Bscrnies eoiror' Macintosh scorr kiasien |8

ocsgug 6.2 o7 0{ |
¥ Debuggmg Macmtosh
Software W7,

KONSTANTIN OTHMER
JIM STRAUS

Debugging Macintosh®
Software with MacsBug®

Debugging Macintosh®

Software with MacsBug”®
Includes MacsBug 6.2 on Disk

Konstantin Othmer
Jim Straus

A
vy

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book and Addison-Wesley
was aware of a trademark claim, the designations have been printed in initial capital letters.

APPLE COMPUTER, INC. (“APPLE”) MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING
MACSBUG. APPLE DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF
MACSBUG IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS
OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF
MACSBUG IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT
PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL APPLE, ITS DIRECTORS, OFFICERS, EMPLOYEES, OR AGENTS BE
LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES
(INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION,
LOSS OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR
INABILITY TO USE MACSBUG EVEN IF APPLE HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Apple’s liability to
you for actual damages from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort (including negligence), product liability, or otherwise), will be
limited to $50.

Library of Congress Cataloging-in-Publication

Othmer, Konstantin.
Debugging Macintosh software with MacsBug: includes MacsBug 6.2/Konstantin
Othmer, Jim Straus.
p- cm.
Includes index.
ISBN 0-201-57049-1
1. Macintosh (Computer)—Programming. 2. Debugging in computer science.
3.MacsBug. I Straus, Jim. IL Title.
QA76.8.M3084 1991
005.369—dc20 91-8059
CIpP

Copyright © 1991 by Konstantin Othmer and Jim Straus

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

Associate Editor: Rachel Guichard

Technical Reviewer: Chris Derossi

Disk Review: scott douglass, Ed Tecot

Cover Design: Ronn Campisi

Set in 10.5-point Palatino by Inprint Publishing Corp.

123456789-MW -9594939291
First printing, April 1991

Contents

Foreword by Scott Knaster xv

Acknowledgments xvii

» PART ONE Getting Started 1

1. Introduction 3
Why Learn to Use MacsBug? 3
What You Need to Know 5
What's in This Book? 5
Symbols Used in This Book 6
What's on the Disk? 7
How to Use This Book 7
Summary 8

2. MacsBug Basics 9
Installing and Configuring MacsBug 9
The Monitors Control Panel 10
ResEdit and the Debugger Prefs File 11

vi

» Contents

Using MacsBug for Temporary Customization
Low Level Details of the Macintosh 13
The Processor and Memory 13
Memory Maps 15
The Anatomy of the MacsBug Screen 19
Basic Command Line Editing 21
Arrow Keys 21
Option Key 22
Delete Key 22
Return Key 22
The Command History Buffer 22
Entering MacsBug 22
The Programmer’s Switch 23
The Programmer’s Key INIT 23
The Debugger and DebugStr Traps 24
System Error 24
Leaving MacsBug 24
Step 24
T(or SO) 25
GoTo 25
Go 25
Exit to Shell 25
Exit to Application 26
ReBoot 26
ReStart 26
A Sample MacsBug Session 26
A-Trap Break 26
The Escape and Back Quote Keys 27
A-Trap Clear 27
BReak 27
BReak Clear 28
Display Memory 28
TeMPlates 29
HOW 30
HELP 30
Summary 31

13

» Contents vii

» PART TWO Exploring the Macintosh with MacsBug 33

3. Accessing the ROM 35

Where Is The ROM? 36

A-Traps 37

ToolBox Calling Conventions 39
OS Traps: Usually Register-Based Calls 40
Toolbox Traps: Usually Stack-Based Calls 40
High Level Languages and Traps 40

MacsBug’s A-Trap Commands 49

ROM Organization: the MPW ROMMap File 60

Summary 60

4. How RAM s Organized and Maintained 63
Heaps 64
Pointers and Handles 66
The System Heap 71
The MultiFinder Heap 71
The Application Heap 73
MacsBug Commands That Operate on Heaps 77
Heap Zone 77
Heap Exchange 80
Heap Display 81
Heap Totals 85
Heap Check 86
A-Trap Heap Check 88
Heap Scramble 89
The Application Stack and the Link Instruction 89
Low Memory Globals 96
Application Globals 97
The Segment Loader 98
Jump Table Entries for Routines in Unloaded Segments 99
Jump Table Entries for Routines in Loaded Segments 101
Stepping Into Another Segment 103
Common Problems Using the Memory Manager 104
Corrupting the Heap 104

viii

» Contients

Fragmenting the Heap 106
Memory Leakage 109
Summary 110

The Main Event Loop 113
Finding the Event Loop 113
What's In an Event Loop 114
WaitNextEvent 116
Catching a Keyboard Event 117
The Event Queue 119
Forcing an Application to Quit 121
Summary 122

Resources 123
Specifying a Resource 124
Owned Resource IDs 125
Resources In Memory 126
Attributes 128
Code Resources 130
Other Resources 131
Resources on Disk 132
Resources InROM 134
The Resource Chain 135
Resource Maps 138
Structure of a Resource Map 138
Summary 141

Menus 143
How the Menu Manager Works 143

The Menu List 144

Other Globals 147
The Menu Definition Function (MDEF) 149
The Menu Bar Definition Function MBDF) 153
Summary 156

» Contents

8.

10.

11.

Windows 159
How the Window Manager Works 159

Update Region Maintenance 160

The Window List 166
The Window Definition Function (WDEF) 167
Summary 180

Dialogs 181

Creating Dialogs 181
Creating a Dialog without Resources 183
Dialog Record and Dialog Item Lists 186
Setting User Items 190
Alerts 191

Dialog Event Management 191
Modeless Dialogs 191
Modal Dialogs 192

Summary 195

Controls and CDEFs 197
Properties of Controls 197
Creating Controls 198
The Control ID 198
Part Codes 199
The Control Record 200
The CDEF 204 ‘
How Controls Respond to Events 204
Summary 209

QuickDraw 211
Classic QuickDraw 212
Color QuickDraw and 32-bit QuickDraw 212
How QuickDraw Works 214
The Current Port 214
GrafPorts and CGrafPorts 216
BitMaps and PixMaps 220
Destination Color Information and GDevices 221

X

» Contents

12.

13.

14.

CopyBits 223
CopyBits Colorizing 223
Destination Color Revisited 224
The Color Table Seed 228
Accessing 32-bit Addressed PixMaps 229
Common Problems Using QuickDraw 230
Bug 1: Why is CopyBits Drawing the Wrong Image? 231
Bug 2: Drawing Occurs to the Screen Instead of to the Offscreen
PixMap 238
Bug 3: Drawing Is Correct Only if the Main Screen Is 8-bit 246
Summary 251

Device Drivers and Desk Accessories 253
Structure of a Driver 255

Desk Accessories 257

An Easier Way: The DRVR Demd 260
Summary 261

The File Manager 263
Understanding the File Manager 263
Calling the File Manager 265

The File Manager Traps 265

File Manager Glue 266

Parameter Blocks 268
In Memory Data Structures 272

The FCB Array 272

The VCB Queue 276

The WDCB Array 278

The Default Volume 279
More File Manager Tips 281

The “Poor Man'’s Search Path” (PMSP) 281

Some Useful MacsBug Commands 285
Summary 286

The Printing Manager 287
Device Independence 287

» Contents

Xi

15.

16.

The Graphics Model Used for Printing 289
How the Printing Manager Works 292

The Glue and the Trap 292

Stepping Through Glue 293

What This Means for Your Application 294

The Print Record 297
Debugging Printing 301

PDEFs — The Printing Manager's CODE Resources 301

PostScript — How to See What You Get 303

.Background Printing 305
Summary 306

The Control Panel and CDEVs 307
How the Control Panel Works 307
The cdev File 309
The CDEV Code 309
How a CDEV is Called 312
Watching Specific CDEV Events 316
Summary 317

The Startup Process and INITs 319
INITs 321
Preventing INITs from Loading 326
Debugging INITs 328
Summary 331

PART THREE Advanced Debugging 333

17.

Debugging Techniques 335
Defensive Programming 335
Use a High Level Language 336
Limit Interdependencies 337
Set Well-Defined Entry and Exit Points 337
Check Values 338
Create a Debugging Version 338

xii

» Contenis

Make Sure Every Variable Is Initialized 339

Compile with All Type Checking and Warnings Turned On 339
Make and Test Incremental Changes 340

Build In Virus Protection 340

Five Basic Debugging Steps 340
Three Ways to Fail 347

When the Macintosh Hangs 347
When the Macintosh Crashes 350
Other Bugs 353

Technique Potpourri 355

When All Else Fails 355

Command -: 355

Using the BR Command to Display Function Results 356
Conditional MacsBug Commands 357

Debugging Read and Write Sensitive Hardware 357
Using the DH Command 357

Calling Traps From MacsBug 358

Using Discipline and DSC 359

The FirstTime Macro 359

The EveryTime Macro 360

The SHOW Command 360

Using WH to Display Traps that Are Called Directly 360
Mr. Bus Error 362

Debugger and DebugStr 362

Summary 363

18. Macros 365

Types of Macros 367

Low Memory Globals 367
Dispatched Traps 368
Command Abbreviations 369

Creating Macros 369

Creating Temporary Macros 370
Creating Permanent Macros with ResEdit 371
Creating Permanent Macros with MPW 373

Summary 374

» Contents xiii

19. Templates 377
Types Used in Templates 378
Creating Templates with ResEdit 380
Creating Templates with MPW 383
Summary 385

20. Dcmds 387

Listing Available Dcmds 387

How to Writea Demd 388
The demdBlock 388
Callbacks 389
Output Functions 390
Input Functions 391
Utility Functions 392
Building a Dcmd 394
Testinga Dcmd 397

Summary 401

Appendix A: MacsBug Command Summary 403
Appendix B: Macro, Template, and Demd Summary 515

Index 537

Foreword by Scott Knaster

Some things take time. When you're designing a brand-new, radically differ-
ent computer, as the Macintosh was in 1984, you invent a whole new way of
writing software. One of the hardest things to anticipate is what the debugging
environment will be like. You don’t really know what kinds of mistakes pro-
grammers will make, and you're not sure what the tools that they’ll use to fix
those mistakes ought to look like.

Macintosh debugging tools have evolved greatly in the years since the first
Macintosh appeared. We’ve seen the release of powerful source-level debug-
gers and other neat development tools that relieve a lot of the programmer’s
burden. It's now possible — maybe — to write an entire application without
relying on an object code debugger like MacsBug.

Most of the time, though, Macintosh programmers still have occasion to
dive right into the object code soup while they’re working on their programs.
The main reason is that it's the only way to really, truly know what’s going on
in the Macintosh’s bustling insides. Evenif you debug mostly ata higherlevel,
you’ll probably use an object code debugger to observe what’s happening in
your program and to learn more about how the Macintosh works.

That’s why, despite all the other great tools, object code debuggers like
MacsBug and TMON are still very popular. Most programmers always keep
anobject code debugger around, like a spare can of Jolt Cola, just in case some-
thing nasty happens and they need to find out more.

XV

Xvi » Foreword by Scott Knaster

In this book, Konstantin Othmer and Jim Straus do more than just show you
how the many features of the modern MacsBug can make your programming
life easier. They also conduct an exhaustive tour (hard hats and flashlights re-
quired) of the deepest, darkest caves of the Macintosh’s mind. There are lots
of great tips, examples, and historical notes along the way.

There’s an awful lot to learn about how things work inside the Macintosh.
This book contains a vast collection of Macintosh debugging goodies. Enjoy
the journey and use the knowledge to make your applications even greater, or
just have fun knowing more about how your Macintosh works.

Scott Knaster
Macintosh Inside Out Series Editor

Acknowledgments

Many people contributed to help make this book possible. We are extremely
thankful to all of them. A partial listing is as follows:

Scott ‘ZZ’ Zimmerman wrote the chapter on printing. Somehow we were
able to convince him that it would be a cool thing to do. Without him, that
chapter would not exist.

David Feldman wrote the chapter on the File Manager. We used a different
trick on Dave; we told him sleep was evil. Without him, this book would be
missing Chapter 13.

Chris Derossi did an excellent job reviewing this book for technical accuracy.
He also contributed several demds. It’s very hard to sneak bugs past Chris.
Without him this book would be full of inaccuracies and outright lies.

David Van Brink gave us the shell on which all of the sample applications
are based. The source code for the shell is included on the disk and is easy to
expand into a full-blown application. One psychic told us that by the year 1995
over 85% of all commercial Macintosh applications will be based on this shell.
Without David, there would be no sample applications.

scott douglass and Leo Baschy answered a barrage of MacsBug questions.
In addition, scott wrote several of the demds included on the disk. Without
them the enclosed disk would have much more free space on it.

Mark Bennett and Darin Adler contributed a number of the debugging sug-
gestions found in Chapter 17. Without them, that chapter would be only an
introduction and a summary.

Bruce Leak made many suggestions and contributed many of the ideas in
the book. It’s hard to say enough good things about Bruce. Without him, the
universe probably wouldn’t exist.

Xvii

Xviii

» Acknowledgments

Joanna Bujes and Tom Chavez were very helpful in providing the latest
MacsBug documentation Apple had available. They even gave us a disk ver-
sion of the command summary on which Appendix A is based. Without them,
there would be no Appendix A.

David Shayer gave us a copy of the MacsBug book he uses when teaching
a MacsBug class at Apple, as well as some of the demds included on the disk.
Without him various sections of several chapters would be missing.

Paul Mercer gave us permission to include the Programmer’s Key INIT
with the book. He also contributed to Chapter Sixteen. Without Paul you
would have a 50 percent chance of entering MacsBug and a 50 percent chance
of rebooting.

Keith Nemitz gave us the RD demd. The information in Chapter 6 is based
largely on this demd. Without him, there would be no Chapter 6.

Kevin MacDonell contributed the MLIST demd. This demd is the basis of
Chapter 7. Without him, that chapter would fit on one page.

Richard Dizmang gave us the PATCH demd used in Chapter 16. That demd
gave the chapter life, transforming it from a skeleton into a full-fleshed mon-
ster. Without him, Chapter 16 would be all bones.

David Goldsmith gave us the Mr. Bus Error INIT. This INIT is useful for forc-
ing many different kinds of bugs to surface. Without David, most Macintosh
applications would be so buggy that we could never have produced this book
at all!

Brian McGhie made a number of helpful suggestions for the chapter on re-
sources. Without him, that chapter would cover only the most elementary topics.

David Harrison made several suggestions for Chapter 12. Without him, that
chapter would have consisted of one page that said, “This page intentionally
left blank.”

Eric Smith gave technical advice on a number of different sections. Without
him, there would be large blank areas in the middle of several sections.

Tim Cotter gave us a WDEF on which the example WDEF in Chapter 8 is
based. Since that example was the reason for writing the chapter, without him
the chapter would not exist.

Scott Knaster did a technical review and told us what kind of contribu-
tions to get and when we needed to get more. Without him the book would
be less complete.

Carole McClendon and Rachel Guichard worked through the acquisitions
process with me, and Joanne Clapp Fullagar developmentally edited the
book. Mary Cavaliere shepherded the book through the production pro-
cess. Without them, this book would still be in the minds and on the desks
of all the contributors.

» Acknowledgments xix

Claris wrote MacWrite II and MacDraw II, and Paragon Concepts, Inc.
wrote Nisus. These three programs were used in producing this book. Without
these fine companies, all of the contributions would probably be handwritten.

Apple Computer, Inc. made the Macintosh, without which we wouldn’t
have all these great bugs to track down.

Jim Straus would like to acknowledge Lisa, his wife, for putting up with
late-night phone calls and long sessions at the computer.

And to any and all whom we missed, the book would not have been the
same without you and we would like to thank you, too.

PART ONE

» Geltling Started

Part One describes what it takes to get started using MacsBug.

Chapter 1 introduces MacsBug and describes the contents of the rest of
the book.

Chapter 2 describes how to install MacsBug and enough low level details
about the Macintosh so that you can use MacsBug.

Infroduction

This book is about using MacsBug, alow level debugger for 68000 family code,
on the Macintosh. Although MacsBug is useful to the nontechnical Macintosh
user—you can recover from a crashed application without rebooting (dis-
cussed in Chapter 2) and you can often recover data from a crashed word
processing application (discussed under the Find command in Appendix A)—
its primary use is by programmers for debugging code. As alow level debug-
ger, MacsBug is useful for debugging all types of programs, regardless of
which language the program was written in.

Why Learn to Use MacsBug?

One of the unique features of the Macintosh is the tremendous number of tools
Apple has supplied to assist you in producing consistent applications. These
tools are in the form of system and ROM routines that assist in handling items
such as windows, menus, printing, and much more.

These routines are a tremendous benefit to you, the developer, since they en-
able you to make use of the work Apple has done rather than recreate the func-
tions yourself. Another benefit of using the supplied routines comes when
Apple expands and upgrades the standard routines. When this happens, the
performance of existing software often improves without additional effort.

The Macintosh user benefits since applications have a similar look and feel;
experience gained with one application makes learning other, even radically
different, applications much easier.

4

» Chapter 1 Introduction

The downside of these system routinesis a large learning curve. You may
find it difficult to figure out exactly how the routines are intended to inter-
act with oneanother. And when a problem comes up, it may be hard to track
down the cause since the underlying routines are not fully understood.
Combined with the human tendency to blame someone or something else,
in this case a bug in the ROM, you may experience long, frustrating debug-
ging sessions.

The trend towards high level languages compounds this problem. While
languages such as C++ and Object Pascal can provide great benefit by offering
an easy way to profit from the work of others, they can be an equal detriment
when some borrowed piece of code behaves unpredictably.

The following classic case occurs with the LightSpeed C compiler and
others.

(**myHandle) .data = NewPtr(dataSize);

This statement allocates a block of memory and stores the address to that block
in the myHandle structure. Unfortunately, this may fail occasionally, and the
problem doesn’t surface until later when the system crashes. (The problem is
that the myHandle structure may move in memory during the NewPtr call,
causing the returned result to be stored in myHandle’s old location. This prob-
lem is further discussed in Chapter 4.)

One reason this is a difficult problem to find is that the C language and the
Macintosh toolbox both provide levels of abstraction, the details of which may
not be well understood. The goal of abstraction is to make programming much
easier, almost magical at times. The problem comes when the magic fails.

The purpose of this book is to turn the magic of the Macintosh tcolbox and
operating system into a well-understood set of data structures and routines.
This is accomplished by exploring sample applications and Macintosh system
and toolbox data structures at the assembly (machine) level. By working
through the hands-on examples in this book, you should develop a solid feel
for the toolbox, and tracking bugs will become an easy, systematic process.

Even though the source for the sample programs is in C or Pascal, the de-
bugging examples in this book work exclusively on the machinelevel. You will
get a feel for how the compiler converts source code into machine code and be-
come aware of some of the code generation issues and problems.

The machine language level is the lowest level to work on and averts prob-
lems that can be introduced by higher level languages. For example, if you
work and debug only in C, a bug in the C compiler will be very difficult to
track. Working on the machine level minimizes the chances for this type of cat-
astrophic problem.

» What'sinThisBook 5§

What You Need to Know

This book assumes knowledge of elementary programming concepts, such as
subroutines, which you certainly have if you need to use a debugger. Depend-
ing on your needs, a varying degree of knowledge of 68000 assembly language
is necessary. This book assumes you can read, not necessarily program, 68000
assembly language. There are a number of excellent books available on the
subject; try Steve Williams's 68030 Assembly Language Reference (Addison—
Wesley, 1989). Finally, this book assumes you are familiar with Inside Macintosh.

What's in This Book?

There are four major topics in this book:

¢ How to use MacsBug

¢ Low level details of portions of the Macintosh toolbox and techniques for
exploring the toolbox

¢ How to extend MacsBug by creating macros and templates and by
writing demds

¢ Techniques for debugging your programs using MacsBug

To be successful at debugging, you must understand the system you are
working on. MacsBug is a tool for exploring, and is closely tied to the ma-
chine. Thus, the first two items are closely related and this book integrates
learning them.

Learning about the Macintosh toolbox is an ongoing process, since the tool-
box is evolving with every new system release. Fortunately, Apple has vowed
to maintain compatibility with existing guidelines, which means most data
structures will remain identical from one system release to the next. And, with
only a few exceptions, when the structures change they are usually extended
rather than reinvented.

Part One of the book, “Getting Started,” describes how to install MacsBug
on your system and the basics of using MacsBug. Many of the elementary
MacsBug commands are introduced in Chapter 2.

The chaptersin Part Two, “Exploring the Macintosh with MacsBug,” contin-
ue the discussion of MacsBug commands while investigating the Macintosh
internals. Most of the chapters in this section roughly correspond to chapters
in the Inside Macintosh series, except in this book you will look at and change
the data structures and watch the impact these changes have on the system or
application. When you have read this book and worked the examples, you

6

> Chapter 1 Iniroduction

By the Way »

should be able to determine quickly why and how an application is failing by
examining the data structures and watching the calls it makes.

Part Three, “Debugging,” uses the knowledge presented in the first two
parts. Chapter 17 discusses techniques for finding and exposing buggy code,
as well as a number of other miscellaneous tricks. Chapters 18, 19, and 20 de-
scribe ways of extending MacsBug via macros, templates, and demds. Macros
provide an easy way to make shortcuts for commonly used commands, and
templates are a way to create custom memory displays. Dcmds are debugger
commands that provide a mechanism for you to extend MacsBug programati-
cally.

The book ends with two appendices:

s Appendix A, “MacsBug Command Summary,” is a listing of MacsBug
commands.

¢ Appendix B, “Macro, Template, and Demd Summary,” describes the con-
tents of the Debugger Prefs file on the accompanying disk.

Symbols Used in This Book

There are several techniques used to distinguish areas of special interest.

Hands-On Exercise

This book is intended to be practical. Whenever possible, a hands-on example
is presented. We feel it is very important to work through the hands-on exam-
ples. Nothing can replace the magical learning that occurs when you follow an
example and then get sidetracked exploring and experimenting on your own.
The hands-on examples provide ample opportunity to become sidetracked.

contam ackgrou: dorothermterestmgmformatmn :
to athande =0 - e =

» Howto Use ThisBook 7

Note »

Key Point »

>

What’s on the Disk?

The disk contains MacsBug as well as sample code and applications used in
some of the hands-on examples. The Put Contents In System Folder folder con-
tains MacsBug 6.2, the Debugger Prefs file, and Programmer’s Key INIT.

There is also a Sample Applications folder which contains the applications used
by some of the hands-on examples. The applications are named after the chapter
which uses them. The Sample Application Sources folder contains the source for
these applications.

The Debugger Prefs Sources folder contains the source for various demds as
well as the source for the Debugger Prefs file (Debugger Prefs.r).

The Utilities folder contains TestDcmd, the Mr. Bus Error utility with source,
as well as a file further describing the Programmer’s Key INIT.

Finally, the disk also contains a ReadMe file with last minute updates and errata.

How to Use This Book

If you are unfamiliar with MacsBug, you should now read Chapters 2 through
4. The remaining chapters in Part Two, “Exploring the Macintosh with
MacsBug,” are relatively independent and can be read in any order. The final
section of this book assumes a solid understanding of MacsBug but is not
otherwise tied to earlier material.

If you are an experienced MacsBug user, you will probably want to skim
chapters 2 through 4. The remaining chapters in Part Two will be of interest
and can be read in any order. The third part of the book contains debugging
techniques as well as explanations and examples of extending MacsBug by
creating macros, templates, and demds. Even if you know how to extend
MacsBug, you will find the examples useful.

» Chapter 1 Introduction

There are many hands-on examples in this book. Although the results are
provided, it is important to perform similar exercises on your Macintosh. You
cando this either as you read the book or later when you are done with a chap-
ter. Nothing replaces the knowledge you gain from actually doing something
rather than just reading about it.

» Summary

This chapter provided information about what you need to know to learn to
use MacsBug and a brief discussion of why it is important to learn MacsBug.
It also described the contents of the accompanying disk.

>

MacsBug Basics

This chapter begins by explaining how to install and customize MacsBug on
your system. It then describes the basics of how to enter and exit MacsBug.
The remainder of the chapter presents MacsBug basics, a discussion of the
MacsBug screen’s anatomy, basic command line editing, and finally a sample
session using MacsBug.

Installing and Configuring MacsBug

To install MacsBug, you need a Macintosh and MacsBug. Unfortunately, we
couldn’t include a Macintosh, but we were able to include MacsBug on the
disk with this book.

Installing MacsBug is simple. Simply drag the MacsBug and Debugger
Prefs files from the Put Contents In System Folder folder on the enclosed disk
into your System Folder. The MacsBug file contains the actual MacsBug pro-
gram, and Debugger Prefs is a data file that contains information for customiz-
ing MacsBug. You should also copy the Programmers Key file. This INIT is dis-
cussed later in this chapter in a section titled “The Programmer’s Key INIT.”

The next time the Macintosh is restarted, the startup dialog will appear as
in Figure 2-1.

10 » Chapter2 MacsBug Basics

Welcome to Macintosh.

a
&ay

MacsBug installed.

Figure 2-1. Startup screen when MacsBug is installed

There are a variety of parameters that configure various aspects of the
MacsBug debugger. The monitors control panel and ResEdit can be used to
make changes that stay in effect across system restarts. To change parameters
for a single session, you can use MacsBug itself.

P The Monitors Control Panel

The monitors control panel allows users with Color QuickDraw and multiple
screens to specify which screen MacsBug appears on.

Using Monitors to Select the MacsBug Screen

If you have a Macintosh with Color QuickDraw and more than one monitor,
you setwhich screen MacsBug appears on by using the monitors control panel.
Pull down the Apple Menu, choose Control Panel, and then choose Monitors.
Holding down the Option key causes a “happy Macintosh” icon to appear in
one of the monitors. This icon indicates which screen MacsBug, as well as the
“Welcome to Macintosh” alert shown in Figure 2-1, willappear on. This screen
is officially known as the “startup screen.” To change the screen, simply drag
the icon to another screen. The change will take effect when you restart.

P Installing and Configuring MacsBug 11

Reskdit and the Debugger Prefs File

The second way to configure MacsBug is via ResEdit. ResEdit is a utility dis-
tributed by Apple Computer that is used to edit resources. Here we provide
only a brief tutorial on using ResEdit. For a complete description of ResEdit,
see ResEdit Complete by Peter Alley and Carolyn Strange (Addison-Wesley,
1990), another volume in the Macintosh Inside Out series.

Using ResEdit to Look at MacsBug Resources

Enter ResEdit by double clicking on its icon in the Finder. Open the MacsBug
debugger preferences: Debugger Prefs. As previously discussed, this file
should be in the System Folder.

There are six different resource types in the file: 'demd’', 'mxbc',
"mxbi', "mxbm", "mxwt',and 'TMPL".

'demd!

The 'demd ' resource is a container for MacsBug demds: custom code frag-
ments to perform a specific task. Chapter 18 discusses using and writing
demds in detail.

"mxbc'

The "mxbc' resource allows you to configure the_foreground and back-
_ground colors -olors MacsBug will use for its display. The default is $FFFF for thered,

g green and blue channels (white) for the background; and $0000 for all three
channels (black) for the foreground. Thus, the default display is black text on
awhitebackground. Assuming your monitor is capable, you cansetany colors
you like for the MacsBug display in the ' mxbc ' resource.

"'mxbi '

The "mxbi' resource allows you to set three parameters: the number of traps
recorded via the A-Trap Record (ATR) command, the number of lines shown
in the PC area of the MacsBug display, and the amount of memory allocated
for the history buffer.

The é—trap recording mechanism is discussed in detail later. A size of 256
is more than large enough for most situations; a smaller size, approximately
30, is often sufficient.

The\:’# of PC lines shown” ?efers to the number of lines shown in the pro-
gram counter (PC) window area, explained later in this chapter, at the bottom

12

» Chapter2 MacsBug Basics

of the MacsBug display. The greater this number, the more lines MacsBug will
show following the current PC. Increasing this size decreases the amount of
the history buffer that can be viewed at one time.

"Size of’h_i_g;gggy_&;f@refers to the amount of memory MacsBug reserves
for retaining the results of previous operations. This information can be
viewed in MacsBug via the up and down arrow keys. Although the history
buffer is never deallocated and directly steals from main memory, a relatively
large history buffer in MacsBug terms, perhaps 16K in size, has great benefits
during long debugging sessions, yet has a minimal impact on total system
memory availability.

"mxwt!

The "mxwt' resource contains Macsﬁuéeg.pl%atéﬁ Templates are used for

_displaying memory ina predefined format, as when looking at data structures.

We discuss how to define custom templates in Chapter 18.

'mxbm'

The "mxbm" resource containsM:sB;uE;;ch{ou can add custom mac-
ros to this resource via MPW or directly from ResEdit. The macro that you
might find most useful to look at now is the FirstTime macro. This macro is
found in the " mxbm ' resource named “FirstTime.” It is executed when Macs-

Bug loads during startup, allowing you to execute any MacsBug command at
that time. A typical command to put in the FirstTime macro is

show 'sp' la;g

which causes MacsBug to show the current stack values both as “longs” (32
bits) and as their ASCII (character) representations in the Memory display sec-
tion of the MacsBug screen. Macros are discussed in detail in Chapter 18.
"TMPL"

The 'TMPL" resource is used by ResEdit to determine how to display the
contents of the other resources and need not concern us here.

> Low Level Details of the Macintosh 13

» Using MacsBug For Temporary Customization

The previous techniques change MacsBug across system restarts. You can con-
figure parts of the MacsBug screen for your current session from within
MacsBug. The MacsBug SHOW command (which defines the appearance of
thememory display area at the upper left of MacsBug screen) and the MC com-
mand (for defining macros) allow you to change MacsBug until the next
restart. These items are discussed in detail when they are introduced in the text
and summarized in Appendix A.

» Low Level Details of the Macintosh

Since MacsBug is a low level debugger, you must understand the basics of
680x0 assembly language to fully utilize its potential. 680x0 assembly lan-
guage is the native language of the Macintosh microprocessor. If you are not
already familiar with 680x0 assembly language, you should consult one of the
many excellent books available.

» The Processor and Memory

The heart of a computer consists of a processor and memory. The processor
fetchesan instruction (data) from memory and executesit. It does thisoverand
over again very fast. Assembly language is the set of instructions that the pro-
cessor understands. , ,
The memory external to the processor is numbered from 0 to 4294967295,
which is the maximum addressable memory the 68000 series of processofs can
have. This is a total of 4 gigabytes. Memory locations are generally expressed
in hexadecimal (base 16), where the addresses run from 0 to $FFFEFEEE. The

ﬁ? dicates that the number is hexadecimal (hex). MacsBug always displays
memory addresses in hex, and often omits the $ since hex is the default.

14

» Chapter2 MacsBug Basics

By the Way »

The processor inthe Macintosh has its own internal memory. The individual
memory locations inside the processor are referred to as registers to distinguish

them from the memory external to the processor. The most commonly used
registers are the elght_a—a‘t';reg (name m dtheei dress
isters((A0-A7)) Thefe is also a special regiSter, the program counter o

which keeps track of the location where in memory, the processor should ge
the next mstructlon Each of these registers can hold up

contains information about the result of previous instructions. There are five
bits, or flags, which are commonly used in this register. They are cleared or set
based on the result of the previous operation. The flags are

» Low Level Detcils of the Macintosh 15

N (negative) Set if the most significant bit of the result is set; cleared

otherwise.
Z (zero) Set if the result is zero; cleared otherwise.
V (overflow) Set if there was an arithmetic overflow; cleared otherwise.
C (carry) Set if a carry is generated by addition or if a borrow is

generated by subtraction; cleared otherwise.
X (extend) Similar to the carry flag but affected by fewer instructions.
e ———

These flags are used primarily in the branching instructions described in a fol-
lowing section.

The CCR and the PC are updated automatically by the processor, whereas
programs use the data and address registers directly. The MacsBug display
(Figure 2-4) always shows the current contents of the PC and the CCR.

Memory Maps

For low-level debugging it is important to understand how memory is orga-
nized. This organization is shown with a memory map.

Macintosh SE Memory Map

The memory map of the Macintosh SE is shown in Figure 2-2.

The SE uses a 68000 processor that effectively has 24 address lines. Thus,
the addressable memory ranges from $00000000 to $00FFFFFF. The high byte
of the address is kept internally by the processor but never appears externally.
Therefore, accessing address $xx123456 is identical to accessing address
$00123456. Since there are only 24 address lines external to the 68000 processor,
there is no such thing as 32-bit mode on Macintoshes based on the 68000.

Macintosh Il Memory Map

The memory map for Mac II class machines is more complicated. These ma-
chines use a 68020 (or 68030) processor, which effectively has 32 address lines.
The addressable memory ranges from $00000000 to $FFFFFFFE. With the
Macintosh II, the high byte of the address is significant. Unfortunately, many
early Macintosh programs, including early versions of the Macintosh ROM,
use the high byte of the address for data storage.

16

» Chapter2 MacsBug Basics

gOOFOOOOO —_——
O0OE800CO0 — —
SCOECQO000
$00D00C00
$00C00000
$00BCCCCO
SCOAQCO000
$00900000
$00800000
$00700000
200600000 —_—
00580000 — —

800440000 —_—
00400000 — —

$00200000
$00100000

$00000000

Figure 2-2. SE memory map

VIA

WM

SCC write

SCC read

SCI|

256K ROM

4-Meg RAM

2-Meg RAM

1-Meg RAM

» Low Level Detdails of the Macintosh 17

To maintain compatibility, the Macintosh II requires special hardware to
clear the high byte. When this external hardware suppresses the high byte of
the processor address, the Macintosh is said to be ‘. ince only
24 bits of the address are relevant.

To extend the memory capabilities of the Macintosh, it is necessary to use
the top byte of the address as part of the address and not as data. Applications
that do not use the hi te of the address to store data are called 32-bit clean
and can run h@%ﬁgure 2-3 shows the Mac I memory map in both
24-bit and 32-bitmode.

Note that the scale on the 32-bit memory map is 256 times the 24-bit memory
map; that is, the entire 24-bit Macintosh could fit in the $F0000000 to $F1000000

slice that is reserved at the top of the 32-bit memory map.

a chip that remaps addresses. MMU stands for Memory Man-
n the Mac II the distinction between 24-bit and 32-bif modes
is made by a chip called t}@n 32-bit mode, the chip simply passes
the address straight through.Tn 24-bit mode, it strips the high byte and remaps
the 24-bit address.

On machines that have a paged memory man_aggnﬁrﬂgg%)}uch
as theMaclx, the 24-bit and 32-bit mode mapping occurs in the P .While
the HMMU 15 a specialized chip, the PMMU is a general solution to remapping
addresses and is built into the 68030 processor.

From a software perspective, all you need to know is whether you are in
24-bit or 32-bit mode and whether addresses are 32-bit clean. The Macintosh
system has several routines to manage switching between modes and for con-

verting addresses from one to the other. The specifics on using these routines
are described in Inside Macintosh, Volume V and in the Apple Tech Notes.

18

» Chapter2 MacsBug Basics

SCOF00000

$OOEGOC00

$00D00CCo

$00C00000

$00BC0OCO

SO0AGC000

$00900000

$00800000

$004000C0

$00200000
$00100000

$00000000

24-bit mode

11O

‘

Expansion
cards

1-Meg
each slot

ROM

8-Meg RAM

4-Meg RAM

2-Meg RAM

1-Meg RAM

F1000000
FOOC0C00

$60000000

$50000000
$40000000

$00000000

32-bit mode

Expansion cards

Reserved

Expansion
cards

Addifional
256-Meg
each slot

/O

Up to
256-Meg ROM

Up to

1024-Meg RAM

Figure 2-3. Macintosh Il memory map in 24-bit and 32-bit mode

» The Anatomy of the MacsBug Screen 19

» The Anatomy of the MacsBug Screen

MacsBug is a low level debugger, which means it works at the machine level.
Figure 2-4 shows the MacsBug screen. The various areas of the screen are labeled
and described briefly. Notice that the various parts of the MacsBug display cor-
respond directly to the parts of the 680x0 discussed in the previous sections.

1.

2,

3.

4.

Memory display—The memory display is generally used to display the
stack. Macsbug’s SHOW command allows us to specify an area of
memory to display, and a format to display it in. The default is to show
the stack.

Current application name—This part of the screen shows the name of
the current application. Since some applications do processing in the
background, the name may not be what you expect.

Address/memory mode—This shows which addressing and memory
mode the machine is currently in. The address mode is either 24-bit or
32-bit as discussed in the previous section. In System 7.0, virtual memory
can be in use (see Inside Macintosh, Volume VI). In MacsBug, the memory
mode is one of:

RM Real Memory; Virtual memory is not being used.

VM Virtual Memory is being used, and the Memory Manager can
swap pages if MacsBug requires it.

vM Virtual Memory is being used, but MacsBug was invoked at a
time when page swapping cannot occur.

Status register—The status register (SR) display shows the contents

o Oofth cessor flags. If the flag name appears as a capital letter it is true
(1)Jowercaseindicates the flag is false (0). The flags are S, M, X,N, Z, V,

5.

6.

and C.
The X, N, Z, V, and C flags were described previously. T the
supervisor mode flag. Standard Macintosh programs all run inStipervi-

sor mode, so this flag is typically set as true. The A /UX operating system
uses this flag.

Th @?- etermines which of two supervisor stack pointers are
used. Currently, this is not used on the Macintosh.

Data register display—This area of the status region displays the con-
tents of the eight data registers.

Address register display—This area of the status region displays the
contents of the eight address registers.

20 » Chapter2 MacsBug Basics

Sp
8934668A
SA 02606800
8E 8234B86C

-----4--
92 8889891E
86 aeesegec
G B@346CEC
GE @934REBO

g|segee
A2 803466AS
R6 80800802

-4'--.-:
RA B2BQ1E4
RE 8D34F1A6

-c--|4--
B2 6268801E
B6 893508268

-----5-h
BA 03060801E
BE 82032034

C2 6DA44881

CurRpName
Finder

24-bit RM
SR Smxn2vc 8

00 B0BBBBOE
D1 86888aDC
D2 80826082
D3 80356088
D4 803467BE
D5 BO1E4080
06 8e888DSF
D? 86038034

A® BO3SA?68
A1 BA35A768
A2 BO35RE4S
A3 802CD2F8
R4 802CD260
AS 8835B68C
A6 BB3466RA

A? 80934668A

~@—————]. Memory display (usually the stack)

~<@———2, Current application name

~———3, Address/memory mode
~————4, The status register (SR)

~@—————>5. Data register display

/6. Address register display

User break at @83A2BAA
NMI

-
MM ~@———7, Main display area

No procedure noame

| BIED FF40

0834B6C8 *CMPA.L W -$88CACAS),AY
S \

\\8- Program counter window

9. Command line

Figure 2-4. The MacsBug screen

» Basic Command Line Editing 21

7. Main display area—This area is used to show the result of Macsbug com-
mands. You can set the size of the history buffer (see the following section
on configuring Macsbug) and then review the results of previ m-
mands after they have scrolled off the screen by using th@
arrow ke

8. Program counter window area—This area shows the next few instruc-
tions the processor will execute. You can set the number of instructions
displayed (see the previous section on configuring Macsbug). If the cur-

rent instruction is a branch, MacsBug displays whether or not the branch
will be taken, as well as the address to which the branch will occur.

9. Command line—You enter commands into MacsBug on the command
line, described in the next section.

» Basic Command Line Editing

Alltyping you do in MacsBug appears on the MacsBug command line. Macin-
tosh users are accustomed to using the mouse. However, one of the MacsBug
design goals was to use as little of the system as possible. After all, when a pro-
gram crashes, there is no telling how much of the system is still intact. Since
the MacsBug code is always resident, a second MacsBug design goal was to
keep MacsBug as small as possible. The result is the command line interface.

The MacsBug features are introduced throughout the chapters as they are
needed, and summarized in Appendix A. All of the command line editing
commands are described here to assist in making future editing sessions
trouble free.

The command line interface is very simple. There are only a few editing
commands to learn.

» Arrow Keys
grightand left on the command line by one chaxgg;e; atatimeisaccom-
via thegight and left arrow keyS>Using the up and down arrow key®

Maving
plished
scrolls the main display area. A previous section on configuring MacsBug ex-
plains how to set the size of the main display area history buffer.

22 > Chapter2 MacsBug Basics

» Option Key

Holding th€Option kepwhile pressi eft or right arrow kéz?oves left
hile pressing the left and right

or right by a word: holding th§ Command ke
arrow Ee%s Ynoves the cursor to the beginning or the end of the line.

» Delete Key
Th&delete key deletes characters to the left of the cursor. Holding the

key while pressin; telerases the word to the left of the cursor; holding the
@mﬂe pressing Delete grases the entire line to the left of the cur-
SOT.

» Return Key
The Return key executes the entire command line, no matter where the cursor

is. If nothing has been entered, the most recent command s repeated.

—

» The Command History Buffer

The previous 50 MacsBug commands are kept in a buffer, even after leaving

MacsBug (but n of course!). These commands can be resur-
rected by typing which sequentially traverses the past com-

_mang gCommand-BXakes the buffer in the other direction. This his-
tory buffer is circular, thus typing Command-B can take you from command
1 to command 50.

These are all the commands necessary to navigate the command line. Com-
mand-V and Command-B, which traverse the command history buffer, are
very powerful, since a future command will often be identical to or only a
slight modification of a past command.

» Entering MacsBug

Once MacsBug is installed, there are five ways to enter it: intentionally with
the programmer’s switch or the Programmer’s Key INIT, intentionally when
an application calls the Debugger or DebugStr traps, or unintentionally via a
system error.

» Entering MacsBug 23

The Programmer’s Switch

Some Macintoshes come with a strange piece of plastic known as the program-
mer’s switch. Ithas twobuttons on it, one which resets the machine, and another
which forces a non-maskable interrupt (NMI) that drops the Mac into Macs-
Bug. A few machines do not come with the programmer’s switch. The Macin-
tosh Classic has the switches built in, and the siand LC have the functionality
built into the keyboard.

The Programmer’s Key INIT

A more effective way to enter MacsBug is to use a utility program (installed
as an INIT) called Programmer’s Key, which is on the enclosed disk. As with
all INITs, the Programmer’s Key is installed simply by dragging a copy into
the System Folder. Table 2-1 shows the key combinations for using Program-
mer’s Key on Macintoshes with Apple Desktop Bus keyboards (all Mac Il class
machines and all B&W machines since the SE).

Table 2-1. Programmer’s Key combinations

Action Key combination

Interrupt PowerkCommand ‘(like Programmer’s Switch)

Reset Pow mmand—[Cm (like Programmer’s Switch)
Restart Power{Command- (uses ShutDown Manager)
ShutDown PowerfCommand-Shift-Optiom (uses ShutDown Manager)

For Macintosh computers that don’t have Apple Desktop Bus keyboards,
use the Clear key instead of the Power-on key. Again, the Macintosh I si and
LC have this functionality built in, and you do not need the Programmer’s
Key INIT.

This is much more convenient than trying to remember which switch resets
the Macintosh and which causes an NMI. Furthermore, the Programmer’s Key
utility does not interrupt time-critical operations such as VBL tasks, while
pressing the programmer’s switch can.

To disable Programmer’s Key temporarily at boot time, hold down the

mouse button or the shift key. To disable it permanently, drag it out of the
System Folder.

24

» Chapter2 MacsBug Basics

>

Note »

The Debugger and DebugStr Traps

To help during the debugging phase of development, you may want to enter
MacsBug intentionally at a particular point in your application. There are two
ways to do this: the Debugger and DebugStr traps. The Debugger trap simply
enters MacsBug, while the DebugStr trap enters MacsBug and displays a mes-
sage. You can temporarily disable entering MacsBug by these means with the
Debugger eXchange (DX) command. To enable these breaks, simply use the
DX command again.

Anapplication can also execute MacsBug commands via the DebugStr trap.
This is discussed further in Chapter 17.

System Error

Another way to enter MacsBug is via a system error. Generally, this is an un-
welcome event, but MacsBug provides two commands, ES and EA, to try to
recover. These MacsBug commands make MacsBug useful to every Macintosh
user, even nonprogrammers. The following section, “Leaving MacsBug,” dis-
cusses ways to leave MacsBug, even in the case of a system error.

Leaving MacsBug
Eight commands exit from MacsBug: S, T (or SO), GT, G, ES, EA, RB, and RS.

Step

The Step (S) command leaves MacsBug, executes the next instruction, and then
reenters MacsBug. If the instruction is a subroutine or an A-trap call, the S
command reenters MacsBug at the first instruction of the subroutine. For traps, -
the S command continues execution at the first instruction of the trap.

> LeavingMacsBug 25

T (or SO)

The Trace or Step Over (T or SO) command is much like the step command ex-
cept it treats subroutines and traps as a single instruction. Generally, you will
reenter MacsBug immediately after using the Trace command. There are a few
situations where this doesn’t happen; if a subroutine crashes or changes there-
turn address, for example.

Golo

The GoTo (GT) command continues execution until a specific address is
reached.

Go

The Go (G) command simply continues execution at the next instruction as
though MacsBug had never been invoked. This command is useful when you
enter MacsBug intentionally. The G command also optionally takes an address
as a parameter. If an address is specified, execution continues at that address.

Exit to Shell

The Exit to Shell (ES) command is useful when an application crashes. For ex-
ample, if you are running Multifinder and have several applications running
at once and one of them crashes, you are typically forced to restart the Macin-
tosh, possibly losing some of your work.

The ES command is very useful here. This command won’t let you save
work in the crashed application, but it may (depending on how damaging the
crash was to the Test of the system) allow you to regain control of the Mac and
save documents in other applications. The ES command does not have any pa-
rameters, simply type es and then press the Return key. The Mac will attempt
to abort the currently active application.

Unfortunately, there is no way of knowing how functional the Mac is after
an application crashes. Many applications merely destroy themselves when
they crash, and the ES command is a graceful exit. But the crashing application
may have damaged some part of the system, which may lead to an unrecover-
able crash later. Technically, after using the ES command and saving data from
other applications, you should reboot the Mac. In practice, many crashes are

_not harmful to the system (or other running applications), and you can con-
tinue work without restarting. Unfortunately, it is difficult, often impossible,
to determine whether a crash was harmful to the System.

26 » Chapter2 MacsBug Basics

P Exit to Application

The Exit to Application (EA) command may also be useful when an applica-
tion crashes. Rather than aborting the crashed application, the EA command

attempts to relaunch it. All your work in the crashed application will be lost,
utitisa quick way to start over. Again, depending on the severity of the crash
(which is often difficult to know), the same cautions that apply to the ES com-

mand apply here.

» ReBoot

The ReBoot (RB) command unmounts the boot volume and performs a cold
start. This means that external volumes are not identified as having been un-
mounted properly, so they will be reexamined during the restart sequence to
make sure they are OK. For large disks, this can be a lengthy process.

» ReStart

The ReStart (RS) command can save some time when you are forced to restart
the Mac. Restart.unmounts all volumes and then restarts the Macintosh. It is
possible for this process to fail in a corrupt machine in which case you will be
forced to reboot, or turn the Mac off and then on again. Since RS unmounts all
volumes, the machine will boot faster than if you used the RB command. Since
RB unmounts only the boot volume, it begins the rebooting process sooner.

E é| A Sample MacsBug Session

From the Finder, or any other application, enter MacsBug via the Program-
mer’s Key or the programmer’s switch.

» A-Trap Break

The A-Trap Break (ATB) command tells MacsBug to break when traps are en-
countered. To break the next time the GetNextEvent trap is encountered type

atb getnextevent
MacsBug will affirm that the break has been set. Now type

g

» Leaving MacsBug 27

which tells MacsBug to continue executing, as previously discussed. Withina
few seconds you will drop back into MacsBug, since programs are constantly
calling GetNextEvent to obtain user events. If you type

atb

without a trap name, MacsBug will break when any trap is executed. If MacsBug
does not break at GetNextEvent, set a breakpoint at WaitNextEvent instead.

The Escape and Back Quote Keys

You can see what was on the screen by pressing either the Escape or back quote
keys. One of these keys is in the upper left corner of all Macintosh keyboards.
Thereason there are two keys is that the early Macintoshes did not have an Es-
cape key, and the current Macintosh keyboards have the Escape key where the
back quote key used to be. The back quote key is shown in Figure 2-5.

Figure 2-5. The back quote key

A-Trap Clear

The A-Trap Clear (ATC) command tells MacsBug to clear A-trap breaks. To
clear one specific A-trap break, GetNextEvent for example, type

atc getnextevent

The ATC command without a parameter clears all A-trap breaks.

BReak

The BReak (BR) command tells MacsBug to break when the program counter
reaches a certain address. For example, to break when the program counter
reaches GetNextEvent, enter the line

28

» Chapter2 MacsBug Basics

br getnextevent

MacsBug will now break whenever GetNextEvent is encountered. Notice that
MacsBug breaks at a different place than when an A-Trap Break is set at Get-
NextEvent. The A-Trap Break command breaks when the application calls
GetNextEvent; the break command breaks when the program counter reaches
the beginning of the GetNextEvent code. If you type

br

without specifying an address, MacsBug sets a breakpoint at the current
PClocation.

BReak Clear

The BReak Clear (BRC) command tells MacsBug to clear breakpoints. To clear
a specific breakpoint, the one just set at GetNextEvent, for example, type

brc getnextevent

The BRC command without a parameter clears all breakpoints.

Display Memory

The Display Memory (DM) command allows you to look at areas of memory.
The name of the current application is stored at location $910. You can look at
this name by typing

dm 910

If the currently active application is Nisus, MacsBug responds with a display
such as

Displaying memory from 910

00000910 OA4E 6973 7573 2032 2E31 3100 6DB6 8300 eNisus 2.1lemees

» Leaving MacsBug 29

Templates

MacsBug also provides a way to format the memory display by using tem-
plates. MacsBug comes with some templates predefined, and you can define
your own templates. This process is explained in Chapter 19. To see the list of
all templates, enter MacsBug and type

tmp

Depending on the number of templates defined in the Debugger Prefs file, this
list can be very long. To display a list of templates that begin with a certain let-
ter or letters, simply type TMP followed by the letter or letters. For example

tmp a

returnsa list of all templates that start with the letter 2. On my machine, Macs-
Bug responds with
Template names

ApplName

applkey

applrec

AcceptEvent

AuxDCE

AuxWinRec

The first template, AppIName, is a template for displaying the application’s
name. To use the template, enter MacsBug and type

dm 910 applname

On my machine, MacsBug responds with

Displaying ApplName at 00000910
00000910 Current Application Nisus 2.11

Admittedly, this template is trivial and adds nothing to simply displaying
memory at $910 without a template. Templates come in very handy when you
arelooking at more complicated data structures. Forexample, in the next chap-
ter you will learn about heap zones. There is a MacsBug template for display-
ing zones. For example, if you enter MacsBug and type

dm @SysZone zone

30

» Chapter2 MacsBug Basics

MacsBug responds by displaying the system zone header (the response on
your machine will differ).

Displaying Zone at 00001EQQ

00001E00 bkLim 000BE4CO

00001E04 purgePtr 00079Ca4
00001E08 hFstFree 00062AE0D
00001EOC zcbFree 0001C7B8
00001E10 gzProc 0078FA2E
00001E14 moreMast 0121
00001E16 flags 0020
00001E28 purgeProc 00000000
00001E2C sparePtr 4080EE4E
00001E30 allocPtr 0005C538
HOW

The HOW command displays how you entered MacsBug. For example, if you
use the HOW command after the preceding example by typing

how
MacsBug responds with something like

A-Trap break at 00792CD0: A970 (_GetNextEvent)

which indicates that you entered via a GetNextEvent A-trap break encoun-
tered at location $792CD0.

HELP

The HELP command displays information about a command. For example, if
you type

help es

MacsBug responds with

ES

Exit the current application.

» Summary 31

You can also use the ? character as a shortcut for help. For example, to find out
what items you can get help for, simply type

2

and MacsBug responds with a list of help topics.

Summary

This chapter presented the basics of using MacsBug:

How to install and configure MacsBug

The basics of a generic 68000-based computer system, that is, a processor
and memory

The anatomy of the MacsBug screen
The basics of command line editing
Ways of entering and leaving MacsBug

A sample MacsBug session

The following MacsBug commands were introduced:

The Debugger eXchange (DX) command for temporarily disabling
breaks from the Debugger and DebugStr traps

Commands for leaving MacsBug: Step (S), Trace or Step Over (T), Go To
(GT), Go (G), Exit to Shell (ES), Exit to Application (EA), ReBoot (RB), and
ReStart (RS)

The A-Trap Break and A-Trap Clear commands for setting and clearing
trap breaks

The Display Memory command for examining memory at a specified
address

The TMP command, which lists templates

The BR command, which invokes MacsBug whenever a specific address
is encountered

32 » Chapter2 MacsBug Basics

o The BRC command for clearing breakpoints set with BR

e The HELP command for getting additional help about MacsBug
commands

e The HOW command, which tells how you entered MacsBug

The material on the processor and memory is difficult to understand on a
first reading. If you are unfamiliar with assembly language, you will probably
want to refer back to those sessions after you have done some hands-on exam-
ples from Chapters 3 through 16.

Future displays of the MacsBug screen will deal only with the main display
area. The stack, flags, and registers are shown when relevant.

Part Two contains an in-depth exploration into various areas of Macintosh
programming. It begins by continuing our discussion of memory and then
journeys into the details of different areas of the toolbox. Many hands-on ex-
amples introduce additional MacsBug commands as they are needed.

PART TWO

» Exploring the Macintosh
with MacsBug

This part is broken up into fourteen chapters, each of which explores some
aspect of the Macintosh operating system or toolbox.

The first two chapters of Part Two continue the discussion of Macintosh
memory started in Chapter 2. The first chapter, “Accessing the ROM,” dis-
cusses how applications access system and toolbox routines. The next chapter,
“How RAM is Organized and Maintained,” describes how RAM is allocated.
These two chapters provide a foundation for the rest of Part Two.

The next chapters explore specific areas of the toolbox. The main event
loop, resources, menus, windows, dialogs, controls, QuickDraw, device
drivers, the file system, printing, CDEVs, and INITs are discussed in Chapters
5 through 16.

33

>

Accessing the ROM

So far we have described the generic components common to every computer
system: a processor and memory. We also discussed that the MacsBug screen
layout directly displays the processor registers. In fact, the original MacsBug
was simply a generic debugger for 68000 family processors and was around
long before the Macintosh. The “Mac” name is merely a coinci-
denc§MacsBug 3ctually stands fo(%ﬁW%?ﬁigL’Systeﬁ
Debugger. Had the Macintosh been called Granny Smith, the debugger would
still be called MacsBug. This is not true of MacWrite.

The Macintosh operating system and toolbox are a large set of routines that
enable application programmers to give their programs the look and feel
unique to Macintosh. These routines offer functions common to many applica-
tions. Loading and saving files, handling menus and windows, drawing to the
screen, and printing are examples of things every application writer would
have to generate from scratch were it not for the Macintosh toolbox.

The operating system and toolbox routines impose structure on the base
computer system, consisting of a processor and memory. The toolbox and sys-
tem reserve portions of the memory space and define the uses for other parts.
Furthermore, they establish a number of conventions for register usage by
which applications should abide.

Most of these system-level routines are in the Macintosh ROM. This chapter
discusses how applications interact with the ROM.

35

36 » Chapter3 Accessing the ROM

» Where Is the ROM?

The ROM is at different locations, depending on the model of Macintosh. The
following chapter, “How RAM is Organized and Maintained,” discusses an
area of memory where system globals are stored. One of these globals, called
ROMBase, contains the location of the start of the Macintosh ROM.

Examining Low Memory

You canlook at memory using the MacsBug command Display Memory (DM).
MacsBug knows the address of many of the system global variables, so you can
examine their contents by typing

dm

followed by an address or name of the variable in which you are interested.
Enter MacsBug (either by pressing the programmer’s switch or through the
Programmer’s Key INIT—see Chapter 2) and type

dm rombase

MacsBug responds with a display such as
Displaying memory from 02AE

000002AE 4080 0000 0000 1E00 0000 AB34 AQ02 089C @esesesceseitece

Here the address is ROMBase, which MacsBug replaces with its value,
$02AE. The value stored at ROMBase is a long value (4 bytes), so the ROM on
this Macintosh (a Macintosh Ilcx) starts at location $40800000. From the 24-bit
and 32-bit address maps of the Macintosh Il in Chapter 2, you can see that the
24-bit version of this address is $00800000 (the high byte is stripped), which is
where the Macintosh ROM resides. And the 32-bit version, $40800000, is in the
ROM space in 32-bit mode.

» A-Traps 37

By the Way »

By the Way »

of MacsBixg you are usin

'iand takes no parameters, from -
MacsBug sxmply type B ,

A-Traps

Calling Macintosh system functions via traps is a basic part of programming
on the Macintosh.

The toolbox calling mechanism is implemented vihich are
conditions that stop the processor from continuing execution and immediately
transfer control to an address contained in a table in low memory. Exceptions
are caused in many different ways: Unimplemented instructions, bus errors,
and interrupts all cause exceptions.

The Macintosh takes advantage of this mechanism for catching (trapping)
A-line exceptions and uses it to call system routines. System routines are
called by word-sized instructions thatbegin with the number $A and are thus
called A-traps. For example, the word instruction $A8F6 is the DrawPicture
A-trap. When the processor encounters an A-line instruction, it continues
processing at the address contained in memory location $28. When the
Macintosh starts up, this location is set to point to the dispatcher in ROM. The
dispatcher then looks at the word that caused the exception and jumps to the
appropriate system routine.

movethecursorortype Thisis a

"t'hat allocate a bloc_k of memory and

Figure 3-1shows how the system handles calls via the trap mechanism. The
list following explains the numbers in the figure.

38 » Chapter3 Accessing the ROM

high memory
ROM 1—|
ROMBase S2AE
A A

ApplLimit $139 y

|
|
|
|
|
=unpctched
|
Application Heap :
|
|

Application Code | —f———
I
ApplZone $2AA I
System Heap
SysZone $2A6 3 patched
Trap Dispatcher
2 System Globals

A-line Exception Vector «—
low memory (5%8)

Figure 3-1. The trap dispatch mechanism

1. The application generates an exception via the A-trap word. (When
MacsBug displays A-traps, the name of the system routine, rather than
the trap number, is displayed.) All exceptions are routed via exception
vectors that reside in low memory.

2. The A-trap exception is routed to the trap dispatcher.

3. The trap dispatcher configures the stack so it looks as if a subroutine,
rather than an exception, was called and continues executing at an ad-
dress it gets from the trap table. If the trap has not been patched, the ad-
dress in the trap table points to ROM. If the trap has been patched, the
trap table points to a RAM address, generally in the system heap.

> Toolbox Calling Conventions 39

By the Way »

The trap table resides in RAM and is built when the system starts up. This
implementation allows Apple to modify calls, called patching, in future ver-
sions of the system by changing their address in the trap dispatch table. This
technique is used to fix bugs and add functionality. Figure 3-1 shows that the
entry in the dispatch table can point either to RAM in the system heap or to the
ROM version.

Using this dispatch mechanism incurs overhead that may be undesirable
for time critical code. You can use the system routine GetTrapAddress to find
the location of a routine and call it directly. For OS routines (trap numbers be-
low $A800) the trap dispatcher saves registers A0-A2, D1, and D2. If you call
an OS trap directly, the contents of these registers may be destroyed.

The next section examines toolbox calling in greater detail.

The current version of MacsBug is gre atly lmproved from the genenc :

aborts the cun'ent apphcétlon and attempts to return to the Fmder

Toolbox Calling Conventions

All the tool calls available on the Macintosh are documented in Inside Macin-
tosh, Volumes I through VI. These calls use two different calling conventions:
register based and stack based. Throughout the Inside Macintosh volumes, reg-
ister-based calling conventions are given for all routines that have them; if no
convention is shown, then the routine is stack based. The calling convention
considerations are automatically handled by the interfaces and glue in the de-
velopment environment. This information is included here for instructional
and debugging purposes.

40 » Chapter3 Accessing the ROM

P OS Traps: Usually Register-Based Calls

A register-based call is one in which the parameters to the routine and results
returned from the routine are passed in processor registers. Most of the OS
traps (trap numbers $A000 - $AOFF) are register based. By convention, the reg-
ister-based routines preserve all of the registers except A0 and DO. (OS traps
can have numbers as high as A7FF, but bits 8,9, and 10 are used only as flags.)

Note »

Preserving the contents of registers occurs in two different places: the
routine itself and the trap dispatcher. OS routines are responsible for
 preserving all registers except A0, Al, and D0-D2. For OS routines, the

_ trap. dxspatcher saves D2, ar 1 bit 8 of the
utine returns ear, AD's

» Toolbox Traps: Usually Stack-Based Calls

Stack-based calls receive their parameters and return their results on the stack.
Most of the ToolBox traps (trap numbers $A800 - $ABFF) are stack based. For
Toolbox traps, bit 10 of the trap word is the auto-pop flag.

o The trap dispatcher d
. trap is called. Toolbo 1es pr

and D0-D2. The apphcaﬁon must save these reglsters:bef"om making a
Toolbox call if it needs them. ’

» High Level Languages and Traps

The stack-based routines follow Pascal calling conventions. Pascal calling con-
ventions are as follows:

1. Room for a result (if the routine returns one) is made on the stack.

2. The parameters to the call are pushed onto the stack in the order they are
listed in the function.

3. The routine is called.

» Toolbox Calling Conventions 41

The called routine is responsible for stripping all its parameters off the stack.
If it returns a result, the result is left on top of the stack (where the caller left
room for it).

For example, the Window Manager routine GrowWindow takes three pa-
rameters,a WindowPtr,a Point, and a Rect, and returnsa LONGINT result tell-
ing you the height (in the high 16 bits) and the width (in the low 16 bits) of the
resulting window. Inside Macintosh, Volume I lists the call as follows:

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point;
sizeRect: Rect) : LONGINT;

To call this routine, you must

1. Make room for the result

SUBQ.L #4,SP

2. Push the parameters onto the stack in the order they are listed in the function

MOVE.L theWindow, — (SP) ;WindowPtr
MOVE.L startPt, - (SP) ;Point
PEA sizeRect ;Rect

3. Call the routine

_GrowWindow

When control returns to your program, the LONGINT result will be on the
top of the stack. It is your responsibility to remove this result.

MOVE.L (SP) +,DO0 ;iGet result

Almost all Macintosh programs use the GrowWindow function; when you
use MacsBug, it’s easy to see it in action.

42 » Chapter3 Accessing the ROM

Exploring GrowWindow

Boot your favorite application that has windows with grow boxes. Finder 6.1.5
is used for this example.

Enter MacsBug and set an A-trap break at GrowWindow. An A-trap break
means MacsBug will halt execution when a specific A-trapis called, in this case
GrowWindow. You can set an A-trap break by entering MacsBug and typing

atb growwindow

Return to the Finder using the Go command. Type

As you learned in Chapter 2, this command tells MacsBug to continue
executingatthecurrent program counter.Since youdid notchangethePC,
execution will continue as before and you will return to the Finder.

The next time the Finder calls the toolbox routine GrowWindow, the Mac
will break into MacsBug. Sure enough, as soon as you click the mouse in the
grow box in an attempt to resize a window, you enter MacsBug with the message

A-Trap Break at 0036EFAE: A92B (GrowWindow)

Of course the break address ($0036EFAE) will be different on different sys-
tems. You can now examine the surrounding code and the parameters being
passed to GrowWindow. To list the program in the area around the PC, type

ip

MacsBug lists a section of code. The instruction at the current PC has an as-
terisk to the left of it. In this example, the line reads

0036EFAE * GrowWindow ; A92B | A92B

Several related commands disassemble a section of code. The Instruction
List (IL) command begins disassembling at the current PC address or at the
supplied address. For example, the command

il growwindow

begins listing at the toolbox function GrowWindow. Here, as in the DM ROM-
base command used earlier, MacsBug replaces a symbol with its value.

> Toolbox Calling Conventions 43

By the Way »

The IR (Instruction list until Return) command disassembles instructions
untilit comes to the end of a procedure. The ID (Instruction Disassemble) com-
mand disassembles one line. Of these four commands that disassemble
memory, you will most likely use the IP and IL commands far more than the
other two.

As discussed in Chapter 2 under “The Anatomy of the MacsBug Screen,”
the top left of the MacsBug screen displays the top of the stack. In this example
the top of the stack is

SP
0037A9FE

FE 0037AA46

02 008E0365

06 00355C98

0A 0036EFBA

0E 00000000

12 00370000

Since Pascal convention is to push the arguments in the order they appear
in the function, the item on the top of the stack (30037AA46) is a pointer to the
sizeRect. Since Pascal convention is to pass data structures that are larger than
4 bytesby reference, rather than theactual data, a pointer to the rectangle, rath-
er than the rectangle data, is passed.

To look at the rectangle, type

dm 37aadé

4

» Chapter3 Accessing the ROM

You will need to substitute the address from your machine for the $37A A46.
MacsBug responds with

0037AR46 0060 0060 0440 0480 3B44 0035 5C98 0000

The rectangle data structure is four words that represent the top, left, bot-
tom, and right coordinates of the rectangle. In this case the rectangleis defined
by ($60, $60) and ($440, $480) or in decimal coordinates (96, 96) and (1088,
1152). GrowWindow uses the top and left coordinates, ($60, $60) in this case,
as the minimum vertical and horizontal measurements of the window. The
bottom and right coordinates, ($440, $480), are used as the maximum width
and height of the resulting window.

The next item on the stack is the start point ($008E0365). The point data
structure consists of two words: the y-coordinate followed by the x-coordi-
nate. Since a point is a 4-byte data structure, the point, rather than the address
of the point, is passed on the stack. The point passed is ($8E, $365), which is
the location of the mouse-down event in global coordinates.

The final parameter GrowWindow takes is a window pointer. In this exam-
ple the window pointer is $355C98. You can look at the window you are about
to resize by typing

dm 355¢98 windowrecord

MacsBug responds with

Displaying WindowRecord at 00355C98
00355CA8 portRect FFD4 FFDD 0144 01D1
00355CB0 visRgn 0035ADS0
00355CB4 clipRgn 0035aD90
00355D04 windowKind 0010
00355D06 visible TRUE
00355D07 hilited TRUE
00355D08 goAwayFlag TRUE
00355D09 spareFlag TRUE
00355D0A strucRgn 0035F9F4
00355D0E contRgn 0035FA08
00355D12 updateRgn 0035B050
00355016 windowDefProc 20832A5C

00355D1A dataHandle 0035E6

» Toolbox Calling Conventions 45

00355D1E titleHandle Kon80
00355D22 titleWidth 0029
00355D24 controllList 0035BOF8
00355D28 nextWindow 00355D44
00355D2C windowPic NIL
00355D30 refCon 00355a08

The last command tells MacsBug to display memory starting at location
$355C98 as a window record. All the fields within the window record are
described in detail in Inside Macintosh, Volume I. Since window records are
common data structures on the Macintosh, the format for displaying a
window record comes standard with MacsBug. Chapter 19 discusses how to
define custom formats, called templates, for MacsBug to use when displaying
memory. You can define templates for data structures used by your programs,
which often makes it easier to figure out what is going on.

In this particular example some fields were dereferenced and interpreted.
For example, the titleHandle field displays the contents of the handle, Kon80,
rather than the address of the handle. This field shows the title of the window,
which should be the same as the title of the window we are attempting to resize.

Since a window record contains a GrafPort (see Chapter 11, “QuickDraw,”
for details about GrafPorts), the template starts displaying at $355CA8 rather
than $355C98. Most of the fields in the GrafPort are not usually of interest
when examining window records, so only the portRect, visRgn, and clipRgn
fields of the GrafPort are displayed by this template.

Now that you have examined all the parameters that you are about to pass
to GrowWindow, you execute the routine. Since GrowWindow is responsible
for dragging a gray outline of the window as you resize it, watch GrowWin-
dow in action by holding down the mouse button as you type

t

in MacsBug. The T command means trace over one instruction, in this case a
subroutine call to GrowWindow. In the MacsBug documentation this com-
mand is called Step Over (SO). Both are equivalent; this book will use T since
it is shorter, and the key combination Command-T can be used as a shortcut.
You will often use the Command-T shortcut when stepping through code.

If you continue to hold the mouse button, the window size changes as you
move the mouse. When you let up on the mouse you go back to MacsBug.

46 » Chapter3 Accessing the ROM

By the Way »

Since you told MacsBug to trace over one instruction, you fall back into
MacsBug as soon as thatinstruction is done. GrowWindow is complete as soon
as you let up on the mouse button, so you expect to come back to MacsBug.

GrowWindow returns a LONGINT. This result should now be on the top of
the stack. Our stack now shows

sp
0037RA0A
OA Q01CEOLFF
0E 00000000
12 00370000

etay

The value returned is $01CEO1FFE. Inside Macintosh, Volume I tells you that
the high word of this result is the new height of the window and the low word
is the new width.

Also of interest is that your stack now points to $37AA0A, 12 bytes further
up than it was before the call. This makes sense, since Pascal convention is that
the caller makes room for the result on the stack, and the called routine strips
all of the passed parameters. Also notice that the rest of the stack above
$37AA0A in memory (below in the display) remains unchanged. GrowWin-
dow must leave that portion of the stack intact, since it contains parameters
and return addresses for other routines.

a register, DO. Regardless of the language your applicatio
in, the toolbox always follows Pascal conventions.

You can now type

» Toolbox Calling Conventions 47

for Go to continue execution. Of course your breakpoint is still set, and you enter
MacsBug anytime you attempt to resize a window. To clear the breakpoint type

atc

for A-Trap Clear. This clears all A-trap breaks—in this case, only one. If you
had set multiple A-trap breaks and wanted to clear only the break at Grow-
Window, you would type

atc growwindow

Pascal Conventions

As discussed before, Pascal conventions dictate that the caller putall input pa-
rameters on the stack in the order they appear in the function definition. Fur-
thermore, the calling routine makes room for the result (if a function is being
called) on the stack.

Pascal functions and procedures are responsible for removing all parame-
ters and returning a result (in the case of functions). Input parameters larger
than 4 bytes are referenced by address. Thus, no parameter passed to a Pascal
procedure can be greater than 4 bytes.

C Conventions

C conventions are different. The caller puts input parameters on the stack in
the reverse order of the way they appear in the function definition. In Pascal,
the top item on the stack is the one that appears last in the function definition;
in C, it’s the one that appears first.

C implements function and procedure calls in this way to make it easy for
functions to take a variable number of parameters. For example, the first pa-
rameter could tell the function how many parameters to expect. The C library
routine printf takes advantage of this technique.

Rather than having the called procedure remove parameters from the stack
as in Pascal, C convention requires that the caller push and pop all parameters
toand from the stack. Whereas parameters to Pascal functions and procedures
are passed by address if the parameter is larger than 4 bytes, C will pass an ob-
ject of any size on the stack, if told to. Table 3-1 summarizes the differences be-
tween Pascal and C calling conventions.

48 » Chapter3 Accessing the ROM

Note P

Table 3-1. A comparison of Pascal and C calling conventions

Pascal convention C convention

Caller makes room for resulf Result returned in register DO.
and is responsible for

Result amoving resulf from stack.
Caller pushes parameters Cadller pushes parameters in
in the order they appearin reverse order from the way
R — the function declaration. they appear in the function
Parameters larger than declaration. Parameters of
four bytes are passed by any size are passed on the
reference. stack.

Called routine responsible Caller responsible for

for removing parameters cleaning up the stack.
Cleanup from the stack. Caller

responsible for removing

result from stack.

As of MPW i, the #pragma parameter optzon in Callows parameters

and return valves to be passed in registers other than the standard

ones. For example, when C calls NewHandle, it can directly deal with
the returned 1 ﬁult in AO rather than requmng glue to move it into DO.

An extension to Macintosh versions of C allows C programs to call routines
that have Pascal calling conventions simply by declaring a function or a proce-
dure as Pascal. For example, the MPW C header file Menus.h declares the
NewMenu procedure as

pascal MenuHandle NewMenu(short menulD,const Str255 menuTitle)
= 0xA931;

This declaration tells the C compiler that NewMenu takes two parameters,
a menulD and a menuTitle, and uses Pascal calling conventions. The 0xA931 is
the NewMenu A-trap. (The prefix Ox tells the C compiler that the number is hex-
adecimal. In this book the $ indicates hexadecimal, unless the number appears
as part of a C listing.) When the C compiler encounters a call to NewMenu, it
makes room on the stack for the result, pushes the two parameters on the stack
using Pascal conventions, and finally writes out the $A931 A-trap word.

» Toolbox Calling Conventions 49

MacsBug’s A-trap Commands

There are a number of commands that tell MacsBug to take some action when
an A-trap is encountered. For example, you can display each trap as it's
executed, record each trap called, checksum an area of memory, check the va-
lidity of the heap, or simply break. Many of the A-trap commands optionally
take a conditional expression as a parameter. Conditional expressions are dis-
cussed in this section, which is followed by a discussion of theMacsBug A-trap
commands.

Conditional Expressions

Conditional expressions are included after a command and tell MacsBug to
execute the command only when the condition is true. The general form for
setting a conditional breakpoint is

br address expression
or, for A-traps
atb trap number expression

MacsBug breaks whenever the expression is true. For example, if you want
tobreak at the current program counter whenever register D0 equals four, you
use the MacsBug command

br pc d0=4

Conditional expressions are straightforward, but there is one catch which
isbest illustrated by example. Suppose you want to set a conditional break
on SectRgn when the second region parameter passed into the call is rectan-
gular (has size 10). If you break on SectRgn, you can look at the value in
question with

dm @@ (sp+4)
MacsBug responds with
Displaying memory from Q@ (sp+4)

0008A6F4 000A 0014 0000 01950 0280 A08B 0000 0048 eesecesesetocceii

To set a conditional break when this value is 10, you might try

atb sectrgn @@(sptd).w = a

50

» Chapter3 Accessing the ROM

But this won’t work. The reason is as follows: sp+4 is the location of the
rgnHandle on the stack, @(sp+4) is the handle itself, and @@(sp+4) is the loca-
tion of the master pointer. Since the DM command displays the memory atan
address, you will see the expected result. In an expression, you must specify
a value, not an address. The desired MacsBug command is

atb sectrgn @(@Q(sp+4)).w = a

Thisisthe sameas the previous expression, except the word value (at theloca-
tion pointed to by the master pointer) is used rather than the master pointer
itself.

One trick you can use when you attempt to construct a complicated condi-
tional expression is to break in the desired place when the conditionis trueand
then construct the expression. In the above example, you would break at
SectRgn when the size of the region is 10 and type

@R (sp+4) .w = a
MacsBug responds with
@@ (sp+4) .w = a = $00000000 #0 #0 ‘eese’

indicating that the condition is not true and thus the expression is notbehaving
as expected. If you type

@(RQ(sp+4)).w = a
MacsBug responds with

@ (@G (sp+4)).w = a = $00000001 #1 #1 'eoes!
indicating true.

Expressions are very powerful and are used throughout the remainder of
this book. Expressions can contain the operators listed in Table 3-2.

» Toolbox Calling Conventions 51

Table 3-2. Alist of valid operators in a MacsBug expression

Operator Description

(atb) *c Items in parentheses are evaluated first

a or a” Address indirection as in C and Pascal

'a, or NOT a Boolean NOT

a*b Multiplication

a/b Division (integer result only)

a MoDb Computes a modulo b

a+b Addition

a-b Subtraction

a==b, ora=>b True if and only if a equals b

a<>b, orali=b True if and only if a is not equal tob

a>b True if and only if a is strictly greater than b
a>b True if and only if a is greater than or equal to b
a<b True if and only if a is strictly less than b
a<=b True if and only if a is less than or equal to b
asb, or a AND b Boolean (bitwise) AND

allb, or a OR b Boolean (bitwise) OR

a XOR b Boolean (bitwise) XOR

These same expression operators can be used to do simple arithmetic: If you
type a numeric expression into MacsBug, MacsBug evaluates the expression
and displays the hexadecimal, unsigned decimal, signed decimal, and ASCII
equivalents of the answer. For example, if you enter

2%25+3
MacsBug responds with
2*25+3 = $0000004D #77 #77 'eeeM'

Or you might try

52

» Chapter3 Accessing the ROM

Key Point »

3=5
MacsBug responds with

3=5 = $00000000 #0 #0 '...."*

indicating false.

There are several important rules to keep in mind about the way MacsBug
evaluates expressions. First, expressions are evaluated from left to right, with-
outregard to conventional precedence rules. For example, MacsBug evaluates
2+3*5 as 25, rather than 17 as any schoolboy (or computer scientist) would re-
spond.

Second, numbers default to hexadecimal. This is desirable most of the time,
as when entering addresses, but can cause confusion and error when doing
calculations. For example, 11 * 11 is evaluated to 289. You must precedea num-
ber with a # to indicate decimal. Don’t worry; with time the hexadecimal con-
vention will seem natural.

A-Trap Break

The A-Trap Break (ATB) command is the workhorse of any debugging session.
This command allows you to break whenever an A-trap is called. For example,

atb

without parameters tells MacsBug to break anytime an A-trap is called. Since
many system and toolbox routines also call other routines via the A-trap mech-
anism, you can tell MacsBug to break only when A-traps are called from the
current application with the command

atba

» Toolbox Calling Conventions 53

To break at a specific A-trap, rather than all A-traps, you can specify a trap or
range of traps, as in

atba copybits

which tells MacsBug to break only when the current application calls CopyBits.

You can also tell MacsBug to break only when a specific trap has been called
acertain number of times. For example, to break the fourth time an application
calls GetNextEvent, use the command

atba getnextevent 4

You can also tell MacsBug to break only when a condition has been met using
a conditional expressions, described in the previous section. For example,

atb getresource @(sp+2)='CODE'

tells MacsBug to break anytimea ' CODE ' resource is loaded. Typically, Macs-
Bug is not case sensitive. But here you are looking for a resource type that is con-
tained in a single long word (see the description of GetResource in Inside Macin-
tosh, Volume I) and must put single quotes around it. The single quotes tell
MacsBug to take the expression literally, so, in this case, MacsBug is case sensi-
tive.

You can also tell MacsBug to execute one or more commands once the break
conditions are satisfied. Follow the command with

and the list of commands to execute. To execute multiple commands, separate
them by semicolons. For example, to display each string before itis drawn, use
the command

atb drawstring ‘;dm @sp;g’

You can combine these forms of ATB to create arbitrary break conditions.
For example, to display only strings drawn by the application that start with
the letter P, use the MacsBug command

atba drawstring @(@sp+l).b='P’ ‘;dm @sp;g’

You need to add one to the string address (@sp) to get to the first character of
the string since DrawString takes a P-string (which starts with a byte-length
count) as a parameter.

54 » Chapter3 Accessing the ROM

Note »

CheckSum

The CheckSum (CS) command computes a checksum for a memory range. A
checksum is a partial sum of a group of numbers used to store a compressed
representation of the numbers. If one of the numbers changes, the checksum
will also change.

The CS command computes a checksum for the values at the supplied ad-
dress or address range. Subsequent checksum commands without parameters
recompute the checksum to see if it has changed. If the value has not changed,
MacsBug displays the message

Checksum is the same

If the value has changed, MacsBug displays the message

Checksum has changed

Aninteresting side effect of the CheckSum command is that it will cause Macs-
Bug to stop immediately, even if more instructions are pending. This allows
you to create powerful break conditions. For example,

atb newhandle ‘;cs memerr memerr+l;t;cs;g

checks the low memory global memerr before and after executing the New-
Handle trap. If the value changed (presumably an error occurred), MacsBug
will break. This command is useful for finding memory failures.

» Toolbox Calling Conventions §5

A-Trap Clear

The A-Trap Clear (ATC) command clears all actions on the specified trap. For
example, the command

atc newhandle

clears all trap actions on NewHandle. If you set a range of trap actions, such
as with ATB without a parameter (which breaks on every trap), and then use
ATC to clear actions on a particular trap, MacsBug breaks on all traps except
the cleared trap.

A-Trap Heap Check

The A-Trap Heap Check (ATHC) command checks the validity of the heap be-
fore each A-trap call. This command is discussed with the other heap com-
mands in Chapter 4.

A-Trap Record

The A-Trap Record (ATR) command records each trap that was called as well
as the location from which it was called. Since most operating system traps
pass parameters via registers A0 and DO, the value of these registers as well
as the first 8 bytes pointed to by A0 are recorded for OS traps. Toolbox traps
generally pass parameters via the stack so ATR records the value of register A7
as well as the top 12 bytes on the stack.

The number of traps recorded is set by the value of the “# of traps recorded”
field of the "mxbi" resource in the Debugger Prefs file. Since the ATP com-
mand (described next) displays the traps in the order they occurred, you gen-
erally don’t want to record more than about 30 traps (the default is 24), since
you will have to display themall to get to the most recent calls. When the buffer
fills, the oldest record is lost, and recording continues. Thus, only the most re-
cent trap calls are available.

As with most of the A-trap commands, you can append the letter A to the
command (ATRA) to record only traps from the application. This is useful be-
cause most system calls call other traps, and your recording will just show the
internal calls of the last ROM call rather than a record of what’s on your appli-
cation’s mind.

This is one of the most useful commands for determining where and why
an application crashed. Even though trap recording slows the Mac down
slightly, you may want to add trap recording as part of the FirstTime macro so
that trap recording is always on and, anytime you crash, you can play back the
last trap calls.

56 > Chapter3 Accessing the ROM

You can specify either ON or OFF as a parameter to ATR. If you don’t pro-
vide a parameter, ATR toggles between modes.

A-Trap Playback

This command works in conjunction with the ATR command just described.
The ATP command takes no parameters and displays the traps that were re-
corded by ATR. After turning on trap recording, an abbreviated version of out-
put from ATP may look like this.

Trap calls in the order in which they occcurred
A924 _FrontWindow

PC 005A9D92 EVENTLOO+029C

A7

[}

0060B4B6 0000 0000 005A AAD8 00B9 00B9
AB60 _WaitNextEvent

PC

005A9B0C EVENTLOO+0016
A7

0060B4AA 0000 0000 0000 0000 0060 B4EA
A924 FrontWindow

PC

005A9B30 EVENTLOO+003A
A7

0060B4B6 0000 0000 005A AAD8 00B9 00B9
A9B4 _SystemTask
PC

005A9D8E EVENTLOO+0298
A7

0060B4BA 005A AADS 00B9 00B9 00C8 00C8
A924 _FrontWindow
PC = 005A9D92 EVENTLOO+029C
A7 = 0060B4B6 0000 0000 00SA AADS 00B9 00B9
A860 _WaitNextEvent
PC = 005A9BOC EVENTLOO+0016
A7 = 0060B4AA 0000 0000 0000 0000 0060 B4EA

The values of the registers recorded by the ATR command are their values
at the time the routine is called.

The WaitNextEvent and SystemTask traps that are constantly called make
for a very boring trap playback. To get more interesting results, you should set
an A-trap break on a trap that is called shortly after the ones in which you are
interested, so that you enter MacsBug before the trap recording fills with Wait-

NextEvent. If your application crashes, MacsBug is automatically invoked, and
it's unlikely the recording will be full of calls to WaitNextEvent.

» Toolbox Calling Conventions 57

A-Trap Trace

The A-Trap Trace (ATT) command is similar to ATR, except the output is writ-
ten to the MacsBug display immediately, not only upon request by the user (via
ATP for trap recording). Use of this command slows the Macintosh down con-
siderably but is very useful, because the last trap called appears at the bottom
of the MacsBug display and you can scroll up to see previous traps. Output
from ATT is more compact (one line per trap) than output from ATP (three lines
per trap).

The other difference between ATT and ATR is that ATT allows you to dis-
play information about a trap selectively. You can pass ATT the same condi-
tional expressions as A-Trap Break (ATB), and only traps that meet those con-
ditions are recorded. For example, to record all calls to NewHandle from your
applicationwhen a handlesize larger than $100 isrequested, use the command

atta newhandle d0>100

You can achieve a similar, but slower, effect using the ATB command

atb newhandle d0>100 ‘;pc;d0;a0;al;g

This command breaks on the same conditions as before; displays the contents
of the program counter and registers DO, A0, and A1; and then continues. A
similar command determines when NewHandle fails (when called by the cur-
rent application) by showing the results

atba newhandle d0>100 ‘;d0;t;a0;g

This command traces over NewHandle and then displays the value of A0,
which is zero if the memory allocation fails. Again, use of this command slows
the Macintosh down considerably!

Similarly, you can use the ATT command to get the results from a particular trap

atta newhandle d0>100 ‘;t;a0:g

Using these techniques you can usually construct a command that will pro-
duce results that can help pinpoint application problems.

Like ATB actions, ATT actions are cleared with the ATC command and are
displayed using the ATD command.

58

» Chapter3 Accessing the ROM

A-Trap Step Spy

The A-Trap Step Spy (ATSS) command is similar to the CS command described
earlier in this section. ATSS calculates a checksum for a memory range before
executing the specified traps. If the memory changes, execution stops and the
Mac drops into MacsBug. The possible parameters are the same as those
passed to ATB.

One use of ATSS is to check for error conditions in low memory globals.
For example

ATSS ,ResErr ResErr+l

checks the value of ResErr before each trap call and breaks into MacsBug if the
value changes, presumably when a resource error occurs. ATSS checks the
memory before the trap call, so the code that changed the memory wasexecuted
sometime between the beginning of the last trap and the current PC location
when MacsBug is entered.

Note that the format of the ATSS command is the same as the ATB com-
mand, but the memory locations on which to perform the checksum are sepa-
rated from the trap or trap range by a comma. The default checksum size is a
long word. Since ResErr is only a word-long parameter, you must specify an
ending address.

One of the best uses for ATSS is in conjunction with the ATR command. You
can turn ATR on and then use ATSS to check for memory that changes during
an error condition. When the break occurs you can use ATP to help pinpoint
the problem.

Itis possible to use the ATB command in conjunction with the CS command
to perform the same function as ATSS, but ATSS is much faster. The Step Spy
(SS) command behaves the same as ATSS, except it checksums a memory loca-
tion or range after every instruction, which is also extremely slow.

A-Trap Display

The A-Trap Display (ATD) command displays all trap actions that have been
set. The ATD command displays the trap actions that have been set for the cur-
rent application as well as those set for the system or application. The ATD
command does not take any parameters. After setting a variety of A-trap ac-

tions, typing

atd

> Toolbox Calling Conventions 59

might produce a result such as

A-Trap actions from System or Application

Trap Range Action Cur/Max or Expression Commands
ABEC Break d0=100 ;dm @sp;g
A970 Spy 00000000 / 00000001

Checksumming from 00002000 to 00002003
AB84 Check 00000000 / 00000001

A-Trap actions from Application only

Trap Range Action Cur/Max or Expression Commands
2022 Break 00000002 / 00000004

AQ00 A96F Trace 00000000 / 00000001

A971 ABFF Trace 00000000 / 00000001

The ATD command displays trap numbers rather than names. If you need
to know the name of a particular trap, use the WHere (WH) command. For ex-
ample, to find out what trap $A970 is, type

wh a9%970

MacsBug responds with information about trap $A970 as well as address $A970.

Trap number A970 (_GetNextEvent) starts at 0079ECCE in RAM
It is 0079ECCE bytes into this heap block:

Start Length Tag Mstr Ptr Lock Prg Type ID File Name

e 00000000 00000000400 N

Address 0000A970 is in the System heap
It is 0000157C bytes into this heap block:
Start Length Tag Mstr Ptr Lock Prg Type ID File Name

e 000093F4 000021CC+00 N

The Action column in the A-Trap Display command shows you the action
to be performed whenever the specified A-trap is encountered. The Cur/Max
or Expression column shows the conditional expression if an expression was
specified, or the count if a count was specified when the A-trap command was
entered. The default is a count of one, which indicates the action should occur
every time the trap is encountered.

60

» Chapter3 Accessing the ROM

The Commands column shows any additional MacsBug commands thatare
executed each time the trap is encountered.

ROM Organization: The MPW ROMMap File

The Macintosh Programmer’s Workshop (MPW) is Apple’s integrated soft-
ware development system. (The details of using MPW are discussed in Pro-
grammer's Guide to MPW by Mark Andrews, another book in the Macintosh In-
side Out series). Thisbook occasionally references MPW; here we areinterested
ina series of MPW text files which come with MPW and can be viewed in any
word processor. The files are in a folder called ROM Maps. There is a file for
each version of the Macintosh ROM, and the file contains the offsets from
ROMBase of many ROM entry points.

These files are useful for figuring out where ROM routines are located. For
example, if your program crashes at some strange place in the ROM, you can
look at the ROM map to figure out what the program was trying to accomplish.

Summary

In this section we discussed

¢ How Macintosh system routines are invoked and the function of A-traps

Toolbox and OS calling conventions
e Pascal and C calling conventions

¢ A sample session using MacsBug to examine the function of the Grow-
Window trap

¢ MacsBug expressions
¢ Organization of the ROM and the ROM Map MPW file

Several MacsBug commands were discussed

Display Version (DV) for displaying the version of MacsBug

IP for listing the code surrounding the current PC or supplied address

IL for listing code starting at the current PC or supplied address

IR for listing code until the end of the current procedure is reached

ID for listing one line

Trace (T), also known as Step Over (SO), for executing one instruction,
subroutine, or A-trap

» Summary 61

e CheckSum (CS) for checking if memory changes
o The A-trap commands: ATB, ATC, ATD, ATHC, ATR, ATP, ATT, and ATSS

This chapter introduced several MacsBug commands that you will use ex-
tensively when debugging code. All the MacsBug-specific techniques dis-
cussed here are revisited in later sections. The goal here was to explain how
Macintosh System and Toolbox routines are called and to give you an opportu-
nity to begin using MacsBug.

4

>

How RAM is Organized
and Maintained

Many, if not most, application bugs are related to some problem with memory:
The heap is corrupted, the program counter has run off into the weeds, or data
structures are destroyed. To help track down these problems, it is important
to have a clear understanding of the Macintosh memory model. This chapter
describes the layout and ownership of memory on the Macintosh and intro-
duces MacsBug commands that can force memory problems to surface.

In Chapter 2 a computer was described as a processor and memory; this
chapter describes how the Macintosh toolbox, operating system, and applica-
tions use the memory and how memory is allocated and deallocated by the
Memory Manager.

When writing an application, there are many ways to obtain memory. On
early computers, applications simply assumed they had the entire system to
themselves; they had free reign over all memory resources. In the Macintosh
world, where several programs must share the same address space and the
amount of memory can vary, it's necessary for the system to offer a way toarbi-
trate memory usage.

There are two basic places an application can get memory: from the heap or
from the stack. A heap, or heap zone, is a block of memory in which the Memory
Manager allocates and releases blocks of memory of arbitrary sizes on request.
The application’s code, as well as data shared across subroutines, is generally
allocated in the heap. For example, when an application creates a window, the
memory for the window structure is taken from the heap.

The stack is an area of memory, usually maintained by register A7, in which
memory is allocated and deallocated in strict order: The most recently allocated

63

64

» Chapter4 How RAM is Organized and Maintained

Note »

memory is the first to be released. The stack is generally used to allocate tem-
porary variables, such as a subroutine’s local variables.

The first two sections in this chapter discuss heaps and the stack. The next
two sections discuss the low memory globals and the application globals. This
chapter concludes with a discussion of the segment loader, which is responsi-
ble for loading an application’s code segments.

Heaps

Figure 4-1showsa heap. Atthe beginning of the heap is the zone record, which
contains information about the size of the heap and the available memory in
the heap. The heap is further divided into blocks. Each block has an 8-byte
header followed by the block data. When an applicationallocates memory, the
Memory Manager returns a reference to the block data; the block header and
the zone record are used internally by the Memory Manager to manage appli-
cation memory requests.

ode, heap blocks havea 12~by.

etc.

block data

block header (8 bytes)

block data

block header (8 bytes)
zone record (52 bytes)

TheZone >

Figure 4-1. A heap

> Heaps 65

A common bug occurs when an application writes past the end of a block.
When this happens, the header for the next block is destroyed. Once you under-
stand the memory model, these bugs are easy to find. You simply determine
how the block before the destroyed block is being used, and then determine
why its bounds are overwritten. This is easy with the MacsBug heap commands
described later in this chapter.

Under MultiFinder (called the Process Manager under System 7.0), memory
is partitioned as shown in Figure 4-2. The figure shows memory divided into
three major sections: the low memory global variables, the system heap, and
the MultiFinder heap. The MultiFinder heap is further subdivided into a heap
for each running application. When an application requests memory, it speci-
fies where the memory should be allocated: in the application heap, in the sys-
tem heap, orin the MultiFinder temporary memory. The allocation of space for
low memory globals is fixed (and small), so an application cannot get memory
from low memory.

Application 1 Heap

Application 2 Heap

Application N Heap

The MultiFinder Heap '

System Heap

Low Memory

Figure 4-2. RAM organization under MultiFinder

66

» Chapter4 How RAM is Organized and Maintained

>

Note »

By the Way »

Pointers and Handles

Many problems Macintosh developers run into are related to poor memory
management. Proper memory management is not difficult once you under-
stand a few fundamental concepts about Macintosh memory data types. There
are two calls that are the workhorses of memory allocation in the application
heap: NewPtr and NewHandle. Both calls take a long-word parameter, which
is thenumber of bytes of memory to allocate. If the call is unable to find enough
room in the heap, it returns a value of zero; otherwise, it returns a pointer (in
the case of NewPtr) or a handle (in the case of NewHandle) to the memory.

There are a number of other calls which directly allocate memory such as
ReallocHandle, SetHandleSize, PtrToHand, HandToHand, and others, as
well as many calls which allocate memory indirectly such as GetResource
or NewWindow.

When your application is done using the memory, it should return it to
the heap by calling DisposPtr or DisposeHandle, whichever is appropriate.
If the memory was allocated indirectly, you should consult Inside Macintosh
to determine how to free the memory when you are done with it. For exam-
ple, calling DisposeHandle on a block allocated by GetResource will lead
to trouble. Rather, you should call ReleaseResource.

by th g
accept both DlsposPtrand DlSposePtr ‘

» Pointers and Handles 67

It turns out that it is rather antisocial, even egregious, to use pointers. After
an application has allocated and then later deallocated pointers, the heap be-
comes fragmented. For example, suppose anapplication allocates a block with
the NewPtr function that takes up half the available space in the heap and then
allocates another small block. If the application then disposes of the large
block, the heap is left with a small block right in the middle of it. This means
that the largest available block is half of the heap size, rather than the heap size
minus the size of the small block.

The solution is for the Memory Manager to move the small block to the bot-
tom of the heap so that the rest of the heap is available, but it cannot do so be-
cause the application’s pointer to the memory would then be invalid.
Figure 4-3 shows a heap fragmented in this manner.

Y

7
4

4

N\

The virgin heap After two allocations After disposing

Figure 4-3. A fragmented heap

To circumvent the fragmentation problem, use handles rather than pointers.
A handle is simply a pointer to a pointer. The routine NewHandle returns a
handle that is a reference to a block of the requested size. If there is not
enough contiguous memory in the heap to allocate a block of the requested
size, NewHandle returns a nil handle (zero).

68 » Chapter4 How RAM is Organized and Maintained

the application’s heap

v

within a block of
master pointers

| Handle [—» Master Pointer

Figure 4-4. The Handle data structure

Figure 4-4 shows how the handle structure works: A handle is a pointer to
a location in one of the heap’s master pointer blocks. A master pointer block is
a nonrelocatable block of memory that contains a number of master pointers.
The number is set by the cMoreMasters parameter passed to the InitZone pro-
cedure which created the heap zone in question. When MultiFinder 6.0.5
creates the heap zone for the application, it allocates 64 pointers per master
pointer block.

If your application needs more than 64 handles or pointers simultaneously
(almost all applications need many more than 64 handles or pointers), it
should call the function MoreMasters (which allocates an additional 64 master
pointers) before allocating other memory. This procedure instructs the
Memory Manager to allocate extra master pointer blocks. Since these blocks
arenotrelocatable, itis best toallocate them early so they areallocated contigu-
ously at the bottom of the heap and don’t contribute to heap fragmentation.
If the Memory Manager runs out of master pointers, it will allocate an addi-
tional nonrelocatable master pointer block, possibly contributing toa memory
fragmentation problem. When deciding how many times to call MoreMasters,
remember that it's much cheaper to overestimate the number of master point-
ers needed (at a cost of 264 bytes per wasted master pointer block) than to
underestimate (at the cost of fragmentation).

> Pointers and Handles 69

Note »

The advantage of the handle structure is that the Memory Manager can
move heap blocks to make space and to keep the heap nonfragmented. When
the Memory Manager moves a heap block, the master pointer is updated.
Thus, the application’s reference to memory via the handle remains valid.

One of the most common sources of bugs on the Macintosh occurs when an
application dereferences a handle and then assumes the master pointer is valid
after making a call that can move memory. Even though Apple publishes a list
of calls that can move memory, this is by far the most common and nasty prob-
lem application programmers face.

When a handle is dereferenced and you make a call that allocates memory,
you must make sure that the handle’s memory does not move or your derefer-
enced copy will be invalid. You can instruct the memory manager to lock a
block with the Memory Manager call HLock. The call HUnlock performs the
inverse operation. Since locked blocks can’t move, they can contribute to heap
fragmentation (just like pointers) while they are locked. To receive optimal
performance from the Memory Manager, you should lock handles only when
necessary and unlock them before other calls that allocate memory, if possible.

When writing in high-level languages, such as C, you mustalways be aware
of cases where a handle is dereferenced. There are some obvious ways as well
as some very nasty ways you can run into trouble. An obvious case occurs
when a handle is explicitly dereferenced, as in

example{ handle myData)

{
Handle tempHandle;

Ptr derefedHand;

derefedHand = *myData; /* get handles master pointer */
tempHandle = NewHandle(200); /* get 200 bytes */

/* At this point the value in derefedHand may be invalid since the
NewHandle memory allocation may have moved the block to myData
references. */

70 » Chapter4 How RAM is Organized and Maintained

The previous example is obvious once you understand that memory in the
heap may move when you call routines thatallocate memory. These problems
are sometimes very hard to track because they may occur intermittently, de-
pending on the state of the heap when the calls that allocate memory are made.
The preceding problem can be fixed by inserting the line

HLock (myData);

before dereferencing myData. If you do this, you should insert the line

HUnlock (myData);

as soon as you are done with derefedHand.

A less obvious example of memory moving when a handle is dereferenced
occurs because of the order in which the Pascal and C compilers evaluate ex-
pressions. Forexample, inthe following code, nameisa field ina structure that
is kept in a handle called player.

typedef struct player

{

short cards (kCardsInHand];
StringHandle name;

} player, *playerPtr, **playerHdl;
playerHdl guyl;

(**guyl) .name = GetString(kGuylStringNum); /* This won’t work! */

The problem is that the compiler calculates the address of where the result
should go before making the function call to GetString. Since this address is
in a relocatable block, and since the GetString function can move memory (it
allocates memory for the string), the calculated address may be invalid after
the GetString call.

In this example, the problem can be fixed by locking the handle structure be-
fore the call to GetString by inserting the line

HLock (guyl);

And be sure to unlock the block as soon as you are done with it.

HUnlock(guyl):

» Pointers and Handles 71

By the Way »

If you dereference a handle and forget to lock it during a memory allocation,
your application willbehave unpredictably, and you may have trouble finding
areproducible failure. MacsBug provides a mechanism that makes such prob-
lems easier to find. MacsBug’s Heap Scramble (HS) command automatically
movesall relocatable blocks in the heap whenever the application makes a call
that could move memory. The HS command is discussed in more detail later
in this chapter.

If your application mustleaveablock locked for an extended period of time,
you should call MoveHHi on the handle before locking the block. MoveHHi
moves the handle to the top of the heap, which minimizes the chances of heap
fragmentation.

Besides avoiding heap fragmentation, another advantage of using handles
instead of pointers is that resizing a handle is generally a faster operation than
resizing a pointer, and has a much greater chance of success.

The System Heap

The system heap is allocated when the system starts up. It contains patches to
the ROM as well as new calls introduced as the Macintosh system and toolbox
evolve. It also contains system data structures, such as the gDevice’s inverse
table (for screen devices), which QuickDraw uses to map colors between color
environments. The system heap is allocated just above the low memory globals.
The low memory global SysZone s a pointer to the beginning of the system zone.

The MultiFinder Heap

The original Macintosh computers could only run oneapplicationatatime.
MultiFinder, called the Process Manager in System 7.0, is an application
written by Apple that allows multiple applications to run simultaneously.
When the Macintosh boots, the first memory allocated is the system heap.

72

» Chapter4 How RAM is Organized and Maintained

MultiFinder is the first application run (this is performed automatically if
the user chooses to start up with MultiFinder) and claims all available
memory when it is launched.

MultiFinder creates a separate heap withinits heap for eachapplication run,
the first being the Finder. When additional applications are invoked, Multi-
Finder allocates the application’s requested memory size (kept in the applica-
tion’s 'SIZE ' resource) within the MultiFinder heap. Furthermore, MultiFind-
er restores the application’s low memory variables whenever it becomes active.
In this way, each application thinks it has the whole computer (except for the
RAM occupied by other applications running concurrently) to itself.

As discussed in Chapter 5, applications call the toolbox routine WaitNext-
Event to receive the user’s input. If the user switches applications, MultiFinder
passes events to the new frontmost application. The applications in the back-
ground no longer get user events, but they can get null events, which allows
them to do processing while in the background.

Figure 4-5 shows memory allocation in the MultiFinder heap. The top of the
MultiFinder heap contains the MultiFinder code. Applications are placed im-
mediately below the code to allow room for the system heap to grow. The
space between the last application and the system heap is MultiFinder tempo-
rary memory. Applications can request this memory but should use it only for
short periods of time.

MultiFinder Code

Application 1 Heap

Application 2 Heap
MultiFinder Heap

Muitifinder Temp
Memory

System Heap

Figure 4-5. The MultiFinder heap

» Pointers and Handles 73

By the Way »

The Finder allows you to change an application’s requested memory size.
Youmight want toincreasean application’s memory so that you can work with
larger documents, or you might decrease its memory so you can run more
applications at the same time. This is done by selecting the application and
then choosing the GetInfo item in the File menu. The Finder then brings up a
window in which you can change the application’s memory size (bottom
right-hand corner).

Ata Worldwide Developer’s Conference in 1988, the most popular ques-
tion was: “How can my application tell if MultiFinder is running?” Under
MultiFinder, each application has its own address space and access to all
system resources, so it doesn’t matter whether the application is running
under MultiFinder. System 7.0 provides the ultimate answer: MultiFinder
is always running.

Arbitrating hardware resources can be a little tricky. Screen arbitration
is handled by the Window Manager; each application draws only in its
windows. Serial port arbitrating is harder, and problems can occur
when a user runs two or more applications that want to use the same
serial port but configure it differently.

The Application Heap

MultiFinder allocates a separate heap zone for each application within the
MultiFinder heap. Except in special cases, memory an application needs is
then allocated by the Memory Manager within this heap. Figure 4-6 shows an
application’s memory space and the application’s heap. Notice that the appli-
cation’s jump table, parameters, globals, the QuickDraw globals, and the stack
are all outside the application’s heap. These items all reside immediately
above the application’s heap and are actually in the MultiFinder heap.

74

» Chapter4 How RAM is Organized and Maintained

A5 + 32

AS

(A5)

CurStackBase

Top Of Stack A7

ApplLimit

HeapEnd

CODEO
Resource

Jump Table

Length of
Jump Table

Application Parameters

32 Bytes Above AS size

Application Globals

QuickDraw Globals”

Below A5 size

Stack

Application’s code
and data

master pointer block

zone record

ApplZone >

N\

Application Heap

>

*When using high level languages, the QuickDraw globals are usually
placed between the application parameters and the application
globals. Thus, the QuickDraw globals are at -4(AS5).

Figure 4-6. Application memory space

Figure 4-6 shows that the heap begins with a zone record. The zone record
contains information used internally by the Memory Manager. You may want
to look at the contents of the zone record to figure out how memory is orga-
nized, but it does not make sense for your program to change any of the fields in
the record. The zone record is discussed in more detail in the following section.

A heap is divided into blocks. The first block begins immediately after the
zone record and contains master pointers used for handles, as explained pre-

» Pointers and Handles 75

Note »

viously. The last block in the zone ends at the address pointed to by the zone
record’s field bkLim. All other blocks are allocated between these addresses
by the Memory Manager when an application requests memory with the
NewHandle or NewPtr calls. The block and zone structures are fully ex-
plained in Inside Macintosh, Volume IL

The initial size of the stack (CurStackBase-ApplLimit) is kept in the low
memory global DefltStack. For the original B&W Macintoshes this size is usu-
ally 8K ($2000) bytes, and for Mac II class machines DefltStack is 24K bytes
($6000), which is plenty of stack space for most applications.

Unless your application needs to increase the stack space, one of the first
calls it should make is MaxApplZone, which expands the application heap to
itslimit. Its limit is the value held in the low memory global ApplLimit. Calling
MaxApplZone immediately will reduce the time for future memory alloca-
tions, because the memory manager will not need to purge items as often or
spend time growing the heap in sections.

As you can see from Figure 4-6, the stack grows down in memory as the
heap grows up. When the heap is expanded upward, the available memory for
the stack is reduced. You must be careful that you always allow enough room
for the stack to grow downward. One of the standard Macintosh vertical
blanking (VBL) tasks is the stack sniffer, which checks (every sixtieth of a sec-
ond) if the stack and the heap have collided. If the stack hits the heap, a system
error 28 (stack overflow error) occurs. The goal of the stack sniffer is to catch
possible memory collisions during program development.

The area around the A5 register and the Code 0 resource information on the
right of Figure 4-6 are discussed in a following section, “Application Globals.”

Justasan application’s heap can become fragmented, the MultiFinder heap
can also become fragmented: Application heap zones are not relocatable. So
if your Macintosh has 8 megabytes of memory and you runanapplication that
uses 3 megabytes and then another one that uses 1 megabyte, you will be un-
able to run a 5-megabyte application after quitting the 3-megabyte application
because the 1-megabyte application has formed an island in the middle of
memory. That's the reason the Finder displays the size of the largest unused

76 » Chapter4 How RAM is Organized and Maintained

block in the dialog box produced when selecting the About the Finder item
from the Apple menu.

For example, suppose you run Color MacCheese in a 3-megabyte partition
and then run TeachText in a 1-megabyte partition on your 8-megabyte MacII.
At this point memory looks as shown in the left diagram of Figure 4-7. If you
now quit Color MacCheese, TeachText occupies a 1-megabyte nonrelocatable
island in the middle of memory. Now memory appears as in the right-hand
diagram of Figure 4-7, and you will be unable to run an application that re-
quires a 5-megabyte partition.

Color MacCheese '
in a 3-Meg Partition

TeachText in a
< 1-Meg Partition

Before After

Free Space: 6-Meg
Largest Free Block: 3-Meg

Figure 4-7. Fragmented MulfiFinder zone

P> MacsBug Commands That Operate on Heaps 77

MacsBug Commands That Operate on

Hedps

There are a number of MacsBug commands that deal with the heap. The com-
mands are Heap Zone (HZ), Heap eXchange (HX), Heap Display (HD), Heap
Totals (HT), Heap Check (HC), and Heap Scramble (HS). These commands are

described in the following sections. In the explanation of the HZ command, you
will note the use of conditional breakpoints that were discussed in Chapter 3.

Heap Zone

The Heap Zone (HZ) command displays the location of the system heap, the
MultiFinder heap, and all application heaps within the MultiFinder heap.

Examining the heap zones

Enter MacsBug and type

hz

On my machine when I have MacWrite I, MacDraw II, and the Finder run-
ning, MacsBug responds with
Heap zones

00001EQ0 SysZone

00058888

0052044C

00624454 ApplZone TheZone current

006F045C

0078A454

The display is in the opposite order of the way memory maps are normally
displayed; that is, low memory is at the top rather than at the bottom. The sys-
tem zone, the address of which is also contained in the low-memory global
SysZone, begins at $1E00. The next zone is the MultiFinder zone, which begins

at address $58888. You can take a closer look at the MultiFinder zone by enter-
ing MacsBug and typing

dm 58888 =zone

78

» Chapter4 How RAM is Organized and Maintained

Here you are using the zone template to display the zone record. (Templates
were discussed in Chapter 2.) For now, it is sufficient to know that templates
are used in conjunction with the DM command and provide a way to produce
formatted memory displays. On my machine, MacsBug responds with

Displaying Zone at 00058888

00058888 bkLim 007975CC
0005888C purgePtr 00000000
00058890 hFstFree 00797540
00058894 zcbFree 004C69AC
00058898 gzProc 0079EE9SE
0005889C moreMast 03AA

0005889E flags 0000

000588B0 purgeProc 00000000
000588B4 sparePtr 4080EE4E
000588B8 allocPtr 00000000

ThebkLim field of the zone record points to the end of the MultiFinder heap,
in this case $7975CC. This address is beyond thelast zone, which isat $78 A464.
Thus all application zones are contained within the MultiFinder heap. A de-
scription of the fields in the zone header can be found in the Memory Manager
chapter in Inside Macintosh, Volume II.

There is a large gap, in this case about 5 megabytes, between the beginning
of the MultiFinder zone and the next zone, which starts at $52044C. This is
MultiFinder temporary memory, which was discussed previously. Additional
applications are launched in this area, always as high in memory as possible.
Thus, the zone at $52044C belongs to the last application launched. To figure
out which application this is, first look at the application’s zone by typing

dm 52044c zone
On my machine, MacsBug responds with

Displaying 2Zone at 0052044C

0052044C bkLim 00616E08
00520450 purgePtr 00616E08
00520454 hFstFree 005587C8
00520458 zcbFree 00091DD4

0052045C gzProc 0079EE36

» MacsBug Commands That Operate on Heaps 79

00520460 moreMast 0040
00520462 flags 0000
00520474 purgeProc 00000000
00520478 sparePtr 4080EE4E
0052047C allocPtr 005588FC

Now seta conditional A-trap break anytime the program counter is in this heap.

atb ((pc>52044c) & (pc<616e08))

MacsBug confirms the request with

A-Trap Break at AO00 (_Open) thru ABFF (_DebugStr) when (i{pc>52044c) & (pc<616e08))

If you then continue with the G command and click on the various applica-
tions, MacsBug will break as soon as the application that owns this heap makes
an A-trap call. Often MacsBug will break sooner if the application handles back-
ground events. In this case the heap belongs to MacDraw II.

The next zone is at $624454 and belongs to MacWrite II. The low memory glob-
als, TheZone and ApplZone, are both currently set to this zone. The current
application is MacWrite II. The word CURRENT, which appears to the right of
the zone address, means that this is the zone MacsBug is currently operating on.
This is discussed in more detail in the following section, “Heap Exchange.”

Notice that the MacDraw II heap ends ($616E08) well before the start of the
MacWrite Il heap ($624454). The space between these heaps is where the stack
and theapplication’s A5 world reside. Components in the A5 world (theappli-
cation’s jump table, parameters, and globals, as well as QuickDraw globals)
are discussed in more detail later in this chapter. MultiFinder also stores the
application’s low memory globals in this space. Whenever the application is
activated (either when the user brings it to the front or when it receives back-
ground processing time), MultiFinder moves its low memory globals from
this storage area to low memory.

The next zone belongs to the Finder. This can be determined by going to the
Finder, entering MacsBug, and using the HZ command. If you do this, The-
Zone and ApplZone will both point to this zone.

The zone at $78A464 belongs to a small application called Backgrounder
that is automatically launched by MultiFinder at startup. Since this is the first
applicationlaunched after MultiFinder startup, it is located highest in the Mul-
tiFinder heap. You can look at this zone with the zone template by typing

dm 78A464 zone

80

» Chapter4 How RAM is Organized and Maintained

On my machine, MacsBug responds with

Displaying Zone at 0078R464

0078A464 bkLim 0078BD40
0078A468 purgePtr 00782498
0078A46C hFstFree 0078A564
0078R470 zcbFree 00000688
0078A474 gzProc 0078EE36
00782478 moreMast 0040

0078A47A flags 0000

0078A48C purgeProc 00000000
00782490 sparePtr 4080EE4E
00782494 allocPtr 0078BC34

This zone ends at $78BD40, well before the end of the MultiFinder zone,
which ends at $7975CC, as previously discussed. The space between the end
of the first application’s heap, Backgrounder in this case, and the end of the
MultiFinder heap is where Backgrounder’s stack, A5 world, and low memory
globals, as well as MultiFinder’s code (MultiFinder is very small), reside.

Heap Exchange

Many MacsBug commands deal with one specific heap. For example, the Heap
Display (HD) command (described in the following section), displays the cur-
rent heap. When you enter MacsBug, the current MacsBug heap is the same as
the heap pointed to by the low memory global ApplZone.

The Heap eXchange (HX) command allows you to set the current heap. The
example in the previous hands-on exercise showed that the word current ap-
pears next to the current heap when using the HZ command. You can change
the heap with the HX command. For example, to change to the MultiFinder

heap, type

hx 58888

» MacsBug Commands That Operate on Heaps 81

If you then use the HZ command, MacsBug responds with

Heap zones

00001E00 SysZone

00058888 current

0052044C

00624454 ApplZone TheZone

006F045C
00782464

Notice that the word current now appears next to the address of the MultiFind-
er heap, and all commands that are specific to one heap will operate on the
MultiFinder heap. If you use the HX command without a parameter, MacsBug
changes the heap among the application heap (ApplZone), the system heap
(SysZone), and any heaps that you previously set using HX.

Heap Display

The Heap Display (HD) command displays information about all the blocks
in the current heap. This example is from the Chapter 4 demo application. To
display the entire heap, use the HD command without parameters. Enter
MacsBug and type

hd

MacsBug responds with a display such as

Displaying the Application heap

Start
e 005C0488
e 005C0590
e 005C059C
* 005C07D4

e 005C1C04
005C1EDS8
005C1F24
005C1F48
005C1F68

Length

00000100+00
00000004+00
0000022E+02
00001428+00

000002CA+02
00000042+02
0000001C+00
00000016+02
00000004+08

Tag Mstr Ptr

N

R

b

T " ™ ™ n

005C0584
005C0578
005Cc056C
005C0568
005C0564
005C0560

005C055C
005C0548

Lock Prg Type

L CODE
L P CODE

L P CODE

ID

0001

0002

0003

File Name

0526
0526

0526

82

» Chapter4 How RAM is Organized and Maintained

Note »

005C1F7C
005C20E4
005C2114
005C2194
005C2244
005Cc2250
005C226C
005C2294
005C22B4
005C2428
005C2468
005C24B8
005C24D0
005C24FC
005Cc2588

e 0061DBC8

00000160+00
00000028+00
00000078400
000000A6+02
00000000+04
00000014+00
0000001E+02
00000018+00
0000016C+00
00000036+02
00000048+00
00000010+00
00000024400
00000082+02
0005B338+00

00000024+00

w

e

H ® oW ™" ™ W™ ™ M Xom @ @

R

005C0574
005C0570
005c0580
005C057C
005C0550

005C0558

00scos4c

005C0540

005C053C

005C0554
005C0538

005C0544

P CODE 0000 0526

L

There are #374012 free or purgeable bytes in this heap

- The HD command displays low memory at the top and hxgher
memory Iocanons at the bottpm, which is the inverse of a typlcal

block is encountered the heap is dlsplayed up to the bad lock.
such a case, the problem is usually that the previous block is being
overwritten. The solution is to find out why and to either allocate a
larger block or ﬁx the mem@ry accesses thatégo outside the block.

The first part of the heap is the zone header. The zone header is not dis-
played by the HD command. The first blocks in the heap are typically master
pointers. Master pointers are allocated in blocks of 64. They are each 4 bytes
long, so the total size is 64 * 4 = 256, or $100. The master pointers are allocated
in a nonrelocatable (pointer) block. The remaining allocated blocks contain
code and memory allocated by the application.

Let’s look at a sample block in detail.

» MacsBug Commands That Operate on Heaps 83

Note »

Start Length Tag Mstr Ptr LockPrg Type ID File Name

* 005C059C 0000022E+02 R 005C0578 L CODE 0001 0526

The bullet to the left of the first column indicates that the block cannot be
moved; that is, it is either nonrelocatable (if it is a pointer) or locked (if it is a
locked block). The bullets give you a quick view of where the locked blocks are.
Inan application which is well designed, the locked blocks will all be at the top
or bottom of the heap.

The first column, Start, is the address of the start of the data in the block. The
block’s header (described in Inside Macintosh, Volume II) is located in the 8 bytes
immediately before this address (In 32-bit mode heaps the block header is 12
bytes long.)

The second column, Length, gives the logical size of the block. The physical
size of a block is equal to the logical size plus 8 bytes for the block header plus
a size correction, which is what the +02 in the length field indicates. The size
correction is the number of unused bytes at the end of the block. The physical
size of blocks is a minimum of 12 bytes and must be a multiple of four.

The Tag field indicates whether the block is Free (F), Nonrelocatable (N), or
Relocatable (R). MacsBug gets this information out of the block header, as de-
scribed in the Memory Manager chapter of Inside Macintosh, Volume II.

For relocatable blocks, that is, handles, the Mstr Ptr field contains the blocks
master pointer, the Lock field indicates whether the handle is locked (L), and
the Prg field indicates whether the block is purgeable (P). These fields are left
blank for nonrelocatable blocks.

The Type, ID, File, and Name fields apply only to blocks that came from re-
sources. Type is the resource type, ID is its identification (ID), File is its file ref-
erence number, and Name is the resource name, if it has one.

84

» Chapter4 How RAM is Organized and Maintained

You can list only heap blocks that are of a certain resource type with the
MacsBug command

hd Type

For example,

hd code

displays only blocks that are froma ' CODE" resource.

TheID field is the resource ID. The File field contains the file reference num-
ber with which the resource file was opened, and the Name field is the name
of the resource, if it has one. Since the block header is only 8 bytes, this resource
information is obviously kept elsewhere. A description of how MacsBug de-
termines resource information about blocks is given in Chapter 6.

You can also look at information about just certain types of heap blocks. You
do this by specifying a qualifier following HD, as in

hd £

which displays a list of all the free blocks in the heap. The possible qualifiers are

which displays the Free blocks

for the Nonrelocatable blocks

for the Relocatable blocks

for the Locked blocks

for the Purgeable blocks

for the ReSource blocks

Type for displaying resources of the specified type

Be- =z

The HD command is very useful for finding memory problems. Often, a
block in the heap is overwritten, destroying the header for the following block.
When MacsBug performs a heap display, it displays blocks until it gets to one
with aninvalid header. At this point you can start your search for the problem
by discovering how the block header was overwritten. You will usually find
that the code performing some operation on the immediately preceding block
is guilty.

Another use for heap display is identifying nonrelocatable and locked
blocks in the application heap. As previously discussed, nonrelocatable
and locked blocks lead to heap fragmentation and should beavoided when-
ever possible. You can set an A-trap break at WaitNextEvent (discussed in
detail in Chapter 5), and then use the HD command to identify locked (L)

» MacsBug Commands That Operate on Heaps 85

and nonrelocatable (N) blocks. You should be able to identify all locked and
nonrelocatableblocks and have a good reason for them being locked or nonre-
locatable. Doing this early in program development takes very little time and
can prevent memory problems later.

Heap Totals

The Heap Totals (HT) command displays a summary of the blocks in the cur-
rent heap. To get totals for a different heap, you must first use the HX com-
mand to make the heap current. In this example, the current heap is the appli-
cation heap. Enter MacsBug and type

ht
On my machine, MacsBug responds with

Totaling the Application heap

Total Blocks Total of Block Sizes

Free 0004 #4 0005B394 #373652
Nonrelocatable 0001 #1 00000108 #264
Relocatable 0014 #20 00001FDO #8144
Locked 0005 #5 00001974 #6516
Purgeable and not locked 0001 #1 00000168 #360
Heap size 0019 #25 0005D46C #382060

The first line indicates the number and total size of the heap’s free blocks. To-
tals are given as both decimal and hexadecimal values. In this example, there
are four free blocks for a total of $5B394 free bytes. At this point the rest of the
heap total display should be self-explanatory.

A common problem with applications is memory leakage. Memory leakage
occurs when an application allocates memory but forgets to dispose of it. If the
application does this repeatedly, the heap will slowly fill up with unused, but
allocated, memory blocks. When the heap is full, memory requests will fail
and the application may crash. The HT command is useful for detecting this
kind of problem. For instance, check the heap totals when your application
calls WaitNextEvent, perform a number of operations that allocate and deallo-
cate memory, and then check the heap totals at WaitNextEvent again. Any un-
explained discrepancies may be memory leakage bugs.

86

» Chapter4 How RAM is Organized and Maintained

>

Note

>

Heap Check

The Heap Check (HC) command checks the validity of the current heap. A re-
lated command, A-Trap Heap Check (ATHC), which is discussed in the fol-
lowing section, checks the validity of the heap before each A-trap call.

If memory moves when a handle is dereferenced, the heap may become
invalid if the application attempts to write to the now moved memory block.
Once the heap is invalid, the application could crash at any time.

The most common use of the HC command is to find memory problems.
One useful technique, which is explored again in Chapter 17, is to use the HC
command in conjunction with the DebugStr() trap. For example, the line

DebugStr(“';HC;G'");

breakstoMacsBug, checks whetherornottheheapisvalid, and then contin-
ues execution if everything is OK. If the heap is invalid, MacsBug will not
continue. This easy technique helps find wherein yourapplication the heap
is becoming corrupt.

The previous code passes MacsBugs commands via the DebugStr
routine. DebugStr is usually used to algnalla,message I
passed to DebugStr begins with i

r.
i

the following string, will be interpreted as a MacsBug command]ust;-‘ e

as if you had typed it from MacsBug. This technique has a vanety o] TR

uses; others are discussed in Chapter 17. Tk
You can obtain similar function without program modlficahon by

using the A-Trap Heap Check (ATHC) command discussed in the

following section. This command checks the Vahdzty of the heap

before each A-trap call.

» MacsBug Commands That Operate on Heaps 87

MacsBug does not check the heap rigorously but looks for telltale signs of
corruption. Several different error messages are returned.

¢ Zone pointer is bad—This message indicates that the low memory glob-
als SysZone or ApplZone are not valid (even) RAM addresses. To get this
message, enter MacsBug and look at the current zone by typing

dm applzone

Note the value, and then change it to an odd value or an address not in
RAM, using the Set Long (SL) command, as in

sl applzone 40800001

Then use the HC command and you will get the Zone pointer is bad mes-
sage. Be sure to set ApplZone back to its previous value before continuing.

¢ Free master pointer list is bad—The Memory Manager maintains a
linked list of free master pointers. The first of these pointers is pointed to
by the hFstFree field in the zonerecord, and each pointer points to the next
free one. The list terminates with a master pointer that points to zero (nil).
The HC command checks to make sure thatall pointers in this listareeven
and point to addresses within the current heap.

¢ Blklim does not agree with heap length—The HC command walks
through the heap block by block. The address of the end of the last block
must be the same as the blkLim field in the zone record. If it is not, you
will get this message.

¢ Block length is bad—Heap check makes sure that the block header ad-
dress plus theblocklengthisless than or equal to the block traileraddress.
It also checks to make sure that the block trailer is a fixed length.

¢ Nonrelocatable block: pointer to zone is bad—The header for anonrelo-
catable block contains a pointer to the zone header. If this is not the case,
MacsBug will display this message.

¢ Relative handle is bad—The header for a relocatable block contains a pointer
to the block’s master pointer. If it doesn’t, MacsBug displays this message.

¢ Master pointer does not point at block—If the master pointer is not in
the free list, it must point to a block in the heap. This error message is dis-
played if it doesn't.

¢ Freebytes in heap do notmatch zone header—MacsBug checks to make
sure that the size of all free blocks in the heap is the same as the zcbFree
field in the zone record.

88

» Chapter4 How RAM is Organized and Maintained

It's relatively easy to corrupt a heap zone artificially so that MacsBug gener-
ates these messages. If you figure out how to generate each of these messages,
you will gain an in-depth knowledge of the zone and block structures. Be sure
to set all values you change back, or you will almost certainly crash.

A-Trap Heap Check

The A-Trap Heap Check (ATHC) command is similar to the HC command, ex-
cept it performs a heap check on the current heap automatically before each
A-trap call. If the heap is OK, execution continues. If the heap is corrupt, Macs-
Bug stops execution and displays a message indicating the problem with the
heap. This command is useful for narrowing down code that is destroying the
heap. But checking the heap takes time, and asking MacsBug to check the heap
on every A-trap call will slow the Macintosh down considerably.

As with many of the A-trap commands, there is a version that operates only
when the trap is called from theapplication heap and is invoked by appending
the letter A to the end of the command, as in

athca

Similar to other A-trap commands, you can specify a trap or range of traps on
which to do the heap check. For example, to check the heap each time
WaitNextEvent is called from the current application, use the command

athca waitnextevent
You can also specify an expression, as in

athc d0.w=1

which checks the current heap only if the low word of register D0 is 1 at the
time the trap is called. You can even specify that MacsBug should check the
heap only after a given trap hasbeen encountered a specified number of times,
asin

athc newwindow 5

» The Application Stack and the Link Instruction 89

Specifying a range of traps, or a number of times a trap must be encountered
before checking the heap, is not particularly useful unless you are close to find-
ing the memory culprit and the Macintosh’s performance is too slow when
checking the heap on every A-trap call.

Heap Scramble

Some memory problems occur only under very special circumstances. A com-
mon symptom is that your program crashes intermittently, but you cannot
find a reproducible case to establish a solid handle on the problem. The Heap
Scramble (HS) command is helpful in these situations.

The HS command is a way of forcing a worst-case memory scenario. With
heap scrambling on, MacsBug moves all relocatable blocks in the heap when-
ever a call to NewPtr, NewHandle, ReallocHandle, SetPtrSize, or SetHandle-
Size is made. For SetPtrSize and SetHandleSize, the heap is scrambled only if
the block size is being increased. Of course, other system routines call these
routines, so from your application’s perspective, heap scrambling occurs any-
time a call that could move memory is made.

A heap check is performed automatically before the relocatable blocks are
moved. You will find that this command often makes hard-to-find memory
problems reproducible.

The Application Stack and the Link
Instruction

A stack is a special area of memory used for saving subroutine return addresses,
passing parameters to and returning results from subroutines, and storing
temporary variables. A stack isa last-in first-out buffer, or LIFO.On 68000 class
machines it is implemented via address register A7, also known as the stack
pointer, or SP. Figure 4-8 shows how the stack operates for a Pascal subroutine
call that has two word-sized parameters and returns a long result.

90 » Chapter4 How RAM is Organized and Maintained

FUNCTION sumRange (start: integer; end: integer): LongInt;

Before Call Beginning of Caill After Call
previous stack’ previous stack previous stack’
room for result room for result room for result

P,
start start
end end
P,
return address
P,

Figure 4-8. The stack before, during, and after a Pascal function call

For Pascal calls, the caller leaves room for the result and then pushes the pa-
rameters in the order they are listed in the function declaration. The called
function is responsible for removing the parameters from the stack and plac-
ing the result in the space left by the caller. This is the convention followed by
the majority of the Macintosh toolbox routines.

Figure 4-9 shows the stack manipulation for a C call.

long sumRange (short start, short end);

Before Call Beginning of Call After Cal
;pre(/ious stack " prévidﬁé stack pre\;iddé s'rock
end end end
start start start
sSp SP >
return address result in register DO
P,

Figure 4-9. The stack before, during, and after a C calll

> The Application Stack and the Link Instruction 91

By the Way »

The C convention holds that the caller pushes the parameters on the stack
in the reverse order they are listed in the routine declaration. The called func-
tion does not clean the parameters from the stack. Rather, this is left as a respon-
sibility for the calling function. Furthermore, the result is returned in register
DO, not on the stack.

The 68000 LINK and UNLK instructions make it very easy to allocate and
deallocate memory on the stack. Pascal and C compilers generate LINK in-
structions to allocate local variables for procedures and functions. These in-
structions set up an area of the stack, called the stack frame, where routines can
store their temporary variables. The following listings show a simple C proce-
dure and the code generated by version 3.1 of the MPW C compiler. By the
time you read this, version 3.2 (or later) of the C compiler should be available.
We hope that it generates better code!

pascal long
DemcoProc(short paraml, short param2)

{

short locall;
short local2;
long local3;

locall = paraml + param2;
local2 = paraml - param2;
local3 = locall * local2;

return(local3);

As discussed earher,. C subroutines return then' results in register DO,
so obviously the calling routine does not allocate room for the result
on the stack. Here, however, we declare our C procedure to be of type
PASCAL. This tells the C compiler to use Pascal calling conventions;
that is, parameters are put on the stack in the order they appear in the
function, and results are returned on the stack not in mgister DO.

At runtime, you can look at the code this procedure generates by setting a
breakpoint with MacsBug. But that technique will be used a great deal

92

» Chapter4 How RAM is Organized and Maintained

throughout the remainder of this book, so here you’ll use the MPW tool
DUMPOB]J to list the object code. From MPW, you can use the Commando
help facility. Type the name of the tool you want help for followed by the ellipsis
character. The ellipsis character (...) is generated by holding down the Option
key and typing a semicolon. It is not three periods! For example, typing

dumpobj...

brings up a help dialog about the DUMPOB]J tool. After filling in the dialog,
you can hold down the Option key while pressing the DumpObjbutton to get
the MPW command, which performs the desired operation. For this example,
the line used is

dumpobj MyDemo.c.o -p -m DEMOPROC

A slightly abbreviated version of MPW's response, with added line numbers, is

1 00000000: 4ES6 FFFE 'nv.."* LINK A6, #SFFFE

2 00000004: 48E7 OF00 'H...! MOVEM.L D4-D7, - (A7)

3 00000008: 3C2E 0008 '<...! MOVE.W $0008 (A6),D6
4 0000000C: 3E2E 000A L MOVE.W $000A (a6),D7
5 00000010: 48C7 'H.' EXT.L D7

6 00000012: 48Cé6 'H.! EXT.L D6

7 00000014: 2007 v MOVE.L D7,D0

8 00000016: DO86 oLt ADD.L D6, D0

9 00000018: 3D40 FFFE '=@.."' MOVE.W DO, -$0002 (A6)
10 0000001C: 48C7 'H.! EXT.L D7

11 000000lE: 48Cé 'H.? EXT.L D6

12 00000020: 2807 Y.t MOVE.L D7,D4

13 00000022: 9886 vt SUB.L D6,D4

14 00000024: 3A04 I MOVE.W D4,D5

15 00060026: CBEE FFFE vt MULS.W -$0002 (A6),D5
16 0000002A: 2D45 000C '-E.." MOVE.L D5, $000C (A6)
17 0000002E: 4CEE 00F0 FFEE 'Lo.... ' MOVEM.L -$0012(A6),D4-D7
18 00000034: 4ESE 'NAT UNLK A6

19 00000036: 2E9F vt MOVE.L A7)+, (A7)

20 00000038: 4E75 'Nu'! RTS

» The Application Stack and the Link Instruction 93

Any experienced assembly language programmer could greatly improve
this code. In many cases, current compiler technology does not generate code
as efficient as if someone had written the same procedure in assembly lan-
guage. Let’s examine the object dump closely, and determine what the compil-
er is doing.

1 00000000: 4ES56 FFFE 8 AV LINK A6, #SFFFE

The listing begins with a LINK instruction, as expected. Figure 4-10 shows
the contents of the stack before and after the LINK instruction is executed. The
LINK instruction only left room for one local variable, but the procedure de-
clared three. What happened to the other two variables? Where are they stored?

For performance reasons, the MPW C compiler allocates variables in regis-
ters first, and then in the stack frame if there are more local variables than avail-
able registers. This implementation of the C compiler uses registers D4 and D5
forlocal variables. The compiler tries to figure out which of the local variables
will be accessed most often and puts those in registers. Any remaining vari-
ables are stored in the stack frame.

Before LINK After LINK
High memory
room for result room for result
SC(Ab) Stack
param] paraml SAAS)
aram2 aram2
P p $8(AG) grows
return address return address
down
SP S4(A6)
previous A6
Ab v
- Low memory
locall
-2(A
Sﬂ_’ $-2(A6)

Figure 4-10. Operation of the LINK instruction

94

» Chapter4 How RAM is Organized and Maintained

By convention, register A6 is used to point to the stack frame. As you can see
from Figure 4-10, local variables are accessed via negative offsets from register
A6, and procedure input parameters are accessed via positive offsets. As this
object dump shows, the compiler automatically sets up stack frames and cal-
culates the offsets to parameters and variables for you.

2 00000004: 48E7 QF00 'H...' MOVEM.L D4-D7,-(A7)

Line2 saves the registers this routine uses. The registers are saved on the stack.

3 00000008: 3C2E 0008 '<...! MOVE.W $0008 (A6),D6
4 0000000C: 3E2E 000A Sl MOVE.W $000A (A6),D7
5 00000010: 48C7 'n.! EXT.L D7
6 00000012: 48C6 'H.! EXT.L D6

Lines 3 through 6 get the short input parametersand sign extend them tolongs.
Param?2 is located at an offset of 8 from register A6 and moved into register D6;
param1 is at an offset of $A and is moved to register D7.

7 00000014: 2007 L MOVE.L D7,D0
8 00000016: D086 e ADD.L D6,DO0
9 00000018: 3D40 FFFE '=@,."' MOVE.W DO, -$0002 (A6)

Lines 7 through 9 perform the param1 and param2 addition and store the re-
sult in the locall (an offset of $-2 from register A6) stack frame variable.

10 0000001C: 48C7 'H.! EXT.L D7
11 0000001lE: 48C6 'H.' EXT.L D6

Lines 10 and 11 are an embarrassment. They are unnecessary since the vari-
ables in registers D6 and D7 were sign extended above. A better C compiler
would not generate these instructions.

12 00000020: 2807 Y.t MOVE.L D7,D4
13 00000022: 9886 vt SUB.L D6,D4

Lines 12 and 13 perform the param1 and param2 subtraction and store the
result in the local2 variable, which is kept in register D4 rather than in the
stack frame.

14 00000024: 3A04 R MOVE.W D4,DS5

15 00000026: CBEE FFFE oot MULS.W -$0002 (»6),DS

16 0000002A: 2D45 000C '-E..' MOVE.L DS, $000C(A6)

» The Application Stack and the Link Instruction 95

By the Way »

Lines 14 through 16 perform the locall and local2 multiplication, and store the
long result in the result. It is important to notice that positive offsets from the
stack frame register reference input parameters. Since this particular example
follows Pascal calling conventions, the result is returned on the stack in space
allocated by the calling function.

17 O0000002E: 4CEE O0F0 FFEE 'L..... ' MOVEM.L -$0012(A6),D4-D7

Line 17 restores the register variables to their previous values. It performs the
inverse operation of the MOVEM.L we saw earlier.

18 00000034: A4ESE Nt UNLK A6

Line 18 is the inverse of the LINK instruction. It restores the values of A6 and
A7 to those prior to the LINK. The value of A7 is restored to the current value
of A6 plus 4, and the value of A6 is restored to the value saved on the stack at
the location pointed to by register A6. Figure 4-10 shows how the LINK in-
struction is performed. UNLK is merely the inverse operation.

19 00000036: 2E9F voue MOVE.L (A7)+, (A7)

The stack pointer (register A7) now points to the return address. Pascal con-
ventions dictate that you must remove the call parameters from the stack.
There were two word-size (16-bit) input parameters. Line 19 copies the return
address over the input parameters (which are no longer needed). The stack
now contains the return address and the result.

20 00000038: 4E75 'Nu' RTS

Line 20 removes the return address from the stack and continues execution at
that point. When you return to the procedure or function that called this sub-
routine, the top of stack contains the function result.

96 » Chapter4 How RAM is Organized and Maintained

» Low Memory Globals

Low memory is an area of memory used to store system values such as the
speed of the processor (TimeDBRA) or the address of the beginning of ROM
(ROMBase) as well as an area for the application and the system to communi-
cate. Chapter 2 discussed one of the items stored in low memory, the current
application name, which is at address $910. Since areas of low memory (such
as the current application name) are different for different applications, Multi-
Finder swaps the areas of low memory that are application specific.

‘§ é| MMU modes

The Macintosh has a number of system global variables stored at the start of
the address map, often referred to as low memory. On Macintosh II-class ma-
chines, one of these low memory globals, MMU32bit, is a byte-sized flag indi-
cating whether the MMU is in 24-bit or in 32-bit mode. As discussed in Chapter
3, address references on the Mac I are very different depending on the MMU
mode. This exercise looks at the MMU mode.

Enter MacsBug and type

dm MMU32bit

Depending on the machine and mode, MacsBug responds with a display such as
Displaying memory from 0CB2

00000CB2 0002 0001 BF58 0001 BF6C 0000 2BAC 50F1 --+++X+-+1--(-P-

Inside Macintosh, Volume V describes the meaning of the MMUMode flag: A
value of 0 indicates the Mac is in 24-bit mode, whereas a value of 1 indicates
32-bit mode. It is important to realize that this flag is merely a reflection of the
current state of the MMU; you should use the routine SwapMMUMode to
change the state of the MMU. In the previous example the MMU is in 24-bit
mode, and the MMU is ignoring the high byte of addresses.

Key Point »

-Applications must make all system and toolbox calls in 24-bit mode.
~ Callinga system or toolbox routine when the MMU is in 32-bit mode
~ can cause a crash unless you booted the system in 32-bit mode. This is
set by the memory control panel in System 7.0. 2

> Application Globals 97

By the Way »

The easiest way to get into 32-bit mode is by setting an A-trap break at the
SwapMMUMode trap when register D0 contains 1, and then tracing over the
trap. When D0is 1 it signals the SwapMMUMode routine to enter 32-bit mode;
when DO is 0 it signals to enter 24-bit mode. To break on SwapMMUMode
when D0 is 1, enter MacsBug and type

atb swapmmumode d0=1

MacsBug breaks only at the SwapMMUMode trap when register D0 contains 1.

Application Globals

Application globals are application variables that are accessible by all routines
within an application. Memory for the globals is allocated when the applica-
tion is loaded. According to Macintosh convention, global variables are refer-
enced via a negative offset from register A5. The information for allocating
globals is contained in the application’s CODE 0 resource.

Macintosh files consist of two parts: a data fork and a resource fork.
Application code, among other things, is kept in the resource fork of
the application. The resource fork is further divided into different
resource types that the apphcaﬁon uses to get data, such as default

s:MPW builds an

loader, described in the follomng sectmn, loads the apphcatmn code

segments from the 'CODE" resources. The "CODE" resource with

ID 0 contains information about how the application is segmented and

the size of the application globals. When the application is loaded, the
Segment Loader looks at the first eight long words of the 'CODE"' 0

- resource to detemune how much space to allocate for application

15, (such as the j }ump table and the chkDraw

98

» Chapter4 How RAM is Organized and Maintained

Note

>

You can look at the CODE 0 resource using ResEdit. (See ResEdit Complete
by Peter Alley and Carolyn Strange (Addison-Wesley, 1991) for a thorough ex-
planation of ResEdit.) For example, if the CODE 0 resource starts with the hex-
adecimal values

0000 0130 0000 OAC8 0000 0110 0000 0020

1. The first 4 bytes (0000 0130) indicate the total size to allocate above regis-
ter A5. Thisis the size of the jump table (described below) plus 32 (the size
of application parameters).

2. The next 4 bytes (0000 0ACS) are the total size to allocate below register
AS5. This is the sum of the sizes of the application globals plus the Quick-
Draw globals.

3. The following 4 bytes (0000 0110) indicate the size of the jump table.

4. The next 4 bytes (0000 0020) are the offset to the jump table from A5 (cur-
rently always 32, or $20 hexadecimal).

5. The rest of the CODE 0 resource contains the jump table. The format of
the jump table entries is described in a following section.

When the application is loaded, the memory surrounding A5 will appear as
in Figure 4-6.

The Segment Loader

TheSegment Loaderallows you to segmentanapplication so that only the por-
tions of the code that are being used are in memory. This enables an application
to have a much smaller code footprint in RAM. Segmenting your application
is optional. If you choose not to segment it, the code size can be only 32K and
your entire application will reside in one code segment.

Thxs is not smctlygtrue.. But ifa code segm e
must take care fo ensure PC-relatlve referen es do not exceed 321(-

Determining how to segment an application is the job of the programmer.
The individual segments are specified in different ways depending on the de-
velopment system you are using. The main segment always remains loaded
and locked. One strategy for segmentation is to put the main event loop in the

» The Segment Loader 99

main segment and then call UnloadSeg for every segment each time through
theeventloop. UnloadSeg only marksa segment as purgeable. Itis notactually
purged unless the memory is needed.
The complementary routine, LoadSeg, is called automatically whenacode
segment is needed. This is accomplished via the jump table from the
'CODE"' 0 resource, which is loaded above register A5. When the linker
encounters a routine called from a different segment, the linker creates a
jump table entry for that routine. The routineis then called viaa JSR (Jump
to SubRoutine) to the jump table. If the segment is loaded, the jump table
entry contains a (6-byte) JMP (JUMP) instruction to the routine. If the code
segmentisnotloaded, thejumptablecontainscodethatloadsthesegment.
The LoadSeg routine then automatically jumps to the right routine.

Jump Table Entries For Routines in Unloaded Segments

There is one entry for each routine that is referenced from another segment in
the jump table. Each jump table entry consists of 8 bytes. Figure 4-11 shows a
jump table entry in the unloaded state.

start ofentry | 1o utine offset from
the beginning of the

segment
$0002 $0004

Instruction to
move segment
number onto
the stack for
LoadSeg

Move.w #1.-(A7)
$0006 $3F3C 0001

LoadSeg trap
SA9FQ

Figure 4-11. Jump table entry for a routine in an unloaded segment

100 » Chapter4 How RAM is Organized and Maintained

By the Way »

Suppose the unloaded jump table entry contains

0004 3F3C 0001 A9FO

When an application calls the routine referenced by this jump table entry, it
JSRs to the third byte in the entry which, in this example, contains 3F3C 0001.
MacsBug provides the Disassemble Hex (DH) command, which gives us an
easy way to figure out what this instruction is. Enter MacsBug and type

dh 3f3c 0001

MacsBug responds with:

Disassembling hex value

007FFBD4 MOVE.W #$0001, - (A7) | 3F3C 0001

This may seem like a very strange piece of code to find in the middle of a
jump table, but if you look further you can solve the mystery. Using MacsBug
to disassemble the next instruction

dh ASFOQ

produces the response

Disassembling hex value

007FFBD4 _LoadSeg ; A9FO0 | ASFO

In this example the jump table entry calls the LoadSeg trap with a parameter
of 1. The one refers to the CODE segment that LoadSeg should load from the
resource file.

Theusual place for a trap call to return s to the location following that where
the trap was called from, just like a JSR. LoadSeg is different. It looks at the
word-long value 6 bytes before the location it was called from. This value is in
the first and second bytes of the jump table entry and is equal to 0004 in this
example. When LoadSeg is done, it jumps to the location that is at that offset
from the start of the loaded segment. Since the offset is so small in this example,
the routine is right at the beginning of the segment.

i;_ ‘UnloadSES to mark éegments as puxgeable, however e

» The SegmentLoader 101

» Jump Table Entries For Routines in Loaded Segments
Figure 4-12 shows the jump table entry for a loaded segment.

start of entry
Segment number

$0001
$0002

Instruction o
jump to the
requested
routine

JMP $7883EC

S4EF9 0078 83EC

Figure 4-12. A jump table entry for a routine in a loaded segment

Suppose the loaded jump table entry contains

0001 4EF9 0078 83EC

As discussed previously, an application calls the routine referenced by this
jump table entry by doing a JSR to the third byte in the entry, which in this exam-
ple contains $4EF9. You can discover what this code does either by using the
MacsBug DH command (DH 4EF9 0078 83EC) or by finding a jump table and
using the Instruction List (IL) command discussed previously. An application’s
jump table begins at an offset of 32 from register A5. Enter MacsBug and type

il aS5+#32

102 » Chapter4 How RAM is Organized and Maintained

By the Way »

On my machine, MacsBug responds

Disassembling from a5+#32

No procedure name

00796A6C ORI.B 27F9,D1 | 0001 4EF9
00796A70 ORI.W #$83EC, $0001 | 0078 83EC 0001
00796A76 JMP $007886B4 | 4EF9 0078 86B4
00796A7C ORI.B ??F9,D1 | 0001 4EF9
00796A80 ORI.W #$86E8, 50001 | 0078 86E8 0001
00796A86 JMP $00788726 | 4EF9 0078 8726

Thislooks a little bit nasty and not much like code. The reason is that the dis-
assembly began at the start of the jump table. As discussed earlier, calls are
made 2 bytes into the relevant entry. MacsBug doesn’t know the context of
code (in this case code and data intermixed), and attempts to disassemble
starting at the first byte (which is data). Obviously, this makes MacsBug some-
what confused. Fortunately, the confusion ends in the second jump table entry,
which contains a JMP instruction. This JMP instruction jumps directly to the
desired code.

In the jump table entry for aloaded segment, the first 2 bytes refer to the seg-
ment number. The UnloadSeg routine scans the jump table looking for all en-
tries with the same segment number as the segment that is being unloaded. It
then marks all those segments as unloaded.

The '"CODE' 0 resource contains the jump table with each segment in its
unloaded state. When the application is loaded, the jump table is copied to the
location specified in the resource. As the application accesses the individual
routines in different segments, the jump table entries are changed from their
initial unloaded state to the loaded state.

: There isno guarantee that A5 is valid when you enter Ma ug.
Many toolbox routines save A5, use it for their own purpose, and

 then reload it when done. If A5 is not valid (there is no jump table at
A5 + 32, for example), the low memory global CurrentA5 contains the
relevant A5 value.

> The Segment Loader 103

By the Way »

Stepping Into Another Segment
When you are stepping through code you may encounter a statement such as

0060F936 JSR $08F2 (A5) | 4EAD 08F2

An A5 relative jump such as this indicates that the routine being called is in
another segment. If you then step into this routine using the S command, one
of two things will happen depending on whether the segment is loaded. If the
segment is loaded, the jump table entry will simply be a jump instruction that
points to the relevant location

006D7992 JMP $006351E6 | 4EF9 0063 51E6

If the segment is not loaded, you will encounter a display similar to

006D8472 MOVE.W #5001B, - (A7) | 3F3C 001B
006eD8476 _LoadSeg ; ASFO | ASFO

Since the _LoadSeg trap does not return in the standard way, you will be
unable to trace over it. In such a case you should use the GS macro, which
is designed to step into the application routine _LoadSeg loads.

The GS macro expands to

Macro table
Name Expansion
GS SBAZEN TG T 2; 5B 12D 0

This probably seems very strange, and it is. The byte-sized low
memory location at $12D tells the Macintosh whether to enter the
debugger before entering a new segment. The macro first sets $12D to
a nonzero value (1) indicating that the debugger should be entered.
Then the Go command tells MacsBug to continue execution. When
MacsBug is reentered (after the segment has been loaded), the macro
traces twice (T 2) and then clears the flag at $12D. As a result, you end
up at the beginning of the routine that was loaded.

When you return from a routine loaded by LoadSeg, your listings in MacsBug
may look different. For example, if before the call MacsBug showed

0060F936 JSR $08F2 (AS) | 4EAD 08F2

104 » Chapter4 How RAM is Organized and Maintained

for the routine, after the call it may show

0060F936 JSR MyProc | 4EAD 08F2

The instruction is still the same ($4EAD 08F2), but MacsBug now knows the
name of the routine because it is loaded into memory. Other routines in the
same segment will also display names (rather than an A5 relative JSR) when
listed by MacsBug.

» Common Problems Using the Memory
Manager

By far the most common problem encountered using the Memory Manager has
to do with failing to lock a dereferenced handle during a call that allocates
memory. Often this leads to heap corruption, since the next access to the memory
can overwrite a block header. These problems can be fairly nasty, but the Heap
Scramble (HS) command can help bring the problematic code to the surface. The
first bug in the Chapter 4 sample application involves a corrupted heap.

Another common problem that leads to inefficient memory usage rather
than producing a crashing bug occurs when applications lock handles even
when they don’t need to be locked, or when they allocate pointers when a han-
dle could have been used instead. The symptom of both of these problems is
poor memory utilization due to a fragmented heap. The second bug in the
Chapter 4 sample application explores a fragmented heap.

Finally, many applications have problems with memory leakage. Memory
leakage occurs when an application allocates memory but forgets to dispose
ofit, filling the heap with allocated but unused blocks. The third bug explored
in this chapter shows a memory leakage problem.

» Corrupting the Heap

|§ é‘ Examining a Corrupted Heap

The first menu item under the memory menu in the Chapter 4 sample applica-
tion is Corrupt Heap. Selecting this item puts up a dialog box explaining that
your Macintosh will crash if you press the OK button.

» Common Problems Using the Memory Manager 105

Sure enough, if you press the OK button the Macintosh falls into MacsBug
with a message similar to
User break at 005AA098 CORRUPTH+0062

Heap is corrupted! Use HD to find corrupted block, ES to continue '
The heap at 005A848C is bad

Block length is bad

Block header

O0SFDEA1 0031 B20B 5365 7443 6C69 6BAC 6F6F 7000 eleeSetClikLoope

You can use the Heap Dump (HD) command to see where this block is in the
heap. On my machine, the (abbreviated) results of HD are

Displaying the Application heap

Start Length Tag Mstr Ptr LockPrg Type ID File Name

005A84C8 00000100+00 N

005A85D0 00000004+00 R 005A85C4 L

e 005A85DC 0000022E+02 R 005A85B8 L CODE 0001 04cCs
e 005A8814 00001D24+08 R 005A85AC L P CODE 0002 04cCs8
e 005AA548 00000100+00 N

e 005AA650 00000100+00 N

/* Middle of heap left out */
005AAF50 00000044+00 F
005AAF9C 00000100+00 R 005AA71C
005ABOA4 O00O4FFFD+00 F
005FBOAY9 00002DF8+00 F
The heap at 005A848C is bad
Block length is bad

Block header

O05FDEA1l 0031 B20B 5365 7443 6C69 6B4C 6F6F 7000 eleeSetClikLoope

The heap blocks that appear bad belong to free (F) blocks. Although a heap
problem such as this can have a variety of causes, writing to a block that has
moved and overwriting the end of a block are the most common. This example
deals with finding the problem when the end of a block is overwritten.

106 » Chapter4 How RAM is Organized and Maintained

When a block is overwritten, the code that owns the previous block is usually
at fault. The easiest way to determine whether this is the case is to look at the block
data and determine if it is overwriting the beginning of the next heap block.

Inthis example, thelastblock ourapplication owns starts at $55AAF9C. Since
the block header could be overwritten in such a way as to confuse MacsBug
as to whether the block is allocated or free, this assumption is not always true.
ITowever, in most cases one of the blocks just prior to the bad block is at fault.

Since the block at $5AAFIC is $100 bytes long, you can display its contents
with the command

dm 5aaf9c 100

MacsBug responds by displaying a block of fives. If you continue to display
memory by pressing Return you will see more fives! This is obviously a bug.
The memory at the end of the block (after the first $100 bytes) belongs to the
block header of the next block. The application overwrote this header, corrupt-
ing the heap. Once you determine that this is the problem, figuring out the
cause of it in the source is fairly easy.

» Fragmenting the Heap

A second problem applications have is heap fragmentation. Many developers
arenotaware that thisis a problem and that their applications suffer from poor
memory use due to a fragmented heap. The HD command in MacsBug makes
it very easy to determine how memory is allocated in the heap.

Examining a Fragmented Heap

The second item under the Memory menu in the Chapter 4 sample applica-
tionis Fragment Heap. Selecting this item puts up a dialog box explaining that
a NewHandle memory allocation will fail because the heap is fragmented.
Press the OK button and you will enter MacsBug with the message

User break at 0049E8F8 FRAGMENT+0078

Next NewHandle fails even though there is enough memory in heap

Set an A-trap break on NewHandle and continue.

atb newhandle;g

» Common Problems Using the Memory Manager 107

You enter MacsBug at a call to NewHandle. Register D0 contains the amount
of memory requested. Assume $2B668 bytes are requested. The total amount
of memory available in the heap is given by the Heap Totals (HT) command

ht
MacsBug responds with

Totaling the Application heap

Total Blocks Total of Block Sizes

Free 0003 #3 00055B3C #351036
Nonrelocatable 0008 #8 00001310 #4880
Relocatable 0015 #21 000051A8 #20904
Locked 0006 #6 000049E0 #18912
Purgeable and not locked 0000 #0 00000000 #0
Heap size 0020 #32 000SBFF4 #376820

The first line shows that there are $55B3C bytes free in the heap, considerably
more than requested. If you now step over the NewHandle call with the Trace
(T) command, you are on the other side of the NewHandle. Now register A0
contains the Handle if the call was successful and zero if it was not. On my ma-
chine the call was not successful and register DO, which contains the error
code, contains $FFFFFF94 or —-108, which is a memFullErr.

If you look at the heap using the Heap Display (HD) command you will see
a result similar to

Displaying the Application heap
Start Length Tag Mstr Ptr LockPrg Type ID File Name
e 0049C638 00000100+00 N
e 0049C740 00000004+00 R 0049C734 L
e 0049C74C 00000730+00 R 0049C728 L CODE 0001 OSE2
e 0049CES84 00000100+00 R 0049C71C L
e 0049CF8C 00000000+04 R 0049C718 L
e 0049CF98 0000000C+00 N
e 0049CFAC 0000000C+00 N
e 0049CFCO 0000000C+00 N

e 0049CFD4 0000000C+00 N

108

» Chapter4 How RAM is Organized and Maintained

e 0049CFES8 00004154400 R
e 004A1144 00000100+00 N
e 004Al124C 00000100+00 N
004A1354 0002B570+00 F
® 004CC8CC Q0Q00FAQ+00 N
004CD874 00000014+00 F
004CD890 00000230400 R
004CDACS 00000078+00 R
004CDB48 00000174+00 R
004CDCC4 0000001E+02 R
004CDCEC 00000036+02 R
004CcpbD2C 00000042+02 R
004CDD78 0000001C+00 R
004CDD9C 00000016402 R
004CDDBC 00000004+00 R
004CDDC8 00000000+04 R
004CDDD4 00000024400 R
004CDEOO 00000048+00 R
004CDE50 00000039+03 R
004CDE94 0000017D+03 R
004CE01C 00000032+02 R
004CE058 0002A5A0+00 F

e 004F8600 00000022+02

R

0049C714

0049C720
0049C730
0049C72C
004A133C
004A1324
004A1348
004A1344
004A1340
004A132C
004A1334
00421338
004A1320
004a131C
004A1330
004A1314

004A1328

L P CODE 0002 05E2

L

There are #351036 free or purgeable bytes in this heap

The bullets at the left of some of the lines indicate the block is not relocatable.
Applications with good memory management have all thelocked blocks at the
beginning and the end of the heap, but none in the middle. (Of course a locked
block may occasionally appear in the middle of the heap, but this should be a
temporary condition since the application should unlock the block as soon as
it's done with it.)

The problem with this heap involves a locked block (underlined for ease of
reading) right in the middle of the heap at address $4CC8CC. This block is in
the middle because there is a large free block just in front of it (at address
$4A1354) and a large free block after it at address $4CE058.

» Common Problems Using the Memory Manager 109

Even though it may not cause your program to crash, poor memory man-
agement is a BUG. The best way to fix these bugs is by making sure memory
is only locked as long as it needs to be. If you need to lock a handle for an ex-
tended period of time, move it to the top of the heap with the MoveHHi call.

» Memory Leakage

Examining a Memory Leakage Problem

Another memory bug MacsBug can help you find is a memory leakage prob-
lem. Memory leakage occurs when your application allocates memory and
then forgets to deallocate it. The third menu item under the memory menu is
called Leak Some Memory, which is precisely what it does.

To see the problem this causes, enter MacsBug and set an A-trap break at
WaitNextEvent

atba waitnextevent;g

When you break at WaitNextEvent, find out how much memory is available
using the HT command

ht
On my machine, MacsBug responds with

Totaling the Application heap

Total Blocks Total of Block Sizes

Free 0018 #24 00055A5C $350812
Nonrelocatable 0007 #7 00000368 #872
Relocatable 0015 #21 000061B4 #25012
Locked 0006 #6 00004A28 #18984
Purgeable and not locked 0oc1 #1 00001200 #4608
Heap size 0034 #52 0005BF78 #376696

Clear all A-trap breaks and continue with

atey g

110

» Chapter4 How RAM is Organized and Maintained

and then choose the Leak Some Memory menu item and respond OK to the
dialog. Set the A-trap break on WaitNextEvent as before and use the HT com-
mand when MacsBug breaks. On my machine MacsBug now responds with

Totaling the Application heap

Total Blocks Total of Block Sizes

Free 0010 #16 00054AB4 #346804
Nonrelocatable 0007 #7 00000368 #872
Relocatable 0016 #22 0000715C #29020
Locked 0006 #6 00004A28 #18984
Purgeable and not locked 0001 #1 00001200 #4608
Heap size 002D #45 0005BF78 #376696

By comparing this with the earlier HT output, you can see that there are now
4008 bytes less of free memory available. This is legitimate behavior if the appli-
cation performs some function that requires memory and then keeps it around
intentionally. Often, however, an application allocates memory, uses it, and then
forgets about it without disposing of it. This causes the heap to fill with unused
but allocated blocks and eventually creates an out-of-memory condition.

In this particular case the size of the leaked block was 4000 bytes, but the actual
block includes the header for a total of 4008 bytes. Note also that the number of free
blocks has changed considerably. This number changes depending on temporary
memory allocations and deallocations and is generally of little importance.

The easiest way to find these problems is to determine what operations pro-
duce the memory leakage and then examine the source code for memory allo-
cations of which are not disposed. Or you could set application A-trap breaks
on NewHandle and NewPtr and make sure that all allocated handles and
pointers are disposed.

Summary

This section discussed

¢ How memory is allocated and deallocated, both on the stack and in the heap

How to look at the code the compiler generates via the DUMPOB] tool
inMPW

The LINK and UNLK instructions
The structure of a heap zone

» Summary 111

Why it is better to use handles than pointers, and how master pointer
blocks work

That application globals are referenced as negative offsets from register A5

How an application is segmented, and how those segments are main-
tained via the jump table

How to step over the _LoadSeg trap using the GS macro
The following MacsBug commands were discussed in this chapter.

¢ How to Display Memory (DM) using templates

¢ Heap eXchange (HX) for changing the current heap MacsBug looks at
¢ Heap Zone (HZ) for displaying all zones

¢ Heap Display (HD) for displaying all items in the current heap

e Heap Totals (HT) for displaying a summary of the contents of the
current heap

¢ Heap Check (HC) for checking the integrity of the current heap
¢ A-Trap Heap Check (ATHC) for checking the heap before every A-trap call

e Heap Scramble (HS) for moving memory whenever the system may
move memory to force memory problems to surface

This chapter concentrated on the organization of RAM. There are three ma-
jor areas of memory: low memory, the system heap, and the MultiFinder heap.
MultiFinder is merely an application that further subdivides its zone as each
new application is launched.

There are two ways of obtaining memory, NewPtr and NewHandle. This
memory is allocated in a heap. Heaps and the MacsBug commands that deal
with heaps were discussed. Finally, the chapter described three common prob-
lems applications encounter using the Memory Manager: corruption of the
heap, fragmentation of the heap, and memory leakage.

At this point you should understand the Macintosh memory model (this
chapter) and how applications use the A-trap mechanism to access the
ROM (Chapter 3). The remaining chapters in this part (chapters 5-16) dis-
cuss specific areas of the Macintosh toolbox in detail. These chapters are
largely independent of each other but rely heavily on the material
presented in the first four chapters.

>

Note »

The Main Event Loop

Events are signals to your application that it needs to perform some action.
Events are generated when the user of your program clicks the mouse button,
types a key, inserts a disk, or when some other part of the Macintosh needs the
attention of your application. Macintosh users, unlike users of computers that
put up a prompt and then wait for information to be entered, expect to be able
to direct their attention wherever and whenever they want.

Moving the mouse does not generate an event. If you want to track

- mouse movement you can do so in a few different ways. The easiest is
to use the GetMouse function from the Toolbox Event Manager. If you
just want to check to see if the mouse has exited a particular region
you can provide a region to WaitNextEvent. Also, some Window

~ Manager routines, such as GrowWindow and Drangdom
- automatically track the mouse for you. -

Finding the Event Loop

This style of interaction results in applications organized around a loop that
gets and dispatches events to the proper routines. This loop is called the main
event loop; most programs spend most of their time in the main eventloop wait-
ing for action by the user. This main event loop is the heart of a Macintosh
application from which every action starts.

113

114 » Chapter5 The Main Event Loop

‘é é‘ Finding the Main Event Loop

The WaitNextEvent trap is the workhorse of the event loop. The easiest way
to find the main eventloop of an application is to set a breakpoint on WaitNext-
Event. First make sure that you entered MacsBug in the right application by
checking the status area under CurApName. Then set the A-trap break when
WaitNextEvent is called from the application.

atba WaitNextEvent

Note »

Some older programs use GetNextEvent instead of the MultiFinder-
friendly WaitNextEvent routine. If the application doesn’t fall into
MacsBug when you break on WaitNextEvent, try using GetNextEvent
instead.

A following hands-on exercise looks at the returned event record, which in-
dicates the user’s action to the application.

» What's In an Event Loop

Once you have found the main event loop in an application, you can use it to
explore what happens when you perform various actions. In the example
applications, the main event loop is called by the code fragment

while (gQuitApp==false)

EventLoop () ;

» What'sinanEventloop 115

The start of the EventLoop function is

void EventLoop()
{
EventRecord ER;
short i;
short wNum;
WindowPtr w;
tWindowObject *thisWindowObject:
Rect r;
if (WaitNextEvent (Oxffff,&ER,gSleep,nil))
{

glLastModifiers = ER.modifiers;

if (ER.what > 5 &§& ER.what < 12} /* update event or higher: in message */
w =@ (WindowPtr)ER.message;
else
w = FrontWindow(}; /* else, use FrontW */
if (ER.what > 1)
{
wNum = ScanWindowList(w); /* other than null or click, scan list */
thisWindowObject = GoodWNum(wNum); /* and get record */
}
switch (ER.what)
{
case 0: /* null event */
break;
/* SWITCH NOT COMPLETE, SEE SOURCE LISTINGS */
)
)

The switch statement dispatches each event to the part of the application
that handles the event. The complete switch statement is rather lengthy and
the code is on the disk.

116

» Chapter5 The Main Event Loop

Note

>

Note

=5

WaitNextEvent

The previous example shows that the EventLoop function starts by getting the
next event from the WaitNextEvent trap. The definition for WaitNextEvent is

pascal Boolean WaitNextEvent (short mask, EventRecord *event,

unsigned long sleep, RgnHandle mouseRgn);

If your application uses Geﬂ\JextEvent instead its definition is

pascal Boolean GetNextEvent(short eventMask, EventRecord
*theEVent),

The mask parameter is a bit field that indicates the types of events your
application is interested in receiving. In the example, every event is requested,
so the application passes an EventMask of EveryEvent. The EventRecord is
filled in by WaitNextEvent; the returned event record indicates the type of
event, when and where the event occurred, the state of the various modifier
keys, and a message field whose usage depends on the type of event.

The sleep parameter is the maximal amount of time your application wants
to wait for WaitNextEvent to return. If your application does not perform peri-
odic events it can give more time to background applications by passing a
large value for the sleep parameter. But if your application performs periodic
processing (like blinking a cursor), it is important to use a small value for the
sleep parameter.

The final parameter passed is a region that indicates abounding area for the
mouse. If the mouse is moved outside the region, an OS event is returned. In
response your application can check the mouse positionand change the cursor
shape, for example. WaitNextEvent returns a flag indicating whether a
non-nullEvent event is returned.

In general, the only event commonly ignored is the KeyUp event, since
most users don’t expect that lettmg goofa key w1ll cause an action in
an apphcatlon

» What's In an Event Loop 117

The exampleapplication keeps the modifiersina global variable so that
other functions can examine them without having to pass the eventrecord
around. The event is then processed by checking what kind of event was
received. First the eventis categorized by those thatalways go to the front
window and those that return the target window pointer in the message
parameter. Some events, update in particular, have a window associated
with the event, while most of the other events are normally meant for the
FrontWindow.

Events are then dispatched by a large switch statement (or case statement
in Pascal). The switch statement is lengthy and is not reproduced here. The
complete source appears on the accompanying disk.

Catching a Keyboard Event

Catching a Keyboard Event

It is often interesting to wait for a particular event in order to watch how the
application handles it. To watch how an application handles a keyboard event,
you first need to find its main event loop. Start by breaking on WaitNextEvent.

atb WaitNextEvent

When MacsBug breaks, make sure you are in the target application. The event
record is the third long word on the stack. You can view it by typing

dm @ (sp+8) EventRecord

My Mac responds with

Displaying EventRecord at 002C3AF2
002C3AF2 what 0000
002C3AF4 message 00000000
002C3AF8 when 00083F18
002C3AFC where 025C 011A

002C3B00 modifiers 0080

118

» Chapter5 The Main Event Loop

If you try to watch for events by stopping on every call to WaitNextEvent,
MacsBug constantly interrupts the application, and it is very difficult to
generate the desired event. To surmount this problem, set a breakpoint on
the instruction right after WaitNextEvent with a condition to stop only
when the desired event is received.

br pc+2 @2c3af2.w = 3

The address is the location of the What field in the event record. This com-
mand stops at the instruction right after WaitNextEvent whenever the type
of event being returned is a three, which is a keyDown event. (See Table 5-1
for other types of events.) Be sure to clear the WaitNextEvent break using the
ATC command.

Table 5-1. Event types

#define nullEvent 0
#define mouseDown 1
#define mouseUp 2
#define keyDown 3
#define keyUp4
#define autoKey5
f#define updateEvt6
#define diskEvt7
#define activateEvt8
#define networkEvt 10
#define driverEvt 11
#define applEvt12
#define app2Evt13
#define app3Evt 14
#define app4Evt 15

This example shows how to catch keyboard events. This technique can be
used to catch any particular event.

» The Event Queue 119

The Event Queue

The Macintosh keeps the events that have not yetbeen delivered to yourappli-
cationinaqueue called the EventQueue. Not every eventis placed in the event
queue. In particular, activate events and update events are not found in the
queue. This is because activate events are returned immediately to give
user-interface activities, such as clicking in a back window to bring it forward,
a “snappy” feel. Since activate events are given priority, they never wait to be
processed in the event queue.

Update events are given lowest priority. When the Event Manager doesn'’t
have any queued events, it checks the window list to see if there are any win-
dows that need updating and sends an update message if such a window is
found. The window list is scanned front to back, so that the most forward win-
dows will be the most up-to-date. If the event queue is empty and no windows
need updating, a nullEvent is returned.

Examining the Event Queue

If you have an application that is not correctly picking up events, you can ex-
amine the events pending using the EVT demd (see Chapter 20 for more infor-
mation on demds). EVT shows the pending events in the event queue. The
Chapter 5 demo application on the accompanying disk has an option to stop
accepting keyboard events (using the EventMask), so you may queue up some
events and examine them in MacsBug. Start by launching the Chapter 5 sam-
pleapplication, selecting the “No Keyboard Events” menu option, and typing
a few keys. Then break into MacsBug and type

evt

and you will see the events queued up in this way.

What Message When Where (h,v) Modifiers
3 00020264 000CC7BY 338, 534 00000080
3 00020264 000CC7F1 338, 534 00000080
3 00020366 000cc81A 338, 534 00000080
3 00020567 0ooccsza 338, 534 00000080

The What field indicates that the events are all keyDown events (3), and the
Message field contains the key code (in the high byte of the low word) and the
ASCII character code in the low byte. In this case, the messages have character

120

» Chapter5 The Main Event Loop

Note »

Note »

codes of 64, 64, 66, and 67, indicating that ddfg was typed. (The key codes map
to a key pressed on the keyboard. The mapping is given in “The Toolbox Event
Manager” chapter of Inside Macintosh, Volume 1.) The When field indicates
when the event occurred (in ticks — display the low memory global TICKS for
the current value), and the Where field is the position of the mouse when the
eventoccurred (in this case, not moving). Modifiers is a bit field indicating the
state of the various modifier keys (Shift, caps lock, Option, cmd, Control) and
the mouse button.

The mouse button uses inverse loglc al md1cates the mouse button is
up, and a 0 signals it is pressed. :

If you specify an event mask that masks certain events, WaitNextEvent re-
turns the next nonmasked event, leaving the masked events in the queue. Un-
less the buffer was filled and pending events disposed of, all masked events
appear when WaitNextEvent is passed a mask that allows them to do so. The
system event mask in low memory can be used to prevent events from being
posted in the first place. In general, this should only be used to mask outkeyUp
events. You can examine the word-sized system event mask with the Display
Word (DW) command

dw SysEvtMask

When the event queue fills up, the oldest event is removed to make room
for the new event. This means that if you enable keyUp events with the system
event mask but mask them out with the mask passed to WaitNextEvent, the
event queue will fill up with keyUp events. Your application will still work
correctly, since the system automatically replaces the oldest existing event (in
this case a keyUp event) with the most current event.

The size of the event queue is twenty events. This size is determined at
system startup time by an entry in the System Startup Information
stored on the boot volume, but it is unlikely that you should ever have :
to change this value.

» Forcing an Application to Quit 121

Forcing an Application to Quit

If you can get back to the main event loop of a crashed application, you can of-
ten save your work by manually posting a quit event using MacsBug. When
the application crashes, set an A-trap break on WaitNextEvent (and GetNext-
Event, just to be sure) before advancing the PC over the offending instruction.
If the application manages to make it back to WaitNextEvent, you have a
chance to attempt a graceful exit (and perhaps get the application to save your
in-progress work) by forcing a Quit event.

Ifthe application makes it back to WaitNextEvent, you want to force the next
event to be CMD-Q to indicate that the application should quit. First, youneed
to locate the event record. For WaitNextEvent, its address is the third long on
the stack; to display it type

dm @(sp+8) EventRecord

If the application is using GetNextEvent, the event record is on top of the stack.
dm @sp EventRecord

MacsBug responds similar to

Displaying EventRecord at 002C3FEE

002C3FEE what 0000
002C3FF0 message 00000000
002C3FF4 when 0000B4B2
002C3FF8 where 01B1 0159
002C3FFC medifiers 0080

Trace over the WaitNextEvent (or GetNextEvent) trap and fill a CMD-Q
event into the event record. To do this you need to change the What, Message,
and Modifiers fields as well as the value returned on top of the stack.

Place a 3 in the What field indicating a keyDown event. The Message field
should be set to $00000C71 which is the character and key code for a 4. You
should put the value $0180 in the Modifiers field, indicating the Command key
is down. The final change is setting the returned value (on the top of the stack
after the call) to be nonzero (or true), indicating that a real event was found.
To accomplish all this (using the addresses from the previous event record),

you type

122 » Chapter5 The Main Event Loop

sw 2c3fee 3

s 2c3££0 00000c71
sw 2c3ffc 0180

sw sp ffff

Use the Go command to resume and the application will attempt to quit. The
state of the system may be so corrupt that the application is unable to quit and
crashes again. You gave it your best try; at least you are no worse off than before.

» Summary

This chapter discussed how to find and explore the main event loop of an
application; in particular

¢ User, as well as system, actions create events that are put in the event queue

e How applications are organized around the main event loop to process
user input

¢ The structure of a main event loop
» How to explore what an application does with a particular event

¢ How theeventqueue worksand how activateand update events are han-
dled by the Event manager

e How to attempt to recover from a crashed program

The event loop is the heart of an application and is the basis for exploring
how an application works or a starting point for tracking a bug that occurs
when a particular command is entered.

>

Note »

Resources

Macintosh files have two parts: the data fork and the resource fork. The data
fork stores arbitrarily structured data, similar to files on other operating sys-
tems. Access to the data fork of a file is via the File Manager.

The Resource Manager is a layer on top of the File Manager that provides
access to a file’s resource fork. Data structures in the resource fork may be pre-
defined, suchas 'MDEF"', 'DLOG"',and 'PICT', orcustom toanapplica-
tion. Applications access the resource fork of a file with the Resource Manager.

- The application, rather than the Resource Manager, interprets the data)
read from the resource fork. For example, if you put strings in a
resource of type 'ICON', the Resource Manager will return a string
when the "ICON' is requested Such a practice is not reccommended
but illustrates that resources are just data to the Resource Manager and
the interpretation of the data is left up to the application. : _
In some cases parts of the Macintosh system expect to find specific
data in certain resources. For example, 1e Menu Manager expects to
~ find the code that defines amenu inan ' ADEF " ,and if you ji e
happened to put other types of data in ' MDEF" 0 your application
will crash.

123

124

» Chapteré Resources

Resources are used to store state information, such as window positions be-
tween program launches, as well as other data, such as the appearance of a dia-
log box. Since information in resources can be changed without recompiling
the program, customizable data is often kept in resources rather than coded
directly in the source. For example, all the text an application displays to the
user should be kept in resources to make it easy to localize the application for
other countries.

In addition to applications, many parts of the Macintosh ToolBox use re-
sources. For example, if you ask the Dialog Manager to display Alert 1000, the
Dialog Manager gets the definition of the alert from the ' ALRT ' resource. In
this case, the resource comes from the application resource file.

Theapplication’s code is also kept in resources. In this case the resource type
is "CODE" . In the MPW environment the compiler or the assembler gener-
ates the code and then the linker puts the code into resources.

Understanding the Resource Manager is fundamental to Macintosh pro-
gramming, and debugging resource-related problems is key to expedient
application development. Fortunately, there are a number of MacsBug tech-
niques to assist in untangling the Resource Manager data structures.

Specifying a Resource

Resources are specified using two identifiers. The first is a long-word (32-bit)
resource type, which is usually specified as four characters. For example, alert
resources havea typeof ' ALRT ' and icon resources havea typeof ' ICON".
The second identifier is either an ID or a name. The ID is just a word value
(ranging from -32768 to 32767), whereas the name is a Pascal string. Resources
always have an ID; the name is optional. For example

Type ID Name
'DLOG 1024
'DITL® 2345

'ICON' 12387 “Warning”

» Owned Resource IDs 125

Note »

Owned Resource IDs

Sometimes a set of resources is designed to group resources so that special
resource managing programs (Font/DA Mover, for example) can manipulate
them together. In these instances, one resource is the parent resource and the
associated or “owned” resources are children. The children are numbered based
on the ID of the parent resource. This numbering allows the parent to calculate
the IDs of its children from its own ID. The ID of the parent resource is in the
range of 0 to 63, and the IDs of the children resources are constructed as

I5 | 14 33 11| 10 3| 4 0l

1 | 1 | Owner Type | ID of owning resource | variable |

Type Bits Owner Type Type Bits Type

000 'DRVR' 100 'PDEF'

001 ' WDEF ' 101 'PACK"

010 '"MDEF ' 110 Chooser,Ctrl Panel
011 'CDEF" 111 Hypercard XFNC&XCMD

For example, if a desk accessory — type " DRVR" (binary 000) — with ID
12 (binary 001100) owns children resources suchas ' DLOG' or ' ALRT ', its
children resources are specified by 1 1 000 001100 XXXXX, giving $C180 to
$C19F, or decimal -16000 to decimal 15969, a range of 32 IDs, for the children
resources. When a program such as Font/ DA Mover copies this resource from
one file to another, it checks for owned resources and copies them as well.

Apple Computer has also reserved the IDs where bit 14 is zero for
System Software. This means that all the negative IDs are either
owned resources or reserved. To be compatible with the future,
resources that aren’t exphcitly owned should be in the range between
128 and 327’67 ‘ i

126 » Chapteré6 Resources

>

Note »

Key Point »

Resources In Memory

When a resource is loaded into memory from a resource file, it is kept in a han-
dle, the same kind of handle allocated by NewHandle. Unlike memory returned
by NewHandle, resource handles returned by GetResource belong to the
Resource Manager. Your application can specify that a resource is locked or
purgeable but should never dispose of the memory occupied by a resource
handle (using DisposeHandle) because the Resource Manager keeps a refer-
ence to the resource in its resource map (discussed in a following section). If
you want to free the memory occupied by a resource, use the Resource Manager
ReleaseResource call.

The Resource Manager automatically releases all resources associated
with a given file when the file they come from is closed. Although you
don’t have to remember to release all the resources from a file before
closing it, you must remember that you no longer have access to
resources from a closed file unless you have detached them.

To get your own copy of a resource, call DetachResource. After detaching
a resource you are responsible for the memory used by the handle. If you ask
for the resource again, the Resource Manager will load a new copy. This can
lead to trouble if you make a change to a resource and then detach it. Later, if
you try to get the changed resource, it won’t be available. However, it can be
useful, in that you can get the resource, detach it, and make changes. Then if
you need to compare it to the original, just ask the Resource Manager for it.
Figure 6-1 shows the effects of releasing and detaching a resource.

When you call GetResource to get a resource, the Resource Manager is
merely giving you a reference to the resource, not your own copy. The
resource is still owned by the Resource Manager, and if the associated
resource file is closed, the memory is automatically released. You can
get your own copy of a resource by calling DetachResource. Then you
are responsible for the memory just as if the memory was allocated by
your application using NewHandle.

» Resources In Memory 127

Note »

Resource Map

resource data

handle

master
pointer

your handle

—
After ReleaseResource
Resource Map

Resource Map

After DetachResource

resource data

NIL

NIL

master
pointer

your handle

your handle

Figure 6-1. Resources after ReleaseResource and DetachResource

128 » Chapteré Resources

>

Key Point »

Attributes

Even though the Resource Manager owns the resource handle, you can control
the handle’s attributes using the Memory Manager calls. For example, you can
lock, unlock, or change the purge state of a resource with HLock, HUnlock,
HPurge, and HNoPurge. These attributes are stored with the resources in the
resource file so that they have the correct attributes when they are loaded into
memory. As discussed previously, you cannot use the Memory Manager Dis-
posHandle routine. Because resources are easily retrieved from the resource
file, it is convenient to leave resources purgeable. This allows resources to be
automatically purged by the Memory Manager if memory is needed. If you
leave your resources purgeable, you should always call LoadResource before
referencing the resource’s data. LoadResource is very fast if the resource is al-
ready in memory (it just checks to see if the handle passed is pointing to nil).

In addition to the Memory Manager attributes, resources can be preloaded,
protected, or loaded in the system heap. Rather than waiting for the applica-
tion to request a resource, preload means that the resource will be loaded into
memory as soon as the resource file is opened. Protected prevents the resource
from being changed or deleted using any of the Resource Manager routines.
The SysHeap attribute causes the Resource Manager to attempt to load the
resource into the system heap instead of the application heap; if the system heap
is full the resource is not loaded.

A very common mistake when using resource attributes is to change a
resource and then set its attributes. You may then notice that the
resource is not being written to the file. The changed bit telling the
Resource Manager that the resource needs to be written to the file is
held in the attributes and when the attributes are set, the entire byte is
set. This means that the attributes you are changmg are also clearing
the changed bit.

There are two ways to do this operation properly The first way is to
make sure that the resource is written before changing the attributes by
using the WriteResource call immediately after changing the resource.
The second way is to use GetResAttrs to get the resource attributes.
Change only the attributes you want to affect and then use SetResAttrs
to write the attributes back.

> ResourcesIn Memory 129

All the resource attributes can be set with the SetResAttrs call. Changing
the state of aresource with the Memory Manager affects the resource imme-
diately, whereas changing it with SetResAttrs changes it the next time the
resource is read into memory. You cannot permanently change the state of
a resource with the Memory Manager calls; you must use SetResAttrs and
then call ChangedResource.

Purgeable resources are excellent for running in low memory conditions.
There are several pitfalls, however. If a resource is changed without using the
ChangedResource call, your changes will be discarded if the resource is
purged. If a resource has been marked changed with the ChangedResource
call, then the Resource Manager’s purgeProc will write it out before it is
purged. A second pitfall is that your application might run slower because the
Resource Manager must reload resources from disk constantly.

Determining Whether a Handle Belongs to the Resource
Manager

Because resources are so important to the Macintosh and they are kept in han-
dles in the heap, Macsbug provides assistance in viewing resources in the
heap. Using the HD (HeapDump) command with the RS (ReSource) option
specifies that only resources should be displayed. For example, abbreviated
MacsBug output from

hd rs
may look like this display.

Displaying the Application heap

Start Length Tag Mstr Ptr LockPrg Type 1ID File Name
¢ 001E1C18 0000040A+02 R 001E1BD4 L CODE 0001 0D98
® 001E202C 00000051+03 R 001E1BDO L PICT 0BB8 0D98
® 001E2088 0000000R+09 R 001E1BCS8 L STR 002A 0D98 1st

10 style CMD Keys
001E2154 0000000C+00 R 001E1B34 ALRT 00D7 0D98

The dot (e) on the left indicates the block is nonrelocatable; that is, it is
locked, whichisalso indicated by the L in the Lock field. The Tag field contains
R, indicating that this is a relocatable block or handle (which is true for all re-
sources). The Lock and Prg fields are flags, indicating if the resource is locked,

130

> Chapteré Resources

Note »

purgeable, or both. Type is the resource type and ID is the resource ID. File is
the file reference number for the resource file containing the resource. The
Name is shown if the resource has one.

You cancheckifanaddressisina resource with the WH (WHere) command.
For example, if you want to see if address $1E1C20 is in a resource, use

wh lelc20

On my machine, MacsBug responds with

Address 001E1C20 is in the Application heap
It is 00000008 bytes into this heap block:

Start Length Tag Mstr Ptr LockPrg Type 1ID File Name

¢ 001E1C18 0000040A+02 R 001E1BD4 L CODE 0001 OD98

indicating the address is 8 bytes intoa ' CODE"' resource with an ID of one.

MacsBug determines where memory is by looking at the resource
map, a data structure maintained by the Resource Manager, discussed
in a following section. If you call DetachResource on a resource, the
Resource Manager removes its reference to the resource from the
resource map and MacsBug will no longer know where it came from.

Furthermore, if an application corrupts the resource map MacsBug
may return faulty information about the resource or be unable to
return any information atall.

Code Resources

Applications on the Macintosh keep their code in resources of type ' CODE".
As discussed in Chapter 4, the Jump Table is keptin 'CODE" 0 and the rest
of the application is keptin ' CODE" resources with other IDs. There are also
otherstandard resources types that contain code. For example, the routines for
handling the behavior of controls are kept in ' CDEF ' resources and the code
for Control Panel devices is keptin 'cdev' resources.

P Resources In Memory 131

Note »

"CODE " resources are normall; managed by the Segment Loader
Since the Segment Loader keep es at the beginning of each.

'CODE' resource, the actual ¢ a "CODE'" resource starts 4
bytes later than might be expected.’ This is why MPW and other
development environments need to know if you are creating ' CODE :
resources or other types of resources.

Since code is kept in resources and resources are handles, an interesting bug
sometimes shows up. The symptom is that your code calls the Macintosh sys-
tem and every now and again the system routine returns to some block of
memory other than the one from which it was called. The source of this prob-
lem is that the code resource is not locked and is therefore relocatable. If the
call moves memory, your code resource may be moved. Although the call re-
turns to the correct address, your code isn’t there anymore.

To complicate matters even further, sometimes there might still be a frag-
ment of your code in the right place, allowing your application to continue to
work for a short time. This type of bug can be very difficult to track down. If
you suspect such a problem, you can check which block the PC is in after re-
turning from the system routine using the WH command. If it's not in the re-
source you thought, or not evenina memory block, you’ve found the problem.
You should always lock code resources before executing routines contained in
them. For application ' CODE' resources the system (LoadSeg) takes care of
this for you.

Other Resources

Everything from simple types of data, such as strings, to very complex types
of data, such as Dialogs and Pictures, are kept in resources. If you encounter
a problem associated with a resource, you can use MacsBug to pinpoint where
the problem is occurring. The following example demonstrates this technique.

Trapping When a Specific Resource is Loaded

Trying to trap on every call to GetResource can be an exercise in frustration,
since resources are used for almost everything. Fortunately, it isn’t too hard to
get MacsBug to trap only on GetResource calls for particular resource types or
IDs. First, trap on every call to GetResource.

132

» Chapteré Resources

Note

>

atb GetResource

Because most Macintosh programs call the Resource Manager repeatedly, you
will be back in MacsBug soon after you continue. Clear the breakpoint with

atc

If you are looking for a particular resource you can trap on GetResource with
aconditional expression. GetResource takes two parameters: a typeand an ID.
For example, to break on every call to GetResource when a resource of type
'ICN#"' is loaded use the command

atb GetResource @ (sp+2)="ICN#'

If you do this while in the Finder and then open a folder, you will trap into
MacsBug on a call to GetResource.

You could also break anytime a resource of a particular ID, say $20, is loaded
using a command such as

atb GetResource @sp.w = 20

Resources On Disk

Like individual resources, resource files also have attributes. There are a total
of three resource file attributes: mapReadOnly, mapCompact, and map-
Changed. You can use the mapReadOnly attribute to prevent changes to the
resource file. The other two attributes are used only by the Resource Manager
to manage changed resources.

If you set mapReadOnly and later clear it, the resource file will be
written to disk even if there’s no room on the disk for it. This can
destroy the resource file.

The Resource Manager also has a flag that prevents resources from being
loaded from disk. This is a word-sized flag in low memory called ResLoad. If
ResLoad is true, resources will be loaded whenever you call for them. If Res-
Load is false, an empty handle is returned whenever you get a resource.

» Resources On Disk 133

Note »

This is useful in preventing the Resource Manager from repeatedly going
to disk and filling up memory in a case where you want to scan through many
resources (possibly using GetIndResource). You can also disable resource
loading by setting ResLoad to false if you want to set resource attributes and
you need to examine only the names and types to do so. For example, Font/
DA Mover needs only the names of the DAs and fonts initially, so it reads them
by setting ResLoad to false while it indexes through the resources. The re-
sources have to be loaded only when they are moved from one file to another.

~ You can get you : _ :

~ exit your application or when you call a trap. By leavmg it fals other
applications and system tools will fail because they are unable to get
resources. The correct way to handle this case is to immediately
surround the resource call with the SetResLoad calls. For example

:“SetResLoad(ﬁalsa”

. GetResource (my’

etResLoad (t

Using the ResErrProc to Catch Resource Errors

Whenever the Resource Manager encounters an error, it puts the error code in
the low memory global ResErr. It also calls the ResErrProc if it isn’t nil (zero).
Since most applications don’t use the ResErrProc, it can be used during debug-
ging to signal MacsBug when a resource error occurs.

To do this, enter MacsBug in the application that is to be debugged. This is
critical, because MultiFinder swaps ResErrProc when it switches applications.
Then enter the following commands

sw 4 a9ff 4e75

sl ResErrProc 4

The first line tells MacsBug to set location 4 to a Debugger() trap followed
by an RTS. The second line sets ResErrProc to point to this code. When the Re-
source Manager calls the ResErrProc, MacsBug will be activated. You can then
look around, and if you use the Go command, the application will continue.

134

» Chapteré Resources

Note »

Note »

. The-u-_ ong word at add:ress 4 is the startup ac!dress of the Stack POmter :
and is not generally used during normal program execution, which is
why it can be used during debugging sessions.

If a resource error occurs, the pointer to the code that called the Resource
Manager and caused the error is on top of the stack, so itcan be inspected using

ip @sp
e e i e R e e P e e e

Resources In ROM

The Macintosh ROM also contains resources that your application can access
using the Resource Manager, though to do so requires a little extra work. The
ROM resources are not in the resource map unless you explicitly instruct the
Resource Manager to use them by setting the RomMapInsert flag in low
memory. This flag tells the Resource Manager to search ROM resources just be-
fore searching system resources for the next Resource Manager trap call. Then
the flag is cleared automatically.

This means that you must keep setting the flag if you want to get several re-
sources from ROM. It also means that you are not able to pass an ID of a ROM
resource to the Dialog Manager (for example), because the Dialog Manager
doesn’t keep setting the RomMaplnsert flag for each resource it tries to access.

The RomMaplnsert flag is only a byte long, and it is immediately

followed by TmpResLoad, which is a flag allowing SetResLoad to be

overridden for the next call only. The MPW interfaces define two

values: mapTrue an pFalse. These are s &
w RomMapInsert to t nd TmpResLoad(:” the stated val mapFalse

does NOT remove the R ' >

next call from actuaHy Ioadmg the resource!

» ‘The Resource Chain 135

Note »

The Resource Chain

The Resource Manager keeps a directory of all resources in open resourcefiles.
The individual directory for each resource file is called a resource map. The
maps for all open resources are linked together and collectively referred to as
the resource chain. When a request for a particular resource is made, the Re-
source Manager searches the resource chain for the resource. It starts with the
most recently opened file or the file last specified using UseResFile and
searches until it finds the requested resource or returns an error if the resource
isn’t found. Because an application’s resource file is opened last, it is searched
first (unless the application opens other resource files).

The System file (in the System Folder) is a resource file (just like an applica-
tion) that is opened automatically when the system boots. Because the Re-
source Manager searches resource files in the reverse order in which they were
opened, the application’s resource file is searched first and the System re-
source file is searched last. Since the System resource file is in the resource
chain for each application, applications have access to system resources such
as fonts and alerts. The searching order makes it easy to override any feature
of the system in your application by including a resource of the same type and
ID in your application resource fork.

As new resourece files are opened, they are added to the start of the search
chain. This means that if your application opens a resource file and that re-
source file has resources of the same type and ID as resources in your applica-
tion, your application will get the new resources in preference to its own. You
can change this behavior by telling the Resource Manager to start its search for
resources with some other resource file lower in the chain of resource files.

136

» Chapteré Resources

Note »

Note »

Resource files are opened using the OpenResFile routine. This routine takes
a filename as an argument and returns the RefNum for the file. In general, you
don’t need to use the RefNum to access the resources themselves; only a few
routines, such as CloseResFile and UseResFile, work with a resource file di-
rectly. To get the RefNum for your application, call CurResFile before opening
any other resource files, since your application will be at the top of the resource
file chain.

Examining the Resource Chain with RD

Included in the Debugger Prefs file (on the accompanying disk) is a demd
called RD for ResourceDumper. This demd displays all the resources in the re-
source chain, as well as the file they came from, their attributes, and whether
they are loaded. To use the RD command, enter MacsBug and type

rd

» The Resource Chain 137

The following is a sample abbreviated response.

Resource Chain - Top to bottom:

Map at:

type:
ID:
type:
ID:
type:
ID:
type:
ID:
type:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
iD:

ID:

STRS Instances: 1

0 at: Unloaded

DATA Instances: 1

0 at: Unloaded

2ERO Instances: 1

0 at: Unloaded

DREL Instances: 1

0 at: Unloaded

DITL Instances: 10

32767 at: Unloaded
513 at: Unloaded
151 at: Unloaded
130 at: Unloaded
129 at: 001ED2DO

128 at: Unloaded

157 at: Unloaded
153 at: Unloaded
159 at: Unloaded
200 at: 001EDOOC

Attribs:

Attribs:

Attribs:

Attribs:

Attribs:
Attribs:
Attribs:
Attribs:
Attribs:

Attribs:

Attribs:
Attribs:
Attribs:

Attribs:

002267D4 File RefNum: $000D98 File Name: Your Application

cdT1lpA

cdT1PA

cdT1lpa

cdT1PA

cdtlPA
cdtlPA
cdtlPA
cdt1PA
cdt1PA
cdt1PA

cdtlpA Name: Save As...
cdtlpa
cdtlpA Name: Scale Picture

cdtlpA Name: Open Dialog

Thefirstlineindicates that the fileat the top of the chain is called Your Appli-
cation. The File RefNum can be used in conjunction with the FILE dcmd to find
out more about the file (see Chapter 13). This line also gives the address of the
resource map, which is discussed in a following section.

The following lines list all the resources of each type contained in that file.
The first typeis ' STRS', of which there is one. The next line indicates that the

'STRS' resource has an ID of 0 and it is currently not in memory (Unloaded).
If the resource is loaded, the handle is shown instead of Unloaded. The Attrib-
utes (Attribs) are ¢ for Changed, d for preloaD, t for proTected, I for Locked,
and p for Purgeable. If the letter is capitalized, the attribute is set; if lowercase,
it is clear. The final attribute is either A for Application heap or S for System
heap. If the resource has a name, it is also shown.

138 » Chapteré6 Resources

By the Way »

Note P

Resource file maps are kept in the heap pointed to by the low memory
global TheZone at the time the resource file is opened. This is normally
the application heap.

is useful for debuggmg purposes, specif)nng names for all
your resources takes up additional memory. Perhaps this extra
memory is minor in comparison to the size of your application, but
unless your application loads resources by name, there is no reason to
waste it.

Resource Maps

The resource map is used by the Resource Manager to keep track of resources in
memory and in open resource files. The resource maps are linked by the resource
chain. The first map is pointed to by the low memory global TopMapHndl. The
system map is pointed to by the global SysMapHndl and the name of the system
resource file is in the low memory global SysResName.

The resource map contains the types, IDs, names, offsets in the file, and han-
dles to the loaded resources. On disk, the maps are kept at the end of the re-
source file. The map is loaded into memory and added to the resource chain
whenever the resource file is opened. Resource maps are written back to disk
only if a resource was changed, added, or removed, and then only when the
resource file is closed or UpdateResFile is called.

Structure of a Resource Map

Because resource maps are fairly complicated, the Resource Dumper (RD)
demd is provided to extract relevant information from the map. This section
details the structure of a map in case you need information additional to that
provided by RD. Because of the variable size records, the resource map struc-
ture is beyond the capabilities of MacsBug templates.

The resource map loaded into memory starts with a resource header, which
contains key offsets into the resource file. This is followed by a handle to the
next map in the resource chain. After this information comes the file RefNum
of this resource file and the file attributes. Next is the offset to the type listand

» Resource Maps 139

the offset to the name list. Figure 6-2 shows the structure of the resource map
in memory.

0
Offset to resource data Resource ID
ur
4
Offset to name or -1
Offset to rescurce map
Res. attribs
8 1 Number of types - 1
Length of resource data File offset to data
c Resource fype Handle to resource or 0
Length of resource ma
9 P1/ [Number of this type - 1| |REsource D
10 -
Offset to reference list Offset to name of -1
Handle to next map R b
es. attribs
14] FileRefiNum Resource type File offset o data
16| Resource file attributes Number of this type - 1 Handle to resource or 0
18} Offset to type list
1Al Offset to name list Offset 1o reference list

Figure 6-2. The resource map

The type list starts with a count of the number of different types minus one.
The list of types contains the type followed by the number of resources with
that type minus one and an offset to the reference list for the type.

The entries in the reference list for each type have the ID and an offset to the
name of the resource (or -1 if there is no name for the resource). This informa-
tion is followed by a byte containing the resource attributes and three bytes with
the offset within the file to the resource’s data. The final entry is a handle to the
resource if the resource is loaded or zero if the resource is not loaded.

140 » Chapter 6 Resources

Examining a Resource Map

Let’s look at a resource map in memory. Enter MacsBug and type

dm @@TopMapHndl

and you will see a display such as

Displaying memory from @ROAS50

000B95BC 0000 0100 0000 4534 0000 4434 0000 074A ~------ E4--D4---J
000B95CC 002C CE94 QF10 8000 001C 074A OQQQ0E 5354 =, =++c=cev- Ja=8P
000B9SDC 5220 0000 007A 424E 444C 0008 0086 4E49 R ---zBNDL----:NI
000B95EC 5349 0000 00F2 4943 4E23 003C 0QOFE 4652 SI----ICN#-<--FR
000B9SFC 4546 003C 03DA 5350 4E54 0000 06B6 4648 EF-:<-::SPNT----FH
000B960C 4132 0000 06C2 4D53 5744 0000 06CE 4B41 AZ2-:---MSWD---:-KA
000B961C 484C 0000 06DA 4D41 4341 0000 06E6 5253 HL-:---MACA----RS
000B962C 4544 0000 06F2 4150 504C 0000 O6FE 5843 ED-:--:-APPL::-:XC
000B963C 454C 0000 070A 4643 4D54 0000 0716 4544 EL:---FCMT----ED
000B964C 4241 0000 0722 0000 FFFF 0400 0000 002C BA:-«"sreerenn. '
000B965C CO5C 0733 FFFF 2400 000F 0000 0000 7F3A ..\+3+«§--vvven- H
000B966C FFFF 2400 108A 0000 0000 74FF FFFF 2400 =-+$------- B ovgi
000B967C 184D 0000 0000 57EE FFFF 2400 1EF9 0000 ~M:«--W---§-----

000B968C 0000 3216 FFFF 2400 2A01 0000 0000 4EB8 -2+ :§-%*:0ven N-
000B969C FFFF 2400 30AD 0000 0000 050D FFFF 2400 +-$+0-r-v-v:-- $-
000B96AC 352B 0000 0000 1722 FFFF 2400 377B 0000 5+----- s

The first 16 bytes are a copy of the resource file header from the resource file
on disk. The second line starts with a handle to the next resource map in the
chain, in this case $2CCE94. The next word is the resource file’s RefNum, $F10
in this example. Using the FILE demd (described in Chapter 13), you can deter-
mine to which file the resource map belongs. The next word, $8000, contains
the file attributes followed by an offset from the beginning of the resource map
to the type list. Nextis the offset to the name list. In this case, the type list starts
right after the header at offset $001C.

> Summary 141

The type list starts with a count of the number of types minus one. In this
case, there are 15 types, so the count is $000E. The following bytes contain the
type (in this case, STR), the number of resources of this type minus one ($0000),
and finally the offset from the beginning of the type list to the resource refer-
ence list for the resources of this type ($007A). In this example, the offset to the
reference list is $007A from the beginning of the type list or $007A + $001C =
$0096 from the beginning of the resource map; the reference list begins at ad-
dress $000B9652.

At the resource reference list, you find the ID (0000), the offset from the be-
ginning of the name list for the name of this resource, or $FFFF if the resource
has no name (as in this case). The next byte holds the resource attribute flags
followed by 3 bytes that contain the offset to the resource in the file. The follow-
ing 4 bytes contain the handle to the resource if it is loaded. In this example it
is loaded and its value is $2CC95C.

The Resource Manager keeps track of the resource maps using some low
memory globals. The TopMapHndl was shown in the previous hands-on exer-
cise. There is also SysMapHndl, which is the handle to the System’s resource
map. To keep track of the current resource map, the Resource Manager keeps
the file RefNum in CurMap, and it keeps the system’s in SysMap.

Chances are you will never need to manually parse the resource map as in
the previous example because the RD demd does it for you. Looking at it one
time is an excellent exercise because it shows how the RD command works.
Hopefully the exercise helped to dispel another piece of Macintosh magic.

Summary

This chapter discussed a number of important facts about resource maps.
Specifically, it discussed

e The difference between the data fork and the resource fork

The uses for the resource fork and how to determine if a given handle
belongs to a resource

Attributes for resources and pitfalls when changing the attributes
Resource files and ROM resources
The RD demd

The Where (WH) command which gives information about an address

142 » Chapteré6 Resources

¢ A number of low memory globals used by the Resource Manager and
uses for the ResErrProc global

¢ How resource maps are connected into the resource chain
e The structure of a resource map

Understanding how the Resource Manager works is a key to debugging
problems associated with resources. It also provides a starting point for track-
ing other bugs. For example, if you are trying to determine why a particular
icon does not draw, you might start tracing through your program from the
point where the icon is loaded with a GetResource call.

Clues provided by the WH command are also useful in helping to deter-
mine where a problem might lie. Suppose your application crashes in some
code you don’t recognize. This is a good time to use the WH command. If you
find out the crash occurred in the ' MDEF' resource, you might begin your
search by examining calls to the Menu Manager.

>

Menus

Menus are the most common way for a user to control an application on the
Macintosh. They provide the choices available to the user in an application.
There are two parts to menus: the menus themselves and the menu bar, which
groups the menus together.

The MenuManager handles almost everything to do with menus. It is possi-
bletohave amenubarand allits menus in resources and let the Menu Manager
do all the work. On the other hand, your application can do all the work by
adding each item to each menu and then adding each menu to the menu bar.
Since the Menu Manager uses ' MDEF ' resources to determine how menus
look, an application can supply its own ' MDEF' to give menus a completely
different look. It is even possible to create custom ' MBDF' resources to give
the menu bar itself a new look.

How the Menu Manager Works

TheMenuManager handles themenubaras wellas themenusthemselves.
It handles drawing of the menus and refreshing of the display under the
menus as well as tracking the mouse when the mouse is clicked in the menu bar.

Menus are created in a variety of ways. The entire menu bar and all its
menus can be defined completely by resources and read in with the single
MenuManager call GetNewMBar. The individual menus can be defined by re-
sources and read in with GetMenu and placed into the menu bar one ata time
using InsertMenu. The individual menus can also be created with NewMenu
and each item can be inserted with AppendMenu and placed into the menu
bar using InsertMenu. A menu can be created with NewMenu and filled in

143

144 » Chapter7 Menus

By the Way »

Note »

with the names of all available resources of a particular type using AddRes-
Menu. For example, AddResMenu is used to create both the desk accessory
list under the Apple menu and the font menu used in many applications.

On the original Macintosh, AddResMenu added the resource names in.
the order they appeared in the resource file. This changed quitea
hile ago; resource names were added in alphabetlcal order. This
made it easier to determin here a particular name might be found,
but some people had organized their desk accessories and fonts :
carefully using Font/DA Mover, and all their work went for naught.

e name that smrtsmtha period () or a percent (%) won't

ded into the menu by AddRésMenu This preﬁx distinguishes drivers
from desk accessories (as discussed in Chapter 12) and prevents these
items fnom appearing in the Apple ment.

When the application receives mouse down events they are passed to the
Window Manager’s FindWindow routine, which signals that the event oc-
curred in the menu bar. The application can then call the Menu Manager’s
MenuSelect routine to handle the mouse in the menu bar.

MenuSelect handles pulling down the menus, saving the bits behind the
menus, tracking the mouse, and highlighting the correct menu — everything
until the mouse is released. It then returns to the application the menu ID of
the selected menu and the menu item in the selected menu.

Likewise, if the Command key is down for keyboard events, the events are
passed to the MenuKey function, which determines if the keystroke is the key-
board equivalent for some menu item.

The Menu List

A handle to the data structure defining the menu bar is placed in alow memory
global MenuList. The data pointed to by MenuList contains the number of me-
nus in the bar, the horizontal position of the right side of the menu bar (the end
of the last menu title in the menu bar), as well as a handle to each menu’s data
and the horizontal position of each menu'’s title.

> How the Menu Manager Works 145

Examining the Menu List

Enter MacsBug and type

dm @@MenuList

and you will see a display similar to this

Displaying memory from @QROALC

002D4FD4 002A 0112 0000 002C 6B80O O00A 002C 6B6C ske v skeses k1l

002D4FE4 0022 002C 6B78 0046 002C &B74 006C 002C + e o kX B, KE21e,
002D4FF4 6B68 0099 0001 6DF8 00D4 0007 OFE8 00F1 kR saamas sisia s

002D5004 0000 0000 0000 3FF8 8200 003C 0000 641C ------ Fris sreiaads
002D5014 FBBO 8000 80A0 FFAE FFF2 0314 0272 0000 =---- L CE Pe &
002D5024 0000 0000 0000 0050 0000 0050 0000 0000 W ~===---- P vspiaes s

The first word is the offset from the beginning of the menu list to the end of
the menu list. This is simply the number of menus times six, since each entry
in the menu list is 6 bytes long. In this example, the value $2A indicates that
there are seven menus ($2A /6 = 7) currently in the menu bar. The next value,
$112, is the pixel position of the right edge of the rightmost menu item. The
MenuManager uses this value to determine how to track the mouseand where
to add new menus. The following field, $0000 in this case, contains the re-
source ID of the " MBDF " in the upper 13 bits, and the lower 3 bits are used
as the mbVariant (rarely used).

After the header information is an entry for each menu. This is an array of
records of variable length, so displaying it is beyond the scope of MacsBug
templates. A demd, the MLIST demd in this case, displays the entire menu
structure in a meaningful way. The MLIST demd is used in a following
hands-on section.

The first entry in the menu record is a handle to the actual menu data. Fol-
lowing this is the offset to the start of the title, which is used to track the mouse
through the menu bar. In this example, the first handle is $2C6B80 and its offset
is $000A. You can look at location $2C6B80 using the Menulnfo template.

dm @2c6bB0 MenuInfo

146 » Chapter7 Menus

Note »

On my machine MacsBug responds with

Displaying MenuInfo at 002CEFAS8

002CEFA8 menulD 0001
002CEFAA menuWidth FFFF
002CEFAC menuHeight FFFF
002CEFAE menuProc 000020D4
002CEFB2 enableFlags FFFFFFFB
002CEFB6 menuData .

The menuData field contains the menu’s name. For this particular menu
it shows up as a dot because MacsBug's font does not contain the Apple
character. (Typically menus use the Chicago font.) A width and height of
$FFFF indicate that the menu size was unknown when it was created and
so will be recalculated each time. The menuProc is installed by the Menu
Manager and is determined by a resource ID in the resource version of the
menu. If the menu is installed by standard system routines the ID is as-
sumed to be 0. Using the Resource Manager, the Menu Manager loads the
MDEF and places the handle in the menuProc field.

The enableFlags indicate which items are enabled and disabled in the menu.
The lowest order bit is the state for the entire menu, while the other bits are for
individual items in the menu. In this example $fffffffbis. . .11111011, indicat-
ing that the menu itself is enabled but the second item in the menu is not.

As can be inferred from this data structure, only the first 31 items of a
menu can be controlled using this flag word. Since it is possible to have
more than 31 items in a menu, the best way to disable all the items in a
menu is to disable the entire menu; otherwise, the first 31 items will be
disabled and the rest will still be enabled. This is particularly important in
the case of font menus when the application doesn’t have control of the
number of items in the mentt. :

It is impossible to control the state of menu items individually after
the 31st. If you need to control individual menu items, you should
organize your menus so that they appear as one of the first 31 items.

» How the Menu Manager Works 147

If you display this same memory without the template, more information
is shown. The extra information is specific to the menuProc controlling the
menu. For the default menuProc, the information is

Displaying memory from 002CEFAS8

002CEFA8 0001 FFFF FFFF 0000 20D4 FFFF FFFB 0114 :--cccce soncens
002CEFB8 1141 626F 7574 2074 6865 2046 696E 6465 -About the Finde
002CEFCB8 72C9 0000 0000 012D 0000 0000 0CO0 5375 r.terre=rerees Su
002CEFDB 6974 6361 7365 2049 4900 4B0O0 8406 0014 itcase II-K-----

The firstline is the data shown by the template. Next is a list of Pascal strings
for the items in the menu. The 4 bytes hold the item’s icon number, Command
key equivalent, check mark, and style if applicable. For Suitcase I, there is no
icon, the Command key is K, there is no check mark, and the attribute is 84, in-
dicating underlined.

Other Globals

MenuFlash is another global that controls the number of times a selected item
is flashed. Itis usually controlled by the Menu Blinking area of the general con-
trol panel. The choices there are off (0), 1, 2, or 3. However, using MacsBug it
is possible to set the number to something larger, if so desired.

MBarEnable indicates whether the menu bar belongs to an application or a
DA. It is zero whenever an application’s menu bar is shown, but if a Desk Ac-
cessory takes over the menu bar, it places the DA’s menu ID into MBarEnable,
which is then used by the Desk Manager.

TopMenultem and AtMenuBottom are used by the MBDF to deal with
menus that are long enough to require scrolling. TopMenultem generally
contains the pixel position of the top of the menu. If the menu hasn’t been
scrolled, itis the top of the menu’s rectangle. This can be used by an MDEF
to force the top item or items to always be scrolled off the top.

MenuDisable contains the menu ID and the item number for the last item
chosen if the item was disabled. Some applications might want to know if the
user selected a disabled item, as in a help system, for example.

If MenuHook is nonzero, it is called repeatedly while the mouse button
is down. An application could install a specialized routine to change the
shape of the cursor or do other processing to create custom menu selection
by using this hook. If nonzero, MBarHook is also called whenever a menu
title is highlighted, before the menu is drawn. This routine is passed a pointer

148 » Chapter7 Menus

to the menu rectangle on the stack and should return a zero in DO. If it returns
a one, MenuSelect is aborted.

The MList demd

Rather than manually walking the MenulList, you can use the MList demd
from the disk. The demd takes no parameters; enter MacsBug and type

mlist

On my machine, MacsBug responds with

Regular menus (6):
lastMenu=%$0024 lastRight=50103 (259) mbResID=50000
Indx MHndl Left ID Wd Ht MenuProc Flags Title
0001 O00695AFC 000A 0001 FFFF FFFF 000020D4 FFEBFFFB <appleMark>
0002 00695AE8 0022 000C OO8F OOEQO 000022BC FFFFEDDF File
0003 00695AF4 0046 0003 0079 0090 000022BC FFFFFEFB Edit
0004 00695AF0 006C 0004 FFFF FFFF 000022BC FFFFFFFF View
0005 00695AEC 0099 0005 006C 0070 000022BC FFFFFFDF Special
0006 00695AF8 00D4 0006 0050 0080 0069B744 FFFFFFFF Color

H-Menus (0): lastHMenu=$0000 menuTitleSave=$00000000

MList complete.

The meaning of the fields should be obvious from the previous discussion.
Although hierarchical menus are not dicussed in this chapter, note that the
MLIST demd displays information about hierarchical menus if there are any.

» The Menu Definition Function (MDEF) 149

The Menu Definition Function (MDEF)

Itis possibleto create menus that have a differentappearance from the stan-
dard menus. For example, some programs use custom menu definition
functions (MDEFs) to show a palette of patterns or todisplay Command key
information such as Command-Shift-Option, which is more complicated
than the standard command equivalents.

To create anew menu definition, a code block with the following entry point
is needed.

pascal void MyMdef (short message; MenuHandle theMenu; &Rect
menuRect; Point hitPt; &short whichltem);

where the message is one of the following:

#define mDrawMsg 0
#define mChooseMsg 1
#define mSizeMsg 2

#define mPopUpMsg 3

The menuRect is valid for mDrawMsg and mChooseMsg, to indicate the
area of the menu. The rect is specified in global coordinates. When the Menu
Manager calls the MDEE, the current grafPort will be set to the Window Man-
ager port, so the global coordinates and the local coordinates correspond.
When mSizeMsg is sent, the MDEF should set the menuWidth and menu-
Height fields of the menu record.

The mChooseMsg is sent repeatedly as long as the mouse is held down in-
side the menu. The hitPt is the current mouse location and whichItemis the last
item selected (or 0). The MDEF should set whichltem to be the new selected
itemif it changed. If lastIltem was not 0, that item should be unhighlighted, and
if a new item is returned, it should be highlighted. To blink an item, the Menu
Manager will call mChooseMsg twice the number of times specified by the
MenuFlash low memory global.

The mPopUpMsg is used for pop-up menus and is described in Inside
Macintosh, Volume V.

150 » Chapter7 Menus

Watching the Standard ROM MDEF

This exercise examines the standard MDEF's response to a menu click. Enter
MacsBug while in an application that uses the standard MDEF. Before System
7.0, thestandard MDEF, ' MDEF ' 0, is in ROM for Macintosh ci and later col-
or machines. In System 7.0 ' MDEF"' 0 is overridden and a RAM version is
used. This example assumes the 6.1.4 Finder.

The first step is to locate the standard MDEEF. It can be found by looking at
the Menulnfo structure as previously discussed, or it can be found by waiting
until an application asks for the ' MDEF ' resource. This is the technique used
here.

atb GetResource @ (sp+2)='MDEF’

Note »

needtogettheMDEFhandleusmg__eMmuhfostmshne.

Continue (with the Go command) and click on a menu. You should now be
in MacsBug. The code resembles the following,.

Disassembling from A002D5CO

INSERT

+0004 A002D5CO MOVEM.L D5-D7/A2/A3,-(A7) | 48E7 0730
+0008 A002D5C4 MOVE.W #50080,D6 | 3c3c o080
+000C A002DSCB MOVEQ #500,D5 | 7A00

+000E A0O2DSCA MOVE.L Ad, - (A7) | 2F0C

+0010 ADO2DSCC LEA *-51218,A4 ;A002C3B4 | 49FA EDE6
+0014 ADD2DSDO CLR.L = (A7) | 42a7

+0016 AD02DSD2 MOVE.L #54D444546,- (A7) ; "MDEF"' | 2F3C 4D44 4546
+001C A002DSDB CLR.W = (A7) | 4267

#001E ADO2DSDA MOVE.W #SFFFF, RomMapInsert | 31FC FFFF 0B9E
+0024 ADO2DSEQ *_GetResource : RIAD | ASAQ

+0026 ADO2DSE2 MOVEA.L (R7)+,A2 | 245F

+0028 ADO2D5E4 JSR *~504EE ;A00O2DOF6 | 4EBA FB10
+002C ADO2DSEB CLR.W =(an | 4267

» The Menu Definition Function (MDEF) 151

+002E AOO02DSEA MOVE.L $0008 (A6), - (A7) | 2F2E 0008
+0032 AQO2DSEE _CountMItems ; A950 | A950
+0034 A002DSF0 MOVE.W {A7)+,D0 | 301F
+0036 AQ02DS5F2 MOVE.W DO, D7 | 3E00
+0038 AD02D5F4 BRA INSERT+0100 ;A002D6BC | 6000 00Cé6
+003C AO02DSF8 MOVE.L 60008 (A6), - (AT) | 2F2E 0008
+0040 AD02DSFC MOVE.W D7,-(AT) | 3F07
+0042 ACO02DSFE PEA -$0002 (A6) | 486E FFFE

Step over the _GetResource trap using the Trace command, and the handle
to the MDEF is on top of the stack. The code of the MDEEF can be inspected

by typing

il @@sp

MacsBug responds with

Disassembling from @@sp

_Elems68K

+5AA4 40877690 BRA.S _Elems68K+5AB0 ; 4087769C | 600A
+5AA6 40877692 ORI.B 2744,D0 | 0000 4D44
+5AAA 40877696 DC.W $4546 ;22272 | 4546
+5AAC 40877698 ORI1.B #s0C, DO I 0000 000C
+5AB0 4087769C LINK A6, #SFFBC | 4ES56 FFBC
+5AB4 408776A0 MOVEM.L D3-D7/A2-A4,-(A7) | 48E7 1F38
+5AB8 408776A4 MOVEA.L $0014 (A6),A3 | 266E 0014
+5ABC 408776A8 MOVEA.L A3,A0 | 2048
+5ABE 408776AA _HLock ; A029 | A029
+5AC0 408776AC CLR.W ~$001C(A6) | 426E FFE4
+5AC4 408776B0 CLR.W -$001E(A6) | 426E FFE2
+5AC8 40877684 CLR.W -$003C (A6) | 426E FFC4

+5SACC 408776B8 CMPI.W #$3FFF, ROMBS

0C78 3FFF 028E

+5AD2 408776BE SLS -$003C (r6) | S3EE FFC4
+5AD6 408776C2 LEA _Elems68K+5B04,A0 ; 408776F0 | 41FA 002C
+5ADA 408776C6 MOVE.W $0018(a6),D0 | 302E 0018
+SADE 408776CA CMPI.W #$0003,D0 I 0C40 0003
+SAE2 408776CE BHI.S _Elems68K+5AF2 ; 408776DE i 620E
+SAE4 408776D0 CMPI.W #50000,D0 | 0C40 0000
+SAES 408776D4 BCS.S _Elems68K+5AF2 ; 408776DE | 6508
+5AEA 408776D6 ADD.W DO, DO | D040

152 » Chapter7 Menus

Note »

Here the MDEF is in ROM. Depending on the System versionand =~
Macintosh, the MDEF may or may not be in ROM. Regardless of where
the MDEF is, the technique for monitoring the MDEF is analagous to that
presented here. This example uses a ROM MDEF to illustrate another
tecluuque for setting more efficient breakpoints when the break address is
in ROM. Read on!

If you try to set a breakpoint at the start of this routine ($40877690), MacsBug
tells you the routine is in ROM and it will have to single step every instruction,
which is painfully slow. This situation provides an excellent opportunity to
use a powerful technique known only toa very few highly successful pro-
grammers. First clear out the original trap break with ATC and enter the
following command

atb HLock pc=408776AA

This command causes MacsBug to break only on this particular HLock call
but doesn’t force MacsBug to single step through every instruction. If you are
using a RAM version of the MDEF you can simply set a breakpoint at the be-
ginning of the MDEF without paying the speed penalty fora ROM breakpoint.

Note »

Setting a breakpoint in this way is similar to how some Macintosh System
patches work. Rather than replacing entire ROM routines, a patch
sometimes begins in the middle of a routine. This is accomphshed by
patching a trap that is called by the problem code and then chec
wherethetmpwascalledﬁomlf&eca]lmgaddreslsnotﬁomthe
offending code, execution continues as normal. However, if the calling
address matches the place that needs to be fixed, the correct code is
executed and control returns to an address past the offending code.

Regardless of how youset the breakpoint in the MDEEF, at this point you
should be in MacsBug inside the MDEF. Most MDEFs get the message
parameter with a

MOVE.W $0018 (A6),D0

» The Menu Bar Definition function (MBDF) 153

instruction. This assumes the MDEF uses a LINK A6 instruction to set up a
stack frame (see Chapter 4 for an explanation of how LINK works). If this is
the first call to the MDEF after a mouse-down event in the menu bar, the mes-
sage parameter is 2, telling the MDEF to calculate the size of the menu. The
nexttime the MDEFis called, the messageis 0, indicating tothe MDEF todraw
the menu. The third call is with a message of 1, telling the MDEF to handle
mouse movement.

The Menu Bar Definition Function (MBDF)

All Menu Manager drawing code is contained in a MenuBarDeFinition, or
'MBDEF" resource. The handle to the standard MBDF is held in the low
memory global MBDFHndI. The defintion for the function is

long MyMenuBar (short selector; short message; short parameterl; long
parameter2);

The messages are

0 Draw Draws the menu bar or clears the menu bar

1 Hit Tests to see if the mouse is in the menu bar
or any currently displayed menu

2 Calc Calculates the left edges of each menu title
in the MenulList data structure

3 Init Initializes any MBDF data structures

4 Dispose Disposes of any MBDF data structures

5 Hilite Highlights the specified menu title or
inverts the whole menu bar

6 Height Returns the menu bar height, can be found in
MBarHeight

7 Save Saves the bits behind a menu and draws the

menu structure

8 Restore Restores the bits behind a menu
9 Rect Calculates the rectangle of a menu
10 SaveAlt Saves more information about a menu after it

has been drawn
11 ResetAlt Resets information about a menu

12 MenuRgn Returns a region for the menu bar

154 » Chapter7 Menus

Watching the Messages to the MBDF

The standard MBDF handles much of the Menu Management. To see what
happens, MacsBug can show each call to the MBDF and the message per-
formed. Start by getting into MacsBug and setting a breakpoint at the start of
the MBDF pointed to by the MBDFHndL.

br @EMBDFHndl

Since the Menu Manager calls this all the time to track the mouse, it can be
a bit tedious watching every call. First of all, trace through the code a bit until
the selector is picked up to dispatch to the correct routine. For example,

A001C5D4 ® BRA.S *+5000C ; BAOO1CSEQ | 600A
AQ01CSEOD LINK A6, #SFFBE | 4E56 FFBE
AQOQ1CSE4 MOVEM.L D3-D5/A2-R4, - (A7) | 4BE7 1C38
AQQ01CSES MOVEA.L (A5) , A0 | 2055
AQ01CSEA MOVE.L (A0) , - (AT) | 2F10
AQO01CSEC CLR.W -S003A (A6) | 426E FFC6
AQ01CSFO CMPI.W #$3FFF, ROMB5 | 0C78 3FFF 028E
AQ01C5F6 SLS —-5003A (A6) | S53EE FFC6
ADQ1C5FA MOVEA.L ROMBase, AO | 2078 02AE
AO0Q01CSFE CMPI.B #503, 50008 (A0) | 0c28 0003 0008
A001C604 BNE.S *+S000E ; AD01C612 | 660C
A001C612 TST.B -5003A (A6) | 4A2E FFC6
A001C616 BEQ.S *+50008 ; ADO1C61E | 6706
A001C618 MOVEA.L WMgrCPort,A2 | 2478 0OD2C
AQC1cCe1C BRA.S *+50006 ; A001C622 | 6004
A001C622 MOVE.L A2, - (A7) | 2FO0A
A001C624 _SetPort ; A873 | AB73
A001C626 CLR.L — (A7) | 42A7
A001Ce28 _TextFont ; AB87 | AB887
AQ01C62A _TextFace ; ABSS | AB8S8
AQOlCe2C MOVEA.L MenuList, AD | 2078 OAlC

A001C630 TST.L (A0) | 4A90

» The Menu Bar Definition function (MBDF)

155

A001C632 BNE.S *+$0006
A001C638 _HLock

AQ01C63Aa MOVEA.L (A0),A3
A001C63C LEA *+$0032,A0
A001C640 MOVE.W $000E (A6), DO
A001C644 CMPI.W #$000D, DO

; A001C638
; A029

; AOOLC66E

|
|
|

6604
A029
2650
41FA 0030
302E 000E
0C40 000D

MOVE.W $000E(A6),D0 is the instruction that gets the message passed to
the MBDF. The MBDF is constantly called with the Hit message to determine
if the mouse is in the menu bar. You can skip these calls and display the other

messages passed to the MBDF with the following MacsBug instructions.

brc

br 1c644 do<>1 ‘;d0;:g

The first instruction clears the previous breakpoint. The second instruction
breaks in the MBDF on all messages other than the Hit message, and then dis-
plays the message (in register D0) and continues with the Go instruction.
Whenever a menu is clicked, MacsBug will record all messages to the MBDFE.

The output resembles the following.

Breakpoint at A001C644

DO = $00000005 #5 #5 'eeee’
Breakpoint at A001Cé644

DO = $00000009 #9 #9 'weeee'
Breakpoint at A001C644

DO = $00000009 #9 #9 'eeee!'
Breakpoint at A001Cé644

DO = $00000007 #7 #7 'eeee'
Breakpoint at A001C644

DO = $0000000A #10 #10 'eeee!
Breakpoint at A001C644

DO = $00000009 #9 #9 'eeee'
Breakpoint at A001C644

DO = $0000000B #11 #11 'eeee’

Breakpoint at A001C644

156 » Chapter7 Menus

DO = $0000000A #10 #10 'eses'

Breakpoint at A001C644

DO = $00000009 #9 #9 'eees!

Breakpoint at AQ001C644

DO = $0000000B #11 #11 'eese!’
Breakpoint at AQ01C644

DO = $0000000A #10 #10 'eese!

Breakpoint at AQ001C644

DO = $00000008 #8 #8 'eess'

Breakpcint at A(001C644

DO = $00000002 #2 #2 'esse!

Breakpoint at A001C644

DO = $00000005 #5 #5 'eess'

From the message number you can determine the meaning of each message.

» Summary
This chapter discussed the Menu Manager, MDEFs, and MBDFs. Specifically,

» The operation of the Menu Manager and MenuList data structure

e The low memory globals MenuList, MenuFlash, MBarEnable, Top-
Menultem, AtMenuBottom, MenuDisable, MenuHook, MBarHook,
and MBDFHndl

e The MLIST demd
e The operation of an MDEF and how to watch messages passed to the MDEF
e The operation of an MBDF

> Summary 157

The previous chapter introduced resources and discussed how an appli-
cation’s code is kept in ' CODE"' resources in a file’s resource fork. This
chapter discussed menus and examined how they are defined by code inan
'MDEF"' resource.

The menu bar is also controlled by code that is kept in a resource. In this case
the resource type is 'MBDF'. Later chapters examine controls (kept in
' CDEF's), windows (defined by ' WDEF ' s), and control devices, as in the
control panel (defined by ' cdev ' s). These items are controlled with messages
just as menus are, and techniques for debugging custom windows, controls,
and control devices are similar to those discussed here.

8

>

Windows

In 1984, one of the unique features of the Macintosh interface was its use of
windows. These days most operating systems support windows in one form
or another.

Programming with windows is slightly more complicated than command
line interface programming. Fortunately, once you learn the programming
strategies for dealing with windows and learn how to debug window-based
applications with MacsBug, the window environment quickly becomes your
friend. Besides, a little extra work on the part of the programmer is worth mak-
ing the application easier for thousands of users.

Before you can use MacsBug to look at the window data structures, you must
have a basic understanding of how the Macintosh windowing system works.

How the Window Manager Works

The Macintosh Window Manager performs the majority of window main-
tenance functions for you. It does this by keeping a list of the windows an
application has open as well as areas that need updating (as when the front
window is moved to uncover part of another window). The Window Man-
ager provides a call toadd a window to the window list, NewWindow, and
to remove a window from the list, DisposeWindow.

There are routines to handle resizing a window (GrowWindow, Size-
Window), movingawindow (DragWindow, MoveWindow),and selecting
a window (SelectWindow).

The role of these functions in an application is generally straightforward.
For example, when the user clicks the mouse, your application should call

169

160

> Chapter8 Windows

FindWindow with the location of the mouse click. FindWindow returns the
window the mouse was clicked in. If it was not the frontmost window (the Tool-
box routine FrontWindow tells us the front window), you call SelectWindow.
If the user clicks in the drag region, the application calls DragWindow to move
the outline around the screen. MoveWindow is called automatically to put the
window in its new position if the user leaves the outline in a valid position.

Information about a window is kept in a window record. A window record
contains a GrafPort or a CGrafPort (see Chapter 11) that tells QuickDraw how
todraw in the window, as well as other information, such as the window’s title.
The window record is described in detail in Inside Macintosh, Volume I, and
MacsBug has a window record template for displaying window information.
This template is used in the following sections.

Update Region Maintenance

One aspect of programming in a window environment that is different from
conventional programming is providing a mechanism for the application
to update window contents that have been invalidated. There are several
ways a window’s contents can be made invalid. The first is when the user
places another window in front of the window in question and then moves
itaway. The application must then reconstruct the contents of the area that
were converted.

A second way for a window’s contents to become invalid is when the sys-
tem puts a dialog box in front of the window, as when a server unexpectedly
closes down.

Both of these methods of invalidation are caused indirectly, either by the
user or by the system. An application can directly invalidate part of a win-
dow’s contents with the calls InvalRect and InvalRgn.

» How the Window Manager Works 161

By the Way »

faster to the user and greatly
~ directly by the Menu Manag
- may have to do extensive cal

~ Pulling down menus usually does not invalidate a window’s region.
‘Rather, the Menu Manager saves the contents behind the menu and
restores them when the menu is released. This makes menus feel much
seeds updates, since they are performed
er than by the application, which
,:ns to redisplay the invalidated
contents of its window. -
The Menu Manager causes . :ate event if it couldn’t get enough
memory to save the bits behind a menu. This is good programming
since performance, not functionality, is degraded when resources, in
this case, memory, are scarce.

The Window Manager maintains the invalid areas of each window in the
window’s update region. The update region is the portion of a window that
the application must redraw. For example, when calling SelectWindow to
bring a window to the front, the entire contents of the window may have to be
redrawn. This is accomplished as follows.

1. Anupdate eventis posted and the application receives the update when
it calls WaitNextEvent. The message part of the event record is a pointer
to the window that must be updated. The window could be a back-
ground window or the frontmost window.

2. The application then calls the Window Manager routine BeginUpdate.
BeginUpdate replaces the window’s visRgn with the intersection of the
visRgn and the updateRgn. Since QuickDraw draws only to the intersec-
tion of the visRgn and clipRgn, drawing will affect only the parts of the
window that are invalid.

3. Theapplication then redraws the contents of the window. The application
does not need to worry about which portions actually need to beredrawn,
since QuickDraw will clip all drawing to the area that needs to be updated.

4. Finally, the application should call EndUpdate. EndUpdate restores the
visRgn to its previous state.

162 » Chapter8 Windows

Examining the Window Update Process

To further examine the window update process, let’s find out when the update-
Rgn in the window record is cleared. Almost all Macintosh applications use
the update mechanism provided by the Toolbox. This example uses Mac-
Write 11 1.1v1, but almost any application that supports multiple windows
will suffice.

Open two windows so that the front window overlaps the back one. Go to
MacsBug, set a breakpoint at SelectWindow, and then continue.

atb selectwindow; g

If you now click in the back window, you will break into MacsBug at a call
to SelectWindow. Since SelectWindow takes only one parameter, a Win-
dowPtr, it is on the top of the stack. You can examine the window you are
selecting with the windowRecord template by typing

dm @sp windowRecord
On my machine, MacsBug responds with

Displaying WindowRecord at 0065DABE

0065DACE portRect 0000 0000 02D5 01CB
0065DAD6 visRgn 0062F7F0 -> 00689268
0065DADA clipRgn 0062F80C -> 0066589C
0065DB2A windowKind 0101

0065DB2C visible TRUE

0065DB2D hilited FALSE

0065DB2E goAwayFlag TRUE

0065DB2F spareFlag TRUE

0065DB30 strucRgn 0062FB874 -> 006658B0
0065DB34 contRgn 0062F7EC -> 006658C4
0065DB38 updateRgn 0062F7E8 -> 00666D88
0065DB3C windowDefProc 08002004 -> 20832A5C
0065DB40 dataHandle 0062F7DC -> 00665818
0065DB44 titleHandle Documentl

0065DB48 titleWidth 0049

» How the Window Manager Works 163

0065DB4A controlList 0062F870 -> 0067EFFO
0065DB4E nextWindow 00660602

0065DB52 windowPic NIL

0065DB56 refCon 006F037E

The titleHandle field corresponds to the window we selected, in this case,
Document1. Look at the updateRgn by typing

dm 666D88

MacsBug responds with

Displaying memory from 666d88
00666D88 000A 0000 0000 0000 0000 004B 0000 0020 ==----=+rov- K-

To understand what this means, you need to learn a little about the region
structure. The region structure is defined as

struct rgn

{
short rgnSize;
Rect rgnBBox;

short rgnDatall; /*only if nonrectangular: rgnSize > $A*/

In our example, the region structure is 10 bytes long ($A) and the rectangle
is from (0,0) to (0,0). This is an empty rectangle, so the updateRgn is empty at
this point. This seems reasonable, since no processing has occurred to affect
the window. If you trace over the SelectWindow trap by typing

T

or by pressing Command-T and look at the updateRgn again, it has changed.
My Mac shows

Displaying memory from 666d88
00666D88 000A 004A 0207 031F 025C 004B 0000 0020 ---J----- \-K---

164 » Chapter8 Windows

By the Way »

By the Way »

SelectWindow can change the size of the updateRgn, so it may move
- memory. It is important to make sure the updateRgn is in the same
place. You can do this by looking at the window record again.

Now set a breakpoint at BeginUpdate.

atb beginupdate; g

Immediately, the Mac enters MacsBug—this time at BeginUpdate. Begin-
Update takes one parameter, just like SelectWindow. Since you displayed the
window record at the top of the stack three MacsBug commands ago, you can
repeat the command by typing Command-V three times. Checking the update-
Rgn reveals that it is the same as it was after tracing over SelectWindow.

Some applications may invalidate parts of the window themselves
after the call to SelectWindow but before BeginUpdate. If this is the
 case, the updateRgn will now be dlfferent from what it was after ;:.
Selecthdom i i : :

The visRgn is part of the port. Since the beginning of a window record is a
port, you can examine the window’s GrafPort by typing

dm @sp GrafPort
MacsBug shows the window’s port.

Displaying GrafPort at 0065DABE
0065DABE device 0000

0065DACO portBits

0065DACO0 baseAddr 0062F844

0065DAC4 rowBytes cooo

0065DAC6 Rect (t,1,b,Ir) #98 #-1952 #0 #-32768
0065DACE portRect 0000 0000 02D5 01CB
0065SDAD6 visRgn 0062F7F0 —> 00689A68

0065DADA clipRgn 0062F80C —-> 0066589C

» How the Window Manager Works 165

0065DADE bkPat 00 62 F8 3C 00 00 00 00
0065DAE6 fillPat 00 00 FF FF FF FF FF FF
0065DAEE pnLoc 02C6 01CB

0065DAF2 pnSize 0001 0001

0065DAF6 pnMode 0008

0065DAF8 pnPat 00 62 F8 24 00 62 F7 F4
0065DB00 pnVis 0000

0065DB02 txFont 0014

0065DB04 txFace 0000

0065DB06 txMode 0001

0065DB08 txSize 000c

0065DBOA spExtra 00000000

006SDBOE fgColor 00000001

0065DB12 bkColor 00000000

0065DB16 colrBit 0000

0065DB18 patStretch 0000

0065DB1A picSave NIL

0065DB1E rgnSave NIL

0065DB22 polySave NIL

0065DB26 grafProcs 006EBE26

Since the high bit of rowBytes is set, this is actually a CGrafPort (see Chapter
11). Fortunately, the offset to most of the fields is the same for GrafPorts and
CGrafPorts. In this case the visRgn is at $689A68.

dm 689A68

On my machine, MacsBug responds with

Displaying memory from 689a68
00689A68 000A 0000 0000 02D5 O1CB 0000 0000 0024 - ++c-vcvevevso- $
In this example, both the updateRgn and the visRgn are rectangular because

theregion data structure in both cases is 10 bytes long. When you step over Be-
ginUpdate with the trace command and then examine the visRgn you see

166 » Chapter8 Windows

Displaying memory from 689a68

00689A68 000A 0000 0000 02D5 0055 0000 0000 0024 «-:rvvr-- Wes siats $

This is the intersection of the updateRgn and the visRgn, as advertised. If
the regions are not rectangular (that is, the size of either region is not 10 bytes),
you cannot simply use the bounding rectangles to determine the intersection.
Checking the updateRgn you see it is set back to an empty region.

Displaying memory from 666d88
00666D88 000A 0000 0000 0000 0000 004B 0000 0020 «+:=x-+v+r- K -
So the BeginUpdate routine sets the updateRgn in an empty region. The moti-

vated reader could step through the window redrawing process and then watch
the visRgn change back to its previous value during the call to EndUpdate.

By the Way »

the 'eaus to Selecthdow and BegmU"; : te_, the apphcatlon

» The Windowlist

The Window Manager keeps a list of all open windows for the currentapplica-
tion. This list is linked via the nextWindow field in the window record. The
start of the list is pointed to by the low memory global WindowList.

The WindowList low memory global is used in the following section.

E él Looking at the WindowList

You can look at all the window records for the current application by entering
MacsBug and typing

dm @windowlist windowrecord

» The Window Definition Function (WDEF) 167

Note »

Pressing the Return key displays the next window until all the window re-
cords have been displayed. As you may recall from Chapter 4, MultiFinder
saves a separate copy of each application’s low memory globals. Thus, the
window list contains only the window records for the currently activeapplica-
tion, not for all the windows that may be open on the screen.

wmdows for the foremost apphcat:on.

The Window Definition Function (WDEF)

The previous section explained how the Window Manager maintains an update-
Rgnand presented an example of how an application uses the Window Man-
ager. This section discusses how the windows themselves aredrawnand how
you can create your own custom windows. Currently, most applications use
the standard built-in windows, and it’s likely that the standard windows will
suffice for your application. But the techniques discussed in this section are
important to understand.

The method by which windows are implemented is similar to that used for
menus and controls. A window is defined by a set of routines referred to as the
Window DEfinition Function, or WDEE In C, this function is declared as

pascal long MyWDEF (short: varCode; WindowPtr: theWindow; short:
message; long: param);

The Window Manager calls this function with message parameters indicat-
ing window-specific actions to the WDEF. There are seven different messages
the WDEF must handle: Draw, Hit, CalcRgns, New, Dispose, Grow, Draw-
Glcon. These messages have the values from 0 to 6, respectively. The details of
how the WDEF should handle these messages is discussed in Inside Macintosh,
Volume L.

The goal here is to watch the messages as they are passed to the WDEF by
the Window Manager and to understand what the WDEF must do to respond
to the different messages. Finally, you will look at the source code for a custom
WDEF and modify its operation using ResEdit.

168 » Chapter8 Windows

By the Way »

The Window Manager contains the code that is common to the operation of
windows in general; the ' WDEF' resource contains the code for a specific
type of window. For example, the Window Manager handles update region
maintenance. Maintaining an update region is something all windows must
do, so this function lies in the Window Manager. The WDEF is called when the
window must be drawn. The way a window is drawn is specific to a certain
type of window. Although most Macintosh applications use the standard win-
dows (the WDEF is in the Macintosh ROM), it is actually very easy to design
a custom window by writing a WDEE

When the Window Manager needs to call the WDEEF to perform an action
in response to one of the seven messages mentioned previously, it gets the ad-
dress of the WDEF from the windowDefProc field of the window record. This
field is set up automatically when the window is created by NewWindow or
GetNewWindow and should not be changed by the application. But this field
provides an easy way to locate the WDEF and watch messages get passed to it.

Unfortunately, the standard WDEF is in ROM. MacsBug is very slow step-
ping through ROM routines, so the accompanying disk provides a custom
sample WDEF.

When MacsBug sets breakpomts in RAM it sxmply zeplaces the

to MacsBug and MacsBug figur&s out that it ga;tned contml because
the breakpomt was lut

in ROM MacsBug must step through each mstmchon and afterward 5
compare the new program counter with the break address. Since x

MacsBug must do so much extra processing for each instruction, the
Macintosh runs very slowly when a breakpoint is set in ROM. ;

» The Window Definition Function (WDEF)

169

Locating the WDEF

Launch the application titled “Chapter 8 App” and use the Open command to
open a window.

Once you are running the application, the next step is to locate the WDEE.
There are two easy ways to do so. The first, discussed previously, involves
looking at the address in the windowDefProc field of the window record. En-
ter MacsBug and type

dm @windowlist window

On my Mac, MacsBug responds with

Displaying WindowRecord at 005A4F20

005A4F30
005R4F38
005A4F3C
D0SA4F8C
OD05A4F8E
005A4F8F
005A4F90
005A4F91
005A4F92
005A4F96
005A4F9A
005A4F9E
005A4FA2
005A4FA6
005A4FAA
005A4FAC
005A4FBO
005A4FB4
005A4FB8

portRect
visRgn
clipRgn
windowKind
visible
hilited
goAwayFlag
spareFlag
strucRgn
contRgn
updateRgn
windowDefProc
dataHandle
titleHandle
titleWidth
controlList
nextWindow
windowPic

refCon

0000 0000 0144 013C
005A34E0 -> 00SABECC
005A34DC -> 005ABEA4C
0008

TRUE

TRUE

TRUE

FALSE

005A34D8 —-> 0C5ABEE0
005A34D4 —-> 005A518C
005A34D0 —> 005A8D90
035A34CC -> 605A83DC
NIL

Window

0034

NIL

NIL

NIL

00000000

170 > Chapter8 Windows

By the Way »

The previous MacsBug command displays the first window in the window
list using the window template. The window template displays the window-
DefProc address, which is the entry point of the WDEE. In this example, the
entry to the defproc is at $605A83DC.

Ifthe WDEFisin RAM, asitis in the sample application, another way to find
the WDEF is by looking at all the items of type WDEF in the application heap
using the Heap Display (HD) command (first introduced in Chapter 4). The
Resource Manager keeps a map of all the resources in each heap (see Chapter
6). The MacsBug HD command allows you to display specific items in the
heap. This only works if your WDEF is in the application heap. The standard
WDEF is in ROM and obviously does not show up in the heap display.

Rather than listing all items in the heap, you are only interested in items of
type WDEE There is an easy way to find these items. Enter MacsBug and type

hd wdef

Although case is important for resource types, MacsBug is not case sensitive,
even for resource types, and will list all resources of type ' WDEF ', regardless
of capitalization. On my machine, MacsBug responds with
Displaying the Application heap

Start Length Tag Mstr Ptr Lock Prg Type 1ID File Name
005A83DC 00000752+02 R 005A34CC P WDEF 03E8 0526 MyWDEF

There are #9736 free or purgeable bytes in this heap
The leftmost column, labeled start, is the address of the WDEFE.

» The Window Definition Function (WDEF) 171

The WDEF used in this sample application behaves very strangely. Any time
the window is resized, a happy face appears in the window. While some may
find this behavior desirable, your goal here is to modify the WDEF to remove
the happy face. And you're going to do it using only MacsBug and ResEdit!

Modifying a WDEF with ResEdit

From the Window Manager chapter of Inside Macintosh, Volume I we learn that
the window draws its resizing outline in response to the wGrow message,
message number five. Since the happy face only appears when the window is
being resized, it's reasonable to assume it’s being drawn by the routine that
handles the wGrow message. Your goal in this exercise is to find the routine
that handles the grow message and then modify it, on disk, so that the happy
face no longer appears.

You know how to find the WDEF from the previous exercise. When you
reach the WDEEF, the message parameter is at an offset of eight from the top of
the stack. (The return address is at an offset of zero, and the 4-byte parameter
is at an offset of four. This leaves the word-sized message parameter at an offset
of eight.) To break when the WDEF receives the wGrow message, you want to
set a breakpoint at the WDEF when it receives a message parameter equal to
five. Using the address of the WDEF found previously, enter MacsBug and type

br 5a83dc @(sp+8).w = 5

This conditional breakpoint tells MacsBug to break only when the word size
value at an offset of eight from the top of the stack is equal to five, that is the
WDEF receives the wGrow message.

If you now attempt toresize the window, you break into MacsBug at the con-
ditional breakpoint. Most WDEF’s have a similar organization: They examine
the message parameter and then dispatch based on the message. This particu-
lar WDEF was generated with the LightSpeed C 3.0 compiler, which puts extra
glue code at the start.

172 » Chapter8 Windows

By the Way »

Glue code is a (generally small) piece of code that performs some
miscellaneous interface function. For example, when calling operating
system routines (which expect arguments passed in registers) from a
high-level language, the glue code pulls the : parameters from the stack
and, puts them in reg1sters the way the routi

convenﬁoh is that reg1$ter AO contams the ad
the resource. This value is later used to set up a gIobaI space for the
code resource. For details about how this code works see the

Li ghtSpeed C User's Manual.

You can trace over this glue and get to the main part of the WDEF by tracing
(Command-T) five times. The code you trace over is

EQ5A83DC -+ BRA.S *+50010 ; EO5AB3EC | 600E
EO05AB3EC LEA *-~50010,A0 ; EO5AB3DC | 41FA FFEE
EQ5A83F0 NOP | 4E71
EO5AB3F2 NOP | 4E71
EQ5A83F4 BRA MAIN+0000 ; EO5AB5BC | 6000 01C6

You are now at the main part of the WDEFE. Most code does not have symbols
in it, but we left them in here to make learning a little easier. To list the main

part of the WDEF type

il

MacsBug responds with

Disassembling from EOSA85BC
MAIN
+0000 EO5A85BC *LINK A6, #SFFFC | 4E56 FFFC
+0004 EO5A85C0O CLR.L -50004 (A6) | 42AE FFFC
+0008 E05A85C4 JSR *-$0012 ; E05A85B2 | 4EBA FFEC
+000C E05A85C8 MOVE.L A0, (Al) | 2288
+000E E05A85CA MOVE.L A4,- (A7) | 2F0C

+0010 EO5A85CC JSR *-$001A ; EO5AB5B2 | 4EBA FFE4

» The Window Definition Function (WDEF) 173

+0014 EO5A85D0 MOVEA.L (Al),A4 | 2851

+0016 E05A85D2 MOVE.W $0012(A6),$0744(A4) | 39.6E 0012 0744
+001C E05A85D8 MOVE.W #S$FFFE,DO | 303C FFFE
+0020 E0SA85DC AND.W $0012(A6),DO | CO6E 0012
+0024 EOSA85E0 ADD.W DO,DO | D040

+0026 EO05A85E2 ADDI.W #$000A,DO | 0640 000A
+002A EOSA85E6 MOVE.W DO, $0746(A4) | 3940 0746
+002E EO5A85EA MOVE.L $000E (A6),50740 (A4) | 296E OOOE 0740
+0034 EO05A85F0 MOVE.W $000C(A6),DO | 302E 000C
+0038 EOSA85F4 JSR *-$01F4 ; EOSA8400 | 4EBA FEOA
+003C EOS5A85F8 ORI.B #$06,D0 | 0000 0006
+0040 EOSA85FC ORI.W #$000E, $0044 (A6) | O0GE O0OE 0044
+0046 E05A8602 ORI.W #50066, (A2) | 0052 0066
+004A EO5A8606 ORI.W #$0052, - (A4) | 0064 0052
+004E EO5A860A ORI.W #$206E, (A4)+ ; ' n' | 005C 206E

You are looking for the wGrow procedure and this code does not seem to pro-
vide much guidance. The end of the code (Main +0038) does not make sense:
The code after the JSR appears to be garbage. It turns out that this is the code
LightSpeed C generates for a switch statement.

174 » Chapter8 Windows

By the Way »

» The Window Definition Function (WDEF) 175

The routine called by the JSR handles the switch statement and uses the
return address as a pointer to a table of routines to jump to for the switch.
The value in D0 is the value on which the switch is performed. The Trace com-
mand steps over JSR calls, so it will not work because the JSR used in the switch
statement is not a typical JSR. You want to trace up until you get to the JSRand
then step into the routine using the Step (S or Command-S) command.

To get to the JSR use the Go To (GT) command

gt e05a85f4

or trace until you get there. If you check the contents of register D0, it contains
the value 5, which is the message used in the switch statement. Now step into
the JSR using the S command and then trace several times. After about ten
traces you should get to a JMP instruction. Your MacsBug display will
resemble this one.

Step (into)

MAIN

+0038 EO5A85F4 JSR *-$01F4 ; EO05A8400 | 4EBA FEOA
Step (over)

No procedure name

E05A8400 JMP *+$0040 ; EO05A8440 | 4EFA 003E
E05A8440 MOVEA.L (A7)+,A0 | 20SF
E0O5A8442 MOVE.W (AO)+,D1 | 3218
E05A8444 MOVE.W (AQ)+,D2 | 3418
E05A8446 CMP.W D2,D0 | B0O42
E05A8448 BGT.S *+$000C ; EO05A8454 | 6EOA
E05A844A SUB.W D1,D0 | 9041
E05A844C BLT.S *+$0008 ; EO5A8454 | 6D06
EOSA844E ADD.W DO,DO | D040
EQSA8450 LEA $02(A0,D0.W),A0 | 41F0 0002
E05A8454 MOVE.W (AO0),DO | 3010
E05A8456 BEQ.S *+$0000 ; EOSA8456 | 67FE

EOS5SA8458 JMP $00 (A0, DO.W) { 4EFO0 0000

176 » Chapter8 Windows

This JMP instruction dispatches to the relevant part of the switch statement.
Hopefully it takes you to the routine that handles the grow message. If you
trace twice you will find yourself ata subroutine call to DoGrow. My MacsBug
display shows

MAIN

+009E E05AB65A MOVE.L $0008 (A6),- (A7) | 2F2E 0008
Step (into)

MAIN

+00A2 EO5A865E JSR DOGROW+0000 ; EO5AB890E | 4EBA 02AE

If you step into this JSR using the Step (S) command and then disassemble the
DoGrow procedure with the IL command, MacsBug will respond with

Disassembling from E0S5A890E

DOGROW

+0000 EO5A890E *LINK A6, #SFFEE | 4E56 FFEE
+0004 EO5A8912 MOVEA.L $0008(A6),A0 | 206E 0008
+0008 EO5A8916 LEA -$000A (A6),Al | 43EE FFF6
+000C EO5A891A MOVE.L (A0)+, (Al)+ | 22D8
+000E EO5A891C MOVE.L (AQ)+, (A1) + | 22D8
+0010 EOSA891E MOVE.W -$0008(a6),D0 | 302E FFF8
+0014 E0SA8922 SUBQ.W #$1,D0 | 5340
+0016 EOSA8924 MOVE.W DO,-$0002(A6) | 3D40 FFFE
+001A EO5A8928 MOVE.W $0746(A4),DO0 | 302C 0746
+001E EO05A892C ADDQ.W #$1,D0 | 5240
+0020 EOS5A892E SUB.W D0, -$0008 (A6) | 916E FFF8
+0024 EO5A8932 PEA ~$S000A (A6) | 486E FFF6
+0028 E05A8936 _FrameRect ; ABAl | AS8Al
+002A E05A8938 MOVE.W -$0002(A6),~ (A7) | 3F2E FFFE
+002E EOSA893C MOVE.W -$000A(A6),-(A7) { 3F2E FFF6
+0032 EO05A8940 _MoveTo ; A893 | AB93
+0034 EO5A8942 MOVE.W -$0002(A6),-(A7) | 3F2E FFFE
+0038 E05A8946 MOVE.W -$0006(A6),-(A7) | 3F2E FFFA
+003C E05A894A _LineTo : A891 | A891

+003E E0O5A894C MOVE.W -$0004(A6),DO0 |

» The Window Definition Function (WDEF) 177

This routineis of medium length, and the disassembly is not particularly inter-
esting. The best technique for figuring out a piece of code like this is to look at
what traps it is calling. This routine is making several QuickDraw calls. The
first several— _FrameRect, _MoveTo, _LineTo—seem OK, but later there are
two calls to_FrameOval and one call to _FrameArc. It looks as if this could be
drawing the happy face: two eyes and a mouth perhaps.

Tovalidate this theory, set a breakpoint at the first call to_FrameOval (either
with BR or ATB), trace over the call, and see if one of the eyes appears.

Eureka! This is the offending code. To fix it, abort this subroutine before the
happy face is drawn. There are two ways to do this: branch to the end of the rou-
tine or terminate the routine early. In this exercise, terminate the routine early.

Any time you decide to terminate a routine early, you must restore any
saved registers. Look at the bottom of the routine to determine which registers
are restored. Use the IR command to list to the end of the routine. MacsBug
shows the end of the routine as

+017C EOSABA8A SUB.W -$0012(A6),D2 | 946E FFEE
+0180 E0OSABA8E EXT.L D2 | 48C2
+0182 EO5A8A90 DIVS.W #$0002,D2 | 85FC 0002
+0186 E05A8A94 SUB.W D2,D1 1 9242
+0188 EOS5A8A96 PEA -$0012 (A6) | 486E FFEE
+018C EOSA8A9A MOVE.W DO,-(A7) | 3F00
+018E EO5A8A9C MOVE.W D1,-(A7) | 3F01
+0190 EOSABA9E _OffsetRect ; ABAS | A8AS
+0192 EOSA8AAQ PEA -$0012 (A6) | 486E FFEE
+0196 EOSA8AA4 MOVE.W #S0087,-(A7) | 3F3C 0087
+019A EOSA8AA8 MOVE.W #$005A,-(A7) | 3F3C 005A
+019E EOSA8AAC _FrameArc ; ABBE | ASBE
+01A0 EOSABAAE UNLK A6 | 4ESE
+01A2 EOS5A8ABO RTS | 4E75

The only cleanup this routine does isan UNLK and an RTS. If you examine the
entire routine carefully, you will find that you can exit immediately after the
_LineTo trap called at DoGrow+007C. Make a note of the code before the area
you want to change.

178 » Chapter8 Windows

+0072 E05A8980 _MoveTo ; A893 | A893
+0074 EO5A8982 MOVE.W -$0004(A6),-(A7) | 3F2E FFFC
+0078 E05A8986 MOVE.W -$0002(A6),-(A7) | 3F2E FFFE
+007C EOS5A898A _LineTo ; A891 | A891
+007E EOSA898C MOVE.W -$0004(A6),D0 | 302E FFFC

Later you will use the hexadecimal values $3F2E FFFC 3F2E FFFE A891 302E
FFFC to find this section of code on the disk.

At this point you are going to change the routine directly in memory. This
technique is often useful because it can save a great deal of compile time when
making only minor changes. To abort the routine, you need to add the UNLK
and RTS at $E05A898C. You must replace the $302E FFFC (MOVEW
-$0004(A6),D0) at SE05A898C with $4ESE 4E75. The MacsBug command

sw e05a898c 4ebe 4e75

accomplishes the replacement. The $4E5E is the UNLK instruction, and the
$4E75 is the RTS. If you now list the changed section of code using the dot
address

ip.
MacsBug responds with something like

Disassembling from 5a898c

DOGROW

+0060 O0O05A896E DC.W SFFFA i 2?2722 | FFFA
+0062 005A8970 ADDI.W #S$FFFO,DO | 0640 FFFO
+0066 005A8974 MOVE.W DO,-$0002 (A6) | 3D40 FFFE
+006A 005A8978 MOVE.W -$0008 (A6),-(A7) | 3F2E FFF8
+006E 005A897C MOVE.W -$0002(A6),- (A7) | 3F2E FFFE
+0072 005A8980 _MoveTo ; AB93 | A893
+0074 005A8982 MOVE.W -50004(A6),- (A7) | 3F2E FFFC
+0078 005A8986 MOVE.W -$0002(A6),- (A7) | 3F2E FFFE
+007C 005A898A _LineTo ; AB91 | A891
+007E 005A898C UNLK A6 | 4ES5E
+0080 OOS5A898E RTS | 4E75
+0082 005A8990 SUB.W -50008(A6),D0 | 906E FFF8

+0086 005A8994 EXT.L DO | 48CO

» The Window Definition Function (WDEF) 179

By the Way »

Note

>

+0088 005A8996 DIVS.W #$0008,D0 | 81FC 0008
+008C 005AB899%A MOVE.W -$0006(a6),D1 | 322E FFFA
+0090 O0S5SA89%E SUB.W -$000A(A6),D1 | 926E FFF6

If you now clear all breakpoints and A-trap breaks using the GG macro (BRC;
ATC; G) and resize the window, the happy face is gone! Note that the dot repre-
sents the last address used. For more information, see Appendix A.

Since you only changed the RAM version of the WDEEF, the happy face will
be back as soon as you quit and then relaunch the application.

The face will be back as soon as the WDEEF is loaded from disk again
Since the WDEF resides in the resource fork of the application, it is
loaded in the application heap. Thus, as soon as the application quits,
the RAM version of the WDEF is lost. If the WDEF were in the System

purgeable, it will remain in the:jstem heap until the Mac:.ntosh
restarts (very poor form; WDEFs should be made purgeable). If it's
purgeable, it may be lost when another application requests memory
from the system heap. In any case, when the WDEF resides in the
system heap, the same WDEF may be around if the application quits
and is later relaunched - :

It is often interesting to modify a piece of code permanently. This is some-
times easy to accomplish even if you don’t have the source. The procedure is
tofirst find the section of code that needs to be modified (as you have just done)
and then use ResEdit to modify the disk version of the code.

Any time you use ResEdit to modify code, there is a chance you will
make a mistake. This could easily destroy the application you are
modifying. To eliminate the possibility for this catastrophe, always
modify a copy of the application. Besides, after you're done modifying
the application you might decide you like the original version better
after all. :

180

» Chapter8 Windows

The first step is to make a backup of the SampleWDEF application. Enter Res-
Edit and find the WDEF resource. Open the WDEF with ID 1000 (there is only
one WDEF) and use the Find Hex command in the Search menu to find the
string $3F2E FFFC 3F2E FFFE A891 302E FFFC, which you made a note of pre-
viously when examining the RAM version. Replace $302E FFFC with the
UNLK and RTS instructions $4E5E 4E75, just as you did in the RAM version.
Save your changes and quit ResEdit. When you run the new version, the
happy face will not appear when the window is resized.

Summary
This chapter discussed the Window Manager and WDEFs.

¢ The operation of the Window Manager and updateRgn maintenance

* The windowRecord data structure and the MacsBug window template
¢ The low memory global WindowList

» The operation of a WDEF

* Modifyinga RAM version of a WDEF with MacsBug, and the disk version
with ResEdit

Like MDEFs described in Chapter 7, WDEFs are code resources. The system
uses the same technique for controlling MDEFs and WDEFs, only the parame-
ters passed are different. This technique allows the system to keep the func-
tions common to all windows in one place and allows you to customize the
appearance and operation of your windows by writing only a WDEF.

This chapteralso introduced a technique for modifying programs with Res-
Edit. Although the example of modifying the WDEF given in the chapter is ar-
tificial, the technique is extremely powerful. It is often very easy to slightly
modify the behavior of an existing application to make it suit your purpose.

>

Dialogs

TheDialog Manager implementsan entire interfaceincluding buttonsand text
editing in a window. Itis meant to be used for alerts and small dialogs with the
user. There are two kinds of dialogs: modal and modeless.

Modal dialog boxes require immediate attention. They must be dismissed be-
fore you can interact with other parts of the application. Clicking the mouse
outsideamodal dialogbox soundsabeep. For example, the Save Filedialog
box requires the user to name a file or cancel the save before continuing.
Modeless dialogs do not require the user to interact with them. They can be
left on the screen, just like any other application window. For example, a Find
dialog allows you to go back to the document without dismissing the dialog.

Alerts are used to warn users that something needs attention or has gone
wrong. Typically, they are modal and contain a message, an OK, and a Cancel
button. Dialogs, both modal and modeless, generally interact more with the
user and include various controls and editable text.

Creating Dialogs

Dialogs are created with a Dialog ITem List, or DITL. DITLs may be loaded
from resources or constructed directly in memory. They are most easily
created as resources, which also allows easy editing later. DITLs may contain
standard controls (buttons, check boxes, or radio buttons), custom controls,
static text, editable text, icons, pictures, or user-defined items. Any item in a
DITL may be disabled. Disabling an item means that the Dialog Manager
won't return the item when it is pressed by the user, but the item will still get
events and respond to them. This is often used for editable text items. Items

181

182

P Chapter9 Dialogs

Note b

Note »

that should not respond to the user’s actions should be deactivated. This also
changes the appearance of the item.

If the Dialog Manager can’t get enough memory to create the dialog or to
perform an operation, it will fail with a SysErr. It does not fail gracefully.

Custom controls are specified by a control template resource or a control
handle if the DITL is constructed manually. User-defined items are always
filled in by the application after the dialog is loaded into memory. The bounds
of the item are specified in the DITL, and the application installs a pointer to
a procedure to draw the item. The procedure can only draw within the bounds
of theitem, because the Dialog Manager sets the clip to that rectangle. Ifanitem
must react to the user, a control should be used, since the user item procedure
is called only to update the display.

A useful trap in the Dialog Manager is CouldDmlog It reads in all
the resources associated with a dialog and makes them
unpurgeable. If you remember the early days of the Macintosh
128K, you'll certainly remember the number of disk swaps that
were required to perform some operations on that machine.
Resources were requested from different disks, and the system
needed the disk containing the resource before it could continue.

The CouldDialog call prov1des the means to avoid this situation. If
your application is running from a floppy disk, calling CouldDialog
prevents the Mac from having to ask for the original disk —for
example, when the user is loading a file from another floppy. When
you are done with the dialog or disk swapping operation, call
FreeDialog to reverse the effects of CouldDialog. 5

The items in the DITL are assumed to be numbered sequentially from one.
When the Dialog Manager needs to communicate with the application about
the DITL, it uses these numbers. In general, the Dialog Manager assumes that
an OK button will be item one and a Cancel button will be item two. If this is
a problem it is easily changed (see “Dialog Event Management” for details).

» Credting Dialogs 183

Note »

Alerts assume either item number 1 or 2 is the default button and
surround it with a round rectangle. If you find one of your items in
an alert surrounded by a round rectangle, it is either item 1 or 2 and
you should renumber it. ' '

Creating a Dialog without Resources

The sample application puts a message in a modal dialog without using re-
sources. This method is generally frowned upon because it leaves no way to
internationalize theapplication, butitis occasionally useful. The sampleappli-
cation works this way so that you don’t have to create a separate resource file
to generate the sample application.

The routine that performs this operation is called PutUpMessage. PutUp-
Message creates dialogs with only an OK button or dialogs with both OK and
Cancel buttons. It uses a DialogPtr to refer to the dialog that will be returned
by the Dialog Manager. DitlHnd] holds the item list while it is being created,
and DItemPtr indexes along the item list. The records for these structures are

typedef struct DitlItem
{
long placeholder;
Rect displayRect;
unsigned char type;
char title[l]; /* 1 to account for the count byte */
} DitlItem;

typedef DitlItem* DItemPtr;

typedef struct

{

int count;
DitlItem item(0];
} Ditl ;

typedef Ditl* DitlPtr;

typedef DitlPtr* DitlHndl;

184

» Chapter9 Dialogs

The function prototype and its locals are defined as

PutUpMessage (cancel, text)
short cancel;/* true if a Cancel button is desired */

unsigned char* text; /* Pascal text to be displayed in the dialog
*/

{

DialogPtr myDialog;

short itemHit;

Rect myRect;

GrafPtr savePort;

DitlHndl myDitl;

DItemPtr dPtr;

short delta;

short numDitlItems = 2+cancel;

The following lines allocate memory for the DITL according to the size of the
message text plus the size of all the DITL items. The magic constant 8 is the num-
ber of bytes required to hold the P-strings “Cancel” and “OK” minus the length
byte which is already included in the DITL structure. The second line fills in the
number of dialog items minus 1 since the count is zero based.

myDitl =

{(Dit1lHndl)NewHandle (sizeof (Ditl) + (sizeof (DitlItem)
*numDitl-Items)+text [0]+8);

(**myDitl) .count = numDitlItems - 1;

For each item added to the DITL, dPtr is set, the various parts of Ditlltem
are filled in, and the delta is calculated. Ditlltems are of varying sizes depend-
ing on the length of their text. The delta variable contains the cumulative size
of all item strings and is used to calculate the position of the nextitem. The OK
and Cancel buttons are the first two items in the list as recommended by Inside
Macintosh, Volume 1.

dPtr = (**myDitl).item;
dPtr->placeholder = 0;

SetRect (&myRect, 200, 100, 260, 120);
dPtr->displayRect = myRect;

dPtr->type = btnCtrl+ctrllItem;

» Credting Dialogs 185

PStrCpy (”\pOK”, dPtr->title);
delta = 2; /* Size of OK: accumulate data size */

delta += delta&é&l; /* force the offset to an even boundary */

if(cancel) {
dPtr = (DItemPtr) ((char*) (&((**myDitl).item[1]))+delta);
dPtr->placeholder = 0;
SetRect (&myRect, 40, 100, 100, 120);
dPtr->displayRect = myRect;
dPtr->type = btnCtrl+ctrlitem;

PStrCpy (“\pCancel”, dPtr->title);

delta += 6; /* Size of CANCEL: accumulate data size */
delta += delta&&l; /* force the offset to an even boundary */
}

dPtr = (DItemPtr) ((char*) (& ((**myDitl).item[numDitlItems]))+delta);

dPtr->placeholder = 0;

SetRect (&myRect, 20, 20, 300, 80);
dPtr->displayRect = myRect;
dPtr->type = statText + itemDisable;

PStrCpy (text, dPtr->title);

After the DITL is created itis passed to the Dialog Manager to create the dia-
log. Then ModalDialog is called to process the events for the dialog. Modal-
Dialog returns the item number of the item hit. An application might need to
change some state and keep the dialog up when an item is hit. In the example,
the function exits as soon as either item (OK or Cancel) is hit.

GetPort (&savePort);

SetRect (&myRect, 50, 50, 400, 200);

myDialog = NewDialog{ 0, &myRect,0,true,dBoxProc,-1,false,0,myDitl);
SetPort ((GrafPtr) myDialog);

ModalDialog(0, &itemHit);

186

» Chapter9 Dialogs

Finally, everything is cleaned up and an appropriate value is returned.

FlushEvents(everyEvent, 0);
DisposDialog{ myDialog):

SetPort { savePort);

if(itemHit == 1)
return(itemHit);
else

return(0);

Dialog Record and Dialog ltem Lists

Once the DITL is given to the Dialog Manager, it is filled in with the handles
to the actual controls and icons as well as some other information. When a
DITL is read from a resource, it is copied before being filled in. This prevents
an application from writing the temporary information back to the resource
file if it inadvertently sets the resource as changed.

The Dialog Manager creates a Dialog Record to hold the information about
the dialog itself.

struct DialogRecord {
WindowRecord window;
Handle items;
TEHandle textH;
short editField;
short editOpen;
short aDefItem;

}s

The dialog record is a variant on the WindowRecord (see Chapter 8), which in-
cludes a handle to the DITL. If a dialog contains editable text items, the Dialog
Manager shares the same TextEdit record with all the editable items. The item
number of the current editable field (or minus 1 if there are no editable fields)
isstored in editField. editOpen isinternal to the Dialog Manager and aDefltem
holds the default item for alerts.

» Credting Dialogs 187

The DITL in memory is similar to the DITL resource. The pseudo C
version1s
struct DialogItemList {
short itemCount;
array[itemCount]
{
Handle itemHandle;
Rect displayRect;
byte itemType;
byte dataLength;
array [dataLength] itemData;
}
};

where itemType can be one of the following

#define userItem 0

#define ctrlltem 4 plus one of #define btnCtrl 0
#define chkCtrl 1
f#define radCtrl 2
#define resCtrl 3

#define statText 8

#define editText 16

#define iconlItem 32

#define picItem 64
and any item may have itemDisable added to it, as in
#define itemDisable 128

The itemHandle is either a handle to the item’s data or a procedure pointer
if the item is a user item. The itemData is a resource ID for resCtrls, iconltems,
and picltems. For the other ctrlltems, statText, and editText, the data is the title
or default text. The data is always padded to an even length.

188 » Chapter9 Dialogs

Examining a DITL

The Chapter 9 sample application brings up a modal dialog.
Before launching the application, get into MacsBug and set a breakpoint on
NewDialog using

atb NewDialog

After setting the breakpoint, launch the application. When you break at the
NewDialog trap, trace overitusing the SO (or T) command. The result of New-
Dialog is a pointer to a DialogRecord that is returned on the stack. To see what
it looks like, type

dm @sp DialogRecord
An abbreviated version of MacsBug's response on my machine is

Displaying DialogRecord at 0013FA40
0013FA40 window

0013FAS50 portRect 0000 0000 0096 015E
0013FA58 visRgn 0013F9F0 -> 0013FAF4 —>
0013FAS5C clipRgn 0013F9F4 -> 0013FBB8 ->
0013FAAC windowKind 0002

0013FAAE visible TRUE

0013FAAF hilited TRUE

0013FABO goAwayFlag FALSE

0013FAB1 spareFlag FALSE

0013FAB2 strucRgn 0013FA04 -> 0013FB9C —>
0013FAB6 contRgn 0013FA08 -> 0013FBBO ->
0013FABA updateRgn 0013F9F8 -> 0013FBC4 —>

0013FABE windowDefProc 010022CC -> 408768F0 —>

0013FAC2 dataHandle NIL
0013FAC6 titleHandle 0013F9EC ~-> 00140738 —->
0013FACA titleWidth 0000
0013FACC controllist 0013F9E4 -> 001406C0 ->
0013FADO nextWindow NIL

0013FAD4 windowPic NIL

» Credting Dialogs 189

0013FADS refCon 00000000

0013FADC items 0013FAQ0 -> 0013FB10 ->
0013FAEQ textH 0013F9E8 -> 00140620 ->
0013FAE4 editField FFFF

0013FAE6 editOpen 0000

0013FAE8 aDefltem 0001

The template shows the entire window record and TextEdit record. In the
preceding sample the TextEdit record has been removed. The items field con-
tains a handle to the DITL. Since the DITL contains records of varying sizes,
there is no template (a demd would be required) for displaying the DITL. To
see the DITL, type

dm 13£bl10

and you will see something like

Displaying memory from 13fbl0

0013FB10 (0001 0013 F9E4 0064 00C8 0078 0104 0402 -« ------ de-exe--
0013FB20 4F4B 0013 F9DC 0014 0014 0050 012C 9006 OK:*+++----- P-, -
0013FB30 4120 4E61 6D65 0000 0000 0001 6EBC 0000 A Name---:--- n---
0013FB40 0000 0004 8200 003C 0000 1F14 0031 4180 =«------ L SEEEE 1Aa-
0013FB50 800C 0001 0021 0013 004A 0000 0000 0000 ~----- PeeoJeorees
0013FB60 0000 0050 0000 0050 0000 0000 0002 0001 :+:«P+-:P--=---+:
0013FB70 0002 0000 0000 0001 6EBC 0000 0000 OORG ~--c=-=---- neescree
0013FB80 8200 0014 0000 1FOC OO0OA 8001 8001 7FFF --cccvvcvccccce:

The first item is the number of items in the DITL minus one. The 0001 indi-
cates that there are two items in this dialog. The next long word contains the
handle to the first item, which is $13F9E4 in this case. This will be examined
in a moment.

Next is the item’s bounding rectangle, which is $64, $C8, $78, $104. The fol-
lowing byte contains the type, which is 04, indicating that the item is a button
control. Next comes the data, which has a length of two and is the string OK.
Because this item is a control, you can look at the control record referenced by
the handle. See Chapter 10 for more details on control records.

190

> Chapter? Dialogs

The second item has the same structure: The handleis $13F9DC; the bound-
ing box is $14, $14, $50, $12C; and the type is $90. Type $90 indicates that it is
a disabled EditText item ($80 = disabled plus $10 for editText). The handle
points to the current text for the item (which starts out the same as the title
string). To see the text, you can look at the handle using

dm @13f9dc

to which MacsBug responds
Displaying memory from @13f9dc

001406F4 4120 4E61 6D65 0078 0000 0034 0000 0030 A Name-x---4---0

Setting User Itfems

User items are items for which the application defines the appearance. The
appearanceisdefined by a procedurein theapplication. The definition forthe
procedure is

pascal void MyItem(WindowPtr theWindow; short itemNo);

Theitem number is passed so that the same procedure may be used for more
than one item. When the procedure is called, the current GrafPort is already
set to the dialog and the clip is set to the bounds of the item. The procedure uses
GetDItem to get the bounds of the item to know where to draw the item.

SetDItem associates the procedure with a particular item. First the applica-
tion calls GetDItem to get the original values and then SetDItem to change the
“handle” to a pointer to the procedure. For example

GetDItem(theDialog, 3, &itemType, &item, &box); /*get original
values*/

SetDItem(theDialog, 3, &itemType, &Myltem, &box); /*set the
procedure*/

» Dialog Event Management 191

Alerts

Alerts are staged dialogs. The stages are meant to be more strident at each
invocation. Alerts are similar to modal dialogs, except they are always defined
from resources. To invoke an alert, a resource number and a filter procedure (see
“Dialog Event Management”) are provided. The alert resource contains a rectan-
gle, the ID of the DITL to use, and an array of information to use at each stage.

At each stage, the alert can specify which button (OK or Cancel) is to be the
defaultbutton, whether or not the alert should be shown, and how many beeps
to give when the alert is invoked. These last two can be used together, so that
at some stages the alert is not shown but still beeps at the user.

The Dialog Manager decides on the stage of the alert by checking if the alert
ID called is the same as the last alert, and if so, incrementing the stage (up to
the maximum of three). If the alert is a different alert, the stage is reset to zero.
The ID of the last alert can be found in the word-sized low memory global
ANumber and the stage number is in the byte-sized low memory ACount.

The procedure that beeps for alerts and modal dialogs may be set using the
ErrorSound routine and is stored in the low memory global DABeeper. A cus-
tom sound procedure has the prototype

PROCEDURE CustomSound (soundNo: INTEGER) ;

The soundNo parameter is the number of times to beep (normally zero
through three). The default procedure calls SysBeep an appropriate number
of times. Your application can replace this with a procedure that plays different
sound pitches rather than a different number of beeps, for example.

Dialog Event Management

As previously mentioned, dialogs are either modal or modeless. Modal dia-
logs won’t allow other actions outside of the dialog to occur while the dialog
is up. Modeless dialogs may be ignored or switched between and are just like
other application windows. Modal dialogs are usually easier to implement,
but too many of them ruin the feel of an application.

Modeless Dialogs

Since modeless dialogs are really just another application window, they are in-
tegrated into the application’s event loop (see Chapter 5 for more information
on the event loop). Each event in th