
DISK 
INCLUDtD 

f>t18 6.2 01) .l). 0 
~(}cs ':?J>_,f 

1~s Debugging MacintosH 
~ Software w 1 )> 

KONSTANTIN OTHMER 

JIM STRAUS 



Debugging Macintosh® 
Software with MacsBug® 



Debugging Macintosh® 
Software with MacsBug® 
Includes MacsBug 6.2 on Disk 

Konstantin Othmer 
Jim Straus 

Addison-Wesley Publishing Company, Inc. 
Reading, Massachusetts Menlo Park, California New York 
Don Mills, Ontario Wokingham, England Amsterdam Bonn 
Sydney Singapore Tokyo Madrid SanJuan 
Paris Seoul Milan Mexico City Taipei 



Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in this book and Addison-Wesley 
was aware of a trademark claim, the designations have been printed in initial capital letters. 

APPLE COMPUTER, INC. ("APPLE") MAKES NO WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING 
MACSBUG. APPLE DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF 
MACSBUG IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS 
OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF 
MACSBUG IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT 
PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. 

IN NO EVENT WILL APPLE, ITS DIRECTORS, OFFICERS, EMPLOYEES, OR AGENTS BE 
LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES 
(INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, 
LOSS OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR 
INABILITY 1U USE MACSBUG EVEN IF APPLE HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE 
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL 
DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY 1U YOU. Apple's liability to 
you for actual damages from any cause whatsoever, and regardless of the form of the action 
(whether in contract, tort (including negligence), product liability, or otherwise), will be 
limited to $50. 

Library of Congress Cataloging-in-Publication 

Othmer, Konstantin. 
Debugging Macintosh software with MacsBug: includes MacsBug 6.2/Konstantin 

Othmer, Jim Straus. 
P· em. 

Includes index. 
ISBN 0-201-57049-1 
1. Macintosh (Computer)-Programming. 2. Debugging in computer science. 
3. MacsBug. I. Straus, Jim. ll. Title. 

QA76.8.M3084 1991 
005.369-dc20 91-8059 

CIP 

Copyright© 1991 by Konstantin Othmer and Jim Straus 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, 
recording, or otherwise, without the prior written permission of the publisher. Printed in the 
United States of America. Published simultaneously in Canada. 

Associate Editor: Rachel Guichard 
Technical Reviewer: Chris Derossi 
Disk Review: scott douglass, Ed Tecot 
Cover Design: Ronn Campisi 
Set in 10.5-point Palatino by Inprint Publishing Corp. 

12345 6 789-MW -9594939291 
First printing, April1991 



Contents 

Foreword by Scott Knaster xv 

Acknowledgments xvii 

..._ PART ONE GeHing Started 1 

1. Introduction 3 
Why Learn to Use MacsBug? 3 

What You Need to Know 5 
What's in This Book? 5 

Symbols Used in This Book 6 
What's on the Disk? 7 
How to Use This Book 7 
Summary 8 

2. MacsBug Basics 9 
Installing and Configuring MacsBug 9 

The Monitors Control Panel 10 
Res Edit and the Debugger Prefs File 11 

v 



vi ...,. Contents 

Using MacsBug for Temporary Customization 13 
Low Level Details of the Macintosh 13 

The Processor and Memory 13 
Memory Maps 15 

The Anatomy of the MacsBug Screen 19 
Basic Command Line Editing 21 

Arrow Keys 21 
Option Ketj 22 
Delete Key 22 
Return Key 22 
The Command History Buffer 22 

Entering MacsBug 22 
The Programmer's Switch 23 

The Programmer's Key INIT 23 

The Debugger and DebugStr Traps 24 
System Error 24 

Leaving MacsBug 24 
Step 24 
T(or SO) 25 

GoTo 25 

Go 25 

Exit to Shell 25 

Exit to Application 26 
ReBoot 26 
ReStart 26 

A Sample MacsBug Session 26 
A-Trap Break 26 
The Escape and Back Quote Keys 27 
A-Trap Clear 27 
BReak 27 
BReak Clear 28 

Display Memory 28 
TeMPlates 29 

HOW 30 
HELP 30 

Summary 31 



...,. Contents vii 

.._ PART TWO Exploring the Macintosh with MacsBug 33 

3. Accessing the ROM 35 
Where Is The ROM? 36 
A-Traps 37 
ToolBox Calling Conventions 39 

OS Traps: Usually Register-Based Calls 40 
Toolbox Traps: Usually Stack-Based Calls 40 
High Level Languages and Traps 40 

MacsBug' s A-Trap Commands 49 
ROM Organization: the MPW ROMMap File 60 
Summary 60 

4. How RAM is Organized and Maintained 63 
Heaps 64 
Pointers and Handles 66 

The System Heap 71 
The MultiFinder Heap 71 

The Application Heap 73 
MacsBug Commands That Operate on Heaps 77 

HeapZone 77 
Heap Exchange 80 
Heap Display 81 

Heap Totals 85 
Heap Check 86 

A-Trap Heap Check 88 
Heap Scramble 89 

The Application Stack and the Link Instruction 89 
Low Memory Globals 96 
Application Globals 97 
The Segment Loader 98 

Jump Table Entries for Routines in Unloaded Segments 99 
Jump Table Entries for Routines in Loaded Segments 101 

Stepping Into Another Segment 103 

Common Problems Using the Memory Manager 104 
Corrupting the Heap 104 



viii ...,. Contents 

Fragmenting the Heap 106 
Memory Leakage 109 

Summary 110 

5. The Main Event Loop 113 
Finding the Event Loop 113 
What's In an Event Loop 114 

WaitNextEvent 116 
Catching a Keyboard Event 117 

The Event Queue 119 
Forcing an Application to Quit 121 
Summary 122 

6. Resources 123 
Specifying a Resource 124 
Owned Resource IDs 125 
Resources In Memory 126 

Attributes 128 
Code Resources 130 
Other Resources 131 

Resources on Disk 132 
Resources In ROM 134 
The Resource Chain 135 
Resource Maps 138 

Structure of a Resource Map 138 
Summary 141 

7. Menus 143 
How the Menu Manager Works 143 

The Menu List 144 
Other Globals 147 

The Menu Definition Function (MDEF) 149 
The Menu Bar Definition Function (MBDF) 153 
Summary 156 



8. Windows 159 
How the Window Manager Works 159 

Update Region Maintenance 160 
The Window List 166 

The Window Definition Function (WDEF) 167 
Summary 180 

9. Dialogs 181 
Creating Dialogs 181 

Creating a Dialog without Resources 183 
Dialog Record and Dialog Item Lists 186 
Setting User Items 190 
Alerts 191 

Dialog Event Management 191 
Modeless Dialogs 191 
Modal Dialogs 192 

Summary 195 

10. Controls and CDEFs 197 
Properties of Controls 197 
Creating Controls 198 

The Control ID 198 
Part Codes 199 
The Control Record 200 

TheCDEF 204 
How Controls Respond to Events 204 

Summary 209 

11. QuickDraw 211 
Classic QuickDraw 212 
Color QuickDraw and 32-bit QuickDraw 212 
HowQuickDrawWorks 214 

The Current Port 214 
GrafPorts and CGrafPorts 216 

BitMaps and PixMaps 220 

Destination Color Information and GDevices 221 

.,.. Contents lx 



x ...,. Contents 

CopyBits 223 
Copy Bits Colorizing 223 
Destination Color Revisited 224 
The Color Table Seed 228 

Accessing 32-bit Addressed PixMaps 229 
Common Problems Using QuickDraw 230 

Bug 1: Why is CopyBits Drawing the Wrong Image? 231 
Bug 2: Drawing Occurs to the Screen Instead of to the Offscreen 

PixMap 238 
Bug 3: Drawing Is Correct Only if the Main Screen Is 8-bit 246 

Summary 251 

12. Device Drivers and Desk Accessories 253 
Structure of a Driver 255 
Desk Accessories 257 
An Easier Way: The DRVR Dcmd 260 
Summary 261 

13. The File Manager 263 
Understanding the File Manager 263 
Calling the File Manager 265 

The File Manager Traps 265 
File Manager Glue 266 
Parameter Blocks 268 

In Memory Data Structures 272 
The FCB Array 272 
The VCB Queue 276 
The WDCB Array 278 
The Default Volume 279 

More File Manager Tips 281 
The "Poor Man's Search Path" (PMSP) 281 
Some Useful MacsBug Commands 285 

Summary 286 

14. The Printing Manager 287 
Device Independence 287 



The Graphics Model Used for Printing 289 
How the Printing Manager Works 292 

The Glue and the Trap 292 
Stepping Through Glue 293 
What This Means for Your Application 294 
The Print Record 297 

Debugging Printing 301 

...,. Contents xi 

PDEFs- The Printing Manager's CODE Resources 301 
PostScript- How to See What You Get 303 

. Background Printing 305 
Summary 306 

15. The Control Panel and CDEV s 307 
How the Control Panel Works 307 

The cdev File 309 
The CDEV Code 309 

How a CDEV is Called 312 
Watching Specific CDEV Events 316 
Summary 317 

16. The Startup Process and INITs 319 
!NITs 321 

Preventing !NITs from Loading 326 
Debugging INITs 328 

Summary 331 

~ PART THREE Advanced Debugging 333 

17. Debugging Techniques 335 
Defensive Programming 335 

Use a High Level Language 336 
Limit Interdependencies 337 
Set Well-Defined Entry and Exit Points 337 
Check Values 338 
Create a Debugging Version 338 



xii ~ Contents 

Make Sure Every Variable Is Initialized 339 

Compile with All Type Checking and Warnings Turned On 339 

Make and Test Incremental Changes 340 
Build In Virus Protection 340 

Five Basic Debugging Steps 340 
Three Ways to Fail 347 

When the Macintosh Hangs 347 
When the Macintosh Crashes 350 
Other Bugs 353 

Technique Potpourri 355 
When All Else Fails 355 
Command -: 355 
Using the BR Command to Display Function Results 356 
Conditional MacsBug Commands 357 
Debugging Read and Write Sensitive Hardware 357 
Using the DH Command 357 
Calling Traps From MacsBug 358 
Using Discipline and DSC 359 

The FirstTime Macro 359 
The EveryTime Macro 360 
The SHOW Command 360 
Using WH to Display Traps that Are Called Directly 360 
Mr. Bus Error 362 
Debugger and DebugStr 362 

Summary 363 

18. Macros 365 
Types of Macros 367 

Low Memory Globals 367 
Dispatched Traps 368 
Command Abbreviations 369 

Creating Macros 369 
Creating Temporary Macros 370 
Creating Permanent Macros with ResEdit 371 
Creating Permanent Macros with MPW 373 

Summary 374 



19. Templates 377 
Types Used in Templates 378 
Creating Templates with ResEdit 380 
Creating Templates with MPW 383 
Summary 385 

20. Dcmds 387 
Listing Available Dcmds 387 
How to Write a Dcmd 388 

The dcmdBlock 388 
Callbacks 389 
Output Functions 390 
Input Functions 391 
Utility Functions 392 
Building a Dcmd 394 
Testing a Dcmd 397 

Summary 401 

Appendix A: MacsBug Command Summary 403 

...,. Contents xill 

Appendix B: Macro, Template, and Dcmd Summary 515 

Index 537 



Foreword by Scott Knaster 

Some things take time. When you're designing a brand-new, radically differ­
ent computer, as the Macintosh was in 1984, you invent a whole new way of 
writing software. One of the hardest things to anticipate is what the debugging 
environment will be like. You don't really know what kinds of mistakes pro­
grammers will make, and you're not sure what the tools that they'll use to fix 
those mistakes ought to look like. 

Macintosh debugging tools have evolved greatly in the years since the first 
Macintosh appeared. We've seen the release of powerful source-level debug­
gers and other neat development tools that relieve a lot of the programmer's 
burden. It's now possible- maybe- to write an entire application without 
relying on an object code debugger like MacsBug. 

Most of the time, though, Macintosh programmers still have occasion to 
dive right into the object code soup while they're working on their programs. 
The main reason is that it's the only way to really, truly know what's going on 
in the Macintosh's bustling insides. Even if you debug mostly at a higher level, 
you'll probably use an object code debugger to observe what's happening in 
your program and to learn more about how the Macintosh works. 

That's why, despite all the other great tools, object code debuggers like 
MacsBug and TMON are still very popular. Most programmers always keep 
an object code debugger around, like a spare can of Jolt Cola, just in case some­
thing nasty happens and they need to find out more. 

XV 



xvi ...,. Foreword by ScoH Knaster 

In this book, Konstantin Othmer and Jim Straus do more than just show you 
how the many features of the modem MacsBug can make your programming 
life easier. They also conduct an exhaustive tour (hard hats and flashlights re­
quired) of the deepest, darkest caves of the Macintosh's mind. There are lots 
of great tips, examples, and historical notes along the way. 

There's an awful lot to learn about how things work inside the Macintosh. 
This book contains a vast collection of Macintosh debugging goodies. Enjoy 
the journey and use the knowledge to make your applications even greater, or 
just have fun knowing more about how your Macintosh works. 

Scott Knaster 
Macintosh Inside Out Series Editor 



Acknowledgments 

Many people contributed to help make this book possible. We are extremely 
thankful to all of them. A partial listing is as follows: 

Scott 'ZZ' Zimmerman wrote the chapter on printing. Somehow we were 
able to convince him that it would be a cool thing to do. Without him, that 
chapter would not exist. 

David Feldman wrote the chapter on the File Manager. We used a different 
trick on Dave; we told him sleep was evil. Without him, this book would be 
missing Chapter 13. 

Chris Derossi did an excellent job reviewing this book for technical accuracy. 
He also contributed several dcmds. It's very hard to sneak bugs past Chris. 
Without him this book would be full of inaccuracies and outright lies. 

David Van Brink gave us the shell on which all of the sample applications 
are based. The source code for the shell is included on the disk and is easy to 
expand into a full-blown application. One psychic told us that by the year 1995 
over 85% of all commercial Macintosh applications will be based on this shell. 
Without David, there would be no sample applications. 

scott douglass and Leo Baschy answered a barrage of MacsBug questions. 
In addition, scott wrote several of the dcmds included on the disk. Without 
them the enclosed disk would have much more free space on it. 

Mark Bennett and Darin Adler contributed a number of the debugging sug­
gestions found in Chapter 17. Without them, that chapter would be only an 
introduction and a summary. 

Bruce Leak made many suggestions and contributed many of the ideas in 
the book. It's hard to say enough good things about Bruce. Without him, the 
universe probably wouldn't exist. 

xvii 



xviii ....,. Acknowledgments 

Joanna Bujes and Tom Chavez were very helpful in providing the latest 
MacsBug documentation Apple had available. They even gave us a disk ver­
sion of the command summary on which Appendix A is based. Without them, 
there would be no Appendix A. 

David Shayer gave us a copy of the MacsBug book he uses when teaching 
a MacsBug class at Apple, as well as some of the dcmds included on the disk. 
Without him various sections of several chapters would be missing. 

Paul Mercer gave us permission to include the Programmer's Key INIT 
with the book. He also contributed to Chapter Sixteen. Without Paul you 
would have a 50 percent chance of entering MacsBug and a 50 percent chance 
of rebooting. 

Keith Nemitz gave us the RD dcmd. The information in Chapter 6 is based 
largely on this dcmd. Without him, there would be no Chapter 6. 

Kevin MacDonell contributed the MLIST dcmd. This dcmd is the basis of 
Chapter 7. Without him, that chapter would fit on one page. 

Richard Dizmang gave us the PATCH dcmd used in Chapter 16. That dcmd 
gave the chapter life, transforming it from a skeleton into a full-fleshed mon­
ster. Without him, Chapter 16 would be all bones. 

David Goldsmith gave us the Mr. Bus Error INIT. This INIT is useful for forc­
ing many different kinds of bugs to surface. Without David, most Macintosh 
applications would be so buggy that we could never have produced this book 
at all! 

Brian McGhie made a number of helpful suggestions for the chapter on re­
sources. Without him, that chapter would cover only the most elementary topics. 

David Harrison made several suggestions for Chapter 12. Without him, that 
chapter would have consisted of one page that said, "This page intentionally 
left blank." 

Eric Smith gave technical advice on a number of different sections. Without 
him, there would be large blank areas in the middle of several sections. 

Tim Cotter gave us a WDEF on which the example WDEF in Chapter 8 is 
based. Since that example was the reason for writing the chapter, without him 
the chapter would not exist. 

Scott Knaster did a technical review and told us what kind of contribu­
tions to get and when we needed to get more. Without him the book would 
be less complete. 

Carole McClendon and Rachel Guichard worked through the acquisitions 
process with me, and Joanne Clapp Fullagar developmentally edited the 
book. Mary Cavaliere shepherded the book through the production pro­
cess. Without them, this book would still be in the minds and on the desks 
of all the contributors. 



..., Acknowledgments xix 

Claris wrote MacWrite II and MacDraw II, and Paragon Concepts, Inc. 
wrote Nisus. These three programs were used in producing this book. Without 
these fine companies, all of the contributions would probably be handwritten. 

Apple Computer, Inc. made the Macintosh, without which we wouldn't 
have all these great bugs to track down. 

Jim Straus would like to acknowledge Lisa, his wife, for putting up with 
late-night phone calls and long sessions at the computer. 

And to any and all whom we missed, the book would not have been the 
same without you and we would like to thank you, too. 



PART ONE 

...,_ Getting Started 

Part One describes what it takes to get started using MacsBug. 
Chapter 1 introduces MacsBug and describes the contents of the rest of 

the book. 
Chapter 2 describes how to install MacsBug and enough low level details 

about the Macintosh so that you can use MacsBug. 



1 Introduction 

This book is about using MacsBug, a low level debugger for 68000 family code, 
on the Macintosh. Although MacsBug is useful to the nontechnical Macintosh 
user-you can recover from a crashed application without rebooting (dis­
cussed in Chapter 2) and you can often recover data from a crashed word 
processing application (discussed under the Find command in Appendix A)­
its primary use is by programmers for debugging code. As a low level debug­
ger, MacsBug is useful for debugging all types of programs, regardless of 
which language the program was written in . 

.,... Why Learn to Use MacsBug? 
One of the unique features of the Macintosh is the tremendous number of tools 
Apple has supplied to assist you in producing consistent applications. These 
tools are in the form of system and ROM routines that assist in handling items 
such as windows, menus, printing, and much more. 

These routines are a tremendous benefit to you, the developer, since they en­
able you to make use of the work Apple has done rather than recreate the func­
tions yourself. Another benefit of using the supplied routines comes when 
Apple expands and upgrades the standard routines. When this happens, the 
performance of existing software often improves without additional effort. 

The Macintosh user benefits since applications have a similar look and feel; 
experience gained with one application makes learning other, even radically 
different, applications much easier. 

3 



4 ..,.. Chapter 1 Introduction 

The downside of these system routines is a large learning curve. You may 
find it difficult to figure out exactly how the routines are intended to inter­
act with one another. And when a problem comes up, it may be hard to track 
down the cause since the underlying routines are not fully understood. 
Combined with the human tendency to blame someone or something else, 
in this case a bug in the ROM, you may experience long, frustrating debug­
ging sessions. 

The trend towards high level languages compounds this problem. While 
languages such as C++ and Object Pascal can provide great benefit by offering 
an easy way to profit from the work of others, they can be an equal detriment 
when some borrowed piece of code behaves unpredictably. 

The following classic case occurs with the LightSpeed C compiler and 
others. 

(**myHandle) .data= NewPtr( dataSize ); 

This statement allocates a block of memory and stores the address to that block 
in the my Handle structure. Unfortunately, this may fail occasionally, and the 
problem doesn't surface until later when the system crashes. (The problem is 
that the myHandle structure may move in memory during the NewPtr call, 
causing the returned result to be stored in my Handle's old location. This prob­
lem is further discussed in Chapter 4.) 

One reason this is a difficult problem to find is that the C language and the 
Macintosh toolbox both provide levels of abstraction, the details of which may 
not be well understood. The goal of abstraction is to make programming much 
easier, almost magical at times. The problem comes when the magic fails. 

The purpose of this book is to turn the magic of the Macintosh toolbox and 
operating system into a well-understood set of data structures and routines. 
This is accomplished by exploring sample applications and Macintosh system 
and toolbox data structures at the assembly (machine) level. By working 
through the hands-on examples in this book, you should develop a solid feel 
for the toolbox, and tracking bugs will become an easy, systematic process. 

Even though the source for the sample programs is in C or Pascal, the de­
bugging examples in this book work exclusively on the machine level. You will 
get a feel for how the compiler converts source code into machine code and be­
come aware of some of the code generation issues and problems. 

The machine language level is the lowest level to work on and averts prob­
lems that can be introduced by higher level languages. For example, if you 
work and debug only in C, a bug in the C compiler will be very difficult to 
track. Working on the machine level minimizes the chances for this type of cat­
astrophic problem. 



..,_ What's in This Book 5 

.,... What You Need to Know 
This book assumes knowledge of elementary programming concepts, such as 
subroutines, which you certainly have if you need to use a debugger. Depend­
ing on your needs, a varying degree of knowledge of 68000 assembly language 
is necessary. This book assumes you can read, not necessarily program, 68000 
assembly language. There are a number of excellent books available on the 
subject; try Steve Williams's 68030 Assembly Language Reference (Addison­
Wesley, 1989). Finally, this book assumes you are familiar with Inside Macintosh . 

.,... What's in This Book? 
There are four major topics in this book: 

• How to use MacsBug 

• Low level details of portions of the Macintosh toolbox and techniques for 
exploring the toolbox 

• How to extend MacsBug by creating macros and templates and by 
writing dcmds 

• Techniques for debugging your programs using MacsBug 

To be successful at debugging, you must understand the system you are 
working on. MacsBug is a tool for exploring, and is closely tied to the ma­
chine. Thus, the first two items are closely related and this book integrates 
learning them. 

Learning about the Macintosh toolbox is an ongoing process, since the tool­
box is evolving with every new system release. Fortunately, Apple has vowed 
to maintain compatibility with existing guidelines, which means most data 
structures will remain identical from one system release to the next. And, with 
only a few exceptions, when the structures change they are usually extended 
rather than reinvented. 

Part One of the book, "Getting Started," describes how to install MacsBug 
on your system and the basics of using MacsBug. Many of the elementary 
MacsBug commands are introduced in Chapter 2. 

The chapters in Part Two, "Exploring the Macintosh with MacsBug," contin­
ue the discussion of MacsBug commands while investigating the Macintosh 
internals. Most of the chapters in this section roughly correspond to chapters 
in the Inside Macintosh series, except in this book you will look at and change 
the data structures and watch the impact these changes have on the system or 
application. When you have read this book and worked the examples, you 



6 ..,. Chapter 1 Introduction 

should be able to determine quickly why and how an application is failing by 
examining the data structures and watching the calls it makes. 

Part Three, "Debugging," uses the knowledge presented in the first two 
parts. Chapter 17 discusses techniques for finding and exposing buggy code, 
as well as a number of other miscellaneous tricks. Chapters 18, 19, and 20 de­
scribe ways of extending MacsBug via macros, templates, and dcmds. Macros 
provide an easy way to make shortcuts for commonly used commands, and 
templates are a way to create custom memory displays. Dcmds are debugger 
commands that provide a mechanism for you to extend MacsBug programati­
cally. · 

The book ends with two appendices: 

• Appendix A, "MacsBug Command Summary," is a listing of MacsBug 
commands. 

• Appendix B, "Macro, Template, and Dcmd Summary," describes the con­
tents of the Debugger Prefs file on the accompanying disk. 

~ Symbols Used in This Book 

lol 

By the Way ..,.I 

There are several techniques used to distinguish areas of special interest. 

Hands-On Exercise 

This book is intended to be practical. Whenever possible, a hands-on example 
is presented. We feel it is very important to work through the hands-on exam­
ples. Nothing can replace the magical learning that occurs when you follow an 
example and then get sidetracked exploring and experimenting on your own. 
The hands-on examples provide ample opportunity to become sidetracked. 

These sections contain background or other interesting information 
indirectly related to the discussion at hand. 



...,. How to Use This Book 7 

.,.. What's on the Disk? 
The disk contains MacsBug as well as sample code and applications used in 
some of the hands-on examples. The Put Contents In System Folder folder con­
tains MacsBug 6.2, the Debugger Prefs file, and Programmer's Key INIT. 

There is also a Sample Applications folder which contains the applications used 
by some of the hands-on examples. The applications are named after the chapter 
which uses them. The Sample Application Sources folder contains the source for 
these applications. 

The Debugger Prefs Sources folder contains the source for various dcmds as 
well as the source for the Debugger Prefs file (Debugger Prefs.r). 

The Utilities folder contains TestDcmd, the Mr. Bus Error utility with source, 
as well as a file further describing the Programmer's Key INJT. 

Finally, the disk also contains a ReadMe file with last minute updates and errata . 

.,.. How to Use This Book 
If you are unfamiliar with MacsBug, you should now read Chapters 2 through 
4. The remaining chapters in Part Two, "Exploring the Macintosh with 
MacsBug," are relatively independent and can be read in any order. The final 
section of this book assumes a solid understanding of MacsBug but is not 
otherwise tied to earlier material. 

If you are an experienced MacsBug user, you will probably want to skim 
chapters 2 through 4. The remaining chapters in Part Two will be of interest 
and can be read in any order. The third part of the book contains debugging 
techniques as well as explanations and examples of extending MacsBug by 
creating macros, templates, and dcmds. Even if you know how to extend 
MacsBug, you will find the examples useful. 



8 ~ Chapter 1 Introduction 

There are many hands-on examples in this book. Although the results are 
provided, it is important to perform similar exercises on your Macintosh. You 
can do this either as you read the book or later when you are done with a chap­
ter. Nothing replaces the knowledge you gain from actually doing something 
rather than just reading about it. 

.,.. Summary 
This chapter provided information about what you need to know to learn to 
use MacsBug and a brief discussion of why it is important to learn MacsBug. 
It also described the contents of the accompanying disk. 



2 MacsBug Basics 

This chapter begins by explaining how to install and customize MacsBug on 
your system. It then describes the basics of how to enter and exit MacsBug. 
The remainder of the chapter presents MacsBug basics, a discussion of the 
MacsBug screen's anatomy, basic command line editing, and finally a sample 
session using MacsBug . 

.,... Installing and Configuring MacsBug 
To install MacsBug, you need a Macintosh and MacsBug. Unfortunately, we 
couldn't include a Macintosh, but we were able to include MacsBug on the 
disk with this book. 

Installing MacsBug is simple. Simply drag the MacsBug and Debugger 
Prefs files from the Put Contents In System Folder folder on the enclosed disk 
into your System Folder. The MacsBug file contains the actual MacsBug pro­
gram, and Debugger Prefs is a data file that contains information for customiz­
ing MacsBug. You should also copy the Programmers Key file. This INIT is dis­
cussed later in this chapter in a section titled 11The Programmer's Key INIT." 

The next time the Macintosh is restarted, the startup dialog will appear as 
in Figure 2-1. 

9 



1 0 ..,.. Chapter 2 MacsBug Basics 

Welcome to Macintosh. 

MacsBug installed. 

Figure 2-1. Startup screen when MacsBug is installed 

There are a variety of parameters that configure various aspects of the 
MacsBug debugger. The monitors control panel and ResEdit can be used to 
make changes that stay in effect across system restarts. To change parameters 
for a single session, you can use MacsBug itself . 

.,... The Monitors Control Panel 

The monitors control panel allows users with Color QuickDraw and multiple 
screens to specify which screen MacsBug appears on. 

Using Monitors to Select the MacsBug Screen 

If you have a Macintosh with Color QuickDraw and more than one monitor, 
you set which screen MacsBug appears on by using the monitors control panel. 
Pull down the Apple Menu, choose Control Panel, and then choose Monitors. 
Holding down the Option key causes a "happy Macintosh" icon to appear in 
one of the monitors. This icon indicates which screen MacsBug, as well as the 
"Welcome to Macintosh" alert shown in Figure 2-1, will appear on. This screen 
is officially known as the "startup screen." To change the screen, simply drag 
the icon to another screen. The change will take effect when you restart. 



..,. Installing and Configuring MacsBug 11 

...,.. ResEdit and the Debugger Prefs File 

The second way to configure MacsBug is via ResEdit. ResEdit is a utility dis­
tributed by Apple Computer that is used to edit resources. Here we provide 
only a brief tutorial on using ResEdit. For a complete description of ResEdit, 
see ResEdit Complete by Peter Alley and Carolyn Strange (Addison-Wesley, 
1990), another volume in the Macintosh Inside Out series. 

Using ResEdit to Look at MocsBug Resources 

Enter ResEdit by double clicking on its icon in the Finder. Open the MacsBug 
debugger preferences: Debugger Prefs. As previously discussed, this file 
should be in the System Folder. 

There are six different resource types in the file: 1 dcmd 1 
, 

1 mxbc 1 
, 

1 mxbi 1 
, 

1 mxbm 1 
, 

1 mxwt 1 
, and 1 TMPL 1 

• 

1 dcmd 1 

The 1 dcmd 1 resource is a. container for MacsBug dcmds: custom code frag­
ments to perform a specific task. Chapter 18 discusses using and writing 
dcmds in detail. 

1 mxbc 1 

The 1 mxbc 1 resource allows you to configure the foreground and hack.; 
~acsBugwill use for its display. The default is $FFFF for the red, 

green, and blue channels (white) for the background; and $0000 for all three 
channels (black) for the foreground. Thus, the default display is black text on 
a white background. Assuming your monitor is capable, you can set any colors 
you like for the MacsBug display in the 1 mxbc 1 resource. 

1 mxbi 1 

The 1 mxbi 1 resource allows you to set three parameters: the number of traJ?.S 
recordsd.via the A-Trap Record (ATR) command, the pumber oflines shown 
1n the J.:.C.iJ,r.ea..of the MacsBug display, and the amount of memory allocated 
for the histor buffer. 

T e -trap recording~ echanism is discussed in detail later. A size of 256 
is more an arge enoug or most situations; a smaller size, approximately 
30, is often sufficient. 

Th{\'.!_QfPC lines ~efers to the number of lines shown in the pro­
gram cOunter (PC) window area, explained later in this chapter, at the bottom 



12 ~ Chapter 2 MacsBug Basics 

of the MacsBug display. The greater this number, the more lines MacsBug will 
show following the current PC. Increasing th is size decreases the amount of 
the histor buffer tl an be viewed at one time. 

'Size of histor buffer' refers to the amount of memory MacsBug reserves 
for re aining the results of previous opera tions. This information can be 
viewed in MacsBug via the up and down arrow keys. Although the history 
buffer is never deallocated and directly steals from main memory, a relatively 
large history buffer in MacsBug terms, perhaps 16K in size, has great benefits 
during long debugging sessions, yet has a minimal impact on total system 
memory availability. 

1 mXwt 1 

The 1 mxwt 1 resource contains JylacsB~ Templates are used~ 
dis la i _memo ina redefined_!9rma_;, asw enlookingatdatastructures. 
We discuss how to define cus tom templates in Chap ter 18. 

1 mxbm 1 

The 1 mxbm 1 resource contains MacsBu macro ou can add custom mac­
ros to this resource via MPW or directly o -ResEdit. The macro that you 
might find most useful to look at now is the FirstTime macro. This macro is 
found in the I mxbm I resource named "FirstTime." It is executed when Macs­
Bug loads during startup, allowing you to execute any MacsBug co~and at 
that time. A typical command to put in the FirstTime macro is 

show ' sp ' la ; g 

which causes MacsBug to show the current stack values both as "longs" (32 
bits) and as their ASCII (character) representations in the Memory d isplay sec­
tion of the MacsBug screen. Macros are discussed in detail in Chap ter 18. 

1 TMPL 1 

The 1 TMPL 1 resource is \!Sed by ResEdit to determine how to displax the 
con tents of the other resources and need not concern us here. 



..,. Low Level Details of the Macintosh 13 

.,.... Using MacsBug For Temporary Customization 

The previous techniques change MacsBug across system restarts. You can con­
figure parts of the MacsBug screen for your current session from within 
MacsBug. The MacsBug SHOW command (which defines the appearance of 
the memory display area at the upper left ofMacsBug screen) and the MC com­
mand (for defining macros) allow you to change MacsBug until the next 
restart. Theseitemsarediscussedindetail when they are introduced in the text 
and summarized in Appendix A . 

.,.... Low Level Details of the Macintosh 
Since MacsBug is a low level debugger, you must understand the basics of 
680x0 assembly language to fully utilize its potential. 680x0 assembly lan­
guage is the native language of the Macintosh microprocessor. If you are not 
already familiar with 680x0 assembly language, you should consult one of the 
many excellent books available . 

.,.... The Processor and Memory 

The heart of a computer consists of a processor and memory. The processor 
fetches an instruction (data) from memory and executes it. It does this over and 
over again very fast. Assembly language is the set of instructions that the pro-
cessor understands. , 

The memory external to the processor is numbered from 0 to 4294967295, 
which is the maximum addressable memory the 68000 series of processots can 
have. This is a total of4 gigabyte~. Memory locations are generally expressed 
in hexadecimal (base 16), where the addresses run from 0 to $FFFFffff. The 

(]}ndicates that the number is hexadecimal (hex). MacsBug always displays 
memory addresses in hex, and often omits the $ since hex is the default. 



14 ..,.. Chapter 2 MacsBug Basics 

By the Way ll>l Number Systems 

We are all familiar with decimal numbers. The digits range in value 
from zer-o to nine, and the digit at each position is a multiple of th~t 
position's power of ten. For ex~ple, the uu.rqber 459 is 4*Io2 + 5*101 + 
9*10°,,or. 400+;50t9. 

At the lowest level, computeT$ deal with two states: on and off. This 
is the basis for. tl;l:e binary numbering system, whieh consists of two 
digits, .zera and 0ne. ~ one indicates. tbat a particular power 0f two is 
present; a zero indicates its absences. For example, the number binary 
number% 1011 is 1 *23 + 0*22 + 111;21 + 1*2°, or 8+0+2+ 1 or 11 in 
decimal. The % indicates biRary. ,, 

Binary numbers 12an become very long. For example, the decimal 
number 250 :is binaty %11111010. Thus, programmers typically express 
.numbers in hexadecimal, w.hlehis base 16. In hex, each digit 
represents four bmat:)?' digits: 24=16, The hex digits 0 through 9, A, B, 
Cr D, E, ar:td F. represent the nut:nbers 0 through 15. Thus the decimal 
mu:nber 13 is biliary %1101 and hex$D. To conver-t hexadecimal to 
decimal, sU:nply multiply each digit by the eorrespondin§ power of 16. 
For example{ hexadecimal$3AB is 3*162 + 10*161 + 11*16 , ot 
768+ 160+l1 or decimal939. 

The processor in the Macintosh has its own internal memory. The individual 
memory locations inside the processor are referred to as registers to distinguish 
them from the memory ext.!mlalto the pr . The most commonly used 
registersaretheeigh <iatare iste~ name D0-07 ndthe~h~ressre -
isters~p-AW There is also a special regis r, the program eotiiiter o , 
which keeps track of the location where in memory, llie processor should ge 
the next instruction. Each of these registers can hold u to a 32-bit v e. 

There is another special register, the ondition co~~ _ CCR hat 
contains information about the result o previous instructions. There are five 
bits, or flags, which are commonly used in this register. They are cleared or set 
based on the result of the previous operation. Th~g?Ne 



N (negative) 

Z (zero) 

V (overflow) 

C (carry) 

X (extend) 

...,. Low Level Details of the Macintosh 15 

Set if the most significant bit of the result is set; cleared 
otherwise. 

5 

Set if the result is zero; cleared otherwise. 

Set if there was an arithmetic overflow; cleared otherwise. 

Set if a carry is generated by addition or if a borrow is 
generated by subtraction; cleared otherwise. 

Similar to the carry flag but affected by fewer instructions. 

These flags are used primarily in the branching instructions described in a fol­
lowing section. 

The CCR and the PC are updated automatically by the processor, whereas 
programs use the data and address registers directly. The MacsBug display 
(Figure 2-4) always shows the current contents of the PC and the CCR . 

.,.. Memory Maps 

For low-level debugging it is important to understand how memory is orga­
nized. This organization is shown with a memory map. 

Macintosh SE Memory Map 

The memory map of the Macintosh SE is shown in Figure 2-2. 
The SE uses a 68000 processor that effectively has 24 address lines. Thus, 

the addressable memory ranges from $00000000 to $00FFFFFF. The high byte 
of the address is kept internally by the processor but never appears externally. 
Therefore, accessing address $xx123456 is identical to accessing address 
$00123456. Since there are only 24 address lines external to the 68000 processor, 
there is no such thing as 32-bit mode on Macintoshes based on the 68000. 

Macintosh II Memory Map 

The memory map for Mac II class machines is more complicated. These ma­
chines use a 68020 (or 68030) processor, which effectively has 32 address lines. 
The addressable memory ranges from $00000000 to $FFFFFFFF. With the 
Macintosh II, the high byte of the address is significant. Unfortunately, many 
early Macintosh programs, including early versions of the Macintosh ROM, 
use the high byte of the address for data storage. 



16 ...,.. Chapter 2 MacsBug Basics 

SOOFOOOOO - -
$00E80000 - -

SOOEOOOOO 

$00000000 

soocooooo 

$00800000 

SOOAOOOOO 

$00900000 

$00800000 

$00700000 

$00600000 - -
$00580000 - -

$00440000 - -
$00400000 - -

$00200000 

$00100000 

$00000000 

Figure 2-2. SE memory map 

VIA 

IWM 

SCCwrite 

sec read 

SCSI 

256K ROM 

4-MegRAM 

2-MegRAM 

1-Meg RAM 



...,. Low Level Details of the Macintosh 17 

To maintain compatibility, the Macintosh II requires special hardware to 
clear the high byte. When this external hardware su_ep_~se& the high byte of 
the processor address, the Macintosh is said to be ~~4-bit m"OOejince only 
24 bits of the address are relevant. 

To extend the memory capabilities of the Macintosh, it is necessary to use 
the top byte of the address as part of the address and not as data. Applications 
that do not use the · te of the address to store data are called 32-bit clean 
and can run · 32-bit mode Figure 2-3 shows the Mac II memory map in both 
24-bit and 32-bl moue. 

Note that the scale on the32-bitmemory map is 256 times the 24-bit memory 
map; that is, the entire 24-bit Macintosh could fit in the $FOOOOOOO to $Fl 000000 
slice t · eserved at the top of the 32-bit memory map. 

MMU · a chip that remaps addresses. MMU stands fo.r._ Memory Man-
... agemenbrnit .On the~ the distinction between 24-bit and 32-hit modes 
is made by a chip called tfi?HMMU_::)n 32-bit mode, the chip simply passes 
the address straight througidh24-bit mode, it strips the high byte and remaps 
the 24-bit address. 

On machines that have a a ed memo mana ement u 't {P uch 
as the Mac ITx, the 24-bit and 32-bit mode mapping occurs in the P . While 
the HMMo IS a specialized chip, the PMMU is a general solution to remapping 
addresses and is built into the 68030 processor. 

From a software perspective, all you need to know is whether you are in 
24-bit or 32-bit mode and whether addresses are 32-bit clean. The Macintosh 
system has several routines to manage switching between modes and for con­
verting addresses from one to the other. The specifics on using these routines 
are described in Inside Macintosh, Volume V and in the Apple Tech Notes. 



18 ..,. Chapter 2 MacsBug Basics 

24-bitmode 

1/0 

SOOFOOOOO 

SOOEOOOOO 
I 

$00000000 Expansion 
cards 

soocooooo 

$00800000 
1-Meg 

each slot 
SOOAOOOOO 

$00900000 

ROM 
$00800000 

8-MegRAM 

$00400000 

4-Meg RAM 

$00200000 

$00100000 
2-Meg RAM 

$00000000 
1-Meg RAM 

SF1000000 
SFOOOOOOO 

$60000000 

$50000000 

$40000000 

$00000000 

32-bitmode 

Expansion cards 

ReseNed 

Expansion 
cards 

Additional 
256-Meg 
each slot 

1/0 

Up to 
256-Meg ROM 

Up to 

1 024-Meg RAM 

Figure 2-3. Macintosh II memory map in 24-bit and 32-bit mode 



.,. The Anatomy of the MacsBug Screen 19 

....,. The Anatomy of the MacsBug Screen 
MacsBug is a low level debugger, which means it works at the machine level. 

Figure 2-4 shows the MacsBug screen. The various areas of the screen are labeled 
and described briefly. Notice that the various parts of the MacsBug display cor­
respond directly to the parts of the 680x0 discussed in the previous sections. 

1. Memory display-The memory display is generally used to display the 
stack. Macsbug' s SHOW command allows us to specify an area of 
memory to display, and a format to display it in. The default is to show 
the stack. 

2. Current application name-This part of the screen shows the name of 
the current application. Since some applications do processing in the 
background, the name may not be what you expect. 

3. Address/memory mode-This shows which addressing and memory 
mode the machine is currently in. The address mode is either 24-bit or 
32-bit as discussed in the previous section. In System 7.0, virtual memory 
can be in use (see Inside Macintosh, Volume VI). In MacsBug, the memory 
mode is one of: 

RM Real Memory; Virtual memory is not being used. 

VM Virtual Memory is being used, and the Memory Manager can 
swap pages if MacsBug requires it. 

vM Virtual Memory is being used, but MacsBug was invoked at a 
time when page swapping cannot occur. 

4. Status register-The status register (SR) display shows the contents 
• of th essor fla s. If the flag name appears as a capital letter it is true 

(1), owercase dicates the flag is false (0). The flags areS, M, X, N, Z, V, 
and C. 

The X, N, Z, V, and C flags were described previously. T~ the 
supervisor mode fl~. Standard Macintosh programs all run m supervi­
sor mode, so this flag is typically set as true. The A/UX operating system 
uses~ 
Th~etermines which of ~o sup~~sor stack pointers are 

used. Currently, this is not used on the Macintosh. 

5. Data register display-This area of the status region displays the con­
tents of the eight data re~isters. 

6. Address register display-This area of the status region displays the 
contents of the eight address registers . 

• 



20 ..- Chapter 2 MacsBug Basics 

sp ... I. Memory display (usually the stack) 0034668A 
sA 00000000 
SE 0034800C 

•••• •4•. 
92 0000eatE 
96 0035868C 

•••• •5•. 
9A 00346CEC 
9E 0034AE80 

•41• •4•• 
A2 003466A8 
A6 00000002 

•4f• •••• 
AA 0ee0etE4 
AE 0034F1A6 

•••• •4•. 
82 000000tE 
86 00350268 

•••••5•h 
8A 0000001E 
BE 00030034 

•••••• •4 
C2 6DA44081 

CurApHame ... 2. Current application name 
Finder 

24-bil RM ... 3. Address/memory mode 
SR SmxnZvc 0 ... 4. The status register (SR) 
00 000B006E 
ot 000B00DC ... 5. Data register display 
02 00000002 
03 00350008 
04 093467BE 
05 B91E4009 
06 00000D5F 
07 00030034 .....----6. Address register display 
A0 0035A768 
At 0035A768 User break al 003A2BAA A2 0935AE48 NMI - 7. Main display area A3 092C02F8 NMI A4 092CD200 
AS 0935868C No procedure na111e 

•CMPA. L '- -$00C0<A5 >, A9 I BtEO FF40 A6 003466AA 003480C8 
A7 0934668A ....... " ~~· Programco~nterwindow 

9. Command hne 

Figure 2-4. The MacsBug screen 



.,.. Basic Command Line Editing 21 

7. Main display area-This area is used to show the result ofMacsbug com­
mands. You can set the size of the history buffer (see the following section 
on configuring Macsbug) and then review the results of prev· m­
mands after they have scrolled off the screen 1zy using th up and down 

: arrow keY-S:> 

8. Program counter window area-This area shows the next few instruc­
tions the processor will execute. You can set the number of instructions 
displayed (see the previous section on configuring Macsbug). If the cur­
rent instruction is a branch, MacsBug displays whether or not the branch 
will be taken, as well as the address to which the branch will occur. 

9. Command line-You enter commands into MacsBug on the command 
line, described in the next section . 

....,. Basic Command Line Editing 
All typing you do in MacsBug appears on the MacsBug command line. Macin­
tosh users are accustomed to using the mouse. However, one of the MacsBug 
design goals was to use as little of the system as possible. After all, when a pro­
gram crashes, there is no telling how much of the system is still intact. Since 
the MacsBug code is always residel'l:t, a second MacsBug design goal was to 
keep MacsBug as small as possible. The result is the command line interface. 

The MacsBug features are introduced throughout the chapters as they are 
needed, and summarized in Appendix A. All of the command line editing 
commands are described here to assist in making future editing sessions 
trouble free. 

The command line interface is very simple. There are only a few editing 
commands to learn . 

....,. Arrow Keys 



22 ..,.. Chapter 2 MacsBug Basics 

...,. Option Key 

Holding th(Oi)tion ke~while ress · eft O!_~gttt arrc:~oves left 
or right bi a word; holding th Command ke hile pressingiliiiean:d"tiilht 
~rrow "l<e _ s )noves the cursor to t e beginning or the end of the line . 

...,. Delete Key 

eletes ~haracters to the left of the cursor. Holding the~ 
key while pressin D . rase t e word to the left of the cursor; holding the 
<$-§mmand~hile press· Dele!~_ rases the entire line to the left of the cur­
sor . 

...,. Return Key 

The Return key executes the entire command line. no matter where the cursor 
is. li_nothing has beef!. entered, the ~J~ .~nt command is repeated . 

...,. The Command History Buffer 

The previous 50 MacsBug commands are kept in a buffer, even after leaving 
MacsBug (but not afte rebooting, of course!). These commands can be resur­
rected by typin Co and-~ hich sequentially traverses the_past com­
mands. Typin ommand- es the buffer in the other direction. This his-

tory-buffer is ru:cu r, t us typing Command-S can tai<e you from command 
1 to command 50. 

These are all the commands necessary to navigate the command line. Com­
mand-V and Command-S, which traverse the command history buffer, are 
very powerful, since a future command will often be identical to or only a 
slight modification of a past command . 

...,. Entering MacsBug 
Once MacsBug is installed, there are five ways to enter it: intentionally with 
the programmer's switch or the Programmer's Key INIT, intentionally when 
an application calls the Debugger or DebugStr traps, or unintentionally via a 
system error. 



...,. Entering MacsBug 23 

.,._ The Programmer's Switch 

Some Macintoshes come with a strange piece of plastic known as the program­
mer's switch. It has two buttons on it, one which resets the machine, and another 
which forces a non-maskable interrupt (NMI) that drops the Mac into Macs­
Bug. A few machines do not come with the programmer's switch. The Macin­
tosh Classic has the switches built in, and the si and LC have the functionality 
built into the keyboard . 

.,._ The Programmer's Key INIT 

A more effective way to enter MacsBug is to use a utility program (installed 
as an INIT) called Programmer's Key, which is o_n the enclosed disk. As with 
all INITs, the Programmer's Key is installed simply by draggmg a copy into 
the System Folder. Table 2-1 shows the key combinations for using Program­
mer's Key on Macintoshes with Apple Desktop Bus keyboards (all Mac II class 
machines and all B&W machines since theSE). 

Table 2-1. Programmer's Key combinations 

Action 

Interrupt 

Reset 
Restart 

ShutDown 

Key combination 

For Macintosh computers that don't have Apple Desktop Bus keyboards, 
use the Clear key instead of the Power-on key. Again, the Macintosh II si and 
LC have this functionality built in, and you do not need the Programmer's 
KeyiNIT. 

This is much more convenient than trying to remember which switch resets 
the Macintosh and which causes an NMI. Furthermore, the Programmer's Key 
utility does not interrupt time-critical operations such as VBL tasks, while 
pressing the programmer's switch can. 

To disable Programmer's Key temporarily at boot time, hold down the 
mouse button or the shift key. To disable it permanently, drag it out of the 
System Folder. 



24 ~ Chapter 2 MacsBug Basics 

...,. The Debugger and DebugStr Traps 

To help during the debugging phase of development, you may want to enter 
MacsBug intentionally at a particular point in your application. There are two 
ways to do this: the Debugger and DebugStr traps. The Debugger trap simply 
enters MacsBug, while the DebugStr trap enters MacsBug and displays ames­
sage. You can temporarily disable entering MacsBug by these means with the 
Debugger eXchange (OX) command. To enable these breaks, simply use the 
DX command again. 

An application can also execute MacsBug commands via the DebugStr trap. 
This is discussed further in Chapter 17 . 

...,. System Error 

Another way to enter MacsBug is via a system error. Generally, this is an un­
welcome event, but MacsBug provides two commands, ES and EA, to try to 
recover. These MacsBug commands make MacsBug useful to every Macintosh 
user, even non programmers. The following section, "Leaving MacsBug," dis­
cusses ways to leave MacsBug, even in the case of a system error . 

...,. Leaving MacsBug 
Eight commands exit from MacsBug: S, T (or SO), GT, G, ES, EA, RB, and RS . 

...,. Step 

Note ... j 

The Step (S) command leaves MacsBug, executes the next instruction, and then 
reenters MacsBug. If the instruction is a subroutine or an A-trap call, the S 
command reenters MacsBug at the first instruction of the subroutine. For traps, 
the S command continues execution at the first instruction of the trap. 



..._ Leaving MacsBug 25 

..... T (or SO) 

The Trace or Step Over (Tor SO) command is much like the step command ex­
cept it treats subroutines and traps as a single instruction. Generally, you will 
reenter MacsBug immediately after using the Trace command. There are a few 
situations where this doesn't happen; if a subroutine crashes or changes there­
turn address, for example . 

.,... GoTo 

The GoTo (GT) command continues execution until a specific address is 
reached . 

.,... Go 

The Go (G) command simply continues execution at the next instruction as 
though MacsBug had never been invoked. This command is useful when you 
enter MacsBug intentionally. The G command also optionally takes an address 
as a parameter. If an address is specified, execution continues at that address . 

.,... Exit to Shell 

The Exit to Shell (ES) command is useful when an application crashes. For ex­
ample, if you are running Multifinder and have several applications running 
at once and one of them crashes, you are typically forced to restart the Macin­
tosh, possibly losing some of your work. 

The ES command is very useful here. This command ~let you save 
work in the crashed application, but it may (depending on how damaging the 
CfaSnWas tO the rest of the system) ";_llow you to regain control of the Mac and 
~ave documents in other applications. The ES command does not have any pa: 
rameters, simply type es and then press the Return key. The Mac will attempt 
to abort the currently active application. 

Unfortunately, there is no way of knowing how functional the Mac is after 
an application crashes. Many applications merely destroy themselves when 
they crash, and the ES command is a graceful exit. But the crashing application 
may have damaged some part of the system, which may lead to an unrecover­
able crash later. Technically, after using the ES command and saving data from 
other applications, ou should reboot the Mac. In practice, many crashes are 
not harmful to t stem or ot er running applications), and you can con-

-tinue work without restarting. Unfortunately, it is difficult, often impossible, 
to determine whether a crash was harmful to the System. 



26 ~ Chapter 2 MacsBug Basics 

~ Exit to Application 

The Exit to Application (EA) command may also be useful when an applica­
tion crashes. Rather than aborting the crashed a lication, the EA command 
attemgts,to Teia~ it. All your wor in t e crashed application will be lost, 

Tut it is a quick way to start over. Again, depending on the severity of the crash 
(which is often difficult to know), the same cautions that apply to the ES com­
mand apply here. 

~ ReBoot 

The ReBoot (RB) command unmounts the boot volume and performs a cold 
start. This means that exterrlii volumeS,.~t identified as having been.JID:_ 
mounted properly, so they will be reexamined during the restart sequence to 
make sure they are OK. For large disks, this can be a lengthy process. 

~ ReStart 

101 

The ReStart (RS) command can save some time when you are forced to restart 
the Mac. Restart~nmounts all volum~ and the!} r~ the Macintosh. It is 
possible for this process to fail in a corrupt machine in which case you will be 
forced to reboot, or turn the Mac off and then on again. Since RS unmounts all 
volumes, the machine will boot faster than if you used the RB command. Since 
RB unmounts only the boot volume, it begins the rebooting process sooner. 

A Sample MacsBug Session 

From the Finder, or any other application, enter MacsBug via the Program­
mer's Key or the programmer's switch. 

~ A-Trap Break 

The A-Trap Break (ATB) command tells MacsBug to break when traps are en­
countered. To break the next time the GetNextEvent trap is encountered type 

atb getnextevent 

MacsBug will affirm that the break has been set. Now type 

g 



...,. Leaving MacsBug 27 

which tells MacsBug to continue executing, as previously discussed. Within a 
few seconds you will drop back into MacsBug, since programs are constantly 
calling GetNextEvent to obtain user events. If you type 

atb 

without a trap name, MacsBug will break when any trap is executed. HMacsBug 
does not break at GetNextEvent, set a breakpoint at WaitNextEvent instead. 

~ The Escape and Back Quote Keys 

You can see what was on the screen by pressing either the Escape or back quote 
keys. Oneorffiese keys 1sin the upper left corner of all Macintosh keyboards. 
The reason there are two keys is that the early Macintoshes did not have an Es­
cape key, and the current Macintosh keyboards have the Escape key where the 
back quote key used to be. The back quote key is shown in Figure 2-5. 

\ 

Figure 2-5. The back quote key 

~ A-Trap Clear 

The A-Trap Clear (ATC) command tells MacsBug to clear A-trap breaks. To 
clear one specific A-trap break, GetNextEvent for example, type 

ate getnextevent 

The ATC command without a parameter clears all A-trap breaks. 

~ BReak 

The BReak (BR) command tells MacsBug to break when the program counter 
reaches a certain address. For example, to break when the program counter 
reaches GetNextEvent, enter the line 



28 .,... Chapter 2 MacsBug Basics 

br getnextevent 

MacsBug will now break whenever GetNextEvent is encountered. Notice that 
MacsBug breaks at a different place than when an A-Trap Break is set at Get­
NextEvent. The A-Trap Break command breaks when the application calls 
GetNextEvent; the break command breaks when the program counter reaches 
the beginning of the GetNextEvent code. If you type 

br 

without specifying an address, MacsBug sets a breakpoint at the current 
PC location. 

~ BReak Clear 

The BReak Clear (BRC) command tells MacsBug to clear breakpoints. To clear 
a specific breakpoint, the one just set at GetNextEvent, for example, type 

brc getnextevent 

The BRC command without a parameter clears all breakpoints. 

~ Display Memory 

The Display Memory (OM) command allows you to look at areas of memory. 
The name of the current application is stored at location $910. You can look at 
this name by typing 

drn 910 

If the currently active application is Nisus, MacsBug responds with a display 
such as 

Displaying memory from 910 

00000910 OA4E 6973 7573 2032 2E31 3100 6DB6 8300 •Nisus 2.11•m••• 



.,.. Leaving MacsBug 29 

~ Templates 

MacsBug also provides a way to format the memory display by using tem­
plates. MacsBug comes with some templates predefined, and you can define 
your own templates. This process is explained in Chapter 19. To see the list of 
all templates, enter MacsBug and type 

tmp 

Depending on the number of templates defined in the Debugger Prefs file, this 
list can be very long. To display a list of templates that begin with a certain let­
ter or letters, simply type TMP followed by the letter or letters. For example 

tmp a 

returns a list of all templates that start with the letter a. On my machine, Macs­
Bug responds with 

Template names 

ApplName 

applkey 

applrec 

Accept Event 

AuxDCE 

AuxWinRec 

The first template, ApplName, is a template for displaying the application's 
name. To use the template, enter MacsBug and type 

dm 910 applname 

On my machine, MacsBug responds with 

Displaying ApplName at 00000910 

00000910 Current Application Nisus 2.11 

Admittedly, this template is trivial and adds nothing to simply displaying 
memory at $910 without a template. Templates come in very handy when you 
are looking at more complicated data structures. For example, in the next chap­
ter you will learn about heap zones. There is a MacsBug template for display­
ing zones. For example, if you enter MacsBug and type 

dm @SysZone zone 



30 ...,. Chapter 2 MacsBug Basics 

MacsBug responds by displaying the system zone header (the response on 
your machine will differ). 

Displaying Zone at 00001EOO 

00001EOO bkLirn OOOBE4CO 
00001E04 purgePtr 
00001E08 hFstFree 
OOOOlEOC zcbFree 
00001E10 gzProc 
00001E14 moreMast 
00001E16 flags 
00001E28 purgeProc 
00001E2C sparePtr 
00001E30 allocPtr 

.... HOW 

00079CA4 
00062AEO 
0001C788 
0078FA2E 
0121 
0020 
00000000 
4080EE4E 
0005C538 

The HOW command displays how you entered MacsBug. For example, if you 
use the HOW command after the preceding example by typing 

how 

MacsBug responds with something like 

A-Trap break at 00792CDO: A970 (_GetNextEvent) 

which indicates that you entered via a GetNextEvent A-trap break encoun­
tered at location $792CDO . 

.... HELP 

The HELP command displays information about a command. For example, if 
you type 

help es 

MacsBug responds with 

ES 

Exit the current application. 



..,. Summary 31 

You can also use the? character as a shortcut for help. For example, to find out 
what items you can get help for, simply type 

? 

and MacsBug responds with a list of help topics . 

..,.. Summary 
This chapter presented the basics of using MacsBug: 

• How to install and configure MacsBug 

• The basics of a generic 68000-based computer system, that is, a processor 
and memory 

• The anatomy of the MacsBug screen 

• The basics of command line editing 

• Ways of entering and leaving MacsBug 

• A sample MacsBug session 

The following MacsBug commands were introduced: 

• The Debugger eXchange (OX) command for temporarily disabling 
breaks from the Debugger and DebugStr traps 

• Commands for leaving MacsBug: Step (S), Trace or Step Over (T), Go To 
(GT), Go (G), Exit to Shell (ES), Exit to Application (EA),ReBoot (RB), and 
ReStart (RS) 

• The A-Trap Break and A-Trap Clear commands for setting and clearing 
trap breaks 

• The Display Memory command for examining memory at a specified 
address 

• The TMP command, which lists templates 

• The BR command, which invokes MacsBug whenever a specific address 
is encountered 



32 ~ Chapter 2 MacsBug Basics 

• The BRC command for clearing breakpoints set with BR 

• The HELP command for getting additional help about MacsBug 
commands 

• The HOW command, which tells how you entered MacsBug 

The material on the processor and memory is difficult to understand on a 
first reading. If you are unfamiliar with assembly language, you will probably 
want to refer back to those sessions after you have done some hands-on exam­
ples from Chapters 3 through 16. 

Future displays of the MacsBug screen will deal only with the main display 
area. The stack, flags, and registers are shown when relevant. 

Part Two contains an in-depth exploration into various areas of Macintosh 
programming. It begins by continuing our discussion of memory and then 
journeys into the details of different areas of the toolbox. Many hands-on ex­
amples introduce additional MacsBug commands as they are needed. 



PART TWO 

....,_ Exploring the Macintosh 
with MacsBug 

This part is broken up into fourteen chapters, each of which explores some 
aspect of the Macintosh operating system or toolbox. 

The first two chapters of Part Two continue the discussion of Macintosh 
memory started in Chapter 2. The first chapter, "Accessing the ROM," dis­
cusses how applications access system and toolbox routines. The next chapter, 
''How RAM is Organized and Maintained," describes how RAM is allocated. 
These two chapters provide a foundation for the rest of Part Two. 

The next chapters explore specific areas of the toolbox. The main event 
loop, resources, menus, windows, dialogs, controls, QuickDraw, device 
drivers, the file system, printing, CDEVs, and INITs are discussed in Chapters 
5 through 16. 

33 



3 Accessing the ROM 

So far we have described the generic components common to every computer 
system: a processor and memory. We also discussed that the MacsBug screen 
layout directly displays the processor registers. In fact, the original MacsBug 
was simply a generic debugger for 68000 family processors and was around 
long before the Macintosh. The "Mac" name is merel a coinci­
denc(J!1acsBug)ctually stands fo otorola Advanced Com utin S stems 
Debugger. Had the Macintosh been ed Granny Smith, the debugger would 
still be called MacsBug. This is not true of Mac Write. 

The Macintosh operating system and toolbox are a large set of routines that 
enable application programmers to give their programs the look and feel 
unique to Macintosh. These routines offer functions common to many applica­
tions. Loading and saving files, handling menus and windows, drawing to the 
screen, and printing are examples of things every application writer would 
have to generate from scratch were it not for the Macintosh toolbox. 

The operating system and toolbox routines impose structure on the base 
computer system, consisting of a processor and memory. The toolbox and sys­
tem reserve portions of the memory space and define the uses for other parts. 
Furthermore, they establish a number of conventions for register usage by 
which applications should abide. 

Most of these system-level routines are in the Macintosh ROM. This chapter 
discusses how applications interact with the ROM. 

35 



36 .,.. Chapter 3 · Accessing the ROM 

...,.. Where Is the ROM? 

The ROM is at different locations, depending on the model of Macintosh. The 
following chapter, "How RAM is Organized and Maintained," discusses an 
area of memory where system globals are stored. One of these globals, called 
ROMBase, contains the location of the start of the Macintosh ROM. 

Examining Low Memory 

You can look at memory using the MacsBug command Display Memory (OM). 
MacsBug knows the address of many of the system global variables, so you can 
examine their contents by typing 

dm 

followed by an address or name of the variable in which you are interested. 
Enter MacsBug (either by pressing the programmer's switch or through the 

Programmer's Key INIT-see Chapter 2) and type 

dm r ombase 

MacsBug responds with a display such as 

Displaying memory from 02AE 

000002AE 4080 0000 0000 lEOO 0000 A8 34 A0 02 08 9C @• .. ••••• .. 4t .. • 

Here the address is ROMBase, which MacsBug replaces with its value, 
$02AE. The value stored at ROMBase is a long value (4 bytes), so the ROM on 
this Macintosh (a Macintosh Ilcx) starts at location $40800000. From the 24-bit 
and 32-bit address maps of the Macintosh II in Chapter 2, you can see that the 
24-bit version of this address is $00800000 (the high byte is stripped), which is 
where the Macintosh ROM resides. And the 32-bit version, $40800000, is in the 
ROM space in 32-bit mode. 



I BytheWoy ~ 

...,. A-Traps 37 

·~·lJse fhe:N1atsBug>cq$nta,nd,pi$pJ~y·y&sion (DV)•to see~hich.version .. 
· of MacsBqg_y()1Ntre.t1sing.! J'h~.c;~an4 takes n9 Parameters; from · 
~ Ma.csBug simply .type . · ·. . . ·. · · · · 

-· 

...,. A-Traps 

BytheWay ~1 

Calling Macintosh system functions via traps is a basic part of programming 
on the Macintosh. 

The toolbox calling mechanism is implemented vi exceptions, hich are 
conditions that stop the processor from continuing execution an unmediately 
transfer control to an address contained in a Jable in low memory. Exceptions 
are caused in many different ways: Unimplemented instructions, bus errors, 
and interrupts all cause exceptions. 

The Macintosh takes advantage of this mechanism for catching (trapping) 
A-line exceptions and uses it to call system routines. System routines are 
called by word -sized instructions that begin with the number $A and are thus 
called A-traps. For example, the word instruction $A8F6 is the Draw Picture 
A-trap. When the processor encounters an A-line instruction, it continues 
processing at the address contained in memory location $28. When the 
Macintosh starts up, this location is set to point to the dispatcher in ROM. The 
dispatcher then looks at the word that caused the exception and jumps to the 
appropriate system routine. 

",. 't -:: '.::~:- :. :; '. .• .,, .. '• . i ..... •' .•. ,_ 

··,:bt~~~~¥~~,1~~~:·s~~t~~;m~~~·~ov-eme~~~a.rtd••.keyboard events, 
.. , :~C>use:#l~ilo'W!rilemocy:.~*~~PH9lfY:eeto~s .. Jf.:anrap.plication . . . . . 

· inadverlenW~tes tcrfue~~O.~~~ory ve,ctor~~ ~e1nachirte will 
~ an:dy~~llQt be·~J>J~:wwo.v,e the·qll'so~·or'type~ This is a .. 
. common prol>lem.With PtR~amsotnatallocate a bl6ckofmemory and 
fail to Ch.eck'ifthe allOcation :wa~T-Sliccessful. lf the allocation fails, the 

'"::~-~-~-~~~;~~n;,, 
• H" >• •q-•-" , , ,· :·. 1 

Figure 3-1 shows how the system handles calls via the trap mechanism. The 
list following explains the numbers in the figure. 



38 .,.. Chapter 3 Accessing the ROM 

high memory 

ROMBase $2A~ 

/ 

AppiLimit $~ 

AppiZone $2~ 

SysZone $2A6 ~ 

G 
low memory 

~ 

ROM 

~ / 
• 

Application Heap 

Application Code 

System Heap 

Trap Dispatcher 

System Globals 

A-line Excrs~~n vector 

Figure 3-1. The trap dispatch mechanism 

• 

~ 

1 

.., 
I 
I 
I 
I 
I 
lunpatched 
I 
I 
I 
I 
I 

I 
I 

~patched 

"""" ... 

1. The application generates an exception via the A-trap word. (When 
MacsBug displays A-traps, the name of the system routine, rather than 
the trap number, is displayed.) All exceptions are routed via exception 
vectors that reside in low memory. 

2. The A-trap exception is routed to the trap dispatcher. 

3. The trap dispatcher configures the stack so it looks as if a subroutine, 
rather than an exception, was called and continues executing at an ad­
dress it gets from the trap table. If the trap has not been patched, the ad­
dress in the trap table points to ROM. If the trap has been patched, the 
trap table points to a RAM address, generally in the system heap. 



By the Way ..,.I 

..,.. Toolbox Calling Conventions 39 

The trap table resides in RAM and is built when the system starts up. This 
implementation allows Apple to modify calls, called patching, in future ver­
sions of the system by changing their address in the trap dispatch table. This 
technique is used to fix bugs and add functionality. Figure 3-1 shows that the 
entry in the dispatch table can point either to RAM in the system heap or to the 
ROM version. 

Using this dispatch mechanism incurs overhead that may be undesirable 
for time critical code. You can use the system routine GetTrapAddress to find 
the location of a routine and call it directly. For OS routines (trap numbers be­
low $A800) the trap dispatcher saves registers AO-A2, Dl, and 02. If you call 
an OS trap directly, the contents of these registers may be destroyed. 

The next section examines toolbox calling in greater detail. 

The current version. of MacsBug is greatly impn>ved from the generic 
debugger its ancestor was and has mru;ty extensiops specific to the· 
Macintosh. For example, when exam.iniJig cpde, MacsBug replac~s 
A-traps with tn~:narrie of the syste.m ()r-. · . ·n~ox routine bemg"e~l!e~ . 
rather tnan·siinpfY~'Gisplaying tlie A- · · ber: FurVtetm:B&e; . · 
MacsBug has many commands that have plicit knoWleClge of 
Macintosh conventions. For example, the Exit to Shell (ES) command, 
discussed in Chapter 2, executes the system ExitToShell trap that 
aborts the current application and attempts to return to the Finder. 

Toolbox Calling Conventions 
All the tool calls available on the Macintosh are documented in Inside Macin­
tosh, Volumes I through VI. These calls use two different calling conventions: 
register based and stack based. Throughout the Inside Macintosh volumes, reg­
ister-based calling conventions are given for all routines that have them; if no 
convention is shown, then the routine is stack based. The calling convention 
considerations are automatic ally handled by the interfaces and glue in the de­
velopment environment. This information is included here for instructional 
and debugging purposes. 



40 .,.. Chapter 3 Accessing the ROM 

...,. OS Traps: Usually Register-Based Calls 

Note ""I 

A register-based call is one in which the parameters to the routine and results 
returned from the routine are passed in processor registers. Most of the OS 
traps (trap numbers $AOOO-$AOFF) are register based. By convention, the reg­
ister-based routines preserve all of the registers except AO and DO. (OS traps 
can have numbers as high as A7FF, but bits 8, 9, and 10 are used only as flags.) 

Preserving the contents of registers occurs in two different places: the 
routine itself and the trap dispatcher. OS routines are responsible for 
preserving all registers exeept Ab, AI, and D0-02. For OS routines, the 
trap dispatcher saves Al, Dl, D2, and AO depending on bit 8 of the 
trap word. If bit 8 is se~( the routine returns AO. If bit 8 is elear, AO is 
preserved by the trap dispatcher . 

...,. Toolbox Traps: Usually Stack-Based Calls 

Note ""I 

Stack-based calls receive their parameters and return their results on the stack. 
Most of the ToolBox traps (trap numbers $A800 - $ABFF) are stack based. For 
Toolbox traps, bit 10 of the trap word is the auto-pop flag. 

The trap dispatcher does not save and restore registers when a toolbox 
trap is called. Toolbox routines preserve all registers except AO, Al, 
and D0-02. The application must save these registers before making a 
Toolbox call if it needs them. 

...,. High Level Languages and Traps 

The stack-based routines follow Pascal calling conventions. Pascal calling con­
ventions are as follows: 

1. Room for a result (if the routine returns one) is made on the stack. 

2. The parameters to the call are pushed onto the stack in the order they are 
listed in the function. 

3. The routine is called. 



...,. Toolbox Calling Conventions 41 

The called routine is responsible for stripping all its parameters off the stack. 
If it returns a result, the result is left on top of the stack (where the caller left 
room for it). 

For example, the Window Manager routine GrowWindow takes three pa­
rameters, a WindowPtr,a Point, and a Rect, and returns a LONGINTresulttell­
ing you the height (in the high 16 bits) and the width (in the low 16 bits) of the 
resulting window. Inside Macintosh, Volume I lists the call as follows: 

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; 
sizeRect: Rect) : LONGINT; 

To call this routine, you must 

1. Make room for the result 

SUBQ.L #4,SP 

2. Push the parameters onto the stack in the order they are listed in the function 

MOVE.L theWindow,-(SP) ;WindowPtr 

MOVE.L startPt,-(SP) ;Point 

PEA sizeRect ;Rect 

3. Call the routine 

GrowWindow 

When control returns to your program, the LONGINT result will be on the 
top of the stack. It is your responsibility to remove this result. 

MOVE.L (SP) +,DO ;Get result 

Almost all Macintosh programs use the Grow Window function; when you 
use MacsBug, it's easy to see it in action. 



42 ..,.. Chapter 3 Accessing the ROM 

101 Exploring GrowWindow 

Boot your favorite application that has windows with grow boxes. Finder 6.1.5 
is used for this example. 

Enter MacsBug and set an A-trap break at Grow Window. An A-trap break 
means MacsBug will halt execution when a specific A -trap is called, in this case 
Grow Window. You can set an A-trap break by entering MacsBug and typing 

atb growwindow 

Return to the Finder using the Go command. Type 

g 

As you learned in Chapter 2, this command tells MacsBug to continue 
executing at the current program counter. Since you did not change the PC, 
execution will continue as before and you will return to the Finder. 

The next time the Finder calls the toolbox routine GrowWindow, the Mac 
will break into MacsBug. Sure enough, as soon as you click the mouse in the 
grow box in an attempt to resize a window, you enter MacsBug with the message 

A- Trap Break at 0036EFAE : A92B (GrowWindow) 

Of course the break address ($0036EFAE) will be different on different sys­
tems. You can now examine the surrounding code and the parameters being 
passed to GrowWindow. To list the program in the area around the PC, type 

i p 

MacsBug lists a section of code. The instruction at the current PC has an as­
terisk to the left of it. In this example, the line reads 

0036EFAE * GrowWindow ; A92B I A92B 

Several related commands disassemble a section of code. The Instruction 
List (IL) command begins disassembling at the current PC address or at the 
supplied address. For example, the command 

il g r owwi n dow 

begins listing at the toolbox function Grow Window. Here, as in the DM ROM­
base command used earlier, MacsBug replaces a symbol with its value. 



By the Way .... , 

..,. Toolbox Calling Conventions 43 

The IR (Instruction list until Return) command disassembles instructions 
until it comes to the end of a procedure. The ID (Instruction Disassemble) com­
mand disassembles one line. Of these four commands that disassemble 
memory, you will most likely use the IP and IL commands far more than the 
other two. 

As discussed in Chapter 2 under "The Anatomy of the MacsBug Screen," 
the top left of the MacsBug screen displays the top of the stack. In this example 
the top of the stack is 

SP 

0037A9FE 

FE 0037AA4 6 

02 008E0365 

06 00355C98 

OA 0036EF8A 

OE 00 000 00 0 

12 0 0370 00 0 

Since Pascal convention is to push the arguments in the order they appear 
in the function, the item on the top of the stack ($0037 AA46) is a pointer to the 
sizeRect. Since Pascal convention is to pass data structures that are larger than 
4 bytes by reference, rather than the actual data, a pointer to the rectangle, ra th­
er than the rectangle data, is passed. 

C does not automatically pass structures greater than 4 bytes by 
reference. If you wish to call the Grow Window function from C, you 
must preface the rectangle parameter with an ampersand(&), which is 
the C operator that signals to take the address of the data rather than 
the data itself. For example, the C seurce that makes the call might 
look like "' 

Ne wSi ze = GrowWindow ( myWin~ow~t~ , myPoint , &myRect); 

To look at the rectangle, type 

dm 37aa4 6 



44 ~ Chapter 3 Accessing the ROM 

You will need to substitute the address from your machine for the $37 AA46. 
MacsBug responds with 

0037AA46 0060 0060 0440 0480 3B44 0035 5C98 0000 

The rectangle data structure is four words that represent the top, left, bot­
tom, and right coordinates of the rectangle. In this case the rectangle is defined 
by ($60, $60) and ($440, $480) or in decimal coordinates (96, 96) and (1088, 
1152). GrowWindow uses the top and left coordinates, ($60, $60) in this case, 
as the minimum vertical and horizontal measurements of the window. The 
bottom and right coordinates, ($440, $480), are used as the maximum width 
and height of the resulting window. 

The next item on the stack is the start point ($008E0365). The point data 
structure consists of two words: the y-coordinate followed by the x-coordi­
nate. Since a point is a 4-byte data structure, the point, rather than the address 
of the point, is passed on the stack. The point passed is ($8E, $365), which is 
the location of the mouse-down event in global coordinates. 

The final parameter Grow Window takes is a window pointer. In this exam­
ple the window pointer is $355C98. You can look at the window you are about 
to resize by typing 

dm 355c98 windowrecord 

MacsBug responds with 

Displaying WindowRecord at 00355C98 

00355CA8 portRect FFD4 FFDD 0144 0101 

00355CBO visRgn 0035AD50 

00355CB4 clipRgn 0035AD90 

00355004 windowKind 0010 

00355006 visible TRUE 

00355007 hilited TRUE 

00355008 goAwayFlag TRUE 

00355009 spareFlag TRUE 

00355DOA strucRgn 0035F9F4 

00355DOE contRgn 0035FA08 

00355012 updateRgn 0035B050 

00355016 windowDefProc 20832A5C 

00355D1A dataHandle 0035E6 



0035501E titleHandle 

00355022 titleWidth 

00355024 controlList 

00355028 nextWindow 

0035502C windowPic 

00355030 refCon 

..,. Toolbox Calling Conventions 45 

Kon80 

0029 

0035BOF8 

00355044 

NIL 

00355A08 

The last command tells MacsBug to display memory starting at location 
$355C98 as a window record. All the fields within the window record are 
described in detail in Inside Macintosh, Volume I. Since window records are 
common data structures on the Macintosh, the format for displaying a 
window record comes standard with MacsBug. Chapter 19 discusses how to 
define custom formats, called templates, for MacsBug to use when displaying 
memory. You can define templates for data structures used by your programs, 
which often makes it easier to figure out what is going on. 

In this particular example some fields were dereferenced and interpreted. 
For example, the titleHandle field displays the contents of the handle, Kon80, 
rather than the address of the handle. This field shows the title of the window, 
which should be the same as the title of the window we are attempting to resize. 

Since a window record contains a GrafPort (see Chapter 11, "QuickDraw," 
for details about GrafPorts), the template starts displaying at $355CA8 rather 
than $355C98. Most of the fields in the GrafPort are not usually of interest 
when examining window records, so only the portRect, visRgn, and clipRgn 
fields of the GrafPort are displayed by this template. 

Now that you have examined all the parameters that you are about to pass 
to Grow Window, you execute the routine. Since Grow Window is responsible 
for dragging a gray outline of the window as you resize it, watch GrowWin­
dow in action by holding down the mouse button as you type 

t 

in MacsBug. The T command means trace over one instruction, in this case a 
subroutine call to GrowWindow. In the MacsBug documentation this com­
mand is called Step Over (SO). Both are equivalent; this book will use T since 
it is shorter, and the key combination Command-T can be used as a shortcut. 
You will often use the Command-T shortcut when stepping through code. 

If you continue to hold the mouse button, the window size changes as you 
move the mouse. When you let up on the mouse you go back to MacsBug. 



46 ..,.. Chapter 3 Accessing the ROM 

BytheWay .,..I 

Since you told MacsBug to trace over one instruction, you fall back into 
MacsBug as soon as that instruction is done. GrowWindow is complete as soon 
as you let up on the mouse button, so you expect to come back to MacsBug. 

Grow Window returns a LONG INT. This result should now be on the top of 
the stack. Our stack now shows 

SP 

0037AAOA 

OA OlCEOlFF 

OE 00000000 

12 00370000 

etc. 

The value returned is $01CE01FF. Inside Macintosh, Volume I tells you that 
the high word of this result is the new height of the window and the low word 
is the new width. 

Also of interest is that your stack now points to $37 AAOA, 12 bytes further 
up than it was before the call. This makes sense, since Pascal convention is that 
the caller makes room for the result on the stack, and the called routine strips 
all of the passed parameters. Also notice that the rest of the stack above 
$37 AAOA in memory (below in the display) remains unchanged. GrowWin­
dow must leave that portion of the stack intact, since it contains parameters 
and return addresses for other routines. 

g 

This Pascal cp:q_ventionis again different.from C. InC the calling 
function-is responsible for stripping the parameters off the stack. The 
return value can neve~: be more tnan 4 bytes and is always returned in 
a register, DO. Regardless of the language your application is written 
in, the toolbox always follows Pascal conventions. 

You can now type 



..,.. Toolbox Calling Conventions 47 

for Go to continue execution. Of course your breakpoint is still set, and you enter 
MacsBug anytime you attempt to resize a window. To clear the breakpoint type 

ate 

for A-Trap Clear. This clears all A-trap breaks-in this case, only one. If you 
had set multiple A-trap breaks and wanted to clear only the break at Grow­
Window, you would type 

ate growwindow 

Pascal Conventions 

As discussed before, Pascal conventions dictate that the caller put all input pa­
rameters on the stack in the order they appear in the function definition. Fur­
thermore, the calling routine makes room for the result (if a function is being 
called) on the stack. 

Pascal functions and procedures are responsible for removing all parame­
ters and returning a result (in the case of functions). Input parameters larger 
than 4 bytes are referenced by address. Thus, no parameter passed to a Pascal 
procedure can be greater than 4 bytes. 

C Conventions 

C conventions are different. The caller puts input parameters on the stack in 
the reverse order of the way they appear in the function definition. In Pascal, 
the top item on the stack is the one that appears last in the function definition; 
inC, it's the one that appears first. 

C implements function and procedure calls in this way to make it easy for 
functions to take a variable number of parameters. For example, the first pa­
rameter could tell the function how many parameters to expect. The C library 
routine printf takes advantage of this technique. 

Rather than having the called procedure remove parameters from the stack 
as in Pascal, C convention requires that the caller push and pop all parameters 
to and from the stack. Whereas parameters to Pascal functions and procedures 
are passed by address if the parameter is larger than 4 bytes, C will pass an ob­
ject of any size on the stack, if told to. Table 3-1 summarizes the differences be­
tween Pascal and C calling conventions. 



48 ..,.. Chapter 3 Accessing the ROM 

Note ..,I 

Table 3-1. A comparison of Pascal and C calling conventions 

Result 

Parameters 

Clean up 

Pascal convention 

Caller makes room for result 
and is responsible for 
removing result from stack. 

Caller pushes parameters 
in the order they appear in 
the function declaration. 
Parameters larger than 
four bytes are passed by 
reference. 

Called routine responsible 
for removing parameters 
from the stack. Caller 
responsible for removing 
result from stack. 

C convention 

Result returned in register DO. 

Caller pushes parameters in 
reverse order from the way 
they appear in the function 
declaration. Parameters of 
any size are passed on the 
stack. 

Caller responsible for 
cleaning up the stack. 

As of MPW 3.1, the #pragma parameter option in C allows parameters 
and return valves to be passed in registers other than the standard 
ones. For example, when C calls NewHandle, it can directly deal with 
the returned result in AO rather than requiring glue to move it into DO. 

An extension to Macintosh versions of C allows C programs to call routines 
that have Pascal calling conventions simply by declaring a function or a proce­
dure as Pascal. For example, the MPW C header file Menus.h declares the 
New Menu procedure as 

pascal MenuHandle NewMenu(sho r t menu i D, const Str255 menuTi tle ) 
= OxA931 ; 

This declaration tells the C compiler that NewMenu takes two parameters, 
a menuiD and a menu Title, and uses Pascal calling conventions. The OxA931 is 
the New Menu A-trap. (The prefix Ox tells the C compiler that the number is hex­
adecimal. In this book the$ indicates hexadecimal, unless the number appears 
as part of a C listing.) When the C compiler encounters a call to NewMenu, it 
makes room on the stack for the result, pushes the two parameters on the stack 
using Pascal conventions, and finally writes out the $A931 A-trap word. 



..,. Toolbox Calling Conventions 49 

~ MacsBug's A-trap Commands 

There are a number of commands that tell MacsBug to take some action when 
an A-trap is encountered. For example, you can display each trap as it's 
executed, record each trap called, checksum an area of memory, check the va­
lidity of the heap, or simply break. Many of the A-trap commands optionally 
take a conditional expression as a parameter. Conditional expressions are dis­
cussed in this section, which is followed by a discussion of the MacsBug A-trap 
commands. 

Conditional Expressions 

Conditional expressions are included after a command and tell MacsBug to 
execute the command only when the condition is true. The general form for 
setting a conditional breakpoint is 

br address expression 

or, for A-traps 

atb trap number expression 

MacsBug breaks whenever the expression is true. For example, if you want 
to break at the current program counter whenever register DO equals four, you 
use the MacsBug command 

br pc d0=4 

Conditional expressions are straightforward, but there is one catch which 
is best illustrated by example. Suppose you want to set a conditional break 
on SectRgn when the second region parameter passed into the call is rectan­
gular (has size 10). If you break on SectRgn, you can look at the value in 
question with 

dm @@(sp+4) 

MacsBug responds with 

Displaying memory from @@(sp+4) 

0008A6F4 OOOA 0014 0000 0190 0280 A08B 0000 0048 ••••••••••t .. ••H 

To set a conditional break when this value is 10, you might try 

atb sectrgn @@(sp+4) .w =a 



50 ~ Chapter 3 Accessing the ROM 

But this won't work. The reason is as follows: sp+4 is the location of the 
rgnHandle on the stack, @(sp+4) is the handle itself, and @@(sp+4) is the loca­
tion of the master pointer. Since the DM command displays the memory at an 
address, you will see the expected result. In an expression, you must specify 
a value, not an address. The desired MacsBug command is 

atb sectrgn @(@@(sp+4)) .w =a 

This is the same as the previous expression, except the word value (at the loca­
tion pointed to by the master pointer) is used rather than the master pointer 
itself. 

One trick you can use when you attempt to construct a complicated condi­
tional expression is to break in the desired place when the condition is true and 
then construct the expression. In the above example, you would break at 
SectRgn when the size of the region is 10 and type 

@@(sp+4) .w =a 

MacsBug responds with 

@@(sp+4) .w =a= $00000000 10 #0 '••••' 

indicating that the condition is not true and thus the expression is not behaving 
as expected. If you type 

@(@@(sp+4)) .w =a 

MacsBug responds with 

@ (@@ (sp+4)) .w = a = $00000001 n #1 •••••• 

indicating true. 
Expressions are very powerful and are used throughout the remainder of 

this book. Expressions can contain the operators listed in Table 3-2. 



.,... Toolbox Calling Conventions 51 

Table 3-2. A list of valid operators in a MacsBug expression 

Operator 

( a+ b ) * c 

@a or a" 

!a, or NOT a 

a*b 

a/b 

a MODb 

a+b 

a-b 

a ~= b, or a ~ b 

a <> b, or a != b 

a > b 

a >= b 

a < b 

a <= b 

a&b, or a AND b 

allb, or a OR b 

a XOR b 

Description 

Items in parentheses are evaluated first 

Address indirection as in C and Pascal 

Boolean NOT 

Multiplication 

Division (integer result only) 

Computes a modulo b 

Addition 

Subtraction 

True if and only if a equals b 

True if and only if a is not equal to b 

True if and only if a is strictly greater than b 

True if and only if a is greater than or equal to b 

True if and only if a is strictly less than b 

True if and only if a is less than or equal to b 

Boolean (bitwise) AND 

Boolean (bitwise) OR 

Boolean (bitwise) XOR 

These same expression operators can be used to do simple arithmetic: If you 
type a numeric expression into MacsBug, MacsBug evaluates the expression 
and displays the hexadecimal, unsigned decimal, signed decimal, and ASCII 
equivalents of the answer. For example, if you enter 

2*25+3 

MacsBug responds with 

2*25+3 = $00000040 177 177 '•••M' 

Or you might try 



52 ~ Chapter 3 Accessing the ROM 

Key Point 

3=5 

MacsBug responds with 

3=5 = $00000000 #Q #0 I 

indicating false. 
There are several important rules to keep in mind about the way MacsBug 

evaluates expressions. First, expressions are evaluated from left to right, with­
out regard to conventional precedence rules. For example, MacsBug evaluates 
2+3*5 as 25, rather than 17 as any schoolboy (or computer scientist) would re­
spond. 

Second, numbers default to hexadecimal. This is desirable most of the time, 
as when entering addresses, but can cause confusion and error when doing 
calculations. For example, 11 *ll is evaluated to289. Youmustprecedeanum­
ber with a# to indicate decimal. Don't worry; with time the hexadecimal con­
vention will seem natural. 

A-Trap Break 

The A-Trap Break (ATB) command is the workhorse of any debugging session. 
This command allows you to break whenever an A-trap is called. For example, 

atb 

withput parameters tells MacsBug to break anytime an A-trap is called. Since 
many system and toolbox routines also call other routines via the A-trap mech­
anism, you can tell MacsBug to break only when A-traps are called from the 
current application with the command 

atba 

~ I r~ 

' : ' .-, ~·- ·~-·. ··-· :··. :.;~~!;~_~Q~\- ~:~; 



~ Toolbox Calling Conventions 53 

To break at a specific A-trap, rather than all A-traps, you can specify a trap or 
range of traps, as in 

atba copybits 

which tells MacsBug to break only when the current application calls Copy Bits. 
You can also tell MacsBug to break only when a specific trap has been called 

a certain number of times. For example, to break the fourth time an application 
calls GetNextEvent, use the command 

atba getnextevent 4 

You can also tell MacsBug to break only when a condition has been met using 
a conditional expressions, described in the previous section. For example, 

atb getresource @(sp+2)= 1 CODE 1 

tells MacsBug to break anytime a 1 CODE 1 resource is loaded. Typically, Macs­
Bug is not case sensitive. But here you are looking for a resource type that is con­
tained in a single long word (see the description of GetResource in Inside Macin­
tosh, Volume I) and must put single quotes around it. The single quotes tell 
MacsBug to take the expression literally, so, in this case, MacsBug is case sensi­
tive. 

You can also tell MacsBug to execute one or more commands once the break 
conditions are satisfied. Follow the command with 

\; 

and the list of commands to execute. To execute multiple commands, separate 
them by semicolons. For example, to display each string before it is drawn, use 
the command 

atb drawstring ';dm @sp;g' 

You can combine these forms of ATB to create arbitrary break conditions. 
For example, to display only strings drawn by the application that start with 
the letter P, use the MacsBug command 

atba drawstring @ (@sp+l) . b=' P' '; dm @sp; g' 

You need to add one to the string address (@sp) to get to the first character of 
the string since DrawString takes a P-string (which starts with a byte-length 
count) as a parameter. 



54 ..,.. Chapter 3 Accessing the ROM 

Note ..,., 
Many of the trap commands can take a range of traps as a parameter. 
For example, the command 

atb a020 a040 

tells MacsBug to break whenever a trap number in the range from 
A020 to A040 is encountered. This command was useful with the 
original Macintoshes since trap numbers were grouped by function. 
Since then the system has expanded considerably, and trap numbers 
do not correspond to function as closely. Thus, using ranges with trap 
commands is not typically useful. 

CheckSum 

The CheckSum (CS) command computes a checksum for a memory range. A 
checksum is a partial sum of a group of numbers used to store a compressed 
representation of the numbers. If one of the numbers changes, the checksum 
will also change. 

The CS command computes a checksum for the values at the supplied ad­
dress or address range. Subsequent checksum commands without parameters 
recompute the checksum to see if it has changed. If the value has not changed, 
MacsBug displays the message 

Checksum is the same 

If the value has changed, MacsBug displays the message 

Checksum has changed 

An interesting side effect of the CheckSum command is that it will cause Macs­
Bug to stop immediately, even if more instructions are pending. This allows 
you to create powerful break conditions. For example, 

atb newhandle '; cs memerr memerr+l;t;cs;g 

checks the low memory global memerr before and after executing the New­
Handle trap. If the value changed (presumably an error occurred), MacsBug 
will break. This command is useful for finding memory failures. 



...,. Toolbox Calling Conventions 55 

A-Trap Clear 

The A-Trap Clear (ATC) command clears all actions on the specified trap. For 
example, the command 

ate newhandle 

clears all trap actions on New Handle. If you set a range of trap actions, such 
as with ATB without a parameter (which breaks on every trap), and then use 
ATC to clear actions on a particular trap, MacsBug breaks on all traps except 
the cleared trap. 

A-Trap Heap Check 

The A-Trap Heap Check (ATHC) command checks the validity of the heap be­
fore each A-trap call. This command is discussed with the other heap com­
mands in Chapter 4. 

A-Trap Record 

The A-Trap Record (ATR) command records each trap that was called as well 
as the location from which it was called. Since most operating system traps 
pass parameters via registers AO and DO, the value of these registers as well 
as the first 8 bytes pointed to by AO are recorded for OS traps. Toolbox traps 
generally pass parameters via the stack so ATR records the value of register A7 
as well as the top 12 bytes on the stack. 

The number of traps recorded is set by the value of the "#of traps recorded" 
field of the ' mxbi ' resource in the Debugger Prefs file. Since the ATP com­
mand (described next) displays the traps in the order they occurred, you gen­
erally don't want to record more than about 30 traps (the default is 24), since 
you will have to display them all to get to the most recent calls. When the buffer 
fills, the oldest record is lost, and recording continues. Thus, only the most re­
cent trap calls are available. 

As with most of the A-trap commands, you can append the letter A to the 
command (ATRA) to record only traps from the application. This is useful be­
cause most system calls call other traps, and your recording will just show the 
internal calls of the last ROM call rather than a record of what's on your appli­
cation's mind. 

This is one of the most useful commands for determining where and why 
an application crashed. Even though trap recording slows the Mac down 
slightly, you may want to add trap recording as part of the First Time macro so 
that trap recording is always on and, anytime you crash, you can play back the 
last trap calls. 



56 ~ Chapter 3 Accessing the ROM 

You can specify either ON or OFF as a parameter to ATR. If you don't pro­
vide a parameter, ATR toggles between modes. 

A-Trap Playback 

This command works in conjunction with the ATR command just described. 
The ATP command takes no parameters and displays the traps that were re­
corded by ATR. After turning on trap recording, an abbreviated version of out­
put from ATP may look like this. 

Trap calls in the order in which they occurred 

A924 FrontWindow 

PC = 005A9092 EVENTL00+029C 

A7 = 0060B4B6 0000 0000 005A AAD8 OOB9 OOB9 

A860 WaitNextEvent 

PC = 005A9BOC EVENTL00+0016 

A7 = 0060B4AA 0000 0000 0000 0000 0060 B4EA 

A924 FrontWindow 

PC = 005A9B30 EVENTL00+003A 

A7 = 0060B4B6 0000 0000 OOSA AADS OOB9 OOB9 

A9B4 _SysternTask 

PC 005A908E EVENTL00+0298 

A7 = 0060B4BA OOSA AADS OOB9 OOB9 OOCS OOCS 

A924 FrontWindow 

PC 005A9D92 EVENTL00+029C 

A7 = 0060B4B6 0000 0000 OOSA AADS OOB9 OOB9 

A860 WaitNextEvent 

PC = 005A9BOC EVENTL00+0016 

A7 = 0060B4AA 0000 0000 0000 0000 0060 B4EA 

The values of the registers recorded by the ATR command are their values 
at the time the routine is called. 

The WaitNextEvent and System Task traps that are constantly called make 
for a very boring trap playback. To get more interesting results, you should set 
an A-trap break on a trap that is called shortly after the ones in which you are 
interested, so that you enter MacsBug before the trap recording fills with Wait­
NextEvent. H your application crashes, MacsBug is automatically invoked, and 
it's unlikely the recording will be full of calls to WaitNextEvent. 



~ Toolbox Calling Conventions 57 

A-Trap Trace 

The A-Trap Trace (ATI) command is similar to ATR, except the output is writ­
ten to the MacsBug display immediately, not only upon request by the user (via 
ATP for trap recording). Use of this command slows the Macintosh down con­
siderably but is very useful, because the last trap called appears at the bottom 
of the MacsBug display and you can scroll up to see previous traps. Output 
from ATI is more compact (one line per trap) than output from ATP (three lines 
per trap). 

The other difference between ATI and ATR is that ATI allows you to dis­
play information about a trap selectively. You can pass ATI the same condi­
tional expressions as A-Trap Break (ATB), and only traps that meet those con­
ditions are recorded. For example, to record all calls to New Handle from your 
application when a handle size larger than $100 is requested, use the command 

atta newhandle dO>lOO 

You can achieve a similar, but slower, effect using the ATB command 

atb newhandle dO>lOO ';pc;dO;aO;al;g 

This command breaks on the same conditions as before; displays the contents 
of the program counter and registers DO, AO, and Al; and then continues. A 
similar command determines when New Handle fails (when called by the cur­
rent application) by showing the results 

atba newhandle dO>lOO ';dO;t;aO;g 

This command traces over NewHandle and then displays the value of AO, 
which is zero if the memory allocation fails. Again, use of this command slows 
the Macintosh down considerably! 

Similarly, you can use the ATI command to get the results from a particular trap 

atta newhandle dO>lOO ';t;aO;g 

Using these techniques you can usually construct a command that will pro­
duce results that can help pinpoint application problems. 

Like ATB actions, ATI actions are cleared with the ATC command and are 
displayed using the ATD command. 



58 ...,. Chapter 3 Accessing the ROM 

A-Trap Step Spy 

The A-Trap Step Spy (ATSS) command is similar to the CS command described 
earlier in this section. ATSS calculates a checksum for a memory range before 
executing the specified traps. If the memory changes, execution stops and the 
Mac drops into MacsBug. The possible parameters are the same as those 
passed to ATB. 

One use of ATSS is to check for error conditions in low memory globals. 
For example 

ATSS ,ResErr ResErr+l 

checks the value of ResErr before each trap call and breaks into MacsBug if the 
value changes, presumably when a resource error occurs. ATSS checks the 
memory before the trap call, so the code that changed the memory was executed 
sometime between the beginning of the last trap and the current PC location 
when MacsBug is entered. 

Note that the format of the ATSS command is the same as the ATB com­
mand, but the memory locations on which to perform the checksum are sepa­
rated from the trap or trap range by a comma. The default checksum size is a 
long word. Since ResErr is only a word-long parameter, you must specify an 
ending address. 

One of the best uses for ATSS is in conjunction with the ATR command. You 
can turn ATR on and then use ATSS to check for memory that changes during 
an error condition. When the break occurs you can use ATP to help pinpoint 
the problem. 

It is possible to use the ATB command in conjunction with the CS command 
to perform the same function as ATSS, but ATSS is much faster. The Step Spy 
(55) command behaves the same as ATSS, except it checksums a memory loca­
tion or range after every instruction, which is also extremely slow. 

A-Trap Display 

The A-Trap Display (ATD) command displays all trap actions that have been 
set. The ATD command displays the trap actions that have been set for the cur­
rent application as well as those set for the system or application. The ATD 
command does not take any parameters. After setting a variety of A-trap ac­
tions, typing 

atd 



...,. Toolbox Calling Conventions 59 

might produce a result such as 

A-Trap actions from System or Application 

Trap Range 

ASEC 

A970 

Action 

Break. 

Spy 

Cur/Max or Expression 

d0::::;:100 

oooooooo I 00000001 

Checksumming from 00002000 to 00002003 

A884 Check. oooooooo I 00000001 

A-Trap actions from Application only 

Trap Range 

A022 

AOOO A96F 

A971 ABFF 

Action 

Break. 

Trace 

Trace 

Cur/Max or Expression 

00000002 I 00000004 

oooooooo I 00000001 

oooooooo I 00000001 

Commands 

;drn @sp;g 

Commands 

The AID command displays trap numbers rather than names. If you need 
to know the name of a particular trap, use the WHere (WH) command. For ex­
ample, to find out what trap $A970 is, type 

wh a970 

MacsBug responds with information about trap $A970 as well as address $A970. 

Trap number A970 (_GetNextEvent) starts at 0079ECCE in RAM 

It is 0079ECCE bytes into this heap block.: 

Start Length Tag Mstr Ptr Lock. Prg Type ID File .Name 

• 00000000 00000000+00 N 

Address OOOOA970 is in the System heap 

It is 0000157C bytes into this heap block.: 

Start Length Tag Mstr Ptr Lock. Prg Type ID File Name 

• 000093F4 000021CC+OO N 

The Action column in the A-Trap Display command shows you the action 
to be performed whenever the specified A-trap is encountered. The Cur /Max 
or Expression column shows the conditional expression if an expression was 
specified, or the count if a count was specified when the A-trap command was 
entered. The default is a count of one, which indicates the action should occur 
every time the trap is encountered. 



60 ...,. Chapter 3 Accessing the ROM 

The Commands column shows any additionalMacsBug commands that are 
executed each time the trap is encountered . 

.,... ROM Organization: The MPW ROMMap File 
The Macintosh Programmer's Workshop (MPW) is Apple's integrated soft­
ware development system. (The details of using MPW are discussed in Pro­
grammer's Guide to MPWby Mark Andrews, another book in the Macintosh In­
side Out series). This book occasionally references MPW; here we are interested 
in a series of MPW text files which come with MPW and can be viewed in any 
word processor. The files are in a folder called ROM Maps. There is a file for 
each version of the Macintosh ROM, and the file contains the offsets from 
ROMBase of many ROM entry points. 

These files are useful for figuring out where ROM routines are located. For 
example, if your program crashes at some strange place in the ROM, you can 
look at the ROM map to figure out what the program was trying to accomplish . 

.,... Summary 
In this section we discussed 

• How Macintosh system routines are invoked and the function of A-traps 

• Toolbox and OS calling conventions 

• Pascal and C calling conventions 

• A sample session using MacsBug to examine the function of the Grow­
Window trap 

• MacsBug expressions 

• Organization of the ROM and the ROM Map MPW file 

Several MacsBug commands were discussed 

• Display Version (DV) for displaying the version of MacsBug 

• lP for listing the code surrounding the current PC or supplied address 

• IL for listing code starting at the current PC or supplied address 

• IR for listing code until the end of the current procedure is reached 

• ID for listing one line 

• Trace (T), also known as Step Over (50), for executing one instruction, 
subroutine, or A-trap 



...,.. Summary 61 

• CheckSum (CS) for checking if memory changes 

• The A-trap commands: ATB, ATC, ATD, ATHC, ATR, ATP, ATI, and ATSS 

This chapter introduced several MacsBug commands that you will use ex­
tensively when debugging code. All the MacsBug-specific techniques dis­
cussed here are revisited in later sections. The goal here was to explain how 
Macintosh System and Toolbox routines are called and to give you an opportu­
nity to begin using MacsBug. 



4 How RAM is Organized 
and Maintained 

Many, if not most, application bugs are related to some problem with memory: 
The heap is corrupted, the program counter has run off into the weeds, or data 
structures are destroyed. To help track down these problems, it is important 
to have a clear understanding of the Macintosh memory model. This chapter 
describes the layout and ownership of memory on the Macintosh and mtro­
duces MacsBug commands that can force memory problems to surface. 

In Chapter 2 a computer was described as a processor and memory; this 
chapter describes how the Macintosh toolbox, operating system, and applica­
tions use the memory and how memory is allocated and deallocated by the 
Memory Manager. 

When writing an application, there are many ways to obtain memory. On 
early computers, applications simply assumed they had the entire system to 
themselves; they had free reign over all memory resources. In the Macintosh 
world, where several programs must share the same address space and the 
amount of memory can vary, it's necessary for the system to offer a way to arbi­
trate memory usage. 

There arc two basic places an application can get memory: from the heap or 
from the stack. A heap, or heap zone, is a block of memory in which the Memory 
Manager allocates and releases blocks of memory of arbitrary sizes on request. 
The application's code, as well as data shared across subroutines, is generally 
allocated in the heap. For example, when an application creates a window, the 
memory for the window structure is taken from the heap. 

The stack is an area of memory, usually maintained by register A7, in which 
memory is allocated and deallocated in strict order: The most recently allocated 

63 



64 ..,. Chapter 4 How RAM is Organized a nd Maintained 

memory is the first to be released. The stack is generally used to allocate tem­
porary variables, such as a subroutine's local variables. 

The first two sections in this chapter discuss heaps and the stack. The next 
two sections discuss the low memory globals and the application globals. This 
chapter concludes with a discussion of the segment loader, which is responsi­
ble for loading an application's code segments . 

...,. Heaps 

Note ..,.., 

Figure 4-1 shows a heap. Atthe beginning of the heap is the zone record, which 
contains information about the size of the heap and the available memory in 
the heap. The heap is further divided into blocks. Each block has an 8-byte 
header followed by the block data. When an application allocates memory, the 
Memory Manager returns a reference to the block data; the block header and 
the zone record are used internally by the Memory Manager to manage appli­
cation memory requests. 

Wilen running in 32-bit mode, heap blocks have a 12-byte header. 
Also, the ROM resource heap is always in32-bit mode format on 
ci-class (Ilci, fx, si, LC) machines. 

etc. 

block data 
r--- -----

block header (8 bytes) 

block data 
r---- ----

b lock header (8 bytes) 

TheZone'::.--•• 
zone record (52 bytes) 

Figure 4- l . A heap 



...,. Heaps 65 

A common bug occurs when an application writes past the end of a block. 
When this happens, the header for the next block is destroyed. Once you under­
stand the memory model, these bugs are easy to find. You simply determine 
how the block before the destroyed block is being used, and then determine 
why its bounds are overwritten. This is easy with the MacsBug heap commands 
described later in this chapter. 

Under MultiFinder (called the Process Manager under System 7.0), memory 
is partitioned as shown in Figure 4-2. The figure shows memory divided into 
three major sections: the low memory global variables, the system heap, and 
the MultiFinder heap. The MultiFinder heap is further subdivided into a heap 
for each running application. When an application requests memory, it speci­
fies where the memory should be allocated: in the application heap, in the sys­
tem heap, orin the MultiFinder temporary memory. The allocation of space for 
low memory globals is fixed (and small), so an application cannot get memory 
from low memory. 

Application 1 Heap 

Application 2 Heap 

• • • 
I Application N Heap I 

The MultiFinder Heap 

~ 

System Heap 

Low Memory 

Figure 4-2. RAM organization under MultiFinder 



66 .,... Chapter 4 How RAM is Organized and Maintained 

...., Pointers and Handles 

Note 

BytheWay ..,.1 

Many problems Macintosh developers run into are related to poor memory 
management. Proper memory management is not difficult once you under­
stand a few fundamental concepts about Macintosh memory data types. There 
are two calls that are the workhorses of memory allocation in the application 
heap: NewPtr and New Handle. Both calls take a long-word parameter, which 
is the number of bytes of memory to allocate. If the call is unable to find enough 
room in the heap, it returns a value of zero; otherwise, it returns a pointer (in 
the case of NewPtr) or a handle (in the case of New Handle) to the memory. 

There are a number of other calls which directly allocate memory such as 
ReallocHandle, SetHandleSize, PtrToHand, HandToHand, and others, as 
well as many calls which allocate memory indirectly such as GetResource 
or NewWindow. 

When your application is done using the memory, it should return it to 
the heap by calling DisposPtr or DisposeHandle, whichever is appropriate. 
If the memory was allocated indirectly, you should consult Inside Macintosh 
to determine how to free the memory when you are done with it. For exam­
ple, calling DisposeHandle on a block allocated by GetResource will lead 
to trouble. Rather, you should call ReleaseResource. 

,.., ... ~ 

·j~ '.~::~·:. 
subroutine names br the fim.t eight;chai.acters~ Man.Y~~:compil~ __ 
accept both DisposPt.f.and DispQseJ'tf~: 



....,. Pointers and Handles 67 

It turns out that it is rather antisocial, even egregious, to use pointers. After 
an application has allocated and then later deallocated pointers, the heap be­
comes fragmented. For example, suppose an application allocates a block with 
the NewPtr function that takes up half the available space in the heap and then 
allocates another small block. If the application then disposes of the large 
block, the heap is left with a small block right in the middle of it. This means 
that the largest available block is half of the heap size, rather than the heap size 
minus the size of the small block. 

The solution is for the Memory Manager to move the small block to the bot­
tom of the heap so that the rest of the heap is available, but it cannot do so be­
cause the application's pointer to the memory would then be invalid. 
Figure 4-3 shows a heap fragmented in this manner. 

The virgin heap After two allocations After disposing 

Figure 4-3. A fragmented heap 

To circumvent the fragmentation problem, use handles rather than pointers. 
A handle is simply a pointer to a pointer. The routine New Handle returns a 
handle that is a reference to a block of the requested size. If there is not 
enough contiguous memory in the heap to allocate a block of the requested 
size, New Handle returns a nil handle (zero). 



68 .,... Chapter 4 How RAM is Organized and Maintained 

l 
the application's heap 

1 
Handle Master Pointer 

Figure 4-4. The Handle data structure 

within a block of 
~ master pointers 

Figure 4-4 shows how the handle structure works: A handle is a pointer to 
a location in one of the heap's master pointer blocks. A master pointer block is 
a nonrelocatable block of memory that contains a number of master pointers. 
The number is set by the cMoreMasters parameter passed to the InitZone pro­
cedure which created the heap zone in question. When MultiFinder 6.0.5 
creates the heap zone for the application, it allocates 64 pointers per master 
pointer block. 

If your application needs more than 64 handles or pointers simultaneously 
(almost all applications need many more than 64 handles or pointers), it 
should call the function MoreMasters (which allocates an additional64 master 
pointers) before allocating other memory. This procedure instructs the 
Memory Manager to allocate extra master pointer blocks. Since these blocks 
are not relocatable, it is best to allocate them early so they are allocated contigu­
ously at the bottom of the heap and don't contribute to heap fragmentation. 
If the Memory Manager runs out of master pointers, it will allocate an addi­
tional nonrelocatable master pointer block, possibly contributing to a memory 
fragmentation problem. When deciding how many times to call MoreMasters, 
remember that it's much cheaper to overestimate the number of master point­
ers needed (at a cost of 264 bytes per wasted master pointer block) than to 
underestimate (at the cost of fragmentation). 



Note .,.. 

..,.. Pointers and Handles 69 

The advantage of the handle structure is that the Memory Manager can 
move heap blocks to make space and to keep the heap nonfragmented. When 
the Memory Manager moves a heap block, the master pointer is updated. 
Thus, the application's reference to memory via the handle remains valid. 

One of the most common sources of bugs on the Macintosh occurs when an 
application dereferences a handle and then assumes the master pointeris valid 
after making a call that can move memory. Even though Apple publishes a list 
of calls that can move memory, this is by far the most common and nasty prob­
lem application programmers face. 

When a handle is dereferenced and you make a call that allocates memory, 
you must make sure that the handle's memory does not move or your derefer­
enced copy will be invalid. You can instruct the memory manager to lock a 
block with the Memory Manager call HLock. The call HUnlock performs the 
inverse operation. Since locked blocks can't move, they can contribute to heap 
fragmentation (just like pointers) while they are locked. To receive optimal 
performance from the Memory Manager, you should lock handles only when 
necessary and unlock them before other calls that allocate memory, if possible. 

• -- Jt<;·.r· ,'. _t.,itdy- . ~-: r.· . . 

You ao not have toTock a handl~ if you.are) tot allocating memory .. : . 
while the handle is derefereneed. = 

When writing in high-levellanguages, such as C, you must always be aware 
of cases where a handle is dereferenced. There are some obvious ways as well 
as some very nasty ways you can run into trouble. An obvious case occurs 
when a handle is explicitly dereferenced, as in 

example( handle myData ) 

Handle tempHandle ; 

Ptr derefedHand ; 

derefedHand = *myData; /* get handles master pointer */ 

tempHandle = Ne wHandle ( 20 0 ) ; /* get 200 bytes */ 

I* At this point the value in derefedHand may be invalid since the 
NewHandle memory allocat i on may have moved the block to myData 
refe rences . */ 



70 ..,.. Chapter 4 How RAM Is Organized and Maintained 

The previous example is obvious once you understand that memory in the 
heap may move when you call routines that allocate memory. These problems 
are sometimes very hard to track because they may occur intermittently, de­
pending on the state of the heap when the calls that allocate memory are made. 
The preceding problem can be fixed by inserting the line 

HLock( myData ); 

before dereferencing my Data. If you do this, you should insert the line 

HUnlock( myData ); 

as soon as you are done with derefedHand. 
A less obvious example of memory moving when a handle is dereferenced 

occurs because of the order in which the Pascal and C compilers evaluate ex­
pressions. For example, in the following code, name is a field in a structure that 
is kept in a handle called player. 

typedef struct player 

short cards[kCardsinHand); 

StringHandle name; 

} player, *playerPtr, **playerHdl; 

playerHdl guyl; 

(**guyl) .name= GetString( kGuylStringNum ); I* This won't work! */ 

The problem is that the compiler calculates the address of where the result 
should go before making the function call to GetString. Since this address is 
in a relocatable block, and since the GetString function can move memory (it 
allocates memory for the string), the calculated address may be invalid after 
the GetString call. 

In this example, the problem can be fixed by locking the handle structure be­
fore the call to GetString by inserting the line 

HLock( guyl ); 

And be sure to unlock the block as soon as you are done with it. 

HUnlock( guyl ); 



By the Way ...,.I 

.,... Pointers and Handles 71 

If you dereference a handle and forget to lock it during a memory allocation, 
your application will behave unpredictably, and you may have trouble finding 
a reproducible failure. MacsBug provides a mechanism that makes such prob­
lems easier to find. MacsBug' s Heap Scramble (HS) command automatically 
moves all relocatable blocks in the heap whenever the application makes a call 
that could move memory. The HS command is discussed in more detail later 
in this chapter. 

If your application must leave a block locked for an extended period of time, 
you should call MoveHHi on the handle before locking the block. MoveHHi 
moves the handle to the top of the heap, which minimizes the chances of heap 
fragmentation. 

Besides avoiding heap fragmentation, another advantage of using handles 
instead of pointers is that resizing a handle is generally a faster operation than 
resizing a pointer, and has a much greater chance of success. 

....,. The System Heap 

The system heap is allocated when the system starts up. It contains patches to 
the ROM as well as new calls introduced as the Macintosh system and toolbox 
evolve. It also contains system data structures, such as the gDevice' s inverse 
table (for screen devices), which QuickDraw uses to map colors between color 
environments. The system heap is allocated just above the low memory globals. 
The low memory globalSysZone is a pointer to the beginning of the system zone . 

....,. The MultiFinder Heap 

The original Macintosh computers could only run one application at a time. 
MultiFinder, called the Process Manager in System 7.0, is an application 
written by Apple that allows multiple applications to run simultaneously. 
When the Macintosh boots, the first memory allocated is the system heap. 



72 ...,. Chapter 4 How RAM is Organized and Maintained 

MultiFinder is the first application run (this is performed automatically if 
the user chooses to start up with MultiFinder) and claims all available 
memory when it is launched. 

MultiFinder creates a separate heap within its heap for each application run, 
the first being the Finder. When additional applications are invoked, Multi­
Finder allocates the application's requested memory size (kept in the applica­
tion's 1 SIZE 1 resource) within the MultiFinder heap. Furthermore, MultiFind­
er restores the application's low memory variables whenever it becomes active. 
In this way, each application thinks it has the whole computer (except for the 
RAM occupied by other applications running concurrently) to itself. 

As discussed in Chapter 5, applications call the toolbox routine WaitNext­
Event to receive the user's input. If the user switches applications, MultiFinder 
passes events to the new frontmost application. The applications in the back­
ground no longer get user events, but they can get null events, which allows 
them to do processing while in the background. 

Figure 4-5 shows memory allocation in the MultiFinder heap. The top of the 
MultiFinder heap contains the MultiFinder code. Applications are placed im­
mediately below the code to allow room for the system heap to grow. The 
space between the last application and the system heap is MultiFinder tempo­
rary memory. Applications can request this memory but should use it only for 
short periods of time. 

MultiFinder Code 

Application 1 Heap 

Application 2 Heap \ 
MultiF!nder Heap 

MultiFinder Temp 
Memory I 

System Heap 

Figure 4-5. The MultiFinder heap 



By the Way ..,.I 

..,. Pointers and Handles 73 

The Finder allows you to change an application's requested memory size. 
You might want to increase an application's memory so that you can work with 
larger documents, or you might decrease its memory so you can run more 
applications at the same time. This is done by selecting the application and 
then choosing the Getlnfo item in the File menu. The Finder then brings up a 
window in which you can change the application's memory size (bottom 
right-hand corner). 

At a Worldwide Developer 's Conference in 1988, the most popular ques­
tion was: "How can my application tell if MultiFinder is running?" Under 
MultiFinder, each application has its own address space and access to a ll 
system resources, so it doesn't matter whether the application is running 
under MultiFinder. System 7.0 provides the ultimate answer: MultiFinder 
is a lways running. 

Arbitrating hardware resources can be a little tricky. Screen arbitration 
is handled by the Window Manager; each application draws only in its 
windows. Serial port arbitrating is harder, and problems can occur 
when a user runs two or more applications that want to use the same 
serial port but configure it differently. 

The Application Heap 

MultiFinder allocates a separate heap zone for each application within the 
MultiFinder heap. Except in special cases, memory an application needs is 
then allocated by the Memory Manager within this heap. Figure 4-6 shows an 
application's memory space and the application's heap. Notice that the appli­
cation's jump table, parameters, globals, the Quick Draw globals, and the stack 
are all outside the application's heap. These items all reside immediately 
above the application's heap and are actually in the MultiFinder heap. 



74 ...,. Chapter 4 How RAM is Organized and Maintained 

CODEO 
Resource 

AS+32 J 1 bl Length of 
ump a e Jump Table 

AS Application Parameters 32 Bytes Above AS size 

(AS) Application Globals 

CurStackBase QuickDraw Globals* 

Top Of Stack A7 Stack 

Appllimit 

Heap End 

Application's code 
and data 

Below AS size 

Application Heap 

master pointer block / 
AppiZo~ ____ z_o_ne_re_c_o_r_d ____ 

*When using high level languages, the QulckDraw globals are usually 
placed between the application parameters and the application 
globals. Thus, the QuickDraw globals are at -4(A5). 

Figure 4-6. Application memory space 

Figure 4-6 shows that the heap begins with a zone record. The zone record 
contains information used internally by the Memory Manager. You may want 
to look at the contents of the zone record to figure out how memory is orga­
nized, but it does not make sense for your program to change any of the fields in 
the record. The zone record is discussed in more detail in the following section. 

A heap is divided into blocks. The first block begins immediately after the 
zone record and contains master pointers used for handles, as explained pre-



Note ..,.I 

~ Pointers and Handles 75 

viously. The last block in the zone ends at the address pointed to by the zone 
record's field bkLim. All other blocks are allocated between these addresses 
by the Memory Manager when an application requests memory with the 
NewHandle or NewPtr calls. The block and zone structures are fully ex­
plained in Inside Macintosh, Volume II. 

The initial size of the stack (CurStackBase-ApplLimit) is kept in the low 
memory global DefltStack. For the original B&W Macintoshes this size is usu­
ally 8K ($2000) bytes, and for Mac II class machines DefltStack is 24K bytes 
($6000), which is plenty of stack space for most applications. 

Unless your application needs to increase the stack space, one of the first 
calls it should make is MaxApplZone, which expands the application heap to 
its limit. Its limit is the value held in the low memory global ApplLimit. Calling 
MaxApplZone immediately will reduce the time for future memory alloca­
tions, because the memory manager will not need to purge items as often or 
spend time growing the heap in sections. 

As you can see from Figure 4-6, the stack grows down in memory as the 
heap grows up. When the heap is expanded upward, the available memory for 
the stack is reduced. You must be careful that you always allow enough room 
for the stack to grow downward. One of the standard Macintosh vertical 
blanking (VBL) tasks is the stack sniffer, which checks (every sixtieth of a sec­
ond) if the stack and the heap have collided. If the stack hits the heap, a system 
error 28 (stack overflow error) occurs. The goal of the stack sniffer is to catch 
possible memory collisions during program development. 

The area around the AS register and the Code 0 resource information on the 
right of Figure 4-6 are discussed in a following section," Application Globals." 

Just as an application's heap can become fragmented, the MultiFinder heap 
can also become fragmented: Application heap zones are not relocatable. So 
if your Macintosh has 8 megabytes of memory and you run an application that 
uses 3 megabytes and then another one that uses 1 megabyte, you will be un­
able to run a 5-megabyte application after quitting the 3-megabyte application 
because the 1-megabyte application has formed an island in the middle of 
memory. That's the reason the Finder displays the size of the largest unused 



76 ~ Chapter 4 How RAM is Organized and Maintained 

block in the dialog box produced when selecting the About the Finder item 
from the Apple menu. 

For example, suppose you run Color MacCheese in a 3-megabyte partition 
and then run Teach Text in a 1-megabyte partition on your 8-megabyte Mac II. 
At this point memory looks as shown in the left diagram of Figure 4-7. If you 
now quit Color MacCheese, Teach Text occupies a 1-megabyte nonrelocatable 
island in the middle of memory. Now memory appears as in the right-hand 
diagram of Figure 4-7, and you will be unable to run an application that re­
quires a 5-megabyte partition. 

Before After 

Free Space: 6-Meg 
Largest Free Block: 3-Meg 

Figure 4-7. Fragmented MultiFinder zone 



~ MacsBug Commands That Operate on Heaps 77 

.,... MacsBug Commands That Operate on 
Heaps 
There are a number of MacsBug commands that deal with the heap. The com­
mands are Heap Zone (HZ), Heap eXchange (HX), Heap Display (HO), Heap 
Totals (HT), Heap Check (HC), and Heap Scramble (HS). These commands are 
described in the following sections. In the explanation of the HZ command, you 
will note the use of conditional breakpoints that were discussed in Chapter 3 . 

.,... Heap Zone 

101 
The Heap Zone (HZ) command displays the location of the system heap, the 
MultiFinder heap, and all application heaps within the MultiFinder heap. 

Examining the heap zones 

Enter MacsBug and type 

hz 

On my machine when I have MacWrite II, MacDraw II, and the Finder run­
ning, MacsBug responds with 

Heap zones 

OOOOlEOO SysZone 

000588 88 

0052044C 

00624 454 ApplZone TheZone cur rent 

006F045C 

0078A464 

The display is in the opposite order of the way memory maps are normally 
displayed; that is,low memory is at the top rather than at the bottom. The sys­
tem zone, the address of which is also contained in the low-memory global 
SysZone, begins at $1 EOO. The next zone is the MultiFinder zone, which begins 
at address $58888. You can take a closer look at the MultiFinder zone by enter­
ing MacsBug and typing 

dm 58888 zone 



78 ...,. Chapter 4 How RAM is Organized and Maintained 

Here you are using the zone template to display the zone record. (Templates 
were discussed in Chapter 2.) For now, it is sufficient to know that templates 
are used in conjunction with the DM command and provide a way to produce 
formatted memory displays. On my machine, MacsBug responds with 

Displaying Zone at 00058888 

00058888 bkLim 

0005888C purgePtr 

00058890 hFstFree 

00058894 zcbFree 

00058898 gzProc 

0005889C moreMast 

0005889E flags 

00058880 purgeProc 

00058884 sparePtr 

00058888 allocPtr 

007975CC 

00000000 

00797540 

004C69AC 

0079EE9E 

03AA 

0000 

00000000 

4080EE4E 

00000000 

The bkLim field of the zone record points to the end of the MultiFinder heap, 
in this case $7975CC. This address is beyond the last zone, which is at$78A464. 
Thus all application zones are contained within the MultiFinder heap. A de­
scription of the fields in the zone header can be found in the Memory Manager 
chapter in Inside Macintosh, Volume II. 

There is a large gap, in this case about 5 megabytes, between the beginning 
of the MultiFinder zone and the next zone, which starts at $52044C. This is 
MultiFinder temporary memory, which was discussed previously. Additional 
applications are launched in this area, always as high in memory as possible. 
Thus, the zone at $52044C belongs to the last application launched. To figure 
out which application this is, first look at the application's zone by typing 

drn 52044c zone 

On my machine, MacsBug responds with 

Displaying Zone at 0052044C 

0052044C bkLim 

00520450 purgePtr 

00520454 hFstFree 

00520458 zcbFree 

0052045C gzProc 

00616E08 

00616E08 

005587C8 

00091DD4 

0079EE36 



~ MacsBug Commands That Operate on Heaps 79 

00520460 moreMast 

00520462 flags 

00520474 purgeProc 

00520478 sparePtr 

0052047C allocPtr 

0040 

0000 

00000000 

4080EE4E 

005588FC 

Now set a conditional A-trap break anytime the program counter is in this heap. 

atb ((pc>52044c) & (pc<616e08)) 

MacsBug confirms the request with 

A-Trap Break at AOOO (_Open) thru ABFF (_DebugStr) when ( (pc>52044c) & (pc<616e08)) 

If you then continue with the G command and click on the various applica­
tions, MacsBug will break as soon as the application that owns this heap makes 
an A-trap call. Often MacsBug will break sooner if the application handles back­
ground events. In this case the heap belongs to MacDraw II. 

The next zone is at $624454 and belongs to Mac Write II. The low memory glob­
als, TheZone and ApplZone, are both currently set to this zone. The current 
application is MacWrite II. The word CURRENT, which appears to the right of 
the zone address, means that this is the zone MacsBug is currently operating on. 
This is discussed in more detail in the following section, "Heap Exchange." 

Notice that the Mac Draw II heap ends ($616E08) well before the start of the 
Mac Write II heap ($6244S4). The space between these heaps is where the stack 
and the application's AS world reside. Components in the AS world (the appli­
cation's jump table, parameters, and globals, as well as QuickDraw globals) 
are discussed in more detail later in this chapter. MultiFinder also stores the 
application's low memory globals in this space. Whenever the application is 
activated (either when the user brings it to the front or when it receives back­
ground processing time), MultiFinder moves its low memory globals from 
this storage area to low memory. 

The next zone belongs to the Finder. This can be determined by going to the 
Finder, entering MacsBug, and using the HZ command. If you do this, The­
Zone and AppiZone will both point to this zone. 

The zone at $78A464 belongs to a small application called Backgrounder 
that is automatically launched by MultiFinder at startup. Since this is the first 
application launched after MultiFinder startup, it is located highest in the Mul­
tiFinder heap. You can look at this zone with the zone template by typing 

dm 78A464 zone 



80 ..,.. Chapter 4 How RAM is Organized and Maintained 

On my machine, MacsBug responds with 

Displaying Zone at 0078A4 64 

0078A464 b kLim 

0078A468 purgePtr 

0078A46C hFstFree 

0078A470 zcbFree 

0078A474 g zProc 

0078A4 78 moreMast 

0078A47A flags 

0078A4 8C p urgeProc 

0078A490 sparePtr 

0078A494 a l locPtr 

00 78BD40 

0078A498 

0078A564 

00000688 

0079EE36 

0040 

0000 

00000000 

4 080EE4E 

0078BC34 

This zone ends at $78BD40, well before the end of the MultiFinder zone, 
which ends at $7975CC, as previously discussed. The space between the end 
of the first application's heap, Backgrounder in this case, and the end of the 
MultiFinder heap is where Backgrounder' s stack, AS world, and low memory 
globals, as well as MultiFinder's code (MultiFinder is very small), reside . 

...,.. Heap Exchange 

Many MacsBug commands deal with one specific heap. For example, the Heap 
Display (HD) command (described in the following section), displays the cur­
rent heap. When you enter MacsBug, the current MacsBug heap is the same as 
the heap pointed to by the low memory global ApplZone. 

The Heap eXchange (HX) command allows you to set the current heap. The 
example in the previous hands-on exercise showed that the word current ap­
pears next to the current heap when using the HZ command. You can change 
the heap with the HX command. For example, to change to the MultiFinder 
heap, type 

hx 58888 



...,. MacsBug Commands That Operate on Heaps 81 

If you then use the HZ command, MacsBug responds with 

Heap zones 

OOOOlEOO SysZone 

00058888 current 

0052044C 

00624454 ApplZone TheZone 

006F045C 

0078A464 

Notice that the word current now appears next to the address of the MultiFind­
er heap, and all commands that are specific to one heap will operate on the 
MultiFinder heap. If you use the HX command without a parameter, MacsBug 
changes the heap among the application heap (ApplZone), the system heap 
(SysZone), and any heaps that you previously set using HX . 

....,. Heap Display 

The Heap Display (HD) command displays information about all the blocks 
in the current heap. This example is from the Chapter 4 demo application. To 
display the entire heap, use the HD command without parameters. Enter 
MacsBug and type 

hd 

MacsBug responds with a display such as 

Displaying the Application heap 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• OOSC0488 00000100+00 N 

• 005C0590 00000004+00 R 005C0584 L 

• 005C059C 0000022E+02 R 005C0578 L CODE 0001 0526 

• 005C07D4 00001428+00 R 005C056C L p CODE 0002 0526 

• 005ClC04 000002CA+02 R 005C0568 L p CODE 0003 0526 

005C1ED8 00000042+02 R 005C0564 

005C1F24 OOOOOOlC+OO R 005C0560 

005C1F48 00000016+02 R 005C055C 

005C1F68 00000004+08 R 005C0548 



82 ..,. Chapter 4 How RAM is Organized and Maintained 

Note .... j 

OOSC1F7C 00000160+00 R 005C0574 p CODE 0000 0526 

005C20E4 00000028+00 R 005C0570 

OOSC2114 00000078+00 R 005C0580 

005C2194 000000A6+02 R 005C057C 

OOSC2244 00000000+04 R ooscosso 
005C2250 00000014+00 F 

005C226C 0000001E+02 R 005C0558 

005C2294 00000018+00 F 

OOSC22B4 0000016C+OO R 005C054C 

005C2428 00000036+02 R 005C0540 

005C2468 00000048+00 R 005C053C 

005C24B8 00000010+00 F 

005C24DO 00000024+00 R 005C0554 

005C24FC 00000082+02 R 005C0538 

005C2588 0005B338+00 F 

• 0061D8C8 00000024+00 R 005C0544 L 

There are lt3740 12 free or p u rgeable bytes i n this heap 

The HD command displays low memory at the top and higher 
memory locations at the bottom, which is the inverse of a typical 
memory display. MacsBug walks through the heap as it displays it, 
and if there is a bad block, MacsBug cannot display the heap. li a bad 
block is encountered, the heap is displayed up to the bad block. In 
such a case, the problem is usually that the previous block is being 
overwritten. The solution is to find out why and to either allocate a 
larger block or fix the memory accesses that go outside the block. 

The first part of the heap is the zone header. The zone header is not dis­
played by the HD command. The first blocks in the heap are typically master 
pointers. Master pointers are allocated in blocks of 64. They are each 4 bytes 
long, so the total size is 64 * 4 = 256, or $100. The master pointers are allocated 
in a nonrelocatable (pointer) block. The remaining allocated blocks contain 
code and memory allocated by the application. 

Let's look at a sample block in detail. 



Note .,..I 

~ MacsBug Commands That Operate on Heaps 83 

Start Length Tag Mstr Ptr Lock Prg Type ID Fi le Name 

• 005C059C 0000022E+02 R 005C0578 L CODE 0001 0 52 6 

The bullet to the left of the first column indicates that the block cannot be 
moved; that is, it is either nonrelocatable (if it is a pointer) or locked (if it is a 
locked block). The bullets give you a quick view of where the locked blocks are. 
In an application which is well designed, the locked blocks will all be at the top 
or bottom of the heap. 

The first column, Start, is the address of the start of the data in the block. The 
block's header (described in Inside Macintosh, Volume II) is located in the 8 bytes 
immediately before this address (In 32-bit mode heaps the block header is 12 
bytes long.) 

This display is different from earlier versions of MacsBug in which 
the Start address was the start of the block, not the start of the data in 
the block. 

The second column, Length, gives the logical size of the block. The physical 
size of a block is equal to the logical size plus 8 bytes for the block header plus 
a size correction, which is what the +02 in the length field indicates. The size 
correction is the number of unused bytes at the end of the block. The physical 
size of blocks is a minimum of 12 bytes and must be a multiple of four. 

The Tag field indicates whether the block is Free (F), Nonrelocatable (N), or 
Relocatable (R). MacsBug gets this information out of the block header, as de­
scribed in the Memory Manager chapter of Inside Macintosh, Volume II. 

For relocatable blocks, that is, handles, the Mstr Ptr field contains the blocks 
master pointer, the Lock field indicates whether the handle is locked (L), and 
the Prg field indicates whether the block is purgeable (P). These fields are left 
blank for nonrelocatable blocks. 

The Type, ID, File, and Name fields apply only to blocks that came from re­
sources. Type is the resource type, ID is its identification (ID), File is its file ref­
erence number, and Name is the resource name, if it has one. 



84 ...,.. Chapter 4 How RAM is Organized and Maintained 

You can list only heap blocks that are of a certain resource type with the 
MacsBug command 

hd Type 

For example, 

hd code 

displays only blocks that are from a 1 CODE 1 resource. 
The ID field is the resource ID. The File field contains the file reference num­

ber with which the resource file was opened, and the Name field is the name 
of the resource, if it has one. Since the block header is only 8 bytes, this resource 
information is obviously kept elsewhere. A description of how MacsBug de­
termines resource information about blocks is given in Chapter 6. 

You can also look at information about just certain types of heap blocks. You 
do this by specifying a qualifier following HD, as in 

hd f 

which displays a list of all the free blocks in the heap. The possible qualifiers are 

F 

N 

R 
L 
p 

RS 
Type 

which displays the Free blocks 

for the Nonrelocatable blocks 

for the Relocatable blocks 

for the Locked blocks 

for the Purgeable blocks 

for the ReSource blocks 

for displaying resources of the specified type 

The HD command is very useful for finding memory problems. Often, a 
block in the heap is overwritten, destroying the header for the following block. 
When MacsBug performs a heap display, it displays blocks until it gets to one 
with an invalid header. At this point you can start your search for the problem 
by discovering how the block header was overwritten. You will usually find 
that the code performing some operation on the immediately preceding block 
is guilty. 

Another use for heap display is identifying nonrelocatable and locked 
blocks in the application heap. As previously discussed, nonrelocatable 
and locked blocks lead to heap fragmentation and should be avoided when­
ever possible. You can set an A-trap break at WaitNextEvent (discussed in 
detail in Chapter 5), and then use the HD command to identify locked (L) 



~ MacsBug Commands That Operate on Heaps 85 

and nonrelocatable (N) blocks. You should be able to identify all locked and 
nonrelocatable blocks and have a good reason for them being locked or nonre­
locatable. Doing this early in program development takes very little time and 
can prevent memory problems later. 

~ Heap Totals 

The Heap Totals (HT) command displays a summary of the blocks in the cur­
rent heap. To get totals for a different heap, you must first use the HX com­
mand to make the heap current. In this example, the current heap is the appli­
cation heap. Enter MacsBug and type 

ht 

On my machine, MacsBug responds with 

Totaling the Application heap 

Total Blocks Total of Block Sizes 

Free 0004 #4 00058394 #373652 

Nonrelocatable 0001 4H 00000108 #264 

Relocatable 0014 #20 OOOOlFDO #8144 

Locked 0005 #5 00001974 #6516 

Purgeable and not locked 0001 #1 00000168 #360 

Heap size 0019 #25 0005D46C #382060 

The first line indicates the number and total size of the heap's free blocks. To­
tals are given as both decimal and hexadecimal values. In this example, there 
are four free blocks for a total of $5B394 free bytes. At this point the rest of the 
heap total display should be self-explanatory. 

A common problem with applications is memory leakage. Memory leakage 
occurs when an application allocates memory but forgets to dispose of it. If the 
application does this repeatedly, the heap will slowly fill up with unused, but 
allocated, memory blocks. When the heap is full, memory requests will fail 
and the application may crash. The HT command is useful for detecting this 
kind of problem. For instance, check the heap totals when your application 
calls WaitNextEvent, perform a number of operations that allocate and deallo­
cate memory, and then check the heap totals at WaitNextEvent again. Any un­
explained discrepancies may be memory leakage bugs. 



86 ..,.. Chapter 4 How RAM is Organized and Maintained 

..,. Heap Check 

Note .,.. , 

The Heap Check (HC) command checks the validity of the current heap. Are­
lated command, A-Trap Heap Check (ATHC), which is discussed in the fol­
lowing section, checks the validity of the heap before each A-trap call. 

If memory moves when a handle is dereferenced, the heap may become 
invalid if the application attempts to write to the now moved memory block. 
Once the heap is invalid, the application could crash at any time. 

The most common use of the HC command is to find memory problems. 
One useful technique, which is explored again in Chapter 17, is to use the HC 
command in conjunction with the DebugStr( ) trap. For example, the line 

DebugStr( " 1 ; HC;G ' • ); 

breaks to MacsBug, checks whether or not the heap is valid, and then contin­
ues execution if everything is OK. If the heap is invalid, MacsBug will not 
continue. This easy technique helps find where in your application the heap 
is becoming corrupt. 

The previous code passes MacsBugs commands via the DebugStr 
routine. DebugStr is usually used to signal a message. If the string 
passed to DebugStr begins with 

I i 

the following string will be interpreted as a MacsBug command, just 
as if you had typed it from MacsBug. This technique has a variety of 
uses; others are discussed in Chapter 17. 

You can obtain similar function without program modification by 
using the A-Trap Heap Check (ATHC) command discussed in the 
following section. This command checks the validity of the heap 
before each A-trap call. 



..,.. MacsBug Commands That Operate on Heaps 87 

MacsBug does not check the heap rigorously but looks for telltale signs of 
corruption. Several different error messages are returned. 

• Zone pointer is bad-This message indicates that the low memory glob­
als SysZone or ApplZone are not valid (even) RAM addresses. To get this 
message, enter MacsBug and look at the current zone by typing 

dm applzone 

Note the value, and then change it to an odd value or an address not in 
RAM, using the Set Long (SL) command, as in 

sl applzone 40800001 

Then use the HC command and you will get the Zone pointer is bad mes­
sage. Be sure to set ApplZone back to its previous value before continuing. 

• Free master pointer list is bad-The Memory Manager maintains a 
linked list of free master pointers. The first of these pointers is pointed to 
by the hFstFree field in the zone record, and each pointer points to the next 
free one. The list terminates with a master pointer that points to zero (nil). 
The HC command checks to make sure that all pointers in this list are even 
and point to addresses within the current heap. 

• Blklim does not agree with heap length-The HC command walks 
through the heap block by block. The address of the end of the last block 
must be the same as the blkLim field in the zone record. If it is not, you 
will get this message. 

• Block length is bad-Heap check makes sure that the block header ad­
dress plus the block length is less than or equal to the block trailer address. 
It also checks to make sure that the block trailer is a fixed length. 

• Nonrelocatable block: pointer to zone is bad-The header for a nonrelo­
catable block contains a pointer to the zone header. If this is not the case, 
MacsBug will display this message. 

• Relative handle is bad-The header for a relocatable block contains a pointer 
to the block's master pointer. If it doesn't, MacsBug displays this message. 

• Master pointer does not point at block-If the master pointer is not in 
the free list, it must point to a block in the heap. This error message is dis­
played if it doesn't. 

• Free bytes in heap do not match zone header-MacsBug checks to make 
sure that the size of all free blocks in the heap is the same as the zcbFree 
field in the zone record. 



88 .,... Chapter 4 How RAM is Organized and Maintained 

It's relatively easy to corrupt a heap zone artificially so that MacsBug gener­
ates these messages. If you figure out how to generate each of these messages, 
you will gain an in-depth knowledge of the zone and block structures. Be sure 
to set all values you change back, or you will almost certainly crash. 

~ A-Trap Heap Check 

The A-Trap Heap Check (ATHC) command is similar to the HC command, ex­
cept it performs a heap check on the current heap automatically before each 
A-trap call. If the heap is OK, execution continues. If the heap is corrupt, Macs­
Bug stops execution and displays a message indicating the problem with the 
heap. This command is useful for narrowing down code that is destroying the 
heap. But checking the heap takes time, and asking MacsBug to check the heap 
on every A-trap call will slow the Macintosh down considerably. 

As with many of the A-trap commands, there is a version that operates only 
when the trap is called from the application heap and is invoked by appending 
the letter A to the end of the command, as in 

a thea 

Similar to other A-trap commands, you can specify a trap or range of traps on 
which to do the heap check. For example, to check the heap each time 
WaitNextEvent is called from the current application, use the command 

athca waitnextevent 

You can also specify an expression, as in 

athc dO.w=l 

which checks the current heap only if the low word of register DO is 1 at the 
time the trap is called. You can even specify that MacsBug should check the 
heap only after a given trap has been encountered a specified number of times, 
as in 

athc newwindow 5 



..,_ The Application Stack and the Link Instruction 89 

Specifying a range of traps, or a number of times a trap must be encountered 
before checking the heap, is not particularly useful unless you are close to find­
ing the memory culprit and the Macintosh's performance is too slow when 
checking the heap on every A-trap call . 

.,... Heap Scramble 

Some memory problems occur only under very special circumstances. A com­
mon symptom is that your program crashes intermittently, but you cannot 
find a reproducible case to establish a solid handle on the problem. The Heap 
Scramble (HS) command is helpful in these situations. 

The HS command is a way of forcing a worst-case memory scenario. With 
heap scrambling on, MacsBug moves all relocatable blocks in the heap when­
ever a call to NewPtr, New Handle, ReallocHandle, SetPtrSize, or SetHandle­
Size is made. For SetPtrSize and SetHandleSize, the heap is scrambled only if 
the block size is being increased. Of course, other system routines call these 
routines, so from your application's perspective, heap scrambling occurs any­
time a call that could move memory is made. 

A heap check is performed automatically before the relocatable blocks are 
moved. You will find that this command often makes hard-to-find memory 
problems reproducible . 

.,... The Application Stack and the Link 
Instruction 
A stack is a special area of memory used for saving subroutine return addresses, 
passing parameters to and returning results from subroutines, and storing 
temporaryvariables.Astackisalast-infirst-outbuffer,orLIFO.On68000class 
machines it is implemented via address register A7, also known as the stack 
pointer, or SP. Figure 4-8 shows how the stack operates for a Pascal subroutine 
call that has two word-sized parameters and returns a long result. 



90 ...,. Chapter 4 How RAM is Organized and Maintained 

FUNCTION sumRange ( start: integer; end: integer ) : Longint; 

Before Call Beginning of Call After Call 
. .. , .,.,., ... ; .. ".::· .. •.• ,,.:, """.""·'''.': .. <::::: 

previous stack· , previous stack . · . previous stack 
....• ,.. ' 

room for result room for result room for result 

start start 

end 
s.e.._. L....-------' 

end 

return address 

s.e.._. 

Figure 4-8. The stack before, during, and after a Pascal function call 

For Pascal calls, the caller leaves room for the result and.then pushes the pa­
rameters in the order they are listed in the function declaration. The called 
function is responsible for removing the parameters from the stack and plac­
ing the result in the space left by the caller. This is the convention followed by 
the majority of the Macintosh toolbox routines. 

Figure 4-9 shows the stack manipulation for a C call. 

' ; .. : ·;.::;;;: ::. 

·previous stack 
..... ·:·.:· 

previous stack 
•, .1: ' : 

':previous stack' 
, :• ;,·;·::::e· ,: 

end end end 

start s.e.._. "---------' start start s.e.._. "---------' 
return address 

result in register DO 

s.e.._. 

Figure 4-9. The stack before, during, and after a C call 



By the Way..,.. , 

..,.. The Application Stack and the Link Instruction 91 

The C convention holds that the caller pushes the parameters on the stack 
in the reverse order they are listed in the routine declaration. The called func­
tion does not clean the parameters from the stack. Rather, this is left as a respon­
sibility for the calling function. Furthermore, the result is returned in register 
DO, not on the stack. 

The 68000 LINK and UNLK instructions make it very easy to allocate and 
deallocate memory on the stack. Pascal and C compilers generate LINK in­
structions to allocate local variables for procedures and functions. These in­
structions set up an area of the stack, called the s tack frame, where routines can 
store their temporary variables. The following listings show a simple C proce­
dure and the code generated by version 3.1 of the MPW C compiler. By the 
time you read this, version 3.2 (or later) of the C compiler should be available. 
We hope that it generates better code! 

pascal long 

DemoProc{ short paraml, short param2 ) 

short locall; 

short local2; 

long local 3; 

locall = paraml + param2 ; 

local2 = paraml - param2; 

local3 = locall * local2 ; 

return{ local3 ); 

As discussed earlier, C subroutines return their results in register DO, 
so obviously the calling routine does not allocate room for the result 
on the stack. Here, however, we declare our C procedure to be of type 
PASCAL. This tells the C compiler to use Pascal calling conventions; 
that is, parameters are put on the stack in the order they appear in the 
function, and results are returned on the stack, not in register DO. 

At runtime, you can look at the code this procedure generates by setting a 
breakpoint with MacsBug. But that technique will be used a great deal 



92 Jill- Chapter 4 How RAM is Organized and Maintained 

throughout the remainder of this book, so here you'll use the MPW tool 
DUMPOBJ to list the object code. From MPW, you can use the Commando 
help facility. Type the name of the tool you want help for followed by the ellipsis 
character. The ellipsis character(. .. ) is generated by holding down the Option 
key and typing a semicolon. It is not three periods! For example, typing 

dumpobj ... 

brings up a help dialog about the DUMPOBJ tool. After filling in the dialog, 
you can hold down the Option key while pressing the DumpObj button to get 
the MPW command, which performs the desired operation. For this example, 
the line used is 

durnpobj MyDemo.c.o -p -m OEMOPROC 

A slightly abbreviated version of MPW' s response, with added line numbers, is 

1 00000000: 4E56 FFFE 

2 00000004: 48E7 OFOO 

3 00000008: 3C2E 0008 

4 OOOOOOOC: 3E2E OOOA 

5 00000010: 48C7 

6 00000012: 48C6 

7 00000014: 2007 

8 00000016: 0086 

9 00000018: 3040 FFFE 

10 0000001C: 48C7 

11 0000001E: 48C6 

12 00000020: 2807 

13 00000022: 9886 

14 00000024: 3A04 

15 00000026: CBEE FFFE 

16 0000002A: 2045 OOOC 

17 0000002E: 4CEE OOFO FFEE 

18 00000034: 4E5E 

19 00000036: 2E9F 

20 00000038: 4E75 

1 NV .. I 

I H ••• I 

I<, • • I 

1>. • • I 

I H. I 

I H. I 

I::::@ • • I 

I H. I 

I H. I 

I(, I 

I: • I 

LINK A6,f$FFFE 

MOVEM.L 04-D7,-(A7) 

MOVE.W $0008(A6),06 

MOVE.W $000A(A6),07 

EXT.L 07 

EXT.L 06 

MOVE.L 

ADO.L 

MOVE.W 

EXT.L 

EXT.L 

MOVE.L 

SUB.L 

MOVE.W 

MULS.W 

07,00 

06,00 

00,-$0002(A6) 

07 

06 

07,04 

06,04 

D4,D5 

-$0002(A6),05 

1 -E .. 1 MOVE.L 05,$000C(A6) 

1 L ..... 1 MOVEM.L -$0012(A6),04-07 

1 N" 1 UNLK A6 

'Nu 1 

MOVE.L 

RTS 

A7) +, (A7) 



~ The Application Stack and the Link Instruction 93 

Any experienced assembly language programmer could greatly improve 
this code. In many cases, current compiler technology does not generate code 
as efficient as if someone had written the same procedure in assembly lan­
guage. Let's examine the object dump closely, and determine what the compil­
er is doing. 

1 00000000: 4E56 FFFE 'NV •• I LINK A6,#$FFFE 

The listing begins with a LINK instruction, as expected. Figure 4-10 shows 
the contents of the stack before and after the LINK instruction is executed. The 
LINK instruction only left room for one local variable, but the procedure de­
clared three. What happened to the other two variables? Where are they stored? 

For performance reasons, the MPW C compiler allocates variables in regis­
ters first, and then in the stack frame if there are more local variables than avail­
able registers. This implementation of the C compiler uses registers 04 and DS 
for local variables. The compiler tries to figure out which of the local variables 
will be accessed most often and puts those in registers. Any remaining vari­
ables are stored in the stack frame. 

Before LINK After LINK 
High memory 

room for result room for result I 
$C(A6) Stack 

paraml 

param2 

return address 

paraml 

param2 

return address 

$A(A6) I 
$8(A6) grows 

I 
down 

Sf...., ...__ ___ __, 

previous A6 

$4(A6) 

1 
Low memory 

locall $-2(A6) 

Figure 4-1 0. Operation of the LINK instruction 



94 ~ Chapter 4 How RAM is Organized and Maintained 

By convention, register A6 is used to point to the stack frame. As you can see 
from Figure 4-1 O,local variables are accessed via negative offsets from register 
A6, and procedure input parameters are accessed via positive offsets. As this 
object dump shows, the compiler automatically sets up stack frames and cal­
culates the offsets to parameters and variables for you. 

2 00000004: 48E7 OFOO 'H •.• I MOVEM.L 04-07,-(A7) 

Line 2 saves the registers this routine uses. The registers are saved on the stack. 

3 00000008: 3C2E 0008 I<. • • I MOVE.W $0008(A6),06 

4 OOOOOOOC: 3E2E OOOA '>. • • I MOVE.W $000A(A6),07 

5 00000010: 48C7 'H. I EXT.L 07 

6 00000012: 48C6 I H. I EXT.L 06 

Lines 3 through 6 get the short input parameters and sign extend them to longs. 
Param2 is located at an offset of 8 from register A6 and moved into register 06; 
paraml is at an offset of $A and is moved to register 07. 

7 00000014: 2007 

8 00000016: 0086 

9 00000018: 3040 FFFE '=@. • I 

MOVE.L 

ADO.L 

MOVE.W 

07,00 

06,00 

00,-$0002(A6) 

Lines 7 through 9 perform the param1 and param2 addition and store there­
sult in the locall (an offset of $-2 from register A6) stack frame variable. 

10 0000001C: 48C7 

11 0000001E: 48C6 

'H. I 

I H. I 

EXT.L 

EXT.L 

07 

06 

Lines 10 and 11 are an embarrassment. They are unnecessary since the vari­
ables in registers 06 and 07 were sign extended above. A better C compiler 
would not generate these instructions. 

12 00000020: 2807 

13 00000022: 9886 

I(. I MOVE.L 

SUB.L 

07,04 

06,04 

Lines 12 and 13 perform the paraml and param2 subtraction and store the 
result in the local2 variable, which is kept in register 04 rather than in the 
stack frame. 

14 00000024: 3A04 

15 00000026: CBEE FFFE 

16 0000002A: 2045 OOOC 

I: • I 

'-E .. I 

MOVE.W 

MULS.W 

MOVE.L 

04,05 

-$0002(A6),05 

05,$000C(A6) 



BytheWay ..,.I 

...,. The Application Stack and the Link Instruction 95 

Lines 14 through 16 perform the locall and local2 multiplication, and store the 
long result in the result. It is important to notice that positive offsets from the 
stack frame register reference input parameters. Since this particular example 
follows Pascal calling conventions, the result is returned on the stack in space 
allocated by the calling function. 

17 0000002E: 4CEE OOFO FFEE 1 L ••••. 1 MOVEM. L -$0012 (A6), D4-D7 

Line 17 restores the register variables to their previous values. It performs the 
inverse operation of the MOVEM.L we saw earlier. 

18 00000034: 4ESE 'N" r UNLK A6 

Line 18 is the inverse of the LINK instruction. It restores the values of A6 and 
A7 to those prior to the LINK. The value of A7 is restored to the current value 
of A6 plus 4, and the value of A6 is restored to the value saved on the stack at 
the location pointed to by register A6. Figure 4-10 shows how the LINK in­
struction is performed. UNLK is merely the inverse operation. 

19 00000036: 2E9F MOVE.L (A7) +, (A7) 

The stack pointer (register A7) now points to the return address. Pascal con­
ventions dictate that you must remove the call parameters from the stack. 
There were two word-size (16-bit) input parameters. Line 19 copies the return 
address over the input parameters (which are no longer needed). The stack 
now contains the return address and the result. 

20 00000038: 4E7 5 'Nu' RTS 

Line 20 removes the return address from the stack and continues execution at 
that point. When you return to the procedure or function that called this sub­
routine, the top of stack contains the function result. 



96 ..,.. Chapter 4 How RAM is Organized and Maintained 

...,.. Low Memory Globals 

101 

Key Point ..,.., 

Low memory is an area of memory used to store system values such as the 
speed of the processor (TrmeDBRA) or the address of the beginning of ROM 
(ROMBase) as well as an area for the application and the system to communi­
cate. Chapter 2 discussed one of the items stored in low memory, the current 
application name, which is at address $910. Since areas of low memory (such 
as the current application name) are different for different applications, Multi­
Finder swaps the areas of low memory that are application specific. 

MMU modes 

The Macintosh has a number of system global variables stored at the start of 
the address map, often referred to as low memory. On Macintosh II-class ma­
chines, one of these low memory globals, MMU32bit, is a byte-sized flag indi­
cating whether the MMU is in 24-bit or in 32-bit mode. As discussed in Chapter 
3, address references on the Mac II are very different depending on the MMU 
mode. This exercise looks at the MMU mode. 

Enter MacsBug and type 

dm MMU32bit 

Depending on the machine and mode, MacsBug responds with a display such as 

Displaying memory from 0CB2 

OOOOOCB2 0002 0001 BF58 0001 BF6C 0000 28AC 50Fl · · · · ·X·· ·1· · ( · P · 

Inside Macintosh, Volume V describes the meaning of the MMUMode flag: A 
value of 0 indicates the Mac is in 24-bit mode, whereas a value of 1 indicates 
32-bit mode. It is important to realize that this flag is merely a reflection of the 
current state of the MMU; you should use the routine SwapMMUMode to 
change the state of the MMU. In the previous example the MMU is in 24-bit 
mode, and the MMU is ignoring the high byte of addresses. 

Applications must make all system and toolbox calls in 24-bit mode. 
Calling a system or toolbox routine when the MMU is in 32-bit mode 
can cause a crash unless you booted the system in 32-bit mode. This is 
set by the memory control panel in System 7.0. 



..,.. Application Globals 97 

The easiest way to get into 32-bit mode is by setting an A-trap break at the 
SwapMMUMode trap when register DO contains 1, and then tracing over the 
trap. When DO is 1 it signals the SwapMMUMode routine to enter 32-bit mode; 
when DO is 0 it signals to enter 24-bit mode. To break on SwapMMUMode 
when DO is 1, enter MacsBug and type 

atb swapmmumode dO=l 

MacsBug breaks only at the SwapMMUMode trap when register DO contains 1. 

...,. Application Globals 

By the Way .,..I 

Application globals are application variables that are accessible by all routines 
within an application. Memory for the globals is allocated when the applica­
tion is loaded. According to Macintosh convention, global variables are refer­
enced via a negative offset from register AS. The information for allocating 
globals is contained in the application's CODE 0 resource. 

Macintosh files consist of two parts: a data fork and a resource fork. 
Application code, among other things, is kept in the resource fork of 
the application. The resource fork is further divided into different 
resource types that the application uses to get data, such as default 
window sizes and positions. 

When a development environment,·sueh as MPW, builds an 
application, it puts the code in 1 CODE 1 resources. The segment 
loader, described in the following section, loads the application code 
segments from the 1 CODE 1 resources. The 1 CODE 1 resource with 
ID 0 contains information about how the application is segmented and 
the size of the application globals. When the application is loaded, the 
Segment Loader looks at the first eight long words of the 1 CODE 1 0 
resource to determine how much space to allocate for application 
globals and other items (such as the jump table and the QuickDraw 
global variables). 



98 ~ Chapter 4 How RAM is Organized and Maintained 

You can look at the CODE 0 resource using ResEdit. (See ResEdit Complete 
by Peter Alley and Carolyn Strange (Addison-Wesley, 1991) for a thorough ex­
planation ofResEdit.) For example, if the CODE 0 resource starts with the hex­
adecimal values 

0000 0130 0000 OAC8 0000 0110 0000 0020 

1. The first 4 bytes (0000 0130) indicate the total size to allocate above regis­
ter AS. This is the size of the jump table (described below) plus 32 (the size 
of application parameters). 

2. The next 4 bytes (0000 OACB) are the total size to allocate below register 
AS. This is the sum of the sizes of the application globals plus the Quick­
Draw globals. 

3. The following 4 bytes (0000 0110) indicate the size of the jump table. 

4. The next 4 bytes (0000 0020) are the offset to the jump table from AS (cur­
rently always 32, or $20 hexadecimal). 

S. The rest of the CODE 0 resource contains the jump table. The format of 
the jump table entries is described in a following section. 

When the application is loaded, the memory surrounding AS will appear as 
in Figure 4-6. 

~ The Segment Loader 

Note .... j 

The Segment Loader allows you to segment an application so that only the por­
tions of the code that are being used are in memory. This enables an application 
to have a much smaller code footprint in RAM. Segmenting your application 
is optional. If you choose not to segment it, the code size can be only 32K and 
your entire application will reside in one code segment. 

This is 110t ~tri~y,fitt~~-But if, ~-.cqde'~egtil~t·is Jj~gger fu.an3~~-Y()~.(," 
:must take care to:~ PC-t:t!li!tlV.e ~~c.es do ,n~t ex~eed ~21<.' ':: · . 

. ' 

Determining how to segment an application is the job of the programmer. 
The individual segments are specified in different ways depending on the de­
velopment system you are using. The main segment always remains loaded 
and locked. One strategy for segmentation is to put the main event loop in the 



...,. The Segment Loader 99 

main segment and then call UnloadSeg for every segment each time through 
the event loop. U nloadSeg only marks a segment as purgeable. It is not actually 
purged unless the memory is needed. 

Thecomplementaryroutine, LoadSeg, is called automatically when a code 
segment is needed. This is accomplished via the jump table from the 
1 CODE 1 0 resource, which is loaded above register AS. When the linker 
encounters a routine called from a different segment, the linker creates a 
jump table en try for that routine. The routine is then called via a JSR (J urn p 
to SubRoutine) to the jump table. If the segment is loaded, the jump table 
entry contains a (6-byte) JMP (JUMP) instruction to the routine. If the code 
segmentisnotloaded,thejumptablecontainscodethatloadsthesegment. 
The LoadSeg routine then automatically jumps to the right routine . 

....,. Jump Table Entries For Routines in Unloaded Segments 

There is one entry for each routine that is referenced from another segment in 
the jump table. Each jump table entry consists of 8 bytes. Figure 4-11 shows a 
jump table entry in the unloaded state. 

start of entry routine offset from 
the beginning of the 

$0002 
segment 

$0004 

Instruction to 
move segment 
number onto 
the stack for 
LoadSeg 
Move.w #l,-(A7) 

$0006 $3F3C 0001 

LoadSeg trap 

$A9FO 

Figure 4-11. Jump table entry for a routine in an unloaded segment 



100 ...,. Chapter 4 How RAM is Organized and Maintained 

Suppose the unloaded jump table entry contains 

0004 3F3C 0001 A9FO 

When an application calls the routine referenced by this jump table entry, it 
JSRs to the third byte in the entry which, in this example, contains 3F3C 0001. 
MacsBug provides the Disassemble Hex (DH) command, which gives us an 
easy way to figure out what this instruction is. Enter MacsBug and type 

dh 3f3c 0001 

MacsBug responds with: 

Disassembling hex value 

007FFBD4 MOVE.W #$0001,-(A7) I 3F3C 0001 

This may seem like a very strange piece of code to find in the middle of a 
jump table, but if you look further you can solve the mystery. Using MacsBug 
to disassemble the next instruction 

dh A9FO 

produces the response 

Disassembling hex value 

007FFBD4 _LoadSeg ; A9FO I A9FO 

In this example the jump table entry calls the LoadSeg trap with a parameter 
of 1. The one refers to the CODE segment that LoadSeg should load from the 
resource file. 

The usual place for a trap call to return is to the location following that where 
the trap was called from, just like a }SR. LoadSeg is different. It looks at the 
word-long value 6 bytes before the location it was called from. This value is in 
the first and second bytes of the jump table entry and is equal to 0004 in this 
example. When LoadSeg is done, it jumps to the location that is at that offset 
from the start of the loaded segment. Since the offset is so small in this example, 
the routine is right at the beginning of the segment. 

avtheway .. I ~,~,~ty,~tocall,~s~since~t~~oo .... ·. 
· · a.~t.~tigl}ly yia the:j~~ptabl~~:Y()ur:~pp~~ti:onsP.ot1l~icaJI : · 
. . })~~~~~~_to:n:tark:Se~a)~~~:P.~$~~~~,ho:w.-eyer~: · · · 



.,.. The Segment Loader 101 

....,. Jump Table Entries For Routines in Loaded Segments 

Figure 4-12 shows the jump table entry for a loaded segment. 

start of entry 

$0002 

Segment number 

$0001 

Instruction to 
jump to the 
requested 
routine 

JMP $7883EC 

$4EF9 0078 83EC 

Figure 4-12. A jump table entry for a routine in a loaded segment 

Suppose the loaded jump table entry contains 

0001 4EF9 0078 83EC 

As discussed previously, an application calls the routine referenced by this 
jump table entry by doing a JSR to the third byte in the entry, which in this exam­
ple contains $4EF9. You can discover what this code does either by using the 
MacsBug DH command (DH 4EF9 0078 83EC) or by finding a jump table and 
using the Instruction List (IL) command discussed previously. An application's 
jump table begins at an offset of 32 from register AS. Enter MacsBug and type 

il a5+#32 



102 .,.. Chapter 4 How RAM is Organized and Maintained 

By the Way .,..I 

On my machine, MacsBug responds 

Disassembling from a5+i32 

No procedure name 

00796A6C ORI . B ??F9 , 01 0 001 4EF9 

00796A70 ORI . W lt$83EC , $0001 0078 83EC 0001 

00796A76 JMP $00788684 4EF9 0078 8684 

00796A7C ORI . B ??F9 , D1 0001 4EF9 

00796A80 ORI . W #$86E8 , $0001 0078 86E8 0001 

00796A86 JMP $00788726 4EF9 0078 8726 

This looks a little bit nasty and not much like code. The reason is that the dis­
assembly began at the start of the jump table. As discussed earlier, calls are 
made 2 bytes into the relevant entry. MacsBug doesn't know the context of 
code (in this case code and data intermixed), and attempts to disassemble 
starting at the first byte (which is data). Obviously, this makes MacsBug some­
what confused. Fortunately, the confusion ends in the second jump table entry, 
which contains a JMP instruction. This JMP instruction jumps directly to the 
desired code. 

In the jump table entry for a loaded segment, the first 2 bytes refer to the seg­
ment number. The UnloadSeg routine scans the jump table looking for all en­
tries with the same segment number as the segment that is being unloaded.lt 
then marks all those segments as unloaded. 

The 1 CODE 1 0 resource contains the jump table with each segment in its 
unloaded state. When the application is loaded, the jump table is copied to the 
location specified in the resource. As the application accesses the individual 
routines in different segments, the jump table entries are changed from their 
initial unloaded state to the loaded state. 

There is no guarantee that AS is valid when you enter MacsBug. 
Many toolbox routines save AS, use it for their own purpose, and 
then reload it when done. If AS is not valid (there is no jump table at 
AS+ 32, for example), the low memory global CurrentAS contains the 
relevant AS value. 



.,... The Segment Loader 1 03 

..,.. Stepping Into Another Segment 

By the Way .,.I 

When you are stepping through code you may encounter a statement such as 

0060F936 JSR $08F2 (AS) I 4EAO 08F2 

An AS relative jump such as this indicates that the routine being called is in 
another segment. If you then step into this routine using the S command, one 
of two things will happen depending on whether the segment is loaded. If the 
segment is loaded, the jump table entry will simply be a jump instruction that 
points to the relevant location 

00607992 JMP $006351E6 I 4EF9 0063 51E6 

If the ~egment is not loaded, you will encounter a display similar to 

00608472 MOVE . W #$001B,- (A7 ) 

00608476 _ LoadSeg ; A9FO 

3F3C OOlB 

I A9FO 

Since the _LoadSeg trap does not return in the standard way, you will be 
unable to trace over it. In such a case you should use the GS macro, which 
is designed to s tep into the application routine _LoadSeg loads. 

The GS macro expands to 

Macr o table 
Name 
GS 

Expansion 
SB 120 l ; G; T 2 ; SB 120 0 

This probably seems very strange, and it is. The byte-sized low 
memory location at $120 tells the Macintosh whether to enter the 
debugger before entering a new segment. The macro first sets $120 to 
a nonzero value (1) indicating that the debugger should be entered. 
Then the Go command tells MacsBug to continue execution. When 
MacsBug is reentered (after the segment has been loaded), the macro 
traces twice (T 2) and then clears the flag at $120. As a result, you end 
up at the beginning of the routine that was loaded. 

When you return from a routine loaded by LoadSeg, your listings in MacsBug 
may look different. For example, if before the call MacsBug showed 

0060F936 JSR $08F2(A5) I 4EAO 08F2 



104 .,.. Chapter 4 How RAM is Organized and Maintained 

for the routine, after the call it may show 

0060F936 JSR My Proc I 4EAD OB F2 

The instruction is still the same ($4EAD 08F2), but MacsBug now knows the 
name of the routine because it is loaded into memory. Other routines in the 
same segment will also display names (rather than an AS relative JSR) when 
listed by MacsBug . 

...,. Common Problems Using the Memory 
Manager 

101 

By far the most common problem encountered using the Memory Manager has 
to do with failing to lock a dereferenced handle during a call that allocates 
memory. Often this leads to heap corruption, since the next access to the memory 
can overwrite a block header. These problems can be fairly nasty, but the Heap 
Scramble (HS) command can help bring the problematic code to the surface. The 
first bug in the Chapter 4 sample application involves a corrupted heap. 

Another common problem that leads to inefficient memory usage rather 
than producing a crashing bug occurs when applications lock handles even 
when they don't need to be locked, or when they allocate pointers when a han­
dle could have been used instead. The symptom of both of these problems is 
poor memory utilization due to a fragmented heap. The second bug in the 
Chapter 4 sample application explores a fragmented heap. 

Finally, many applications have problems with memory leakage. Memory 
leakage occurs when an application allocates memory but forgets to dispose 
of it, filling the heap with allocated but unused blocks. The third bug explored 
in this chapter shows a memory leakage problem. 

Corrupting the Heap 

Examining a Corrupted Heap 

The first menu item under the memory menu in the Chapter4 sample applica­
tion is Corrupt Heap. Selecting this item puts up a dialog box explaining that 
your Macintosh will crash if you press the OK button. 



..,... Common Problems Using the Memory Manager 105 

Sure enough, if you press the OK button the Macintosh falls into MacsBug 
with a message similar to 

User break at 005AA09B CORRUPTH+0062 

Heap is corrupted! Use HD to find corrupted block, ES to continue • 

The heap at OOSA848C is bad 

Block length is bad 

Block header 

005FDEA1 0031 B20B 5365 7443 6C69 6B4C 6F6F 7000 •1••SetClikLoop• 

You can use the Heap Dump (HD) command to see where this block is in the 
heap. On my machine, the (abbreviated) results of HD are 

Displaying the Application heap 

Start Length Tag 

• 005AB4CB 00000100+00 N 

• OOSABSDO 00000004+00 R 

• 005A85DC 0000022E+02 R 

• 005ABB14 00001D24+08 R 

• 005AA548 00000100+00 N 

• 005AA650 00000100+00 N 

I* Middle of heap left out */ 

005AAF50 00000044+00 F 

005AAF9C 00000100+00 R 

005ABOA4 0004FFFD+00 F 

005FBOA9 00002DF8+00 F 

The heap at 005A848C is bad 

Block length is bad 

Block header 

Mstr Ptr 

005A85C4 

005A85B8 

005AB5AC 

005AA71C 

Lock Prg Type ID File Name 

L 

L CODE 0001 04C8 

L p CODE 0002 04C8 

005FDEA1 0031 B20B 5365 7443 6C69 6B4C 6F6F 7000 •1••SetClikLoop• 

The heap blocks that appear bad belong to free (F) blocks. Although a heap 
problem such as this can have a variety of causes, writing to a block that has 
moved and overwriting the end of a block are the most common. This example 
deals with finding the problem when the end of a block is overwritten. 



106 ..,. Chapter 4 How RAM is Organized and Maintained 

When a block is overwritten, the code that owns the previous block is usually 
at fault. The easiest way to determine whether this is the case is to look at the block 
data and determine if it is overwriting the beginning of the next heap block. 

In this example, the last block our applica tion owns starts at $5AAF9C. Since 
the block header could be overwritten in such a way as to confuse MacsBug 
as to whether the block is allocated or free, this assumption is not always true. 
However, in most cases one of the blocks just prior to the bad block is at fault. 

Since the block at $5AAF9C is $100 bytes long, you can display its contents 
with the command 

dm 5aaf9c 100 

MacsBug responds by displaying a block of fives. If you continue to display 
memory by pressing Return you will see more fives! This is obviously a bug. 
The memory at the end of the block (after the first $100 bytes) belongs to the 
block header of the next block. The application overwrote this header, corrupt­
ing the heap. Once you determine that this is the problem, figuring out the 
cause of it in the source is fairly easy . 

...,.. Fragmenting the Heap 

A second problem applications have is heap fragmentation. Many developers 
are not aware that this is a problem and that their applications suffer from poor 
memory use due to a fragmented heap. The HD command in MacsBug makes 
it very easy to determine how memory is allocated in the heap. 

101 Examining a Fragmented Heap 

The second item under the Memory menu in the Chapter 4 sample applica­
tion is Fragment Heap. Selecting this item puts up a dialog box explaining that 
a NewHandle memory allocation will fail because the heap is fragmented . 
Press the OK button and you will enter MacsBug with the message 

User break at 0049E8F8 FRAGMENT+0078 

Next NewHandle fails even though there is enough memory in heap 

Set an A-trap break on New Handle and continue. 

atb newhandle ; g 



.., Common Problems Using the Memory Manager 107 

You enter MacsBug at a call to New Handle. Register DO contains the amount 
of memory requested. Assume $2B668 bytes are requested. The total amount 
of memory available in the heap is given by the Heap Totals (HT) command 

ht 

MacsBug responds with 

Totaling the Application heap 

Total Blocks Total of Block Sizes 

Free 0003 #3 00055B3C #351036 

Nonrelocatable 0008 #8 00001310 #4880 

Relocatable 0015 #21 000051A8 #20904 

Locked 0006 #6 000049EO #18912 

Purgeable and not locked 0000 #0 00000000 #0 

Heap size 0020 #32 0005BFF4 #376820 

The first line shows that there are $55B3C bytes free in the heap, considerably 
more than requested. If you now step over the New Handle call with the Trace 
(T) command, you are on the other side of the New Handle. Now register AO 
contains the Handle if the call was successful and zero if it was not. On my ma­
chine the call was not successful and register DO, which contains the error 
code, contains $FFFFFF94 or -108, which is a memFullErr. 

If you look at the heap using the Heap Display (HD) command you will see 
a result similar to 

Displaying the Application heap 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• 0049C638 00000100+00 N 

• 0049C740 00000004+00 R 0049C734 L 

• 0049C74C 00000730+00 R 0049C728 L CODE 0001 05E2 

• 0049CE84 00000100+00 R 0049C71C L 

• 0049CF8C 00000000+04 R 0049C718 L 

• 0049CF98 OOOOOOOC+OO N 

• 0049CFAC OOOOOOOC+OO N 

• 0049CFCO OOOOOOOC+OO N 

• 0049CFD4 OOOOOOOC+OO N 



108 ...,. Chapter 4 How RAM Is Organized and Maintained 

• 0049CFE8 00004154+00 R 0049C714 L p CODE 0002 05E2 

• 004A1144 00000100+00 N 

• 004Al24C 00000100+00 N 

004A1354 00028570+00 F 

• QQ~CCSCC QQQQQE8.Q+QQ N 

004CD874 00000014+00 F 

004CD890 00000230+00 R 0049C720 

004CDAC8 00000078+00 R 0049C730 

004CDB48 00000174+00 R 0049C72C 

004CDCC4 0000001E+02 R 004A133C 

004CDCEC 00000036+02 R 004A1324 

004CDD2C 00000042+02 R 004A1348 

004CDD78 0000001C+OO R 004A1344 

004CDD9C 00000016+02 R 004Al340 

004CDDBC 00000004+00 R 004Al32C 

004CDDC8 00000000+04 R 004A1334 

004CDDD4 00000024+00 R 004Al338 

004CDEOO 00000048+00 R 004Al320 

004CDE50 00000039+03 R 004A131C 

004CDE94 00000170+03 R 004A1330 

004CE01C 00000032+02 R 004A1314 

004CE058 0002A5AO+OO F 

• 004F8600 00000022+02 R 004Al328 L 

There are #351036 free or purgeable bytes in this heap 

The bullets at the left of some of the lines indicate the block is not relocatable. 
Applications with good memory management have all the locked blocks at the 
beginning and the end of the heap, but none in the middle. (Of course a locked 
block may occasionally appear in the middle of the heap, but this should be a 
temporary condition since the application should unlock the block as soon as 
it's done with it.) 

The problem with this heap involves a locked block (underlined for ease of 
reading) right in the middle of the heap at address $4CC8CC. This block is in 
the middle because there is a large free block just in front of it (at address 
$4A1354) and a large free block after it at address $4CE058. 



101 

~ Common Problems Using the Memory Manager 1 09 

Even though it may not cause your program to crash, poor memory man­
agement is a BUG. The best way to fix these bugs is by making sure memory 
is only locked as long as it needs to be. If you need to lock a handle for an ex­
tended period of time, move it to the top of the heap with the MoveHHi call. 

Memory Leakage 

Examining a Memory Leakage Problem 

Another memory bug MacsBug can help you find is a memory leakage prob­
lem. Memory leakage occurs when your application allocates memory and 
then forgets to deallocate it. The third menu item under the memory menu is 
called Leak Some Memory, which is precisely what it does. 

To see the problem this causes, enter MacsBug and set an A-trap break at 
WaitNextEvent 

atba waitnextevent; g 

When you break at WaitNextEvent, find out how much memory is available 
using the HT command 

ht 

On my machine, MacsBug responds with 

Totaling the Application heap 

Total Blocks Total of Block Sizes 

Free 0018 #24 00055A5C 1350812 

Nonrelocatable 0007 117 00000368 11872 

Relocatable 0015 #21 000061B4 #25012 

Locked 0006 i#6 00004A28 tl8984 

Purgeable and not locked 0001 Ill 00001200 11 4608 

Heap size 0034 1152 0005BF78 11376696 

Clear all A-trap breaks and continue with 

ate; g 



110 ....., Chapter 4 How RAM is Organized and Maintained 

and then choose the Leak Some Memory menu item and respond OK to the 
dialog. Set the A-trap break on WaitNextEvent as before and use the HT com­
mand when MacsBug breaks. On my machine MacsBug now responds with 

Totaling the Application heap 

Total Blocks Total of Block Sizes 

Free 0010 #16 00054AB4 #346804 

Nonrelocatable 0007 #7 00000368 #872 

Relocatable 0016 #22 0000715C #29020 

Locked 0006 #6 00004A28 #18984 

Purgeable and not locked 0001 u 00001200 #4608 

Heap size 0020 #45 0005BF78 #376696 

By comparing this with the earlier HT output, you can see that there are now 
4008 bytes less of free memory available. This is legitimate behavior if the appli­
cation performs some function that requires memory and then keeps it around 
intentionally. Often, however, an application allocates memory, uses it, and then 
forgets about it without disposing of it. This causes the heap to fill with unused 
but allocated blocks and eventually creates an out-of-memory condition. 

In this particular case the size of the leaked block was 4000 bytes, but the actual 
block includes the header for a total of 4008 bytes. Note also that the number of free 
blocks has changed considerably. This number changes depending on temporary 
memory allocations and deallocations and is generally of little importance. 

The easiest way to find these problems is to determine what operations pro­
duce the memory leakage and then examine the source code for memory allo­
cations of which are not disposed. Or you could set application A-trap breaks 
on NewHandle and NewPtr and make sure that all allocated handles and 
pointers are disposed . 

....,. Summary 
This section discussed 

• How memory is allocated and deallocated, both on the stack and in the heap 

• How to look at the code the compiler generates via the DUMPOBJ tool 
inMPW 

• The LINK and UNLK instructions 

• The structure of a heap zone 



.,... Summary 111 

• Why it is better to use handles than pointers, and how master pointer 
blocks work 

• That application globals are referenced as negative offsets from register AS 

• How an application is segmented, and how those segments are main­
tained via the jump table 

• How to step over the _LoadSeg trap using the GS macro 

The following MacsBug commands were discussed in this chapter. 

• How to Display Memory (OM) using templates 

• Heap eXchange (HX) for changing the current heap MacsBug looks at 

• Heap Zone (HZ) for displaying all zones 

• Heap Display (HD) for displaying all items in the current heap 

• Heap Totals (HT) for displaying a summary of the contents of the 
current heap 

• Heap Check (HC) for checking the integrity of the current heap 

• A-Trap Heap Check (ATHC) for checking the heap before every A-trap call 

• Heap Scramble (HS) for moving memory whenever the system may 
move memory to force memory problems to surface 

This chapter concentrated on the organization of RAM. There are three ma­
jor areas of memory: low memory, the system heap, and the MultiFinder heap. 
MultiFinder is merely an application that further subdivides its zone as each 
new application is launched. 

There are two ways of obtaining memory, NewPtr and NewHandle. This 
memory is allocated in a heap. Heaps and the MacsBug commands that deal 
with heaps were discussed. Finally, the chapter described three common prob­
lems applications encounter using the Memory Manager: corruption of the 
heap, fragmentation of the heap, and memory leakage. 

At this point you should understand the Macintosh memory model (this 
chapter) and how applications use the A-trap mechanism to access the 
ROM (Chapter 3). The remaining chapters in this part (chapters 5-16) dis­
cuss specific areas of the Macintosh toolbox in detail. These chapters are 
largely independent of each other but rely heavily on the material 
presented in the first four chapters. 



5 

Note ~~o-l 

The Main Event Loop 

Events are signals to your application that it needs to perform some action. 
Events are generated when the user of your program clicks the mouse button, 
types a key, inserts a disk, or when some other part of the Macintosh needs the 
attention of your application. Ma cin tos h users, unlike users of computers that 
put up a prompt and then wait for information to be entered, expect to be able 
to direct their attention wherever and whenever they want. 

Moving the mouse does not generate an event. If you want to track 
mouse movement you can do so in a few different ways. The easiest is 
to use the GetMouse function from the Toolbox Event Manager. If you 
just want to check to see if the mouse has exited a particular region 
you can provide a region to WaitNextEvent. Also, some Window 
Manager routines, such as GrowWmdow and Drag Window, 
automatically track the mouse for you . 

...,.. Finding the Event Loop 
This style of interaction results in applications organized around a loop that 
gets and dispatches events to the proper routines. This loop is called the main 
event loop; most programs spend most of their time in the main event loop wait­
ing for action by the user. This main event loop is the heart of a Macintosh 
application from which every action starts. 

113 



114 ~ Chapter 5 The Main Event Loop 

101 

Note .... j 

Finding the Main Event Loop 

The WaitNextEvent trap is the workhorse of the event loop. The easiest way 
to find the main event loop of an application is to set a breakpoint on WaitNext­
Event. First make sure that you entered MacsBug in the right application by 
checking the status area under CurApName. Then set the A-trap break when 
WaitNextEvent is called from the application. 

atba WaitNextEvent 

Some older programs use GetNextEvent instead of the MultiFinder­
friendly WaitNextEvent routine. If the application doesn't fall into 
MacsBug when you break on WaitNextEvent, try using GetNextEvent 
instead. 

A following hands-on exercise looks at the returned event record, which in­
dicates the user 's action to the application . 

....,. What's In an Event Loop 
Once you have found the main event loop in an application, you can use it to 
explore what happens when you perform various actions. In the example 
applications, the main event loop is called by the code fragment 

while (gQuitApp==false) 

Event Loop (); 



...,. What's In an Event Loop 115 

The start of the EventLoop function is 

void Event Loop() 

EventRecord ER; 

short i; 

short wNum; 

WindowPtr w; 

tWindowObject *thisWindowObject; 

Rect r; 

if (WaitNextEvent (Oxffff, &ER, qSleep, nil)) 

qLastModifiers • ER.modifiers; 

if(ER.what > 5 && ER.what < 12) I* update event or higher: in message *I 

w a (WindowPtr) ER. message; 

else 

w • FrontWindow(); I* else, use FrontW *I 

if (ER. what > 1) 

wNum • ScanWindowList (w); I* other than null or click, scan list *I 

thisWindowObject • GoodWNum(wNum); I* and get record *I 

switch IER.what) 

case 0: I* null event *I 

break; 

I* SWITCH NOT COMPLETE, SEE SOURCE LISTINGS *I 

The switch statement dispatches each event to the part of the application 
that handles the event. The complete switch statement is rather lengthy and 
the code is on the disk. 



116 ..,. Chapter 5 The Main Event loop 

...,_ WaitNextEvent 

Note .,.I 

Note ..,.I 

The previous example shows that the Event Loop function starts by getting the 
next event from the WaitNextEvent trap. The definition for WaitNextEvent is 

pascal Boolean WaitNextEvent(short mask , EventRecord *event , 

unsigned long sleep, RgnHandle mouseRgn); 

If your application uses GetNextEvent instead, its definition is 

pascal Boolean GetNextEvent(short eventMask , EventRecord 
*theEvent); 

The mask parameter is a bit field that indicates the types of events your 
application is interested in receiving. In the example, every event is requested, 
so the application passes an EventMask of Every Event. The EventRecord is 
filled in by WaitNextEvent; the returned event record indicates the type of 
event, when and where the event occurred, the state of the various modifier 
keys, and a message field whose usage depends on the type of event. 

The sleep parameter is the maximal amount of time your application wants 
to wait for WaitNextEvent to return. If your application does not perform peri­
odic events it can give more time to background applications by passing a 
large value for the sleep parameter. But if your application performs periodic 
processing (like blinking a cursor), it is important to use a small value for the 
sleep parameter. 

The final parameter passed is a region that indicates a bounding area for the 
mouse. If the mouse is moved outside the region, an OS event is returned. In 
response your application can check the mouse position and change the cursor 
shape, for example. WaitNextEvent returns a flag indicating whether a 
non-nullEvent event is returned. 

In general, the only event commonly ignored is the KeyUp event, since 
most users don't expect that letting go of a key will cause an action in 
an application. 



101 

..,.. What's In an Event loop 117 

The example application keeps the modifiers in a global variable so that 
other functions can examine them without having to pass the event record 
around. The event is then processed by checking what kind of event was 
received. First the event is categorized by those that always go to the front 
window and those that return the target window pointer in the message 
parameter. Some events, update in particular, have a window associated 
with the event, while most of the other events are normally meant for the 
Front Window. 

Events are then dispatched by a large switch statement (or case statement 
in Pascal). The switch statement is lengthy and is not reproduced here. The 
complete source appears on the accompanying disk. 

Catching a Keyboard Event 

Catching a Keyboard Event 

It is often interesting to wait for a particular event in order to watch how the 
application handles it. To watch how an application handles a keyboard event, 
you first need to find its main event loop. Start by breaking on WaitNextEvent. 

atb WaitNextEvent 

When MacsBug breaks, make sure you are in the target application. The event 
record is the third long word on the stack. You can view it by typing 

dm @(sp+8) EventRecord 

My Mac responds with 

Displaying EventRecord at 002C3AF2 

002C3AF2 what 

002C3AF4 message 

002C3AF8 when 

002C3AFC where 

002C3BOO modifiers 

0000 

00000000 

00083Fl8 

025C OllA 

0080 



118 ...,. Chapter 5 The Main Event Loop 

If you try to watch for events by stopping on every call to WaitNextEvent, 
MacsBug constantly interrupts the application, and it is very difficult to 
generate the desired event. To surmount this problem, set a breakpoint on 
the instruction right after WaitNextEvent with a condition to stop only 
when the desired event is received. 

br pc+2 @2c3af2 .w = 3 

The address is the location of the What field in the event record. This com­
mand stops at the instruction right after WaitNextEvent whenever the type 
of event being returned is a three, which is a key Down event. (See Table 5-1 
for other types of events.) Be sure to clear the WaitNextEvent break using the 
ATC command. 

Table 5-l. Event types 

#define nullEvent O 
#define mouseDown 1 
#define mouseUp2 
#define keyDown3 
#define keyUp4 
#define autoKey 5 
#define updateEvt 6 
#define diskEvt 7 
#define activateEvt 8 
#define networkEvt 10 
#define driverEvt 11 
#define app1Evt12 
#define app2Evt 13 
#define app3Evt 14 
#define app4Evt 15 

This example shows how to catch keyboard events. This technique can be 
used to catch any particular event. 



~ The Event Queue 119 

...,.. The Event Queue 

101 

The Macintosh keeps the events that have not yet been delivered to your appli­
cation in a queue called the EventQueue. Not every event is placed in the event 
queue. In particular, activate events and update events are not found in the 
queue. This is because activate events are returned immediately to give 
user-interface activities, such as clicking in a back window to bring it forward, 
a "snappy" feel. Since activate events are given priority, they never wait to be 
processed in the event queue. 

Update events are given lowest priority. When the Event Manager doesn' t 
have any queued events, it checks the window list to see if there are any win­
dows that need updating and sends an update message if such a window is 
found . The window list is scanned front to back, so that the most forward win­
dows will be the most up-to-date. If the event queue is empty and no windows 
need updating, a nullEvent is returned. 

Examining the Event Queue 

If you have an application that is not correctly picking up events, you can ex­
amine the events pending using the EVT dcmd (see Chapter 20 for more infor­
mation on dcmds). EVT shows the pending events in the event queue. The 
Chapter 5 demo application on the accompanying disk has an option to stop 
accepting keyboard events (using the EventMask), so you rna y queue up some 
events and examine them in MacsBug. Start by launching the Chapter 5 sam­
ple application, selecting the "No Keyboard Events" menu option, and typing 
a few keys. Then break into MacsBug and type 

evt 

and you will see the events queued up in this way. 

What Message 

3 00020264 

3 00020264 

3 00020366 

3 00020567 

Whe n Where (h , v) 

OOOCC7B9 

000CC7Fl 

OOOCC81A 

OOOCC82A 

338 ' 534 

338 ' 534 

338 , 534 

338 , 534 

Modifiers 

00000080 

000000 80 

00000080 

00000080 

The What field indicates that the events are all key Down events (3), and the 
Message field contains the key code (in the high byte of the low word) and the 
ASCil character code in the low byte.ln this case, the messages have character 



120 ..,.. Chapter 5 The Main Event Loop 

Note ..,.I 

Note ..,.I 

codes of 64, 64, 66, and 67, indicating that ddfg was typed. (The key codes map 
to a key pressed on the keyboard. The mapping is given in ''The Toolbox Event 
Manager" chapter of Inside Macintosh, Volume 1.) The When field indicates 
when the event occurred (in ticks-display the low memory global TICKS for 
the current value), and the Where field is the position of the mouse when the 
event occurred (in this case, not moving). Modifiers is a bit field indicating the 
state of the various modifier keys (Shift, caps lock, Option, cmd, Control) and 
the mouse button. 

The mouse button uses inverse logic: a 1 indicates the mouse button is 
up, and a 0 signals it is pressed. 

If you specify an event mask that masks certain events, WaitNextEvent re­
turns the next nonmasked event, leaving the masked events in the queue. Un­
less the buffer was filled and pending events disposed of, all masked events 
appear when WaitNextEvent is passed a mask that allows them to do so. The 
system event mask in low memory can be used to prevent events from being 
posted in the first place. In general, this should only be used to mask out key Up 
events. You can examine the word-sized system event mask with the Display 
Word (OW) command 

dw SysEvtMask 

When the event queue fills up, the oldest event is removed to make room 
for the new event. This means that if you enable key Up events with the system 
event mask but mask them out with the mask passed to WaitNextEvent, the 
event queue will fill up with keyUp events. Your application will still work 
correctly, since the system automatically replaces the oldest existing event (in 
this case a key Up event) with the most current event. 

The size of the event queue is twenty events. This size is determined at 
system startup time by an entry in the System Startup Information 
stored on the boot volume, but it is unlikely that you should ever have 
to change this value. 



...,. Forcing an Application to Quit 121 

~ Forcing an Application to Quit 
If you can get back to the main event loop of a crashed application, you can of­
ten save your work by manually posting a quit event using MacsBug. When 
the application crashes, set an A-trap break on WaitNextEvent (and GetNext­
Event, just to be sure) before advancing the PC over the offending instruction. 
If the application manages to make it back to WaitNextEvent, you have a 
chance to attempt a graceful exit (and perhaps get the application to save your 
in-progress work) by forcing a Quit event. 

If the application makes it back to WaitNextEvent, you want to force the next 
event to be CMD-Q to indicate that the application should quit. First, you need 
to locate the event record. For WaitNextEvent, its address is the third long on 
the stack; to display it type 

dm @(sp+B) EventRecord 

If the application is using GetN extEvent, the event record is on top ofthe stack. 

dm @sp EventRecord 

MacsBug responds similar to 

Displaying EventRecord at 002C3FEE 

002C3FEE what 

002C3FFO message 

002C3FF4 when 

002C3FF8 where 

002C3FFC modifiers 

0000 

00000000 

00008482 

0181 0159 

0080 

Trace over the WaitNextEvent (or GetNextEvent) trap and fill a CMD-Q 
event into the event record. To do this you need to change the What, Message, 
and Modifiers fields as well as the value returned on top of the stack. 

Place a 3 in the What field indicating a keyDown event. The Message field 
should be set to $00000C71 which is the character and key code for a q. You 
should put the value $0180 in the Modifiers field, indicating the Command key 
is down. The final change is setting the returned value (on the top of the stack 
after the call) to be nonzero (or true), indicating that a real event was found. 
To accomplish all this (using the addresses from the previous event record), 
you type 



122 ~ Chapter 5 The Main Event Loop 

sw 2c3fee 3 

s 2c3ff0 00000c71 

sw 2c3ffc 0180 

sw sp ffff 

Use the Go command to resume and the application will attempt to quit. The 
state of the system may be so corrupt that the application is unable to quit and 
crashes again. You gave it your best try; at least you are no worse off than before . 

.,.... Summary 
This chapter discussed how to find and explore the main event loop of an 
application; in particular 

• User, as well as system, actions create events that are put in the event queue 

• How applications are organized around the main event loop to process 
user input 

• The structure of a main event loop 

• How to explore 'What an application does with a particular event 

• How the event queue works and how activate and update events are han­
dled by the Event manager 

• How to attempt to recover from a crashed program 

The event loop is the heart of an application and is the basis for exploring 
how an application works or a starting point for tracking a bug that occurs 
when a particular command is entered. 



6 

Note ..,.I 

Resources 

Macintosh files have two parts: the data fork and the resource fork. The data 
fork stores arbitrarily structured data, similar to files on other operating sys­
tems. Access to the data fork of a file is via the File Manager. 

The Resource Manager is a layer on top of the File Manager that provides 
access to a file's resource fork. Data structures in the resource fork may be pre­
defined, such as 1 MDEF 1

, 
1 DLOG 1

, and 1 PICT 1
, or custom to an applica­

tion. Applications access the resource fork of a file with the Resource Manager. 

The application, rather than the Resource Manager, interprets the data 
read from the resource fork. For example, if you put strings in a 
resource of type 1 ICON 1 

, the Resource Manager will return a string 
when the 1 ICON 1 is requested. Such a practice is not recommended 
but illustrates that resources are just data to the Resource Manager and 
the interpretation of the data is left up to the application. 

In some cases parts of the Macintosh system expect to find specific 
data in certain resources. For example, the Menu Manager expects to 
find the code that defines a menu in an 1 MDEF 1 

, and if you 
happened to put other types of data in 1 MDEF 1 0 your application 
will crash. 

123 



124 ...,. Chapter 6 Resources 

Resources are used to store state information, such as window positions be­
tween program launches, as well as other data, such as the appearance of a dia­
log box. Since information in resources can be changed without recompiling 
the program, customizable data is often kept in resources rather than coded 
directly in the source. For example, all the text an application displays to the 
user should be kept in resources to make it easy to localize the application for 
other countries. 

In addition to applications, many parts of the Macintosh ToolBox use re­
sources. For example, if you ask the Dialog Manager to display Alert 1000, the 
Dialog Manager gets the definition of the alert from the 1 ALRT 1 resource. In 
this case, the resource comes from the application resource file. 

The application's code is also kept in resources. In this case the resource type 
is 1 CODE 1 

• In the MPW environment the compiler or the assembler gener­
ates the code and then the linker puts the code into resources. 

Understanding the Resource Manager is fundamental to Macintosh pro­
gramming, and debugging resource-related problems is key to expedient 
application development. Fortunately, there are a number of MacsBug tech­
niques to assist in untangling the Resource Manager data structures . 

....,. Specifying a Resource 
Resources are specified using two identifiers. The first is a long-word (32-bit) 
resource type, which is usually specified as four characters. For example, alert 
resources have a type of 1 ALRT 1 and icon resources have a type of 1 ICON 1 

• 

The second identifier is either an ID or a name. The ID is just a word value 
(ranging from -32768 to 32767), whereas the name is a Pascal string. Resources 
always have an ID; the name is optional. For example 

1 DLOG' 1024 

'DITL 1 2345 

'ICON' 12387 "Warning" 



..,. Owned Resource IDs 125 

...,.. Owned Resource IDs 

Note ..,. I 

Sometimes a set of resources is designed to group resources so that special 
resource managing programs (Font/ DA Mover, for example) can manipulate 
them together. In these instances, one resource is the parent resource and the 
associated or "owned" resources are children. The children are numbered based 
on the ID of the parent resource. This numbering allows the parent to calculate 
the IDs of its children from its own ID. The ID of the parent resource is in the 
range of 0 to 63, and the IDs of the children resources are constructed as 

15 141 13 11 1 10 51 4 01 

1 1 I Owner Type ID of owning resource variable 

Type Bits Owner Type Type Bits Type 

000 ' DRVR ' 10 0 ' PDEF ' 

001 1 WDEF 1 101 1 PACK 1 

010 ' MDEF ' 110 Chooser, Ctrl Panel 

011 ' CDEF ' 111 Hypercard XFNC&XCMD 

For example, if a desk accessory - type 1 DRVR 1 (binary 000)- with ID 
12 (binary 001100) owns children resources such as 1 DLOG 1 or 1 ALRT 1

, its 
children resources are specified by 1 1 000 001100 XXXXX, giving $C180 to 
$C19F, or decimal - 16000 to decimal-15969, a range of 32 IDs, for the children 
resources. When a program such as Font/DA Mover copies this resource from 
one file to another, it checks for owned resources and copies them as well. 

Apple Computer has also reserved the IDs where bit 14 is zero for 
System Software. This means that all the negative IDs are either 
owned resou rces or reserved. To be compatible with the future, 
resources that aren't explicitly owned should be in the range between 
128 and 32767. 



126 ~ Chapter 6 Resources 

...,.. Resources In Memory 

Note ..,.. 

Key Point ..,.. I 

When a resource is loaded into memory from a resource file, it is kept in a han­
dle, the same kind of handle allocated by New Handle. Unlike memory returned 
by NewHandle, resource handles returned by GetResource belong to the 
Resource Manager. Your application can specify that a resource is locked or 
purgeable but should never dispose of the memory occupied by a resource 
handle (using DisposeHandle) because the Resource Manager keeps a refer­
ence to the resource in its resource map (discussed in a following section). If 
you want to free the memory occupied by a resource, use the Resource Manager 
ReleaseResource call. 

The Resource Manager automatically releases all resources associated 
with a given file when the file they come from is closed. Although you 
don't have to remember to release all the resources from a file before 
closing it, you must remember that you no longer have access to 
resources from a closed file unless you have detached them. 

To get your own copy of a resource, call DetachResource. After detaching 
a resource you are responsible for the memory used by the handle. If you ask 
for the resource again, the Resource Manager will load a new copy. This can 
lead to trouble if you make a change to a resource and then detach it. Later, if 
you try to get the changed resource, it won' t be available. However, it can be 
useful, in that you can get the resource, detach it, and make changes. Then if 
you need to compare it to the original, just ask the Resource Manager for it. 
Figure 6-1 shows the effects of releasing and detaching a resource. 

When you call GetResource to get a resource, the Resource Manager is 
merely giving you a reference to the resource, not your own copy. The 
resource is still owned by the Resource Manager, and if the associated 
resource file is closed, the memory is automatically released. You can 
get your own copy of a resource by calling DetachResource. Then you 
are responsible for the memory just as if the memory was allocated by 
your application using New Handle. 



~ Resources In Memory 127 

Note 

Resource Map 

resource data 

handle 
_.J master I ... 
""I pointer I ... 

H 

your handle 

----~-----------
After ReleaseResource After DetachResource 

Resource Map I Resource Map 

resource data 

NIL NIL ..J master I .. 
""I pointer I ... 

.. ~ 

I your handle I your handle 

Figure 6-1. Resources after ReleaseResource and Detach Resource 



128 ..,.. Chapter 6 Resources 

.,... Attributes 

Key Point .,..I 

Even though the Resource Manager owns the resource handle, you can control 
the handle's attributes using the Memory Manager calls. For example, you can 
lock, unlock, or change the purge state of a resource with HLock, HUnlock, 
HPurge, and HNoPurge. These attributes are stored with the resources in the 
resource file so that they have the correct attributes when they are loaded into 
memory. As discussed previously, you cannot use the Memory Manager Dis­
posHandle routine. Because resources are easily retrieved from the resource 
file, it is convenient to leave resources purgeable. This allows resources to be 
automatically purged by the Memory Manager if memory is needed. If you 
leave your resources purgeable, you should always call LoadResource before 
referencing the resource's data. LoadResource is very fast if the resource is al­
ready in memory (it just checks to see if the handle passed is pointing to nil). 

In addition to the Memory Manager attributes, resources can be preloaded, 
protected, or loaded in the system heap. Rather than waiting for the applica­
tion to request a resource, preload means that the resource will be loaded into 
memory as soon as the resource file is opened. Protected prevents the resource 
from being changed or deleted using any of the Resource Manager routines. 
The SysHeap attribute causes the Resource Manager to attempt to load the 
resource into the system heap instead of the application heap; if the system heap 
is full the resource is not loaded. 

A very common mistake when using resource attributes is to change a 
resource and then set its attributes. You may then notice that the 
resource is not being written to the file. The changed bit telling the 
Resource Manager that the resource needs to be written to the file is 
held in the attributes and when the attributes are set, the entire byte is 
set. This means that the attributes you are changing are also clearing 
the changed bit. 

There are two ways to do this operation properly. The first way is to 
make sure that the resource is written before changing the attributes by 
using the WriteResource call immediately after changing the resource. 
The second way is to use GetResAttrs to get the resource attributes. 
Change only the attributes you want to affect and then use SetResAttrs 
to write the attributes back. 



...,.. Resources In Memory 129 

All the resource attributes can be set with the SetResAttrs call. Changing 
the state of a resource with the Memory Manager affects the resource imme­
diately, whereas changing it with SetResAttrs changes it the next time the 
resource is read into memory. You cannot permanently change the state of 
a resource with the Memory Manager calls; you must use SetResAttrs and 
then call ChangedResource. 

Purgeable resources are excellent for running in low memory conditions. 
There are several pitfalls, however. If a resource is changed without using the 
ChangedResource call, your changes will be discarded if the resource is 
purged. If a resource has been marked changed with the ChangedResource 
call, then the Resource Manager's purgeProc will write it out before it is 
purged. A second pitfall is that your application might run slower because the 
Resource Manager must reload resources from disk constantly. 

Determining Whether a Handle Belongs to the Resource 
Manager 
Because resources are so important to the Macintosh and they are kept in han­
dles in the heap, Macsbug provides assistance in viewing resources in the 
heap. Using the HD (HeapDump) command with the RS (ReSource) option 
specifies that only resources should be displayed. For example, abbreviated 
MacsBug output from 

hd rs 

may look like this display. 

Displaying the Appli cation h eap 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• 001E1Cl8 0000040A+02 R 001ElBD4 L CODE 0001 OD98 

• 001E202C 00000051+03 R OOlElBDO L PICT 0BB8 OD98 

• 001E2088 0000000R+09 R OOlElBC8 L STR 002A 0098 1st 
10 Style CMD Keys 

001E2154 OOOOOOOC+OO R 001ElB34 ALRT OOD7 OD98 

The dot (•) on the left indicates the block is nonrelocatable; that is, it is 
locked, which is also indicated by the Lin the Lock field. The Tag field contains 
R, indicating that this is a relocatable block or handle (which is true for all re­
sources). The Lock and Prg fields are flags, indicating if the resource is locked, 



130 .,.. Chapter 6 Resources 

Note ..,.., 

purgeable, or both. Type is the resource type and ID is the resource ID. File is 
the file reference number for the resource file containing the resource. The 
Name is shown if the resource has one. 

You can check if an address is ina resource with the WH (WHere) command. 
For example, if you want to see if address $1 E1 C20 is in a resource, use 

wh lelc20 

On my machine, MacsBug responds with 

Address 001ElC20 is in the Application heap 

It is 00000008 bytes i nto this heap block : 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• 001E1Cl8 0000040A+02 R 001ElBD4 L CODE 0001 0098 

indicating the address is 8 bytes into a ' CODE ' resource with an ID of one. 

MacsBug determines where memory is by looking at the resource 
map, a data structure maintained by the Resource Manager, discussed 
in a following section. If you call DetachResource on a resource, the 
Resource Manager removes its reference to the resource from the 
resource map and MacsBug will no longer know where it came from. 

Furthermore, if an application corrupts the resource map MacsBug 
may return faulty information about the resource or be unable to 
return any information at all. 

~ Code Resources 

Applications on the Macintosh keep their code in resources of type 1 CODE ' . 
As discussed in Chapter 4, the Jump Table is kept in ' CODE 1 0 and the rest 
of the application is kept in ' CODE ' resources with other IDs. There are also 
other standard resources types that contain code. For example, the routines for 
handling the behavior of controls are kept in ' CDEF ' resources and the code 
for Control Panel devices is kept in ' cdev 1 resources. 



Note ..,.., 

..,.. Resources In Memory 131 

1 CODE 1 resources are normally managed by the Segment Loader. 
Since the Segment Loader keeps 4 bytes at the beginning of each 

1 CODE 1 resource, the actual code in a 1 CODE 1 resource starts 4 
bytes later than might be expected. This is why MPW and other 
development environments need to know if you are creating 1 CODE 1 

resources or other types of resources. 

Since code is kept in resources and resources are handles, an interesting bug 
sometimes shows up. The symptom is that your code calls the Macintosh sys­
tem and every now and again the system routine returns to some block of 
memory other than the one from which it was called. The source of this prob­
lem is that the code resource is not locked and is therefore relocatable. If the 
call moves memory, your code resource may be moved. Although the call re­
turns to the correct address, your code isn' t there anymore. 

To complicate matters even further, sometimes there might still be a frag­
ment of your code in the right place, allowing your application to continue to 
work for a short time. This type of bug can be very difficult to track down. If 
you suspect such a problem, you can check which block the PC is in after re­
turning from the system routine using the WH command. If it's not in there­
source you thought, or not even in a memory block, you've found the problem. 
You should always lock code resources before executing routines contained in 
them. For application 1 CODE • resources the system (LoadSeg) takes care of 
this for you. 

~ Other Resources 

Everything from simple types of data, such as strings, to very complex types 
of data, such as Dialogs and Pictures, are kept in resources. If you encounter 
a problem associated with a resource, you can use MacsBug to pinpoint where 
the problem is occurring. The following example demonstrates this technique. 

Trapping When a Specific Resource is Loaded 

Trying to trap on every call to GetResource can be an exercise in frustration, 
since resources are used for almost everything. Fortunately, it isn't too hard to 
get MacsBug to trap only on GetResource calls for particular resource types or 
IDs. First, trap on every call to GetResource. 



132 ..,. Chapter 6 Resources 

atb GetResour c e 

Because most Macintosh programs call the Resource Manager repeatedly, you 
will be back in MacsBug soon after you continue. Clear the breakpoint with 

ate 

If you are looking for a particular resource you can trap on GetResource with 
a conditional expression. GetResource takes two parameters: a type and an ID. 
For example, to break on every call to GetResource when a resource of type 
1 ICN# 1 is loaded use the command 

atb GetRe sour ce @(sp+2)= 1 ICNH ' 

If you do this while in the Finder and then open a folder, you will trap into 
MacsBug on a call to GetResource. 

You could also break anytime a resource of a particular ID, say $20, is loaded 
using a command such as 

atb GetRe source @sp . w = 20 

.,... Resources On Disk 

Note ..,.. 

Like individual resources, resource files also have attributes. There are a total 
of three resource file attributes: mapReadOnly, mapCompact, and map­
Changed. You can use the mapReadOnly attribute to prevent changes to the 
resource file. The other two attributes are used only by the Resource Manager 
to manage changed resources. 

If you set mapReadOnly and later clear it, the resource file will be 
written to disk even if there's no room on the disk for it. This can 
destroy the resource file. 

The Resource Manager also has a flag that prevents resources from being 
loaded from disk. This is a word-sized flag in low memory called ResLoad. If 
Res Load is true, resources will be loaded whenever you call for them. If Res­
Load is false, an empty handle is returned whenever you get a resource. 



Note ..,.. 

..,.. Resources On Disk 133 

This is useful in preventing the Resource Manager from repeatedly going 
to disk and filling up memory in a case where you want to scan through many 
resources (possibly using GetindResource). You can also disable resource 
loading by setting ResLoad to false if you want to set resource attributes and 
you need to examine only the names and types to do so. For example, Font/ 
DA Mover needs only the names of the DAs and fonts initially, so it reads them 
by setting ResLoad to false while it indexes through the resources. The re­
sources have to be loaded only when they are moved from one file to another. 

You can get yourself into trouble by· leaving ResLoacl false when you 
exit your application or when you call a trap. By leaving it false·other 
applications and system tools will fail because they are unable to get 
resources. The correct way to handle this case is to immediately 
surround the resource call with the SetResLoad calls. For example 

SetResLoad (fal s~); 

Get Resource ( myTY,pe, myiD ) ; 

Set ResLoad(tr ue ); 

Using the ResErrProc to Catch Resource Errors 

Whenever the Resource Manager encounters an error, it puts the error code in 
the low memory global ResErr. It also calls the ResErrProc if it isn't nil (zero). 
Since most applications don't use the ResErrProc, it can be used during debug­
ging to signal MacsBug when a resource error occurs. 

To do this, enter MacsBug in the application that is to be debugged. This is 
critical, because MultiFinder swaps ResErrProc when it switches applications. 
Then enter the following commands 

sw 4 a9ff 4e75 

s l ResEr rProc 4 

The first line tells MacsBug to set location 4 to a Debugger( ) trap followed 
by an RTS. The second line sets ResErrProc to point to this code. When theRe­
source Manager calls the ResErrProc, MacsBug will be activated. You can then 
look around, and if you use the Go command, the application will continue. 



134 ...,. Chapter 6 Resources 

Note ..,.I 
The long word at address 4 is the startup address of the Stack Pointer 
and is not generally used during normal program execution, which is 
why it can be used during debugging sessions. 

If a resource error occurs, the pointer to the code that called the Resource 
Manager and caused the error is on top of the stack, so it can be inspected using 

ip @sp 

.,.. Resources In ROM 

Note ..,.I 

The Macintosh ROM also contains resources that your application can access 
using the Resource Manager, though to do so requires a little extra work. The 
ROM resources are not in the resource map unless you explicitly instruct the 
Resource Manager to use them by setting the RomMaplnsert flag in low 
memory. This flag tells the Resource Manager to search ROM resources just be­
fore searching system resources for the next Resource Manager trap call. Then 
the flag is cleared automatically. 

This means that you must keep setting the flag if you want to get several re­
sources from ROM. It also means that you are not able to pass an ID of a ROM 
resource to the Dialog Manager (for example), because the Dialog Manager 
doesn't keep setting the RomMaplnsert flag for each resource it tries to access. 

The RomMaplnsert flag is only a byte long, and it is immediately 
followed by TmpResLoad, which is a flag allowing SetResLoad to be 
overridden for the next call only. The MPW interfaces define two 
values: map True and mapFalse. These are word constants that set 
RomMaplnsert to true and TmpResLoacl to the stated value. mapFalse 
does NOT remove the ROM map from the chain but will prevent the 
next call from actually loading the resource! 



Note 

...,. The Resource Chain 135 

..,.. The Resource Chain 
The Resource Manager keeps a directory of all resources in open resource files. 
The individual directory for each resource file is called a resource map. The 
maps for all open resources are linked together and collectively referred to as 
the resource chain. When a request for a particular resource is made, the Re­
source Manager searches the resource chain for the resource.lt starts with the 
most recently opened file or the file last specified using UseResFile and 
searches until it finds the requested resource or returns an error if the resource 
isn't found. Because an application's resource file is opened last, it is searched 
first (unless the application opens other resource files). 

The System file (in the System Folder) is a resource file (just like an applica­
tion) that is opened automatically when the system boots. Because theRe­
source Manager searches resource files in the reverse order in which they were 
opened, the application's resource file is searched first and the System re­
source file is searched last. Since the System resource file is in the resource 
chain for each application, applications have access to system resources such 
as fonts and alerts. The searching order makes it easy to override any feature 
of the system in your application by including a resource of the same type and 
ID in your application resource fork. 

As new resource files are opened, they are added to the start of the search 
chain. This means that if your application opens a resource file and that re­
source file has resources of the same type and ID as resources in your applica­
tion, your application will get the new resources in preference to its own. You 
can change this behavior by telling the Resource Manager to start its search for 
resources with some other resource file lower in the chain of resource files. 



136 ..,.. Chapter 6 Resources 

Note ..,.., 

Note ..,.., 

101 

MultiFinder maintains a separate resource chain for each application, 
so if you launch Mac Draw and then Color MacCheese, the resources 
from Color MacCheese are not in the resource chain MacDraw uses. 

Resource files are opened using the OpenResFile routine. This routine takes 
a filename as an argument and returns the RefNum for the file. In general, you 
don't need to use the RefNum to access the resources themselves; only a few 
routines, such as CloseResFile and UseResFile, work with a resource file di­
rectly. To get the RefNum for your application, call CurResFile before opening 
any other resource files, since your application will be at the top of the resource 
file chain. 

If the Resource Manager already has the file opened when 
OpenResFile is called, the original file ReMumis returned and that 
resource file is set to the current resource file, even though it is lower 
in the resource chain. This can sometimes cause problems if an 
application expects that all previous files will be available after calling 
OpenResFile and the file being opened was already opened by 
someone else. 

Examining the Resource Chain with RD 

Included in the Debugger Prefs file (on the accompanying disk) is a dcmd 
called RD for Resource Dumper. This dcmd displays all the resources in there­
source chain, as well as the file they came from, their attributes, and whether 
they are loaded. To use the RD command, enter MacsBug and type 

rd 



...,. The Resource Chain 137 

The following is a sample abbreviated response. 

Resource Chain - Top to bottom: 

Map at: 002267D4 File RefNum: $000D98 File Name: Your Application 

type: STRS Instances: 1 

ID: 0 at: Unloaded Attribs: cdTlpA 

type: DATA Instances: 1 

ID: 0 at: Unloaded Attribs: cdTlPA 

type: ZERO Instances: 1 

ID: 0 at: Unloaded Attribs: cdTlpA 

type: DREL Instances: 1 

ID: 0 at: Unloaded Attribs: cdTlPA 

type: DITL Instances: 10 

ID: 32767 at: Unloaded Attribs: cdtlPA 

ID: 513 at: Unloaded Attribs: cdtlPA 

ID: 151 at: Unloaded Attribs: cdtlPA 

ID: 130 at: Unloaded Attribs: cdtlPA 

ID: 129 at: 001ED2DO Attribs: cdtlPA 

ID: 128 at: Unloaded Attribs: cdtlPA 

ID: 157 at: Unloaded Attribs: cdtlpA Name: Save As ... 

ID: 153 at: Unloaded Attribs: cdtlpA 

ID: 159 at: Unloaded Attribs: cdtlpA Name: Scale Picture 

ID: 200 at: 001EDOOC Attribs: cdtlpA Name: Open Dialog 

The first line indicates that the file at the top ofthe chain is called Your Appli­
cation. The File RefNum can be used in conjunction with the FILE dcmd to find 
out more about the file (see Chapter 13). This line also gives the address of the 
resource map, which is discussed in a following section. 

The following lines list all the resources of each type contained in that file. 
The first type is 1 STRS 1 

, of which there is one. The next line indicates that the 
1 STRS 1 resource has an ID of 0 and it is currently not in memory (Unloaded). 
If the resource is loaded, the handle is shown instead of Unloaded. The Attrib­
utes (Attribs) are c for Changed, d for preloaD, t for proTected, l for Locked, 
and p for Purgeable. If the letter is capitalized, the attribute is set; if lowercase, 
it is clear. The final attribute is either A for Application heap or S for System 
heap. If the resource has a name, it is also shown. 



138 ..,.. Chapter 6 Resources 

By the Way ..,., 

Note ..,., 

Resource file maps are kept in the heap pointed to by the low memory 
global TheZone at the time the resource file is opened. This is normally 
the application heap. 

Although it is useful for debugging purposes, specifying names for all 
your resources takes up additional memory. Perhaps this extra 
memory is minor in comparison to the size of your application, but 
unless your application loads resources by name, there is no reason to 
waste it. 

~ Resource Maps 
The resource map is used by the Resource Manager to keep track of resources in 
memory and in open resource files. The resource maps are linked by the resource 
chain. The first map is pointed to by the low memory global TopMapHndl. The 
system map is pointed to by the global SysMapHndl and the name of the system 
resource file is in the low memory global SysResName. 

The resource map contains the types, IDs, names, offsets in the file, and han­
dles to the loaded resources. On disk, the maps are kept at the end of there­
source file. The map is loaded into memory and added to the resource chain 
whenever the resource file is opened. Resource maps are written back to disk 
only if a resource was changed, added, or removed , and then only when the 
resource file is closed or UpdateResFile is called. 

~ Structure of a Resource Map 

Because resource maps are fairly complicated , the Resource Dumper (RD) 
dcmd is provided to extract relevant information from the map. This section 
details the structure of a map in case you need information additional to that 
provided by RD. Because of the variable s ize records, the resource map struc­
ture is beyond the capabilities of MacsBug templates. 

The resource map loaded into memory starts with a resource header, which 
contains key offsets into the resource file. This is followed by a handle to the 
next map in the resource chain. After this information comes the file RefNum 
of this resource file and the file attributes. Next is the offset to the type list and 



..,.. Resource Maps 139 

the offset to the name list. Figure 6-2 shows the structure of the resource map 
in memory. 

0 

Offset to resource data 
Resource ID 

4 
.IIIII 

Offset to name or -1 

c 

Offset to resource map 

Res. attribs I 
8 1~ Number of types- 1 

Length of resource data 

1/ 
File offset to data 

Resource type Handle to resource or 0 

Length of resource map 
Number of this type - 1 Resource ID 

0 ~ 
Offset to reference list Offset to name or -1 

Handle to next map 
Res. attr!bs I 

4 FileRefNum Resource type File offset to data 

6 Resource file attributes Number of this type - 1 Handle to resource or 0 

8 Offset to type list 

A Offset to name list Offset to reference list 

Figure 6-2. The resource map 

The type list starts with a count of the number of different types minus one. 
The list of types contains the type followed by the number of resources with 
that type minus one and an offset to the reference list for the type. 

The entries in the reference list for each type have the ID and an offset to the 
name of the resource (or-1 if there is no name for the resource). This informa­
tion is followed by a byte containing the resource attributes and three bytes with 
the offset within the file to the resource's data. The final entry is a handle to the 
resource if the resource is loaded or zero if the resource is not loaded. 



140 ..,. Chapter 6 Resources 

I f? I Examining a Resource Map 

Let's look at a resource map in memory. Enter MacsBug and type 

dm @@TopMapHnd l 

and you will see a display such as 

Displaying me mory from @@0A50 

OOOB95BC 0000 0100 0000 4534 0000 4434 0000 074A · · · · · · E4 · · D4 · · · J 

000895CC 002C CE94 OF10 8000 001C 074A OOOE 5354 ·, · · · · · · · · · J · · ST 

000895DC 5220 0000 007A 424E 444C 0008 0086 4E49 R · · · z8NDL· · · · NI 

000895EC 534 9 0000 OOF2 4943 4E23 003C OOFE 4 652 SI · · · · ICN!I·< · · FR 

000895FC 4546 003C 03DA 5350 4E54 0000 0686 4 648 EF · < · · SPNT · · · · FH 

0008960C 4132 0000 06C2 4D53 574 4 0000 06CE 48 41 A2 · · · · MSWD· · · · KA 

OOOB961C 484C 0000 06DA 4D4 1 4341 0000 06E6 5253 HL · ·· · MACA ··· · RS 

0008962C 45 44 0000 06F2 4150 504C 0000 0 6FE 5843 ED· · · · APPL· · · · XC 

0008963C 454C 0000 070A 464 3 4D54 0000 0 716 454 4 EL · · · · FCMT· ··· ED 

OOO B964C 42 41 0 000 0722 0000 FFFF 0400 0000 002C BA · · ·"· · · · · · · · ·, 

0008965C C95C 0733 FFFF 24 00 OOOF 0000 0000 7F3A ... \ . 3 .. $ .. . ..... : 

0008966C FFFF 2400 108A 0000 0000 74FF FFFF 2400 .. $ . . ..... t ... $ . 

0008967C 184D 0000 0000 57EE FFFF 2400 1 EF9 0000 · M· · · · W· · · $ · · · · · 

OOOB968C 0000 3216 FFFF 2 400 2A01 0000 0000 4E88 · · 2 · · · $ · * · · · · · N· 

0008 969C FFFF 2 400 30AD 0000 0000 0 50D FFFF 2 400 .. $ . 0 . . . ...... $ . 

OOOB96AC 3528 0000 0000 1722 FFFF 2 400 3778 000 0 5+ ..... " .. $ . 7{ .. 

The first 16 bytes are a copy of the resource file header from the resource file 
on disk. The second line starts with a handle to the next resource map in the 
chain, in this case $2CCE94. The next word is the resource file's RefNum, $FlO 
in this example. Using the FILE dcmd (described in Chapter 13), you can deter-
mine to which file the resource map belongs. The next word, $8000, contains 
the file attributes followed by an offset from the beginning of the resource map 
to the type list. Next is the offset to the name list. In this case, the type list starts 
right after the header at offset $001C. 



..,.. Summary 141 

The type list starts with a count of the number of types minus one. In this 
case, there are 15 types, so the count is $000£. The following bytes contain the 
type (in this case, STR), the number ofresources of this type minus one ($0000), 
and finally the offset from the beginning of the type list to the resource refer­
ence list for the resources of this type ($007 A). In this example, the offset to the 
reference list is $007 A from the beginning of the type list or $007 A + $001 C = 
$0096 from the beginning of the resource map; the reference list begins at ad­
dress $000B9652. 

At the resource reference list, you find the ID (0000), the offset from the be­
ginning of the name list for the name of this resource, or $FFFF if the resource 
has no name (as in this case). The next byte holds the resource attribute flags 
followed by 3 bytes that contain the offset to the resource in the file. The follow­
ing 4 bytes contain the handle to the resource if it is loaded. In this example it 
is loaded and its value is $2CC95C. 

The Resource Manager keeps track of the resource maps using some low 
memory globals. The TopMapHndl was shown in the previous hands-on exer­
cise. There is also SysMapHndl, which is the handle to the System's resource 
map. To keep track of the current resource map, the Resource Manager keeps 
the file RefNum in CurMap, and it keeps the system's in SysMap. 

Chances are you will never need to manually parse the resource map as in 
the previous example because the RD dcmd does it for you. Looking at it one 
time is an excellent exercise because it shows how the RD command works. 
Hopefully the exercise helped to dispel another piece of Macintosh magic . 

...,. Summary 
This chapter discussed a number of important facts about resource maps. 
Specifically, it discussed 

• The difference between the data fork and the resource fork 

• The uses for the resource fork and how to determine if a given handle 
belongs to a resource 

• Attributes for resources and pitfalls when changing the attributes 

• Resource files and ROM resources 

• The RDdcmd 

• The Where (WH) command which gives information about an address 



142 ~ Chapter 6 Resources 

• A number of low memory globals used by the Resource Manager and 
uses for the ResErrProc global 

• How resource maps are connected into the resource chain 

• The structure of a resource map 

Understanding how the Resource Manager works is a key to debugging 
problems associated with resources. It also provides a starting point for track­
ing other bugs. For example, if you are trying to determine why a particular 
icon does not draw, you might start tracing through your program from the 
point where the icon is loaded with a GetResource call. 

Clues provided by the WH command are also useful in helping to deter­
mine where a problem might lie. Suppose your application crashes in some 
code you don't recognize. This is a good time to use the WH command. If you 
find out the crash occurred in the 1 MDEF 1 resource, you might begin your 
search by examining calls to the Menu Manager. 



7 Menus 

Menus are the most common way for a user to control an application on the 
Macintosh. They provide the choices available to the user in an application. 
There are two parts to menus: the menus themselves and the menu bar, which 
groups the menus together. 

The Menu Manager handles almost everything to do with menus. It is possi­
ble to have a menu bar and all its menus in resources and let the Menu Manager 
do all the work. On the other hand, your application can do all the work by 
adding each item to each menu and then adding each menu to the menu bar. 
Since the Menu Manager uses ' MDEF ' resources to determine how menus 
look, an application can supply its own ' MDEF ' to give menus a completely 
different look. It is even possible to create custom ' MBDF • resources to give 
the menu bar itself a new look. 

...,. How the Menu Manager Works 
The Menu Manager handles the menu bar as well as the menus themselves. 
It handles drawing of the menus and refreshing of the display under the 
menus as well as tracking the mouse when the mouse is clicked in the menu bar. 

Menus are created in a variety of ways. The entire menu bar and all its 
menus can be defined completely by resources and read in with the single 
Menu Manager call GetNewMBar. The individual menus can be defined by re­
sources and read in with GetMenu and placed into the menu bar one at a time 
using InsertMenu. The individual menus can also be created with New Menu 
and each item can be inserted with AppendMenu and placed into the menu 
bar using InsertMenu. A menu can be created with NewMenu and filled in 

143 



144 .,... Chapter 7 Menus 

By the Way ..,.I 

Note ..,.I 

with the names of all available resources of a particular type using AddRes­
Menu. For example, AddResMenu is used to create both the desk accessory 
lis t under the Apple menu and the font menu used in many applications. 

On the original Macintosh, AddResMenu added the resource names in 
the order they appeared in the resource file. This changed quite a 
while ago; resource names were added in alphabetical order. This 
made it easier to determine where a particular name might be found, 
but some people had organized their desk accessories and fonts 
carefully using Font/DA Mover, and all their work went for naught. 

Any resource name that starts with a period (.) or a percent (%) won't be 
added into the menu by AddResMenu. This prefix distinguishes drivers 
from desk accessories (as discussed in Chapter 12) and prevents these 
items from appearing in the Apple menu. 

When the application receives mouse down events they are passed to the 
Window Manager's FindWindow routine, which signals that the event oc­
curred in the menu bar. The application can then call the Menu Manager 's 
MenuSelect routine to handle the mouse in the menu bar. 

MenuSelect handles pulling down the menus, saving the bits behind the 
menus, tracking the mouse, and highlighting the correct menu- everything 
until the mouse is released. It then returns to the application the menu ID of 
the selected menu and the menu item in the selected menu. 

Likewise, if the Command key is down for keyboard events, the events are 
passed to the MenuKey function, which determines if the keystroke is the key­
board equivalent for some menu item . 

...,.. The Menu List 

A handle to the data structure defining the menu bar is placed in a low memory 
global Menu List. The data pointed to by Menu List contains the number of me­
nus in the bar, the horizontal position of the right side of the menu bar (the end 
of the last menu title in the menu bar), as well as a handle to each menu's data 
and the horizontal position of each menu's title. 



101 

..,.. How the Menu Manager Works 145 

Examining the Menu List 

Enter MacsBug and type 

dm @@MenuList 

and you will see a display similar to this 

Displaying memory from @@OAlC 

002D4FD4 002A 0112 0000 002C 6880 OOOA 002C 686C • * • • • • • 1 k • • • • 1 kl 

002D4FE4 0022 002C 6878 0046 002C 6874 006C 002C ·"·,kx · F ·,kt · l ·, 

002D4FF4 6868 0099 0001 6DF8 0004 0007 OFE8 OOFl kh · · · · m· · · · · · · · · 

00205004 0000 0000 0000 3FF8 8200 003C 0000 641C ...... ?· .. · < · · d · 

00205014 F8BO 8000 80AO FFAE FFF2 0314 0272 0000 · · · · · t · · · · · · ·r· · 

00205024 0000 0000 0000 0050 0000 0050 0000 0000 · · · · · · ·P· · ·P · · · · 

The first word is the offset from the beginning of the menu list to the end of 
the menu list. This is simply the number of menus times six, since each entry 
in the menu list is 6 bytes long. In this example, the value $2A indicates that 
there are seven menus ($2A/6 = 7) currently in the menu bar. The next value, 
$112, is the pixel position of the right edge of the rightmost menu item. The 
Menu Manager uses this value to determine how to track the mouse and where 
to add new menus. The following field, $0000 in this case, contains the re­
source ID of the 1 MBDF 1 in the upper 13 bits, and the lower 3 bits are used 
as the mbVariant (rarely used). 

After the header information is an entry for each menu. This is an array of 
records of variable length, so displaying it is beyond the scope of MacsBug 
templates. A dcmd, the MUST dcmd in this case, displays the entire menu 
structure in a meaningful way. The MUST dcmd is used in a following 
hands-on section. 

The first entry in the menu record is a handle to the actual menu data. Fol­
lowing this is the offset to the start of the title, which is used to track the mouse 
through the menu bar. In this example, the first handle is $2C6B80 and its offset 
is $000A. You can look at location $2C6B80 using the Menulnfo template. 

dm @2c6b80 Menu l nfo 



146 .,.. Chapter 7 Menus 

Note ~~~>- 1 

On my machine MacsBug responds with 

Displaying Menuinfo at 002CEFA8 

002CEFA8 menuiD 

002CEFAA menuWidth 

002CEFAC menuHeight 

002CEFAE men uP roc 

002CEFB2 enableFlags 

002CEFB6 menuData 

0001 

FFFF 

FFFF 

00002004 

FFFFFFFB 

• 

The menu Data field contains the menu's name. For this particular m enu 
it shows up as a do t because MacsBug's font does not contain the Ap ple 
character. (Typically menus use the Chicago font.) A width and height of 
$FFFF indicate that the m enu size was unknown when it was created and 
so will be recalculated each time. The menuProc is installed by the Menu 
Manager and is determined by a resource ID in the resource version of the 
menu . If the menu is installed by s tandard system routines the ID is as­
sumed to be 0. Using the Resource Manager, the Menu Manager loads the 
MDEF and places the handle in the menuProc field . 

The enableFlags indicate which items are enabled and disabled in the menu. 
The lowest order bit is the sta te for the entire menu, while the other bits are for 
individual items in the menu. In this example $fffffffb is . .. 11111011, indicat­
ing that the menu itself is enabled but the second item in the menu is not. 

As can be inferred from this data structure, only the first 31 items of a 
menu can be controlled using this flag word. Since it is possible to have 
more than 31 items in a menu, the best way to disable all the items in a 
menu is to disable the entire menu; otherwise, the first 31 items will be 
disabled and the rest will still be enabled. This is particularly important in 
the case of font menus when the application doesn' t have control of the 
number of items in the menu. 

It is impossible to control the state of menu items individually after 
the 31st If you need to control individual menu items, you should 
organize your menus so that they appear as one of the first 31 items. 



...,. How the Menu Manager Works 147 

U you display this same memory without the template, more information 
is shown. The extra information is specific to the menuProc controlling the 
menu. For the default menuProc, the information is 

Displaying memory f r om 002CEFA8 

002CEFA8 0001 FFFF FFFF 0000 2004 FFFF FFFB 0114 ··· ·· · · · · · · · · ·· 

002CEFB8 1141 626F 7574 2074 6865 2046 696E 6465 · About the Finde 

002CEFCB 72C9 0000 0000 01 20 0000 0000 OCOO 5375 r ... · · · · · - · · · · · · Su 

002CEFDB 6974 6361 7365 2 0 4 9 4900 4800 8406 0014 itcase II · K· ·· ·· 

The first line is the data shown by the template. Next is a list of Pascal strings 
for the items in the menu. The 4 bytes hold the item's icon number, Command 
key equivalent, check mark, and style if applicable. For Suitcase II, there is no 
icon, the Command key is K, there is no check mark, and the attribute is 84, in­
dicating underlined . 

...,.. Other Globals 

MenuFlash is another global that controls the number of times a selected item 
is flashed. It is usually controlled by the Menu Blinking area of the general con­
trol panel. The choices there are off (0), 1, 2, or 3. However, using MacsBug it 
is possible to set the number to something larger, if so desired. 

MBarEnable indicates whether the menu bar belongs to an application or a 
DA. It is zero whenever an application's menu bar is shown, but if a Desk Ac­
cessory takes over the menu bar, it places the DA' s menu ID into MBarEnable, 
which is then used by the Desk Manager. 

TopMenuitem and AtMenuBottom a re u sed by the MBDF to deal with 
menus that are long enough to require scrolling. TopMenultem generally 
contains the pixel position of the top of the menu. If the menu hasn' t been 
scrolled, it is the top of the menu's rectangle. This can be used by an MDEF 
to force the top item or items to always be scrolled off the top. 

MenuDisable contains the menu ID and the item number for the last item 
chosen if the item was disabled. Some applications might want to know if the 
user selected a disabled item, as in a help system, for example. 

If MenuHook is nonzero, it is called repeatedly while the mouse button 
is down. An application could install a specialized routine to change the 
shape of the cursor or do other processing to create custom menu selection 
by using this hook. If nonzero, MBarHook is also called whenever a menu 
title is highlighted, before the menu is drawn. This routine is passed a pointer 



148 ..,. Chapter 7 Menus 

I OI 
to the menu rectangle on the stack and should return a zero in DO. If it returns 
a one, MenuSelect is aborted. 

The Mlist dcmd 

Rather than manually walking the MenuList, you can use the MList dcmd 
from the disk. The dcmd takes no parameters; enter MacsBug and type 

mlist 

On my machine, MacsBug responds with 

Regular menus (6) : 

lastMenu=$0024 lastRight=$0103 (259) mbResi0=$0000 

Indx MHndl Left IO l~d Ht MenuProc Flags Title 

0001 00695AFC OOOA 0001 FFFF FFFF 00002004 FFEBFFFB <appleMark> 

0002 00695AE8 0022 oooc OOBF OOEO 000022BC FFFFEDDF File 

0003 00695AF4 0046 0003 0079 0090 000022BC FFFFFEFB Edit 

0004 00695AFO 006C 0004 FFFF FFFF 000022BC FFFFFFFF View 

0005 00695AEC 0099 0005 006C 0070 000022BC FFFFFFOF Special 

0006 00695AF8 0004 0006 0050 0080 00698744 FFFFFFFF Color 

H-Menus (0) : lastHMenu=$0000 menuTitleSave=$00000000 

MList complete . 

The meaning of the fields should be obvious from the previous discussion. 
Although hierarchical menus are not dicussed in this chapter, note that the 
MUST dcmd displays information about hierarchical menus if there are any. 



~ The Menu Definition Function (MDEF) 149 

.,... The Menu Definition Function (MDEF) 
It is possible to create menus that have a different appearance from the stan­
dard menus. For example, some programs use custom menu definition 
functions (MDEFs) to show a palette of patterns or to display Command key 
information such as Command-Shift-Option, which is more complicated 
than the standard command equivalents. 

To create a new menu definition, a code block with the following entry point 
is needed. 

pascal void MyMdef ( short message; MenuHandle theMenu; &Rect 
menuRect; Point hitPt; &short whichitem ); 

where the message is one of the following: 

#define mDrawMsg 0 

#define mChooseMsg 1 

#define mSizeMsg 2 

#define mPopUpMsg 3 

The menuRect is valid for mDrawMsg and mChooseMsg, to indicate the 
area of the menu. The rect is specified in global coordinates. When the Menu 
Manager calls the MDEF, the current grafPort will be set to the Window Man­
ager port, so the global coordinates and the local coordinates correspond. 
When mSizeMsg is sent, the MDEF should set the menu Width and menu­
Height fields of the menu record. 

The mChooseMsg is sent repeatedly as long as the mouse is held down in­
side the menu. The hitPt is thecurrentmouse location and whichltem is the last 
item selected (or 0). The MDEF should set whichltem to be the new selected 
item ifit changed. lflastltem was not 0, thatitem should be unhighlighted, and 
if a new item is returned, it should be highlighted. To blink an item, the Menu 
Manager will call mChooseMsg twice the number of times specified by the 
MenuFlash low memory global. 

The mPopUpMsg is used for pop-up menus and is described in Inside 
Macintosh, Volume V. 



150 ..,.. Chapter 7 Menus 

101 

Note ..,.. 

Watching the Standard ROM MDEF 

This exercise examines the standard MDEF' s response to a menu click. Enter 
MacsBug while in an application that uses the standard MDEF. Before System 
7.0, the standard MDEF, 1 MDEF 1 0, is in ROM for Macintosh ci and later col­
or machines. In System 7.0 1 MDEF 1 0 is overridden and a RAM version is 
used. This example assumes the 6.1.4 Finder. 

The first step is to locate the standard MDEF. It can be found by looking at 
the Menulnfo structure as previously discussed, or it can be found by waiting 
until an application asks for the 1 MDEF 1 resource. This is the technique used 
here. 

atb GetResource @(sp+2)= ' MDEF ' 

Systems 6.0.5 and later use LoadResource rather than GetResource to 
make sure the MDEF is in memory. If you are using 6.0.5 or later you will 
need to get the MDEF handle using the Menulnfo structure. 

Continue (with the Go command) and click on a menu. You should now be 
in MacsBug. The code resembles the following. 

Oisasse:nbling from 1100205CO 

INSERT 

+0004 A00205CO MOVEM . L 05-071,\2/113,- (I\ 7 ) I 48E7 0730 

+0008 A00205C4 MOVE.W l$0080, 06 I 3CJC 0080 

•oooc A00205C8 MOVEQ l$00, 05 I 71100 

+OOOE A00205C11 MOVE.L 114, -(117) I 2FOC 

+0010 A00205CC LEA • -$1218, M ;A002C3B4 I 49F11 EOE6 

+0014 A0020500 CLR . L -(117) I 42117 

+0016 110020502 MOVE . L l$40444546, - (117) ; ' MDEF ' I 2F3C 4044 4546 

+OOlC 110020508 CLR .W - (117 ) I 4267 

+OOlE 1100205011 MOVE . W t $FF"FF, Ro~.apln:~ert I 31FC FFFF OB9E 

>0024 1100205EO '_Get Resource ; A9A0 I 1191\0 

+0026 1100205E2 MOVEA.L (h7) +,112 I 245F 

+0028 A00205E4 JSR • -S04EE ;I\00200F6 I 4EBA FBlO 

+002C A002DSE8 CLR.W -(A7 ) ) 4267 



~ The Menu Definition Function (MDEF) 151 

+002E A002D5EA MOVE.L $0008(A6),-(A7) I 2F2E 0008 

+0032 A002DSEE _CountMitems A950 A950 

+0034 A002D5FO MOVE.W (A7) +1 DO I 301F 

+0036 A002DSF2 MOVE.\•/ DOID7 3EOO 

+0038 A002DSF4 BRA INSERT+OlOO ;A002D6BC 6000 00C6 

+003C A002DSF8 MOVE.L .$0008 (A6) I- (A7) 2F2E 0008 

+0040 A00205FC MOVE.W D7 1-(A7) 3F07 

+0042 AC02D5FE PEA -$0002 (A6) 486E FFFE 

Step over the_ GetResource trap using the Trace command, and the handle 
to the MDEF is on top of the stack. The code of the MDEF can be inspected 
by typing 

il @@sp 

MacsBug responds with 

Disassembling from @@sp 

_Elems68K 

+5AA4 40877690 BRA.S Elems68K+5ABO 4087769C 600A -
+5AA6 408'17692 ORI.B ??44100 0000 4D44 

+SAAA 4()877696 DC.W $4546 ???? 4546 

+5AAC 40877698 ORI.B tSOC,DO I 0000 oooc 

+5ABO 4087769C LINK A61 tSFFBC 4E56 FF8C 

+5AB4 408776AO MOVEM.L 03-07/A2-A4 1-(A7) 48E7 1F38 

+5AB8 408776A4 MOVEA.L $0014(A6) 1A3 266E 0014 

+SABC 40877611.8 MOVEA.L A3 1AO I 204B 

+5ABE 408776AA HLock A029 A029 -
+5AC0 408776AC CLR.W -$001C (A6) 426E FFE4 

+5AC4 40877680 CLR.W -$001E(A6) 426E FFE2 

+SACS 40877684 CLR.I'I -$003C (A6) 426E FFC4 

+SACC 40877688 CMPI .W f$3FFF,ROM85 0C78 3FFF 028E 

+5AD2 408776BE SLS -S003C IA6) 53EE FFC4 

+5AD6 408776C2 LEA _Elems68K+5B04 1A0 408776FO 41FA 002C 

+SADA 408776C6 MOVE.W $0018 (A6) I DO 302E 0018 

+SADE 408776CA CMPI.W t$0003100 I OC40 0003 

+5AE2 408776CE BHI.S Elems68K+5AF2 408776DE I 620E -
+5AE4 40877 600 CMPI.W f$0000,00 OC40 0000 

+5AE8 40877604 BCS.S Elems68K+5AF2 408776DE I 6508 -
+5AEA 408776D6 ADD.W 00 100 0040 



152 ..,. Chapter 7 Menus 

Note ..,.., 

Note ..,.., 

Here the MDEF is in ROM. Depending on the System version and 
Macintosh, the MDEF may or may not be in ROM Regardless of where 
the MDEF is, the technique for monitoring the MDEF is analagous to that 
presented here. This example uses a ROM MDEF to illustrate another 
technique for setting more efficient breakpoints when the break address is 
in ROM. Read on! 

If you try to set a breakpoint at the start of this routine ($40877690), MacsBug 
tells you the routine is in ROM and it will have to single step every instruction, 
which is painfully slow. This situation provides an excellent opportunity to 
use a powerful technique known only to a ve ry few highly successful pro­
grammers. Firs t clear out the original trap break with ATC and enter the 
following command 

a tb HLock p c=4087 76AA 

This command causes MacsBug to break only on this particular HLock call 
but doesn' t force MacsBug to single step through every instruction. If you are 
using a RAM version of the MDEF you can simply set a breakpoint at the be­
ginning of the MDEF without paying the speed penalty for a ROM breakpoint. 

Setting a breakpoint in this way is similar to how some Macintosh System 
patches work Rather than replacing entire ROM routines, a patch 
sometimes begins in the middle of a routine. This is accomplished by 
patching a trap that is called by the problem code and then checking 
where the trap was called from. If the calling address is not from the 
offending code, execution continues as normal However, if the calling 
address matches the place that needs to be fixed, the correct code is 
executed and control returns to an address past the offending code. 

Regardless of how you set the breakpoint in the MDEF, at this point you 
should be in MacsBug inside the MDEF. Mos t MDEFs get the m essage 
parameter with a 

MOVE .W $0018 (A 6 ), 00 



..,.. The Menu Bar Definition function (MBDF) 153 

instruction. This assumes the MDEF uses a LINK A6 instruction to set up a 
stack frame (see Chapter 4 for an explanation of how LINK works). If this is 
the first call to the MDEF after a mouse-down event in the menu bar, themes­
sage parameter is 2, telling the MDEF to calculate the size of the menu . The 
next time the MDEF is called, the message is 0, indicating to the MDEF to draw 
the menu. The third call is with a message of 1, telling the MDEF to handle 
mouse movement. 

...,.. The Menu Bar Definition Function (MBDF) 
All Menu Manager drawing code is contained in a MenuBarDeFinition, or 
' MBDF ' resource. The handle to the standard MBDF is held in the low 
memory global MBDFHndl. The defintion for the function is 

long MyMenuBar( short selector ; short message ; short parameterl; long 
parameter2); 

The messages are 

0 

1 

2 

3 

4 

5 

6 

7 

Draw 

Hit 

Calc 

I nit 

Dispose 

Hilite 

Height 

Save 

Draws the menu ba r or clears the menu bar 

Tests to see if the mouse is in the menu bar 
or any currently displayed menu 

Calculates the left edges of each menu title 
in the MenuList data structure 

Initializes any MBDF data structures 

Disposes of any MBDF data structures 

Highlights t he specified menu title or 
inverts the whole menu bar 

Returns the menu bar height, can be found in 
MBarHeight 

Saves the bits behind a menu and draws the 
menu st ructure 

8 Restore Restores the bits behind a menu 

9 Rect Calculates the rectangle of a menu 

10 SaveAlt Saves more information about a menu after it 
has been drawn 

11 ResetAlt Resets information about a menu 

12 MenuRgn Returns a region for the menu bar 



154 ..,.. Chapter 7 Menus 

101 Watching the Messages to the MBDF 

The standard MBDF handles much of the Menu Management. To see what 
happens, MacsBug can show each call to the MBDF and the message per­
formed. Start by getting into MacsBug and setting a breakpoint at the start of 
the MBDF pointed to by the MBDFHndl. 

br @@MBDFHndl 

Since the Menu Manager calls this all the time to track the mouse, it can be 
a bit tedious watching every call. First of all, trace through the code a bit until 
the selector is picked up to dispatch to the correct routine. For example, 

A001C5D4 • BRA . S *+$000C ; A001C5EO 600A 

A001C5EO LINK A6,#$FFBE 4E56 FFBE 

A001C5E4 MOVEM . L D3- D5/A2- A4, - (A7) 48E7 1C38 

A001C5E8 MOVEA . L (AS), AO 2055 

A001C5EA MOVE . L (AO),- (A7) 2F10 

A001C5EC CLR .W - $003A(A6) 426E FFC6 

A001C5FO CMPI .W i$3FFF, ROM85 OC78 3FFF 028E 

A001C5F6 SLS - $003A(A6) 53EE FFC6 

A001C5FA MOVEA . L ROMBase,AO 2078 02AE 

A001C5FE CMP I . B #$03,$0008(A0) OC28 0003 0008 

A001C604 BNE . S *+$000E ; A001C612 660C 

A001C612 TST . B -$003A (A6) 4A2E FFC6 

A0 01C616 BEQ . S *+$0008 A001C61E 6706 

A001C618 MOVEA . L WMgrCPort ,A2 2478 OD2C 

A001C61C BRA . S *+$0006 A001C622 6004 

A001C622 MOVE.L A2 ,- (A7) 2FOA 

A001C624 SetPort A873 A873 -
A001C626 CLR . L - (A7) 42A7 

A001C628 TextFont A887 A887 -

A001C62A Text Face A888 A888 -

A0 01C62C MOVEA . L MenuList ,AO 2078 OAl C 

A001C630 TST . L (AO) 4A90 



...,. The Menu Bar Definition function (MBDF) 155 

A001C632 BNE.S *+$0006 A001C638 6604 

A001C638 HLock A029 A029 -
A001C63A MOVEA.L (AO) ,A3 2650 

A001C63C LEA *+$0032,AO A001C66E 41FA 0030 

A001C640 MOVE.W $000E(A6),D0 302E OOOE 

A001C644 CMPI.W #$000D,DO OC40 OOOD 

MOVE.W $000E(A6),DO is the instruction that gets the message passed to 
the MBDF. The MBDF is constantly called with the Hit message to determine 
if the mouse is in the menu bar. You can skip these calls and display the other 
messages passed to the MBDF with the following MacsBug instructions. 

brc 

br 1c644 d0<>1 ';dO;g 

The first instruction clears the previous breakpoint. The second instruction 
breaks in the MBDF on all messages other than the Hit message, and then dis­
plays the message (in register DO) and continues with the Go instruction. 
Whenever a menu is clicked, MacsBug will record all messages to the MBDF. 
The output resembles the following. 

Breakpoint at A001C644 

DO = $00000005 #5 #5 '••••' 

Breakpoint at A001C644 

DO = $00000009 #9 #9 '••••' 

Breakpoint at A001C644 

DO = $00000009 #9 #9 1 
•••• 

1 

Breakpoint at A001C644 

DO = $00000007 #7 #7 1 
•••• 

1 

Breakpoint at A001C644 

DO = $0000000A #10 #10 '••••' 

Breakpoint at A001C644 

DO = $00000009 #9 #9 '•••• 1 

Breakpoint at A001C644 

DO = $0000000B #11 U1 1 
•••• 

1 

Breakpoint at A001C644 



156 ..,.. Chapter 7 Menus 

DO= $0000000A ¥10 ~10 1
••••

1 

Breakpoint at A001C644 

DO = $00000009 k9 #9 I • • • • I 

Breakpoint at A001C644 

DO = $0000000B #11 #11 1
• • ••

1 

Breakpoint at A001C644 

DO = $0000000A #10 #10 1
• •••

1 

Breakpoint at A001C644 

DO = $00000008 #B #B 1
••• •

1 

Breakpoint at A001C644 

DO = $00000002 #2 #2 I •••• I 

Breakpoint at A001C644 

DO = $00000005 #5 iS 1
••••

1 

From the message number you can determine the meaning of each message . 

.,.. Summary 
This chapter discussed the Menu Manager, MDEFs, and MBDFs. Specifically, 

• The operation of the Menu Manager and MenuList data structure 

• The low memory globals Menu List, MenuFlash, MBarEnable, Top­
Menultem, AtMenuBottom, MenuDisable, MenuHook, MBarHook, 
and MBDFHndl 

• The MUST dcmd 

• The operation of an MDEF and how to watch messages passed to the MDEF 

• The operation of an MBDF 



~ Summary 157 

The previous chapter introduced resources and discussed how an appli­
cation's code is kept in 1 CODE 1 resources in a file's resource fork. This 
chapter discussed menus and examined how they are defined by code in an 
1 MDEF 1 resource. 

The menu bar is also controlled by code that is kept in a resource. In this case 
the resource type is 1 MBDF 1 

• Later chapters examine controls (kept in 
1 CDEF 1 s), windows (defined by 1 WDEF 1 s), and control devices, as in the 
control panel (defined by 1 cdev 1 s). These items are controlled with messages 
just as menus are, and techniques for debugging custom windows, controls, 
and control devices are similar to those discussed here. 



8 Windows 

In 1984, one of the unique features of the Macintosh interface was its use of 
windows. These days most operating systems support windows in one form 
or another. 

Programming with windows is slightly more complicated than command 
line interface programming. Fortunately, once you learn the programming 
strategies for dealing with windows and learn how to debug window-based 
applications with MacsBug, the window environment quickly becomes your 
friend. Besides, a little extra work on the part of the programmer is worth mak­
ing the application easier for thousands of users. 

Before you can use MacsBug to look at the window data structures, you must 
have a basic understanding of how the Macintosh windowing system works . 

...., How the Window Manager Works 
The Macintosh Window Manager performs the majority of window main­
tenance functions for you. It does this by keeping a list of the windows an 
application has open as well as areas that need updating (as when the front 
window is moved to uncover part of another window). The Window Man­
ager provides a call to add a window to the window list, New Window, and 
to remove a window from the list, Dispose Window. 

There are routines to handle resizing a window (GrowWindow, Size­
Window), moving a window (Drag Window, Move Window), and selecting 
a window (SelectWindow). 

The role of these functions in an application is generally straightforward. 
For example, when the user clicks the mouse, your application should call 

159 



160 ..,. Chapter 8 Windows 

FindWindow with the location of the mouse click. FindWindow returns the 
window the mouse was clicked in. If it was not the frontmost window (the Tool­
box routine FrontWmdow tells us the front window), you call SelectWindow. 
If the user clicks in the drag region, the application calls DragWmdow to move 
the outline around the screen. MoveWmdow is called automatically to put the 
window in its new position if the user leaves the outline in a valid position. 

Information about a window is kept in a window record. A window record 
contains a GrafPort or a CGrafPort (see Chapter 11) that tells QuickDraw how 
to draw in the window, as well as other information, such as the window's title. 
The window record is described in detail in Inside Macintosh, Volume I, and 
MacsBug has a window record template for displaying window information. 
This template is used in the following sections. 

~ Update Region Maintenance 

One aspect of programming in a window environment that is different from 
conventional programming is providing a mechanism for the application 
to update window contents that have been invalidated. There are several 
ways a window's contents can be made invalid. The first is when the user 
places another window in front of the window in question and then moves 
it away. The application must then reconstruct the contents of the area that 
were converted. 

A second way for a window's contents to become invalid is when the sys­
tem puts a dialog box in front of the window, as when a server unexpectedly 
closes down. 

Both of these methods of invalidation are caused indirectly, either by the 
user or by the system. An application can directly invalidate part of a win­
dow's contents with the calls InvalRect and InvalRgn. 



BytheWoy ..,.I 

..,. How the Window Manager Works 161 

Pulling down menus usually does not invalidate a window's region. 
Rather, the Menu Manager saves the contents behind the menu and 
restores them when the menu is released. This makes menus feel much 
faster to the user and greatly speeds updates, since they are performed 
directly by the Menu Manager rather than by the application, which 
may have to do extensive calculations to redisplay the invalidated 
contents of its window. 

The Menu Manager causes an update event if it couldn't get enough 
memory to save the bits behind a menu. This is good programming 
since performance, not functionali~ is degraded when resources, in 
this case, memory, are scarce. 

The Window Manager maintains the invalid areas of each window in the 
window's update region. The update region is the portion of a window that 
the application must redraw. For example, when calling SelectWindow to 
bring a window to the front, the entire contents of the window may have to be 
redrawn. This is accomplished as follows. 

1. An update event is posted and the application receives the update when 
it calls WaitNextEvent. The message part of the event record is a pointer 
to the window that must be updated. The window could be a back­
ground window or the frontmost window. 

2. The application then calls the Window Manager routine BeginUpdate. 
Begin Update replaces the window's visRgn with the intersection of the 
visRgn and the updateRgn. Since QuickDraw draws only to the intersec­
tion of the visRgn and clipRgn, drawing will affect only the parts of the 
window that are invalid. 

3. The application then redraws the contents of the window. The application 
does not need to worry about which portions actually need to be redrawn, 
since QuickDraw will clip all drawing to the area that needs to be updated. 

4. Finally, the application should call EndUpdate. EndUpdate restores the 
visRgn to its previous state. 



162 .,.. Chapter 8 Windows 

101 Examining the Window Update Process 

To further examine the window update process, let's find out when the update­
Rgn in the window record is cleared. Almost all Macintosh applications use 
the update mechanism provided by the Toolbox. This example uses Mac­
Write II 1.1 vl, but almost any application that supports multiple windows 
will suffice. 

Open two windows so that the front window overlaps the back one. Go to 
MacsBug, set a breakpoint at SelectWindow, and then continue. 

atb selectwindow; g 

If you now click in the back window, you will break into MacsBug at a call 
to SelectWindow. Since SelectWindow takes only one parameter, a Win­
dowPtr, it is on the top of the stack. You can examine the window you are 
selecting with the window Record template by typing 

dm @sp windowRecord 

On my machine, MacsBug responds with 

Displaying WindowRecord at 0065DA8E 

0065DACE portRect 0000 0000 0205 01C8 

0065DAD6 visRgn 0062F7FO - > 00689A68 

0065DADA clipRgn 0062F80C -> 00 66589C 

0065D82A windowKind 0101 

0065D82C visible TRUE 

00650820 hili ted FALSE 

0065D82E goAwayFlag TRUE 

0065D82F spareFlag TRUE 

00650830 strucRgn 0062F874 -> 00665880 

00650834 contRgn 0062F7EC -> 006658C4 

00650838 updateRgn 0062F7E8 -> 00666088 

0065D83C windowDefProc 08002004 -> 20832A5C 

00650840 dataHandle 0062F7DC -> 00665818 

00650844 titleHandle Document1 

00650848 titleWidth 0049 



~ How the Window Manager Works 163 

0065DB4A controlList 

0065DB4E nextWindow 

0065D852 windowPic 

0065D856 refCon 

0062F870 -> 0067EFFO 

00660602 

NIL 

006F037E 

The titleHandle field corresponds to the window we selected, in this case, 
Documentl. Look at the updateRgn by typing 

dm 666D88 

MacsBug responds with 

Displaying memory from 666d88 

00666D88 OOOA 0000 0000 0000 0000 004B 0000 0020 ···········K··· 

To understand what this means, you need to learn a little about the region 
structure. The region structure is defined as 

struct rgn 

short rgnSize; 

Rect rgnB8ox; 

short rgnData[]; /*only if nonrectangular: rgnSize >$A*/ 

In our example, the region structure is 10 bytes long ($A) and the rectangle 
is from (0,0) to (0,0). This is an empty rectangle, so the updateRgn is empty at 
this point. This seems reasonable, since no processing has occurred to affect 
the window. If you trace over the Select Window trap by typing 

T 

or by pressing Command-T and look at the updateRgn again, it has changed. 
My Mac shows 

Displaying memory from 666d88 

00666D88 OOOA 004A 0207 031F 025C 004B 0000 0020 ···J·····\·K··· 



164 ~ Chapter 8 Windows 

By the Way.,.. , 

By the Way.,.., 

Select Window can change the size of the updateRgn, so it may move 
memory. It is important to make sure the updateRgn is in the same 
place. You can do this by looking at the window record again. 

Now set a breakpoint at Begin Update. 

atb beginupdate ; g 

Immediately, the Mac enters MacsBug-this time at BeginUpdate. Begin­
Update takes one parameter, just like Select Window. Since you displayed the 
window record at the top of the stack three MacsBug commands ago, you can 
repeat the command by typing Command-V three times. Checking the update­
Rgn reveals that it is the same as it was after tracing over SelectWindow. 

Some applications may invalidate parts of the window themselves 
after the call to SelectWindow but before Begin Update. If this is the 
case, the updateRgn will now be different from what it was after 
Select Window. 

The visRgn is part of the port. Since the beginning of a window record is a 
port, you can examine the window's GrafPort by typing 

elm @sp GrafPort 

MacsBug shows the window's port. 

Displaying GrafPort at 0065DABE 

0065DABE device 

0065DAC0 portBits 

0065DACO baseAddr 

0065DAC4 rowBytes 

0065DAC6 Rect (t , l , b , r) 

0065DACE portRect 

0065DAD6 visRgn 

0065DADA clipRgn 

0000 

0062F844 

cooo 0 

#98 #-1952 #0 #-32768 

0000 0000 020 5 Ol CB 

0062F7FO - > 00689A68 

0062F80C - > 0066589C 



.,.. How the Window Manager Works 165 

0065DADE bkPat 00 62 F8 3C 00 00 00 00 

0065DAE6 fillPat 00 00 FF FF FF FF FF FF 

0065DAEE pnLoc 02C6 01CB 

0065DAF2 pnSize 0001 0001 

0065DAF6 pnMode 0008 

0065DAF8 pnPat 00 62 F8 24 00 62 F7 F4 

0065DBOO pnVis 0000 

0065DB02 txFont 0014 

0065DB04 txFace 0000 

0065DB06 txMode 0001 

0065DB08 txSize oooc 
0065DBOA spExtra 00000000 

0065DBOE fgColor 00000001 

0065DB12 bkColor 00000000 

0065DB16 colrBit 0000 

0065DB18 patStretch 0000 

0065DB1A picSave NIL 

0065DB1E rgnSave NIL 

0065DB22 polySave NIL 

0065DB26 grafProcs 006EBE26 

Since the high bit of row Bytes is set, this is actually a CGra£Port (see Chapter 
11). Fortunately, the offset to most of the fields is the same for Gra£Ports and 
CGra£Ports. In this case the visRgn is at $689A68. 

dm 689A68 

On my machine, MacsBug responds with 

Displaying memory from 689a68 

00689A68 OOOA 0000 0000 0205 OlCB 0000 0000 0024 ···· ···········$ 

In this example, both the updateRgn and the visRgn are rectangular because 
the region data structure in both cases is 10 bytes long. When you step over Be­
gin Update with the trace command and then examine the visRgn you see 



166 ..,.. Chapter 8 Windows 

By the Way ..,.I 

Displaying memory from 689a68 

00689A68 OOOA 0000 0000 02D5 0055 0000 0000 0024 · ·· · ··· · · U· · · ·· $ 

This is the intersection of the updateRgn and the visRgn, as advertised. If 
the regions are not rectangular (that is, the size of either region is not 10 bytes), 
you cannot simply use the bounding rectangles to determine the intersection. 
Checking the updateRgn you see it is set back to an empty region. 

Displ aying memory from 666d88 

00666D88 OOOA 0000 0000 0000 0000 004B 0000 0020 ··· ··· ··· · · K ··· 

So the Begin Update routine sets the updateRgn in an empty region. The moti­
vated reader could step through the window redrawing process and then watch 
the visRgn change back to its previous value during the call to EndUpdate. 

Between the calls to SelectWindow and BeginUpdate, the application 
can make a variety of calls that move memory. For this specific 
example, memory did not move. But it may move on your machine. If 
the results are not what you expect, make sure you are looking at the 
data structures you think you are by checking the window record. 

The Windowlist 

The Window Manager keeps a list of all open windows for the current applica­
tion. This list is linked via the nextWindow field in the window record. The 
start of the list is pointed to by the low memory global Window List. 

The Window List low memory global is used in the following section. 

Looking at the Windowlist 

You can look at all the window records for the current application by entering 
MacsBug and typing 

dm @wi ndowl ist wi ndowrecord 



Note ..,. 

.,... The Window Definition Function (WDEF) 167 

Pressing the Return key displays the next window until all the window re­
cords have been displayed. As you may recall from Chapter 4, MultiFinder 
saves a separate copy of each application's low memory globals. Thus, the 
window list contains only the window records for the currently active applica­
tion, not for all the windows that may be open on the screen. 

MultiFinder switches the Window List low memory global for each 
application. If you enter MacsBug while an application is doing 
background processing, you will see its window list rather than the 
windows for the foremost application. 

The Window Definition Function (WDEF) 
The previous section explained how the Window Manager maintains an update­
Rgn and presented an example of how an application uses the Window Man­
ager. This section discusses how the windows themselves are drawn and how 
you can create your own custom windows. Currently, most applications use 
the standard built-in windows, and it's likely that the standard windows w ill 
suffice for your application. But the techniques discussed in this section are 
important to understand. 

The method by which windows are implemented is similar to that used for 
menus and controls. A window is defined by a set of routines referred to as the 
Window DEfinition Function, or WDEF. In C, this function is declared as 

pascal l o ng MyWDEF ( short : va r Code ; Wi ndowPt r : theWindow; s hort : 
messag e ; l o ng : par a m ); 

The Window Manager calls this function with message parameters indica t­
ing window-specific actions to the WDEF. There are seven different messages 
the WDEF must handle: Draw, Hit, CalcRgns, New, Dispose, Grow, Draw­
Gicon. These messages have the values from 0 to 6, respectively. The details of 
how the WDEF should handle these messages is discussed in Inside Macintosh, 
Volume I. 

The goal here is to watch the messages as they are passed to the WDEF by 
the Window Manager and to understand what the WDEF must do to respond 
to the different messages. Finally, you will look at the source code for a custom 
WDEF and modify its operation using ResEdit. 



168 ~ Chapter 8 Windows 

By the Way ..,.I 

The Window Manager contains the code that is common to the operation of 
windows in general; the 1 WDEF 1 resource contains the code for a specific 
type of window. For example, the Window Manager handles update region 
maintenance. Maintaining an update region is something all windows must 
do, so this function lies in the Window Manager. The WDEF is called when the 
window must be drawn. The way a window is drawn is specific to a certain 
type of window. Although most Macintosh applications use the standard win­
dows (the WDEF is in the Macintosh ROM), it is actually very easy to design 
a custom window by writing a WDEF. 

When the Window Manager needs to call the WDEF to perform an action 
in response to one of the seven messages mentioned previously, it gets the ad­
dress of the WDEF from the windowDefProc field of the window record. This 
field is set up automatically when the window is created by New Window or 
GetNewWmdow and should not be changed by the application. But this field 
provides an easy way to locate the WDEF and watch messages get passed to it. 

Unfortunately, the standard WDEF is in ROM. MacsBug is very slow step­
ping through ROM routines, so the accompanying disk provides a custom 
sample WDEF. 

When MacsBug sets breakpoints in RAM, it simply replaces the 
instruction of the break address with an instruction that returns 
control to MacsBug. When the instruction is executed, control returns 
to MacsBug and MacsBug figures out that it gained control because 
the breakpoint was hit. 

Setting breakpoints in ROM works differently because it's 
impossible to replace an instruction in ROM. When a breakpoint is set 
in ROM, MacsBug must step through each instruction and afterward 
compare the new program counter with the break address. Since 
MacsBug must do so much extra processing for each instruction, the 
Macintosh runs very slowly when a breakpoint is set in ROM. 



101 

..,.. The Window Definition Function (WDEF) 169 

Locating the WDEF 

Launch the application titled "Chapter 8 App" and use the Open command to 
open a window. 

Once you are running the application, the next step is to locate the WDEF. 
There are two easy ways to do so. The first, discussed previously, involves 
looking at the address in the windowDefProc field of the window record. En­
ter MacsBug and type 

dm @windowlist window 

On my Mac, MacsBug responds with 

Displaying WindowRecord at 005A4F20 

005A4F30 portRect 0000 0000 014 4 013C 

005A4F38 visRgn 005A34EO - > 005A8ECC 

005A4F3C clipRgn 005A34DC -> OOSA8E4C 

005A4F8C windowKind 0008 

005A4F8E visible TRUE 

005A4F8F hili ted TRUE 

005A4F90 goAwayFlag TRUE 

005A4F91 spareFlag FALSE 

005A4F92 strucRgn 005A34D8 - > 005A8E60 

005A4F96 contRgn 005A34D4 - > 005A518C 

005A4F9A updateRgn 005A34DO - > 005A8D90 

005A4F9E windowDefProc 035A34CC - > 605A83DC 

005A4FA2 dataHandle NIL 

005A4FA6 titleHandle Window 

005A4FAA titleWidth 0034 

005A4FAC control List NIL 

005A4FBO next Window NIL 

005A4FB4 windowPic NIL 

005A4FB8 refCon 00000000 



170 ._ Chapter 8 Windows 

By the Way .,..I 

The previous MacsBug command displays the first window in the window 
list using the window template. The window template displays the window­
DefProc address, which is the entry point of the WDEF. In this example, the 
entry to the defproc is at $605A83DC. 

On 24-bit systems, the high byte of the windowDefProc field st0res the 
window's variation code (see Inside Macintosh, Volume D. Thus, only 
the low 3 bytes are the address of the WDEF. On 32-bit systems, the 
entire.field is needed to hold the address of the WDEF, and the 
variation code is.stored elsewhere (see Inside Macintosh, Volume VI). 

If the WDEF is in RAM, as it is in the sample application, another way to find 
the WDEF is by looking at all the items of type WDEF in the application heap 
using the Heap Display (HD) command (first introduced in Chapter 4). The 
Resource Manager keeps a map of all the resources in each heap (see Chapter 
6). The MacsBug HD command allows you to display specific items in the 
heap. This only works if your WDEF is in the application heap. The standard 
WDEF is in ROM and obviously does not show up in the heap display. 

Rather than listing all items in the heap, you are only interested in items of 
type WDEF. There is an easy way to find these items. Enter MacsBug and type 

hd wdef 

Although case is important for resource types, MacsBug is not case sensitive, 
even for resource types, and will list all resources of type 1 WDEF 1 

, regardless 
of capitalization. On my machine, MacsBug responds with 

Displaying the Applica tion heap 

Start Length Tag Mstr Ptr Lock Pr g Type ID File Name 

005A83DC 00000752+02 R 005A34CC P WDEF 03E8 0526 MyWDEF 

There are #9736 free or purgeable bytes in this heap 

The leftmost column, labeled start, is the address of the WDEF. 



1nl 

..,.. The Window Definition Function (WDEF) 171 

The WDEF used in this sample application behaves very strangely. Any time 
the wind ow is resized, a happy face appears in the window. While some may 
find this behavior desirable, your goal here is to modify the WDEF to remove 
the happy face. And you're going to do it using only MacsBug and ResEdit! 

Modifying a WDEF with ResEdit 

From the Window Manager chapter of Inside Macintosh, Volume I we learn that 
the window draws its resizing outline in response to the wGrow message, 
message number five. Since the happy face only appears when the window is 
being resized, it's reasonable to assume it's being drawn by the routine that 
handles the wGrow message. Your goal in this exercise is to find the routine 
that handles the grow message and then modify it, on disk, so that the happy 
face no longer appears. 

You know how to find the WDEF from the previous exercise. When you 
reach the WDEF, the message parameter is at an offset of eight from the top of 
the stack. (The return address is at an offset of zero, and the 4-byte parameter 
is at an offset of four. This leaves the word-sized message parameter at an offset 
of eight.) To break when the WDEF receives the wGrow message, you want to 
set a breakpoint at the WDEF when it receives a message parameter equal to 
five. Using the address of the WDEF found previously, enter MacsBug and type 

br Sa83d c @(s p +8 ) . w = 5 

This conditional breakpoint tells MacsBug to break only when the word size 
value at an offset of eight from the top of the stack is equal to five, that is the 
WDEF receives the wGrow message. 

If you now attempt to resize the window, you break into MacsBug at the con­
ditional breakpoint. Most WDEF's have a similar organization: They examine 
the message parameter and then dispatch based on the message. This particu­
lar WDEF was generated with the LightS peed C 3.0 compiler, which puts extra 
glue code at the start. 



172 ..,.. Chapter 8 Windows 

By the Way ..,.I 
Glue code is a (generally small) piece of code that performs some 
miscellaneous interface function. For exampleJ when calling operating 
system routines (which expect arguments passed in registers) from a 
high-level language, the glue code pulls the parameters from the stack 
and puts them in registers the way the routine expects. 

LightSpeed C generates a standard header for code resources that 
contains the resource type and resource ID. The first branch 
instruction branches over this header. Am;,ther UghtSpeed C 
convention is that register AO contains the address of the beginning of 
the resmuce. This value is later used to set up a global space for the 
code resource. For details about how this code works, see the 
LightS peed C User's Manual. 

You can trace over this glue and get to the main part of the WDEFby tracing 
(Command-T) five times. The code you trace over is 

EOSA83DC BRA . S *+$0010 EOSA83EC 600E 

E05A83EC LEA *-$00 10,AO EOSA83DC 41FA FFEE 

E05A83FO NOP 4E71 

E05A83F2 NOP 4E71 

E05A83F4 BRA MAIN+OOOO ; E05A85BC 6000 01C6 

You are now at the main part of the WDEF. Most code does not have symbols 
in it, but we left them in here to make learning a little easier. To list the main 
part of the WDEF type 

il 

MacsBug responds with 

Disassembling from E05A85BC 

MAIN 

+0000 E05A85BC *LINK A6 , #$FFFC 

+0004 EOSA85CO CLR . L -$0004 (A6) 

+0008 EOSA85C4 JSR *-$0012 

+OOOC E05A85C8 MOVE . L AO , (All 

+OOOE E05A85CA MOVE . L A4 ,- (A7 ) 

+00 10 E05A85CC JSR *-$001A 

EOSA85B2 

E05A85B2 

4E56 FFFC 

42AE FFFC 

4EBA FFEC 

2288 

2FOC 

4EBA FFE4 



..,. The Window Definition Function (WDEF) 173 

+0014 E05A8500 MOVEA.L (A1) ,A4 2851 

+0016 E05A8502 MOVE.W $0012(A6),$0744(A4) 396E 0012 0744 

+001C E05A8508 MOVE.W t$FFFE,OO 303C FFFE 

+0020 E05A850C ANO.W $0012(A6),00 C06E 0012 

+0024 E05A85EO ADO.W 00,00 0040 

+0026 E05A85E2 ADOI.W #$000A,OO 0640 OOOA 

+002A E05A85E6 MOVE.W 00,$0746(A4) 3940 0746 

+002E E05A85EA MOVE.L $000E(A6),$0740(A4) 296E OOOE 0740 

+0034 E05A85FO MOVE.W $000C(A6),00 302E oooc 
+0038 E05A85F4 JSR *-$01F4 E05A8400 4EBA FEOA 

+003C E05A85F8 ORI.B #$06,00 0000 0006 

+0040 E05A85FC ORI.W .ft$000E,$0044{A6) 006E OOOE 0044 

+0046 E05A8602 ORI.W #$0066, (A2) 0052 0066 

+004A E05A8606 ORI.W #$0052,-(A4) 0064 0052 

+004E E05A860A ORI.W #$206E, (A4) + ; I n I 005C 206E 

You are looking for the wGrow procedure and this code does not seem to pro­
vide much guidance. The end of the code (Main +0038) does not make sense: 
The code after the JSR appears to be garbage. It turns out that this is the code 
LightSpeed C generates for a switch statement. 



17 4 ~ Chapter 8 Windows 

By the Way ..,.I 
The switch statement in C is similar to Pascal's case statement. It 
checks a value (in this case the value is put in register DO) and then 
executes code based on the value. For example, WDEFs generally have 
a switch statement similar to the following. 

switch ( message ) 

case wOraw : 

if { window- >vi sible == true 

DrawWindow {) ; 

break; 

case wHit : 

result= FindPart{ * (Point*) ~param ) ; 

break; 

case wCalcRgns : 

DoCalcRgns (J ; 

break; 

case wGrow: 

DoGrow ( (Rect *') par am ) ; 

break ; 

case wDrawGicon : 

DoOr awGicon (); 

break; 

case wNe w: 

case wOispose : 

break ; 

This switch statement dispatches based on the message parameter 
passed to the WDEF. In this case the message parameter is wGrow (5). 



....,. The Window Definition Function (WDEF) 175 

The routine called by the JSR handles the switch statement and uses the 
return address as a pointer to a table of routines to jump to for the switch. 
The value in DO is the value on which the switch is performed. The Trace com­
mand steps over JSR calls, so it will not work because the JSR used in the switch 
statement is not a typical JSR. You want to trace up until you get to the JSR and 
then step into the routine using the Step (S or Command-S) command. 

To get to the JSR use the Go To (GT) command 

gt e05a85f4 

or trace until you get there.If you check the contents of register DO, it contains 
the value 5, which is the message used in the switch statement. Now step into 
the JSR using the S command and then trace several times. After about ten 
traces you should get to a JMP instruction. Your MacsBug display will 
resemble this one. 

Step (into) 

MAIN 

+0038 E05A85F4 JSR *-$01F4 E05A8400 I 4EBA FEOA 

Step (over) 

No procedure name 

E05A8400 JMP *+$0040 E05A8440 4EFA 003E 

E05A8440 MOVEA.L (A7)+,AO 205F 

E05A8442 MOVE.W (A0)+,01 3218 

E05A8444 MOVE.W (A0)+,02 3418 

E05A8446 CMP.W 02,00 8042 

E05A8448 BGT.S *+$000C E05A8454 6EOA 

E05A844A SUB.W 01,00 9041 

E05A844C BLT.S *+$0008 E05A8454 6006 

E05A844E ADO.W 00,00 0040 

E05A8450 LEA $02(AO,OO.W),AO 41FO 0002 

E05A8454 MOVE.W (AO),OO 3010 

E05A8456 BEQ.S *+$0000 E05A8456 67FE 

E05A8458 JMP $00(A0,00.W) 4EF0 0000 



176 ..,. Chapter 8 Windows 

This JMP instruction dispatches to the relevant part of the switch statement. 
Hopefully it takes you to the routine that handles the grow message. If you 
trace twice you will find yourself at a subroutine call to DoG row. My MacsBug 
display shows 

MAIN 

+009E E05A865A MOVE. L $0008 (A6),- (A7) 

Step (into) 

MAIN 

+00A2 E05A865E JSR DOGROW+OOOO ; E05A890E 

I 2F2E 0008 

I 4EBA 02AE 

If you step into this JSR using the Step (S) command and then disassemble the 
DoGrow procedure with the IL command, MacsBug .will respond with 

Disassembling from E05A890E 

DOG ROW 

+0000 E05A890E *LINK A6,#$FFEE 4E56 FFEE 

+0004 E05A8912 MOVEA.L $0008(A6),A0 206E 0008 

+0008 E05A8916 LEA -$000A(A6),A1 43EE FFF6 

+OOOC E05A891A MOVE.L (AO) +, (A1) + 22D8 

+OOOE E05A891C MOVE.L (AO) +, (A1) + 22D8 

+0010 E05A891E MOVE.W -$0008(A6),D0 302E FFF8 

+0014 E05A8922 SUBQ.W i$1,DO 5340 

+0016 E05A8924 MOVE.W D0,-$0002(A6) 3D40 FFFE 

+001A E05A8928 MOVE.W $0746(A4),DO 302C 0746 

+001E E05A892C ADDQ.W #$1,DO 5240 

+0020 E05A892E SUB.W DO, -$0008 (A6) 916E FFF8 

+0024 E05A8932 PEA -$000A(A6) 486E FFF6 

+0028 E05A8936 _FrameRect ; A8A1 A8A1 

+002A E05A8938 MOVE.W -$0002(A6),-(A7) 3F2E FFFE 

+002E E05A893C MOVE.W -$000A(A6),-(A7) 3F2E FFF6 

+0032 E05A8940 Move To ; A893 A893 

+0034 E05A8942 MOVE.W -$0002(A6),-(A7) 3F2E FFFE 

+0038 E05A8946 MOVE.W -$0006(A6),-(A7) 3F2E FFFA 

+003C E05A894A _LineTo ; A891 A891 

+003E E05A894C MOVE.W -$0004(A6),D0 



~ The Window Definition Function (WDEF) 177 

This routine is of medium length, and the disassembly is not particularly inter­
esting. The best technique for figuring out a piece of code like this is to look at 
what traps it is calling. This routine is making several QuickDraw calls. The 
first several- _FrameRect, _Move To, _Line To-seem OK, but later there are 
two calls to _FrameOval and one call to _FrameArc. It looks as if this could be 
drawing the happy face: two eyes and a mouth perhaps. 

To validate this theory, set a breakpoint at the first call to _FrameOval (either 
with BR or ATB), trace over the call, and see if one of the eyes appears. 

Eureka! This is the offending code. To fix it, abort this subroutine before the 
happy face is drawn. There are two ways to do this: branch to the end of the rou­
tine or terminate the routine early. In this exercise, terminate the routine early. 

Any time you decide to terminate a routine early, you must restore any 
saved registers. Look at the bottom of the routine to determine which registers 
are restored. Use the IR command to list to the end of the routine. MacsBug 
shows the end of the routine as 

+017C E05A8A8A SUB.W -$0012(A6),02 946E FFEE 

+0180 EOSA8A8E EXT.L 02 48C2 

+0182 E05A8A90 OIVS.W i$0002,02 85FC 0002 

+0186 E05A8A94 SUB.W 02,01 I 9242 

+0188 E05A8A96 PEA -$0012 (A6) 486E FFEE 

+018C E05A8A9A MOVE.W OO,-(A7) 3FOO 

+018E E05A8A9C MOVE.W Ol,-(A7) 3F01 

+0190 E05A8A9E _OffsetRect A8A8 A8A8 

+0192 EOSA8AAO PEA -$0012 (A6) 486E FFEE 

+0196 E05A8AA4 MOVE.W i$0087,-(A7) I 3F3C 0087 

+019A EOSA8AA8 MOVE.W #$005A,-(A7) 3F3C OOSA 

+019E E05A8AAC _FrameArc ABBE I A8BE 

+OlAO E05A8AAE UNLK A6 4ESE 

+01A2 E05A8AB0 RTS 4E75 

The only cleanup this routine does is an UNLK and an RTS. If you examine the 
entire routine carefully, you will find that you can exit immediately after the 
_Line To trap called at DoGrow+007C. Make a note of the code before the area 
you want to change. 



178 ..,.. Chapter 8 Windows 

+0072 E05A8980 _MoveTo ; A893 

+0074 E05A8982 MOVE.W -$0004(A6),-(A7) 

+0078 E05A8986 MOVE.W -$0002(A6),-(A7) 

+007C E05A898A _LineTo ; A891 

+007E E05A898C MOVE.W -$0004(A6),DO 

A893 

3F2E FFFC 

3F2E FFFE 

A891 

302E FFFC 

Later you will use the hexadecimal values $3F2E FFFC 3F2E FFFE A891 302E 
FFFC to find this section of code on the disk. 

At this point you are going to change the routine directly in memory. This 
technique is often useful because it can save a great deal of compile time when 
making only minor changes. To abort the routine, you need to add the UNLK 
and RTS at $EOSA898C. You must replace the $302E FFFC (MOVE.W 
-$0004(A6),DO) at $EOSA898C with $4ESE 4E75. The MacsBug command 

sw e05a898c 4e5e 4e75 

accomplishes the replacement. The $4E5E is the UNLK instruction, and the 
$4E75 is the RTS. If you now list the changed section of code using the dot 
address 

ip. 

MacsBug responds with something like 

Disassembling from 5a898c 

DOG ROW 

+0060 005A896E DC.W $FFFA ???? 

+0062 005A8970 ADDI.W 4t$FFFO,DO 

+0066 005A8974 MOVE.W D0,-$0002(A6) 

+006A 005A8978 MOVE.W -$0008(A6),-(A7) 

+006E 005A897C MOVE.W -$0002(A6),-(A7) 

+0072 005A8980 Move To ; A893 

+0074 005A8982 MOVE.W -$0004(A6),-(A7) 

+0078 005A8986 MOVE.W -$0002(A6),-(A7) 

+007C 005A898A LineTo ; A891 -

+007E 005A898C UNLK A6 

+0080 005A898E RTS 

+0082 005A8990 SUB.W -$0008(A6),D0 

+0086 005A8994 EXT.L DO 

FFFA 

0640 FFFO 

3D40 FFFE 

3F2E FFF8 

3F2E FFFE 

A893 

3F2E FFFC 

3F2E FFFE 

A891 

4E5E 

4E75 

906E FFF8 

48CO 



By the Way ..,.I 

Note ..,.I 

..,.. The Window Definition Function (WDEF) 179 

+0088 005A8996 DIVS . W *$0008 ,00 

+008C 005A899A MOVE . W -$0006(A6) , Dl 

+0 090 005A899E SUB . W - $000A(A6) , Dl 

81FC 0008 

322E FFFA 

926E FFF6 

If you now clear all breakpoints and A-trap breaks using the GG macro (BRC; 
ATC; G) and resize the window, the happy face is gone! Note that the dot repre­
sents the last address used. For more information, see Appendix A. 

Since you only changed the RAM version of the WDEF, the happy face will 
be back as soon as you quit and then relaunch the application. 

The face will be back as soon as the WDEF is loaded from disk again. 
Since the WDEF resides in the resource fork of the application, it is 
loaded in the application heap. Thus, as soon as the application quits, 
the RAM version of the WDEF is lost. If the WDEF were in the System 
file, it would have been loaded into the system heap. Its lifetime 
depends on whether or not the resource is purgeable. If it's not 
purgeable, it will remain in the system heap until the Macintosh 
restarts (very poor form; WDEFs should be made purgeable). If it's 
purgeable, it may be lost when another application requests memory 
from the system heap. In any case, when the WDEF resides in the 
system heap, the same WDEF may be around if the application quits 
and is later relaunched. 

It is often interesting to modify a piece of code permanently. This is some­
times easy to accomplish even if you don't have the source. The procedure is 
to first find the section of code that needs to be modified (as you have just done) 
and then use ResEdit to modify the disk version of the code. 

Any time you use ResEdit to modify code, there is a chance you will 
make a mistake. This could easily destroy the application you are 
modifying. To eliminate the possibility for this catastrophe, always 
modify a copy of the application. Besides, after you're done modifying 
the application you might decide you like the original version better 
after all. 



180 ..,.. Chapter 8 Windows 

The first step is to make a backup of the SampleWDEF application. Enter Res­
Edit and find the WDEF resource. Open the WDEF with ID 1000 (there is only 
one WDEF) and use the Find Hex command in the Search menu to find the 
string $3F2E FFFC 3F2E FFFE A891302E FFFC, which you made a note of pre­
viously when examining the RAM version. Replace $302E FFFC with the 
UNLK and RTS instructions $4E5E 4E75, just as you did in the RAM version. 
Save your changes and quit ResEdit. When you run the new version, the 
happy face will not appear when the window is resized . 

..,.. Summary 
This chapter discussed the Window Manager and WDEFs. 

• The operation of the Window Manager and updateRgn maintenance 

• The window Record data structure and the MacsBug window template 

• The low memory global WindowList 

• The operation of a WDEF 

• Modifying a RAM version of a WDEFwith MacsBug, and the disk version 
with ResEdit 

Like MDEFs described in Chapter 7, WDEFs are code resources. The system 
uses the same technique for controlling MDEFs and WDEFs, only the parame­
ters passed are different. This technique allows the system to keep the func­
tions common to all windows in one place and allows you to customize the 
appearance and operation of your windows by writing only a WDEF. 

This chapter also introduced a technique for modifying programs with Res­
Edit. Although the example of modifying the WDEF given in the chapter is ar­
tificial, the technique is extremely powerful. It is often very easy to slightly 
modify the behavior of an existing application to make it suit your purpose. 



9 Dialogs 

The Dialog Manager implements an entire interface including buttons and text 
editing in a window. It is meant to be used for alerts and small dialogs with the 
user. There are two kinds of dialogs: modal and modeless. 

Modal dialog boxes require immediate attention. They must be dismissed be­
fore you can interact with other parts of the application. Clicking the mouse 
outside a modal dialog box sounds a beep. For example, the Save File dialog 
box requires the user to name a file or cancel the save before continuing. 
Modeless dialogs do not require the user to interact with them. They can be 
left on the screen, just like any other application window. For example, a Find 
dialog allows you to go back to the document without dismissing the dialog. 

Alerts are used to warn users that something needs attention or has gone 
wrong. Typically, they are modal and contain a message, an OK, and a Cancel 
button. Dialogs, both modal and modeless, generally interact more with the 
user and include various controls and editable text. 

.,... Creating Dialogs 
Dialogs are created with a Dialog ITem List, or DITL. DITLs may be loaded 
from resources or constructed directly in memory. They are most easily 
created as resources, which also allows easy editing later. DITLs may contain 
standard controls (buttons, check boxes, or radio buttons), custom controls, 
static text, editable text, icons, pictures, or user-defined items. Any item in a 
DITL may be disabled. Disabling an item means that the Dialog Manager 
won't return the item when it is pressed by the user, but the item will still get 
events and respond to them. This is often used for editable text items. Items 

181 



182 ~ Chapter 9 Dialogs 

Note ..,.I 

Note ..,.I 

that should not respond to the user's actions should be deactivated. This also 
changes the appearance of the item. 

H the Dialog Manager can't get enough memory to create the dialog or to 
perform an operation, it will fail with a SysErr. It does not fail gracefully. 

Custom controls are specified by a control template resource or a control 
handle if the DITL is constructed manually. User-defined items are always 
filled in by the application after the dialog is loaded into memory. The bounds 
of the item are specified in the DITL, and the application installs a pointer to 
a procedure to draw the item. The procedure can only draw within the bounds 
of the item, because the Dialog Manager sets the clip to that rectangle. If an item 
must react to the user, a control should be used, since the user item procedure 
is called only to update the display. 

A useful trap in the Dialog Manager is CouldDialog.lt reads in all 
the resources associated with a dialog and makes them 
unpurgeable. If you remember the early days of the Macintosh 
128K, you'll certainly remember the number of disk swaps that 
were required to perform some operations on that machine. 
Resources were requested from different disks, and the system 
needed the disk containing the resource before it could continue. 

The CouldDialog call provides the means to avoid this situation. H 
your application is running from a floppy disk, calling Could Dialog 
prevents the Mac from having to ask for the original disk- for 
example, when the user is loading a file from another floppy. When 
you are done with the dialog or disk swapping operation, call 
Free Dialog to reverse the effects of Could Dialog. 

The items in the DITL are assumed to be numbered sequentially from one. 
When the Dialog Manager needs to communicate with the application about 
the DITL, it uses these numbers. In general, the Dialog Manager assumes that 
an OK button will be item one and a Cancel button will be item two. If this is 
a problem it is easily changed (see "Dialog Event Management" for details). 



Note .,..I 

..,.. Creating Dialogs 183 

Alerts assume either item number 1 or 2 is the default button and 
surround it with a round rectangle. If you find one of your items in 
an alert surrounded by a round rectangle, it is either· item 1 or 2 and 
you should renumber it . 

...,. Creating a Dialog without Resources 

The sample application puts a message in a modal dialog without using re­
sources. This method is generally frowned upon because it leaves no way to 
internationalize the application, but it is occasionally useful. The sample appli­
cation works this way so that you don' t have to create a separate resource file 
to generate the sample application. 

The routine that performs this operation is called PutUpMessage. PutUp­
Message creates dialogs with only an OK button or dialogs with both OK and 
Cancel buttons. It uses a DialogPtr to refer to the dialog that will be returned 
by the Dialog Manager. DitlHndl holds the item list while it is being created, 
and DltemPtr indexes along the item list. The records for these structures are 

typedef struct Ditlitem 

long placeholder; 

Rect displayRect ; 

unsigned char type ; 

char title[!] ; /* 1 to account for the count byte*/ 

} Ditlitem; 

typedef Ditlltem* DitemPtr ; 

typedef struct 

int count; 

Ditlltem item( OJ ; 

) Ditl ; 

typedef Ditl* DitlPtr ; 

typedef DitlPtr• DitlHndl; 



184 ...,. Chapter 9 Dialogs 

The function prototype and its locals are defined as 

PutUpMessage( cancel, text ) 

short cancel;/* true if a Cancel button is desired */ 

unsigned char* text; /* Pascal text to be displayed in the dialog 
*I 

DialogPtr myDialog; 

short itemHit; 

Rect myRect; 

GrafPtr savePort; 

DitlHndl myDitl; 

DitemPtr dPtr; 

short delta; 

short numDitlitems :::: 2+cancel; 

The following lines allocate memory for the DITL according to the size of the 
message text plus the size of all the DITL items. The magic constant 8 is the num­
ber of bytes required to hold the P-strings "Cancel" and "OK" minus the length 
byte which is already included in the DITL structure. The second line fills in the 
number of dialog items minus 1 since the count is zero based. 

myDitl = 
(DitlHndl)NewHandle(sizeof(Ditl)+(sizeof(Ditlitem) 
*numDitl-Items)+text[0]+8); 

(**myDitl) .count = numDitlitems - 1; 

For each item added to the DITL, dPtr is set, the various parts of Ditlltem 
are filled in, and the delta is calculated. Ditlltems are of varying sizes depend­
ing on the length of their text. The delta variable contains the cumulative size 
of all item strings and is used to calculate the position of the next item. The OK 
and Cancel buttons are the first two items in the list as recommended by Inside 
Macintosh, Volume I. 

dPtr :::: (**myDitl) .item; 

dPtr->placeholder = 0; 

SetRect( &myRect, 200, 100, 260, 120 ); 

dPtr->displayRect = myRect; 

dPtr->type = btnCtrl+ctrlitem; 



• Creating Dialogs 185 

PStrCpy("\pOK", dPtr->title); 

delta = 2; I* Size of OK: accumulate data size *I 

delta += delta&&1; I* force the offset to an even boundary *I 

if( cancel ) { 

dPtr = (DitemPtr) ((char*) (&((**myDitl) .item[1]))+delta); 

dPtr->placeholder = 0; 

SetRect( &myRect, 40, 100, 100, 120 ); 

dPtr->displayRect = myRect; 

dPtr->type = btnCtrl+ctrlitem; 

PStrCpy("\pCancel", dPtr->title); 

delta += 6; I* Size of CANCEL: accumulate data size */ 

delta += delta&&1; I* force the offset to an even boundary *I 

dPtr = (DitemPtr) ((char*) (&((**rnyDitl) .itern[nurnDitliterns]))+delta); 

dPtr->placeholder = 0; 

SetRect( &rnyRect, 20, 20, 300, 80 ); 

dPtr->displayRect = rnyRect; 

dPtr->type = statText + iternDisable; 

PStrCpy(text, dPtr->title); 

After the DITL is created it is passed to the Dialog Manager to create the dia­
log. Then ModalDialog is called to process the events for the dialog. Modal­
Dialog returns the item number of the item hit. An application might need to 
change some state and keep the dialog up when an item is hit. In the example, 
the function exits as soon as either item (OK or Cancel) is hit. 

GetPort( &savePort ); 

SetRect( &myRect, 50, 50, 400, 200 ); 

rnyDialog = NewDialog( 0, &rnyRect,O,true,dBoxProc,-1,false,O,rnyDitl ); 

SetPort( (GrafPtr) rnyDialog ); 

ModalDialog( 0, &itemHit ); 



186 ...,. Chapter 9 Dialogs 

Finally, everything is cleaned up and an appropriate value is returned. 

FlushEvents( everyEvent, 0 ); 

DisposDialog( myDialog ); 

SetPort( savePort ); 

if( itemHit == 1 ) 

return( itemHit ); 

else 

return( 0 ); 

....,. Dialog Record and Dialog Item Lists 

Once the DITL is given to the Dialog Manager, it is filled in with the handles 
to the actual controls and icons as well as some other information. When a 
DITL is read from a resource, it is copied before being filled in. This prevents 
an application from writing the temporary information back to the resource 
file if it inadvertently sets the resource as changed. 

The Dialog Manager creates a Dialog Record to hold the information about 
the dialog itself. 

struct DialogRecord 

WindowRecord window; 

Handle items; 

TEHandle textH; 

short editField; 

short editOpen; 

short aDefitem; 

} ; 

The dialog record is a variant on the Window Record (see Chapter 8), which in­
cludes a handle to the DITL. If a dialog contains editable text items, the Dialog 
Manager shares the same TextEdit record with all the editable items. The item 
number of the current editable field (or minus 1 if there are no editable fields) 
is stored in editField. editOpen is internal to the Dialog Manager and aDefltem 
holds the default item for alerts. 



~ Creating Dialogs 187 

The DITL in memory is similar to the DITL resource. The pseudo C 
version is 

struct DialogitemList 

short itemCount; 

array[itemCount] 

Handle itemHandle; 

Rect displayRect; 

byte itemType; 

byte dataLength; 

array[dataLength] itemData; 

} ; 

where item Type can be one of the following 

#define useritem 0 

#define ctrlitem 4 plus one of 

#define statText 8 

#define editText 16 

#define iconitem 32 

#define picitem 64 

#define btnCtrl 0 

tdefine chkCtrl 1 

#define radCtrl 2 

#define resCtrl 3 

and any item may have itemDisable added to it, as in 

#define itemDisable 128 

The itemHandle is either a handle to the item's data or a procedure pointer 
if the item is a user item. The itemData is a resource ID for resCtrls, iconltems, 
and picltems. For the other ctrlltems, stat Text, and edit Text, the data is the title 
or default text. The data is always padded to an even length. 



188 ..,.. Chapter 9 Dialogs 

101 Examining a DITL 

The Chapter 9 sample application brings up a modal dialog. 
Before launching the application, get into MacsBug and set a breakpoint on 

NewDialog using 

atb NewDialog 

After setting the breakpoint, launch the application. When you break at the 
New Dialog trap, trace over it using the SO (or T) command. The result of New­
Dialog is a pointer to a DialogRecord that is returned on the stack. To see what 
it looks like, type 

dm @sp DialogRecord 

An abbreviated version of MacsBug's response on my machine is 

Displaying DialogRecord at 0013FA40 

0013FA40 window 

0013FA50 portRect 0000 0000 0096 OlSE 

0013FA58 visRgn 0013F9FO -> 0013FAF4 -> 

0013FASC clipRgn 0013F9F4 - > 0013FB88 -> 

0013FAAC windowKi nd 0002 

0013FAAE visible TRUE 

0013FAAF hilited TRUE 

00 1 3FABO goAwayFlag FALSE 

0013FAB1 spareFlag FALSE 

0013FAB2 strucRgn 0013FA04 -> 001 3FB9C - > 

0013FAB6 contRgn 0013FA08 -> 0013FBBO - > 

0013FABA updateRgn 0013F9F8 -> 0013FBC4 -> 

0013FABE windowDefProc 010022CC -> 408768FO - > 

0013FAC2 dataHandle NIL 

00 13FAC6 titleHandle 0013F9EC -> 00140738 -> 

0013FACA titleWidth 0000 

0013FACC controlList 0013F9E4 -> 001406CO -> 

0013FAD0 nextWindow NIL 

0013FAD4 windowPic NIL 



0013FAD8 refCon 

0013FADC items 

0013FAEO textH 

0013FAE4 editField 

0013FAE6 editOpen 

0013FAE8 aDefltem 

...,. Creating Dialogs 189 

00000000 

0013FAOO -> 0013FB10 -> 

0013F9E8 -> 00140620 -> 

FFFF 

0000 

0001 

The template shows the entire window record and TextEdit record. In the 
preceding sample the TextEdit record has been removed. The items field con­
tains a handle to the DITL. Since the DITL contains records of varying sizes, 
there is no template (a dcmd would be required) for displaying the DITL. To 
see the DITL, type 

dm 13fb10 

and you will see something like 

Displaying memory from 13fb10 

0013FB10 0001 0013 F9E4 0064 ooc8 0078 0104 0402 · · · · · · ·d· · ·x· · · · 

0013FB20 4F4B 0013 F9DC 0014 0014 0050 012C 9006 OK········· P·, · · 

0013FB30 4120 4E61 6065 0000 0000 0001 6EBC 0000 A Name······n··· 

0013FB40 0000 0004 8200 003C 0000 1F14 0031 4180 · · · · · · ·<· · • · •lA· 

0013FB50 800C 0001 0021 0013 004A 0000 0000 0000 ..... ! .. ·J· ..... 

0013FB60 0000 0050 0000 0050 0000 0000 0002 0001 · · •P• · ·P· · · · · · • • 

0013FB70 0002 0000 0000 0001 6EBC 0000 0000 00A6 ....... ·n· ...... 

0013FB80 8200 0014 0000 lFOC OOOA 8001 8001 7FFF ................ 

The first item is the number of items in the DITL minus one. The 0001 indi­
cates that there are two items in this dialog. The next long word contains the 
handle to the first item, which is $13F9E4 in this case. This will be examined 
ina moment. 

Next is the item's bounding rectangle, which is $64, $C8, $78, $104. The fol­
lowing byte contains the type, which is 04, indicating that the item is a button 
control. Next comes the data, which has a length of two and is the string OK. 
Because this item is a control, you can look at the control record referenced by 
the handle. See Chapter 10 for more details on control records. 



190 ..,.. Chapter 9 Dialogs 

The second item has the same structure: The handle is $13F9DC; the bound­
ing box is $14, $14,$50, $12C; and the type is $90. Type $90 indicates that it is 
a disabled EditText item ($80 = disabled plus $10 for editText). The handle 
points to the current text for the item (which starts out the same as the title 
string). To see the text, you can look at the handle using 

d.m @13f9dc 

to which MacsBug responds 

Displaying memory from @13f9ac 

001406F4 4120 4E61 6065 0078 0000 0034 0000 0030 A Name ·x··· 4· ·· 0 

..,.. Setting User Items 

User items are items for which the application defines the appearance. The 
appearance is defined by a procedure in the application. The definition for the 
procedure is 

pascal void Myitem( WindowPtr theWindow; short itemNo); 

The item number is passed so that the same procedure may be used for more 
than one item. When the procedure is called, the current GrafPort is already 
set to the dialog and the clip is set to the bounds of the item. The procedure uses 
GetDitem to get the bounds of the item to know where to draw the item. 

SetDitem associates the procedure with a particular item. First the applica­
tion calls GetDitem to get the original values and then SetDitem to change the 
"handle" to a pointer to the procedure. For example 

GetDitem( theDialog, 3, &i t emType, &item, &box); / *get o riginal 
values* / 

SetDitem( theDialog, 3, &itemType , &Myitem, &box); / *set the 
procedure*/ 



~ Dialog Event Management 191 

....,_ Alerts 

Alerts are staged dialogs. The stages are meant to be more strident at each 
invocation. Alerts are similar to modal dialogs, except they are always defined 
from resources. To invoke an alert, a resource number and a filter procedure (see 
1'Dialog Event Management'') are provided. The alert resource contains a rectan­
gle, the ID of the DITL to use, and an array of information to use at each stage. 

At each stage, the alert can specify which button (OK or Cancel) is to be the 
default button, whether or not the alert should be shown, and how many beeps 
to give when the alert is invoked. These last two can be used together, so that 
at some stages the alert is not shown but still beeps at the user. 

The Dialog Manager decides on the stage of the alert by checking if the alert 
ID called is the same as the last alert, and if so, incrementing the stage (up to 
the maximum of three). If the alert is a different alert, the stage is reset to zero. 
The ID of the last alert can be found in the word-sized low memory global 
AN umber and the stage number is in the byte-sized low memory ACount. 

The procedure that beeps for alerts and modal dialogs may be set using the 
ErrorSound routine and is stored in the low memory global DABeeper. A cus­
tom sound procedure has the prototype 

PROCEDURE CustomSound (soundNo: INTEGER); 

The soundNo parameter is the number of times to beep (normally zero 
through three). The default procedure calls SysBeep an appropriate number 
of times. Your application can replace this with a procedurethatplaysdifferent 
sound pitches rather than a different number of beeps, for example . 

....,_ Dialog Event Management 
As previously mentioned, dialogs are either modal or modeless. Modal dia­
logs won't allow other actions outside of the dialog to occur while the dialog 
is up. Modeless dialogs may be ignored or switched between and are just like 
other application windows. Modal dialogs are usually easier to implement, 
but too many of them ruin the feel of an application . 

....,_ Modeless Dialogs 

Since modeless dialogs are really just another application window, they are in­
tegrated into the application's event loop (see Chapter 5 for more information 
on the event loop). Each event in the main event loop should be checked to see 
if it is a dialog event by calling IsDialogEvent. If IsDialogEvent returns true, 
call DialogSelect to handle the event. 



192 ..,.. Chapter 9 Dialogs 

There are a couple of exceptions to this rule. First, if any dialogs contain 
edit Text items, DialogSelect must be called for null events to blink the caret. 
(Even if no editText items are up, it is helpful to call DialogSelect for null 
events.) Second, DialogSelect doesn't check for Command keys, so ifisDialog­
Event returns true and the Command key is down, the application should han­
dle the event itself rather than calling DialogSelect. If Command-C, -X, or -V 
are returned in the event record and the event is a dialog event, you should call 
DlgCopy, DlgCut, or DlgPaste. 

DialogSelect returns a result of true and the item number if the user pressed 
a dialog item. Thus, mode less dialogs can be handled just like modal dialogs. 
If DialogSelect returns false, just continue on to the next event. 

...,. Modal Dialogs 

101 

Modal dialogs are handled by the ModalDialog trap. It takes a filter procedure 
and returns the item hit. The filter procedure is one way to customize the be­
havior of a modal dialog. The definition for a filter procedure is 

pascal boolean MyFilter( DialogPtr theDial og ; EventRecord* theEvent; 
short* itemHit); 

If the filter procedure returns false, the Dialog Manager handles the event 
itself (which may have been changed by the filter procedure). If the procedure 
returns true, ModalDialog sets iternHit to the iternHit value returned by the 
filter procedure and returns immediately. 

A common use for the filter procedure is to translate certain keyboard 
events into items to be returned. ModalDialog interprets the Return and Enter 
keys as item one (normally OK). A new filter procedure might interpret Com­
mand-period (.)as item two (normally Cancel), or the filter procedure may 
work with List items. 

Tracking Modal Behavior 

It can be very useful to track what happens when a modal dialog is displayed. 
The Chapter 9 sample application is an application with a modal dialog. When 
the application starts up it displays a dialog that asks for your name and then 
shows a second dialog with your name reversed. 



~ Dialog Event Management 193 

This example shows you how to find the code that is executed after the mod­
al dialog asking for your name is dismissed. It then looks at the code used to 
reverse the name and describes how to skip this code so your name is shown 
correctly. This technique is useful when an application or a utility displays a 
modal dialog and you want to force it to operate in a certain way. 

Before launching the application, put an A-trap break on ModalDialog 

atb ModalDialog 

As soon as you launch the Chapter 9 application MacsBug will trap the call to 
ModalDialog. Use the Trace command to step over ModalDialog. This should 
bring up the dialog. At this point, clear out the text in the dialog and enter your 
name. Press Return or click in the OK button. As soon as you do you will be 
back in MacsBug, right after the ModalDialog trap. 

Use the 

il 

command to list the code that is coming up. On my machine MacsBug 
responds with 

Disassembling from 002644f4 

ENTERNAM 

+013C 002644F4 *TST.W -$0006 (A6) 4A6E FFFA 

+0140 002644F8 BEQ.S ENTERNAM+0134; 002644EC 67F2 

+0142 002644FA MOVE.L -$0004(A6),-(A7) 2F2E FFFC 

+0146 002644FE MOVE.W #$0002,-(A7) 3F3C 0002 

+014A 00264502 PEA -$002C (A6) 486E FFD4 

+014E 00264506 PEA -$002A(A6) 486E FFD6 

+0152 0026450A PEA -$0026(A6) 486E FFDA 

+0156 0026450E GetDitem ; A98D A98D -
+0158 00264510 MOVE.L -$002A(A6),-(A7) 2F2E FFD6 

+015C 00264514 PEA -$012C (A6) 486E FED4 

+0160 00264518 Get I Text A990 A990 -
+0162 0026451A MOVE.W #$FFFF,-(A7) 3F3C FFFF 

+0166 0026451E CLR.W -(A7) 4267 

+0168 00264520 JSR *+$OlEA ; 0026470A 4EBA 01E8 

+016C 00264524 MOVE.L -$0004(A6),-(A7) 2F2E FFFC 

+0170 00264528 _DisposDialog ; A983 A983 



194 .,.. Chapter 9 Dialogs 

+0172 0026452A MOVE.L -$0012(A6),-(A7) 

+0176 0026452E SetPort ; A873 

+0178 00264530 PEA -$012C(A6) 

+017C 00264534 JSR REVERSE ; 0026433A 

2F2E FFEE 

A873 

486E FED4 

4EBA FE04 

There is a test on the value returned from Modal Dialog, a call to GetDitem and 
GetiText, which you might suspect gets the name string from the dialog, an un­
known JSR call, followed by calls to DisposDialog, SetPort, and then to a rou­
tine called Reverse. This last call looks promising. Trace down to the call toRe­
verse and see what was pushed onto the stack using 

elm @sp 

On my machine MacsBug responds with 

Displaying memory from @sp 

002C5C7A 0641 204E 616D 65A4 0000 0048 4080 E76A ·A Name····H@··j 

This should be the name you typed into the dialog. Let's see what the routine 
does. Trace once more and look at the same address again. 

Displaying memory from 2c5c7a 

002C5C7A 0665 6D61 4E20 41A4 0000 0048 4080 E76A ·emaN A····H@··j 

This is the name reversed. We've found the routine. To see how Reverse works, 
you can dump the code with 

il Reverse 

After seeing your name reversed (after a detour to MacsBug for another Mo­
dal Dialog), try it again using "Enter Name" under the File menu. Trace to the 
call to Reverse, but instead of tracing over it enter 

pc=pc+4 

to skip over Reverse and then type 

sp==sp+4 



..,. Summary 195 

to clean up the stack (a long-word parameter was pushed before calling 
Reverse). This will skip over the call to Reverse, preventing the reversal from 
happening. Now when the second dialog appears, you will see your name dis­
played correctly. 

You could permanently modify the behavior of the application by changing 
it with ResEdit. This technique is described in Chapter 8 . 

...,.. Summary 
This chapter discussed the Dialog Manager. We discussed 

• Defining dialogs with resources and creating dialogs programatically 

• Examining a Dialog Record and the associated DITL 

• Setting user items to give dialogs a custom appearance 

• Alerts and their staged appearances 

• Dialog event management 

• Modal dialogs and tracking their behavior 

Dialogs are like small applications. They have controls and handle events. Like 
the Main Event Loop described in Chapter 5, dialogs respond to events. Modal 
dialogs are even simpler because the Dialog Manager handles most of the events 
itself. Alerts are the simplest form of all: Everything is handled automatically. 

This chapter introduced a technique for finding the behavior of an applica­
tion after displaying a dialog. Although the example is artificial, many appli­
cations use modal dialogs that require specific input. It is sometimes useful to 
be able to skip the code that applications perform immediately after the dialog. 



10 Controls and CDEFs 

The Control Manager handles all the controls you see on the Macintosh. Con­
trols are articles such as buttons, check boxes, scroll bars, or even custom items 
that no one has even dreamed of yet. 

~ Properties of Controls 
Controls can be categorized into two types: simple controls and "dial" con­
trols. Simple controls, like buttons, respond only to mouse clicks and typically 
have only two states: on and off. Dial controls have a value associated with 
them. A scroll bar is a dial control because it has a value that is associated with 
how far something is scrolled. Dial controls show their current value and allow 
the user to set the value. 

The Control Manager handles interactions with controls. If a window has 
controls, the Control Manager will tell your application if a control has been 
hit and track the mouse while the button is held down. Each control is defined 
by a piece of code called the Control DEFinition, or CDEF. These are found in 
resources of type ' CDEF ' . 

Controls are attached to a window via a linked list. The Control Manager 
finds the controls for a window by looking at the window's controlList field, 
which contains a handle to the first control in the list. 

Controls may be either active, when they respond to events, or inactive, when 
they don't. Inactive controls are usually distinguished by being grayed out. 

197 



198 .,... Chapter 1 0 Controls and CDEFs 

Note ... I The Control Manager assumes that the window's coordinate system 
has 0,0 at the top left when it draws the controls. If this is not the case, 
reset the origin before calling any Control Manager routines. 

~ Creating Controls 
Controls may be either created directly in an application or loaded from a 
resource. The control definition includes the window the control is to be part 
of, the bounding rectangle of the control, the title, whether or not the control 
is visible, its starting "value," the minimum and maximum values, the ID of 
the control's 1 CDEF 1 resource, and an optional reference constant. 

~ The ControiiD 

The ID passed to the Control Manager comprises both the resource ID and a 
variant code for the control (Figure 10-1). This allows the standard controls all 
to be handled by one CDEF with different variations. The Control Manager 
calls the Resource Manager with 

Get Resour ce ( 1 CDEF 1 
, resourceiD ) ; 

15 4 3 0 

resourceiD 

Figure 10-1 . The ControiiD 

For the standard controls, except the scroll bar, the CDEF' s ID is 0 and the 
variants are 

pushButProc 0 

checkBoxProc 1 

radioButProc 2 



..., Creating Controls 199 

For the scroll bar, the 1 CDEF 1 resource ID is 1 and the variation code is 0. 
Thus, the ControliD (passed to GetNewControl) for the standard scroll bar is 
16, and the ControliD for the standard check box is 1. 

The value field in the control record is the current state of the control. But­
tons normally have only two values: zero and one. For example, a check box 
is shown checked if its value is one and not if its value is zero. For scroll bars 
the value can ·be of a much larger range and specifies the position of the 
"thumb" in the scroll bar (Figure 10-2). 

When you are done with a control, DisposeControl will remove the control, 
freeing up all the memory associated with the control. You can also call Kill­
Controls to remove all the controls from a window. 

~ Part Codes 

Part codes are used to distinguish various parts of complex controls. For exam­
ple, a scroll bar has two scroll arrows, two paging regions, and a thumb. Each 
has a unique part code. Part codes may be in the range of 1 to 253. 254 is re­
served for future use and 255 indicates the control is inactive. 

For standard controls, the decimal values for part codes are 

in Button 10 

in CheckBox 11 

inUpButton 20 

inDownButton 21 

inPageUp 22 

inPageDown 23 

in Thumb 129 



200 ..., Chapter 10 Controls and CDEFs 

.. up 

.. page up 

.. thumb 

.. page down 

.. down 

Figure 10-2. The scroll bar 

....,. The Control Record 

The control record contains all information pertinent to a control. It includes 
a pointer to the window the control belongs to, a handle to the next control in 
the window's control list, a handle to the control's definition function (CDEF), 
the control's title if any, the control's rectangle, whether the control is active, 
and the current setting of the control The following shows the C definition of 
a control record. 



101 

..,.. Creating Controls 201 

struct ControlRecord { 

struct ControlRecord **nextControl; 

WindowPtr contrlOwner ; 

Rect contrlRect ; 

unsigned char contrlVis ; 

unsigned char contrlHilite ; 

short contrlValue ; 

short contrlMin; 

short contrlMax ; 

Handle contrl DefProc; 

Handle contrlData; 

ProcPtr contr lAction; 

long contrlRfCon; 

Str255 contrlTitle; 

} ; 

When contrlVis is 0, the control is invisible; when it is $FF, it is visible. The 
contrlHilite is the part of the control that is currently highlighted (clicked on). 
Normally, a control has a highlight of 0, indicating it is active and not in use. 
If it is inactive, the highlight is 255. A value in between indicates the part code 
of the highlighted portion of the control. 

The contrlMin and contrlMax fields define the range of the control. For but­
tons, the minimum is 0 and the maximum is 1. For a control such as a scroll bar, 
the minimum and maximum define the range of the control. The value is a 
number between the minimum and the maximum inclusive. The CDEF code 
handles interaction and drawing of the control. The contrlAction field con­
tains the address of the action procedure, which is discussed further under 
"How Controls Respond to Events." 

Looking at a Control 

Bring up a modal dialog that contains a control (almost any modal dialog). A 
good example modal dialog is the Open File ... dialog. Enter MacsBug and type 

dm @windowlist windowrecord 

to find the dialog window. MacsBug will respond 



202 ...,. Chapter 1 0 Controls and CDEFs 

Displaying WindowRecord at 001D5158 

00105168 portRect 0000 0000 OOE6 015C 

001D5170 visRgn 001A9CEO -> 001D520C -> 

001D5174 clipRgn 001A9004 -> 00105220 -> 

001D51C4 windowKind 0002 

001D51C6 visible TRUE 

001D51C7 hili ted TRUE 

001051C8 goAwayFlag FALSE 

001D51C9 spareFlag TRUE 

001D51CA strucRgn 001A9D38 -> 001D6A84 -> 

001D51CE contRgn 001A9D54 -> 00106A98 -> 

001D51D2 updateRgn 001A9CC4 -> 001D6AAC -> 

00105106 windowOefProc 010022CC -> 408768FO -> 

001D51DA dataHandle NIL 

001051DE titleHandle 001A9CCO -> 001DE8CC -> 

001051E2 titleWidth 0000 

001D51E4 controlList 001A9DOO -> 001D6AF4 -> 

001D51E8 next Window 00107810 -> 

001D51EC windowPic NIL 

001051FO refCon 0027CD52 

The part of this window record you are interested in is the controlList. Look­
ing at the first control is easy. 

dm 1d6af4 controlrecord 

MacsBug responds by showing a control record, such as 

Displaying ControlRecord at 001D6AF4 

001D6AF4 next Control 001A9F20 -> 001D6F64 -> 

001D6AF8 contrlOwner 001D5158 -> 

001D5168 portRect 0000 0000 OOE6 015C 

001D5170 visRgn 001A9CEO -> 001D520C -> 

001D5174 clipRgn 001A9D04 -> 001D5220 -> 

001D51C4 windowKind 0002 

001D51C6 visible TRUE 



...., Creating Controls 203 

001051C7 hili ted TRUE 

001051C8 goAwayFlag FALSE 

001051C9 spareFlag TRUE 

001051CA strucRgn 001A9038 -> 00106A84 -> 

001051CE contRgn 001A9054 -> 001D6A98 -> 

00105102 updateRgn 001A9CC4 -> 00106AAC -> 

00105106 windowDefProc 010022CC -> 408768FO -> 

001D510A dataHandle NIL 

0010510E titleHandle 001A9CCO -> 0010E8CC -> 

001051E2 titleWidth 0000 

001051E4 controlList 001A9000 -> 00106AF4 -> 

001051E8 next Window 00107810 -> 

001051EC windowPic NIL 

001051FO ref Con 0027C052 

00106AFC contrlRect 0027 0006 0089 OOE6 

00106804 contrlVis FF 

00106805 contrlHilite 00 

00106806 contrlValue 0004 

00106808 contrlMin 0000 

0010680A contrlMax 0060 

0010680C contrlOefProc 000022AC -> 408792CO -> 

00106810 contrlOata 001A9854 -> 00106828 -> 

00106814 contrlAction 00000000 

00106818 contrlRfCon 00000000 

0010681C contrlTitle 

Let's see what is here. First of all, is the nextControl. It can be seen by typing 

dm 1d6f64 contro1record 

or simply pressing Return. Next is the information on the window that owns 
this control. Notice that it is the same as the window you just looked at to find 
this control. This window data is not part of the control record. Only the refer­
ence to the window is in the control data structure. The window record is 
printed by the control template for easy reference. 



204 ..,. Chapter 1 0 Controls and CDEFs 

After that are the fields specific to the control, as previously discussed. This 
particular control is currently visible and appears to be a scroll bar based on 
the fact that it has a minimum and a maximum with a range of more than one. 
The current value of the scroll bar is 4. The contrlDefProc field is a reference 
to the code that defines this control. Finally, the control does not have a title . 

..... The CDEF 
Controls are defined by a Control DEFinition, or 1 CDEF 1 

, resource. This defi­
nition handles the appearance of the control as well as how it interacts with the 
user. A 1 CDEF 1 is a code resource like a 1 WDEF 1 or a 1 cdev 1 

• The code 
starts at the beginning of the resource and has the following definition 

pascal long MyControl( s hort varCode ; ControlHandle theControl; 
short message; long param) ; 

The varCode is the variation code for the current control. The Control Man­
ager keeps track of the variations and always passes the correct one for the cur­
rent control. The ControlHandle is the handle to the control record you saw 
previously. The message tells the CDEF what service the Control Manager 
needs from the CDEF. Finally, the param is used for some messages to indi­
cate extra information. For some messages the Control Manager expects a 
value to be returned. For others, the control should just return zero . 

...,. How Controls Respond to Events 

Applications pass events to the Control Manager, which then passes them on 
to the CDEF. When an application receives a mouse-down event, it typically 
calls Find Control to determine if part of a control was pressed. The Control 
Manager checks the control rectangles to see if the click occurred inside a con­
trol. If so, a TestControl message is sent to the CDEF, which instructs the control 
to see which part (if any) the mouse was clicked in. 

Once a control is found, the application calls TrackControl to handle the 
mouse until the button is released. The Control Manager will handle tracking 
the mouse within the control. An application may also pass an ActionProc to 
be called during the tracking. For instance, an ActionProc might scroll the con­
tents of a window while the Control Manager is tracking a click in the arrow 
of a scroll bar. 



Note ..,. , 

Note ..,. , 

.... The CDEF 205 

The DragHook low memory global points to a procedure called 
repeatedly while dragging the gray region of a part of a control. The 
DragPattem is the pattern used to draw the region. These can be 
customized to adjust the appear.ance of dragging a control. 

The messages passed to the CDEF are 

~define drawCntl 0 

#define testCntl 1 

#define ca l cCRgns 2 

#define ini tCntl 3 

#de f i ne dispCntl 4 

#define posCntl 5 

#de f ine thumbCntl 6 

#define dragCntl 7 

fde fine a u toTrack 8 

#d e fine calcCntlRgn 10 

#define calcThumbRgn 11 

There is no message with a value of 9 for CDEFs. 

The messages are detailed in the following paragraphs. 

drawCntl. This message tells the CDEF to draw part or all of the control. The 
param indicates the part to draw or zero if the whole control is to be drawn. 
The drawCntl code should check the control Vis field of the ControlHandle to 
see if it needs to perform any action at all. It should also check the highlight 
field to see if the control is active or inactive. 



206 ..,.. Chapter 1 0 Controls and CDEFs 

Note ..,.I 

Note ..,.I 

Since SetCtlValue is used to set the value for a control and it doesn't 
know which part is the indicator, the Control Manager will send a part 
code 129. If your control has more than one indicator, a part code of 
129 should update them all. 

testCntl. TestCntl is sent by the Control Manager to see if the mouse hit the 
control. The parameter is the point of the mouse location when the mouse but­
ton was pressed. This function returns the part of the control that was hit or 
zero if no part was hit. 

calcCRgns. CalcCRgns calculates the regions covered by the control. The 
parameter is a region handle that should be modified by the CDEF. If the 
high order bit of the handle is set, only the area of the indicator for the con­
trol should be returned. 

If the high order bit is set, clear only the high order bit before using the 
handle. To be 32-bit dean, under 32-bit systems the Control Manager 
won't use calcCRgns but will use two new messages, CalcCntlRgn and 
calcThumbRgn, to ask for the regions. See Tech Note 212 from Apple 
for more details on 32-bit clean operation. 

initCntl and dispCntl. These functions are used to initialize and dispose of 
any data needed by the CDEF. They are called whenever a control is created 
or disposed. 

dragCntl. The dragCntl message is passed to the CDEF to track the control 
while the mouse button is held down. If the param is nonzero, it is the part of 
the control to be moved. If it is zero, the entire control should track the mouse. 

A 1 CDEF 1 does not need to implement the dragCntl code if it wants the Con­
trol Manager to do the work for it with the standard DragGrayRgn function. If this 
is the case, the dragCntl function should return zero. If the CDEF is dragging the 
control, it should do the work and return a nonzero value to the Control Manager. 

posCntl, thumbCntl, and auto Track. These are used for controls that don't 
use the default moving code in the Control Manager. See Inside Macintosh, Vol­
ume I for more details. 



101 

~ The CDEF 207 

calcCntlRgn and calcThumbRgn. Before the push for 32-bit clean applica­
tions, CDEFs used the high bit of the region handle as a flag to signal these mes­
sages. In System 7.0, a CDEF gets these messages anytime the system is in 
32-bit mode. Tech Note #212 describes these messages in greater detail. 

Watching Messages Passed to a 1 CDEF 1 

Since the CDEF for the standard controls is in ROM, you want to find an easier 
example on which to set breakpoints. Bring up the Sound ' cdev ' in the con­
trol panel. In it you will see the Speaker Volume control. Follow the previous 
hands-on exercise to find the control list and follow the control list to a control 
that looks like this display. 

Displ aying Cont r olRecord at 0007 803C 

0007803C ne xt Control 00077 2 7C 

00078040 contrlOwner 

0003F76C por tRect 0000 0058 OOFC 0140 

0003F774 visRgn 000 4B6BO -> 00043AF4 

0003F778 clipRgn 000486AC -> 0007929C 

0003F7C8 windowKind FFC l 

0003F7CA visible TRUE 

0003F7C8 hili ted TRUE 

0003F7CC goAwayFl ag TRUE 

0003F7CD spareFlag FALSE 

0003F7CE strucRgn 00048658 -> 000488EC 

0003F7D2 co ntRgn 00048654 -> 00078228 

0003F7D6 updateRgn 00048650 -> 00048864 

0003F7DA windowDefProc 000022CC - > 408768FO 

0003F7DE dataHandle NIL 

0003F7E2 titleHandle Control Panel 

0003F7E6 titleWidth 0058 

0003F7E8 controlList 00048550 -> 0008838C 

0003F7 EC next Window NIL 

0003F7FO wi ndowPic NI L 

0003F7F4 ref Con 00048638 



208 ..,.. Chapter 10 Controls and CDEFs 

00078044 contrlRect 0024 0070 008C 0088 

0007804C contrlVis FF 

00078040 contrlHilite 00 

0007804E contrlValue 0004 

00078050 contrlMin 0000 

00078052 contrlMax 0007 

00078054 contrlDefProc 00048510 - > 20078554 

00078058 contrlData 0004B5EO -> 00079264 

0007805C contrlAction FFFFFFFF 

00078060 contrlRfCon FFFFF030 

00078064 contrlTitle 

The thing to note here is that the minimum and maximum are 0 and 7, since 
that is the range of values available for the volume of the speaker. Once you 
have found this control, set a breakpoint at the start of the CDEF, which in this 
example is at $20078554. Once you have done this, MacsBug will break when­
ever you click on the volume control. 

To watch the messages being passed to the CDEF, you can set a breakpoint 
like 

br 20078554 '; dw sp+8 

If you want to break only on drawCntl messages, you can use a breakpoint 
such as 

br 20078554 @(sp+8) .w~o 



..,. Summary 209 

~ Summary 
Controls are implemented via CDEFs. The Control Manager contains code 
that is common to all controls, and the CDEF contains code that is customized 
for a specific control. Applications interact with the Control Manager, and the 
Control Manager interacts with the CDEF. This is similar to the way windows 
are implemented via WDEFs and menus are implemented via MDEFs. The 
techniques for debugging controls are similar to those used to debug custom 
menus and custom windows. 

This chapter discussed the Control Manager and CDEFs. Specifically, it 
discussed 

• The Control Record and the various fields in it 

• How the application interacts with the Control Manager, and how the 
Control Manger interacts with the CDEF 

• How a CDEF works 

• How to watch the messages passed to theCDEF, and how to break on spe­
cific messages 



1 1 

Note .,.I 

Quick Draw 

Quick Draw has been the Macintosh drawing environment since the Mac was 
first introduced. The original black and white version of QuickDraw is now re­
ferred to as Classic QuickDraw. Since then, QuickDraw has undergone two 
major revisions: Color QuickDraw, introduced with the Mac 11 in 1987, added 
support for indexed color drawing; 32-bit QuickDraw, introduced in 1989, 
provides support for 16-bit and 32-bit direct frame buffers. Color QuickDraw 
substantially modified existing Classic QuickDraw data structures, while 32-bit 
QuickDraw expanded Color QuickDraw's functionality almost transparently. 

This chapter goes into considerably more detail than the rest of the 
chapters in this book. While understanding many of QuickDraw's 
caveats might not be necessary for writing many applications, they 
are critical to the graphics programmer. If you are only using 
minimal QuickDraw features, you can skim most of the chapter. If 
you are a hard-<:ore QuickDraw user, you will probably find many of 
the details useful. 

There are a number of new terms you must learn to understand Macintosh 
graphics. 

A frame buffer is an area of memory used for storing pixel images. There are 
two basic kinds of frame buffers: active and offscreen. The data in an active 

211 



212 ...,. Chapter 11 QuickDraw 

frame buffer corresponds directly to what is displayed on the screen. Video 
cards on Mac II class machines contain active frame buffers. 

Offscreen frame buffers are used by applications to prepare images before moving 
them onto the screen. Typically offscreen frame buffers reside in main memory. 

QuickDraw can deal with two varieties of these frame buffers: direct and 
indexed. The value placed in a direct frame buffer directly dictates what color 
will appear on the screen. The values placed in the memory of an indexed frame 
buffer are indexes into a color lookup table (CLUT), which holds the color value 
that will appear on the screen. This extra level of indirection allows exacting 
controlofcolors(limitedonlybythedepthoftheCLUT),butlimitsthenumber 
of colors that can appear on the screen simultaneously (limited by the size of 
the index) . 

....- Classic QuickDraw 
Classic QuickDraw is based largely around two data structures: the BitMap 
and the GrafPort. A BitMap defines the size of an image. It contains the address 
where the image is stored (baseAddr), the offset from one row of the image to 
the next (rowBytes), and a rectangle that surrounds the image (bounds). 

A GrafPort defines the drawing environment. A GrafPort contains a BitMap 
that describes the location and size of the frame buffer. The GrafPort also con­
tains information that describes how drawing will occur, such as the current 
font style and size. 

A GrafPort supports drawing to black and white devices only; this is all that 
exists on the Classic, SE, Plus, and Portable . 

....- Color QuickDraw and 32-bit QuickDraw 
Classic QuickDraw makes a basic assumption Color QuickDraw cannot: that 
the frame buffer is black and white. Because of this simplifying assumption in 
Classic QuickDraw, the GrafPort structure contained enough information to 
tell QuickDraw how to draw. 

In Color QuickDraw, a color version of the BitMap data structure, the PixMap, 
is introduced. In a BitMap, the size of the pixels are assumed to be one bit, either 
on or off. Among other extensions, a PixMap contains four fields-pixelType, 
pixelSize, cmpCount, and cmpSize---that describe the format of color pixels. The 
pixels can be direct or indexed with a variable number of bits per pixel (in the 
case of indexed devices) or a variable number of bits per color component (in the 
case of direct devices). The PixMap structure also contains a color table 
(pmTable) that maps indexes to absolute colors for indexed PixMaps. 



By the Way ..,. I 

..,.. Color Quick Draw and 32-Bit Quick Draw 213 

Color QuickDraw extends the black and white GrafPort structure to the 
color CGmfPort data type. Because Color QuickDraw can draw to a variety 
of different frame buffers as well as to multiple frame buffers, the CGrafPort 
works in conjunction with a G Device record, which contains add i tiona I draw­
ing information. While the source Pix Map contains the color information for 
the source, the GDevice record contains the color information for the destina­
tion frame buffer. 

Color Quick Draw supports only indexed PixMa ps and frame buffers. 32-bit 
QuickDraw expands Color QuickDraw to handle direct PixMaps and frame 
buffers as well. 

There are several ways to check which version of QuickDraw a 
particular machine has. The fastest way to determine whether Color 
QuickDraw exists is to check the version of the ROM. 

c~w . w f$3FFF , ROMB5 ; Check lowrnem global ROM version 

BHI . S @Classic ; Branch if machine has Classic QD 

To check in C, type 

if( ( (*unsi gned shor t*) ROMBS ) > Ox3FFF ) { 

/* Classic QuickDraw ~ 1 

else{ 

I* Color QuickDraw */ 

To check for 32-bit QuickDraw, as well as the version of 32-bit 
QuickDraw, use Gestalt. In System 7.0, you can use the RGBForeColor, 
RGBBackColor, GetForeColor, GetBackColor, and QDError calls on 
68000-based Macintoshes. A value of 0 indicates you are using a 
pre-7.0 68000-based machine. A value greater than $100 indicates you 
are using a color machine. 

In System 7.0 there is also a 1 qdrw 1 Gestalt selector. Check Inside 
Macintosh, Volume VI or the MPW interface files for the meaning of 
the returned value. 



214 ..,. Chapter 11 QuickDraw 

...,.. How QuickDraw Works 

Key Point ..,.I 

QuickDraw is based around the GrafPort (or CGrafPort) data structure. 
Unless the distinction is important, we will refer to both GrafPorts and 
CGrafPorts as ports because conceptually they perform the same function. 

All QuickDraw drawing takes place in a GrafPort. 

For example, to draw a rectangle you use the Quick Draw procedure Frame­
Rect. FrameRect takes only one parameter, the rectangle to be drawn. Quick­
Draw uses the current port to determine where on the screen the rectangle 
goes, how wide the outline should be, with what pattern and transfer mode 
the outline should be drawn, how the rectangle should be clipped, and in what 
color to draw the rectangle . 

...,.. The Current Port 

101 

Note ..,.I 

All QuickDraw objects are drawn in the current port. The current port is the 
last one set with the QuickDraw procedure SetPort. 

Examining the Current Port 

According to Macintosh convention, register AS points to the application glob­
als, and the first application global-that is, @AS-is the address of the first 
QuickDraw global variable. It turns out that the first QuickDraw global vari­
able (@@AS) is the current Quick Draw port. The Chapter 11 App program on 
the accompanying disk uses GrafPorts (for Classic QuickDraw windows) and 
CGrafPorts (for Color QuickDraw windows). 

This program runs only on color machines with System 6.0.5 and 
32-bit QuickDraw (or later). Portions of the program will not work if 
you are using earlier versions of the System. If you are unable to run 
this sample program, you can perform similar exercises using the 
Finder or most other applications. 



...,. How QuickDraw Works 215 

Launch the program and select Open Classic Window from the File menu, 
and then select Use OffScreen Buffer from the QuickDraw menu. Enter 
MacsBug and type 

dm @@aS grafport 

On my machine, MacsBug responds with 

Displaying GrafPort at OOSAA8BO 

005AA8BO device 

005AA8B2 portBits 

005AA8B2 baseAddr 

005AA8B6 rowBytes 

005AA8B8 Rect (t,l,b,r) 

005AA8CO portRect 

005AA8C8 visRgn 

005AA8CC clipRgn 

005AA8DO bkPat 

005AA8D8 fillPat 

005AA8EO pnLoc 

005AA8E4 pnSize 

005AA8E8 pnMode 

005AA8EA pnPat 

005AA8F2 pnVis 

005AA8F4 txFont 

005AA8F6 txFace 

005AA8F8 txMode 

005AA8FA txSize 

005AA8FC spExtra 

005AA900 fgColor 

005AA904 bkColor 

005AA908 colrBit 

0000 

FAA00040 

0090 

t-489 #-931 #381 #221 

0000 0000 OOC8 OOC8 

005AA790 -> 005AB21C 

005AA788 -> 005AB230 

00 00 00 00 00 00 00 00 

88 22 88 22 88 22 88 22 

00B9 OOC8 

0001 0001 

0008 

FF FF FF FF FF FF FF FF 

0000 

0001 

0000 

0001 

0000 

00000000 

OOOOOOCD 

0000001E 

0000 



216 ..,.. Chapter 11 QuickDraw 

Note .,.I 

005AA90A patStret ch 

005AA90C picSave 

005AA910 rgnSave 

005AA914 polySave 

005AA918 grafProcs 

0000 

NI L 

NIL 

NIL 

00000000 

@@AS points to the current port in which QuickDraw does drawing. 
Before you modify any fields in a GrafPort, you must make sure that 
you are dealing with a GrafPort by checking that the high bit of 
portBits.rowBytes is clear (that row Bytes is less than $800()). If this is not 
the case. you are dealing with a CGrafPort and the meaning of many of 
the fields is different. CGrafPorts are the topic of the next section. 

Since the value of portBits.rowBytes is less than $8000 (the high bit is clear), 
this is a GrafPort (and not a CGrafPort). Changing the fields of the GrafPort 
alters the drawing characteristics of the frontmost window. For example, if 
you change bkPat, the pattern used to erase areas, to $0FOFOFOF $0FOFOFOF 
and cause an update in the frontmost window (by causing the window to 
grow, for example), the window erases to black vertical bars rather than white. 
Enter MacsBug and type 

sl 005aa8DO OfOfOfOf OfOfOfOf 

or whatever address bkPat is on your system. Then drag another window in 
front of the frontmost window, let it go, and drag it away. The update to the 
window whose port you changed is unusual. 

~ GrafPorts and CGrafPorts 

Understanding the relationship between GrafPorts and CGrafPorts is funda­
mental for debugging QuickDraw applications. This distinction is made based 
on the high two bits of the word-sized field at an offset of six (portBits.row­
Bytes for a GrafPort or port Version for a CGrafPort) from the beginning of the 
GrafPort or CGrafPort record. 



...,. How QuickDraw Works 217 

This somewhat cryptic implementation is a result of the absence in the Graf­
Port data structure of a built-in provision for expansion. portBits.rowBytes is 
the offset between vertical rows, and since this offset is generally smaller than 
$4000 the high bits were chosen to signal whether the structure is a GrafPort 
or a CGrafPort. Hbit 14 is 0, it is a GrafPort and the field is called grafPort.port­
Bits.rowBytes; if it's a 1, it's a CGrafPort and the field is CGrafPort.portVersion. 

Bit 15 of this field also deserves comment. Hit's a CGrafPort, (that is, bit 14 is 
set), bit 15 is always set. H bit 14 is not set, bit 15 tells whether the structure is a 
PixMap or a BitMap. This allows routines such as Copy Bits to accept a BitMap, 
a PixMap, or a CGrafPort.portPixMap (which is really a pointer to a PixMap­
Handle). Figure 11-1 shows the relationship between BitMaps, GrafPorts, 
PixMaps, and CGrafPorts. 

BitMap GrafPort CGrafPort PixMap 

.device .device 

.baseAddr .baseAddr .portPixMap .baseAddr 

.rowBytes .portB its .rowBytes .portVersion .rowBytes 

.bounds .bounds .graNars .bounds 

.chExtra 

.pnlocHFrac 

.portRect .portRect .pmVersion 

.pack Type 

.packSize BitMap.rowbytes 
Bit 15 0 
Bit 14 0 GrafPort.portBits.rowBytes PixMap.rowBytes 

Bit 15 0 CGrafPort.portVersion Bit 15 1 
Bit 14 0 Bit 15 1 Bit 14 0 

Bit 14 1 

CGrafPort.portPixMapAA.rowBytes 
Bit 15 1 
Bit 14 0 

Figure 11-1. Relationship between GrafPorts, CGrafPorts, BitMaps, 
and PixMaps and the associated RowBytes/PortVersion 



218 ..,.. Chapter 11 QuickDraw 

Note ..,.. 

Key Point ..,.I 

101 

You should pass a PixMap, NOT a CGrafPort.portPixMap (which is a 
PixMap handle) to routines such as CopyBits. In one possible future, 
the meaning of the high bits of row Bytes will change and CopyBits 
may no longer accept a CGrafPort.portPixMap. 

The sacrifice of functionality (restricting row Bytes to $3FFF) is negligible 
compared with the benefit of using a similar structure for GrafPorts and 
CGrafPorts. With this implementation, all Color and 32-Bit QuickDraw rou­
tines can transparently accept either GrafPorts or CGra.fPorts. Classic Quick­
Draw machines accept only GrafPorts. 

If bit 14 of portBits.rowBytes is clear, you are looking at a GrafPort; if 
it's set, it's a CGra.fPort. Bit 15 of rowBytes is set for PixMaps and 
cleared for BitMaps. 

Examining a CGrafPort 

If you have a color Macintosh, choose the Open Color Window item from the 
File menu in the Chapter 11 App program. You could use another application 
that uses CGrafPorts such as MacWrite II v1.1, which is used in this example. 
Drawing to color windows occurs in CGrafPorts. To examine the CGrafPort, 
enter MacsBug and type 

dm @@aS CGrafPort 

On my system, MacsBug responds with 

Displaying CGrafPort at 00018670 

00018670 device 0000 

00018672 portPixMap 00028864 -> 000715C8 

00018676 portVersion cooo 
00018678 grafVars 00028818 -> 0001895C 

0001867C chExtra 0000 

0001B67E pnLocHFrac 8000 



..,.. How QuickDraw Works 219 

00018680 portRect 10 #0 i870 t1152 

00018688 visRgn 0002886C -> 00046240 

0001868C c lipRgn 00028868 -> 00070058 

00018690 bkPixPat 0002885C - > 000714FC 

00018694 rgbFgColor 0000 0000 0000 

0001869A rgb8kColor FFFF FFFF FFFF 

000186AO pnLoc 0000 0000 

000186A4 pnSize 0001 0001 

000186A8 pnMode 0008 

000186AA pnPixPat 00028844 -> OOOSF348 

000186AE fillPixPat 0002882C - > 0007155C 

00018682 p nVis 0000 

00018684 txFont 0000 

00018686 txFace 0000 

00018688 t xMode 0001 

0001868A txsize oooc 
000186CO fgColor 00000001 

000186C4 bkColor 00000000 

000186C8 colr8it 0000 

000186CA patStretch 0000 

000186CC p i cSave NIL 

00018600 rgnSave NIL 

00018604 polySave NIL 

00018608 grafProcs 00000000 

The portVersion field (which corresponds to GrafPort.portBits.rowBytes-­
try displaying the same memory as a GrafPort if you' re not convinced) has the 
high two bits set as advertised. If the port Version field does not have the high 
bits set, you're not looking at a CGrafPort. Changing any of these fields alters 
the drawing characteristics in this port. 

There are two templates for displaying CGrafPorts in the Debugger Prefs 
file. The CGrafPort template used in the preceding example shows only the 
fields of the CGrafPort, whereas the CPort template also expands the portPix­
Map subrecord. 



220 ..,. Chapter 11 QuickDraw 

~ BitMaps and PixMaps 

101 

A PixMap is the color version of a BitMap. The firs t three fields are identical, 
except a PixMap has the high bit of row Bytes set. The PixMap has many addi­
tional fields, and of course the MacsBug Debugger Prefs file has both a BitMap 
and a PixMap template. 

A GrafPort has an embedded BitMap structure, while a CGrafPort contains 
a handle to a PixMap record in what would be the GrafPort's baseAddr field. 

Examining the Port's PixMap 

The port's PixMap in the previous example is at location $715C8. To look at this 
PixMap using the PixMap template, enter MacsBug and type 

dm 715c8 pixmap 

MacsBug responds with 

Displaying PixMap at 000715C8 

000715C8 baseAddr FBB00040 

000715CC rowBytes 8090 

000715CE bounds #0 #0 #870 #1152 

00071506 pmVersion 0000 

00071508 packType 0000 

000715DA packSize 00000000 

000715DE hRes 00480000 

000715E2 vRes 00480000 

000715E6 pixel Type 0000 

000715E8 pixelSize 0001 

000715EA c mpCount 0001 

000715EC cmpSize 0001 

000715EE planeBytes 00000000 

000715F2 pmTable 00003808 -> 00052938 

000715F6 pmReserved 00000000 



Note ..,.I 

..,.. How Quick Draw Works 221 

These fields are documented in Inside Macintosh, Volume V. As promised, 
the high bit of row Bytes is set; this is in fact a PixMap. A quick look reveals that 
this PixMap is only 1 bit deep (pixelSize = 1). From the baseAddr ($FBB00040) 
and the Macintosh II memory map in Chapter 2, you see that the PixMap image 
resides in slot space and therefore belongs to an active (rather than offscreen) 
frame buffer. 

Although QuickDraw never changes memory outside the bounds 
rectangle, there are certain situations where QuickDraw will write 
(albeit the same value) to locations outside the bounds rectangle. This 
is a problem for some video cards that put sensitive registers just 
before the beginning of the screen data. If you are designing a video 
card, you should leave at least 4 bytes of unused memory before the 
beginning of the frame buffer RAM and 4 bytes after the end of the 
frame buffer RAM. 

QuickDraw's use of the pmTable field, a handle to the PixMap's color table, 
is the most misunderstood field of a PixMap record. This color table tells 
QuickDraw the meaning of the pixel values when the PixMap is used as the 
source of a copy, but is ignored when the PixMap is the destination. This is the 
subject of the next section . 

...,.. Destination Color Information and GDevices 

Key Point ..,.I 

In a CGrafPort, the foreground and background colors are stored as 48-bit 
RGB values in the rgbFgColor and rgbBkColor fields. When a drawing opera­
tion occurs, QuickDraw must map the requested color to the best available on 
the destination device. 

QuickDraw gets the destination color information from the current 
GDevice, not the destination PixMap. 

If the destination device is direct, the desired color corresponds directly to 
the pixel value placed in the PixMap, and you are done. For indexed devices, 



222 ..,. Chapter 11 QuickDraw 

the Color Manager Color2Index trap performs the mapping. There are two ways 
this mapping can happen: by means of the default scheme, which uses an 
Inverse Look Up Table, or via a custom method supplied by the application. 

The Inverse Look Up Table 

Rather than search the destination PixMap' s color table for the closest match 
(a very slow operation), QuickDraw uses an Inverse Look Up Table, or ILUT, 
which is a table that provides the closest index value corresponding to a given 
color. Depending on the ILUT' s resolution, QuickDraw combines the top bits 
of red, blue, and green of the desired color and uses this value to find the index 
with which to draw in the ILUT. Since the ILUT can be rather large, the ILUT 
is attached to a GDevice rather than a PixMap. 

Search Procedure 

Search procedures provide a way for a user to override QuickDraw's default 
ILUT color mapping scheme. The Color Manager chapter of Inside Macintosh, 
Volume V defines a search procedure as 

FUNCTION SearchProc (rgb: RGBColor; VAR position: LONGINT): BOOLEAN; 

QuickDraw passes the RGBColor for which it needs an index in the rgb 
parameter. The search procedure returns TRUE if it matched the color and 
puts the result in the position parameter. If the search procedure did not match 
the color, it should return a result of FALSE and ignore the position parameter. 
However, the SearchProc definition is inaccurate. The RGBColor parameter is 
actually a V AR parameter. The actual definition should be 

FUNCTION SearchProc (VAR rgb: RGBColor; VAR position: LONGINT): 
BOOLEAN; 

Admitedly, this is a small difference, but it allows a search procedure to modify 
the RGBColor and return FALSE. QuickDraw will then use the ILUT mecha­
nism to find the color's index. In System 7.0 and later, QuickDraw also checks 
the GDevice' s search procedures when doing a Copy Bits to a direct destina­
tion. This provides an easy way to alter a PixMap' s colors. For example, if you 
want to darken a PixMap, you could install a search procedure that slightly 
darkens each color component and returns FALSE. 



.,... CopyBits 223 

A common problem occurs when the destination PixMap' s color table is not 
the same as the current GDevice' s color table. This can happen if you create 
your own PixMap and attempt to copy to it without updating the GDevice. If 
your PixMap has a different color table or is of a different depth than the cur­
rent GDevice (usually the screen's GDevice), QuickDraw will draw with the 
wrong index and produce unexpected colors . 

....- CopyBits 
Once you know QuickDraw draws into the current port's BitMap or PixMap 
using the current port's parameters, understanding most of QuickDraw is 
greatly simplified. Unfortunately, it is not immediately obvious how the 
QuickDraw call Copy Bits fits into this model. The reason is that Copy Bits takes 
a destination BitMap (or PixMap) instead of automatically using the BitMap 
from the current port. Furthermore, Copy Bits takes a mode and a region pa­
rameter, rather than taking these values from the current port. If you write a 
new CopyBits call that simply draws a BitMap into the current port, every­
thing makes sense. 

DrawBits( srcBits: BitMap; srcRect, dstRect: Rect ); 

Copy Bits does follow QuickDraw' sport model, but it allows you to control 
parameters without first setting them in the port. Rather than automatically 
using the port's BitMap, CopyBits forces you to pass your own. Often, you 
simply pass the BitMap of the current port. Rather than using the pnMode 
from the port, you must pass your own transfer mode. And in addition to 
using the clipping specified in the port, Copy Bits allows you to pass an addi­
tional clip region. The important thing to remember is that Copy Bits, like the 
rest of QuickDraw, does draw using the current port. 

One of the most common problems developers run into using Copy Bits is 
an image drawn in strange colors. This commonly happens in two ways: The 
foreground and background colors of the current port are not properly set or 
the current GDevice does not correspond to the destination PixMap . 

...._ CopyBits Colorizing 

The popularity of colorized versions of classic black and white films inspired 
the Apple QuickDraw engineer to allow CopyBits to do colorizing. CopyBits 
uses the foreground and background colors of the current port to do coloriz­
ing. Colorizing a 1-bit image is very easy to understand: QuickDraw draws 



224 ..,. Chapter 11 QuickDraw 

all on pixels in the foreground color and all off pixels in the background color. 
This is useful for sprucing up black and white images. 

In systems prior to 7.0, colorizing did not work as expected for images 
deeper than 1-bit/ pixel. In these systems you should set the foreground color 
to black and the background color to white before calling Copy Bits. In System 
7.0 and later, colorizing images deeper than 1-bit/ pixel works as expected: 
Copying a gray-scale image with a foreground color of red produces a 
red-scale image. The colorizing algorithm QuickDraw uses in System 7.0 is 
detailed in the QuickDraw chapter of Inside Macintosh, Volume VI. 

...., Destination Color Revisited 

When an indexed PixMap is drawn, its color table (pmTable) determines what 
colors the index values represent. The tricky part is when drawing occurs to 
the PixMap. In this case, pmTable is ignored! As previously discussed, desti­
nation color information is taken from the PixMap associated with the current 
GDevice, TheGDevice. If the pmTable in TheGDevice's PixMap (GDe­
vice.gdPMap.pmTable) does not match the color table of the PixMap you are 
drawing to, the drawing will not be as expected. This is often a problem when 
creating offscreen PixMaps. 

Let's back up and examine how things work in the ordinary case, and then 
look at what can go wrong. A window contains a GrafPort (or CGraf­
Port-that' s why they are the same size) and drawing to a window is simply 
drawing to the window's GrafPort. 

Generally an application draws to a window on the screen. The window is 
created by calling NewCWindow (for color windows). NewCWindow creates 
a CGrafPort and fills it with default values. The PortPixMap is a handle to an 
exact copy of TheGDevice' s gdPMap. This means that windows share the 
same color table as TheGDevice. 

If the user changes the screen depth, the color table belonging to TheGDe­
vice changes. Since windows generated by NewCWindow share this color 
table, their drawing environment is also updated automatically. 



BytheWay Iiii-I 

101 

lill- CopyBits 225 

When the user changes depths (with the Monitors CDEV, for 
example), the system examines aU the CGrafPorts currently allocated. 
If the baseAddr of the CGrafPort's PortPixMap points to the base 
address of the main screen, the pixel'!Ype, pixelSize, cmpCount, and 
cmpSize fields are updated to the new depth. Offscreen ports are not 
affected when the user changes depths. 

Since onscreen ports are created by copying information from TheGDevice, 
drawing to an onscreen PixMap is a simple matter since the PixMap and TheG­
Device are always in sync. Problems occur when the PixMap's color table is 
changed and Quick Draw attempts to draw to that PixMap. The drawing occurs 
using the color environment from TheGDevice, not from the target PixMap. 

As previously discussed, QuickDraw does color lookup using an ILUT. 
Given a color, this ILUT returns the index with which to draw. Since the ILUT 
is large and building it is a slow process, it is attached to a GDevice rather than 
to each PixMap. The idea is that an application may have many PixMaps, but 
only a few (maybe none) GDevices. Attaching the destination color informa­
tion to a GDevice rather than to each PixMap allows the PixMap record to be 
compact yet still provides a method for custom control of color drawing (via 
search procedures). 

Thus, it is left to the programmer to decide how to best allocate GDevices 
to handle drawing to PixMaps that require different color environments. If 
there are only a few different destination color tables and speed is more impor­
tant than memory usage, you should allocate a GDevice for each possible tar­
get PixMap. If you are drawing to many different target color tables, you can 
allocate one GDevice and update its color table when necessary. 

Examining a GDevice 

There are basically two types of GDevices: those that represent a physical de­
vice and those that applications create to do offscreen drawing. GDevices that 
correspond to physical screen devices are kept in a list. The low memory global 
Device List is a handle to the list. There are as many GDevices in this list as there 
are video cards in the system. You can look at the list of GDevices that corre­
spond to actual screens by entering MacsBug and typing 

dm @@devicelist gdevice 



226 ...,. Chapter 11 QuickDraw 

MacsBug responds by displaying the first GDevice in the list. The list is 
linked by the gdNextGD field. Pressing Return displays the next GDevice in 
the list. The end of the list is signaled when gdNextGD is NIL. On my machine, 
MacsBug displays 

Displaying GDevice at 80003428 

80003428 gdRefNum 

8000342A gdiD 

8000342C gdType 

8000342E gdiTable 

80003432 gdResPref 

80003434 gdSearchProc 

80003438 gdCompProc 

8000343C gdFlags 

8000343E gdPMap 

80003470 baseAddr 

80003474 rowBytes 

80003476 bounds 

8000347E pmVersion 

80003480 packType 

80003482 packSize 

80003486 hRes 

8000348A vRes 

8000348E pixelType 

80003490 pixelSize 

80003492 cmpCount 

80003494 cmpSize 

80003496 planeBytes 

8000349A pmTable 

00025DBC 

00025DC0 

00025DC2 

00025DC4 

00025DC4 

ctSeed 

ctFlags 

ctSize 

ctTable 

value 

t-49 

0000 

0000 

00001F20 

14 

00000000 

00000000 

B501 

F9000A00 

8050 

t-64 #-640 #416 tO 

0000 

0000 

#0 

00480000 

00480000 

0000 

0001 

0001 

0001 

to 

00000001 

8000 

f1 

12048 



00025DC6 rgb 

00025DC6 red #65535 

00025DC8 green 1165535 

00025DCA blue 1165535 

8000349E pmReserved 00000000 

80003442 gdRefCon 00000000 

80003446 gdNextGD 80003648 

8000344A gdRect i-64 11-640 11416 110 

80003452 gdMode 00000080 

80003456 gdCCBytes 12 

80003458 gdCCDepth tO 

8000345A gdCCXData OOOOlFlC 

8000345E gdCCXMask 00001Fl8 

80003462 gdReserved 00000000 

From this record you see that no custom search procedures are installed on 
this GDevice. The resolution of the inverse table (gdResPreO is 4 bits per color 
component, and the ILUT is at location $1F20. The gdPMap subrecord shows 
us that this screen is set to 1 bit/ pixel. The other GDevice fields are docu­
mented in Inside Macintosh, Volume V. 

The example looked at the first GDevice in the device list. The current GDe­
vice is pointed to by the low memory global TheGDevice. You can look at the 
current GDevice with the MacsBug command 

dm @@thegdevice gdevice 



228 ...,_ Chapter 11 QuickDraw 

BytheWay ..,_I 

BytheWay ..,.., 

When QuickDraw does its drawing, it walks the device list, determines 
which devices intersect the drawing, and then draws to each of the 
affected devices. GDevices created by·an application must be 
maintain~ by the application; they are not added to the device list. If 
the.applica.tion programmer adds one to the device list, QuickDraw will 
draw to it anytime a drawing operation intersects the.GDevices gdRect. 

For screen GDevices, the depth ofthe GDevices' color table is equal to 
the current depth of the screen,. and· the colors in the gdPMap correspond 
to the actual colors in the video card's CLUT. Applications should not 
directly modify a GDevice that corresponds to a physical. device! 

The Color Table Seed 

Another concept you must understand is the color table seed. Each unique color 
table is assigned a unique seed. Standard system color tables have seeds be­
tween 0 and 127. Color table resources in your application's resource file 
should have IDs between 128 and 1023 (the ctSeed should be the same as the 
resource ID). Newly created color tables are assigned seeds larger than 1023. 
The Color Manager function GetCTSeed should be used to assign unique 
seeds to color tables created by an application. 

The color table seed is very important. QuickDraw compares ctSeeds to de­
termine whether or not color lookup needs to be performed when drawing. 
IfthesourceanddestinationPixMapshavecolortableswith the same seed val­
ue, the drawing occurs very fast. 

Copy Bits takes its fastest case .when 

1. The depth of the source ancldestination PixMaps are the same and 
their color tables are the same (ctSeeds match). 

2. The height and width ofthe source and destination rectangles are 
the same. 

3. row Bytes on both the source and the destination is a multiple of four. 

4. The destination is clipped to a rectangle. 

5. Dither mode is NOT used. 

6. The foreground color is black and the background color is white~. 



BytheWay .... j 

...,. Accessing 32-bit Addressed PixMaps 229 

If the seeds don't match, Quick Ora w ( Color2Index) will use the SearchProcs 
(if there are any) or the ILUT from TheGDevice to determine what colors with 
which to draw. If the gdPMapAA.pmTable.ctSeed does not match the seed of 
the GDevice' s inverse table gdiTable.iTabSeed, the inverse table is rebuilt us­
ing the new color table from the gdPMap. 

The standard system color tables have the following seeds. 

[)epth ~ 

1-bit color 1 

2-bit color 2 

4-bit color 4 

8-bit color 8 

For standard system gray-scale color tables add (32) to the seed 
· value. For 2- and 4-bitcolor, add 64 to the seed value to include.the 

highlight color in the CLUT. Handles to these color tables are returned 
by the function GetCTable . 

.,.... Accessing 32-bit Addressed PixMaps 
Since the maximum address size of a video card's frame buffer is 1 megabyte 
in 24-bit mode, and since 32-bit frame buffers are generally larger than 1 mega­
byte, 32-bit QuickDraw does all of its drawing in 32-bit addressing mode. 

To maintain compatibility, QuickDraw expects all addresses passed in to be 
24-bit. But this makes it impossible for an application to have a 32-bit ad­
dressed PixMap. With 32-bit QuickDraw, bit 2 of pmVersion signals whether 
the PixMap' s base address is 24 bit or 32 bit. If bit 2 of pm Version is set (pm Ver­
sion= 4), QuickDraw assumes the address is good in 32-bit addressing mode 
and will not perform 24-bit to 32-bit address translation. 



.l30 ...,. Chapter 11 QuickDraw 

....,. Common Problems Using QuickDraw 
A few of the common problems encountered using Color QuickDraw are re­
produced in the Chapter 11 sample application.You must have a Macintosh 
with Color QuickDraw to use the application. 

The File menu allows you to open two types of windows: classic windows 
created with the NewWindow call that use a GrafPort, and color windows 
created with the NewCWindow call that use a CGrafPort. It is interesting to 
compare how identical drawing operations appear differently in the two types 
of windows. The reason, of course, is that the GrafPort structure supports only 
the original eight QuickDraw colors, while CGrafPorts support 48-bit colors 
(which are then mapped to the target device). You can easily add additional 
drawing operations to this application since the source is included on the disk. 

The application has a QuickDraw menu with five menu items. The first item 
toggles between Draw Directly to Screen and Use Offscreen Buffer, which selects 
how updates are done to the window. When you are drawing directly to the 
screen, the application fills the entire window with a red pattern using the Fill­
Rect call. When the application is using the offscreen buffer, it draws a cyan rect­
angle into the offscreen buffer and then uses Copy Bits to display it on the screen. 

The second menu item simply draws color bars in the current window. It is 
interesting to see the differences between drawing color to a GrafPort and a 
CGrafPort. There are even differences on 1-bit screens! 

The final three menu items demonstrate common QuickDraw bugs. The fol­
lowing sections not only describe the problem but show a systematic method 
for finding the bug that can be applied to finding QuickDraw related bugs in 
your applications. 

The first bug is located by examining every possible QuickDraw structure that 
could be wrong at the time the drawing occurs. This technique is often useful if 
you don't have a complete understanding of the source code but can pinpoint 
a particular drawing operation that fails. Once you find the problem, you can 
then search for its cause in the source code. Bug 1 is found using this technique. 



~ Common Problems Using QuickDraw 231 

Bug 2 is found by examining the source and identifying possible areas 
which could produce incorrect results. Once you find the suspect area you can 
test your hypothesis using MacsBug. 

Bug 3 is found using a combination of the first two techniques. This bug is 
found by first identifying the routine and data structures responsible for pro­
ducing the incorrect result. Next you trace backward through earlier drawing 
operations to discover how the data became corrupt. 

...,.. Bug l: Why is CopyBits Drawing the Wrong Image? 

Why is CopyBits Drawing the Wrong Image? 

To enable the Bug 1 menu item you must first choose the Use Offscreen Buffer 
menu item. After you invoke Bug 1, the window contents no longer update on 
indexed screens deeper than 1-bit/ pixel. Recall from the previous discussion 
of color drawing that the destination color information comes from the current 
GDevice. If the GDevice' s pm Table is different from the color table of your des­
tination PixMap, drawing will not occur as expected. 

Since this application updates the window by means of Copy Bits from an 
offscreen PixMap, set an A-trap break at CopyBits 

atba CopyBits 

and then resize the window to make it larger. Examine TheGDevice when 
MacsBug breaks. 

dm @@thegdevice gdevice 

An abbreviated version of MacsBug's response on my machine is 



232 ...,. Chapter 11 QulckDraw 

Displaying GDevice at 80003648 

80003648 gdRefNum #-50 

8000364A gdiD 0000 

8000364C gdType 

8000364E gdiTable 

80003652 gdResPref 

80003654 gdSearchProc 

80003658 gdCompProc 

8000365C gdFlags 

8000365E gdPMap 

80003690 baseAddr 

80003694 rowBytes 

80003696 bounds 

8000369E pmVersion 

800036AO packType 

800036A2 packSize 

800036A6 hRes 

800036AA vRes 

800036AE pixelType 

800036BO pixelSize 

800036B2 cmpCount 

800036B4 cmpSize 

800036B6 planeBytes 

800036BA pmTable 

0009BOC4 

0009BOC8 

0009BOCA 

0009BOCC 

0009BOCC 

ctSeed 

ctFlags 

ctSize 

ctTable 

value 

0009BOCE rgb 

0009BOCE 

0009BODO 

0009BOD2 

red 

green 

blue 

0000 

0001COC8 

#4 

00000000 

00000000 

ACOO 

FAA00040 

8090 

to to t870 111s2 

0000 

0000 

#0 

00480000 

00480000 

0000 

0001 

0001 

0001 

tO 

00000001 

8000 

u 

#2048 

#65535 

#65535 

#65535 



Key Point .... I 

..,.. Common Problems Using QuickDraw 233 

There are several items you should check. First, a search procedure could easi­
ly cause this problem, but as you can see from the GDevice record, no search 
procedure is installed (gdSearchProc is 0). A second pitfall occurs when the 
GDevice pm Table does not match the destination PixMap' s pmTable. The pre­
ceding GDevice record has the standard 1-bit color table, as you can see from 
the ctSeed. If you are copying to a 1-bit destination, this table is correct. The 
problem does not seem to be with the GDevice. 

To support multiple monitor configurations, if the drawing operation 
is to the screen, QuickDraw walks the device list and intersects the 
bounding rectangle of the drawing operation with each active screen 
device. Internally QuickDraw sets TheGDevice to each device the 
drawing intersects and calls the relevant procedure repeatedly. 

You can see from the GDevice record that the baseAddr of the GDevice's 
PixMap points into slot space and thus to a screen. Since this Copy Bits is going 
to the screen, QuickDraw will use the GDevice in the device list. Unless the 
application is modifying the device list, the GDevice will be correct for copying 
to the screen. 

Another possible problem is that the source image somehow gets converted 
to white when drawing to a deeper screen. Perhaps the GDevice is wrong 
when the source image is created. The easiest way to check this is to look at the 
source data and see if it is all white. The first parameter passed to Copy Bits is 
the source BitMap/ PixMap. To view this parameter as a PixMap, type 

dm @(sp+il8) pixmap 

(Rather than remember the offset of 18, you can use the COPY macro to display 
the parameters to the Copy Bits call.) On my machine MacsBug responds with 

Displaying PixMap at 0067AEE8 

0067AEE8 baseAddr 006C75DO 

0067AEEC rowBytes socc 
0067AEEE bounds iO #0 #200 #200 

0067AEF6 pmVersion 0001 

0067AEF8 packType 0000 

0067AEFA packSize 110 

0067AEFE hRes 00480000 



234 ..,.. Chapter 11 QuickDraw 

0067AF02 vRes 00480000 

0067AF06 pixel Type 0000 

0067AF08 pixel Size 0008 

0067AFOA cmpCount 0001 

0067AFOC cmpSize 0008 

0067AFOE planeBytes #0 

0067AF12 pmTable 

0067A668 ctSeed 00000008 

0067A66C ctFlags 8000 

0067A66E ctSize #255 

0067A670 ctTable 

0067A670 value #0 

0067A672 rgb 

0067A672 red #65535 

0067A674 green #65535 

0067A676 blue #65535 

0067AF16 pmReserved 00000000 

Look at the memory pointed to by the baseAddr field 

dm 6C75DO 

and press Return a few times to display successive lines. MacsBug responds 
with 

Displaying memory from 6c75d0 

006C75DO COOO 0000 COOO 0000 COOO 0000 COOO 0000 ················ 

006C75EO COOO 0000 COOO 0000 COOO 0000 COOO 0000 ················ 

006C75FO COOO 0000 COOO 0000 COOO 0000 COOO 0000 ················ 

006C7600 COOO 0000 COOO 0000 COOO 0000 COOO 0000 ················ 

This looks like the cyan pattern promised. At any rate, it's not all white like 
your result. 

Peculiarly, the PixMap' s pm Version field is set to 1. Recall from the previous 
section that Bit 2 of pm Version (pm Version set to 4) indicates whether the base 
address is 32-bit. The offscreen GWorld routines (described in Inside Macin­
tosh, Volume VI, but not treated here) use bits 0 and 1 of pm Version to indicate 
the state of the baseAddr field. The GWorld routines assist in creating an off-



Note .... , 

..,... Common Problems Using QuickDraw 235 

screen drawing environment, which is useful for double buffering window 
drawing to produce flicker-free updates, for example . 

.... • 

, -~,: :+~~::~~~ '·:.;.1:~~--.<~J:~~::.·.o,;·.~:-;; :: __ ... · ;:~::-~~~~~:~;;~;\:; 

In order to minimize heap fragmentation (see Chapter 4), the offscreen 
GWorld calls keep the pixel image in a handle rather than in a pointer as is typi­
cal for PixMaps. Calling the LockPixels and UnlockPixels routines changes the 
state of the baseAddr from handle to pointer. When the baseAddr is a handle, 
the value of pm Version is 2; when the baseAddr field is a pointer that belongs 
to a dereferenced handle, the value of pm Version is 1. 

So far we have seen that the GDevice is properly set and our source data is 
OK. Another factor that can influence Copy Bits is the amount of stack space. 
Typically this is not a problem, unless you are a C programmer and forget that 
C will pass entire structures (rather than just pointers to structures as Pascal 
does) on the stack. If there is not enough stack space, Copy Bits may quit with­
out drawing anything. 

Not all versions of QuickDraw set QDError on this condition, so the easiest 
way to check if stack space is a problem is to quit the application, increase the 
value of the low memory global DfltStack, and relaunch the application. If 
there is still a problem, chances are it's not stack related. 

Another potential problem occurs if you change the resolution of the GDe­
vice's ILUT and there is not enough memory to rebuild it. This is a rather rare 
case, but if CopyBits is not drawing or is drawing garbage you can easily make 
sure there is enough system heap by doing a heap total on the system heap (HX; 
HT). If there is less than 32K in the system heap, this might be your problem. 

The previous two memory problems are rather rare, but possible. If you 
have trouble with CopyBits, typically you check the current port first, then the 
source PixMap, then the GDevice, and only then for memory problems. 

Wait! Check the port. If you are using the color window, you should look 
at the port as a CGra£Port; if you are using the classic window, the port is a 
Gra£Port. Let's assume it's the color window. Type 

dm @@aS cgrafport 



236 ...,. Chapter 11 QuickDraw 

MacsBug responds with 

Displaying CGrafPort at 00473700 

00473700 device 0000 

00473702 portPixMap 004DFEC8 -> 004E6EFO 

00473706 port Version cooo 
00473708 grafVars 004DFE74 -> 004E77B4 

004737DC chExtra 0000 

004737DE pnLocHFrac 8000 

004737EO portRect #0 ttO #200 t200 

004737E8 visRgn 004DFECO -> 004E6B98 

004737EC clipRgn 004DFEC4 -> 004E6BAC 

004737FO bkPixPat 004DFECC -> 004E6F4C 

004737F4 rgbFgColor FEOO F920 7EOO 

004737FA rgbBkColor FFFF FFFF FFFF 

00473800 pnLoc 00B9 OOC8 

00473804 pnSize 0001 0001 

00473808 pnMode 0008 

0047380A pnPixPat 004DFEBO -> 004E75D8 

0047380E fil1PixPat 004DFE88 -> 004E7718 

00473812 pnVis 0000 

00473814 txFont 0001 

00473816 txFace 0000 

00473818 txMode 0001 

0047381A txSize 0000 

00473820 fgColor 00000000 

00473824 bkColor 00000000 

00473828 colrBit 0000 

0047382A patStretch 0000 

0047382C pic Save NIL 

00473830 rgnSave NIL 

00473834 polySave NIL 

00473838 grafProcs 00000000 



..,.. Common Problems Using QulckDraw 237 

The only fields Copy Bits uses from the port are the clipping regions and the 
foreground and background colors. There are two clipping regions: the visRgn 
and the clipRgn. Look at these by typing 

d.m 4e6b98 

for the visRgn. MacsBug responds with 

Displaying memory from 4e6b98 

004E6B98 OOOA 0000 0021 OOC8 OOC8 0149 8200 0014 · ··· ·!· ·· · · I ·· · · 

For the clipRgn type 

d.m 4e6bac 

MacsBug responds with 

Displaying memory f r om 4e6bac 

004E6BAC OOOA C180 C180 3E80 3E80 004F 8200 0014 ·· · · · ·>·> · ·0· ·· · 

The first byte is the size of the region and the next eight bytes give the region's 
bounding box. The values for the visRgn look fine, but the clipRgn bounding 
box looks odd. These numbers are signed integers, so the clipRgn bounding 
box is really very large (from large negative coordinates to large positive coor­
dinates) and is not the problem. 

At this point you may already have guessed the problem: The foreground 
and background colors are improperly set. If you look at the rgbFgColor you 
see it is close to yellow (the red and green channels are set very high, and the 
blue channel is about 50%) and the rgbBkColor field is white. It turns out when 
cyan is colorized with this particular yellow, the result is white. 

You can fix this problem by setting the rgbFgColor to black (all zeros) with 
MacsBug. For example 

S W 4737f4 0 0 0 

For classic windows, you set the fgColor field to $21, which is black in the 
classic color system. If the fgColor is at location $21122, use the command 

sl 21122 21 



238 ....,. Chapter 11 QuickDraw 

..,... Bug 2: Drawing Occurs to the Screen Instead of 
to the Offscreen PlxMap 

The Bug 2 menu item is enabled anytime the Color Window is frontmost. In 
many cases, debugging without source code is nearly as easy as using the 
source; most applications spend a great deal of time inside system routines. 
Simply knowing what system calls the application is making and what func­
tion the application is performing are often enough to determine what is going 
wrong. In this example, however, we use source code to help find the problem. 
You will see that innocent-looking source code canhaveunexpected problems, 
and using the source code, in this case, is of marginal helpfulness. 

Selecting the Bug 2 menu item displays a message and, if you press the OK 
button, executes the following code: 

rnyPixMap = NewPixMap(); 

(**rnyPixMap) .bounds = dOffBounds; 

I* make rowbytes even */ 

(**rnyPixMap) .rowBytes= ((dOffBounds.right-dOffBounds.left)+l)&OxFFFE; 

count~ (long) (**rnyPixMap) .rowBytes*((long) (dOffBounds.bottorn-
dOffBounds.top)); 

(**rnyPixMap) .baseAddr = NewPtr( count); 

(**rnyPixMap) .pixelType 0; 

(**rnyPixMap) .pixelSize 8; 

(**rnyPixMap).crnpCount = 1; 

(**rnyPixMap) .crnpSize ~ 8; 

DisposCTable( (**rnyPixMap) .prnTable ); 

(**rnyPixMap) .prnTable = GetCTable( 8 ); 

(**rnyPixMap) .rowBytes I= Ox8000; 

GetPort( &savePort ); 

oldPixMap ~ savePort->portPixMap; 

SetPortPix( rnyPixMap ); 

DrawColorBars(); /*Draws to the screen rather than to the PixMap */ 

SetPortPix( oldPixMap ); 

DisposPixMap( rnyPixMap ); 



..,.. Common Problems Using QuickDraw 239 

The problem is that when Heap Scrambling (HS) is on, the color bars are 
drawn on the screen rather than in the offscreen PixMap. The DrawColor­
Bars() procedure simply draws a number of different colored lines to the cur­
rent Grafrort' s PixMap. The port's PixMap is set to the one created before the 
call to DrawColorBars. The procedure is defined as 

DrawColorBars () 

RGBColor myColor; 

short iii; 

RGBColor saveFore, saveBack; 

GetForeColor( &saveFore ); 

GetBackColor( &saveBack ); 

PenSize ( 10, 10 ) ; 

for( iii = 0; iii < 200; iii++ ) { 

myColor.red = Ox2000*iii; 

myColor.blue = Ox6300*iii*iii; 

myColor.green = Ox1970*(iii-50); 

RGBForeColor( &myColor ); 

MoveTo( iii*20, 0 ); 

LineTo( 20*iii, 50 ); 

PenNormal(); 

RGBForeColor( &saveFore ); 

RGBBackColor( &saveBack ); 

Rather than jump right into MacsBug, reason through the problem first. Since 
the drawing on the screen is correct (albeit in the wrong place), the problem is 
probably not GDevice-related. For the same reason, the problem is probably not 
related to a shortage of stack or system memory. When drawing lines, Quick­
Draw uses the forecolor and backcolor fields from the port as well as the visRgn, 
clipRgn, pnLoc, pnSize, pnMode, and pnPixPat fields. Since the drawing occurs 
with the proper pnSize, pnMode, and so on, and the colors and clipping are cor­
rect, the port is also not the problem. 



240 ...,. Chapter 11 QuickDraw 

Unlike CopyBits, where the destination is passed explicitly, drawing objects 
uses the port's BitMap or PixMap as the destination of the drawing. But the 
code sets the PixMap of the current port to our PixMap. There must be some­
thing wrong with the PixMap itself. Let's examine the code that creates the Pix­
Map in more detail. Even if this doesn't expose the problem, you'll learn how 
to create an offscreen PixMap the hard way (using the GWorld calls is the easy 
and recommended way). 

The code starts by copying the PixMap from the current GDevice and then 
setting the bounds to the offscreen bounds and making sure row Bytes is even. 

myPixMap = NewPixMap(); 

(**myPixMap) .bounds = dOffBounds; 

/* make rowbytes even */ 

(**myPixMap) .rowBytes = ((dOffBounds.right-dOffBounds.left) 
+l)&OxFFFE; 

The offscreen buffer is allocated next. The offscreen buffer is 8 bits deep, so 
the calculation for the count variable appears to be correct. From the previous 
discussion it seems as if the problem resides here, but the code looks fine. Con­
tinue for now and see if anything more suspect comes up. 

count= (long) (**myPixMap) .rowBytes*((long) (dOffBounds.bottom­
dOffBounds.top)); 

(**myPixMap) .baseAddr = NewPtr( count ); 

The following instructions initialize more fields of the PixMap. These as­
signments are fine for an offscreen PixMap that is 8 bits deep. 

(**myPixMap) .pixelType 0; 

(**myPixMap) .pixelSize 8; 

(**myPixMap) .cmpCount = 1; 

(**myPixMap) .cmpSize = 8; 

The following code sets the PixMap' s color table to the standard 8-bit table. 
A common error occurs when programmers forget to dispose of the color 
table. NewPixMap copies all the fields from the current GDevice except the col­
or table. If you forget to throw the table away, a new color table is created each 
time you call NewPixMap and eventually your application will run out of 
memory since memory is full of color tables. This is a common source of 
memory leakage. 



~ Common Problems Using QuickDraw 241 

Another common problem is avoided in the following lines. To signal to 
QuickDraw that this record is a PixMap and not a BitMap, you must set the 
high bit of row Bytes. 

DisposCTable( (**myPixMap) .pmTable ); 

(**myPixMap) . pmTable = GetCTable( 8 ); 

(**myPixMap) . rowBytes I= Ox8000 ; 

As is commonly the case, everything seems fine. Although the line that allo­
cates the memory for the offscreen buffer looks OK, it just seems suspect. Possi­
bly there is not enough memory to satisfy the NewPtr request. In this case the 
baseAddr would point to zero, not the screen. Even though it seems unlikely, 
something must be wrong with that line. Nothing else could cause this problem! 

Why Does Drawing Occur to the Screen Instead of to My 
PixMap? 
Your MacsBug exploration begins by looking at the port's PixMap at the call to 
Line To. Select the Bug 2 menu item and enter MacsBug just before pressing the 
OK button in the dialog. Turn on heap scrambling with the HS command. Now 
set an A-trap break on Line To. Be sure to specify only application calls to Line To 
or else you will break into MacsBug many times as the windows are redrawn. 

atba lineto 

Make sure the code you break in is the DrawColorBars code displayed pre­
viously. A macro called theCPort displays the current port as a CGrafPort. The 
expansion is 

theCPort dm @@AS CGrafPor t 

Type 

thecport 

to use the macro. An abbreviated version of MacsBug's response is 

Displaying CGrafPort at 00676COC 

00676COC device 

00676COE portPixMap 

00676Cl2 portVersion 

0000 

00676984 -> 0068CBEO 

cooo 



242 ...,. Chapter 11 QuickDraw 

00676C14 grafVars 006769A4 -> 00677178 

To display the PixMap with the template, type 

dm 68cbe0 pixmap 

MacsBug responds with a version of 

Displaying PixMap at 0068CBE0 

0068CBEO baseAddr F9000AOO 

0068CBE4 rowBytes 80C8 

0068CBE6 bounds #0 #0 #200 #200 

0068CBEE pmVersion 0000 

0068CBFO pack Type 0000 

0068CBF2 packSize #0 

0068CBF6 hRes 00480000 

0068CBFA vRes 00480000 

0068CBFE pixel Type 0000 

0068CC00 pixelSize 0008 

0068CC02 cmpCount 0001 

0068CC04 cmpSize 0008 

0068CC06 planeBytes #0 

0068CCOA pmTable 

00680600 ctSeed 00000008 

00680604 ctFlags 8000 

00680606 ctSize #255 

00680608 ctTable 

00680608 value #0 

0068D60A rgb 

0068D60A red #65535 

0068D60C green #65535 

0068D60E blue #65535 

0068CCOE pmReserved 00000000 



...,. Common Problems Using QuickDraw 243 

This is the PixMap your code created. It has the standard color table (ctSeed 
= 8) and the pixels are 8 bits each. row Bytes indicates that the structure is a Pix­
Map. But wait! The baseAddr looks terrible. First of all, the baseAddr points 
into slot space. 

This is the baseAddr of the main screen. Since QuickDraw always accesses 
screens in 32-bit mode, there is no need to set pm Version to 4 when the base­
Addr is the screen. One mystery resolved! 

The previous code explicitly set the baseAddr field. 

(**myPixMap) .baseAddr ~ NewPtr( count ); 

The Macintosh must be broken! Well, maybe only the compiler is broken. To 
figure out what's going on you need to watch this assignment happen. Clear 
all breakpoints using the GG macro, which expands to 

brc; ate; g 

Select the Bug 2 menu item again, and this time set an A-trap break on NewPtr 
before pressing the OK button. 

atba newptr; g 

When MacsBug breaks at NewPtr, list the surrounding instructions with the 
IP command. On my machine, MacsBug responds with 

No procedure name 

00676802 MOVEA.L ApplZone,Al 2278 02AA 

00676806 MOVE.L AO, (Al) 2288 

00676808 MOVE.L 02, (AO) 2082 

0067680A AOO.L 00,$000C(A1) 01A9 oooc 
0067680E RTS 4E75 

00676810 _MaxApplZone A063 A063 

00676812 RTS 4E75 

00676814 MOVEA.L (A7)+,Al 225F 

00676816 MOVE.L (A7)+,DO 201F 

00676818 * NewPtr AllE A11E 

0067681A MOVE.L AO, (A7) 2E88 

0067681C JMP *-$0048 00676704 4EFA FFB6 

00676820 MOVEA.L (A7)+,Al 225F 

00676822 MOVEA.L (A7)+,AO 205F 



244 .,.. Chapter 11 QuickDraw 

00676824 _DisposPtr 

00676826 JMP 

0067682A MOVEA.L 

0067682C MOVE.L 

0067682E _New Handle 

00676830 MOVE.L 

00676832 JMP 

*-$0052 

(A7) +,Al 

(A7)+,DO 

AO, (A7) 

*-$005E 

AOlF 

006767D4 

Al22 

; 006767D4 

AOlF 

4EFA FFAC 

225F 

201F 

A122 

2E88 

4EFA FFAO 

This looks strange, since the routine has no name, whereas you are in the Bug 
2 procedure. Since NewPtr takes its parameters in registers, a small piece of 
glue code that converts stack-based calling to register calling is needed. This 
break occurred in the glue code. The instruction right after the NewPtr call 
puts the result back on the stack. 

If you trace out of this routine, the MacsBug display will look like this. 

Step (over) 

No procedure name 

00676818 _NewPtr AllE AllE 

0067681A MOVE.L AO, (A7) 2E88 

0067681C JMP *-$0048 006767D4 4EFA FFB6 

006767D4 MOVE.L Al,-(A7) 2F09 

006767D6 MOVE.W DO,MemErr 31CO 0220 

006767DA RTS 4E75 

At this point you are finally out of the glue and back to the Bug 2 procedure. 
List the surrounding instructions using the IP command. On my machine 
MacsBug responds with 

Disassembling from 00676498 

BUG2 

+OOSE 00676498 MOVE.L D0,-(A7) 2FOO 

+0060 0067649A MOVE.L A0,-(A7) 2F08 

+0062 0067649C JSR $0042(A5) 4EAD 0042 

+0066 006764AO MOVE.L DO, -$0018 (A6) 2D40 FFE8 

+006A 006764A4 MOVEA.L -$0004(A6),A0 206E FFFC 

+006E 006764A8 CLR.L -(A7) 42A7 

+0070 006764AA MOVE.L -$0018(A6),-(A7) 2F2E FFE8 



...,. Common Problems Using QulckDraw 245 

+0074 006764AE MOVE.L (AO), -$0020 (A6) 2050 FFEO 

+0078 00676482 JSR *+$0362 ; 00676814 4E8A 0360 

+007C 00676486 *MOVEA.L (A7) +,AO 205F 

+007E 00676488 MOVEA.L -$0020(A6),A1 226E FFEO 

+0082 006764BC MOVE.L AO, (A1) 2288 

+0084 006764BE MOVEA.L -$0004 (A6) ,AO 206E FFFC 

+0088 006764C2 MOVEA.L (AO) ,AO 2050 

+008A 006764C4 CLR.W $001E(A0) 4268 001E 

+008E 006764C8 MOVEA.L -$0004(A6),A0 206E FFFC 

+0092 006764CC MOVEA.L (AO) ,AO 2050 

+0094 006764CE MOVEQ i$08,00 7008 

+0096 00676400 MOVE.W 00,$0020(A0) 3140 0020 

+009A 00676404 MOVEA.L -$0004(A6),A0 206E FFFC 

+009E 00676408 MOVEA.L (AO), AO 2050 

The NewPtr was successful. MemErr is 0, and the top of the stack contains 
a valid pointer. The next instructions perform the assignment. The result of 
NewPtr is assigned to a va~able in the local stack frame. Recall that the code 
you are looking at performs the following operation: 

(**rnyPixMap) .baseAddr = NewPtr( count ); 

If you look above the JSR that performs the NewPtr, you see that the pre­
vious instruction 

+0074 006764AE MOVE.L (AO), -$0020 (A6) I 2D50 FFEO 

sets up the location that receives the result ofNewPtr. This instruction is deref­
erencing the unlocked PixMapHandle. It turns out that the NewPtr call moves 
memory and the assignment, which occurs to the dereferenced handle, goes 
to the wrong place. This is a classic implicit dereferencing problem. 

To fix the bug, lock the PixMapHandle before the NewPtr call and unlock 
it afterward. Another solution is to assign the result ofNewPtr to a temporary 
variable and then assign the temporary variable to the PixMap' s base address. 



246 ...,. Chapter 11 QulckDraw 

...._ Bug 3: Drawing Is Correct Only if the Main 
Screen Is 8-bit 

The behavior of the third bug is very common: Copy Bits produces the correct 
result only when the main screen is set to 8 bits. When 32-bit QuickDraw first 
appeared, a number of applications had a hard time drawing to direct 
devices. Often these applications draw in black rather than white, since the 
pixel index value 0 represents white in the standard color table but represents 
black on direct devices. 

Not only does Bug 3 have trouble with direct devices, it has trouble any time 
the main device is set to a bit depth other than eight. To see this bug, open the 
color window and choose the Bug 3 menu item from the QuickDraw menu. 
Press the OK button in the dialog. If the window is partially obscured by the 
dialog box, move the window and choose the Bug 3 item. The problem with 
having the window behind the dialog is that an update event is generated, 
which clears the window to the normal red pattern. 

Change the bit depth of the main screen and choose the Bug 3 item again. 
(This is accomplished with the Monitors CDEV in the Control Panel on the 
Apple menu.) The resulting colors are considerably different. If you have a 
32-bit deep screen, use it as the main screen and choose the Bug 3 item when 
the screen is set to millions of colors (32 bits deep). The background color is 
now black (with white lines) instead of white, and the color bars are a different 
color still. 

These results are produced by the following code. The first part of the code 
sets up a CGrafPort and its own offscreen 8-bit PixMap. 

I* Save current port and create new port *I 

GetPort( &savePort ); 

OpenCPort( myCPortPtr ); I* Does a SetPort *I 

I* Set background pattern to white (used by EraseRect) *I 

whitePat = NewPixPat(); 

rnyColor.red = OxFFFF; 

myColor.green = OxFFFF; 

myColor.blue = OxFFFF; 

MakeRGBPat( whitePat, &myColor ); 

BackPixPat( whitePat ); 

RGBBackColor( &rnyColor ); 

/* Initialize the other fields of the port *I 



...,. Common Problems Using QuickDraw 247 

myCPort.portRect = dOffBounds; 

myPixMap = myCPortPtr->portPixMap; 

(**myPixMap) .bounds = dOffBounds; 

/* make rowbytes even */ 

(**myPixMap) .rpwBytes = ((dOffBounds.right-dOffBounds.left)+l) 
&OxFFFE; 

count = (long) (**myPixMap) .rowBytes*((long) (dOffBounds.bottom­
dOffBounds.top)); 

HLock( (Handle) myPixMap ); 

(**myPixMap) .baseAddr = NewPtr( count ); 

HUnlock( (Handle) myPixMap ); 

(**myPixMap) .pixelType 0; 

(**myPixMap) .pixelSize 8; 

(**myPixMap) .cmpCount = 1; 

(**myPixMap) .cmpSize 

(**myPixMap) .pmTable 

8; 

GetCTable( 8 ); 

(**myPixMap) .rowBytes I= Ox8000; 

ClipRect( &dOffBounds ); 

The offscreen PixMap is cleared with the EraseRect call, and then the famil­
iar color bars are drawn by the DrawColorBars procedure. 

/* Draw to the offscreen PixMap */ 

EraseRect( &gBigRect ); 

DrawColorBars(); 

Now that our offscreen PixMap is set up, the following code displays it on 
the screen. First, the previous port is restored and the foreground and back­
ground colors are set to black and white so that CopyBits doesn't colorize 
(explained in a previous section). This code is our first suspect since it is re­
sponsible for drawing on the screen, thus producing the bad results. 

/* Restore the previous port and don't colorize (fg=black, 
bk=white) */ 

SetPort( savePort ); 

ForeColor( blackColor ); 

BackColor( whiteColor ); 

/* Copy offscreen PixMap to the screen */ 



248 ..,.. Chapter 11 QuickDraw 

Key Point ~I 

HLock( (Handle) myPixMap ) ; 

CopyBits ( *myPixMap , &(thePort->por t Bits ), &dOffBou nds , 
&(thePort->portRec t) , 0 , 0 ) ; 

HUnlock( (Handle) myPixMap ) ; 

This code disposes all the memory previously allocated. Bug 3 can't be found 
here because the program fails before this code is executed for the first time. 

/* Clean up */ 

DisposPixPat( whitePat ); 

DisposPtr( (**myPixMap) . baseAddr ) ; 

DisposCTable( (**myPixMap ) . pmTable ) ; 

CloseCPort ( myCPortPt r ) ; 

To find the first bug you jumped right into MacsBug and started looking at 
data structures. You found the second bug by analyzing the source code and 
eliminating the possibilities until only one was left. At that point you used 
MacsBug to verify that your suspicions were true. 

This bug is more typical of the difficult-to-find bugs that can haunt a pro­
gram. Several areas are suspect. The best technique for finding this kind of 
problem is to find the first place something unexpected happens and then 
trace back and understand why. 

If a bug manifests itself in several different ways, find a 
reproducible case that, from your knowledge of the Toolbox, seems 
the easiest to debug. 

The goal of debugging is to figure out what's wrong and then figure out why 
it's wrong. If you are particularly familiar with one aspect of the system and 
can reproduce a bug related to that aspect of the system, you will receive clues 
as to the origin of the bug. 

In this case, the drawing is incorrect anytime the main screen is not the same 
depth as our off screen PixMa p. The results are most drama tic ally wrong when 
the main screen is set to 32 bits/ pixel. Not only are the color bars the wrong 
color, the background color is black rather than white. 

After investigation, you will find that the CGrafPort and GDevice are fine for 
the Copy Bits to the screen. A shortage of memory is also not the problem. Thus, 
CopyBits is behaving as you expect. This leaves the source image suspect. 



.,... Common Problems Using QuickDraw 249 

The easiest way to find out if the source image is corrupt is by looking at the 
PixMap image. To do this, break on CopyBits and examine the contents of 
memory at the PixMap' s base address. When the main screen is set to 32 bits/ 
pixel, my Mac responds with 

Displaying memory from 5able4 

005AB1E4 0808 0800 0808 0800 0808 FFFF OOFF FFFF ................ 
005AB1F4 OOFF FFFF 6363 6363 6363 6363 6363 FFFF .... cccccccccc .. 

005AB204 OOFF FFFF OOFF FFFF FFFF BF8C FFFF BFBC ................ 
005AB214 FFFF FFFF OOFF FFFF OOFF FFFF 7F7F 7F7B . . . . . . . . . . . . . . . { 

005AB224 7F7F 7F7B 7F7F FFFF OOFF FFFF OOFF FFFF ... { ............ 
005AB234 FDFD 7030 FDFD 7030 FDFD FFFF OOFF FFFF . . } 0 .. } 0 ........ 

005AB244 OOFF FFFF AFAF AFAB AFAF AFAB AFAF FFFF ................ 
005AB254 OOFF FFFF OOFF FFFF ECEC ECEC ECEC ECEC ................ 
005AB264 ECEC FFFF OOFF FFFF OOFF FFFF FBFB FBF3 ................ 
005AB274 FBFB FBF3 FBFB FFFF OOFF FFFF OOFF FFFF ................ 
005AB284 D3D3 D3CO D3D3 D3CO 0303 FFFF OOFF FFFF ................ 

For the standard 8 bits I pixel CLUT, index values of $FF are black and of 00 
are white. Since the desired image contains only a black bar on the left side, this 
image is obviously not correct. So the problem is in how this image is created, 
not in how it is drawn to the screen. 

This pixel image is created when the DrawColorBars procedure draws to 
the offscreen PixMap. From the previous listing of this procedure, you can see 
that it draws a 10-pixel-wide vertical line of one color, then skips 10 pixels, 
draws a 10-pixel-wide vertical line of another color, skips 10 pixels, and so on. 
The drawing is performed using the LineTo trap. 

A closer examination of this data indicates that the pixel pattern does 
change every 10 pixels. The first 10 pixels have the value 08, the next 10 are 
drawn with $FF and 00, the next 10 are $63, and so forth. Every other set of 10 
pixels are drawn with $FF and 00. The desired image at 8 bits/pixel has every 
other line as white rather than the black and white index values this image has. 
And this result appears when the display is 32 bits/pixel. 

As you have probably figured out by now, $00FFFFFF is white for a 32-bit/ 
pixel display. The image is correct, except the color values are for a 32-bit dis­
play, not for an 8-bit display. Somehow the PixMap is created using the color 
table from the main screen, not from our offscreen PixMap. 

Aha! Destination color information comes from the current GDevice' s color 
table, not the destination PixMap' s color table. Not intuitive, but true. To verify 



250 ...,. Chapter 11 QuickDraw 

that this is actually what is happening, break on the Line To trap and examine 
the current GDevice. 

dm @@thegdevice gdevice 

On my machine, MacsBug responds with 

Displaying GDevice at 80003428 

80003428 gdRefNum #-49 

8000342A gdiD 0000 

8000342C gdType 0002 

8000342E gdiTable 00001F20 

80003432 gdResPref #4 

80003434 gdSearchProc 00000000 

80003438 gdCompProc 00000000 

8000343C gdFlags BDOl 

8000343E gdPMap 

80003470 baseAddr F9000AOO 

80003474 rowBytes 8A00 

80003476 bounds #0 #0 #480 #640 

8000347E pmVersion 0000 

80003480 pack Type 0000 

80003482 packSize #0 

80003486 hRes 00480000 

8000348A vRes 00480000 

8000348E pixel Type 0010 

80003490 pixelSize 0020 

80003492 cmpCount 0003 

80003494 cmpSize 0008 

80003496 planeBytes #0 

8000349A pmTable 

00058818 ctSeed 00000018 

0005881C ctFlags 8000 

0005881E ctSize #255 

00058820 ctTable 



..,.. Summary 251 

00058820 value #2048 

00058822 rgb 

00058822 red #65535 

00058824 green #65535 

00058826 blue #65535 

8000349E pmReserved 00000000 

80003442 gdRefCon 00000000 

80003446 gdNextGD 80003648 

8000344A gdRect #0 #0 #480 #640 

80003452 gd.Mode 00000084 

80003456 gdCCBytes 116 

80003458 gdCCDepth #0 

8000345A gdCCXData OOOOlFlC 

8000345E gdCCXMask 00001F18 

80003462 gdReserved 00000000 

The pixelType ($10) indicates that this GDevice is for a direct device, not an 
indexed device as the offscreen PixMap requires. The pixelSize is $20, or 32 
decimal, indicating that the GDevice is for a 32-bit PixMap. The GDevice's 
PixMap reflects the status of the main screen, not our 8-bit offscreen world. 

To fix the problem, you must create an 8-bit GDevice that can be used for 
drawing to the 8-bit offscreen PixMap. In practice, your applications should 
use the offscreen GWorld calls documented in Inside Macintosh, Volume VI, 
and available on Mac II class machines since 32-bit QuickDraw version 1.0. 

Looking at the actual PixMap data gave a clue as to what the problem could 
be. If your application has a problem in which a complicated PixMap image 
is drawn incorrectly and the actual data is too complicated to be meaningful, 
one approach is to substitute a simpler picture in its place for debugging pur­
poses. A solid-colored image or one with a regular pattern (such as vertical 
lines) is a good test image to figure out what is going wrong. 

~ Summary 
This chapter discussed the QuickDraw graphics model and potential prob­
lems an application can run into. The chapter discussed 

• QuickDraw does all its drawing in the current port. 

• The difference between Gra£Ports and CGra£Ports. 



252 ..,.. Chapter 11 QuickDraw 

• Source color information comes from the foreground and background 
color fields of the GrafPort for objects and from the PixMap' s color table 
for PixMaps. 

• Destination color information is obtained from the current GDevice, 
TheGDevice. 

• How to obtain optimal speed from CopyBits. 

• Three common QuickDraw problems and how to find them. 

QuickDraw is one of the most complicated aspects of the Macintosh Tool­
box. Many parameters external to those actually passed to the QuickDraw rou­
tines can affect the outcome. For example, an incorrect value in the current port 
can cause an EraseRect operation to fail, even though EraseRect has no explicit 
reference to the current port in the calling interface. Once you understand 
what data structures affect a drawing operation and how to make sure those 
structures are intact, most QuickDraw problems are easy to locate. 

The QuickDraw graphics model is used for drawing to the screen as well as 
for printing. Just as an application draws to the screen using a GrafPort, an 
application prints by drawing to a special printing GrafPort. Chapter 14 dis­
cusses how the print drivers intercept QuickDraw drawing commands and 
translate them to equivalent commands for the selected printer. 



12 

Note ~I 

Device Drivers and Desk 
Accessories 

If you are thinking about writing a desk accessory, don't. In System 7.0 
desk accessories are treated like regular applications, and applications 
can behave like desk accessories (by appearing in the Apple menu). 
Apple is encouraging developers to write small applications rather 
than desk accessories. 

At first it may appear that this chapter is mixing Apples with IBMs; after all, 
what do device drivers (which control input/ output devices) have to do with 
desk accessories (those friendly little programs that live in the Apple menu)? 
It turns out that desk accessories are a special form of device driver. This sec­
tion first discusses device drivers in general, and then examines the Alarm 
Clock desk accessory in detail using MacsBug. 

A device driver is a low level utility that fills the gap between a device (usually 
a physical device such as a disk drive, a printer, or a serial port) and the operating 
system. Figure 12-1 shows how the serial driver fits into the Macintosh world. 

253 



254 ..,. Chapter 12 Device Drivers and Desk Accessories 

( application ) 

The Serial Manager Toolbox, System, Application 

( Device Manager ) 

__ t_t_t_t_t_ __ 

( serial driver ) 4 Device Driver 

--.--.--.--.--.----
1~01 Device 

Serial Port 

Figure 12-1. The serial driver 

The figure shows that the serial driver is an interface between the hardware 
and the Device Manager. The application deals with the driver via the Device 
Manager or via a higher level manager. The driver receives these high level 
commands from the Device Manager and communicates the application's 
desire to the physical device. This multilayered interface allows device-specific 
details to be hidden in the device driver. When printing, for example, applica­
tions deal with printers generically, and any application should work with any 
printer as long as a driver for that printer exists. 



..,.. Structure of a Driver 255 

~ Structure of a Driver 

Note ..,. I 

A driver either exists in ROM or is loaded from a resource of type 1 DRVR 1 
• 

When the system installs a driver, information about the driver is put in the 
unit table, an area in the system heap pointed to by the low memory global 
UTableBase. The unit table consists of long values that are handles to the driv­
er's Device Control Entry, or DCE. The DCE contains information about the 
driver as well as a pointer (for ROM-based drivers) or a handle (for 
RAM-based drivers) to the driver itself. The location within the unit table is 
called the driver's unit number, which is the same as the driver's 1 DRVR 1 re­
source ID. Different versions of the system have different-sized unit tables. 
The size of the unit table is kept in the low memory global UnitNtryCnt. 

Prior to System 7.0, each Desk Accessory (DA) takes up one entry in 
the unit table. In System 7.0, multiple DAs can share the same unit 
table entry. MultiFinder switches the DAs in and out of the unit table. 
ADA is guaranteed to be in the unit table only when it is getting time. 
To force your DA into the unit table when entering MacsBug, bring the 
DA to the foreground and enter MacsBug while a m enu is pulled 
down. (DAs that allocate their driver, window, or storage in the 
system heap are not switched out of the unit table. This can cause 
severe problems with other DAs that share that entry.) 

In System 7.0, DAs are automatically converted to applications 
(which can only run under System 7.0 or later). You can keep them in 
the Apple Menu Folder (if you want them to appear in the Apple 
menu as in systems before 7.0) or you can keep them anywhere else 
and launch them by double clicking just like other applications. Of 
course, you can put applications in the Apple Menu Folder that will 
then appear under the Apple menu. Thus, applications are very 
similar to DAs, and DAs are similar to applications in System 7.0. 

In the early days (before MultiFinder), writing DAs made sense 
because it was the only way to have two separate programs running at 
once. With MultiFinder, DAs serve the same function as regular 
applications, and Apple recommends that you write small applications 
rather than DAs. 



256 ...,. Chapter 12 Device Drivers and Desk Accessories 

The driver itself consists of a header that contains flags and other driver 
parameters as well as offsets to the driver routines. The unit table and driver 
structure are shown in Figure 12-2. The MacsBug templates for viewing the 
various driver data structures are also given in the figure. 

UTable Base $11C 

Unit number ~ 
0 Handle to DCE 0 

1 Handle to DCE 1 

2 Handle to DCE 2 

3 Handle to DCE 3 H Pointer to DCE 3 

4 Handle to DCE 4 

Un itNtryCnt-1 
Unit table 

(Use DM @UTableBase) 

+ pointer to ROM drivers 
dCtiDriver ... ... 

dCtiFiags handle to RAM drivers 

dCtiQHdr 

Other Driver 

Variables 

Device Control Entry #3 
(Templates: DCtiEntry or DCE) 

Figure 12-2. Drivers and the unit table 

drvrFiags 

drvrDelay 

drvrEMask 

drvrMenu 

Offsets to 
Driver's 

Routines 

Driver Name 

Driver 
(Template: Driver) 



..,.. Desk Accessories 257 

....,. Desk Accessories 
Like drivers, desk accessories are merely a client to a host application. In fact, 
desk accessories are implemented using the driver structure just explained. 
Let's take a detailed look at the Alarm Clock desk accessory. 

Examining the Driver Entry in the Unit Table 

This example is taken from the Macintosh Portable. Following these steps will 
produce similar results on all Macintoshes. First you need to determine where 
in the unit table the Alarm Clock desk accessory will load. Do this by looking 
at its resource ID in the System file using ResEdit. (The Font/DA Mover fol­
lows strict number conventions when adding desk accessories to the System 
file.) On my system, the Alarm Clock 1 DRVR 1 has a resource ID of 13. 

Start by invoking the Alarm Clock desk accessory and then entering 
MacsBug. From MacsBug type 

dm utablebase 

MacsBug responds with 

Displaying memory from Ol lC 

OOOOOllC 0000 26CC FO lE DOF2 FFFF FFFF FFFF FFFF ··&······ ····· · · 

The unit table is at address $26CC (close to the beginning of the system heap). 
You are interested in the thirteenth entry, which is a handle to a device control 
entry (DCE) and resides thirteen longs into the unit table. First check if 
MacsBug has a template for displaying the DCE. You can list MacsBug tem­
plates with the TMP command. To list all the templates that begin with ad, type 

tmp d 

MacsBug responds with 

Template names 

DialogRecord 

driver 

DCtlEntry 



258 ...,.. Chapter 12 Device Drivers and Desk Accessories 

Here is just what you need: a template for a deVice control entry. To display 
the DCE of the thirteenth driver in the unit table at $26CC, type 

dm @@(4*d+26cc) dctlentry 

MacsBug responds with 

Displaying OCtlEntry at 00027FOC 

00027FOC dCtlOriver 00017F38 

00027FEO dCtlFlags 3460 

00027FE2 dCtlQHdr 

00027FE2 qFlags 0000 

00027FE4 qHead 00000000 

00027FE8 qTail 00000000 

00027FEC dCtlPosition 00000000 

00027FF0 dCtlStorage 00016808 -> 00028018 

00027FF4 dCtlRefNum FFF2 

00027FF6 dCtlCurTicks 00005993 

00027FFA dCtlWindow 

00011488 portRect #0 #0 #18 #129 

000114CO visRgn 00016800 -> 0001154C 

000114C4 clipRgn 00016AFC -> 00011560 

00011514 windowKind FFF2 

00011516 visible TRUE 

00011517 hili ted TRUE 

00011518 goAwayFlag TRUE 

00011519 spareFlag FALSE 

0001151A strucRgn 00016AF8 -> 00011574 

0001151E contRgn 00016AF4 -> 00016884 

00011522 updateRgn 00016AFO -> 00016898 

00011526 windowOefProc 03002120 -> 20934000 

0001152A dataHandle NIL 

0001152E titleHandle Alarm Clock 

00011532 titleWidth 0040 

00011534 controlList NIL 



00011538 nextWindow 

0001153C windowPic 

00011540 refCon 

00027FFE dCtlDelay 

00028000 dCtlEMask 

00028002 dCtlMenu 

NIL 

NIL 

00010000 

003C 

OlGA 

0000 

..,.. Desk Accessories 259 

Since this is a RAM-based driver (it was loaded from the System file), the 
reference to the driver is a handle . Use the driver template to display the 
driver type. 

dm @17f38 driver 

Displaying driver at G002GG E4 

G002GGE4 d rvrFlags 3400 

G002GGEG drvrDelay 003C 

G002GGE8 drvrEMa sk OlGA 

600266EA drvrMenu 0000 

600266EC drvrOpen 0034 

G002GGEE drvrPrime 0000 

6002GGFO d rvrCtl 0194 

600266F2 drvrStatus 0000 

G002GGF4 drvrClose 0174 

600266F6 drvrName • Alarm Clock 

Finally, all your work has paid off. You found the alarm clock driver. You can 
set a breakpoint at any of the driver routines. For example, to break on the 
Close call enter MacsBug and type 

br 2GGe4+17 4 

since the 174 is the hexadecimal offset of the close routine from the beginning of 
the driver. When you close the Alarm Clock DA, you will break into MacsBug. 



260 .,.. Chapter 12 Device Drivers and Desk Accessories 

....,. An Easier Way: The DRVR Dcmd 
Fortunately, there is a standard MacsBug dcmd that deals with the data struc­
tures in the preceding exercise and presents the results in a nice table. This 
dcmd is called DRVR. 

Examining the Unit Table with the DRVR dcmd 

Enter MacsBug and type 

drvr 

MacsBug responds with 

Displaying Driver Control Entries 

c!Ref dNum Driver Flg Ver qHead Storage Window Dely Drvr at DC£ at 

fffe 0001 .Sony bPO 12 000000 000000 000000 0000 92cc94 800027dc 

that is strange: dCtlRefNum • fffb 

fffc 0003 .Sound bPO tO 000000 000000 000000 0000 92fd04 80002bb4 

fffb 0004 .Sony bPO 12 000000 000000 000000 0000 92cc94 800027dc 

fffa 0005 .Ain bPC 113 000000 000000 000000 0000 a0930cb6 80002c08 

fff9 0006 .AOut bPC t3 000000 000000 000000 0000 a0930cce 80002c44 

fffB 0007 .Bin bPC 13 000000 000000 000000 0000 a0930ce6 B0002c80 

fff7 0008 .BOut bPC 13 000000 000000 000000 0000 a0930cfe 80002cbc 

fff6 0009 .MPP bPC 152 000000 000000 000000 0000 92b610 80002cf8 

fff5 OOOa .ATP bPC 152 000000 000000 000000 0000 92a944 B0009bbc 

fff2 OOOd •Alarm Clo ••• bHO 10 000000 016b08 0114a8 003c 600266e4 027fdc 

ffdf 0020 .SCSIOO bPO 10 000000 004520 000000 0000 002e0a 80004120 

ffd6 0029 .AFPTransl ••• bHO 10 000000 0155lc 000000 003c c0014840 80009b38 

ffcf 0030 .EDisk bPC 10 000000 000000 000000 0000 929c2c 80002b78 

164 Unit Table entries, tl3 in use, 151 free 



.,.. Summary 261 

The thirteenth ($0000) entry is the Alarm Clock. The table shows the location 
of the driver (in the Drvr-at column), the location of the DCE, and other fields 
from the driver and the dCtlEntry records. 

You can get information just about one driver, driver 13 for example, by 
typing 

drvr d 

or 

drvr fl3 

~ Summary 
This chapter discussed the format of device drivers and desk accessories: 

• The driver structures were discussed and a detailed example was presented. 

• The TMP command was used to list available templates. 

• The DRVR dcmd was used to display driver control entries. 



13 

Warning ..,. , 

The File Manager 

Until you know exactly what you are doing you should treat the File 
Manager data structures as read only. Changing File Manager low 
memory globals or internal data structures can damage files or even 
cripple an entire disk. Remember, you can' t just reboot to fix 
damaged files. 

~ Understanding the File Manager 
The File Manager's basic function is to take block-oriented devices (like hard 
disks) and turn them into file system volumes. The File Manager takes the wide 
variety of calls documented in Inside Macintosh, Volumes II, N, and VI to turn 
them all into read and write commands for a disk, as shown in Figure 13-1. 

263 



264 ..,.. Chapter 13 The File Manager 

,6 ~_.... ~ 
~~:>~ 

Application A -
Parameter FILE 

Block MANAGER 

Figure 13-1 . The File Manager 

::::r ~ ::::::. ~......,11>1 
::::::· 

To do all the work required to make a simple set of blocks on a disk appear 
as a file system volume containing files and directories, the File Manager sets 
up structures on disks, such as the catalog, and structures in memory, such as 
the File Control Block (FCB) array. 

First, consider the structures that are found on disks. These structures are 
(barring disk crashes) persistent across reboots. Each disk has a catalog that 
keeps track of the rest of the contents of the disk. A disk, when it is set up with 
a catalog, is referred to as a volume. A volume is a container for directories. A 
directory is a container for files. A file consists of two forks, named resource and 
data. A fork is a container for an ordered sequence of bytes. 

The File Manager sets up data structures in memory to manage access to the 
data structures on disk. When you mount a volume (for example, by inserting 
a floppy), the File Manager sets up a volume control block for it. When you ask 
the File Manager for an access path to a file, it sets up a file control block. Getting 
an access path is often referred to as "opening a file." 

The File Manager actually supports two file systems: the Macintosh File Sys­
tem, or MFS, and the Hierarchical File System, or HFS. The original File Man­
ager supported only MFS. MFS has many useful features, but it suffers from 
one overwhelming limitation: MFS doesn' t support hierarchical directories. 
All files on an MFS disk reside in the root directory. In late 1985 Apple remedied 
this problem with the introduction of HFS. HFS is a superset of MFS, offering 
(among other things) support for hierarchical directories. Apple prides itself on 
remaining backwards compatible w ith earlier versions of the System, which, 
in the case of the File System, means that the remnants of MFS (which is still 



Note ..,.I 

..,.. Calling the File Manager 265 

fully supported for die-hard 400K single-sided floppy disk fans) can be seen 
lurking beneath HFS. 

The File Manager processes only one call at a time. When it is busy 
with a call, it sets the file system busy bit located in bit zero of the byte 
at low memory location FSBusy. While busy, the File Manager queues 
up all incoming calls for later processing. 

Attempting to use MacsBug's LOG command during a File Manager call 
(that is, when the file system is busy) hangs the machine. The LOG command 
calls Write on the characters it is logging, and the Write will get stuck behind 
the call you're currently in the middle of.lt is perfectly OK to log an entire call, 
but any A-trap break or breakpoint triggered while the file system is busy and 
MacsBug is logging will cause trouble . 

...,.. Calling the File Manager 
The File Manager often confuses programmers because there are so many 
ways to call it. There are many routines in the category of high level File Man­
ager routines, each marked with the somewhat mysterious label "Not in 
ROM." There are also a number of low level routines, whose names all look 
like PBDoSomething, and whose input parameter is the much feared parame­
ter block. Accompanying each low level call is a trap macro, usually named 
_DoSomething. What you should first understand is the relationship between 
the high level and low level calls. This proves to be relatively simple. The only 
way to get the File Manager to do anything is to execute one of its trap calls. 
All the other ways of calling the File Manager are simply indirect routes to the 
low level trap calls . 

...,.. The File Manager Traps 

The File Manager has some 29 traps. Twenty-eight of them were part of MFS, 
and each handles only one call. The twenty-ninth is a special kind of trap 
known as a dispatch trap. The dispatch trap was added to handle all the new 
calls for HFS. All the File Manager traps are OS traps, which means that they 
take their parameters in registers. The 28 original traps take only one parame­
ter, a pointer to a parameter block in register AO. The dispatch trap, known log-



266 ~ Chapter 13 The File Manager 

ically enough as _HFSDispatch, takes two parameters: a pointer to a parame­
ter block in AO and a routine selector in the low word of DO. 

Two File Manager bits have special importance. All OS traps have two bits 
(9 and 10 in the trap word) that serve as flags for the call. For the File Manager, 
bit 10 is called the async bit and indicates that the call should be performed 
asynchronously. Bit 9 is called the "HFS bit" and was introduced in 1985 to in­
dicate new, HFS forms of existing traps. The HFS versions accept directory 
specifications, whereas the MFS forms don't. In MacsBug displays, the bits ap­
pear (under the Device Manager names) as "sys" (for bit 10) and "immed" (for 
bit 9). You can also tell which bits are set by looking at the hex values on the 
right margin. The value of the second nibble will be 0, 2, 4, or 6 for none, hfs, 
async, or both, respectively. For example, when the _HOpen trap is called 
asynchronously, it shows up as 

0002B3EE _Open ,Sys,Immed ; A600 I A600 

Note that MacsBug still prints the name as _Open, but you can recognize the 
HFS form by the word Immed, which indicates that the HFS bit is on . 

....,. File Manager Glue 

The high level calls to the File Manager (for example, FSRead) are simply "glue 
code," which allocates a parameter block on the stack, fills in the relevant fields 
for you, and makes the low level call. The high level calls differ from each other 
in the number of parameters, and are sometimes less complicated to program 
with than their low level counterparts. 

The glue code for the low level routines (such as PBRead) also takes parame­
ters from the stack, but there is little variation in the number of parameters. The 
primary function of the glue code for the low level routines is to convert Pascal 
calling conventions to the register-based conventions used by OS calls. All 
take a parameter block pointer, and most also take a sync I async boolean. They 
place the parameter block pointer in AO and execute the appropriate trap (for 



By the Way .,.I 

Note .,.I 

..,. Calling the File Manager 267 

instance, _Read or _Read, sys). ln your code, calls to both forms of glue will 
appear as JSRs. 

The "Not in ROM" designation on File Manager routines means that 
they are present in the glue libraries of your development system. For 
MPW, this is lnterface.o. The glue is linked into your application, 
making it sUghtly bigger than you might expect. For MPW 3.2 Apple 
introduced new kinds of low level glue routines that, because they use 
the register #pragmas, compile straight into traps rather than use the 
Pascal calling conventions. The glueless traps are usually the same as a 
PB name with the word sync or async appended to it, such as 
PBReadSync. 

Since all the ways of calling the File Manager boil down to the same 
set of traps, all of the techniques here, which refer directly to traps, 
work for the higher level calls, too. You'll set all of your breakpoints at 
the low level traps. If you are using glue calls, remember that you'll be 
seeing a trap call from within the glue, so you'll need to trace a bit to 
get back into your application. 

One of the minor architectural flaws in the Macintosh is that the File 
Manager and the Device Manager share four traps: _Open, _Close, 
_Read , and _Write. Each trap examines the fields in the parameter 
block and decides which manager to send the call off to. _Read, 
_Write, and _Close look at the ioRefNum field. Positive refNums go to 
the File Manager, and negative refNums go to the Device Manager. 
_Open is a bit of a disaster. The Device Manager looks at the 
ioNamePtr field. If it points to a string whose first character is a 
period, it attempts to find a driver matching that name. Unfortunately, 
confusion can arise when an _Open arrives for a file whose name 
begins with a period. (See Tech Note #102 for all the details.) ln a few 
cases, the Device Manager can actually crash. Under System 7.0 there 
is a new trap, _OpenDF, which goes straight to the File Manager and 
avoids the driver-name confusion. 



268 ...,.. Chapter 13 The File Manager 

..,.. Parameter Blocks 

1nl 

Parameter blocks are the much-misunderstood basic data structure of the File 
Manager calling interface and are the key to effective debugging. Fortunately, 
they are much easier to debug with than they are to program with. A parame­
ter block is simply a block of memory that contains the inputs and provides 
space for the outputs for a File Manager call. A parameter block is laid out a 
bit differently for each call and often contains unused sections. All parameter 
blocks have exactly the same format in the first 24 bytes but differ widely for 
various calls after that. Register AO points to a parameter block on entry and 
exit from each File Manager call. The following hands-on exercise explores the 
parameter block in more detail. 

Examining the Parameter Block 

This example uses Mac Draw II, but any application that can open files will do. 
First, bring up the Standard File dialog. Enter MacsBug and set an A-trap break 
on Open. 

atb open 

Continue (with the G command) and open a document. MacsBug will break 
when the Open trap is called. Notice that Mac Draw II happens to call _HOpen, 
which shows up as _Open ,lmmed. 

0002B3EE _Open , Immed ; A200 I A200 

The best template for _HOpen is the hiopb, since it shows ioVRefNum, io­
NamePtr, and ioDiriD. As in all File Manager traps, register AO points to the 
parameter block. 

dm aO hiopb 

On my m achine, MacsBug responds with 



..,. Calling the File Manager 269 

Displaying HI OParamBlockRec at 006Elll2 

006E1112 qLi nk 6CD84080 is a bad pointer 

006Ell16 qType ECE2 

006Elll8 ioTrap 006E 

006E1 11A i oCmdAddr 60300000 -> 

006E111E i oCompletion 63DF42EO is a bad pointer 

00 6E1122 ioResult 16FC 

006E11 24 ioNamePtr 006El4A6 -> Great Artwork 

006E11 28 ioVRefNum FFFF 

006E112A ioRe f Num 0008 

006E112C ioVersNum #0 

006Ell2D ioPermssn H 

006E112E ioMisc NIL 

006Ell3C ioDiriD 00000059 

Because the File Manager looks only at certain values in the parameter block for 
each specific call, there are often many illegal values in the unused fields. Consult 
Inside Macintosh, Volume IV for a description of the fields used by the different 
calls. In this example ioCompletion contains garbage, but since this is a synchro­
nous call it doesn't matter. ioResult and ioRefNum are garbage because they are 
output parameters. To see what happens on the _Open call, try 

t ; d w aO+lO ; dw a0+18 

On my machine MacsBug responds with the result (zero, indicating success) 
and the newly opened access path's refNum, $3AE. 

Word at 006Ell22 = $0000 80 tO t ee I 

Word at 006Ell2A = $03AE §942 1942 I ee I 



270 ...,.. Chapter 13 The File Manager 

Note .,.I 
Different File Manager calls take slightly different parameter blocks, 
but it only takes a few templates to display all the fields. The 
Debugger Prefs included with the disk contain five different 
parameter block templates: iopb, hiopb, cinfo, cspb, and dtpb. 

The File Manager doesn' t differentiate among the different high 
level language definitions of the parameter blocks. It can't tell whether 
you used a CinfoPBRec or an HIOParamBlockRec. It just uses the byte 
offsets to the fields it wants, with the result that you can use any 
template that shows you the fields you want. For example, hiopb is 
nice to use for _Open, even though _Open doesn' t look in the ioDirlD 
field that hiopb prints out. iopb is most useful for _Read and _Write, 
since it shows ioBuffer, ioReqCount, and ioActCount. cinfo is useful 
for the calls that return file information LGetCatfufo and 
_GetFilelnfo/ _HGetFilelnfo). dtpb is for desktop manager calls, and 
cspb shows the parameters to _ CatSearch. 

The following paragraphs detail information about specific parameter 
block fields. 

ioCompletion. This field is important for asynchronous calls but irrelevant 
(zeroed by the file system, in fact) on synchronous calls. On async calls you 
can set a breakpoint on the completion routine address to examine the call as 
it is completed. 

ioNamePtr. The ioNamePtr is a common place for problems. When 
ioNamePtr is used as an input (for example, for _Open) you must point it to 
a valid pString. The problem occurs when ioNamePtr is an output (for in­
stance, for _GetVol). In this case you must either set it to point to a Str255 for 
the File Manager to fill in or leave it nil, in which case the File Manager won't 
attempt to return the string. If you leave this field uninitialized, the File Man­
ager will save the name wherever the field happens to point. Depending on 
where it points, your program may continue to work correctly for hours before 
you crash for some unknown reason. Or you may crash right away. All Mac 
programmers have left a dangling ioNamePtr at least once. 

In one case, _ResolveFileiDRef, ioNamePtr is used both as an optional input 
and as an output. If you don' t want to u se a string as an input (because you 
want to specify the volume using only ioVRefNum), but you do want the 
string returned on output, set the length of the Str255 (not the ioNamePtr field) 
to zero. The File Manager will interpret this empty string the same as a nil 



..,.. Calling the File Manager 271 

string on input but will return the name on output. If you do use a string for 
the file name, make sure you use a Str255. Just because your input filename is 
only five characters doesn't mean the output string will be five characters. 

L...-K_e_y_P_o_ln_t _ ......... I ..• th~·J:iilll·~~.nevElt,~n~\~~~)l\Pf<'~¢{orstrillgs. On calls thllt use 

1. l~i,ioNamePfr ~~t~therl'~f-t(.l:a.ya}id string location or be set to 
:·:lP.I~:pn·~vQlUmeSiffl~r·~gs:can.contain up to 255 

·· ¢.haract~,::althougl).,~ef~~~r:~qws..~J:w.·~tion:of 63-character 

io VRefNum. The io VRefNum should be a small negative number that corre­
sponds to a mounted volume (see the VOL dcmd described in the following 
VCB Queue section) or a large negative number that indicates a working direc­
tory. It can also be a small positive number, which is interpreted as a drive 
number (see the DRIVE dcmd, also described in the VCB queue section). 

ioRefNum. The ioRefNum should be a positive value that corresponds to a 
valid FCB. See the FILE dcmd described later in the FCB Array Section. 

io VersNum. Versions were an embryonic MFS concept that never made it into 
HFS. This field should always be set to 0 for_ Create,_ Open,_ OpenRF, _De­
lete, and_ GetFinfo. Even though Inside Macintosh omits this parameter for the 
HFS versions of these calls you still need to clear it. This is an infamous docu­
mentation bug in Inside Macintosh that has bitten even more people than dan­
gling ioNamePtrs. If you forget to clear this field, you won't be able to open the 
file again until you match the same random value that was in there when you 
called _Create. 

ioMisc. For _Open, _OpenDF, _OpenRF, _HOpen, _HOpenDF, and 
_HOpenRF, this field holds an optional pointer to a private buffer for all 
access paths to the file. A private buffer is a bad idea. Always set this field to 
nil for these calls. The private buffer feature doesn't exist in Mac II class ROMs, 



272 .,.. Chapter 13 The File Manager 

Note ..,. I 

but you should make sure to zero this field since the Mac Plus, SE, and Classic 
still support it. 

ioFDirlndex. Be sure to check the ioFDirlndex field before attempting to deci­
pher the parameters to _ GetCatlnfo. Positive values are directory indices and a 
value of 0 indicates that the input information is in the io VRefNum, ioNamePtr, 
and ioDiriD fields. A value of -1 indicates that only the ioDiriD field is used, and 
the call then returns information on the directory you passed in. 

ioDiriD. The ioDiriD field specifies a directory. Keep in mind that a nonzero 
value in this field overrides the directory ID in a working directory specification. 

A common problem users encounter with_ GetCatlnfo is forgetting to 
reset the ioDiriD field after each call. When returning catalog 
information on a file or directory, _ GetCatlnfo sets the ioDiriD field on 
output to the directory's diriD or the file's file number . 

...,.. In Memory Data Structures 
The two main data structures that the File Manager maintains are the File Con­
trol Block array (FCB) and the Volume Control Block (VCB) queue, which keep 
track of the open paths and mounted volumes, respectively. 

..... The FCB Array 

The FCB array (currently a pointer block in the system heap) is pointed to by 
the low memory global FCBSPtr. The first word in the FCB is the length (in 
bytes) of the array, including the length word, and the rest of the block con­
sists of individual FCBs. Each open path to a fork is represented by one record 
in the array. 

The length of each array element is in the word-sized low memory global 
FSFCBLen. For Systems 6.0 and 7.0 this value is $5E, but it may change in 
future systems. AfilerefNum issimplya byteindexintothearray. Thus, the 
firstFCB starts at FCBSPtr/\+2, and is given therefNum$0002. ThenextFCB 
starts at FCBSPtrA+2+$5E and has a refNum of $0060. The FCB array is uni­
versal to all applications and is not swapped by MultiFinder. 



Note .,.., 

101 

.,.. In Memory Data Structures 273 

Since the FCB array can move around in memory, never dereference 
FCBSPtr+someRefNum into a pointer. If you need access to the fields 
of the FCB, try _ GetFCBinfo. 

Looking at an FCB 

Set a break on the same Open call as in the previous hands-on exercise. Trace 
over the trap call using the T command. After the call register DO contains the 
error code, which should be zero, indicating the File Manager succeeded at 
opening the file, use 

elm aO hiopb 

to look at the parameter block and check the ioRefNum field . Open returns the 
refNum of the newly opened path in this field, which was (on my machine) 
$0788. To look at the FCB for this path, type 

elm @FC8SPtr+ 788 feb 

On my machine, MacsBug responds with 

Displaying FC8 at OOOAOAFO 

OOOAOAFO FileNumber 

OOOAOAF4 Flags 

OOOAOAFS Version 

000AOAF6 fcbS8lk 

OOOAOAF8 LogicalEOF 

OOOAOAFC Ph ysicalEOF 

000A0800 CurrentPos 

OOOA0804 VCB 

OOOAOB08 fcbBufAdr 

OOOAOBOC fcbFlPos 

OOOAOBOE ClumpSize 

OOOA0812 fcbBTC8 

OOOAOB16 fcbExtRec 

0000008 0 

00 

00 

0000 

00000000 

00000000 

00000000 

OOOOC3AC 

00000000 

0000 

00001800 

00000000 

0000 0000 0000 0000 0000 0000 



274 ~ Chapter 13 The File Manager 

OOOAOB22 f cbFType 

000AOB26 f cbCatHint 

000A0B2A fcbOiriO 

000AOB2E fcbCName 

44525747 

00000031 

00000059 

Great: Art:work 

The FILE dcmd performs a similar operation. FILE without parameters shows 
all FCBs, while FILE with parameters shows the control block for a specific 
path. For example, typing 

file 7b8 

causes MacsBug to display 

Displaying F'i le Contr ol Blocks 

f Ref Fil e •:ol 7ype f l fo~k LEo! Ma~k F l Num Parent FCB a t 

07b8 Great Ar t wo ... Xonstcr DRil5 dw data 10 t O OOOOb O 000053 OaOa!O 

The FILE dcmd compresses almost all the information from the FCB into a 
single line. A few fields aren't obvious. The Fl field always shows the letters 
dw. The d will be capitalized if the path's dirty bit is set. The W will be capital­
ized if the path has wri te permission. This particular example has a read-only 
path that has no data waiting to be flushed (obviously, since it's read only). The 
Fork field will either be data or rsrc for the data or resource fork of the file. LEaf 
is the length of the file in bytes, and the Mark field shows the current position 
of the mark. FlNum shows the internal number assigned to every file by the 
File Manager. Parent shows the directory in which the file resides, and the 
FCB-at field shows the address of the FCB (simply FCBSPtr" + refNum). 

The FCB contains a number of interesting fields as detailed in the 
following paragraphs. 

File Number. The first long word in each FCB contains either the file number 
of the file whose fork is open through this path or zero to indicate a free FCB. 
In dire straits you can close a file directly from MacsBug by setting this value 
to 0. This doesn't make sure that the file is flushed (so you lose data if it hasn't 
actually been written through the disk cache and out to disk), but it does get 
the file out of the way. 



Note .,.., 

..,.. In Memory Data Structures 275 

Flags Byte. This byte contains the following flags: 

7 dirty bit (file has been written to and not flushed) 
6 unused 

5 file is write protected (locked) 

4 fork is opened for shared access 

3 unused 

2 byte-range lock is in place on this fork 
1 this path is to a resource fork 

0 this path has write permission 

If you're getting permission errors writing to a file, make sure that bit 
0 is set. The File Manager will return read-only permission even if you 
asked for read-wri.te (unless the file is on a server or File Sharing is 
enabled, in which case the File Manager returns an errer). Also, if you 
need a quick and dirty way from MacsBug to prevent writes to a file, 
just clear bit 0 of the flags byte. 

Logical EOF and Physical EOF. These fields indicate the size of the file, in 
bytes. The physical EOF is always greater than the logical EOF, and is a round 
number of disk blocks. 

Mark. The File Manager uses the Mark field for position calculations in the 
fsAtMark and fsFromMark positioning modes. Watch this field if you're get­
ting unexpected end-of-file errors (eofErr). Some applications use only the 
fsFromStart or fsFromEOF positioning modes, in which case the File Manager 
won't use this field. 

VCB Pointer. You can figure out which volume a file is on by following this 
pointer to the volume's VCB. VCBs are discussed in the following section. 

File Type. File type refers to the open file's type. The type is a long word (4 
bytes)containingfourcharacterssuchas 1 TEXT 1

, 
1 PICT 1 ,or 1 MBBK 1

• You 
should register file types created by your application with Apple's Developer 
Technical Support. This assures files created by different applications will 
have a unique type. 



276 ..,.. Chapter 13 The File Manager 

Note ..,.I 

Parent Directory. The parent directory is the directory that contains the open file. 

Since a file has both a resource and a data fork, and since several 
applications might open a given file, don' t be surprised to see several 
entries in the FCB array with the same volume, directory, and name. 
Each entry represents a different access path with unique privileges 
and a private mark. Write operations that change the length of the file 
appear to all paths, however, and only one path can have write 
privileges . 

...,.. The VCB Queue 

101 

The VCB queue holds a VCB for each mounted volume. The VCB contains a 
bunch of volume-specific information, most of which is rarely looked at dur­
ing debugging. All VCBs start with the same 178 bytes of information, al­
though extra information may be tacked on by external file systems. The most 
interesting information in the VCB is the information about which driver is 
used to access the volume. 

The VCB queue header starts in the low memory global VCBQHdr. The 
VCB queue is common to all applications and is not swapped by MultiFinder. 

Dumping a VCB 

The first VCB is pointed to by the VCBQHdr+2. To display the first VCB 
entry, type 

dm @(VCBQHdr+2 ) vcb 

An abbreviated version of MacsBug's response on my machine is 

Display1ng VC8 at 0000C3AC 

0000C31\C qLink 00000570 -> 

0000C380 qTypc 0080 

OOOOC382 vcbFlags FFOO 

0000C384 vcbS igWord 4244 

0000C386 vcbCrDate 110698872 

0000C38A vcbLsMod A34A229f 



~ In Memory Data Structures 277 

OOOOC3BE vcbAtrb 0000 

OOOOC308 vcbVN 1-!onster 

OOOOC3F4 vcbDrvNum 0009 

OOOOC3F6 vcbDRefNum FFDB 

OOOOC3F8 vcbFSID 0000 

OOOOC3FA vcbVRefNum FFFF 

OOOOC4 2 6 vcbFndrinfo 000034CA 00000000 000032 31 00000000 0000000000000000 00000000 

By comparing the address of this VCB ($C3AC) with that from the VCB 
entry of the FCB in the previous hands-on exercise, you can see that this VCB 
is for the volume that contained the Great Artwork file used in that example. 
You could just as easily have dumped this by looking in the VCB field of the 
FCB for that file and using that address directly, as in 

dm c3ac vcb 

Just as the FILE dcmd shows an FCB, there the VOL dcmd shows VCBs. 
Without parameters, VOL shows all mounted volumes, whereas VOL fol­
lowed by a volume reference number will display the VCB for a specific vol­
ume. For example, 

vol ffff 

produces the output 

vRef Vol Flg. dRef Drive FSID #Blk BlkSiz #Files #Dirs Blsd Dir VCB at 

ffff Monster Dsh ffdb 0009 0000 cb72 000600 OOOdaa 000196 0034ca 00c3ac 

Taking this a step further, you can find the driver that handles this volume. 
The driver reference number (dRef) for Monster is $FFDB, so you can use the 
DRVR dcmd (discussed in Chapter 12) to discover that Monster is being ac­
cessed through the .SCSIOO driver, Apple's SCSI driver. To do this, type 

drvr ffdb 

On my machine, MacsBug responds with 

Displaying Driver Control Entries 

dRef dNum Driver Flg Ver qHead Storage Window Dely Drvr at DCE at 

ffdb 0024 .SCSIOO bPO #0 000000 00829c 000000 0000 006b86 800082c4 



278 ..,.. Chapter 13 The File Manager 

From the VOL output, you can see that the drive number for Monster is 9, and 
you can use the DRIVE dcmd to find out about drive 9. 

drive 9 

MacsBug responds with 

Displaying Drive Queue 

Drive Vo l Flags dRef Driver Name FSID Size QElem at 

0009 Monster leiS f fdb . SCSI OO 0000 0002626e 0080f2 

Interesting fields in the VCB include 

qLink. Contains a pointer to the next VCB. 

Signature Word. Contains $4244 for hierarchical volumes or $0207 for flat ones. 

Attributes Word. Bit 15 is the volume write-protect bit. As with the write per­
missions bit in an FCB, you can set this from MacsBug to protect a volume tem­
porarily from miscellaneous File Manager activity (although not from strange 
driver activity that didn' t originate through the File Manager). Bit 9 is set if 
there is a bad block map in the extents B-tree. 

Volume Name. Handy if you're wondering if the block of memory you're 
looking at is really a VCB. Note that it is legal to have several different volumes 
online with the same name. 

Drive Number. This indicates which drive the volume is residing on. 

Driver Reference Number. This is the refNum the File Manager uses for all 
of its own Read and Write calls when it needs to access the drive. 

..... The WDCB Array 

The Working Directory Control Block (WDCB) array (currently a pointer block 
in the system heap) maps wdRefNums into volume/ diriD pairs. It is pointed 
to by the low memory global WDCBSPtr. The first word in the WDCB is the 
length (in bytes) of the array, including the length word, and the rest of the 



101 

..,.. In Memory Data Structures 279 

block consists of individual WDCBs. Each open working directory is repre­
sented by one record in the array. Each element is currently 16 bytes long. 

The first two entries in the WDCB array are special. The first entry contains 
the default directory. The second entry contains the last location used by the 
"poor man's search path" (see further on). The following hands-on exercise 
shows how to map a wdRefNum by hand. 

E?Camining the WDCB Array 

Say you've set a trap break on _ Create and you see the value in the io VRefN urn 
field is $8093. To convert this to an index into the WDCB array, subtract # 
-32767, or $8001. Then use the index to look into the array. 

To convert from a wdRefNum into an index, type 

8093-8001 

MacsBug responds with 

8093-8001 = $00000092 #146 l/1 4 6 '••••' 

Then use the index to look at the WDCB 

elm @WDCBSPtr+92 

On my machine MacsBug responds with 

Displaying memory from @0372+92 

0000944A 0000 C3AC 0000 2275 0000 0000 0000 0000 · · ····Hu ··· ···· · 

The first long word is a pointer to a VCB. You can dump it out to learn which 
volume is indicated by this wdRefNum. The second long word is the directory 
part of this working directory, currently $00002275 . 

...,.. The Default Volume 

The File Manager has the concept both of a default volume and of a default di­
rectory. The default volume is a File Manager concept from MFS days. The low 
memory global DeNCBPtr points to the VCB of the default volume. Along 
with HFS support came the concept of the default directory. The default direc­
tory is stored in the first entry in the WDCB array (WDCBSPtr"+2). In the first 



280 ..,. Chapter 13 The File Manager 

WDCB, the VCB pointer always matches the value in DeNCBPtr, and the 
directory ID is the default directory. 

To provide compatibility to MFS-minded applications, Apple added the 
low memory global DeNRefNum. DeNRefNum holds a working directory 
refNum that represents the default volume/ default directory pair, or, when 
the default directory isn' t represented as a wdRefNum, DeNRefNum holds 
the vRefNum of the default volume. 

Under MultiFinder, there's a different default volume and directory for 
each process. 

Examining the Default Volume and Default Directory 

Drop into MacsBug and dump out the default VCB. 

dl defvcbptr 

On my machine MacsBug responds with 

Long at 00000352 = $0000C3AC 150092 #50092 I eeee I 

See what the volume name is by dumping the VCB at $C3AC. 

dm c3ac vcb 

On my machine MacsBug responds with 

Displaying VCB at OOOOC3AC 

OOOOC3AC qLink 

OOOOC3B4 vcbSigWord 

OOOOC3D8 vcbVN 

OOOOD570 -> 

4244 

Monster 

Now look at the default directory by dumping the first WDCB. 

dm @WDCBSPtr+2 

On my machine MacsBug responds with 

Displaying memory from @0372+2 

000093BA 0000 C3AC 0000 3231 0000 0000 006E 1934 · ····· 21·· · ··n· 4 



..,.. More File Manager Tips 281 

The default directory is $00003231. Note that there's a copy of the DeNCBPtr 
in the first WDCB. Now, to see what MFS-minded applications will see when 
they call_GetVol, dump out the default vRefNum. 

dw defvrefnum 

On my machine MacsBug responds with 

Word at 00000384 = $8063 #32867 #-32669 '•c ' 

Since DeNRefNum is a wdRefNum, look at the corresponding WDCB to 
see that it represents the same volume and directory that are stored in the 
first WDCB. 

dm @WDCBSPtr+(8063- 8001) 

On my machine MacsBug responds with 

Displaying memory from @0372+(8063-8001) 

0000941A 0000 C3AC 0000 3231 0000 0000 0000 0000 · ····· 21 ····· ··· 

...,.. More File Manager Tips 

...,.. The "Poor Man's Search Path" CPMSP) 

On all MFS (no H-bit) File Manager calls, and all HFS File Manager calls (H-bit 
set) in which the ioDiriD field contains zero, the File Manager uses a compati­
bility trick known as the Poor Man's Search Path, or PMSP. The PMSP is a list 
of directories that the File Manager will search if it fails to find a file in the indi­
cated directory. Most commonly, the PMSP is set up to search the System 
Folder. If your application is finding files in unexpected directories, look at the 
second WDCB (WDCBSPtr"+ 12) to see in which location the file manager 
actually found its target on the last call that searched for a file using the PMSP. 

You can avoid getting confused by the PMSP in your applications by using 
HFS-calls and supplying a diriD. 



282 ..,.. Chapter 13 The File Manager 

Note ..,.I 

Note ..,.I 

101 

When you type atb _GetCatlnfo into MacsBug, you're really 
evaluating the macro ATB $A060 dO.w = 9. If you set several of these 
conditional trap breaks, remember that they all go away if you ATC 
any one of them, since they are all on $A060. MacsBug doesn't check 
conditionals for ATC. 

MPW patches _Read and _Write (among other things) to allow II 0 to 
files that are also windows. To do this it passes around some bizarre 
refNums (odd and negative) to represent its open windows. This 
works because it has first chance at the File Manager calls made within 
its environment. Don' t be alarmed if you see a -3 as a refNum if 
you're working with an MPW tool that is sending output to a window. 

Watching the File Manager Do 1/0 

This exercise watches the driver calls made by the File Manager in response 
to a _Read call. Go into a Standard File in your favorite application, and set a 
break on _Open. Once you've arrived at _Open, trace over it and display the 
refNum with 

dw a0+18 

On my machine MacsBug responds with 

Word at 006E7306 = $0788 #1976 #1976 '••' 

which means the file was opened at refNum $07B8. Now set a break on reads 
to the file with 

atb _ Read ( a0+18)~ . w = 7b8 ' ; dw a0+18 

The DW after each break will come in handy in just a second. Use the Go 
command until MacsBug breaks again on a _Read. Dump out the parameter 
block with 

elm aO iopb 



~ More File Manager Tips 283 

On my machine MacsBug responds with 

Displaying IOParamBlockRec at 006E72EE 

006E72EE qLink AAAAAAAA is a bad pointer 

006E72F2 qType AFOO 

006E72F4 ioTrap FFFF 

006E72F6 ioCmdAddr NIL 

006E72FA ioCompletion NIL 

006E72FE ioResult 0001 

006E7300 ioNamePtr 006B985C -> ••v" t 

006E7304 ioVRefNurn 006B 

006E7306 ioRefNum 07B8 

006E7308 ioVersNum to 

006E7309 ioPermssn iO 

006E730A ioMisc 0000006E -> 

006E730E ioBuffer 806BDAE8 -> 

006E7312 ioReqCount 000013AF 

006E7316 ioActCount 9AOA006B 

006E731A ioPosMode 0000 

006E731C ioPosOffset 00000000 

The application wants to read $13AFbytes into location $006BDAE8. Now use 
the DRIVE command to dump out the driver for the disk containing your file. 
On my machine MacsBug responds with 

Displaying Drive Queue 

Drive Vol Flags dRef Driver Name FSID Size QElem at 

0001 <none> LEiD fffb .Sony 0000 OOOOOOff 004df6 

0008 storage 10 leiS ffda .SCSIOO 0000 00013880 00815e 

0009 Monster leiS ffdb .SCSIOO 0000 0002626e 0080f2 

OOOa inside leiS ffdf .SCSIOO 0000 0004e200 007f42 

14 drives 

Now you know that the File Manager will do a _Read to refNum $FFDB to sat­
isfy the application's read request. Set another break on _Read, this time for 
a refNum of $FFDB. 



284 ..,. Chapter 13 The File Manager 

atb read (a0+18)~.w ffdb.w '; dw a0+18 

g 

Because of the File Manager's disk cache (the one whose size you set in the con­
trol panel), you might see another break on a file read. Look at the word Macs­
Bug dumps out with the break to see which kind of read is happening. Keep 
going until you see one for the driver. On my machine, the read looks like 

A-Trap break at 006B98EA: A002 (_Read) 

Word at 006E7306 = $FFDB #65499 f-37 •••• 

Dump out the parameter block with 

dm aO iopb 

On my machine MacsBug responds with 

Displaying IOParamBlockRec at 006E72EE 

006E72EE qLink NIL 

006E72F2 qType 0002 

006E72F4 ioTrap A002 

006E72F6 ioCmdAddr NIL 

006E72FA ioCompletion NIL 

006E72FE ioResult 0000 

006E7300 ioNamePtr NIL 

006E7304 ioVRefNum 0009 

006E7306 ioRefNum FFDB 

006E7308 ioVersNum to 

006E7309 ioPermssn #8 

006E730A ioMisc 00000008 -> 

006E730E ioBuffer 00725902 -> 

006E7312 ioReqCount 00001000 

006E7316 ioActCount 00000200 

006E731A ioPosMode 0001 

006E731C ioPosOffset 002D2FOO 

Notice that the refNum here is $FFDB, a small negative number referring to a 
driver, so bytes at the mark in the file are on the disk at byte $2D2FOO. Notice 
also that the ioReqCount field here doesn't match the one in the application's 



~ More File Manager Tips 285 

original File Manager _Read call. The File Manager always d oes block-sized 
reads and writes. The ioBuffer field here is also different from the application's 
ioBuffer, which means that the File Manager is reading this block into its inter­
nal disk cache (the one whose size you set in the control panel). 

Since application reads don' t always line up with blocks on the disk, the File 
Manager divides them into multiple reads. It starts with a one-block read into 
the cache to align the start of the remaining data on a block boundary. It then 
reads a big round number of blocks straight into the caller's buffer and finishes 
with a small read to round out the call. The File Manager might also do a _Read 
as several small reads, again depending on what sits in the disk cache. Your 
mileage may vary . 

..,. Some Useful MacsBug Commands 

To break on reads to a particular file, use 

atb Read (a0+18)A .w = refNum 

This will avoid reads to other files as well as reads to drivers. To break when 
a particular file is opened, use 

a t b Open ( (a0+ 12)A+l)A . l = ' name ' 

where NAME is the first four letters of the file name. This works because 

(a0+12) 

(a 0+12 ) A+l 

points to the ioNamePtr field 

points to the first character in the pString 
(skipping the length byte) 

refers to the first long word of the name 

To show the file types of all files being opened, use 

atb _Open ' ; t ; dl ((FCBSPt r A+(a0+18 ) A.w )+32) ; g 

(a0+18 ) points to the ioRefNum field 

points to the beginning of the FCB for 
this refNum 

( (FCBSPtrA+ (a0+18 ) A. w) +32 ) points to the file type field in the FCB 

d l ( (FCBSPtr A+ (a0+18) A. w) +32) ; g dumps the type and keeps going 



286 ~ Chapter 13 The File Manager 

Of course, since there's the FILE dcmd, you might also try 

atb _Open ';t; file (a0+18)A.w 

which executes the FILE command on the refNum of the newly opened path . 

....,. Summary 
Almost all applications use the File Manager in one way or another. While the 
high level glue provides a simple calling interface, understanding how this 
glue works is critical for debugging. This chapter discussed File Manager rou­
tines and data structures. Specifically: 

• The difference between high level glue, low level glue, and trap calls 

• What a parameter block is and how it is used by the File Manager 

• The File Manager's in-memory data structures 

• How to determine the default volume and directory 

• How to use the DRIVE, DRVR, FILE, and VOL dcmds 

• How to watch the File Manager make driver calls 



14 The Printing Manager 

Before you can begin looking at the Print Manager with MacsBug, you must 
understand the Macintosh printing model and how the application drawing 
commands are translated to the printer. The Printing Manager provides a 
device-independent application interface while preserving QuickDraw's 
graphics model. 

~ Device Independence 
The Macintosh Printing Manager provides a device-independent program­
ming interface for a large number of output devices. Although device inde­
pendence is a major goal at the application layer, lower layers of the interface 
need intimate knowledge of the device in order to support features unique to 
that device. Unlike most systems, the Macintosh provides this support with a 
device-independent Application-Printer Interface (API) on top of a device de­
pendent driver as shown in Figure 14-1. 

287 



288 ..,. Chapter 14 The Printing Manager 

Key Point ~~o- 1 

Key Point ~~o- 1 

:X --+ :X 
I 

"" laserWriter 
r (driver) laserWriter 

~ ---+ m \- • ~.oo .. -- + ,.ooP 
Application Printing Manager \ lmageWriter lmageWriter 

(PrGiue) (driver) 
·~ 

~--+~ 
AnyWriter 

(driver) 

Figure 14-1 . The application to printer interface 

AnyWriter 

The Printing Manager doesn't exist in ROM like other parts of the Toolbox; 
it is provided as glue in the Interface.o library. All the routines defined by the 
Printing Manager (except PrOpen and PrClose) are actually implemented by 
the printer driver (which the user chooses with the Chooser). The Printing Man­
ager or PrGlue remains the same regardless of the particular printer being used. 

The Printing Manager is just glue code responsible for loading and 
calling the appropriate driver routines. 

The print drivers reside in the System Folder and are loaded only when 
needed. The standard LaserWriter driver is usually named LaserWriter, and 
the ImageWriter driver is named lmageWriter for the serial version and 
AppleTalk ImageWriter for the networked version. (Third parties also pro­
duce their own drivers for their specific printers.) The driver files contain the 
device-specific code necessary to drive the target device. 

The printer driver contains code specific to a certain printer. 



.,.. The Graphics Model Used for Printing 289 

.,... The Graphics Model Used for Printing 
As discussed in the QuickDraw chapter, QuickDraw drawing operations 
occur in a GrafPort or CGrafPort. GrafPorts have a set of bottleneck procedures, 
located in the QDProcsPtr (for GrafPorts) or CQDProcsPtr (for CGrafPorts), 
associated with them. There is one standard procedure for each fundamental 
object (for example, text, lines, rectangles, and regions) that QuickDraw 
knows how to draw. Since the procedures are stored with each GrafPort, it's 
easy to customize QuickDraw on a port-by-port basis by overriding these 
drawing procedures. For more information on QDProcs, see the section titled 
"Customizing QuickDraw Operations" in Inside Macintosh, Volume II, as well 
as the "New GrafProcs Record" section of Inside Macintosh, Volume V. Figure 
14-2 shows the graphics model for drawing on the screen. 

GrafPort 

O' 
~Line (10, 10) ~ 

~ .. ~1 
Application QulckDraw 

0 
-::::::. 
textProc 
lineProc 

~ rn1 

J~~~ QuickDraw Monitor 

putPicProc 

Figure 14-2. The graphics model for drawing on the screen 

In order to preserve QuickDraw' s drawing model, the Printing Manager 
takes advantage of the QDProcs drawing mechanism. When an application 
prints, it still uses QuickDraw calls and still draws into a QuickDraw GrafPort. 
The difference is that the Printing Manager replaces the standard QuickDraw 
QDProcs with those of the selected printer driver. Figure 14-3 shows the 
graphics model for printing. 



290 ..,.. Chapter 14 The Printing Manager 

Key Point ..,.., 

Key Point ..,.. , 

GrafPort 

0) 

~ Line (10, 10) ~ 

~ ·~l 
Application QuickDraw 

0 
~ 

textProc 
lineProc 

::r --+::! 
raserWriter LaserWriter J L< (driver) 

putPicProc 

Figure 14-3. The graphics model for printing 

This brings us to an important rule of Macintosh printing: The 
Printing Manager receives data from the application only when the 
Printing Manager's Gra£Port (the one returned from PrOpenDoc) is 
the current port. 

Since the QDProcs mechanism is also provided for use by applications, it is 
important to remember the Printing Manager relies on it. If an application re­
places the QDProcs at print time, the Printing Manager will not be able to receive 
data from the application, and nothing will print. If the use of custom QDProcs 
is required at print time, the original (printing) QDProcs must still be called. To 
do this, you should save the current set of QDProcs before installing your own, 
and your custom procedures should call the original set before returning. 

This brings us to another important rule of Macintosh printing: The 
Printing Manager does not see changes to the graphics environment 
until the application calls a QuickDraw procedure that actually draws 
something (that is, causes a QDProc to be called). 

There are several QuickDraw procedures that do not have correspond­
ing QDProcs. The Copy Mask (System 4.1 and la ter) and CopyDeepMask 



101 

..,. The Graphics Model Used for Printing 291 

(System 7.0 and later) procedures do not go through the bottlenecks and 
will not print. 

Procedures like Move To and ClipRect simply modify fields in the GrafPort 
and have no corresponding QDProc. The new values set by these calls aren't 
actually used until the next drawing operation occurs. At that time, the object 
is drawn at the location specified by the last MoveTo and clipped to the area 
specified by the last ClipRect. 

This is especially important at print time, since other parts of the system can 
affect the state of the GrafPort. For example, let's say that you are trying to clip 
some text that is drawn via TextEdit. You may call ClipRect to set the clip 
region to the desired value and then call TEUpdate to draw your text. This 
call will not produce the desired results since TEUpdate changes the GrafPort' s 
clipping region. 

Breaking on the TextProc 

To find the clipping region specified by TEU pda te, you must watch the text be­
ing drawn line by line. This can be done by breaking on the TextProc bottleneck 
procedure. To do this, start by setting an A-trap break on TEUpdate. 

atb teupdate ; g 

MacsBug will break on the next call to TEUpdate. When this happens, dis­
play the current GrafPort with the command 

dm @@aS grafport 

As described in the QuickDraw chapter, this shows the current values for 
the pen location (pnLoc), the clip region (clipRgn), and the QDProc pointers 
(grafProcs). If the grafProcs field is zero, no special procedures have been 
installed and QuickDraw will use the standard procedures. If you are look­
ing at a port that is used for printing, the grafProc field will necessarily be 
nonzero. If grafProcs is nonzero, it points to a record of procedure pointers. 
Display the grafProcs with the grafProcs template. For example, if the graf­
Procs are at $88850 use 

dm 88850 grafProcs 

The first procedure will be the StdText procedure, the one you're interested 
in. Since this is a procedure pointer, rather than a trap, you intercept it by set­
ting a breakpoint. For example 



292 ~ Chapter 14 The Printing Manager 

br 570F8 

MacsBug will break on the first instruction of the StdText procedure. If this 
is a Gra£Port used for printing, this is Printing Manager (notQuickDraw) code. 
You can now reexamine the Gra£Port and determine which fields TEUpdate 
has changed. 

dm @@aS grafport 

This example shows how tl1e lowest level of QuickDraw, the QDProcs, 
works. This is an excellent way of watching the Printing Manager execute, be­
cause the print driver routines, rather than the standard QuickDraw routines, 
are called by the QDProcs . 

...,. How the Printing Manager Works 
The following sections discuss the Printing Manager glue code and the 
print record . 

...,. The Glue and the Trap 

Before System Software 3.3, the Macintosh Printing Manager was implem­
ented as glue only and the entire Printing Manager was linked into every 
application that supported printing. In System 3.3, the Printing Manager was 
reirnplemented as a single trap that receives a long-word selector specifying 
the desired operation. At the same time, the code provided in the Interface.o 
library was modified to look for the trap. The standard glue is still provided 
to support machines tha t are running systems older than System 3.3. 

To explain all of this, let's look at what happens when an application 
calls PrOpen 

1. The application calls PrOpen, a piece of Interface.o code that has been 
linked into the application. 

2. The PrOpen routine pushes a long-word selector specifying that the 
desired operation is Open, and then jumps to the PrintCalls routine. 

3. PrintCalls calls the PrGlue trap if it exists. 
4. If the PrGlue trap is not available, the standard glue (the rest of the Print­

Calls routine) is used instead. 



~ How the Printing Manager Works 293 

This is important for a number of reasons. First of all, if you try to intercept 
the _PrGlue trap on a machine running a system older than 3.3, you will be wait­
ing a long time (forever). When the trap is available, where you enter the debug­
ger may come as a surprise. For most traps, the debugger displays a version of 

MyPrintingProc 

3D9AOE New Handle A022 

For PrGlue, you get 

No Procedure Name 

3d9AOE PrGlue ; A8FD 

even though your application procedure made the Printing Manager call. The 
PrGlue trap is called from within the PrintCalls glue routine, not directly by 
your application routine. Since the Interface.o library is compiled with debug­
ging symbols turned off, there is no way for the debugger to know that the rou­
tine name is PrintCalls. 

~ Stepping Through Glue 

The Printing Manager glue is easy to understand once you know what it's 
doing. (From here on, we assume you are running with System 3.3 or later.) 
Let's start with the first call that an application makes to the Printing Man­
ager, PrOpen. The code for PrOpen is compiled into the Interface.o library 
of MPW. If you dump this code using MPW' s DumpObj tool, you will see 
the following. 

Module: Flags=$08=(Extern Code) Module-"PROPEN"(714) Segment•"Main"(300} 

Content: Flags $08 

Contents offset $0000 size SOOOE 

00000000: 2Fl7 I/, I MOVE.L (1\7),- (1\7) 

00000002: 2F7C C800 0000 I /I .... I MOVE.L II$C8000000, $0004 (A7} 

0004 

OOOOOOOA: 4EFA 0000 'N ... ' JMP PRINTCALLS ; id: 718 

First, the return address is duplicated, leaving 4 extra bytes on the stack. Then 
the selector is put under the return address. Figure 14-4 shows the stack on 
entry to PrintCalls. 



294 ...,. Chapter 14 The Printing Manager 

-• ·--A--., __ .,-, . .- ~.. . 

previous stack 
.. •· .,, ' "''~ ;· •. ,·;• ·''!' .. ·" ·.; 

Parameters 
(If any) 

Long-word 
Selector 

Return Address 

Figure 14-4. The stack on entry to PrlntCalls 

All Printing Manager procedures or functions defined in Inside Macintosh 
are identical to this one except for the long-word value used for the selector . 

.,... What This Means for Your Application 

This glue makes your application's printing calls look different to MacsBug 
than other toolbox calls. If you have a procedure that calls PrOpen defined as 

PROCEDURE MyPrintProc; 

BEGIN 

Debugger; 

PrOpen; 

END; 

when you look at the object code generated by the compiler (either in MacsBug 
or by using the DumpObj tool), you will see a display similar to 

00000000: 

00000004: 

00000006: 

OOOOOOOA: 

LINK 

_Debugger 

JSR 

UNLK 

OOOOOOOC: RTS 

AG,#$0000 

A9FF 

PROPEN id: 

A6 



....,. How the Printing Manager Works 295 

Note that instead of the _PrGlue trap that you would expect, the compiler 
produced a JSR to the PrOpen routine discussed previously. The glue for 
PrOpen then sets up the stack and JMPs into PrintCalls, which calls the 
_PrGlue trap (in systems later than 3.3). Both PrOpen and PrintCalls are linked 
into your application's code. 

Setting a debugger break in your source code is one way of looking at the 
parameters being passed to the Printing Manager routines but forces you to 
recompile your source code. In cases where recompiling the source code is not 
possible (a compiled library) or convenient (it takes too long), you must inter­
cept the _PrGlue trap using the A-trap break command in MacsBug. 

atb PrGlue 

This command causes MacsBug to break into the debugger anytime the 
PrGlue trap is called, which means it works only on System 3.3 and later. Usu­
ally you want to break only on a particular routine, not on every routine that 
goes through the PrGlue dispatcher. In these cases, you should use a condi­
tional A-trap break. For example, $C8000000 is the selector for PrOpen and 
the command 

atb prglue @(sp) .l=c8000000 

tells MacsBug to break when the stack pointer is pointing to the selector for 
PrOpen. The selectors for all the Printing Manager routines can be found in the 
Printing.h/ p interface files of MPW, as well as the Printing Manager chapter 
in Inside Macintosh, Volume V. 

If you execute the preceding command, MacsBug will break at the _PrGlue 
trap the next time the PrOpen routine is called. MacsBug will display some­
thing like 

No procedure name 

153014 

153016 

153018 

* PrGlue 

MOVEQ #$00,01 

MOVE.B 

A8FD 

$000A(A6),D1 

At this point, you are right in the middle of the PrintCalls routine referred 
to previously. PrintCalls is the "one-size-fits-all" procedure of the Printing 
Manager; all Printing Manager calls go through it. 

Since we've talked about this routine so much, the critical fragment should 
make sense. Displayed from the Interface.o file via the MPW DumpObj com­
mand, the beginning of PrintCalls looks as follows. 



296 ..,_ Chapter 14 The Printing Manager 

Module: Flags=$08=(Extern Code) Module="PRINT-
CALLS" (718) Segment="Main" (300) 

Content: Flags $08 

Contents offset $0000 size $020C 

00000000: 2FOB I I. I MOVE. L 

00000002: 203C 0000 A89F I < ..•. I MOVE.L 

A3,-(A7) 

#$0000A89F,DO 

00000008: A14 6 I .F' _GetTrapAddress ; A146 

OOOOOOOA: 2648 I &HI MOVEA.L AO,A3 

OOOOOOOC: 203C 0000 A8FD I < .... I MOVE.L #$0000A8FD,OO 

00000012: A146 

00000014: B7C8 

00000016: 6746 

00000018: 265F 

0000001A: 4E56 0000 

0000001E: 41EE 0008 

00000022: 7007 

00000024: C02E 0008 

00000028: 002E OOOA 

0000002C: 5800 

0000002E: 9ECO 

00000030: 224F 

00000032: A02E 

00000034: A8FO 

00000036: 7200 

00000038: 122E OOOA 

0000003C: 7007 

0000003E: C02E 0008 

00000042: 6710 

00000044: 204F 

00000046: 43F6 100C 

0000004A: E248 

0000004C: 6002 

0000004E: 32DF 

00000050: 51C8 FFFC 

I .F' 

'gF' 

I&_' 

'NV •• I 

'A .•. I 

'p. I 

•x. • 

'"O' 

I r. I 

'p. I 

'g. I 

• o• 

•c ... • 

I .H' 

I I I 

'2. I 

'Q. • • I 

_GetTrapAddress ; A146 

CMPA.L 

BEQ.S 

AO,A3 

*+$0048 

MOVEA.L (A7)+,A3 

LINK A6,#$0000 

LEA $0008(A6),A0 

MOVEQ #$07,00 

ANO.B 

ADD.B 

ADOQ.B 

SUBA.W 

$0008(A6),00 

$000A(A6),00 

f$4,00 

OO,A7 

MOVEA.L A7,A1 

0000005E 

_BlockMove 

_PrGlue 

A02E 

A8FO 

MOVEQ 

MOVE.B 

MOVEQ 

AND.B 

BEQ.S 

#$00,01 

$000A(A6),01 

1$07,00 

$0008(A6),00 

*+$0012 ; 00000054 

MOVEA.L A7,AO 

LEA $0C(A6,D1.W),A1 

LSR.W f$1,00 

BRA.S 

MOVE.W 

OBF 

*+$0004 ; 00000050 

(A7) +, (A1) + 

00,*-$0002; 0000004E 



~ How the Printing Manager Works 297 

00000054: 4E5E IN" I UNLK A6 

00000056: 205F MOVEA.L (A7) +, AO 

00000058: DFCl ADDA.L Dl,A7 

0000005A: 584F 1 X0 1 ADDQ.W #$4,A7 

0000005C: 4EDO IN. I JMP (AO) 

<< The "Real" Glue Follows >> 

The first two calls to GetTrapAddress determine if the _PrGlue trap is avail­
able. If it is, the rest of this code is executed as the ''Trap" version of PrGlue. 
This means that if you want to step out of PrintCalls with MacsBug, you must 
step from the _PrGlue trap (at address $34 in this example) all the way down 
to the JMP instruction (at address $5C). The JMP instruction goes back to the 
procedure that originally called the Printing Manager routine in your code. If 
you know to look for the JMP instruction, you can set a breakpoint to avoid 
having to step. 

The preceding code is only the trap portion of the PrintCalls routine. The 
code following the JMP instruction (at address $5C) is used if the _PrGlue trap 
does not exist. Unless you are running on a system older than 3.3, this code will 
never be executed.lt is provided to support the 512KE, which can only run on 
systems up to version 3.2 . 

.,... The Print Record 

The main Printing Manager data structure is the print record, which is defined 
as type TPrint. The print record is shared by the application, the Printing Man­
ager, and the print driver. It contains all of the state information, both public 
and private, for the current print job. The application allocates the record as a 
Memory Manager handle and then passes it to the Printing Manager for initial­
ization. When the Printing Manager dialogs are presented (the Page Setup and 
Print dialogs), the record is updated to reflect the user's choices. Print drivers 
use this record to store their global variables. 

Since the structure of this record was originally defined for use by the 
ImageWriter driver, many of the fields are not applicable to more recent 
drivers. For example, the fields used as a BitMap buffer on the Image Writer 
are not required for the LaserWriter driver, which converts its QuickDraw 
to PostScript, not bits. Because of this, many drivers, both Apple and 
third-party, redefine the meaning of fields of the print record. This can lead 
to surprises for applications that rely on specific fields. The fastest way to 
find these problems is to compare the print record of a driver that works cor­
rectly with the print record of the problem driver. 



298 ~ Chapter 14 The Printing Manager 

There are two simple ways to examine print records. The first is with a tool 
called PrintRecordSpy, which is available in the Developer Services section of 
AppleLink as well as on Phil & Dave's Excellent CD available from APDA. 
Another method is to examine the print record with a MacsBug template. 

Examining the Print Record 

Most applications that can print call the Printing Manager routine PrValidate. 
This routine checks the contents of the print record for compatibility with the 
Printing Manager and the currently installed print driver. The routine takes 
one parameter, a handle to a print record. To break on the PrValidatecall, enter 
MacsBug and type 

atb prglue @(sp) . 1=52040498 

The value $52040498 is from page 409 of Inside Macintosh, Volume V and is 
the selector for the PrValidate call. If you then select Print... from the File menu 
of virtually any application (Nisus2.11 is used in this example), you will break 
into MacsBug at the _PrGlue trap. Typing 

ip 

to list the surrounding instructions produces the following result on my 
machine. 

Disa ssembling from 0052A444 

No procedure name 

0052A444 LINK AG , i$0000 4E56 0000 

0052A448 LEA $0008 (A6) , AO 41EE 0008 

0052A44C MOVEQ ll$07 , 00 7007 

0052A44E AND . B $0008 (A6) , D0 C02E 0008 

0052A452 ADD . B $000A (A6) , D0 D02E OOOA 

0052A456 ADDQ.B i$4 , 00 5800 

0052A458 SUBA.W DO , A7 9ECO 

0052A45A MOVEA . L A7 , Al 224F 

0052A45C BlockMove A02E A02E -
0052A45E * PrGlue A8FD A8FD 

0052A460 MOVEQ 11$00 , 01 7200 



...,. How the Printing Manager Works 299 

0052A462 MOVE.B $000A(A6) 101 122E OOOA 

0052A466 MOVEQ #$07100 7007 

0052A468 ANO.B $0008(A6) 100 C02E 0008 

0052A46C BEQ.S *+$0012 0052A47E 6710 

0052A46E MOVEA.L A7 1AO 204F 

0052A470 LEA soc (A61 01. W) I A1 43F6 100C 

0052A474 LSR.W 1$1100 E248 

0052A476 BRA.S *+$0004 0052A47A 6002 

0052A478 MOVE.W (A 7) +I (A1) + 320F 

0052A47A OBF 001*-$0002 ; 0052A478 51C8 FFFC 

This is the PrintCalls routine, as you would expect from earlier discussion. 
The parameters to PrGlue are passed below the selector. PrValidate takes only 
one parameter, a handle to a print record, which you can display using the 
TPrint template with the MacsBug command 

dm @@(sp+4) tprint 

On my machine, MacsBug responds with 

Displaying TPrint at 005586F4 

005586F4 iPrVersion 

005586F6 iOev 

005586F8 iVRes 

005586FA iHRes 

005586FC rPage 

00558704 rPaper 

0055870C wOev 

0055870E iPageV 

00558710 iPageH 

00558712 bPort 

00558713 feed 

00558714 iOevPT 

00558716 iVResPT 

00558718 iHResPT 

0055871A rPagePT 

0001 

0000 

0048 

0048 

0000 0000 020B 0240 

FFE4 FFEE 02FC 0252 

1F03 

0528 

03FC 

00 

01 

0000 

012C 

012C 

0000 0000 OBES 0960 



300 ..,.. Chapter 14 The Printing Manager 

00558722 iRowBytes 0050 

00558724 iBandV cooo 
00558726 iBandH 0064 

00558728 iDevBytes 0C80 

0055872A iBands 0018 

0055872C bPatSca1e 04 

00558720 bULThick 01 

0055872E bULOffset 01 

0055872F bULShadow 01 

00558730 scan 00 

00558731 bXInfoX 01 

00558732 iFstPage 0001 

00558734 iLstPage 270F 

00558736 i Copies 0001 

00558738 bJDocLoop 01 

005 58739 fFromUsr TRUE 

0055873A pid1eProc 00000000 

0055873E pFi1eName 00000000 

0055874 2 iFileVo1 0000 

00558744 bFi l eVers 00 

00558745 bJobFlags 00 

This template expands the various TPrint subrecords. The fields within the 
TPrint record structure are explained in Inside Macintosh, Volume II. 



..,... Debugging Printing 301 

...., Debugging Printing 
So far we have discussed how the Printing Manager intercepts QuickDraw 
calls via the QDProcs, the print record data structure used by the Printing 
Manager and print drivers. The following sections discuss how to proceed 
when things go wrong . 

...., PDEFs- The Printing Manager's CODE Resources 

Just as applications are made up of two or more ' CODE ' resources, printer 
drivers consist of resources of type 1 PDEF 1

• The procedures and functions 
defined by the Printing Manager are stored in one of these resources. 

Sometimes, an application can tickle a bug in a printer driver that is not di­
rectly related to one of the calls made by the application. In these cases, you 
almost always have to contact the developer of the driver to determine the 
cause of the bug and any way to work around it. When notifying the developer 
of a crash, one of the most useful pieces of information is which ' PDEF 1 re­
sources were in RAM when the crash occurred. If the crash wasn't too hard on 
the system, you can look through the system heap for ' PDEF ' resources us­
ing the MacsBug Heap Display (HD) command. If found, you should note the 
IDs. To give you an idea of what might be causing the problem, Table 14-1 
shows the layout of the 1 PDEF ' resources. 



302 ...,. Chapter 14 The Printing Manager 

101 

Table 14-1. 1 PDEF 1 Resources 

1 PDEF 1 Routines 

0 PrOpenDoc 

PrOpenPage 

PrCloseDoc 

PrClosePage 

1 PrOpenDoc 

PrOpenPage 

PrCloseDoc 

PrClosePage 

2,3 unused 

4 PrDefault 

PrValidate 

PrStlDialog 

PrJobDialog 

5 PrPicFile 

7 PrGeneral 

For example, if you crash and find only 1 PDEF 1 7 in memory, there is a 
good chance that the last call to PrGeneral is the one that caused the crash. 

Finding the 1 PDEF 1 Resources 

Finding the loaded 1 PDEF 1 resources is easy (and fun!). Set an A-trap break 
on PrValidate with the MacsBug command 

atb prglue @(sp).l=52040498 

The next time the PrGlue routine is called, MacsBug will be invoked. To see 
the blocks of type 1 PDEF 1 

, use the command 

hd pdef 



..,. Debugging Printing 303 

On my machine, MacsBug responds with the message 

No blocks of this type found 

Of course! The 1 PDEF 1 resources are loaded into the system heap. Use the 
HX command to switch to the system heap and try again. 

hx ; hd pdef 

Still no resources found. There is one possibility: If you assume the 1 PDEF 1 

resource has not been loaded, everything makes sense. So far the application 
has called only the Printing Manager glue code. The _PrGlue trap loads the 
1 PDEF 1 resources. 

If you trace over the _PrGlue trap with the MacsBug Trace (T) command and 
then check for 1 PDEF 1 resources in the system heap, MacsBug responds with 

Displaying the System heap 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

0004COB4 00003866+02 R 0003EE4B p PDEF 0004 05E2 

There are #250768 free or purgeable bytes in this heap 

This shows that the System Heap now contains PDEF 4, which is what you 
should expect for the PrValidate function (see Table 14-1). 

~ PostScript - How to See What You Get 

It is possible, though rare, to call QuickDraw in such a way as to confuse the 
LaserWriter driver and cause it to generate bad PostScript code. The bad Post­
Script will generate an error when it gets to the LaserWriter, long after the 
QuickDraw call that caused the error. In these cases it is often useful to examine 
the PostScript code that was genera ted by the Laser Writer driver. This can be 
done in several ways. 

Since the 4.0 version of the LaserWriter driver, holding down Command-F 
immediately after clicking OK in the Print dialog saves the PostScript gener­
ated by the driver to a disk file. If you were fast enough, a message will be dis­
played in the status dialog stating that the driver is creating a PostScript file. 
The file is saved in the currently selected directory and is named PostScriptO. 
Usually this is the same folder as the application, but it could also be the Sys­
tem Folder or the folder of the last opened document. You may need to use the 
Find File desk accessory to locate the file. Subsequent PostScript files will be 



304 .,... Chapter 14 The Printing Manager 

Note .... j 

named PostScriptl, PostScript2, and so on, up to PostScript9. At that point, the 
driver will loop around and start at PostScriptO again. 

If you hold down Command-F, you get all the PostScript code for the job 
without the LaserPrep dictionary used by the LaserWriter driver. If you send 
this file to a printer that has already been initialized with the correct version 
of Laser Prep, no problems result. However, if the printer has been rebooted, 
you need the correct version ofLaserPrep included with the job. To include the 
correct version, hold down Command-K instead of Command-F when gener­
ating the PostScript file. This way, the Laser Prep dictionary is included in the 
file. This file is then totally complete and can be sent to any device. 

The 7.0 LaserWriter driver puts a radio button in the print dialog box 
which selects whether a PostScript file is created. The 7.0 driver no 
longer uses a Laser Prep file. 

After generating the PostScript file, the best way to debug it is to send it line 
by line to the printer and find which line fails. There are also PostScript debug­
ging tools available (such as LaserTalk from Adobe Systems, Inc.) that are 
made for the sole purpose of debugging PostScript files. 

To map the problem PostScript back to the Quick Draw code in your applica­
tion, remove or comment out the problem lines of PostScript. Then, send the 
file again and see which graphic is missing from the output. This is the prob­
lem graphic, and it should be easy to find it in your QuickDraw code. 

Another way to find the QuickDraw call that produced the bad PostScript 
code is to look at the PostScript text. QuickDraw text drawing operations usu­
ally show up as a call to the PostScript show operator. You can easily read the 
text in the PostScript file and can usually determine where the problem is in 
relation to the text being drawn. 

A third way to locate the problem is to insert PostScript comments using the 
PostScriptHandle picture comment. You can put comments in a potential 
problem area and then see where those comments end up in relation to the 
problem PostScript. This at least gives you a sense of how close you are. 



...,. Debugging Printing 305 

~ Background Printing 

Another problem related to the Laser Writer driver involves background print­
ing. Sometimes it is possible to generate a document that prints well in the fore­
ground but fails in the background (or vice versa). Such cases are rare, but it 
is very difficult to debug them when they do occur without seeing differences 
in the PostScript output. The Command-F and Command-K tricks rely on the 
driver running in the foreground, so they don't help for generating a Post­
Script file when Background Printing is enabled. 

To solve this problem, the LaserWriter 5.2 and newer drivers have a hid­
den check box in the Print dialog. This check box is labeled Disk File and was 
implemented for the sole purpose of debugging PostScript files generated 
in either the foreground or the background. This check box normally has a 
bounding rectangle of (0,0) (0,0) that makes it invisible. To make it appear, 
simply perform the following steps with ResEdit. 

1. Open the LaserWriter file. 

2. Open the 1 DITL 1 resource with ID -8191. 

3. Choose Open Using Template ... from the Resource menu. 

4. Open using the DITL template. 

5. Scroll down until you see an item labeled Disk File. 

6. Change the rectangle to 75,349, 90,430. 

7. Close the file and save the changes. 

The next time you choose Print, the dialog will contain a check box labeled 
Disk File. If you click this check box and then click OK, a PostScript file will be 
created. If Background Printing is enabled, the file will be placed in the folder 
named Spool Folder in the System Folder. If Background Printing was dis­
abled, the file will be placed in the place it was for the Command-F method. 
If you have a background printing problem, simply create two PostScript files, 
one in foreground and one in background, and then compare them. The differ­
ence will usually be very obvious. 



306 ..,. Chapter 14 The Printing Manager 

..., Summary 
This chapter discussed the details of the Printing Manager implementation 
and a variety of techniques for debugging printing problems. In particular, 
Chapter 15 examined 

• How the print drivers intercept QuickDraw calls via the GrafPort's 
QDProcs record 

• The printing glue in the Interface.o library 

• The way the PrintCalls routine calls the _PrGlue trap if it exists 

• The routine selectors used by the _PrGlue trap 

• The print record and the TPrint template 

• How to save the PostScript files for both foreground and background 
printing 

Once you understand the Macintosh printing model and how it relates to 
the QuickDraw graphics model, making your program print is generally 
straightforward. If you are doing something a little more extraordinary and 
have problems, you may need to examine the generated PostScript files to find 
the source. 



15 The Control Panel and CDEVs 

The Control Panel is the first area that people use to configure their Macin­
tosh. It contains controls for various features, such as the volume of the speak­
er, the current time, and which disk to start up from. Apple took the 
far-sighted approach to configuring the Macintosh and made the Control 
Panel extensible via Control DEVices, or CDEVs. Since CDEV files may con­
tain' INIT' resources,asinglefileintheSystemfoldercanbeused tomodify 
Macintosh behavior and also control it. (See Chapter 16 for more information 
on INITs.) This chapter explores how CDEV s interact with the Control Panel. 

The appearance of the Control Panel has changed dramatically in System 
7.0. CDEV s (just like desk accessories; see Chapter 12) are treated much more 
like applications in System 7.0. CDEVs run in their own window in System 7.0. 
Other than this cosmetic difference (of which the CDEV code is unaware), 
CDEVs in System 7.0 are the same as CDEVs prior to System 7.0. 

~ How the Control Panel Works 
The Control Panel is a basic shell for selecting and displaying various 
CDEV s. The Control Panel itself handles the list of CDEV s down the left 
side of the Control Panel. The body of the Control Panel is handled by the 
CDEV. Internally the Control Panel acts as the main event loop for the 
CDEV. The Control Panel handles some events, such as events associated 
with the CDEV's controls (using the Dialog Manager), and passes other 
events on to the CDEV. 

307 



308 ..,. Chapter 15 The Control Panel and CDEVs 

Keyboard 

Kolor 

• Map 

[g 
Monitors 

3.3.2 

Control Panel 

Characteristics of selected monitor : 4 .2 

@Grays: 
4 0 Colors: 16 (Options ... J 

Drag monitors and menu bar to rearrange them. 

( Identify ) 

Figure 15-1 . The Control Panel prior to System 7.0 

The Control Panel finds the CDEVs it displays by looking for files of type 
cdev in the System Folder. For each CDEV it checks if it should be shown (de­
pending on the hardware/software configuration) on your Mac. For example, 
the Monitors CDEV doesn't appear on a MacPlus because the MacPius doesn't 
have the ability to display colors or to handle more than one screen. This check 
is performed by looking at the 1 mach 1 resource in the cdev file. There is also 
a particular value for the 1 mach 1 resource that causes the Control Panel to in­
quire with the actual CDEV code as to whether or not it should be shown. This 
allows the CDEV to make a more extensive decision about the configuration of 
the machine. This feature is particularly useful for CDEVs that controllNITs, 
as the CDEV can find out if the INIT was actually installed. 



~ How the Control Panel Works 309 

Note ... I Insystem7,0, CDEW are ~ted Uke other ilpplicilti~<lnp~~e'iti 
.. ,~ fol4er titled Conttp_lPal'l~· Seleqing the CohtrQl Panelfrc>J.ll: ui\(jer, · ·· · 

the AJ>ple men11 s~ply brirtg~ :tln.s'Finder folder b) the frOnt.. · · 

...,. The cdev File 

The Control Panel requires that the cdev file contain a number of resources. 
You've already seen the first, the 'mach' resource. Theotherresourcesarethe 
'DITL' or Dialog ITem List; the' nrct', whichisalistofrectanglestheCDEV 
uses to display itself; the ' ICN#' , ' BNDL ' , and ' FREF ' resources, which 
contain the icon· to be shown in the Control Panel's list; and finally, the ' cdev ' 
resource, which contains the code for the CDEV. There may also be additional 
resources specific to an individual CDEV. 

Furthermore, the Control Panel requires that the resource IDs for the man­
datory seven resources have an ID of -4064 so that the Control Panel can easily 
find them. Any private resources the CDEV uses must be in the range from 
-4048 to -4033. This range is reserved so that CDEV resources won't conflict 
with other resources in the system. 

For more details on the cdev file, see the Control Panel chapter in Inside 
Macintosh, Volume V. 

..... The CDEV Code 

The actual code for a CDEV is in the ' cdev ' resource. The call is made to the 
first byte of the ' cdev ' resource with the following calling interface. 

FUNCTION cdev(message, Item, numitems, CPaneliD: INTEGER; 

VAR theEvent: EventRecord; 

cdevValue: LONGINT; 

CPDialog: DialogPtr) : LONGINT; 

The message parameter is in the range from 0 to 13 and specifies the message 
from the Control Panel. The messages fall into one of three categories. The first 
category is for events, such as keyEvtDev, activDev, deactiveDev, and nulDev. 
The second category contains nonstandard events, such as the edit menu com­
mands (undoDev, cutDev, copyDev, pasteDev, clearDev) and hitDev. The third 
category includes control messages, such as initDev, closeDev, and macDev. 



310 • Chapter 15 The Control Panel and CDEVs 

initDev = 0; 

hitDev = 1; 

closeDev = 2; 

nulDev = 3; 

updateDev = 4; 

activDev = 5; 

deactivDev = 6; 

keyEvtDev = 7; 

macDev = 8; 

undoDev = 9; 

cutDev = 10; 

copyDev = 11; 

pasteDev = 12; 

clearDev = 13; 

{Time for CDEV to initialize 
itself} 

{Hit on one of my items} 

{Close yourself} 

{Null event} 

{Update event} 

{Activate event} 

{Deactivate event} 

{Key down/auto key} 

{Decide whether or not to show up} 

{Standard Edit menu undo} 

{Standard Edit menu cut} 

{Standard Edit menu copy} 

{Standard Edit menu paste} 

{Standard Edit menu clear} 

The Item parameter passed to the CDEV is valid only for the hitDev mes­
sage and is the dialog item that was hit. This item number is out of the whole 
list of items, including the Control Panel's items. To get the item number out 
of the CDEV' s DITL, subtract the numltems parameter first. 

The parameter theE vent is the event record of the event that caused themes­
sage to be sent (so you can look at modifier flags or the time, if needed). 

The CPDialog is the dialog record for the Control Panel. This record is need­
ed to call various Dialog Manager routines. 

The cdevValue is used to provide the CDEVs with a way to manage memory 
between calls. The function value returned by the CDEV is passed back to the 
CDEV in cdevValue. If the CDEV needs to allocate a handle for local storage, 
it can return the handle as its function value and get the handle back the next 
time the CDEV is called in cdevValue. This slightly bizarre way of preserving 
a reference to an address is necessary since the Control Panel is a DA without 
its own global work space. 

The CDEV can also return special values (which should never occur as 
memory addresses). They are 



~ How the Control Panel Works 311 

cdevGenErr -1; {General error; gray cdev w/o 
alert} 

cdevMemErr 0; {Memory shortfall; alert user 
please} 

cdevResErr 1; {Couldn't get a needed resource; 
alert} 

cdevUnset 3; {cdevValue is initialized to this 
value} 

A typical CDEV has a section of code that is similar to the event processing 
section of the main event loop of an application (see Chapter 5) except that 
instead of being in a loop with a call to GetNextEvent, it is just called from 
the Control Panel itself. A typical CDEV shell·resembles this one. 

IF message • macDev THEN TheCOEV : G Handle ( 1) {show up on all machines} 

ELSE IF cdevStorage <> NIL THEN BEGIN 

CASE message OF 

initDev: {initialize cdev} 

BEGIN 

cdcvStorage :• NewHandle (SIZEOF (CDEVRec)); {create private storage} 

ScliTcxt (CPDialog, numltems + textitm, 0, 999); (make caret show up} 

END; 

hitDev: 

BEGIN 

GetDitem !CPDialog, numitems + DPitm, iType, iHandle, iBox); 

GetiText (iHandle, tempStr); 

{Handle item} 

END; 

closeDev: 

BEGIN 

DisposHandle (cdevStorage); {release storage} 

END; 

nulDev:; 

updateOev:; 

activDev:: 

de Act i vDev: ; 

keyEvtDev: {respond to key down} 

BEGIN 

{first, get the character! 

tempChar : • CHR (BAnd(thcEvent .message, charCodeMask) l; 



312 ~ Chapter 15 The Control Panel and CDEVs 

{then see if the co:nmand key was down I 

IF BAnd(theEvent.modifiers, cmdKey) <> 0 THEN BEGIN 

message := nulDev; 

i start off with no message I 

theEvent.what :* nullEvent; {wipe out ·~vent I 

CASE ternpChar OF 

{set appropriate message I 

'X', 'x 1 : 

message : = cutDev; 

•c•, 'c': 

message : = copyDev; 

•v•, 'v': 

message pasteDev; 

END; 

DoEditCommand(rnessage, CPDialogl; {let edit command handler ta}:e it I 

END; 

END; 

macDev:; 

undoDev:; 

cutDev, copyDev, pasteDev, clearDev: 

DoEditComrnand (message, CPDialog}; {respond to edit conunand I 

END; {CASE message) 

TheCDEV : ~ cdevStorage; 

{if cdevStorage = NIL then ControlPanel will put up memory error} 

END; {cdevStorage <> NIL} 

...._ How a CDEV is Called 
When a CDEV is selected by the user, the Control Panel finds the file and loads 
in the CDEV code from a resource. To explore any particular CDEV, you need 
to find where the Control Panel calls the code. 



101 

Note .,.I 

..,.. How a CDEV is Called 313 

How the Control Panel Calls a CDEV 

On the disk is a CDEV and INIT in one file together called macsbugBookiNIT. 
This CDEV is designed to show up on any Macintosh and is used again in 
Chapter 16. 

Place the CDEV in the System Folder (or in the Control Panel's folder in 
System 7.0) and bring up the Control Panel. Find the macsbugBookiNIT 
CDEV in the list and select it. Click on the Enter MacsBug button and you will 
be in MacsBug. If you trace forward for the next few instructions you will see 

MacsBugCDEV 

+OOBA OOOB65C2 BRA.S MacsBugCDEV+OOC2 OOOB65CA 6006 

+OOC2 OOOB65CA MOVE.L A4,$001C(A6) 

+OOC6 OOOB65CE MOVEM.L (A7)+,D6/ D7/A4 

+OOCA OOOB65D2 UNLK A6 

+OOCC OOOB65D4 MOVEA . L (A7) +,AO 

+OOCE OOOB65D6 ADDA .W #$0014,A7 

+0002 OOOB65DA JMP (AO) 

I 2D4C OOlC 

I 4CDF lOCO 

4ESE 

205F 

DEFC 0014 

4EDO 

At this point, the CDEV is about to exit back to the Control Panel. Trace for­
ward one more instruction and you will be out of the CDEV and in the Control 
Panel code that called the CDEV. 

Another way to find the CDEV is to locate it in the heap. Since CDEVs can 
be purged when they aren't needed, a slightly tricky approach is required. 
First bring up a CDEV and click on a control. Continue to hold the mouse but­
ton down while breaking into MacsBug. Type 

hx 

to switch to the system heap, and then 

hd 1 cdev 1 

to list all of the 1 cdev 1 code resources. 

If you are not running MultiFinder (or System 7.0), don' t use the HX 
command since the 1 cdev • will be loaded into the application heap. 



314 ~ Chapter 15 The Control Panel and CDEVs 

Note ..,. I 

Once you've found the starting address of the CDEV, set a breakpoint there. 
For example, if MacsBug displays 

Displaying the System heap 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• OOOBSBD8 0000012C+00 R 000B2BEO L P cdev F020 1088 Main 

Set a breakpoint with 

br b5bd8 

This will break at the beginning of the block containing the CDEV code. At this 
point, you can use the MR (Magic Return) command to get back to the code 
that called the CDEV. 

Because of the way MacsBug sets breakpoints (by changing the 
instruction at the break), the breakpoint will remain set even if the 
block that contains the code moves. Of course, the Control Panel will 
lock the handle before calling the CDEV code. 

If the CDEV is purged and then reloaded, the breakpoint is 
overwritten and MacsBug displays a message to that effect the next 
time MacsBug is entered. 

At this point (no matter which method you used), you are at the code that 
called the CDEV. You can now use the 

ip 

command to look at the code that called the CDEV. In particular, you should 
see a JSR (AO). This is where the Control Panel calls the CDEV; setting a break­
point here allows you to watch how other CDEVs execute. Also, if you look 
back in the code at this point, you can find out more about the internals of the 
Control Panel. 

Now that you've found the code where the Control Panel calls the CDEV, 
set a breakpoint a t theJSR (AO) and continue with the Go command. You break 
into MacsBug at the next call to the CDEV. You can look at the parameters 
passed to the CDEV with the command 

dm sp 



.,.. How a CDEV is Called 315 

On my machine MacsBug responds with 

Displaying memory from sp 

001FC288 0000 5FCO 0000 0003 0000 42C4 C7CO 0002 ·· ·······8····· 

001FC2C8 0041 0003 0009 0430 0003 0006 65AO 0008 ·A·····O····et .. .. 
Remember that the order of the parameters on the stack for Pascal functions 
is reversed from the way they are declared. Therefore, the first thing on the 
stack {$00005FCO) is the address of the DialogRecord for the Control Panel. 
Use the command 

dm @sp dialogrecord 

to examine the dialog record. On my machine the beginning of the dialog re­
cord is 

Displaying DialogRecord at 00005FCO 

00005FCO window 

00005FDO portRect 0000 0000 OOFC 0140 

00005FD8 visRgn 00066728 -> 0009240C -> 

00005FDC clipRgn 00066724 -> 00088034 -> 

0000602C windowKind FFCl 

0000602E visible TRUE 

0000602F hili ted TRUE 

00006030 goAwayFlag TRUE 

00006031 spareFlag FALSE 

00006032 strucRgn 00066600 -> 000A3720 -> 

00006036 contRgn 000666CC -> 00066E3C -> 

0000603A updateRgn 000666C8 -> 0009205C -> 

0000603E windowDefProc 000022CC -> 408768FO -> 

00006042 dataHandle NIL 

00006046 titleHandle 000666C4 -> 00066E54 -> Control Panel 

0000604A titleWidth 0058 

0000604C controlList 000666AC -> 00088150 -> 

00006050 next Window NIL 

00006054 windowPic NIL 

00006058 ref Con 00066680 



316 .,... Chapter 15 The Control Panel and CDEVs 

As you can see, the titleHandle indicates that this is really the Control Panel. 
(See Chapter 9 for more information about dialog records.) 

The next thing on the stack is the cdevValue, which was returned as the 
CDEV function result the last time the CDEV was called . Since the sample 
CDEV doesn't change it, it is still set to 3 (the initialization value). Next is a 
pointer to an EventRecord. If the CDEV message is nulDev, the EventRecord 
will be empty. Thus, if your CDEV changes its behavior based on the state of 
the modifier keys, you must check the message parameter before looking at 
the event or you must use OSEventAvail with a mask of 0 to get a new event 
record in which to check the mod ifier keys. 

The next parameter is the CPanellD ($C7CO), followed by the number of 
dialog items the Control Panel has for itself (in this case, two). The next param­
eter, the item, $41 , is meaningless except for messages of type hitDev. The final 
parameter is the message number, which is 3, or nulDev in this case. 

~ Watching Specific CDEV Events 

101 

CDEVs get a variety of messages. A very useful technique is to take some action 
in MacsBug only when messages of a certain type are sent to the CDEV. To do 
this, set a breakpoint at the beginning of the CDEV with a condition set to test 
the message type. This method is used in the following hands-on section. 

Watching Specific CDEV Events 

This example is a continuation of the previous exercise. Assume the start of the 
CDEV is at address $BSBD8. To set a breakpoint to stop on all messages that 
are not nulDev messages, use the command 

br b5bd8 ( sp+l6)~ . w<>3 

The conditional expression looks at the message parameter about to be passed 
to the CDEV and stops when it is anything except nulDev. If you click in the 
MacsBug Translation button, you can trace the code that communicates with 
the INIT. Using this base technique, you could get MacsBug to record each 
message by adding some commands to display the message 

br b5bd8 (sp+l6 ) ~ . w<>3 '; dm sp+l6 word ; g ' 



..,. Watching Specific CDEV Events 317 

Make sure that you cleared the previous breakpoint out before setting the new 
one. Try clicking on the CDEV and see the messages sent. This is useful for log­
ging all interaction between the system and the CDEV. If a problem exists, it 
is easy to go back and determine which message the CDEV did not respond 
to properly. 

Sometimes it is useful to break when a specific item is hit by the mouse. As­
sume that item three (the MacsBug Translation button) of theCDEV is desired . 
Set the following breakpoint. 

Let's break down what this expression is doing. The "(sp+ 16)/\.w" is the 
message passed to the CDEV. Here the expression checks to see if it is equal 
to 1, which is the hitDev message. The next part is "(sp+ 14)/\. w" which gets the 
Item hit parameter. Because this item count includes the Control Panel's items, 
the number of Control Panel items must be subtracted. This parameter (numl­
tems) can be found at "(sp+e)/\. w." The subtraction gives the CDEV item num­
ber of the item hit. This item number is checked to see if it is item three. The 
whole expression is tied together by the"&" saying to stop only when both 
conditions are true. 

Using conditional breakpoints as outlined in this section allows you to trace 
any interaction between the system and a CDEV. 

..,.. Summary 

The Control Panel provides a central place for customizing a Macintosh. It is 
extensible so that developers can build utilities that allow users to configure 
them in the same way Apple configures portions of the system. For example, 
the Control Panel provides a convenient way for a developer to place controls 
that operate a custom piece of hardware. 

In this chaper we saw how CDEVs work, how to find where they are called, 
and how to see what they do. This chapter discussed the Control Panel and 
Control Panel Devices (CDEVs). Specifically, it covered 

• How the Control Panel works 

• The resources in a cdev file 

• The CDEV code and the parameters passed to it by the Control Panel 

• How the Control Panel calls the CDEV 

• How to break on specific messages sent to a CDEV 



16 The Startup Process and IN ITs 

As Apple continues to upgrade its operating system, it takes longer and longer 
to start the machine and get to the Finder. Adding startup documents (!NITs) 
also increases the booting time. Many interesting things happen during the star­
tup period, and MacsBug gives us the opportunity to explore what's going on. 

When the Macintosh is turned on, ROM code (that's all that exists!) begins 
the startup sequence. This is called the initialization phase. After initializa­
tion, the actual startup begins by finding the disk that will be booted. Figure 
16-1 indicates what happens and the order in which it happens during the 
startup process. 

To learn about the startup process, you need to enter MacsBug at the earli­
est possible opportunity. This is facilitated by holding the Control key during 
startup. As soon as MacsBug is loaded, a user break invokes the debugger. 

319 



320 ..,.. Chapter 16 The Startup Process and INITs 

Note ~ I Using the Control key to get into MacsBug during startup works only 
on machines with ADB, that is, not on the MacPlus or older machines. 
On non-ADB machines, the code that operates the keyboard is not yet 
loaded at the time MacsBug starts up. The Control key was selected, as 
it doesn't exist on the older machines. 

INITIALIZATION 
System test performed 
RAM test performed 
Global variables initialized 
Dispatch tables initialized 
System heap created 
ROM resources initialized 

Slot manager initialized 
Slots checked for startup code 

ADB initialized 
Video devices installed from slots 
SCSI manager initialized 
Disk manager initialized 
Sound manager initialized 

Figure 16-1. Startup Process 

SYSTEM STARTUP 
SCSI power up pause 
Start device selected 

Check for 3.5· disk 
Check for SCSI drives 

SCSI driver loaded and insta lled 
System startup information read from 

start device 
Code from system startup executed 
Resource manager initialized 
System error handler initialized 
Font manager initialized 
Startup screen displayed, if present 
MacsBug loaded 
ROM patches loaded from 1 PTCH 1 

resources 
1 ADBS 1 resources loaded for ADB 

devices 
Mouse tracking begins 
RAM cache installed, application 

heap initialized 
AIIINITs loaded and executed 
System heap size set 
Startup appllcation(s) launched 

At this point, a large portion of the system boot process is completed, but 
none of the patches has been loaded. From the developer's point of view, 
things are still interesting. lf you trace for a few instructions you come to an 
RTS that continues with the rest of the startup code. 

By holding down appropriate keys or the mouse button during startup you 
can change various parts of the boot process (Table 16-1). 



...,.. INITs 321 

Some INITs also check the keyboard and don't load if certain keys are down. 
Most INITs are produced by third parties, and the function of holding keys is 
not standardized. Unfortunately, Apple has not produced a set of standard 
guidelines for what holding keys during INIT time should do. We suggest that 
if you create your own INIT, use the Shift key (or Caps lock) to disable your 
INIT from loading. If your INIT displays an icon (using Show !nit, for example), 
you should show an x-ed out version if the INIT is disabled. 

Table 16-1. Changing the boot process 

During boot 

Mouse button 

Control key 

Command-Option-Shift-Delete 

Command-Shift-Option-R-P 

In System 7.0, Shift 

During Finder startup 

Option-Command 

Command key 

~ INITs 

Result 

Eject floppy disk 

Enter MacsBug at 
earliest opportunity 
Boot from external hard 
drive (SCSI device other 
than the one set by the 
Startup Device CDEV) 

Reinitialize parameter 
RAM 

Disable all optional 
startup actions (INITs, 
VM) 

Rebuild desktop 

PreventMultiFblder 
from loading 

Shortly after MacsBug is loaded, code resources of type 1 INIT 1 in the System 
file (the System file is already open) are loaded and executed. In earlier sys­
tems (before System 3.2) INITs were installed in the System file, and since only 
31 INITs were allowed, there were problems. In System 3.2, Apple provided 
relief by adding 1 INIT 1 31 (originally the last INIT). 1 INIT 1 31 scans files in 
the System Folder in alphabetical order for files of type INIT, cdev, or RDEV. 
For each 1 INIT 1 resource found, 1 INIT 1 31loads the resource into an appli-



322 ~ Chapter 16 The Startup Process and INITs 

cation heap, saves all the registers, and jumps to the start of the INIT. The INIT 
may then do whatever it needs to do and returns. At that point the resource 
file is closed and the process continues until all INITs are executed. 

In System 7.0, 1 INIT 1 31 first searches the Extensions folder, then the Con­
trol Panels folder, and finally the System Folder. For each folder, the loading 
is again alphabetical. 

!NITs affect system behavior outside the scope of any single application; 
they implement or change system features. Control Panel DEVices, or CDEV s, 
are the usual way to customize these features. Fortunately, !NITs can be 
located in CDEV s, allowing the whole package to be kept in a single file, which 
makes installation very easy. 

The path through which an INIT communicates with a CDEV used to be 
fraught with potential problems. There is no easy means of communication 
between the CDEV and the INIT. Neither one has an open resource file (see 
Chapter 6) when the CDEV is closed, so resources can't be shared. Methods 
used before System 6.0.4 included using an unused trap, creating a dummy 
driver, or searching the system heap for a block with a unique pattern. 

In System 6.0.5 and later, you can use Gestalt to communicate between !NITs 
and CDEVs. See Inside Macintosh, Volume VI for a description of the NewGes­
talt and Gestalt calls that you use to do this. You use the file creator type (which 
you registered with Apple DTS, right?) as the Gestalt selector. You add the new 
Gestalt selector with the INIT using theN ewGestalt call, and the CDEV can call 
the INIT via Gestalt. The INIT has to place a block of code in the system heap 
that knows how to return the needed value. 

There are three important points to keep in mind about memory allocated 
during INIT time. The first is that all resources from the INIT are disposed of 
when the file containing the INIT is closed. If an INITwants to leave resources 
around, they should be detached and moved to a safe place, such as the system 
heap or above BufPtr. 

Second, !NITs are loaded into an application heap. This heap isn't safe for 
long-term storage, as it will be deallocated shortly after the INIT is run. You 
can set the SysHea p attribute on resources to force them to load into the system 
heap rather than into this temporary application heap. 

Finally, if an INIT needs large amounts of memory in the system heap, it 
should use a 1 sysz 1 resource to tell 1 INIT 1 31 the amount of memory re­
quired. This methodology was created because an INIT can't grow the system 
heap when it's opened in the application heap. 

!NITs normally operate by patching traps. By doing this !NITs can change 
any behavior of the system they want (just like patches). Unfortunately, it can 
also make !NITs vulnerable to changes in system software. !NITs should be 
programmed defensively so that they won't cause problems with later systems. 



.... INITs 323 

1~1 Finding Patched Traps 

In the Debugger Prefs supplied on the disk is a useful dcmd called PATCH, 
which shows all the traps that are patched . Using this tool, it is possible to find 
all traps patched by external !NITs. To try out the dcmd, type 

patch 

An abbreviated version of MacsBug' s response is 

Vector tOOOO $40810000 -> $00810000 Reset - Location 0 

Vector t0003 $408026F2 -> $00358AAE Address Error 

Vector 10004 $408026F4 -> $00358A86 Illegal I nstruction 

Vector #0005 $408026F6 -> $003581\BE Zero Divid e 

Vector #0019 $40809860 -> $000465FC Level 1 Auto Vector 

OSTrap $AOOO $40808766 -> $0035880E _Open 

OSTrap $A001 $40808AAA -> $0035881E Close 

OS Trap $A003 $ 4080889A -> $00361548 Write 

OS Trap $A004 $4080881\E -> $80039D3C _Control 

OSTrap $A007 $408100F4 -> $0035882E GetVolin fo -
OS Trap $A009 $408 1001 4 -> $00362A6E Del ete -

OS Trap $AOOA $408 1 08EE -> $00358816 _OpenRF 

OSTrap $AOOC $40811400 -> $0008 1 9D8 GetFile i nfo -

OSTrap $AOOE $4080FE18 -> $0035883E UnmountVol -

OSTrap $A014 $4 0810358 -> $00358826 GetVol 

OSTrap $A017 $4080FD3E -> $00361A02 _ E j ect 

TBTrap $A808 $408172D2 -> $0035895E _ PopUpMenuSelect 

T8Trap $A80E $40818452 - > $00081271>. Get 1 IxResource 

T8Trap $A815 $40807460 -> $0003947C _SCSI Oispatch 

T8Trap $A832 $40809AE6 -> $000433C8 



324 ...,. Chapter 16 The Startup Process and INITs 

TBTrap $A835 $408275F2 -> $000AEFOC _FontMetrics 

TBTrap $A83A $40818F36 -> $A0098090 - ZoomWindow 

TBTrap $A851 $408280CO -> $0035B98E - SetCursor 

TBTrap $A854 $40809AE6 -> $000A161E 

TBTrap $A860 $40815CDO -> $0035B92E _WaitNextEvent 

The first two columns show whether the line represents a trap or a vector 
and the trap or vector number. The third column shows the address the trap 
or vector pointed to at startup time. The dcmd gets these addresses in response 
to the dcmdlnit message (see Chapter 20). The fourth column shows the cur­
rent address the trap or vector points to, and the final column shows the name 
of the trap or vector. 

The vectors (the top few entries in the list) are some of the exception vectors 
in the 680XO processor. Exception vectors are discussed in more detail in Chap­
ter 17. Exception vectors that signal an error condition are directed to MacsBug. 
(Without MacsBug, the system displays the standard system error dialog box 
when these exceptions occur.) For the traps themselves, PATCH will attempt 
to show the name of the trap. The PATCH dcmd uses a MacsBug callback to get 
the name of the traps (see Chapter 20 for a description of MacsBug callbacks), 
so it only knows the name of traps that MacsBug knows the name of. 

To figure out which traps are patched by !NITs, you need to log all the traps 
patched before and after INITs are run. Begin by restarting your Macintosh 
while holding the Control key (to enter MacsBug as soon as it is loaded). At 
this point, try the PATCH dcmd. 

patch 

You shouldn't see anything patched except perhaps a couple ofthe interrupt 
vectors. To get to the point just before 1 INIT 1 31 is run, you can set a break 
on all calls to GetResource for a resource ID of 31 ($1F). Normally, the only call 
is the one to get 1 INIT 1 31. 

atb GetResource @sp.w-lf 

At this point, many traps have already been patched (try the Patch com­
mand again) by the system. To determine which patches are installed by INITs, 
you must compare this list with the list of patched traps after all !NITs are run. 
The easiest way to do this is by logging these to a file. 

log patchesBefore 

patch 

log 



By the Way .... j 

..... INITs 325 

Remember to keep pressing the space bar (as prompted by the PATCH 
dcmd) to make sure they are all recorded. If you now trace for a little while you 
will soon reach a JSR(AO) instruction that executes 1 INIT 1 31. When you trace 
over this instruction all !NITs are run. When MacsBug comes back, record the 
new set of patched traps. Use the commands 

log patchesAfter 

patch 

log 

to create a second file that can be compared with the one generated previously. 
Remember to clear the A-trap break with ATC and continue the boot process. 
When you are in the Finder, you should find the two files in the System Folder 
(the default directory during boot). The traps patched in the patchesAfter file 
that are not in the patchesBefore file are those that were patched by INITs. 

There are several ways to find the differences between the two files. The eas­
iest is using MPW. 

It's easy to find the difference between the two files using MPW. One 
way is to find the differences with an MPW script. Launch MPW and 
open the patches Before file. From the main worksheet, enter the 
following command. 

This command converts each line in the patches Before file to an 
MPW Replace command that finds that line in a target file and 
replaces it with nothing. Open the patchesAfter file, bring 
patchesBefore to the front, and execute the whole file (by selecting it 
all and pressing the Enter key). The patchesBefore file looks for any 
lines that match and deletes them. When it is done, the patchesAfter 
file contains only those patches changed by INITs. 



326 ..,. Chapter 16 The Startup Process and I NITs 

Note ..,.., 
The Replace command beeps any time the target string is not found. In 
this example, each beep indicates traps from the original file have 
different destinations. This occurs for traps that were patched by the 
system and then later patclted again by .an !NIT . 

........................................ 
..,.. Preventing INITs from Loading 

Sometimes multiple INITs patch the same trap, which occasionally causes 
problems. The most serious is when the machine crashes during the boot pro­
cess so the offending !NITs can' t be removed. There are a couple of ways to pre­
vent INITs from loading. 

The first is to keep 1 !NIT 1 31 from running, preventing all other INITs from 
being run. You found where 1 !NIT 1 31 was executed in the previous 
hands-on exercise. Instead of tracing over the 

J SR (AO) 

which executes 1 INIT 1 31, skip over it. The procedure is thus 

1. Enter MacsBug during startup using the Control key. 

2. Set an A-trap break on GetResource when it is called with an 1 INIT 1 re­
source with ID 31. 
ATB GetResource (spA.w= l f)&((sp+2)A= 'INIT 1

) 

3. Continue execution with the Go command. 
G 

4. Once MacsBug has returned, trace up to the JSR (AO). 
T (until you reach JSR (AO)) 

5. Skip the JSR. 
pc=pc+2 

6. Continue execution with the Go command. 
G 

A second technique for bypassing INITs is to cause the code that reads 
INIT resources during startup to fail. This can be done using the following 
MacsBug command. 

atb GetindReso urce @(SP+ 2 )= ' INIT ' ' ;SP=SP+6;@SP . L=O;PC=PC+2;G ' 



Note 

..,_ INITs 327 

This command stops each time an !NIT is about to be loaded and causes it to 
"fail." This is a fairly simple method for stopping all INITs.lt forces failure by 
removing the arguments from the stack and advancing the PC past the trap. 
It also sets the return value to 0, indicating an error. 

If you want to let some !NITs execute and bypass others, you can use yet a 
third method. This one actually checks for the opening of the resource files and 
allows only the INITs you want to execute to run. 

You do this with the following MacsBug phrase, which skips all INITs dur­
ing startup. It can also be invoked by the macro SkiplnitFiles. Then type G. 
MacsBug will flash by whenever an INIT is trying to be opened. 

atb OpenResFile (@@SP != (06<<18+ 1 Fin 1
)) & (@@SP != 

(0B<<18+ 1 Mul')) & (@@SP != (0C<<18+ 1 Bac')) 
1 ;SP=SP+4;PC=PC+2;@SP.W=-l;G 1 

The operation traps on the OpenResFile function that is used to open the INIT 
files. Because you want to allow Finder, MultiFinder, and Backgrounder all to 
run, you specifically test for them. The OpenResFile trap takes a Pascal string as 
a filename, and the names in quotes are the first part of this Pascal string. For ex­
ample, Finder is six characters long. To check for this string, you must check for 
the first three characters of the name: 1 Fin 1 

• This command shifts the length up 
by 3 bytes (24 bits, or 18 in hexadecimal) with the phrase 06<<18. Then the value 
of the first three characters is added in. (If your Finder is not capitalized this way, 
you need to change the phrase to match your capitalization). 

The command tests if the string pointed to by the value on the top of the 
stack matches one of these strings. If it doesn't, the command forces the Open­
ResFile trap to "fail." If it does match, execution continues as before. If you 
want to allow other INITs to run, you can add them in a similar style. 

To force OpenResFile to fail, the filename parameter is removed from the 
stack with SP=SP+4, the program counter is bumped past the OpenResFile 
trap, and an error is signaled by returning a -1 as the file refNum (on top of the 
stack). 

If you want to stop a specific INIT, a similar method could be used, but you 
reverse the sense of the test, as in 



328 ...,. Chapter 16 The Startup Process and INITs 

ATB OpenResFile @@SP = (07<<18+'0ur 1
) 

1 ;SP=SP+4;PC=PC+2;@SP.W;-l;G 

This stops only an INIT called Ourlnit (a seven-character name, starting with 
1 Our 1 

• In System 7.0, use the command 

ATB HOpenResFile @@(sp+2)=(07<<18+ 1 0ur 1
) 

1 ;SP=SP+4;PC;PC+2;@SP.W=-l;G 

.... Debugging INITs 

The easiest way to find out which INIT is crashing is to get MacsBug to print 
the name of each INIT before it runs. This allows you to see the name of the last 
one run before the crash. We can get MacsBug to print each filename by using 
the following command (or the Show !NITs macro): 

atb OpenResFile 1 ;DM @SP PString;G 1 

This command prints the name of each resource file as it's about to be opened. 
If an INIT crashes, you can see which one it was by looking at the last name on 
the MacsBug screen. You can then use that name in the previous command to 
skip over that INIT. 

To prevent the suspect INIT from loading, a variant of a previous method 
is used. First use 

atb OpenResFile @@SP = (07<<18+ 1 0ur 1
) 

to stop at the correct file. This example assumes the file is named Ourlnit. Then 
stop at the loading of the actual 1 INIT 1 resource with 

atb GetindResource @(SP+2)= 1 INIT 1 

At this point the INIT is about to be loaded, and a few instructions late1~ there 
will be a 

JSR (AO) 

that executes the INIT. You can skip the INIT just as before, or step into the sub­
routine (using the S command) to try to figure out what is going wrong. 



Note ..,. I 

101 

Note ..,.I 

~ INITs 329 

When you use the SC or SC7 commands while debugging at startup 
time you may receive the message 

Damaged stack: A7 must be even and <= CurStackBase 

The problem here is that CurStackBase (and most other low memory 
global variables) has not yet been initialized. There is not really a 
problem with the stack. You can convince MacsBug to show you the 
SC display by fixing this condition with a command such as 

sl curstackbase a7+100 

You do not have to change CurStackBase back, since it has not yet 
been initialized. 

Watching an 1 INIT 1 Install Itself 

You now can use the technique jus t outlined to watch an INIT install itself. The 
disk contains an ' INIT ' called macsbugBookiNIT, which, when installed , 
causes any occurrence of the word "macsbug" to be substituted with the word 
"MacsBug" (with correct capitalization). Since the name of the ' !NIT' is 
macsbugBooklNJT, you can tell if it is installed by looking at the filename in 
the Finder. It will appear as "MacsBugBookiNIT" when installed. 

The INIT accomplishes this by patching both DrawString and DrawText 
and checking if the text contains the String ' macsbug ' . If it does, it substitutes 
the string ' MacsBug ' in its place. 

Before System 7.0, application icons were always black and white. 
There was one exception to this rule: The icon of the 32-bit 
QuickDraw INIT appeared in full color when 32-bit QuickDraw was 
installed. Because 32-bit QuickDraw patches a substantial amount of 
drawing code, it should be relatively easy to figure out how this icon 
appears in color. 



330 ..,.. Chapter 16 The Startup Process and I NITs 

First, place the INIT in the System Folder and restart. Hold the Control key 
to get into MacsBug during startup. Using the techniques described before, set 
a breakpoint at OpenResFile using 

atb OpenResFile @@SP = (Ob<<l8+ ' mac ' ) 

On System 7.0 use 

atb HOpenResFile @@ (sp+2) = (06<<18+ ' mac ' ) 

This invokes MacsBug as soon as the 1 INIT 1 is opened. Clear this break and 
set a new one using 

ate 

atb Geti ndResource 

This invokes MacsBug when the actual 1 INIT 1 resource is about to be loaded. 
Trace over the GetlndResource using the Trace (T) command. The handle to 
the INIT is left on the stack. Set a breakpoint at the start of the INIT with 

br @@sp 

When you continue (using the G command) you will hit the breakpoint. The 
instruction there is a BRAnch that skips over a data area. You are now at the 
beginning of the INIT code. From here you can trace through it to see how it 
works. You can skip the INIT by doing a manual return. The return address is 
on the top of the stack, so the following commands simulate an RTS. 

pc=@sp 

sp=sp+4 



~ Summary 331 

..,.. Summary 
This chapter discussed the Macintosh startup process and how custom initializa­
tion code (INITs) runs during this process. Specifically, this chapter discussed 

• The startup process 

• When MacsBug gets loaded and how to break in early by holding the 
Control key 

• INITs and their uses 

• Finding which traps are patched by INITs 

• Stopping INITs from running 

• How to get to the beginning of an INIT to begin debugging it 

INITs provide a way to customize the Macintosh and consequently can af­
fect any aspect of its behavior. For this reason, bugs in INITs are usually perva­
sive. Figuring out which INITs are causing problems and being able to stop 
them from loading during the startup process can be very helpful. 



PART THREE 

....,.. Advanced Debugging 

Part Two contains information about debugging specific aspects of a Macin­
tosh application. This part of the book contains advanced debugging tech­
niques (Chapter 17) and ways of expanding or customizing MacsBug via 
macros, templates, and dcmds (Chapters 18 through 20). 

There is a great deal of sample code associated with this third section. 
Unlike the code in Part Two, which was intentionally buggy, this code is 
for debugging tools that can be used to help locate bugs in other code. For 
example, an INIT called Mr. Bus Error helps locate memory problems. There 
is also source for a number of macros, templates, and dcmds. The source for 
these tools is contained on the disk. The macros, templates, and dcmds are 
already installed in the Debugger Prefs file on the disk. 

333 



17 Debugging Techniques 

Unlike the chapters in Part Two, which largely discussed specific data struc­
tures and how to examine them using MacsBug templates, this chapter pro­
vides a number of debugging techniques and strategies for locating bugs. 

Bugs come in as many shapes and sizes as applications. The technique you 
use for tracking a specific bug varies greatly with the type of bug, but the over­
all strategy is the same for all bugs: Keep bugs out of your program in the first 
place and simplify finding them if they do occur. Therefore, the chapter begins 
with a discussion of defensive programming. 

Next is a section describing five universal debugging steps, followed by a 
section on dealing with specific bugs. Chapter 17 concludes with a variety of 
miscellaneous techniques that will come in handy in one way or another in 
your debugging sessions . 

..,.. Defensive Programming 
A well-written program is always much easier to debug than a poorly written 
one. If you are spending a great deal of time debugging your program, it is 
probably poorly organized. The time you spend thinking through how the 
program will be organized is more than worth the amount of time it will save 
you later when attempting to find problems. 

Key Point w I ~~~-d~ignedi#t>~~i.t~ri!>Pebug . 
. :~.:::>··-? -:·•_v·- • • •• • ' .. ,.•;:; :L. 

335 



336 .,... Chapter 17 Debugging Techniques 

I encountered a poorly thought-out system design while working in an en­
gine factory one summer. When contractors automate portions of an assembly 
line, part of the bidding process involves a design of how the equipment will 
be installed. Since this design occurs before the contract is signed, minllnal ef­
fort is put into it. In general, the design is very rough, usually just barely 
enough to figure out a reasonable bid amount. Thus, construction begins using 
plans that were, in one sense, free! This, of course, is a terrible way to begin a 
major project. 

Many inexperienced programmers begin the same way: They just start cod­
ing until they have painted themselves into a corner. Rather than restructuring 
the code, they tiptoe through the 11Wet paint'' and keep coding. The punish­
ment for proceeding this way comes when bugs manifest themselves. Spa­
ghetti code of this type is very difficult to debug. 

The reason people don't spend more time in the design stage is that it 
doesn't produce anything tangible. Ten pages of code, albeit buggy, looks like 
a greater achievement than half a page of routine names and data structures. 
And time spent debugging seems equally productive. 11I fixed 23 bugs today'' 
sounds like a real accomplishment but begs the question of where those 23 
bugs came from. Could they have been avoided by a better program design 
in the first place? The resources necessary to find, document, and fix all the 
problems associated with buggy code are much greater than the time it takes 
to produce a good plan before you begin. 

Experienced programmers realize that spending time to produce a good 
program design is well worth the effort. There are a number of different meth­
odologies (Structured, Object Oriented, and Functional to name a few) for pro­
gram design, and the specific one you use is really not important. The impor­
tant thing is that you remain consistent throughout your code, and that the 
programming style works for you. All good programming styles have several 
things in common, the most important being that they make bugs easier to find 
and reduce the likelihood of generating them in the first place . 

...,. Use a High Level Language 

Although a great deal of debugging occurs on the assembly language le!vel, it 
is usually best to write applications in a high level language. High level lan­
guages do consistency checking for you and force a certain degree of discipline 
onto your code. For example, Pascal (and some C languages) always makes 
sure that you pass variables of the correct type to a procedure or a function. 



...,. Defensive Programming 337 

~ Limit Interdependencies 

Interdependencies are parts of a program that depend on other parts doing 
something in a certain manner. This can consist of multiple procedures sharing 
a common data area and making assumptions about the format of the data, or 
it can consist of a function making assumptions about how a data type is im­
plemented. These assumptions lead to problems when the assumptions are 
changed or go wrong. For example, if a procedure assumes that a data struc­
ture is implemented in some manner and "peeks" behind the scenes to get 
some information, all the procedures dependent on this structure will have to 
change if the implementation of the structure changes. It can be very difficult 
to find the last procedure that needs to be changed. 

When procedures and functions share global data areas, it is often difficult 
to determine when and how the data is becoming corrupt. When parameters 
are passed to a procedure explicitly, it is much easier to determine if the routine 
is performing its function. And it's extremely easy to use MacsBug to check the 
inputs and the results. 

Your program should be organized into data of certain types and proce­
dures that act on that data. This is the goal behind object-oriented program­
ming. Although you don't necessarily need to use an object-oriented lan­
guage, the methodologies of object programming are important to understand 
and use in your program design. 

In the Macintosh, the low memory globals are a common data area and are 
an endless source of problems to programs. Since applications "know'' the for­
mat of low memory, they assume that it will never change. Apple can't change 
any part of the low memory to remove something that isn't needed anymore, 
since some application may assume that it is still there and try to look at or 
change the low memory using the old interpretation. 

~ Set Well-Defined Entry and Exit Points 

Each function and procedure should perform one easily described action. A 
procedure or function that tries to do too many things is harder to debug be­
cause you constantly must worry about which action it is going to perform. 
Also, if a procedure or function is too complex, it isn't likely to be useful later. 
A simple, easy-to-understand function can often be used again, either in the 
same program or in some other program you write later. 

If the entry and exit points of routines are well defined, it is easy to use 
MacsBug to examine what is going on. If a routine has several different ways 
of exiting, it is often time consuming to figure out exactly what is going on. 



338 .,... Chapter 17 Debugging Techniques 

Think about how difficult it is to debug code that uses_ Copy Bits, which can 
take a BitMap, PixMap, or PixMapHandle in a CGrafPort. Copy Bits needs to 
check many variations on the data coming in. Building a MacsBug expression 
to check the parameters to CopyBits is very difficult . 

....,. Check Values 

If your functions and procedures always check the parameters passed to them 
for legal values and ranges, then the chances of a bug propagating very far are 
decreased. If you don't check for valid input parameters, a function that 
receives an illegal value, processes it, and returns another incorrect value will 
eventually cause problems (such as a crash or perhaps only a wrong result). 
Trying to find out where the problem originated requires tracing backward 
through much code to isolate where the problem was created. If values are reg­
ularly checked, the bad value will be detected sooner and the code you need 
to backtrack through much shorter. 

If your procedures and functions check the values passed to them, you won't 
need to build an abundance of expressions in MacsBug to do the same thing. 
Also, you can perform more complicated tests in a procedure or function. 

To be even more defensive, you can decide upon invariants for your data 
structures and test the data structures against these invariants whenever a pro­
cedure or function that changes the structure is entered and exited. An invari­
ant is some statement that is always true. For example, a dictionary might have 
the invariant that each element except for the first is always greater than or 
equal to the preceding element. 

There are also code invariants, such as loop invariants. Loop invariants are 
statements that are always true each time through a loop. For example, a 
quick-sort algorithp1 might have an invariant stating that after each partition­
ing operation all the values below the partitioning index are smaller than the 
value at the partitioning index, and all the values above the partitioning index 
are greater than or equal to the value at the partitioning index. Checking such 
invariants ensures that the structure will never be left in an inconsistent state . 

....,. Create a Debugging Version 

Another useful technique, related to the previous one, is to create a separate 
debugging version of your program. This generally means conditionally 
including code that does sanity checks on parameters or prints out debugging 
information (to another window or to the MacsBug display using DebugStr). 
Rather than splice debugging code in as you need it, it is much better to have 
a debugging methodology built into your program design. When testing the 



..,. Defensive Programming 339 

program always use the nondebugging version. There may be subtle differ­
ences between the versions that don't show up in the debugging version. 
Keep the debugging version for your own use in tracking problems once they 
are found.· 

...,.. Make Sure Every Variable Is Initialized 

Make sure that every variable in your program starts with a legal value. You 
don't need to worry about uninitialized variables introducing random values 
into your program. Some languages (and/ or compilers) will at the minimum 
make sure that all variables start in a particular state (usually 0). This is better 
than nothing, but 0 isn't always a legal value for a variable. 

If an uninitialized variable is used in your program, you can get bugs that 
seem very sporadic. For example, the first time your program is run, it might 
fail occasionally (depending on what was in memory before the program was 
run), but thereafter it works acceptably because the memory has now been 
~~initialized" by the previous run of the program. These bugs can be a night­
mare to track down. 

An easy way to make sure your variables are always initialized is to initial­
ize them when you declare them. This is easy inC and assembly language, and 
for Pascal you should initialize variables immediately after declaring them. 
Doing this religiously can help avert many late evenings of debugging . 

...,.. Compile with All Type Checking and Warnings 
Turned On 

Compiler warnings can be annoying, but there is usually some syntax in the 
language that allows you to remove the warning. It is much better to remove 
each warning explicitly this way than to compile with no warnings on at all. 
Warnings are not inhibited for the System 7.0 build, and none of the source 
generates any warnings. If Apple can do it for a system that complicated, you 
can do it too. 

If available on your C compiler, you should also use the Require Prototypes 
option. This may force you to change a few items in your source code, but if 
even one of those changes avoids a subtle bug, you are a big winner. 



340 ..,.. Chapter 17 Debugging Techniques 

...,. Make and Test Incremental Changes 

The easiest way to prevent getting caught in a hopelessly complicated debug­
ging problem is to make only incremental changes to your code. It is much bet­
ter to implement one feature at a time and test it completely before going on. 
This greatly limits the amount of code you need to check if a problem does 
come up . 

...,. Build In Virus Protection 

Unfortunately, there are some people in the world who have nothing better 
to do than write viruses. Your application can do its part to minimize the dam­
age and spreading of these viruses by checking to make sure its resources 
have not been changed. For example, your application could checksum all 
code resources and make sure they add up to some predetermined value. (See 
Chapter 6 for more information about how resources work.) Resources that 
contain code include 1 CODE 1 

, 
1 MBDF 1 

, 
1 MDEF 1 

, 
1 WDEF 1 

, and 
1 CDEF 1 • If it appears that any of these resources have been changed, you 
should warn the user that there may be a problem. 

Unfortunately, you cannot checksum all resources in the resource fork, since 
the Finder can put legitimate resources there. Although currently no ultimate 
solution exists for the virus problem, you can add this kind of virus protection 
in the last stage of writing your application. It is relatively simple, and your us­
ers will love you forever if you save them from losing data by detecting a virus 
for them . 

...,. Five Basic Debugging Steps 
There are three fundamental types of bugs: logic errors, implementation errors, 
and system problems. Although well over 95 percent of all bugs are of the first 
two types, poor programmers always blame the system. Distinguishing 
between the different types of errors is often easy, but there are cases where it 
is difficult. 

For example, suppose you are instructed to implement a rather complicated 
poker strategy that is defined in terms of tables and formulas. When you are 
done, the computer player is extremely easy to beat. If your boss is the one who 
designed the strategy, it may be quite difficult to prove that the strategy, rather 
than the implementation, is at fault. 

The most common way to determine whether an algorithm is properly im­
plemented is by generating a series of test cases and then comparing the com­
puter's output with the expected result. If the test cases are chosen in such a 



Key Point .,I 

..,.. Five Basic Debugging Steps 341 

way that they exercise the various corn ponents of the algorithm, successful test 
runs provide a degree of confidence that the program works as specified. The 
test case and result pairs are referred to as test vectors. For complicated systems 
it is impossible to run all possible combinations, and confidence in the result­
ing product can never be 100 percent. 

If you have ch~ked your code and are certain the problem lies 
elsewhere (such as the system), you should generate a simple example 
that shows the problem. Many times you will find your problem when 
you attempt this exercise. Once you have a simple example that fails, 
make sure it conforms to the documentatiol;l . .Next, determine how 
your use is different from soutc~ code examples, if they exist. If you 
don't have access to source code examples, you can use MacsBug and 
an existing application that makes similar calls to determine why it is 
successful and your program fails. · 

Another thing you should think about when you suspect a system 
problem is how long the system code has been around. It is much 
more likely that you find a bug in a new feature of the latest system 
than a bug in a routine that has been unchanged for a long time. Even 
if your code worked on an earlier system, the problem could still be in 
your code, not the new system. 

If you still suspect the problem is in the system, you can walk 
through the problematic system code or admit defeat and call Apple's 
Developer Technical Support. 

Although the specific tasks for fixing a bug can vary, the general approach · 
to locating bugs is always the same and can be broken down into five steps. 

STEP ONE: Find a test vector that produces unexpected behavior. 

The first step in testing and debugging an application is to find a test vector 
that does not behave as expected. In general it is impossible to test all possible 
cases. Determining a set of test vectors for a complicated application requires 
thought and planning. 



342 ..,.. Chapter 17 Debugging Techniques 

By the Way .,..I 

Note .,..I 

A common topic of debate is whether a tester should have access to 
the source code. If access is given, a tester can locate boundary 
conditions in the code and make sure all routines are adequately 
exercised. The tester also doesn't end up overtesting cases that appear 
different but are functionally identical as far as the code is concerned. 
But source code access can lead to testing that concentrates primarily 
on cases handled by the code when the desired result is to find cases 
handled improperly or not at all. 

The solution we use provides the tester with a general description 
of the algorithms and boundary conditions that might require special 
testing, but not the source code. This generally provides a good 
balance between stressing problem areas in the implementation and 
complete functional testing. 

The tester must have a solid understanding of what tests to perform and 
how to perform them. For example, a statement such as "Make sure the appli­
cation doesn' t crash regardless of the operation" is generally impossible to 
test. A good tester creates well-defined test cases, such as "Make sure the 
application doesn't crash on a Macintosh IIci when documents ranging in size 
from OK to 5 megabytes are edited." The test plan should be specific about the 
exact machine configuration and about the sizes of the test files. A matrix of 
test cases is usually desirable. 

The goal here is not so much to test every possible case (an unachievable goal) 
but rather to conduct a well-defined set of tests that exercise all aspects of the 
program. If bugs later turn up, you can check the test plan and determine which 
cases slipped through and should be tested for future versions of the program. 

Many problems occur only under specific circumstances that may be hard 
to reproduce. MacsBug provides the Heap Scramble (HS) command, which 
stresses an application's memory management and often brings out memory 
problems. Another common stress situation is running in a low memory con­
figuration. For a graphics program this might mean opening a picture that uses 
all available memory and then performing editing operations on it. 

If you are faced with an intermittent problem that is hard to reproduce 
reliably, videotape your testing sessions and then review the tapes to 
help recreate the problem. 



...,. Five Basic Debugging Steps 343 

Another technique for bringing out problems is to set location 0 to 
$50FFC003. If your application fails to check if a memory allocation was 
successful, it will attempt to dereference this value and produce a bus error. 
If this value is used in the instruction that caused the bus error, you have a solid 
clue about where the problem lies. The Mr. Bus Error INIT on the sample disk 
sets the value of memory location 0 to $50FFC003 every sixtieth of a second as 
a VBL task. Some applications inadvertently (some even do it intentionally) 
write to location 0. Mr. Bus Error makes sure that a bus error value is always 
in location 0. You might be surprised at the number of applications or utilities 
that crash after you install Mr. Bus Error. 

Note .,. I if }'1)11-in$WIML BU§.Error allcl filtd.tbatappli,catioiiS are crashing irt 
place8 where they u.sed .tp~o.rk. prqperl~·you:c~Jl:generally change. 

~Jlte.:Val!t~·~t,isc:a¢;irig~e:~s.eri()r:t9$(>)Jle·~la.tivelybenignvalue 
. . :(su~·~s O)_.cpld~COJ1tin(le. ' ' · · · 

STEP TWO: Find the simplest possible test case that fails. 

Depending on how the problem manifests itself, it is usually worth the effort 
to find a simple case that fails. Furthermore, it is worth investigating if related 
operations fail. For example, if your application crashes while drawing rectan­
gles with a wide pen, it is generally helpful to determine whether it also 
crashes while drawing lines or ovals in a similar situation. Is it the shape of the 
pen or the type of object? Is it the transfer mode? Does the color or clipping 
matter? Answering these questions can often lead you close to the problem in 
the code, if not directly to it. 

Once a reproducible problem is located, the ball is back in the programmer's 
court. The programmer should try to simplify the problem further. If produc­
ing the crash requires the use of a special file or input data, it is often useful to 
find a simple data set that shows the problem or a simple data set that is easily 
recognized in memory. For example, if your image processing program turns 
all images blue, it's probably much easier to track the problem using a solid 
color as the test image rather than a picture of the Mona Lisa. 

Another way to simplify the problem is by changing the application itself. If 
you keep old versions and a change history, it is often helpful to determine when 
the bug was introduced. If you don't keep old versions, you could recompile the 
code leaving out areas that may be related to the problem. This is similar to a de­
fensive programming strategy described later in this chapter. You should make 
incremental changes, testing each change as you go. Similarly, you can remove 



344 ..,.. Chapter 17 Debugging Techniques 

Key Point ..,.I 

parts and then add them in until the problem code is isolated. Remember, 
"When you have eliminated the impossible whatever remains, hawever improb­
able, must be the truth" (The Sign of Four, Sir Arthur Conan Doyle, 1890). 

STEP THREE: Think through the situation logically to determine where the 
problem may lie. Formulate a testable hypothesis about what the 
problem may be. 

When you have a simplified reproducible case, you should think through the 
problematic operation and identify possible problem areas. Another approach 
is to figure out why this problem appears now. If a bug appears after making 
a change, no matter how unrelated it seems, it was probably the change that 
caused the bug. This is an excellent argument for making and documenting in­
cremental changes. It is also useful to keep earlier versions to assist in deter­
mining when a bug was introduced. 

If you test your hypothesis and still can't find anything in the code that 
should cause the unexpected behavior, explain the problem to another person. 
Verbalizing a problem often makes a logic error stand out. 

This step is closely related to the previous step. Your goal in these two steps 
is to make a guess as to where the problem may lie. Once you have formulated 
a guess you should go on, returning to steps two and three if your hunch does 
not lead you to the problem. 

You will find that your debugging is very much like conducting a science 
experiment. You repeatedly formulate a testable hypothesis and experiment 
with the code to determine if your guess is correct. 

There are two skills required for becoming an expert at debugging: 

1. You must be a good guesser. 

2. You must be a good experimenter. 

You become a good guesser by understanding the system you are working 
on and how it works. Part Two of this book is intended to make you a better 
guesser about what could go wrong. You become a good experimenter by 
learning how to use debugging tools effectively and by knowing what vari­
ables and data to check as you track a problem. Both of these skills are learned 
over time and improve with each bug you track down and correct. 



...,. Five Basic Debugging Steps 345 

STEP FOUR: Test your hypothesis by checking routine input parameters 
and looking at data structures in memory to find the earliest place that 
something unexpected happens. If you think you've found the 
problem, correct it with MacsBug if possible to test your theory. 

You testy our hypothesis either by stepping through the code with MacsBug 
or by inserting Debugger and DebugStr statements in key locations. If you 
encounter anything unexpected, you must guess at its importance to the 
problem at hand. If it seems relevant, track the anomaly until you under­
stand it completely. 

Determining if some unexpected values are actually a problem comes with 
experience. A simple example of this occurs when you install Mr. Bus Error. 
If your application breaks due to a bus error and the offending instruction is 
operating on the value $50FFC003, you know exactly where this value came 
from (location 0) and the error is probably the result of a failed memory or re­
source request. Recognizing what went wrong in such a situation, although 
the problems are usually more complicated or subtle, comes with experience. 

If a specific routine or function fails, first check the input parameters and any 
global state parameters the call depends on. When ATP displays the trap calling 
history as recorded by ATR, it also displays the top of the stack for Toolbox calls 
and registers AO and DO as well as the memory at the address pointed to by AO 
for OS calls. A quick check to make sure valid parameters are being passed to 
system routines will often provide clues for uncovering the problem. For exam­
ple, Chapter 11 discussed how to check the input parameters and system state 
variables for CopyBits. Most system calls will fail {some spectacularly) if you 
pass them erroneous parameters. 

You can produce a similar effect for your application routines with the BR 
command. To do this set a breakpoint at the beginning of the routine, display 
therelevantvariables,andthencontinueusingtheGocommand.Forexample, 
if you have a routine declared as 

Pascal short MyFunction( short coordinateA, short coordinateS, long 
*world); 

the MacsBug command 

br rnyfunction ';dl @(sp+4);dw sp+B; dw sp+a;rnr;dw sp;g 

displays the routine's input parameters and result every time the routine is 
called. The first DL command displays the data at the address pointed to by 
the world parameter. The two OW commands display the coordinates passed 
into the routine. The MR command returns to the caller, and the final OW com­
mand displays the word-sized function result. Execution continues with the 



346 ...,. Chapter 17 Debugging Techniques 

Go command. If a bug is associated with this routine, you may discover that 
the problem occurs only when negative numbers are passed in for the coordi­
nate parameters, for example. This provides an important clue for tracking 
and fixing the bug. 

When you think you've found the problem-for example, when a routine 
returns the wrong result-correct the problem using MacsBug. If the applica­
tion then works well, you should correct and test the change. If the problem 
persists, keep looking. 

STEP FIVE: Determine what is causing the unexpected result and correct 
the problem in the source. Test the change. 

Once you have found the code that is behaving incorrectly, you should 
obviously correct the problem in the source. You can save a great deal of time 
by testing your change (by changing code with MacsBug) before actually cor­
recting the source. When you do change the source, it is important to think 
about how your change may affect other parts of the code. Nothing is more 
frustrating (or sloppy) than to fix one bug and create several others. 

You should also test your fix. Even the simplest, most innocent change can 
cause dramatic problems in unexpected ways. Many years ago I coauthored 
a Defender-style game for the Commodore 64. At one point we decided to 
change the color of the ground. This change involved only a predefined con­
stant in the source code. To our suprise, the game no longer played music and 
became much slower. The interrupt registers were located immediately after 
the screen buffer, and the code that painted the ground overwrote the end of 
the screen, clobbering the interrupts. Thus, the new ground color also gave us 
a new, much higher, interrupt rate, causing about 30 seconds of music to be 
played in well under a second. This simple, innocent change, led to a long, 
hard-core debugging session. 

For complicated assembly language code, the best way to test it is to walk 
through it. Even if the code works, you'll often find inefficiencies and other 
surprises. If you find a subtle problem just one time in ten when you do this, 
the time savings in future debugging sessions will be worth it. 



.,.. Three Ways to Fail 347 

.,... Three Ways to Fail 
Here we group program bugs into three categories: hanging, crashing, and 
other problems. The first two categories were chosen because specific debug­
ging techniques exist to deal with problems when a program hangs or crashes. 
The third group contains all other bugs. The techniques for dealing with these 
bugs vary largely based on the specific problem. A few common problems are 
discussed in the section on other problems, and other general techniques are 
described in a following section, "Technique Potpourri." 

.,... When the Macintosh Hangs 

A hang results when the Macintosh stops responding to you and does not ap­
pear to be performing any work. Hangs are usually associated with infinite 
loops (sections of code that repeat and never exit). When the Macintosh hangs, 
sometimes you can enter MacsBug and other times you cannot. 

When You Can Enter MacsBug 

Fixing a hang when you can enter MacsBug (using the Programmer's Key or 
the Programmer's Switch) is much easier than when you can't. Your first job 
is to find out where the loop that is causing the problem is located. Sometimes 
the loop will be calling traps or other subroutines and there might be a lot of 
code to trace through. The Trace (or SO) command skips over code called as 
a subroutine and essentially ''pops" up to the outermost loop. 

To find this outermost loop, use the Trace command. For example, try 

t so 

to trace over 80 ($50 hexadecimal) instructions. When MacsBug comes back, 
look for a loop in all the traced-over instructions. If you don't see a loop, try 
tracing another 80 instructions. If the Macintosh is truly hung, a loop will evi­
dence itself eventually. The problem could be that the loop is very large and 
is not immediately apparent. Fortunately this is rare. When the Macintosh 
hangs, the outermost loop usually contains only a few instructions. 

Once you have identified the loop the Macintosh is hanging in, try to deter­
mine if there is a clear exit point. A clear exit point is a conditional branch that 
branches to a location outside the loop. In a hang the condition is never met 
and the Macintosh loops indefinitely. 

You can exit such a loop by tracing instructions to the exit point and then 
forcing the PC to point to where the conditional branch would have gone. For 
example, if you see a branch such as 



348 ..._ Chapter 17 Debugging Techniques 

Will branch 

+OOE8 40817230 *BEQ.S _Disableitern-OOCA 40817210 67E2 

and the branch is always taken, you can step over it using 

pc=pc+2 

In the converse case, when the branch is never taken, as in 

Will not branch 

+OOE8 40817230 *BEQ.S _Disableitern-OOCA 40817210 I 67E2 

you can force the branch by setting the PC to the destination of the branch, as in 

pc=40817210 

Of course, this action doesn't fix the problem but in some cases allows you 
to continue without having to restart. If you try this maneuver, set an A-trap 
break on GetNextEvent and WaitNextEvent so that you can force the applica­
tion to quit if it returns to the main event loop (see Chapter 5). 

If the loop doesn't seem to have any exit points, it might be because it isn't 
supposed to. The main event loop of an application doesn't normally seem to 
have an exit because the exit is in some subroutine that handles the Quit item 
of the File menu. If you get stuck in such a loop, you are usually better off trying 
to figure out what is going wrong with standard debugging techniques. You 
will most likely be hard-pressed to figure out how to exit the loop without 
restarting the application. 

A good test to determine if such a loop is intentionally permanent is to set 
an A-trap break on GetNextEvent and WaitNextEvent and let the program go. 
If either one of these gets called, you are in some sort of event loop. Check the 
parameters and the low memory event masks and make sure that events can 
get through. See Chapter 5 for details on how to do this. 

If MPW hangs while running a tool, you can try (which you must promise 
to do only at your own risk) the command 

g stoptool 

This command jumps to a routine that aborts the current tool and attempts to 
return to the MPW shell. 



...,. Three Ways to Fail 349 

When You Can't Enter MacsBug 

This can be one of the hardest kinds of bugs to track down because you can't 
look around at what is wrong, as you can when the Macintosh crashes. This 
makes it hard to formulate a guess as to what went wrong. Thus, debugging 
this kind of problem can be very tedious. 

The technique for finding this problem is like trying to find the edge of a cliff 
if you are blindfolded but fearless. Fortunately, the consequences of causing 
the Macintosh to hang are not nearly as severe as falling off a cliff. 

First, you try to get as close to the edge as you can and then you take a few 
big steps. If you fall off, say after the third big step, you start again, this time 
taking two big steps and then a series of smaller steps. This process goes on and 
on until you know exactly where the edge of the cliff is. Our strategy in track­
ing down this kind of problem is to step right up to where the Macintosh is 
ready to hang and figure out why a certain instruction or subroutine is causing 
the problem. The first step, as always, is to find a reproducible case. 

Next, you need to determine which routine is causing the machine to hang. 
The most common way to do this is to set a breakpoint that will be encountered 
shortly before the machine is going to hang. For example, if the machine hangs 
when you attempt to open a window, set a breakpoint at the routine th~t opens 
the window in your program. Then trace through the routine (tracing over 
subroutines) until the machine hangs. Chances are the Macintosh will hang 
when a subroutine is called. 

Repeat this process, except this time step into the routine that caused the 
hang the previous time. Continue in this fashion until you find the problem. 

If the hang is not associated with a specific event-the machine just suddenly 
hangs-you have a much more difficult task. Something is being corrupted, 
and it isn't until later that the corruption is being felt. 

A common cause is heap corruption. The A-Trap Heap Check (ATHC) com­
mand is useful for locating the place where the heap is becoming corrupt. If 
you have no idea where the problem is coming from, it might be prudent to 
find a Macintosh with multiple monitors, SWAP one of the monitors so it al­
ways shows MacsBug, and have every trap show itself and check the heap. Try 
the command 

athc ';td;dm sp;g 

This command will heap-check every call, show all the registers, and dump the 
stack. When the machine finally hangs, you will be able to see the last set of 
traps and where they were called from, because the MacsBug screen is still 
showing. This allows you to see what is going on and gives you a chance to rec­
ognize problems. 



350 ., Chapter 17 Debugging Techniques 

....,. When the Macintosh Crashes 

Reproducible crashing bugs are generally the easiest to fix. There are two basic 
types of crashes: microprocessor exceptions and ROM exceptions. Both types 
of crashes result from some specific problem that is almost always a cinch to 
determine. For example, if you get a SysErr 25 {MemFullErr), there is probably 
not enough heap space {or a corrupted heap) and a memory allocation failed. 
Finding what caused the heap to be corrupt or memory to be full is the tough 
part. Processor exceptions and ROM exceptions are discussed in the following 
two sections. 

Both of these conditions show up as system errors; microprocessor excep­
tions are numbered from 1 to 11, and ROM exceptions have all the remaining 
numbers. The ERROR dcmd {included on the disk) returns a message describ­
ing each system error. For example, entering the command 

error 2 

causes MacsBug to respond with 

$0002 # 2 address error 

Processor Exceptions 

Processor exceptions are the result of a single assembly language instruction. 
For example, a register may contain an illegal address, or the PC may pull a 
trashed return address from the stack and 11jump into the weeds" in response 
to an RTS. There are a variety of conditions that the processor can't handle {and 
shouldn't, since they are a sure sign of trouble) and that cause the machine to 
crash. These errors have error numbers 1 through 11. 

Like the ROM {which jumps to theSysError trap when it encounters a condi­
tion it can't handle), the microprocessor jumps to an exception vector when it 
encounters an illegal condition {or receives externally generated exceptions, 
such as an interrupt, bus error, or reset). 

When the processor encounters an exception it jumps to a particular address, 
depending on the exception. The address of the exception handler is taken from 
a table that starts at location zero on 68000 processors and is pointed to by the 
Vector Base Register {VBR) on 68020 and later processors. On all current 
Macintoshes the VBR also points to location zero. The actual address the pro­
cessor jumps to is taken from this table of long-word addresses. For exatnple, 
if a bus error occurs {vector number 2) the processor jumps to the address in the 
second entry in this table, in this case, the address at location eight. 



Note .... , 

....- Three Ways to Fail 351 

While not all exceptions cause the machine to crash (interrupts are an im­
portant part of microsecond-to-microsecond processing on the Macintosh), 
there are two common problems that do cause a crash. The first problem is an 
address error or a bus error, which occurs when an invalid memory reference 
is attempted. In such a case you will most likely find that an address register 
contains an illegal address. The cause of this address is generally an invalid 
pointer or other parameter passed to a ROM routine, or using data inside a 
handle that has been disposed of. 

A second common crash is when the PC contains a small value (usually 
around $1 00) and the machine crashes with an illegal instruction. The problem 
here is that somehow the processor jumped to location 0 and continued execut­
ing random data successfully until it encountered an illegal instruction. 

To fix a crashing bug involves figuring out what caused the illegal condi­
tion. You may be able to use the SC (Stack Crawl) command to trace back­
ward through your application to determine what happened, or you may 
have to reproduce the problem and step through the code slowly, watching 
as impending doom develops. 

ROM Exceptions 

The ROM can cause a system error by calling the SysError trap $A9C9. Why 
would a ROM routine do such a horrible thing? 

Suppose your application has unloaded all of its segments (in the main 
event loop, like most applications do) and somehow all of memory has been 
filled. When the user attempts some operation whose code does not reside in 
the main segment, the segment loader is called to load in the relevant routine. 
Since memory is full, there is no place to put the code. What is the segment 
loader to do? How about produce a System Error 15 (segment loader error)? 

This is not the preferred way for an application to behave, and good com­
mercial software should never get into this situation. There is really nothing 
the ROM (or the user) could do to prevent this situation. It is up to the pro­
grammer to catch such problems while developing and testing the code. 
That is the reason a message such as "System Error 15 Occurred," rather 



352 ..,.. Chapter 17 Debugging Techniques 

Note ~ I 

than a message such as "Segment Loader Error/' appears in the bomb dialog 
box. Both mean the same thing to the end user. 

When the ROM gets into situations it cannot recover from gracefully, the 
SysError trap is called. When you find out what the system error is, it is usually 
easy to determine why it happened (usually not enough memory, a corrupt or 
fragmented heap, or a bad parameter to a ROM call). You must then determine 
what caused the machine to get into this state. 

In System 6.0.7 and later, the bomb dialogs have a more 
human-readable error message. Unfortunately, to an uninformed user 
these messages are sometimes misleading or confusing, and he or she 
can't do anything about them anyway. 

After the Crash: Picking Up the Pieces 

Your first goal when looking at a crash is to formulate a theory about what 
went wrong and a way to test it. This is the standard debugging technique we 
discussed previously in this chapter, but a crashing bug gives a number of 
clues that can assist in formulating a theory about why the machine crashed. 
When you have a theory, reproduce the crash (if possible) and try to detennine 
if you are right. 

A number of system variables may give a clue as to what went wrong. One 
of the most common problems is a corrupt heap. You can check both the system 
and the application heaps with the HC command. (Use HX to switch between 
the heaps.) The problem here is usually referencing a block that has moved or 
writing over the end of a block. U you allocated a 256-byte block and initialize 
it with a loop such as 

for( xxx = 0 ; xxx<=256 ; xxx++ ) 

myblock[xxx] = 5 ; 

you will overwrite the block by 1 byte and possibly corrupt the heap. 
Another condition you should check is the amount of memory left in the 

heap using the HT command. If you find that there is very little free space in 
the heap (and your application called MaxApplZone), you may find that you 
have a memory leak. 

You can also check the calling chain that brought on the current problem 
using the SC6 (or SC7) commands. You can look back at the routines (the call­
ing addresses are given by these commands) to determine how you got where 
you are and what went wrong. 



.,... Three Ways to Fail 353 

....,. Other Bugs 

Even though your program doesn't hang or crash, it just may not behave the 
way you intended it to. In some cases, the program behavior may not be com­
pletely acceptable, but "good enough." For example, if a portion of your dis­
play flickers during updates, you may decide to live with it rather than figure 
out a way to make flicker-free updates. From the heading of this section, it 
should be obvious that such sloppy programming techniques are bugs, even 
if they don't cause the machine to crash or hang. This section discusses finding 
and correcting this type of undesirable behavior. 

Interacting with the System 

When developing programs, often the program simply doesn't behave prop­
erly. For example, you instruct your application to print and nothing happens. 
No crash. No fire. Nothing. Your program simply ignores the request to print. 

If the problem involves calls to the system, your first step should be to make 
sure you are actually making the calls you think you are making. The easie-­
way to do this is with the ATRA command. Turn on A-trap recording just' 
fore the operation which fails is about to begin and set a breakpoint (or A­
break) just after the operation is complete. Complete the operation anc 
at the traps your application called and the parameters passed to those 
using the ATP command. You should make sure that the calls are made it. 
correct order. If everything seems OK, you should check to make sure the re1 
vant toolbox routines were properly initialized. 

If all of this fails, you should look at the relevent system data structures (de­
scribed in Part Two of this book and in Inside Macintosh). 

Flickering Updates 

Flickering screen updates are inexcusable and a sign of sloppy programming. 
Although flickering doesn't cause the Macintosh to hang or crash, it is annoy­
ing. Producing flicker-free updates shows polish on your application and is 
not very hard to achieve. 

A common mistake is to redraw the entire window when a window is re­
sized. If the window becomes larger, you need only update the newly exposed 
area. If the window becomes smaller, there is no reason to update the window 
at all! All this is easy to accomplish by managing the regions that are uncovered 
when a window is resized. 

Erasing the area you are about to draw and then performing the drawing 
operation also causes flickering updates. The fix for this problem is easy: Don't 
erase the area first! Anytime you draw using copy mode, the contents of the 
window you are drawing on will automatically be overwritten. Thus, you 



354 ...,. Chapter 17 Debugging Techniques 

should make your updates using a copy drawing mode or image them to an 
offscreen PixMap and then copy them onto the screen. 

Some controls also show a very annoying flickering problem. The problem 
here is that the CDEF erases the indicator and then redraws the control. A bet­
ter solution is to draw the entire control in its new state. 

If you have flickering problems and are not sure what is causing then1, you 
can use the SS command to slow down the machine and watch the update hap­
pen. For example, using 

ss 0 

will slow down the Macintosh enough so that you can watch drawing opera­
tions in slow motion. Combine this technique with setting breakpoints in strate­
gic locations and you should have no trouble finding the source of the flickering. 

Double buffering window contents (by drawing the window contents to an 
offscreen GWorld and then using CopyBits to copy the offscreen data to the 
window during an update event) is a sure way of producing flicker-free up­
dates. For some programs (such as drawing programs) this may actually be 
faster than redrawing all the objects intersecting the update region every time 
a portion of a window must be updated. 

Some programs draw the same item (such as the menu bar or a palette) mul­
tiple times, erasing the old contents between drawing operations (when start­
ing up, for example). It is a simple matter to fix this kind of problem, and it 
should probably be spelled out explicitly in the Macintosh user interface 
guidelines: NO FLICKERING UPDATES. 

Heap Fragmentation 

Although most users of your program may never realize your program is suf­
fering from heap fragmentation (even if your program is a memory hog)~ such 
fragmentation is easily diagnosed with a debugger. The easiest way to deter­
mine whether your application is experiencing heap fragmentation problems 
is to set a breakpoint on WaitNextEvent and then examine the heap using the 
HD command. Dots to the left of the heap dump indicate locked blocks. In 
well-written applications these dots should all be located at the top or the bot­
tom of the heap display, with none in the middle. 

You should be able to justify why there is a locked block in the middle of 
the heap, if there are any. If you are not sure how the block got there or who 
owns it, make a note of the block size. Then relaunch your program with con­
ditional A-trap breaks on calls to NewPtr and NewHandle when a block of 
that size is allocated. This will lead you directly to the code responsible for 
managing that block. 



~ Technique Potpourri 355 

....,. Technique Potpourri 
As you become more experienced with debugging, you will develop a number 
of techniques that help eliminate possibilities and guide you to the source of 
the problem. Some techniques help you verify that portions of your program 
are working correctly, while others help you hone in on possible problems. 

Regardless of the number of techniques and debugging tricks you know, the 
process is always the same: You examine the situation and make a guess as to 
what might be wrong and conduct a test to verify whether or not you are right. 

....,. When All Else Fails 

You would probably expect this heading to appear last in a long list of debug­
ging advice. This material is placed at the beginning of the section because it 
describes a brute-force technique for finding any software problem, that is, 
stepping through each instruction until something unexpected happens. 

Normal debugging involves making a guess as to what might be wrong and 
then attempting to verify if this is the case. This is actually a shortcut to the 
surefire (and slow and tedious) method of debugging: stepping through each 
instruction until something goes wrong. But if you are out of guesses, this may 
be your only out. 

When your problem seems hopeless, there are two very simple steps to find­
ing the problem. First, relax. Take your mind off the problem for a while and 
come back to it later. Paint a picture or play some soccer. After a short rest, you 
may think of new angles to approach the problem. 

The second technique for dealing with the "impossible" bug is to remember 
one very simple truth: "It's only a computer." Bruce Leak, the author of 32-bit 
QuickDraw, always repeats this piece of wisdom when confronted with a bar­
rage of contradictory facts that could only lead the casual observer to believe 
the machine is actually alive! Remember, the computer is only doing what you 
told it to do . 

....,. Command-: 

It is unclear why this command is such a well-kept MacsBug secret. Press­
ing Command-: (colon) in MacsBug displays a scrollable list of all symbols 
MacsBug knows in the current heap. You can type select (just like in the 
Standard File dialog box) to assist in finding the symbols you are looking 
for. Pressing Return when you have found the symbol enters the symbol 
name on the command line. This is an example where doing something is 
much easier than trying to describe it, so the next time you are in MacsBug, 



356 ..,. Chapter 17 Debugging Techniques 

press Command-:. If the menu shows up empty, switch to the system heap 
(using HX) and try again. To exit the Command-: mode without entering 
anything on the command line, press the Escape key . 

....,. Using the BR Command to Display Function Results 

A well-written program (previously discussed in the section on defensive pro­
gramming) has well-defined entry and exit points. One useful technique for 
locating a problem is to look at function results to see if any of them don't make 
sense. Fortunately, it is easy to do this in MacsBug without making any 
changes to your program. 

For example, to display the result of a Pascal function returning a 
word-sized (Integer) result every time it's called, use the command 

BR functionname 1 
; MR ; DW SP 

Whenever the breakpoint is reached, MacsBug executes the Magic Return 
command and displays the top word on the stack (the function result). Func­
tions that return long words should use the command 

BR functionname 1 
; MR ; DL SP 

Functions that return pointers can dereference the pointer and display the 
structure using a template; for example 

BR functionname 1 
; MR ; DM SPA templatename 

Displaying the results of C functions is similar except that C returns function 
results in register DO. Thus, to display the result of a C function that returns 
a word-sized parameter, use the MacsBug command 

BR functionname 1 
; MR ; DO.w 

For a C function.that returns a pointer to a structure, use 

BR functionname 1 
; MR ; DM DO templatename 



...,. Technique Potpourri 357 

...._ Conditional MacsBug Commands 

The CS command can be used to interrupt a series ofMacsBug commands when 
a certain condition is met. Suppose you want to stop execution any time New­
Handle fails. This is impossible without using one of the Checksum commands 
or writing a dcmd (try it!). The following command sequence does the trick. 

cs memerr memerr+l 

atb newhandle ';t;cs;g 

This breaks on every call to NewHandle, traces over it, and then checks if 
the value ofMemErr has changed. If it has, the CS command will invoke Macs­
Bug. If not, execution will continue. For cases such as New Handle, this process 
slows the Mac down dramatically and in many cases is unusable. The example 
was given to illustrate a technique . 

...._ Debugging Read and Write Sensitive Hardware 

The DB command is useful for examining registers on a hardware device in 
which neighboring locations may be read sensitive. MacsBug only accesses the 
requested address when performing a DB command. The same is true for the 
SB command, which accesses only the byte at the target address . 

...._ Using the DH Command 

The DH command is extremely useful for changing code on the fly. For exam­
ple, suppose you encounter a situation in which the program is performing an 
instruction such as 

00772Fl8 BNE.S *+$0024 ; 00772F3C I 6622 

which you intended to branch on when equal rather than not equal. If you 
remember that the branch condition is determined by bits 8 through 11, 
you can use the DH command to find the instruction that you want. You 
might try 

dh 6022 

which is 

BRA.S *+$0024 

or 



358 ..,. Chapter 17 Debugging Techniques 

Note ... j 

dh 6722 

which is the desired 

BEQ. S *+$0024 

As you become more comfortable with the 68000 instruction format, 
you will find yourself changing more and more code on the fly (to test 
a change without recompiling the source). The format of instructions 
can be found in the 68000 Programmer's Reference Manual. The 
following bits of trivia may also prove useful. 

• To change the displacement ($24 in the preceding example), change 
the offset in the low order byte (up to +/-128). This displacement 
is calculated from the start of the following instruction, not the start 
of the branch. In this case that means the displacement is two Jess 
than you might expect. 

• An NOP instruction is $4E71. This is useful for removing instructions. 

• RTS is $4E75. This is useful for terminating a routine early. Be sure 
the stack is balanced! 

...,.. Calling Traps From MacsBug 

Just as you use the DH command, sometimes it is useful to call a trap from 
MacsBug. For example, if an application fails to call MaxApplZone, you might 
want to call it so that the HT command provides an accurate picture of how 
much memory is really left in the heap. To do this, break on a trap call using 
the ATB command. This is necessary because calling a trap destroys certain 
register contents and condition codes. If the application is ready to call a Toolbox 
trap, it expects the values of registers AO, A1 and 00-02 to be destroyed. 

Save the current value of the program counter, either with a macro such as 

me savepc pc 

or by simply typing 

pc 



...., Technique Potpourri 359 

to display the contents on the MacsBug display. Find the address of the trap 
you want to call, in this case MaxApplZone, with the WH command 

wh maxapplzone 

MacsBug responds with 

Trap number A063 (_MaxApplZone) starts at 4080E16E in ROM 

Since this trap doesn't take any parameters, we can simply call it. A convenient 
way to do this is to set the trap address at location 0, move the PC to location 
0, trace over the trap, and then put the PC back. The MacsBug commands are 

SW 0 a063 

pc = 0 

t 

pc = previous value from above 

You can become much more adventurous with this technique. For example, 
to save all update events to a picture, set an A-trap break on Begin Update 
and call the OpenPicture trap from MacsBug. When End Update is called, 
call ClosePicture . 

.,.. Using Discipline and DSC 

At the time of this writing, the future of the Discipline utility is unclear. Dis­
cipline taps into the trap dispatcher and checks that parameters passed to 
traps are in a specified range. Check with APDA for updates about the future 
of Discipline . 

.,.. The FirstTime Macro 

The First Time macro is executed the first time MacsBug is entered, just before 
MacsBug breaks on startup if you hold down the Control key. If you can stand 
the minor speed hit, one useful way to use the FirstTime macro is to define it 
to turn A -trap recording on. This is particularly useful during debugging since 
you will always have the trap calling history available to you. You will need 
to use ResEdit or Rez to do this, as described in Chapter 18. Unfortunately, 
there is no way to turn on application trap recording (ATR), because there is 
no way of knowing which application heap is the target. But having an ATR 
history is useful nonetheless. 



360 ...,. Chapter 17 Debugging Techniques 

.,.... The EveryTime Macro 

There are two techniques you can use if you are interested in looking at the val­
ue of a particular location each time you enter MacsBug. One way is to define 
the Every Time macro (which is automatically executed each time MacsBug is 
entered) to execute the commands you are interested in. For example, to check 
the heap each time you enter MacsBug, enter the command 

me everytime 'he' 

If you want to look at the parameters to the current routine (assuming A6 is 
used to set up a stack frame) every time you enter MacsBug, you could define 
EveryTime as 

me everytime 'dm a6 + 8 1 

You can define the EveryTime macro at any time, as in the previous hvo ex­
amples. You can also define an EveryTrme macro in the Debugger Prefs file. 
Macros are described further in Chapter 18 . 

.,.... The SHOW Command 

A second way to examine the value of a particular location each time you enter 
MacsBug is with the SHOW command. The SHOW command controls the 
memory display in the upper left comer of the MacsBug display. The default 
setting of SHOW displays the contents of the stack. You may want to see the 
parameters passed to the current routine. Assuming the program uses A6 
stack frames, you can accomplish this with the command 

show 'a6+8' 

Be sure to include the quotes since they instruct the SHOW command to eval­
uate A6 each time MacsBug is entered, not just when the command is set the 
first time . 

.,.... Using the WH Command to Display Traps That 
Are Called Directly 

If you are stepping through parts of the operating system, you may encoun­
ter routines that call traps directly rather than use the trap dispatcher. These 
trap calls will not be caught by MacsBug (with the ATB or ATR commands, 
for example) but still use any patches that might be on the traps. It is hard 



By the Way .,.I 

..,. Technique Potpourri 361 

to figure out what trap is being called since MacsBug doesn't give them a 
name when they are called this way. 

For example, suppose you are disassembling StdBits and cpme across 

JSR ( [$1A3C ] ) 

This is making a trap call directly, but which trap? 
To find out the answer, you need to understand a little more about how the 

trap dispatcher works. There are two trap tables, one for OS traps and one for 
Toolbox traps, which contain the addresses of traps. This JSR call is using the 
address in the trap table directly rather than having the trap dispatcher make 
the call. 

New versions of system software move the trap tables. This does not affect 
well-written applications since the address of the table needs to be known only 
by the trap dispatcher. System code that calls through the tables directly must 
also be updated when the trap tables move. Since system code always 
"knows" which system it is for, it is OK for system routines to call traps directly. 
Applications should never call through the trap table directly, since they have 
no way of knowing where the trap table is. 

If you want to avoid the overhead incurred by the trap dispatcher, use 
the GetTrapAddress routine to get the address of a tra,p. 

Because the address of the trap table moves, you might need to figure out 
where the trap table is in a future system. Since the Dispatcher routine (which 
uses the trap table to d ispatch to the correct trap) uses the trap table, you can 
find the address of the trap tables by disassembling this routine using the IL 
command. Use the command 

il dispatcher 

It is not hard to figure out how the dispatching code works if you take the time 
to examine it. You will see a line similar to 

MOVE.L ($0EOO , ZAO , D2 . W*4) , $000C(A7) I 2F70 25AO OEOO ... 

which puts the address of the trap on the stack. From examining the code, you 
can determine that the $0EOO is the beginning of the Toolbox trap table. Later 
in the same routine you will see a line such as 

MOVEA.L ($0400 , ZAO , D2 . W*4),A2 I 2470 25A0 0400 



362 ~ Chapter 17 Debugging Techniques 

Again, you can figure out that address $0400 is the location of the OS trap table 
for this particular version of the system. 

Each entry in the trap table is 4 bytes long, so the address $1A3C is the 
($1A3C-$EOO) I 4 toolbox trap. Toolbox traps begin with number $A800, so 
you need to add this amount to get the actual trap number. Since MacsBug 
evaluates expressions in the order they appear on the command line, you can 
find the name of a Toolbox trap that is called directly with the command 

wh la3c-e00/4+a800 

In this case, MacsBug responds with 

Trap number ABOF (_CheckPic) starts at 007A39DC in RAM 

It is 007A39DC bytes into this heap block: 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• 00000000 00000000+00 N 

For calls made through the system trap table, use the line 

wh SysTrap-400/4+aOOO 

..,... Mr. Bus Error 

Mr. Bus Error is an INIT (install it by putting it in the System Folder) that installs 
a VBL task that places a bus error value in location 0 every sixtieth of a second. 
The value used is $50FFC003, which causes a bus error on all Macintoshes. 

You can achieve a similar result by manually setting location 0 with Macs­
Bug, except many programs inadvertently write to location 0. Mr. Bus Error 
makes sure that the bus error value stays there. 

Unfortunately, you may find that many programs crash when Mr. Bus Error 
is installed. You can make the program continue by changing whichever register 
contains the bus error value to some relatively benign value, such as zero. Al­
though this will allow you to continue executing, you have found a problem that 
should be fixed. Be sure to test your applications with Mr. Bus Error installed . 

..,... Debugger and DebugStr 

These two traps are useful for intentionally entering the debugger at specif­
ic points in your program. You should surround them with a conditional 
compile-time parameter that includes them only in special debugging ver-



..,. Summary 363 

sions of your program. While the Debugger hap merely drops you into 
MacsBug, the DebugStr trap allows you to display messages and even execute 
MacsBug commands. 

For example, you can easily implement a simple way to time a section of 
code (with poor resolution as far as a computer is concerned). To do this, use 
the line 

DebugStr("\pStart ';me starttime @ticks;g"); 

at the beginning of the section you want to time, and the line 

DebugStr("\pElapsed time in ticks: '; @ticks- starttime"); 

at the end. The first call to DebugStr saves the current value of ticks in the vari­
able StartTime, and the second call prints the difference between the current 
time and the start time. This method of timing is inadequate for operations that 
require microsecond precision, but is excellent for things on the order of a few 
seconds (ticks are sixtieths of a second). You can time shorter operations using 
this timing technique by performing them multiple times and then dividing 
by the number of iterations. 

If you need even more precision, you could write a dcmd that performs a 
more accurate timing operation (using the VIA, for example) and then call it 
with the DebugStr command. 

DebugStr can also be used to perform operations such as a heap check 

DebugStr("\pChecking the heap ';HC"); 

or a print of other status information. 

DebugStr("\pNow Entering Main"); 

..,. Summary 
This chapter covered a number of debugging techniques. The five basic de­
bugging steps were detailed, as well as techniques for dealing with specific 
problems. The chapter concluded with a number of miscellaneous debugging 
techniques. Highlights of the chapter include 

• A number of defensive programming techniques 

• An overview of the five basic steps for solving any debugging problem 

• A discussion of hangs, crashes, and other undesirable behavior 



364 ..- Chapter 17 Debugging Techniques 

• A variety of debugging techniques that may come in handy at one time 
or another 

The following MacsBug commands were introduced in this chapter. 

• The Disassemble Hexadecimal (DH) command for figuring out what in­
struction an opcode stands for 

• The Stack Crawl (SC6 and SC7) commands for examining the contents of 
the stack 

• The WHere (WH) command for determining information about an address 
or trap 



18 

101 

Macros 

MacsBug can be extended and enhanced in a variety of ways to make it more 
applicable to the problems you are trying to solve. You can create shortcuts and 
memory aids using macros, customize memory displays using templates, and 
even create your own commands using dcmds. This chapter discusses how you 
can extend MacsBug via macros. Appendix B contains complete listings of all the 
macros, templates, and dcmds presented in this book, as well as some others. 

A macro is an alias for another piece of text. Before MacsBug evaluates a com­
mand, it expands all macros. Macros are useful for performing a task repeated­
ly to save time and typing or to give an easy-to-remember name to a memory 
location. Macros can be created for the current session from within MacsBug 
or permanently added to the Debugger Prefs file using ResEdit or MPW. 

Listing Existing Macros 

If you had a Debugger Prefs file in your System Folder when MacsBug was 
loaded, you should have some macros available. To see all the macros, you use 
the MaCro Defiriitions (MCD) command. 

mcd 

365 



366 .._ Chapter 18 Macros 

MacsBug responds with a list of all defined macros and their expansion. Since 
this can produce a lengthy list, MacsBug allows you to display macros starting 
with a given letter or letters. For example, to list all the macros beginning with 
the letter A, type 

mcd a 

or to see a particular macro (ACount for example), type 

mcd acount 

The following list of macros is an abbreviated display of MacsBug output 
for the MCD command. 

Macro table 

ABusVars 

ACount 

ADBBase 

AGBHandle 

AlarmState 

First Time 

NOPS 

NOP 

SG 

OpenWD 

CloseWD 

CatMove 

DirCreate 

GetWDinfo 

GetFCBinfo 

GetCatinfo 

SetCatinfo 

SetVolinfo 

LockRgn 

UnlockRgn 

ees 

Expansion 

0208 

OA9A 

OCFB 

ODlC 

021F 

show 'sp' la;g 

SM PC-6 4E71 4E71 4E71 

SM PC-2 4E71 

DM @@AS GRAFPORT 

tHFSDispatch RDO.W=#l 

tHFSDispatch RDO.W=#2 

tHFSDispatch RDO.W=#5 

tHFSDispatch RDO.W=#6 

tHFSDispatch RDO.W=#7 

tHFSDispatch RDO.W=#B 

tHFSDispatch RDO.W=#9 

tHFSDispatch RDO.W=#lO 

tHFSDispatch RDO.W=#ll 

tHFSDispatch RDO.W=#l6 

tHFSDispatch RDO.W=#l7 

atc;brc;es 



Window 

Event 

Control 

Dialog 

GG 

GS 

RTS 

GTO 

BRO 

thePort 

IJ 

DevList 

vcbList 

theCPort 

VBLTasks 

...,.. Types of Macros 

..,. Types of Macros 367 

WindowRecord 

Event Record 

Control Record 

DialogRecord 

BRC ; ATC ; G 

SB 120 1; G; T 2;SB 120 0 

PC = SPA ; SP = SP + 4 

GT : + 

BR : + 

OM RASAA WindowRecord 

OM @@DeviceList GDevice 

OM @(VCBQHdr+2) VCB 

DM RASAA CGrafPort 

DM @(VBLQueue+2) VBLTask 

Macros are categorized into three types: names for memory locations, dis­
patched traps, and command abbreviations . 

...,.. Low Memory Globals 

In the Macintosh many memory locations have a special meaning to the sys­
tem and applications. Many macros defined in the Debugger Prefs file are 
names for these global variable locations. These macros are typically used in 
conjunction with the OM command to look at the value of a global. For exam­
ple, to find the name of the currently running application, you type 

d.m curapname 

ra ther than 

d.m 910 



368 .,... Chapter 18 Macros 

which is what the CurApName macro expands to. Macros that name a 
memory location expand to an address. For example 

ABusVars 

ACount 

ADBBase 

AGBHandle 

.,.... Dispatched Traps 

0208 

OA9A 

OCFS 

ODlC 

The second type of macros are for dispatched traps. These macros are used like 
trap names but are for routines that dispatch from a common trap based on the 
value of a register or a parameter on the stack. You can use them with the ATB 
command, just as if they were any other trap. These macros are easily recog­
nized since they start with a trap name or number. For example 

OpenWD tHFSDispatch RDO.W=tl 

CloseWD tHFSDispatch RDO.W=t2 

CatMove tHFSDispatch RDO.W=tS 

DirCreate tHFSDispatch RDO.W=f6 

GetWDinfo tHFSDispatch RDO.W=f7 

GetFCBinfo tHFSDispatch RDO.W=f8 

GetCatinfo tHFSDispatch RDO.W=t9 

SetCatinfo tHFSDispatch RDO.W=flO 

SetVolinfo tHFSDispatch RDO.W=#ll 

LockRgn tHFSDispatch RDO.W=#l6 

UnlockRgn tHFSDispatch RDO.W=fl7 

These macros are all File Manager routines that dispatch from a common 
trap. Register DO is used as a routine selector. For example, the Open WD rou­
tine is specified when register DO contains 1. 



..,. Creating Macros 369 

...,.. Command Abbreviations 

Note ..,.. 

The final type of macros are abbreviations for commands. These macros are 
useful because they can hide the details of performing some particular opera­
tion. For example, if you want to see the current port you can use the macro 

thePort 

rather than remember that the Port is doubly dereferenced off register AS. 
Some common command macros are 

GTO GT : + 

BRO BR :+ 

thePort DM RA5"" WindowRecord 

IJ IL (.+2 ) " 

DevList DM @@DeviceList GDevice 

vcbList DM @ (VCBQHdr+2) VCB 

theCPort DM RA5"" CGrafPort 

VBLTasks DM @(VBLQueue+2) VBLTask 

When MacsBug is loaded during the boot process, it executes the 
FirstTl.me macro if it exists. A common use for this macro is to set up 
the formatting of the stack display. For example, FirstTnne could 
expand to 

ShOW I Sp 1 la;g 

This tells MacsBug to show the stack as both long values and ASCII 
equivalents and then resume the boot process . 

...,.. Creating Macros 
Macros created from within MacsBug will last only as long as MacsBug is run­
ning. They are not saved anywhere, so they are most useful for speeding up 
an immediate task. If you expect to use the macro more often or are naming 
a particular location you want to refer to in the future, you can add the macro 
to the Debugger Prefs file and it will be available across reboots. The following 
two sections describe how to create temporary as well as permanent macros. 



370 ....,. Chapter 18 Macros 

.,.... Creating Temporary Macros 

Key Point ...,., 

Temporary macros are created directly in MacsBug. To create a macro, use the 
MaCro (MC) command followed by the desired name and the expression it ex­
pands to. For example, if you are debugging a subroutine that has a local vari­
able 10 bytes above A6, you might want to create a macro to allow you to refer 
to that location. To do so, you type 

me MyVar 1 A6+10 1 

_:.It'iS·import~t/fo•inciUd.e. th~:•.<t40,t~·arounc:l A6410iSitlgJe·.quote~·-:·:•-~~~·.:!,~~:. 
around ·an.exp~essiort tell MaC$}Jug to take. the expr~sion exad:ly.~'~~· 
H the quotes are left off, MacsBug wlllexpand MyVar to the v~u~ qt: .. 
~register A6+10:~:when the macrg.~as created~ · · · ·. · · 

You can then use this macro to look at the variable when you are inside the sub­
routine with the command 

dm MyVar 

You can also use MacsBug' s macro capability to remember the state of a vari­
able by saving the value in a macro. For example, if you want to save the value 
of the CurrentAS global memory location, you type 

me SaveAS @CurrentAS 

You want MacsBug to evaluate the expression @CurrentAS, so you leave off 
the quotes. If you use quotes, the macro is equivalent to @CurrentAS, which 
is the value of CurrentAS when the macro is executed, not the value in the low 
memory location CurrentAS when the macro was created. If you later want to 
restore the value of CurrentAS, type 

sl CurrentAS SaveAS 



Note ..,..I 

Note ..,.. I 

..,.. Creating Macros 371 

MacsBug expands macros before actually interpreting any commands. 
You cannot define a macro and reference it on the same line, because 
the reference is undefined at the time the macro expands. 

If you want to remove a temporary macro or want to remove a permanent 
macro temporarily, you can do so using the MaCro Clear (MCC) command. To 
remove the SAVEAS macro just defined, type 

mcc SaveAS 

Be careful! If you just type MCC without any macro name, MacsBug 
will remove all macros, and no Undo exists. All permanent macros are 
restored the next time you restart your Macintosh, of course . 

...,.. Creating Permanent Macros w ith ResEdit 

You can use ResEdit to add macros to the Debugger Prefs file; these macros 
are then available across system restarts. The macros are kept in 1 mxbm 1 

resources, and each' mxbm 1 resourcecanholdmany macros. Youmayuse 
ResEdit to explore the ones provided and to add your own . It is recom­
mended that you make a new 1 mxbm 1 resource for the macros you create 
so that you can easily exchange the macros you have created with others 
and so that you can easily add your macros to a new Debugger Prefs file. A 
sample of what the macros look like in ResEdit is shown in Figure 18-1. 



372 ..,.. Chapter 18 Macros 

§0 mHbm "QD" 10 = 110 from Debugger Prefs 

Number of 5 
macros 

1) ***** 
Macro name 

Expansion gdevice 

2) ***** 
Macro name jmainOev 

~==================~ 
Expansion jon @@8ai gdevice 

3) ***** 
Macro name jtheWMgrCPort 

~==================~ 
Expansion I OM @d2c cport 

Figure 18-1. 1 mxbm 1 Resource in ResEdit 

Returning Immediately from a Subroutine 

This useful macro forces an immediate return from a subroutine, assuming 
that a LINK A6 was performed at the beginning of the subroutine. These­
quence of commands that perform this operation is 

SP=A6 

A6=@SP 

SP=SP+4 

PC=@SP 

SP=SP+4 

The first three commands are the equivalent of UNLK A6, and the last two 
are the equivalent of RTS. You might call this macro "A6Retum." 

To create this macro, enter ResEdit and open the 1 mxbm 1 resources win­
dow in the Debugger Prefs file. Then use the New command in the File menu 
to create a new 1 mxbm 1 resource. Select the***** and use the New command 
again to create a new space for your new macro. Enter 



..,. Creating Macros 373 

A6Return 

for the macro name and 

SP=A6 ;A6=@SP ; SP=SP+ 4;PC=@SP;SP=SP+4 

for the macro expansion. You can add more macros by using the New com­
mand. When you are all done, save the Debugger Prefs file with your changes. 
The next time you restart, your macros will be available . 

...,.. Creating Permanent Macros with MPW 

Rez is an MPW tool that creates resources from text sources, in a manner simi­
lar to the way a compiler creates machine code from program sources. The 
source template for an 1 mxbm 1 resource resembles 

type ' mx bm ' { 

i nteger= $$Count0f(symbols); I* Number of entries *I 

array symbols I pString; pString ; ) ; I* Macro name ; expansion *I 

); 

You must include the template in the source so that Rez knows the format of 
the resource. Most Rez sources include the file Types.r, which defines many 
of the standard Rez templates. The 1 mxbm 1 template is also defined in the 
MacsBugTypes.r file, which is included on the disk accompanying this book. 

The 1 mxbm 1 resource code for the previous example is 

resource ' mxbm ' (1234 , " My Macros " ) I 

I* Only o ne macro i n this resource *I 

I* [1) */ 

" A6Return " , 

" SP=A6;A6=@SP;SP=SP+4;PC=@SP ; SP=SP+4 " 

); 

The first line defines this particular 1 mxbm 1 resource as ID 1234 with the 
name My Macros. The next lines define the resource; in this case, the resource 
has only one macro. 

If you create a file called CustomMacros.r that includes the template defini­
tion (either directly in the source or with the Rez #include directive) and the 



374 ~ Chapter 18 Macros 

preceding source for the A6Return macro, the following MPW command 
builds the resource and adds it to the Debugger Prefs file 

Rez CustomMacros.r -a -o 11 {SystemFolder}Debugger Prefs" 

The advantage of using MPW to create macros is that you have the MPW edi­
tor to edit the source, which is often much easier than using RezEdit. MPW also 
has a tool that takes existing resources and turns them into Rez source. For ex­
ample, to recreate Rez source for the macro you just created, use the command 

Derez "{SystemFolder)Debugger Prefs" -only 1 1 i)' 1 mxbm 1 il 1 1 (1234) 1 mxbm.r 

In this case the DeRez output will go to the Worksheet; the file mxbm.r con­
tains the ' mxbm ' template. Using the MPW Commando facility is the best 
technique for generating DeRez commands. See the MPW manual or Pro­
grammer's Guide to MPW, Volume 1: Exploring the Macintosh Programmer's 
Workshop by Mark Andrews (Addison-Wesley, 1990) for a complete explana­
tion of Commando. 

As you would expect, the DeRezed output is identical to the source (except 
for the comments, of course). On my machine, MPW responds with 

resource 'mxbm' (1234, "My Macros") 

} ; 

{ /* array symbols: 1 elements */ 

/* [1] */ 

"A6Return", 

"SP=A6;A6=@SP;SP=SP+4;PC=@SP;SP=SP+4" 

....,. Summary 
MacsBug can be extended via macros, templates, and dcmds. Macros, which 
are simply an alias for a longer piece of text, were introduced in this chapter. 
This chapter discussed how to examine and create macros. We discussed 



...,_ Summary 375 

• The MCD command, which displays all existing macros, or all macros 
beginning with a letter or letters 

• The MC command, which creates a macro whose lifetime is until the 
next reboot 

• The MCC command, which clears a specified macro or all macros if no 
name is provided 

• How to add macros to the Debugger Prefs file using MPW and ResEdit 



19 

101 

Templates 

Templates tell MacsBug how to format a memory display. Typically, a record 
consists of fields of a variety of lengths and names. Examining the record with 
the field names and values is more meaningful than looking at a series of bytes. 
This is where templates are helpful. A template allows you to specify how 
memory should be displayed. 

Templa tes allow you to provide labels for each field of the record and to 
specify what is to be shown for each field. You can use a variety of basic types, 
such as byte or word, as well as existing templates. Template types are dis­
cussed in the next section, and the last two sections describe how to create tem­
plates using ResEdit and MPW. 

Listing Existing Templates 

To look at the various templates already defined in the Debugger Prefs file, type 

tmp 

MacsBug responds with the names of all templates currently defined. You may 
also specify a partial name after the command to see only templates that 
match. For example 

tmp w 

will produce a list similar to 

377 



378 ..,.. Chapter 19 Templates 

Template names 

WindowRecord 

WDCB 

Wi nCTable 

WidthTable 

You give template names as part of the Display Memory (OM) command. 
This technique has been used throughout this book to display areas of 
memory. For example, the command 

dm @windowlist windowrecord 

uses the Window Record template to display the first window in the window list. 

...,_ Types Used in Templates 

Note ..,.I 

MacsBug provides a variety of basic types that can be used for the type name 
in a template definition. Table 19-1 provides a complete list of basic types. With 
these types, excepting PStrings, the count indicates the number of items of that 
type to display. For PStrings, the type is the maximal size of the string and is 
used to calculate where the next entry of the record is to be found . If just the 
length of the PString is to be used, use a count of zero. Table 19-2lists some other 
utility types. 
. When using /\Type or /\/\Type in a template, if you specify the same name 
as the template being defined, MacsBug assumes that record is an entry in a 
linked list. MacsBug remembers the value displayed, so that if you press 
Return after showing memory using the templa te, it shows you the next 
record in the list (until it finds a zero as the pointer or handle). This feature is 
very handy for looking at lists of records. 

You can also use existing templates as a type in the type name field. The ex­
ample in the next section uses the Rgn template inside the template that is be­
ing defined . The ability to reuse existing templates provides an easy way to 
create complex templates with minimal effort. 

If there are two references to the current template in a template, 
MacsBug will use the last entry as the pointer to the next record. 



~ Types Used in Templates 379 

Table 19-1. Basic types used in template definition 

Type 

Byte 
Word 

Long 
Signed Byte 
Signed Word 
Signed Long 
Unsigned Byte 
Unsigned Word 

Unsigned Long 
Boolean 

PString 
CString 
Text 

Description 

Displays 1 byte in hexadecimal 
Displays a word (2 bytes) in hexadecimal 
Displays a long (4 bytes) in hexadecimal 
Displays 1 byte as a signed decimal 
Displays a word as a signed d~cimal 
Displays a long as a signed decimal 
Displays a byte as an unsigned decimal 
Displays a word as an unsigned decimal 

Displays a long as an unsigned decimal 
Displays a byte as TRUE (nonzero) or FALSE (zero) 

Displays a Pascal string (count byte first) 
Displays a C String (zero terminated) 
Displays a text string for count bytes 
(resource types can be shown with the 
text type and a count of four) 

Table 19-2. Utility types for template definition 

Type 

Skip 
Align 

Handle 

A Type 

Description 

Skips over the next-count bytes without displaying. 
Aligns to a word boundary (used after C or 
Pascal strings). 
Dereferences and displays in hex. This type is used to 
show the address of a data structure, rather than 
its contents. 
Dereferences a pointer and displays using the basic 
type or template. The display is indented two spaces. 
Dereferences a handle and displays using the basic 
type or template. The display is indented two spaces. 



380 ...,. Chapter 19 Templates 

.,.. Creating Templates With ResEdit 

101 

As with macros, templates reside in a resource of the Debugger Prefs file. ·While 
macros reside in 1 mxwm 1 resources, templates are in 1 mxwt 1 resources. 
Each 1 mxwt ' resource can hold many templates, and you can use ResEdit to 
explore the templates provided and to add your own. It is recommended that 
you make a new 1 mxwt 1 resource for the templates you create so that you can 
easily add your templates to a different Debugger Prefs file. A sample of what 
a template looks like in ResEdit is shown in Figure 19-1. 

~§§ mHwt "Color QD" 10 = 1 01 from Debugger Prefs ~ 
{} 

Number of 9 
templates 

1) ***** 
Template 
name 

Hum fields 2 

1) -----

Field name jseed Flags Size 

Type name juord 

Count 

2) -----

Field name jet Table 

Type name juord 

Figure 19-1. 1 mxwt 1 Resource in ResEdit 

Creating a Template in ResEdit 

In this example you create a Short Wmdow Record, which is defined as 

ShortWindowRec= RECORD 

device: Integer; 

baseAddr: LONGINT; 



rowBytes: Integer 

bounds: Rect; 

portRect: Rect; 

visRgn: RgnHandle; 

(skip 116); 

...- Creating Templates With ResEdit 381 

nextWindow: ShortWindowPtr; 

END; 

It is unlikely you will find great use for this template, but it makes a good example. 
To create this template, use ResEdit and open the 'mxwt' resources window. 

Then use the New command in the File menu to create a new 'mxwt' resource. 
Select the first***** and use theN ew command again to create a new space for 
your template. Fill in the Template Name field with the template name 

ShortWindowRec 

There are two sets of ***** below this field. The first set adds new fields to 
the template. The second set creates another new template. Click on the first 
*****and use the New command to create space for the first field. In the new 
Field Name space put the name of the first field of the ShortWindowRec. 

device 

In the Type Name space put in the type of the field. Pascal INTEGERs are word 
length, so enter 

word 

The device field is only one word long, so in the Count space put 

1 

Select the indented***** below the count and use the New command again to 
create another field. In this field fill in 

baseAddr 

long 

1 



382 ...,. Chapter 19 Templates 

Create a new field and fill in 

rowBytes 

word 

1 

The fourth field of the record is a Rectangle, which is made up of four words 
for the top, left, bottom, and right coordinates. To make it easier to remember 
what the four words are, you can provide reminders. The definition for this 
field should be 

bounds (t,l,b,r) 

word 

4 

The next field is the portRect and is just like the bounds rectangle. 

portRect (t,l,b,r) 

word 

4 

The visRgn is a handle to a Region, for which there is already a template de­
fined. To use the existing Rgn template, define this field as 

visRgn 

""Rgn 

1 

Since you are displaying an abbreviated version of a window record, the 
next field of interest is 116 bytes later. Skip fields in a template are provided 
for just such needs. 

(none) 

skip 

116 



..,. Creating Templates With MPW 383 

Finally, each Window Record points to another Window Record, to make up 
a list of Window Records. MacsBug provides a way for you to say this in the 
template with 

nextWindow 

~shortWindowRec 

1 

If you save the Debugger Prefs file, the ShortWindowRec template will be 
available in MacsBug the next time you reboot. 

...,.. Creating Templates With MPW 
In Chapter 18, the MPW Rez tool was used to create macros. This section pro­
vides an example of creating templates with Rez. The Rez declaration of an 
1 mxwt 1 resource is 

type 1 mxwt 1 
( 

integer • SSCou :-~ tOf (templates) : ! • Nuober of templat.es • I 

array templates ( pString ; / • Type narr:e • / 

intege r "" sscountOf ( fields) ; / ' Number of fic l d!l 1n this t e mp:atc • / 

arr ay f ields ( pSt ring ; / " Field name "/ 

pString ; / • ricld t ype • I 

integer ; / " Number of fields of this type ~ 1 

) ; 

) ; 

) ; 

The 1 mxwt 1 type is defined in the MacsBugTypes.r file, which is on the disk 
accompanying this book. You can include this file of types in your source with 
the Rez #include directive. The source for the 1 mxwt 1 resource for the pre­
vious example is 

r esource ' mxwt ' (210 , " My Templates " ) ( 

I* o nly o ne template in t his r e s ource */ 

I * ( 1 ] * / 

" ShortWindowRec " , 

I * a r ray f i e lds : 8 e lements */ 

I * ( 1 1 * / 

"de v ice", 



384 ~ Chapter 19 Templates 

"word", 

1, 

I* [21 *I 

"baseAddr", 

"long", 

1, 

I* [3] *I 

"row Bytes" , 

"word", 

1, 

I* [4) *I 

"bounds (t,l,b,r)", 

"word", 

4, 

I* [51 *I 

"portRect (t,l,b,r)", 

"word", 

4, 

I* [61 *I 

"visRgn", 

"""Rgn", 

1, 

I* £71 *I 

"(none)", 

"skip", 

116, 

I* [81 *I 

"next Window", 

""ShortWindowRec", 

1 



..,.. Summary 385 

The first line defines this particular 'mxwt' resource as ID 210 with the 
name My Templates. The next lines define the resource; in this case, the re­
source has only one template. 

IfyoucreateafilecalledCustomTemplates.rthatincludestheRezdefinition 
for the ' mxwt ' resource and the source for the ShowWindowRec template, 
the following MPW command adds the resource to the Debugger Prefs file. 

Rez MyTemplates -a -o "{SystemFolder}Debugger Prefs" 

As with macros, you can use the MPW DeRez tool to create template sources 
from existing resources in the Debugger Prefs file. For example, the command 

Derez"{SystemFolder}Debugger Prefs"-only • •a• 1 mxwt•a• • (120) • 
mxwt.r 

will"DeRez" the previously created template and write the DeRez output to 
the MPW Worksheet. The file mxwt.r contains the Rez definition for the 
' mxwt' resource. You may include the resource types file, DebuggerTypes.r, 
instead of a special file containing only the ' mxwt ' resource . 

..,... Summary 
Templates are useful for producing a formatted display of memory. The 
Debugger Prefs file contains templates for a number of Standard System 
data Structures. You can also define templates for structures used by your 
applications. This chapter described how to list and add new templates to 
MacsBug. It discussed 

• Listing all available templates with the TMP command 

• Basic template types and using existing templates as a type 

• How templates are kept in the ' mxwt • resource of the Debugger Prefs 
file 

• Creating templates in ResEdit and MPW 



20 Dcmds 

Debugger CoMmanDs, or dcmds, are the most flexible way to extend MacsBug. 
Unlike macros and templates, dcmds require programming. You should use 
macros and templates whenever you can, but if you find you need to do some­
thing special, like showing more complicated data structures or providing a 
new MacsBug utility, dcmds are always there. 

MacsBug provides a set of utility routines that help a dcmd support 
MacsBug's command-line interface. These routines make it easy to display 
lines of text and interpret parameters. Dcmds cannot build up real dialogs 
with the user. The only supported interaction is of the please-press-Return­
to-continue style. MacsBug provides three types of support for a dcmd: input, 
output, and utility functions. 

~ Listing Available Dcmds 
To list all available dcmds type: 

help dcmds 

MacsBug responds by showing the dcmds and a short explanation of what 
each one does. You can also use the Help command followed by the name of 
a particular dcmd to show the explanation for only that command. This is 
slightly different than the way macros and templates are displayed because 
dcmds are more like built-in MacsBug commands. 

387 



388 ..,.. Chapter 20 Dcmds 

...,. How to Write a Dcmd 
You can write a dcmd in any language, but dcmds follow Pascal calling conven­
tions; that is, your dcmd is responsible for removing the dcmdBlock parameter 
passed to it from the stack. Dcmd callback routines also follow Pascal calling con­
ventions, which means you must allocate space for the callback's result on the 
stack. See Chapter 3 for a complete explanation of Pascal calling conventions . 

...,. The dcmdBiock 

Key Point ... J 

When a dcmd is called, it is passed a dcmdBlock, which is declared as 

t ypedef struct 

long* registerFi le ; 

s hort request ; 

Boolean abor ted; 

dcmdBlock; 

II Set to true i f t he user types a key 
while scroll i ng 

All the 68000 registers are passed in the register File, including the PC and 
the ProcessorStatusWord. The request parameter contains one of three values: 
an initialization message (dcmdlnit = 0), a message to perform the d cmd's 
function (dcmdDolt = 1), and a message for the dcmd to display its help text 
(dcmdHelp = 2). The format of the register File variable is given in the dcmd.h 
include file included on the accompanying disk. 

Each dcmd is called with the initialize message when the dcmd is loaded at 
boot time. Generally, dcmds don' t do much in response to the initialize mes­
sage, but if you need to initialize some state in your dcmd that will vary from 
invocation to invocation, this is the time to do it. 

Most of the Macintosh Toolbox routines are not reentrant. If an 
application is in the middle of a Toolbox call when you enter MacsBug, 
making the same (or a related) Toolbox call from your dcmd may 
corrupt application or system data structures. For this reason, be very 
cautious about using any Toolbox calls in your dcmds. 



Note 

...,.. How to Write a Dcmd 389 

The dcmd's function is performed when the dcmd receives the dcmdDolt 
message. At this time, the dcmd may examine the registers passed to it, call 
back various utilities provided by MacsBug (to interact with the user or get in­
formation from MacsBug), examine or change memory, or perform any other 
function. 

Since dcmds can be executed anytime MacsBug can be invoked, dcmds 
must be careful when changing system or application memory or using Tool­
box routines. If your dcmd is doing something that is potentially dangerous, 
you should give the user a chance to cancel the operation. The dcmdDraw­
Prompt command introduced in the following section can be used to question 
whether the user wants to continue. 

The help message is sent to the dcmd when the user types help. Your dcmd 
should display a help message that explains what it does and the parameters 
it takes. You may also want to put a version number in the help text to keep 
track of changes to your dcmd. 

The aborted parameter in the dcmdBlock is an indication to your dcmd that 
the user would like your dcmd to stop. The flag may be set whenever a dcmd 
calls back to MacsBug to write text to the display. Typically a dcmd checks the 
aborted parameter while it displays a list of information (such as the VBL list). 
If your dcmd outputs only one or two lines, don't worry about checking the 
flag . 

...,. Callbacks 

Just as the Macintosh Toolbox helps you create applications, MacsBug 
provides a number of utilities to assist you in writing a dcmd. A callback is a 
MacsBug routine that provides support for a variety of standard functions that 
dcmds commonly perform. These routines are called callbacks because 
MacsBug calls the dcmd and then the dcmd calls back to MacsBug to use the 
utility routine. HyperCard and ResEdit also use callbacks. MacsBug callbacks 
are categorized into three groups: input, output, and utility functions. 



390 ...,. Chapter 20 Dcmds 

..,_. Output Functions 

There are four callback routines for writing information to the MacsBug dis­
play. The first procedure 

pascal void dcmdDrawLine(const Str255 str); 

displays the Pascal string as one or more lines and automatically scrolls the 
display when necessary or when a CR is encountered. If the user types a key 
while the text is being drawn, the aborted flag is set, indicating that the dcmd 
should terminate. 

This procedure is similar to dcmdDrawLine, except it appends the string to 
the current line rather than beginning a new line. 

pascal void dcmdDrawString(const Str255 str); 

The two previous routines print messages in the display area; the 
dcmdDrawPrompt routine displays the Pascal string in the command line 
area and waits for the user to press a key. 

pascal Boolean dcmdDrawPrompt(const Str255 str); 

The routine returns true if the user typed Return, and false otherwise. If a 
key other than Return is pressed, MacsBug sets the aborted flag, instructing 
the dcmd to terminate. When the dcmd is done, MacsBug places the 'keystroke 
on the command line as the first character of the next command. 

pascal void dcmdScroll(); 

This routine scrolls the MacsBug display up one line and leaves a blank line 
·at the bottom. 

The previous four output functions are the primary avenue for transmitting 
information from a dcmd to the user. Your dcmd should check the aborted flag 
after each call to dcmdDrawLine or dcmdScroll (particularly when used in­
side a loop) to see if the user has aborted the dcmd. 



...,. How to Write a Dcmd 391 

....,. Input Functions 

MacsBug provides a number of routines for bringing user input into a dcmd. 
The first two calls can be used to back up in the command line, if necessary. For 
example, if you are not sure of the type of parameters being passed to your 
dcmd, you can use dcmdGetPosition before reading the parameters. If the pa­
rameters were of an unexpected type, you can use dcmdSetPosition and try a 
different interpretation. The following routine, 

pascal short dcmdGetPosition(); 

gets the current command line position. The routine 

pascal void dcmdSetPosition(short pos); 

sets the current command line position. This should only be set to a value re­
turned by dcmdGetPosition. 

The following two routines are basic input functions. They don't provide in­
terpretation of the command line's contents, but they do provide complete 
control for scanning the user's input. The first routine, 

pascal short dcmdGetNextChar(); 

returns the next character on the command line or CR if the entire line has been 
scanned. The command line position is incremented to point to the next char­
acter. The second routine, 

pascal short dcmdPeekAtNextChar(); 

returns the next character on the command line (or CR if the entire line has 
been scanned) without changing the current command line position. 

The last two input functions provide an analysis of the command line. If 
they return something unreasonable, you should give the user a warning that 
he or she typed something wrong. This function, 

pascal short dcmdGetNextParameter(Str255 str); 

copies characters from the command line to the parameter string until a deli­
miter is found or the end of the command line is reached. A delimiter is a space, 
a comma, or a CR. Both single- and double- quoted strings are allowed on the 
command line and are interpreted just as other MacsBug commands are inter­
preted. This function returns the delimiter. The next function, 

pascal short dcmdGetNextExpression(long* value, Boolean* ok); 



392 ..,.. Chapter 20 Dcmds 

Note ..,.., 

parses the command line for the next expression and returns the expression 
evaluated to 32 bits. This function's return value is the delimiter after the ex­
pression; possible delimiters are commas, CRs, and spaces (when they are not 
in the middle of an expression). For instance, 

1 + 2 

returns a value of 3 in the value parameter, and the returned delimiter is a 
CR. The Boolean OK parameter indicates whether the expression was parsed 
successfully. 

The dandGetNextExpression callback implemented in the TestDcmd 
tool (described in a following section, "Testing a dand") does not 
implement the full functionality of dandGetNextExpression. In this 
particular case the TestDcmd callback returns 1 rather than 3. As 
described in the TestDcmd section, many of the caliback routines are 
abbreviated versions of the actual MacsBug callbacks . 

...,.. Utility Functions 

MacsBug provides a number of miscellaneous functions that are useful to 
some dcmds. One such function, 

pascal void dcmdGetBreakMessage(Str255 str) ; 

copies the break message MacsBug displayed the last time it was entered into 
STR. This is the same message displayed by the HOW command and may con­
tain multiple lines separated by CRs. 

MacsBug has a large database of Macintosh routine names. The following 
two functions allow your dcmd to provide helpful names for traps and rou­
tines. The first function, 

pascal void dcmdGetNameAndOffset(long address , Str255 str); 

returns a symbolic representation for addresses in STR. If no symbol can be 
found, then an empty string is returned. The format of the symbol returned is 
Name+OOOO. With new compilers the name is no longer restricted to eight 
characters. The second function, 

pascal void dcmdGetTrapName ( s hort trapNumber , Str 255 trapName); 



.,.. How to Write a Dcmd 393 

returns the trap name for the given trap number. If no symbol can be found, 
then an empty string is returned. 

Although MacsBug doesn't, some debuggers have their own low memory 
world. Apple intends that MacsBug dcmds work with other debuggers as 
well. This function 

pascal void dcmdSwapWorlds(); 

provides a way for the dcmds that look at an application's low memory vari­
ables to perform their function when called from a debugger other than 
MacsBug. This procedure does nothing in MacsBug. 

Though MacsBug doesn't do anything when you call dcmdSwapWorlds, 
your dcmd should call it when appropriate (such as when the dcmd uses the 
value of a low memory global), on the chance that a future version ofMacsBug 
will use low memory and to prevent having to change your code to make it 
work with another debugger. 

The following statement 

pascal void dcmdSwapScreens(); 

toggles between the user and debugger displays. This is equivalent to hitting 
the Escape key. Your dcmd might want to use this procedure to examine the 
screen's contents (to write them to a file, for example). 

Another procedure, 

pascal void dcmdForAllHeapBlocks (DoThisPtr DoThis); 

walks through the blocks in the current heap, calling the DoThis routine for 
each block. Do This should be a procedure of the form 

pascal void DoThis (long blockAddress, long blockLength, 

long addrOfMasterPtr, short blockType, 

Boolean locked, Boolean purgeable, 

Boolean resource); 

The blockAddress and blockLength pertain to the data in the heap block, not 
including the block header. The addrOfMasterPtr is the master pointer's loca­
tion in the heap, not the value of the master pointer. The blockType is defined 
by the constants freeBlock, nonrelocatableBlock, and relocatableBlock. The 
Booleans locked, purgeable, and resource reflect the state of the block. 

This last function is extremely handy for looking at heap blocks, for search­
ing heap blocks for some particular piece of information, or for totaling some 
information from each block. 



394 ...,. Chapter 20 Dcmds 

By the Way .,..I Thel)oThis roUtine you ptt>Vid~ to d~pB~ is:"·.~········ 
routit\e to yqtitl'dcmd. MacsBqgfs callbackroutirte·Will qlll:ba~ y~~i>\·7 
dcmd. Anyon~ who has ever played phone :tag Willfe~t~t.athO:m~:: 
with this function. 

.,... Building a Dcmd 

There are three steps involved in building a dcmd. 

1. Write and compile your code into 1 CODE 1 resources. 

2. Use the BuildDcmd MPW tool to turn the 1 CODE 1 resources into a 
1 dcmd 1 resource. 

3. Use ResEdit (or the MPW Rez tool) to add the 1 dcmd 1 resource to the 
Debugger Prefs file. 

The BuildDcmd tool takes the name of the file (which is also used as the 
name of the 1 dcmd 1 

) and a resource ID for the resulting 1 dcmd ' resource. 
The function CommandEntry becomes the entry point to the dcmd. You can 
then use ResEdit to copy the 1 dcmd 1 resource into your Debugger Prefs file. 
This sample MPW build script builds the following dcmd. 

C Heap.c -b 

Link {dcmdLib}dcmdGlue.a.o Heap.c.o 

{dcmdLib}DRuntime.o {CLibraries}StdCLib.o -o Heap 

BuildDcmd Heap 100 

The next dcmd displays some information about each relocatable block in 
the heap. First the standard dcmd header files are included, followed by a util­
ity routine that converts a number into a hex string equivalent. This can also 
be accomplished from C by using Apple's formatting routines available in the 
put.c library. 

I* Heap.c 

This command displays information about each block in the 
heap, in a manner similar to the hd command already in MacsBug. */ 

#include <Types.h> 

#include "dcmd.h" 



~ How to Write a Dcmd 395 

void NumberToHex (long number, Str255 hex) 

Str255 digits 11 0123456789ABCDEF"; 

int n; 

strcpy (hex, & 11 .00000000"); 

hex[O] 8; 

for (n 8; n >= 1; n--) 

hex[n] = digits[number% 16]; 

number = number I 16; 

II NumberToHex 

The following function is passed to MacsBug and will be called for each 
block in the heap. Because MacsBug provides the loop around this function, 
the function doesn't need to worry about the aborted flag. Its function is to 
print information about every relocatable block found in the heap. Notice that 
it is doing most of its drawing with dcmdDrawString, so it builds a line of in­
formation as it goes along.lt starts a new line with the dcmdDrawLine callback 
for each new block. 

pascal void DisplayBlockinfo (long blockAddress, 

long blockLength, 

long rnasterPtr, 

short blockType, 

Boolean locked, 

Boolean purgeable, 

Boolean resource) 

Str255 value; 

NumberToHex (blockAddress, value); 

dcrndDrawLine (value); 

NumberToHex (blockLength, value); 

dcrndDrawString ("\p "); 



396 .,.. Chapter 20 Dcmds 

dcmdDrawString (value); 

if (blockType == relocatableBlock) 

NumberToHex (masterPtr, value); 

dcmdDrawString ( 11 \p 11
); 

dcmdDrawString (value); 

dcmdDrawString ( 11 \p 11
) ; 

if (locked) 

{ dcmdDrawString ( 11 \pLocked 11
); } 

if (purgeable) 

{ dcmdDrawString (11 \pPurgeable 11
); } 

if (resource) 

{ dcmdDrawString ( 11 \pResource "); } 

II DisplayBlockinfo 

The Command Entry function is the main entry point for every dcmd. The 
main procedure mu~t always be named CommandEntry and take one 
parameter, a paramPtr, since it is called by MacsBug. It typically uses a 
switch or a case statement to decide which action to take based on the 
request field of the dcmdBlock. This dcmd, like most dcmds, doesn't have 
any initialization requirements, so it does nothing in response to the dcmdl­
nit message. If your dcmd needs to allocate memory, you should do it in 
response to the dcmdlnit message. This is the only time a dcmd can safely 
call the Macintosh Memory Manager. 

The code that responds to the dcmdHelp message is usually just a few 
dcmdDrawLines showing the name of the command, an explanation of how 
to use it, and its purpose. For this dcmd, the dcmdDolt case displays labels for 
columns and asks MacsBug to call the DisplayBlocklnfo function for each 
block in the heap. 

pascal void CommandEntry (dcmdBlock* paramPtr) 

switch (paramPtr->request) 

case dcmdinit: 



~ How to Write a Dcmd 397 

break; 

case dcmdHelp : 

dcmdDrawLine ( " \pHEAP " ) ; 

dcmdDrawLine !" \p Displays information about 
all heap blocks. Version 1. 0 " ) ; 

break; 

case dcmdDoit : 

II Draw the column labels 

dcmdDrawLine ( " \p Address Length Mstr Ptr " ) ; 

II The ~acsBug heap iterator will call Display­
// Blockinfo once for each block in the heap 

dcmdForAllHeapBlocks (DisplayBlockinfo) ; 

break ; 

} // CommandEntry 

.,... Testing a Dcmd 

Note .,.. 

Apple provides a TestDcmd application to assist in debugging dcmds. To use 
TestDcmd, copy the Debugger Prefs file into the same folder as the TestDcmd 
application and launch TestDcmd. You will see a window with the help for 
each dcmd in the Debugger Prefs file. 

Unlike MacsBug, you do not need to restart your Macintosh for the 
dcmds to be available in the TestDcmd application. 



398 ..,. Chapter 20 Dcmds 

101 

You may now use any of the dcmds, just as if you were in MacsBug, except 
that if an error occurs MacsBug can be used to discover the problem. Because 
thedcmd is not called by MacsBugwhen using the TestDcmd tool, you can also 
put Debugger() statements in your code to ease your debugging as well as use 
the Break on Entry menu item to tell the TestDcmd application to enter 
MacsBug at the start of the dcmd. 

Debugging a Dcmd Using TestDcmd 

The Chapter 18 folder on the disk included with this book contains a small 
Debugger Prefs file and the TestDcmd application. The dcmd included in 
Debugger Prefs file is a version of the Heap.c dcmd shown previously, but 
with the NumberToHex function changed to cause it to set the length of the 
number to four instead of eight, as follows. 

void Number ToHex ( long number , Scr255 hex) 

Str255digits " 0123456789ABCDEF"; 

int n; 

Debugger () ; 1 ~ you usually can ' t enter MacsBug in a dcmd *I 

strcpy (hex , &". 00000000 " ) ; 

hex [OJ 4 ; I* t h is should be B to work corr ectly *I 

for ( n B; n >= 1 ; n--) 

hex[n] = digits[ number % 16] ; 

numbe r = number I 16; 

J II NumberToHex 



By the Way ..,., 

...,. How to Write a Dcmd 399 

The TestDcmd application does not provide a perfect emulation of the 
MacsBug environment. Some limitations are obvious; for example, the 
dcmdSwapScreens doesn't do anything because the TestDcmd 
application runs on the desktop like any other application. Some other 
limitations are not as obvious; for example, the dcmdGetNextExpression 
function does not properly evaluate expressions. The goal of TestDcmd 
is to provide a way to exercise your dcmd, not to emulate the entire 
functionality of all MacsBug' s callback functions. 

If you feel the bug is in TestDcmd rather than your dcmd, you can 
always try out your dcmd under MacsBug. But if your dcmd crashes, 
TestDcmd provides a great way to figure out why. 

Make sure both the Debugger Prefs file containing the dcmd you want to 
test and the TestDcmd application are in the same folder. Launch the 
TestDcmd application and you will see a window similar to the window 
shown in Figure 20-1. 

Test dcmd 

Test dcmd 
Type the dcmd name to execute it 
Type G to ex it this progr am 
Type HELP for a I ist of avai I able dcmds 

Lis t of dcmds 
HEAP 

Di sp lays information about alI heap blocks 

Figure 20-1. The TestDcmd application 



400 ...,. Chapter 20 Dcmds 

If you try the Heap command by typing 

heap 

MacsBug is invoked because of the Debugger() trap. Use the DX command to 
stop the Debugger() statement from constantly breaking into MacsBug; the in­
correct heap dump is displayed. 

To fix the problem, go back to MacsBug (using the Programmer's Key or the 
Programmer's Switch) and use the DX command again to enable the Debug­
ger() statement and try the Heap command again. Use the IL command 

IL 

to see the code. MacsBug responds with 

Disassembling from 00181566 

NurnberToHex 

+0026 00181566 *PEA *+$004A 001815BO 487A 0048 

+002A 0018156A MOVE.L A3,-(A7) 2FOB 

+002C 0018156C JSR strcpy 001817F4 4E8A 0286 

+0030 00181570 MOVE.8 lt$04, (A3) 168C 0004 

+0034 00181574 MOVEQ #$08,07 7E08 

+0036 00181576 MOVEQ #$01,03 7601 

+0038 00181578 ADDQ.L #$8,A7 508F 

+003A 0018157A MOVE.L D6,DO 2006 

+003C 0018157C MOVEQ #$10,01 7210 

+003E 0018157E JSR *+$01F8 ; 00181776 4E8A 01F6 

+0042 00181582 MOVE.8 $00(A4,DO.W),$00(A3,D7.L) 1784 0000 7800 

+0048 00181588 MOVE.L D6,DO 2006 

+004A 0018158A MOVEQ #$10,01 

+004C 0018158C JSR *+$01DA 00181766 4E8A 0108 

+0050 00181590 MOVE.L DO,D6 2COO 

+0052 00181592 SU8Q.L #$1,07 

+0054 00181594 CMP.L 07,03 8687 



~ Summary 401 

+0056 0018159 6 BLE . S NumberToHex+003A ; 001815 7A 6FE2 

+0058 001815 98 MOVEM . L-$0114(A6) , D3/D6/D7/A3/A4 

+OOSE 0018159E UNLK A6 

+0060 001815AORTS 

4CEE 18C8 FEEC 

4E5E 

4E75 

This is the NumberToHex routine. The mistake is on line NumberTo­
Hex+0030, right after the call to strcpy. To test out the fix, you can patch the 
code. You will want to change the 0004 at NumberToHex+32 (see the object 
code equivalent to the right of the display) to 0008. If you use the symbolic 
name, rather than the address $181572, the MacsBug command to change the 
value is 

sw NumberToHex +32 0008 

Now that the routine is fixed, use the OX command again and let the Heap 
dump continue. At this point, you should fix the source and reinstall the dcmd 
to make sure everything else is working correctly . 

..,.. Summary 
MacsBug can be extended programmatically through dcmds. A number of 
callbacks are provided to support standard MacsBug features. While this is the 
most difficult way to extend MacsBug, it's also the most powerful. This chap­
ter discussed writing and debugging dcmds. It explained 

• The message block MacsBug passes to the dcmd and the available call­
back functions 

• How a dcmd should respond to MacsBug' s messages 

• Debugging a dcmd using the TestDcmd tool 



Appendix A 

MacsBug Command 
Summary 

..,... Command Syntax 
The syntax conventions used here are those used in the MacsBug 6.2 Reference. 

[] Anything enclosed in brackets is an optional parameter. Beware of com­
mas that separate brackets but are outside of brackets. Anything outside of all 
brackets is not optional. Optional parameters can be used in combination or 
individually. For example, 

SS addrl [ addr2 I 

For the Step Spy (55) command you must supply addr1, but addr2 is 
optional. Both 

ss 1000 

and 

ss 1000 1020 

are legal commands. 

This is the OR operator. If two parameters are separated by a I , you may 
specify either parameter but not both. For example, 

BR addr [ n I expr ] [ 1 
; cmd [ ; cmd ] . . . I 

403 



404 ...,. Appendix A MacsBug Command Summary 

For the BReak (BR) command you must supply an address. Optionally, you 
may specify either nor an expression, but not both. In addition, you can supply 
additional commands by preceding them with a single quote and a semicolon. 
Valid break commands include 

br 2000 3 

which indicates MacsBug should break the third time address 2000 is encoun­
tered. As another example, 

br 2000 @sp.w=20 ';hc;dw rnernerr 

indicates MacsBug should break only if the word on top of the stack is equal 
to 32 ($20). If a break occurs, MacsBug executes the HC and OW MemErr com­
mands, which check the heap and display the contents of MemErr. If the ex­
pression evaluates to a Boolean (as it does in this example), MacsBug breaks 
only if the expression is true. If the expression is numeric (such as 2+7), 
MacsBug will break after the instruction is encountered that many times. 

The brackets and the OR operator are the only syntax conventions used in 
the following command descriptions . 

.,.. Expressions 
With few exceptions, MacsBug commands that take parameters require an ad­
dress or an expression or both. An expression can evaluate to an address, of 
course. Table A-1 shows operators allowed in MacsBug expressions. 



.,.. Expressions 405 

Table A-1. MacsBug operators 

Operator 

(a+b) *c 

@a or a" 

!a, or NOT a 

a*b 

a/b 

a MOD b 

a+b 

a-b 

a==b, or a=b 

a<>b, or a!=b 

a>b 

a>-=b 

a<b 

a<=b 

a&b, or a AND b 

atb, or a ORb 

a XOR b 

Description 

Items in parentheses are evaluated first 

Address indirection as in C and Pascal 

Boolean NOT (a XOR $FFFFFFFF) 

Multiplication 

Division (integer result only) 

Computes a modulo b 

Addition 

Subtraction 

True if and only if a equals b 

True if and only if a is not equal to b 

True if and only if a is strictly greater than b 

True if and only if a is greater than or equal to b 

True if and only if a is strictly less than b 

True if and only if a is less than or equal to b 

Boolean (bitwise) AND 

Boolean (bitwise) OR 

Boolean (bitwise) XOR 

Notice that some MacsBug operators can be expressed in different ways. 
This is done in an attempt to support both C and Pascal syntax. Most common 
are the two indirection operators@ and ".The@ is a prefix operator, while the 
"is a postfix operator. For example 

br @sp 

and 

br sp" 



406 ..,. Appendix A MacsBug Command Summary 

instruct MacsBug to break when the address at the top of the stack is reached 
(as when returning from a subroutine) . 

....,. Values in an Expression 
MacsBug expressions evaluate to 32-bit signed values. Values in an expression 
can be. 68000 registers, numbers, macros, symbols, a colon (:),strings, or a peri­
od (.). Each is described in the following sections . 

....,. 68000 Registers 

d0=@(A6+8) .w 

Valid values are DO-D7, AO-A7, PC, SP, USP, MSP, ISP, VBR, CACR, CAAR, 
and SR. In practice, you will most commonly use the data registers, DO-D7, the 
address registers, AO-A7, and the program counter, PC . 

....,. Numbers 

sw rnenuflash 5 

sl 0 50ffc003 

Numbers are assumed to be hexadecimal. To specify decimal, precede the 
number with a# character. Thus, the decimal value ten can be written as #10 
orA . 

....,. Macros 

hs @syszone 

Macros are an alias for another command or commands. Chapter 1 8 de­
scribes macros in detail . 

....,. Symbols 

br MyProcedure 



..,.. Values in an Expression 407 

MacsBug shows all currently defined symbols if you press the colon (:) 
while holding the Command key. If you then type the first characters of the 
desired symbol's name, MacsBug automatically updates its list to the match­
ing symbols. You can use the Delete key to undo characters and press Return 
to enter the current selection on the command line. Press the Escape (ESC) key 
to abort the symbol display . 

..,.. :(Colon) 

br : +22 

The colon character represents the address of the current procedure the PC 
is in. The name of the procedure is given in the upper left of the program count­
er window. If no name is given for the current PC location, the value of the 
colon character is undefined . 

..,.. Strings 

'CODE' 
11 CODE 11 

Since each character occupies one byte, a sequence of four characters is eva­
luated to a 32-bit quantity and can be used in standard MacsBug expressions, 
such as 

atb getresource @(sp+2)= 1 CODE 1 

Longer strings can be used in commands that allow them, such as 

sm 7a2340 'This is the String' 

The only time MacsBug distinguishes case is when strings are enclosed in 
quotes. This makes sense; MacsBug converts these strings to their ASCII 
equivalents which are different for uppercase and lowercase letters . 

..,.. . (Period) 

il . 



408 ~ Appendix A MacsBug Command Summary 

Note ~ I 

The period, or dot, is used as a shortcut to represent the dot address. Cer­
tain MacsBug commands that take an address as a parameter update the dot 
address. You can then use the dot address in future commands as a short cut. 
For example, if you want to change the memory at location $60310, you might 
firs t display the memory at that location with 

dm 60310 

If you then want to change the word value at that address to $20, you could use 

S W . 20 

instead of the more lengthy 

sw 60310 20 

All commands that take an address as a parameter can use the dot address, 
but only certain commands set the dot address. The commands that change the 
dot address fall into three categories: 

• Commands that set and display memory: DB, OW, DL, DP, OM, SM, SB, 
SW,and SL 

• Commands that disassemble memory: 10, IL, IP, and IR 

• Two miscellaneous commands: WH and F 

If you specify a conditional expression that causes a bus error when 
evaluated at runtime, MacsBug will break just as though the 
expression evaluated to true. 

~ Command Summary 
The remainder of this appendix lists all of the MacsBug commands. Each com­
mand listing presents the command description and syntax, followed by addi­
tional information and examples. 



~ ATB A-Trap Break 409 

....,. Command-: 
Description. Holding the Command key while pressing the colon displays 
a list of all symbols known to MacsBug in the current heap. 

Syntax. Command-: 

This causes a scrollable list of symbols known to MacsBug to be displayed. You 
can navigate the list with the arrow keys or by typing the first letters of the sym­
bol you are looking for. Using the Delete key undoes the last letter typed and 
returns you to the previous location in the list. Pressing the Escape key quits 
the symbol display; pressing the Enter key enters the current symbol name on 
the command line . 

....,. About Command-: 

Command-: shows only the symbols for the current heap. Use the HX com­
mand to change the heap. You can use the RN command to restrict symbol 
matching to a particular file. 

...... ATB A-Trap Break 
Description. The A-Trap Break command (ATB) specifies that MacsBug be 
invoked whenever the microprocessor encounters the specified A-trap(s). 

Syntax. ATB [A] [ trap [ trap 1 1 [ n 1 expr 1 [ 1 
; cmd [ ; cmd 1 ••• 1 

] 

A 

trap 

n 

expr 

cmd 

Specifies that MacsBug should only be invoked when the 
A-trap is called from the application heap. 

Is a trap name or number. Specifying two traps indicates a 
range of traps. If you omit this parameter, MacsBug is in­
voked every time an A-trap is encountered. 

Is a hexadecimal number specifying that MacsBug should be 
invoked every n times that the trap is encountered. 

Specifies that MacsBug should be invoked when the trap is 
encountered and expr is true. 

Specifies a command for MacsBug to execute after it is invoked. 



410 ~ Appendix A MacsBug Command Summary 

.... About ATB 

Note .,..I 

Note .,.. I 

A-trap breaks are different than regular breaks (see the BReak command) 
because they are associated with a trap rather than with a specific PC location. 
When the specified trap is encountered, MacsBug breaks in the calling rou­
tine, not inside the A-trap. To break at the firs t instruction of an A-trap, use 
the BR command. 

The A-Trap Clear (ATC) command clears A -trap breaks; the A-Trap Display 
(ATD) command displays current trap actions. 

The ATB command is often useful in conjunction with source-level 
debuggers that usually support only the traditional BR type of break 

The A option restricts MacsBug to breaking only when the specified A-trap 
is called from the application zone. If the application's zone is from $2C900 to 
$20200, the following commands are equivalent. 

ATBA is equivalent to ATB (pc<2d20 0 ) & (pc>2c900) 

As with all breakpoints, ATBA breaks remain valid even if you quit the current 
application. This feature could cause an unexpected break if you later launch 
another application. 

Even if the target application is in the foreground when you break into 
MacsBug, a background applicati0n may be active (doing background 
processing). When setting ATBA breaks be sure that the PC is 
currently in the target heap. You can do this by checking the name of 
the current application on the left of the MacsBug display. 

If the PC is in another heap, you can exit MacsBug and try again or 
you can specify the A-trap break using a range of PC locations, as in 
the conditional expression previously discussed. Use the Heap Zone 
(HZ) command to get the range of PC locations. 



..... ATB A-Trap Break 411 

A-trap Actions and Trace or Step Over 

When the Step Over (or Trace) commands are used to trace over an A-trap, no 
A-trap actions are performed. Thus, if you enter the command 

atb 

which causes MacsBug to break on all A-trap calls, and then 

t 

to step over an A-trap, MacsBug does not break on traps called by the trap that 
you traced over. If you want MacsBug to break, use the command 

gt pc+2 

rather than SO or T to step across the trap. 

Breaking on Routines That Share a Trap 

Not all Macintosh calls are created equal. For example, the List Manager rou­
tines share one trap and the specific call is determined by a selector passed on 
the stack. For instance, LNew is a macro (rather than a routine MacsBug knows 
intrinsically), so the command 

atb lnew 

expands to 

atb tPackO SPA.W=#68 

In general, this macro expansion happens behind the scenes and breaking on 
a routine that shares a trap with other routines is transparent to the MacsBug 
user with three exceptions. First, you can't use then option because the macro 
name includes an expression. Second, if you want to impose an additional con­
dition, you have to put an AND in front of it. For example, to break when a list 
becomes active, use the command 

atb LActivate AND @(sp+6) != 0 

Notice here that you also have to compensate for the selector (in this case a 
word) when calculating the address of parameters. 

Third, such trap actions cannot be cleared in the standard way. For 
example, typing 

ate lnew 



412 ...,. Appendix A MacsBug Command Summary 

will clear all list manager trap actions and cause MacsBug to respond with a 
message indicating that not all the items on the command line were used. This 
happens because MacsBug interprets the first part of the line 

ate tPackO 

and clears the trap actions but doesn't know what to do with the remaining 

sp".w=#68 

when clearing A-trap actions. 
These macros come with MacsBug but are available only if you include them 

in your Debugger Prefs file. They are in the Debugger Prefs file by default. 

Using Additional Commands With ATB 

You can specify additional commands to be executed when the prescribed 
ATB conditions are met. For example, 

atb openresfile ';dm @sp;g 

displays the name of each resource file before it's opened and then continues 
execution. This is useful for pinpointing a problem if your machine crashes on 
startup, because you can see the last resource file that was opened successfully. 
This provides a good starting point to begin a search for the problem. 

Example 

Since most applications call InitGraf when they start, use 

atb initgraf 

to break just as an application starts up . 

..,._ ATC A-Trap Clear 
Description. The A-Trap Clear command clears A-trap actions set with 
ATB, ATT, ATHC, and ATSS. 

Syntax. ATC [ trap [ trap J 

trap Is a trap name or a number specifying the trap. Specifying two 
traps indicates a range of traps. If you omit this p~rameter, 
MacsBug clears all A-trap actions. 



..... ATD A-Trap Display 413 

...._ About ATC 

You can use the ATC command to exclude A-traps from a range. For example, 
suppose you are debugging an application that does wire-frame drawing using 
the QuickDraw Line To call. If you want to break on all traps except the Line To 
calls, you could use 

atb 

followed by 

ate lineto 

MacsBug responds with 

A-Trap Break at AOOO (_Open) thru ABFF I_DebugStrl split into two ranges 

Since the ATC command does not execute conditionally, it is not possible to 
clear a break on just one routine that shares a trap with others. For example, 
you could not clear only NewGWorld calls since all the GWorld routines share 
the same trap . 

...._ ATD A-Trap Display 
Description. The A-Trap Display command displays information about all 
actions currently set with the ATB, ATT, ATHC, and ATSS commands. 

Syntax. ATD 

...._ About ATD 

If you set the following A-trap actions 

atb waitnextevent 

att copybits 

athc newhandle 

atss ,70a5b6 

and then use the 

atd 

command, MacsBug responds with 



414 ...,. Appendix A MacsBug Command Summary 

A-Trap actions from System or Application 

Trap Range Action Cur/Max or Expression Commands 

WaitNextEvent Break every time 

_CopyBits Trace every time 

_NewHandle Check every time 

_Open _DebugStr Spy every time 

Checksumming from 0070ASB6 to 0070ASB9 

..... ATHC A-Trap Heap Check 
Description. The A-Trap Heap Check command instructs MacsBug to check 
the heap before executing the specified A-trap. If the heap is bad, MacsBug 
breaks and displays an error message; otherwise, execution continues. The HC 
command (described later in this appendix) contains the list of possible error 
messages. Use the ATD command to display current ATHC actions; use ATC 
to clear them. 

Syntax. ATHC [A] [ trap [ trap ] ] [ n 1 expr ] 

A Specifies that MacsBug should only check the heap when the 
A-trap is called from the application heap. 

trap Is a name or a number specifying the trap. Specifying two 
traps indicates a range of traps. If you omit this paran1eter, 
MacsBug checks the heap every time an A-trap is called. 

n Is a hexadecimal number specifying that MacsBug should 
check the heap every n times that the trap is encountered. 

expr Specifies that MacsBug should check the heap only when the 
trap is encountered and expr is true. 



.... ATHC A-Trap Heap Check 415 

..... About ATHC 

Note ..,. , 

ATHC Gets You C lose 

The ATHC command checks the heap before executing the specified A-traps. 
If you have a corrupt heap, it was corrupted sometime between the last time 
the heap was checked and the current A-trap. Thus, the ATHC command can 
help you locate where the heap is becoming corrupt rather than bring you di­
rectly to the offender. 

No More False Positives! 

Because of the way the Memory Manager rearranges the heap, the heap some­
times becomes temporarily invalid. MacsBug checks the heap whenever a trap 
is called in the standard way (that is through the trap dispatcher). Since the 
Memory Manager calls traps without going through the trap dispatcher (for 
speed), MacsBug doesn't normally check the heap when it is temporarily inval­
id. Furthermore, MacsBug 6.2 no longer checks the heap when traps are called 
at interrupt time, so false positives from ATHC should no longer be a problem. 

If you enter MacsBug while items in the heap are being moved and the 
heap is temporarily invalid, the HC command will report that the 
heap is corrupt. Unfortunately, there is no way to check if the heap is 
only temporarily invalid or really corrupt. 

Checking the Heap is Slow 

Unfortunately, the consistency check MacsBug does on the heap is very time 
consuming. You will usually want to narrow down the location where the heap 
is becoming corrupt before using the ATHC command or specify specific traps 
on which the ATHC command should be used. 

Example 

To check the heap after every trap call from the application, use the command 

a thea 



416 ~ Appendix A MacsBug Command Summary 

~ ATP A-Trap Playback 
Description. The A-trap playback command displays information about 
the last traps recorded with the ATR command. 

Syntax. ATP 

~ About ATP 

For each trap call encountered while A-trap recording was on, the ATP 
command returns 

• The trap number and trap name 

• The address from which the call was made 

• The values of registers AO and DO and the 8 bytes stored at the address in AO 
if the trap is an operating system trap (trap numbers less than $A800) 

• The value of register A7 and the 12 bytes stored beginning at that address 
if the trap is a toolbox trap (trap numbers $A800 or greater) 

The description of the ATR command in this appendix contains more infor­
mation about A-trap recording and playback. 

1r{)N1~~-·R•e•c•o•r•d•in•g•E•v•e•n•ts•F•o•r•O•p•e•n•i•ng-a•w-in•d•o•w------
The goal is to get a list of the traps an application uses to open a window. This 
example was generated using the Chapter 11 sample application, but you can 
use virtually any application to perform a similar exercise. First, break into 
MacsBug and make sure you are in the application heap by checking the 
application name in the MacsBug display. Turn trap recording on for the 
application heap 

atra 

Next, you want to break as soon as the window is open. The best way to do this 
is by setting a breakpoint at WaitNextEvent. If you set the breakpoint now, you 
will constantly break into MacsBug and be unable to select the Open Window 
menu item. 



...,. AlP A-Trap Playback 417 

To get around this problem, pull down the File menu and then enter 
MacsBug while still holding down the mouse. At this point, the application 
is tracking the menu and WaitNextEvent is not being called. Set an A-trap 
breakpoint at WaitNextEvent and continue with the command 

atba waitnextevent;g 

You should still be holding the mouse button. Select the open item. MacsBug 
will break as soon as the window is open and WaitNextEvent is called again. 
Use the ATP command to get a list of the traps that were called. 

atp 

On my machine, MacsBug responds with 

Trap calls in the order in which they occurred 

A029 HLock 

PC 005A994C 

AO 005A9B7C OOSA AODC OOSA C31C DO 00000000 

A81F GetlResource 

PC 005A86EO INSTALLW+0072 

A7 0060A47C 0002 6265 7750 0000 0000 0000 

A8D8 _NewRgn 

PC 005A86EA INSTALLW+007C 

A7 0060A482 0000 0000 0000 0000 0000 0000 

A8E4 _SectRgn 

PC 005A8716 INSTALLW+OOA8 

A7 0060A47A OOSA 9AF8 0004 CAF8 OOSA 9AF8 

A8E2 _EmptyRgn 

PC 005A871E INSTALLW+OOBO 

A7 = 0060A480 OOSA 9AF8 0000 0000 0000 0000 

A8A8 OffSetRect 

PC 005A87A2 INSTALLW+0134 

A7 0060A47E 0007 0007 0060 A4A4 0000 0000 

A8D9 _DisposeRgn 

PC 005A87A8 INSTALLW+013A 

A7 = 0060A482 OOSA 9AF8 0000 0000 0000 0000 



418 ...,. Appendix A MacsBug Command Summary 

A873 _SetPort 

PC OOSA87B6 INSTALLW+0148 

A7 = 0060A482 0002 673C 0000 0000 0000 0000 

~.M5 N~HCkliDdQH 

PC OOSA87E4 INSTALLW+0176 

A7 0060A468 0000 0000 01F8 FFFF FFFF 0000 

A873 Set Port -
PC 005A882C INSTALLW+01BE 

A7 0060A482 OOSA 9008 0000 0000 0000 0000 

A939 _Enable Item 

PC OOSA8338 SETMENUI+0066 

A7 0060A4C2 0002 OOSA 9AFC OOSA 9AFC 0002 

A939 _Enable Item 

PC OOSA8338 SETMENUI+0066 

A7 0060A4C2 0001 OOSA 9AFC OOSA 9AFC 0001 

A938 HiliteMenu -
PC OOSA8078 MENUPOIN+0100 

A7 = 0060A4F8 0000 0000 0000 0000 0000 FFFF 

A9B4 _SystemTask 

PC OOSA8E3E EVENTL00+0298 

A7 0060A56A 5506 4080 6202 0000 20A8 0000 

A924 Front Window -
PC OOSA8E42 EVENTL00+029C 

A7 = 0060A566 0000 0000 5506 4080 6202 0000 

A860 _WaitNextEvent 

PC OOSA8BBC EVENTL00+0016 

A7 = 0060A55A 0000 0000 0000 0000 0060 A59A 

The last trap called is WaitNextEvent, as you would expect. From the listing you 
can see that the window was created using the NewCWmdow trap (underlined 
for ease of reading), which was called from a routine called InstallW(indow) at 
address $5A87E4. The top of the stack at the time is also shown. Since NewC­
Window takes many parameters, only a few can be determined from the stack 
listing. From the NewCWindow description in Inside Macintosh, Volume V, it is 



Note ..,. , 

..,.. ATR A-Trap Record 4 19 

easy to determine that the refCon is 0, the goAwayFlag is 01 (true), the behind 
parameter is $FFFFFFFF (- 1) and the prociD is 0. 

Since the stack is always word-aligned, Boolean values are put on the 
stack as words. The high byte contains the Boolean and the low byte 
contains whatever was on the stack before the byte parameter was 
put on the stack. In this example, the Boolean word is $01F8. The 
Boolean value is 1, or true, while the $F8 is what happened to be on 
the stack . 

...,. ATR A-Trap Record 
Description. The A-Trap Record command turns trap recording on and off. 
The previous command, ATP, displays the recorded information. 

Syntax. ATRIAl 1 ON 1 OFF 1 

A Specifies that MacsBug should only record A-traps that are 
called from the application heap. 

ON I OFF 

..... About ATR 

This optional parameter indicates whether to begin or end 
recording. ATR toggles between modes if no parameter is 
specified. 

Number of Traps Recorded 

The number of traps recorded is set by the 1 mxbi 1 resource in the Debugger 
Prefs file. Only the most recently encountered traps are saved. If the 1 mxbi 1 

resource is not installed or there is no Debugger Prefs file in the System Folder, 
the ATR command records the last 16 A-traps. 



420 ~ Appendix A MacsBug Command Summary 

ATT versus ATR 

The ATT command outputs the same information as the ATR command. How­
ever, the ATT command causes your program to execute much more slowly 
because MacsBug needs to copy information about each A-trap, convert it to 
text, and write it to the screen. The ATR command simply copies information 
about each A-trap to an internal buffer, and then the ATP command converts 
the information to text. 

ATT does have several advantages over ATR. ATT always shows the most 
recent A-traps at the bottom of the screen. With ATR you must list all the re­
corded traps, because the most recent traps are listed last. If you have a large 
recording buffer, this is very annoying. More significantly, with ATT you can 
specify an expression so that information is recorded only when certain condi­
tions are met. 

ATR and the FirstTime Macro 

The difference in perceived performance when using ATR is very minor. You 
may want to use the ATR command as part of the First Time macro, a macro that 
is executed when MacsBug is loaded. For example, First Tune could expand to 

atr;g 

which enables A-trap recording and continues. Whenever you have an unex­
pected crash, the most recent trap calls are available. 

ATR and Programmer's Key 

Since the Programmer's Key invokes MacsBug via the keyboard, it is inevitable 
that keyboard-related trap calls appear in the trap recording when MacsBug is 
entered in this way. Typically, the last three traps are related to Programmer's 
Key. On ADB machines they are GetADBinfo and two KeyTrans events. 1f you 
are using a machine whose Backspace key (rather than the Power-on key) 
invokes MacsBug, you can discover if there are extra trap calls and what they 
are by using the ATR command. They will be the last commands to show up 
in the playback. 

Example 

To record traps from the application heap only, use 

atra 

To record all traps, use the command 



l ei 

~ ATR A-Trap Record 421 

atr 

If traps are called without using the trap dispatcher (applications should only 
do this if the trap address was obtained with the GetTrapAddress routine), 
they will not be recorded. 

What Traps Does GetNewDialog Call? 

Sometimes it can be instructive to figure out what routines a trap calls. For ex­
ample, to figure out what traps GetNewDialog calls, set an A-trap break on 
GetNewDialog and continue with 

atb getnewdialog; g 

When MacsBug breaks, as when you bring up the StandardFile dialog, begin 
A-trap recording with 

atr 

Then goTo (GT) the other side of the trap: 

gt pc+2 

To display all the traps called by GetNewDialog, use 

atp 

On my machine, MacsBug responds with 

Trap calls in the order in which they occurred 

A022 NewHandle 

PC 007AC002 

AO = 006704EO 0000 0000 0000 0000 DO OOOOOOOA 

A8DF _RectRgn 

PC 4081062A InvalRect+OOlO 

A7 = 00600568 0060 0636 0064 21EO FFFF 0005 

ABED _OffSetRgn 

PC 408105F6 _I nva1Rgn+0022 

A7 = 00600550 OOE2 0192 0064 21EO FFFF 0005 

A8E6 _DiffRgn 



422 ~ Appendix A MacsBug Command Summary 

PC 4081060A _Inva1Rgn+0036 

A7 006D054C 0064 21FC 0064 21EO 0064 21FC 

A8EO _OffSetRgn 

PC 40810610 _Inva1Rgn+003C 

A7 00600550 FFlE FE6E 0064 21EO FFFF 0005 

A8D9 _DisposeRgn 

PC 40810634 InvalRect+OOlA -
A7 006D056C 0064 21EO FFFF 0005 0000 0000 

A023 _DisposHandle 

PC 40823876 _DisposeRgn+0004 

AO 006421EO 0069 76C8 0069 7690 DO OOOOFE6E 

A9E3 _PtrToHand 

PC 40814282 FindDitem+OlOE 

A7 006D058C 4081 41AE 0000 0000 0000 COlA 

A022 NewHandle 

PC 40814A9A PtrToHand+0004 

AO 8064299A 0000 0000 OOC5 OOOD DO 00000000 

A02E BlockMove -
PC 40814AAA PtrToHand+0014 

AO 8064299A 0000 0000 OOC5 OOOD DO 00000000 

A9E3 PtrToHand -
PC 40814282 FindDitem+OlOE 

A7 006D058C 4081 41AE 0000 0000 0000 OOlA 

A022 New Handle 

PC 40814A9A PtrToHand+0004 

AO 806429A8 5368 6F77 0000 0000 DO 00000004 

A02E BlockMove -
PC 40814AAA PtrToHand+0014 

-

AO 806429A8 5368 6F77 0000 0000 DO 00000004 



Note ..,.. 

..,. ATR A-Trap Record 423 

A873 SetPort 

PC = 40813DA4 _CloseDialog+0094 

A7 = 006DOSCO 0064 4490 4081 3B92 0000 OOC4 

A02A HUnLock 

PC 40813DA8 _CloseDialog+0098 

AO = 006 42080 8064 28FO 0069 Bl90 DO 00000000 

A02A HUnLock 

PC 40813AA8 _GetNewDialog+OOSO 

AO = 00616CCO A06 4 330C 0067 4DDC DO = OOOOOOlE 

These are only the last traps called by GetNewDialog. If you increase the size of 
the recording buffer (by changing the 1 mxbi 1 resource in the Debugger Prefs 
file), you will be surprised by the number of trap calls GetNewDialog makes. 

Figuring out what routines a trap calls can be useful for preflighting certain 
operations. Suppose you have a low memory situation in which a system call 
commonly fails. You can use ATR to figure out what calls the routine is making 
and check if these calls will succeed. For example, GetNewDialog calls Get Re­
source many times (you will see this if you increase the size of the history buf­
fer). In your application you could make the same GetResource calls before 
calling GetNewDialog. If one of the GetResource calls fails (check ResError), 
you can warn the user that there is not enough memory to perform there­
quested operation rather than bomb with a system error. 

Be sure to clear the A-trap break and, optionally, turn off A-trap recording 
when you are done. 

atc; atr 

Since MacsBug records only traps that are called through the trap 
dispatcher, this technique will not work for recording traps that are 
called directly. 



424 ...,_ Appendix A MacsBug Command Summary 

~ ATSS A-Trap Step Spy 
Description. The A-Trap Step Spy command calculates a checksum for a 
specified memory range or for a long word at a specified address before ex­
ecuting the specified traps. MacsBug is invoked if the checksum changes. Use 
the AID command to display current ATSS actions; use ATC to clear them. 

Syntax. ATSS[A] [ trap [ trap] ] [ n I expr ], addrl [ addr2] 

A Specifies that MacsBug should calculate a checksum only before 
executing A-traps that are called from the application heap. 

trap Is a trap name or a number specifying the target trap. Specify­
ing two traps indicates a range. If you omit this parameter 
MacsBug calculates a checksum before executing every 
A-trap. 

n Is a hexadecimal integer specifying that MacsBug should cal­
culate a checksum every nth call to the specified A-trap(s). 

expr Specifies that MacsBug should calculate a checksum only 
when expr is true. 

addr1 Specifies that MacsBug should calculate a checksum for the 
long word at addr1. If you specify addr2 MacsBug calculates 
a checksum for the range of memory defined by addr1 and 
addr2 inclusive. 

~ About ATSS 

How Checksumming Works 

Checksumming is a technique for determining whether a set of valuE!S has 
changed. Error detection and correction schemes often use a checksum to de­
termine whether data is valid. 

MacsBug uses a checksum to determine whether memory has changed by 
recalculating the checksum and comparing it to the saved result. If the values 
differ, MacsBug is invoked. 



.... ATSS A-Trap Step Spy 425 

Checksumming Can Be Slow 

Although much faster than performing a heap check, calculating a checksum 
adds overhead to toolbox calls. The smaller the checksum range, the better the 
performance. Checksumming is optimized for checking a long word. 

The ATSScommand is much faster than the SS (Step Spy) command because 
it only checks memory before executing A-traps rather than before every as­
sembly language instruction. You can use the ATSScommand to narrow down 
the instruction that is affecting the value that concerns you and then use the 
SS command to pinpoint it. 

Waiting For a Low Memory Variable to Change 

The General CDEV in the Control Panel (under the Apple Menu) allows you 
to set the number of times a menu flashes when an item is selected. This value 
is kept in the low memory global MenuFlash. You can use the ATSS command 
to determine where the value changes. First use 

atr 

to turn on A-trap recording. Since the ATSS command checks only the value 
before trap calls, you need to find out what trap was called immediately before 
the one ATSS breaks on. ATR allows you to do this. Open the General CDEV 
in the Control Panel, then enter MacsBug, and type 

atss , menuflash menuflash+l 

Here an address range of two is used, since MenuFlash is a word -sized param­
eter and the ATSS command defaults to a long. Using a long would probably 
be acceptable, but could cause you to break when the word after MenuFlash 
is changed. 

Continue and then change the menu blinking value. You will immediately 
break into MacsBug, probably at a call to WritePararn (which sets values in pa­
rameter RAM. We say probably because future versions of the General CDEV 
may operate differently.) This break indicates that the value of MenuFlash 
changed sometime between the beginning of the last trap call and this trap. 

Use the ATP command to see what the last trap called was. 

atp 

An abbreviated version of the response on my machine is 



426 ...,. Appendix A MacsBug Command Summary 

A873 SetPort 

PC = 40813DA4 _C1oseDia1og+0094 

A7 = 005A7064 0002 C41C 4081 3F7E 0007 OOOC 

A02A HUnLock 

PC 40813DA8 _C1oseDia1og+0098 

AO = 00039ABC BOOA 5D78 6002 C65C DO = 00000006 

A963 SetCt1Va1ue 

PC OOOAD1 9E 

A7 = 005A711A 0000 0003 9984 OOOA D192 OOOA 

A038 WriteParam 

PC = 000AD6AC 

AO = 000001F8 A800 5C21 CCOA CCOA DO = FFFFFFFF 

Thus, the MenuFlash value was changed somewhere between the begin­
ning of the call to SetCtlValue and WriteParam.lf you wanted to find the exact 
instruction that changed the low memory variable, use the Step Spy (55) com­
mand. Be sure to clear the ATSS command before continuing with 

atc ; g 

...,. ATT A-Trap Trace 

Description. The A-Trap Trace command writes information to the MacsBug 
output buffer whenever the processor encounters the specified A-trap. Use the 
ATD command to display current ATT actions; use ATC to clear them. 

Syntax. ATT [A) [ trap I crap I 1 [ n I expr 1 

A Specifies that only information about A-traps called from the 
application heap should be written to the output buffer. 

trap Is a name or a number specifying the trap. Specifying two 
traps indicates a range of traps. If you omit this parameter, 
MacsBug writes information about every A-trap called. 



n 

expr 

...... AboutATI 

ATT Output 

~ ATT A-Trap Trace 427 

Is a hexadecimal number specifying that MacsBug should 
write information every n times that the trap is encountered. 

Specifies that MacsBug should write information when the 
trap is encountered and expr is true . 

The AIT command displays the trap name and the location from which the 
trap was called. Additionally, 

• For OS traps, AIT saves the values of registers AO and DO as well as the 
8 bytes pointed to by register AO. 

• For Toolbox traps, AIT saves the value of register A7 and the 12 bytes to 
which it points. 

ATT versus ATR 

AIT and ATR display a history of traps called. See 11 AIT versus ATR" in the 
ATR command section of this appendix for a description of the differences. 

Creating a Custom A-Trap Trace 

You can use ATB with an associated action to create a custom trace similar to 
that provided by AIT. For example, if you enter 

atba ';dw memerr;g 

MacsBug displays the value of the low memory global MemErr anytime a trap 
is called from the application zone. 

Example 

To display all calls to New Handle that request more than SK of memory, you 
could use 

atta newhandle d0>2000 



428 ...,. Appendix A MacsBug Command Summary 

since the size of the memory request is in register DO when NewHandle is 
called. Doing this in a word processor (for example) and typing for a while pro­
duces a response such as 

A022 _NewHandle 

A022 _NewHandle 

A022 NewHandle 

A022 NewHandle 

A022 _NewHandle 

A022 NewHandle 

A022 NewHandle 

A022 _NewHandle 

A022 NewHandle 

A022 _NewHandle 

A022 _NewHandle 

A022 NewHandle 

PC=0060B308 00=00002554 A0=00600A54 A1=806E257B 

PC=00614B2A 00=00011824 A0=00600B7E A1=0062B90E 

PC=00614B2A 00=00011818 A0=00641FOO A1=0062B90E 

PC=00614B2A 00=00011832 A0=00616BB8 A1=0062B90E 

PC=00614B2A 00=00011806 A0=006A7CB4 A1=0062B90E 

PC=00614B2A 00=00011806 A0=006A7CFC A1=0062B90E 

PC=00614B2A 00=00011806 A0=0060B650 A1=0062B90E 

PC=00614B2A 00=0001182A A0=00600B7E A1=0062B90E 

PC=00614B2A 00=00011818 A0=00641FOO A1=0062B90E 

PC=00614B2A 00=00011832 A0=00616BB4 A1=0062B90E 

PC=00614B2A 00=00011806 A0=006A7EF8 A1=0062B90E 

PC=00614B2A 00=00011806 A0=006A7F40 A1=0062B90E 

From this display you can see the amount of memory requested each time 
New Handle is called when more than SKis requested. The contents of the PC 
and registers AO and Al at the time of the trap call are also given, since New­
Handle is an OS trap. 

~ BR BReak 
Description. The BReak command sets a breakpoint at the specified ad­
dress. When the program counter is equal to the specified address, MacsBug 
displays the debugging screen and you can examine the state of the processor 
right before the instruction executes. Use BRD to list all active breakpoints; use 
BRC to clear one or all of them. 

Syntax. BR addr [ n I expr ] [ 1 
; cmd [ ; cmd ] 1 J 

addr 

n 

Specifies the address of the break. 

Specifies that MacsBug break after reaching the breakpoint 
n times. 



Note 

expr 

cmd 

..,. BR BReak 429 

Specifies that MacsBug break when addr is reached and expr 
is true. 

Specifies a command that MacsBug should execute after 
breaking . 

.... AboutBR 

-..I 

How MacsBug Sets RAM Breakpoints 

When you use the BR command to break on an instruction, MacsBug replaces 
the instruction with a TRAP instruction and saves the original. When the pro­
cessor encounters the TRAP it generates a trap exception, just like an A-trap, 
which invokes MacsBug. MacsBug checks its table of breakpoints and puts the 
original instruction back in place. MacsBug then resets the PC to the location 
of the break and displays the debugging screen . 

. '• ·-:··;,·t·•·•· 

~.···~~:!t~~•r~~~~i•i~i;;:c.·.·· 
TRAP E :Unlike A-traps {()tif:'~p;~p~),;:w,Jp¢)i~~>Qf;fb,~;f6~~!\;~:.(~l;; ~: T 

$FJoo.(),·the·TR,AP·•ins@~#Q~ •·~¢:~1lji~~4:~~~~-.Jili}(c~;~~~i~Mg~:_g¥L; .•..•. ·•:'· 
the 68000 instruction set~ .The¥ are_of the for.rn $400~. where:x ~~-~lie · -

. trap number from o .. $R ·~ey hlso.cause an. exceptio]1.<jitst ~~ A~tt~ps . 
o_! F .. traps)1·whic;lt~N.I~~~~lfS'ifit~~~~R~J.\,.; ',~~ ·,;::,'::.'\'· ;: .~F!;•~J i ;,;.: 1 ·+·~-;T, ··.':~:.·~· .n; '' :··; · .· · · 
". ,···Thecunent version·ofNI,~~~lig ~e~·the ~E)illstJ1;lcqonJ()r ~.::• 
settingbteakpoints·$4E4P~·~~-·~~e$. fro11l•·.fi.W~:tri:tiffi~:fc;>fvarip~··· 
.reasons. The specificimpl~n:t~ntatiori i~'.no!~pq~tfi.tc~-~Su~~. •• 

: here for baCkground:~ :,, :. · ,_:~. · · · ·. · : ', : . ';:· ·: .. · · ' -

There are a number of possible problems. Most of these problems are rare, 
but they can bite (no pun intended) hard when they hit. 

Your first problem results if you set a breakpoint and then attempt to change 
the instruction when MacsBug breaks (to a NOP for example). You will be un­
successful because MacsBug will try to set the instruction back to its previous 
value before continuing execution. 

A second problem occurs if you specify an address that points to the middle 
of an instruction. In this case, MacsBug follows its usual procedure of replac­
ing the instruction with a TRAP instruction. Since the TRAP is in the middle 



430 ...,.. Appendix A MacsBug Command Summary 

of an instruction, the processor will regard it as part of the instruction rather 
than as a TRAP exception. Depending on the instruction, this could cause a va­
riety of undesirable results. 

A third problem occurs if you are writing self-modifying code that looks at 
other code for a pattern. Since MacsBug changes the code, your routine will 
not find the pattern it is looking for. The results depend on how your routine 
handles this case. Debugging such a problem can be difficult because the 
MacsBug display of the memory is different than the actual memory contents. 

A fourth possible problem occurs if you set a breakpoint in a 1 CODE 1 seg­
ment that is later unloaded and purged. In such a case no break will occur, and 
MacsBug will display the message 

*** One or more breakpoints have been moved or overwritten *** 

and remove the breakpoint from the breakpoint table (it will no longer be dis­
played by the BRD command). 

Another point at which the BReak command can get confused is whe!n you 
have a heap within your application heap (much as MultiFinder does, but 
MacsBug can handle that). MacsBug is able to track breakpoints in relocatable 
blocks in your application heap but not breakpoints that are inside another 
heap inside the application heap. 

Setting Breakpoints in ROM 

When you set a breakpoint at a ROM address, MacsBug cannot substitute the 
instruction with a TRAP instruction. Instead MacsBug must step through each 
instruction, comparing the new PC location with the address of the break­
point. Since MacsBug has no way of knowing when the Macintosh will enter 
ROM, even RAM instructions are interpreted this way. 

Because this process is extremely slow, you will generally want to get as 
close as possible to the ROM breakpoint before actually setting it. 

Breakpoint Display 

Breakpoints are distinguished by dots to the left of the instruction. For example, 

00614826 MOVEA.L 

00614828 MOVE.L 

0061482A NewHandle 

(A7)+,A1 

(A7)+,DO 

A122 

I 225F 

I 201F 

Al22 



0061482C MOVE.L 

0061482E • JMP 

00614832 MOVEA.L 

00614834 MOVEA.L 

00614836 _DisposHandle 

00614838 JMP 

AO, (A7) 

*-$02CA 

(A7)+,Al 

(A7)+,AO 

*-$0204 

00614864 

A023 

00614864 

shows that the breakpoint is at address $614B2E. 

• BR BReak 431 

2E88 

4EFA FD34 

225F 

205F 

A023 

4EFA FD2A 

The BRO Macro 

IfthecurrentPClocationiswithinaprocedure,theBRO(BReakpointatOffset) 
macro allows you to specify the address of the breakpoint as an offset from the 
beginning of the procedure rather than as an absolute address. The BRO macro 
expands to BR :+. Thus the command 

bro 18 

sets a breakpoint 18 bytes from the beginning of the current procedure. The 
savings appear small until amortized over a programmer's lifetime. 

Example 

To set a breakpoint at the current program counter location use 

br pc 

You can break at the beginning of trap calls by specifying the trap name. For 
example 

br newwindow 

breaks at the beginning of the NewWindow trap. Usually you would want to 
use the ATB command for this purpose instead. 

Occasionally you may run into a problem when you want to set a breakpoint 
at some routine in your application, such as 

br MyFavoriteRoutine 

but MacsBug complains 

Unrecognized symbol 1 MyFavoriteRoutine 1 



432 ...,. Appendix A MacsBug Command Summary 

But you wrote the program and you're sure the routine exists. Probably, the 
routine is in an unloaded segment and MacsBug can't find it. As soon as the 
segment is loaded (as when another routine in the segment is called), MacsBug 
will be able to find the routine . 

...._ BRC BReakpoint Clear 
Description. The BReakpoint Oear command clears the breakpoint at the spe­
cified address. If you do not specify an address, the command clears all break­
points. 

Syntax. BRC [ addr ] 

addr Specifies the address where you want to clear the breakpoint. 
BRC without a parameter clears all breakpoints. 

About BRC 

A breakpoint remains in effect until it is cleared with the BRC command or un­
til you reboot. Breakpoints can be cleared in other ways (see BR), but MacsBug 
will not forget about them until you use the BRC command. 

Example 

To clear the breakpoint at the current program counter, use the command 

brc pc 

To clear all breakpoints use 

brc 

To clear a breakpoint at the routine MyPrintingProc, use 

brc myprintingproc 

To clear all breakpoints and A-trap actions, and then continue, use the macro 

gg 



...,. BRD BReakpoint Display 433 

.,.. BRD BReakpoint Display 
Description. The Breakpoint display command displays breakpoints set by 
BR, BRM, and GT. 

Syntax. BRD 

.... AboutBRD 

Breakpoints and the Go To Command 

MacsBug implements the GT (Go To) command by setting a temporary break­
point. If you enter MacsBug before you reach the target address of the GT com­
mand, you'll see an entry for it in the breakpoint table. 

Example 

After setting the breakpoint actions 

br pc dO = 5 

br stdbits 2 

gt 0 

using 

brd 

MacsBug displays 

Breakpoint table 

Address Module name 

008064CO Dispatcher+0006 

007AAF16 

00000000 

Using the command 

gt 0 

Cur/Max or Expression Commands 

d0=5 

00000000 I 00000002 

once 

is not particularly useful but is shown here for illustrative puposes. Its entry 
in the table shows that it will only occur once. The break at StdBits (in this case 
$7 AAF16) shows that StdBits has been encountered zero times since the last 



434 .._ Appendix A MacsBug Command Summary 

break at StdBits and a break will occur after StdBits is reached twice. The break 
at Dispatcher+0006 was set using the command 

br pc dO=S 

and shows that the break will only occur when the value of DO is five . 

...,_ BRM Multiple BReakpoints 
Description. The Multiple BReakpoints command sets breakpoints using 
partial name matching. 

Syntax. BRM name 

name Is a string. MacsBug sets a breakpoint at the beginning of all 
routines whose names contain name . 

...,_ About BRM 

This command is useful for setting breakpoints on groups of related routines. For 
example, if you are debugging a program written in an object-oriented language, 
you can use the name of an object to set breakpoints on all the object's methods. 

If you are debugging a C++ program and need to break on a routine that is 
qualified using double colons, you must enclose the name in quotation marks, 
since the colon has another meaning in MacsBug. The following command 
breaks anytime a Draw method is encountered: 

brm 1 ::Draw 1 

This example breaks on all methods in the class Oval. 

brm •oval:: 1 

Example 

If you type 

brm mber 

in an application written inC++ that was compiled with symbols on, MacsBug 
might produce a response such as 



Break at (00234360 mbering) every time 

Break at (00237F3A mbersBy) every time 

Break at (00237FBO mbersBy) every time 

Break at (00237FD8 mbersCo) every time 

_... CS CheckSum 

.,.. CS CheckSum 435 

Description. The CheckSum command allows you to determine whether 
the contents of an address or a memory range have changed. 

Syntax. cs [ addr [ addr ] ] 

addr If you specify a single address, MacsBug checksums the long 
word at that address; if you specify two addresses, MacsBug 
checksums the range of memory defined by the addresses. 

_... AboutCS 

Checksumming is a technique used by MacsBug to determine if memory con­
tents change. This technique is described under the ATSS command. 

The Checksum command checksums a range of memory and stores the value. 
If you enter CS again without an address parameter, it checksums the same 
range of memory and compares the new value to the stored value. It then dis­
plays a message letting you know whether the value has changed. 

There are three kinds of checksum commands: ATSS, SS, and CS. ATSS 
computes a checksum every time an A-trap is encountered. SS computes a 
checksum after every instruction. CS computes a checksum on demand. The 
checksum and memory range used by each of these commands is indepen­
dent of the others. 

Example 

The CS command can be used to interrupt a series of MacsBug commands 
when a certain condition is met. Suppose you want to stop execution anytime 
New Handle fails. This is impossible without using one of the Checksum com­
mands or writing a dcmd (try it!). Try the following command sequence. 

cs memerr memerr+l 

atb newhandle ';t;cs;g 



436 ...,.. Appendix A MacsBug Command Summary 

This sequence breaks on every call to NewHandle, traces over it, and then 
checks if the value of MemErr has changed. If it has, the CS command will in­
voke MacsBug. If not, execution will continue. For cases such as New Handle, 
this process slows the Macintosh down dramatically and in many cases is un­
usable. (The example was given to illustrate a technique.) 

~ DB Display Byte 
Description. The Display byte command displays 1 byte at the specified 
address. 

Syntax. DB addr J 

addr Specifies the address containing the byte to be displayed. If 
you omit this parameter, the DB command displays the byte 
at the dot address. 

~ About DB 

If you press Return following a DB command, MacsBug displays the next byte. 
MacsBug then sets the dot address to the address of the byte displayed. The 
DB command displays the byte as a hexadecimal, an unsigned decimal, a 
signed decimal, and an ASCII value. 

Since MacsBug accesses only the requested byte, the DB command is useful 
for examining registers on a hardware device when neighboring locations are 
read sensitive. In practice, you may choose to always use the Display Memory 
(OM) command instead of DB. 

Examples 

If you enter MacsBug when the mouse button is pressed and display the value 
at the low memory global MBState with the command 

db mbstate 

MacsBug responds with 

Byte at 00000172 = $00 #0 #0 ••• 



..,... DH Disassemble Hexadecimal 437 

If you enter MacsBug with the mouse button not pressed and then perform the 
same command, MacsBug responds with 

Byte at 00000172 = $80 #128 #-128 '•' 

.,.. DH Disassemble Hexadecimal 
Description. The Disassemble Hexadecimal command converts one or 
more hexadecimal values to assembler mnemonics. 

Syntax. DH expr ... 

expr Is any expression that evaluates to a hexadecimal value . 

.... AboutDH 

This command is extremely useful for changing code on the fly. For example, 
suppose you encounter a situation in which the program is performing an in­
struction, such as 

+OOBC 00782A18 BEQ.S MyRoutine+OODE ; 00782AF6 I 6720 

and you want to change the BEQ.S to a BNE.S. Rather than recompiling the 
code or digging for the 68000 reference manual, you can scan through the code 
for a BNE.S opcode or you can take a few guesses. The branch instructions are 
related, so you might try 

dh 6020 

to which MacsBug responds with 

Disassembling hex value 

007C117E BRA.S *+$0022 007C11AO I 6020 

After several tries, you get the correct result 

dh 6620 



' 
438 ..,. Appendix A MacsBug Command Summary 

Note .,.I 

and MacsBug responds with 

Disassembling hex value 

007Cll7E BNE . S *+$0022 ; 007CllAO I 6620 

The address displayed when using this command is simply the address of 
MacsBug's internal buffer. The relevant parts of the result are the mnemonics. 

For instructions longer than a word (16 bits), be sure to separate the 
arguments into words. For example 

dh 4led ecfe 

produces the desired result, whereas 

dh 4ledecfe 

does not. 

...,_ DL Display Long 
Description. Display Long displays the long word (32-bit value) at the spe­
cified address. 

Syntax. DL ( addr l 

addr Specifies the address containing the long word to be dis­
played. If no parameter is given, DL displays the long word 
at the dot address. Otherwise, DL sets the dot address to the 
supplied address . 

...,_ About DL 

Like Display Byte (DB), MacsBug displays the hexadecimal, the unsigned dec­
imal, the signed decimal, and the ASCII equivalent of the result. Pressing Re­
turn displays the next long word. In practice you may end up using OM rather 
than DL. 



~ DL Display Long 439 

Example 

The low memory global Double Time contains the number of ticks (sixtieth of 
a second) allowed between clicks of the mouse button to consider consecutive 
mouse-downs a double click. To see the value of this variable, use the com­
mand 

dl doubletime 

Depending on the setting (set by the General CDEV in the Control Panel), 
MacsBug will respond with a version of 

Long at 000002FO = $00000014 #20 #20 ' ..... 
This shows you that clicks that occur within 20 I 60 or one-third of a second of 
each other are considered double clicks. 

Another use for DL is to display a certain parameter every time a trap or an 
application routine is called. To do this for a trap, you could enter a command 
such as 

atb setport ';dl sp;g 

which causes MacsBug to display the port pointer that is being passed to Set­
Port. If you continue, MacsBug might output a display resembling 

A-Trap break at 40813DA4 _CloseDialog+0094: A873 (_SetPort) 

Long at 006DOAEO = $0002C41C #181276 #181276 ' .... ' 
A-Trap break at 0007545C: A873 _SetPort) 

Long at 006DOBE4 = $00644490 #6571152 #6571152 

A-Trap break at 408151AE _Fix2Frac+022A: A873 (_SetPort) 

Long at 006DOC74 ~ $00644490 #6571152 #6571152 '•dD•' 

In this case an even better choice for monitoring SetPort might be 

atb setport ';dm @sp grafport;g 

which displays the port structure using the GrafPort template. 



440 ...,. Appendix A MacsBug Command Summary 

...,. DM Display Memory 
Description. The Display Memory command displays the hexadecimal and 
ASCII equivalents of memory starting from the specified address. 

Syntax. DM [ addr [ nbytes I template ] 

addr Specifies the address from which to start displaying memory. 
If this parameter is omitted, DM starts at the dot address. If an 
address is supplied, OM sets the dot address to the address. 

nbytes Is a hexadecimal integer specifying the number of bytes to 
display. If you omit this parameter, the DM command dis­
plays 16 bytes. 

template Specifies a template for formatting the display . 

..... AboutDM 

By default, OM simply displays memory as bytes. For example 

dm @@aS 

produces the result 

Displaying memory from @@aS 

006D8648 0000 006D F278 COOO 006D 9AAO 0000 8000 ···m·x···m·t···· 

006D86S8 FFEC 0000 0171 OOF8 006D 9ABO 006D 9AA4 ·····q···m·· ·m·· 

006D8668 006D 453C 0000 0000 0000 FFFF FFFF FFFF ·mE<············ 

006D8678 0176 OOF8 0001 0001 0008 006D F2SC 006D ·v····· ····m·\·m 

The address is shown on the left, the hexadecimal values of the 16 bytes 
starting at that address are next, and finally the ASCII equivalents are given. 
Displaying the same memory with a template produces a more interesting 
result. For example: 

dm @@aS cgrafport 

produces the output 

Displaying CGrafPort at 006D8648 

006D8648 device 0000 



..-. DM Display Memory 441 

006DB64A portPixMap 006DF278 -> 006DCEC8 -> 

006DB64E port Version cooo 
006DB650 grafVars 006D9AAO -> 006DC8F4 -> 

006DB654 chExtra 0000 

006DB656 pnLocHFrac 8000 

006DB658 portRect :ft-20 #0 #369 #248 

006DB660 visRgn 006D9ABO -> 006F23A8 -> 

006DB664 clipRgn 006D9AA4 -> 006DCEB4 -> 

006DB668 bkPixPat 006D453C -> 006F242C -> 

006DB66C rgbFgColor 0000 0000 0000 

006DB672 rgbBkColor FFFF FFFF FFFF 

006DB678 pnLoc 0176 OOF8 

006DB67C pnSize 0001 0001 

006DB680 pnMode 0008 

006DB682 pnPixPat 006DF25C -> 006DED90 -> 

006DB686 fillPixPat 006D9B28 -> 006DCA6C -> 

006DB68A pnVis 0000 

006DB68C txFont 0003 

006DB68E txFace 0000 

006DB690 txMode 0001 

006DB692 txSize 0009 

006DB698 fgColor 00000001 

006DB69C bkColor 00000000 

006DB6AO colrBit 0000 

006DB6A2 patStretch 0000 

006DB6A4 picSave NIL 

006DB6A8 rgnSave NIL 

006DB6AC polySave NIL 

006DB6BO grafProcs 00000000 

Chapter 19 discusses how to create templates. Additional information is 
also available under the TMP command summary. 



442 IJJJ- Appendix A MacsBug Command Summary 

._.. DP Display Page 
Description. The Display Page command displays a page (128 bytes) of 
memory starting from the specified address. 

Syntax. DP [ addr 1 

addr Specifies the address at which to begin the memory display. 

If you don't supply an address, the DP command displays memory starting 
at the dot address. If you do supply an address, DP sets the dot address to that 
address. The DP command is equivalent to 

dm addr #128 

._.. DSC DiSCipline 
Description. The DiSCipline command turns the Discipline utility on and 
off. You use Discipline to check the validity of parameters passed to A-traps 
and the values returned by A-traps. 

Syntax. osc (AJ [XJ [ON 1 OFF 1 

A Specifies that Discipline only checks A-trap calls made from 
your application. 

ON Turns Discipline on. 

OFF Turns Discipline off. 

X Directs MacsBug to keep the Discipline error reportinte1nally 
and continue execution rather than stop before and after ev­
ery trap call to display Discipline messages. 



...,. DW Display Word 443 

~ About DSC 

Discipline is a utility that runs in conjunction with MacsBug. You must install 
Discipline before you can use the DSC command. Discipline provides a way 
to check subroutine parameters and subroutine results. It often locates trouble 
areas in a program long before they cause problems. 

~ DV Display Version 
Description. The Display Version command displays the version ofMacsBug 
currently in use. 

Syntax. ov 

Display Version takes no parameters. 

~ ow Display Word 
Description. The Display Word command displays the word at the specified 
address. 

Syntax. DW [ addr ] 

addr Specifies the address containing the word (16 bits) to be dis­
played. If no parameter is given, DW displays the word at the 
dot address. Otherwise, DW sets the dot address to the 
supplied address. 

~ AboutDW 

Like Display Byte (DB), MacsBug displays the hexadecimal, the unsigned dec­
imal, the signed decimal, and the ASCII equivalent of the result. MacsBug also 
accesses only the word at the indicated location. This is useful when checking 
hardware locations whose neighbors are read sensitive. Pressing Return dis­
plays the next word. In practice you may end up using DM instead of DW. 



444 ...,. Appendix A MacsBug Command Summary 

Examples 

You can use the DW command to display the value of low memory globals 
such as KeyThresh, which is the amount of time a key must be held before it 
begins to repeat. Typing 

dw keythresh 

will produce a response such as 

Word at 0000018E = $0018 #24 #24 I ee I 

It would be a very nasty trick to follow this command with 

sw . 0 

to change this value to zero on your coworker's machine. 

~ DX DebuggereXchange 
Description. Debugger eXchange enables and disables user breaks. 

Syntax. ox [ oN 1 OFF J 

If you do not specify ON or OFF, the DX command toggles the mode. 

~ AboutDX 
MacsBug defines two traps, Debugger ($A9FF) and DebugStr ($ABFF), that al­
low you to invoke MacsBug from within your program. (Uses of these traps 
are discussed in Chapter 17.) The Debugger trap simply invokes MacsBug; the 
DebugStr trap invokes MacsBug, displays a message, and executes MacsBug 
commands if they are preceded by ' ; and separated by semicolons. For exam­
ple, in C you might use 

DebugStr( "\pChecking the Heap 1 ;hc;g" ); 

If the heap is invalid you break into MacsBug; otherwise, execution continues. 
If you have sprinkled debugging commands such as this throughout your pro­
gram and don't want MacsBug to be invoked constantly, the DX command al­
lows you to disable these user breaks without removing the trap calls from 
your program and recompiling your code. 



Note ..,.., 

~ ES Exit to Shell 445 

When user breaks are disabled, messages specified by DebugStr are still dis­
played; however, MacsBug ignores commands associated with DebugStr. The 
DX command does not affect preset breakpoints or A-trap actions. 

Other deb1.1gg~, such~:fljE!~(lurce level d~bugger irtLightSpeed c, 
also mte~ept tll.e I)f!P'Ugge~:~d De~us.Str traps. In this case, MacsBug 
con:Unands, $Upp~(.{J!'(th¢:p~P.Q~tr:calls are usually displayed rather 
than·exe~ted .. ·.···• : ... ·~~·,'';.;;{:t1 ·:· ·••·•· ··.·. · 

. _L_~~;~.-~· ;~; ::.> 
--·· 

~ EA . Exit to Application 
Description. Exit to Application relaunches the application from which 
MacsBug was invoked. 

Syntax. EA 

~ About EA 

The EA command frees the application heap and then relaunches the applica­
tion. Using EA has the same effect as using the ES command (to abort an appli­
cation and get back to the Finder) and then relaunching the application. 

~ ES Exit to Shell 
Description. The Exit to Shell command returns you to the Finder. 

Syntax. ES 

~ About ES 

You can use the ES command to return to the Finder when an application 
crashes. This gives you an opportunity to save documents in other applica­
tions. Any changes made to the document in the crashed application since the 
last save will be lost. 

There are many ways an application can crash. It can encounter a condition 
it can't handle and die gracefully, or it can write over all memory randomly, 
destroying itself as well as system data structures. Thus, if you use the ES com­
mand to abort a crashed application, you should reboot soon after because the 



446 .,... Appendix A MacsBug Command Summary 

system might have been damaged. If you believe system data structures are 
still intact (which is often a legitimate, though daring, assumption), you can 
continue without restarting.lf the system was damaged, other programs may 
behave unpredictably later, leading to data loss. 

.... F Find 
Description. The Find command searches for a specified pattern of bytes. 

Syntax. F [ B I W I L I P 1 addr nbytes expr 1 "string" 

B Indicates a byte value search specified by expr. 

W Indicates a word value search specified by expr. 

L Indicates a long word value search specified by expr. 

P Indicates a search for the lower 3 bytes of expr. In 24-bit 
addressing mode, this can be used to search for pointers, 
(thus the P). 

addr Specifies the starting address of the search range. 

nbytes Specifies the number of bytes to search. A number of stan­
dard macros make it easy to specify common address ranges 
and are discussed under "About Find." 

expr Specifies the value to search for. 

"string" Specifies a string to search for. 

Note .,.. I Notice there is no space between the F and the B, W, L, or P.~Jne 
resulting Find commands (FB, FW, FL, and FP).are similar to the 
memory commands that display bytes, words, and longs. The 
MacsBug 6.2 documentation cll9se to doclJill.ent .the fPtd coJ:lllllands ,as 
one command and the memory commands.as s~pat'ate.contmarids .. To 
simplify your life, the ~aD;!e. ¢ouvention was chosen ;he~ •.•• · ··· ·" .. 

. ,., 



.... F Find 447 

..._ About Find 

If you use the Find command without indicating the value size (B, W, L, or P), 
MacsBug looks for the smallest unit (byte, word, or long word) that contains 
the value specified by expr. 

MacsBug displays the 16 bytes and ASCII equivalents of the data starting 
at the address where the value or string was found. The dot address is set to 
the address where the value or string was found. 

Pressing Return repeats the search for the next n bytes. 

Using the Find Command to Locate References to a Pointer 

A specific Find command that looks for pointers (FP) is useful for locating 
24-bit addresses. In an application that is not 32-bit clean, the FL command 
cannot find all references to an address because the high byte of the address 
is undefined and can be any value. The FP command circumvents this problem 
by checking only for the low 3 bytes. 

Macros for the Find Command 

The Debugger Prefs file that comes with MacsBug contains a number of stan­
dard macros for specifying common address ranges for the Find command. 
The Debugger Prefs on the disk that comes with this book also contains these 
macros, of course. There are four macro types, each of which searches a differ­
ent address range: all of RAM, the System Heap, the Application Heap, and 
the TargetZone. There are four versions of each of these: generic, word (W), 
long word (L), and 24-bit pointer (P). The generic form does not specify a size 
for the value parameter. As previously discussed, MacsBug will use the small­
est size that contains the value. You can use the MCD command to see the ex­
pansion of any macro. (See Chapter 18 or the MCD command in this appendix 
for a detailed explanation.) 

Searching RAM. The Ram macros (RamF, RamFW, Ram FL, RamFP) use all 
of RAM as the target for the search. The RamF macro expands to 

f 0 BufPtr" 

To search RAM for specific text (perhaps you want to determine where the 
Chooser keeps the user name), use a command such as 

ramf "Bart Simpson" 



448 ..,.. Appendix A MacsBug Command Summary 

after invoking the Chooser (from the Apple menu). Remember, even though 
MacsBug is insensitive to case, you are specifying a search string that MacsBug 
translates to hexadecimal values. In this situation, case is important. 

If you press the Return key after your Chooser name is found, you may find 
that your name appears in memory multiple times. You can use the WH com­
mand with the dot address to get more information about the address where 
your name was found simply by entering 

wh . 

Enough fun with the Chooser! 

Searching the System Heap. The Sys macros (SysF, SysFW, SysFL, and 
SysFP) search the system zone. The SysF macro expands to 

For example, to search the system zone for the word-sized value $0BFD, use 
the command 

sysfw Obfd 

Searching the Application Heap. The Ap macros (ApF, ApFW, ApFL, and 
ApFP) search the application zone. The ApF macro expands to 

To search the application heap for a pointer whose value is in register AO you 
could use the command 

apfp aO 

Searching the Zone Selected By HX. The Z macros (ZF, ZFW, ZFL, and ZFP) 
search the zone set by the last Heap eXchange (HX) command (see the descrip­
tion of the HX command in this appendix). The ZF macro expands to 

F TargetZone (TargetZone~-TargetZone) 



Note .... j 

..... F Find 449 

Example 

The Find command can be useful for recovering data after a crash. For exam­
ple, suppose you write a paper in Mac Write II and crash. Most word proces­
sors keep their text in standard ASCII format in memory, so you can use the 
Find command to locate the text and then use LOG (see the description of the 
LOG command in this appendix) to save the text. 

To locate this text, for example, use 

apf 11 To locate this text" 

Unless the text was destroyed in the crash, chances are good that you will be 
able to locate your document's text. However, you will lose the formatting in­
formation and will probably find that the text is stored in small pieces all over 
memory rather than in one contiguous chunk. If your text contains numbers 
that were hard to generate or sentences with one-of-a-kind grammar (like this 
one), saving parts of your document in this way can prevent sudden hair loss. 

On my machine, MacsBug responds with 

Searching for "To locate this text" from 006084FO to 006C7CFF 

00670906 546F 206C 6F63 6174 6520 7468 6973 2074 To locate this t 

Now you can log this text to a file (in this case named Text Dump on the hard 
disk named My Disk) with the LOG command 

log MyOisk:TextOump 

and then use the Display Memory (OM) to save the text to disk. Type 

dm • 

and then press Return until all the text is displayed (saved). Be sure to close 
the log by typing LOG without parameters. After your reboot (or simply Exit 
to Shell), you can load the saved file as a text file. 



450 ...,. Appendix A MacsBug Command Summary 

.,.._ G Go 
Description. The Go command exits MacsBug and resumes program 
execution. 

Syntax. G [ addr 1 

addr Specifies the address at which to resume execution. lf you 
omit this parameter, MacsBug resumes execution at the cur­
rent program counter . 

.,.._ AboutGo 

Most of the time when you intentionally enter MacsBug (with the Program­
mer's Key or Switch, the Debugger, or DebugStr traps), you will want to con­
tinue at the same place you stopped. Unless you changed the value of the pro­
gram counter, the Go command without parameters will do this for you. 

You can use Command-Gas an alternate way of entering G. In this case, 
MacsBug ignores the current contents of the command line . 

.,.._ GT GoTo 
Description. The Go To command continues execution until the program 
counter reaches the specified address. 

Syntax. GT addr [ 1
; cmd [ ; cmd ] .•. 1 

addr Specifies an address. When the program counter is equal to 
this address, the GT command invokes MacsBug. 

cmd Specifies a command that MacsBug should execute when the 
breakpoint specified by addr has been reached . 

.,.._ AboutGT 

The GT command sets a breakpoint at the specified address and resumes ex­
ecution. The breakpoint is cleared when it is encountered. If you use the BRD 
command to look at the current breakpoints, you will see breakpoints set by 
the GT command. For example, enter 

gt 0 



...,.. HC Heap Check 451 

Hopefully, the application will never hit this breakpoint! Then reenter MacsBug 
and type 

brd 

On my machine, MacsBug responds with 

Breakpoint table 

Address Module name 

00000000 

Cur/Max or Expression Commands 

once 

MacsBug treats these breakpoints like any other breakpoint. If you list 
memory (using the Instruction List command, IL), GT breakpoints appear 
as a dot to the left of the instruction just like other breakpoints. In addition, 
setting GT breakpoints in ROM slows down execution, since MacsBug must 
trace through each instruction. See the description of the BR command for 
additional information. 

The GTO Macro 

The GTO macro (similar to the BRO macro) sets a breakpoint at an offset from 
the beginning of the current procedure. The GTO macro expands to 

gt :+ 

For example, 

gto 24 

continues execution until the program counter reaches the instruction that is 
$24 bytes from the beginning of the current procedure . 

...,. HC Heap Check 
Description. The Heap Check command tells you if the information in 
the heap zone header or any of the block headers in the current heap has 
been corrupted. 

Syntax. HC 



452 ...,. Appendix A MacsBug Command Summary 

~ About HC 

Note ..,., 

The HC command checks the consistency of the heap pointed to by the MacsBug 
variable TargetZone, which is set using the HX command. To determine the cur­
rent heap, you can use the HZ command, which labels it as the TargetZone, or 
simply display the value of the TargetZone variable by typing 

target zone 

For additional information see the HZ command. 

The ZF macro uses the TargetZone variable to find values or strings in 
the current MacsBug zone. See the Find command for more details. 

The HC command is useful for locating where the heap becomes corrupt. 
An application running in a corrupted heap may temporarily avoid disaster 
but is bound to crash eventually. Often it is hard to determine the cause of such 
a crash, because the heap may have been corrupted quite some time ago. You 
can set the EveryTrme macro (a macro executed every time you enter MacsBug) 
to perform a heap check to assist in locating problems as early as possible. To 
do this, type 

me everytime "he" 

One of the most common ways the heap is corrupted occurs when an appli­
cation writes outside of a block, thus destroying the header of the next block. 

If the HC command returns an error message, you can use the ATHC com­
mand to pinpoint where the heap is being corrupted the next time the applica­
tion is run. See the ATHC command for additional information. 

The ATHC command only checks the heap before each trap call. This 
check tells you only that the heap has been corrupted since the beginning 
of the previous trap call, which could mean the heap was destroyed in the 
previous trap call or any application code since then. If you need finer reso­
lution for narrowing down the source of heap corruption, you can use the 
DebugStr trap. This technique is shown in Chapter 17 and in the DX com­
mand description in this appendix. 



.,.. HC Heap Check 453 

HC Error Messages 

The HC command performs consistency checks by comparing information 
stored in the heap zone header with information stored in block headers. (The 
Memory Manager chapter in Inside Macint9sh, Volume II provides specific de­
tail about the information that is stored in the zone and block headers.) 

The information in the heap zone header and the block header is created and 
maintained by the Memory Manager. However, the Memory Manager has no 
way to prevent an application from writing over this information. 

There are a number of ways an application could corrupt the heap. Writing 
to a block that has been disposed of (or purged) or writing past the end of a 
block are the most common. For example, if a block contains an array of n ele­
ments and. you write to the n+ 1 element, you might be writing into the next 
block's header, thus corrupting the heap. Examples of heap corruption are giv­
en in Chapter 4. 

The following list describes the HC error messages and the consistency 
check that failed, thus producing the message. 

• BkLim does not agree with heap length-Walking through the heap 
block by block must terminate at the start of the trailer block, as defined 
by the bkLim field of the zone header. 

• Block length is bad-The block header address plus the block length 
must be less than or equal to the trailer block address. Also, the trailer 
block must be a fixed length. 

• Free bytes in heap do not match zone header-The zcbFree field in the 
zone header must match the total size of all the free blocks in the heap. 

• Free master pointer list is bad-Free master pointers in the heap are 
chained together, starting with the hFstFree field in the zone header and 
terminated by a nil pointer. 

• Master pointer does not point at a block-The master pointer for a relo­
catable block must point at a block in the heap. 

• Nonrelocatable block: Pointer to zone is bad-Block headers of nonre­
locatable blocks must contain a pointer to the zone header. 

• Relative handle is bad-The relative handle in the header of a relocat­
able block must point to a master pointer. 

• Zone pointer is bad-The zone pointer for the current heap (SysZone, 
ApplZone, or user address) must be even and in RAM. In addition, the 
bkLim field of the header must be even and in RAM and must point after 
the header. 



454 ~ Appendix A MacsBug Command Summary 

Beware of False Positives 

Although extremely rare, it is possible to enter MacsBug while the Memory 
Manager is rearranging items in the heap, and the heap is temporarily invalid. 
There is no way to determine that this is the case when the heap is corrupt. For­
tunately, this is rare. 

Example 

Using 

he 

when the heap is OK produces the response 

The Application heap is ok 

If you then change to the system heap using 

hx 

MacsBug responds with 

The target heap is the System heap 

and you can check the system heap with HC again, in which case MacsBug will 
probably respond 

The System heap is ok 

~ HD Heap Display 
Description. The Heap Display command displays information about 
blocks in the current heap. 

Syntax. HD [ qualifier J 

qualifier Specifies the kind of block for which you want information. 
You can specify one of the following for qualifier: 

F Free blocks 

N Nonrelocatable blocks 



...,. HD Heap Display 455 

R Relocatable blocks 

L Locked blocks 

p Purgeable blocks 

RS Resource blocks 

h;pe Resource blocks of this type only 

If you don' t specify a qualifier, the HD command displays information 
about all blocks in the current heap . 

..... AboutHD 

101 

The HD command displays the TargetZone set by the last HX command. (See 
the HX command for a full description of the MacsBug TargetZone variable.) 

After displaying the heap, the HD command displays the number of free or 
purgeable bytes left in the current heap zone. If your application did not call 
MaxApplZone (as it should), you will probably be able to allocate a much larg­
er block. If it did call MaxApplZone, you will not necessarily be able to allocate 
a block that size since the memory is probably fragmented. See Chapter 4 for 
examples of fragmented memory. 

Calling the Toolbox from MacsBug 

If you want to find the total space available, you can manually call Max­
ApplZone and then use the HD command again. This operation will change 
the contents of some registers and the flags. Do this before a Toolbox trap call 
or at another time when the register contents can be changed. The following 
MacsBug commands perform the desired operation: 

sw 0 a063 

me savepc pc 

pc=O 

t 

pc=savepc 



456 ..,.. Appendix A MacsBug Command Summary 

The first command sets location 0 to the MaxApplZone trap $A063. Then 
the value of the program counter is saved in the macro savepc. The program 
counter is then set toO and you Trace over the trap. You don't have to worry 
about the stack because the trap doesn't take any parameters. Finally, the 
program counter is returned to its original value and processing can continue 
as before. 

If you request information about resource blocks of a particular resource 
type, it is not necessary to place quotes around the name, unless you want 
MacsBug to distinguish between uppercase and lowercase characters. If 
MacsBug is unable to find blocks of the specified type, it d isplays themes­
sage, "No blocks of this type found." 

Information about heap blocks is not kept in the blocks themselves. Rather, 
MacsBug examines the resource map to determine if the blocks belong to 
resources and, if so, what type of resources. If the resource map is destroyed, 
the HD command may not behave as expected. See Chapter 6 for a description 
of the resource map. 

Interpreting the Heap Display 

Each line of the heap display gives information about one heap block. Heap 
blocks are listed in order from the lowest address to the highest address. A typ­
ical line of a heap display is 

Sta rt Length Hst r Ptr Lock Prg Type 10 file Name 

• 00609068 00000103•01 R 006085AO L STRJ 0BB9 046A My Strings 

The dot to the left of the line indicates that the block cannot move. When 
looking at the heap display of a well-written application, the majority of the 
locked blocks should be at the beginning or the end of the heap. Locked blocks 
in the middle of the heap indicate that memory is fragmented. Of course you 
should do this check only at well-defined times, such as the beginning of the 
event loop (see Chapter 5), because the block may only be locked temporarily. 
Only nonrelocatable and locked relocatable blocks get a dot. 

The address under Start ($609068) specifies the location of the beginning of 
the block's contents. 



~ HD Heap Display 457 

Note ... , '7i~ll¢i'~~f¥aesllJg~jr~theaddressoftheb}Qckheader 
1 .. ;,r~!P~r:ijlaij.,fj~'b~d%5-¢o~t.~~f§l:ft~f_:g4~bit }\eaps, the blo~l}eader · 
:,;l·JP,~g~'S,'b,~~~ip~fq~~::tl;i~;~~~~;~#'Fr.l~ye~:by:;rvtC\csBug 6.•Ziand.fc:>r. 
:~:.:~~!~~~.;n~apsi:~t b~g~~_12i~~E~J~~~¢r~;.:,; :_ · . _. . · , · ·,,;, . , 

The Length field shows the logical block size as requested by the applica­
tion, plus any padding necessary to meet other requirements of the Memory 
Manager. The block's physical size is the sum of the two values. See Chapter 
4 or the Memory Manager chapter in Inside Macintosh for a complete explana­
tion of block padding. 

The Tag column indicates whether the block is Free (F), Nonrelocatable (N), or 
Relocatable (R). In this example the block is relocatable. Nonrelocatable blocks are 
allocated by NewPtr, whereas relocatable blocks are allocated by NewHandle. 

The remainder of the fields have significance only for relocatable blocks, 
even if they are locked. The Mstr Ptr column is filled in only for relocatable 
blocks. It specifies the address of the block's master pointer. The Lock column 
contains L if the block is locked; otherwise, it is left blank. For relocatable blocks, 
this duplicates information displayed by the dot on the left-hand side. The 
Purge column contains P if the block is purgeable and is otherwise left blank. 

The information for the remaining fields is taken from the resource map and 
is filled in only for resource blocks. They specify the resource type, ID, file ref­
erence number, and resource name if one exists. See Chapter 6 for an explana­
tion of resources and the resource map. 

Chapter 4 contains more information about heaps. 

Examples 

To display all the 1 CURS 1 (cursor) resources in the current heap, use 

hd curs 

MacsBug responds with a version of 

Displaying the Application heap 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• 0060A55C 00000044+08 R 0060856C L CURS 0001 046A 

• 0060ASBO 00000044+08 R 00608568 L CURS 0004 04 6A 

• 0060A604 00000044+00 R 00608564 L CURS 07D8 04 6A 



458 ~ Appendix A MacsBug Command Summary 

.... 

• 0060A650 00000044+04 R 00608560 L CURS 0707 046A 

• 0060A6AO 00000044+00 R 0060855C L CURS 0706 046A 

• 0060A6EC 00000044+04 R 00608558 L CURS 0705 046A 

• 0060A73C 00000044+00 R 00608554 L CURS 0704 046A 

• 0060A788 00000044+04 R 00608550 L CURS 0703 046A 

• 0060A708 00000044+00 R 0060854C L CURS 0702 046A 

• 0060A824 00000044+04 R 00608548 L CURS 0701 046A 

There are 1422456 free or purgeable bytes in this heap 

To display all resource blocks in the current heap, use 

hd rs 

HELP Display Help 
Description. The HELP command displays information about the given 
command or topic. 

Syntax. HELP [ cmd 1 topic 1 

cmd Is the name of a MacsBug command or dcmd. 

topic Is one of the topics displayed when you just enter HELP. 
(See ~~Examples") 

.... About HELP 

HELP without parameters displays a list of topics for which help can be pro­
vided. If you then press Return, the HELP command displays information for 
each topic. 

Help information is contained in the 1 mxbh 1 resource, which is approxi­
mately lOK in size. If you need to conserve space, you can use ResEdit tore­
move this resource from the MacsBug file (it was kept in the DebuggerPrefs 
file before MacsBug 6.2). This, of course, means that you can no longer access 
online help. Don't ever modify this resource, because the HELP command 
expects the information in a particular format. 



~ HOW Display Break Message 459 

Examples 

To display information about the HD command, enter 

help hd 

MacsBug responds with 

HD [F I N I R I L I P I RS I TYPE) 

Display specific blocks in the current heap or all blocks if 
no parameter. The possible qualifiers are 

F: Free blocks 

N: Nonrelocatable blocks 

R: Relocatable blocks 

L: Locked blocks 

P: Purgeable blocks 

RS: Resource blocks 

TYPE: Resource blocks of this type 

To display information about dcmds, enter 

help dcmds 

MacsBug' s response depends on the dcmds that are currently installed in 
the Debugger Prefs file . 

.,.._ HOW Display Break Message 
Description. The HOW command redisplays the break message that was 
displayed when you initially entered MacsBug. 

Syntax. HOW 

.,.._ About HOW 

The HOW command is handy if the original text has scrolled out of sight or if 
you want to record the information to a log file. 

For example, to log essential information to a file, you might want to define 
the following macro and execute it right after MacsBug is invoked. 

me breakinfo 'log breakinfo; how; td; dw memerr; dw reserr; ~~ sp 100; he; log' 



460 ...., Appendix A MacsBug Command Summary 

If the Heap Check (HC) fails, you will have to close the log file by typing 

log 

since HC terminates command execution. 
This macro logs the user break message, the contents of all processor regis­

ters, the contents of MemErr and Res Err, the top 256 bytes ($1 00 hex) on the 
stack, and any possible heap problems . 

.,.. HS Heap Scramble 
Description. The Heap Scramble command turns heap scrambling on and 
off. When heap scrambling is on, MacsBug moves all unlocked relocatable 
blocks whenever a trap that could move memory is called. 

Syntax. HS [ addr 1 

addr Specifies the starting address of the heap you want 
scrambled. U you omit this parameter, the HS command 
scrambles the application heap (not the TargetZone, as you 
might suspect) . 

...... About HS 

The HS command causes unlocked relocatable blocks in the heap to be moved 
whenever the following traps are encountered: NewPtr, New Handle, Rcalloc­
Handle, SetPtrSize, or SetHandleSize. With SetPtrSize and SetHandleSize, the 
heap is scrambled only if the block size is being increased. Since many system 
routines make these calls, the heap is scrambled at many different times. The 
HS command checks the heap before scrambling. U it is corrupted, MacsBug 
breaks and reports the error. (See the HC command for a list of possible errors.) 
Heap scrambling is turned off automatically if MacsBug detects a bad heap. 

The HS command is useful for forcing a worst-case-memory scenario. HS 
often brings out problems involving dereferenced handles that might occur 
only sporadically. 

Example 

The most common way to use HS is to launch your application, enter ~\1acs­
Bug, and type 

hs 



~ HT Heap Totals 461 

and then continue. You could also use 

hz 

to display all the heaps MacsBug knows about, producing a response such as 

Heap zones 

OOOOlEOO SysZone Targetzone 

OOOC2F4C 

0059F6DO 

005A7558 

0060B560 ApplZone TheZone 

00607568 

00771570 

Then use a command such as 

hs leOO 

to scramble the heap of your choice. MacsBug responds with 

Scrambling heap at OOOOlEOO 

To turn heap scrambling off, enter HS without parameters. MacsBug 
responds with 

Scrambling disabled 

.,... HT Heap Totals 
Description. The Heap Totals command displays information about the 
current heap (TargetZone). 

Syntax. HT 

..... About HT 

The HT command displays the following information for the current heap. 

• The total number and size for each type of block {free, relocatable, and 
nonrelocatable). 



462 ...,. Appendix A MacsBug Command Summary 

• The number of locked, unlocked, and purgeable blocks. 

• Totals for the heap. 

Both the decimal and hexadecimal equivalents for each value are given. 

Example 

For example, typing 

ht 

will produce a response similar to 

Totaling the Application heap 

Total Blocks Total of Block Sizes 

Free 002A H2 00055878 #3503~!8 

Nonrelocatable 0023 #35 0000574C #22348 

Relocatable 0253 #595 00064818 !411672 

Locked OOFO #240 0003AAA8 1240296 

Purgeable and not locked 0011 t17 00012F40 #77632 

Heap size 02AO #672 OOOBF7DC !784348 

..., HX Heap eXchange 
Description. The Heap eXchange command sets the TargetZone for other 
commands. 

Syntax. HX [ addr J 

addr Specifies the address of a heap zone. If you omit this parame­
ter, the HX command toggles among the application heap, the 
system heap, and any other heaps that were previously set 
with the HX command. 



...,. HX Heap eXchange 463 

...... AboutHX 
All heap commands (except Heap Scramble) work on the heap selected by the 
HX command. The address of the currently selected heap is kept in the Macs­
Bug variable TargetZone. When you first enter MacsBug, the HX command 
sets the application heap as the TargetZone. 

Use the HZ command to determine the addresses of the other heaps. If you 
are running an application under MultiFinder there are usually five heaps: the 
system heap, the MultiFinder heap, the application heap, the Finder heap, and 
the Backgrounder heap. (Note: Backgrounder is in pre-7.0 systems only.) If 
you are running more applications, each additional application will also have 
its own heap. See Chapter 4 for more information about heaps. 

Example 

Enter MacsBug and type 

hz 

If you have not changed the zone with the HX command, MacsBug will dis­
play a version of 

Heap zones 

OOOOlEOO SysZone 

OOOAC090 

00608560 ApplZone TheZone TargetZone 

00607568 

00771570 

Notice that the application zone is the TargetZone. Now type 

hx 

to select the system heap as the current heap. If you then type 

hz 

MacsBug responds with 

Heap zones 

OOOOlEOO SysZone TargetZone 

000AC090 

00608560 ApplZone TheZone 



464 .,... Appendix A MacsBug Command Summary 

00607568 

00771570 

Notice that the HZ command labels the system heap as the TargetZone because 
it has been selected with the HX command . 

...,. HZ Heap Zone 
Description. The Heap Zone command lists all known heap zones. 

Syntax. Hz 

..... About HZ 

The Heap Zone command lists the addresses that indicate the start of each 
heap. Under MultiFinder, applications are given nonrelocatable blocks inside 
the MultiFinder heap for their heap zones. The HZ command identifies appli­
cation heaps by performing a heap check on each block in the MultiFinder 
heap. If the block passes, it's assumed to be a heap. 

The HZ command does not display heap zones stored on the stack~ in the 
system heap, or within an application's heap or heap zones that don't start at 
the beginning of a heap block. 

The HZ command identifies the heaps pointed to by the low memory 
globals ApplZone and TheZone as well as the current MacsBug zone kept 
in MacsBug' s TargetZone variable. 

• ApplZone points to the beginning of the current application heap. 

• SysZone marks the System Zone (the value in the low memory SysZone). 

• TheZone points to the current zone (set by the SetZone routine). 

• TargetZone points to the zone set by MacsBug's HX command. 

Chapter 4 contains additional information about heap zones. 

Example 

To see the current zones, type 

hz 



...,. ID Instruction Disassemble 465 

On my machine, MacsBug responds with 

Heap zones 

OOOOlEOO SysZone 

000AC090 

00608560 App!Zone TheZone TargetZone 

00607568 

00771570 

....,. ID Instruction Disassemble 
Description. The ID command disassembles one line, starting at the speci­
fied address. 

Syntax. ID [ addr 1 

addr Specifies the address containing the first byte to be disas­
sembled. If you do not specify an address, the ID command 
uses the program counter for addr . 

...... About ID 

After using the ID command, pressing Return causes successive lines to be dis­
assembled. The dot address is set to the last address used. The disassembly is 
the same as that performed by the Instruction List (IL) command. See the IL 
command description in this appendix for a description of the disassembly. 

In practice, you will probably use the IL and IP commands instead of the 
IDcommand. 

Example 

Typing 

id 

and pressing the Return key several times produces the following output. 



466 ...,. Appendix A MacsBug Command Summary 

Disassembling from 00774BF6 

No procedure name 

00774BF6 *MOVEQ #$6E,DO In I 706E 

00774BF8 ADDA.L DO,AO DlCO 

00774BFA MOVEA.L AO,Al I 2248 

00774BFC CMPA.L Al,A2 B5C9 

~ I L Instruction List 
Description. TheIL command disassembles starting from the specified ad­
dress. 

Syntax. IL [ addr [ n ] ] 

addr Specifies the address at which to start disassembling. If you 
do not specify addr, the IL command uses the value of the pro­
gram counter. 

n Is a hexadecimal integer specifying the number of lines to dis­
assemble. If you omit this parameter, IL disassembles half a 
screen of code. 

~ About IL 

Pressing Return disassembles the next n lines (if n was specified initially) or 
the next half screen (if n was omitted). The IL command sets the dot address 
to the specified address. 

TheIL command has no way of distinguishing code from data and will at­
tempt to disassemble whatever you tell it to.lf the address you supply is in the 
middle of an opcode, the first few instructions may be garbage until the IL 
command gets in sync with the beginning of an opcode. 

Example 

For example, tolistthePStrCpyprocedurein theChapter4sampleapplication 
you can enter 

il pstrcpy 

An abbreviated version of MacsBug' s response is 



IJll> IL Instruction List 467 

Disassembling from pstrcpy 

PSTRCPY 

+0000 005A7BAA LINK A6,#$FFFC 4E56 FFFC 

+0004 005A7BAE *MOVEA.L $0008{A6),AO 206E 0008 

+0008 005A7BB2 MOVEQ #$00,00 7000 

+OOOA 005A7BB4 MOVE.B {AO) ,DO 1010 

+OOOC 005A7BB6• ADDQ.W #$1,00 5240 

+OOOE 005A7BB8 MOVE.W D0,-$0004{A6) 3040 FFFC 

+0012 005A7BBC CLR.W -$0002 (A6) 426E FFFE 

+0016 005A7BCO BRA.S PSTRCPY+002E ; 005A7BD8 6016 

For a given line, the IL command displays the offset from the beginning of 
the procedure (if the code is inside a procedure), followed by the instruction's 
address. For the last line in the preceding listing, the offset from the beginning 
of the PStrCpy procedure is $16, which is at address $5A7BCO. The offset given 
by the IL command is useful for setting breakpoints with the BROor GTOmac­
ros. These macros work only for the procedure the PC (not the dot address) is 
currently located in. 

The next two fields contain the opcode and operand(s) that make up the in­
struction. An asterisk character (*) before the opcode indicates the instruction 
pointed to by the current program counter. A dot to the left of the opcode indi­
cates that a breakpoint is set at that instruction. In the preceding example, the 
PC is pointing to the instruction at an offset of $0004, and a breakpoint is set 
at the instruction at an offset. of $000C. 

Branch instructions have an additional field preceded by a semicolon(;), 
which gives the target of a JMP, JSR, BSR, or branch instruction, the trap num­
ber of a trap, or the ASCII value of a DC statement. For the instruction at an 
offset of $0016, the target of the BRA is address $005A7BD8. 

The last field shows the actual hexadecimal values of the instruction. If the 
instruction is too big to display in the remaining space, an ellipsis ( ... ) is dis­
played. Note that you can see this last field only on larger displays. You can, 
however, always see the field by sending the output to a file or a printer with 
the LOG command. If you need to see the hexadecimal values, you can use the 
DM command. For example, typing 

dm 5a7bb6 



468 ..,. Appendix A MacsBug Command Summary 

produces the output 

Displaying memory from 5a7bb6 

005A7BB6 5240 3040 FFFC 426E FFFE 6016 306E FFFE R@=@··Bn·· 1 ·On·· 

005A7BC6 DlEE OOOC 326E FFFE D3EE 0008 1091 526E ····2n········Rn 

~ IP Disassemble Around an Address 
Description. The IP command disassembles a half page centered around the 
specified address. 

Syntax. IP [ addr 

addr Specifies the address around which instructions should be 
disassembled. If you omit this parameter, the IP command 
uses the value of the program counter. 

~ About IP 

Pressing Return disassembles the next half page. The dot address is set to the 
first address displayed. 

Output from the IP command is identical to that from the Instruction List 
(IL) command described in this appendix. In fact, IP is equivalent to using the 
IL command with an address a few bytes (about 28) before the current PC. 

Since MacsBug has no way of knowing if the address you specify is in 
code or data, or even in the middle of an opcode, the first few disassembled 
instructions may appear as garbage. Because the IP command simply 
begins disassembling at a negative offset from the supplied address, this prob­
lem is especially common. 

The IP command is useful for seeing your location when you break into 
MacsBug. The location of the current PC is indicated by an asterisk and will 
appear in the middle of the listing. Thus, the most common use is simply 

ip 



~ IP Disassemble Around an Address 469 

Example 

If you break into MacsBug and type 

ip 

MacsBug will respond with a version of 

Disassembling from 4081E6F2 

_ Loca 1 ToGlobal 

+0006 4081E6F2 BRA.S _GlobalToLocal +0006; 4081E6FA I 6006 

Global ToLocal -
+0000 4081E6F4 MOVEM.L D0-D2/A0/Al,- (A7) 48E7 EOCO 

+0004 4081E6F8 MOVEQ I$00,D2 7400 

+0006 4081E6FA MOVEA.L (AS) ,AO 2055 

+0008 4081E6FC MOVEA.L (AO),AO 2050 

+OOOA 4081E6FE JSR ( ($1A5C]) 4EBO 81E1 lASC 

+0010 4081E704 MOVEA.L $0018(A1),Al 226F 0018 

+0014 4081E108 MOVE.W $0006 (AO) ,DO 3028 0006 

+0018 4081E10C MOVE.W $0008 (AO), D1 3228 0008 

+OOlC 4081E710 *BSR.S _Global ToLocal+0024 4081E718 I 6106 

+OOlE 4081E112 MOVEM.L (A7) +, D0-D2/A0/Al 4CDF 0307 

+0022 4081E716 BRA.S SubPt+OOlA 4081£148 6030 -
+0024 4081E718 TST.W 02 4A42 

+0026 408lE71A BEQ.S _GlobalToLocal+002C 4081E720 6704 

+0028 4081E71C NEG.W DO I 4440 

+002A 4081E11E NEG.W 01 I 4441 

+002C 4081£720 ADD.W DO, (All+ 0159 

+002E 4081£722 ADD.W Dl, (All+ D359 

+0030 4081£724 RTS I 4E75 

The asterisk(*) next to the BSR instruction at offset $001 C denotes the current 
location of the PC. 



470 ..,. Appendix A MacsBug Command Summary 

~ IR Instruction List Until Return 
Description. The IR command disassembles code from the address you 
specify until the end of the procedure. 

Syntax. IR [ addr 1 

addr Specifies the address where you want disassembly to begin. 

~ About IR 

If you omit this parameter, theIR command uses the value of 
the program counter. 

TheIR command assumes that the instruction beginning at the specified ad­
dress is part of a procedure. The dot address is set to the supplied address. 

If the routine is longer than a full screen, MacsBug prompts you to press Re­
turn to display the next screen. TheIR command is similar to the IL command, 
except that the IR command stops at the end of the routine. Output from the 
IR command is identical to that from the Instruction List (IL) command 
described in this appendix. In practice, the IL and IP commands are used far 
more often than the IR command. 

~ LOG LOG Output to a Printer or File 
Description. The LOG command sends MacsBug output to the specified file 
or to an Image Writer via the serial port. 

Syntax. LOG [ pathname I Printer 1 

pathname 

Printer 

Specifies the file name to which to write the output. The file­
name follows Hierarchical File System (HFS) conventions and 
can be a partial or complete pathname. If a partial pathname 
is supplied, the file is assumed to be in the current directory. 

Specifies that you want output to be sent to an Image Writer. 
The Image Writer must be connected to the printer port. The 
LOG command does not work over a network, nor does it 
work with the Laser Writer driver, so you can't send MacsBug 
output directly to a LaserWriter. You can direct output to a 
disk file and then print it on a LaserWriter. 



~ LOG LOG Output to a Printer or File 471 

..._ About LOG 

You do not have to enclose pathname in quotes even if it includes colons (which 
normally specify the beginning of the current procedure in MacsBug) or 
spaces. However, if you use the Macro Create (MC) command to use a macro 
name for a pathname, you must enclose the pathname in quotes. See the MC 
command for additional information. 

MacsBug creates the file as an MPW text file if the specified file does not exist. 
You can open the file from word processing applications as well as from :MPW. 

If the specified file already exists and is of type TEXT, the LOG command 
appends MacsBug output to the existing file. 

You can only log to one file at a time. To turn logging off, enter LOG without 
parameters. MacsBug, by design, uses as little of the system as possible; the 
LOG command violates this design criterion. Logging may not work, depend­
ing on the state of the file system during your debugging session. In general, 
you should observe the following restrictions: 

• Do not log to file server volumes. 

• Because logging enables interrupts briefly while executing its low level 
calls, if your program depends on interrupts being completely disabled, 
you should not use the LOG command. 

Example 

For example, to open a log file on the drive Fungl60 called textlog, enter 
the command 

log fungl60:textlog 

The output of all MacsBug commands is sent to the file as well as to the screen 
until you enter 

log 

without parameters to close the log file. Most of the MacsBug displays in this 
book were produced using the LOG command. 



472 ~ Appendix A MacsBug Command Summary 

.,... MC Macro Create 
Description. The Macro Create command creates a new macro that expands 
to the expression you specify. 

Syntax. MC name ' expr' I expr 

name Specifies the name of the macro. The names FirstTime and 
Every Time are reserved, as are the names of MacsBug com­
mands and the processor's registers. 

expr Specifies the expression that the macro expands to. If you speci­
fy expr, it is evaluated when you create the macro and that value 
is substituted for name every time you use the macro. H you 
specify 1 expr 1 

, it is evaluated every time you use the n1acro . 

..... AboutMC 

A macro can contain anything you can type in a command line. You can use 
macros to contain command name aliases or reference global variables or to 
name common expressions. Chapter 18 discusses macros in detail. 

If you use the MC command to define an alias for a pathname, you must en­
close the pathname in quotes, because the MC command is confused by colons 
in the pathname. A legal example is 

me mylog 'Fung160:textlog' 

If you now use the command 

log mylog 

MacsBug creates the file textlog on the hard disk named Fung160 and logs output 
to it. If the file already exists, the new output is appended to the end of the file. 

MacsBug expands all macros before it executes the command line. This 
means that you cannot define a macro and reference it on the same line, be­
cause the reference will be undefined at the time the macro is expanded. For 
this reason the following command line will generate an error; MacsBug tries 
to expand SaveAS before executing the MC command that defines it. 

me SaveAS CurrentAS; SL CurrentAS SaveAS 



..,.. MCD MaCro Display 473 

The macros you create using the MC command are good only until you reboot 
the Mac. You can create permanent macros by modifying the 1 mxbm 1 resource 
using ResEdit. The 1 mxbm 1 resource also defines the macro FirstTrme, which 
allows you to execute commands immediately after MacsBug is loaded, and the 
macro EveryTrme, which allows you to specify commands that execute each 
time (except the first time) MacsBug is invoked. Chapter 18 describes how to 
create macros using the 1 mxbm 1 resource. 

Use the MCC command to clear a macro. Use the MCD command to display 
macros. MCD is useful for determining whether you're redefining an existing 
macro (which isn't harmful) . 

.,... MCC MaCro Clear 
Description. The MCC command clears the specified macro or all macros. 

Syntax. MCC [ name ] 

name Specifies the name of the macro to be cleared. If you omit this 
parameter, the MCC command clears all macros . 

..... AboutMCC 

If you have set an EveryTime macro, either in the 1 mxbm 1 resource or with 
the MCC command, as in 

me everytime 'he' 

you can clear it using the command 

mee everytime 

..... MCD MaCro Display 
Description. The MCD command displays the specified macro or all macros 
whose names begin with the specified characters. 

Syntax. MCD [ name ] 

name Specifies part of or a complete macro name. MCD without a 
parameter displays all currently defined macros. 



474 ..,... Appendix A MacsBug Command Summary 

..... AboutMCD 

The MCD command displays all macros, whether they were defined using the 
' mxbm ' resource or the MC command. 

The MCD command displays two columns: The first column lists the macro 
name; the second column contains the macro expansion. 

Use the MCC command to clear a macro and MC to define one. Chapter 18 
discusses macros in more detail. 

Example 

To list all macros that begin with "the," use the MacsBug command 

mcd the 

Depending on the macros currently defined, MacsBug responds 

Macro table 

Name 

TheCrsr 

TheGDevice 

TheMenu 

The Zone 

thePort 

theCPort 

...,. MR Magic Return 

Expansion 

0844 

occ8 

0A26 

0118 

OM RAs~~ WindowRecord 

OM RAS~~ CGrafPort 

Description. U you accidentally stepped into a JSR, BSR, or trap call that you 
meant to step over, executing the Magic Return command continues execution 
until you reach the first instruction after the call to the current procedure. 

Syntax. MR [ param 1 

param Is an integer that is used by the MR command to find the 
address where the return address is stored. 



..,.. MR Magic Return 475 

...._ AboutMR 

The MR command sets a temporary breakpoint at the first instruction after the 
call to the current procedure. The param value that you specify helps the MR 
command figure out where the return address is stored on the stack: 

• If the program counter points to the LINK instruction or what is other­
wise the first instruction of the subroutine, enter MR with no parameters. 
In this case the return address is assumed to be stored on the top of the 
stack. Using MR in this situation is identical to specifying 

gt @sp 

• If the program counter is past the LINK instruction and your compiler 
uses A6 as the stack frame pointer, you can specify A6 as the parameter 
to the MR command. 

mr a6 

In this case the MR command looks for the return address at A6 + 4. 

• If the program counter points after the first instruction in a procedure that 
does not use A6 as the stack frame pointer, you can specify this address 
as an offset from A7. Thus, if you enter 

mr 8 

the MR command will look for the return address at A7 + 8. 

• If the program counter points after the first instruction of a nested proce­
dure, entering 

mr a6" 

sets a breakpoint at the first instruction following the procedure that 
called your procedure. 

Using the MR Command to Display Function Results 

You can display the result of a Pascal function every time it's called by entering 
the command 

br functionname ';mr;dw sp 



476 ...,. Appendix A MacsBug Command Summary 

Whenever the breakpoint is reached, MacsBug executes the MR command and 
displays the top word on the stack (the function result). Functions that return 
long words should use the command 

br functionname 1 ;mr;dl sp 

Functions that return pointers can dereference the pointer and display the 
structure using a template; for example, 

br functionname 1 ;mr;dl @sp templateName 

C functions return their results in register DO. Thus, you could use the command 

br functionname ';mr;dO 

to display the results of a C function. 

MR Error Messages 

MacsBug checks to see that the address determined from the specified param 
value is a valid stack address and that it is a valid return address. MR returns 
two possible error messages: 

• This address is not a stack address-MacsBug displays this message if 
the address is not in the range between A7 and CurStackBase". 

• The address on the stack is not a return address-MacsBug displays this 
message if the specified address does not immediately follow a JSR, BSR, 
or A-trap instruction . 

....,. RAD Toggle Register Name Syntax 
Description. The RAD command toggles between how address and data 
registers are specified. 

Syntax. RAD 



.... RB ReBoot 477 

~ About RAD 

By default, MacsBug expects the actual Motorola names for address and 
data registers. Unfortunately, these register names are also valid hexadeci­
mal digits. Since registers are used much more often in commands than the 
corresponding hexadecimal values, MacsBug assumes you are referring to 
the register when a conflict arises. So, if you want to enter a register on the 
command line, for example 

drn aO 

you just type the name of the register. If you want to display the value at the 
memory location $AO, you use the command 

drn $a0 

The RAD command allows you to select a naming convention that inter­
prets DO as a hexadecimal number. When this convention is in effect, you 
must put an R in front of register names to let MacsBug know you mean a 
register; for example, 

drn raO 

~ RB ReBoot 
Description. The Reboot command reboots the system immediately. 

Syntax. RB 

~ About RB 

The RB command unmounts the boot volume (if the file system is not busy; see 
Chapter 13) and then restarts. The items in the shutdown queue are not called, 
and other local volumes are not unmounted. Depending on the size and num­
ber of hard disks connected to your system, it can take considerably longer to 
ReBoot than to ReStart (RS). See the description of the RS command for more 
details about the differences between RB and RS. 



478 ...,. Appendix A MacsBug Command Summary 

.,... Registers 
Description. The value of processor registers can be displayed and set. 

Syntax. registerName [ = expr 1 := expr 1 

registerName Specifies the name of a 68000,68020,68030/68851, or 68881 
register. Unless otherwise specified using the RAD com­
mand, MacsBug uses the Motorola names for all registers. 

expr Is an expression whose value is assigned to the specified register. 
H you omit this parameter, the value of the register is displayed . 

.,... About Registers 

To please Pascal and C programmers, MacsBug allows both= and:= to be used 
to assign a value to a register. 

Table A-2 contains a complete list of the names MacsBug uses for registers. 

Table A-2. MacsBug register names 

68000 Registers 

Dn 

An 
PC 

SR 
SP 

SSP 

Data register n 
Address register n 
Program counter 

Status register 

Stack pointer 

Supervisor stack pointer 

Additional Registers Available on the 68020 

ISP 

MSP 

VBR 

Interrupt stack pointer 

Master stack pointer 

Vector base register 



..,_ RN Set Reference Number 479 

Table A-2. (continued) 

Additional Registers Available on the 68020 (continued) 

SFC 

DFC 

CACR 

CAAR 

Source function code register 

Destination function code register 

Cache control register 

Cache address register 

Additional Registers Available on the 68030/68851 

CRP 

SRP 
TC 

PSR 

68881 Registers 

FPn 
FPCR 

FPSR 
FPIAR 

CPU root pointer 

Supervisor root pointer 

Translation control register 

PMMU status register 

Floating-point data register n 
Floating-point control register 

Floating-point status register 

Floating-point instruction address register 

.,... RN Set Reference Number 
Description. The RN command restricts symbol references to the specified 
file. 

Syntax. RN [ expr J 

expr Evaluates to a hexadecimal integer that specifies the file's ref-
erence number. If you omit this parameter, the RN command 
uses the reference number of the current file, contained in the 

·global variable CurMap. 



480 ...,.. Appendix A MacsBug Command Summary 

..... About RN 
The RN command allows you to control the way MacsBug matches symbol 
references. The RN command is useful for resolving conflicts when several 
files contain the same symbol names. 

You can use the HD command or the FILE dcmd to find a file's reference 
number. Specifying 0 for expr restores the default (symbols match). 

Example 

To see the reference numbers of open files use 

file 

Depending on the file you have open, MacsBug responds 

Displaying File Control Blocks 

fRef File Vol Type Fl Fork LEof Mark FlNum Parent FCB at 

0002 System Konl60 ZSYS dW rsrc 1:104104 #3336 0012cd 001286 0( 722e 

0060 Kon160 dw data t:047040 tO 000003 000000 OC 728c 

OObe Konl60 dW data t:047040 tO 000004 000000 OC 72ea 

Ollc MultiFinder Kon160 ZSYS dW rsrc t50746 1900 0012b9 001286 0(7348 

017a Polly Maese ... Kon160 snd dw rsrc 1655273 1240294 0016c2 001286 OC73a6 

Old8 -ATM 68020/ ... Kon160 ATMD dW rsrc #103090 i99778 00138a 001286 OC7404 

0236 Backgrounder Kon160 ZSYS dW rsrc t4927 t4642 001291 001286 007462 

0294 Finder Kon160 FNDR dW rsrc 1109211 t24935 0012a3 001286 0074c0 

02f2 Desktop Kon160 FNDR dtl rsrc 1154278 i90926 000010 000002 00751e 

0350 MacWrite II Kon160 APPL dW rsrc 1460785 1417027 000cc7 OOObeb 00757c 

03ae Maclir i te I I. .. Kon160 MW2T D\\ data 19728 17168 0017e3 000002 0075da 

040c Ma-::Write I I. .. Kon160 MW2Z dW rsrc 157032 t56892 OOOccB OOObeb 007638 

046a Ap?endix A- ... Kon160 MW2D dW data 1209664 #99584 001683 000e48 007696 

04c8 Chapter 11 ... Kon160 APPL dW rsrc #10714 #9632 00163e 001420 0076f4 

0526 ou:line (Co ... Kon160 MW2D dW data 1112 64 #4352 001685 000e48 007752 

0584 DA•Handler Kon160 dahd dW rsrc t6145 #5439 00129c 001286 00 17b0 

05e2 rnlog Kon160 TEXT dli data U325 11325 0017fl 000002 00 780e 

t40 FCBs, t17 in use, i23 free 



~ RS ReStart 481 

If you want to restrict name matching to your program (for example, the Chap­
ter 11 application), use the command 

rn 4c8 

MacsBug responds with 

Only symbols with a file ref num of 04C8 will be shown 

To match all symbols, use 

rn 0 

MacsBug responds with 

All symbols will be shown 

...._ RS ReStart 
Description. The RS command restarts the system. 

Syntax. Rs 

...._ About RS 

The RS command is similar to the RB command, except the RS command 
unmounts all local volumes whereas the RB command only unmounts the 
boot volume. 

The File Manager keeps a dirty bit for each volume. When the volume is 
mounted, the dirty bit is checked. If the disk is marked dirty, the File Manager 
scans the disk and updates the block allocation map. When a volume is un­
mounted, the dirty bit is cleared. 

If a volume has the dirty bit set on boot, the volume was not unmounted the 
last time it was used. This usually indicates the machine was not shut down 
properly, which could mean that the data on the disk is corrupt. Thus, the File 
Manager updates the block allocation map if the dirty bit is set. For large vol­
umes, updating the allocation map is a lengthy process. Thus, you should use 
the RS command in favor of the RB command. 



482 ~ Appendix A MacsBug Command Summary 

Note ..,.I Anytimeyouunmount a volwne when the Macintosh is inan 
unknown state (as after a crash), there is a danger of corrupting the 
disk since thefile system caches may have been overwritten. 
Unfortunate!~ there is no way to ~etepnine whether the caches have 
been damaged. Although using either the RS or the RB commartd is 
theoretica.Ily dangerous, in practice there is rarely a problem. The 
authors have. never encountered one. 

If you worry that the file system may be damaged, you can force a hard 
restart by turning the power off or pressing the restart switch . 

.,... S Step 
Description. The Step command steps through the specified number of in­
structions or proceeds until the supplied expression is true. 

Syntax. s [ n 1 expr 1 

n Is a hexadecimal integer specifying the number of instruc­
tions to step through. Using the S command with n=O clears 
conditions associated with the S command. 

expr Steps until expr is true . 

.,... About Step 

Command-S is equivalent to S without a parameter, which steps through the 
next instruction. If you use Command-S, MacsBug ignores commands on the 
command line. 

The S command is similar to the Trace (T) command except it steps into sub­
routine or A-trap calls; the T command traces over them as though they were one 
instruction. If you accidentally step into a subroutine or A-trap you can use the 
MR command to get out. (See the MR command description in this appendix for 
additional information.) Alternatively, you can use the MacsBug command 

gt @sp 

if the return address is on top of the stack. 



...,_ SB Set Byte 483 

Stepping through certain MMU instructions can cause MacsBug to hang. If 
you're doing MMU programming, be aware that MacsBug executes many in­
structions while executing an S command and expects a valid memory map. 

Example 

The command 

s dO=l 

steps until the value of DO is equal to 1 . 

.,.._ SB Set Byte 

Description. The Set Byte command assigns a byte-sized value starting at 
the specified address. 

Syntax. SB addr value [ value ] ••• 

addr Specifies the address at which to start assigning bytes. 

value Specifies either an expression or a string. The string must be 
enclosed in single quotes. Values separated by spaces are 
assigned to successive memory locations . 

.,.._ AboutSB 

Only the least significant byte is used if the value you specify is larger than a 
byte. If you specify a string for value, the characters are placed in successive 
bytes. The string length is limited only by the length of the command line. 

The SB command uses the 

MOVE.B 

instruction to set the byte so that only the byte location you specify is accessed. This 
is important for debugging write-sensitive hardware, as on some video cards. 

The SB command sets the dot address to the first location accessed. H you 
press Return after executing an SB command, MacsBug displays the memory 
just set. (See also the SL command description for more information on the per­
ils of setting memory.) 



484 ..,. Appendix A MacsBug Command Summary 

Note .... j 

Example 

In the following example, the SB command is used to set memory at the specified 
address and then the Return key is pressed to display memory at that address. 

sb 77 4bOB ' example ' 

MacsBug responds with 

Memory set starting at 00774b0B 

Pressing Return causes MacsBug to show the memory that was just set. 

00774BOB 657B 6160 706C 6500 0000 0000 0000 0000 example••• .. •n 

This command simply set the bytes associated with the string 
"example." If you want the string to be treated as a C-string, you must 
make sure the character following the string is a zero. If you want the 
string to be treated as a Pascal string, you must set the first byte to the 
length of the string. · 

~ SC6 Stack Crawl (A6) 
Description. The Stack Crawl command lists stack frame information from 
the oldest to the most current stack frame on the stack. You can use SC as an 
alias for SC6. 

Syntax. SC6 [ addr J 

addr Specifies the current frame address. If you omit this parame­
ter, the SC6 command uses A6 for addr. 

~ AboutSC6 

Most routines use the LINK and UNLK instructions to allocate a block of 
memory for local variables (see Chapter 4 for more information on how LINK 
works). Typically register A6 is used to allocate the stack frame and points to 
the end of the memory block. The routine's local variables (inside the stack 



..,. SC6 Stack Crawl (A6) 485 

frame) are referenced as negative offsets from A6. (Routine parameters are ref­
erenced as positive offsets from register A6.) 

When the LINK instruction (using register A6) allocates a block of memory 
on the stack, it must save the previous contents of A6. For most high level lan­
guages, A6 was probably used as the stack frame pointer for the calling rou­
tine; thus, MacsBug can determine the calling chain using A6links. Figure A-1 
shows a sample calling chain with A6links. 

High memory 
ETC. 

return address 
Stack 

previous A6 
grows 

Caller's 
Stack 
Frame down 

Current 

A4 

parameters 

return address 

prevlousA6 

1 
Low memory 

Local 
Stack 
Frame 

Figure A-1. SC6 links 

From the figure you can see that given the current A6 value, it is possible to 
determine the stack frames of previous routines. Furthermore, the return ad­
dress to the calling routine is immediately above the saved A6 value. In this 
way, MacsBug can determine the calling chain. 



486 ..,. Appendix A MacsBug Command Summary 

Note .,..I 

Note .,.. I 

Most Pascal and C compilers use the LINK mechanism with register 
A6 as described here. Many of the ROM routines do not use a stack 
frame, and thus the SC6 command may fail when you are inside a 
ROM routine. In such cases you can try the SC7 command. 

The SC6 command returns two possible error messages. 

• A6 does not point to a stack frame--The stack is defined as the area be­
tween the address contained in the low memory global CurStackBase and 
the address in register A7. If register A6 (or the supplied address) does 
not point to an address within this range, this message is returned. 

• Damaged stack: A7 must be even and <= CurStackBase--Since the stack 
starts at CurStackBase and grows down, register A7 must be less than the 
address in CurStackBase. Furthermore, the address in register A7 must 
be even. 

Even if you push a byte-sized value on the stack, such as 

MOVE.B 15,-(A7) 

the processor automatically realigns the stack pointer to an even boundary. 
In this case, the processor puts a word value on the stack The value five is 
in the high byte of the word and the low byte remains unchanged. 

Examining the Stack Frame with the SC Command 

This example uses the Chapter 11 sample application. Open a window and se­
lect the Bug 2 menu item. Enter MacsBug while the dialog is up and use the 

sc 

command; MacsBug responds with 



.,.. SC6 Stack Crawl (A6) 487 

Calling chain using A6 links 

A6 Frame Caller 

1. <main> 005A8F92 

2. 0060A5AA 005A8C3C EVENTL00+0096 

3. 0060A55E 005A84EC DOMOUSEC+OOSC 

4. 0060A532 005A7F66 MENUCLIC+OOlO 

5. 0060A526 005A8072 MENUPOIN+OOFA 

6. 0060A4EC 005A94EE BUG2+000C 

7. 0060A4BE 007795BA 

The first row describes the oldest stack frame (procedure); the last row 
describes the newest stack frame (procedure). The numbers 1 through 7 on 
the left were added for reference and are not part of the MacsBug display. 
This information is interpreted as follows. 

1. At address $005A8F92, an unnamed procedure called the EVENTLOO 
(EventLoop) procedure. 

2. At address $5A8C3C (an offset of $96 from the beginning of Event Loop), 
the EventLoop procedure called OOMOUSEC (DoMouseClick). 

3. DoMouseClick called MenuClick. 

4. At an offset of $10 from the start, Menu Click called the Men uP oint routine. 

5. MenuPoint called the Bug2 routine. 

6. The Bug2 routine called an unnamed routine. 

7. The unnamed.routine called the routine in which the break was encountered. 

You can look around with the 

ip 

command. An abbreviated version of MacsBug' s response is 

+0020 408064DA MOVE.L 

+0028 408064E2 CMPI.W 

+002C 408064E6 MOVEM.L 

+0030 408064EA *BCC.S 

+0032 408064EC RTS 

($0EOO,ZAO,D2.W*4),$000C(A7) 

#$ACOO,Dl 

(A7)+,Dl/D2/A2 

Dispatcher+0034 



488 ...,.. Appendix A MacsBug Command Summary 

+0034 408064EE MOVE.L 

+0036 408064FO RTS 

+0038 408064F2 MOVE.L 

(A7) +, (A7) 

$0002(A7),$0004(A7) 

The previous SC listing tells you that this routine was called from address 
$007795BA. Checking this location with the IP command produces the response 

00779586 MOVE.L 

00779588 MOVEA.L 

0077958A JSR 

0077958C MOVE.L 

0077958E JSR 

007795C2 ADDQ.L 

D3,-(A7) 

A2,AO 

(AO) 

D5,-(A7) 

*+$39D2 

#$8,A7 

Again, from the SC listing, you can see that this routine was called by the 
Bug2 routine at address $5A94EE. Using the IP command on this address pro­
duces the response 

8UG2 

+0000 005A94E2 LINK A6,#$FFEO 

+0004 005A94E6 PEA -$0264(A5) 

+0008 005A94EA MOVE.W #$0001,-(A7) 

+OOOC 005A94EE JSR PUTUPMES 

+0010 005A94F2 ADDQ.L #$6,A7 

+0012 005A94F4 TST.W DO 

+0014 005A94F6 8EQ 8UG2+010A ; 005A95EC 

This is as far as we're going to trace backward through the calling chain. It's 
easy to continue this process and follow the whole calling chain. Of course, 
only routines that create a stack frame appear in the calling chain. For applica­
tions that use A6links for local variables, tracing the calling chain is easy. If you 
break in ROM, as you did here, you may need to trace back a few routines be­
fore you get back to code inside the application. 

A dcmd written by scott douglass performs a similar operation. The dcmd 
is called sse for scott's stack crawl. sse displays the calling chain in the oppo­
site order: The most recent routines appear at the top of the listing rather than 
at the end. Typing 

sse 



., SC6 Stack Crawl (A6) 489 

instead of SC in the previous example produces the following response 

Displaying stack frame chain 

408064ea Dispatcher+0030 

0060a478 0060 a4b6 0000 0000 0060 b3f8 0000 0000 · '· · · · · · · '· · · · · · 

007795ba <no name> 

0060a4c6 0001 0060 bl94 0000 a077 3892 2000 0077 ···'····twa ···w 

005a94ee BUG2+000C 

0060a4f4 0002 0004 OOlb 0000 0000 805a al20 0002 ···········Z· ·· 

005a8072 MENUPOIN+OOFA 

0060a52e 0004 0004 0060 a55e 005a 84f0 0000 009d ····· '·A·Z·· ···· 

005a7f66 MENUCLIC+OOlO 

0060a53a 0000 009d 0060 b3f8 0000 0000 0000 0006 ····· '······ ···· 

005a84ec DOMOUSEC+OOSC 

0060a566 0060 a59a 005a 9a80 00d7 Ole9 00e6 Olf8 · '···Z·········· 

005a8c3c EVENTL00+0096 

0060a5b2 OOSa 76d4 0001 0060 aSbc 0060 a5c4 0000 ·Zv· · · · '· · · '··· · 

005a8f92 <no name> 

00000008 <bad frame pointer> 

This is similar to the SC command with minor, but often critical, exceptions. 
First, the address of the current procedure is given. This line does not appear 
at all in the SC listing. Second, the top of the stack before each procedure call 
is shown. Since most routines pass parameters on the stack, you can determine 
what the parameters to each routine were. For example, when the Bug2 rou­
tine was called (fromMenuPoint+$FA at address $5A8072), the top of the stack 
contained the values 

0060a4f4 0002 0004 OOlb 0000 0000 805a al20 0002 ··· ········Z· · 

If you examine the source for the sample applications (this is from the Chapter 
11 sample application), you find that procedures attached to menu items are 
passed three word-sized parameters: the window number, the menu item num­
ber, and a menu item reference number. Since the sample programs use C calling 
conventions, the top item on the stack is the window number (2), the menu item 
is next (4), and the third word value is the menu reference number ($1B). 



490 .,.. Appendix A MacsBug Command Summary 

The source code for the SSC dcmd comes on the disk included with this 
book. 

..................................... ! ... 

...,. SC7 Stack Crawl (A7) 
Description. The SC7 command displays a calling chain by listing all possi­
ble return addresses and the stack location where they are stored. 

Syntax. sc7 

..... About SC7 

If information on the stack is set up using stack frames, the SC6 command 
gives you much more reliable information about the calling chain than the SC7 
command. If information is not set up using stack frames, use the SC7 com­
mand to display a possible calling chain. 

The SC7 command checks each stack value to determine whether or not it 
is a possible return address. A return address must be even and a valid RAM 
or ROM address, and it must point immediately after aJSR, BSR, or A-trap in­
struction. Not all values displayed by the SC7 command are necessarily valid, 
and you might want to do some additional checking to make sure that the loca­
tions listed by the SC7 command do indeed contain return addresses. 

SC7 can return an invalid value if a procedure allocates space for its local 
variables but doesn't initialize all of them. If an old return address is stored in 
the space allocated for one of the local variables, the SC7 command will report 
it to you as a return address, even though it is just leftover information from 
a procedure that was called long ago. 

When a JSR instruction executes, it saves the address of the following in­
s truction on the stack before jumping to the new location. In the following ex­
ample, before jumping to the DOCLICK procedure, the JSR instruction saves 
the address of the next instruction, BRA DOMAINEV+OOAO, on the stack. 

+0036 218D26 PEA 

+003A 218D2A JSR 

+003E 218D2E BRA 

-$0020 (A6 ) 

DOC LICK 

DOMAINEV+OOAO 

00218B3A 

00218090 

486E FFEO 

4EBA FEOE 

6000 0060 

When the DOCLICK routine returns with an RTS instruction, it returns to the 
saved address; in this case, it returns to the instruction at address $218D2E. 



...,. SC7 Stack Crawl (A7) 491 

The SC7 Display 

The SC7 command displays a calling chain in the same order as the SC6 com­
mand: from the oldest to the newest procedure called. For example, typing 

SC7 

might produce the response 

Return addresses on the stack 

Stack Addr Frame Addr 

0027BB58 

0027BB50 

0027BB30 

0027BBOE 

0027BAFA 

0027BAC8 

0027BAB4 

0027BABO 

0027BA9C 

0027BA90 

0027BA8C 

0027BA78 

0027BB54 

0027BB2C 

0027BBOA 

0027BAC4 

0027BA98 

Caller 

00218DC6 

002182C2 

00218706 

00218D2A 

003B441E 

00218B72 

003B51CA 

003B51C2 

00218AB6 

008119DA 

00810DA4 

003B1F40 

CONVERSI+0016 

DOINITR0+0032 

DOSETUPM+0054 

DOMAINEV+003A 

DOCLICK+0038 

DOMENUDI+002C 

NewMenu+OlEC 

_Disableitern+0014 

The first column contains the address on the stack where the return address 
(or what the SC7 command considers to be a likely candidate) is stored. For the 
first line of the previous display, the return address is stored at location 
$27BB58 on the stack. 

The second column contains the procedure's stack frame location (if it has 
one). The stack frame address is the value of A6 when the PC is within that pro­
cedure. With respect to the preceding listing, the value $27BBOA turns out to 
be the value of A6 when the OOCLICK procedure is current. 

The last column contains the address of a JSR or BSR instruction and, if that 
instruction is part of a named procedure or known A-trap, the name of the pro­
cedure or A-trap and the offset of the instruction within the routine. 

If the SC7 command lists a frame address alongside the address of a return 
value, it is nearly certain that the address contains a genuine return value. You 
need only suspect the ones for which no frame address is listed as being invalid 
return addresses. 



492 ...,. Appendix A MacsBug Command Summary 

There is only one error message the SC7 command returns. This is the stan­
dard sanity check on the value of A7. The SC7 command assumes that register 
A7 is even and points to the top of the stack, and that it is smaller than or equal 
to @CurStackBase. If this is not the case, MacsBug displays the message, 
"Damaged stack: A7 must be even and <= CurStackBase." 

...., SHOW 
Description. The SHOW command controls the memory display in the up­
per left corner of the MacsBug screen. By default the SHOW command dis­
plays the top of the stack. 

Syntax. SHOW [ addr 1 • addr 1 
] [ L 1 w 1 A 1 LA ] 

addr Specifies the address from which memory is shown. If you 
specify 1 addr 1 

, the specified address is evaluated each time 
the display is updated. The data at the evaluated address is 
also updated. 

If you specify addr without quotes, the specified address is 
evaluated when you execute the Show command, and that 
address is used until you changetheShowoptions by execut­
ing another Show command. 

L Specifies that memory be shown in long-word format. 

W Specifies that memory be shown in word format. 

A Specifies that memory be shown in ASCIT format. 

LA Specifies that memory be shown in combined long-word and 
ASCIT format. 

..... AboutSHOW 

Anytime you are in MacsBug, the values shown by the SHOW command are 
current. Thus, if the SHOW command is displaying the stack, the values 
shown are the same as if you looked at the memory with the DM command. 

Entering SHOW without parameters cycles between the four display formats. 
To restore the default stack display, enter 

show 1 sp 1 1 



..... SL Set Long 493 

The SHOW command is a very useful command though it is little known and 
undervalued. Essentially it puts another area of the MacsBug display at your 
disposal to display whatever value or values you need to keep track of as you're 
debugging or testing code. Chapter 17 discusses uses of the SHOW command. 

Example 

The following command shows routine parameters for routines using LINK 
instructions to set up the stack frame. 

show 'a6 + 8' 

This forces the SHOW command to evaluate the address A6+8 every time you 
enter MacsBug. A6 points to the end of the current stack frame (local variables 
are referenced via a negative offset from register A6). Eight is added to skip the 
previous contents of A6, which are stored at A6, and the return address, which 
is stored at A6+4 (see Figure A-1 in the SC6 command description). Thus, pa­
rameters passed to the current routine begin at A6+8 . 

....- SL Set Long 
Description. The Set Long command assigns 32-bit values starting at the 
specified address. 

Syntax. SL addr value [ value 1 ••• 

addr Specifies the address where the SL command starts assigning 
the specified values. 

value Specifies either an expression or a string. Strings must be en­
closed in single quotes . 

..... AboutSL 

If you specify an expression for value, it is evaluated to a 32-bit value. If you 
specify a string for value, the characters are placed in successive bytes. The 
string length is limited only by the length of the command line. If you want to 
enter a P-string, you must enter the length byte manually using the SB com­
mand; if you want a C-string, make sure the string concludes with a 0 byte. 

The SL command sets the dot address to the address of the first long-word 
set. If you press Return after setting memory with the SL command, MacsBug 
displays the memory just set. 



494 .,.. Appendix A MacsBug Command Summary 

Note ~ I 
You set memory at your own peril. If you realize that you have 
specified the wrong address after executing a command that sets 
memory, it might be safest to use the RS or RB command and start over. 
The safest way to set memory is to use this simple three-step process. 

1. Display the memory you want to change with the OM command. 

elm 7a3520 

2. Check to make sure this is the correct address and then use the SL 
command with the dot address as the address parameter. 

sl . fff f0020 OOOflOOO 

3. Make sure everything went as plarined by pressing Return to display 
the memory you just set. 

First Example 

Suppose you want to set a bus error value at location 0. This is useful for locat­
ing areas in your program that reference a nil handle. Although the three-step 
process outlined previously is overkill for this job, it is used anyway. In real live 
debugging with 32-bit addresses, it is important to make sure you set memory 
correctly. Nothing is more frustrating than tracking a bug and then finding it 
was a bug you created by improperly setting memory an hour earlier! 

Step one, display the memory you are about to change: 

elmO 

MacsBug responds with 

Displaying memory from 0 

00000000 0081 0000 4080 2Al4 007E A70C 0078 SEAE ·· · · @ · * ·· - ··· x~ · 

Step two, set the memory with 

sl . 50ffc003 

MacsBug responds with 

Memory set starting at 00000000 



...,. SM SetMemory 495 

Step three, check your work by pressing the Return key. MacsBug responds with 

00000000 SOFF C003 4080 2A14 007E A70C 0078 SEAE P···@·*··-···xA· 

Another Example 

The SL command treats each value as a 32-bit value. Spaces separate values. Thus, 

sl 002b04f8 1 222 3333 

sets 12 consecutive bytes ($C for purists) to the following. 

Memory set starting at 002B04F8 

002B04F8 0000 0001 0000 0222 0000 3333 6065 6D6F ·······"··33merno 

...,. SM Set Memory 
Description. The Set Memory command assigns values to memory, starting 
at the specified address. 

Syntax. SM addr value [ value ] ... 

addr Specifies the address where the SM command starts assign­
ing the specified value to bytes. 

value Specifies either an expression or a string. Strings must be en­
dosed in single quotes . 

..... AboutSM 

If you specify an expression for value, the size of the assignment is determined 
by the size of value. You can set specific assignment sizes by using the SB, SW, 
or SL commands. 



496 ..,.. Appendix A MacsBug Command Summary 

Note ..,. I 
When setting memory you should know precisely what you are doing. 
It's really not difficult, and Chapter 17 shows many examples of 
setting memory. However, the amount of memory you affect is not 
stated explicitly. The commands 

sm 0 2000 

and 

sm 0 20000 

affect 2 bytes and 4 bytes of memory respectively, while the commands 

SW 0 200(} 

and 

sw 0 20000 

both affect only 2 bytes. We strongly recommend you use only the SB, 
SW, and SL commands for setting memory. There is really no reason 
for using the SM command, thus no examples are provided. 

~ SO Step Over 
Description. The Step Over command steps through the specified number 
of instructions or until the specified expression is true. 

Syntax. so 1 T [ n I e xpr I 

Either SO or T can be entered to Step Over or Trace. 

n 

expr 

Is a hexadecimal integer specifying the number of instruc­
tions to step through. 

Specifies that the processor step until the condition specified 
by expr is met. The condition is cleared by using the SO com­
mand with n=O, as in SO 0. 



...,. SO Step Over 497 

..... AboutSO 

H you do not specify any parameters for the SO command, it steps through the next 
instruction. The SO command is similar to the Step command, except SO treats 
subroutines and traps as a single instruction rather than stepping into them. 

One of the most common uses for SO is walking through code, one instruc­
tion at a time. In this case it is easier to use the shortcut Command-T. When you 
enter Command-T, commands in the command line are ignored. You can also 
use T instead of SO. In fact, the SO command is often referred to as Trace. 

When stepping over a Toolbox trap with the auto-pop bit set, MacsBug cor­
rectly returns to the address on the top of the stack at the time of the trap call 
(instead of to the address immediately after the trap). 

If you step over a LoadSeg trap, MacsBug will stop at the first instruction 
of the loaded segment. 

Stepping through certain MMU instructions can cause MacsBug to hang. 
If you're doing MMU programming, be aware that MacsBug executes many 
instructions while executing an S or SO command and expects a valid 
memory map. 

Step Over and A-trap Actions 

The SO (or Trace) command disables all other MacsBug A-trap actions when 
used to trace over an A-trap. Thus, if you enter the command 

atb 

which causes MacsBug to break on all A-trap calls, and then 

t 

to step over an A-trap, MacsBug will not break on traps called by the trap that 
you traced over. If you want MacsBug to break, use the command 

gt pc+2 

rather than SO or T to step across the trap. 

Example 

The following command steps through five instructions. 

so 5 

MacsBug responds with a version of the following display. 



498 ...,. Appendix A MacsBug Command Summary 

Step (over) 

No procedure name 

00774BF6 MOVEQ #$6E,DO 'n' 706E 

00774BF8 ADDA.L DO,AO DlCO 

00774BFA MOVEA.L AO,Al 2248 

00774BFC CMPA.L Al,A2 BSC9 

00774BFE BNE.S *+$0006 00774C04 6604 

~ SS Step Spy 
Description. The Step Spy command calculates a checksum for a specified 
memory range before executing every instruction. If the checksum value 
changes, MacsBug is invoked. 

Syntax. ss addrl [ addr2 ] 

addrl Specifies that MacsBug should calculate a checksum for the 
long word at addrl. If you specify addr2, MacsBug calcu­
lates a checksum for the range of memory defined by addrl 
and addr2. 

~ AboutSS 

MacsBug uses checksumming to determine whether the contents of memory 
have changed. Checksums are described further under the ATSS and CS com­
mands. Three MacsBug commands use checksums to determine if memory 
changes: ATSS, CS, and SS. 

The CS command calculates a checksum each time CS is entered. ATSS cal­
culates a checksum before every A-trap call. The SS command calculates a 
checksum before every processor instruction. 

The SS command is very slow. Since the ATSS command calculates a check­
sum only before A-traps, it is considerably faster. You can use the ATSS com­
mand to zero in on a range of instructions containing the instruction that is af­
fecting the value that concerns you. When the ATSS command invokes 
MacsBug, you know that the A-trap that is about to execute is not responsible 
for the change. You also know that the offending instruction in the previous 
A-trap or any instruction executed between the previous A-trap and the 



.... SS Step Spy 499 

instruction pointed to by the PC. You can now use the SS command to find 
the instruction. 

The slowness of the SS command is useful for slowing down drawing routines. 
You can watch how the standard MDEF draws menus, for example, or figure out 
why some part of your application flickers. (See Chapter 17 for more information.) 

The SS command is optimized for operating on a single long word. This is 
the default if you enter only addr1. 

When you enter the SScommand, the application begins to execute immedi­
ately. When the long word or memory range changes, MacsBug displays the 
debugging screen and clears the action set with the SS command. At this point, 
you know that the instruction that caused memory to change is the instruction 
preceding the instruction pointed to by the PC. 

If the SS command is interrupted with a breakpoint or otherwise, the SS ac­
tion is cleared. You can use Command-V to find the SS command in the history 
buffer so you don't have to type the command again. 

Example 

The following example sets SS to checksum the long word at $906 
(Window List). 

ss 9d6 

MacsBug displays the message 

Checksumming from 00000906 to 00000909 

and continues immediately. Execution is painfully slow. With MultiFinder 
running, you break relatively quickly since MultiFinder makes WindowList 
current (for background applications) when it gives applications background 
processing time. 

Step Spy checksum was changed at 4080EF38 _BlockMove+0096 

Step Spy cleared 

If you just want to slow the Macintosh down so you can watch drawing oc­
cur or test your patience, you can use a command such as 

ss 0 



500 ...,. Appendix A MacsBug Command Summary 

which checks if the long-word value at location 0 changes (which it shouldn't). 
To slow the machine down even more you could checksum the ROM (which 
better not change while the machine is on!). Type 

ss rombaseA rombaseA+4000 

You can slow the machine down by different amounts depending on the 
amount of memory you checksum. 

~ SW SetWord 
Description. The Set Word command assigns 16-bit values starting at the 
specified address. 

Syntax. sw addr value [ value ] ..• 

addr Specifies the address where the SW command starts assign­
ing the specified value to words. 

value Specifies either an expression or a string. The string must be 
enclosed in single quotes. 

~ · AboutSW 

If you specify an expression for value, the low order word of its value is used. 
If you specify a string for value, MacsBug places the characters in successive 
bytes. The string length is limited only by the length of the command line. 

The SW command sets the dot address to the first byte set. If you press Re­
turn after executing SW, MacsBug displays the memory just set. 



Note ..,.I 

101 

..,. SW Set Word 501 

You set memory at your own peril. If you realize that you have 
specified the wrong address after executing a command that sets 
memo~ it might be safest to use RS or RB to start over. The safest way 
to set memory is to use this simple three-step process. 

1. Display the memory you want to change with the DM command. 

dm 1a3520 

2. Check to make sure this is the correct address and then use the SW 
command with the dot address as the address parameter. 

S W . 8 020 20 

3. Make sure everything went as planned by pressing Return to display 
the memory you just set. 

Using the SW Command 

Suppose you want to annoy one of your coworkers who doesn' t understand 
the Macintosh as well as you do. One fun (and harmless) way to do this is to 
increase the value of the low memory global MenuFlash. This word-sized pa­
rameter determines the number of times a menu item flashes after it is selected. 
Setting this value to $50 will annoy someone too much; they will simply restart 
at the earliest opportunity. A value of about twelve is enough to irritate, but 
probably won't force immediate action, just confused looks of disbelief. 

You want to be sure not to damage any work in progress on the machine; 
use the three-step process outlined previously to do the job right. Step one, dis­
play the memory you are abou t to change: 

dm MenuFlash 

Most machines are set to a menu flash value of three. On my machine MacsBug 
responds with 

Displaying memory from OA24 

OOOOOA24 0003 0000 0000 000 0 0000 0000 0000 0000 ·· ··· ······ · · ·· · 

Set the memory so that menus flash twelve times. 



502 ~ Appendix A MacsBug Command Summary 

SW . C 

MacsBug responds with 

Memory set starting at 00000A24 

Finally, check your work by pressing the Return key. MacsBug responds with 

OOOOOA24 OOOC 0000 0000 0000 0000 0000 0000 0000 ·· ··· · · ········· 

Rebooting automatically fixes the problem, of course. 

Another Example 

The SW command treats each value as 16 bits. Spaces separate values. Thus, 

sw 002b04f8 1 222 67fff 

sets 6 consecutive bytes to the following. 

Memory set starting at 002B04F8 

002B04F8 0001 0222 7FFF 2A14 007E A70C 0078 SEAE · · ·"··*· · ~· · ·xA· 

._... SWAP 
Description. The SWAP command controls the frequency of display swap­
ping between MacsBug and the application. How the swapping takes place de­
pends on whether the MacsBug display is on the same screen as the menu bar. 

Syntax. SWAP 

..... About SWAP 

If your MacsBug display is on the same screen as your menu bar, the SWAP 
command toggles between the following two modes: 

• When the MacsBug screen is displayed, at any time step or A-trap trace 
information is added to the MacsBug display. 

• During the normal mode of operation, when MacsBug appears only 
when called upon. 



Note .,.. 

.... SWAP 503 

If you have multiple screens, you should use one screen for your main 
screen (the menu bar screen) and another for the MacsBug screen. You can 
select the menu bar screen and the MacsBug screen by using the Monitors 
CDEV (in the Control Panel on the Apple menu). To select a different screen 
for the MacsBug display, press the Option key and drag the Macintosh icon to 
the desired screen. Configuring MacsBug is discussed in Chapter 2. 

If you are using one screen for your application's display and a different 
screen for the MacsBug display, the SWAP command toggles between the fol­
lowing two modes: 

• The MacsBug display is always visible. 

• The normal mode of operation; MacsBug appears only when called upon. 

When MacsBug remains visible on one screen, that device is removed 
from the device list and is no longer accessible to QuickDraw (or to 
well-behaved applications). If you dragged a window to that screen 
before using the SWAP command, it is inaccessible until you enter the 
SWAP command again. 

Example 

If you use a single screen, the SWAP command displays the following messages: 

Di spl ay will only be s wa pped at a break 

Disp lay wi l l be s wapped a fter each t race or step 

If you use two screens, the SWAP command displays the following messages: 

MacsBug wi ll r emai n vis ible always 

MacsBug wil l only be s wapped at a break 

A typical use of SWAP is in conjunction with the ATT command. For example, 
entering 

swap ; atta ; g 



504 ~ Appendix A MacsBug Command Summary 

causes MacsBug to display every trap called. If you have two screens, it's inter­
esting to watch all the trap calls scroll by. To stop the display, enter 

atc;swap;g 

~ SX Symbol eXchange 
Description. The Symbol eXchange command toggles between displaying 
and not displaying symbol names in place of addresses. 

Syntax. sx [ ON 1 OFF J 

If you omit the parameter, the SX command toggles between the two modes. 
The default setting is ON. 

~ AboutSX 

By default MacsBug displays addresses of disassembled instructions as offsets 
from the beginning of the procedure to which they belong. To do this, MacsBug 
must search the heap for symbols. Since this process can be slow, MacsBug pro­
vides a way to disable it. Disabling it, of course, can slow you down, since you 
must then specify all addresses as absolute addresses. Using the SX command 
generally makes sense only on 68000-based Macintoshes. 

Example 

In the following example, them command disassembles the DOCLICK proce­
dure. Then the SX command is used to turn symbols off, and the same code is 
disassembled once again. (Only part of the procedure is shown due to space 
considerations.) 

ir doclick 

MacsBug responds with 

Disassembling from doclick 

DOC LICK 

+0000 218B3A LINK A6, #$FFCE 

+0004 218B3E r-10VEM.LD6/D7,-(A7) 

+0008 218842 MOVEA.L $0008 (A6) ,AO 

I 4E56 FFCE 

I 48E7 0300 

I 206E 0008 



.,.. TO Total Display 505 

+OOOC 218B46 LEA -$0020(A6),Al 43EE FFEO 

+0010 218B4A MOVE.L (AO) +, (Al) + 2208 

+0012 218B4C MOVE.L (AO) +, (Al) + 2208 

+0014 218B4E MOVE.L (AO)+, (A1)+ 2208 

+0016 218B50 MOVE.L (AO) +, (A1) + 2208 

+0018 218B52 SUBQ.W i$2,A7 554F 

+001A 218B54 MOVE.L -$0016(A6),-(A7) 2F2E FFEA 

+OOlE 218B58 PEA -$0026 (A6) 486E FFDA 

If you then enter 

sx 

and use the IR command, MacsBug displays 

Disassembling from 218b3a 

No procedure name 

218B3A LINK A6,#$FFCE 4E56 FFCE 

218B3E MOVEM.L 06/07,- (A7) 48E7 0300 

218B42 MOVEA.L $0008 (A6) ,AO 206E 0008 

218B46 LEA -$0020(A6),A1 43EE FFEO 

218B4A MOVE.L (AO) +, (Al) + 2208 

218B4C MOVE.L (AO) +, (Al) + 2208 

218B4E MOVE.L (AO)+, (Al)+ 2208 

218B50 MOVE.L (AO) +, (Al) + 2208 

218B52 SUBQ.W #$2,A7 554F 

218B54 MOVE.L -$0016(A6),-(A7) 2F2E FFEA 

218B58 PEA -$0026 (A6) 486E FFDA 

.,.._ TD Total Display 
Description. The TD command displays all CPU registers in the output 
region of the MacsBug display. 

Syntax. To 



506 ~ Appendix A MacsBug Command Summary 

..... AboutTD 

Since the registers displayed in the status region of the MacsBug screen are 
continuously updated, you can use the TD command to record values between 
commands or to log register values to a file. You can also use the TD command 
to display the values of special registers in the 68020 and 68030 that are not 
shown in the status region of the MacsBug screen. 

Use the TM command to display the contents of the 68030 MMU registers; 
use the TF command to display the contents of the 68881 registers. 

Consult the appropriate Motorola manual for additional information about 
the 68020 and 68030 registers. 

Example 

Using the 

td 

command on a Mac Ilx class machine produces a response such as 

68030 Registers 

DO = 00000000 AD = 007701CE USP = 63182780 

01 = 00000001 A1 = 0000014A MSP = A1EE7BSA 

02 = 00780030 A2 = 408079E4 ISP = 0077019E 

03 = 00780007 A3 = 00000000 VBR = 00000000 

04 = 00770312 A4 = 006DCF54 CACR = 00002101 

DS = 00000000 AS = 00785A8C CAAR = 99EAA7ED 

06 = OOOBEEC8 A6 = 007701DE PC = 40807A64 

07 = 00000000 A7 = 0077019E SR = SmxNZvC 

...., TF Total Floating-Point Register Display 
Description. The TF command displays all 68881 registers. 

Syntax. TF 

SFC = 7 

DFC = 7 

Int = 0 



...,. TF Total Floating-Point Register Display 507 

~ AboutTF 

The 68881 registers are not shown in the status region of the MacsBug screen. 
To display the 68000,68020, or 68030 registers, use the TD command. To dis­
play the 68030 MMU registers, use the TM command. 

Consult the appropriate Motorola manual for additional information about 
the 68881 registers. 

Example 

Using the 

tf 

command on a Mac IIx class machine produces a response such as 

68881/68882 FPU Registers 

FPO = 400D FFFFFFFE 00FA9150 

FPl = 3FFF 80000000 00000000 

FP2 = 7FFF FFFFFFFF FFFFFFFF 

FP3 = 7FFF FFFFFFFF FFFFFFFF 

FP4 = 7FFF FFFFFFFF FFFFFFFF 

FP5 = 7FFF FFFFFFFF FFFFFFFF 

FP6 = 7FFF FFFFFFFF FFFFFFFF 

FP7 = 7FFF FFFFFFFF FFFFFFFF 

EE MC 

3.27679999847703808e+4 

l.OOOOOOOOOOOOOOOOOe+O 

NAN(255) 

NAN (255) 

NAN(255) 

NAN (255) 

NAN (255) 

NAN(255) 

CC QT ES AE 

FPCR = 00 00 FPSR = 00 00 02 08 FPIAR = 00000000 

~ TM Total MMU Display 
Description. The TM command displays the MMU registers common to the 
68551 and 68030 processors. 

Syntax. TM 



508 ...,. Appendix A MacsBug Command Summary 

...... AboutTM 

The MMU registers are not shown in the status region of the MacsBug display. 
You can use the TM command to determine whether a Macintosh II has a 
PMMU chip installed without opening the cover. 

To display the 68000, 68020, or 68030 registers, use the TD command. To dis­
play the 68881 registers, use the TF command. 

Example 

Using the 

tm 

command on a Mac Ilx class machine produces a response such as 

68030 MMU Registers 

CRP = 7FFF000240800050 

SRP = 00441058FlB7FF77 

...... TMP TeMPlates 

TC = 80F84500 

PSR = EE47 

Description. The TMP command lists all templates that match or partially 
match the specified name. 

Syntax. TMP [ name l 

name Is a string of characters. The TMP command displays the 
names of all templates that begin with name. If you omit name, 
the TMP command lists all template names . 

...... AboutTMP 

Templates allow you to format memory displays. They are kept in the Debug­
ger Prefs file in the 1 mxwt 1 resource. The 1 rnxwt 1 resource 100 contains tem­
plates for data structures created and maintained by the Toolbox or operating 
system. You can create your own templates to display data structures created 
by your application. The Debugger Prefs file that comes with the accompany­
ing disk contains a number of templates. 

Chapter 19 contains a detailed discussion on creating templates both in 
ResEdit and with the MPW Rez tool. 



~ WH WHere 509 

Example 

To display all templates that begin with the letter G, enter the command 

tmp g 

With your Debugger Prefs file installed, MacsBug responds with 

Template names 

GrafPort 

GrafGlobals 

GrafVars 

~ T Trace 
Description. The Trace command is identical to the Step Over command de­
scribed elsewhere in this appendix, except a T is used in place of SO. 

~ WH WHere 
Description. The Where command returns information about the location 
of the specified trap, symbol, or address. 

Syntax. WH [ addr 1 trap 1 

addr Specifies that you want information about the location of the 
instruction at addr. 

trap Specifies the trap name or number whose location you want. 

~ AboutWH 

If you do not specify a parameter, the WH command uses the program counter 
for addr. If you specify an address in ROM, the WH command looks for the pre­
ceding trap and displays the address of the instruction as an offset from the 
start of the trap. The WH command sets the dot address to the address you 
specify. If you specify a trap, the dot address is set to the address at the begin­
ning of the trap. 



51 0 ..,.. Appendix A MacsBug Command Summary 

Note ..,.., 
Since MacsBug does not know the address or name of all ROM 
routines, the WH command often returns the wrong trap name for 
ROM addresses. You may have noticed that often when the machine 
crashes the PC is in a procedure named _StripAddress.lt would seem 
that Apple should be able to write a more robust version of this call! 
What's actually happening is that the crash occurred in the Memory 
Manager, probably due to a corrupted heap. The Memory Manager 
routines are in the same area in the ROM as _StripAddress (you can 
verify this by looking in the RomMaps supplied with MPW), so 
MacsBug thinks most of the Memory Manager calls belong to the 
_StripAddress routine. 

To completely satisfy yourself of this, you can examine the 
_StripAddress routine with the command 

il stripaddress 

Depending on whether you are running a 32-bit clean system, 
MacsBug will return a display such as 

Disassembling from stripaddress 

_StripAddress 

+0000 4080E3A8 AND.L 

+0004 4080E3AC RTS 

MaskBC , DO COBS 031A 

4E75 

(the remainder of the listing belongs to ot her routines) 

If you specify an address in RAM, the Where command tells you if the in­
struction is in a heap block and, if so, which heap block. The Where command 
also tells you the name of the routine containing the instruction at the specified 
address and the offset of the instruction from the start of the routine. 

If you specify a trap name or number, the Where command tells you the cor­
responding number or name. The Where command also tells you whether the 
code for the trap is in ROM or in RAM.lf the code is in RAM, the trap is patched. 

Some ROM routines (QuickDraw routines in particular) call other system rou­
tines without going through the trap dispatcher. These instructions resemble 

007AC6D6 JSR ([ $1A08) ) I 4EBO 81El l AOS 



..., WH WHere 511 

There are several side effects to calling a routine without the trap dis­
patcher. First, MacsBug does not break on the trap if an A-trap action is set. 
Second, if it is a system call, certain registers that are normally saved by the 
trap dispatcher may be destroyed across the call. The final side effect (which 
is the reason QuickDraw calls traps this way) is that the extra overhead 
incurred by the trap dispatcher is avoided; therefore, the call executes slightly 
faster (the Quick in QuickDraw). 

You can determine which routine is being called with the WH command. To 
see which routine is being called, you can use the following WH command. 

wh la08-e00/4+a800 

MacsBug responds with 

Trap number AB02 (_BitsToPix) starts at 007A6BFO in RAM 

It is 007A6BFO bytes into this ~eap block: 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• 00000000 00000000+00 N 

or 

Address OOOOAB02 is in the System heap 

It is OOOOlBFA bytes into this heap block: 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• 00008F08 000021CC+OO N 

The parameter to the aforementioned WH command calculates the trap 
number from the address of its entry in the trap table. On Mac II class machines 
the trap table for Toolbox routines begins at address $00000EOO, and each entry 
is4byteslong. Thisgivesthetrapnumberrelativeto$A800, which is the begin­
ning of the Toolbox traps. Thus, the command is simply performing the opera­
tion 

wh ab02 

For system routines (trap numbers less than $A800) the trap table begins at lo­
cation $00000400. Thus, to get the name and the address of a system trap from 
an instruction such as 

007A0200 JSR ( [$0488]) I 4EBO 81El 0488 



512 .,.. Appendix A MacsBug Command Summary 

you could use the line 

wh 488-400/4+a000 

In this case MacsBug responds with 

Trap number A022 (_NewHandle) starts at 00785EEE in RAM 

It is 00785EEE bytes into this heap block: 

Start Length Tag Mstr Ptr Lock Prg Type ID 

• 00000000 FFFFFFFF+Ol N 

or 

Address 0000A022 is in the System heap 

It is OOOOlllA bytes into this heap block: 

Start Length Tag Mstr Ptr Lock Prg Type ID 

• 00008F08 000021CC+OO N 

File Name 

File Name 

Of course your programs should never call a trap directly like this. If you 
need to speed up a loop and want to avoid the trap overhead, use GetTrapAd­
dress and then JSR to that routine. Of course if you do this for a system routine 
(trap number below $A800), you must save registers AO, Al, Dl, and 02 if you 
rely on their values not changing across the call. 

Examples 

If you type 

wh 218b3a 

and address $218B3A is inside your application program, MacsBug might 
respond with 

Address 00218B3A is in the Application heap at DOCLICK 

It is 000008AE bytes into this heap block: 

Start Length Tag Mstr Ptr Lock Prg Type ID File Name 

• 0021828C OOOOOB50+04 R 00218268 L p CODE 0002 0526 

You can supply a trap name to the WH command, as in 

wh menuselect 



..... WH WHere 513 

in which case MacsBug responds with 

Trap number A93D (_MenuSelect) starts at 003C02A2 in RAM 

It is 0019F732 bytes into this heap block: 

Start Length Tag Mstr Ptr Lock Prg Type ID 

00220B70 00054FF0+00 F 

File Name 

For traps that have not been patched, MacsBug has a brief response. For exam­
ple, typing 

wh getmouse 

causes MacsBug to display 

Trap number A972 (_GetMouse) starts at 4080F12E in ROM 



Appendix B 

Macro, Template, and 
Dcmd Summary 

The Debugger Prefs file included on the disk that came with this book contains 
a number of useful macros, templates, and dcmds. Many of these were used 
in the text, and many others are listed only here. This appendix contains a com­
plete listing of all macros, templates, and dcmds in the Debugger Prefs file . 

.,... Macros 
Macros have a variety of uses; the most common is to give names to low 
memory global variables. Thus this section is broken down into two subsec­
tions: Low Memory Globals and Other Macros . 

.,... Low Memory Globals 

Note ..,. I 

These low memory globals are useful for debugging, not programming. In 
general, applications should not directly change low memory variables. 

The globals are listed in alphabetical order. They are also in the Prefs.r file 
on the disk that came with this book. You can use that file to format these 
low-mems any way you like. 

System globals are listed in the Variables section at the end of each 
chapter in Inside Macintosh. Some·o£ these low memo.ry globals apply 
only to the Macintosh Plus or newer. · 

515 



516 ..,... Appendix B Macro, Template, and Dcmd Summary 

Name Address Comment 

ABusDCE 02DC Pointer to Apple Talk DCE 

ABusVars 02D8 Pointer to Apple Talk local variables 

A Count OA9A Last Alert stage [word] 

ADBBase OCF8 Pointer to Front Desk Bus variables 

AGBHandle ODIC Handle to Apple Talk global block 
AlarmState 021F Bit 7=Apple logo on/ off, Bit 6=beeped, Bit 

0 = enable [byte] 

AN umber OA98 ID if last Alert displayed [word] 

ApFontiD 0984 Application font ID-reset from PRAM [word] 

App2Packs OBC8 Handles to Pack 8 through 15 [8 handles] 

ApplLimit 0130 Application limit [pointer] 

ApplScratch OA78 12-byte scratch area reserved for applications 

ApplZone 02AA Application heap zone [pointer] 

AppPacks OAB8 Handles to Pack 0 through Pack 7 [8 handles] 

AppParmHandle OAEC Handle to Finder information on launch 

ASCBase occo Pointer to Sound Chip 

AtalkHkl OB14 Apple Talk hook [pointer] 

AtalkHk2 OB18 AppleTalk hook [pointer] 

AtMenuBottom OAOC Used by the Menu Manager for scrolling menus 
AuxCtlHead OCD4 Auxiliary information for color controls [pointer] 
AuxWinHead OCDO Auxiliary information for color windows 

[pointer] 

BNMQHd OB60 Head of background notification queue 
Boot Drive 0210 Drive number of boot drive [word] 

BootMask OBOE Used during boot [word] 
BootTmp8 OB36 Temporary memory used during boot [8 bytes] 
BtDskRfn OB34 Reference number of boot disk driver [word] 
BufPtr OlOC Top of application memory [pointer] 

BuffgDate 0304 Time stamp [word] 
BuffgFBkNum 0302 Logical block number [word] 
BuffgFFlg 0300 Flags [word] 

BuffgFNum 02FC File number [long] 

BusErrVct 0008 Bus error vector 



..,. Macros 517 

Name Address Comment 

Caret Time 02F4 Caret blink ticks [long) 

Chooser Bits 0946 Bit 7=0, don't run; Bit 6=0, gray out AppleTalk 
[byte] 

ChunkyOepth 0060 Depth of the pixels 
CkdDB 0340 Used when searching a directory [word] 

CloseOrnHook OA88 Pointer to routine called when closing desk 
accessories 

Col Lines OC22 Screen vertical pixels [word) 
CoreEditVars 0954 Core edit variables [12 bytes] 

CPUFlag 012F $00=68000,$01=68010,$02=68020(oldRO~ 
inits to $00) 

CQDGlobals occc QuickDraw global extensions [long) 
CrsrAddr 0888 Address of data under cursor [long) 

CrsrBase 0898 ScrnBase for cursor [long] 

CrsrBusy 08CD Cursor locked out? [byte] 

CrsrCouple 08CF Cursor coupled to mouse? [byte] 

CrsrDevice 089C Current cursor device [long) 

CrsrNew 08CE Cursor changed? [byte) 

CrsrObscure 0802 Cursor obscure semaphore [byte] 

CrsrPin 0834 Cursor pinning rectangle [8 bytes] 

CrsrPtr 0062 Pointer to cursor save area 

CrsrRect 083C Cursor hit rectangle [8 bytes] 

CrsrRow 08AC Row bytes for current cursor screen [word] 

CrsrSave 088C Data under the cursor [64 bytes] 
CrsrScale 0803 Cursor scaled? [byte] 

CrsrState 08DO Cursor nesting level [word] 

CrsrThresh 08EC Delta threshold for mouse scaling [word] 

CrsrVis 08CC Cursor visible? [byte) 

Cur Activate OA64 Window slated for activate event [pointer] 
CurApName 0910 Name of application [STRING[31]] 

CurApRefNum 0900 RefNum of application's resFile [word] 

CurOeactive OA68 Window slated for deactivate event [pointer] 
CurOeKind OA22 Window kind of deactivated window [word] 



518 ...,_ Appendix B Macro, Template, and Dcmd Summary 

Name Address Comment 

CurDirStore 0398 Save directory across calls to Standard File [long] 

CurDragAction OA46 Implicit action procedure for DragControl 
[pointer] 

CurFMDenom 0994 Current denominator of scale factor [point] 

CurFMDevice 098E Current font device [short] 

CurFMFace 098C Current font face [byte] 

CurFMFamily 0988 Current font family [short] 

CurFMinput 0988 Current QuickDraw FMinput Record [pointer] 

CurFMNeedBits 098D Does Font Manager need bits? [byte] 

CurFMNumer 0990 Current numerator of scale factor [point] 

CurFMSize 098A Current font size [short] 

CurJTOffset 0934 Current jump table offset [word] 

Cur Map OASA Reference number of current map [word] 
CurPageOption 0936 Current page 2 configuration [word] 

Cur Pitch 0280 Current pitch value [word] 

CurrentAS 0904 Current value of AS [pointer] 

CurStackBase 0908 Current stack base [pointer] 

DABeeper OA9C Current error sound procedure [pointer] 
DAStrings OAAO Current alert string substitutions 

[4 handles to strings] 

DefltStack 0322 Default size of stack [long] 
DefVCBPtr 0352 Default volume's volume control block [pointer] 
DeskCPat OCD8 PixPatHandle to desk pixpat 
DeskHook OA6C Hook for painting the desk [pointer] 

SetOSDefKey OCDC Password for SetOSDef [long] 

DeskPattem OA3C Desk pattern [8 bytes] 
DeskPort 09E2 Pointer to desk grafPort 
Device List 08A8 List of display devices [handle] 
DiskVars 0222 Variables used by .SONY driver [62 bytes] 
DskWrll 012F Try 1-1 disk writes? [byte] 
DlgFont OAFA Current font for dialogs [word] 
DoubleTrme 02FO Double click ticks [long] 
Drag Flag OA44 Implicit parameter to drag control [word] 



..,. Macros 519 

Name Address Comment 

DragHook 09F6 User hook during dragging [pointer] 

DragPattem OA34 Pattern used to drag controls and windows 
[pattern] 

DrMstrBlk 034C Master directory block in a volume (MFS) [word] 

DrvQHdr 0308 Queue header of drives in system [1 0 bytes] 
DSAlertRect 03F8 Rectangle for disk-switch alert [8 bytes] 

OS Alert Tab 02BA System error alerts [pointer] 

DSCtrAdj ODA8 Center ad just for OS rect. [long] 

DSDrawProc 0334 Alternate SysError draw procedure [pointer] 

DSErrCode OAFO Last system error alert ID 

DskErr 0142 Disk routine result code [word] 

DskRtnAdr 0124 Used by disk driver [pointer] 

DskSwtchHook 03EA Hook for disk switch dialog [pointer] 

DskVerify 012C Used by 3.5 disk driver for read/verify [byte] 

DSWndUpdate 0150 GNE not to paintBehind DS AlertRect? [byte] 

DTQFlags 0092 Flag word for DTQueue 

DTQueue 0092 Deferred task queue header [10 bytes] 

DTskQHdr 0094 Pointer to head of queue 

DTskQTail 0098 Pointer to tail of queue 

EjectN otify 0338 Eject notify procedure [pointer] 

EndSRTPtr ODB4 Points to end of the Slot Resource Table 
(Not SRT buffer) 

ErCode 03A2 Disk driver async errors [word] 

EventQueue 014A Event queue header [10 bytes] 

EvtBufCnt 0154 Max number of events in SysEvtBuf-1 [word] 

ExpandMem 02B6 Pointer to expanded memory block 

ExtFSHook 03E6 Used by external file system [pointer] 

ExtStsDT 02BE sec ext/sts secondary dispatch table [16 bytes] 

FCBSPtr 034E Length word of the file-control-block buffer 
[pointer] 

FDevDisable OBB3 $FF to disable device-defined style extra 

FileVars 0340 File system variables [184 bytes] 

Filler3A 0214 Used by Standard File 



520 ...,. Appendix B Macro, Template, and Dcmd Summary 

Name Address Comment 

Finder 0261 Private Finder flags [byte] 

Finder Name 02EO The name of the Finder [String[ IS]] 

FLckUnlck 0348 Flag used by SetFilLock, RstFilLock [byte] 

FIEvtMask 025E Mask of allowable events to flush at 
FlushEvents [word] 

Flush Only 0346 Flag used by UnMountVol, Flush Vol [byte] 

FMDefaultSize 0987 Default size of Font Record [byte] 

FMDotsPerlnch 09B2 Dots per inch of current device [point] 

FMgrOutRec 0998 QuickDraw font output record [pointer] 

FMStyleTab 09B6 Style heuristic table supplied by device [18 bytes] 

FondiD OBC6 ID of last font definition record (FOND) [word] 

FondState 0903 Saved FOND purge state [byte] 

FontFlag OlSE Font manager loop flag [byte] 

FOutAscent 09A5 Height above baseline [byte] 

FOutBold 099E Bolding factor [byte] 

FOutDenom 09AE Denominators of scaling factors [point] 

FOutDescent 09A6 Height below baseline [byte] 

FOutError 0998 Error code [word] 

FOutExtra 09A4 Extra horizontal width [byte] 

FOutFontHandle 099A Font bits [handle] 

FOutltalic 099F Italic factor [byte] 

FOutLeading 09A8 Space between lines [byte] 

FOutNumer 09AA Numerators of scaling factors [point] 

FOutRec 0998 Font Manager output record [pointer] 

FOutShadow 09A3 Shadow factor [byte] 

FOutULOffset 09AO Underline offset [byte] 
FOutULShadow 09Al Underline "halo" [byte] 
FOutULThick 09A2 Underline thickness [byte] 

FOutUnused 09A9 Reserved [byte] 

FOutWidMax 09A7 Maximum width of character [byte] 
FPState OA4A Floating point state [6 bytes] 
FractEnable OBF4 If true enables fractional font widths [byte] 



..,. Macros 521 

Name Address Comment 

FrcSync 0349 When set, all File System calls are synched [byte] 

FSBusy 0360 Nonzero when File System is busy [word] 

FScaleDisable OA63 If true, disables font scaling [byte] 

FScaleHFact OBF6 Horizontal font scale factor [long] 

FScaleVFact OBFA Vertical font scale factor [long] 

FSFCBLen 03F6 Length of the FCBS or -1 if old File System 

FSQHdr 0360 Header of the file 1/0 queue [pointer] 

FSQHead 0362 First queued command in File System queue 
[pointer] 

FSQTail 0366 Last File System queue element [pointer] 

FSQueueHook 03E2 Hook to capture all File System calls [pointer] 

FSTemp4 03DE Used by File System [long] 

FSTemp8 0306 Used by File System [8 bytes] 

FSVarEnd 03F6 End of File System variables 

GetParam 01E4 System parameter scratch [20 bytes] 

Ghost Window OA84 Window hidden from FrontWindow [pointer] 

GotStrike 0986 Do we have the strike? (Font Manager) [byte] 

GrafBegin 0800 First QuickDraw system global 

GrafEnd 08F2 Last QuickDraw system global 

GrayRgn 09EE Rounded gray desk region [handle] 

GZMoveHnd 0330 Moving handle for GrowZone [handle] 

GZRootHnd 0328 Root handle for GrowZone [handle] 

GZRootPtr 032C Root pointer for GrowZone [pointer] 

Heap End 0114 End of heap [pointer] 

HiHeapMark OBAE Highest address used by a zone below sp [long] 

HiKeyLast 0216 Same as KbdVars 

HiliteMode 0938 Used for color highlighting 

HiliteRGB ODAO RGB of hilite color [6 bytes] 

HpChk 0316 Heap check RAM code [pointer] 

HFSFlags 0376 Byte of internal HFS flags 

HWCfgFlags OB22 Word of hardware configuration flags 

IAZNotify 033C World swaps notify procedure [pointer] 

IconBitmap OAOE Used by Plotlcon [bitmap] 



522 ~ Appendix B Macro, Template, and Dcmd Summary 

Name Address Comment 

IconTLAddr ODAC Pointer to where icons are to be put 

IntFlag 015F Reduce interrupt disable time when bit 7 = 0 
[byte] 

IntlSpec OBAO Pointer to extra international data 
IWM OlEO IWM base address [pointer] 

JAdrDisk 0252 Disk driver vector [pointer] 

JAllocCrsr 088C Vector to routine that allocates cursor [pointer] 

}Control 0242 Disk driver vector 

JCrsrObscure 081C Vector used by QuickDraw 

JCrsrTask OSEE Address of CrsrVBLTask [long] 

JDCDReset OB48 Disk driver vector 

JDiskPrime 0226 Disk driver vector 

JDiskSel OB40 Disk driver vector 

jDTinstall OD9C Pointer to deferred task install routine 
}Fetch 08F4 Fetch a byte routine for drivers [pointer] 

JFigTrkSpd 0222 Jump entry for FMFontMetrics 
}Fontinfo 08E4 Jump entry for FMFontMetrics 

JGNEFilter 029A GetNextEvent filter proc [pointer] 

JHideCursor 0800 Vector used by QuickDraw 

JlnitCrsr 0814 Vector used by QuickDraw 
JIODone OBFC IODone entry location [pointer] 

JKybdTask 021A Keyboard VBL task hook [pointer] 

JMakeSpdTbl 024E Disk driver vector 

JOpcodeProc 0894 Vector to process new picture opcodes 
JournalFlag OBDE Joumaling state [word] 
JoumalRef 08E8 Journaling driver's refnum [word] 
JRdAddr 022A Disk driver vector 
JRdData 022E Disk driver vector 
JRecal 023E Disk driver vector 

JReSeek 024A Disk driver vector 
JScrnAddr OBOC Vector used by QuickDraw 

JScrnSize 0810 Vector used by QuickDraw 
}Seek 0236 Disk driver vector 



..,... Macros 523 

Name Address Comment 

JSendCmd OB44 Disk driver vector 

JSetCCrsr 0890 Vector to routine that sets color cursor 

JSetCrsr 0818 Vector to routine that sets normal cursor 

JSetSpeed 0256 Disk driver vector 

JSetUpPoll 023A Disk driver vector 

}Shell 0212 Joumaling shell state 

JShieldCursor 0808 Vector used by QuickDraw 

JShowCursor 0804 Vector used by QuickDraw 

}Stash 08F8 Stash a byte routine for drivers [pointer] 

JSwapFont 08EO Jump entry for FMSwapFont 

JSwapMMU ODBC Vector to SwapMMU routine 

JUpdateProc 0820 Vector used by QuickDraw 

JVBLTask OD28 Vector to slot VBL task interrupt handler 

]WakeUp 0246 Disk driver vector 

JWrData 0232 Disk driver vector 

KbdLast 0218 Same as KbdVars+ 2 

KbdType 021E Keyboard model number [byte] 

KbdVars 0216 Keyboard manager variables [4 bytes] 

Key1Trans 029E Keyboard translator procedure [pointer] 

Key2Trans 02A2 Numeric keypad translator procedure [pointer] 

Key Last 0184 ASCII for last valid key code [word] 

Key Map 0174 Bitmap of keys up/down [4longs] 

KeyMVars OB04 ROM KEYM procedure state [word] 

KeypadMap 017C Bitmap for numeric pad-18 bits [long] 

Key Rep Thresh 0190 Key repeat speed [word] 

KeyRepTrme 018A Tick count when key was last repeated [long] 

KeyThresh 018E Threshold for key repeat [word] 

KeyTrme 0186 TickCount when KEYLAST was received [long] 

Last Depth OD40 Word used by Font Manager 

LastFond OBC2 Last font definition record (FOND) [handle] 

LastFore OD36 Last foreground color used [long] 

LastLGlobal 0944 Last segment loader global 

LastMode OD3E Last drawing mode [word] 



524 ...,. Appendix B Macro, Template, and Dcmd Summary 

Name Address Comment 

LastPGlobal 0954 Last Printing Manager global 

LastSPExtra OB4C Most recent value of space extra [long] 

LastTxGDevice ODC4 Copy of TheGDevice set up for fast text measure 

LaunchFlag 0902 From launch or chain? [byte] 

LGrafJump 0824 Vector used by QuickDraw 

LoaderPBlock 093A Param block for ExitToShell [10 bytes] 

LoadFiller 090C Reserved [long] 

LoadTrap 0120 Trap before launch? [byte] 

LoadVars 0900 Segment loader variables [68 bytes] 

Lo3Bytes 031A Constant $00FFFFFF [long] 

LvllDT 0192 Interrupt Ievell dispatch table [32 bytes] 

Lvl2DT 01B2 Interrupt level2 dispatch table [32 bytes] 

MacJmp 0120 MacsBug jump table 

MacPgm 0316 Reserved for MDS 2 [long] 

MAErrProc OBE8 MacApp error procedure 

MainDevice 08A4 The main screen device [long] 

MaskBC 031A Memory Manager Byte Count Mask [long] 

MaskHandle 031A Memory Manager Handle Mask [long] 

MaskPtr 031A Memory Manager Pointer Mask [long] 

MASuperTab OBEC MacApp superclass table [handle] 

Max DB 0344 File Manager private [word] 

MBarEnable OA20 If nonzero, menubar belongs to desk accessory 

MBarHeight OBAA Height of the menu bar 

MBarHook OA2C Procedure called before menu is drawn [pointer] 

MBDFHndl OB58 Handle to the current MBDF 

MBState 0172 Current mouse button state [byte] 

MBTicks 016E Tick count at last mouse button [long] 

MemErr 0220 Last memory manager error [word] 

MemTop 0108 Top of memory [pointer] 

MenuDisable OB54 Menu ID and item of selected item even 
if disabled 

MenuFlash OA24 Number of times to flash menu when selected 
[word] 



...,.. Macros 525 

Name Address Comment 

MenuHook OA30 Procedure called during tracking of the menu 

MenuList OA1C The current menu list [handle] 

Mickey Bytes OD6A Pointer to cursor stuff [long] 

MinStack 031E Minimum stack size used in InitApplZone [long] 

MinusOne OA06 Constant $FFFFFFFF [long] 

MMDefFlags 0326 Default zone flags [word] 

MmlnOK 012E Initial memory manager checks OK? [byte] 

MMU32bit OCB2 Boolean reflecting current machine MMU 
mode [byte] 

MMUFlags OCBO Cleared to zero (reserved for future use) [byte] 

MMUFluff OCB3 Fluff byte forced by reducing MMUMode to 
32-bit [byte] 

MMUTbl OCB4 Pointer to MMU Mapping table 

MMUTblSize OCB8 Size of the MMU mapping table [long] 

MMUType OCB1 Kind ofMMU present [byte] 

Monkey Lives 0100 Monkey lives if >= 0 [word] 

Mouse 0830 Processed mouse coordinate [long] 

MouseMask 08D6 V-H mask for ANDing with mouse [long] 

MouseOffset OBDA V-H offset for adding after ANDing [long] 

MrMacHook OA2C Old name for MBarHook 

MTemp 0828 Low-level interrupt mouse location [long] 

NewCrsr}Tbl 088C Location of new cursor jump vectors 

New Mount 034A Used by Mount Vol to flag new mounts [word] 

NiblTbl 025A End of disk routine vectors 

NMIFlag OC2C Flag for NMI debounce [byte] 

NxtDB 0342 Word used when searching a directory 

Old Content 09EA Where _SaveOld stores its old value 

OldStructure 09E6 Where _DrawNew stores its old value 

OneOne OA02 Constant $00010001 [long] 

Paint White 09DC Erase newly drawn windows? [word] 

Params 03A4 Used by the device manager for l/0 param 
blocks [50 bytes] 

PCDeskPat 0208 Desktop pattern, top bit only! Others are in use. 



526 ...,. Appendix B Macro, Template, and Dcmd Summary 

Name Address Comment 

PollProc 013E sec poll data procedure [pointer] 

PollRtnAddr 0128 'Other' driver locals [pointer] 

PollStack 013A sec poll data start stack location [pointer] 

PortA Use 0290 Bit 7: 1 = not in use, 0 = in use 
Port8Use 0291 Port 8 use, same format as PortA Use 

PortList OD66 List of GrafPorts 

PrintErr 0944 Last Printer Manager error code 

PrintVars 0944 Print code variables [16 bytes] 

PWM8uf1 080A PWM buffer pointer 

PWM8uf2 0312 PWM buffer 1 (or 2 if sound) [pointer] 

PWMValue 0138 Current PWM value 

QDColors 0880 Handle to default colors 

QDErr OD6E QuickDraw error code [word] 

QDExist 08F3 QuickDraw is initialized if zero [byte] 

RAM8ase 0282 RAM base address [pointer] 

Raw Mouse 082C Unjerked mouse coordinates [long] 

RegRsrc 0347 Flag used by File Manager [byte] 
ReqstVol 03EE VC8 of off-line or external volume 
Res Err OA60 Current Resource Manager error code 
ResErrProc OAF2 Procedure called when a Resource Manager 

error occurs 
Res Load OASE If true, resources will be read in [byte] 

ResReadOnly OASC Resource Manager read only flag word 
RestProc OA8C Old name for ResumeProc [pointer] 
ResumeProc OABC Current system error resume procedure [pointer] 
RGB8lack OClO The black field for color [6 bytes] 
RG8White OC16 The white field for color [6 bytes] 
RgSvArea 036A Register save area used by system [38 bytes] 
RMgrHiVars OB80 RMGR variations extend $880 through $89F 
RMgrPerm 08A4 Permission byte for OpenResFile [byte] 
RndSeed 0156 Random seed/number [long] 
ROM85 028E ROM versions: Extra high bit cleared on each 

new ROM [word] 



IJlll- Macros 527 

Name Address Comment 

ROMBase 02AE ROM base address [pointer] 

RomFontO 0980 Font record for the System font [handle] 

ROMMapHndl OB06 Handle of ROM resource map 

RomMaplnsert OB9E $FF = look in ROM resource file, 0 = don't [byte] 

Row Bits OC20 Width of screen in pixels [word] 

RSDHndl 028A Resource driver handle (-1 until initialized) 

SavedHandle OA28 Saved bits under a menu [handle] 

SavedHilite 0043 Used for state across Becks QD patches 

SaveProc OA90 Address of Save failsave procedure 

SaveSegHandle 0930 Handle to CODE resource 0 

SaveSP OA94 Save SP for restart or save [long] 

Save Update 09DA Enable window update accumulation [word] 

SaveVisRgn 09F2 Temporarily saved visRgn [handle] 

SCCASts 02CE SCC read reg 0 last ext/ sts rupt- A [byte] 

SCCBSts 02CF SCC read reg 0 last ext/sts rupt- B [byte] 

SCCRd 0108 sec base read address [pointer] 

SCCWr 01DC sec base write address [pointer] 

ScrapCount 0968 Count changed by ZeroScrap [word] 

Scrap End 0980 End of scrap vars 

Scrap Handle 0964 Memory scrap [handle] 

Scrap Info 0960 Scrap length [long] 

Scrap Name 096C Pointer to scrap name 

ScrapSize 0960 Sera p length [long] 

ScrapState 096A Scrap state [word] 

Scrap Tag 0970 Scrap file name [STRING[15]] 

ScrapVars 0960 Scrap manager variables [32 bytes] 

Scratch20 01E4 Scratch [20 bytes] 

Scratch8 09FA Scratch [8 bytes] 

ScrDmpEnb 02F8 Screen dump enabled? [byte] 

ScrDmpType 02F9 $FF dumps screen, $FE dumps front window 
[byte] 

ScreenBytes OC24 Total screen bytes [long] 

ScreenRow 0106 Row Bytes of screen [word] 



528 ...,. Appendix B Macro, Template, and Dcmd Summary 

Name Address Comment 

ScreenVars 0292 Screen driver variables (MacsBug) [8 bytes] 

ScrHRes 0104 Screen horizontal dots/ inch [word] 

Scm Base 0824 Screen Base [pointer] 

ScmVBLPtr 0010 Save for pointer to main screen VBL queue 

ScrVRes 0102 Screen vertical dots/inch [word] 

SCSIBase ocoo Base address for SCSI chip read [long] 

SCSIDMA OC04 Base address for SCSI OMA [long] 

SCSIOrvrs OB2E BitMap for loaded SCSI drivers [word] 

SCSIFlag OB22 Configuration flag for SCSI [word] 

SCSIGlobals ococ Pointer to SCSI manager locals 

SCSIHsk OC08 Base address for SCSI handshake [pointer] 

SCSIPoll OC2F Poll for device zero only once [byte] 

SdEnable 0261 Sound enabled? (byte) 

SOMBusErr ODCO Pointer to the SOM bus error handler 

SOMJmpTblPtr ODB8 Pointer to the SDM jump table 

SdVolume 0260 Global volume (sound) control [byte] 

SegHiEnable OBB2 0 to disable MoveHHi in LoadSeg [byte] 

SerialVars 0200 Async driver variables [16 bytes] 

SEVarBase OC30 Beginning of 128 bytes of system error data 

SEvtEnb 015C Enable SysEvent calls from GNE [byte] 

SFSaveDisk 0214 Last vRefNum seen by standard file [word] 

SinfoPtr OCBC Pointer to Slot manager information 

SinitFlags 0090 Startlnit.a flags [word] 

SlotPrTbl 0008 Pointer to slot priority table 

SlotQOT 0004 Pointer to slot queue table 
SlotTICKS 0014 Pointer to slot tick count table 
SlotVBLQ ODOC Pointer to slot VBL queue table 
SMGlobals OCC4 Pointer to Sound Manager Globals 

SmgrCore OBAO Pointer to sisTable 

SonyVars 0134 Variables for .SONY driver 

SoundActive 027E Sound is active? [byte] 

Sound Base 0266 Sound bitMap [pointer] 
SoundDCE 027A Sound driver DCE [pointer] 



...,. Macros 529 

Name Address Comment 

Sound Glue OAE8 Used by sound glue on Mac XL 

Sound Level 027F Current level in buffer [byte] 

SoundPtr 0262 4VE sound definition table [pointer] 

SoundVars 0262 Sound driver variables [32 bytes] 

SoundVBL 026A Vertical retrace control element [16 bytes] 

SPAlarm 0200 Alarm time [long] 

SPATalkA 01F9 Apple Talk node number hint for port A [byte] 

SPATalkB 01FA Apple Talk node number hint for port B [byte] 

SPClikCaret 0209 Double click/ caret time in 4/ 60ths [24-bit] 

SPConfig 01FB Serial port config bits: 4-7 A 0-3 B [byte] 

SPFont 0204 Default application font number minus 1 [word] 

SPKbd 0206 Keyboard repeat threshold in 4/ 60ths [24-bit] 

SPMisc1 020A Miscellaneous [1 byte] 

SPMisc2 020B Miscellaneous [1 byte] 

SPPortA 01FC SCC port A configuration [word] 

SPPortB 01FE SCC port B configuration [word] 

SPPrint 0207 Print stuff [byte] 

SPValid 01F8 Validation field ($A7) [byte] 

SPVolCtl 0208 Volume control [byte] 

SrcDevice 08AO Src device for Stretchbits [long] 

SRsrcTblPtr OD24 Pointer to slot resource table 

StkLowPt 0110 Lowest stack as measured in VBL task [pointer] 

Switcher 0282 Used by switcher [8 bytes] 

SwitcherTPtr 0286 Switcher's switch table 

SynListHandle OD32 A handle to a list of synthesized fonts 

SysCom 0100 Start of system communication area 

SysEvtBuf 0146 System event queue element buffer [pointer] 

SysEvtMask 0144 System event mask [word] 

SysFontFam OBA6 Font ID for the System font 

SysFontSize OBA8 Font size for the System font 

SysMap OA58 Reference number of system map [word] 

SysMapHndl OA54 System map [handle]· 

SysParam 01F8 System parameter memory [20 bytes] 



530 ...,.. Appendix B Macro, Template, and Dcmd Summary 

Name Address Comment 

SysResName OAD8 Name of system resource file [STRING[19]] 

SysVersion 015A Version# of RAM-based system [word] 

SysZone 02A6 System heap zone [pointer] 

T1Arbitrate OB3F $FF if VIA timer T1 is available [byte] 

TableSeed OD20 Seed value for color table IDs [long] 

Tag Data 02FA Sector tag info for disk drivers [14 bytes] 

Task Lock OA62 Re-entering system task [byte] 

TEDoText OA70 TextEdit doText procedure hook [pointer] 

TempRect 09FA Scratch rectangle used by system [8 bytes] 

TERecal OA74 TextEdit recalText procedure hook [pointer] 

TEScrpHandle OAB4 TextEdit scrap [handle] 

TEScrpLength OABO TextEdit scrap length [word] 

TESysJust OBAC System justification (international textEdit) [word] 

TEWdBreak OAF6 Default word break routine [pointer] 

TheCrsr 0844 Cursor data mask and hotspot [68 bytes] 

TheGDevice OCCB The current graphics device [handle] 

TheMenu OA26 Menu ID of the currently highlighted menu 

TheZone 0118 Current heap zone [pointer] 

Ticks 016A Tick count time since boot [unsigned long] 

Time 020C Clock time (seconds since Midnight Jan 1, 
1904) [long] 

TimeD BRA ODOO Number of iterations of DBRA per millisecond 
[word] 

TimeSCCDB 0002 Number of iterations of SCC access and DBRA 

TimeSCSIDB ODA6 Number of iterations of SCSI access and DBRA 

TnneVars OB30 Time Manager variables [pointer] 

TmpResLoad OB9F Temporary ResLoad value [byte] 

Tocks 0173 Lisa sub-tick count 

ToExtFS 03F2 Memory of an external File System 

ToolScratch 09CE 8-byte scratch area 

TopMapHndl OASO Topmost map in resource list [handle] 

TopMenultem OAOA Used by the Menu Manager to handle 
scrolling menus 



• Macros 531 

Name Address Comment 

Trap Again OBOO Used by disk switch hook to repeat File 
System call 

UnitNtryCnt 0102 Count of entries in unit table [word] 

UsedFWidths OBFS Flag saying if fractional widths were used [byte] 
UTableBase 011C Unit 1/0 table [pointer] 
VBLQueue 0160 VBL queue header [10 bytes] 
VCBQHdr 0356 Header of the volume-control-block queue 

[pointer] 

VertRRate 0030 Vertical refresh rate for start manager [word] 

VIA 0104 VIA base address [pointer] 

VIA20T 0070 32 bytes for VIA2 dispatch table for NuMac 

VideolnfoOK OOBO Signals to CritErr that the Video card is OK 

VidMode OC2E Video mode [word] 

VidType OC20 Video board type ID [byte] 
WarmS tart OCFC Flag to indicate it's a warm start 

WidthListHand 08E4 Handle to list of handles of recent width tables 
WidthPtr OB10 Pointer to global width table 

(valid only after FMSWapFont) 

Width Tab Handle OB2A Handle to the global width table 

WmdowList 0906 Z-ordered linked list of windows [pointer] 

WMgrCPort OD2C Window manager color port 

WMgrPort 09DE Window manager's grafport [pointer] 

WordRedraw OBAS Used by TextEdit RecalDraw [byte] 
WWExist 08F2 Window manager initialized? [byte] 



532 ~ Appendix B Macro, Template, and Dcmd Summary 

~ Other Macros 

There are a number of macros which are shortcuts for common expressions. 
Use the MCD command from MacsBug to see the expansion. 

Macro 

theGD 

mainDev 
devList 
theWMgrCPort 
theQDglobals 

copy 
thePort 

sg 

gg 
ees 

gs 

gto 
bro 
ij 

rts 
nops 

nop 

du 
vcbList 
dd 
da 
Window 
Event 
Control 
Dialog 

First Time 
Every Time 

Operation 

Displays the current GDevice 
Displays the GDevice for the main (menu bar) screen 
List first GDevice in device list 
Displays the Window Manager's CGrafPort 
Displays QuickDraw's globals 
Displays the arguments to Copy Bits 
Displays the current window 
Displays the current GrafPort 

Clears breaks, A-trap breaks, and continues 

Clears all breaks, A-trap breaks, and performs ExitToShell 

Steps through a LoadSeg call to the beginning of the 
loaded segment 
Goto a location as an offset in the current procedure 
Set a breakpoint as an offset in the current procedure 

Lists procedures which will be JMP'd to or JSR'd to 
Performs a manual RTS 
Sets the previous three words to NOP 
Sets the previous word to NOP 

Displays the unit table 
Lists the first VCB in the VCB list 
Displays first drive queue element 
Displays current application name 
Short for WindowRecord 
Short for EventRecord 
Short for ControlRecord 
Short DialogRecord 

Is executed when MacsBug is loaded (Set to: show 1 sp 1 la;g) 
Is executed every time MacsBug is entered (not defined) 



._. Templates 533 

.,._ Templates 
The following is a list of templates that are included in the Debugger Prefs file. 
Brief descriptions are provided if the template name is different from the name 
used in Inside Macintosh. Use ResEdit or look at the Debugger Prefs.r file for 
the complete template description. The templates in the Debugger Prefs file do 
not follow this organization. 

Control Manager 
ControlRecord 

Current Application Name 
ApplName 

Device Manager Templates 
AuxDCE 
CntrlParamBlockRec 
DCtlEntry 
Driver Structure of the header for a device driver 
IOPB I/ 0 parameter block 
ParamBlockRec 
QHdr 
UnitTable 

Dialog Manager 
Dialog Record 

Event Manager 
EventRecord 

File Manager Templates 
Clnfo Clnfo parameter block record used by HFS 
DrvQEl 
FCB 
VCB 

Font Manager 
FontRec 

List Manager 
ListRec 



534 ...,_ Appendix B Macro. Template. and Dcmd Summary 

Memory Manager 
Zone 

Menu Manager 
Menulnfo 

Print Manager 
TPrint 

QuickDraw, Color Manager, PaleHe Manager 
BitMap 
CCrsr 
CGrafPort 
ColorSpec 
ColorTable 
CopyArgs 
CPort 
Crsr 

Format of arguments for CopyBits-used by Copy macro 
Displays CGrafPort with the PixMap expanded 

CTHdr Color table header 
GDevice 
GrafGlobals QuickDraw global variables 
Gra£Port 
GraNars 
PixMap 
PixPat 
Pitt 
Rect 
Region 
RGBColor 

Resource Manager Templates 
ResMapHdr Resource map header 
ResRefList Resource references list 
ResTypeList Resource type list 

Slot Manager 
spBlock Slot Manager parameter block 
slnfoRecord 

Standard File 
SFReply 



Text Edit 
TERec 

Window Manager 
AuxWinRec 
WinCTable 
Window Record 

.,... Dcmds 

...,. Dcmds 535 

The Debugger Prefs file also includes a number of dcmds. The source for al­
most all of the dcmds can be found on the accompanying disk. 

The included dcmds are 

Drive 

Drvr 

Echo 

Error 

Evt 

File 

Heap 

Jump Table 
MList 

Patch 

Print£ 

RD 
Sec 
StopXPP 
VBL 

Vol 
Where 

Displays information about the various drives attached 
to the Macintosh 

Displays information about the currently installed drivers 
Echoes command line parameters 

Displays the error message associated with an error number 
Lists the events in the event queue 

Displays information about open files 
Displays information about all heap blocks 

Displays the jump table 
Displays the menu list 

Displays information about patched traps and interrupts 

Like C' s print£ function 

Displays information about resources 
Displays the stack chain 
Forces Apple Talk to time out now 
Lists tasks in the VBL task queue 
Displays information about the currently mounted volumes 
Displays information about an address or trap 



Index 

24-bit mode, 17 
32-bit clean, 207 
32-bit mode, 17 
68000,3,5,13 

A 
A-trap clear, dispatch traps and, 

282 
A/UX, 19 
A5,74,97,214-215 
Abbreviations, 369 
Abstraction, 4 
ACount, 191 
AddResMenu, 144 
Address error, 351 
Alarm Clock DA, 257-259 
Alerts, 181, 183, 191 

default item and, 183 
ANumber, 191 
AppendMenu, 143 
Application 

forcing Quit, 121-122 
globals, 97-98 
heap,73 
name, 19 

printer interface, 287-288 
resource file, 124 

ApplLimit global, 75 
AppLZone,79,80,87,448,464 
Arithmetic, 51 
ASCII, 51 
ATB,26,79,409-412 
ATBA,410 
ATC, 27,55,412-413 
ATD,58,59,413-414 
A11iC,55,86,88-89,349,414-415 
AtMenuBottom, 147 
ATP, 56,345,353,416-419,420 
A11R, 11,55-56,345,419-423 
ATRA,353 
A-trap, 37-41, 49 
ATSS,58,424-426 
ATT, 57, 426-428 

B 
Background printing, 305 
BackGrounder, 79 
BeginUpdate, 161,164 
Binary, 14 

537 



538 ..,. Index 

BitMap, 217, 220-223 
baseAddr, 221 

bkPat, 216 
Block-oriented devices, 263 
Bombs,352 
BR, 27-28,356,428-432 
BRC,28,432 
BRD, 430, 433-434 
BRM, 434-435 
BRO macro, 431 
BuildDCMD, 394 
Bus error, 37, 351 

c 
c, 47-48, 69, 71, 90-95,339 
C++,4,434 
Cache, File Manager and, 284-285 
Callback dcmd, 388-393 
Calling the Toolbox, 455-456 
Catalog, 264 
CDEF, 197-210,354 
CDEV, 307-317 
CGrafPort, 165,213,214-219,230 

port Version, 219 
rgbBkColor, 221 
rgbFgColor, 221 
structure, 440-441 
template, 219 
see also GrafPort 

Change history, 343 
ChangedResource, 127, 129 
Chooser, 288 
CloseResFile, 136 
Color environments, 225 
Color lookup table, 212 
Color table seed, 228-229 
Color table, standard, 228, 246 
Color2Index, 222 
Command Key, 22 
Command Line, 21 
Command-F, 303-305 

Command-K, 304-305 
Conditional expressions, 49 
Control Panel, 10, 307-317 
Control record, 200-204 

C definition of, 201 
Control, defProc, 204 
controlList, 197 
ControlRecord template, 202 
Controls, 197-210 

ActionProcand,204 
active, 197 
creating, 198-204 
custom, 182 
events and, 204-208 
ID, 198-199 
inactive, 197, 199 
messages and, 204-207 
part codes, 199 
resources and, 198 
varCode, 204 
windows and, 197 

CopyBits, 223-224, 233, 246-251 
colorizing, 223-224 
fastest case, 228 
foreground and background 

color and, 223-224 
stack space and, 235 

CopyDeepMask, 290 
CopyMask, 290 
Corrupt heap, 104-106,453 
CouldDialog, 182 
Count1Resources, 135 
CountResources, 135 
CountTypes, 135 
CPort template, 219 
Crashes, 4 
CS,54,58,357,435-436 
CurMap, 141, 479 
CurrentA5 global, 102,370 
CurResFile, 136 
CURS resources, 457-458 



CurStackBase global, 329 
Customization, MacsBug, 9, 12 

D 
DABeeper, 191 
DB, 357, 436-437 
Dcmds (debugger commands), 5, 

11' 387-401, 459 
on disk, 535 

DCtlEntry template, 258-259 
dealloc, 71 
Debug trap, 362-363 
Debugger commands (dcmds) on 

disk, 535 
Debugger Prefs file, 9, 360,371,377, 

380,397 
DebuggerTrap,22,24,345,444 
DebugStr Trap, 22, 24, 86, 338, 345, 

362-363, 444 
Decimal, 14, 51, 406 
Default directory, 279 
Defensive programming, 335-340, 

343 
DefltStack low memory, 75 
DefVCBPtr, 279 
DefVRefNum, MultiFinder and, 

280 
Delete key, 22 
Dereference,379 
Dereferencing, implicit, 245 
Desk accessories, 253-262 

naming,144 
system heap and, 255 

DetachResource, 126-127 
Device Control Entry (OCE), 

255-256,257-259 
Device drivers, 253-262 
Device Manager, 254 

File Manager and, 267 
ioNamePtr and, 267 
refNums and,267 

..,. Index 539 

DeviceList, 225-226 
DfltStack, 235 
DH, 357-358,437-438 
Dialog Item List, 181, 309 
Dialog Manager, 124 
Dialog Record, 186-190 
DialogRecord template, 188 
Dialogs, 181-195 

alerts, 181 
Cancel button and, 182 
creating, 183-186 
deactivating items, 182 
disabling items, 181 
itemData, 187 
modal, 181,191, 192-195 
modeless, 181, 191 
OK button and, 182 
SysErr and, 182 
TextEdit and, 186,189 
user items and, 190 

DialogSelect, 191-192 
Directory, 264 
Disassembling, 465-470 
Discipline, 359 
Disk swapping, 182 
Dispatch traps,265-266 
Dispatched traps, 368,411 
DisposeControl, 199 
DisposeHandle, 66 
DisposeWindow, 159 
DisposHandle, 128 
DisposPtr, 66 
DITL, 181-195 

resources and, 186 
DL,438-439 
DM, 28, 36,-440-441 
Dot address, 178 
Double buffering, 354 
DoubleTime global, 439 
DP, 442 
DragWindow, 113, 159, 160 



540 ...,_ Index 

DRIVE dcmd, 278, 283 
Driver template, 256, 259 
Driver, structure of, 255-256 
Driver, unit number, 255 
Drivers 

naming, 144 
urrittable,256-259,260-261 
see also Device drivers 

DRVR dcmd, 260-261, 277 
DRVR resource, 255 
DSC, 442-443 
DumpObj MPW Tool, 92, 293 
DV,37, 443 
DW,443-444 
DX, 24, 444-445 

E 
EA,445 
EndUpdate, 161 
Error dcmd, 350 
ErrorSound, 191 
ES,39,445-446 
Eventloop,311,348 
EventRecord, 116-118, 121 
Events, 113-122 

catching keyboard, 117-118 
categorizing, 117 
event queue, 119-120 
EventMask, 116, 120 
KeyDown, 118, 121 
KeyUp, 116 
locating the event loop, 113-114 
main event loop, 113-118 
message, 119, 121 
modifiers, 120, 121 
system event mask, 120 
types of, 118 
What field, 121 
When field, 120 
Where field, 120 

EveryTime macro, 360, 452, 473 

EVT dcmd, 119 
Exception vectors, 324 
Exceptions, 37 
Exit 

to Application, 26 
to Shell,25 

Expressions, 50-52 

F 
F,447-449 
FCBSPtr,272-274 
File Control Block, 264 
FILE dcmd, 137, 140,274,286 
File Manager, 123,263-286 

cache and, 284-285 
calling conventions, 265 
default directory and, 279-281 
default volume and, 279-281 
Device Manager and, 267 
dirty bit, 481 
dispatch trap and,265-266 
FCB array and, 272-276 
glue code and, 266-267 
Interface.o and, 267 
ioCompletion and, 269 
ioDiriD and, 266 
ioNamePtr and, 267 
ioNamePtr and, 270-271 
ioRefNum and, 269 
ioResult and, 269 
LOG command and, 265 
MPWand,282 
MultiFinder and, 272 
OpenDF,267 
parameter block,265,266-272 
Poor Man's Search Path and, 

281-282 
refNums and, 267,269,282 
templates and, 268-269 
VCB queue and, 276-278 
WDCB array and,278-279,280 



File 
data fork, 264 
opening, 264, 285 
path, 264 
refNum, 136 
resource fork, 264 

Find Control, 204 
Finder, 73 
FindWindow, 159 
FirstTime macro, 12, 55, 359, 369, 

420,473 
Flicker, 353 
Font/DA Mover, 125, 133, 144, 257 
Fragmentation, 69 
Fragmented heap, 106-109 
Frame buffer, 211-212 
FrameRect, 214 
FrontWindow, 159 
FSBusy,265 
FSFCBLen, 272 
Functional programming, 336 

G 
G,450 
GDevice, 213, 221-228, 233, 249-251 

direct,246 
memory for ILUT, 235 
template, 225-227, 249-251 

Gestalt trap, 322 
GetllndResource, 135 
GetCTable, 229 
GetCTSeed, 228 
GetDitem, 190,194 
GetlndResource, 133, 135 
GetlndType, 135 
GetiText, 194 
GetNewControl, 199 
GetNewMBar, 143 
GetNextEvent trap, 26-27, 114-122, 

348 
GetResAttrs, 128 

...,. Index 541 

GetResource trap, 126, 132, 150, 324 
GetString trap, 70 
GetTrapAddress trap,39, 361 
GG macro, 243, 432 
Glue code, 244 

File Manager and,266-267 
LightSpeed C and, 171-172 

Glue, Printing Manager and, 288, 
292-297 

Go command, 25 
Go To command, 25 
Gra£Port, 164,212,214-219,230 

clipRgn and, 237 
current, 214-216 
examining it, 235-237 
fgColor and, 237 
memoryrecord,45 
QDProcs and, 289-292 
rgbFgColor and, 237 
structure, 439 
visRgn and, 237 
windows and, 224 

gra£Procstemplate,291 
GrowWindow trap, 41-47, 113,159 
GS macro, 103 
GT, 450-451 
GTO macro, 451 
GWorlds 

H 

LockPixels and, 235 
offscreen,251 
pm Version and, 234 
UnlockPixels and,235 

Handle, implicit dereferencing, 245 
Handles, 66-71 
Hangs,37 
HC I 86, 352, 451-454 
HD I 81, 82, 84, 105, 106-107, 170, 

354, 454-458 



542 ...,. Index 

Heap,64-65 
fragmentation, 354 
scrambling, 239 

Heap zone header, 453 
Heap zones, 29 
Heaps, 393-394 

resources and, 129-130 
Help command, 30, 387, 458-459 
Hexadecimal, 13, 14, 48, 51, 406 
HFS bit,266 
HFSDispatch, 266 
Hierarchical File System (HFS), 

264-265 
hiopb template, 268-269 
History buffer, 11-12,21,22 
HLock trap, 69-70 
HOpenResFile, 327 
HOW, 30, 459-460 
HS,71,89, 104,342,460-461 
HT, 85, 109, 352, 358, 461-462 
HUnlock, 69-70 
f£X,80-81,85,352,462-464 
HZ,77,81,464 

I 
10,465-466 
IL,466-468 
Image Writer driver, 288 
Immed bit, 266 
Implementation errors, 340 
Implicit dereferencing, 245 
Initialization, MacsBug, 9 
!NITs, 307-308,319-331 
InitZone trap, 68 
InsertMenu, 143 
Interface.o, 267 
InvalRect, 160 
InvalRgn, 160 
Invarients, 338 
Inverse lookup table, 222, 225 

GDevice and, 235 

rebuilding, 235 
iopb template, 282-284 
IP, 468-469 
IR,470 
IsDialogEvent, 191 

J 
Jump Table, 99-102,130 

K 
Key codes, 120 
Key Thresh global, 444 
KillControls, 199 

L 
LaserPrep, 304 
LaserWriter driver, 288, 297, 304, 

305 
Leak,Bruce,355 
LightSpeed C, 4 

glue code and, 171-172 
switch statement and, 173-175 

Link, 484-487 
ListManager, 411 
LoadResource, 150 
LoadSeg trap, 99-101, 131 
LockPixels, 235 
LOG, 470-471 

File Manager and, 265 
Logic errors, 340 
Low memory globals, 36,71,96-97, 

337,367-368,393,425,515-532 

M 
1 mach 1 resource, 308 
Machinelanguage,4 
Macintosh File System (MFS), 

264-265 
Macintosh II, Memory Map, 15, 

17-18 
Macintosh SE, Memory Map, 15-16 



~acros,5, 12,365-376 
on disk, 515-532 

~acsBug 

book Init, 313-316 
customization, 9, 13 
disk accompanying book, 7 
initialization, 9 
screen, 503 

~acsBugTypes.r, 373, 383 
~ain screen, 243 
~alloc, 71 
~aster pointers, 74, 82, 83, 87 
~aster Pointer block, 68 
~axApplZone trap, 75, 352, 358, 

455-456 
~BarEnable, 147 
~BarHook, 147-148 
~BDF, 143,145,147,153-155 

definition of, 153 
messages, 153-156 

~BDFHndl, 153-154 
~BState global, 436 
~c, 1~, 472-473 
~CC, 371, 473 
~CD,365,473-474 

~DEF, 143,146, 149-153 
messages, 149, 152 
standard, 150 

~emErr global, 54,357,435,460 
~emory, 4, 13, 54,63-111 

leakage, 85, 109-110 
~anager, 64, 67, 69, 74, 83, 87, 

240,415 
~ode, 19,36,64,96 

~enu bar, 143 
~enu ~anager, 123, 161 
~enuData, 146 
~enuDisable, 147 
MenuFlash global, 147, 149, 425, 

501 
menuHeight, 149 

~ Index 543 

MenuHook, 147 
Menulnfo, 145-146 
MenuKey, 144 
~enuList, 144-147 
menuProc, 146 
Menus,3, 143-158 

enableFlags, 146 
~enuSelect, 144, 148 
menuWidth, 149 
MLIST dcmd, 145,148 
~MU,17,96 

~odalDialog, 185 
Monitors Control Panel, 10 
Monitors CDEV, 246, 503 
MoreMasters trap, 68 
Mouse, tracking, 113 
MoveHHi,71 
MoveWindow, 159, 160 
MPW, 12, 48, 60, 92, 325, 348, 

373-374,383,394 
DumpObj tool, 293 
File Manager and, 282 
glue code and, 267 
Printing.h/Printing. p, 295 

MR,474-476 
Mr. Bus Error INIT, 343,345,362 
MultiFinder, 25, 65, 68,71-72,73,79, 

430 
and resources, 136 
DefVRefNum and, 280 
File Manager and, 272, 276 
the FCB array and, 272 
VCB queue and,276,280 

MultiFinder heap, 71-73, 78 
mxbc, 11 
mxbh,458 
mxbi, 11, 55, 419 
mxbm, 11,12,371 
mxwm,380 
mxwt, 11,12 



544 liJl- Index 

N 
NewCWindow, 224 
NewDialog, 188 
NewGestalt trap, 322 
New Handle trap, 57, 66, 75, 106, 

354,427 
NewMenu, 143 
NewPixMap, 240 
NewPtr, 66, 75, 243-245, 354 

glue code and, 244 
trap, 4 

NewWindow, 159 
NMI,23 

0 
Object oriented programming, 336 
Object Pascal, 4 
Offscreen frame buffer, 212, 

234-235, 251 
Offscreen PixMap, 240-245, 246-251 
OpenDF,267 
OpenResFile,136,327 
Operators,51,405 
Option key, 22 
OS traps, 40 
OSEventAvail, 316 
OSTraps, 361 

p 
PageSetup, 297 
Parameter Block, File Manager and, 

2651 266-272 
Pascal, 4, 40-41,47-48,89-95,388 
PATCH dcmd, 323, 351 
Patches, 152 
Patching traps, 39 
Path,264 
Pt area, 11 
PDEFs, 301-303 
Pi~ap,212,217,220-223 

baseAddr, 221 

darkening,222 
offscreen, 240-245, 246-251 
pmTable, 221-223,224 
pmTable, 240 
template, 241-242 

PixMaps 
32-bit addressing and, 229 
pmVersion, 229,234-235 

Pointers, 66-71 
Poor Man's Search Path, 281-282 
PortPixMap, 224 
portVersion, 219 
PostScript, 303-304 
PostScriptHandle picture comment, 

304 
PrGlue, 288, 292-297, 303 
Print dialog, 297, 303-305 
Print drivers, 288 
Print Manager 

Command-F and, 303-305 
Command-K and, 304-305 

Print record, 297-300 
PrintCalls, 292-297 
Printing,3 

background, 305 
Copy Mask and, 290 
Graphics model used for, 289-292 
QDProcs and,289-292 
TextEdit and, 291 

Printing Manager, 287-306 
device independence and, 

287-288 
DiskFile and, 305 
glue code and, 288, 292-297 
GrafPort and, 290 
Interface.o and, 288 
MPWand,295 
page setup dialog, 297 
PDEFs, 301-303 
PrGlue, 288, 292-297, 303 



print dialog, 297,303-305 
print record, 297-300 

PrintRecordSpy, 298 
Process Manager. See MultiFinder 
Processor registers, 14, 19, 55, 

478-479 
Programmer's Key INIT, 9,22-23, 

420 
PrOpen, 292-297 
PrValidate, 298, 302 

Q 
QDProcs, StdText and, 291-292 
QDProcsPtr, 289-292 
QuickDraw,211-252 

Color, 10 
common problems, 230-252 
original colors, 230 

R 
RAD,476-477 
RAM,63-111 

breakpoints, 168 
Macros,447 

RB,477 
RD dcmd, 136-138 
ReBoot,26 
Recovering data after a crash, 449 
re~urn,267,269,282 

Registers, processor, 14, 19, 55, 
478-479 

ReleaseResource, 126-127 
ResEdit, 10, 11, 12, 98, 359, 371-372, 

380-383,394 
modifying code using, 179-180 

ResErr global, 133,460 
ResErrProc, 133-134 
ResLoad, 132, 133 
Resource 

• CODE. I 53, 124, 130-131 
and MultiFinder, 136 

~ Index 545 

attributes, 128-129, 132, 141 
chain, 135-138 
changed bit, 128 
10,124 
in memory, 126 
map, 126-127, 130, 135, 138-141 
mapFalse, 134 
mapTrue, 134 
name,124 
owned, 125 
preload, 128 
purged, 128-129 
reserved, 125 
ROM, 134 
search order, 135 
specifying, 124 
structure of map, 139 
SysHeap, 128 
System file, 135 
TheZone and, 138 
type, 124 
type list, 141 

ResourceDumper, 136-138 
Resource Fork, 97 
Resource Manager, 123-142 
Resources, 11, 53, 83, 123-142 

disk swapping and, 182 
heaps and, 129-130 
in memory, 179 
interpreting, 123 
loading, 131-132 
purgeable, 179 

ReStart, 26 
Return key, 22 
Rez,359,373,383,394 
RN, 479-481 
ROM, 3, 35-36 

breakpoints, 168 
ROMBase global, 36, 96 
ROMMap file, 60 
RomMaplnsert, 134 



546 ~ Index 

rowBytes, 165 
RS, 481-482 

s 
S, 482-483 
SB, 357, 483-484 
SC, 351 
SC6, 352,484-490 
SC7, 490-492 
sec dcmd, 488-490 
Sample applications 

Chapter4, 104-110 
Chapter 8,170-171, 180 
Chapter 9, 183, 192 
Chapter 11,214,218, 230 

Search procedure, 222,229 
Segment Loader, 98-104,131 
SelectWindow, 159,161, 162 
Self-modifying code, 430 
Serial driver, 253-254 
SetApplLimit trap, 75 
SetDitem, 190 
SetResAttrs, 128-129 
SetResLoad, 134 
Show command, 13, 19,360, 

492-493 
SIZE resource, 72 
SizeWindow, 159 
SL, 493-495 
SM,495-496 
S0,496-498 
Sound 'cdev', 207 
SS,58,354,498-500 
Stack, 63-64, 75,89-95,419 
Stack pointer, 486 
Standard File dialog, 201 
Startup process, 319-321 
StdText, 291-292 
Step, 24 
Step Over. See Trace 
StripAddress trap, 510 

Structured programming, 336 
SW, 500-502 
SWAP, 349,502-504 
SwapMMUMode trap, 96-97 
Switch statement, LightSpeed C 

and, 173-175 
sx, 504-505 
Symbols, 406-407 
Sys bit, 266 
SysMap, 141 
SysMaptfndl, 138, 141 
SysResName, 138 
System 7.0, 19, 65, 71, 73, 96, 150, 

207,213,222,307,309,313,319, 
322,327,339 

colorizing and, 224 
CopyDeepMask and, 290 
DA and, 255 
File Manager and, 267 
LaserWriter and, 304 

System error, 24 
System Folder, 308, 322 
System heap, 71 
System problems, 340 
System Task trap, 56 
sysz resource, 322 
SysZone, 448, 464 
SysZone global, 87 
SysZone low memory, 71 

T 
T. See Trace 
TargetZone, 448-449, 452, 464 
TD,SOS-506 
Templates, 5, 377-385,508-509 

on disk, 533-535 
Test vectors, 341 
TestDcmd, 392, 397-401 
TEUpdate, 291 
TF, 506-507 
theCPort macro, 241 



TheGDevice, 224-225, 229,231, 
249-251 

TheZone, 464 
TheZone global, 79 
TrmeDBRA global, 96 
TM,507-508 
TMP, 29,377,508-509 
TMPL, 11,12 
TmpResLoad, 134 
ToolBox, 4, 5 
Toolbox traps, 40,361 
Top~aplindl, 138,140,141 
Top~enultem, 147 
TPrint template, 297, 299-300 
Trace,25,347,411,509 
TrackControl, 204 
Trap Dispatcher, 24, 37,361 
Trap instruction, 429 
Trap table, 511-512 
Traps, patching, 39 

u 
UnitNtryCnt, 255 
Unlk, 484-487 
UnloadSeg trap, 99-102 
UnlockPixels, 235 
Update region, 160-166 
UpdateResFile, 138 
UseResFile, 136 
UTableBase, 255-256 

v 
VBL tasks, 23, 75, 362 
VCB queue, 276-278 
VCB template, 276 
VCBQlidr, 276 
Vector Base Register, 350 
Virus, 340 
Visible region, 161 
VOL dcmd, 277 
Volume control block, 264 

.,.. Index 547 

Volumes, 263-264 

w 
WaitNextEvent 

mouseRgn, 116 
sleep, 116 
trap, 27, 56, 72, 84, 113-122,348, 

354 
WDCB array, 278-279,280 
WDCBSPtr, 278 
WDEF, 167-180 

locating, 168 
messages, 167 

Wli,59,130,360,509-513 
Window, variation code, 170 
WindowList, 166-167 
WindowPtr, 162 
WindowRecord template, 162, 166, 

169 
Windows, 3, 159-180 

controls and, 197 
Working directory, 278 
WriteResource, 128 

z 
Zone header, 82 
Zone Record, 75 



Other Books Available in the Macintosh Inside Out series 

..,. Programming with MacApp® 
David A. Wilson, Larry S. Rosenstein, Dan Shafer 
Here is the information you need to understand and use the power of MacApp, Apple Computer, Inc.'s 
official development environment for the Macintosh. The book discusses object-oriented concepts, 
using MPW with MacApp, the MacApp class library, and creating the Macintosh user interface. All 
examples are in Apple's Object Pascal language. 
576 pages, paperback 
$24.95, book alone, order number 09784 
$34.95, book/ disk, order number 55062 

..,. C++ Programming with MacApp® 
David A. Wilson, Larry S. Rosenstein, Da11 Shafer 
In this book you will find information on using MacApp with C++, the up-and-coming language for 
Macintosh development. The book covers object-oriented techniques, MPW, and the MacApp class 
libraries. All program examples are in C++. 
600 pages, paperback 
$24.95, book alone, order number 57020 
$34.95, book/ disk, order number 57021 

..,. Elements of C++ Macintosh® Programming 
Dan Weston 
Macintosh programmers will learn just what they need to take the step from C to C++ programming, 
the future of Macintosh development. The book covers the basics and then teaches how to design 
practical programs with C++. 
464 pages, paperback 
$22.95, order number 55025 

..,. Programmer's Guide to MPW®, Volume I 
Exploring the Macintosh® Programmer's Workshop 
Mark Andrews 
Learn the secrets to unlocking the power of MPW, Apple's official integrated software development 
system for the Macintosh. The book begins with fundamental skills and concepts and then progresses 
to more advanced examples culminating in a fully functional application. 
608 pages, paperback 
$26.95, order number 57011 

..,. ResEdieM Complete 
Peter Alley a11d Carolyn Strange 
This book/ disk package contains the actual ResEdit software along with a complete guide to using it. 
The book shows you how to customize your desktop and then moves on to cover more advanced 
topics such as creating standard resources, designing templates, and writing your own resource editor. 
576 pages, paperback 
$29.95 book/ disk, order number 55075 

..,. The Complete Book of HyperTalk® 2 
Dan Shafer 
This hands-on guide covers HyperTalk 2, with its greatly expanded features and capabilities. It offers 
practical information on commands, operators, and functions as well as detailed explanations of 
XCMDs, dialog boxes, menus, communications, and stack design. You'll also find plenty of tips and 
dozens of ready-to-use scripts. 
480 pages, paperback 
$24.95, order number 57082 



~ Programming the LaserWriter® 
David A. Holzgang 
This practical reference shows how to take advantage of all of the LaserWriter's features and capabil­
ities. Offering numerous useful tips, techniques, and examples, the book takes programmers through 
the details of accessing the LaserWriter directly and thus bypassing the Apple Printing Manager and 
its limitations. 
464 pages, paperback 
$24.95, order number 57068 

Order Number Quantity Price Total 

TOTAL ORDER 

Shipping and state sales tax will be added 
automatically. 

Credit card orders only please. 

Offer good in USA only. Prices and avail­
ability subject to change without notice. 

Name ______________________ __ 

Address _________________________ ___ 

City/State/Zip-----------------

Signature(required) _______________ _ 

_Visa _ MasterCard _Am Ex 

Account#------------- Exp. Date ___ _ 

Addison-Wesley Publishing Company 
Order Department 
Route 128 
Reading, MA 01867 
To order by phone, call (800) 477-2226 



o'f>UB 6.2 on Disf? 

JlEkUGJ,uc~ ., ebugging MacintosH 
r~catt·o/t oftware with MacsBug 

KONSTAN TI N O TH ME R 

JIM ST R A U S 

MacsBug~, from Apple® Computer, Inc., is 
the leading debugging software program fo r 
the Macintoshe . This versatile program not 
only helps you debug your code quickly 
and easily, it can also help you recover 
from crashes. This book/disk package is an 
all-in-one kit for using MacsBug- the 
disk contains the actual MacsBug program 
version 6.2, and the book gives you 
everyth ing you need to use and to get the 
most out of this impressive program. 

Debugging Macintosh Software with 
MacsBug takes Macintosh programmers 
of all levels through the features and 
newest improvementc; of MacsBug, version 
6.2 . Part I of the book begins with the 
basics of using MacsBug and gets you up 
and running quickly. Part II takes you 
through a step-by-step exploration of the 
Macintosh Toolbox and operating system 
using MacsBug and covers such specific 
areas as resources, dialogs, the Memory 
Manager, QuickDraw"', device drivers, 
CDEVs, and !NITs. J=inally, Part Ill covers 
ad,·anced techniques for debugging 
Macintosh applications, and Appendix A 
includes a comprehensive command 
summary. 

You will also learn how to: 
• Extend MacsBug by creating 

macros and templates 
• Write dcmds 

Cover design by Ronn Campisi 

Addison-Wesley Publishing Company, Inc. 

• Explore the Macintosh Toolbox with 
specialized techniques 

• Access the structure of existing 
Macintosh applications 
and much more. 

DISK INCLUDED! With Debugging 
Macintosh Software with MacsBug you 
also have a Macintosh disk containing 
MacsBug version 6.2, source code for usefu l 
templates :md dcmds, and sample programs. 
The disk can be used on 
Macintosh Plus and all later 
Macintosh models. 

Konstantin Othrner is a 
Software Engineer at Apple 
Computer, Inc., and is the 
Project Leader fo r 
QuickDraw in System 7. 

J im Strau s was also a Software 
Engineer at Apple and is now 
a computer consultant 
specializing in Macintosh 
software design. Together they 
have over eighteen years of 
programming experience. 

9 780201 570496 

5 3495> 

I SBN 0-201-5 7049-1 
57049 




