStr 1

xreqExtToStr 1

xreqGetG obal 1

xreqSetG oba I,
xreqGetF eldByHame,
xreqGetF eldByHum,
xreqGetF eldByiD 1

xreqSetF eldByHame~
xreqSetF eldByHum 1

xreqSetFieldByiD 1

xreqStringEqual,
xreqReturnToPas 1

xreqScanToReturn,
xreqScanToZero a 39 I* was suppose to be 291 Oops! *I

} j

I* Forward definitions of glue routines. Main program
must include XCmdGiue.lnc.c. See XCmdGiue. inc.c for
documentation of each routine. *I

typedef uoid (*MyProcPtr) ();

pascal void
pascal Handle
pascal long
pascal Ptr

SendCardMessage(XCmdBiockPtr, StringPtr msg);
EuaiExpr(XCmdBiockPtr, StringPtr expr);

Strlnglength(XCmdBiockPtr 1 StringPtr strPtr);
StringMatch(XCmdBiockPtr 1 StringPtr pattern,
Ptr target);

602 HYPERCARD DEVELOPER'S GUIDE

pascal uoid

pascal Handle
pascal uoid

pascal long

pascal long
pascal Boolean
pascal void

pascal void

pascal uold

pascal void

pascal uoid

pascal uoid

pascal Handle
pascal uold

pascal Handle

pascal Handle

pascal Handle

pascal uoid

pascal uoid

pascal uold

2ero8ytes{~CmdBiockPtr, Ptr dstPtr,
I ong I ongCount);

PasTo2ero{~Cmd81ockPtr, StringPtr pasStr);
2eroToPas{~CmdBiockPtr,

unsigned char *zeroStr,
StringPtr pasSlr);
StrTolong{~CmdBiockPtr,

unsigned char * strPtr);
StrToHum(~CmdBiockPtr, unsigned char *str);

StrToBooi{~CmdBiockPtr,unsigned char *str);
StrToExt(~CmdBiockPtr,unslgned char *str,
double *myexl);
longToStr{~CmdBiockPlr, long posHum,
unsigned char *mystr);
NumToStr{~CmdBiockPtr, long num,
unsigned char *mystr);
HumToHex(~CmdBiockPtr, long num,
short nDigits,
unsigned char *mystr);
BooiToStr{~CmdBiockPtr, Boolean bool,
unsigned char *mystr);
ExtToStr{~CmdBiockPtr, double *myexl,
unsigned char *mystr);

GetGiobai{~CmdBiockPtr, StrlngPlr globHame);
SetGiobai(~CmdBiockPtr, StringPtr globName,
Handle globUalue);

GetFieldByHame(~CmdBiockPtr,

Boolean cardFieldFiag,
StringPtr fieldName);

GetFieldByNum{~CmdBiockPtr,

Boolean cardFieldFiag,
short fieldNum);

GetFieldByiD(~CmdBiockPtr,Boolean cardFieldFiag,
short fieldiD);
SetFieldByName{~CmdBiockPtr,

Boolean cardFieldFiag,
StringPtr fieldtiame, Handle fieldUal);
SetFieldByNum(~CmdBiockPtr,

Boolean cardFieldFiag,
short fieldNum,Handle fieldUal);
SetField8yiD(~Cmd81ockPtr,

Boolean cardFieldFiag,
short fieldiD,Handle fieldUal);

p a s c a I 8 o o I e a n S t r i n g E·q u a I (~ C m d 8 I o c k P l r , u n s i g ned c h a r * s t r 1 ,
unsigned char *slr2);

Appendix D 603

pascal uoid

pascal uold
pascal uoid

ReturnToPas(~CmdBiockPtr, Ptr zeroStr,
StringPtr pasStr);
ScanToReturn(~CmdBiockPtr, Ptr *scanHndl);
ScanTo2ero(:<CmdBiockPtr, Ptr *scanHndl);

File BooiToStr.c

I* Conuert a boolean to 'true' or 'false'. Instead of returning
a new string, as Pascal does, it expects you to create mystl"

and pass it In to be filled.*/
pascal uoid
BooiToStr(pal"amPtl",bool,mystr)
register KCmdBiockPtr pal"amPtl";
Boolean bool;
St1"31 mystr;
{

paramPtr->inAI"gs[O] ~ (long)bool;
paramPtr->inArgs[1] ~ (long)mystr;
paramPtr->l"equest = Xl"eqBooiToStl";

(*paramPtr->entryPoint)();

File EuaiExpr.c

•include <nacTypes.h>
•Include "Hypei"KCmd.hw

I* Evaluate a Hypei"Card expression and l"eturn the answel".
The answel" is a handle to a zero-terminated stl"ing.

*I
pasca I Hand I e
EuaiExpr(paramPtr,expr)
register :<CmdBiockPtl" paramPtl";
StringPtl"
{

expr;

pal"amPll"->inAI"gs[O] ~ (long)expr;
paramPtl"->l"equest ~ xreqEuaiExpl"j

604 HYPERCARD DEVELOPER'S GUIDE

(*paramPtr->entryPoint)();
return (Handle)paramPtr->outRrgs[O];

File ExtToStr.c

•Include "Hyper~Cmd.h~

I* Or I gIna I comment:
Convert an extended long integer to decimal digits in a string.
Instead of returning a new string, as Pascal does, it expects
you to create mystr and pass it in to be fi lied. *I

I* ny comment:
I assume that an extended is supposed to be an 60-byte
double, mhich is declared as double in LSC. I've changed

"extended~ to "doublew to reflect this
*I

pascal void
ExtToStr(paramPtr,myext,mystr)
register ~CmdBI ockPtr paramPtr;
double * myext;
Str31 mystr;
{

paramPtr->inArgs[O] = (long)myext;
paramPtr->inRrgs[l] = (long)mystr;
paramPtr->request = xreqExtToStr;

(*paramPtr->entryPoint)();

File GetFieldByiO.c

•Include "Hyper~Cmd.h"

I* Return a handle to a zero-terminated string containing the
value of the field whose 10 is fieldiO. You must dispose
of the handle.

*I
pasca I Hand I e
GetFieldByiO(paramPtr,cardFieldFJag,fieldiO)

register KCmdBlockPtr paramPtr;
Boolean cardFieldFiag;
short fieldiD;

paramPtr->inArgs[O] ~ (long)cardFieldFiag;
paramPtr->inArgs[l] ~ fieldiD;
paramPtr->request = xreqGetFieldByiD;

(*paramPtr->entryPoint)();
return (Handle)paramPtr->outArgs[O];

Fl le GetFieldByName.c

•include "HyperKCmd.h"

Appendix D 605

I* Return a handle to a zero-terminated string containing the
ualue of field fieldHame on the current card. You must
dispose of the handle.

*I
pascal Handle
GetFieldByHame(paramPtr,cardFieldFlag,fleldHame)
register KCmdBiockPtr paramPtr;
Boolean cardFieldFiag;
StringPtr fieldName;
{

paramPtr->inArgs[O] ~ (long)cardFieldFiag;
paramPtr->inArgs[1] = (long)fieldHame;
paramPtr->request = xreqGetFieldByHame;

(*paramPtr->entryPoint)();
return (Handle)paramPtr->outArgs[O];

File GetFieldByHum.c

•Include "HyperKCmd.h"

I* Return a handle to a zero-terminated string containing the
ualue of field fieldHum on the current card. You must
dispose of the handle.

*I

606 HYPERCARD DEVELOPER'S GUIDE

pascal Handle
GetFieldByHum(paramPtr, cardFieldFiag,fieldHum)
register l<CmdBiockPtr paramPtr;
Boolean cardFieldFiag;
short fleldHum;

paramPtr->inArgs[O] = (long)cardFieldFiag;
paramPtr->inArgs[l] = fieldHum;
paramPtr->request ~ xreqGetFieldByHum;

(*paramPtr->entryPolnt)();
return (Handle)paramPtr->outArgs[O];

Fl le GetGiobal .c

•include "Hyperl<Cmd.hw

I* Return a handle to a zero-terminated string containing the
ualue of the specified HyperTalk global uarlable.

*I
pascal Handle
GetGiobal(paramPtr,globHame)
register)(CmdBiockPtr paf"amPtr;
StringPtr globHame;
{

paramPtr->inArgs[O] = (long)globHame;
paramPtr->request = xreqGetGiobal;

(*paf"amPtr->entryPoint)();
return (Handle)paramPtr->outArgs[O];

File LorigToStr.c

1 include "Hyper)(Cmd.hw

I* Conuert an unsigned long integer to a Pascal stf"ing.
Instead of retur-ning a new stf"lng, as Pascal does,
it expects you to create mystr and pass it in to be filled.

*I

pascal uoid

LongToStr(paramPtr, posHum, mystr)

register XCmdBI ockPtr paramPtr;

long posHum;

Str31 mystr;
{

paramPtr->inArgs[O} ~ posHum;

paramPtr->inArgs[l] ~ (long)mystr;

paramPtr->request ~ xreqlongToStr;

(*paramPtr->entryPoint)();

File HumToHex.c

•include "Hyper)(Cmd.hw

Appendix D 607

I* Conuert an unsigned long integer to a hexadecimal number

and put it into a Pascal string. Instead of returning

a new string, as Pascal does, it expects you to create

mystr and pass it in to be filled.

*I
pascal uoid

HumToHex(paramPtr, num, nDiglts, mystr)

register XCmdBiockPtr paramPtr;

long num;

short nDigits;

Str31 mystr;
{

paramPtr->inArgs[O] num;

paramPtr->inArgs[l] a nDigits;

paramPtr->inArgs[2) (long)mystr;

paramPtr->request = xreqHumToHex;

(*paramPtr->entryPoint)();

File HumToStr. c

•include "HyperXCmd.hw

I* Conuert a signed long integer to a Pascal string. Instead of

608 HYPERCARD DEVELOPER'S GUIDE

*I

returning a new string, as Pascal does, it expects you to
create mystr and pass it in to be filled.

pascal uoid
HumToStr(paramPtr,num 1 mystr)
register)(CmdDiock.Ptr paramPtr;
long num;
Str31 mystr;
{

paramPtr->lnArgs[O] = num;
paramPtr->inArgs[l] = (long)mystr;
paramPtr->request = xreqHumToStr;

(*paramPtr->entryPoint)();

File PasToZero.c

•include MHyper)(Cmd.h~

I* Convert a Pascal string to a zero-terminated string.

*I

Returns a handle to a new zero-terminated string.
The caller must dispose the handle. You' I I need to
do this for any result or argument you send from
your)(CMD to HyperTalk. Hole that if you use
C-format strings, you won't need to do this from C.

pasco I Hand I e
PasToZero(paramPtr,pasStr)
register)(CmdDiock.Ptr paramPtr;
StringPtr
{

pasStr;

paramPtr->inArgs[O] ; (long)pasStr;
paramPtr->request ; xreqPasToZero;

(*paramPtr->enlryPolnt)();
return (Handle)paramPlr->outArgs[O];

Appendix D 609

File ReturnToPas.c

•include "Hyper~Cmd.h"

I* zeroStr points into a zero-terminated string. Collect the

*I

characters from there to the next carriage Return and return
them in the Pascal string pasStr. If a Return is not found,
collect chars unti I the end of the string.

pascal uoid
ReturnToPas(paramPtr,zeroStr,pasStr)
register)(CmdBiock.Ptr paramPtr;
Ptr zeroStr;
StringPtr pasStr;
{

paramPtr->lnRrgs[O] = (long)zeroStr;
paramPtr->inArgs[t] g (long)pasStr;
paramPtr->request = xreqReturnToPas;

(*paramPtr->entryPoint)();

Fl le ScanToReturn.c

•include "Hyper)(Cmd.h"

/* Moue the pointer scanPtr along a zero-terminated
string unt II It points at a Return character
or a zero byte.

*I
pascal uoid
ScanToReturn(paramPtr,scanHndl)
register)(CmdBlock.Ptr paramPtr;
Ptr * scanHndl;

paramPtr->lnArgs[O] = (long)scanHndl;
paramPtr->request = xreqScanToReturn;

(*paramPtr->entryPoint)();

610 HYPERCARD DEVELOPER'S GUIDE

File ScanTo2ero.c

'include MHyperXCmd.h~

I* Moue the pointer scanPtr along a zero-terminated
string unli I It points at a zero byte,

*I
pascal uoid
ScanTo2ero(paramPtr,scanHndl)
register XCmdBiockPtr paramPtr;
Ptr * scanHndl;
{

paramPtr->inArgs[O] ~ (long)scanHndl;
paramPtr->requesl = xreqScanToZero;

(*paramPtr->enlryPoint)();

Fl le SendCardMessage.c

'Include MHyperXCmd.h~

I* Send a HyperCard message (a command with arguments)
to the current card. msg is a pointer to a
Pascal-formal string.

*I
pascal uoid
SendCardMessage(paramPlr, msg)
register XCmdBiockPtr paramPtr;
StringPlr
{

msg;

paramPtr->lnArgs[O] = (long)msg;
paramPtr->requesl = xreqSendCardMessage;

(*paramPtr->entryPoint)();

Appendix D 611

File SetFieldByiD.c

I* Set the ualue of the field whose 10 is fieldiD to be the zero­
terminated string In fieldUal. The contents of the Handle are
copied, so you must sti II dispose it afterwards.

*I
pascal uoid
SetFieldByiO(paramPtr,cardFieldFiag,fieldiO,fleldUal)
register l<CmdBiockPtr paramPtr;
Boolean cardFieldFiag;
short fleldiD;
HandlefieldUal;
{

paramPtr->lnArgs[O] (long)cardFieldFiag;
paramPtr->inArgs[t] = fieldiD;
paramPtr->inArgs[2] (long)fieldUal;
paramPtr->request = xreqSetFieldByiD;

(*paramPtr->entryPoint)();

File SetFieldBytiame.c

•Include "Hyper~Cmd.hn

I* Set the ualue of field fieldHame to be the zero-terminated
string in fieldUal. The contents of the Handle are copied,
so you must sti I I dispose it afterwards.

*I
pascal uoid
SetFieldByHame(paramPtr,cardFieldFiag,fieldtiame,fieldUal)
register XCmdBiockPtr paramPtr;
Boolean cardFieldFiag;
StrlngPtr fieldHame;
HandlefieldUal;
{

paramPtr->lnArgs[O]
paramPtr->inArgs[t)

(long)cardFieldFiag;
(long)fieldHame;

612 HYPERCARD DEVELOPER'S GUIDE

paramPtr->inArgs[2] ~ (long)fieldUal;
paramPtr->request ~ xreqSetFieldByHame;

(*paramPtr->entryPoint)();

Fl le SetFieldByHum.c

I* Set the ualue of field fieldHum to be the zero-terminated
string In fieldUal. The contents of the Handle are copied,
so you must sti I I dispose it afterwards.

*I
pascal uold
SetFieldOyHum(paramPtr,cardFieldFiag,fieldHum,fieldUal)
register l<CmdOiockPtr paramPtl";
Boolean cardFieldFiag;
short fieldHum;
HandlefleldUal;
{

paramPtr->lnArgs[O]
pal"amPtl"->inAI"gs[1]
paramPtr->inArgs[2]

(long)cardFieldFiag;
fieldtium;
(long)fleldUal;

paraDPtl"->request = xl"eqSetFieldByHum;
(*pal"amPtl"->entl"yPoint)();

File SetGiobal.c

I* Set the ualue of the specified HyperTalk global ual"iable to be
the zel"o-tel"minated stl"ing in globUalue. The contents of the
Handle are copied, so you must stilI dispose it aftei"Wal"ds.

*I
pascal uold
SetGiobal(pal"amPtl",globHame,globUalue)
register l<CrndBiockPtr pal"amPtl";
StringPtr globtiame;
HandleglobUalue;

{

paramPtr->inRrgs[O) ~ (long)globHame;
paramPtr->inRrgs[1) a (long)globUalue;
paramPtr->request a xreqSetGiobal;

(*paramPtr->entryPolnt)();

Fl le StringEqual.c

Appendix D 613

I* Return true if the t~o strings haue the same characters.
Case insensitive compare of the strings.

*I
pascal Boolean
StrlngEqual(paramPtr,str1,str2)
register XCmdBiockPtr paramPtr;
unsigned char* str1;
unsigned char * str2;
{

paramPtr->inRrgs[O] = (long)str1;
paramPtr->inRrgs(1] = (long)str2;
paramPtr->request = xreqStrlngEqual;

(*paramPtr->entryPoint)();
return (Boolean)paramPtr->outRrgs[O);

Fl le Stringlength.c

I* Count the characters from where strPtr points unti I
the next zero byte. Does not count the zero itself.
strPtr must be a zero-terminated string.

*I
pasca I I ong
Strlnglength(paramPtr,strPtr)
register XCmdBiockPtr paramPtr;
StringPtr strPtr;

614 HYPERCARD DEVELOPER'S GUIDE

}

para~Ptr->inArgs[O] = (long)strPlr;
paramPtr->request = xreqStringLength;

(*paramPtr->entryPolnt)();
return para~Ptr->outArgs[O];

File Strlngnatch.c

•include "HyperKC~d.hw

I* Perform case-insensitive match looking for pattern anywhere
in target, returning a pointer to first character of the
first match, in target or HIL if no match found.
pattern Is a Pascal string, and target is a
zero-terminated string.

*I
pascal Plr
Stringnatch(paramPtr, pattern, target)
register KCmdBiockPtr paramPtr;
StringPtr pattern;
Ptr target;

paramPtr->inArgs[O] = (long)paltern;
paramPtr->inArgs[l] = (long)larget;
paramPtr->request = xreqStringnatch;

(*paramPtr->entryPoint)();
return (Ptr)paramPtr->outArgs[O];

F I I e St rToBoo I . c

•Include "HyperXCmd.hw

I* Conuert the Pascal strings 'true' and 'false' to booleans.
*I

pascal Boolean
StrToBool(paramPtr,str)
regi star KCmdBI ockPtr paramPtr;

Str31 str;
{

paramPtr->lnRrgs[O] = (long)str;
paramPtr->request = xreqStrToBool;

(*paramPtr->entryPolnt)();
return (Boo I ean)paramPtr->outRrgs[O];

File StrToExt.c

I* Original comment:

Appendix D 615

Convert a string of ASCII decimal digits to an extended long
Integer. Instead of returning a new extended, as Pascal does,
it expects you to create myext and pass It in to be fi lied. */

I* ny comment: extended, as far as I knoD, is an 60-b it doub Ia,
not a long integer. Since LSC doubles are 60-bit,
l'ue changed myext to a pointer to a double*/

pascal uoid StrToExt(paramPtr, str, myext)
register ~CmdBiockPtr paramPtr;
Str31 str;
double *myext;
{

paramPtr->lnRrgs[O] = (long)str;
paramPtr->lnRrgs[1] = (long)myext;
paramPtr->request = xreqStrToExt;

(*paramPtr->entryPoint)();

I* FUHCTIOH StrToExt(str: Str31): Extended;
UAR x: Extended;
BEGIH

UITH paramPtrA 00
BEGIH

inRrgs[l] := ORO(~str);

inRrgs[2] := ORD{~x);

request : = xreqStrToExt;
OoJsr(entryPoint);
StrToExt ·= x;

EHD;
EHD; */

616 HYPERCARD DEVELOPER'S GUIDE

File StrTolong.c

•include "Hyper~Cmd.hw

I* Conuert a string of ASCI I decimal digits to
an unsigned long Integer.

*I
pasca I I ong
StrTolong(paramPtr, strPtr)
register ~CmdOiockPtr paramPtr;
Str31 strPtr;
{

paramPtr->inArgs[O] = (long)strPtr;
paramPtr->request = xreqStrTolong;

(*paramPtr->entryPoint)();
return (long)paramPtr->outArgs[O];

File StrTotfum.c

•include "Hyper~Cmd.hw

I* Conuert a string of ASCI I decimal digits to a signed
long integer. tfegatlue sign is allo~ed.

*I
pasca I I ong
StrTotfum(paramPtr, str)
register ~CmdOiockPtr paramPtr;
Str31 str;
{

paramPtr->inArgs[O] a (long)str;
paramPtr->request a xreqStrTotfum;

(*paramPtr->entryPolnt)();
return paramPtr->outArgs[O];

Appendix D 617

File 2eroBytes.c

•include uHyper~Cmd.h~

I* Urite zeros Into memory starting at destPtr and going
for longCount number of bytes.

*I
pascal uoid
2el"o0ytes(paramPtr 1 dstPtr, I ongCount)
register ~CmdDiockPtr pal"amPtr;
Ptr dstPtr;

I ong I ongCount;
{

paramPtr->inRI"gs[O] = (long)dstPtr;
paramPt r- > i nRrgs [1 1 = I ongCount;
paramPtr->request = xreq2eroBytes;

(*paramPtr->entryPoint)();

File 2eroToPas.c

I* Fi II the Pascal string with the contents of the zero-terminated
string. Useful for converting the al"guments of any ~CMO to
Pascal strings.

*I
pascal uoid
2eroToPas(paramPtr,zeroStr 1 pasStr)
registel" ~CmdBiockPtr pal"amPtr;
unsigned char
StringPtr

*zeroStr;
pasStr;

{

paramPtr->inRrgs[O] = (long)zel"o5tl";
pal"amPtl"->lnRrgs[t] = (long)pasStr;
paramPtr->request = Xl"eq2el"oToPas;

(*paramPtr->entl"yPoint)();

APPENDIX

E

Writing XCMDs in
Turbo Pascal

All units that Turbo Pascal needs to compile a Macintosh program-other
than your own source code-are actually inside the Turbo Pascal compiler
program. When new kinds of units need to be added to the built-in library,
you use a utility program called the Unit Mover (included with Turbo Pascal)
to get the compiled unit into Turbo so you may call it from your source code.

To prepare Turbo Pascal for compiling XCMDs, you must compile the
interface file (listed below) and move it into the Turbo Pascal compiler
program. This file compiles into a unit called HyperXCmd, and will be listed
with other units used by your XCMD. A separate glue file (the one with the
routines) must be an Included file with your compilation. The glue file is the
same one released by APDA for MPW Pascal, and is named XCmdGlue.inc.
You must also add to Turbo two DHDR type resources with the resource
moving abilities of ResEdit. These "driver headers" let you specify Turbo
Pascal to compile and create programs other than standalone Macintosh
applications. There is a DHDR resource for Desk Accessories, for example.
Each style of external command, XCMD and XFCN, requires its own DHDR.

If you don't have access to the disk containing the DHDR resources, you can
create them from scratch with ResEdit. Here's how to do it:

620 HYPERCARD DEVELOPER'S GUIDE

1. Open ResEdit and the resource fork of Turbo Pascal until you open the
DHDR type resources (be sure you are using a backup copy of Turbo
Pascal for this).
You'll see that several DHDRs are already installed for creating INIT
resources, desk accessories, and others.

2. Choose New from the File menu.
ResEdit will create a new (empty) DHDR type resource, assigning it an ID
number. The window is for entry of straight code (Figure E-1). Fortu­
nately, the amount of code that goes into each DHDR is quite small, so you
can enter it manually in less than a minute.

3. Using the DHDR for XCMDs illustrated in Figure E-2, type the code that
appears in the four central columns.
ResEdit will accept the characters you type and advance the cursor to the
next position. These characters are in hexadecimal notation. Occasion­
ally, the characters you type will shift a bit in anticipation of the next
character you type, but by the end of the code, everything will even out.

00000000
00000008
00000010
00000018
00000020
00000028
00000030
00000038
00000040
00000048
00000050
00000058
00000060

Figure E-1 If you need to create the DHDR resources, start with a blank DHDR
resource.

Appendix E 621

~D~ DHDR II PasHCMD II I D = 320 from Turbo
00000000 434F 4445 3F3F 3F3F CODE???? ~ 00000008 5843 4044 012C 0000 XCMDD,DD
00000010 0006 0001 4EFA 0004 [][][][]ti[][][]
00000018 4E75 0002 I NuDD
00000020
00000028
00000030
00000038
00000040
00000048
00000050
00000058 ~ 00000060
00000068 121

Figure E-2 Type the hexadecimal code (the middle four columns) of this XCMD DHDR
into the blank resource. Assign the name and number via the Get Info dialog box for this
resource.

4. Choose Get Info from the File menu

5. Name the DHDR for XCMDs "PasXCMD" and assign it the resource ID
number320.

6. Create the DHDR for XFCN as you did in steps 2 through 5 above, but use
the DHDR illustrated in Figure E-3 as the model. Also, name the XFCN
driver header "PasXFCN" and assign it the resource ID number 321.

H you are writing an XCMD resource, then the following basic outline should
be followed in structuring your Turbo Pascal code:

program xcmdtemplate;

{ change the naoe of the program}
{ to the name you want for the xcno }

{$R-}
{$U-}
{$0 PasXCMD}

622 HYPERCARD DEVELOPER'S GUIDE

~D~ DHDR .. PasHFCN .. ID = 321 from Turbo 1
00000000 434F 4445 3F3F 3F3F CODE???? tQ:
00000008 5846 434E 012C 0000 XFCI'IO_.[][]
00000010 0006 0001 4EFA 0004 [][][][]1'1[][][]

00000018 4E75 0002 l'lu[][]

00000020
00000028
00000030

~ 00000038
00000040
00000048
00000050
00000058 Q 00000060
00000068 12:1

Figure E-3 Type the hexadecimal code (the middle four columns) of this XFCN DHDR
into the blank resource. Assign the name and number via the Get Info dialog box for this
resource.

USES Memtypes,Hyper~Cmd;

PROCEDURE my)(CMO(paramPt r:)(CmdPtr);

this is the procedure that wi I I be executed.}

the name must be my)(CMD }

{$1)(CmdGiue.lnc}

BEGIN

{ put your code here }

END;

the BEGIN/END following this comment are }

a null program. don't delete it.}

it is requIred by Turbo. }

BEGiti

END.

For an XFCN 1 here's the outline to follow:

program xfcntemplate;

change the name of the program }

to the name you want for the XFCN

{$R-}
{$U-}
{$0 PasXFCN}

USES Memtypes 1 HyperXCmd;

PROCEDURE my X FCN (paramPt r: XCmdP t r);

this Is the procedure that wi II be executed. }

the name must be myXFCN }

{$1 XCmdGiue.lnc}

BEGIN

Appendix E 623

{ put your code here. don't forget to ret urn a ua I ue }

END;

the BEGIN/END following this comment are}

a null program. don't delete it.}

it is required by Turbo.}

BEGIN

END.

Note a few important things about Turbo Pascal implementations of XCMD
and XFCNs. First, the program name must be the name you will be assigning
to the resource-the same name you will be calling from HyperTalk to start
the XCMD or XFCN.

Second, the $D compiler directive summons the appropriate DHDR type
for the style of resource you are writing. Make sure you use PasXCMD for
XCMDs and PasXFCN for XFCNs.

Third, the units that your XCMD code uses must include Memtypes and
HyperXCmd at the least. Calls to many Macintosh Toolbox routines may
require additional units. Consult the listing of Macintosh Interface units at the
end of the Turbo Pascal manual, and see which units contain the Toolbox calls

624 HYPERCARD DEVELOPER'S GUIDE

. your XCMD makes.
Fourth, the main procedure must include (with the $1 compiler directive)

the XCmdGlue.inc file so your XCMD can communicate with HyperCard. If
you need only one or two of these glue routines, consider placing them
directly in your XCMD (in which case you won't have to include this file).

Finally, Turbo Pascal requires the last BEGIN/END construction, even
though nothing goes into it. The outermost procedure {the one with the name
of the XCMD) is the procedure that executes, and may call other local
procedures and functions defined within it.

When you compile the program, Turbo Pascal creates a file containing your
resource. Turbo Pascal automatically assigns the ID number of 300 to every
XCMD or XFCN that it creates. Use ResEdit to change the ID number, assign
the name {the name you'll be calling from HyperTalk) and move the resource
to your stack.

Here is the listing for the interface file that you must compile {using Turbo
Pascal) and move into the compiler with the Unit Mover:

UHIT Hyper~Cmd(-256);

{$U-} { don't let Turbo giue us anything we don't want}

Hypei"~Cmd.p Definition file fol" HyperCal"d

~CMDs and)(Ft'ICs in Pasco I.

By Dan Uinkler. DO HOT call the author!

!>App I e Computer, Inc. 1987

All Rights Resel"ved.

Modified for Turbo Pascal by Stephen Kul"tzman

Instal I this unit into the Turbo Pascal compi lei"

using UHITMOUER

INTERFACE

USES MemTypes; { necessal"y for Tul"bo Interface }

COHST

{ result codes

Xl"esSucc 0;

xl"esFall 1;

xresHotlmp = 2;

{ request codes }
xreqSendCardMessage = 1;

xreqEuaiExpr 2;
3 j
i;

5;
6 j

7 j

8 j

9;

1 0;

11 j

12;

13;

1i;

15;

1 6 j

17;

1 8;

19 .i

20;
.. 21 .i

22;
23;

21;
25;
26;
27;
26;

Appendix E 625

xreqStringlength
xreqStringMatch
xreqSendHCMessage
xreqZeroBytes
xreqPasToZero
xreqZeroToPas
xreqStrTolong
xreqStrToNum
xreqStrToBool
xreqStrToExt
xreqlongToStr
xreqHumToStr
xreqHumToHex
xreqBooiToStr
xreqExtToStr
xreqGetG obal
xreqSetG obal
xreqGetF eldByName
xreqGetF eldByNum
xreqGetF eldByiD
xreqSetF eldByName
xreqSetF eldByNum
xreqSetF eldByiD
xreqStringEqual
xreqReturnToPas
xreqScanToReturn
xreqScanTo2ero 39; { was supposed to be 29. Oops I }

TYPE

~CmdPtr ~ ~~CmdBiock;

~CmdBiock

RECORD
paramCount: INTEGER;
params: ARRAY[1 .. 16] OF Handle;

returnUalue: Handle;
passF I ag: BOOLEAN;

entryPoint: ProcPtr; { to cal I back to HyperCard }
request: INTEGER;

626 HYPERCARD DEVELOPER'S GUIDE

result:
inArgs:
outArgs:

EHD;

IHTEGEA;
AAAAY[1 .. B] OF longlnt;
ARRAY[1 .. +] OF longlnt;

include the types used by the interface routines
In l<cmdglue. inc

Str255 a string[255];
Str31 a string[31];

IMPLEMEHTATIOH { necessary for Turbo interface }

EHD.

The XCmdGlue.inc file that you $Include in your XCMD source code is the
same file you get from APDA in its HyperCard XCMD kit. This file is also
readily available on most HyperCard or Turbo Pascal bulletin boards.

APPENDIX

F

Writing XCMDs with
Mainstay V.I.P.

The letters V.I.P. stand for Visual Interactive Programming, a graphical
programming language published by Mainstay. Instead of writing lines of
code, you select from a library of procedures. These procedures are assembled
literally like building blocks in a window on the screen. Each procedure has
one or more items that need to be filled in-the same as arguments you'd
supply a written procedure in Pascal or C. Unlike Pascal or C Macintosh
programming, however, you are essentially prompted for the arguments to
any procedure or control structure.

V .I.P. is an interpreted language, but an optional accessory generates C
code that may be compiled with MPW C or LightSpeed C. With r~lease 2.5,
the V.I.P.-to-C convertor also lets you write XCMDs for HyperCard. Before
we go further, however, you should know that the C code generated by this
conversion program is written to be compiled with a special V .I.P.library that
contains a number of predefined procedures. Therefore, the C code may not
look exactly like a "from scratch" C version of the XCMD.

Because everything you need to write XCMDs with V.I.P. comes in the
required V.I.P-to-C package, there will be no files reprinted here (or on the
companion disk). Instead, I'll show you a simple example of a V.l.P. XFCN,
which demonstrates how an argument is passed from a stack to a V .I .. P. XFCN
and a return value is sent back to HyperCard. While you do have access to the
XCMD parameter block from within V.I.P., you do not have the added
commands of the glue routines shown in these appendixes for other program-

628 HYPERCARD DEVELOPER'S GUIDE

ming environments. But for external functions and commands that don't
require communication back with HyperCard midstream, V.I.P. is one way
the novice programmer can get into the world of XCMDs.

Sample XFCN
The sample shown here was provided by Mainstay (with some minor changes
I've made in variable names). While it replicates in V.I.P. what HyperTalk
gives you automatically, you'll be able to follow what's going on without
much difficulty. The XFCN returns the sine of a number passed to it as a
parameter.

Figure F-1 shows the V.I.P. program for this XFCN as it appears in the
window. The basic flow of the XFCN is: If the number of parameters sent with
the XFCN is 1, then return the sine of that parameter; otherwise produce an
alert box on the screen. Arguments for this "main" routine are set as follows:

Figure F-1

Name
paramCount
return Value
params

Dimensions
none
255
16,255

~
2
1
1

Appendix F 629

Input/Output
Input
Output
Input

Because there aren't many procedures and structures in this code, I can show
you the contents of them all. Figure F-2 artificially assembles the expanded
procedures in the same order as they appear in their normal collapsed view
(only one procedure may be viewed at a time in V .J.P.). To show the program
in another way (along with all the variables declared), here is the listing as
V .I.P. prints it out:

main (paramCount,returnUalue,params)

-> Integer paramCount
<- byte returnUalue[255]
-> byte params[16,255]

. . ¢ •••

I••••••**********•* 1¢1

T

0 5 tr i no to number 5
tyl)e <n> ¢3 Q . ¢ . Q
number <H> 1¢ Hum Q
..................................... ¢ 1¢

0 result. • sln<Hum> li
~lue (a) 1¢ sin(f'lual) 1¢ . . ¢ Q

I*"'***************** ¢ 1¢

0 number to string 5:
for111at (b) ¢ "(If• Q
number <n> 1¢ result Q

: ¢ .
*******-********!¢ 1¢

-r

I IOI
¢1

Figure F-2

~
i (

101

~
0 alert II

tuoe <n> ¢1 Q
lmessaae (b) 1¢ ·0ne and onlu one al¢

¢• Q
... ¢ Q

., u retum

630 HYPERCARD DEVELOPER'S GUIDE

byte

real

OK

Hum
result

if (paramCount=l)

else

return

string to number (J,params[l],Hum)
assign (sin(Hum),result)
number to string ("~f~,result,returnUalue)

alert (l,"One and only one argument Is allowed~,OK)

Making the Translation
After you've checked the program (choose Check Program in the Special
menu), you then transfer to the V.I.PtoC program. Just before you save the
translation, the file dialog box (Figure F-3) lets you specify the format of the
translation. Choose External for HyperCard, as shown. This builds the C
source code so that it incorporates necessary HyperCard parameter parsing.

Listing F-1 shows the resulting LightSpeed C source code for the sine
XFCN. The two header files (VIPtoC.h and HyperCard.h) come with the
V.I.P.-to-C translation software. V.I.P. then defines a number of constants,
which are represented near the top of the code. Within the body of the main
procedure (note that the translator software locks and unlocks all handles for
you) there is code that accumulates arguments you specified in V.I.P. proce­
dures that ultimately get sent as arguments to what are called V.I.P. Core
Procedures. These procedures will actually "live" in resources (type VEPP)
that must accompany your XCMD resource when you move it to your stack.
In other words, your XCMD resource will be calling these type of VEPP
resources to perform things like converting strings to numbers (sometimes
these VEPP resources rely on yet further resources, like ALRT types for alert
boxes).

When you run your V.I.P. source code through the translator, two files
come out the other end: the C source code and a resource file, with the latter

Appendix F 631

lc::J Hard Disk

D Applications lQ c::J Hard Disk ,._

I
(Ejf~t;1)
(Driue)

0
Saue C source as: (Saue)

(Cancel)

Figure F-3

bearing the name of the original source code file plus a .rsrc extension. Before
compiling the C code in LightS peed, you must change the name of the .rsrc file
to the name of the intended LightS peed C project name (NOT the source code
file name), plus the .rsrc extension. A basic external code shell project, called
VipCShell_CODE, is provided by Mainstay, and you may reuse this as often
as you like. In that case, your .rsrc file would be named VipCShell_ CODE.rsrc.

Figure F-4 shows the contents of the external shell project. CodeLink.proj
is also provided by Mainstay. To this project, add your source code file.
Choose Set Project Type from the Project menu to set the resource type (XFCN
or XCMD), resource ID and resource name. Remember that the XCMD
resource name is the command word you'll use from HyperTalk. Then
compile, using the Build Code Resource choice from the Project menu.

Once the file is compiled, you may then use ResEqit or ResCopy to move all
the resources in the freshly compiled file to the stack of your choice. Figure
F-5 shows the resources that were created for the V.I.P. version of the sine
XFCN. All of these resources must be copied to your stack.

632 HYPERCARD DEVELOPER'S GUIDE

Figure F-4

UipCShell
Name

I. Codel ink .pro j

.. !:!~! .. !~.P..~ ...

. ResCopy

(<<Copy<<)

(Remoc,..))

(t>h~~f :•:P)

I Edit

CODE
obj size

1732 Q
9992 --·-

§
'21

I File: Sine.xfcn (read-only)
, Volume: Programming

I
(Help

(Quit I r-...
Figure F-5

Listing F-1.

•include "UIPtoC.h"
•include "HyperCard.h"

I* Constants */

38?)

SCQ)

! Free: 363K
j Se lee ted: 39392 bytes

I ~ I (,.........;;.c-1-os-e---.
:

'def ne u_AtiY_FILE "???? ..
'def ne u_APPLE-MEtiU "\2+ ..

•def ne u_BACKSPACE • \1 0,

•def ne u_CLOSE_EUT • \+,

•de f ne u_CR • \15,

'def ne u_DLOG_EUT '\5'

'def ne u_DOIJti '\37'

•def ne u_EtiTER • \3,

•def ne u_ESC '\33'

•def ne u_EU 2.71626163
•def ne u_FALSE • \0,

•def ne u_KEY_EUT • \2,

'def ne u_LEFT '\3't'

'def ne u_MEtiU_EUT • \1 ,

•def ne u_MODEM ".A"
•def ne u_MOUSE_EUT • \3,

•def ne u_tiULL-EUT • \0,

•def ne u_PI 3.1+159265

'def ne u_PRitiTER ".B ..
'def ne u_RIGHT '\35'

'def ne u_SitiE_IJAUE "si"
•def ne u_SIZE-EUT • \6,

•def ne u_SQR_IJAUE "sq"
'def ne u_STDIO_IJtiDIJ . , .. ,
•def ne u_TRUE • \1,

ldef ne u_up '\36'

I*
main -------

*I
pascal uoid main (pa~amPt~)

~CmdBiockPl~ pa~amPl~;

char u_OK;
rea I u_tium;
rea I u_resu It;

sho~l k;

AppendixF 633

634 HYPERCARD DEVELOPER'S GUIDE

SetUpGiobaiBase();
fop (k a 0; k < paPamPtP->paPamCounl; k++) HLock (paPamPlP­
>paPallls[k]);
paramPtP->returnUalue = HewHandle (2SSL);
HLock (paramPtr->returnUalue);
If (paramPtr->paramCounta=l)

else

{

UIP-ExtArg[O].c = (char)(J);
UIP_ExtArg[l].addr = (char *)*paramPtr->params[(l) - 1];
UIP_ExtArg[2].addr = (char *)&u_Hum;
I~ string to number *IUIP_CorePPoc(776);
u_result = UIP_sln((Peal)(u_Hum));
UIP-ExtArg[O].addP = (char *)"@f~;

UIP_ExtArg(l].addr = (char *)&u_result;
UIP_ExtArg[2].addr = (char *)*paramPtr->returnUalue;
I* number to string *IUIP_CoreProc(777);
}

UIP_ExtArg[O].c = (char)(l)j
UIP_ExtArg[l].addr =(char *)"One and only one argument Is

a II o111ed .. ;
UIP_ExtArg[2].addP = (char *)&u_OK;
I* alert *I UIP_CoreProc(2313);
}

Pet urn;
for (k a 0; k < paramPtr->paramCount; k++) HUnlock (paramPtr­
>paPams[k]);
HUnlock (paramPtr->returnUalue);
RestoreGiobaiBase();
}

ur_draw_port (u_wndwl 0)
char u_mn dm I D;

Index

A
About Box XCMD, 469-496
calling conventions, 471-472
design assumptions, 472
DLOG/DITL resource
creating, 477-488
PICf resource, 477-481

error handling, 475-477
ALRT resource, 475-477
LightSpeed Pascal,
program listing, 490-496
project,473

stack for, 469-470
steps in main procedure, 473-475
XCMD files, 473

Accordion suite, 343-lSO
adding/ deleting from, 347-350

Aesthetic guidelines, 82-88
Apple Programmers and Developers Associa­
tion (APDA), 466
Animation, 57-58
program driver for, 58
in sound shows, 567

Archiving, stack information, 106
Arrays, 329-330
multi-dimensional arrays, 330
one-dimensional array, 330

Arrow Key
messages, 261
navigation, 271-273

Art Grabber, 434
Artisto, 434
Artists. See Macintosh artists
Authoring tools, 385-394
home stack tools, 386-391
shortcuts,391-392
stack building
with scripts, 392-394

Auto-highlighting buttons, 68, 70
check box button, 69
radio button, 68

B

Background-to-background hierarchy, 239
Beachball cursor, 43-44
Business Class,
floppy disk, dividing applications among,

109-111
idle, 268
installation, 29-30
printing card, 36
reducing handlers, example of, 230-234
time zones, 159-162

Buttons
button navigation, 270-271
customization, 162-166
press and hold, 246-248
remote control of, 248-250
user interface
auto-highlighting, 68, 70
check box button highlighting, 69
choosing correct style, 71-73
lack of feedback, 67, 69-71
radio button highlighting, 68, 280-282

Button scripts
difficulty related to, 28
writing, 36, 38-39

c
Card size, limitation of, 52-53
CD-ROM, 12,114,136
stack structure, 112

Check box button, autohighlighting, 69
Clicking
user interface
retracting errors, 64
single dick norm, 64
single/ double

uses of, 63-64
trapping double clicks, 64-66

CloseField handlers, placement of, 234-236
CloseField message, 250, 253-254
Cobweb structure, stacks, 98-101

636 HYPERCARD DEVELOPER'S GUIDE

Comm XCMD, see Serial Port XCMD
Compact Stack, 105, 393
Compiling XCMDs, 456, 460-461, 464
glue routines, 463-466
interfaces, 464
LightSpeed C, 597-617
LightSpeed Pascal, 459,460-461

464, 466, 468, 581-596
Turbo Pascal, 459,619-626
V J.P., 627-634

Contact scanners, 577
Control key, 261-263
Control structures, 303-323
if-then-else constructions, 305-309
if-then-else reduction, 309-313
if-then-else style, 310-311

repeat constructions, 304, 313-323
nested loops, 319-321
number formats, 318-319
object names, looping through, 316
repeat with construction, 314-319
repeat forever construction, 321-322
repeat loop basics, 313-314
sequential objects, naming, 316-318
speed factors, 322-323

Copyright, 140-142
Custom handlers/messages, 275-291
HyperTalk commands, modifying, 283-284
naming messages, 282-283
parameter passing, 284-291
and global variables, 290-291
multiple parameters, 286-289
parameter variables, 289
Param function, 289

programming example, programming radio
buttons, 280-282

reasons for use, 276-282
convenience handlers, 277-280
stack commands, 277

Customizing stacks, 157-168
building and extending dated stacks, 158-

159
button customization, 162-166
Focal Point, 162-166

front ends and, 157-158
internal documentation and, 156-157
user preferences
Preferences card, inside, 160-161
time zones example, 159-162

D
Database (existing), 113-131
field structure, 114-120
combining fields, decision about, 116-117
field design tactics, 118-120
intensive field nature, 114-115
multiple-lined fields, 118
single-line fields, 117-118
specifying sorts, 115-116

HyperCard environment
appropriateness of, 114

importing data, 120-129
data preparation, 121-122
field structure, changing, 125-129
importing script, 122-125
long text import scripts, 130-131
word processing data, 129-131

vs. HyperCard, 15-21
Dated stacks, building and extending, 158-159
Date. See Time/ date
Daylight Saving Time, 358
foreign, 362

Debugging, 394-399
debugging tools, 394-399
error messages
figuring out problem from, 395-396

if-then-else constructions
testing of, 398-399

scripts, 104, 394-395
variable values, tracing, 397-398

Delays, 56-57
necessity of, 57

Desk accessory text editor
word processing data, importing, 131

Digitized sound, 447
See also Sound shows.

DLOG/DITL resource
AboutXCMD
creating, 477-488
PICT resource, 477-481

doMenu handler, 333
doMenu message, 263-265

E

Elapsed time
electronic stopwatch illustration, 363-366

Error checking, 553-554

External device control stacks, 196, 196-197
pre-building guidelines, 196
and serial controller XCMDs, 196
see also Serial Port XCMD

External structure, 107-111
Business Class strategy, 109-111
floppy disk concerns, 108
Focal Point strategy, 108-109
scopeof,90

Extracting icons, 443-445

F
Feedback, visual,40-44, 67-71
Field messages, 252-260
closeField message, 252, 253-254
enterlnField message, 260
examples of, 254
openField message, 252
returnlnField message, 259

Field structure. See Database (existing)
Ftlename XCFN, 38, 455
Find command, 104
difficulty related to, 106

Find and Sort, 373-384
Find
Boolean fmds, 380
finding by field, 377-379

find in field workaround, 379
find string, 380-381
find whole,380
simple finding, 376-377

Sort
card suites, 383-384
dual key sorts, 382-383
simple sorting, 381
sorting by field, 381-382

Floppy disk
dividing applications among

Business Class, 109-111
Focal Point, 108-109

using HyperCard, 50
Focal Point,
button customization, 162-164
button scripts, writing, 36, 38-39
customizing front end, 39-40
floppy disk, dividing applications among,

108-109
idle,268-270
non-linearity and, 101-103

prototype, 167-168
Front-ends, 35-40
customization front end, 39-40
printing cards, 36
script writing scripts, 36-39

Function keys, 263
Functions
and hierarchy, 294-295
syntax, 295-296
see also User-defined functions

G
Global variables

Index 637

and multiple stack systems, 290-291
multiple variables, difficulties related to

use,290
passing data with, 290

Glue routines, and compiling XDMCs, 463-466

H

Handler
comprehension, 402, 407
efficiency, 402, 404-407
timing tests, 406-407

readability, 402,403-404
command lines, 404
line spacing, 403-404
preamble, 405

see also Custom handlers/messages
Help message, 266-267
Heterogeneous stacks, 90
advantages of, 103-105

Hierarchy, see Object hierarchy
Home Card
icon buttons, difficulty related to, 28, 63

Home Card button, installation, 33-34
Home Stacks, avoiding modification of, 34-35
Homogenous stacks, 90, 91
advantages of, 105-107
linear format of, 91-92

Hub-and-spoke suite, 331-335
Hybrid structure, stacks, 101
HyperCard
authoring tools, 386-394
control structures, 303-323
customizing handlers/messages, 275-291
debugging tools, 394-399
difficult concepts to plan around, 28-29

638 HYPERCARD DEVELOPER'S GUIDE

Find and Sort, 373-384
Help stac~ 93-95
icons, 418, 429, 429-446
linked cards, 325-350
object hierarchy, 210-241
requirements of, 107
resources, 411-428
sound, 447-453
system messages, 245-274
time/date, 351-372
user-defined functions, 293-302
XCMDs, 454-468
See also individual topics.

HyperCard Literacy
front-ends, 35-40
customization front end, 39-40
printing cards, 36
script-writing scripts, 36-39

front-end visuals, 40-44
beachball cursor, 43-44
watch cursor, 42-43

Home Card button
installation, 33-34

Home Stack, avoiding modification of, 34-35
installation routines, 29-30
pathname settings, 30-33

HyperDA, 116, 430
HyperSound, 566
HyperTalk, 201-202
building stack used with, 202-207
error checking, 553-554
as open system, 133
style and practice, 402-407

Hypertext, 91, 100

I

Icon Extractor, 443-445
Icon Factory, 442-443, 444
Icons, 418, 427-444
basic information, 427-430
creating icons, applying art, 432-433

Icon Extractor, 443-445
Icon Factory, 442-443, 444
new resource, making, 436-441
preparation phase, 433-434

design, 77-78
naming, importance of, 432-433
and object hierarchy, 431
user interface, moving icon buttons, 66-67

Idle message, 267-270
Business Class, 268
common application of, 267
Focal Point, 268-270

If-then-else constructions, 304, 305-313
if-then-else reduction, 311-313
if-then-else style, 309-311
testing of, 398-399

Importing data, 120-129
data preparation, 121-122
field structure, changing, 125-129
importing script, 122-125
long text import scripts, 130-131
word processing data, 129-131

Impulse Audio Digitizer, 565, 566
Information management stacks, 193-196
design phases,193-196
and script utility, 196

Information publishing stacks, 188-193
common applications, 188
design phases, 188-193
mouse handlers, 248
pitfalls, 192-193

lningo Gets Out, 92-94
Installation routines, 29-30
Interfaces, and compiling XCMDs, 462
Internal structure, scope of, 89-90
International dates, 371-372

K

Keyboard messages, 258
arrow Key messages, 261
Control key, 261-263
function keys, 263
textArrows property, 260

L

Lateral hierarchy, 236-239
background-to-background hierarchy, 239
stack-to-stack hierarchy, 237-239

Layers, adjusting object, 386-387
LightSpeed C

XCMDs, 597-617
library listing for, 597-617

LightSpeed Pascal
and About XCMD, 473
and Comm XCMD, 535-536
and Pop Up XFCN, 506

basic outline, 582
code resource in, 583-584
listing of interface/ glue units, 584-596

Linear structure, stacks, 91-92, 101
Linked cards, 325-350
accordion suite, 343-350
adding/deleting from, 347-350

arrays and, 330
hub-and-spoke suite, 331-335
rolling hub and spoke suite, 335-343

linkList field, 332, 334, 338, 339
Localization, 371-372,412
Locking field, 212-213
Locking message, 256-258
Locking screen, 41
Loops. See Repeat constructions

M

Macintosh artists, 77-82
financial factors, 80-81
locating, 79-80
timing for hiring artists, 82
working with artists, 81

Macintosh models and HyperCard, 47-59
animation, 57-58
floppy disk drives, 50
Macintosh II, 50
Macintosh Plus, 48-49
Macintosh SE, 49
RAM megabytes, 51-52
screen/ card size, 52-53
screens and menu bars, 53-55
ticks/seconds/ delays, 56-57
necessary delays, 57

timing factors, 55-56
MacRecorder, 451-452, 565-566
Mac Vision, 578
Mac Viz digitizer, 578
Magic, stack design, 155-156
MainCard field, 333, 334, 338, 342
MakeFields handler, 393-394
MegaDelete handler, 388
MegaEdit handler, 388-390
Menu, menu navigation, 273-274
trapping items, 263-265

Menu bar
and different monitors, 53-55
user interface,59-74
basic issues/decisions, 61

inapplicable menus, 61-62
time to show menus, 62-63

Index 639

Message box, message box navigation, 27 4
Messages, naming, 282-283
MockWrite, 131
Modify stack protection, 138
Mouse, mouse messages, 247-248
MPW, 22, 465, 468
MultiFinder, 52
Multiple-lined fields, use of database, 117
Multistack applications
installing preload button, 33-34

N

Navigation control,270-274
arrow Key navigation, 271-273
button navigation, 270-271
menu navigation, 273-274
message box navigation, 27 4

0
Object hierarchy, 210-241
basic hierarchy, 211
bypassing hierarchy, 239-241
closeField handlers, placement of, 234-236
difficulty related to, 226
and icons, 431
lateral hierarchy, 236-239
background-to-background hierarchy, 239
stack-to-stack hierarchy, 237-239

level, choosing appropriate, 226-227
me, 214
use of, 225-226

perspectives on, 210-211
reducing handlers, 227-234
Business Class example, 228-234

and resources, 419
stack illustration, making stack, 211-213
target function, 214-216
naming objects/target names, 220-224
short/medium/long target names,217-218
target decision, 219-220
time for use of, 224-225

Open/ close object messages, 256-258
openField message, 250
Open Stack handler, 244-245

640 HYPERCARD DEVELOPER'S GUIDE

p

Pack-It, 177-178
Parameter block
calling XCMDs and, 461-464, 465

Parameter passing, 284-291
and global variables, 290-291
multiple parameters, 286-289
parameter variables, 289
Param function, 289

Pathname cards, difficulty related to, 28
Pathname settings, 30-33
Play Video Worb, 58
Pop-up XFCN, 497-521
calling conventions, 502-503
design assumptions, 505-506
items in menus, 503-504
LightSpeed Pascal
program listing, 513-521
project, 506

MENU resource, creating, 510-512
stack for, 500-502
steps in main procedure, 507-510
XFCN files, 506
XFCN return value, 504-505

Pop-up menu, 498-499
properties of, 499
purpose of, 498-499

Press-and-hold buttons, 246-248
Printing cards, 36, 277
Private access protection, 134-135
Program driver, for animation, 58
Protection, see Stack protection

Q
Quit message, 266

R

Radio button, autohighlighting, 68, 280-282
RAM, HyperCard requirements, 51
Repeat constructions, 304, 313-323
number formats, 318-319
evaluating performance, 322-323
nested, 319-321
object names, looping through, 316
repeat with construction, 314-319
repeat loop basics, 313-314
sequential objects, naming, 316-318

ResCopy, 423,427-428,432-433

ResEdit, 419, 420-423
and icon creation, 436-441
and sound, 566
and Turbo PasCJll, 619-621, 629
Resource~411-428
and application files, 417-418
concept for, 412
dialog box example, 415-417

Dialog Item List (DITL), 415-417,421-422
Dialog Template {DLOG), 415-416,421-422

and Macintosh toolbox, 414
and object hierarchy, 419
resourcefork,413-414
resource tools, 419-428
ResCopy, 423,427-428
ResEdit, 420-423

resource type names, 414-415
types commonly added to stacks, 418
see also Icons, Sound, XCMDs

Resume messages, 265-266
Return characters, accidental insertion of,

255-256
Rolling hub and spoke suite, 335-343

s
Screen aesthetics, 75-88
design guidelines, 82-88
80/20% rule, 75-76, 81
icon design, 77-78
sources for, 78

see also Macintosh artists.
Script commands, 156
Script Report, 14, 185, 197
Script writing scripts, 36-39
Scrolling text field, word processing data,

131-132
Serial port {Comm) XCMD, 523-551
calling conventions, 526-528
commStorage variable, 526
opening/dosing serial ports, 527
writing/reading, 527-528

communications session, steps in, 529-530
connecting to service, 528

password,528-529
LightSpeed Pasc:al
program listing, 539-551
project, 535-536

logging off, 534-535
hanging up modem, 535

logging on, 530-534
data retrieval, 532-534
dialing, 532
LF 10 prompt, 533
listenFor handler, 531-532

main procedure, 549-550
purpose of, 524
stack for, 524-525

Shortcuts, authoring tools, 391-392
SideKick, 185
Single-line fields, use of database, 117-118
Software design, 168-186
functional specifications, 168-169,170
help system, 170-174
help in context, 170-171
intercepting Help message, 173-174
and printing help stack, 171, 173

importing/ exporting information, 179-181
manuals, 175-179
components of good manual, 176
packaging, 177-179
timing for writing of, 177
writers of, 176
marketing,1~186
low cost publishers, 183-186
public domain method, 185-186
retail channel, 183
self-publishing, 184
shareware, 184-186

testing software, 181-182
testing procedures, 182
time for beginning testing, 181-182

Sort
card suites, 3~384
dual key sorts, 382-383
and homogenous stacks, 106-107
simple sorting, 381
sorting by field, 381-382
specifying sorts, 115-116

Sound, 447-453
aliasing, 562
digitized sound, 447-449
existing sound, converting, 450-451
HyperSound, 451-452
sound resources, 449-450
formatting, Type 1 and Type 2, 450

sound stacks, producing, 452-453
uses in programs, 448
See also Sound shows.

SoundCap, 450-451, 565, 566

Sound Cap Converter, 566
SoundEdit, 566
Sound shows
applications of, 579
digitized sound, 560-561
basic information, 560-561
best rate of speed for, 561-562
storage of, 560-561

Index 641

extensions/ enhancements, 579-580
graphics production, 577-579
contact scanners, 577
Mac Vision, 578
Mac Viz digitizer, 578
paint programs, 578
video digitizing, 577-578

interactive sound tours, 570-577
PlayList cards, 572
scripting, 572-577
stack/background structures, 570-572

performance aspects, 568-570
animation, 569
limitations related to, 568-569
playback system control, 569
"prewarming" cards, 569-570
text fields, 569
time limits, 569

production techniques, 567
digitizing sound, 567
sound test, 567

sampling rates, 561-562
slide show script illustration, 562-564
basics of technique, 562-564
Play List card, 563-564
synchronization, 562

sound commands, 561
play, 561
play stop, 561

system requirements
digitizing hardware, 565
paint programs, 566-567
playback system, 566
SCSI hard disk,561
SoundCapConverter software, 566
Sound Edit software, 566
Sound Wave software, 565

Sound Wave, 450-451, 565, 566
Stack building, 187-198
authoring tools
home stack tools, 386-391
shortcuts, 391-392

642 HYPERCARD DEVELOPER'S GUIDE

stack building with scripts, 392-394
external device control stacks, 196-197
pre-building guidelines, 196
and serial controller XCMDs, 196
testing, 197

information management stacks, 193-196
design phases, 193-196
and script utility, 196

information publishing stacks, 188-193
common applications, 188
design phases, 188-193
pitfalls, 192-193

planning, value of, 199-200
Stack delete protection, 135
Stack design, 145-154
button design, 150-152
clicking for data entry, 152-153
magic, 153-154
opening sequence, 147
script shortcuts for objects, 150
stack structure, best use of, 152
visuals, use of, 147-150
wipes, 149
zooming in, 149

Stack protection, 134-143
copyright protection, 140-142
modify stack protection, 136
private access protection, 134-135
protecting code, 141-142
reasons for, 134
stack delete protection, 135
user level protection, 136-140
locking user level, locking/not locking

examples, 137,138-140
problem related to, 137

XCMDs, obtaining, 142-143
Stacks
customizing stacks, 155-166
design of inviting stacks, 145-154
stack protection, 134-143
stack structure, 89-112
See also individual topics.

Stack structure, 89-112
CD-ROM structure, 112
cobweb structure, 98-101
decision-making for, 103
external structure, 107-111
Business Class strategy, 109-111
floppy disk concerns, 108
Focal Point strategy, 108-109

scopeof,90
heterogenous stacks
advantages of, 103-105

homogenous stacks, 90, 91
advantages of, 105-107

hybrid structure, 101
internal structure
scope of, 89-90

linear structure, 91-92, 101
navigation flow and, 90-91
non-linearity and,101-102
tree structure, 92-98, 101

Stack-to-stack delays
difficulty related to, 28-29

Stack-to-stack hierarchy,237-239
Start Up message, 266
Stuff-It, 177-178
Suspend/resume messages, 265-266
Syntax, 401-402
user-defined functions, 295-296

System messages
doMenu message, 263-265
field messages, 250-256
closeField message, 250, 253, 254
enterlnField message, 260
examples of, 252-256
openField message, 250
returnlnField message, 259

help message, 266-267
idle message, 267-270
Business Class, 268
common application of, 267
Focal Point, 268-270

keyboard messages, 258
arrowKey messages, 261
Control key, 261-263
function keys, 263
textArrows property, 260

listing of, 244
mouse messages, 245-246
navigation control, 270-274
arrow Key navigation,271-273
button navigation, 270-271
menu navigation, 273
message box navigation, 27 4

open/ close object messages, 256-258
press-and-hold buttons, 246-248
Quit message, 266
remote control of buttons, 248-250
Start Up message, 266

suspend/resume messages, 265-266

T

Target,214
use of, 215, 216

Tear~ff menu, 60
Testing, 181-182
textArrows property, 260
Text fields, cursor in, 245
Tilt, 77
Time/ date, 351-372
dates before deadlines, 368-370
days between two dates, 366-368
elapsed time, electronic stopwatch

illustration, 363-366
international dates, 371-372
time (adding), 353-356
handlers for, 355-356
time includes date, 354-355

world time conversion, 357-362
Daylight Saving Time, 358
foreign Daylight Saving Time, 362
Greenwich Mean Time referencing, 357
list of offsets, 357-358

Time zones
Business Class, 159-162

Tree structure
stacks, 92-98,101
caution related to, 96, 98

Turbo Pascal
compiling XCMDs, 619-626
basic outline, 621-624
interface files
listing of, 624-626

preparation phase, 619
ResEdit and DHDR resources, 619-621

u
User-defined functions, 293-302
function library, use of, 301-302
functions
and object hierarchy, 294-295
useof,294

modularity of functions, 297
parameter passing, 299-300
multiple parameters, 300-301

returned command line, 296
simple functions, building of, 297-298

syntax of, 295-296
Userinterf.ace,59-74
buttons
auto-highlighting, 68, 70

Index 643

check box button highlighting, 69
choosing correct style, 71-73
lack of feedback, 67, 69-71
radio button highlighting, 68

clicking
retracting errors, 64
single click norm, 64
single/ double
uses of, 63-64

trapping double clicks, 64-66
icons
moving icon buttons, 66-67

menubar, 60-63
basic/issues/ decisions, 61
inapplicable menus, 61-62
time to show menus, 62-63

tear-off menu, 60

v
Validating field entries, 259-260
Variable values
debugging and, 397-398
VideoStac~ 13
Vl.P.
XCMDs, 627-634
example XFCN, 628-630
V.I.P. to C translation, 627,630-631

visual effects, 147-150

w
Watch cursor, 42-43
Wildcard, 100
Word processing data
importing, 129-131

X

desk accessory text editor, 131
long text import scripts, 130-131
scrolling text field, 129-130

XCMDs, 55, 58, 418, 455-468
basic information, 456
calling XCMD
HyperCard actions, 461-464

644 HYPERCARD DEVELOPER'S GUIDE

object hierarchy and, 466
parameter block and, 461-464, 465

compiling XCMDs, 456, 460-461
glue routines, 463-465
interfaces, 464
LightSpeed C, 597-617
LightSpeed Pasazl, 459, 460-461,

464, 466, 468, 581-596
Turbo Pascal, 459, 619-626
V.I.P., 627-634

deciphering, 141
menu display, 62
obtaining, 142-143

reasons for use, 457-458
serial controller, 196
writing XCMDs, 458-461
programming languages for, 45~1
resources for, 456

See also About XCMD; Serial port XCMD.
XFCN,418

See also Pop Up XFCN.

z
Zooming in, 149

Special Software Offer!

Get a running start on HyperCard software development with the
example programs from this book!

The stacks, interface routines, XFCNs and XCMDs featured in Danny
Goodman's HyperCard Developer's Guide are available for only $9.95,
plus $4.00 for shipping and handling.

Why spend hours typing? Send us your check, and we'll send you a
3 lf2" diskette with all the scripts and source code from the book.

This disk is not for sale in any store; it can only be purchased directly
from the publisher.

Use this coupon to order; mail your check or money order for $13.95
to:

Bantam Books, Inc., Dept. HCD
666 Fifth Avenue
New York, NY 10103

Yes! Send me the Disk to Accompany Danny Goodman's HyperCard
Developer's Guide (50055-4) for only $13.95 ($9.95 plus $4.00 for ship­
ping and handling.)

Name ___ __

Address--
City State __ Zip __ _

My check or money order for $13.95 is enclosed. (Please make check
payable to Bantam Books, Inc.)

About the Author

Danny Goodman has been an active participant on the editorial side of the
personal computer and consumer electronics revolutions since the late 1970s.
His articles have appeared in some of the most prestigious general audience
publications, such as Playboy, Science Digest, Chicago and Los Angeles city
magazines, and in-flight magazines for United, Eastern, PSA, TWA, and
several other airlines. As Contributing Editor to PC World and Macworld
magazines, he is frequently the first to report on the applications of new
computer technologies. More recently, his computer magazine writing has
focused on showing lay readers how to tailor advanced software tools to
everyday business problems. In 1987, he won a PCW Communications award
for the best hands-on article e'Four Secrets of Excel") appearing in any
Macworld or PC World issue in 1986.

Danny is also the author of 10 personal computer books. His most recent
book, The Complete HyperCard Handbook, published by Bantam Books in
August 1987, has claimed honors as the best selling Macintosh book and
fastest selling computer book in the history of our industry. In researching
that book, he spent a year and a half working with the program's creator, Bill
Atkinson, who acknowledges Danny's contribution to the design of Hyper­
Card.

The term "software developer'' is new to Danny's titles. In November 1987,
Activision published his Focal Point and Business Class programs, the first
HyperCard-based products to reach retail distribution. These two products
received three Software Publishers Association awards for best products in
three categories for 1987.

Danny, 37, was born in Chicago. He earned a B.A. and M.A. in Classical
Antiquity from the University of Wisconsin at Madison. He moved to
California in 1983, and now lives in a small San Francisco area coastal
community, where he alternates views between computer screens and the
Pacific Ocean.

You Learned HyperCard With 'The Handbook' ...
Now Get Down to Serious Stack Development.
Danny Goodman, author of the bestselling primary resource for HyperCard­
The Complete HyperCard Handbook-now shares his stack development tech­
niques and experience with intermediate and advanced stack designers. As creator
of the first stack products in retail distribution-Activision's Business Class and
Focal Point-he's found lots of secrets and shows you the way to first-rate stack
design for corporate, academic, commercial, shareware, or public domain
audiences.

Inside you'll learn how to face the biggest challenges confronting stack developers
today-"the Ten Commandments of stack design" they've been called. He also
answers the questions that have stumped many, including how to build data arrays
in HyperTalk and maximize HyperCard's Find capability, especially in light of
new CD-ROM and networking features in HyperCard version 1.2.

You'lllearn:

• Critical stack design issues, such as stack structure, user interface, aesthetics,
stack protection, and marketing. •

• How to master the object hierarchy for your own HyperTalk handlers and user­
defined functions.

• How to recognize a sluggish script and then speed it up.

• How the pros debug HyperTalk scripts and employ authoring tools you can
build.

• How to create icon and sound resources with simple resource tools.

• How to write XCMDs and XFCNs to expand the power of HyperCard,
including controlling devices through the serial port.

If you've been looking for help with XCMDs, Goodman also brings you three
new XCMDs written by Chris Knepper of Apple Computer, Inc., a member of
the Macintosh Developer Technical Support team. Pascal and C programmers
will see how to dive into external code development in three popular development
environments: LightSpeed Pascal, LightSpeed C, and Turbo Pascal.

Just as 'The Handbook' was the book you used to cut your teeth on HyperCard,
Danny Goodman's HyperCard Developer's Guide will help you become an
accomplished stack designer.
Danny Goodman is recognized as a leading authority on HyperCard. Having worked
with its creators for 18 months prior to its initial release, Goodman has been design­
ing professional stacks and writing HyperTalk code longer than anyone outside of
Apple. He is also a contributing editor to Macworld magazine.

34576-1 • IN U.S. $24.95 (IN CANADA $29.95) • BANTAM COMPUTER BOOKS

