

Encapsulated PostScript

Encapsulated PostScript

Application Guide for the
Macintosh and PCs

Peter Vollenweider

Manager User Services
Universi1y of Zurich

A · Carl Hanser .Verlag

:II Prentice Hall

First published in German 1989
by Carl Hanser Verlag
under the title EPS-Handbuch: Encapsulated PostScript

First published in English 1990 by
Prentice Hall International (UK) Ltd
66 Wood Lane End, Hemel Hempstead
Hertfordshire HP2 4RG
A division of
Simon & Schuster International Group
©Carl Hanser Verlag, Munich and Vienna 1989
©Carl Hanser Verlag and Prentice Hall 1990

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, witliout prior
permission, in writing, from the publisher.
For permission within the United States of America
contact Prentice Hall, Inc., Englewood Cliffs, NJ 07632.

The Sonata clef design on the cover shows the mixing of
randomly placed Sonata font types, smoothed curves and
patterns; courtesy of John F. Sherman, ND Design Program,
University of Notre Dame, Indiana 46556, USA.

Printed and bound in Great Britain by
Dotesios Printers Ltd, Trowbridge, Wiltshire.

Library of Congress Cataloging-in-Publication Data

Vollenweider, Peter.
(Encapsulated PostScript. English)
Encapsulated PostScript : application guide for the

Macintosh and PC's I Peter Vollenweider.
p. em.

Includes bibliographical references.
ISBN 0-13-275843-1
1. PostScript (Computer program language) I. Title.
QA76.73.P67V65 1990
005 .265-dc20

British Library Cataloguing-in-Publication Data

Vollenweider, Peter

90-35469
CIP

Encapsulated PostScript : application guide for the
Macintosh and PC's.
1. Microcomputer systems. Software packages
I. Title
005.36

ISBN 0-13-275843-1

1 2 3 4 5 94 93 92 91 90

Contents

List of figures
Preface

Other books on PostScript
Thanks

1. PostScript- A Publishing Standard
PostScript as a page description language

Competitors
Some typical PostScript effects

Spotlight: Encapsulated PostScript (EPS) files
mM recovers lost ground . . .
Types, typefonts, and typefaces

Downloadable fonts
Screen fonts

PostScript-compatible devices .
Manufacturers of PostScript-capable devices
Page printers on your desk
Typesetters and large page printers
Color printers
Scanners

PostScript at the display
The Adobe Type Manager (ATM)

Emulating and cloning PostScript
PostScript interpreter

Books, reports, magazines
The press in USA and Europe
Using PostScript at universities

Electronic publishing software . . .
Drivers
What you see is what you get

Benefits of using PostScript
Problems
Future

Making slides . . .
High-resolution fax
Japanese, Chinese, etc.
Display PostScript . .

2. Short Introduction to PostScript
Short comparison between PostScript and C
The stack: last in, first out

.. xi
XV

xvi
xvi

1
1
I
3
4
5
6
6
8
9
9

. 10
..... 11

12
13
13
14
14
15
15
16
16
18
20
21
22
23
23
23
24
24
24

25
25
26

vi

Calculating and counting with PostScript
Manipulating the stack . .

Flow control and loops
Often used PostScript operators
An exercise in word processing

Graphics state
The PostScript character set
The dictionary

Using dictionaries
The PostScript program structure
The user coordinate system

Embedding a PostScript file
Setting characters and words .
Line graphics with an ellipse . . .
Cubic curves or Bezier curves . .

Virtual memory management
Various line widths .
A grid in centimeters

3. Color Support
PostScript-compatible color devices
The colored circles
Characters in various reds
PostScript extensions . . .
Color separations

Open Prepress Interface (OPI)
The Adobe Separator . .
Adobe Photoshop

Emulating color PostScript
RIP-It for the IBM PC and MacRIP

4. Mixing PostScript Files
Platforms
PostScript operators used to embed

The clip operator
PostScript as an interchange standard

Some terms
An embedding example
Encapsulated PostScript Files (EPSF)

Two rules
The showpage operator
Operand stack and dictionaries .
Screen preview as approximation

Contents

..... 27
28
30
31
33
35
36
37
38
39
40
41

. 42
43
46
49
49
52

56
56
57
59
62
63
64
64
65
66
66

67
70
71
72
73
74
75
77
78
79
80
80

Contents

Importing and exporting EPS files
Desktop presentation
PC DOS programs supporting EPS files

EPSF and halftoning
An EPS code describing images .

The file transfer
PageMaker on Macintosh and IBM PC

Resizing and cropping
Xerox Ventura Publisher . .
RagTime and Quark XPress

Microsoft Word on IBM PC . . .
Initializing a PostScript printer by MS Word
Word operators
The 'encoding vector'
A script generated by MS Word
A part of the result (proverb of Solomon)

Word Perfect on the IBM PC
A script example generated by Word Perfect

GEM or Ventura as an embedding application
The PostScript prologue provided by GEM .
The PostScript example generated by GEM .
A page description generated by Ventura Publisher

PostScript files from the Macintosh
(a) Generating the PostScript code ..
(b) Transferring the PostScript code
(c) With or without macro library
(d) Modifying the PostScript file .

EPS effects by Emerald City Software
The bounding box . .
The clipping program

TypeAlign
Multi-Ad-Creator (Mac only)
TeX and Encapsulated PostScript files

5. The Construction of the SWITCH Logo . .
SWITCH logo version 0
SWITCH logo version 1
SWITCH logo version 2

EPS comment lines
SWITCH logo version 3
SWITCH logo final version

vii

81
81
82
83
84
84
85
86
89
89
90
92
93
95
99

101
101
102
105
105
107
110
111
111
112
113
114
114
115
116
117
119
120

121
121
123
124
126
127
130

viii

6.11/ustrations on Mac and IBM PC .
The Adobe Illustrator

The auto trace tool of Adobe Illustrator
From bitmaps to vector graphics .

The prologue of Illustrator'88
The EPSF head
EPS procedure sets
The 'heart' of the prologue

The script of Adobe Illustrator .
Garlics as an Illustrator example
Positioning an illustration

Encapsulated PostScript for the mM PC
Adobe Streamline
Micrografx Designer, GEM Artline, Corel Draw on the IBM PC

Formats supported for import/export . .
GEM Artline
Designer version 2.0 .
A Designer EPSF head
Corel Draw

An EPS code generated by GEM Artline
The example

EPS files by Harvard Graphics
Mathematica on NeXT and Macintosh
The FreeHand alternative
The object-oriented drawing program CricketDraw

The PostScript window
An EPS code generated by CricketDraw

The three parts
CricketDraw version 1.1 . . .
Procedures and operands . . .

The program script of CricketDraw
The result generated by CricketDraw
CA-Cricket Stylist

7. Constructing Your Own Characters
Metamorphosis
A PostScript code generated by Fontographer
EPS files and the Art Importer (Mac only)

Type manipulation software
Publishers Typefoundry on the IBM PC . .

Bitmap and outline editor
Downloading a font permanently with exitserver
Type Studio

Contents

135
135
135
136
136
137
139
139
139
142
142
143
145
146
146
146
147

..... 147
147
148
151
151
154
155
157
157
158
158
159
161
162
162
163

164
166
167
170
171
172
172
172
172

Contents

8. Digitizing Images with the Agfa Scanner
The EPS code generated by MC/PC View

The PostScript image operator . .
A hint
Special functions of MC/PC View

9. Learning the PostScript Language
Testing PostScript programs with Lasertalk
PostShow for learning and testing
Learning the PostScript language with LearnPS
The LearnPS stack . .

Random numbers
The HelpPS stack

10./nterpreter in the Printer or Computer
Serial communication with the IBM PC

XON/XOFF flow control
'Data Terminal Ready' flow control
Checking the sccbatch options

Parallel input (Centronics) ...
Checking the parallel input .

LocalTalk and AppleTalk . . .
Font downloader

The PostScript interpreter on the IBM mainframe
The' Advanced Function Printing' IBM printers
Calling up the PostScript interpreter

PostScript interpreters in the IBM PC
DCA IrmaPrint

11. EPSF Specification by Adobe
EPS file format guidelines .
Required participation . . .

When producing EPS files
When reading and using EPS files

Required comments
Optional comments

How to use these comments (philosophy)
Font management comments
File management comments
Color comments .

'Well-behaved' rules
Operators to avoid
The setscreen and settransfer operators

ix

. 173
175
177
180
180

182
182
184
184
185
185
187

188
189
189
189
189
190
190
191
191
192
193
193
195
195

196
197
197
197
197
198
198
199
199
201

. 201
202
203
203

X

The settransfer and setcolortransfer operators
The showpage operator
Temporarily disabling showpage
Stacks and dictionaries
The graphics state

File types and file naming . .
Apple Macintosh files
MS-DOS and PC-DOS files
Other file systems

Screen representation
Apple Macintosh: PICT resource
DOS: Windows MetaFile or TIFF file
Device-independent interchange format
Some rules and guidelines for EPSI files

A. Document Structuring Conventions (3.0)
New comments in version 3.0
Resource management comments . .

%%DocumentNeededResources:
%%DocumentSuppliedResources:
%%BeginResource: and %%EndResource
%%IncludeResource:

Document Structuring Conventions comment summary

B. EPSF Screen Representations

C. Bibliography

Contents

. 203
204

. .. 204
. 205
. 205
. 206

.. 206
206
206
207
207
207
208

. 209

... 212
. . 212

215
215
215
216
216
217

218

. 220

Index .. 221

Figures

1. A PostScript effect 3

2. The Sonata font 7

3. Typesetter serially attached to the LAN 11

4. Zurich Academic Local Area Network (LAN) 17

5. SAS/GRAPH: a cowboy hat 19

6. HyperCard: tiger 20

7. LeamPS moveto examples 27

8. Numbering text lines 29

9. Point size (by LearnPS) 32

10. The result of the exercise 34

11. The result of the exercise without gsave/grestore 35

12. Playing with a cactus 40

13. Setting the 'EPSF' characters 43

14. LearnPS arc example 44

15. Ellipse with arrows 45

16. LearnPS curveto example 46

17. Cubic or Bc!zier curves 47

18. Setting and modifying the line width 51

19. Grid in centimeters 55

20. Circles with overlapping areas 57

21. Embedding an illustration (PageMaker example) 67

xii Figures

22. Letter with a bitmapped logo 69

23. clip operator 72

24. Page 3 of a Protext poster session 76

25. Generating EPSF (FreeHand example) 77

26. Page~akertoolbox 86

27. A Page~aker page with circle text imported three-fold 87

28. Bounding box with handles 88

29. Cropping an illustration 88

30. Paragraph box and background 91

31. A proverb of Solomon 102

32. The K +K company logo 107

33. Draw II: pressing command key and 'F' simultaneously 112

34. EPS effects by SmartArt 115

35. BoundingBox reduced slightly 116

36. Rotating an EPS graphic 119

37. The 'SWITCH' letters filled with a pattern 121

38. SWITCH logo, version 1 125

39. SWITCH logo, version 2 128

40. SWITCH logo, version 3 130

41. SWITCH logo, final version 134

42. Fruit.template 136

43. Fruit.art 137

Figures xiii

44. Garlics 142

45. Generating an EPS file for the ffiM PC 144

46. Artline graphics in the EPS format (bi-centennial) 152

47. The Macintosh screen of FreeHand 2.0 156

48. Saving the PostScript window 158

49. 'Diamond' with gray scales (fountain) 163

50. A company logo 164

51. The components of a chair 167

52. Print example by MS Word with the Art Importer 170

53. Landscape 173

54. The MC View 2.0 screen 174

55. setscreen operator 176

56. Lasertalk windows 182

57. LeamPS with FontFun 184

58. Gutenberg and the random generator 186

59. HelpPS 187

60. Font downloader: listing the font directory 192

61. PostScript interpreter: another effect 193

Preface

The topic of this book is the application of Encapsulated PostScript (EPS) by Macintosh
and mM PC users. It addresses the Desktop Publishing user and the computer science
student by introducing the Encapsulated PostScript File (EPSF) format. In Chapter 2,
Short Introduction to PostScript, the reader gets a basic insight into the language, and the
book also presents some PostScript examples, two in color. Chapter 4, Mixing PostScript
Files forms the core of the book: it describes how text, graphics, and images may be
mixed at the PostScript level. In order to mix PostScript files from various sources, the
Encapsulated PostScript format serves as an interchange standard: EPS files may be
imported, e.g. by Aldus PageMaker, Xerox Ventura Publisher, or MS Word. The major
advantage to EPS files is that applications can import complex PostScript language­
encoded illustrations for printing without having to provide sophisticated graphics sup­
port.

The construction of the SWITCH logo is developed in five steps in Chapter 5, the five
programs are supplemented by structuring comments. In addition, some Macintosh and
PC programs which are producing the EPS code, are introduced: Adobe Illustrator, GEM
Artline, Corel Draw, Harvard Graphics. SmartArt, MC/PC View, and others. In Chapter
11, the latest version of Adobe's EPSF specification is presented.

The chronological order of PostScript development is as follows:

1976

1978

1982

1987

Development of the interpretive language 'Design System'
at the Evans & Sutherland Computer Corporation for com­
puter aided design applications. Resemblance to the
FORTH programming language.

Development of the language 'JaM' at Xerox for VLSI
design and graphics. Development of Interpress, the Xerox
printing protocol.

Adobe Systems Inc. is founded. Third implementation of
the language, called PostScript, as an interpretive graphics
language, describing two-dimensional printed pages. The
interpreter resides in controllers for raster printers.

The three companies Altsys, Aldus, and Adobe define the
Encapsulated PostScript (EPS) file format.

xvi Preface

mM adopts and supports PostScript.

1988 Adobe presents the screen version of PostScript, Display
PostScript, and Color PostScript.

PostScript® is a registered trademark of Adobe Systems Incorporated.

Other books on PostScript

This book is unique in that it concentrates on the mixing of PostScript files and the
PostScript-related Macintosh and PC programs. References to the personal computer are
especially pertinent since a Mac-like range of applications is now available for the mM
PC: e.g. PageMaker, MS Word, the graphics programs called Micrografx Designer and
Corel Draw under Windows, GEM Artline, or Harvard Graphics. Chapters and sections
on the following are particularly topical:

• Encapsulated PostScript Files (EPSF)
• Color Support with setcmykcolor (Chapter 3)
• The Macintosh applications Adobe Type Manager (ATM) and the Art Importer by

Altsys (in Chapter 7)
• EPS Effects by Emerald City Software - now Adobe Systems: SmartArt and

TypeAlign (in Chapter 4)
• EPSF Specification by Adobe, version 2.0

My previous book (published by Carl Hanser in 1988) presents a collection of 'real life'
PostScript examples. My favorite books are PostScript Language, Program Design
(green book), Adobe Systems Inc. (1988)[3], and Real World PostScript, Roth, Stephen
F. (1988)[16].

Thanks

Special thanks are due to my family and to Kurt Bauknecht, Teddy and Coni at the Com­
puting Center of the University of Zurich who gave me sufficient time to research and
write this book. Technical support, mainly in the form of (Encapsulated) PostScript files,
was provided by the following persons:

• Many computer users and computer science students at the University of Zurich,
Switzerland

• Thomas Guggi, UPCO Computer Systems, ZUrich, Switzerland
• Jean-Pierre Kousz, K+K Computertraining, Wallisellen-Ztirich, Switzerland
• Ludwig Bockh, IBM Labs, Boblingen-Stuttgart, Germany

Preface

• Olaf Pluta, Ruhr University Bochum, Germany
• Corien Niezing, Adobe Systems Europe, Amsterdam, The Netherlands
• John F. Sherman, University of Notre Dame, Indiana, USA

(many thanks for the LeamPS cards, John)
• Jim Von Ehr and Earl Allen, Altsys Corporation, Plano, Texas, USA
• James W. Rafferty, Cricket Software Inc., Malvern, Pennsylvania, USA

(now Creative Circuit Corp.)

xvii

Adobe Systems Inc., Mountain View CA and Amsterdam NL, gave permission for the
EPSF specification to be included in this book (Chapter 11).

1.

PostScript - A Publishing Standard

PostScript as a page description language

PostScript (from Adobe Systems) is an interpreted, stack-oriented language for describing,
in a device-independent fashion, the way in which pages can be composed of characters,
shapes, and digitized images in black and white, gray scale, or color. Concerning the
text/graphics field, PostScript is now the most widely used printer controller in the indus­
try. It gives computer users total control over text, graphics, color-separations, and
halftones.

The page description language recognizes a page that is created by the user, as a unity
and converts the elements of the page into control data for the output device. The print­
ing engine receives the control data in its own format and resolution. The resolution of
these control data amounts for instance to 300 dots per inch (dpi) on a page printer or
1000 dots per em on a typesetter. Today, PostScript compatible imagesetters are sold by
all manufacturers of typesetters.

PostScript language programs are used for communication between a software prod­
uct (PageMaker for instance) and a printing system, and enable the user to mix text,
graphics, and images from various sources.

Competftors

The competitors of PostScript are the Document Description Language (DDL), and main­
ly the new imaging models of Microsoft under OS/2, and that of Apple (QuickDraw).

DOL was two years behind the market leader and failed because of the adoption of
PostScript by mM. Today, even Hewlett-Packard- producer of the Laserjet- is using
PostScript. However, Hewlett-Packard recommends PostScript usage only for the 'top
end' of the applications, for instance, if typesetting is required.

Microsoft wants to make the Presentation Manager the standard imaging model for
displays and printers under OS/2. Presentation Manager includes a device-independent
graphics programming language called Graphics Programming Interface (GPI). A PC
magazine mentioned this single-imaging model may threaten Adobe's page description
language. The QMS PM-10 printer is equipped with the GPI language that is used by
Presentation Manager applications in order to display graphics. However, a new driver
for PostScript printers is included in OS/2 version 1.2.

2 Encapsulated PostScript

Likewise, Apple doesn't want to become dependent upon Adobe Systems Inc. and
extends its Color QuickDraw imaging model. The Macintosh system 7.0 contains outline
fonts which are freely resizable. In this case, the PostScript printers would be needed
only for some PostScript effects, for typesetting, and for the 1-MByte Macintosh that
masters the old screen fonts only. In late summer 1989, Apple announced it would use
the PostScript compatible interpreter from Microsoft for the LaserWriter, i.e. a Non­
Adobe PostScript clone.

Seybold (Oct. 9, 1989) reported:

'In exchange for the font technology, Microsoft will license to Apple the PostScript clone technolo­
gy it obtained when it acquired Bauer Technology earlier this spring. In fact, Microsoft now
intends to move aggressively into the output imaging technology business. Apple and Microsoft
will work to make the Microsoft PostScript with Apple Royal font technology (TrueType) the dom­
inant form of PostScript. With input and suggestions from Apple, Microsoft intends to extend and
enhance its PostScript implementation. By implication, this could well lead to two principal
PostScript development centers - Adobe and Microsoft - each promoting a somewhat different
form of PostScript.'

Imaging models and outline fonts in the nineties:

Competitors:
Apple

Font format True Type

Imaging model
screen QuickDraw
printer QuickDraw

2nd language
for printer PostScript*

* Non-Adobe PostScript (Bauer)
TrueType = Royal

Adobe Microsoft
NeXT OS/2 PM

Adobe True Type

Display
PostScript GPI
PostScript GPI

PostScript*

IBM Hewlett-
OS/2 PM Packard

Intelli-
Adobe font

GPI GPI
GPI PCL5

PostScript PostScript

1. PostScript- A Publishing Standard

Some typical PostScript effects

• Cubic curves (Bezier curves) and random-generated cubic curves
• Any color (e.g. 33% blue)
• Continuous color from light to dark (fountain)
• Saving the gray scales and color scales of images and modifying the halftone screen
• Broken point sizes (e.g. 9 1/4 point)
• Threshing and scaling types
• Rotating and/or slanting text and graphical objects
• Filling types with shadow or pattern, see Figure 1.
• Any line width of character outlines

A letter is treated as a graphical object and may undergo any graphical modification.

S-PS-PS-PS-PS-PS-PS-PS-P~
~t:l-PS-PS-nl"' nl"' nt:' 0~-P~

'-PS-PS- -P~
'-PS-PS- -P:
'-PS-PS-
'-PS-PS­
'-PS-PS­ p~
'-PS-PS- -P~
·-PS-PS-PS-PS-PS-P~
'-PS-PS- nf"' nf"' nc:_p~

'-PS-PS- ·P~
'-PS-PS- p_c
'-PS-PS-
'-PS-PS-
'-PS-PS-
'-PS-PS- PS
i-PS-PS-, "'-' v-r v-r.:>-PS

-t-lS-PS-PS-PS-PS-PS-PS-PS
,.....~ -- -- -- -- -- -" '"""'"

Figure 1 A PostScript effect

3

4 Encapsulated PostScript

Spotlight: Encapsulated PostScript (EPS) flies

In order to allow the inclusion of text, graphics, and images from various sources, the
EPS File format was defined by the three companies Aldus, Altsys, and Adobe. Encap­
sulated PostScript (EPS) files are always complete. There is no need of any further print­
er initializations, nor of downloading any prep files or additional PostScript prologues.

In order to support the WYSIWYG principle (What You See Is What You Get), the
PostScript file may be supplemented optionally by a bit-mapped screen representation.
This means, that the importing or embedding application can display the document at the
screen (preview facility) while using the PostScript program for printing or typesetting.
This mechanism guarantees the high quality of the illustration, but enables the user to see
and to scale an approximation at his or her screen.

The format of the screen representation:

Macintosh PICT format (QuickDraw)

IBM PC MS Windows MetaFile or TIFF (Tag Image File Format)

The well-known publishing programs capable of importing EPS files are Aldus Page­
Maker, Xerox Ventura Publisher, MS Word, Word Perfect, MS PowerPoint, Quark
XPress. and Ragtime from Germany. These support the WYSIWYG principle. The typi­
cal Macintosh user generates the EPS language code by using the FreeHand or Illustrator
'88 tools. Finally, the EPS file will be embedded by the PageMaker program: FreeHand
~ EPSF ~ PageMaker. The mM PC user will, on the other hand, generate the EPS lan­
guage code by using Corel Draw: Corel Draw~ EPSF ~Ventura Publisher. A differ­
ent IBM PC user may follow the route: Micrografx Designer~ EPSF ~ MS Word.

See Chapter 4 'Mixing PostScript Files'.
The Adobe publication Colophon No.5 recommended:

Prevent Headaches!
Use the remarkable EPSF!

to Import and Export PostScript Language Files.
Transport Text, Images, Graphics into or between applications.

Get both worlds:
Include a bit-mapped representation for screen previewing

and preserve the high quality of the original illustration for printing.

A user at North Carolina State University mailed the following statement to the Postscript
forum: 'EPS is very little different from standard PostScript code. It has additional
information embedded in comments at the top of the file that tell the program how big the
graphic is, etc., and it has its origin set to the comer of the graphic, rather than the comer
of the page. In Mac and IBM PC worlds, there are additional resources to allow the pro­
gram to display a bitmapped equivalent to the PostScript. Other than that, it is plain
vanilla PS code.'

I. PostScript- A Publishing Slandard 5

IBM recovers lost ground

Three American companies - their names all begin with the letter 'A' - first made Desk­
top or Electronic Publishing popular:

• The Apple company put the user-friendly Macintosh computer onto the market.
• The Aldus company invented the layout or page make-up program called PageMaker.
• Based on a Xerox printing protocol, Adobe Inc. developed the PostScript page

description language.

ffiM has accepted the challenge. Since 1988, IBM has offered a system for electronic or
desktop publishing. It consists of a Personal System/2, a color or monochrome screen,
the IBM mouse, the IBM 4216 page printer, and the PostScript adapter board. With the
help of PostScript, the output data of the PageMaker layout program are converted into
control commands for printers and typesetters. Unlike other systems, the conversion
doesn't occur inside the printer, but in an adapter board of the PS/2 or personal computer.
This may be both an advantage (internal data communication at high speed) and a disad­
vantage (networking impossible).

The Personal Page Printer II supports parallel communication, AppleTalk, and serial
RS232. It is network-capable and can cooperate with all computers, so with the ffiM PC,
PS/2 models, RT systems, and other computers including the Macintosh.

There also are low-cost solutions. An alternative is an IBM-compatible personal
computer together with the Xerox Ventura Publisher or MS Word software. This config­
uration is supplemented by a PostScript-compatible page printer, for instance from NEC,
QMS, Qume, Texas Instruments, or Fujitsu. A very low-cost solution is a LaserJet II
printer upgraded by the PacificPage cartridge or a LaserJet III upgraded by the HP Printer
Cartridge.

Let's follow a Laser Lovers discussion: 'Laser printer for IBM and MAC advise.
Hi... I am looking for the same info as Felix but have the following question. Can the HP
Laserjet ll (with lots of RAM) and a PostScript emulation cartridge act like the Apple
Laserwriter? Imran'

'Yes, for about $800, an HP LJ II with 2MByte RAM and, say, PacificPage would
essentially have the Apple LaserWriter Plus functionality. In fact, Pacific Data also has a
PS cartridge for the HP LJ liP. Hewlett Packard is expected to release their liP PS
firmware any day, now. Alternatively, for approximately $270, you could purchase
QMS's (Imagen) UltraScript PC Plus. This versatile software runs on MS-DOS or under
Windows. It interprets PostScript on the PC or PS/2 and can output to a large variety of
laser printers including HP LJ II and liP, ... Ed Garay, University of Illinois at Chicago'

IBM will supply all its publishing printers (e.g. the IBM LaserPrinter, IBM 4019)
with PostScript. For details of the PostScript interpreter on the IBM mainframe, see
Chapter 10.

6 Encapsulated PostScript

Types, typefonts, and typefaces

The PostScript font files are not labeled 'Encapsulated', because the above-mentioned
three companies defined the EPS files for describing illustrations only.

The first generation of PostScript printers and the Linotype typesetter - at the begin­
ning of 1987 - had built-in the following standard typefaces only: Times, Helvetica,
Courier, and Symbol, where, for instance, Times consists of a roman, an italic, a bold,
and a bold-italic font. 'Font' means all representative characters of one particular style of
a typeface, e.g. roman or bold. However, the Apple LaserWriter Plus had built-in 37
fonts and the Agfa P400PS LED printer did 66 fonts. PC users enjoyed the facility
choosing typefaces in any point size. This is supported by PostScript defining the fonts
'intelligently' as outline fonts, as opposed to bitmap fonts. Outline fonts are freely resiz­
able.

You can distinguish between PostScript Type 1 and Type 3 fonts. The Adobe Type l
fonts are encrypted- from the user viewpoint unfortunately! In addition, they have spe­
cial hints for improving the resolution of small sizes of type. The font designer provides
a set of instructions, known as hints, that will tell the computer how to modify character
outlines so they fit the grid of dots. Before the other manufacturers had built such hints
into their font descriptions the Adobe fonts were of better quality. However, other com­
panies such as Autologic, Bitstream, Compugraphic, Linotype, and Monotype have now
recovered the lost ground. An agreement between Adobe and Compugraphic, Monotype,
and Varityper has enabled these companies to use Adobe's font technology. Publication
of the Type I font format, scheduled for first quarter 1990, documents the encryption and
hinting of fonts. It is this specification that Adobe has held as a trade secret.

Downloadable fonts

Many companies offer downloadable fonts. These fonts aren't built-in inside a printer,
but must be downloaded as a PostScript language code into a page printer before usage.
When the printer is turned off, the downloaded fonts are discarded except for those fonts
saved on a built-in hard disk (Agfa, Linotype, Varityper, etc.). PostScript fonts are
offered by:

• Adobe,
• Berthold,
• Bitstream,
• Casady & Greene,
• Compugraphic,
• Letraset,
• LetterPress,
• Linotype,
• Monotype,
• Varityper, and many others.

An example of a downloadable font is shown in Figure 2.

1. PostScript- A Publishing Standard

Total memory:
239616
Memory used:
156455
Free memory:
83134

Figure 2 The Sonata font

7

8 Encapsulated PostScript

Both the IBM PC and Macintosh users may select such fonts in any point size, where the
resolution capability of the output device is always exploited to its maximum potential.
This means you always achieve the highest possible printing quality.

The advantage of the Bitstream fonts is that they may be used on a PostScript device
and a HP LaserJet printer. The numerous Bitstream fonts also operate on all PostScript­
compatible typesetters such as Linotronic, Varityper, and Compugraphic. The Bitstream
fonts are not encrypted, making the usage and operation easier.

Private users and some companies have developed and edit their own types on a per­
sonal computer by using the Fontographer, TypeStyler, LetraStudio programs (on Mac)
or by Publishers Typefoundry or Type Studio (on IBM PC) and transfer the PostScript file
onto a PostScript output device. See Chapter 7 'Constructing Your Own Characters'.

Screen fonts

The screen fonts are used for displaying the typefaces at the screen only; the true
PostScript outline fonts which are freely resizable are used for printing. To date, all
screen fonts have been coded in a bitmapped format and may be modified by a bitmap
font editor. Screen fonts for IBM PC computers are provided in two formats: Adobe
Binary Font (ABF) and Microsoft Windows (FON) format.

In September 89, MACUSER wrote: 'Since font outlines are so versatile, we should
abandon bit maps and use outline fonts for both screen and print.' US MicroLabs markets
FontSizer, a software that produces precisely sized bitmapped screen versions of any
PostScript outline font in sizes from 12 to 127 points. Provided you have access to a
PostScript printer, this scheme is inexpensive. True 'What You See Is What You Get'
solutions are·the Adobe Type Manager (ATM) and Apple's resizable outline fonts in the
Macintosh System 7 (TrueType). Concerning the font description, ATM is a kind of Dis­
play PostScript.

I. PostScript- A Publishing Standard 9

PostScript-compatible devices

The page printer market is growing rapidly. While in the year 1988, 451 ,000 devices
without or with PostScript were sold in Western Europe, the foreseen European market
volume for the year 1992 will amount to some 4500 million dollars.

Manufacturers of PostScript-capable devices

(Summer 1989):

• Agfa-Gevaert
• Apple Computer
• AST Research Inc.
• Autologic (typesetters)
• Canon
• Compugraphic (typesetters)
• Data General
• Dataproducts
• Diconix
• Digital Equipment Corporation DEC (Print Server)
• Fujitsu
• GCC Technologies
• General Computer
• Gestetner Lasers
• Hewlett-Packard (Printer Cartridge, JetScript)
• ffiM (Page Printer, Advanced Function Printing, AIX/Windows)
• Kyocera
• Laser Connection
• LaserTeam
• Linotype (typesetters)
• Matsushita (non-roman printer)
• Monotype Lasercomp (typesetters)
• NBI
• NEC Information Systems (non-roman printer)
• NeXT (display)
• Olivetti
• Panasonic
• QMS (Color PostScript, DIN A3 size)
• Quadram
• Qume
• Ricoh
• Scangraphic (typesetters)
• Schlumberger (Color PostScript)

10 Encapsulated PostScript

• Scitex (interpreter)
• Sun (Display PostScript clone)
• Tektronix (Color PostScript clone)
• Texas Instruments
• Unisys
• Varityper (typesetters)
• Wang

To date, the PostScript language has licensees in America, Australia, Europe, and Japan.

Page printers on your desk

A page printer heavily used by office staff should be placed near their work area.
Between Spring 1985 and December 1988 for instance, the University of Zurich installed
180 Apple LaserWriter and other PS page printers in offices and remote buildings. These
page printers are partly attached to small AppleTalk networks, and partly to the Uni
Zurich Local Area Network (LAN) with thousands of access tenninu:.> (Localnet 2000).
In the second case, the LaserWriter's are either attached to the local net Tbox directly or
to a printer port of a display terminal or personal computer connected with the LAN.
Four Apple LaserWriter's are supplied with coin slots for use by the public; these printers
are mainly used by students.

Attention: for practical reasons, a laser printer supplied with a magnetic card
reader or a coin slot must be controlled by a single workstation.

For a company or an academic institute whose buildings are scattered over a wide
area, the page printers of Apple, Qume, QMS, Texas Instruments, etc. allow distributed
printing close to work areas.

With regard to the LaserWriter II, the models II NT and II NTX only are PostScript­
capable. Apple has not supplied a low-cost model with PostScript. On the other hand,
the Hewlett-Packard company offers the well-known LaserJet printer with PostScript:
with the HP Printer Cartridge.

To date, there are dozens of PostScript page printer brands and PC adapter boards
(see Chapter 10). In July 1989, Apple announced it was developing its own PostScript
clone for the future LaserWriters. It will use the TrueType outline fonts. Apple said:

• NO to the Adobe fonts, but
• YES to the PostScript language and interpreter.

1. PostScript - A Publishing Standard 11

TypeseHers and large page printers

Today all manufacturers of typesetters sell PostScript-compatible imagesetters, Compu­
graphic for instance offers the CG 9400 PS with a resolution of up to 2400 dpi.

With regard to the University of Zurich, this institute operates a Linotronic 100 with a
Raster Image Processor (RIP = PostScript controller) and four large PostScript­
compatible printers by Agfa and Dataproducts. The old Linotype RIP 1, having an
AppleTalk and a serial interface, was connected to a LocalTalk net and the Localnet 2000
LAN, see Figure 3.

IBM VM/CMS
(via Serie/1)

PostScript
Code

Raster
Image

Processor

text-
entry

Bit-
map

Figure 3 Typesetter serially attached to the LAN

I

QIQ rolls
I

I
1 photopaper
I
I
I
I

v

12 Encapsulated PostScript

The RIP model 2 and model 3 additionally have a parallel and Ethernet interface. There­
fore, the RIP could also be attached to an mM PS/2 or connected to a TCP/IP network.

The four page printers mentioned are not attached to the LAN, but directly to the
mainframe. A Programmable Interface Translator (PIT) box handles the protocol conver­
sion and the EBCDIC-to-ASCll translation. This box and other protocol converters are
produced by the /NCAA company in Apeldoorn, the Netherlands. Today, mM has
implemented the PostScript language interpreter on the mainframe under the VM/CMS
and MVS operating systems, see Chapter 10.

Digital Equipment Corporation (DEC) offers a so-called Print Server: the PostScript­
compatible LPS40 printer may be connected directly to a local network of the Ethernet
and TCP/IP type and outputs up to 40 printed pages in the minute. Let's follow a Laser
Lovers discussion: 'The LPS20 Laserprinter from DEC seems an interesting printer.
According to its specification this printer has the following abilities: a) Postscript
(300dpi) b) can print paper on both sides c) uses A4 AND A3 (size of two A4's) paper
d) can be hooked up to DECnet and/or TCP/IP (network printer). Despite these nice fea­
tures, I would like to get some extra information from people using this printer (and not
from the people selling it). Regarding b) Is it possible to print both sides of an A3?'

'Yes. This printer can print duplex for all supported paper sizes (letter, legal, 10xl4,
llxl7, 12xl7, 12x10 1/8, ledger, executive, half-letter, A3, A4, A5, B4, B5) John
Gaffney by Adobe Systems Incorporated.'

While the Agfa printer (made in Europe) achieves a resolution of 400 dpi, the Vari­
typer page printer prints on regular paper sheets with a resolution of 600 dpi. The A3
size is supported by Dataproducts, Fujitsu, QMS, and others.

Color printers

Since 1988, the QMS, Oce, and Tektronix companies offer PostScript compatible
thermal-transfer color printers. The QMS ColorScript 100 has an external PostScript
controller and the thermal transfer color engine. The printer can save and output an
A3-sized PostScript page in color. Tektronix sells the Phaser thermal color printer
which can be attached to the Macintosh and the PC. The most important applications are
the production of overhead slides and color proofing.

The companies Sharp. Colorocs Corp., and Kodak announced four-color laser print­
ers. The availability of real color laser printers or ink jet printers is desirable because the
consumables are much cheaper than with a thermal transfer printer.

The output of the thermal transfer printers and of other color printers may be used as
color proofs, but unfortunately not as camera-ready copy. In order to produce colored
publications in large quantity, printing houses use color separations. See Chapter 3 'Col­
or Support'.

The color PostScript devices are supported by many applications: e.g. on the Macin­
tosh by:

1. PostScript- A Publishing Standard 13

• Illustration graphics programs: Adobe Illustrator, FreeHand
• Layout programs: PageMaker, Quark XPress, RagTime, MS Word
• Presentation programs: MS PowerPoint, Persuasion, DeltaGraph, More II;

and on the IBM PC by:

• Illustration graphics programs: GEM Artline, Corel Draw, Illustrator PC, Micrografx
Designer, Diagraph Windows

• Layout programs: PageMaker, Ventura Publisher, MS Word, Word Perfect
• Presentation programs: Xerox Presents, Mirage.

The application of color is particularly important in the area of Desktop Presentation.

Scanners

A scanner reads images, photographs and drawings into the computer. Many scanners
can produce the EPS File format beside other formats (for instance the scanners of Agfa,
Datacopy, IBM, and Sharp). A scanned image is coded hexadecimal, every 8 bits are
represented as hex. XX, see Chapter 8.

Adobe evaluated the possibility of a participation with Caere in California in order to
develop their own scanner that could generate the PostScript language code in the vector
format (as opposed to the bitmap format). The solution would relate Caere's OCR tech­
nology with the 'auto trace' tool of Adobe Illustrator.

PostScript at the display

The Display PostScript system is an extension to the standard PostScript language inter­
preter originally developed for use on printers and typesetters. Now, printers and dis­
plays could have the same imaging model. The system allows the image on the screen to
correspond to the text and graphics printed on a PostScript printer. Display PostScript
offers the benefit of seeing on the screen exactly what will be printed later. IBM incorpo­
rated the Display PostScript system into its AIX operating system (UNIX).

The NeXT workstation (by Steve Jobs) included the Display PostScript system as an
integral part of its operating system environment. The computer from NeXT was the first
computer to use the Display PostScript imaging model. The NeXT Window Server is
responsible for all the images that are 'drawn' on the screen. It has a built-in PostScript
interpreter through which an application draws to the screen just as it does to the printer.
As a result, the NeXT system delivers to the industry promise of true WYSIWYG. The
display version of PostScript would also fit into other windowing systems, for instance
Microsoft Windows or X/Windows.

The Sun stations are able to interpret the PostScript code directly and to output the
document at the screen (under the NeWS windowing system); Sun developed a Display
PostScript clone.

14 Encapsulated PostScript

In October 1988, the MACWORLD magazine asked the president of Aldus, Paul
Brainerd, the following question: 'Will you make a version of PageMaker that would
work with PostScript as a display language?' His answer: 'Display PostScript is very
important because it eliminates the difference between the screen and the printed result.
In fact I think all of our customers would want Display PostScript if it were free. But, of
course it's not free. If it were to cost $300 there would be wide acceptance of it as a dis­
play model; at $1500, it would probably interest only 15 percent of the people who use
our products. If a third party were to implement a PostScript display controller board, we
could quickly revise our software to take advantage of that.'

The Adobe Type Manager (ATM)

After Apple's announcement to supply QuickDraw with outline fonts, Adobe reacted by
shipping the Type Manager. This software displays PostScript fonts at the Macintosh or
OS/2 screen sharply and can output them onto non-PostScript printers. It is possible to
scale the Adobe fonts to any size on your display and on non-PostScript printers. This
means, one no longer needs to have many bit-mapped screen fonts.

The A TM package includes the outline fonts you need to generate high-quality type
in various sizes and styles for Times, Helvetica, Courier, and Symbol typefaces. You can
add more typefaces, including Kanji. The Hewlett-Packard DeskWriter is among the
Non-PostScript printers the Adobe Type Manager works with. Enhancements in the
A TM version 1.2 software include improved character spacing when printing from appli­
cations that don't support fractional widths (including MS Word 4.0 with the Image Writ­
er).

Emulating and cloning PostScript

When you have created or generated a PostScript file and saved it on disk. you can use
any software emulator or emulator program.

GoScript by LaserGo is a DOS program to print PostScript files onto low-cost laser
and matrix printers, e.g. HP LaserJet, Canon LBP-8, Epson, Toshiba, ProPrinter, NEC.
It enables the user to output documents created by MS Word, PageMaker, or Ventura
Publisher onto the LaserJet or a LaserJet-compatible printer. A German PC magazine
titled in August 1989: 'PostScript for the Business Class: an Alternative to the
1 0,000-DM printer'.

A similar program is Freedom of Press 2.0, that gains in that it can output onto color
printers. The Kagema company wrote: 'With Freedom of Press, you may print
PostScript files onto non-PostScript color printers, such as HP-PaintJet or NEC P6. And
even more: color information is rendered with corresponding gray scales, and Freedom of
Press does make color separations on laser printers ... ' The version 2.2 of this emulation
program supports the Adobe and Linotype fonts. The package contains 35 UR W fonts;

1. PostScript- A Publishing Standard 15

in addition, PostScript Type 3 fonts (Bitstream, URW, LetterPress, etc.) and Type l
fonts (Adobe, Linotype, Monotype, etc.) are supported by the new Freedom of Press ver­
sion.

The Ultrascript PostScript emulation of QMS/Imagen runs on the Atari and the IBM
PC. Ultrascript consists of two parts: the interpreter itself and a GEM user interface.

PostPrint by Teletypesetting is a PostScript emulator and - as the Freedom of Press
competitor - can output PostScript files from the Macintosh onto printers such as HP
LaserJet, DeskJet, and matrix printers, but also onto typesetters.

Generally, the software emulators run rather slowly.

PostScript interpreter

Generally, a PostScript interpreter consumes and processes the PostScript language pro­
grams; it resides inside either a printer or a workstation. A PostScript clone is an non­
Adobe interpreter. There are more and more PostScript interpreters that don't come from
Adobe.

Phoenix Technologies of Norwood, Massachusetts, developed PhoenixPage, a soft­
ware package that not only provides a PostScript interpreter, but also handles such tasks
as print spooling, queuing, networking, and other functions. PhoenixPage can be
installed on any number of UNIX workstations to tum them into PostScript print servers.

LaserJet cartridge for PC users: when you plug a PacificPage cartridge into a Laser­
Jet II, the printer is transformed into a PostScript printer. The brain of the cartridge is its
PhoenixPage PostScript interpreter. In BYTE magazine in January 1990 titled PostScript
in the palm of your hand, Howard Eglowstein wrote 'I recommend that anyone with a
Laser Jet and an occasional need for PostScript take a close look at PacificPage'.

The Conographic company produces a PostScript clone in the shape of a PC adapter
card. The clone is called Conodesk 6000 and controls the low-cost Canon print engine.

Some clones can't cooperate with the licensed Adobe typefonts, as long as the Type l
fonts are encrypted. Anyway, the use of downloadable fonts from Bitstream, Casady &
Greene, etc. is possible without problems.

Books, reports, magazines ...

With the help of Adobe's page description language, various kinds of documents have
been produced to date:

• Many books published in America and Europe since 1985, for instance a textbook on
statistics (Oldenbourg, Munich), two books containing phonetical characters (Fretz,
Zurich and Vita e Pensiero UCSC, Milan), a textbook on software technology (Carl
Hanser, Munich), and this EPS book you are reading published by Prentice Hall, etc.

• Numerous reports and papers, for example a report of the Swiss department for for­
eign affairs.

16 Encapsulated PostScript

• Countless presentation foils (overhead slides), and so on.
• In Sweden for example, all Volvo manuals are produced with the PostScript language.

With regard to the PostScript-capable printers and typesetters, images are partly generat­
ed synthetically from databases or information systems, and partly generated by scanners.
The IBM scanner is capable of generating files in the Encapsulated PostScript File for­
mat.

The press In USA and Europe

PostScript helps in producing the master copies for printing magazines and newspapers.
In America, much of the press has joined the PostScript language camp, for example the
Senior Art Director for Technology of The New York Times. Newsweek, The Wall Street
Journal, The Washington Post and USA Today also use the new technology. Karl Gude,
Director of Graphics, The Associated Press, said: 'Adobe's PostScript software has
brought high quality computer generated camera-ready artwork to the newspaper industry
in a very cost-effective manner.'

In France, there is no newspaper with a circulation of more than 100,000 copies that
doesn't employ PostScript in any form, primarily for graphics. An example is the
Agence France Presse press agency producing up-to-date graphics and maps by Mac­
Draw II and Adobe Illustrator. In the United Kingdom and France, the publishing pro­
gram called Quark XPress which is used to make up a number of magazines into pages,
e.g. Science et Vie Micro, Profession Politique, Politis, and the Mineur de France union
magazine, is quite popular. Many English newspapers, such as The Independent, are
using Macintosh computers.

Using PostScript at universHies

The University of Zurich is one example only of an institution using the PostScript lan­
guage as a standard. Not only academic institutes (e.g. University of Augsburg in Ger­
many, Reading University in England, Lund in Sweden, Berne in Switzerland)- but also
companies and other institutions may derive profit from implementing this language.

The computing center and the 'word processing' task force of the University of
Zurich decided in 1985 to adopt the PostScript language as an output standard.

The computing center at the University of Zurich operates:

• Two mainframes (IBM and Hitachi) with the IBM VM/CMS and MVS operating sys­
tems with JES.

• Together with the Swiss Institute of Technology, the Zurich Academic Local Area
Network with more than 8000 access points, see Figure 4. Most personal computers
and terminals are connected to the broadband LAN by adapter T -boxes of the Local­
net 2000 brand.

• A PC information center, a walk-in center, and a 'hot line' phone number for the PC
users.

1. PostScript- A Publishing Standard

ZURICH ACADEMIC LOCAL AREA NETWORK

ETHZ

University of Zurich UNIZ and
Swiss Federal Institute of Technology ETHZ

Switzerland

D

July87draw
H.Gaba1hulor

Figure 4 Zurich Academic Local Area Network (LAN)

17

18 Encapsulated PostScript

The decision of the computing center proved correct; in 1985 however that decision was
accompanied by uncertainty and risk.

Adobe advertises PostScript with the following statement (December 1988): 'The
wide-spread confirmation of the PostScript language by producers, developers, and users
made PostScript the final industry standard for page description languages.' While
PostScript succeeded with the high-quality output devices, the competition to find the
right imaging model for driving displays still goes on.

Electronic publishing software

A multitude of software components are used, not only at the University of Zurich, but
also in many other places (e.g. Augsburg, Reading, Lund, Berne), for electronic or desk­
top publishing. They are all able to generate the PostScript language code. Programs can
be run on personal computers, workstations, midi computers, and mainframes.

Under UNIX

Under VM/CMS

Under MVS

PC software

Framemaker of Frame Technology on the Sun stations,
Technical Publishing Software of Interleaf; PrePress for col­
or separations (OPI =Open Prepress Interface).
NeXT station software such as WriteNow, TextArt and Top­
Draw.
Device independent Troff with tbl (for tables), eqn (mathe­
matical equations), and pic (line graphics); the PostScript
driver from Adobe is called Transcript.

Knuth's T EX of ArborText, Script with the Generalized
Markup Language (GML).

DCF/Script from ffiM; graphics packages Tellagraf and Dis­
spla from Computer Associates, Statistical Analysis System
SAS/GRAPH, see Figure 5.
Troll from the Massachusetts Institute of Technology,
National Algorithms Group NAG and Versaplot subroutine
libraries.

MS Word, MS Chart, CA-CricketDraw, Aldus PageMaker,
DesignStudio, RagTime, Adobe Illustrator, FreeHand, CA­
Cricket Presents, Canvas, Adobe Photoshop, Fontographer,
Mathematica (Wolfram Research), HyperCard, see Figure 6
(resolution 72 dots/inch).
Under DOS also MS Word, Word Perfect, ffiM PC Text4,
Xerox Ventura Publisher, Aldus PageMaker, Troff, TEX.
Xerox Presents, MS Chart, Autocad, Lotus 123.

I . .PostScript- A Publishing Standard

19

-0.33

Figure s SASIGRAJ>u: a cowboy hat

20 Encapsulated PostScript

Figure 6 HyperCard: tiger

Drivers

Concerning the PC software, it is a fact that nearly any word processing, graphics, layout,
or presentation program can generate the PostScript language code. This concerns both
the Macintosh and the ffiM PC platform. By using DCA Image, PC Text4 documents
may be printed in the PostScript format. There are thousands of PostScript-compatible
PC programs.

The users of the Advanced Function Printing (AFP) system have the option of print­
ing their PostScript documents onto a range of ffiM output devices under MVS and
VM/CMS. This function is made available by a PostScript interpreter implemented on
the ffiM mainframe. ffiM Manual: ffiM Publishing Systems - PostScript Interpreter for
Advanced Function Printing, Users Guide, SC34-5082-00, see Chapter 10.

ffiM, SAS, and Computer Associates brought up the PostScript support for DCF/
Script, SAS/Graph, Tellagraf, and Disspla. Under VM/CMS, MVS, and DOS, the Uni­
versity of Zurich constructed print procedures, named PRINTDOC, to output ordinary
text listings onto PostScript devices. Such conversion programs are offered by DEC and
others.

Adobe offers the Transcript program for Troff and device independent Troff users
under UNIX. Brian Bezanson of Adobe replied in the Laser Lovers list on the 'Sun386i
~ Laserwriter with/out Transcript?' subject:

I. PostScript - A Publishing Standard 21

'Transcript is designed as a set of translation filters from one fonnat or another to PostScript. The

enscript filter converts text files to PostScript and sends them to the printer. We also modify lpr to

look at the file being printed, if it's ASCII, we do a simple translation to PostScript and then send

the file to the printer, if it's a PostScript file- denoted by a'%!' as the first two characters of the

first line, we send it down as straight PostScript. First, Adobe wrote Transcript and Sun is one

OEM - you can call Adobe and get it for less (800/344-8335). You don't need Transcript to use a

PostScript printer on a Unix machine if your applications create PostScript files and will send them

to the printer, but if you need to print text files, Troff, Ditroff, Unix plot, Diablo 630, or Tektronix
4014 files, and don't have a conversion program -Transcript is really nice to have.'

The PostScript driver for T EX is named DV/2PS and originates from Arbortext in Ann
Arbor; the electronic mail address: BwB at Arbortext.Com. The drivers for the mM
mainframe may be copied over the European Academic and Research Network EARN/
Bitnet in Heidelberg Germany, the fileserver is LISTSERV at DHDURZI. For ffiM PC
users, there is a driver from the University of Utah; the electronic mail address is Beebe
at Science.Utah.edu.

What you see Is what you get

The degree of 'easiness to learn to use' depends mainly on the software used. The user
interface of the NeXT station, of the Macintosh and its programs (for instance Aldus
PageMaker, Quark XPress, FreeHand), but also PageMaker, Corel Draw, and MS Word
under MS Windows gain. The WYSIWYG principle applied for the most part (What
You See Is What You Get) has proved to have some advantages over the abstract logic of
the Troff, T EX, and Script formatting programs.

Some graphics may be programmed by using the 'native' PostScript language- a fas­
cinating but demanding and time consuming activity. The Chapter 2 of this book gives a
basic insight into programming with the PostScript language. Some application programs
offer a so called PostScript window, e.g. MS Word, Freehand, ReadySetGo, CA­
CricketDraw, and Corel Draw. According to the application, the PostScript window is
called the PostScript paragraph, PostScript fill pattern, PostScript text block, or similar.
Inside this window, the user may specify his or her own PostScript commands or write
small PostScript programs. It enables the user to perform special PostScript effects, e.g.
altering a logo-type, creating new weights, expanding or condensing a type, making drop
shadows. But the lion's share of the PostScript code is generated by the application auto­
matically, i.e. by the driver. In most cases, the user need not be concerned with program­
ming in PostScript.

The highest possible image fidelity between display and output is achieved by using
Display PostScript, limited only by the resolution of the screen and the memory of the
computer.

22 Encapsulated PostScript

Benefits of using PostScript

The main benefit for the University of Zurich lies in having a universal output format
which allows users to mix text. graphics, and images. Many other companies have stan­
dardized on the PostScript language, e.g. Volvo, Northern Telecom or Shearson Lehmann
Hutton. The integration of text and graphics becomes a reality. For example: on a Mac­
intosh or IBM PC, a line graphics figure is made with Adobe Illustrator or Corel Draw
(see Chapter 6), then the PostScript file is transferred to the mainframe system. Now the
figure can be embedded into a Script or Markup document - without cut and paste. Thus,
PostScript is not only a page description language, but also serves as an interchange stan­
dard. Encapsulated PostScript (EPS) is particularly suited to interchanging, see Chapter 4
and Chapter 11. This style of document preparation combines the benefits of personal
computers (user interface, graphical input) and the mainframe (disk space, databases).

In addition, graphics in the PostScript language format need less disk and memory
space - in contrast to bitmapped and raster graphics - and do not stress the Uni Zurich
LAN unduly. It is recommended several different output devices are used. A first draft
may be produced on a small page printer connected to the LAN, a central LED printer
may be used for producing the complete and final output. In order to produce high­
quality publications, the computing center operates a typesetter (non-profit service) that
outputs bromide paper, negative film or positive film.

Some companies plan to store documents, illustrations, and logos in databases. Many
companies would be happy if they could access machine-readable versions of their logos,
preferably in the Encapsulated PostScript File format and not just in the bitmap or raster
format. A company logo stored in that way may be embedded into a PageMaker or Ven­
tura Publisher document; but the logo might also adorn a letter written with the help of a
word processing program such as MS Word or Word Perfect. Therefore, Encapsulated
PostScript is also a format for describing and storing high-quality graphics and logos.

The following clip-art collections are published in the EPS File format:

• Collector's Edition I by Adobe Systems
• ClickArt by T/Maker (for NeXT)
• Digit-Art by LetterPress
• Images with Impact! by 3G Graphics
• Cliptures by Dream Maker
• Works of Art by Springboard Software
• ArtClips by 0/duvai Corp.
• Vivid Impressions by Casady & Greene, and many others.

1. PostScript- A Publishing Standard 23

Problems

It is often remarked that PostScript works too slowly. However, you must distinguish
between text with many point sizes, text with one or two point sizes, and graphics and
images. With regard to the rendering of images, the performance of the raster image pro­
cessor (RIP) is improved with each revision. In the future, PostScript Level 2 will
increase performance in several ways. 'Reduced Instruction Set Computer' (RISC) is the
main way forward.

Adobe PostScript devices are expensive, this fact must not be hidden! Because each
system contains a high-performance microprocessor to operate the interpreter and
because Adobe earns licenses from every item sold, PostScript devices are in the top
price bracket. However, Agfa-Compugraphic shows that the prices of the PostScript­
compatible typesetters can come down. With regard to the high prices, there is another
counter-argument: although it may be cheaper to buy a non-PostScript printer you may
spend hundreds of additional dollars. installing all the required bitmap fonts.

Qume 's CrystalPrint Publisher and Fortis DP600P are among the PostScript clones
to deliver on the faster-but-cheaper basis. The internal instructions of a RISC processor
are streamlined for improved performance. In 1990, the situation becomes even better.
The LaserJet II printer upgraded by the Pacific Page cartridge and the Laser Jet III upgrad­
ed by the HP Printer Cartridge are very low-cost solutions.

Future

To conclude, the more PostScript is used in the publishing world, the more important it
becomes. IBM, having already established de{acto standards, is supporting Display
PostScript and will supply all its publishing printers (e.g. the mM LaserPrinter, IBM
4019) with PostScript and the Adobe font technology.

PostScript Level 2 is the first major new release of PostScript software since it was
introduced over five years ago. Adobe developed PostScript Level 2 based on input from
its customers. PostScript Level 2 contains a number of performance enhancements, is
easier for software developers to use, and adds important new functionality. In addition
to consolidating recent extensions to the PostScript language, PostScript Level 2 includes
such new features as extended color support and support for forms and patterns.

Making slides

The bitmapping method for describing fonts is not yet satisfactory. It is desirable there­
fore that some producers should implement the Color PostScript language. Of the
recorder manufacturers, the Agfa subsidiary Matrix (ProColor, SlideWriter, PCR, QCR)
signed a licensing agreement with Adobe. The RIP comes standard with AppleTalk,
Centronics parallel and RS232 connectors, and 73 Adobe PostScript fonts. Concerning

24 Encapsulated PostScript

the other film recorders. PostScript implementation is a question of licensing. The prices
of the devices with a PostScript controller will rise, however.

The use of the Freedom of Press, MacRIP, or RIP-It emulator is a low-cost alternative
to the PostScript RIP (Raster Image Processor) solution.

High-resolution fax

To date, the resolution of fax transmission is low. resulting in quite mediocre copies.
GammaLink introduces the first PostScript support for PC-to-fax transmissions. called
GammaScript. This program allows GammaFax users to create presentation quality faxes
using the thousands of application programs that support the PostScript page description
language. The GammaScript software takes the output from any program that supports
PostScript and translates it into a fax format file, with the help of the PostScript inter­
preter licensed from QMS.

Also Adobe is working on a high-resolution fax technology.

Japanese, Chinese, etc.

In order to support character sets such as Kanji, Adobe extended the PostScript language
to provide two additional features: the ability to specify two sets of character metrics
(writing directions) for a character, and the ability to build hierarchical composite fonts
from normal (base) fonts. The font dictionary is extended by the WMode (Writing Mode)
key: for most fonts a value of 0 indicates a horizontal writing mode (from left to right),
and 1 indicates a vertical writing mode. In addition, a Composite Font is a collection of
base fonts which are organized in a hierarchical fashion. Composite fonts support char­
acter sets with thousands of graphical symbols.

The LaserWriter II NTX-A or NTX-J contains a large number of Chinese fonts.

Display PostScript

Adobe tried hard to gain important manufacturers for Display PostScript. DEC, NeXT
(Steve Jobs), and mM decided in favor of Display PostScript, but Apple and Microsoft
against! ffiM incorporated Display PostScript in the AIX UNIX system, AIX/Windows
and Nextstep. The system allows the image on the screen to correspond to the text and
graphics printed on a PostScript printer.

UNIX: the Open System Foundation decided to develop a Unix on the basis of
MACH, the Unix version of the NeXT computer. Now the 'battle' is being fought over
the right single-imaging model for displays and printers.

In the future, Apple will push the QuickDraw imaging model with the TrueType out­
line fonts. But the Macintosh user still has the opportunity to use the Adobe Type Man­
ager (ATM) that represents some kind of Display PostScript (at least concerning the font
description). On other platforms, Display PostScript is operational. Sun was the frrst
developer to implement a Display PostScript clone.

2.

Short Introduction to PostScript

The page description language serves as an interface between an application program and
a printing subsystem. Normally, the PostScript language code is generated by a driver
program, e.g. by the Presentation Manager, MS Windows, Adobe Illustrator, PageMaker,
Xerox Ventura Publisher, or GEM Artline. However, PostScript can be generated by the
end-user as well as a piece of a Lisp or C program.

Short comparison between PostScript and C

Let's take the first program from the C book by Kernighan and Ritchie:

main()
{

printf("hello, world\n");

This program prints the character string

hello, world

and makes a final line feed to the beginning of the next line. When you try to translate
this program into PostScript, it may look as follows:

%!
/Courier findfont 10 scalefont setfont

0 100 rnoveto
(hello, world) show
0 88 moveto

showpage

At frrst glance, you cannot find much similarity between the two. This is because
PostScript is a graphical programming language. You have to specify how the character
string will be printed:

26 Encapsulated PostScript

I. In which typeface (Courier).
2. In which point size (10).
3. At which starting position or coordinate point respectively (0 100 moveto means

move 0 points to the right and 100 points up from the lower left comer of the paper
sheet).

In addition, we program the line feed (\n) by doing a vertical motion downwards (0 88
moveto).

Before printing the character string, we could assign it to a string variable:

/charstring (hello, world) def
charstring show

The stack: last in, first out

In the command line

1 0 0 setrgbcolor

setrgbcolor is the operator, while the operands consist of the three numbers. The setrgb­
color operator sets the current color parameter in the graphics state to a color described
by the operands red, green, and blue, each of which must be a number in the range 0 to 1.
The example establishes the red color used subsequently to paint shapes such as lines,
areas, and characters on the current page.

PostScript is a stack-oriented programming language. The stack is a storage area
available to a program in order to store objects temporarily. The PostScript operators
take their operands from the stack and put the results in the stack as well. The LIFO prin­
ciple (Last In, First Out) is valid. The object pushed to last in the stack, is popped out
first.

PostScript uses the postfix notation. For instance:

10 10 moveto

The two operands stay at the left hand side of the operator.

10 10 moveto 100 100 lineto

is equivalent to:

100 100 10 10 moveto lineto

The move to operator takes the two 1 0' s, because these are pushed onto the stack last.
10 means 10 typographical points= 10n2 inch. 10 10 moveto makes a movement to

the position (1 0, 1 0) in the coordinate system. The origin of the coordinate system is
placed at the lower left comer of the paper sheet. With 100 100 lineto we are defining a
line from the current position (10,10) to the new position (100,100).

2. Short Introduction to PostScript 27

By doing this, you have not yet drawn a stroke, merely constructed a path.
The LeamPS tutorial by John F. Sherman, shown in Figure 7, gives some moveto

examples:

1······· ···-; , ·'···· !. ·' ..
1 ~ j

···········:·---····:··· ·······:-·········:···········:-··

:!::t ::::~::,
:·······+ ·····-+··· ··· ··

= :l:=i: =~= L

........... ! :! : .. ! . . j

·"········J j l ·······r··········J··
i : ···········:········· ··i··· ···· ···T··········

: :

. .

-~: .. ::r.:.·_·:·:··:·:::·:::l··:·:·::.:::·:::.:·:::·j_:·
: : : ~

·-·····- ·····················-r--···-··.L.. , ..
........................

i : :
: :

'
0,0 o,o 0,0

216 72

Sample moveto commands 0,0 is the origin
The drawing action or type placement would begin at this point

Figure 7 LeamPS moveto examples

Calculating and counting with PostScript

gives

70 90 add 2 div

(70 + 90) = 80.
2

For the computation of the arithmetic mean, you could define an equation:

/mean { add 2 div } def

Now, the equation is called up by saying:

70 90 mean

The PostScript interpreter puts the resulting 80 onto the stack.
Variables also may be defined:

/x 100 def

28

Now, you may increment the value of the x variable by 1:

/x x 1 add def

Encapsulated PostScript

In the following example, we use the number variable as a counter. Each time the count­
er reaches 5, we are performing a certain action (show) and reset the counter to zero.

/number 0 def % counter
/@m { moveto

/number number 1 add def
number 5 ge % greater/equal to 5 ?
{gsave

(XXX) show
/number 0 def

grestore} if
} def

ge (greater or equal) is a relational operator. Similar operators are eq (equal), ne (not
equal), gt (greater than), /e (less or equal), It (less than), and so on.

In the example, the @m routine is defined. Such a routine may be used by a driver
program to enumerate each fifth output line of a book text, see Figure 8.

Manipulating the stack

Most PostScript programs use operators to manipulate the stack. The dup operator
duplicates the top-most object. The exch operator interchanges two objects, i.e. the two
upper objects. The pop operator takes an object from the stack and discards it. Summa­
ry:

dup duplicates top element

exch exchanges top two elements

pop discards top element

copy duplicates top n elements

index duplicates arbitrary element

roll rolls n elements

clear discards all elements

count counts elements on stack

mark pushes a mark onto the stack

2. Short Introduction to PostScript

What Is Electronic Mail?

Subject: Wanted: Help with apples and
nuts.

A month or so ago, a program was
5 posted to the net to convert a number of

apples into a number of nuts.
Unfortunately, my computer couldn't
find the result. After a fair amount of
hacking, I found (empirically) the

10 appropriate conversion factor between
the apples and the nuts. This took a bit of
black magic and the sacrifice of a
reasonably large amount of paper. I also
modified the program to (a) create

15 (scaleable) nuts (b) take these nuts and
produce more on demand. This. (almost)
worked correctly. My one remaining
problem is that, since the program appear
use the relative positioning method, the

20 program needs to know about apple
weight information ...

Has anyone out there done this
already and have any pointers on this?
Thanks in advance. Bill Winterfeld.

Figure 8 Numbering text lines

29

30

Equation for computation of the tangents:

/tan { dup sin exch cos div } def

Let's invoke this equation:

30 tan % calling

1. The operand first is duplicated: 30 30.

Encapsulated PostScript

2. The sin operand takes the upper 30 and gives back 0.5 as the result. Current state of
the stack: 30 0.5.

3. exch interchanges the two objects: 0.5 30.
4. Now, the cos operator is in action, resulting in the following contents of the stack:

0.5 0.866.
5. Finally, the div operator divides 0.5 by 0.866:

~=0.577
0.866

As the final result, the stack contains the 0.577 value.

Flow control and loops

The PostScript language offers some operators to control the program flow, for instance
if, ifelse,for, repeat, /oop,fora/1.

The if operator executes something conditionally, dependent upon the value of a com­
parison.

/product load (Linotype) eq
{ } if

This example checks whether the output device is a Linotype typesetter or not. The load
operator searches the dictionary for the product key and returns the associated value.

The ifelse operator is an extension of if:

number 5 ge
{ ... Code A ... } { ... Code B ... }
ifelse

If the condition holds true (number>= 5} the Code A is executed, otherwise Code B is
executed.

In the program loop

1 1 7 { ... corpus delicti ... } for

2. Short Introduction to PostScript 31

the 'corpus delicti' is executed seven times. The for operator presents a value at each
pass of the loop, in the example I to 7 incremented by I. The meaning of the operands of
the for operator:

1
1
7
{ . . . } for

Even simpler is repeat:

% starting counter value
% increment
% end value of counter

5 { ... corpus delicti ... } repeat

The PostScript code between the braces is executed five times. (See the example in
Chapter 3 'Color Support')

The forall operator enumerates all elements of an array:

vektor

for all

The number of elements of vektor determines how many times the code between the
braces is executed. In the following example, you initialize the array with four elements:

/vektor 4 array def
836 7117 919 257 vektor astore

Often used PostScript operators

Before text can be printed the typefont and the point size must be known. For that, you
are using the findfont scalefont setfont sequence. Example:

/Times-Roman findfont 24 scalefont setfont

We choose the regular Times font in the 24 point size. Here, size means the height of the
typeface body (body is the old term). The LeamPS tutorial by John F. Sherman clarifies
point size terminology, see Figure 9. Most PostScript typefonts have characters of pro­
portional width. Only the Courier, Letter Gothic, and other typewriter fonts have equal­
width characters.

The show operator prints character strings or words in the current font selected by the
setfont operator. The current position is shifted to the right according to the character
output.

144 144 moveto
(Type) show

32

baseline

point size

Figure 9 Point size (by LeamPS)

Encapsulated PostScript

Those of you familiar with

typo9raphy can see that type is
set up in a familiar way. The

point size is the measurement a

bit above the Cap hei9ht to a bit

below the descender.

Type can be printed using a

PostScript program that is
similar to the one used to draw
the square earlie r in this

tutorial.

Followi n11 is a basic type
pl acement prog ram.

The widthshow operator additionally does expand the spacing between the words. Many
drivers use the widthshow operator to justi fy the right margin (fix page layout).

3 0 32 (space between word and word) widthshow

The number 32 holds for the blank character (ASCII blank), of which the width has to be
enlarged by 3 points.

Finally, the showpage operator outputs the current page by as many copies as the
#copies variable specifies:

/#copies 3 def
showpage

You bracket (encapsulate) a single program segment by issuing the gsave - grestore
operator pair in order to avoid the unwanted impact of the script on other parts of the doc­
ument. The grestore operator restores that graphics state (current position, color, font,
line width, ...), which was valid at the time of the gsave call.

2. Short Introduction to PostScript 33

An exercise in word processing

How can numbers be printed ranged right? Although PostScript isn't a formatting pro­
gram you can use the PostScript language to program some basic word processing func­
tions.

In order to print a column of numbers ranged right, you must take the following steps:

• Convert the number into a character string (cvs)
In order to print a numeric value, the value has to be converted into a character string.
The number variable is numeric, while str is a string variable.

• Determine the width of the character string (stringwidth)
The stringwidth operator returns two elements onto the stack, of which only the width
interests you (the other element is discarded by the pop operator).

o Execute the movement to the left (rmoveto)
The size of the movement to the left corresponds to the width of the string; this value,
being still on the stack, is made negative so that the rmoveto operator effects a move­
ment to the left. The neg 0 rmoveto code makes a relative motion going from the
current position; the first operand gives the (horizontal) x-coordinate (in the example
negative), the second operand does the (vertical) y-coordinate (in the example 0).

• Print the character string (show)
The content of str, i.e. the number in the form of a string, is printed.

%!PS-Adobe
% small exercise for newcomers
%%DocumentFonts: Times-Roman
%%Title: exercise.ps

/Times-Roman findfont 32 scalefont setfont
100 100 translate
newpath 0 400 moveto % position

34

/number 7 def
/str 5 string def

7 {

I number number 1 add
0 -32 rmoveto

gsave
number str cvs
stringwidth pop

neg 0 rmoveto
str show
grestore

repeat

showpage

%%Trailer

Encapsulated PostScript

% counter
% character string

def % count
% new line

% convert number
% width of string
% motion to the left
% print

% loop

If you write down this exercise and download the file onto a PostScript-compatible print­
er, the loop is called up seven times. The numbers '8' to '14' are printed one below the
other, where both the single-digit and the double-digit number are ranged right. See Fig­
ure 10.

8
9

10
11
12
13
14

Figure 10 The result of the exercise

2. Short Introduction to PostScript 35

Graphics state

One further remark on the usage of the gsave/grestore operator pair: if you do not encap­
sulate the cvs/show segment with gsave and grestore, the printed numbers will not be
arranged one below the other, but shifted to the right, see Figure II. The reason is that
the gsave/grestore pair always resets the current position to the beginning of the output
line. The current position- as the current path, the current font, the current color, and so
on - belongs to the graphics state. The gsave operator saves the graphics state (path,
position, color, ...). The grestore operator restores the previously saved graphics state.

8
9

10
11

12
13

14
Figure 11 The result of the exercise without gsave/grestore

Don't be disturbed if you not yet know all operators used in the example, for instance
translate and others are discussed later.

36 Encapsulated PostScript

The PostScript character set

The character set used in PostScript programs is the printable ASCII character set (96
characters), including the tabulator and newline characters:

! "#$%&I (}*+I- • /0123456789: i <=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A_
'abcdefghijklmnopqrstuvwxyz{ 1}-

The % sign introduces a PostScript comment. All characters up to the line end are treated
as comment and discarded by the PostScript interpreter.

Character strings have to be specified between parentheses:

(the quick brown fox)

The brackets mark an array, i.e. a one-dimensional matrix:

[(United Kingdom) (Eire) . . . (France) (Germany)]

Procedures are specified between braces:

{ xO neg yO neg translate

The neg operator multiplies its operand by -1.
Special characters- including the German 'umlauts' a, o, ii and the French symbols e,

e, a,~- are written as '\nnn'. Example Andre or ZUrich:

(Andr\202) (Z \2 0 lrich)

The slash'/' has another meaning:

/Position { xO neg yO neg translate } def

The slash introduces a literal name. The interpreter does not yet execute Position, but
pushes this object on the operand stack. The whole command line defines a procedure
named Position. The procedure and its name are stored within a user dictionary in the
printer memory and can be called upon any number of times in a PostScript program.
Whenever Position is addressed, the operation between the braces is performed.

It is advisable to avoid using non-printable characters such as end-of-file (control-d)
in a PostScript program.

2. Short Introduction to PostScript 37

The dictionary

PostScript offers the usual elements of a higher programming language, as data types
(simple variables, arrays, strings) and control facilities (conditions, loops, procedures).
Furthermore, PostScript supports associative tables, named dictionaries, allowing clear
and error-free programming.

A dictionary is a table whose elements are pairs of PostScript objects (number, string,
name, operator, ...). We call the first element of a pair the 'key' and the second element
the 'value'. The language includes operators inserting a key-value pair into a dictionary,
operators looking up a key and fetching the associated value, and so on. For instance,
put, get, load belong to these operators:

put

get

load

length

diet

associate a key with a value in the dictionary

get a value associated with a key in the dictionary

search dictionary stack for a key and return the associated
value

number of key-value pairs in the dictionary

create new dictionary

Usually, a key is the name of a variable or a procedure, for instance Max or rectangle,
while the value consists of a number or a procedure body. However, a font dictionary
associates the names of the characters with the procedures for drawing those character
shapes.

When the interpreter seeks to execute a name object, it first searches for the key in the
current dictionary. If the key isn't there, the interpreter searches the next lower dictio­
nary on the dictionary stack. This continues until either it finds the key or it exhausts the
dictionary stack. In the last case the interpreter issues an undefined error message.

Special dictionaries are systemdict, userdict, statusdict, and errordict. The systemdict
dictionary is always the bottommost dictionary on the dictionary stack; it associates the
names of all PostScript operators with their values (implementations).

When for instance you call the quit operator in systemdict the printer is restarted with­
out the need of manually powering it off and on again.

%!File: Reset.ps
systemdict begin quit

The begin operator pushes a dictionary onto the dictionary stack.
The statusdict dictionary is the repository for machine- and configuration-dependent

operators and values in most implementations of the PostScript interpreter, for instance
setdostartpage, setpapertray.

PostScript experts characterize the understanding of the dictionary philosophy as 'the
royal road to PostScript mastery'.

38 Encapsulated PostScript

Using dictionaries

This allows redefinition of any PostScript operator by using the user dictionary or your
own dictionary. Example:

% userdict:
/showpage { } def % durrunying

If no dictionary is specified the interpreter puts the definitions into userdict.

% your own dictionary:
/mydict 11 diet def
mydict begin

/bd { bind def } bind def

end

In order to build your own font you have to use a font dictionary:

% font dictionary:
/ExampleFont 12 diet def
ExampleFont begin

/FontType 3 def % your own font

end

CharacterDefs
/BuildChar

{ . . . } def

The error handling may also be redefined:

% errordict:
errordict begin

/handleerror
{ . . . } def

end

% definitions of types

% mandatory

In the real world, not only is error handling redefined but also operators such as copypage
and erasepage.

2. Short Introduction to PostScript 39

The PostScript program structure

The PostScript language standard does not specify the overall structure of a PostScript
program. For a PostScript program that is a page description (i.e., a description of a
printable document), it is advantageous to impose an overall program structure.

I. It is recommended that a page description consists of a prolog with the definitions
and a script that describes the elements of the page.

2. A script of a multi-page document is organized as a sequence of independent single­
page descriptions, bracketed by save - restore operators. These operators do save
and restore the current state of the virtual memory in the printing system.

The occurrence of the character '%' signifies a comment. When the show page operator
is specified after the restore operator, #copies of the printed page are output.

%!PS-Adobe-1.0
%%Creator: Peter
%%Title: typesetter independent troff
%%Pages: 2
%%DocurnentFonts: Helvetica Helvetica-Bold
%%BoundingBox: 0 0 612 792
%%EndCornrnents
/#copies 1 def

... prologue
/rn /rnoveto load def
Is /show load def

%%EndProlog

%%Page: 1 1
/saveobj save def

. . . page script
saveobj restore
showpage

%%Page: 2 2
/saveobj save def

. . . page script
saveobj restore
showpage
%%Trailer

% defining a motion
% defining a string output

% defining

40 Encapsulated PostScript

The user coordinate system

The coordinate system of the PostScript user is determined by the horizontal x-axis and
the vertical y-axis. The units are typographical points (approximately 1n2 inch); the
influence of the graphics arts industry is apparent. Normally, the origin lies at the lower
left comer of the paper sheet. The greater the x-value, the more to the right the position;
the greater they-value, the higher the position. The user may modify his coordinate sys­
tem by issuing the translate, scale, and rotate operators.

The translate, scale, and rotate PostScript operators are based on the so-called Cur­
rent Transformation Matrix(= CTM =current state). Now any required translation of the
origin, a magnification, a reduction, or a rotation of the coordinate system can be
achieved. The result is a new Current Transformation Matrix. Such a transformation
may be applied to any graphical object, it is therefore well suited for a PostScript file to
be embedded into a document (see next page).

The translate operator translates the origin of the coordinate system, and scale
rescales the x- and y-axes of the coordinate system, see Figure 12.

0 0 translate 1 1 scale

160 0 translate 2 1 scale

Figure 12 Playing with a cactus

Sections of a page can be geometrically transformed independently of each other.

2. Short Introduction to PostScript 41

Embedding a PostScript file

The following PostScript operators demonstrate the inclusion of a graphic, i.e. the im­
porting of a PostScript file.

%!PS-Adobe
%%Title: Including
%%EndComments
% PostScript code of main document

save % save state
%%BeginFile

33 200 translate % translate origin
.7 .7 scale %reduce size

% PostScript code of the included graphics

%%EndFile
restore % restore saved state

%the main document continues ...

%%Trailer

Because of the save/restore construct, the translation of the origin and the scaling are
valid for the imported graphics only, not for the whole page or even the whole document.
Without save/restore all following elements of the page would be moved to the right by
33 points and raised by 200 points, and the rest of the page or even of the document
would be scaled down.

The rotate operator may be called up in three ways:

1. At the beginning of the PostScript file before the first page description. The conse­
quence is that the whole document is rotated and printed landscape.

2. At the beginning of a page description. The consequence is that a whole page is
rotated and printed landscape.

3. Inside the save/restore construct of an imported PostScript file. The consequence is
that only the embedded graphic is rotated.

There is a similar situation when applying the translate, scale, and clip operators.

42 Encapsulated PostScript

SeHing characters and words

The findfont operator localizes the font dictionary containing the descriptions of the
required Korinna typefaces. The slash identifies the font name. The sca/efont operator
sets the point size, i.e. the size of the letters. PostScript doesn't limit the point size, theo­
retically the font may be as big as Lake Geneva.

The setfont operator makes the specified font and size the current font and size.
The show operator prints letter by letter in the current font and size, see Figure 13.

The PostScript programmer has to specify the letters to print between parentheses. If you
don't want the letters black, or gray, but wish to stroke the type outlines only, then you
have to issue:

(EPSF) true charpath stroke

instead of (EPSF) show.
The showpage operator at last outputs the printed paper sheet.

%!PS-Adobe
%%DocurnentFonts: Korinna-Regular
%%Title: t¥pe.ps

/K /Korinna-Regular findfont def
%%EndProlog

100 100 translate
20 rotate % rotate the whole page by 20

K 72 scalefont setfont

% type setting:
72 216 rnoveto
0.9 setgray
(EPSF) show

72 144 rnoveto
0.5 setgray
(EPSF) show

72 72 rnoveto
0.2 setgray
(EPSF) show

showpage
%%Trailer

% 10% gray

% 50% gray

% 80% gray

2. Short Introduction to PostScript 43

The %%DocumentFonts information is useful to utility programs that may need to down­
load special fonts to a PostScript printer before sending the document.

Figure 13 Setting the 'EPSF' characters

Line graphics with an ellipse

The most simple form of graphic is the line graphic. The elements of line graphics are
lines and curves (lineto, rlineto, arc, curveto). The lines may be stroked, dashed, or dot­
ted. The curves are either a kind of spline (Bezier, cubic curves) or arc, see the LeamPS
tutorial arc example, Figure 14.

The imaging model distinguishes two proceeding steps or levels respectively:

1. Constructing a path (line, arc, etc.) with newpath and lineto, arc The maximum
number of points specified in all active path descriptions is 1500. If the interpreter
attempts to perform an operation that would exceed that limit, it executes the limit­
check error.

2. Stroking the path with stroke.

44 Encapsulated PostScript

180 180 is the center.

1 08 is the rodi u,.

45 is the beginning point.

270 is the ending point.

ore is the PostScript

Figure 14 LeamPS arc example

The movements can be partitioned into the moveto and rmoveto operators. The differ­
ence lies in that moveto is based on absolute coordinates (distance measured from the
origin), while rmoveto is based on relative coordinates (distance measured from the cur­
rent position).

Note how the ellipse is defined (xrad yrad scale and 0 0 1 0 360 arc): the routine
makes a circle and scales the x-axis in a different way to they-axis! The current transfor­
mation matrix is saved first (currentmatrix) and restored afterwards (setmatrix). The cur­
rentmatrix operator fills the specified matrix with the current transformation matrix,
while setmatrix replaces the current transformation matrix with the specified matrix.

A page can be represented by a set of procedures. And hence, libraries of procedures
may facilitate construction of a compact page description.

The example here draws an ellipse with arrows, see Figure 15.
Note, where the %%EndPrnlng comment marks the end of the defining part and the

beginning of the document script. The script addresses both plain PostScript operators
and operators defined in the prologue.

2. Short Introduction to PostScript

Figure 15 Ellipse with arrows

%!PS-Adobe-1.0
%%Creator: Andre and Peter
%%CreationDate: 5 Sept 1989
%%Title: line graphics with an ellipse
%%BoundingBox: 94 678 420 770
%%For: EPS Book
%%EndConunents

/mtrx matrix def
/drawe % ellipse
{ /yrad exch def

/xrad exch def
/y exch def
/x exch def
newpath
/savematrix mtrx currentmatrix def
x y translate
xrad yrad scale
0 0 1 0 360 arc
savematrix setmatrix
stroke
def

/dw { setlinewidth } def
/dn { newpath } def
/da { newpath arc stroke } def % arc
/de { newpath 0 360 arc stroke } def
/dr { rlineto } def % line
Ids { stroke } def

45

46

%%EndProlog
save

.6 dw dn

Encapsulated PostScript

94.4 723 . 7 moveto 92 . 6 0 dr 168 .5 719 . 1 moveto
18.5 4.6 dr 168.5 728.3 moveto 18 . 5 - 4.6 dr ds
256 .4 723 . 7 69.4 46.2 drawe % drawing ellipse
dn 325.8 723.7 moveto 92 . 6 0 dr 399 . 9 719 .1 moveto
18.5 4.6 dr 399 .9 728 .3 moveto 18.5 -4.6 dr ds
restore

showpage
%%Trailer

Cubic curves or Bezier curves

As you know, quality graphics often contain cubic or Bezier curves. For constructing
those, the use of the curveto or rcw ·veto PostScript operator is required. The LearnPS
tutorial by John F. Sherman gives the curveto example as shown in Figure 16:

--- -L --~'.':': T' '""
i 116100 +
! '
: ' -------.. -"-'l~:~:::t~"
' !

00 !

72 72 moveto
tOO 28 t t6 t to t44 72 curveto
stroke s howpage

Figure 16 LeamPS curveto example

72 72 mov~to utablishes a current

point .

Th~ t wo Bezi~r cubic cont r o I points

100 28 and 116 100 geometr ically

describe the c ur ve.

1 44 72 is where the curve ~nds

and is t he new current point .

The next two cards show more

complex e xamples of the curvet o

command. These were dra wn with

the aid of Fontographer which

2. Short Introduction to PostScript 47

The syntax of curveto is:

x1 y1 x2 y2 x3 y3 curveto

Here, the segment going from the current position (X,Y) to the point (x3,y3) using the
points (xl,yl) and (x2,y2) as the Bezier control points, is added to the current path. Hav­
ing constructed the curve, the operator makes (x3,y3) become the new current point. The
rcurveto operator functions similarly, however the points are not specified in absolute
coordinates but in relative coordinates (relative to the current position):

dx1 dy1 dx2 dy2 dx3 dy3 rcurveto

The whole example consists of five varied paths, see Figure 17. Every path contains a
straight line segment that in the first and second case flows into a cubic curve. The sec­
ond path consists of three segments and has the following shape:

400 625 lineto
470.2 625 514 666 578 652 curveto
611.9 644.6 627 633 650 598 curveto

--------------------------~-

Figure 17 Cubic or Bezier curves

48 Encapsulated PostScript

Here too, the two-level 'imaging model' is involved. After the paths are constructed they
may be painted with black or gray ink by using the stroke operator.

An applied ink is opaque and overlays any object below it. All painting or inking
operations are dependent on the graphics state: in the example, we are specifying a line
width of 3 points and a color of 90% gray.

Remember that the percent sign (%) at the beginning of an input line introduces a
PostScript comment that will be discarded by the PostScript interpreter.

%!PS-Adobe-1.0
%%Title: Cubic Curves
%%BoundingBox: 0 200 325 452
%%Creator: John F Sherman
%%CreationDate: 5 Sept 1989
%%EndCornrnents

/ern {28.346456 rnul} def
%%EndProlog

save
0.5 0.5 scale
3 setlinewidth .1 setgray

0 700 rnoveto % first path:
250 700 lineto
280 700 318.4 710.1 316 740 curveto
313.6 769.5 271.6 784.6 246 770 curveto
218 754 228 708 194 708 curveto
175.1 708 158 728 166 748 curveto
177.1 775.9 206.8 758.9 226 776 curveto
252.2 799.4 239.4 833 264 858 curveto
305.7 900.3 357.2 903.2 414 886 curveto
480 866 484 798 554 778 curve to
596.4 765.9 632 792 644 848 curveto
654.7 898.2 626 902 616 880 curveto
stroke

2. Short Introduction to PostScript

0 625 rnoveto % 2nd path:
400 625 lineto
470.2 625 514 666 578 652 curveto
611.9 644.6 627 633 650 598 curveto
stroke

% and the three last paths:
0 550 rnoveto 500 0 rlineto stroke
0 475 rnoveto 500 0 rlineto stroke
0 400 rnoveto 500 0 rlineto stroke

restore
showpage
%%Trailer

49

Note the %%BoundingBox comment. The bounding box encloses all the marks painted
as a result of executing this program. All four values must be integers and represent the
coordinates of the lower left and upper right comers of the bounding box in the default
user coordinate system. Because of the scale operator, the lower left comer isn't located
at the 0 400 position, but at 0 400/2, i.e. 0 200. The upper right comer of the bounding
box is at the 324 452 position.

The BoundingBox information is of use to composition applications that incorporate
this document into a larger one as an included illustration.

Virtual memory management

You noted the use of the save- restore operator pair. First, these operators encapsulate
the graphics representation; any unwanted impact on other parts of the document is can­
celled. Second, having executed the restore operator, the PostScript printer frees the
memory area from occupation by the composite objects, the definitions, and the routines.
The importing applications usually apply this method of memory management. It is a
question of the virtual memory available in addition to the interpreter stacks and the
1-MByte page storage. The downloadable fonts too are stored in the virtual memory.

Various line widths

We begin by defining the em variable for representing centimeters because the basic units
in the coordinate system are typographical points (approximately 1n2 inch). The rectan­
gle procedure may be self-explanatory: it builds the path for drawing a rectangle.

The line width may be set by the setlinewidth operator and modified by scaling the
coordinate system (scale). In the example, the line width of the innermost rectangle
amounts to 1/10 em; that's 1 millimeter. In the second pass through the loop the multipli-

50 Encapsulated PostScript

cation is 1/10 by 2 em, in the third pass 1/10 by 3 em, etc. All in all, the for loop is exe­
cuted five times, see Figure 18.

In this example too, you are using the known gsave grestore operator pair inside the
loop. As already mentioned - this operator pair saves and restores the graphics state.
Without gsave and grestore you couldn't use the scale operator in that way since the
magnifications would be added cumulatively.

%!PS-Adobe
%%Creator: Adobe Systems Inc.
%%EndComments

/em {28.346456 mul} def % centimeter

/rectangle % routine
{newpath

1 .. 666 moveto -1 .. 666 lineto
-1. -.666 lineto 1. -.666 lineto

closepath
} def
%%EndProlog

gsave
10 em 13 em translate
1 10 div setlinewidth % set to 1/10
1 1 5 % loop from 1 to 5

{gsave
em dup scale
rectangle

% multiply

stroke
grestore
} for % end of loop

grestore

% one additional call:
10 ern 5 em translate
1 10 div setlinewidth
5 em dup scale
rectangle
stroke

showpage
%%Trailer

% multiply
% set to 1/10

2. Short Introduction to PostScript 51

D

Figure 18 Setting and modifying the line width

52 Encapsulated PostScript

A grid in centimeters

The grid is a special type of line art. A PostScript program such as printgrid makes visi­
ble the printing area of any printer on the paper sheet (e.g. A4 size). Note: since this
book is smaller than A4, Figure 19 was scaled down.

Again, we begin by defining the em variable for representing centimeters because the
basic units in the coordinate system are typographical points (approximately 1n2 inch).
0 setlinewidth means the lines are stroked in the smallest possible width (dependent upon
the output device). The result looks quite good on the laser printer, but when outputing
onto the typesetter, the line width may create surprise since such strokes are nearly invisi­
ble.

In the first program segment the centimeter grid is stroked, in the second program
block the half-centimeter grid, and in the third program segment the millimeter grid.

The altogether six for loops are bracketed in each case by braces. The meaning of the
operands of the for operator:

0 ern
1 ern
20 ern

% starting value
% increment
% end value

{ ... for

For comparison in the C programming language:

for (i=O; i<=20; i++) { . . . } ;

In the first path through the first for loop, the following operators are executed:

0 ern -0.1 em rnoveto
0 ern 27.1 ern lineto % vertical stroke

In the last path through the second for loop, the following operators are performed:

-0.1 em 27 ern rnoveto
20.1 ern 27 ern lineto % horizontal stroke

Notice how the setdash operator defines the mm-dashes: always 1-mm dashes with 9
mm spacing.

[0.1 ern 0.9 ern] 0 ern setdash %dashed

Here, the complete program example follows:

2. Short Introduction to PostScript

%!PS-Adobe-1.0 EPS
%%Title: grid.ps
%%BoundingBox: 0 0 595 839
%%DocurnentFonts: Courier
%%Creator: Andre and Peter
%%CreationDate: 5 Sept 1989
%%For: EPS Book
%%EndConunents

/printgrid {
/ern { 28.346456 rnul } def
0 setlinewidth
/Courier findfont 10 scalefont setfont

newpath
/str 2 string def
/number 0 def
0 ern 1 ern 20 ern {

dup
-0.1 ern rnoveto
27.1 ern lineto
number str cvs
-6 3 rmoveto
str show

% vertical stroke

% write down numbers
/number number 1 add def

for % end of loop

/str 2 string def
/number 0 def
0 em 1 ern 27 em

dup
-0.1 ern exch rnoveto
20.1 em exch lineto
number str cvs
3 -3 rrnoveto

% horizontal stroke

str show % write down numbers
/number number 1 add def

for % end of loop

stroke

53

% end of first program segment drawing the em strokes

54 Encapsulated PostScript

Remember, the dup operator duplicates the top element on the operand stack, while the
exch operator exchanges the top two elements.

newpath
0.5 em 1 em 19.5 em {

dup
0 em moveto
27 em lineto

for % end of loop

0.5 em 1 ern 26.5 em
dup
0 em exch moveto
20 em exch lineto

for % end of loop

stroke

% vertical stroke

% horizontal stroke

[0.1 em 0.9 ern] 0 em setdash %dashed
newpath

0.1 ern 0.1 em 19.9 em {
dup
-0.05 ern moveto
27.05 ern lineto

for % end of loop

0.1 ern 0.1 em 27 em {
dup
-0.05 ern exch moveto
20.05 ern exch lineto

for % end of loop

stroke
} def
%%EndProlog

% calling printgrid:
printgrid showpage
%%Trailer

% dashes

% dashes

Regarding the display of the centimeters, you again had to convert the values into charac­
ter strings (number str cvs). The number variable is numeric, str is a string variable. Sub­
sequently the show operator printed out the character string.

2. Short Introduction to PostScript 55

2 6 10 11 12 13 14 15 16 17 19 19 20
27

I I

26
I

25

24
I I

:
I I 23

I
I

I I 22

I
21

I : I I 20
I 1

I
I I I i

19

I
19

17

I
I I

16

I
! I

15

I

I
14

I I

i I : i
I 13

: I

I
12

! i

I
11

I I 10

i I

I I
I
I
I
I

I
I !

I

i i I
i -T

l-l :._f__ i-1- 3

: -i :
I

i I
! I

i :
-4-->-- I i 0

Figure 19 Grid in centimeters

3.

Color Support

PostScript-compatible color devices

As mentioned in Chapter 1 -the QMS and Tektronix companies offer PostScript compat­
ible thermal transfer color printers. The QMS ColorScript 100 has an external
PostScript controller and the thermal transfer color engine. The printer can save and out­
put an A3-sized PostScript page in color. Tektronix sells the Phaser thermal color print­
er, which can be attached to the Macintosh and the PC. The most important applications
are the production of overhead projection originals and color proofing.

The companies Sharp, Colorocs Corp., and Kodak have announced four-color laser
printers. There is a market for real color laser or ink jet printers, since the consumables
are much cheaper than with the thermal transfer color printers. The first company to
equip a film recorder with Color PostScript is Matrix, an Agfa-owned company.

Color PostScript devices are supported by many applications. E.g. on the Macintosh
by:

• Illustrator and FreeHand
• PageMaker/PrePrint, MS Word, Quark XPress, and RagTime
• MS PowerPoint, Persuasion, DeltaGraph, and More II

E.g. on the ffiM PC by:

• PageMaker and Ventura Publisher
• MS Word and Word Perfect
• Illustrator PC, Micrografx Designer, GEM Artline, Corel Draw, and Diagraph Win-

dows
• Xerox Presents and Mirage

Again, anyone who wishes can write Color PostScript language programs for him or her­
self!

3. Color Support 57

The colored circles

When you have made a closed path, you are able to fill the area with a color (area fill ing).
This is achieved by the combination of the setcmykcolor and fill operators. You construct
overlapping circles by applying different colors to the seven areas, see Figure 20.

Figure 20 Circles with overlapping areas

The four setcmykcolor operands have to lie in the range from 0 to I . The first operand
specifies the cyan component, the second the magenta component, the third the yellow
component, and the fourth the black component. Red may be generated by

0 1 1 0 setcmykco1or

The requirement for using setcmykcolor is simply access to a PostScript device which is
able to print the colors. However, a black-and-while printer wi ll generate equivalent gray
shades. See Plate l . 1 0 1 0 setcmykcolor generates green.

58

%!PS-Adobe
%%BoundingBox: 100 100 316 316
%%Title: cmyk.ps
%%EndComments

Encapsulated PostScript

% cyan-magenta-yellow-black color model

%%EndProlog

100 100 translate

newpath
108 144 72 0 360 arc
1 0 0 0 setcmykcolor
fill

144 72 72 0 360 arc
0 1 0 0 setcmykcolor
fill

72 72 72 0 360 arc
0 0 1 0 setcmykcolor
fill

% two-color areas:
newpath
72 72 72 300 60 arc
144 72 72 120 240 arc
0 1 1 0 setcmykcolor
fill

newpath
72 72 72 0 120 arc
108 144 72 180 300 arc
1 0 1 0 setcmykcolor
fill

newpath
144 72 72 60 180 arc
108 144 72 240 360 arc
1 1 0 0 setcmykcolor
fill

% cyan

% magenta

% yellow

% yellow+magenta

% yellow+cyan

% magenta+cyan

3. Color Support

% the black area:
newpath % yellow+magenta+cyan=black
72 72 72 0 60 arc
144 72 72 120 180 arc
108 144 72 240 300 arc
0 0 0 1 setcmykcolor
fill

showpage

%%Trailer

59

The PostScript language not only supports the subtractive CMYK color model, but also
the additive RGB model. The corresponding operator is called setrgbco/or. The three
letters stand for: R = red, G = green, B = blue. RGB examples:

0 0 0 setrgbcolor
1 0 0 setrgbcolor
1 1 0 setrgbcolor

Characters in various reds

% gives black
% gives red
% gives yellow

The character of any word may be rotated (rotate), resized, made bigger, smaller. thicker,
thiner, colored (setrgbcolorlsetcmykcolor), brighter, gray (setgray), and so on. Also, the
character may be combined with other characters or graphics and/or underlayed/
overlayed by images.

In the example here, you first define the rotation/oop routine to be called up five
times by the repeat operator:

5 { rotationloop } repeat

You save the graphics state (gsave) at the beginning of each pass and you restore the
original graphics state (grestore) at the end of each pass. To the graphics state - an
important PostScript idea- the following PostScript objects belong:

• The so-called Current Transformation Matrix (origin, scaling, and rotation of the
coordinate system)

• The current clipping region
• The current color and the current gray level
• The current position and the current path
• The current typefont
• The current flatness
• The current line width, etc.

60 Encapsulated PostScript

If you omit the gsave grestore operators in rotationloop, you would be forced to reset the
current position at each pass.

With regard to the colors, at each pass the following PostScript operator is called up:

level 0 0 setrgbcolor % red green blue components

While zeroing the green and blue components, we use the red components 0.8, 0.65, 0.5,
0.35, and 0.2.

Also, by using the level variable, we specify the gray level:

level setgray

This has the following impact: the more red, the less gray - and vice versa; 1 setgray
doesn't mean black, but white. See Plate 2.

The %%BoundingBox, %%DocumentFonts, and %%EndProlog structuring com-
ments are provided too. The %%EndProlog comment shows where the script begins:

%!PS-Adobe-1.0
%%BoundingBox: 72 190 612 684
%%DocumentFonts: Times-Bolditalic
%%Creator: Richard and Peter
%%CreationDate: 5 Sept. 1989
%%For: EPS Book
%%EndComments

/inch {72 mul} def
/rotangle 90 def
/rotoffset 22.5 def
/level .8 def

/logosetup

% red component

{ (Times-Bolditalic) findfont
[110 0 0 110 0 0] makefont setfont
} def

/point {0 0 moveto} def % starting position

3. Color Support

/rotationloop
{gsave
rotangle rotate
level setgray % gray level
level 0 0 setrgbcolor % red green blue colors

(PostScript) show

/rotangle rot angle % make the
rotoffset sub def % a little

/level level % reducing
.15 sub def % a little
grestore} def

/logorot
{gsave

2 inch 3 inch translate
logosetup
point
5 {rotationloop} repeat

grestore} def
%%EndProlog

logo rot
showpage
%%Trailer

rotation angle
bit smaller

the red color
bit

% user origin

61

The following equations demonstrate the relationship between the RGB and CMYK color
specifications. Since cyan is the absence of red light,

cyan= 1.0 - red

Similarly,

magenta 1.0 - green

and

yellow 1.0 - blue

62 Encapsulated PostScript

PostScript extensions

The earlier versions of the PostScript language support color using the setrgbcolor and
sethsbcolor operators, which enable the PostScript interpreter to paint filled regions,
strokes, image masks, and characters in color. On black-and-white machines, these oper­
ators generate an equivalent gray shade, which is printed or displayed.

To support color more fully, the PostScript language was extended to provide the fol­
lowing functions:

• The CMYK color model: the setcmykcolor operator allows the user to set the current
color in the graphics state to a cyan-magenta-yellow-black color directly. Steve Roth
recommends this color input, because the color correction can be bypassed.

• Multiple color images: the colorimage operator renders a multiple color image. Its
functions are analogous to the image operator, every 8 bits are represented as hex.
XX. colorimage uses red-green-blue (RGB) or cyan-magenta-yellow-black (CMYK)
color input.

• Halftone screen definitions: the setcolorscreen operator specifies halftone screen
definitions- frequency and angle- for red, green, blue, and gray, or cyan, magenta,
yellow, and black. It is the logical expansion of setscreen and takes the same three
operands for each printing ink.

• Color correction: the setcolortransfer operator sets the transfer function parameters
for red, green, blue, and gray. It is an expansion of settransfer to four color compo­
nents. Furthermore, the setblackgeneration and setundercolorremoval operators are
new (black is added as a component).

The PostScript language supports one-color, three-color, and four-color output devices.
The color devices can be of two types:

• Binary: one-bit-per-pixel for each color component- typically printers
• Gray-scale: multiple-bits-per-pixel for each color component

A binary device uses halftoning to produce intermediate shades of its color components.
If a device has eight-bits-per-pixel for a component, it is called a 'full gray scale' device
that does not use halftoning.

Three-color devices may be either red-green-blue (ROB)- typically for displays and
film recorders- or cyan-magenta-yellow (CMY)- typically printers. Four-color devices
are cyan-magenta-yellow-black (CMYK) for color printers and color separation making
devices.

3. Color Support 63

Color separations

The output of the thermal transfer printers and of the other color printers may be used as
color proofs, but unfortunately not as camera-ready copy. In order to produce long run
color print products, color separations for cyan, magenta, yellow and black must be
made, prior to the platemaking process. A highly accurate typesetter with a resolution of
1000 pixel/em is required. The PostScript language may assist the production of color
separations.

It is stressed here that the setcmykcolor operator may be redefined four times in a sim­
ple manner:

% cyan separation:
/setcrnykcolor

{ pop pop pop 1 exch sub setgray }
def

% magenta separation:
/setcrnykcolor

{ pop pop exch pop 1 exch sub setgray }
def

% yellow separation:
/setcrnykcolor

{ pop 3 1 roll pop pop 1 exch sub setgray }
def

% black separation:
/setcrnykcolor

{ 4 1 roll pop pop pop 1 exch sub setgray }
def

For each color separation, we use the setgray operator setting the current gray scale. The
value of the operand has to lie between 0 (black) and 1 (white). The three other color
components are discarded or 'destroyed' by the pop operator.

In the real world, the processing is much more complicated. For each process color,
the screen dots have to be arranged at a different angle and in such a way as to prevent
the appearance of disturbing moire patterns. The choice of the right screening angle is
dependent on the print production techniques being employed, the material and the
experience of the operator.

Many graphics and publishing programs offer a color separation, for instance Page­
Maker with PrePrint, FreeHand, LaserPaint Color II, Quark XPress, PixelPaint Profes­
sional, PhotoMac, ColorStudio, SpectrePrint; GEM Artline, Micrografx Designer, Corel
Draw, Xenografics Mirage, PrePress, and Hell's ScriptMaster.

64 Encapsulated PostScript

Open Prepress Interface (OPI)

The Open Prepress Interface (OPI) is an extension to the PostScript printer controller
from Aldus. It was shown that essential data are lost when translating designed pages
into the PostScript language. Pages coded in PostScript may be modified or corrected in
a limited way only. Important information such as position, clipping area, scaling factor,
or rotating angle of color images are no longer available in the PostScript language file.

As with each programming language, PostScript offers the option to generate com­
ments. Comments are special information marked e.g. by the '%' sign in PostScript.
However, the comments are ignored by the PostScript interpreter. They are quite useful
in OPI. Aldus defined special OPI commands for all the image information required, but
the PostScript interpreter treats these as comments only. For instance, the %ALD/mage­
FileName: command addresses an image in the form of a separate TIFF file.

The Adobe Separator

Adobe offers the Illustrator bundled with the Adobe Separator. The Separator produces
color separations for cyan, magenta, yellow. and black. If you are using the Pan tone
matching system the program produces a separate film for each Pantone color or converts
the Pantone colors into the cyan, magenta, yellow, and black components.

In addition to the Illustrator PostScript file, the user may open a so called PostScript
Printer Description file, that lists the specific features of the output device, for instance
the standard screen frequency. A PPD file extract for a Compugraphic typesetter follows:

*%Adobe Systems PostScript(R) Printer Description
*% For "9400PS" version 49.3
*%Produced by "BuildPPD.ps" version 3.0 edit 57

*% Halftone Information ===============
*ScreenFreq: "100.0"
*ScreenAngle: "45.0"
*DefaultScreenProc: Dot

*% Color Separation Information =====================

*%*DefaultColorSep: ProcessBlack.128lpi.1270dpi/
128 lpi I 1270 dpi

*InkName: ProcessCyan/Process Cyan
*InkName: ProcessMagenta/Process Magenta
*InkName: ProcessYellow/Process Yellow
*InkName: ProcessBlack/Process Black
*InkName: CustomColor/Custom Color

3. Color Suppon

Screening angles and frequencies:

*%For 121 lpi I 1200 dpi (7,7,4,11,11,4,11,0) ===

*ColorSepScreenAngle ProcessBlack.121lpi.1200dpil
121 lpi I 1200 dpi: "45.0"

*ColorSepScreenAngle CustornColor.121lpi.1200dpil
121 lpi I 1200 dpi: "45.0"

*ColorSepScreenAngle ProcessCyan.121lpi.1200dpil
121 lpi I 1200 dpi: "70.0169"

*ColorSepScreenAngle ProcessMagenta.121lpi.1200dpil
121 lpi I 1200 dpi: "19.9831"

*ColorSepScreenAngle ProcessYellow.121lpi.1200dpil
121 lpi I 1200 dpi: "0.0"

*ColorSepScreenFreq ProcessBlack.121lpi.1200dpi/
121 lpi I 1200 dpi: "121.218"

*ColorSepScreenFreq CustornColor.121lpi.1200dpil
121 lpi I 1200 dpi: "121.218"

*ColorSepScreenFreq ProcessCyan.121lpi.1200dpil
121 lpi I 1200 dpi: "102.523"

*ColorSepScreenFreq ProcessMagenta.121lpi.1200dpil
121 lpi I 1200 dpi: "102.523"

*ColorSepScreenFreq ProcessYellow.121lpi.1200dpil
121 lpi I 1200 dpi: "109.091"

Adobe Photoshop

65

Adobe Photoshop is a high quality image enhancement tool that addresses photographic
images. It is designed specifically for artists and desktop publishers. The program has a
unique color separation feature called automatic-trap. Using automatic-trap, users can
print separations directly from Adobe Photoshop or save images as Encapsulated
PostScript files. These images can then be placed in page layout programs such as Page­
Maker and Quark XPress. Macintosh users can also add type and line-art effects to
images by placing Photoshop EPS files into Adobe Illustrator documents.

Photoshop reads PICT2, TIFF, MacPaint, PixelPaint, and the preview part in EPS
files. Other files it can handle are the TARGA format, GIF. PIXAR, and Amiga
IFF/ILBM files.

66 Encapsulated PostScript

Emulating color PostScript

With regard to the above mentioned thermal transfer printers, only the QMS ColorScript
has implemented the original Adobe page description language, while the Phaser printer
from Tektronix works with a Color PostScript clone.

The Howtek Pixelmaster ink jet printer prints with melted color inks onto normal
paper sheets, which is much cheaper than operating a thermal transfer printer. The melt­
ed ink is applied to the paper by a rotating printing head. The resolution is 240 dpi, the
PostScript clone is named Script-It. Unfortunately, this color device is unable to print
overhead projection originals.

Tektronix and International Product Trading (IPT) have overcome this lack by
announcing its PostScript-compatible color ink jet printers. The resolution is 216 dpi or
180 dpi respectively. The Tektronix ink jet printer produces a page in two minutes and
may be connected either to a personal computer or a Macintosh. The ColorPrint/PS
Inkjet by IPT is based on a Sharp JX 730 printer.

As mentioned earlier, the emulation program Freedom of Press 2.0 is able to output
any Color PostScript file onto low-priced color printers such as the HP-PaintJet or NEC
P6, and onto many film recorders. Freedom of Press operates under DOS and on Macin­
tosh.

RIP-It for the IBM PC and MacRIP

RIP-It is a software interpreter by Management Graphics for the IBM PC that can output
PostScript files onto film recorders of Agfa Matrix and Management Graphics. RIP-It
supports color and uses the full resolution of film recorders (up to 4000 lines). RIP-It is
sold together with the 35 fonts and can process additional fonts, including Bitstream and
PostScript Type l fonts.

A similar program for the Macintosh user is MacRIP which can even display
the Color PostScript graphics.

4.

Mixing PostScript Files

When mixing PostScript language or EPS files, it is always necessary to merge two or
more files at the file handling level. The result of merging is a file which additionally
contains the included files, finally this file is downloaded to the printer.

On one operating system, programs for positioning and scaling the included graphics
may be available, on another platform, they don ' t. In this case, the software is based on
the WYSIWYG principle, in that case, the user is forced to specify abstract formatting
commands (markup-language approach). The Encapsulated PostScript (EPS) file format
is particularly useful if you wish to include or import illustrations from other sources.
This mechanism guarantees a high quality output of the illustration, but enables you to
see and scale an approximation on your screen. All the Macintosh and GEM, MS Win­
dows, or the Presentation Manager support the import of EPS files. See Figure 21 .

' a File Edit Options Po

1···: ········· ·············· ···

. .
.......

Figure 2 1 Embedding an illustration (PageMaker example)

68 Encapsulated PostScript

With Place from the PageMaker file menu, an illustration or an image in the EPS File
format may be embedded. Having specified the name of the EPS file, you click at the
location where the illustration is to be positioned:

1. Select EPS file
2. Click the required location

Usually, the clipboard isn't concerned.
You can find Adobe's EPSF specification in Chapter 11.
The final solution is Display PostScript. Here, the same data stream goes to the

screen and the printer. The correspondence of 'What You See' and 'What You Get' is
100%, except for the problem of matching RGB colors (additive, screen) with CMYK
colors (subtractive, paper).

~~Sitv~
0

Bruce F. Webster writes in The NeXT Book:

·once you've pasted in a graphic image (an EPS file), you can resize it, scaling it to be larger or
smaller. To do this, double-click on the image, which will become faintly highlighted (a thin white
band around the inside of the image). You can then move the cursor over the image, hold the
mouse button down, and drag the cursor in or out. As you do, a thin gray box will appear, changing
size as you move the cursor '

The following letter (Figure 22) formatted by ffiM or Waterloo Script contains a segment
include markup command to embed a bitmapped logo:

.SI LOGO

The corresponding command in T EX is:

\special{ps: plotfile logo.eps}

And in Troff:

\!include logo.eps

These commands concern the markup-language approach only.

4. Mixing PostScript Files

Woodman'89

Universite de Zurich
lnstitut fUr lnformatik
Winterthurerstrasse 190

CH-8057 ZOrich

Cher Jacques Andre

M. Jacques Andre
IRISA. Campus de Beaulieu
Avenue du General Leclerc
F -35042 Rennes Cedex

Zurich. Je 4-1-1989

Malheureusement je n'ai pas d'occasion de participer a votre conference.
Mais si vous etes d'accord. veuillez aftlcher mon papier.

Je vous souhaitc mes meilleures salutations et beaucoup de succes avec
Woodman'89.

Dr. Peter Vollenweider

document "PostScript Applications and Encapsulated PostScript"

Figure 22 Letter with a bitmapped logo

69

70 Encapsulated PostScript

PlaHorms

You will note, it is possible to combine PostScript files from various sources, i.e. to
include images, graphics, and fonts into your documents. The keyword is 'Cut and
Paste'. At the University of Zurich, the following combinations have been realized:

Publishing system
UNIX with TrotT

Included PostScript files created on:
IBM MVS mainframe with plot programs;
Apple Mac Draw, Adobe Illustrator, CricketDraw;
ffiM's EPS-compatible scanner.

IBM VM/CMS with SCRIPT/GML
UNIX{froff eqn (mathematical equations) and pic (line
graphics);
ffiM MVS mainframe with Versaplot, SAS/Graph, Tella­
graf, Disspla;
GEM Artline, MacDraw, MS Chart, Adobe Illustrator,
Fontographer (our own fonts);
EPS-compatible scanner from Agfa and IBM.

Macintosh RagTime/ReadySetGo
ffiM MVS mainframe with plot programs;
MC View with Agfa Scanner;
Illustrator'88, Fontographer, CricketDraw, and a dozen other
Macintosh programs ...

The University of Zurich isn't a special case, other institutions have implemented similar
solutions. The possibilities are nearly unlimited.

Also it is possible to operate a publishing software on the ffiM PC or the Personal
System/2 (for instance PageMaker, Xerox Ventura Publisher, MS Word, Word Perfect)
and to include PostScript files from other sources. The Personal Publishing System of
ffiM is based on MS Windows and the PageMaker program:

Publishing system Included PostScript files created on:
IBM PS/2 with Aldus PageMaker

ffiM MVS mainframe with plot programs;
ffiM's EPS-compatible scanner;
GEM Artline, Illustrator PC, Typefoundry, Designer, Corel
Draw, Harvard Graphics, ...

PageMaker, ReadySetGo, and RagTime are layout programs of the WYSIWYG mode.
This means the user should see at the screen the document more or less as it will be print­
ed on the output device. These programs don't force the user to struggle with abstract
formatting commands.

4. Mixing PostScript Files 71

PostScript operators used to embed

When a PostScript language file or EPS file is being imported, the illustration is posi­
tioned and additionally may be scaled, rotated, or clipped. In order to include graphics,
you will use the save, translate, scale, rotate, clip and restore operators. The code is as
follows:

%!PostScript code of the main document

save % save state

200 200 translate % translate origin
.7 .7 scale %reduce size

% PostScript code of the included graphics

(illustration included) = flush

restore % restore original state

%the main document continues ...

This code first saves the state of the main document in the Virtual Memory of the printer
(VM), then the origin of the coordinate system is translated and the graphic is resized.
After embedding the graphics the original state in the VM is restored. Therefore the orig­
inal coordinate system is valid, and the scaling of the graphics has no unwanted impact
on the main document.

In the event that the illustration has to be rotated through 90 degrees, you have to
issue a rotate operator. An example for an illustration rotated through 90 degrees:

save
570 0 translate

90 rotate

% origin to the right
% because of rotation

% PostScript code of the included graphics

(illustration rotated) = flush
restore

This example is valid for a A4 page, we have rotated the illustration through 90 degrees,
counter-clockwise.

72 Encapsulated PostScript

The clip operator

The clip operator does clip the graphics - like a cookie cutter.

save
100 100 translate % translate origin
newpath
0 0 moveto 250 0 lineto
250 150 lineto 0 150 lineto
closepath
clip
% PostScript

% clip graphics
code of the included graphics

(illustration clipped)
restore

flush

In this example we apply the clip operator. The graphics part outside the (350,250)
bounding box is cut off.

See Figure 23.

see also :

eoclip
clippath
initclip

errors:

limitcheck

C 1i p Path Construction Operator

eli pis very much like a cookie cutter.

eli p produces a new path whose inside consists of all areas that are inside
both of the original paths.

In this example, the path of the box is the boundary for the three
overlapping grey circles that were painted above the box.

D

Figure 23 clip operator

4. Mixing PostScript Files 73

PostScript as an interchange standard

In order to promote the PostScript language as an interchange standard, Adobe Systems
offers two documents to the developer:

• Document Structuring Conventions [4]:

Comment lines (beginning with '%%') - structuring the PostScript code, e.g. the
%%EndProlog comment, and %%BeginProcSet and %%EndProcSet. A requirement
of the structuring conventions is that one should be able to obtain the structural infor­
mation from a page description without having to interpret or execute the PostScript
program itself. A program is taken to be fully conforming to the current version of
the file structuring conventions if the version identifier consists of '%!PS-Adobe-1.0'
or '%!PS-Adobe-2.0'.

The PostScript language code enclosed by the %%BeginProcSet and %%End­
ProcSet comments typically represents some subset of the document prologue. The
prologue may be broken down into many sub-packages, or procedure sets, which may
define groups of routines appropriate for different imaging requirements. These indi­
vidual 'ProcSets' are identified by name, version, and revision numbers for reference
by a document management system. A document manager (spooler, server, or post­
processor) may choose to extract these ProcSets from the print file in order to manage
them separately for a whole family of documents. Note that an entire document pro­
logue may be an instance of a ProcSet, in that it is a body of procedure definitions
used by a document description file. The name, version, and revision fields should
uniquely identify the ProcSet. The name may consist of a disk file name or it may
use a PostScript language name under which the prologue is stored in the printer. In
any case, these fields are used to identify the ProcSet to the document manager.

Notice that this does not replace the %%EndProlog comment used in the original
(version 1.0) document structuring conventions. It should still be used in the same
manner, although now it is optional to provide the additional %%BeginProcSet and
%%EndProcSet comments as well.

• PostScript Printer Description (PPD) File Specification:

Gives information about device-dependent features of the printing system (paper
sizes, available fonts, default screening, and so on).

Example:

%!PS-Adobe-2.0
%%EndComments
%%EndProlog
%%BeginFeature: *PaperSize A3
statusdict begin a3tray end
%%EndFeature

74 Encapsulated PostScript

The device-dependent operators are located between the %%BeginF eature and
%%EndFeature comments.

In order to mix text, graphics, and images from various sources, the EPS File format
serves as an interchange standard.

Some terms

In order to keep track, Glenn C. Reid defines some terms[3].

Document file

Illustration

Print job

The document file (main document) is a PostScript program
that may have another program embedded within it. It is
typically simply the output of a page layout program or other
document-producing software (publishing application).

This is a program which executes within the context of
another PostScript program. It need nm •ruly be an illustra­
tion, but it is a good way to think of the relationship.

This refers to the PostScript file that is at the outermost level
of execution. Note that this does not include the server
loop. It is the first user-level print file.

Typically, the including main document is a multi-page document, while an illustration in
the EPS File format doesn't consist of more than one page.

Michael Fryd gives four recommendations in his paper 'Writing Device-Independent
PostScript', published in Roth[l6]:

Context independence

Device independence

Page independence

Spooler friendly

Trust that the environment of the main document is correct.
Rule: don't use init. .. operators, such as initgraphics and
initmatrix. The initgraphics operator would reset the values
in the current graphics state to their default values.

Don't make any assumptions about the device your file will
be printed on. Rule: don't use operators from the statusdict
dictionary. The statusdict dictionary contains the device­
specific parameters.

Wrap each page with save and restore to make sure pages
are independent. See 'PostScript Program Structure' in
Chapter 2.

Follow Adobe's Document Structuring Conventions in the
red book[2].

4. Mixing PostScript Files 75

An embedding example

A paper created with Waterloo Script serves as an example of a document with embedded
graphics, but it might just as well be a multiple-column document created by PageMaker,
Ventura Publisher, or MS Word. See Figure 24 (Protext poster session).

The Waterloo Script Reference Manual documents the .SI Script command to include
EPS files:

'SEGMENT INCLUDE names an external graphic segment of output to be included in the format­
ted document. The first operand specifies the name of a segment of external material to be includ­
ed in the formatted text. This segment would normally be a graphic file, but it could be text as well.
The Segment Include control word is only supported when used with the I3820 or POSTScript
device option.'

In order to specify the bounding box and to place and scale the illustration, a number of
operands is supported: WIDTH, DEPTH, XOFF, YOFF, SCALE, ROTATE, etc.

The document in the example was marked with markup tags and formatted by the
Waterloo Script program. Additionally, the document contains a manually created
PostScript program (logo), a line graphic generated on a mainframe (map of Switzer­
land), and a line graphic generated under Unix (pspaste). It is possible not only to mix
text and graphical objects (vector graphics), but additionally bitmaps and images (pixel
graphics).

Another example is the production of this book also formatted on the ffiM
mainframe by Waterloo Script. The document was marked with markup tags
and segment include commands to embed EPS files and PostScript figures.

Some terms:

Export

Import

generating EPS, save as ... , cut

including or embedding EPS, place, paste from ...

76 Encapsulated PostScript

ELECTRONIC CUT AND PASTE

PostScript is an excellent tool for merging text and graphics.

Scrlpt/GML end PostScript programming

This paper has been marl<ed with Generalized Marl<up Language tags and formaned by Waterloo Script.
Let's incorporate a logo and the map of Swiu.erland:

PSpaste utility for merging text, graphics, bitmaps, ...

PSposte is another troff preprocessor to assist in pasting images defined in the PosrScript page description
language into troff documents. In order to combine pictures easily wi th the other troff preprocessors tbl.
pic or cqn. and to place pictures just like ordinary text. a picture is treated as a glyph with width and
height determined from the picture's bounding box.

Using PostScript flies generated by Macintosh end PC

I. The PostScript code or the Encapsulated PostScript File (EPSF) format can be generated by Fonte·
graphcr (Mac only). Publishers Typefoundry (PC only). Adobe Illustrator. FreeHand (Mac). Micro­
graphx Designer (PC). GEM An line (PC). and Corel Draw (PC).

2. Transfer the Mac/PC PostScript file onto the mainfmme system (e.g. by TCP/IP Protocol)
3. Encapsulated PostScript (EPS) files arc complete! The Apple macro library named LaserPrep is not

required with Fontographcr. Adobe lllustrator. FreeHand. Mic rograph• Designer. GEM Anline. and
Corel Dmw.

4. Modify the Mac/PC PostScript file as needed (pOsitioning. scaling. rotating. cropping)
S. Output the P'o.stScript file - with or wi1hout incorporating it in o document

Exampl<s on :lilac: Adobe lllustmtor. Aldus FreeHand. Cricket Draw. Agfa MC View. Fontographcr
E.amples on IBM PC: Adobe Jllustrator. Micrographx Designer. GEM Anlinc. Corel Draw. Agfa PC
View. Publishers Typefoundry

. 3.

Figure 24 Page 3 of a Protext poster session

4. Mixing PostScript Files 77

Encapsulated PostScript Files (EPSF)

Nineteen eighty eight was the year of the PostScript page description language. The EPS
File format was stressed by the three companies Altsys, Aldus, and Adobe. Encapsulated
PostScript (EPS) can save vector graphics in a resolution independent mode (line art) and
also save gray scales (pixel graphics).

The EPS File format is quite useful for mixing PostScript files (text, graphics, image)
from various sources. It doesn't matter whether the user is located in a PC, Macintosh,
Unix, or mainframe environment, assuming there is some means of linking the machines.
Often he or she wants to embed an image or graphics generated on another system, see
Figure 25. The EPSF conventions are designed to allow cooperative sharing of files
between many systems using PostScript. Encapsulated PostScript (EPS) files are always
complete! There is no need of any further printer initializations, nor of downloading any
prep files or additional PostScript prologues.

EHport as Encapsulated PostScript

Ia FreeHand I
•. Bhius f"o~~~Hnnti 2.0
D IHtius f"rN~Hnnd !h~tnults
CJ Freehand
Li !:nH~U<m<lf'rM~

Figure 25 Generating EPSF (FreeHand example)

9:54:58 Uhr

n OK ~1
(Cancel]
..

Driue

=Festpla ...

@IBM PC

The EPS File format simply consists of PostScript command lines and a number
of additional comment lines for structuring the PostScript code. These comment lines are
introduced by the two'%%' characters.

78

Structuring comments:

%!PS-Adobe-2.0 EPSF-1.2
%%
%% EPS header
%%
%%EndComrnents
%%BeginProcSet:

Encapsulated PostScript

procedures appropriate for a specific task ...

%%EndProcSet
%%EndProlog
%%BeginSetup

setup ...
%%EndSetup
%%Note:

document script ...

%%Trailer

Furthermore an EPS file follows:

Two rules

1. The file must be 'well-behaved'. Avoid initializations (init-operatots) which can
destroy the graphic state of the main document. Instead of using the init-operators
use the gsave - grestore pair. Example:

gsave
0.5 setgray
% gray scale
fill

% save graphics state

grestore % restore
%
gsave % save graphics state

3 setlinewidth
% line width
stroke

grestore % restore

4. Mixing PostScript Files 79

% again, you have a clean graphics state:
fill
stroke

Avoid the initgraphics and erasepage operators.

2. Declaration of the BoundingBox and the list of the used fonts. EPS header exam­
ple:

%!PS-Adobe-2.0 EPSF-2.0
%%Creator: ***** Roman *****
%%Title: mathematical equation Ando-Modigliani
%%CreationDate: 14:12:29 September 24, 1988
%%BoundingBox: 0 0 590 300
%%DocumentFonts: Courier Helvetica-BoldOblique
%%+ Symbol
%%EndComments

(PostScript code) ...

The file must contain sufficient information about itself that an importing applica­
tion can easily determine how to print it. In particular, the file must have the overall
size of the illustration - by indicating the dimensions of a rectangle into which the
illustration would fit. It must also have a list of all fonts used within the illustration,
so that the importing program can make sure the fonts are available when it is time
to print.

The showpage operator

The showpage operator is permitted in EPS files primarily because it will be present in so
many PostScript files. It is reasonable for an EPS file to use the showpage operator if
needed (although it is not necessary if the file is truly exported to another document). It
is the including applications responsibility to disable showpage if necessary. The recom­
mended method to accomplish this is as follows:

save
/showpage { } def % dummying
% PostScript code of included illustration

showpage
restore

% without any impact

This method will only disable the showpage operator during the execution of the EPS
file, and will restore the previous semantics of showpage afterwards.

80 Encapsulated PostScript

Operand stack and dictionaries

All the PostScript interpreter's stacks (e.g. the operand stack, the dictionary stack) should
be left in the state that they were in before the imported PostScript code was executed.
This is normally the case for well-written PostScript language programs, and this is still
the best way to keep unanticipated side-effects to a minimum. If you have accidentally
left something on one of the stacks, it is best to understand your program well enough to
remove it, rather than issuing a wholesale cleanup instruction at the end, which will not
only clear your operands from the stack, but may clear other objects as well.

It is recommended that the imported PostScript EPS file create its own dictionary
instead of writing into whatever the current dictionary might be. The new dictionary is
pushed onto the dictionary stack by using the begin operator. Make sure that this dictio­
nary is removed from the dictionary stack when through (using the PostScript end opera­
tor) to avoid the possibility of an invalidrestore error.

If a special dictionary (like statusdict) is required in order for the imported PostScript
language code to execute properly, then it should be included as part of the EPS file.
However, it should be enclosed in very specific %%BeginFeature and %%EndFeature
comments as specified in the Document Structuring Conventions. No dictionary should
be assumed to be present in the printer.

Screen preview as approximation

Fundamentally, an Encapsulated PostScript file is merely a standard PostScript file with a
bitmap screen dump optionally included in the format. Their purpose is to be included
into other document makeup systems as illustrations, and the screen representation is
intended to assist in page composition only. The bitmap is normally discarded when
printing is done, and the PostScript segment (ASCII) of the file is used instead. Typical­
ly, any manipulation of the screen image that is performed by the user (such as scaling,
translating, or rotation) should be tracked by the page layout application and an appropri­
ate PostScript transformation should precede the encapsulated PostScript when sent to the
printer.

The screen formats:

Macintosh

IBM PC

PICT format (QuickDraw)

Microsoft Windows metafile or TIFF (Tag Image File For­
mat). The TIFF format exists in three 'flavors': CCI1T
compressed TIFF, packbits compressed TIFF, uncompressed
TIFF.

In DOS, the EPS file itself has a binary header added to the beginning that provides a sort
of 'table of contents' to the file. The header is followed by the PostScript program in
ASCII text and the binary screen representation.

4. Mixing PostScript Files 81

Importing and exporting EPS files

The best-known publishing programs capable of importing EPS files are Aldus PageMak­
er, Xerox Ventura Publisher, MS Word, Word Perfect, Quark XPress, and Ragtime from
Germany. These support the WYSIWYG principle. The typical Macintosh user gener­
ates the EPS code by using the FreeHand or Illustrator '88 tools. Finally, the EPS file
will be embedded by the PageMaker program: FreeHand ~ EPSF ~ PageMaker.

The IBM PC user will, on the other hand, generate the EPS language code by using
Corel Draw: Corel Draw~ EPSF ~Ventura Publisher. A different IBM PC user may
follow the route: Micrografx Designer~ EPSF ~ MS Word.

In the PC world there is a number of conversion utilities to convert other graphic for­
mats into EPS files: Hijaak of Inset, Hotshot Graphics by SymSoft, LaserPlot, SoftRIP,
etc.

The modes of format conversion:

1. Pixel graphics ~ pixel graphics, for instance PCX ~ EPS.
2. Vector graphics~ vector graphics, for instance PIC, CGM, HPGL, or GPI ~ EPS.
3. Vector graphics~ pixel graphics
4. Pixel graphics~ vector graphics (quite difficult).

1. The variety of the graphics formats makes the conversion facility very important.
For instance you can use the Hotshot program to save a graphics window at the screen in
the Hotshot format and then convert it into Encapsulated PostScript.

2. The ISO Computer Graphics Metafile (CGM) format under DOS and GPI under
OS/2 are quite new. The Macintosh user may convert PICT files, for instance generated
by Mac Draw, into EPS files of the Adobe Illustrator (line art) by calling up the Draw­
Over utility of Adobe. In the PC world too, some CAD formats such as PIC or HPGL
may be converted into the EPS File format of Illustrator.

3. This mode is less interesting.
4. This mode is represented by the Adobe Streamline program which generates files

in the EPS File format. Streamline is available on Mac and under MS Windows.

Desktop presentation

Concerning the Desktop Presentation software, so Cricket Presents, MS PowerPoint,
More II, Standout, Persuasion (on Macintosh); and Studio Work, AZartist, AZchart,
DAPS and other PC programs are able to import EPS files. The PowerPoint program of
Microsoft strongly profits by importing, while its own tools are rather limited. Persua­
sion 2.0 has extensive business charting tools. You can import an EPS file by selecting
Paste from from the file menu (PowerPoint), by selecting Receive from from the file
menu (More II), or by selecting Import from the file menu (Persuasion).

82 Encapsulated PostScript

Concerning the Business Graphics software, the following PC programs are able to
export EPS files:

• Harvard Graphics (the well-known program)
• HP Graphic Gallery
• Mirage
• Pixie
• Lotus Freelance Plus

The software components capable of generating quality illustration graphics in the EPS
File format are discussed in Chapter 6, e.g. Adobe Illustrator, GEM Artline, etc.

PC DOS programs supporting EPS files

Programs Exporting Encapsulated PostScript Files

20/20, 35mm Express, Agfa PC View, Arts & Letters, AutoScript, AZchart,
Charting Gallery, Chern Base, Chern Text, Click Art Scrapbook Plus, Corel
Draw, Cyber Chrome, DAPS, Design CAD, Diagraph Windows, Don Lancast­
er's Utilities, EasyFlow, Easylabel, Excelerator, GEM Artline, GEM Draw
Plus, Generic 3-D, Graph-in-the-Box, Graphics Transformer Intergraphics,
Halftoner, Harvard Graphics, Hot Type Laser Fonts, Hotshot Graphics, HP
Graphic Gallery, IDRA W, Illustrator PC, Inset, Impressionist, ImageStation,
Kinetic, L T200 MC, L T200 PC, Lumena, Mass-11 Draw, Mass-11 Database
Manager, Mass-11 Graphic Processor, Math Type, Mathematica, MathGraph,
Micrografx Designer, Micrografx Graph Plus, MicroStation, Mirage, PC­
Slide, PC4096 Graphic System, Personal Composer, PictureThis, PinStripe
Presenter, Pixie, Presenter PC, Professional Graphics Producer, PS Plot
(HPGL translator), Publish It, Quantum Graphics, RIO, Samna, SAS, Score,
SlideWrite Plus, Snapshot, SoftQuad Publishing Software, SpectrePrint, Stu­
dio Work, Superlmage, SuperVue, Ultimate, VCN Concorde, VersaCAD,
VP-Graphics, Windows Graph Plus, Word-11, XED, XyWrite ill Plus.

4. Mixing PostScript Files

Programs Importing Encapsulated PostScript Files

Adept, Ami Professional, Archetype Designer, Autographix AutoVisual,
AZartist, AZchart, Camera-Ready, Chemistry Library, Class Ad-db, Create!
Form, CTextSetter II, DAPS, dbPublisher, Eroff, GML/PC, Hockney's Egg,
Interleaf Publisher, Lotus Manuscript, MS Word 5.0, PageMaker, PC T EX,
PC-Write, Professional Writers Package, Scenic Writer, Spellbinder Desktop
Publisher, Sprint, Studio Work, T3, Textbase, TitusSetter ill, Ventura Design­
er Stylesheets, Wave 4, WordMarc, Word Perfect 5.0, Xerox Ventura Publish­
er.

EPSF and halftoning

83

A reproduced image consists of an infinite number of gray scales, from white to 100%
black. Because only black ink is used during printing, a method has been devised to sim­
ulate the gray shades: it is called screening. A screened image consists of a number of
black dots. Gray scales are simulated by changing the size of the dots, while the number
of dots per surface unit remains the same. The mathematical equation describing the
relationship between screen density and number of gray scales is as follows:

d
. printer resolution

screen enslty = -
-v number of gray scales

The gray scales of an EPS image are not converted into halftone dots until they are
printed. This is an advantage. An image with gray scales looks much better if the screen
frequency of a high resolution typesetter is applied. It is even recommended that the
setscreen operator is not used.

The usual laser printers have a screen angle of 45 degrees and a screen density of 60
lines per inch. The screen density of typesetters ranges from 90 to 120 lines per inch.
Screening density in lines per inch and the resolution in dpi are not the same thing.

An image that saves its gray scale data offers two advantages to the professional
designer:

I. Typesetter output will achieve high quality.
2. You can enlarge the image in your page make-up program without incurring the

image distortion from which screened images suffer when enlarged.

But the disk space used to store images in the EPS File format is not modest.

84 Encapsulated PostScript

To conclude: the EPS File fonnat helps the image publisher to avoid a loss of data.

An EPS code describing Images

Note, the following code obeys the EPSF conventions:

%!PS-Adobe-2.0 EPSF-1.2
%%BoundingBox:lOO 100 266.6 333.2
%%Creator:McView 1.0
%%Title:Peter
%%Creationdate: 11.02.1989 10:32 Uhr
%%TemplateBox:O 0 0 0
%%DocumentProcSets:Adobe_Illustrator_l.1 0 0
%%EndComments

... Prologue

do image
2727272727272327232727272727272327272727
2B272727272727272B2F2F2727272B2B2B2B2B2B
2B272B2B2B272B2B2B2B27272B2727272B2B2B2B
2B2B2B2F2F2B2F2F2F2F2F2F2F2F2F2F2B2F2F2F
2B2B27272727272727272B272B2B232323232323
2B2B2F2F3333333333373333373B3B3B33333737

%%Trailer

Generally an image is hexadecimal coded. Each 8 bits are represented as hex. XX. See
Chapter 8 'Digitizing Images with the Agfa Scanner'.

In order to modify an image after scanning, the TIFF fonnat may be preferred rather
than the EPS File fonnat. TIFF is the standard fonnat supporting various ways of post­
processing a grayscale scan (pixel manipulation). An image saved as an EPS file can be
placed, scaled, rotated, slanted, and clipped only.

The file transfer

If you wish to combine PostScript files from different systems, you need to interchange
data between various computers. The technical tenn is file transfer.

For the file transfer, not only a physical connection, a cabeling system, or a local area
network is required, but also a standardized protocol for the transport of data. At the Uni­
versity of Zurich, the Kennit protocol of the Columbia University New York is used

4. Mixing PostScript Files 85

among others. The Kennit software is installed on almost every computer system: IBM
VM/CMS, ffiM MVS, UNIX, PC DOS, Apple Macintosh,

Although the file transfer by Kennit isn't fast, it is nonnally adequate, since
PostScript files containing vector graphics are rather compact. The exception is formed
by bitmapped images and images in the EPS File format.

However, there are alternatives to the Kermit protocol, e.g.:

• FTP on the base of TCP/IP and Ethernet.
• Unix to Unix CoPy UUCP.
• Protocols based on IBM SNA or DECnet.

A PostScript program consists of nothing but ASCII characters. Thus, the PostScript
files also may be transported by Electronic Mail.

At the Zurich universities, the Zurich Academic Local Area Network forms the back­
bone for file transfer. The adapter T -boxes are of the Local net 2000 type and stem from
the Hughes/Sytek company, California. Localnet alternatives: IBM Token Ring, Ether­
net, Ungermann/Bass Net/One. Most tenninals and PC's are attached to the local area
network. The Macintosh PC's partly are interconnected by small AppleTalk/LocalTalk
nets. A MultiTalk box fonns a gateway between AppleTalk and Localnet 2000. Mul­
tiTalk boxes are sold by P-lngenierie, Paris.

In addition, at the University of Zurich, CISCO routers and Applitek devices are
installed in order to construct links and bridges between various Ethernets. The file
transfer with FTP (based on Ethernet and TCP/IP) is much faster than with Kermit and
therefore recommended for transferring images in the EPS File format.

PageMaker on Macintosh and IBM PC

The most widely used publishing program in the world is PageMaker by Aldus. The
tools offered by PageMaker are the same on Macintosh and IBM PC. see Figure 26. The
lower right tool is the cropping tool.

By using PageMaker you can create printed matter. At the display. various texts,
graphics, logos, formulae, photographs, and images may be mixed in a simple way and
printed on a laser or color printer onto paper or foil, or even on a laser recorder or type­
setter. PageMaker imitates the traditional cut and paste.

Both on Macintosh and IBM PC (under MS Windows and OS/2), PageMaker is the
best known desktop publishing program. With Place from the file menu, an illustration
or an image in the EPS File format can be embedded. Having specified the name of the
EPS file (by Select document), you click with the mouse at the location where the upper
left corner of the illustration is to be placed, see Figure 21 at the beginning of Chapter 4.
This is a quite natural way of embedding or importing. Having imported an EPS file, the
illustration may be scaled down, enlarged, or clipped. See Figure 27.

86 Encapsulated PostScript

-o- ToolboM - -- -- -- -- -
-.............. 1- A

D 0 0 tl
Figure 26 PageMaker toolbox

Resizing and cropping

The graphic may be resized in PageMaker by dragging at one of its handles. You may
reduce/enlarge the width or the height of the illustration by dragging at the handle squares
of the displayed bounding box (distorting). The bounding box indicates the illustration
frame. See Figure 28.

You can trim or crop a positioned graphic with the cropping tool, from the toolbox.
Cropping reduces the overall size of the graphic, but the part that remains does not
change size. See Figure 29.

4. Mixing PostScript Files 87

Figure 27 A PageMaker page with circle text imported three-fold

88 Encapsulated PostScript

9-i the
::

~ u,,. : :

~~{ t>(Q : :

3 :,. ::

~ ~·
~ ~

· t:: Q " • llllill!(......, '

~ N
~

..

~
~ ~· « l;

Figure 28 Bounding box with handles

Figure 29 Cropping an illustration

4. Mixing PostScript Files 89

Xerox Ventura Publisher

By using Ventura Publisher, the PC user interested in producing printed material such as
magazines, manuals, and user guides can do so in a quick and low-cost way. The pro­
gram offers the DOS user the following pull down menu's:

• Desk
• File--+ in order to include an EPS file (or load a text file)
• Edit
• View
• Page
• Frame
• Paragraph
• Graphics
• Options

Ventura Publisher can import EPS files. EPS files are even displayed at the screen if they
contain either a TIFF or a Windows Metafile representation of the graphics. If not, a big
'X' is placed inside of the frame. When being imported, the illustration may be scaled,
clipped, or rotated.

The version 3.0 under OS/2 can also display the EPS graphics at the screen.
Creating a PostScript file is recommended so that the final publication may be pro­

duced on a typesetter. First, 'PostScript' is to be chosen as the output destination: select
the Set Printer Info command in the Options menu, then select PostScript as output
device and File name as port or interface respectively. When printing, a 'select file' box
is displayed, with this help you name the print file. Finally, the file may be sent to a
PostScript laser recorder, since all data needed for recording are contained in it.

RagTime and Quark XPress

An alternative to PageMaker on Macintosh is RagTime, that unusually does not originate
from the USA but from Europe (Hamburg). This program supports the import of EPS
files. Such EPS files may be embedded by the loading image menu. The three impor­
tant steps:

1. Define a frame as picture frame
2. Click into frame
3. Load image (specify the name of EPS file)

Working with frames also is known to the XPress users.
Also DesignStudio and Quark XPress can import graphics as EPS files.
When using PageMaker or one of the other layout programs you maintain complete

control over all page make-up operations and immediately view at the screen how the
printed page will look (WYSIWYG, What You See Is What You Get).

90 Encapsulated PostScript

Microsoft Word on IBM PC

Another alternative for an embedding application is the Microsoft Word program. Not
only can the Macintosh user specify that a keyed-in text is of the PostScript type, the
mM PC user can also apply this method. The included PostScript code is treated as a
hidden paragraph. This makes it possible for instance to:

• Underlay the following paragraph with a gray area.
• Underlay a page with a 'watermark'.
• Print crop marks on every page.
• Draw a box around the following paragraph, see Figure 30.

Finally, the PostScript code- embedded in a Word document- can be output onto a
PostScript-capable output device.

Example for an included code, that underlays a whole page with a light blue:

newpath
0 0 moveto 0 1000 lineto
1000 1000 lineto 1000 0 lineto
closepath
0 0 .33 setrgbcolor
fill

% 33% blue

If you download the document onto a black-and-white device the colors are simply con­
verted to gray scales.

And a PostScript language code for producing a 'watermark' in 240 points and 10%
gray:

/Roman /Times-Roman findfont
240 scalefont def

Roman setfont
100 500 moveto

.9 setgray
(@) show

Word version 5 - and Word Perfect version 5 -even do import files in the
Encapsulated PostScript format and can display a screen preview. Hence, the
version 5 not only is a word processing program but also provides many func­
tions of a page-layout program .

. Z.C:\PS\COREL.EPS;17 cm;18,298 cm;EPS

4. Mixing PostScript Files

Prentice-Halt Inc., sells
THE ,C" PROGRAMMING lANGUAGE book
written by Brian W. Kernighan and Dennis
M. Ritchie.

Prentice-Hall, Inc., sells
THE ,C" PROGRAMMING LANGUAGE book
written by Brian W. Kernighan and Dennis
M. Ritchie.

Le livre THE ,C" PROQRAMMING
LANGUAGE de Brian W. Kernighan et
Dennis M. Ritchie est publie par 'Prentice-
Hall, Inc. .·· .

Der Verlag Prentice-Hall, Inc., vertreibt
ouch das von Brian W. Kernighan und
Dennis M. Ritchie herausgegebene Buch
THE ,C" PROGRAMMING LANGUAGE.

Figure 30 Paragraph box and background

91

92 Encapsulated PostScript

lnHiallzlng a PostScript printer by MS Word

Text processing and publishing programs such as MS Word and PageMaker generate
multi-page documents though not Encapsulated PostScript files. This signifies that the
mM PC has to send on in advance a prologue to the PostScript printer. This prologue for
Word is called POSTSCRP.INI, PSCRIPT.INI or the like.

The PostScript code of the prologue looks as follows, the structure comments are pro-
vided by the Word version 5.0 and higher:

%!PS-Adobe-2.0 ExitServer
%%Title: Microsoft Word Driver Prolog
%%Creator: Microsoft
%%CreationDate: Fri Aug 18 1989
%%BeginDocument: Microsoft Word 5.0 0
%%msinifile: POSTSCRA
%%EndComments
%%BeginExitServer: 0

%%EndExitServer

ExitServer:

userdict /msdict known {stop} if

This line tests whether the name msdict is already in the user dictionary, by explicitly
pushing userdict onto the operand stack and testing whether the name is present. If so,
the if operator will execute the stop operator and end the current processing and wait for
the next job. The name msdict is the name of a private dictionary that holds all the defi­
nitions for the Word application. The intention is to test whether the application has
already loaded the dictionary.

% serverdict begin 0 exitserver

According to whether you delete the percent sign at the beginning of the serverdict line
above - it introduces a comment line - or you let it be, the printer is initialized perma­
nently or for the duration of the print job only. When the 'server loop' is quitted by exit­
server, then the definitions remain valid until the printer is turned off.

Word 4 and Word 5 have the additional mslinedraw dictionary for defining simple
line graphics. In this dictionary, the semi-graphics characters of the mM PC are defined
(not reprinted here). With the help of these symbols, you can stroke lines, boxes, etc.

%%BeginFont: mslinedraw
/mslinedraw 25 diet def

%%EndFont

/LineDraw mslinedraw definefont pop % since Word 4

4. Mixing PostScript Files 93

Finally, the definefont operator names the font with the semi-graphics characters by the
LineDraw name.

Portrait and landscape:

/PSl {rnsdict begin /ptop 792 def /sw 0 def
/ftsz 12 def /srnode 0 def /STh -3.6 def /fs 0 def
/offset 0 def
fonttable 1 get fontset E
90 rotate 0 -612 translate save statusdict begin
/waittirneout 360 def end} def % landscape

/PSp {rnsdict begin /ptop 792 def /sw 0 def
/ftsz 12 def /srnode 0 def /STh -3.6 def /fs 0 def
/offset 0 def
fonttable 1 get fontset E save statusdict begin
/waittirneout 360 def end} def % portrait

Here, the page sizes for the landscape format (PSI) and the portrait format (PSp) have
been set.

%%BeginProcSet: rnsdict 1.0 0
/rnsdict 100 diet def

rnsdict begin

MS Word uses its own dictionary called msdict.

Word operators

Now, the Word prologue defines higher PostScript operators that will be called up by the
MS Word page descriptions. The defined S operator for instance serves for printing
words. The P operator makes a certain movement or motion. In order to support the
international character set, the ReEncodeSmall routine is defined.

/SLL {pop} def
/BD {STh sse} def
/BU {STh neg sse} def
/BN {0 ssy neg rrnoveto} def

/P {exch rnsu exch rnsu neg ptop add rnoveto} def

/S {currentpoint 3 -1 roll sw 0 32 4 -1 roll widthshow
srnode 1 and 0 ne {false 1.4 ul} if
srnode 2 and 0 ne {true 1.4 ul} if
srnode 4 and 0 ne {false STh ul} if
srnode 8 and 0 ne {ldot} if pop pop} def

94 Encapsulated PostScript

/C {1 string dup 0 4 -1 roll put S} def

/J {rnsu () stringwidth pop sub /sw exch def} def

/PE {showpage ptop exch restore save exch
/ptop exch def} def % marks the end of page

/F {/ftsz exch def (-) stringwidth pop 2 div neg
/STh exch def
/ftcd exch def
0 2 fonttable length 1 sub

{dup fonttable exch get ftcd eq
{1 add fonttable exch get fontset exit}{pop}
ifelse

}for
E} def % font change

/font set {dup 0 get findfont /Eft exch def
dup 1 get findfont /Bft exch def
dup 2 get findfont /Ift exch def
3 get findfont /Bift exch def

} def % font set

/rnsu {20 div} def
/sse {dup /ssy exch def 0 exch rrnoveto} def
/ssrn {dup srnode or /srnode exch def} def

/Cf {/Eft /Courier findfont def /Bft
/Courier-Bold findfont def
/Ift /Courier-Oblique findfont def
/Bift /Courier-BoldOblique findfont def} def

/ul {gsave /y exch def /dbl exch def 2 copy
.2 setlinewidth
currentpoint dbl {4 copy} if
y sub newpath rnoveto y sub lineto stroke
dbl {2.4 sub newpath rnoveto 2.4 sub lineto stroke}
if
grestore} def % underline

/PSe {restore end currentfile closefile} def % the end

4. Mixing PostScript Files

Now, the encoding routine called ReEncodeSmall follows:

/reencsmalldict 36 diet def

95

/ReEncodeSmall % this is the encoding routine
{reencsmalldict begin

/newcodesandnames exch def
/newfontname exch def
/basefontname exch def

/basefontdict basefontname findfont def % old font
/newfont basefontdict maxlength diet def
basefontdict

{exch dup /FID ne
{dup /Encoding eq

{exch dup length array copy
newfont 3 1 roll put} % copy

{exch newfont 3 1 roll put} % elements
ifelse}

{pop pop} % discard FID
if else
forall % for all elements of the dictionary

newfont /FontName newfontnarne put
newcodesandnames aload pop
newcodesandnames length 2 idiv
{newfont /Encoding get 3 1 roll put}
repeat
newfontname newfont definefont pop
end

} def

The ReEncodeSmall routine has been defined.

The 'encoding vector•

% new font

Here, an important part of the prologue follows, what is the so-called 'encoding vector'.
The encoding vector is the mapping of codes to the graphical symbols. For the support of
the German and French characters (for instance a,o,U,e,e,a,~ etc.) the creators of the
Word driver had to specify an own encoding vector. The vector named foreignvec and
the now defined ReEncodeSmall routine will be used at the end of the prologue.

96

/foreignvec [
128 /Ccedilla
129 /udieresis
130 /eacute
131 /acircumflex
132 /adieresis
133 /agrave
134 /aring
135 /ccedilla
136 /ecircumflex
137 /edieresis
138 /egrave
139 /idieresis
140 /icircumflex
141 /igrave
142 /Adieresis
143 /Aring
144 /Eacute
145 /oe
146 /AE
147 /ocircumflex
148 /odieresis
149 /ograve
150 /ucircumflex
151 /ugrave
152 /ydieresis
153 /Odieresis
154 /Udieresis

155 /cent
156 /sterling
157 /yen
159 /florin
160 /aacute
161 /iacute
162 /oacute
163 /uacute

174 /guillemotleft
175 /guillemotright

% german umlaut ue
% french e aigu

% german umlaut ae
% french a grave

% french c cedille

% french e grave

% german umlaut oe

% british

225 /germandbls % german double s
249 /bullet
] def

Encapsulated PostScript

4. Mixing PostScript Files 97

Now we invoke the ReEncodeSmall routine repeatedly and each time use the foreignvec
encoding vector as its operand:

/Courier /Courier-Foreign foreignvec ReEncodeSrnall
/Courier-Bold
/Courier-Bold-Foreign foreignvec ReEncodeSrnall
/Courier-Oblique
/Courier-Oblique-Foreign foreignvec ReEncodeSrnall
/Courier-BoldOblique
/Courier-BoldOblique-Foreign foreignvec ReEncodeSmall
/Helvetica /Helvetica-Foreign foreignvec ReEncodeSrnall
/Helvetica-Bold
/Helvetica-Bold-Foreign foreignvec ReEncodeSmall
/Helvetica-Oblique
/Helvetica-Oblique-Foreign foreignvec ReEncodeSrnall
/Helvetica-BoldOblique
/Helvetica-BoldOblique-Foreign foreignvec

ReEncodeSrnall
/AvantGarde-Book
/AvantGarde-Book-Foreign foreignvec ReEncodeSrnall
/AvantGarde-Demi
/AvantGarde-Derni-Foreign foreignvec ReEncodeSrnall

/ZapfChancery-Mediumitalic
/ZapfChancery-Mediurnitalic-Foreign
foreignvec ReEncodeSrnall

The names of the newly created fonts with the international character sets all carry a
name with the -Foreign or -F suffix. In the case of fonts licensed from Bitstream:

/Zapf-Hurnanist-Roman
/Zapf-Hurnanist-Roman-F foreignvec ReEncodeSrnall
/Zapf-Hurnanist-Italic
/Zapf-Humanist-Italic-F foreignvec ReEncodeSmall

On the personal computer, the small umlauts (a, o, ii) received the codes 132 (octal 204),
148 (octal 224), and 129 (octal 201); and the French symbols~. a,~.~ received the codes
130 (octal202), 133 (octal 205), 135 (octal207), and 138 (octal 212) respectively.

In the output text (page descriptions), MS Word encrypts the umlauts and the French
symbols in the octal coded mode. Examples:

(Andr\202) S
(Montr\202al) 5
(Z\201rich) S
(Schw\204bisch) 5

%
%
%
%

Andre
Montreal
Zurich
Schwabisch

98 Encapsulated PostScript

In the following table, the available PostScript fonts are listed and numbered:

/font table
[0 [/Courier-Foreign /Courier-Bold-Foreign
/Courier-Oblique-Foreign
/Courier-BoldOblique-Foreign]
8 [/Helvetica-Foreign /Helvetica-Bold-Foreign
/Helvetica-Oblique-Foreign
/Helvetica-BoldOblique-Foreign]
9 [/AvantGarde-Book-Foreign
/AvantGarde-Derni-Foreign
/AvantGarde-BookOblique-Foreign
/AvantGarde-DerniOblique-Foreign]
10 [/Helvetica-Narrow-Foreign
/Helvetica-Narrow-Bold-Foreign
/Helvetica-Narrow-Oblique-Foreign
/Helvetica-Narrow-BoldOblique-Foreign]
16 [/Bo.okman-Light-Foreign /Bookman-Derni-Foreign
/Bookrnan-Lightitalic-Foreign
/Bookrnan-Demiitalic-Foreign]
24 [/Times-Roman-Foreign /Times-Bold-Foreign
/Times-Italic-Foreign /Times-Bolditalic-Foreign]
25 [/NewCenturySchlbk-Roman-Foreign
/NewCenturySchlbk-Bold-Foreign
/NewCenturySchlbk-Italic-Foreign
/NewCenturySchlbk-Bolditalic-Foreign]
26 [/Palatine-Roman-Foreign /Palatine-Bold-Foreign
/Palatine-Italic-Foreign
/Palatino-Bolditalic-Foreign]
50 (/ZapfChancery-Mediumitalic-Foreign
/ZapfChancery-Mediumitalic-Foreign
/ZapfChancery-Mediumitalic-Foreign
/ZapfChancery-Mediumitalic-Foreign]
56 [/Symbol /Symbol /Symbol /Symbol]
57 [/LineDraw /LineDraw /LineDraw /LineDraw]
60 [/ZapfDingbats /ZapfDingbats /ZapfDingbats

/ZapfDingbats]
] def

The semi-graphics font with number 57 is only defmed since version 4. If in addition
you want to use a font licensed from Bitstream for instance and download it onto the
printer, this font gets the number 1:

4. Mixing PostScript Files

1 [/Zapf-Hurnanist-Rornan-F /Zapf-Hurnanist-Bold-F
/Zapf-Hurnanist-Italic-F
/Zapf-Hurnanist-Bold-Italic-F]
% Bitstrearn Fontware

A script generated by MS Word

A typical script, generated by Word 4 on an ffiM-compatible PC, follows:

PSp 15819 SFL
PE % blank page

2552 2621 P 6917 SLL
2552 5801 P 6917 SLL 24 18 F

% font number 24, in 18 point
() S 720 J (Where) S 90 J (you are working) S
2552 6101 P 6917 SLL
2552 6401 P 6917 SLL
2552 6701 P 6917 SLL 24 18 F () S 720 J (
90 J (is enough food,) S
2552 7001 P 6917 SLL
2552 7301 P 6917 SLL

there) S

2552 7601 P 6917 SLL 24 18 F () S 720 J (where) S
90 J (you deal with words) S
2S52 7901 P 6917 SLL
2552 8201 P 6917 SLL
2552 8501 P 6917 SLL 24 18 F () S 720 J (there) S
90 J (is shortage) S
2552 10001 P 6917 SLL 1 8 F % font 1 in 8 point
() s 720 J () s
() S 1 10 F (P) S 1 8 F (ROVERBS) S () S
44 J () S 1 10 F (S) S 1 8 F (OLOMON) S
() S 1 10 F (14: 23) S
0 12884 P 9469 SLL 9108 J S 8 10 F (-) S
56 J () s (5) s (-) s
PE % end of page

99

100 Encapsulated PostScript

2552 2621 P 6917 SLL
0 12884 P 11907 SLL 2544 J () S 8 10 F (-) S
56 J () s (6) s (-) s
PE % end of page

2552 2621 P 6917 SLL 1 11 F
% font 1 in 11 point

(Mein) S 72 J (herzlicher) S 84 J (Dank) S
72 J (geb\201hrt) S 84 J (allen,) S
72 J (deren) S 84 J
(Fragen) S 72 J (im) S 84 J (rechten) S
72 J (Augenblick) S

PE % end of page

The Word operator F specifies in which font and in which point size a text will be set.
The font number 1 signals that you want to use your own downloaded font.

2552 2621 P 6917 SLL
0 12884 P 11907 SLL 2544 J () S
8 10 F (-) S 56 J () S (8) S (-) S
PE % end of page

2552 2621 P 6917 SLL 1 10 F
% font 1 in 10 point

() s 55 J 1.) s
1076 J () S B (Eingangs\201berlegung) S
E () S 55 J () S 0 LL 3504 J () S LE () S
55 J (13) s
2552 3161 P 6917 SLL 1 10 F () S 55 J (2.) S
1076 J () S B (Wissen) S 55 J (und Algorith) S
E B (mus: ein erl\204uterndes
Beispiel) S E () S 0 LL 804 J () S
LE () S 55 J (1 7) S
2552 3461 P ~917 SLL 1 10 F () S
55 J (2.1) s 966 J () s
288 J (Theoretischer) S 55 J (Exkurs) S
0 LL 3252 J () S LE () S 55 J
(20) s
2552 3761 P 6917 SLL 1 10 F () S
55 J (2.2) S 966 J () S 288 J (Die) S
55 J (Praxis-Perspektive) S 0 LL 3120 J () S
LE () S 55 J (22) S
2552 4061 P 6917 SLL 1 10 F () S

4. Mixing PostScript Files

55 J (2.3) S 966 J () S 288 J (Revision) S
55 J (des Beispie) s (ls) S 0 LL 3180 J () s
LE () S 55 J (24) S
2552 4361 P 6917 SLL 1 10 F () S
55 J (2.3.1) S 801 J () S 288 J Zeichen) S
55 J (vs. Buchstabe) S 0 LL 2832 J () S LE () S
55 J (24) s
2552 4661 P 6917 SLL 1 10 F () S 55 J (2.3.2) S
801 J () S 288 J (Token) S 55 J (vs. Wort) S
0 LL 3420 J () S LE () S 55 J (
27) s
2552 4961 P 6917 SLL 1 10 F () S 55 J 2.3.3) S
801 J () S 288 J (Liste) S
55 J (vs. Inventar) S 0 LL 3312 J () S LE () S
55 J (28) s

PE % end of page

101

The occurence of the PE Word operator shows where the page break occurs. But MS
Word generates the PE operator only, when you choose 'page' from the printing menu.
The end of the script is marked by:

PE PSe % end of the document

A part of the result (proverb of Solomon)

For enlightenment, refer to the Proverbs. See Figure 31.
'Where you are working there is enough food, where you deal with words (advices)

there is shortage.'

Word Perfect on the IBM PC

Word Perfect can also output onto page printers. As all PostScript drivers do, the Word
Perfect driver first sends a prologue down to the PostScript device. Having initialized a
page printer that way, it can process the same data stream as a wheel printer. Hence, the
PostScript device emulates the daisy wheel printer.

102 Encapsulated PostScript

Where you are working

there is enough food,

where you deal with words

there is shortage

PROVERBS SOLOMON 14:23

Figure 31 A proverb of Solomon

A script example generated by Word Perfect

%%EndProlog
wpdict begin

Word Perfect uses its own dictionary called wpdict.

4. Mixing PostScript Files 103

_bd letter _bp % begin page
0 13200 10200 ornt
/Times-RomanR 600 ff
0 13200 10200 ornt 1945 11820 m
/Times-BoldR 765 ff

-8 rm (I) s -7 rm -8 rm (M) s - -
-7 rm -8 rm (U) s -7 rm -8 rm - -
-8 rm (0) s -7 rm -8 rm (L) s - -
-7 rm -8 rm (0) s -7 rm -8 rm
-8 rm (I) s -7 rm -8 rm (S) s - -
-7 rm -8 rm (H) s -7 rm -8 rm
-8 rm (U) s -7 rm -8 rm (N) s - -
-8 rm (D) s -7 rm 99 rm -8 rm -

-7
(N)

(G)

-7
(E)

-7

(M) s -7 rm -8 rm (0) s -7 rm -8 - -
-7 rm -8 rm (E) s -7 rm -8 rm (K) -
-7 rm -8 rm (U) s -7 rm -8 rm (L) -
-7 rm -8 rm (A) s -7 rm -8 rm (R) -
-7 rm -8 rm (B) s -7 rm -8 rm (I) -

rm -8
s -7 -

s -7 -
rm -8
s -7

rm

rm (L) -s - s -
s -
s -7 -

rm (0) s -7 rm -8 rm (L) s -7 rm -8 rm - - - - -
-7 rm -8 rm (G) s -7 rm -8 rm (I) s -7 - - - -
(S) s -7 rm -8 rm (C) s -7 rm -8 rm (H) - - -
-8 rm (E) s -7 rm - -
/Times-BoldR 600 ff

78 rm /Times-RomanR 600 ff -

2295 11403 m
/Times-BoldR 765 ff

-8 rm (U) s -7 rm -8 rm (N) s -7 rm -8 - - - - -

rm (M) s -
rm

rm
rm (C) s -
rm 99 rm

s

rm -8
(0) s -
rm -8 rm
s -7 rm

rm (T) s -

The _m and _rm operators predefined in the prologue perform an absolute or a relative
motion respectively.

104 Encapsulated PostScript

4972 8973 m
(zur)_5 3242 8646 m
(Erlangung)_5 83 _rm (der)_5
83 _rm (Philosophischen)_5
83 _rm (Doktorw)_5 (\027)_5 (rde) 5 4553 8319 m
(vorgelegt)_5 83 _rm (der)_5 3967 7992 _m
(Philosophischen)_5 83 _rm (Fakult)_5 (\334)_5 (t) 5
83 _rm (II)_5 4972 7665 m
(der)_5 4348 7338 _m
(Universit)_5 (\334)_5 (t) 5 83 rm (Z)_5
(\027)_5 (rich)_5 4950 5703 m
(von)_5 4217 5376 m
/Times-BoldR 600 ff

-6 rm (C) 5 -6 rm -6 rm (0) 5 -6 rm - -
-6 rm (R) 5 -6 rm -6 rm (N) 5 -6 rm - -
-6 rm (E) 5 -6 rm -6 rm (L) 5 -6 rm -6 - -
-6 rm -6 rm (A) 5 -6 rm 78 rm -6 rm (B) - - -
-6 rm -6 rm (I) 5 -6 rm -6 rm (N) 5 -6 - - - -
-6 rm (D) 5 -6 rm -6 rm (E) 5 -6 rm - -
-6 rm (R) 5 -6 rm /Times-RomanR 600 ff -

4642 5049 m

rm (I) -
5 -

rm

(von)_5 83 rm (Z)_5 (\027)_5 (rich)_5 3060 3741 m
(Begutachtet)_5 83 _rm (von)_5 83 _rm
(Herrn)_S 83 _rm (Prof.)_5 83 _rm (Dr.)_5

5

83 _rm (H.)_5 83 _rm (R.)_5 83 _rm (Bosshard) 5 4592
1779 m
(Z)_5 (\027)_5 (rich)_5 83 rm (1989)_5
3751 1452 m

_ep % end of page

The WP script isn't an EPS file since it doesn't describe a single illustration, but a multi­
page document.

Word Perfect 5.0 lets you include graphics in the EPS File format in your documents.

4. Mixing PostScript Files 105

GEM or Ventura as an embedding application

As earlier mentioned, GEM or Ventura Publisher also can exercise the function of the
importing application on the mM PC. GEM itself provides a rather compact PostScript
prologue. The predefined PostScript routines allow the drawing of objects (circle, arrow,
etc.) and support the usage of the extended character set with the German umlauts, the
French symbols, the pound sterling symbol, etc.

The PostScript prologue provided by GEM

This GEM prologue consists of 250 command lines - the 1988 version of rather more -
and hence is shortened. The same prologue is used by Xerox Ventura Publisher.

%!PS-Adobe-1.0
%%Title: GEM Document
%%Creator: GEM
%%Pages: (atend)
%%BoundingBox: 0 0 575 755
%%EndComments
%Copyright (C) Digital Research, Inc. 1987.
% All rights reserved.

systemdict /setpacking known
{/svp currentpacking def true setpacking} if

First-generation PostScript printers don't yet know the setpacking operator. By 'packing'
of the procedures you can conserve space in the printer memory (VM).

/gemdict 250 diet def
gemdict begin % this is the GEM dictionary

According to the conventions, GEM puts its PostScript definitions into an own dictio­
nary.

/bd {bind def} bind def
led {exch def} bind def

% User defined Start of Page procedure:
% this operator will be executed
% at the beginning of each page output by GEM
% and is provided to allow
% user-defined page initialization.

/UserSoP { } bd

106 Encapsulated PostScript

GEM enables the user to open each page by his or her own PostScript routine named
UserSoP. That way, the pages may be supplemented for instance by a page header, a
company logo, or a 'watermark'.

bd means bind def
The 1988 prologue version of GEM or Ventura Publisher is supplemented by halftone
screen spot function procedures:

% Halftone screen spot function procedure array:
% this array is indexed into as follows:
% 0 dot screen, 1 = line screen, 2 = ellipse screen,
% 3 = custom (user-definable) screen.

/ScreenProc[

% Dot screen
abs exch abs 2 copy add 1 gt{
1 sub dup mul exch 1 sub dup mul add 1 sub}{
dup mul exch dup mul add 1 exch sub}ifelse}bind

% Line screen
pop}bind

% Ellipse screen
dup 5 mul 8 div mul exch dup mul
exch add sqrt 1 exch sub}bind

% Custom screen
dup rnul exch dup mul add sqrt 1 exch sub}bind

]def

These procedures may be invoked by the setscreen operator in order to modify the
screening of images (only since 1988 prologue version). This operator sets the current
halftone definition in the graphics state.

A PostScript prologue consists of nothing else but definitions and isn't reprinted here.

end
systemdict /setpacking known {svp setpacking} if
%%EndProlog

In the prologue, a series of higher PostScript operators such as path, circle, or doarrow
have been predefined. The %%EndProlog comment marks the end of the prologue sec­
tion and the beginning of the script section of the document.

4. Mixing PostScript Files 107

Finally, the GEM or Ventura script can address single objects (line, circle, arc) in a
simple way and thereby realize the page descriptions.

The PostScript example generated by GEM

See Figure 32, the K+K company logo. The two 'K' letters signify only the initials of the
two company founders.

Figure 32 The K+K company logo

userdict /gerndict known not
{/Times-Roman findfont 12 scalefont
setfont newpath 72 700 moveto
(Error:
the GEM PostScript preamble is not available)show
newpath 72 686 rnoveto
(on your printer.
Pre-download the preamble or include it with)show
newpath 72 672 rnoveto
(your print job.)show
newpath 72 658 rnoveto

108 Encapsulated PostScript

(This print job has been aborted.)show
showpage stop} if % checks whether dictionary exists

First it checks whether the PostScript interpreter knows the gemdict dictionary or not. If
it does, everything is • ok' and you can be sure that the printer has been initialized correct­
ly. If not, an error message is issued and the print job is canceled. Before you make
another attempt you must download the GEM prologue to the printer.

gerndict begin
648 828 0 1 GEM_INIDOC gerninit
1 2399 2400 3150 false rnatinit
/fonts 35 array def /fpt 0 def

% enumerates all fonts
/GCourier addfont
/GCourier-Bold addfont
/GCourier-Oblique addfont
/GCourier-BoldOblique addfont
/GHelvetica addfont
/GHelvetica-Bold addfont
/GHelvetica-Oblique addfont
/GHelvetica-BoldOblique addfont
/GTirnes-Rornan addfont
/GTirnes-Bold addfont
/GTirnes-Italic addfont
/GTirnes-Bolditalic addfont
/Symbol addfont

/GNewCenturySchlbk-Rornan addfont
/GNewCenturySchlbk-Bold addfont
/GNewCenturySchlbk-Italic addfont
/GNewCenturySchlbk-Bolditalic addfont
/GPalatino-Rornan addfont
/GPalatino-Bold addfont
/GPalatino-ltalic addfont
/GPalatino-Bolditalic addfont

/GAvantGarde-Book addfont
/GAvantGarde-Demi addfont
/GAvantGarde-BookOblique addfont
/GAvantGarde-DemiOblique addfont
/GZapfChancery-Mediumitalic addfont
/ZapfDingbats addfont
save mark

4. Mixing PostScript Files 109

The names of the newly created fonts with the international character sets all carry the G
prefix. The small umlauts a, o, and ii have the octal codes 204, 224, and 201. And the
French symbols e, a,~, and e, the octal codes 202,205,207, and 212 respectively.

GEM or Ventura Publisher also code these symbols octally. Examples:

(Andr\202) show
(Montr\202al) show
(Schw\204bisch) show
(Z\201rich) show

% Andre
% Montreal
% Schwabisch
% Zurich

Now the script of the document describing the company logo follows:

%Begin page
UserSoP % calling the Start of Page user exit
initclip 75 3074 2324 3074
2324 75 75 75 np rnto lto lto lto clip np

% introduction
2005 1312 1734 1887 1462 1312 1462 1600

1734 2133 2005 1600 6 2005 1312 path
gs 0 8 div setgray
gs eofill % filling a closed path

gr gr 0 setgray
2005 1312 1734 1887 1462 1312 1462 1600
1734 2133 2005 1600 6 2005 1312 path
stroke % stroking path
2062 1391 1790 1966 1519 1391 1519 1678
1790 2212 2Q62 1678 6 2062 1391 path
gs 1 setgray
gs eofill % filling a closed path

gr gr 0 setgray
2062 1391 1790 1966 1519 1391 1519 1678
1790 2212 2062 1678 6 2062 1391 path
stroke % stroking path
1705 337 1434 912 1162 337 1162 625 1434
1159 1705 625 6 1705 337 path
gs 0 8 div setgray
gs eofill % filling a closed path

gr gr 0 setgray
1705 337 1434 912 1162 337 1162 625 1434
1159 1705 625 6 1705 337 path
stroke % stroking path

110

0 setgray
1725 1500 1 1725 1050 path
stroke
%End page
showpage cleartomark % clear stack
restore gr % restore graphics state

Encapsulated PostScript

Finally, the show page operator outputs the current page. cleartomark guarantees that the
operand stack is left in a clean state.

end % pop dictionary
%%Trailer
%%Pages: 1
%%EOF

The %%EOF (End-of-File) comment signals, that the spooler- hopefully- will termi­
nate the print job by control-d. This is valid with a serially attached device only and
doesn't concern the LocalTalk.

Neither GEM nor Ventura Publisher generate files in the Encapsulated
PostScript format, but both programs can import EPS files.

A page description generated by Ventura Publisher

Most text strings are printed by calling up the predefined fjt operator.

/svobj save def
%Begin page
UserSoP % addressing Start of Page
greset
-300 3806 2781 3806 2781 -301 -300
-301 np mto lto lto lto clip np
greset
-75 3581 2555 3581 2555 -75 -75
-75 np mto lto lto lto clip np

4. Mixing PostScript Files

/tface 9 def
9 encfont

sf
920 2488 523 2 (PC - Grundkurs)fjt
1113 2077 137 0 (zum)fjt
877 1665 609 1 (neuen Holzverkauf)fjt
/tface 8 def
8 encfont

/txscale 1200 3 mul 72 div def
/tyscale 1200 3 mul 72 div def
sf
1021 954 322 2 (im August 1989)fjt

% printing
% text ...

932 721 500 4 (\275 1989, Oberforstamt I J)fjt

greset -300 3806 2781 3806 2781 -301 -300
-301 np mto lto lto lto clip np
%End page
showpage svobj restore gr

Ill

The strings to be printed are enclosed by parentheses. tface specifies the selected font.
encfont invokes the ReEncodeSmall routine.

PostScript files from the Macintosh

You wish to generate PostScript or EPS code on the Macintosh and import it into any
electronic publishing or desktop publishing application. The publishing or DTP system
may be an IBM PC, a PS/2 computer, the IBM publishing system under VM/CMS, a
UNIX workstation, or a Macintosh II for example.

(a) Generating the PostScript code

With many good applications, an EPS file can be generated under the 'Save As .. .' or
'Export' menu.

The following applies to some programs such as Mac Draw, Draw II, or MS Chart
only: When clicking on the ok button of the printing dialog, you must press the com­
mand key and the letter 'F' simultaneously. This causes the Macintosh not to send the
PostScript file onto the LaserWriter, but to save it to disk. See Figure 33 (MacDraw is
used to create line drawings).

112 Encapsulated PostScript

e Pen Font Size s te 9:11 :37 Uhr

LaserWriter "Laser Werkstatt Spooler" 6 .0 G OK D
Copies:IIMI Pages: ® All 0 From: D To: D [Cancel]

Couer Page: @ No 0 First Page 0 Last Page [Help]

Paper Source:® Paper Cassette 0 Manual Feed

Figure 33 Draw IT: pressing command key and 'F' simultaneously

Pressing command-F isn't necessary with Fontographer, SmartArt, TypeAlign, Illustra­
tor, FreeHand, CricketDraw, and MC View, because you can instruct the program to gen­
erate the PostScript code directly.

(b) Transferring the PostScript code

The Mac PostScript file now is transferred onto the required target system, e.g. file trans­
fer:

• Macintosh ~ personal computer
• Macintosh~ IBM Personal System/2, or
• Macintosh ~ UNIX VAX

With regard to the basic character set, PostScript obeys the ASCII standard. But the Ger­
man umlauts and other international symbols (French e. e, a, 9. etc.) are coded by four
digits, for instance (Z\20 I rich) and (Andr\202). Please note, the encoding vectors differ
on different platforms.

Self-evidently, the file transfer isn't needed if you want to embed the file in a publish­
ing system on the Macintosh itself (e.g. PageMaker or RagTime).

4. Mixing PostScript Files 113

(c) WHh or wHhout macro library

In order to work properly, an EPS file never needs a supplement since it is generally
complete.

The following applies to some programs such as MacDraw or MS Chart only:
remember that on the target system (e.g. PS/2), the PostScript macro library, LaserPrep,
from Apple is needed too, or possibly the AldusPrep macro library from Aldus. Each
library contains some 800 lines of PostScript code. You can create a copy of the macro
library- in addition to the PostScript file- if you press the command key and 'K' simul­
taneously (instead of 'F'). The macro library then has to be transferred onto the target
system and downloaded as prologue onto the printer (before downloading the command­
F file). Pressing command-K isn't necessary with Fontographer, SmartArt, TypeAlign,
Adobe Illustrator, FreeHand, CricketDraw, and MC View, because these programs
always use their own PostScript prologue.

It should be stressed here that the use of files created by command-F can raise some
questions, since the LaserPrep file and the command-F file must match. And in real life,
there are many different LaserPrep versions. The following typical message comes from
a Gennan user in Hanover:

'Hello Peter,

If you read the latest "INFO-MAC's", you will find out that my problem is shared by many people.
At the Massachusetts Institute of Technology also there is a guy who nibbles at the same problem
and doesn't know how to instruct the DEC LN03R printer, that it isn't longer basic PostScript but
shortcut PostScript of Apple ... Something must be hidden in there, maybe in Apple's ROM. Well,
I don't know, although I tested different Prep files- with and without the smoothing part ... The
discussion shows that there is a general need for solutions to this problem. Obviously, it may only
be a lack of information of some kind.

Yet there is a worldwide need to better understand which Prep files cooperate with which
Laserwriter drivers and which printers, and/or why there are such difficulties. Thus, as you men­
tioned, PostScript is a universally interpreted language, and the technology should be standardized
and should match.

So long ... Michael'

Some times, a trick can help: in the Apple LaserPrep file, the whole 'smoothing part' is
deleted. The part to be deleted begins with the line:

currentfile ok userdict /stretch ... eexec ...

or in the LaserPrep 6.0 version with:

ok userdict /stretch known not and checkload

and continues until the end of the prologue. This part can be cut out and removed by
using a text editor.

114 Encapsulated PostScript

The best method to avoid these problems is using EPS files!

(d) Modifying the PostScript file

Modify the Mac PostScript file as desired (positioning, scaling, cropping, rotation). The
standard PostScript operators are translate, scale, clip and rotate. See 'PostScript opera­
tors used to embed' on page 71 in this Chapter. In order to embed, the showpage opera­
tor has to be removed from the file to be imported because the showpage operator is
called up by the publishing application in the main document. This is achieved best by
dummying the showpage operator (as earlier shown).

If the PostScript interpreter issues a

______ Helvetica Font not found, using Courier.

or

______ Times Font not found, using Courier.

message, then you need to replace the '! _____ Helvetica' and 'I ____ Times' font
names with 'Helvetica', 'Times' etc. The basic PostScript font names don't have a
'I ____ ' prefix. The prefix relates to Apple's encoding vector. By changing the names
however, it may happen that the umlauts and other international characters (such as e, e.
a,~) are lost. This forces you to specify your own encoding routine and vector.

EPS effects by Emerald City Software

Adobe offers a PostScript editing program. It is called SmartArt and on the Mac, can be
invoked as a desk accessory (DA) by any application. It allows you to rotate, slant, and
distort text in any direction and to achieve various effects and colors, see Figure 34.

The result computed by the LaserWriter is displayed at the screen and may be copied
via clipboard into the underlying application, e.g. into MS Word or Aldus PageMaker. If
your program imports Encapsulated PostScript (EPS) files, you can save the effect as an
EPS file and then import it into your document by using your application's Place or
Import ... command. In general, if you are going to print to a PostScript printer, Emerald
City Software recommends using the EPS format whenever possible. All desktop pub­
lishing and many presentation applications can import EPS files.

The EPS file thus contains a screen preview computed by the PostScript printer and
made available by SmartArt! You may also have stored a PostScript program as a stan­
dard ASCII text in a TEXT file type. If you have any PostScript programs as TEXT files,
you can open them with SmartArt by clicking the EPSF and TEXT radio button at the
bottom of the dialog box. In order to let SmartArt create a screen preview you have to
specify correct BoundingBox information and erase the showpage operator from the
PostScript program.

4. Mixing PostScript Files 115

Figure 34 EPS effects by SmanArt

The bounding box

As any EPS file does, the EPS head generated by SmartArt always contains a Bounding­
Box comment specifying the lower left and the upper right corner of the bounding box.
For instance:

%!PS-Adobe-2.0 EPSF-1.2
%%Title: Centered Arc Text
%%Creator: Emerald City Software
%%CreationDate: 02/01/89
%%For:Smart Art
%%DocumentFonts: Times-Bold
%%BoundingBox: 130 172 470 470
%%EndComments

If you wish to reduce the bounding box, any importing application would clip the illustra­
tion. When the EPS file is being imported the %%BoundingBox: 130 172 470 440 infor­
mation would cause the result shown in Figure 35.

The upper edge of the box is not located at the 470 point position, but at the 440 point
position. Note that the importing application always takes the %%BoundingBox in the
EPS header as the • truth', see Chapter l 1.

116

Figure 35 BoundingBox reduced slightly

The clipping program

The importing application executes the following clipping program:

newpath

130 172 moveto
130 440 lineto
470 440 lineto
470 172 lineto
closepath

clip
clippath stroke

% bounding box

% clip box
% stroke box

Encapsulated PostScript

This code is followed by the PostScript program generated by SmartArt.

4. Mixing PostScript Files 117

Type Align

Emerald City Software - now Adobe Systems - offers another desk accessory producing
text effects as EPS Files: TypeA/ign, together with the Adobe Type Manager, can manip­
ulate any PostScript font, including Type 1 fonts - a LaserWriter is not required. This
DA lets you type text directly onto lines, arcs, and freeform curves. E.g. after drawing a
freehand line, TypeAlign selects the text tool so you can type along it. The text can be
kemed, colored, rotated, or distorted.

To copy your creation to the clipboard, select the pointer tool and select Copy from
your application's Edit menu. So you can paste it into a document in your favorite appli­
cation. In order to export to the Encapsulated PostScript (EPS) format, select Save As
from the TypeAlign menu. TypeAlign displays a pop-up menu of the available formats:
PICT, EPS and Illustrator. You can place Encapsulated PostScript files in any applica­
tion which supports that format.

The following EPS code generated by TypeAlign sets the string 'Jupiter' along a
freeform curve:

118

1.0000 1.0000 1.0000 0.0000 k
/_Times-Roman 48 0 0 0 z

Encapsulated PostScript

[0.9728 -0.2316 0.2316 0.9728 137.2177 125.9024]e
1 (J) t
T

I
[

1
T

1.0000 1.0000
Times-Roman 48

1.0000 0.0000
(u)t

1.0000 0.0000 k
0 0 0 z

0.0000 1.0000 155.4354 122.0000]e

1.0000 1.0000 1.0000 0.0000 k
/_Times-Roman 48 0 0 0 z
[0.9877 0.1559 -0.1559 0.9877 179.3360 122.1284]e
1 (p) t

T
1.0000 1.0000 1.0000 0.0000 k

/_Times-Roman 48 0 0 0 z
[0.9438 0.3303 -0.3303 0.9438 203.0602 125.8857]e
1 (i) t
T

1.0000 1.0000 1.0000 0.0000 k
/_Times-Roman 48 0 0 0 z
[0.9438 0.3303 -0.3303 0.9438 215.3208 130.9508]e
1 (t) t

T

1.0000 1.0000 1.0000 0.0000 k
/_Times-Roman 48 0 0 0 z
[0.9950 0.0995 -0.0995 0.9950 227.8617 135.9400]e
1 (e) t
T

1.0000 1.0000 1.0000 0.0000 k
I Times-Roman 48 0 0 0 z
[0.9908 -0.1351 0.1351 0.9908 249.1071 137.2750]e
1 (r) t

T

u
showpage
%%Trailer

E end

The prologue of an EPS file generated by TypeAlign contains the Adobe Illustrator pro­
cedure set. z invokes findfont, scalefont, and setfont. T marks the end of a text block.

4. Mixing PostScript Files 119

Multi-Ad-Creator (Mac only)

The Multi-Ad-Creator program offers the Macintosh user another page make-up alterna­
tive. It is specially intended for composing advertisements and supports the four-color
separation of 8-bit color scans. EPS graphics can be imported and positioned. After this
you may translate, resize, crop, or rotate an EPS graphic, see Figure 36.

ei). • ~., .
-~

.b
~

·~ $.
~

.:: ~
~

Q.. e Q•
~ ~

Q N u •

Figure 36 Rotating an EPS graphic

Ad-Creator files may be exported as EPS or PICT files. An ad can be saved as an EPS
file and reimported by Multi-Ad-Creator.

120 Encapsulated PostScript

TeX and Encapsulated PostScript flies

The User's Guide to TeXTURES by Blue Sky Research describes how EPS files may be
imported by T EX documents. The illustration command has to specify the name of the
EPS file. The lower left corner of the illustration will be placed at the current T EX posi­
tion.

If the EPS file also contains a screen representation of the illustration, TeXTURES dis­
plays an approximation at the screen.

The alternative to TeXTURES is OzTeX on the Apple Mac or T EX on the IBM PC.
Let's follow a discussion on the fonts topic between two net subscribers! Tony Scan­

dora <B35048%ANLCMT.BITNET@Forsythe.Stanford.EDU> asked about outputting
TeX to a Linotronic typesetter.

'1. Our group of TeX/LaTeX users has been using 300 dpi laser printers for a long time. Now we
want to see important material printed on our 1200 dpi Linotype typesetter that speaks only
PostScript, as far as we know. I can think of four ways to do it: compute the PK fonts for that
magnification and use DVIALW. I suspect that computing the fonts may take a while and that
PostScript files that contain 1200 dpi fonts may be pretty hefty. Has anyone done it? How bad is

it?

Yes, I've generated the fonts at 1270dpi. For all 74 canonical CM fonts at all seven canonical
\magstep's, a total of about 24 hours CPU time on a VAX 8700/8800 cluster were involved. The
files are available from the Aston archive in the UK. I would acknowledge the kind donation of
machine resources by British Petroleum Exploration to enable the generation of these fonts over

one weekend.

2. Convert the MET AFONT descriptions of the TeX/LaTeX fonts to scalable PostScript fonts and
download them. Is that possible? Has anyone done it?

It's being done. I have no references to hand, but maybe ArborText (Michigan) and/or NorthLake
are involved.

3. Come up with the font metrics for the standard PostScript fonts and use them. This would prob­
ably require a PostScript plain.tex and lplain.tex that would make DVI files that can only be printed
on PostScript printers and would not look like documents that use the TeX fonts. I've heard rumors
that this has been done. Would anyone care to substantiate same?

No problem. It's definitely been done. I will make PS-Piain available on the Aston TeX-Server if
required.

4. Convince Adobe to add the TeX/LaTeX fonts to the standard PostScript fonts. I won't hold my
breath for that one.

Nor 1.'

5.

The Construction of the SWITCH Logo

This example has several levels. We will develop a logot while proceeding from version
0 to version 1 9 to version 29 and so on. This example may stimulate you to modify t to
extendt and to combine PostScript programs. SWITCH is the label for the Swiss Aca­
demic and Research Network (Teleinformatikdienste fUr Lehre und Forschung).

SWITCH logo version 0

How may the patterned characters, as shown in Figure 37, be described by a PostScript
program? In order to do so, we use the clip operator. First of all, we construct the pat­
tern for the background, i.e. the oblique strokes. The Background routine consists of a
repeat loop, that calls up the strich (=line) and sprung (=move) routines and produces
the stroked pattern. Now the clip operator cuts out a piece. This operator is well suited
for filling characters or other forms with a pattern or names. After using clip, it is impor­
tant to apply the newpath operator. Without newpath both the pattern and L'te outlines
would be shown; and the outlines are not required. Finally t the defined Background pro­
cedure is called up.

Figure 37 The 'SWITCH' letters tilled with a pattern

122

%!PS SWITCH logo, version 0
%%Title: switchO.ps
%%DocurnentFonts: Helvetica-Bold
%%BoundingBox:
%%EndComments

Encapsulated PostScript

/Bold /Helvetica-Bold findfont 100 scalefont def

/strich { 500 -500 rlineto def % line
/sprung { -500 496 rmoveto def % move
/Background { gsave

150 { strich sprung repeat
stroke grestore } def

%%EndProlog

50 350 translate

gsave
newpath
0 0 moveto
8 setflat
Bold setfont (SWITCH) true charpath clip

newpath
0 550 moveto
1 setlinewidth
Background

grestore

showpage
%%Trailer

% cut out

The %%EndProlog comment marks the end of the definition section and the beginning of
the script section of the document.

5. The Construction of the SWITCH Logo 123

SWITCH logo version 1

In the next version of our PostScript program we are building an additional background
and using the show operator to print the 'SWITCH' letters in black. In the Background2
routine the strokes are slightly more oblique than in Background. The Background2 rou­
tine consists of a repeat loop, that calls up the strich2 and sprung2 routines and produces
the other stroked pattern. The usage of the show operator is based on the same font and
point size as our charpath, the Bold variable means: Helvetica bold typefont in 100 point.

%!PS SWITCH logo, version 1
%%Title: switch1.ps
%%DocurnentFonts: Helvetica-Bold
%%BoundingBox:
%%EndCornrnents

/Bold /Helvetica-Bold findfont 100 scalefont def

/strich { 500 -500 rlineto def % line
/sprung { -500 496 rrnoveto def % move
/Background { gsave

150 { strich sprung repeat
stroke grestore } def

/strich2 { 500 -480 rlineto } def
/sprung2 { -500 475.9 rrnoveto } def
/Background2 { gsave

150 { strich2 sprung2 } repeat
stroke grestore } def

%%EndProlog

50 350 translate

gsave
newpath
0 0 rnoveto
8 setflat

Bold setfont (SWITCH) true charpath clip
% cut out

124

newpath
0 550 moveto
1 setlinewidth
Background2

grestore

0 74 moveto
Bold setfont (SWITCH) show

newpath
0 550 moveto
0.1 setlinewidth
Background

showpage
%%Trailer

See Figure 38.

SWITCH logo version 2

Encapsulated PostScript

% printing usually

In order to cut out the whole logo, in the next program version we are using an additional
clip operator at the beginning of the script section (after the prologue). Having built a
path (newpath moveto lineto ... closepath) we are able to write clip instead of stroke.

Furthermore, in the version 2 the line widths are modified:

.4 setlinewidth

The operand means .4 typographical points.
The setflat operator controls the accuracy with which curved path segments are to be

rendered on the raster output device by the clip operator. The choice of flatness value is a
tradeoff between accuracy and execution efficiency.

Very small values (for instance 1 or less) produce very accurate curves at high printer
time costs. Larger values (for instance 50) produce cruder approximations with substan­
tially less computation. The values represent the maximum distance of any point of the
approximation from the corresponding point on the true curve, measured in output device
pixels, not in points! The 'setflat' parameter- as other parameters do- also belongs to
the graphics state.

5. The Construction of the SWITCH Logo 125

Figure 38 SWITCH logo. version I

126 Encapsulated PostScript

EPS comment lines

Note the structure comments:

%%Title: switch2.ps
%%BoundingBox: 100 350 500 500
%%DocurnentFonts: Helvetica-Bold
%%Creator: Peter
%%CreationDate: 5 Sept 1989
%%EndCornments

The bounding box encloses all the elements painted as a result of executing this program.
All four values must be integers and represent the coordinates of the lower left and upper
right comers of the bounding box in the default user coordinate system. While the
%%BoundingBox comment is required by the EPSF specification, the %%Document­
Fonts comment line is quite important, should the illustration be imported by a publish­
ing application.

The %%EndProlog comment shows where the logo script begins.

%!PS-Adobe-1.0
%%Title: switch2.ps
%%DocurnentFonts: Helvetica-Bold
%%BoundingBox: 100 350 500 500
%%Creator: Peter
%%CreationDate: 5 Sept 1989
%%EndCornments

/Bold /Helvetica-Bold findfont 100 scalefont def
/strich { 500 -500 rlineto def
/sprung { -500 496 rrnoveto } def
/Background { gsave

150 { strich sprung repeat
stroke grestore } def

/strich2 { 500 -480 rlineto } def
/sprung2 { -500 475.9 rrnoveto } def
/Background2 { gsave

%%EndProlog

150 { strich2 sprung2 } repeat
stroke grestore } def

5. The Construction of the SWITCH Logo

100 350 translate

newpath 0 0 moveto 0 150 lineto
400 150 lineto 400 0 lineto
closepath clip % cutting out the whole logo

gsave
newpath
0 0 moveto
8 setflat % impact on performance
Bold setfont (SWITCH) true charpath clip

newpath
0 550 moveto
.4 setlinewidth
Background2

grestore

0 74 moveto
Bold setfont (SWITCH) show

newpath
0 550 moveto
0.4 setlinewidth
Background

showpage
%%Trailer

See Figure 39.

SWITCH logo version 3

127

If the designer wishes we can modify the spacing between the letters. The keyword is
'Kerning'. Theoretically, PostScript offers an operator, namely kshow. But in relation
with charpath clip this operator isn't very useful. Therefore, we are programming the
kerning 'manually', by doing a small relative motion to the left between each pair of let­
ters.

The corrections amount, for instance, to 10 points to the left between S and W, 5
points to the left between W and I, and 7 points to the left between C and H. The kshow
operator is used in the last logo version only.

128 Encapsulated PostScript

Figure 39 SWITCH logo, version 2

The structuring comment lines - e.g. %%EndProlog - are provided again.

%!PS-Adobe-1.0
%%Title: switch3.ps
%%DocumentFonts: Helvetica-Bold
%%BoundingBox: 100 350 500 500
%%Creator: Peter
%%CreationDate: 5 Sept 1989
%%EndCornments

/Bold /Helvetica-Bold findfont 100 scalefont def
/strich { 500 -500 rlineto def
/sprung { -500 496 rmoveto } def
/Background { gsave

150 { strich sprung repeat
stroke grestore } def

/strich2 { 500 -480 rlineto } def
/sprung2 { -500 475.9 rrnoveto } def
/Background2 { gsave

%%EndProlog

150 { strich2 sprung2 } repeat
stroke grestore } def

5. The Construction of the SWITCH Logo

100 350 translate

newpath 0 0 moveto 0 150 lineto
400 150 lineto 400 0 lineto
closepath clip % cutting out the whole logo

gsave
newpath
0 0 moveto
8 setflat
Bold setfont
(S) true charpath -10 0 rmoveto % manually
(W) true charpath -5 0 rmoveto % modifying
(I) true charpath -5 0 rmoveto % the
(T) true charpath -10 0 rmoveto % inter letter
(C) true charpath
(H) true charpath
clip
newpath
0 550 moveto
.4 setlinewidth
Background2

grestore

0 74 move to
Bold set font

-7

(S) show -10 0 rmoveto
(W) show -5 0 rmoveto
(I) show -5 0 rmoveto
(T) show -10 0 rmoveto
(C) show -7 0 rmoveto
(H) show

newpath
0 550 rnoveto
0.4 setlinewidth
Background

showpage
%%Trailer

See Figure 40.

0 rmoveto % spacing
% (kerning)

% manually
% modifying
% the
% inter letter
% spacing
% (kerning)

129

130 Encapsulated PostScript

Figure 40 SWITCH logo,.version 3

SWITCH logo final version

We come to the final version of the PostScript program. The program is to be modified
four times:

• The logo construction is packed into the Signet routine, which has the 'scaling factor'
operand. Signet can be invoked e.g. by

0.5 Signet

Width and height are halved.
Thus, the %%EndProlog comment marking the end of the definition section, is

shifted.

• CutWhole: compared with the other versions, this version defines the clip path at the
beginning of the program in a modified way. In the original size, the version 4 logo
has a width of 375 typographical points = some 13.2 em. The height amounts to 178
typographical points= some 6.2 em.

• If we would scale down the logo, the spacing between the strokes of the pattern would
become too small. Therefore, the spacing between the strokes of the pattern is made
dependent on the scaling factor. The equation is:

. (1 -factor) spacmg = 4 1 + -.----=:--
mfluence

5. The Construction of the SWITCH Logo 131

Here, factor= scaling factor, and influence is set to 1. In the original size of the logo,
the pattern spacing amounts to 4 typographical points. Now this value is modified
according to the equation. The example shows how to calculate with PostScript. The
following arithmetic operators are used: sub, div, add, mul.

Concerning Background and Background2, the repeat loop specifies how many
lines are stroked. If the spacing is 4, then

560 = 140
4

lines are stroked; this is valid for the original size of the logo. In the case of a reduc­
tion of the logo size, you have less than 140 strokes, because the spacing variable is a
bit bigger than 4. The cvi operator manages the result of the division to be converted
to an integer number (ConVersion to Integer).

• Kerning: the kshow operator is used. It handles kerned pair letter-spacing adjusting
the spacing between pairs of letters. See the Kern procedure.

Before invoking Signet, the origin of the coordinate system is translated (translate). In
order to suppress the addition of the translations, we can encapsulate each logo by issuing
the gsave grestore pair. As already mentioned, the Signet routine expects one operand.
If you forget the operand, the PostScript interpreter will issue a stackunderflow error mes­
sage.

%!PS-Adobe-1.0 EPS
%%Title: switch4.ps
%%DocurnentFonts: Helvetica-Bold
%%BoundingBox: 80 100 360 360
%%Creator: Teddy and Peter
%%CreationDate: 5 Sept 1989
%%EndCornrnents

/Signet
/factor exch def % scaling factor operand

/CutWhole { newpath 0 0 rnoveto 0 178 lineto
375 178 lineto 375 0 lineto
closepath clip } bind def

/spacing 4 1 1 factor sub 1 div add rnul def
% intra pattern spacing is
% dependent on scaling factor

/Bold /Helvetica-Bold findfont 100 scalefont def

132 Encapsulated PostScript

/strich { -178 178 rlineto } bind def
/sprung { 178 spacing add -178 rmoveto } bind def
/Background { gsave

560 spacing div cvi { strich sprung }
repeat

stroke grestore } bind def

/strich2
/sprung2

-184 178 rlineto } bind def
184 spacing 1.040 rnul add -178 rrnoveto }

bind def
/Background2 { gsave

560 spacing div cvi { strich2 sprung2
repeat

stroke grestore } bind def

/Kern {{pop pop 0 rmoveto} exch kshow} bind def
% kerning

%

factor factor scale
CutWhole % cutting out the logo

gsave
newpath
09 15 moveto
8 setflat
Bold setfont
(S) true charpath -10 0 rrnoveto
(W) true charpath -5 0 rrnoveto
(I) true charpath -5 0 rmoveto
(T) true charpath -10 0 rrnoveto
(C) true charpath -7 0 rrnoveto
(H) true charpath
clip % cutting out SWITCH

newpath
0 0 rnoveto
.4 setlinewidth
Background2

grestore

09 89 rnoveto
Bold setfont

-7 -10 -5 -5 -10 (SWITCH) Kern % kerning

5. The Construction of the SWITCH Logo

newpath
0 0 rnoveto
0.4 setlinewidth
Background

} bind def % end of the logo definition

%%EndProlog

% calling up Signet in various sizes:
gsave

80 240 translate
0.66 Signet

grestore

gsave
80 165 translate
0.35 Signet

grestore

gsave
80 100 translate
0.25 Signet

grestore

gsave
300 100 translate
0.15 Signet

grestore

showpage
%%Trailer

See Figure 41.

133

134 Encapsulated PostScript

Figure 41 SWITCH logo, final version

6.

Creating Illustrations on Mac and IBM PC

Let us first tum to the Adobe Illustrator. The Illustrator'88 program from Adobe is avail­
able for both the Macintosh and the IBM PC or PS/2 under MS Windows.

The Adobe Illustrator

An Illustrator document is an EPS file that consists basically of two parts:

1. The PostScript program that describes the illustration graphics. The illustration may
be output onto any PostScript device.

2. The screen representation - a WYSIWYG approximation with a resolution of 72
pixel/inch.

The basic idea of Adobe Illustrator is that the user first reads a draft or a photograph into
the personal computer with the help of a scanner. Then, the graphical display of the Mac­
intosh or the mM PC represents it as a digitized image. By using the tools offered by
Adobe Illustrator, the pixel graphics (or raster graphics) are finally converted into line art
or vector graphics. The technique resembles the tracing method. If the beginner has a
template or draft he or she will be able to print satisfactory line work onto paper. For
instance, the PC user may use TIFF or .PCX files as his or her templates. The illustration
graphics may be refined by the user tracing lines and curves with the help of the mouse.
In this context, the Bezier control points (BCP) of the cubic or smoothed curves are of
special importance. The crucial PostScript operator is the curveto operator. The Adobe
Illustrator user never actually contacts the PostScript program. The PostScript language
code is generated by Adobe Illustrator, and not by the user.

The auto trace tool of Adobe Illustrator

On a mouse click, this Illustrator'88 tool encloses any closed bitmapped template with a
Bezier curve. This way, scans are vectorized automatically and can save much work.
The paths gained this way must be refined and postprocessed for perfect results.

The Illustrator version '88 also provides additional tools for the designer, such as the
Freehand tool for drawing by hand and the Blend tool for merging two different paths.

Illustrator 1.93 supports the Adobe Type Manager (A TM).

136 Encapsulated PostScript

From bHmaps to vector graphics

We distinguish between two notions:

Template

Art

pixel graphics, bitmap, image, rasterized.

line art, object-oriented, illustration, vectorized.

See Figures 42 and 43.

Figure 42 Fruit.template

The prologue of lllustrator'88

The complete prologue of the Adobe Illustrator version 1.1 is copied and commented in
the paper Adobe Illustrator Document Specifications (Adobe Systems Inc., 1987) [7].
The paper edited by Adobe is 26 pages long. The Illustrator'88 prologue is larger still
and therefore is not reprinted here.

6. Creating Illustrations on Mac and mM PC 137

Figure 43 Fruil.art

The EPSF head

The PostScript language code obeys the Structuring Conventions version 2.0. EPSF is
the abbreviation for Encapsulated PostScript File format, a format for describing
PostScript illustration graphics and images to be imported or embedded respectively.
The EPS File format simply consists of PostScript command lines and a number of addi­
tional comment lines for structuring the PostScript code. These comment lines are intro­
duced by the two'%%' characters:

%!PS-Adobe-2 . 0 EPSF-1 . 2
%%Creator:
%%For :
%%Ti t l e :
%%Cr eationDate :
%%BoundingBox :
%%DocumentFonts:

138 Encapsulated PostScript

This is the EPSF head. The vector graphics (art) optionally can be supplemented by a
bitmapped representation at the screen (template). Here is the head of lllustrator'88:

%!PS-Adobe-2.0 EPSF-1.2
%%Creator: Adobe Illustrator 88(TM) 1.6
%%For: PC Information Center, Uni Zurich
%%Title: (Fruit.art)
%%CreationDate: (1.11.1988) (8:32 h)

%%DocumentProcSets: Adobe_packedarray 0 0
%%DocumentSuppliedProcSets: Adobe_packedarray 0 0
%%DocumentProcSets: Adobe_crnykcolor 0 0
%%DocumentSuppliedProcSets: Adobe_crnykcolor 0 0
%%DocumentProcSets: Adobe cshow 0 0
%%DocumentSuppliedProcSets: Adobe_cshow 0 0
%%DocumentProcSets: Adobe customcolor 0 0
%%DocumentSuppliedProcSets: Adobe_custom~~lor 0 0
%%DocumentProcSets: Adobe Illustrator 881 0 0 - -
%%DocumentSuppliedProcSets: Adobe_Illustrator_881 0 0
%%ColorUsage: Black&White
%%DocumentProcessColors: Black

%%DocumentFonts: Helvetica

This comment lists the fonts used by Illustrator. The correct PostScript names are speci­
fied, e.g. Helvetica, Times-Bold, LetterGothic-Slanted, Palatino-ltalic. This allows the
importing application to ensure the availability of the required fonts.

%%BoundingBox:12 134 621 421

BoundingBox: llx lly urx ury
specifies the rectangle within which all stroked or painted elements of the illustration

are to be rendered. (llx,lly) and (urx,ury) are the coordinate positions of the lower left
comer and the upper right comer of the box. The coordinate units are typographical
points 0n2 inch). The value urx-llx must be an integer giving the maximum width of
the illustration. The value ury-lly limits the height of the illustration, see Positioning an
illustration, on page 142.

The BoundingBox values prove to be quite useful when embedding an illustration
graphic in a document. This enables the embedding application to decide whether the
illustration must be scaled down or enlarged.

%%TemplateBox:300 80 300 80
%%EndComments

If a bitmapped template also exists the BoundingBox of the template is specified.

6. Creating lllustrations on Mac and ffiM PC 139

EPS procedure sets

Now, the prologue of the Adobe Illustrator program begins (not reprinted here), refer to
Adobe Illustrator Document Specifications (Adobe Systems Inc., 1987) [7]. The pro­
logue may be composed of several procedure sets, each of which is an independent
package of procedures appropriate for a specific task. The corresponding structure com­
ments are %%BeginProcSet and %%EndProcSet. Example:

%%BeginProcSet:Adobe_crnykcolor 0 0
% crnykcolor Operators

%%EndProcSet

The graphics state of the Adobe Illustrator corresponds approximately to the graphics
state of the PostScript interpreter (the coordinate system CTM, the current position, the
current path, the font, the line width, the color, etc.). In addition, the Adobe Illustrator
knows:

• A separate color for filling areas.
• A separate color for stroking lines.
• Additional font metric data (e.g. kerning: spacing between the letters 'W' and 'o' for

instance).

The 'heart• of the prologue

Constructing paths: before a line can be rendered as a stroke, a path must have been con­
structed. All Illustrator path operators are based on the PostScript moveto (m =motion),
lineto (1 = line), and curveto (c,v,y =curves) operators. Probably, the most widely used
Illustrator operator is the c operator with the Bezier control points (BCP) as operands. By
using this operator, cubic or smoothed curves may be constructed, which are needed for
representing natural objects, e.g. garlics in Figure 44.

The %%EndProlog comment (not listed here) marks the end of the prologue section
and the beginning of the script section of the document.

The script of Adobe Illustrator

The script lists all elements of an illustration, e.g. paths and strings, in a systematic way.
Thus, only higher operators are used that have been predefined in the Illustrator prologue.
We distinguish between state elements and object elements.

You can think of PostScript graphics as object-oriented -as opposed to bitmapped
graphics or rasterized images, because the elements of the graphics may be identified as
single objects while in a bitmap no single objects are recognized, only pixels.

140

The following script was generated by lllustrator'88:

%%BeginSetup

Encapsulated PostScript

Adobe_cmykcolor /initialize get exec
Adobe_cshow /initialize get exec
Adobe_customcolor /initialize get exec
Adobe_Illustrator881 /initialize get exec
%%EndSetup

0 0
0 g
0 R 0 G
1 i 0 J 0 j 0.27 w 4 M []0 d

Note the %%BeginSetup and %%EndSetup structuring comments.

%%Note: this code was generated by Illustrator'88
204.311 306.937 m
216.389 301.447 235.055 304.741 222.977 289.369 c
210.899 273.997 217.487 272.899 219.683 261.919 c
221.879 250.939 228.467 248.743 217.487 242.155 c
206.507 235.567 209.801 236.665 203.213 224.587 c
s
0.09 w
222.977 309.133 m
266.897 344.269 204.584 395.328 y
s
0.27 w
205.409 306.937 m
s
252.347 190.273 m
266.621 200.155 269.915 191.371 280.895 208.939 c
291.875 226.51 281.993 219.919 299.561 228.706 c
317.129 237.49 306.149 242.98 299.561 260.548 c
292.973 278.116 297.365 277.018 318.227 281.41 c
339.089 285.802 324.815 287.998 322.619 306.664 c
s

6. Creating Illustrations on Mac and IBM PC

313.013 305.839 m
314.111 295.957 323.993 292.663 302.033 290.467 c
314.162 291.68 283.428 278.096 291.053 270.703 c
327.287 235.567 319.601 241.057 315.209 236.665 c
s
314.111 308.035 m
319.601 293.761 332.777 282.781 319.601 278.389 c
306.425 273.997 297.641 270.703 305.327 258.625 c
313.013 246.547 318.503 245.449 313.013 233.371 c
s
323.444 306.937 m
327.836 301.447 327.836 304.741 328.934 288.271 c
330.032 271.801 330.032 272.899 336.62 260.821 c
343.208 248.743 329.483 255.331 330.581 244.9 c
s
0.36 w
286.661 385.993 m
292.7 398.073 299.837 402.465 326.189 406.857 c
345.714 410.11 345.953 400.269 359.129 413.445 c
372.051 426.365 370.956 436.784 386.579 441.993 c
393.167 444.189 398.657 446.385 y
s

%%Trailer
Adobe Illustrator881 /terminate get exec
Adobe_customcolor /terminate get exec
Adobe_cshow /terminate get exec
Adobe_cmykcolor /terminate get exec
/#copies 2 def
showpage

141

The trailer section can be used to restore the environment to its original state at the end of
a document.

The showpage operator has to be inserted by the user if the graphic illustration is ·
going to be printed as an independent (non-embedded) document. We set the #copies
variable to 2. Thus, the showpage operator will produce the graphics twice.

Due to the universality of PostScript, the EPS files generated by Adobe Illustrator can
be embedded not only into Macintosh or PC documents, but also for instance into Page­
maker documents under OS/2 or markup documents on the mM mainframe (Advanced
Function Printing).

142 Encapsulated PostScript

Garlics as an Illustrator example

See Figure 44.

Figure 44 Garlics

Positioning an illustration

When you have generated a PostScript fi le and transferred it onto a personal computer,
you may be d isappointed because the printer attached to the PC outputs only a blank
page. This may happen if the orig in of an Illustrator document is not located at the lower
left comer of the paper sheet , but in a different position. That can be corrected by using
the translate operator.

6. Creating Illustrations on Mac and IBM PC 143

With an Illustrator document, the origin of the coordinate system is normally located
at the lower left position. However, the origin may have been shifted. In order to correct
this you must specify the following translate operator:

llx neg lly neg translate

The values for llx and lly are taken from the BoundingBox specifications. After you have
translated the illustration onto the position (0,0) of the new page, you can position it by
issuing another translate operator:

nx ny translate

Where nx and ny are the coordinates of the new origin.
After having placed the illustration that way, a reduction or an enlargement may be

required if only a certain area is available. You can do this with the help of the Bound­
ingBox specifications:

nux nlx sub % new width
urx llx sub % width of BoundingBox
div % proportion horizontal
nuy nly sub % new height
ury lly sub % height of BoundingBox
div % proportion vertical

% both x and y operands are on stack
scale % scale down or enlarge

If for instance the BoundingBox has a width of 10 em and the available area a width of 5
em only, the proportion amounts to

5cm =O.S
lOcm

The illustration is scaled down by 50%. This is also valid for the vertical dimension
(height).

Encapsulated PostScript for the IBM PC

The Macintosh user can generate the PostScript code in order to embed it on an mM PC.
The Encapsulated PostScript code is concerned, being always complete. Illustrator'88
can save an illustration in one of three ways (save as):

1. PostScript only (preview None)
2. Encapsulated PostScript (preview for Macintosh)
3. Encapsulated PostScript (preview for ffiM PC)

144

See Figure 45.

' • File Edit Arrange Uiew Style Window

~"

~
D
0

·~g
!:~
-::~)

D ~ou~•~ urt
D ~mt~•~ mnc
D ~ou~•~ h~mt)ln h~

Saue illustration as:

Q c:~ Festplatte

E:j•~t:1

Saue

Cancel

cntlude preuiew for
0 None 0 Mocintosh'M ®IBM PC® I

Include copy of placed Encapsulated
~PostScript files for other applications

D Saue Adobe Illustrator 1.1 compatible file

Encapsulated PostScript

·~===i"Tt::~
:mmmnnmmm~l'------------------.. ,

Figure 45 Generating an EPS file for the ffiM PC

Clicking into the preview for ... button causes the generation of the so-called 'preview'
file for the bitmapped representation at the screen - in addition to the generation of the
PostScript language file.

The format of the bitmapped representation:

Macintosh

IBM PC

PICT format (QuickDraw)

Microsoft Windows MetaFile or TIFF (Tag Image File For­
mat)

These formats are used for displaying a template at the screen only; the actual PostScript
language file serves for producing the high-quality document.

It may be the case that the Illustrator document contains additional images in the EPS
File format. Such images may have been produced for instance by programs such as
ImageStudio, SmartArt, MacPerspective, Pixel Paint, Pro3D. Enabling 3D Draw, or
Super3D and have been imported by using the Place option from the Illustrator File
menu. In this event when saving, please don't forget to copy the additional EPS file too.

6. Creating Illustrations on Mac and IBM PC 145

In order to do this click into the Include copy of placed Encapsulated PostScript files for
other applications button.

Adobe Streamline

The conversion of bitmaps into line arts can be achieved by the Streamline program from
Adobe too. With Adobe Streamline you can convert black and white images into
reproduction-quality artwork in the EPS File format. The converted image may require
fine-tuning once it is brought into your drawing program, but it beats coaxing along an
autotrace tool. A typical application is creating and maintaining a database with compa­
ny logos. Streamline is available on Mac and under MS Windows.

The prologue of a Streamline-generated EPS file contains the old Adobe Illustrator
procedure set:

%!PS-Adobe-2.0 EPSF-1.2
%%Creator:Adobe Illustrator(TM) 1.1
%%For:Martin Heller
%%Title:strearnline.eps
%%CreationDate:Fri Jan 26 13:45:13 1990

%%DocurnentProcSets:Adobe Streamline 1.1 0 0 - -
%%DocurnentSuppliedProcSets:Adobe_Strearnline_1.1 0 0
%%DocumentFonts:
%%BoundingBox:O 0 576 720
%%TernplateBox:O 0 576 720
%%EndComments
%%BeginProcSet:Adobe_Illustrator_1.1 0 0
% Copyright (C) 1989 Adobe Systems Incorporated.

%%EndProlog

The script generated by Streamline corresponds to the script of Adobe Illustrator 1.1.
The Windows version of Adobe Streamline reads TIFF, compressed TIFF, PCX, and

MacPaint input formats, and can produce output files in Adobe Illustrator Windows ver­
sion, EPS and Micrografx Designer formats.

146 Encapsulated PostScript

Micrografx Designer, GEM Artline, Corel Draw on the IBM PC

For the IBM PC users, there exist several alternatives to Illustrator and FreeHand.
Designer of Micrografx is a Windows program able to import scanned bitmap graphics
and retain the outlines and vectors. Designer, GEM Artline, Corel Draw and Diagraph
Windows to date are the PC programs to compete with the Illustrator and FreeHand Mac
programs. As well Designer and GEM Artline as Corel Draw and Diagraph Windows
can convert scanned images into resolution-independent vector graphics or line art
respectively. The advantage of the PC programs over the Mac programs is the symbol
library. You can add symbols by simply clicking on single parts of a drawing and label­
ing these by number and name.

Formats supported for Import/export

PC program GEM PCX TIFF CGM WMF HPGL EPS*

Adobe 111ustrator X X X X X X
GEM Artline X X X X X
Corel Draw X X X X X X
M. Designer X X X X X X

GEM: .IMG, CGM: ISO format, WMF: MS Windows Metafile, HPGL: Hewlett-Packard

* Encapsulated PostScript Files: for export

The Computer Graphics Metafile (COM) format and the GPI under OS/2 are competing
with the EPSF format.

GEM Artllne

Artline is fully integrated in GEM, therefore can be used in a comfortable way. It is an
object-oriented program but can process pixel-oriented graphics as well. It displays pixel
graphics in the background. The PCX, IMG, and TIFF file formats are readable.

Version 2.0 extends the first release of GEM Artline, by incorporating the color sepa­
ration and auto tracing functions. The color separation allows you to create a PostScript
file producing four color-separated films when processed on a Linotronic or Compu­
graphic recorder or another PostScript-compatible typesetter.

6. Creating Illustrations on Mac and IBM PC

Designer version 2.0

The Micrografx Designer version 2.0 offers the following enhancements:

• Compatibility with the Presentation Manager of OS/2.
• Color fountains defined exactly by Pantone colors.
• Auto tracing as with Illustrator'88.
• Editing smoothed curves.
• Drawing smoothed curves by free hand.
• Color separations.

A Designer EPSF head

%!PS-Adobe-2.0 EPSF-1.2
%%Creator: C:\WINDOWS\WORK\ICU
%%Title: LOGO.EPS
%%CreationDate: Mar 28th 1990
%%BoundingBox: 7 576 362 789
%%DocurnentFonts: (atend)
%%DocurnentProcSets:MGXPS 2.1 0 0
%%DocumentSuppliedProcSets:MGXPS_2.1 0 0
%%Pages: (a tend)
%%EndCornrnents

%%BeginProcSet: MGXPS 2.1 0 0

147

Illustrations saved that way in the EPS File format may be exported into Xerox Ventura,
PageMaker, or MS Word 5.0, etc.

Corel Draw

Corel Draw, operating under MS Windows and OS/2, offers the functions Bezier curves
(smoothed or cubic curves), auto tracing, fountains and typefont effects. An EPS file
generated by Corel Draw consists of two parts: the screen representation in the MS Win­
dows Metafile format and the standard PostScript language file. The screen representa­
tion allows the display of the imported EPS file. This simplifies and speeds up the plac­
ing, scaling, and clipping of the graphics by any layout program.

If you have access to a PostScript printer, the EPSF format is mostly suited for
exporting the graphics into a page layout or a word processing program. It is the best for­
mat because it contains the most information. If you read your EPS illustration into the
page layout program it will be printed exactly as under Corel Draw. In addition, the size
and position of the imported graphics may be modified by the layout program. In Page­
Maker, Ventura Publisher, and Word 5.0, the illustration even may be clipped. Data

148 Encapsulated PostScript

about title, date, and author are inserted automatically. As expected, Corel Draw pro­
vides the bounding box of the graphics.

An EPS code generated by GEM Artline

The EPS code generated by GEM Artline is impressively simple. The Artline prologue
gets along with a dozen rather simple definitions. The complete code consists of three
parts:

1. The EPS head with the comment lines beginning '%%'.
2. The definitions.
3. The script with the line art (vector graphics).

%!PS-Adobe-2.0 EPSF-1.2
%%Creator: GEM Artline by CCP
%%Title: Bi-Centennial
%%Comment:
%%CreationDate: 03/07/89, 12:42:48
%%BoundingBox: 97.7 17.0 532.9 760.3
%%EndCornments

%
% Copyright (C) CCP Development GmbH 1988.
% All rights reserved.
% GEM and GEM Artline are Trademarks of Digital
Research
%

Specifying the BoundingBox information is quite important in the EPS head (see above)
to communicate the illustration size to the embedding application.

/#copies 1 def

/g setgray } bind def
/i newpath moveto } bind def
/1 lineto } bind def
/m
/c
/f
/r

moveto } bind def
curveto } bind def
gsave eofill grestore
setrgbcolor } bind def

bind def
% colors

6. Creating Illustrations on Mac and IBM PC 149

Is setlinewidth stroke bind def
/cp closepath } bind def
/sf current screen % screen

4 -2 roll pop 3 1 roll set screen } bind def
/sa { current screen

3 1 roll pop 3 1 roll set screen bind def

These definitions serve to construct abbreviations for the often used operators, such as:

g changing the current gray scale

beginning a new path

constructing a line path

m changing the current position

c constructing a smoothed curve (cubic curve)

f filling a closed path (area fill)

r changing the current color

s stroking a path

cp closing a path

sf and sa changing the screen of an output device

gsave
60 sf
474.7 631.5 i
478.2 628.0 1
478.8 625.0 479.1 621.3 480.8 618.9 c
483.5 614.8 487.9 613.6 491.8 612.3 c
518.1 603.2 1
516.8 620.4 510.6 626.2 498.0 623.1 c
497.1 625.7 496.2 628.6 495.2 631.4 c
504.1 633.7 510.4 631.2 515.7 621.3 c
517.9 617.0 519.5 612.0 520.1 606.7 c
520.7 600.1 521.1 600.2 523.2 594.1 c
520.7 595.0 1
520.5 588.7 520.5 578.1 514.3 576.4 c
507.8 574.5 502.9 583.8 500.1 590.0 c
499.2 584.5 497.6 579.4 492.7 578.8 c
486.4 578.3 481.1 584.1 478.3 590.7 c
472.2 604.5 475.1 616.2 474.7 631.5 c

150 Encapsulated PostScript

499.7 601.8 rn
500.1 597.6 500.8 593.8 502.9 590.5 c
505.0 587.2 508.1 584.8 511.5 584.7 c
517.0 584.5 517.9 589.8 518.1 595.3 c
499.7 601.8 1
514.1 556.7 rn
515.8 558.4 517.4 559.6 519.5 560.7 c
520.9 558.3 522.3 555.9 523.5 553.3 c
521.7 552.0 519.9 550.6 518.1 549.3 c
516.6 551.7 515.3 554.1 514.1 556.7 c
cp f % closing path and filling
489.9 523.0 i
489.7 525.9 489.7 528.7 489.7 531.5 c
489.7 546.7 1
493.9 543.5 1
493.9 520.3 1
489.9 523.0 1
cp f % closing path and filling
482.2 473.8 i
479.8 474.9 1
476.5 482.4 473.8 490.3 473.5 499.0 c
472.9 510.7 478.1 518.7 487.6 518.5 c
502.9 518.3 515.9 506.8 520.5 488.3 c
522.6 480.1 522.7 472.0 517.9 465.4 c
514.8 467.2 511.7 468.9 508.5 470.5 c
507.7 473.4 1
513.6 472.9 518.5 474.4 518.5 483.6 c
518.5 489.1 516.1 494.4 513.0 498.1 c
508.5 503.8 502.2 506.8 495.9 508.3 c
488.2 510.3 477.2 509.2 476.7 496.2 c
476.3 488.3 479.5 480.7 482.2 473.8 c
cp f % closing path and filling
490.0 456.5 i

525.1 31.2 525.7 31.8 525.6 32.6 c
525.6 33.4 525.0 33.7 524.3 33.7 c
523.9 33.7 523.8 33.7 523.8 33.2 c
523.8 31.5 1
0.040 0.040 0.040 r cp f
0.000 0.000 0.000 r .0 s
grestore

showpage

According to the PostScript imaging model, a two-level procedure is followed:

6. Creating Illustrations on Mac and IBM PC 151

1. Constructing a path.
2. Stroking the path or filling the closed path (stroke or area).

As the textbook explains it, the illustration is bracketed or capsulated by gsave - gre­
store, in order to preserve the graphics state of the main document. That way, an EPS file
generated by GEM Artline may be embedded by PageMaker for instance, provided that
the showpage operator is dummied.

The example

See Figure 46.

EPS files by Harvard Graphics

Harvard Graphics is a business graphics program that can generate Encapsulated
PostScript files. This capability is documented by the following EPS head:

%!PS-Adobe-2.0 EPSF-1.2
%%Creator: Harvard Graphics
%%Title: communication research
%%BoundingBox: 60 190 540 720
%%Pages: 0
%%DocumentFonts: Helvetica Times-Roman Times-Italic
%%+ IntlHelvetica IntlTimes-Roman IntlTimes-Italic
%%DocumentSuppliedFonts: IntlHelvetica IntlTimes-Roman
%%+ IntlTimes-Italic
%%EndCornrnents

The bounding box is declared, and the used fonts are listed. The font names prefixed by
Inti refer to the reencoded fonts with the international character set (a, o, ii, e, e, a, ~.
etc.).

/HGdict 30 diet def % define local dictionary
HGdict begin %push dictionary onto dictionary stack
Is /stroke load def
/m /moveto load def
/1 /lineto load def
/f {findfont exch scalefont setfont} bind def

152

United &tates
of America

~
~.
I

Encapsulated PostScript

~
~

~
~.

~
~

GEM~

Figure 46 Artline graphics in the EPS format (bi-centennial)

6. Creating 111ustrations on Mac and IBM PC

/10 {setlinewidth 0 setdash} bind def
/11 {s [20 80] 1 10} bind def
/12 {s [300 150] 1 10} bind def
/13 {s [] 30 10} bind def
/14 {s [] 1 10} bind def
/sn {stringwidth pop neg} bind def
/rj {sn 0 rmoveto} bind def
/cj {sn 2 div 0 rmoveto} bind def

153

Various operators are defined. These definitions are followed by a reencoding routine
and the encoding vector which support the international character set (not reprinted here).

end %pop HGdict off the dictionary stack
%%EndProlog

The %%EndProlog comment marks the end of the prologue section and the beginning of
the script section of the graphic document.

Note the position of the %%BeginSetup and %%EndSetup comments:

%%BeginSetup
save % saving state
HGdict begin
72 2400 div dup scale % scaling the coordinate system
1 setlinewidth 0 setlinecap 0 setlinejoin
[] 0 setdash 0 setgray 10 setmiterlimit

%%BeginFont: IntlHelvetica
/Helvetica /IntlHelvetica spanvec ReEncodeSmall
%%EndFont

%%BeginFont: IntlTimes-Roman
/Times-Roman /IntlTimes-Roman spanvec ReEncodeSmall
%%EndFont

%%BeginFont: IntlTimes-Italic
/Times-Italic /IntlTimes-Italic spanvec ReEncodeSmall
%%EndFont
%%EndSetup

The ReEncodeSmall routine reencodes the fonts by using the spanvec encoding vector.
The encoded fonts carry the Inti prefix in their names, stressing the international charac­
ter set is supported.

The script describing the graphic illustration follows:

154 Encapsulated PostScript

%%Page: one 1
newpath
2400 3000 translate
14

% translating the origin

s s 0.93 setgray
5929 3277 rn
5929 4369 1 9672 4369 1 9672 3277 1 5929 3277 1 eofill
s 0 setgray
5929 3277 s rn
5929 4369 1 9672 4369 1 9672 3277 1 5929 3277 1
s s 0.93 setgray
9516 6709 rn
9516 6715 1 9515
9498 6824 1 9488
9445 6930 1 9427

6743 1 9511 6770 1 9505 6797 1
6851 1 9476 6878 1 9462 6904 1
6956 1 9408 6982 1

This script describes some line graphics by addressing the operators defined in the pro­
logue section of the EPS file.

7800 3901 s rn
(forrnelle und) cj
(forrnelle und) show
7800 3433 s rn
(inforrnelle Kontrolle) cj
(inforrnelle Kontrolle) show
s end restore
%%Trailer

% restoring state

An EPS file doesn't need to contain (but may contain) a showpage operator since that
operator is addressed by the including application. If an application such as MS Word
5.0 imports the EPS file it always takes the bounding box information as the 'truth'. The
placed illustration may be resized or clipped by MS Word, Word Perfect, PageMaker,
etc.

Mathematica on NeXT and Macintosh

Several representations of graphics are in common use by Mac and NeXT applications.
Wolfram Research describes the formats generated by Mathematica:

PostScript PostScript representations are text-based and resolution
independent. PostScript graphics are used by high resolution
printers such as laser printers or typesetters, and by the

6. Creating Dlustrations on Mac and IBM PC 155

Mathematica kernel.

Encapsulated PostScript This format is a PostScript-based representation that can eas­
ily be imported into non-PostScript documents by applica­
tions such as PageMaker, and Illustrator.

Embedded PostScript This format is a screen representation in which PostScript is
embedded in comment fields. Embedded PostScript graph­
ics can be pasted into any application that is capable of using
graphics.

Other screen representations
A bitmap representation is based on individual pixels in an
image. Bitmaps are resolution dependent.

Each of these graphics representations has its advantages and drawbacks. The Mathemat­
ica Front End allows you to convert between them. Some sections of the User Manual
cover ways to convert graphics from one file format to another.

The FreeHand alternative

There is competition. FreeHand is another program product and is sold by Aldus. As
Illustrator does, it works with the features of PostScript. The FreeHand product is well
suited for drawing from scratch for working with text logos, see Figure 47. FreeHand
gives complete control over objects that have to be represented three-dimensionally.

In addition, the user can write his/her own PostScript programs for the output device
in a special PostScript window: this window is selected by PostScript fill of the Fill
menu. When you have drawn some closed paths you may define the filling pattern by
entering a small PostScript program. The program example produces the 'cookie-cookie­
cookie-cookie-cookie' background. Note the use of the clip operator which is very much
like a cookie cutter.

Your own PostScript program:

/Roman /Palatine-Roman findfont 36 scalefont def
/str (cookie-cookie-cookie-cookie-cookie) def
/crlf

{ currentpoint 30 sub
exch pop 0 exch moveto def

/printstr { str show crlf def
/Background

{ 25 { printstr } repeat } def

156 Encapsulated PostScript

Edit Uiew Element Type Fill line Color 11 :06:18 Uhr

Figure 47 The Macintosh screen of FreeHand 2.0

clip

newpath 0 730 moveto
Roman setfont Background

As lllustrator'88 does, FreeHand supports color. FreeHand 2.0 also enables the user to
produce color separations.

An EPSF document generated by FreeHand consists of two parts:

Print format

Picture format

This file consists of the complete PostScript code.

This is the bitmap for displaying a template at the screen of a
Mac or an ffiM PC.

An embedding application can display the bitmap at the screen (preview), while the
PostScript program is used for printing. This mechanism of EPSF guarantees the high­
quality output of the illustration, but enables the user to see and scale an approximation at
the screen.

6. Creating lllustrations on Mac and IBM PC 157

The object-oriented drawing program CricketDraw

CricketDraw is an object-oriented graphics program for production of illustration draw­
ings and line art. It is available on Apple Macintosh.

This - quite old - program may interest you because it generates a complete
PostScript code, as do Illustrator'88 and GEM Ardine; i.e. it uses its own prologue. The
PostScript file can be generated by clicking with the mouse on the EPSF (=Encapsulated
PostScript File) option under the menu save as.

The EPS file generated by CricketDraw consists of two parts: the so-called resource
fork and data fork. The PostScript language file in ASCII (data fork) is discussed later.

The other part (resource fork) contains a bitmapped format to be displayed at the
screen. In order to support the WYSIWYG concept (What You See Is What You Get),
the PostScript file may be supplemented by a bit-mapped screen representation. This
means, that the importing or embedding application can display the document at the
screen (preview facility) while using the PostScript program for printing or typesetting.
This mechanism ensures the high quality of the illustration, but enables the user to see
and to scale an approximation at the screen.

The versions 1.1 and 1.2 allow production of color separations for four-color printing.

The PostScript window

In a special PostScript window, the user may write his or her own PostScript programs.
In order to do so, click on the Window Type: PostScript button while opening a file.
Then under Goodies, CricketDraw 1.1 offers a PostScript help. Furthermore, the
PostScript programmer can use a library with PostScript language routines. While saving
a PostScript window the Macintosh displays the menu as shown in Figure 48.

The CricketDraw manual comments upon this: You can save the PostScript text file
in one of three ways:

Brief

Complete

EPSF

Saves only the listed PostScript.

Saves the listed PostScript and the Cricket PostScript proce­
dures.

Is needed by other applications.

If you wish to include the Cricket PostScript header, click on the Complete button. This
option needs to be selected if CricketDraw is not going to be used to download the file to
the printer- for example, if the file is being transmitted to a service bureau for typeset­
ting.

Choose the Complete option, if the self-made PostScript language program is to be
printed at another location. Click on the EPSF button, if the PostScript program is to be
exported into another application, such as PageMaker.

158

D fl.r<lind1·o~q1~
l".~ fl.r<lindrop.p~ I
D !1.(ubt~.ps
D C.< II!) tqpt~-!)S

D EL~!H~ t~tishow.p~

D Uint~bOH

Saue under what name?

Figure 4R Saving the PostScript window

g = Festplatte

If!!! (Huswerf<m)

J! [l.dufwerl:

<)

Sichern

[Abbrechen)

Q EPSF

An EPS code generated by CricketDraw

Encapsulated PostScript

s a string on U
es each charact

: an additional I
would be used to e
: access a global

was used to prod\
of Colophon 3.

An EPS code generated by a driver program is intended to be used by other applications.
To the user therefore, such a code is not always easy on the eye.

In the manual, the CricketDraw prologue is called Header. The PostScript routines
are named Procedures. The PostScript code obeys the Structuring Conventions version
2.0, as does the PostScript code of Adobe Illustrator. EPSF is the abbreviation for Encap­
sulated PostScript File format, a format for PostScript graphics and images to be import­
ed. Essentially, the EPS File format consists of basic PostScript code and a number of
comment lines that structure the PostScript code.

The three parts

The prologue of the CricketDraw version 1.1 consists of three parts:

I. A procedure that alters the coordinate system: fixcoordinares

2. Procedures that create paths, i.e. the object description:
• doarc creates an elliptical arc

6. Creating Illustrations on Mac and IBM PC 159

• doroundrect defines the dimensions of the rectangle and the shape of its curved
comers

• dobitmap images a bitmap, in hexadecimal form, onto the drawing

•
3. Procedures that operate on paths:

• strokearrow places an arrowhead at the beginning, ending, or both ends of a pre­
viously defined path

• shadow creates a shadow based on a previously defined path
• fountain applies a linear. log, or radial fountain through a previously defined

path at a specified angle
• pathtext positions a string of text along a previously defined arbitrary path
• makeoutlinefont creates a 'true' outline font based on any other font

•
For reasons of space, only the beginning and the end of the prologue are reprinted here.

CrlcketDraw version 1.1

From release to release, the PostScript code generated by a software product becomes
more complex and less easy on the eye.

%!PS-Adobe-2.0 EPSF-1.2
%%Creator:Cricket Draw 1.1
%%Title:diarnon.eps
%%CreationDate:9/19/88 2:47 PM
%%BoundingBox:O 561 163 781
%%Pages:O
%%EndComments
/vrnstate save def
[] settransfer
/$cricket 210 diet def
$cricket begin % dictionary

The begin operator pushes the $cricket dictionary onto the dictionary stack.

1 -1 scale 57 -700 translate

This code converts from the coordinate system used by QuickDraw (upper left origin!) to
the PostScript coordinate system.

2 setlinecap
/d /def load def
/b {bind d}bind d
/1 {load d}b

160

/e /exch 1
/x {e d}b
/C /c1osepath 1
/CP /currentpoint 1
/SH /show 1
/g /gsave 1
/G /grestore 1
/i /if 1

Encapsulated PostScript

Here, abbreviations for the PostScript operators often used by Cricket are predefined.

/rna {* :f"}b
/h {D * e D rna sqrt}d

systerndict D /setpacking known D
{/packstate currentpacking d D setpacking}i /pack? x

Older PostScript printers don't yet know the setpacking operator.

/xref1ect { [1 0 0 -1 0 0] concat} bdef
/yreflect { [-1 0 0 1 0 0] concat} bdef

Objects can be reflected, either horizontally or vertically in this way.

/shear
{/theshear exch sin def
[1 0 theshear 1 0 0] concat
}bdef

In this way, objects are sheared or slanted.

/JoinProcs {jp}d
/fixcoordinates {fc}d
/doarc {a}d
/doroundrect {rr}d
/dograte {dg}d
/dorgrate {drg}d

6. Creating Illustrations on Mac and IBM PC

/pathoffset {po}d
/pathtext {pt}d
/dostarburst {sb}d
/dobitmap {bm}d

Here, the procedures capable of constructing paths have been listed.

%%EndProlog

161

The %%EndPro/og comment marks the end of the prologue section and the beginning of
the script section of the document.

Procedures and operands

The fixcoordinates procedure to modify the coordinate system has the following
operands:

1. Slope in degrees, 0 in the example.
2. 'true' or 'false' for vertical reflection, 1 in the example.
3. 'true' or 'false' for horizontal reflection, 1 in the example.
4. Rotation in degrees, 0 in the example.
5. Vertical position (center of the object), 109.500 in the example.
6. Horizontal position (center of the object), 80.932 in the example.

The origin of the coordinates lies in the center of the rhombus to be drawn (see Figure
49).

The fountain procedure calls up the PostScript image operator. This operator renders
an image onto the current page. The routine draws 256 continuous gray scale values i.e.
the pattern progressing continuousely. This means that each gray value is represented by
8 bits. The fountain routine has the following operands:

I. The angle of the pattern, 90 in the example.
2. The way of progressing (linear, logarithmic, radial), 1 in the example.
3. Gray scale begin, 0 (black) in the example.
4. Gray scale end, 1 (white) in the example.

The prologue also provides the 256-character long string for the progressing pattern
shown. In the example, fountainstring contains all 256 possible 8-bit combinations; a
printable subset offountainstring: !"#$%&'0*+,-./0123456789:;<=>? etc.

162 Encapsulated PostScript

The program script of CricketDraw

The script or main program comes after the prologue. In this example, a rhombus or dia­
mond is drawn and filled with a pattern continuously progressing from black to white.
The horizontal and the vertical diameters amount to 2 times 80 points and 2 times 109
points respectively, these correspond to a width of 5.6 em and a height of 7.7 em. At the
end, the outlines are stroked by stroke.

%----- Begin Main Program -----%

gsave
0.000 1 1 0.000 80.932 109.500 fixcoordinates
newpath
0.000 -108.500 moveto
79.932 0.000 lineto
0.000 108.500 1ineto
-79.932 0.000 lineto
closepath
90 1 0 1 fountain
1.000 setlinewidth
0 setgray stroke
grestore

% rhombus
% filling

% strokes

%------ End Main Program ------%

end
vmstate restore

%%Trailer
%%Pages:1

showpage

The script isn't bracketed by save/restore, but by gsavelgrestore only. However, this is
sufficient to ensure a clean graphics state at the end of the main program.

The showpage operator has to be inserted by the user if the illustration is going to be
printed as an independent (non-embedded) document.

The result generated by CricketDraw

See Figure 49.
Due to the universality of PostScript, the EPS files generated by CricketDraw can be

embedded not only into Macintosh or PC documents, but also, for instance, into Page­
maker documents under OS/2 or markup documents on the IBM mainframe (Advanced
Function Printing).

6. Creating Illustrations on Mac and IBM PC 163

Figure 49 'Diamond' with gray scales (fountain)

CA-Crlcket Stylist

CA-Cricket Stylist is the new, upgraded version of CricketDraw. Among the new fea­
tures are full color support, an extended tool palette with full sets of Bezier drawing and
transformation tools, and additional printing capabilities.

7.

Constructing Your Own Characters

First note that the Fontographer program is available on the Mac while Publishers Type­
foundry runs on the mM PC under MS Windows.

A designer can create graphics and refine images with Corel Draw or Adobe Illustra­
tor; by using the Fontographer or Type foundry, he/she additionally can construct his or
her own fonttypes, see Figure 50. Fontographer and Typefoundry are similar in two
respects:

1. Both programs help the user to convert templates or bitmaps into outline fonts.
2. Both programs generate a complete PostScript language code although the EPS File

format isn't concerned (EPS Files describe illustrations, not typefaces).

Figure 50 A company logo

A font created by Fontographer or Typefoundry is downloaded onto a printer either tem­
porarily (for the duration of a print job), pennanently until power off or pennanently onto
the printer hard disk. The technical tenn is font downloading.

On the Macintosh, three independent display layers are shown for each character:

1. Foreground layer with the outlines.
2. Background layer with a template (if any).
3. Auxiliary layer with the base line and other guide lines.

7. Constructing Your Own Characters 165

The Fontographer, like the Adobe Illustrator or FreeHand, is a tool for the professional
designer too. As opposed to bitmap fonts, the constructed character types are always
printed out in the optimal resolution (important with the typesetter). Outline fonts are
superior to the bitmap fonts because the outline fonts may be freely enlarged.

The Fontographer even allows you to modify characters of a Type 1 font (e.g. Helvet­
ica). Practical experience shows that this is requested more often by the end user than the
construction or' completely new font designs. Since Fontographer version 3.0, the origi­
nal outlines of the Adobe fonts and of other fonts are available if you have the Metamor­
phosis conversion utility program.

With version 2.4, any font template may be opened in two ways:

Composite

Background

The characters of a standard font (e.g. Helvetica) should be
supplied ready for add-on's, typically exotic or phonetic
accents. A composite font is a reference to one or more
existing PostScript fonts. When you attempt to print using a
composite font, the definition of the original font must be in
the printer.

The characters of any font are shown only as templates at the
screen. It is up to the user to click on the outline points
(tracing).

Fontographer 3.0 can generate the PostScript file in three different shapes:

PostScript Macintosh Choosing this option generates the standard PostScript font
file. This font file can be used for both automatically down­
loadable fonts or fonts that are downloaded to the printer's
hard disk. It is in this format .that PostScript and the print
driver recognize the file as a font. The characters generated
in this file are in the compressed format. Compressed
PostScript is the preferred form for generating fonts.
Fontographer's compression scheme generates fonts which
take up one-fifth the space, on average, of uncompressed
fonts.

PostScript Compressed Choosing this option generates the font file as an ASCII
Text file. The font file is also compressed. The compressed
form is generated as a string of numbers and letters which
requires the font header to decipher.
Compressed character description example:

/n<97DD64574C90DC9EDCEE8A87DC ...
EB7CD96B84D942D784D942D7EB ...
6440D71D40D71DEB64AAEAFCF5>def

166 Encapsulated PostScript

This option may be used for transferring Fontographer­
generated fonts to non-Macintosh systems, such as the ffiM
PC. Such fonts can be downloaded to the printer from any
type of computer system.

PostScript Uncompressed
This option is provided for PostScript programmers. It gen­
erates an ASCIT text file with the standard PostScript defini­
tions of the character. You may use this option to get the
PostScript definition for all characters in the font. Under
certain circumstances it may be appropriate to generate a
small font in uncompressed format when the number of
characters is small and the font must print as fast as possible.

Fontographer 3.0 even offers an autotracing tool. Instead of hand-tracing, you can paste
PICT images into Fontographer's background layer and have Fontographer autotrace
them for you.

Metamorphosis

Metamorphosis by Altsys is a utility designed to convert printer-resident PostScript fonts
(Type 1, e.g. Helvetica) into editable outline formats. The software product can convert
fonts using any Adobe PostScript printer, from the LaserWriter to professional typeset­
ting machines. Fonts to be converted may be downloaded to the printer or resident in
ROM. Metamorphosis essentially fetches the outline of the font selected from the printer
and brings it back to the computer (at last).

During the process of conversion, Metamorphosis provides the option of creating
editable outlines to be used in Fontographer to create Type 3 PostScript fonts (which can
be used in any Macintosh application) or to create an EPS file useable in FreeHand and
Illustrator, allowing artistic renderings from a typographical base. Extract from an EPS
file generated by Metamorphosis, describing types:

u
%%Note:/five =53 117 681 554 0
117 681 m S
123.382523 716.463791 m
139.410812 716.463791 1
139.410812 713.248535 1
126.309845 704.514557
128.373367 705.138412 130.484879 705.138412 c

Metamorphosis uses the PostScript prologue of Adobe Illustrator 1.1.

7. Constructing Your Own Characters 167

A PostScript code generated by Fontographer

In this section we don't proceed from a standard font such as Helvetica, but use an exam­
ple from the Altsys company which constructed the character types from scratch. The
types are intended to represent the various components of two office chairs, see Figure
51.

~ ~
r r

~ ~ \ \ XX
~ ~ ~ l l

. -. -. .- . -. ~ ~ l~ 7 7

Figure 51 The components of a chair

The uncompressed PostScript code generated by Fontographer 3.0 corresponds to Fonto­
grapher 2.4 'PostScript text':

%!PS-Adobe-2.0
%%Title: Fontographer 2.4
%%FontName: My-Font
%%CreationDate: 9.12.1988 9:00:39 h
%%Creator: Earl
%%Pages: 0
%%EndComments

... Prologue
%%EndProlog

The end of the definition section generated by Fontographer is marked by the %%End­
Prolog comment. After the prologue, the font dictionary follows, see chapter 5.3 in
PostScript Language, Reference Manual (red book), Adobe Systems Inc., 1986 [2].

168 Encapsulated PostScript

The Type 3 font dictionary:

/$KeyStrokeArt 19 diet def $KeyStrokeArt begin
/PaintType 0 def /FontType 3 def
/StrokeWidth 5 def
/FontBBox[-286 -309 2250 1089]def
/FontMatrix[0.000746 0 0 0.000746 0 O]def
/InvMtx[1341 0 0 1341 0 O]def
/CharDefs 257 diet def
/FontName (KeyStrokeArt) def
/BuildChar{AltRT6/BuildChar get exec}def
/Fontinfo 3 diet def Fontinfo begin
/UnderlinePosition -160 def
/UnderlineThickness 20 def end
/Encoding AltRT6
/MacVec get def CharDefs begin
/.notdef{SOO 0 setcharwidth} def

Type 3 fonts are unencrypted. Now. the definition of the characters begins ...

% character a
/a {1644 0 126 -191 939 -7 Cache 500 -83 rrnoveto
-278 -31 rlineto 0 18 rlineto
0 5 5 11 7 14 rcurveto

-32 -2 rlineto stroke } def

% character b
/b {1034 0 141 -196 936 -90 Cache 516 -162 rrnoveto
50 0 rlineto 0 -29 rlineto -50 0 rlineto, Cp
797 -95 rrnoveto
50 -4 rlineto 0 -24 rlineto -50 0 rlineto Cp
230 -99 rrnoveto
49 4 rlineto 0 -28 rlineto -49 0 rlineto
Cp Fill } def

% character c
/c {1034 0 251 -62 443 278 Cache 421 237 rrnoveto
2 1 -6 2 -8 2 rcurveto -4 1 -10 5 -11 9 rcurveto
-6 14 rlineto -74 -43 rlineto -49 0
rlineto 18 -13 rlineto 6 -4 9 -16 3 -21 rcurveto
-2 -1 -7 -3 -10 -3 rcurveto -10 3 rlineto
0 -231 rlineto
59 0 rlineto 0 230 rlineto Cp
Fill } def

7. Constructing Your Own Characters 169

The predefined Cache operator specifies width and height of a character etc. Regarding
the Type 1 fonts we speak of AFM (=Adobe Font Metrics), these are nothing other than
the tables with the width and kerning data (width and kerning tables). For the PC, they
also come in the PFM (Microsoft Windows) format.

Both/and I are combinations that use the Showlnt construct:

% combination f combines d, e, b, a, c.
/f {1000 0 141 -242 940 834 Cache gsave
[1 0 0 1 89 -172]concat 100 Showint
gsave [1 0 0 1 89 -170]concat 101 Show!nt
gsave [1 0 0 1 2 -2]concat 98 Showint
gsave [1 0 0 1 8 18]concat 97 Showint
gsave [1 0 0 1 241 43]concat
99 Showint Fill }def

% combination 1 combines m, j, k, i.
/1 {901 0 106 -273 915 1137 Cache gsave
[0.902500 0 0 0.902500 196.939987 164.539993]concat
109 Showint % combines m
gsave [0.902500 0 0 0.902500 0 -17.660000]concat
106 Show!nt % combines j
gsave [0.902500 0 0 0.902500 127.252495 57.759998
concat 107 Showint % combines k
gsave [0.902500 0 0 0.902500 133.960007 112.289993]
concat 105 Showint Fill }def

end /EFN [] def
end % end of font dictionary

systemdict /currentpacking known {SavPak setpacking}if

/My-Font $KeyStrokeArt definefont pop
/My-Font findfont/EFN get AltRT6 begin{RF}forall end

The definefont operator registers $KeyStrokeArt as a font dictionary associated with My­
Font.

In this example, Altsys completely constructed the following types: a, b, c, d, e, f, g,
h, i, j, k, 1, and m. Note, Fontographer uses for the character representation mainly the
rmoveto, rlineto, rcurveto PostScript operators and at the end the PostScript routines
defined in the prologue such as Show/nt, Cp, Fill, and Eofill. Showlnt is a quite special
construct; it lets you combine different characters to a single character. See Figure 51.

170 Encapsulated PostScript

EPS files and the Art Importer (Mac only)

On the base of EPS or PICT files, you can use the Art Importer (or the old KeyMaster)
program by Altsys in order to construct company logos and assign these to keys of the
keyboard. Each font created by the Art Importer is composed of 256 character slots, each
of which corresponds to a character that can be typed from the keyboard. A slot can con­
tain your logo, the shrunken head of your boss, the Eiffel Tower, or any graphic image
you desire, see Figure 52.

une
deux

trois
quatre

• c1nq
Figure 52 Print example by MS Word with the Art Importer

Let's take your company logo. This should be available as artwork. The Art
Importer gives you a way to import EPS artwork files from Aldus FreeHand, Adobe
Illustrator, Streamline, or TypeStyler. These applications do save quality graphics or
illustrations as Encapsulated PostScript Files. An EPS file usually consists of two parts, a
screen representation (template) and the PostScript language code itself driving a laser
printer or a typesetter. With regard to the Art Importer program, you could also use PICT
files instead of EPS files. The Art Importer cannot, however, use PICT files which con­
tain only bitmap images. But Color PICT2 drawings can now be imported with color
intact.

7. Constructing Your Own Characters 171

Quite often when working with a word processing or layout program, it is desirable to
use logos. At this point, the Art Importer program may be installed. It is simple there­
fore to have such EPS or Pier files imported and assigned to the keyboard characters.
As already mentioned, the Art Importer can assign all 256 printable and non-printable
character slots.

When you finally have chosen 'Save', the Art Importer operates as a font generator
(The Art Importer comes from the Fontographer and Fontastic developers). Basically,
two font files are generated:

1. A bitmap font for displaying the logos at the screen, which has to be copied by the
Font/DA Mover utility.

2. A PostScript font defining the logo outlines on laser printers and typesetters (Auto­
logic, Compugraphic, Linotype, Monotype, Scangraphic, Varityper, etc.). Simply
put this font file into your system folder.

If you select this new font for instance in the MS Word application, the logos are dis­
played in the desired sizes at your screen, and the PostScript font downloaded automati­
cally onto the printer reproduces the logos in the highest possible output quality (Figure
52).

Type manipulation software

TypeStyler enables the user arbitrarily to modify Type I fonts, and Type 3 fonts created
by Fontographer, for instance to stretch and distort characters and their baselines (e.g.
imitating the fish-eye perspective). The effects can be exported as files in the EPS for­
mat. Broderbund's TypeStyler lets you create sophisticated special effects with thou­
sands of PostScript fonts.

Another type manipulation program is LetraStudio, which lets you create headlines,
logos, signs, and other display type. It is now Type !-compatible (like Metamorphosis).

172 Encapsulated PostScript

Publishers Typefoundry on the IBM PC

For the mM PC users, there is an alternative to Fontographer. Typefoundry by Z-soft is
a Windows program using bitmap fonts to produce outlines. You can scan in logos and
symbols and trace the outlines of the template at the screen with help of the mouse.
Finally, PostScript types can be generated. Rotation, stretching, and distorting whole
characters or single parts are possible.

Bitmap and outline editor

The two most important components of Publishers Typefoundry are the bitmap editor and
the outline editor, by which the user produces and edits fonts in the vector format. The
outline editor generates a PTF-ASCII format, that is translated into the PostScript lan­
guage by a translator.

Once an outline font is constructed, it is easy to generate bitmap fonts automatically
from this in various sizes. With very small point sizes (e.g. 7 points) only, it may be nec­
essary to postprocess and refine a font produced in this way by a bitmap editor.

Downloading a font permanently with exitserver

If you want to download your font permanently onto the printer (pennanently means until
the next power-off) you must place in front of the generated code the following
PostScript command:

serverdict begin 0 exitserver %for PC fonts ...

You quit the normal server loop by the exitserver operator and can store definitions and
font dictionaries etc. permanently in the Virtual Memory of the printer. Beware: the
number 0 in the example is the password of the printer. If the printer issues a Pass­
wordlncorrect message, you specified a wrong password.

Type Studio

This is a PostScript font generator for the Ventura Publisher program.

8.

Digitizing Images with the Agfa Scanner

Together with an Agfa scanner, Agfa-Gevaert software supports the digital 'reading in'
of images. The program is called MC View (on Macintosh) and PC View (on IBM PC).
Images, photographs, drawings, etc. may be read into the computer. See Figure 53.

Figure 53 Landscape

Scanning is divided into scanning of line art and scanning of halftone images with gray
scales.

A halftone image can be saved in different ways (in TIFF for instance); in this book,
the Encapsulated PostScript File format (EPSF) is of main interest, although EPSF
images need much disk space. The EPS File format consists of basic PostScript language
code and a number of comment lines to structure the code. Consider the BoundingBox

174 Encapsulated PostScript

comment that reflects the size of an image. While saving, simply specify you wish the
EPS File format. See Figure 54.

Figure 54 The MC View 2.0 screen

When the MC/PC View program saves an image in the PostScript format, this doesn't
mean that you no longer have bitmap data. The bitmap data rather are enveloped by
PostScript. In order to convert the bitmap data into line art it is necessary to use the tools
of Adobe Illustrator, FreeHand, Corel Draw, or GEM Artline (tracing). Or you could
vectorize the image by using Vectorize Selection of MC/PC View; see Special Functions
of MCIPC View below. The automatic conversion of bitmap graphics into vector graph­
ics could also be achieved by using the Streamline program by Adobe or the OmniTrace
program by Caere. These programs generate EPS files.

Images in the EPS File format may have all their gray-scale data saved before screen­
ing. Such an image offers two advantages to the professional designer:

I. Phototypesetter output to achieve high quality.
2. You can enlarge the image in your page make-up program without incurring distor­

tion from which screened images suffer due to size changes.

Thus, the screening of an image does not happen inside the scanner, but inside the printer.

8. Digitizing Images with the Agfa Scanner 175

The EPS code generated by MC/PC View

An image generally is coded hexadecimal. Every 8 bits are represented as hex. XX. For
instance:

00 pixel with a gray scale of 0 (white)
5E pixel with a gray scale of 94
91 pixel with a gray scale of 145
FO pixel with a gray scale of 240
FF pixel with a gray scale of 255 (black)

The example uses 8 bits to represent one pixel. This means, you are able to distinguish
between 256 distinct gray scale values.

%!PS-Adobe-2.0 EPSF-1.2
%%BoundingBox:100 100 266.6 333.2
%%Creator:McView 1.1
%%Title: Peter
%%Creationdate: 25.01.1990 10:13 h
%%TernplateBox:O 0 0 0
%%DocurnentProcSets:Adobe Illustrator 1.1 0 0
%%EndComrnents

/W 463 def
/H 648 def
/resol 2000 def
/bresol 720 def

- -

% width in pixel
% height in pixel
% selected resolution: 200
% typograph. points/inch: 72

div mul} def /pix { bresol resol
/W1 W pix def /H1 H pix def

gsave % capsulate

100 100 translate % origin
W1 H1 scale

The whole image consists of 463 times 648 pixels. The pixel also is called 'pel' (picture
element).

/trfunc % function for settransfer:
{{/A1 1.3 def /B1 0 def
/A2 0.3 def /B2 0.7 def
dup .7 gt {A2 rnul B2 add}
{A1 rnul B1 add} ifelse }} bind def

176 Encapsulated PostScript

% settransfer with LaserWriter only:
statusdi ct begin product (LaserWriter) eq
product (LaserWriter Plus) eq or
currenttransfer cvlit length 0 eq and

{trfunc settransfer} if end

The settransfer operator allows correction of gray values to compensate for non-linear
gray-level response in an output device, and in the human eye. The transfer function may
also be redefined to produce specific effects, such as enhancing or reducing contrast in a
sampled image.

% 45-degree screen:
100 45
{abs exch abs 2 copy add 1 gt
{1 sub dup mul exch 1 sub dup mul add 1 sub }
{dup mul exch dup mul add 1 exch sub} ifelse}

set screen

setscreen Graphics State Operator

setscreen sets the current halftone definition in the graphics state.
s~~ also :

cu~~entsc~een

s~tt~ansfer

fill

'frequency' is the number of lines per inch.
'engle' is the angle of the pattern.
'proc' is the procedure that controls the type of pattern.

errors :

for example:
15 0 {exch pop} setscreen % 151ines per inch, 0°, {procedure}

The default setscreen pattern for the Apple LeserWriter is e 60 line round
dot pattern at a 45° angle. Other patterns made by the setscreen operator:

•
Figure 55 setscreen operator

8. Digitizing Images with the Agfa Scanner 177

ing technique to approximate the desired results. The halftone pattern or screen is under
the control of the PostScript program which may execute the setscreen operator to estab­
lish a new screen. See Figure 55.

The PostScript Image operator

This operator renders an image onto the current page.

/pstr W string def % string for half a scan line
/doimage
{W H 8 [W 0 0 H neg 0 H]
{currentfile pstr readhexstring pop}

image } def

% operands of image:
% width, height, number of bits/pixel,
% [matrix], {procedure}

The image operator has the following operands: width in pixel, height in pixel, number of
bits/pixel, matrix, procedure. The PostScript interpreter 'thinks' of each image having its
own coordinate system. Usually, the matrix consists of the following six values: [width
0 0 -height 0 height]. This matrix indicates, that the image was scanned from top to bot­
tom.

The image operator executes the currentfile pstr readhexstring pop procedure again
and again until all image data is available. readhexstring reads half a scan line from the
current file and saves it into the pstr string variable.

readhexstring discards all non-hexadecimal characters, therefore all characters except
'0' to '9' and 'A' to 'F', such as the blank and 'newline' characters, are discarded. And
the pop operator destroys a useless object pushed by readhexstring onto the operand
stack.

do image
2727272727272327232727272727272327272727
2327272727272727272727272827272727272727
2B272727272727272B2F2F2727272B2B2B2B2B2B
272727272B2B2B2B2B2F2F2B2B272B2B2B2B272B
2B272B2B2B272B2B2B2B27272B2727272B2B2B2B
2B2B2B2B2B2B2B2B2B2B2B2B2B2F2B2B2B2B2B2B
2B2B2B2F2F2B2F2F2F2F2F2F2F2F2F2F2B2F2F2F
2F2F372F2B2B2B2B2B2B2B27272B2B2B2B2B2B2B
2B2B27272727272727272B272B2B232323232323
23232323272B272B2B2B2B2F2F33332F2F372F2F

178 Encapsulated PostScript

28282F2F33333333333733333738383833333737
3737383737373333333337333737373337373737
373733372F373737373737333337373337373737
3733373333373733333333333333333333333333
3333332F33332F332F332F333333333333333333
332F33332F33332F332F333333332F2F3333332F
2F2F2F2F2F2F2F2F2F2F2F2F282F2F2F2F28282F
2F282F28282F282F2828282B282B282B2B282828
282B2B282B2728282B2F282B28282B27282B2827
2B2B2B2727272727272727272727272727272727
2727272727272727272727272727272727272728
2727272727272827272727272727272727232727
27272727272727272727282F33D7DFEFFBFFF8F8
FFF7FF % first scan line
2727272727272327232727272727272327272723
2727272727272727272727272828282727272727
27272727272727272B2828272727272B2B2B2828
272727272B28272828282F2B2828282B2828282F
2F282B28282B2B2B272B2B272B27272B27272B28
28282B282B2F2B2F2B282B282B2B2B2B2B2B2F2B
2F282F2F2F2F2F2F2F2F2F2F2F2F2F2F2B2F2F2F
2F2F2F2B2B2B2B2F2F2F2B272728282F2F28272B
2F2F272727272B2B27272B372F2F272723232323
1F1F231F2327272B2B2F2B2B2F33332F2F2F2F2F
2F2B2B2B3333333733373333373B3B3B37373333
3737372F37373737333343373737373737373737
3737373F373F3737333737333337333337373337
3737373737373733333333333333333333333333
33333333333333332F332F333333333333333333
2F3333333333332F2F333333332F2F33332F2F33
332F2F2F2F2F2F2F2F2F2F2F2F2F282B2F2F2B2B
2F2F2B2B2F2F2B2828282B2B2B2B2B2B2F2B282B
28282B2B2B2B2B2B2B2B2B2B282B2827282B2827
282B2B272B272727272B27272727272727272727
2727272727282727272727272727272723272728
27
272723272727272727272B2F33DBDFEFFFFFF7FB
FBFBFF % second scan line

8. Digitizing Images with the Agfa Scanner

777777636B736777736F6B73776F636B6F776B73
7B6F6F7B736B6F6F6F6B7F7B777777777B838377
777F837B7B837B777373737B7373777F7B776F77
6F7773776F6F77776F776B737B7B7B777F838B83
8F8F7B7F8B8B8F778B8383838B7F77838F878387
87878B8B837B8F877F7783837F7F8F87837B877B
6F737B7B7B736B83877B6B6B7B87737B7F77776B
7B7F7B6773637367776F735F735B5F63776B576B
6B63636F6B676B6B736B636B737B677B777B6B6F
6F6F636B676F6F776F73737B675F676F6F636B6B
736B6F776F777B5F6F7377736F736B776F6F6B77
6777777B736F6777776F6F737B7377776F6F6F6F
737B7B7B777F777F7F7B7B7B7373737B7B7B7383
77777B7B7B6B6F7B736B6F736F7783777777777B
777F776F7773777377837B877B7F838383878783
7F8B876F7F877F8787736F837783837F7F838377
83877F7B77777773736B636F737F7B877F7B7B7F
6B7F877373878B8F8F83777F837B7F7777838793
7F7F7B77777F7373776F7783A7A38F7B87877787
8F7B8F877B938F737B8F7F6B6F6F735F63676F63
6B675F6F7B776B6F636F6377737F676F73677787
7F6F736F6F7367676B57534F4F47433F474F4F53
5F5F575F67736B6B6B6F6B7773736F6B6B676F73
A3D7F3 % this was the last scan line

grestore % capsulate
showpage
%%Trailer

179

MC/PC View envelops the image operator by a procedure named doimage. The entire
image is encapsulated by gsave and grestore. The showpage operator finally outputs the
current page.

Due to the universality of PostScript, the EPS files generated by MC/PC View can be
embedded not only into Macintosh or PC documents, but also, for instance, into Page­
maker documents under OS/2 or markup documents on the IBM mainframe (Advanced
Function Printing). See Chapter 4 and Chapter 11.

180 Encapsulated PostScript

A hint

The general painting and drawing programs on the Macintosh such as MacPaint and
MacDraw save the template in the Paint or PICT format respectively. These formats may
simply be converted into EPSF by carrying out following actions:

1. Let MC View read the Paint or PICT file in.
2. Save the template in the EPS File format.

Now, you have your preferred format suited for images (not line art) to be exported and
embedded.

On the IBM PC, the user can apply a similar trick and convert various graphics for­
mats into EPSF.

Special functions of MC/PC View

Among the special functions of MC and PC View there are functions that request a high
computing power of the scanner, because calculations inside the set of all scanned points
are performed. The 'Vectorize Selection' function belongs to these special functions.
Here, the marked area is vectorized, i.e. the View program looks at every scanned point
and its environment and tries to recognize line paths. These paths are represented as vec­
tors. In contrast to the auto trace tool of Adobe Illustrator, MC/PC View processes an
entire marked area, which may take rather a long time, corresponding to the size of the
area. Finally, the vectors can be saved in the EPS File format according to Illustrator'88
(or saved in a non-PostScript format).

Example of an Illustrator code generated by MC/PC View:

%!PS-Adobe-2.0 EPSF-1.2
%%Creator:Adobe Illustrator(TM) and McView1.0
%%Title:View.art
%%Creation Date: 9.9.1989 15:40 h
%%BoundingBox:50 50 72 62
%%TemplateBox:O 0 0 0
%%DocumentProcSets:Adobe Illustrator 1.1 0 0
%%EndComments

Prologue of Illustrator'BB

8. Digitizing Images with the Agfa Scanner 181

%%Note: McView1.0
0.404 g
50.2 50.2 rn
54.6 50.2 67.5 50.2 71.8 50.2 c
71.8 52.5 71.8 59.5 71.8 61.8 c
67.5 61.8 54.6 61.8 50.2 61.8 c
50.2 59.5 50.2 52.5 50.2 50.2 c
f
0.361 g
50.2 50.2 rn
52.8 50.2 69.1 50.2 71.8 50.2 c
71.8 50.6 71.8 61.6 71.8 61.8 c
69.2 61.8 53.0 61.8 50.2 61.8 c
50.2 61.5 50.2 50.4 50.2 50.2 c
f
0.290 g
50.2 50.2 rn
50.8 50.2 55.0 49.7 55.5 50.5 c
55.6 50.7 55.9 51.3 56.0 51.4 c
56.1 51.3 56.6 50.9 56.7 50.7 c
56.8 50.9 56.8 51.3 57.0 51.4 c
57.0 51.5 57.3 51.4 57.4 51.4 c
57.7 51.3 58.6 50.9 58.9 50.7 c

Other software products also use this method and try to convert a bitmapped image into
the Illustrator-PostScript format, for instance the Adobe Streamline program (on Mac and
under MS Windows).

9.

Learning the PostScript Language

Testing PostScript programs with Lasertalk

The Lasertalk software enables the Macintosh user and the PC user to test his or her
PostScript programs easily. It was designed to provide all the tools necessary for both
novice and experienced PostScript programmers to develop, maintain, and execute
PostScript programs. In order to do so, a PostScript printer attached to the AppleTalk or
attached serially must be exclusively available to the user. The Macintosh or personal
computer is permanently connected with the printer controller, and a dialog occurs with
the PostScript interpreter. The user may immediately react to messages from the printer .

grestore
ldo left and right hi lis
gsave
I left hi II
5 6 hi II
. 7 setgray
f i II
lright hi II
7 0 trans late
56 hi II
f i II
grestore
ldo sun
gsave
14 9 translate
1.5 sun
stroke
grestore
I logo finished
llook at output
show page
IITroi ler
loll done

Figure 56 Lasertalk windows

Printer
.,

9. Learning the PostScript Language 183

A preview window gives an on-screen view of the PostScript page, exactly as it exists
inside the PostScript printer. However the resolution of the display isn't the same as that
of the page printer. A page printer usually outputs to a resolution four times higher. See
Figure 56.

Dictionary Browser

Lasertalk gives you quick access to all unprotected PostScript dictionaries and font dic­
tionaries. You can quickly inspect loaded fonts or look up a dictionary definition. At the
University of Zurich, the copypage operator for instance was redefined. Lasertalk com­
municates:

/copypage
{--gsave----showpage----grestore--}

PostScript dictionary handling is one of the most important areas of PostScript process­
ing. All PostScript font and operator functions are performed by using dictionaries.

In addition, PostScript operator descriptions, excerpted from the PostScript Language
Reference manual are available online.

Status Window

A user definable operand stack and status display, updated after each line is sent to the
printer, is shown. If you wish, you may clear the operand stack, hence delete the current
contents. Controlling the stack and a constant knowledge of the contents is a mandatory
precondition for writing good PostScript programs.

Debugger

After you have opened a PostScript file, you are able to trace or step through a program
or portion of PostScript code from the Edit/Debugger window. In this mode, you send
your program, a line at a time, to the printer for execution. You may set break points or
stop points respectively. Such break points have to be placed before the showpage opera­
tor in order to omit the output onto paper. Then you click on Trace in the debugger
menu.

Lasertalk thus offers a number of tools to make the life of the PostScript programmer
easier. Lasertalk supports the MultiFinder on the Mac, and on the personal computer,
Lasertalk operates under Microsoft Windows.

184 Encapsulated PostScript

PostShow for learning and testing

PostShow is a PostScript compatible interpreter by Lincoln & Co. that displays the
PostScript code graphically at the Macintosh screen. You enter the operators in one win­
dow, and the result is displayed in another. PostShow consists of the LincPage inter­
preter. In contrast to LaserTalk, a PostScript printer is not required. You can see the
PostScript graphic without having a PS printer. Programming errors are discovered and
monitored immediately.

Learning the PostScript language wiih LearnPS

Have you ever heard of HyperCard applications on the Macintosh? LeamPS is a Hyper­
Card stack that helps you to learn the PostScript language. LeamPS has two parts, the
LeamPS stack (see Figure 57) and the HelpPS stack (Figure 59) .

. . ·:· . ·=· . ·:· . + . + . ·! · •

. ·l:·. ·=·. +. +. +. ·=· .

. ·!·. ·1·. ·l·. ·l· . ·:-. ·l· .

· · ·=··+ · +·+·+·+·
. +. ·l·. +. +. +. ·l·.

:· ·:::::,:· ::::

Figure 57 LearnPS with FontFun

The Macintosh and NeXT versions of LeamPS are developed by John F. Sherman at
the Notre Dame University in Indiana 46556, USA.

9. Learning the PostScript Language 185

The LearnPS stack

The LearnPS stack consists of four basic parts: FontFun, ExamplesPS, the TryYourOwn
card, and an introduction in PostScript (tutorial). FontFun tempts the student to trans­
form a PostScript font in various ways. FontFun lets you make a number of decisions on
placing type on a page. These decisions can include position, a transformation of its
matrix, its value and/or the width of its outline.

ExamplesPS offers to the Macintosh user a library of PostScript language program
examples, such as the following program with the rand operator, see Figure 58.

Random numbers

%!PS-Adobe-1.0
%%Creator: John F. Sherman
%%DocumentFonts: Helvetica
%%Title: randorn.ps
%%EndComments
% commented 16 Sept 1988/vo

/number {rand exch mod} def % random numbers
/gray {100 number cvr .01 mul .1 add} def

/Hel /Helvetica findfont 18 scalefont def
/Hell /Helvetica findfont 36 scalefont def
/Helll /Helvetica findfont 72 scalefont def

/text {350 number 450 number moveto Hel setfont
(Gutenberg) show} def

/textt {300 number 425 number moveto Hell setfont
(Gutenberg) show} def

/texttt {250 number 400 number moveto Helll setfont
(Gutenberg) true charpath stroke} def

%%EndProlog

8499583 srand
100 150 translate
% 20 0 { exch pop

% starting random generator

set screen

186 Encapsulated PostScript

% now we place randomly:
25 {gray setgray 100 {text} repeat } repeat

% with random gray scales
0 setgray 25 {textt } repeat
1 setgray 5 {texttt } repeat
showpage
%% Trailer

Figure 58 Gutenberg and the random generator

What is the purpose of the rand operator in this example? This operator gives us the ran­
dom numbers that are first divided by 350 or 450 etc. in the text, textt, and texttt rou­
tines. The mod operator, addressed in number, gives back the modulo of the division.
These remainder values are intended to position the 'Gutenberg' string somewhere on the

9. Learning the PostScript Language 187

paper sheet (moveto). The gray scales too are set randomly. The gray variable accepts
values between 0.1 and 1.1 and serves as operand to setgray.

With the help of srand we pass over a starting point to the random generator. We
print the 18-point string 2500 times (two-five-zero-zero), the string in 36 points 25 times,
and the string in outline characters five times.

The TryYourOwn card provides a text editor and a downloading program to the
LearnPS user.

Finally, the tutorial gives a basic insight into the language. The topics: Drawing
Squares and Lines, Drawing Circles and Arcs, Drawing Curves (very clear), PostScript
and Type, etc.

The HelpPS stack

The second LeamPS component, the HelpPS stack, contains a list of all PostScript opera­
tors and their definitions (corresponding to the PostScript Language, Reference Manual
(red book), Adobe Systems Inc., 1986 [2]). There are links to uses of operators in Exam­
plesPS. The first card of the HelpPS stack is the index card, see Figure 59.

PostScript Commonds

setcharwidth
setdash
setflet
setfont
setgrey
sethsbcolor
setli necep

____ """'.._....,_. .. setlinejoin

... ~.,,Y I :~.::cY .. ,"....................... seth newidth

........ ~ + '·""·'-~.,,.................... set met ri x

.... ~.1!W!.\.IH.!.l9.:W I !!~~~P.!!.H.L........... setmi terli mit

... "~''~-'·~'~·'·'·'··-·-· .. -·1 ><~><............................ set rg bco 1 or

... "-"'·'-• .. >:mi.:'.!.~ + .. '-~'·'"·-·-................. setscreen

.... ~.~ ... - - : .. :. : .:~~.,, settrensfer
... "·"'.~ 1 : .. ~.,, ~............... show

s~owpege .JL
... "'-"·'·~ 1 '-~·'·~' .. "·"................. s1 n '\ ... ,
... 1.1.!1.~"''"· + .. ~'·'~'. 1.':............... sqrt
.. !:.::.!,o.:~c~., , + .. Y-" .. ''"'~.................... srend

steele:

Figure 59 HelpPS

10.

Interpreter in the Printer or Computer

A PostScript interpreter, residing inside either a printer or a workstation, consumes and
processes the PostScript language programs. Usually, we define a PostScript printer as
an output device with a built-in PostScript interpreter. Exactly, we speak of a PostScript
printer as of a high-performance controller with a built-in print engine. An exception is
represented by publishing systems with a PostScript interpreter implemented on a PC
adapter board (e.g. JetScript, Conodesk) or on the IBM mainframe (see The PostScript
Interpreter on the IBM Mainframe, on page 192).

Hence, we distinguish between:

1. The PostScript interpreter located in the printer, i.e. in the Apple LaserWriter or the
QMS ColorScript.

2. The PostScript interpreter located in the computer system or workstation, e.g. in the
IBM PC or the NeXT computer.

In the first case, the communication of a PostScript printer to the external world happens:

• Via the serial interface (RS232/422).
• Via the Centronics interface (parallel input).
• Via LocalTalk (formerly AppleTalk).
• Or via Ethernet (TCP/IP).

The host or personal computer at the other end of the communication sends PostScript
language programs or data intended to be processed by the PostScript interpreter to the
printer. The communication goes in both directions. On the one hand, the printer
receives programs and data, on the other hand, it sends messages back to the host com­
puter. These messages for instance may have been generated by the PostScript print
operator or by the error handling.

In the second case, a video or channel cable provides fast communication between
computer and print engine. In the first case, the printer usually operates in a network.

10. Interpreter in the Printer or Computer 189

Serial communication with the IBM PC

There are two ways of serially connecting a PostScript printer to the mM PC. (For the
parallel connection, see next page.)

XON/XOFF flow control

At your personal computer, key-in the following DOS commands:

MODE COM1:9600,n,8,1
MODE LPT1:=COM1:

That way, the serial port 1 of the personal computer is used for the communication.
However, this isn't sufficient to ensure the flow control by XON/XOFF. That is up to the
application programs.

'Data Terminal Ready' flow control

The availability of the DTR flow control simplifies the connection of a PostScript printer
(e.g. LaserWriter Plus) to an IBM PC.

MODE COM1:9600,n,8,1,p
MODE LPT1:=COM1:

And the printer is initialized as follows:

%!PS LaserWriter Plus, QMS PS800, Qume or ...
0 serverdict begin exitserver % password
statusdict begin
% serial 9600 bit/s, parity none, flow control DTR

25 9600 7 setsccbatch
end

The number 0 represents the printer password.

Checking the sccbatch options

By downloading the following program, you may instruct the page printer to print out the
options number (number from 0 to 7).

%!PS LaserWriter Plus, QMS PS800, Qume or
/Helvetica findfont 14 scalefont setfont
30 500 moveto
(The options number for the 25-pin connection
is) show
statusdict begin 25 sccbatch 10 string cvs show
pop showpage

190 Encapsulated PostScript

The •sec' stands for Serial Communication Controller. The sccbatch operator pushes the
current speed (bit/s) and the options number (parity and flow control mode) on the
operand stack. The computing center at the University of Zurich recommends its ffiM
PC users to set the options number to 3 (with XON/XOFF) or 7 (with DTR). For the
LaserWriter II option numbers, please refer to the LaserWriter II User Guide.

Parallel input (Centronics)

Printers from Agfa, AST, Canon, Hewlett-Packard, Kyocera, NEC, Olivetti, QMS, Qume,
Texas Instruments, Unisys and many others have a parallel interface.

The parallel interface is equipped with 36 pins. The signal pin assignments supported
through this connector are:

1 Data Strobe
2-9 Data 1-8
10 Acknowledge
11 Busy
12 Paper Error
13 Select
14 Ground
19-29 Twisted Pair Ground
31 I prime (Active low)
32 Fault (Active low)

The Centronics interface can be connected with the parallel port of the IBM PC. In con­
trast to the serial communication, the parallel input does not recognize any communica­
tion parameter. The Centronics interface receives 8-bit data without parity only, and it
doesn't recognize either the XON or XOFF special character. The flow control is per­
formed by the busy signal (separate wire).

The communication goes in the one way direction from the personal computer to the
Centronics interface. However, the printer sends back error or print messages over the
serial interface.

Checking the parallel input

In order to test a parallel connection, key-in the following DOS commands at your per­
sonal computer:

COPY CON LPT1:
showpage Control-D Control-Z

If the connection and the printer behave well, the printer will output a blank paper sheet.

I 0. Interpreter in the Printer or Computer 191

LocaiTalk and Apple Talk

In this book the notion AppleTalk is used synonymously with LocalTalk.
LocalTalk is a small local area network for connecting Macintosh PCs and printers.

Some PostScript printers and typesetters (e.g. Apple LaserWriter, Linotype Series 100,
QMS ColorScript) have a switch which allows manual switching to AppleTalk. Connect­
ing a printer requires that you use a LocalTalk connector box.

While the printer is attached to LocalTalk, it listens for a connection request from a
Macintosh PC. The printer server then executes a job using that connection as its source.
Any error messages or other output produced by the print operator are sent back to the
host over the same connection.

When the PostScript interpreter reaches end-of-file, the printer sends a matching end­
of-file indication back to the host Mac, tenninates the current job, and starts a new one.
While the PostScript printer is busy with one connection, any further connection requests
are refused. This causes the requesting hosts to queue and wait for the printer server to
become free. The next request chosen is the one that has waited the longest.

It is possible to connect more than one page printer to the same LocalTalk network.

Font downloader

If you have attached any PostScript device to your AppleTalk net, then the SendPS print
procedure allows you to send PostScript file (graphics, your own fonts, etc.) onto the
printer. The setting of the communication and the pennanent parameters is possible too
by using SendPS.

Version 2.0 of SendPS provides some support for the PostScript structure comment
conventions. In particular, it recognizes and expands the following comments:

%% lncludeFile: filename

% % ExecuteFile: filename

includes the named file in-line.

works like %%IncludeFile, except that it assumes that the
included file is an executable EPS file that should be isolated
from the rest of the code. The program actually brackets the
file with save/restore when it is included.

%% IncludeFont: fontname
includes the named font.

% % lncludeProcSet: name version revision
treats the file in much the same way that %%IncludeFile
does.

An alternative to SendPS is the Adobe Font Downloader program. This program allows
a PostScript font to be downloaded either into the printer memory or onto the disk inside

192 Encapsulated PostScript

the printer. In addition, the printer state and the available fonts in the printer (font direc­
tory) may be interrogated. See Figure 60.

Font Directory on "Laser Bau 11-F":

Palatino-Bold Italic
Polatino-1 talic
Polatino - Romon
Sonata
Symbol
Times- Bold
Times- Bold Italic
Times-Italic
Times- Roman
2apfChancery-Medium Italic
2opf0ingbats

Available memory: 321 kbytes

OK ~j

Figure 60 Font downloader: listing the font directory

Two font downloaders are provided with all Adobe PC-format fonts:

• A command line driven version for the parallel (LPT) port.
• A menu-driven version for the serial (COM) port.

Another alternative is the Apple LaserWriter Font Utility.

The PostScript interpreter on the IBM mainframe

The IBM Publishing Systems PostScript Interpreter for Advanced Function Printing
(AFP) is a program that translates PostScript page description files into data files for IBM
advanced function printers (see Figure 61). The program runs in the VM/CMS and MVS
environments. The files you can process using the PostScript interpreter should have a
filetype of PS, EPS, or LISTPS. The character set can be either ASCII or EBCDIC. The
PostScript interpreter reads the entire file as either ASCII or EBCDIC characters based

I 0. Interpreter in the Printer or Computer 193

Figure 61 PostScript interpreter: another effect

on the format of the first two characters of the file. The PostScript files are usually creat­
ed on a personal computer (see Figure 61).

The 'Advanced Function Printing' IBM printers

When you process a PostScript file with the PostScript interpreter, you can print the
resulting file on one of several IBM printers. The PostScript interpreter produces a
'Composed Document Printing Facility (CDPF) image fi le ' for printing on the IBM
4250/ll ElectroCompositor. The interpreter also produces PSEG3820 files for printing on
any of the following:

• IBM 3812 Page Printer.
• IBM 3820 Page Printer.
• IBM 3827 Page Printer.
• IBM 3835 Page Printer.

Calling up the PostScript interpreter

You can use the PostScript interpreter to translate files in one of two modes: in the batch
mode or in the interactive mode. In the batch mode, the following panel is displayed:

194 Encapsulated PostScript

= Publishing System - PostScript Interpreter for ===
Advanced Function Printing

5688-104 Copyright 1988 ffiM Corporation
Portions Copyright Adobe Systems Incorporated

Option===>

Main Menu

1 Create LIST File

2 Create PSEG File

3 Install PostScript Typeface

PFI = Help PF4 = Exit

Create LIST File Use this option to translate a PS, EPS, or LISTPS file to a
4250 file. The PostScript interpreter brings in a data file and
checks the first two characters of the file you specified to see
whether the file is in ASCII or EBCDIC format. The first
two characters should be '%!' for the PostScript interpreter
to read the file properly.

Create PSEG File Use this option to create a file for to be embedded in a docu­
ment. The IBM manual SC34-5082 speaks of a page seg­
ment.

Install PostScript Typeface
Use this option to install an additional PostScript typeface.

10. Interpreter in the Printer or Computer 195

PostScript Interpreters in the IBM PC

By mid-1989, the following PostScript boards for the personal computer were on offer:

• Conodesk 6000 from Conographic Corp.
• PageStyler from Destiny Technology Corp.
• EiconScript Card from Eicon Technology Corp.
• PS-388 Accelerator from Princeton Publishing Labs Inc.
• JetScript from QMS or Hewlett-Packard.
• PC Publisher Kit Series ll from Imagen or QMS.

By installing such a board in the personal computer, Hewlett-Packard's LaserJet or the
Brother HL8 printer may be upgraded to a PostScript device. With the exception of
JetScript all boards are PostScript clones. But Conographic has received confirmation of
Adobe-compatibility.

DP-Tek LaserPort PS 600 produces some of the best output available with a LaserJet,
equalled only by the latest LaserMaster LX6 boards.

DCA lrmaPrlnt

Digital Communications Associates (DCA), the manufacturer of the Irma card for attach­
ing the personal computer to the lliM host, develops the lrrna2Print converter software.
The software translates IBM's SAA printer language called IPDS into PostScript. This
enables host users to output onto PC PostScript printers which also reduces the host's
workload. It is interesting that DCA concentrates on PostScript instead on the PCL
LaserJet standard by Hewlett-Packard.

11.

EPSF Specification by Adobe

The author and publisher are grateful to Adobe Systems Inc. who gave permis­
sion for the EPSF specification (version 2.0) to be included in this book.

This document specifies the format required for import of Encapsulated PostScript (EPS)
Files into an application. This specification suggests a standard for importing PostScript
files in all environments, and contains specific information about both the Apple Macin­
tosh and MS-OOS environments. This format conforms to Adobe Systems' PostScript
Document Structuring Conventions, Version 2.0.

The rules that should be followed in creating importable PostScript files are a subset
of the structuring conventions proposed by Adobe Systems Incorporated; refer to the
PostScript Language Reference Manual, Appendix C, and PostScript Document Structur­
ing Conventions, Version 2.0, available from Adobe Systems. Files must also be 'well­
behaved' in their use of certain PostScript operators, manipulations of the graphics state,
and manipulation of the PostScript interpreter's stacks and any global dictionaries. These
conventions are designed to allow cooperative sharing of files between many systems
using PostScript.

Fundamentally, an Encapsulated PostScript file is merely a standard PostScript lan­
guage file with a bitmap screen preview included optionally in the format. The purpose
of an EPS file is to be included into other document makeup systems as an illustration,
and the screen representation is intended to aid in page composition. The bitmap is nor­
mally discarded when printing, and the PostScript language segment of the file is used
instead. Typically any manipulation of the screen image that is performed by the user
{such as scaling, translating, or rotation on screen) should be tracked by the page layout
application and an appropriate transformation should precede the encapsulated PostScript
when it is sent to the printer.

11. EPSF Specification by Adobe 197

EPS file format guidelines

An EPS file should conform to at least Version 2.0 of the Adobe Document Structuring
Conventions. This does not explicitly require any of the structuring comments to be
employed, but if used, they should be in accordance with that specification. Additionally,
an EPS file is required to contain the o/oo/oBoundingBox comment, and is required to be
'well-behaved' (see below). An EPS file may optionally contain a bitmap image suitable
for WYSIWYG screen display, as discussed herein.

The structure of an EPS file is marked by PostScript comments, according to the
PostScript Document Structuring Conventions. These are covered briefly here for refer­
ence. Structuring comment lines must begin with '%!' or '%%' and terminate with a
newline (either return or linefeed) character. EPS file conventions require that a com­
ment line be no longer than 256 bytes. A comment line may be continued by beginning
the continuation line with'%%+'. The EPS file should begin with a 'header' of structur­
ing comments, as specified in the PostScript Structuring Conventions.

Required participation

In order to support Encapsulated PostScript files effectively, some cooperation is required
on the parts of those who produce EPS files and those who use EPS files (typically by
including them into other documents).

When producing EPS files

There are certain required comments and several recommended ones that must be provid­
ed in the EPS file. These are detailed in the next section. The file must also be a single
page (not a multi-page) document and must be a conforming PostScript document. Con­
formance requirements are mostly detailed here, but for the full specification, please refer
to the Document Structuring Conventions from Adobe Systems (1989) [4].

When reading and using EPS files

When including an EPS file into your document, you should basically think of that piece
of code as having been generated by your program. After all, this is what all programs
(and users) who encounter your print file will think. In particular, you must find out
enough about the file to intelligently make it part of your document. The only tricky part
of this relates to font usage. This is also the most difficult part of this specification to
understand. Basically, you just have to figure out what the requirements of the illustra­
tion are and incorporate them into your own requirements (pass them downstream). Then
all issues of font management are essentially the same as they were before you included
the illustration (and are beyond the scope of this document).

198 Encapsulated PostScript

As long as you don't remove relevant information from a file, and as long as you
update your global view of font usage and resource requirements to reflect those that you
just imported, the rest is fairly easy. The intent behind the EPS specification, in fact, is to
make the most of cooperation between producers and consumers of PostScript language
files so that neither has to do much, but the combined advantage is great.

Required comments

The first comment in the header (and the first line in the file) should be the version com­
ment:

%!PS-Adobe-2.0 EPSF-2.0

This indicates to an application that the PostScript file conforms to this standard. The
version number following the word 'Adobe-' indicates the level of adherence to the stan­
dard PostScript Document Structuring Conventions. The version number following the
word 'EPSF' indicates the level of EPSF-specific comments.

The following comment must be present in the header; if it is not present then an
importing application may issue an error message and abort the import:

%%BoundingBox: LLx LLy URx URy

The values are in the PostScript default user coordinate system, in points 0n2 of an inch,
or 2.835 mm), with the origin at the lower left comer. The bounding box must be
expressed in default user coordinate space. This seems to be a big question among imple­
mentors of this specification. Regardless of the coordinate system in which your applica­
tion operates, here is a foolproof of determining the correct bounding box: print the
page, get out a point ruler, and measure first to the lower left comer, then to the upper
right comer, using the lower-left corner of the physical paper as your origin. This works
because it measures the end result (the marks on the page), and none of the computation
matters.

Optional comments

The following header comments are strongly recommended in EPS files. They provide
extra information about the file that can be used to identify it on-screen or when printing.

%%Title: included document title - -
%%Creator: creator name
%%CreationDate: date and time

11. EPSF Specification by Adobe 199

The %%Creator, %%Title, and %%CreationDate comments may be used by an applica­
tion or spooler to provide human-readable information about a document, or to display
the file name and creator on the screen if no bitmapped screen representation was includ­
ed in the EPS file.

%%EndConunents

This comment indicates an explicit end to the header comments, as specified in the struc­
turing conventions.

How to use these comments (philosophy)

All of the comments in EPS files provide information of some sort or another. Exactly
how you use this information is up to you, but you are encouraged not to reduce the
amount of information in a file (when you import it or include it, for example) by remov­
ing or altering comments. In general, the comments tell you what fonts and files are
used, and where. Not everybody cares about these things, but if you do care, then the
information is available.

The whole issue of Encapsulated PostScript files is that they are 'final form' print
files that may be far from the printer that they will actually be imaged on. If they have
specific needs, particularly in terms of font usage, these needs must be carefully pre­
served and passed on downstream, and the program that actually prints the composite
document must take pains to make sure the fonts are available at print time.

Any piece of software that generates PostScript language code is potentially both a
consumer and a producer of Encapsulated PostScript files. It is probably best not to think
that you are at either end of the chain. In particular, if you import an Encapsulated
PostScript file, integrate it into your document somehow, and then go to print your docu­
ment, you are responsible for reading and understanding any of the font needs of the EPS
file you imported. These should then be reflected in your own font usage comments. If
the illustration on page 3 uses the Bodoni font but the rest of your document is set in
Times, suddenly your document now also uses the Bodoni font (you included the illustra­
tion, after all). This should be reflected in the outermost %%DocumentFonts comments
and any other appropriate ones.

Font management comments

If fonts are used, the following two comments (which are defined in Version 2.0 of the
PostScript Document Structuring Conventions) should be included in the header of the
EPS file. The %%/ncludeFont and %%Begin/%%EndFont comments should be
thought of as inverses of one another. That is, if you encounter an %%/ncludeFont com­
ment and actually include a font file at that point, you should enclose the font in
%%BeginFont and %%EndFont comments. Conversely, if you see fit to remove a font
from a print file (one that presumably had been delimited with comments), you should
always replace it with an %%/ncludeFont comment rather than completely stripping it.
This guarantees the reversibility of your actions.

200

%%DocumentFonts: fontl font2
%%+ font3 font4

Encapsulated PostScript

The %%DocumentF onts comment provides a full list of all fonts used by the file. Font
names should refer to non-reencoded printer font names and should be the valid
PostScript language names (without the leading slashes). An application that imports an
EPS file should be responsible for satisfying these fonts needs, or at least updating its
own %%DocumentF onts list to reflect any new fonts.

%%DocumentNeededFonts: fontl font2

The %%DocumentNeededFonts comment lists all fonts that are to be included at specific
points within the EPS file as a result of the %%/ncludeFont comment. These fonts must
also be listed in the %%DocumentF onts comment, but an application may or may not
pre-load these at the beginning of the job. The responsibility should be taken, however,
by any program that thinks it is actually printing the file, to make sure the fonts requested
will be available when the file is printed. This may mean that the individual %%Include­
Font comments may be satisfied and the fonts placed in-line, or they may simply be
ignored, if the fonts are determined to be already on the printer. As a third possibility,
there may be enough memory to download all the fonts in front of the job and avoid pro­
cessing the individual requests. This %%DocumentNeededFonts comment provides
foreshadowing of the %%/ncludeFont comments to follow, to give printing managers
enough information to make these choices intelligently.

%%IncludeFont: fontname

The %%/ncludeFont comment signals to an application that the specific font is to be
loaded at that precise location in the file. It is analogous to the familiar #include syntax
in the C language. An application should load the specified font regardless of whether
the same font has been loaded already by other preceding %%/ncludeFont comments,
since the font may be embedded within a PostScript save and restore construct. How­
ever, if the font is determined to be available prior to the entire included EPS file (for
instance, it may be in ROM on the printer or might have been downloaded prior to the
entire print job) the %%/nc/udeFont comment may be ignored by printing manager soft­
ware.

When an application satisfies an %%/ncludeFont request, it should always bracket the
font itself with the %%BeginFont and %%EndFont comments.

A font that is wholly contained, defined, and used within the EPS file (a downloaded
font) should be noted in the %%DocumentF onts comment but not the %%Document­
NeededFonts comment. The font should follow conventions listed in the PostScript Doc­
ument Structuring Conventions in order to retain full compatibility with print spoolers.

%%BeginFont: fontname
%%EndFont

The %%BeginF ont and %%EndF ont comments bracket an included downloadable font.
The fontname is the simple PostScript language name for the font. These fonts may be

11. EPSF Specification by Adobe 201

stripped from the included file if they are determined to be available (but should be
replaced by an %%/ncludeFont comment).

File management comments

%%IncludeFile: filename

This comment, which can occur only in the body of an EPS file, allows a separate file to
be inserted at any point within the EPS file. The file might not be searched for or insert­
ed until printing actually occurs, so user care is required to ensure its availability. If it is
used, the %%DocumentFiles comment should be used as well. See the Structuring Con­
ventions for more information.

%%BeginFile: filename
%%EndFile

The %%BeginFile and %%EndFile comments bracket an included file. They are the
linverse' of the %%/ncludeFile comment. The filename is evaluated in the context of
the local file system. These files may not be stripped from the included file at print time,
because they undoubtedly contain executable code. However, they may be temporarily
removed, or lfactored out' to save space during storage. They should always be replaced
by the %%/ncludeFile comment.

Color comments

%%DocumentProcessColors: keyword keyword ...

This comment marks the use of process colors within the document. Process colors are
defined to be cyan, magenta, yellow, and black. These four colors are indicated in this
comment by the keywords Cyan, Magenta, Yellow, and Black. This comment is used pri­
marily when producing color separations. The (atend) convention is allowed.

%%DocumentCustomColors: name name ...

This indicates the use of custom colors within a document. These colors are arbitrarily
named by an application, and their CMYK or RGB approximations are provided through
the %%CMYKCustomColor or %%RGBCustomColor comments within the body of the
document. The names are specified to be any arbitrary PostScript language string except
(Process Cyan), (Process Magenta), (Process Yellow), and (Process Black), which need
to be reserved for custom color implementation by applications. The (at end) specification
is permitted.

%%BeginProcessColor: keyword
%%EndProcessColor

The keyword here is either Cyan, Magenta, Yellow, or Black. During color separation, the
code between these comments should only be downloaded during the appropriate pass for

202 Encapsulated PostScript

that process color. Intelligent printing managers can save considerable time by omitting
code within these bracketing comments on the other three separations. Extreme care
must be taken by the document composition software to correctly control overprinting
and 'knockouts' if these comments are employed, since the code may or may not actually
be executed.

%%BeginCustomColor: keyword
%%EndCustomColor

The keyword here is any PostScript language string except (Process Cyan), (Process
Magenta), (Process Yellow), and (Process Black). During color separation, the code
between these comments should only be downloaded during the appropriate pass for that
custom color. Intelligent printing managers can save considerable time by omitting code
within these bracketing comments on the other three separations. Extreme care must be
taken by the document composition software to correctly control overprinting and knock­
outs if these comments are employed, since the code may or may not be executed.

%%CMYKCustomColor: cyan magenta yellow black keyword

This provides an approximation to the custom color specified by keyword. The four com­
ponents of cyan, magenta, yellow, and black must be specified as numbers from 0 to 1
representing the percentage of that process color. These numbers are exactly analogous
to the arguments to the setcmykcolor PostScript language operator. The keyword follows
the same custom color naming conventions for the %%DocumentCustomColors com­
ment.

%%RGBCustomColor: red green blue keyword

This provides an approximation to the custom color specified by keyword. The three
components of red, green, and blue must be specified as numbers from 0 to 1 represent­
ing the percentage of that process color. These numbers are exactly analogous to the
arguments to the setrgbcolor PostScript language operator. The keyword follows the
same custom color naming conventions for the %%DocumentCustomColors comment.

'Well-behaved' rules

An application should encapsulate the imported EPS PostScript code in a save/restore
construct, which will allow all printer VM (memory) to be recovered and all graphics
state restored. Since the code in the imported EPS file will be embedded within the
PostScript that an application will generate for the current page, it is necessary that it
obey the following rules, in order to keep from disrupting the enclosing document:

11. EPSF Specification by Adobe 203

Operators to avoid

The following PostScript operators should not be included in a PostScript file for import;
the result of executing any of these is not guaranteed:

• grestoreall

• initgraphics

• initmatrix

• initclip

• erasepage

• copypage

• banddevice

• framedevice

• nulldevice

• renderbands

• setpageparams

• note

• exitserver

• (setscreen)

• (settransfer)

The setscreen and seHransfer operators

The setscreen operator is troublesome when one file is included within another. setscreen
is a system-level command that is appropriate for changing the halftone machinery to
compensate for marking engine tendencies, but when used for 'special effects' can cause
problems. For EPS files, the setscreen and settransfer operators are permitted only
under restricted terms.

The seHransfer and setcolortransfer operators

The settransfer operator changes the gray-level and color response curves over the inter­
val from 0 to 1. There are two basic uses of it: to invert an image (typically flipping
blacks and whites, less often colors), or to adjust the response curve for a particular out­
put device.

204 Encapsulated PostScript

The best (and required) approach for using settransfer is to combine your function
with the existing one. Here is the recommended way to do this:

{ dummy exec 1 exch sub }
dup 0 currenttransfer put settransfer

In this example, the desired transfer function is the code 1 exch sub. The dummy exec
essentially executes the existing transfer function before executing the new code. The
name dummy is replaced by the actual procedure body from the existing transfer function
through the put instruction. The result is conceptually equivalent to this:

{{ original proc } exec 1 exch sub } settransfer

This approach is better than 'concatenating' procedures because it does not require the
existing transfer function to be duplicated (consuming memory).

The showpage operator

The showpage operator is permitted in EPS files primarily because it will be present in so
many PostScript files. It is reasonable for an EPS file to use the showpage operator if
needed (although it is not necessary if the file is truly exported to another document). It
is the including applications responsibility to disable showpage if needed. The recom­
mended method to accomplish this is as follows:

Temporarily disabling showpage

/BEGINEPSFILE { %def
/EPSFsave save def
0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin
10 setrniterlirnit [] 0 setdash
newpath
/showpage {} def

bind def
/ENDEPSFILE { %def

EPSFsave restore
} bind def

BEGINEPSFILE
100 300 translate
.5 .5 scale
% include the EPS file here,
% which may execute showpage with no effect

ENDEPSFILE % restore state and continue

11. EPSF Specification by Adobe 205

This method will only disable the showpage operator during the execution of the EPS
file, and will restore the previous semantics of showpage afterward. It is the responsibili­
ty of the EPS file itself to avoid the operators listed in the previous section that might
cause unexpected behavior when imported. They need not be redefined along with show­
page, although it is permissible to do so.

Stacks and dictionaries

All the PostScript interpreter's stacks (including the dictionary stack) should be left in the
state that they were in before the imported PostScript code was executed. This is normal­
ly the case for well-written PostScript language programs, and this is still the best way to
keep unanticipated side-effects to a minimum. Please avoid unnecessary clear and
countdictstack 2 sub { end } repeat cleanup techniques. If you have accidentally left
something on one of the stacks, it is best to understand your program well enough to get
rid of it, rather than issuing a wholesale cleanup instruction at the end, which will not
only clear your operands from the stack, but perhaps will clear other objects as well.

It is recommended that the imported PostScript EPS file create its own dictionary
instead of writing into whatever the current dictionary might be. Make sure that this dic­
tionary is removed from the dictionary stack when through (using the PostScript end
operator) to avoid the possibility of an invalidrestore error. Also, no global string bodies
should be changed (with either put or putinterval).

If a special dictionary (like statusdict) is required in order for the imported PostScript
language code to execute properly, then it should be included as part of the EPS file.
However, it should be enclosed in very specific %%BeginFeature and %%EndFeature
comments as specified in the Document Structuring Conventions. No dictionary should
be assumed to be present in the printer, and fonts should be reencoded as needed by the
EPS file itself.

The graphics state

When a PostScript language program is imported into the middle of another executing
program, the state of the interpreter may not be exactly in its default state. The EPS file
should assume that the graphics state is in its default state, even though it may not be. An
importing application may choose to scale the coordinate system or to change the transfer
function to change the behavior of the EPS file somewhat. If the EPS file makes assump­
tions about the graphics state (like the clipping path) or explicitly sets something it
shouldn't (the transformation matrix), the results may not be what were expected.

The importing application is responsible for returning the color to be black, the cur­
rent dash pattern, line endings, and other miscellaneous aspects of the graphics state to
their default condition (as specified in the PostScript Language Reference Manual [2]).
This can be done in either of two ways: the initial graphics state can be restored from
variables, or the state can be explicitly set:

206

/BEGINEPSFILE { %def
/EPSFsave save def

Encapsulated PostScript

0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin
10 setrniterlirnit [] 0 setdash
newpath
/showpage {} def

bind def

/ENDEPSFILE { %def
EPSFsave restore

} bind def

File types and file naming

Apple Macintosh files

The Macintosh file type for application-created PostScript files is EPSF. Files of type
TEXT will also be allowed, so that users can create EPS files with standard editors,
although the Structuring Conventions must still be strictly followed. A file of type EPSF
should additionally contain a PICT resource in the resource fork of the file containing a
screen representation of the PostScript code.

MS-DOS and PC-DOS flies

The recommended file extension is .EPS. Other file extensions will also be allowed, but
it will be assumed that these files are text-only files with no screen metafile included in
them.

Other file systems

In general, the extension .epsf is the preferred way to name an EPS file, and .epsi for the
interchange format. In systems where lower-case letters are not recognized or are not
significant, all upper-case can be used.

11. EPSF Specification by Adobe 207

Screen representation

The EPS file will usually have a graphic screen representation so that it can be manipulat­
ed and displayed on a workstation's screen prior to printing. The user may position,
scale, crop or rotate this screen representation, and the composing software should keep
track of these manipulations and reflect them in the PostScript that is ultimately sent to
the PostScript printing device.

Apple Macintosh: PICT resource

A QuickDraw representation of the PostScript language file can be created and stored as
a PICT in the resource fork of the file. It should be given resource number 256. If the
PICI' exists, the importing application may use it for screen display. If the picframe is
transformed to PostScript coordinates, it should agree with the %%BoundingBox com­
ment.

Given the size limitations on PICT images, this may not always agree for large illus­
trations. If there is a discrepancy, the %%BoundingBox always should be taken as the
'truth', since it accurately describes the area that will be imaged by the PostScript code
itself. In this situation, applications producing the preview PICT must all take the same
action so that the importing application knows what to do.

Since it is more important to have a reasonable facsimile of the image than it is to
have any particular part of it be high quality, the PICT image should be scaled to fit with­
in the constraints of the PICT format. That is, the picture will all be there (it will not be
cropped), but it will actually be smaller than the real image. The importing application
should then scale the PICT to a size which matches the bounding box as expressed in the
%%BoundingBox comment.

DOS: Windows MetaFile or TIFF file

Either a Microsoft Windows MetaFile or a TIFF (Tag Image File Format) section can be
included as the screen representation of an EPS file. The EPS file itself has a binary
header added to the beginning that provides a sort of 'table of contents' to the file. This
is necessary since there is not a second 'fork' within the file system as there is in the
Macintosh file system.

It is always permissible to have a pure ASCll PostScript language file as an EPS file
in the DOS environment, as long as it does not contain the preview section. The import­
ing application should check the first three bytes of the file. If they match the header as
shown below, the binary header should be expected. If the first two match'%!', it should
be taken to be an ASCII PostScript language file.

208

EPS binary file header:

Header: Bytes
0-3
4-7

8-11
12-15

16-19

20-23

24-27
28-29

Encapsulated PostScript

Description
Must be hex C5DOD3C6 (byte O=CS)
Byte position in file for start of
PostScript code section.
Byte length of PostScript section
Byte position in file for start of
Metafile screen representation.
Byte length of Metafile section
(PSize)
Byte position of TIFF representa­
tion
Byte length of TIFF section
Checksum of header
(XOR of bytes 0-27).
Note: if Checksum is FFFF
then it is to be ignored.

Note: It is assumed that either the MetaFile or the TIFF position and length fields are
zero; that is, only one or the other of these two forms are included in the EPS file.

The MetaFile should follow the guidelines set forth by the Windows specification. In
particular, it should not set the viewport or mapping mode, and it should set the window
origin and extent. The application should scale the picture to fit within the %%Bound­
ingBox comment specified in the PostScript language file.

Device-Independent Interchange format

This last screen representation is intended as an interchange format between widely var­
ied systems. In particular, the bitmap preview section of the file is very simple and is
represented as ASCII hexadecimal in order to be more easily transportable. This format is
dubbed Encapsulated PostScript Interchange format, or EPSI.

This format wins no prizes for compactness, but it should be truly portable and
requires no special code for decompressing or otherwise understanding the bitmap por­
tion, other than the ability to understand hexadecimal notation.

It is expected that applications that support EPSF will gradually head toward support­
ing only two formats: the frrst is the 'native' format for the environment in which the
application runs (where the preview section is Macintosh PICT or TIFF or Sun raster files
or whatever); the second format should simply be this interchange format. Then files can
be interchanged between widely varying systems without each having to know the pre­
ferred bitmap representation of the others.

%%BeginPreview: width height depth lines
%%EndPreview

11. EPSF Specification by Adobe 209

These comments bracket the preview section of an EPS file in Interchange format (EPSI).
The width and height fields provide the number of image samples (pixels) for the pre­
view. The depth field provides how many bits of data are used to establish one sample
pixel of the preview (1, 2, 4, or 8). An image which is 100 pixels wide will always have
1 00 in the width field, although the number of bytes of hexadecimal needed to build that
line will vary if depth varies. The lines field tells how many lines of hexadecimal are con­
tained in the preview, so that they may be easily skipped by an application that doesn't
care. All the arguments are integers.

Some rules and guidelines for EPSI flies

The following guidelines attempt to clarify a few basic assumptions about the EPSI for­
mat. It is intended to be extremely simple, since its purpose is interchange. No system
should have to do much work to decipher one of these files, and the preview section is
mostly just a convenience to begin with. This format is accordingly deliberately kept
simple and option-free.

• The preview section must be after the header comment section but before the docu­
ment prologue definitions. That is, it should immediately follow the %%EndCom­
ments line in the EPS file.

• In the preview section, bits of 0 are white, bits of 1 are black. Grayscale is not sup­
ported.

• The Preview image can be of any resolution. The size of the image is determined
solely by its bounding box, and the preview data should be scaled to fit that rectangle.
Thus, the width and height parameters from the image are not its measured dimen­
sions, but simply describe the amount of data supplied for the preview. The dimen­
sions are described only by the bounding rectangle.

• The hexadecimal lines must never exceed 255 bytes in length. In cases where the pre­
view is very wide, the lines must be broken. The line breaks can be made at any even
number of hex digits, since the dimensions of the finished preview are established by
the width, height, and depth values.

• All non-hexadecimal characters should be ignored when collecting the data for the
preview, including tabs, spaces, new lines, percent characters, and other stray ASCII
characters. This is analogous to the PostScript language readhexstring operator.

• Each line of hexadecimal will begin with a percent sign (%). This makes the entire
preview section into a PostScript language comment, so that the file can be printed
without modification.

• If the %%/ncludeFile or %%BeginFile I %%EndFile comments are ever used to
extract the preview section from the EPS file, then the lines argument to the
%%BeginPreview comment must be adjusted accordingly. The lines value specifies
only the number of lines to skip if you're not the least bit interested.

210 Encapsulated PostScript

• If the width of the image is not a multiple of 8 bits, the hexadecimal digits are padded
out to the next highest multiple of 8 bits.

Example EPSI File:
Here is a sample file showing the EPS Interchange (EPSI) format. The preview sec­

tion is expressed in user space and the correct comments are included. Remember that
there are 8 bits to a byte, and that it requires 2 hexadecimal digits to represent one binary
byte. Therefore the 80-pixel width of the image requires 20 bytes of hexadecimal data,
which is

~2
8

The PostScript language segment itself simply draws a box, as can be seen in the last few
lines.

11. EPSF Specification by Adobe 211

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 80 24
%%Pages: 0
%%Creator: Glenn Reid
%%CreationDate: September 19, 1988
%%EndComments
%%BeginPreview: 80 24 1
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFOOOOOOOOOOOOOOOOFF
% FFOOOOOOOOOOOOOOOOFF
% FFOOOOOOOOOOOOOOOOFF
% FFOOOOOOOOOOOOOOOOFF
% FFOOOOOOOOOOOOOOOOFF
% FFOOOOOOOOOOOOOOOOFF
% FFOOOOOOOOOOOOOOOOFF
% FFOOOOOOOOOOOOOOOOFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
%%EndPreview
%%EndProlog
%%Page: "one" 1

4 4 rnoveto

24

72 0 rlineto 0 16 rlineto -72 0 rlineto closepath
8 setlinewidth stroke

%%Trailer

A.

Document Structuring Conventions (3.0)

New comments in version 3.0

All of the Document Structuring Conventions (DSC) comments are listed in alphabetic
order, new version 3.0 comments are flagged with an asterisk(*).

%!PS-Adobe-3.0 * B
%%?BeginFeatureQuery:
%%?BeginFileQuery:
%%?BeginFontListQuery:
%%?BeginFontQuery:
%%?BeginPrinterQuery:
%%?BeginProcSetQuery:
%%?BeginQuery:
%%?BeginResourceQuery: *
%%?BeginResourceListQuery:
%%?BeginVMStatusQuery:
%%BeginBinary:
%%BeginCustornColor:
%%BeginData: *
%%BeginDocurnent: 9
%%BeginErnulation: *
%%BeginExitServer:
%%BeginFeature:
%%BeginFile:
%%BeginFont:
%%Begin0bject:
%%BeginPageSetup:
%%BeginPaperSize:
%%BeginPreview: * 9
%%BeginProcessColor:
%%BeginProcSet:
%%BeginProlog: *
%%BeginResource: *
%%BeginSetup:

%%?EndFeatureQuery
%%?EndFileQuery
%%?EndFontListQuery
%%?EndFontQuery
%%?EndPrinterQuery
%%?EndProcSetQuery
%%?EndQuery
%%?EndResourceQuery *
* %%?EndResourceListQuery *
%%?EndVMStatusQuery
%%EndBinary
%%EndCustornColor
%%EndData *
%%EndDocurnent c;::

%%EndErnulation *
%%EndExitServer
%%EndFeature
%%EndFile
%%EndFont
%%End0bject
%%EndPageSetup
%%EndPaperSize
%%EndPreview * c;::

%%EndProcessColor
%%EndProcSet
%%EndProlog
%%EndResource *
%%EndSetup

A. Document Structuring Conventions version 3.0

%%BoundingBox: B

%%CMYKCustornColor:
%%CreationDate: e
%%Creator: e

%%DocurnentCustomColors:
%%DocurnentFonts: 9
%%DocurnentMedia: *
%%DocurnentNeededFiles:
%%DocurnentNeededFonts: 9
%%DocurnentNeededProcSets:
%%DocurnentNeededResources: * 9
%%DocurnentPaperColors:
%%DocurnentPaperForrns:
%%DocurnentPaperSizes:
%%DocurnentPaperWeights:
%%DocurnentPrinterRequired:
%%DocurnentProcessColors:
%%DocurnentProcSets:
%%DocurnentSuppliedFiles:
%%DocurnentSuppliedFonts:
%%DocurnentSuppliedProcSets:
%%DocurnentSuppliedResources: *

%%Emulations: *
%%EndCornrnents
%%EOF
%%Extensions: * 9
%%For:

%%IncludeDocurnent: *
%%IncludeFeature: *
%%IncludeFile:
%%IncludeFont: <;

%%IncludeProcSet:
%%IncludeResource: * 9

%%LanguageLevel: * 9

%%0peratorlntervention: *
%%0peratorMessage: *
%%Orientation: *

213

214

%%Page:
%%PageBoundingBox:
%%PageCustomColors:
%%PageFonts:
%%PageFiles:
%%PageMedia: *
%%Page0rder: *
%%Page0rientation: *
%%PageProcessColors:
%%PageRequirements: *
%%PageResources: *
%%Pages:

%%PageTrailer:
%%PaperColor:
%%PaperForm:
%%PaperSize:
%%PaperWeight:
%%ProofMode:

%%Requirements:
%%RGBCustomColor:
%%Routing:

%%Title: e
%%Trailer:

%%VMlocation: *
%%VMusage: *

6 required in future EPSF version 3.0
9 conditionally required in future EPSF version 3.0
e recommended in future EPSF version 3.0

%%LanguageLevel: 2 means 'PostScript Level2'.

Encapsulated PostScript

The including application must surround the included EPS file by the %%BeginDocu­
ment: -- %%EndDocument comments.

BeginPreview: -- %%EndPreview comments must bracket an EPSI preview section.

A. Document Structuring Conventions version 3.0 215

The old %%BeginBinary: -- %%EndBinary comments will be substituted by
%%BeginData: -- %%EndData.

The old %%DocumentPaperColors:, %%DocumentPaperF orms:, %%DocumentPa­
perSizes:, %%DocumentPaperWeights: comments will be replaced by %%Document­
Media:.

The old %%PaperColor:, %%PaperForm:, %%PaperSize:, %%PaperWeight: com­
ments will be substituted by %%PageMedia:.

Resource management comments

Regarding the future EPSF specification, version 3.0, the requirement conventions and
the new resource management comments are important.

The %%DocumentFonts: and %%DocumentFiles: comments may be discontinued in
later versions of the DSC specification. The more general comments %%Document­
Needed.Resources: and %%DocumentSupplied.Resources: will be used instead.

0/o 0/oDocumentNeededResources:

%%DocumentNeededResources: <resources>
%%+ <resources>

This comment will provide a list of resources that are needed by the document, e.g. a font
or a procedure set not contained within the document file. There should be at least one
corresponding instance of the %%/ncludeResource: comment for each resource listed by
this comment.

Example:

%%DocumentNeededResources: font Times-Roman Sonata
%%+ font Helvetica-Bold
%%+ file UNILOGO EPS B
%%+ procset Adobe_Streamline_l.l 0 0

Note: As a general rule, different types of resources should be listed on separate lines
using the%%+ comment.

0/oOfoDocumentSupplledResources:

%%DocumentSuppliedResources: <resources>
%%+ <resources>

This comment will list all of the resources that have been provided within the document
print file. Specifically, there will be a %%BeginResource: -- %%End.Resource pair for
each resource in this list.

216

Example:

%!PS-Adobe-3.0

Encapsulated PostScript

%%Creator: Adobe Illustrator 88(TM) 1.9.3
%%For: (TypeAlign)
%%Title: (Jupiter aligns)
%%CreationDate: (3/26/1990) (15:43)
% %DocumentSlJppliedResources:
%%+ procset Adobe_Illustrator_1.1 0 0
%%BoundingBox: 17 48 431 224
%%EndComments
%%BeginResource: procset Adobe Illustrator 1.1 0 0
... PostScript language code ...

%%EndResource
%%EndProlog
... rest of the document ...

%%EOF

It is assumed that all resources on the %%DocumentSuppliedResources: list are mutually
exclusive of those resources found on the %%DocumentNeededResources: list.

Note: As a general rule, different types of resources should be listed on separate lines
using the %%+ comment.

Ofo 0/oBeglnResource: and % 0/oEndResource

%%BeginResource: <resource> [<maxusage> <minusage>]
/* max VM used by resource */
/* min VM used by resource */

These comments delimit a resource that is defined by PostScript language code directly
in the document file (e.g. downloadable fonts). Resources may be for instance fonts,
files, or procedure sets (procset).

The %%Begin(End)ProcSet:, %%Begin(End)File: and %%Begin(End)Font: com­
ments may be discontinued in later versions of the DSC specification. The more general
comments %%BeginResource: and %%EndResource will be used instead.

0/o 0/olncludeResource:

%%IncludeResource: <resource>

Indicates that the named resource must be included at this point in the document by the
print manager. The resource name specified also should appear in the %%Document­
NeededResources: list.

A. Document Structuring Conventions version 3.0

Example:

%!PS-Adobe-3.0
%%Creator: Micrografx Designer
%%For: (PC Info Center) (Uni Zurich)
%%Title: (Fendant.art)
%%CreationDate: (7/25/90) (8:25 am)
%%DocumentNeededResources: procset MGXPS_2.1 0 0
%%+ font ZapfDingbats Korinna-Regular
%%EndComments
%%IncludeResource: procset MGXPS_2.1 0 0
%%IncludeResource: font ZapfDingbats
%%IncludeResource: font Korinna-Regular
%%EndProlog
... rest of the document ...

%%EOF

217

The %%/ncludeProcSet:, %%/nc/udeFile: and %%/nc/udeFont: comments may be dis­
continued in later versions of the DSC specification. The more general %%/ncludeRe­
source: comment will be used instead.

Document Structuring Conventions comment summary

This summary is contained in [4]. There are

General conventions

Requirement conventions

Header comments, e.g. %%BoundingBox:, %%EndCom­
ments, %%EndProlog. Body comments, e.g. %%Begin
(End)Data:, %%Trailer. And page comments.

Header comments, e.g. %%DocumentNeededResources:,
%%DocumentSuppliedResources:. Body comments, e.g.
%%Begin(End)Resource:, %%/ncludeResource:. And page
comments.

Color separation conventions

Query conventions

Header comments, e.g. %%CMYKCustomColor:. Body
comments and page comments.

E.g. %!PS-Adobe-3.0 Query.

B.

EPSF Screen Representations

Page without EPSF

Page with EPSF
without Preview

B. EPSF Screen Representations

Page with EPSF
with Preview

Page with EPSF
with Display PostScript

----·--­w-............... ·-­.............. -..... ..,....._,...

........ _._._

219

c.

Bibliography

1. Adobe Systems Inc. (1986), PostScript Language, Tutorial and Cookbook (blue book),
Addison-Wesley.

2. Adobe Systems Inc. (1990), PostScript Language, Reference Manual (red book), Addison­
Wesley.

3. Adobe Systems Inc. (1988), PostScript Language, Program Design (File Interchange Stan­
dards), Addison-Wesley.

4. Adobe Systems Inc. (1990), Document Structuring Conventions Specification, version 3.0,
Mountain View.

5. Adobe Systems Inc. (1988), Cooperative Printing, Guidelines for a distributed printing envi-
ronment, Mountain View.

6. Adobe Systems Inc. (1987), PostScript Printer Description File Specification, Mountain V.

7. Adobe Systems Inc. (1987), Adobe I 1/ustrator Document Specifications, Mountain View.

8. Adobe Systems Inc. (1988), Display PostScript, Perspective for Software Developers, Moun­
tain View.

9. Adobe Systems Inc. (1988), Display PostScript, Client Library Reference Manual, Mountain
View.

10. Adobe Systems Inc. (1988), PostScript Language, Extensions for the Display PostScript Sys­
tem, Mountain View.

11. Adobe Systems Inc. (1988), PostScript Language, Color Extensions, Mountain View.

12. Braswell, Frank M. (1989), Inside PostScript, Peachpit Press, Berkeley CA.

13. Holzgang, David A. (1988), Understanding PostScript Programming, Sybex, San Francisco.

14. Holzgang, David A. (1988), Mastering Adobe Illustrator, Sybex, San Francisco.

15. Pipeline Associates, Inc. (1990), The PostScript Language Journal, 239 Main Street, West
Orange, NJ 07052.

16. Roth, Stephen F. (1988), Real World PostScript (Writing Device-Independent PostScript),
Addison-Wesley.

17. Vollenweider, Peter (1988), PostScript- Konzeption, Anwendung, Mischen von Text und
Grafik, Carl Hanser, MUnchen.

18. Webster, Bruce F. (1989), The NeXT Book, Addison-Wesley.

Index
.CGM, 146
.EPS, 146, 206
.IMG, 146
.PCX, 146

%, 36, 64, 209
%!, 21, 194, 197,207
%%, 39, 43-45, 49, 59-60, 73, 78-79, 92, I 06,

115, 122, 126, 138-140, 143, 151, 153,
161, 197,207-208, 211-212,214-217

%%+, 197,215

ABF, 8
add, 27-28, 131
Adobe 111ustrator, 22, 65, 135, 171
Adobe Photos hop, 65, I 44
Adobe Separator, 64
Adobe Streamline, 81, 145, 171
Adobe Systems, xv, 6, 20,22
Advanced function printing, 20, 192
AFM, 169
Agence France Presse, 16
Agfa P400PS, 6, 12, 22, 75, 190
Aldus, 14, 64,77
Altsys, 77, 167
Ami Professional, 83
Amiga, 65
Apple, 2, 24
Apple LaserWriter, 6, 22, 189, 192
Apple LaserWriter II, 10
AppleTalk, 19 I
ArborText, I 8, 120
arc, 43,59
Archetype Designer, 83
array, 31
Art Importer, I 70- I 7 I
Associated Press, 16
AST, 190
Aston archive, 120
astore, 31
ATM, 14, 24, I 17, 135
Autocad, 18
Autologic, 6
A3 size, 12

Bauer, 2
BCP, 47, 135, 139
Beebe, 21
begin, 37-38, 80, 159
BeginData, 214

BeginDocument, 214
BeginFile, 41
BeginPreview, 208-209,214
BeginProcSet, 73, 139, 145
BeginResource, 216
BeginSetup, 140, 153
Berthold, 6
binary header, 80, 207
Bitstream, 6
Bitstream Font, 8
blend, 135
Blue Sky Research, 120
board, 195
bounding box, 86, 151
BoundingBox, 49,59-60, 114-115, 126, 138,

143,148,197,207-208
Brainerd, Paul, 14
British Petroleum, 120
Brother, 195

c. 25,52
CA-Cricket Stylist, 163
Caere, 13, 174
Canon, 190
Casady & Greene, 6, 15, 22
Centronics, 190
CGM, 81, 146
circle, 106
CISCO, 85
clear, 28, 205
cleartomark, II 0
clip, 72, I 16, 121, 124, 130, 155
clip-art, 22
clone, 2, 10, 15, 24, 195
closepath, 72
Colophon, 4
color model, 59, 62
Color PostScript, 57, 119
color separation, 63, 156
colorimage, 62
Co1orocs, 12, 56
colors, 12, 57, 20 I
command-F. Ill, 113
comment, 36, 60, 73, 126, 198, 209
Compugraphic, 6, 23,64
Computer Associates, 18
Conodesk, 15
coordinate system, 198
copy, 28
Corel Draw, 22, 82, 147

222

COS, 30
count, 28
Cricket Presents, 81
CricketDraw, 157
crop, 207
cropping tool, 86
CrystalPrint, 23
CfM, 40,204
cubic curves, 46, 135, 139, 164
currentmatrix, 44
currenttransfer, 204
curves, 139
curveto, 46
Cut and Paste, 70
cvi, 131
cvs, 33,54

DAPS, 83
DCA Image, 20
DCA IrmaPrint, 195
DCF/Script, 20
DOL, 1
DEC, 12,20
DECLPS20, 12
DECnet, 12
def, 27-28, 36, 39
definefont, 92, 169
DeltaGraph, 13
DesignStudio, 89
Desktop Presentation, 13, 81
Diagraph Windows, 13
diet, 37
dictionary, 37
Display PostScript, 2, 13, 24
div, 27
doarrow, 106
document manager, 73
Document Structuring Conventions, 212, 217
DocumentFonts, 43, 60, 126
DocumentMedia, 215
DocumentNeededResources, 215
DocumentSuppliedResources, 215
[H)S, 18,66,82,206
downloadable fonts, 6
DP-Tek, 195
DrawOver, 81
Dream Maker, 22
dup, 28
duplex, 12
DVI, 120
DVIPS, 21

EARN, 21
Editor, 172
ElectroCompositor IBM 4250, 193
emulating, 14
encoding, 95
end, 38,80
end-of-file, 191
EndComments, 209
EndData, 214
EndDocument, 214
EndFile, 41
EndPreview, 208,214
EndProcSet, 73, 139

Index

EndPro1og, 39, 44-45, 60, 73, 106, 122, 139,
153, 161, 168

EndResource, 216
EndSetup, 140, 153
EPS header, 78
EPSF, 4,16,65, 77,80,104,114, 131,137,

144-145, 147-148, 151, 156-158, 171,
173, 196,206,211, 218

EPSF-3.0, 214
EPSI, 208, 210
eq, 28,30
Ethernet, 85, 188
ExamplesPS, 185
exch, 28
exitserver, 92, 172, 189
exporting, 81-82, 114, 146

F, 100
Fax, 24
File menu, 81, 85, 89
filetransfer. 84
fill, 57
film recorder, 23
findfont, 31, 42
FON, 8
font, 6, 42. 199
Font Downloader, 192
font downloading, 164, 172
font types, 42
FontFun, 185
Fontographer, 8, 164
FontSizer, 8
for, 30, 50, 52
forall, 31
Framemaker, 18
Freedom of Press, 14, 24, 66
FreeHand, 81, 155, 171
Fryd Michael, 74
FfP, 85

Index

Gamma, 24
ge, 28
GEM, 105, 107
GEM Artline, 82, 146, 148
GEM Draw Plus, 82
get, 37
GIF, 65
GoScript, 14
GPI, 1-2,81, 146
Graph Plus, 82
graphics state, 50, 59, 139
grestore, 35, 59, 78, 131, 162
gsave, 35, 59, 78, 131, 162
gt. 28

halftoning, 83
Harvard Graphics, 82, 151
Hell, 63
HelpPS, 187
Hewlett-Packard, 1, 14, 190
Hijaak, 81
hints, 6
Hockney 's Egg, 83
Hot Type Laser Fonts, 82
Hotshot Graphics, 81
Howtek Pixelmaster, 66
HP Graphic Gallery 3, 82
HP LaserJet, 10, 15, 23, 195
HP PaintJet, 14,66
HP Printer Cartridge, 5, 10, 23
HPGL, 81, 146
HPGL translator, 82
Hughes, 85
HyperCard, 18, 184

IBM. 23
IBM LaserPrinter, 23
IBM MVS, 20, 192
IBM PC, 90, 101, 105, 135, 143, 146, 151,

172-173, 182, 189, 192
IBM Personal Publishing System, 5, 70
IBMPS/2, 5
IBM VM/CMS, 20, 70, 192
IBM4019, 23
if, 30
ifelse, 30
image, 62, 65, 84, 161, 177
images, 83, I 06
lmageStudio, 144
ImageWriter, 14
importing, 67, 81, 83, 119, 146
IncludeFont, 191, 200

lncludeResource, 216-217
index, 28
init operators, 74
initgraphics, 203
ink jet, 12, 66
Intellifont, 2
interactive access, 182
interchange, 22, 73
interchange format, 208
lnterleaf, 18
Interleaf Publisher, 83
interpreter, 13, 15, 188, 195
invalidrestore, 205
IPDS, 195
IPT, 66

Kermit, 84
kerning, 127, 131, 139
Kodak, 12, 56
kshow, 131
Kyocera, 190

LAN, 22
LanguageLevel, 214
Laser Lovers, 5, 12, 20
Lasergraphics, 66
LaserMaster, 195
LaserPlot, 81
LaserPrep, 113
Lasertalk, 182
le, 28
LearnPS, 27,31,43,46, 72,176,184
length, 37
Letraset, 6, 70
LetraStudio, 8, 171
LetterPress, 6, 22
limitcheck, 43
LincPage, 184
lineto, 26, 43, 47, 52
Linotype, II, 22, 30
load, 30,37
Localnet 2000, 16, 85
LocalTalk, 191
Lotus 1-2-3, 18
LPS40, 12
It, 28

M.I.T., 18
MACH, 24
Macintosh, 21, 70, Ill, 114, 135, 157, 164,

173,182,206
MacRIP, 24, 66

223

224

makefont, 61
mark, 28
markup, 68
Mass-It, 82
Mathematica, 18, 154
Matrix, 56
matrix printer, 14
MC View, 173
Metamorphosis, 166
Micrografx Designer, 82, 146
Microsoft, 1-2, 92
Mirage, 13, 82
mod, 186
Monotype, 6
More II, 13, 81
moveto, 27, 43, 52, 187
MS PowerPoint, 81
MS Windows, 21, 145-146, 207
MS Word, 4, 70, 90, 171
MS Word 5.0, 83, 90, 92, 147, 154
Multi-Ad-Creator, 119
MultiTalk, 85

NAG, 18
ne, 28
NEC, 190
NECP6, 14
neg, 36
New York Times, 16
newpath, 43, 59, 72, 121
NeXT, 9, 13, 18,21-22,68, 154
Nextstep, 24
Northern Telecom, 22

Olduvai Corp., 22
Olivetti, 190
OmniTrace, 174
Open Prepress Interface, 64
operator, 26
OPI, 18,64
OS/2, I, 14, 85, 89, 147
OSF, 24
outline font, 6, 14, 164, 166
outlines, 164

P, 93
P-Ingenierie, 85
PacificPage, 5, 15
PageMaker, 70, 85
PageMedia, 215
Paint, 180
Pantone, 64

parallel input, 190
Passwordlncorrect, 172
path, 27, 43, 106, 139
pattern, 121
PCText4, 18
PCView, 173
PCL, 2
PCX, 81
PCX file, 135, 146
PE, 101
Persuasion, 81
PFM, 169
PhoenixPage, 15
Photoshop, 65
PIC, 81
picframe, 207
PICT, 4, 80-81, 144, 171, 180,207
PITBox, 12
PIXAR, 65
Pixie 2, 82
Place, 144
point size, 42
pop, 28, 63, 177
position, 207
PostPrint, 15
PostScript Level 2, 23
PostScript window, 155, 157
POSTSCRP.INI, 92
PostS how, 1 84
PPD, 64,73
PrePress, 18, 63
PrePrint, 63
Presentation Manager, I, 147
preview, 114, 183,209,218
Princeton, 195
print, 188, 191
procedure set, 73, 139, 145
PS Plot, 82
PSCRIPT.DRV, 1
PSCRIPT.INI, 92
put, 37

QMS, 10, 190
QMS ColorScript, 1 2, 56, 66
QMS PS800, 189
Quark XPress, 4, 13, 16,89
QuickDraw, 2, 14, 159, 207
quit, 37
Qume, I 0, 23, 189-190

RagTime, 70, 89
rand, 186

Index

Index

rcurveto, 4 7, 170
readhexstring, 177
ReadySetGo, 70
rectangle, 49, 90
reencoding, 153
Reid Glenn C., 74
repeat, 31, 33, 59, 121, 123
restore, 39, 49, 71, 204
RIP-It, 24, 66
RISC, 23
rlineto, 43
nnoveto, 33, 43
roll, 28
rotate, 40, 42, 59, 71, 119
Royal, 2

S, 93
SAS/Graph, 20
save, 39, 49, 71, 204
scale, 40, 49, 71
scale font, 31, 42
scaling factor, 130
Scangraphic, 9
scanner, 13, 135, 173
sccbatch, 189
screen fonts, 8
screening, 83, 106
Script-It, 66
segment include, 68, 75
semigraphic characters, 92
SendPS, 191
setblackgeneration, 62
setcmykcolor, 57, 59,62-63
setcolorscreen, 62
setcolortransfer, 62, 203
setdash, 52
setflat, 124
setfont, 31, 42, 61
setgray, 42,59-60, 63
setlinewidth, 49, 124
setmatrix, 44
setpacking, I 05
setrgbcolor, 26, 59-60, 90
setsccbatch, 189
setscreen, 62, I 06, 203
settransfer, 62, 203
setundercolorremoval, 62
Seybold, 2
Sharp, 12, 56, 66
show, 31,33,42,123
Showlnt, 170

225

showpage, 32, 42, 79, 110, 114, 154, 162, 183,
204

sin, 30
single-imaging model, I, 24
slides, 23
SmartArt, 114
SoftRIP, 81
SpectrePrint, 82
Springboard Software, 22
srand, 186-187
stack, 26, 80, 205
Standout, 81
statusdict, 3 7, 7 4
stringwidth, 33
stroke, 43, 48, 162
Studio Work, 81
sub, 131
Sun, 13, 20. 24
Swiss Academic Network, 121
SWITCH, 121
systemdict, 3 7

TARGA, 65
TCP/IP, 12,85
Tektronix, 12, 21 , 56, 66
Telefax, 24
Tellagraf, 20
TEX, 21, 68, 120
Texas Instruments, 10, 190
TIFF, 64, 80, 84, 144,207
Token Ring, 85
Trailer, 141
Transcript, 18, 20
translate, 40, 71 , 13 I
Troff, 68
TrueType, 2
TryYourOwn, 187
Type Manager, 14
Type Studio, 8, 172
Type 1, 6, 15, 166, 169, 171
Type 3, 6, 15, 166, 168, 171
TypeAlign, 117
Typefoundry, 8, 164, 172
TypeSty1er, 8, 171

Ultrascript, 15
umlaut, 96
Unisys, 190
~. 15, 18.20.24, 70,112
UNIX AIX, 13, 24
URW, 14
user dictionary, 36, 38

226

Varityper, 6, 12
vectorize, 135, 180
Virtual Memory, 49,71
Volvo, 16,22

Waterloo Script, 68, 75
watermark, 90
Wenger Printers, 12
widthshow, 32
windowing systems, 13
Windows Graph Plus, 82
Windows MetaFile, 4, 80, 144, 146,207
WMF, 207

Word operators, 93
Word Perfect, 4, 101-102
Word Perfect 5.0, 90, 104
WordMarc, 83
WriteNow, 18
writing mode, 24
WYSIWYG, 4, 13, 21, 70, 80, 157, 207

X/Windows, 13
Xerox Presents, 13

Index

Xerox Ventura Publisher, 70, 89, 105, 110

3G Graphics, 22

