

™) [A_

- = —
7\ 11

)

T IvVIZ\ ITN 1

An ldea Book

~RAPHIC
W/ \ 1

p

 TVi/\Jll

Tt

An |dea Book

John P. Grillo

J. Douglas Robertson
Bentley College
and
Generic Computing Company

CBS COMPUTER BOOKS

HOLT, RINEHART AND WINSTON

New York Chicago San Francisco Philadeiphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiroc Madrid

Apple®, Macintosh™, MacPaint™ and MacWrite™ are registered trademarks of the Apple Computer
Corp.

TRS-80%is a registered trademark of the Tandy Corp.

MacWorld™ is a registered trademark of PC World Communications.

Microsoft® is a registered trademark of the Microsoft Corp.

IBM® is a registered trademark of International Business Machines Corporation.

Generic Computing™ is a registered trademark of the Generic Computing Co., Inc.

HP-150 is a registered trademark of Hewlett-Packard Corp.

Star Wars is a registered trademark of Lucas Films

Commodore 64™ is a registered trademark of Commodore Business Machines.

Acquisitions Editor: Deborah L. Moore
Production Manager: Paul Nardi
Composition: The Publisher's Network
Cover Design: Anthony Frizano
iltustrations: Grillo and Robertson

First distributed to the trade in 1985 by Holt, Rinehart and Winston
General Book Division

Copyright® 1985 CBS College Publishing
All rights reserved.

Address correspondence to:

383 Madison Avenue, New York, NY 10017

Library of Congress Cataloging in Publication Data

Girillo, John P.

Graphics for the Macintosh.

(CBS Computer Books)

1. Computer Graphics. 2. Macintosh (Computer) Programming. |. Robertson, J.D.
(James Douglas), 1943- . . Title. lll. Series.

T385.G7471985 001.64'43 84-25254
ISBN 0-03-00047°7-c

Printed in the United States of America.

Published simultaneously in Canada.
567 039 987654321

CBS COLLEGE PUBLISHING

Holt, Rinehart and Winston

The Dryden Press
Saunders College Publishing

Dedicated to
Betsy and Celia

Their patience and encouragement reduce the burden that writing imposes on
our private lives.

Table of Contents

PREFACE xiii

INTRODUCTION XV
What are Computer Graphics? xv

Printer Graphics xvi

Character Graphics xvii

Pixel Graphics xvii

Macintosh Graphics xviii

Advanced Graphics xviii

MacPaint xix

Microsoft BASIC and Graphics Programming xix

Chapter 1 SKETCHING 1
The Brush 1
TheSprayCan 5
The Brick Wall 7

Chapter 2 MORE MACPAINT 11
Marquee 11
Text 12
Application 1: Rowof Macs 13
Application 2: Business Card 15
Application 3: Annotated Artwork 17

Chapter 3 GOODIES 21
Application 1: Venn Diagram 21
Application 2: HIPO Chart 26

ix

x GRAPHICS FOR THE MACINTOSH

Chapter 4

Chapter 5

Chapter 6

Chapter7

Chapter 8

ADVANCED DESIGN
Application 1: Cheimsford, Waltham,
Buenos Aires Fonts 29
Application 2: Icons 31
Application 3: Racing Invitation 33

A MACPAINT RECREATION

Application: Tangrams with MacPaint 38
Using MacPaint to Produce Tangrams 40

PROGRAM PLANNING
Top-down design 46
Steps in Program Planning 47
Structured Programming 52
Menus and Submenus, Main Programs
and Subprograms 57
General Structure 60

MAC, THE USER, AND BASIC

Introduction: In Defense of BASIC 63
Program Development Tools 65
CHAIN 66
COMMON 67
CLEARto Increase Memory 68
User Interaction with the Mouse 70
Annotated Menu Listing 71

PIXEL GRAPHICS AND ICONS

Application 1: Binomial distribution 79

Notes: 83

Application 2: Mathematically Derived Curves 84

Prolate Cycloid 84

Curtate Cycloid 86

Involute of Circle 86

Cardioid 88

Evolute of Elipse 90

Hypocycloid of Four Cusps (Astroid)
Roses 93

Application 3: Birthdays 95
Application 4: Stars and Motion 97
Shooting Star 98

Enlarge Star program 103

Racing Stars program 105
Approaching Star program 108
Revolving Stars program 111

o

29

37

45

63

77

TABLE OF CONTENTS xi

Chapter 9 CLOCKS 117
CALLs to Text Management Routines 117

CALL TEXTFONT(n) 118
CALL TEXTFACE(n) 118
CALL TEXTSIZE(n) 119
CALL TEXTMODE(n) 119
Application 1: Wall Clock 119
Application 2: Digital Clock 123
Application 3: Two Clocks 125
Application 4: Mantel Clock 127
Application 5: News Room Clock 129
Application 6: Egg Timer 131
Conclusion 133

Chapter 10 THE LINE COMMAND 135
LINE Instruction 135
Using Angle and Radius with LINE 136
Advanced Applications of LINE 138
Tessellation 138
ANGLEWALK: Random Tessellation with LINE 138
Square Tessellation: 141
Diamon Tessellation 142
Four-pointed Star Tessellation 143
Complex Tessellation 144
Suggestions: 145
Stars and Circles 146
Sierpinski Patterns 149
List of References on Fractals 152
Centered Sierpinskis 153
Bent Sierpinskis 156

Chapter 11 THE DRAW SUBROUTINE 159
The DRAW Command's Syntax 159
Motion Commands: 160
Options: 162
Modes: 162
DRAW Subroutine 163
Process Move 164
Process Directed Move 164
Process Pick Up Sign, Digitsif any 165
Applications of DRAW Subroutine 165
Alphabet Generator 171

xii GRAPHICS FOR THE MACINTOSH

Chapter 12 MOUSE TANS
Commonly Used Variables 180
Other variables 192

Chapter 13 CHART APPLICATIONS
Raw Data Program 197
Application 1: Piechart 199
Application 2: icon Chart 204
Application 3: Bar Chart 207

INDEX

181

197

213

Preface

As every user knows, the Macintosh is a vastly different machine from the
traditional personal computer. Its ancestry may include the venerable Apple-Il, but
it doesn't resemble it in any way.

Never before in the history of computing has a machine’s usability been so
dominated by its capacity to produce graphic images. The Macintosh is driven by
its ability to generate excellent graphics. Even when it produces text and numbers
onthe screen, it does so by drawing them. It relies onits high resolution and superb
built-in programs to generate every image that the user sees.

When the Macintosh was introduced early in 1984 (who can forget that Superb-
owl Sunday?) it had two applications programs that were user-ready— MacWrite,
a friendly word processing program, and MacPaint, an incredibly different pro-
gram to produce graphics. Within a month of the hardware’s release date, Micro-
soft BASIC became available, further expanding the computer’s flexibility. It was at
this time that we became involved with Holt, Rinehart, and Winston Publishers to
produce this book.

This book s the first in a series of books to be written for the Macintosh computer.
It is certainly the most enjoyable project we have ever undertaken, given the fact
that the Macintosh is so highly graphics oriented. It is not our first book on graphics
for microcomputers, but it is certainly the most different of them. We have spent an
enormous amount of time developing techniques and programs to produce
graphics in the past several years, either for our college courses, or for a book we

were writing. Only when we began this book, however, did we feel utterly comfort-

able with this engrossing topic.

Our goal is to stimulate our readers to explore the Macintosh’s abilities. We
provide ideas in the form of small sequences of activities for using MacPaint, or
small programs in Microsoft BASIC. These activities must not be confused with the
well-developed applications that we leave up to the reader to produce. Our aim is
to give away some of the tricks that we have learned in our combined three dozen
years of computing experience. We simply seed the territory. It's up to our readers
to cultivate and harvest the rich rewards of computer-generated graphics applica-
tions.

All of the material in this book was prepared on an “as-delivered” Macintosh with
64K of ROM and 128K of RAM. It was delivered in March of 1984 in its standard
configuration with a single 3.5 inch built-in disk drive. With the computer, key-
board, and mouse we also got a 9.5 inch carriage Imagewriter printer. The only
software we used was the MacPaint (both the 1.0 and 1.3 versions, the latter
becoming available in May of 1984) and the Microsoft BASIC. With this hardware
and software, we explored the great graphics that the Macintosh can produce.

The book is in three major parts: Part | is an exploration of MacPaint graphics;
Part Il introduces good program design techniques; and Part Ill describes by
example some of the possible graphics projects that you can design using Micro-
soft BASIC. Itis in these last chapters that we pull out all stops and present some

xiv_ GRAPHICS FOR THE MACINTOSH

graphics programs that could lead to full-blown commercial programs written by
you, the reader. Our philosophy has always been to let the reader in on our
development ideas. We begin playing around with techniques, and when we have
a working program that uses some of the tricks we've discovered, we move on to
something else. Our hope is that many of our readers will pick up where we've left
off, and will produce well-designed, useful, rewarding commercial products.

F\. 1 2 ul |r\\
What are Computer
Graphics

Simply stated, computer graphicsis the most exciting output that a computer can
produce. A computer — every run-of-the-mill computer — can deal with numbers
and words. But it takes a major effort for these machines to generate pictures.

input values
data 214159

2 0 ges11z 0
1 6 documents

words
5 =
‘ ’]fi.cturcs

AR AN
PN AN NN
RYANEN

computer

processing

XV

xvi GRAPHICS FOR THE MACINTOSH

Pictorial output from a computer is the third of the three primary forms of
computer output, and it is swiftly becoming the most popular. It is safe to say that
the production of computer pictures is a relatively recent phenomenon. Computer
graphics was too difficult and too expensive for general use until the 1970’s. Before
that time, computers were most often used in business to produce reports, and in
science and engineering to calculate.

Printer Graphics

When a computer printer “draws” a picture of a puppy, or a spaceship, or any
other image by printing a series of letters one line at a time, we refer to it as printer
graphics. The sketch of the house below is an example of this kind of computer-
generated graphic image.

X
b 4 X
X X
XX X X
XX X
X X
X X XXX X X

X XXX XXxx X

X XXX XXxXxx X

X XXxXxx X

X XXXx X

XXXXXXXXXXX XXX XXX XXXXXXXXXXXXXXXXXX XX

This kind of computer-generated graphic image is simply a different use of the
printer. Calculations don't enter into it, nor do special types of hardware or
software.

INTRODUCTION xvii

Character Graphics

Another form of image that the computer can produce with only slightly more
advanced hardware (and some tedious programming) is that sort produced using
special characters aside from letters, digits, and punctuation. For example, some
printer-computer combinations can make images using special characters like the
ones below:

[11 2 v 2 - + & 4w 2 D o

Any image that is produced by printing these charactersin straight lines one after
another is simply an alternate form of the primitive printer graphics we mentioned
above.

Pixel Graphics

It's only when the computer works together in concert with the screen and deal
with individual spots of light that we can explore its fullimage-generating potential.
All computer screen images are made up of individual spots of light or darkness
that are called pixels, or picture elements. Each spot is represented within the
computer as a single small piece of information, and several such pieces of

Jaggies with
Smooth line with

low resolution

high resolution

xviii GRAPHICS FOR THE MACINTOSH

information can work as a group to produce a character. If you look closely at any
character a computer forms when it prints, you can make out the pattern of dots
that make up the whole.

Normally, a computer has a fixed set of patterns for upper and lower case letters,
digits, and special characters. When it produces text or numbers for output, those
patterns are projected onto the screen to make up the words and values. However,
when such a computer works with graphics images, it assumes a differentimaging
process, whereby the entire screen is a map or a sketchpad onto which the
graphicimage is placed one dot at a time. This form of graphics is measured by the
screen’s resolution, or its number of rows and columns of individually addressable
spots. Typically, these computers have a resolution of from 100 to 1000 columns
and from 50 to 1000 rows.

If a computer has a resolution of 1000x1000, it must be capable of storing one
million addresses for each image. This amount of memory is rarely available on
personal computers, so most of these have a resolution of 350 to 500 rows by 200
to 400 columns. With this level of resolution, most images lose their jagged edges,
or jaggies, so that circles look round and lines look straight.

Macintosh Graphics

The Apple Computer Company has made the Macintosh, patterned after its Lisa,
to be a pure graphics machine. By this we mean that not only does it produce
graphics images one small spot, or pixel, at a time, but it also produces its text the
same way. There is no set way to print the letter “a” in the Macintosh, as is the case
with most other computers. It is this feature above all others that distinguishes the
Mac from its brethren. Because of this property, a screen full of text can have
graphics painted onto it, and a graphic image can have words around it.

This ability to mix text and graphics is extremely powerful. It means that your
drawings can be labeled easily. Also, it means that your traditional computer
programs that generate text and values can be embellished with pictures pro-
duced by the computer. We explore both approaches in this book, as you will see.

Advanced Graphics

The topic of computer graphics is a highly technical one, and it is governed a
great deal by what the computer in question can and cannot do. For example, the
Macintosh cannot (as yet) produce color on the screen. Therefore we must
consider color graphics images to be beyond the scope of this book.

We also avoid some of the more advanced topics in college-level computer
graphics courses, such as windowing, clipping, animation, and three-dimensional

INTRODUCTION xix

images. This doesn't mean that the Mac can't do these things; rather, the topics are
of atechnical nature that is beyond the scope of this particular book. The two topics
we do cover in detail are MacPaint and Microsoft BASIC graphics programming.

MacPaint

The MacPaint program as supplied by Apple is such a superb piece of software
that we cannot recommend it enough. MacPaint is a program with which the user
can produce pictures immediately, and as an extra bonus can add text to those
pictures. We devote the first five chapters to an exploration of this remarkable
program.

Microsoft BASIC and
Graphics Programming

BASIC is a familiar language to many. Secondary schools are adopting it more
and more as a standard introductory programming language because it is so easy
to learn and because BASIC programs can run on practically all small computers.
Microsoft BASIC has become something of a standard among the varieties of this
language, and the Microsoft BASIC that runs on the Macintosh is extra powerful
because it has good graphics commands and because it takes advantage of the
Macintosh set of pre-programmed graphics software.

The last five chapters of this book dig into the use of BASIC as a method for
producing graphics. This is not to say that Microsoft BASIC on the Macintosh is
limited to graphics. Instead, we are emphasizing the use of graphics programming
as an enhancement to the large number of programs that produce text and values.
We include several programs that produce business charts in this section of the
book to show how graphics and text can mix and how graphics improves the
computer output.

We have left many programs in their skeletal state for a purpose. We want you to
take them and modify them to suit your needs. We expect you to push here and
pull there, to tweak the programs to your liking. We invite your reactions to them,
and would consider it a high compliment to see a variation of one of our efforts
become a best-selling piece of software.

SKETCHING

This chapter starts the book with some of the elementary tricks you can use with
that phenomenal piece of software, MacPaint™, written by Bill Atkinson of Apple
Computer. If you still haven't invested in this application program, we recommend
that you do so as quickly as you can, because it justifies anyone’s purchase of the
hardware. We will start with some primitive techniques. We can't guarantee that
you will turn into an artist overnight. We didnt, as you will see. But we feel
comfortable with the computer, and we have felt more free to “be artistic” as a
result.

When you select and open MacPaint, either through the pulldown menus or by
double-clicking, you are presented with your palette and sketchpad. Around the
border you will find the patterns and techniques you can select; the mouse and
your imagination are all that are necessary to do some pretty fancy sketches.

The Brush

The most direct tool for drawing freehand with the mouse is the brush, which is
highlighted in lllustration 1.1. The squares in the left border show the tools that can
be used. You can select any tool in the left border by clicking the mouse once. If
you select the pencil, (found immediately to the right of the brush) as your tool, the
shape your pencil will use is always a single thin line. As with the pencil, the shape
that your brush will use is not the one shown at the bottom left corner of the palette,
which is reserved for polygons, ovals, and freehand. To change the brush, you
have to click the Edit menu item, (lllustration 1.2) then select the Edit Brush Shape
as shownin lllustration 1.3.

In our initial play sessions with MacPaint, we discovered how forgiving the
program can be when dealing with rank amateur artists. Consider the drawing of a
tree. You have to draw the trunk, some large limbs, some smaller and smaller ones
{more and more of them) until you are faced with all of the thousands of leaves. And
if you want a foreground and horizon, you have those to contend with also.

To draw the trunk, select the fattest brush shape (from Edit Brush Shape), and
make sure the pattern is pure black (the large square at the bottom left is black,

2 GRAPHICS FOR THE MACINTOSH

indicating the pattern selected). Then drag the mouse down, roughly in the middle
of the screen as in lllustration 1.4. Select a thinner brush and now draw (with
dragging) several large limbs (lllustration 1.5). You can go back to select an even
thinner brush and draw some smaller limbs, but you don't have to (lllustration 1.6).

Grid g
TE e —

Show Page
Edit Pattern

Brush Shape
Brush Mirrors
Introduction
Short Cuts

lllustration 1.2 Brush selection

SKETCHING

untitied

s s
%m--lh

Illustration 1.3 Edit Brush Shape display

lllustration 1.4 The tree’s trunk

4 GRAPHICS FOR THE MACINTOSH

File Edit Goodies Font FontSize Style

UG IE—————

lllustration1.5 The tree's major limbs

Treeall limbs it

Illustration 1.6 All of the tree's limbs

SKETCHING 5

The Spray Can

Now, here's what we mean by MacPaint being forgiving. Certainly you can't say
that any one of the sketches is like a tree. The limbs are too uniformly sized, they
end in that funny round shape, and there just doesn't seem to be enough of them.
But now if you spraypaint some leaves, you can hide all of these imperfections, and
those fat limbs are barely visible through the bushiness you've produced (lllustra-
tion1.7). You spray on the leaves by selecting the spraycan from the tools along the
left side and dragging rather quickly through the branches of the tree. Hint: If you
seethatthetreeisturning black (you left the spraycan on too long in one place) you
can lighten it by selecting a different pattern — say, the random dots in the top
center, or the pure white pattern at the bottom left — and spray that pattern.

Now, you need to draw your horizon and some background and foreground.

"% I‘IIE Edit Goodies Font FontSize Style
(=———=— Tree&leaues%

lllustration 1.7 Tree after spraying leaves

Using a brush of medium thickness and a dark (but not black) pattern (such as the
fourth onein the top row), drag a line across the screen. That light streak across the
trunk of the tree can be repaired later with a black brush. Then pick up pro-
gressively lighter patterns and spray the area below the horizon from top to bottom
(llustration 1.8).

We will leave you to your own devices in polishing this masterpiece. You need to
take care of that light streak in the trunk, and to shape the bottom of the trunk with
the brush sothat it doesn't look so sqguatty. Also, you can spray some fluffy clouds
in the sky, or amoon, or birds, or a Mack truck if that's your preference (lllustration
1.9).

6 GRAPHICS FOR THE MACINTOSH

Edit Goodies Font FontSize Style

TreeGhorizon SV —————

lllustration 1.8 Tree with horizon

File Edit Goodies Font FontSize Style b

S==——=———==== Tree with grass ==

BRSO 3
{11}
V

lllustration 1.9 Tree with grass

SKETCHING

@ The Brick Wall

Some of the most enjoyable aspects of MacPaint are the pre-programmed
patterns that you have at the base of your palette. You have fish scales, webbing,
regular dots, random dots, diamonds, waffle tiling, bricks across and diagonal,
even ceramic roof tiling for those houses in the Provence area of Southern France.
One of our favorite applications of MacPaint is the Graffiti Wall. This sketchis simply
a wall of bricks onto which we spray, or crayon, or paint, our favorite sayings as in
lllustration 1.10.

Try this:

Select the empty rectangle from the tools (sixth one down, leftmost column).
Place the cursor (mouse arrow) in the upper left area of the sketchpad.
Drag the mouse to the lower right corner of the sketchpad, and let go.

Fill this rectangle with bricks. Select the horizontal brick pattern.

Select the paint bucket to completely fill the rectangle with the brick pattern.
Click the mouse anywhere within the rectangle. Voila! Your brick wall.

Select a brush shape to your liking and write your message.

R e (e LA R8s b S

To put a crack in the wall, select a white pattern and brush in the crack.

lllustration 1.10 The graffiti wall

8 GRAPHICS FOR THE MACINTOSH

9. To erase a message you've already written, dont use the eraser! You will
erase your bricks as well. Select the brick pattern and the spraycan, and
spray the bricks back on. Or you can paint the bricks back on using the
brush. As you brush or spray, that pattern appears as a replacement of the
old.

We will end this chapter with a few selections from our own ever-growing
scrapbook of art. All of the following sketches (lllustrations 1.11 through 1.14) were
done with brush, bucket, spraycan, rectangle, and circle. We used some of the
existing patterns, and we used the Edit Brush Shapes feature.

Illustration 1.11

.

X T P A A X 3 A A e A
A Y W Y N Y Y N U e N, W

Ay ay 0wy 0 ety 0y my a0l

sl

b o o e o e e o e e
e)

lllustration 1.12

SKETCHING

Illustration 1.14

One last technique that you will want to use often, or until you run out of disk
space, is the save activity. Simply click the file menu entry, drag to the save entry,
and follow the directions.

vl

— — MAGPAINT

The first chapter introduced the MacPaint sketching area, and demonstrated a
few of the tools and patterns that you have available to you. This chapter expands
on those features, and puts particular emphasis on the use of two features that
make MacPaint especially powerful — the marquee and the alphabet.

Marquee

The marquee is the top tool in the second column, just above the capital A. Notice
that it is made up of dashed lines, unlike either the empty rectangle or the filled
rectangle in the sixth row. This signifies that if you select the symbol and click-drag
a rectangle on the screen, you will draw not the usual solid-line rectangle, but an
area surrounded by a series of short lines. The lines rotate around the area like a
movie marquee, hence the name for this tool.

Once you have selected the marquee and have used it to outline an area on the
screen, you can do several things:

1. MOVE: Place the pointer inside the rectangle and drag the picture to a new
area of the screen.

2. COPY:Hold downthe OPTION key and drag the picture to another area. The
original picture stays where it was, and the copy, if it was dragged only partly
off the original, will overlay it.

3. SHRINK: Hold down the COMMAND key and drag . You can stretch or
shrink in either direction, vertically or horizontally. This technique can modify
a text font or change the aspect of a figure.

1

12 GRAPHICS FOR THE MACINTOSH

Text

The Macintosh can mix text and graphics easily. Indeed, this feature alone makes
the Mac a singularly valuable tool on the desk of a marketing manager, an
advertising agent, a student, an author, a software documentation specialist, and
just about anyone who has to place figures in text, or text in figures.

When you have the MacPaint palette on the screen, you have all of the traditional
artists' tools, available such as brush, spray can, pencil, and patterns instead of
colors. But you also have in front of you a wealth of print fonts, types, styles, and
sizes. With these you can annotate your figures with highly personalized mes-
sages. To use these powerful tools, you simply select A—alphabet or text gener-
ator, choose a font from the Font menu, a font size from the FontSize menu, and a
style of type from the Style menu. The Macintosh even suggests optimum font sizes
after you choose the font by outlining what looks best. For example, Venice font
looks best in 14-point type; Chicago, in 12-point; Monaco, in 9 or 12; and Geneva
and New York looks fine in all sizes: 9, 10, 12, 14, 18, and 24-point. Cairo is one of
our favorites because it's made up of all graphics ideograms satirically suggesting
Egyptian hieroglyphics. It looks best in 18-point, although many other sizes are
available.

lNustration 2.1 shows Cairo font characters with their key assignments in 18-point
size.

BBHRHBEREHEE
O|T =8| E|1C | N|x|s|=]|e
i 2 |13 |4 S5 }j6|r]|]8 |90 -]-=
NEL A A ¥\ ==t |el~]|fF
QU] EJR] T] Y]l U] 0] P { } |
q| o] e t|y|lu]l i | ol p [] \
Al S| D | F 6 H J K | L]: | "
Plonl 2| 1| @ 1D 0 |||l
a|l s | d f g h i k Vs
¥ (R (2| || .0
2 R |lC |vu|B]| N] R|<]>»]?
(&0 QoI ET
z x| c luv|lb|lnalal,]| .|/

lllustration 2.1 Cairo font characters

MORE MACPAINT 13

Application 1: Row of Macs

We have chosen this application first because it demonstrates both the marquee
and the alphabet, or text generator. The screen image shown in lllustration 2.2,
which we have left untitled, shows a design that is familiar to all Mac users. The
stylized outline of computer, keyboard, mouse, and apple are on the Scrapbook,
so we didn't have to sketch that image. Here's the list of steps you need to perform
in order to produce the image in lllustration 2.3.

1. Select Scrapbook from Apple menu (at top left of screen).

2. Select Edit menu and COPY scrapbook selection to clipboard. You see
nothing to indicate the action, but after this activity, you have the image both
in the scrapbook and on the clipboard. Be careful: do not CUT the image
from the scrapbook, because that will remove it from the scrapbook, and it
will not be available to you for other purposes.

3. CLOSE the scrapbook — click the square at the top left of the scrapbook
window.

4. Select PASTE from the Edit menu. By selecting the activity, you place the
contents of the clipboard into the MacPaint sketch area. Notice that the
image seemsto vibrate. Itis made up of blinking dashes. And if you move the
mouse, the cursor (pointer) on the screen is no longer an arrow but a lasso.
Thisis like a marquee, except that its shape conforms to the image's outline,
and not a free-floating rectangle outside the image.

5. Place the lasso inside the vibrating figure until it is a vibrating arrow. Take
care with this operation. You can't operate on this image if the pointer is a

Edit Goodies Font fentSize Style

untitled
Scrapbook

| BRI Q000K RARES Hifi = 7777/ m— T A I W |70 ZAAY P AT T T

lllustration 2.2 The Scrapbook, source of our design

14 GRAPHICS FOR THE MACINTOSH

10.
11
12.
13.

14.

File Edit Goodies Font FontSize Style

[3
[=d L macintosh
Wi

Macintosh

P = v

Illustration 2.3 Row of Macs

lasso. It must be a vibrating arrow. If you try to click-drag the image else-
where on the screen while the pointer is a lasso, the image suddenly gels and
you find your pointer forming a line, the beginning of a new lasso.

Click-drag the vibrating image to the bottom left of the screen.

Select the Marquee and form a smaller square slightly above and to the right
of the now-solidified image. This step is one of the Mac's fascinating features.
What you have done is to provide the PASTE command in the Edit menu with
a smaller window to use for placement of the Clipboard's image.

PASTE the image into this smaller marquee.
Repeat Steps 7 and 8 until you are satisfied.
Select the Los Angeles font from the Font menu.
Select font size 24 from the Style menu.

Select A—text from tools (just below marquee).

Move the cursor (now a bar) to top of screen, and click it into position. If you
don't click the cursor, you cannot type text. When you click the cursor, you
can tell that you are ready to type because the cursor is now a blinking bar.

Type "“Macintosh”.

MORE MACPAINT 15

An alternate procedure is a bit more tricky, but will give you practice in handling
the SHRINK operation with the marquee. Replace Steps 7 and 8 above with the
three steps shown below:

a. Select the marquee and frame the full-size image on the screen. Do this by
clicking at the upper left corner of an imaginary rectangle around the image,
then dragging to the bottom right of that imaginary rectangle. You form a
rectangular marquee around the image.

b. Drag a copy of this image (hold down the Option key while you move it to its
new position, slightly higher and to the right of the old image).

c. SHRINK this new image to size. Click the arrow at the bottom right of the
marguee, and drag it slowly toward the upper left corner.

Application 2: Business
Card

The principal reason we have chosen to discuss this application here is to
introduce the concept of constraint, which allows you to sketch straight lines
vertically or horizontally, draw perfect squares or rectangles, and even erase more
neatly. We also use the lasso to select and move areas of design or text (lllustration
2.4).

" & File Edit Goodies Font Fontsize Style

EDE business card E

Generic
Computing
Company

(617) 891-0000 B Stoveburden
(617) 256-0000 Software Specialist

Illustration 2.4 Business card

16 GRAPHICS FOR THE MACINTOSH

1. Drawthe frame of the business card. There are several ways you can do this.
The simplest procedure is to select the thickness of the line from the menu at
the bottom left of the palette, selectthe rectangle, and click-drag the business
card’s outline. You can repeat the procedure inwards for a frame of several
lines.

Or you can have a fancy frame made up of one of the patterns at the palette
by selecting a brush shape, palette pattern, and brush. Then draw the
edges, but hold down the shift key (constrain your motion to a straight vertical
or horizontal while dragging to keep the lines straight. The hard part of this
procedure is the cleaning up afterwards, when you have to erase the extra
overflow at every corner — unless you're lots better than we are at stopping
where you should. Hint: Select the Grid from the Goodies menu to keep your
brush from drawing too long aline.

2. Select line (fifth down in leftmost column) to build the UPC symbol. Use
constraint again to keep your lines vertical, and select your line thickness
from the bottom left menu. Don't worry about the length of the lines, as you
will clean up the top and bottom later.

3. Use the Eraser to clean up the UPC symbol. Use constraint (the shift key) to
keep the eraser moving in a horizontal line.

4. Select New York font, fontsize 18, style bold. To select the style, you can pull
down the menu and click the selection, or you can type command-B (hold
down the command key and press B).

5. Select the alphabet and click pointer (now a vertical bar) to the right of the
UPC symbol. Type:

Generic
Computing
Company

6. Lasso the letters and drag them into their correct position.

7. Select Fontsize 12, A. Type (in vacant location at bottom left):

(617) 891-0000
(617) 256-0000

8. Lasso and drag phone numbers into position.

MORE MACPAINT 17

9. Click in lower right corner of screen. Select Style=Align Right (lllustration
2.5)and type:

B Stoveburden
Software Specialist

10. Lasso and drag this latest entry to appropriate spot on card.

We encourage you to design your own business card, or greeting card. Imagine
the possibilities. With Cairo font full of little designs and your own artistic skill and
imagination, you can design some pretty fancy documents — whether they are
invitations, greeting cards, business cards, posters, or announcements.

r

& File Edit Goodies Font FontSize JRIUI[1
|2 [ED========= busint

Gene
Com
CO[II[fAlign Left 8L

Rliﬁn Middle %M

(617) 891-0000 B Stoveburden
(617) 256-0000 Software Specialist

lllustration 2.5 Style menu with selections highlighted

Application 3: Annotated
Artwork

lllustration 2.6 is a simple sketch of two heads facing each other, but its production
requires the use of some advanced techniques. You will use constraint to make a
perfect circle, and you will flip an image.

1. Using the filled circle with the standard black pattern, draw the head by
dragging with constraint (shift key) to form a circle.

18 GRAPHICS FOR THE MACINTOSH

lllustration 2.6 Two heads facing each other

2. Selectthe white pattern and draw a small white circle (drag with constraint) in
an open area of the screen.

3. Lasso the small white circle and drag it into position as the eye.

4. Selectthe Line and draw from eye to tip of nose, then toward face, then down
the length of the chin. On this last line, you can use constraint or you can take
care to draw a perfectly vertical line. Then draw a horizontal line toward the
neck, another line down for the neck, another horizontal left, and finally the
vertical line at the back of the head. When you are doing this sketching,
remember that all of these lines will be used as outlines to be painted black,
so it's safe to go too far toward the center.

Fill in the blank spaces with the paint bucket and the black pattern.

6. Select Fatbits from the Goodies menu to touch up the chin so that it is more
rounded. Notice that the upper left of the sketchpad has a miniature picture
of the enlarged (fat bits) section on the screen. This little sketch is often helpful
for you to locate where you are on the original drawing. Select the grabber to
move the image around so that the sketchpad is magnifying the chin. Round
the chin by using the Pencil to erase individual pixels. A pixel (from Picture
Element, is the smallest graphic element available on a computer.) Every
click on a black pixel erases it, and every click in a white area draws a black
pixel.

7. Select the Marquee and outline the entire head. Duplicate it by dragging it
with the option key pressed. Be sure to drag it off the original sketch
completely. Then, while the marquee is still around the duplicate, select Flip
horizontal from the Edit menu.

MORE MACPAINT 19

8. Select Alphabet, Fontsize 18, London Font, Style Align middle. Position the
cursor above the head on the left, type “Left”, some spaces, and “Right.

This exercise may seem trivial, but it contains the elements of many applicationg
beyond the simple sketch we have provided. Consider, for example, stretching or
shrinking the head in either direction to change the aspect of the head. Or you
could shrink one or both of the heads to token size so that you can use them as
symbols within text.

The power of the flip horizontal, flip vertical, and rotate in the Edit menu must not
be overlooked. With these commands, for example, you can produce a fancy
frame corner once and position it at all four corners of your sketch.

C H A P T E R T H R E E

When the graphics capabilities of the Macintosh are compared to those of most
other personal computers, two features of the Mac keep surfacing as distinct
advantages. First, the computer is very easy to use; itis, in the popular jargon of the
day, user friendly. We have mentioned this before, and in so doing we pointed out
that this feature came at the cost of high memory overhead. So be it. The ease of
use of a computer is still an exemplary goal, and the compromise of some memory
is worthwhile.

The second advantage of the Macintosh is its seemingly natural graphics. When
a user first gets hooked on MacPaint, which is usually about three minutes after the
diskette is inserted, he or she discovers feature after feature, tool after tool,
technigue on top of technique—all with relative ease and comfort. Bill Atkinson,
Macintosh’s programmer, obviously understood the user very well to be able to
make MacPaint this easy to use. The layout of tools, menus, patterns, and key-
stroke functions has been planned by a person who obviously relates well to naive
users and experts alike.

Two examples of outstanding graphics features are Fatbits (which you have
already seen) and Grid in the Gocodies menu. Here we have two tools that are not
unique to graphics systems, but which have been developed with ease of use in
mind. The two applications that we will show you in this chapter rely heavily on
these Goodies, and we encourage you to rebuild them along with our descriptions.
And as you do so, consider the wide breadth of applications that you can develop
on your own.

Application 1: Venn
Diagram

The Venn diagram (lilustration 3.1) illustrates yet another use of mixed text and
graphics, but in this case the layout seems neater, more uniform. Look at the seven
rectangles in the illustration; they are used as keys to the seven patterns that the
three overlapping circles have enclosed. All are exactly the same size. If you take a
ruler to the circles, you will see that first, they are indeed circles and not ellipses that
are almost circles, and second, all circles are exactly the same size. These

22 GRAPHICS FOR THE MACINTOSH

" & File Edit Goodies Font FontSize Style

Honoco

Geneva
New York

Chicago
Venice

Athens

0055

lllustration 3.1 Venn diagram

properties were derived with the use of constraint, Grid, and Fatbits.In order to
construct the Venn diagram:

1. Select Circle from the available tools. Holding the shiftkey down for con-
straint, drag diagonally to form a perfect circle.

2. Make a hole in the side of the circle. To show the purpose of the hole, let's go
through a small exercise. You know that you want to have three overlapping
circles, andthat you want to see all circles completely. If you make two copies
of the first circle, you can drag them into their approximately correct posi-
tions, but you won't see them in their entirety. Do this:

a. Lasso the circle you have drawn. Holding down the Option key, drag
acopy of the circle to the appropriate place. Notice that you can't see
that part of the original circle which is under the copy.

b. Repeat the step above, making a third circle. This one will seem to
rest on top of the other two. These aren't transparent circles; rather,
they are solid disks! Not what we want at all.

G: Double-click the eraser to get rid of everything, because it will be
much simpler to start fresh.

d. Now let's do it right. With a circle on the screen from Step 1, double-
click the pencil to get to Fatbits.

The pencil is selected automatically when you get there. Click the
pencil on any dot of the circle so as to leave an opening. Get out of
Fatbits by clicking the miniature picture at the top left of the sketch-
pad.

GOODIES 23

3. Duplicate the circle twice. Do this by using the lasso to make the circle into its
own Marquee. You select the lasso, trace arope around the circle, and let go.
The circle will seem to vibrate, just as the Macintosh symbol did in the
previous chapter when you pasted it into the sketchpad from the clipboard.
Move the lasso toward the circle until it turns intc an arrow, and then drag it to
the location for the new circle. Notice that this time, you see the edges of the
circle below, which are necessary to outline the intersecting areas.

4. Patch the three circles where you had placed the hole to allow the leak. Now
you don't want it. Get into Fatbits by double-clicking the pencil (or select it
from the Goodies menu), and find the three places where you had created
the holes. If you can't see a hole on the portion of the screen that is displayed,
select the Grabber and using a drag operation on the screen with the
Grabber, locate each hole. To patch, pencil in a new dot, or pixel, at each
hole.

Select a pattern of your choice.
Select the paint bucket from the tools.

Click the pattern into one of the seven areas outlined by the three circles. If
your circles have not been closed properly, the paint will leak from one area
to another. In that case, don't click. Select UNDO from the Edit menu. This will
remove the last operation to the previous click, in effect removing the paint
where you don't want it.

8. Repeat Steps 6 and 7 six more times, once for each open area of the three-
circle pattern.

9. Select Grid from the Goodies menu. This doesn't seem to change anything.
In effect what has happened is that an invisible grid has been placed in the
sketch area that restricts alphabetic characters, lines, and shapes to follow
those lines of the grid.

10. Select the Rectangle tool from the leftmost column. Drag seven rectanglesin
acolumn, one at a time. You will notice how much help the grid is because it
restricts the rectangle’s size.

11. Select each of seven patterns one at a time, and using the paint bucket, fill
each of the seven little rectangles with a different pattern to conform to the
seven patterns in the three circles.

12. Selectthe Alphabet as a tool. Then for each of the seven fonts available select
font size 12 and enter the font name next to the rectangle. Again, the invisible
grid helps you to align the text.

This application was a natural tease to a second version (lllustration 3.2). We
selected three classes of people and made them overlap, as does the Venn
diagram on the previous page. We learned a good deal about how to make a full-
page-size diagram in the process, so we'd like to share our findings with you.

24 GRAPHICS FOR THE MACINTOSH

Monoco -- Artists
J .
i Geneva -- Computer Owners
oo New York -- Programmers

D

Chicago -- Hardware
Venice —— Operating Systems

Athens -- Software
Tondon -- Mac Ooners

PN

A AR IAY
P RIS
A AR AR
S

Monaco -- Artists: May or may not have computers

Geneva -- Computer Owners -- In any and all fields
New York -- Programmers: Students, professional, all kinds

Chicago -- Hardware: Must be goog for artists and owners

Venice —- Operating Systems: Owners and Programmers
Athens -- Software: For Artists and Programmers

Towdon -- Macintosh Owners habe it all?

lllustration 3.2 Artist's Venn diagram

Follow these steps to duplicate lllustration 3.2:

1. Establish where the original sketch is on the entire page. Select Show page
from the Goodies menu, and you will see where the sketch is by the position
of the dashed rectangle. If you wish to move it elsewhere on the page, drag
this rectangle there. Then return to the sketch itself by clicking Ok on the
screen (lllustration 3.3).

GOODIES

" & File Edit JITTLIIH Font FontSize Style

| [l ========== artists'Vemn
alA “ '

Sy == Sty P Brids e Prograsme—ry

Tasprn == st Twereelen GA ...

Illustration 3.3 Full page Artist's Venn diagram

2. Selectthe Grabber as a tool to shift the picture left. Drag with the Grabber to
shift the picture as far as it will go. Don't worry about the circles moving off-
screen. They're still there.

3. Using the appropriate font, enter the text next to the font names already
there. When it comes to Athens and London, you must erase the previously
entered font names, select the larger font, and retype the entire entry.

Use the Grabber to shift the entire picture up and out of sight.
Enter the seven lines of text under the picture.
You can perform several operations on any finished, or partially produced,

MacPaint sketch. All of the actions outlined below can be performed at any time,
and the result is paper output or disk storage of your work.

1. To print the entire picture (page), select Print Draft from the Files Menu.

2. To print the screen only (including the border), press the Caps Lock, Com-
mand, Shift, and “4" keys.

3. To print the sketch area (or active window), press the Command, Shift, and
‘4" keys.

4. To file the entire (page) as a MacPaint document on disk, press the Com-
mand, Shift, and “3" keys.

26

GRAPHICS FOR THE MACINTOSH

File Edit Goodies Font FontSize Style

= hipo chart

HIPO Chart

L3
o= b ——— =
{“? P
FGINE Solve
.é Problem
s
(|

E3 ED
Special

Edit

Illustration 3.4 HIPO chart

Application 2: HIPO Chart

The power of MacPaint as a text management tool becomes evident here. The
HIPO Chart, Hierarchy of Input-Process-Output, (lllustration 3.4) is a commonly
used documentation tool when large, complex programs or systems of programs
are written. Here we show a sample portion of a typical chart, not to describe an
existing system, but to show the process of making the chart.

1. Select the all-black pattern from the palette.

2. Selectthefilled, rounded rectangle (seventh down, second column) as atool.
Drag to create an all-black rounded rectangle.

3. Select the all-white pattern from the palette.

4. Position the pointer just above and to the left of the upper left corner of the
drawn black rectangle. Drag a white rectangle across and down, until it
almost covers the old black one. If you go too far and let go of the mouse
button, all is not lost. Simply select UNDO from the Edit menu and try again.

Lasso this shape and drag it to the top-center of the screen.

Holding down the shift key to constrain movement and the Option key to
leave the original behind, drag a copy of the rectangle straight down to the
center of the screen.

7. Release the mouse, then press it again to select the new copy of the
rectangle. Drag it to the left with Shift and Option keys pressed.

GOODIES 27

8. Release the mouse, then press it again to select the newest copy of the
rectangle. Drag it all the way to the right of the screen with shift and option
keys pressed.

9. Release, select the newest rectangle shape, drag (shift-option again) straight
down to the lower right of the screen.

10. Release, select the new copy, drag (with shift-option) straight left, and posi-
tion just right of center below the center rectangle.

11. Release, select the new copy, drag (shift-option) straight left again, to com-
plete the placement of the seven identical rectangles.

12. Select Athens=Font, Fontsize 18, Alphabet (A), and type:

HIPO Chart

13. Select Seattle=Font, Fontsize 10, Align middle, Bold. Click to middle of each
rounded rectangle and type labels.

14. Select Line as a tool.

15. Draw lines connecting rounded rectangles. Constraint is not necessary,
though it could be useful.

16. Use the eraser to touch up any overdrawn lines.
Consider the possibilities: Program flowcharts, system flowcharts, organization

charts, Gantt charts, PERT charts, ... the list of uses for this simple series of
techniquesis endless. We leave you to their exploration and exploitation.

I\ V7 \lN

L\ N

The Macintosh is a singular computer in that it uses screen and printer graphics
as a method for producing all of its text. When you select 12-point Geneva Bold,
you will produce that font on the screen from a description of it in the Macintosh
system files. The design of this font, size, and style are all stored pixel-by-pixel as a
graphic image. This is quite different from the character generators used in most
other computers. When you are using those machines, you are limited to the single
font that the system has described to create its characters on the screen. Some-
times, that character generator is limited solely to capital letters, as in the venerable
Apple-Il computer. You will discover in this chapter that the Macintosh not only
provides a wealth of fonts and styles of its own, but that you can exercise MacPaint
to produce original fonts of your own.

This chapter deals with two subjects only—and both relate closely to the use of
Fatbits in the Goodies menu. The two topics are the production of a font and the
production of icons. You are familiar with this term already, because your Macin-
tosh usesicons to symbolize files, pictures, applications, and various other types of
operations or software. An icon is simply a graphic image that acts as a symbol.
When that icon is used properly, it becomes associated with a specific action, or
property, or some other characteristic. We will introduce you to the production of
icons that relate to Olympic sports activities, although you could have similar icons
for many other areas of interest.

Application 1: Chelmsford,
Waltham, Buenos Aires
Fonts

lllustrations 4.1, 4.2 and 4.3 show a few of the fonts available on the Macintosh.

The font we show in lllustration 4.3 may seem familiar, sort of like a weird variation
of the Chicago font that the Mac uses in its top-line menu displays. Upon closer
inspection, though, you will spot several differences, which of course make it a font
of its own. For example, the capital letter “S” is quite different, with fat serifs at the
tails, instead of the thin ones Chicago uses.

a8 9 0

chelLmsFord

Illustration 4.1 Chelmsford font

«a 2 3 L 5

cderFgh

KLmnoap

rsTUV wx
E 7

Z

X+ 0O F

\Z

=l
DO
[

30 GRAPHICS FOR THE MACINTOSH

1234567890
Buenos Rires

abedefghij
nopgqrstuvwzxyz

i

lllustration 4.3 Buenos Aires font

Hlustration 4.2 Waltham font

ADVANCED DESIGN 31

How did these letters get to be formed? There are three ways to produce fonts
easily on the Macintosh using MacPaint:

1. Produce ascreenimage of all letters (upper and lower case) and digits, and if
you are brave, all special characters as well, of an existing MacPaint
font—such as Geneva, or Chicago, or Venice. Then isolate each letter and
alter its pixel image in Fatbits to suit a particular style of your own. When you
are satisfied with your font, save it as a MacPaint file.

2. Start from scratch, preferably in Fatbits, by designing your own font. This is
especially difficult, as it requires a particular talent in producing images of
letters whose overall style is consistent from one letter to the other, and in
upper and lower case. You should try it once, if only to recognize the
graphics designer's peculiar skills.

3. Gotothelibrary, find the section of Graphics or Graphic Arts or Printing and
thumb through the books and magazines until you find some with blown-up
images of fonts. They exist, and in some libraries they are plentiful. When you
find a font to your liking, transfer the letters dot-by-dot from the source to the
Macintosh in Fatbits. This is tedious and unoriginal, but very effective.

Application 2: lcons

Two types of icons are shown in lllustration 4.4: The square images are symbolic
of several Olympic sports and vehicle types. You can easily identify track, swim-
ming, hockey, bicycling, skating, and shooting. You can also spot a car, a van, a
taxi, and a car with key, perhaps indicating a safe or secure parking area. One
square shows a diagonal bar from upper left to lower right. That icon is understand-
able in any language as “NO".

2 3)
_-‘l/'

JINNED
~ V] DY
T—¢-

EED

&
5%
] Jl&

§)(8

lllustration 4.4

32 GRAPHICS FOR THE MACINTOSH

BN NN N N

lllustration 4.5 Bicycle icon covered by “NO"icon.

How would you produce a combination icon, say the bicycle and “NO”, for a“NO
BIKING” sign? If you simply lasso the “NO” and drag it over the bicycle icon, the
resultis the “NO” only, with the bicycle icon hidden beneath it as in lilustration 4.5.

What you must do is to open the “NO” icon so that its image does not hide the
bicycleicon when you dragit. As you did in the previous chapter, you must provide
a flaw in the icon’s outline to allow it to bleed over the image. Also, we recommend
that you proceed carefully, copying the icons when you use them so that you can
always keep the original handy. Do this:

1. Lasso the bicycle icon. Drag with the Option key down, into an open area of
the screen.

2. Lasso the "NO" icon. Drag a copy (Option key down) into the open screen
area.

3. Getinto Fatbits to make an opening on both sides of the “NQO” icon. You must
open both sides because you have two closed areas. That diagonal in the
center would prevent bleeding from one area to the other—unless you make
aflawinit, of course.

4. Lassothe “NO"icon and drag it over the “BIKE” icon until the edges coincide
exactly. When you let go of the mouse, the result is a “No Biking" icon as in
lllustration 4.6.

N by by R

Illustration 4.6 “No Biking” icon properly done

The circular icons also shown in lllustration 4.4 are quite different, but their
production is not any more difficult. Consider them as filled circles of uniform size,
each with their symbolic content in white—a simple exercise in Fatbits.

Text may be placed next to an icon (lllustration 4.7) by dragging the appropriate
letters from either your own font or from some letters you have produced in a
Macintosh font of your choice. In either case, it's best to use the Grid feature in the

ADVANCED DESIGN 33

File Edit Goodies Font FontSize Style

[3

=)

5

e

.I=I=I II I===I.===.l
i Sty
l==El IEI- h.Ei;.-:lIlEH

i M
==

lllustration 4.7 Estadio del Mar icon in Fatbits

Goodies menu to position the letters. Be careful about Grid, though, because it
controls vertical as well as horizontal motion. You might prefer to use your own eye-
hand coordination to position the letters free-hand.

Application 3: Racing
Invitation

The last application in this chapter is a simple idea, yet could be an excellent
application for the Macintosh. Consider the many public functions that organiza-
tions sponsor and want to advertise. The production of posters, flyers, advertising
folders, publicity notices, even the tickets themselves to various events, are all
appropriate products for you and the Macintosh. In lllustration 4.8 we present a
possible invitation to a race. It is made as a folding sheet with five separate pages.
We have illustrated four of its ten surfaces. One contains the title of the event, the
second a pattern of icons symbolizing the road race, and the last two the ticket
number.

The image was produced using several of the tricks you have learned. First, the
track icon can be duplicated and the two positioned next to each other. Then the
pair is duplicated as a set of four, that set doubled, and so on until you have the
desired pattern. The entire page of icons can be cleaned up in Fatbits so that joint
bars between the rows and columns of icons are uniform.

The invitation’s text is 14-point Venice .

34 GRAPHICS FOR THE MACINTOSH

S | B o) fo) g
M’"‘;M o] o] o] oo o g
Annual S Y S S
13,000m | S| £ fo| fo) fo) fo
’Wﬁm S) g ol o) S
TrucutorPu[L ﬁbﬁﬁvﬁvﬁvﬁ’

S| o] o] o) o

lllustration 4.8 Road race invitation

The three pages that lend a three-dimensional aspect to the graphic design by
way of their folded look were produced by using Grid to hold the diagonal and
vertical edges parallel.

The digits 1 and 3 were free-hand designs using Grid and the Line tool to outline
the designs. Then the Paint bucket poured solid black throughout the finished
pattern.

The fiith page, of which we see only a part of the back in shadow, was done by
forming a vertical and horizontal line free-hand, although Grid or constraint would
have helped.

We are increasingly impressed with the Macintosh, not only because it is so rich
in features, but also because it is so rewarding and forgiving in its use. Its ability to
allow you to Undo your mistakes, to Erase the too-long lines, to control every pixel
with Fatbits, to duplicate, copy, and move entire images—these facilities are what
artists dream of, and what amateurs like us must have so that we can approach
free-hand art without reservations.

You have available here a tool to design icons of all kinds. Here's a small list that
we generated with little thought:

1. Traffic signs
2. Types of books (Sci-fi, fiction, biographical, ...)
3. Building types

ADVANCED DESIGN 35

4. Vehicle types

5. Kinds of pets

6. Hobbies

7. Occupations

8. Musical categories

9. Kinds of vegetation (bushes, trees, vegetables, flowers, ...)
10. Foods
11. Tools
12. Toys

13. Types of airplanes, boats, cars, ...
14. Categories of television shows
15. Categories of movies
All of these, and many many more subjects, lend themselves to symbolic repre-
sentation by icons. The use of icons as quick recognition symbols can only -

increase in our age of awareness of graphics, and the production of those icons is
made ever more simple with the Macintosh.

"DAINT
I/ \

| —7 \1

Tangrams have provided countless people with a simple recreation that mixes
imagination with topological rigor. What are tangrams? What in the world is
topological rigor?

Tangrams are images made from seven specially shaped tiles. The tiles, or tans,
are really the shards of a larger square tile that has been broken into its seven
components. lllustration 5.1 shows the unbroken square tan while lllustration 5.2
shows the exploded tan tiles and their 45° rotations.

) 3 N \t/
1 2 4
lllustration 5.1 Unbroken
square tan
3 i

lllustration 5.2 Exploded tan tiles and their 45° rotations

37

38

GRAPHICS FOR THE MACINTOSH

Legend has it that ages ago a Chinese gentleman had a square tile. For some
reason he dropped it, and it shattered into seven pieces. The Chinese proceeded
to lay out the shards of tile into different patterns, with all tiles touching at some
edge. He is supposed to have amused himself countless hours in this pastime
activity, whereupon other people adopted the seven tans as a recreation. Whether
this tale is in any way grounded in truth is highly debatable. We refer you to our
book, More Color Computer Applications, John Wiley & Sons, 1984, pages 109-128
for a detailed discussion of the apocryphal origins of this activity.

Now, let's get to this business of topological rigor. The phrase implies that there
are rules for laying out the seven broken shards, or tans, of the original square tile.
The rules of the placement of those seven tans are: (1) all pieces touch at least one
other piece along an edge; and (2) no piece may rest on or cover any part of
another. These two simple rules provide a framework, or rigor, for making the final
image; they are based on the topology, or the geometric layout while they are
being positioned.

Consider the parallelogram, tile number 7 in the unexploded view in lllustration
5.1. You may wish to useit in a tangram but notice that its orientation is wrong. If the
original tile had been black on top and white below, this piece would be white while
the other six would be black. In other words, we have flipped over this tan. This is
allowed in traditional tan manipulation. It is interesting to note that the paral-
lelogram is the only tan whose orientation would not be reversed in this fashion if
the turn-over process were against the rules. All other tans are symmetrical.

Application: Tangrams with
MacPaint

The following procedures are based on tans that were derived from a square tile,
but whose pieces were duplicated to provide 45-degree rotations so that you can
manipulate them more easily with MacPaint.

The rules for producing tangrams are simple:

Use all seven tans of the original square tile.

2. Useno single tan more than once. If you use tile #4 (large triangle with right
angle pointing right) you cannot use the other #4 (large triangle with right
angle pointing left and down).

Do not place one tan over another. Have them meet at the edges only.

Do not isolate one or more tans. Allmust have at least one edge, or part of an
edge, touching another tan.

5. With our version of the game, you may use any of the tan orientations
available in the exploded view above, and their “flipped” images as provided
using the Edit menu's Flip Horizontal or Flip Vertical or both. For example, tan
#7 can be used in any one of these orientations as shown in lllustration 5.3.

A MACPAINT RECREATION 39

Consider the two examples in lllustration 5.4. The one at the left, the stork, is a
legal tangram, which follows all of the rules above. The one at the right, which is
also a stork, is not legal.

6 Using Edit with {_]
4 XG5\’ flip
horizontal
1 3 2 flip then
rotate horizontal rotate

original

original x
rotated 45°

lllustration 5.3 Tan #7 shown in all possible orientations

overlap

718 \

e
<t
<5 not
) touching [
Legal m 1
Stork Stoer.gka

lllustration 5.4 Legal (left) and illegal (right) storks

40 GRAPHICS FOR THE MACINTOSH

Notice that when you manipulate tans with MacPaint using the flipping and
shifting of allimages we have provided, you cannot produce any orientations other
than those inthe original exploded tan field and their various vertical and horizontal
flips. This keeps you from producing some tangrams that would be considered
legal in the traditional pastime of tan manipulation, such as those produced with
30-degree rotations.

Using MacPaint to produce
tangrams

To produce a tangram with our process of tan manipulation using MacPaint, you
start with the field of 14 tans, (the seven original ones from the broken square, and
their 45-degree rotations).

If you are starting from scratch, you must form the seven tans on your own. Select
the rectangle, and using constraint and Grid draw a square. Then, using constraint
and Grid throughout, divide the square as indicated in lllustration 5.5.

lllustration 5.5 Tan square construction

A MACPAINT RECREATION 41

You can form the exploded image by either forming the tans separate from the
square above, making certain that all formed tans fit exactly onto the original
squaretile, or by isolating each tan with the Lasso. If you use the latter method, you
must leave behind the original square, so Lasso with the Option key pressed to
make a duplicate image.

Once you have the exploded tans at the left of the MacPaint sketchpad area, you
use the Lasso to drag atan to the working area, the Marquee toisolate it for flipping
and rotating, and Lasso again to position the tan exactly as you wish. Consider the
procedure for producing the stork:

1. Lassotan #2 (the #2 tan that has the original orientation from the square tile,
notthe #2 with the apex down) and dragit to the workspace at the right of the
sketchpad.

2. Selectthe margquee and enclose this tan. Flip horizontal and position it at the
top right of the workspace.

3. Lasso tan #7 (original orientation) and drag it over to the previously posi-
tionedtan # 2, carefully placing it so that the two edges fit precisely over each
other. If you let go of the mouse and it doesn't look right, use Undo from the
Edit menu.

Lasso tan #3 (original) and drag it to its final position.
Lasso tan #6 (original) and drag it into the open space.
Select the Marquee and enclose this tan. Flip vertical.
Lasso this tan and drag it into its final position.

© N o 0 s

Lassotan #4 (the 45-degree rotated one, the one with only one diagonal, not
the original which has two diagonals) and drag it into the open space.

9. Select Marquee, enclose tan, flip vertical. Lasso and drag to its final position.
10. Lassotan #5 (original) and drag it to its final position.

11. Lassotan # 1 (45-degree orientation, with one diagonal), flip both horizontal
and vertical, and drag it to its final position. If you wish, you can rotate it twice
and achieve the same result.

12. Lassothe entire finished stork, duplicate it (option-drag) in the available open
space.

13. Select the black pattern from the palette.
14. Using the paint bucket, fill in all seven tans to produce the final image of the
stork.

If you were to paint the stork some pattern other than black, you would have to
remember that the various numbers that were in the tans would show through.
There is a feature of MacPaint that washes paint throughout an area, so that the

42 GRAPHICS FOR THE MACINTOSH

Vulture 2
Yulture 1
; | E Shrimp
Lobster

Toad

Cat 1 !|||I
Cat 2

3%

Cat 4 GatS

Swan

Cat 3

lllustration 5.6 Various Tangrams

A MACPAINT RECREATION 43

paint covers everything within the enclosed area. To do this, use the paint bucket
but hold down the Shift key while pouring the paint (clicking). This is suggested as a
possibility, although we think you will find the pure black tangrams most effective in
representing the image they were intended to depict.

As a last remark on tans and tangrams, we include in lilustration 5.6 a few of the
many tangrams that you can produce on your own. We discovered these images
and hundreds of others in several books that might interest you.

The list of references we include below should get you started on the subject of
tangrams if you wish to pursue this topic.

Elffers, Joost, Tangram: The Ancient Chinese Shapes Game, Translated by R. J.
Hollingdale (Penguin Books, New York, 1978).

Grillo, John, and J.D. Robertson, More Color Computer Applications, pages
109-128 (John Wiley & Sons, New York, 1984).

Johnston, Susan, Tangrams ABC Kit: 122 Puzzles With Two Complete Sets of
Tangram Pieces (Dover Publications, Inc., New York, 1979).

Read, Ronald C., Tangrams: 330 Puzzles (Dover Publications, Inc., 1965).

Van Note, Peter, Tangrams: Picture-Making Puzzle Game (Charles E. Tuttle Com-
pany, Vermont, 1966).

We're not through with tangrams yet. Chapter 11 rediscovers the topic, only this
time using the power of Microsoft BASIC and the Macintosh mouse to manipulate
the tans. We think you will find the combination of these two chapters to be an
interesting contrast between a canned application like MacPaint and a more
flexible program that simulates some of MacPaint's fine features.

/7 \1Vl

L./ \I NI NIITN

During the past decade or so, a quiet revolution has taken place in programming
shops everywhere. Programmers have recognized the value in program planning,
and they have adopted some approaches that were unheard of fifteen years ago.
We are referring to top-down design and modular programming.

Consider for a moment the traditional order of operations in developing a
program:

Understand the problem.

Develop the algorithm for solving the problem.
Draw a program flowchart.

Code

Debug and test

2 T i

Document

There is no argument with the first step. After all, unless you understand what it is
that the computer must do for you, there is no way that you can successfully write
the program to solve the problem. The real difficulty comes with the second step.
Here you are supposed to describe in some unambiguous, finite, effective way
exactly how the program should be designed. That's some job!

The third step, drawing the flowchart, is supposed to lay out the program’s logic so
that the fourth step, coding, isn't so hard. Unfortunately, that flowchart depends
upon your complete understanding, in great detail, of the algorithm or algorithms
developed in the previous phase, and all too often that isn't the case.

Notice that the fifth step includes debugging, which assumes errors on your part.
If there is any value to the new ideas in top-down, structured, modular program-
ming and program design, it is the fact that your programs will contain far fewer
errors, and the errors that they do contain will be much easier to detect and
remove.

So what is this plan? How do you develop your program using top-down design
principles? What are the differences in the order of operations, and in the opera-
tions themselves?

45

46 GRAPHICS FOR THE MACINTOSH

First, a Grillo-Robertson rule of thumb: Do something on paper first, before even
turning on the machine. The most destructive thing you can do to a program, and
the most wasteful use of your time, is to start coding without a plan. Even if your
plan on paper consists of a set of several simple steps written in English, at least
you have in front of you an ordered plan of action, with a beginning, middle, and
end.

Top-down design

The phrase top-down design implies a stepwise approach to the problem's
design: First you consider it from a distance, or from its most abstract form, then at
the deeper levels involving more and more detail. For example, the goal of a
program might be to display a rectangle on the screen.

No method is described in this statement, only the ultimate goal of the program. A
second stepin the top-down design might be a simple list of activities, in English, to
accomplish the goal.

1. Getlength and width from user.
2. Checkto seeif it fits the screen.
3. Drawthe rectangle.
Notice that this second, more detailed step, includes some information about the
method to be employed in solving the problem, and it also includes the order of its

most important steps. Even further detail is present in the third step of the same
program.

1. Clear the screen.
Get length and width L and W.

If W+ 20 greater than screen width or L + 20 greater than screen length goto
step 2.

Clear screen.

Draw line down from (10,10) to (10, W + 10).

Draw line down from (L+10,10) to (L + 10, W+ 10).
Draw line across from (10,10} to (L +10,10).

Draw line across from (10, W+ 10) to (L+ 10,W +10).

© N O 0 A

Progressing from this plan to BASIC is trivial, and that's the idea behind top-down
design—to turn large, seemingly insoluble problems into several small, easily
designed, coded, and debugged modules. The idea is as old as Plato, and very
effective.

PROGRAM PLANNING 47

Steps in Program Planning

The overall plan for designing any program should include the steps shown in
lllustration 6.1.

1 Understand the problem
2 Design outputs

3 Design inputs

4 Design storage

Design processes

6 Pseudocode

7 Code and test

8 Maintain

S00000ES

lllustration 6.1 Steps in program planning

Let's take each of these steps in turn to point out the advantages of this technique.

1. Understand the problem: There's no way to avoid this step in any
scheme for writing programs. What does the user really want from the
computer? You have to understand what is involved in the overall interaction
of computer and user. One of the best ways to understand the problem better
istotry to take the place of the user of your program. Depending on the user's
level of sophistication, you may be able to get by with minimal dialog, or you
may have to do alot of hand-holding and guide the user in all operations. The
common term for this approach is user friendliness.

48 GRAPHICS FOR THE MACINTOSH

of
2. Design the outputs: Again, depend on the user of the program to

provide you with the proper answers here. Often, you will be the end-user of
your own program, so the process is made a little simpler. In either case, you
must design all of the program’s outputs, both screen and printer. Some
people try to bypass this step, or to minimize it. Itis by far the most crucial step
of allin graphics programming, and should be executed with care and detail.
You don't have to go to the detail of calculating answers or even drawing the
pictures, but you should anticipate the size (how many digits accuracy?), the
type (real or integer?) and the format (commas? dollar signs? etc...) of
numeric output; you should plan a rough layout of your graphic output; and
you should be able to plan verbal requests and responses.

3. Design the inputs: In years past, when batch systems using

punched cards were popular, this step would have included the formatting of
the cards to be entered as data into the system. Now, because most of the
computing is done on an interactive basis with both the computer and the
user entering into a dialog, it is important to plan that dialog carefully.

When you design a screen in the step above, you should consider whether
that screen also displays some user inputs, as is often the case. For example,
a data entry module may have a full-screen display with blanks in reverse
video indicating where the user will enter data.

It is important to anticipate user responses, especially whether they are
correct or not. If the user goofs and enters a value for a coordinate that is out
of bounds on the screen, how do you plan to deal with it? Later on, you'll have
to code data entry modules to include some bypasses for all user errors. Now
is the time to start thinking about this problem.

4, Design the storage: In Steps 2 and 3 above, you have been thinking
about responses to requests, whether they are from the computer or from the
user. It may be, at its most rudimentary level, a single digit response by the
user to a request from the computer to select an activity from a menu. In any
case, it is either an entry by the user into a memory location for the computer
to process, or it is the display of a computed or stored result.

The entry is placed into a memory location, and the display is copied out of a
memory location. That memory location must have a name in the program,
and now is an ideal time to begin to select your variable names.

In programs that deal with files, you decide the type of file the program must
use—whether it is sequential, direct access, ISAM, or some combination.
And you need to describe the layout of the records in the file. We recommend
that you get a copy of our book in this series, Data and File Structures on the
Macintosh if you are serious aboult file storage.

PROGRAM PLANNING 49

VR

5. Design the processes: As is the case in all of the steps above, you
still haven't touched the computer. This phase of the design of your program
begins to deal with the piecewise outline of all modules, and their interre-
lationships.

The most useful tool in this step is the hierarchy chart, which in many ways
resembles an organization chart for a business. Such a chart has several
features that describe the top-down design of your program, or system of
programs. First, it is made up of rectangles that signify program modules.
Second, every program module must be accessible only from a module
above the one in question. Third, the lower module on the hierarchy chart is
subordinate to the one above in its function.

You can develop this chart showing all modules of your program and their
relationships in two or more steps, if the program is complex. For example,
suppose you are writing a system for producing graphics in an architectural
environment. The first hierarchy chart could show only two levels of detalil, as
sketched in lllustration 6.2.

Architectural
Graphics

System

Picture Picture Picture
Creation Edit Storage

lllustration 6.2 Hierarchy char, architectural system

The second stage in the development of the hierarchy chart could show a
third level of detail, thus indicating the major programming modules. (lllustra-
tion 6.3)

Developing this chart even further, you could take one of the third-level
modules and describe it in great detail. Now, you are at the stage of
understanding the interrelationships of all modules, large and small, and you
can begin to visualize the subroutines.

50 GRAPHICS FOR THE MACINTOSH

Architectural
Graphics

System

Picture Picture Picture
Creation Edit Storage

| 1

Alter Change Modify
Size Orientation Content

Hlustration 6.3 Portion of three-level chart

6. Pseudocode: With your detailed preparation in all of the steps

above, you now have a firm grasp of the program’s variable names, the file
layouts, the computer’s printed results, the user's responses to requests, and
even the interrelationships between the main and subordinate modules of
the program. Now you can begin to outline each module in steps small
enough to be translated easily into single statements or small segments of
code. Pseudocode is a step-by-step English language description of the
problem to be solved.

This process of outlining the programs before writing them is critical. It takes
the place of drawing a flowchart in the old-fashioned program planning
process. In most ways it is far simpler, and more effective as a means of
describing code to be written. A good understanding of structured program-
ming helps a great deal in this step. We describe the essentials of program
structures in the next section of this chapter.

The easiest, and perhaps the most effective, pseudocode is English as you
useit. You don't have to remember any funny words. All you dois outline your
program segment in small steps, designing loops and tests as you go. For
example, a small program module to draw a sector in a pie chart could be
pseudocoded this way:

a. Convert percentage of whole graph into an angle; call it SECTOR-
SIZE.

PROGRAM PLANNING 51

b. Draw line from XCENTER,YCENTER to STARTANGLE +
SECTORSIZE.

c. Set INDEX to STARTANGLE.
While INDEX is less than STARTANGLE +SECTORSIZE do:

Add .05 to INDEX Plot point at (XCENTER +RADIUS*COS(INDEX),
(YCENTER-RADIUS*SIN(INDEX))

Select sector pattern.

Fill sector with pattern.

g. SetSTARTANGLE to STARTANGLE + SECTORSIZE.
h Return.

Faal ¢ /]

Not all pseudocode contains variable names, nor does it all have as much math as
the example above. Sometimes it is sufficient to outline the steps in even more
English-like steps, such as the pseudocode below that describes the algorithm for
a simple exchange sort.

a. Start a loop with the first element of the list, going to the second from
lastin the list.

b. Start a second loop, with the index going from one more than the first
loop’s index to the last element.

c. Compare the two elements that the loop indices point to.
d. If the first is more than the last, swap them.

e. End of second loop

f. End of first loop.

g. Return.

The BASIC code that results from this pseudocode is:

1000 FOR1 = 1TON -1

1010 FORJ = I+1TON

1020 IF X(l)< =X(J) THEN SWAP X()),X(J)
1030 NEXTJ

1040 NEXT |

1050 RETURN

Ifthere is any rule to guide you in the process of pseudocoding an algorithm,
it is this: Keep it sequential and simple.

52 GRAPHICS FOR THE MACINTOSH

7. Code and test: Finally, you can begin to write statements in BASIC,
and to run the modules you have coded. Start at the very top of your
program, and code the main module first. Keep it short and flexible, because
you may have to add or modify its code later. Be sure to provide GOSUBs to
the modules you want to code and test next. If you code each module or
subroutine to be visible in its entirety on one screen, you're on the right track.

)

8. @ Maintain: Any program worth writing (unless it is a one-shot test) is
worth maintaining. This may involve nothing more than some occasional
user-proofing so that the program can deal with a wider range of user
responses. It may be an extensive rewrite or the addition of several large
modules, a substantial enhancement to the old program.

Structured

Programming

All programs are made up of primitive structures, or small elements, somewhat
corresponding to the nouns, verbs, and adjectives of a spoken or written lan-
guage. In the case of a programming language—any programming lan-
guage—those elements or structures are:

1. Sequential structures—code that follows one step after another. In a pro-
gramming flowchart (lllustration 6.4), a sequential structure is shown as one
or more processes in aline:

2. Decision structures—two-way branches.
The flowchart symbol for a decision structure is the IF test (lllustration 6.5).

PROGRAM PLANNING 53

Process 1
T
| Process 1
Process 2
F
Process 2
Process 3
lllustration 6.4 Sequential lllustration 6.5 Decision structure

structure

54 GRAPHICS FOR THE MACINTOSH

3. Loop structures—either a DOWHILE or a DOUNTIL
The DOWHILE structure is shown in the program flowchart in lllustration 6.6.

\ Process |

llustration 6.6 DOWHILE structure

PROGRAM PLANNING §5

The DOUNTIL structure is shown in lllustration 6.7. Note that this structure
forces one iteration of the loop regardless of the initial condition of the
element that is tested.

e

Hlustration 6.7 DOUNTIL structure

56 GRAPHICS FOR THE MACINTOSH

4. Case structures—multi-way branches, as provided by the BASIC ON-
GOSUB or ON-GOTO statement (lllustration 6.8).

Case
Selection

Process 1

Process 2

Process 3

L

>

Process N

lllustration 6.8 CASE structure

PROGRAM PLANNING 57

These four simple elements of any program can be used to understand the logic
of a program at its most primitive level. They reduce the programs to the level of
one or several statements tied together into a unified, small increment of logic.

Menus and Submenus,
Main Programs and
Subprograms

To the user, a program is often best represented as a series of menus, each with
its list of activities. When the user starts the program, she sees a list of the major
activities that the program or system of programs can manage. The selection of
one of these main activities often provides the display of a second, subsidiary
menu, or submenu. This form of organization of a program is user-friendly. It deals
with the subject in the user's terms, in a non-threatening way. Consider lllustration

6.9, for example, which shows a series of menus and submenus for an architec-
tural sketching system of programs:

MAIN MENU—HOUSE
PLAN SYSTEM

Build new plan
Add to existing plan
Modify a plan

Print house plan
Estimate costs
Utilities

Stop

N o o M0 Dd =

lllustration 6.9 Main Menu

58 GRAPHICS FOR THE MACINTOSH

SUBMENU 1—Build New
Plan

1 List names of existing plans on file

2. Name this plan

3. Describe this plan — one or more floors, scale, ...
4. Returnto Main Menu

lllustration 6.10 Submenu 1 — input

SUBMENU 2—Add to
Existing Plan

1. Retrieve existing plan’s description
2. Add detail

3. Returnto Main Menu

Hiustration 6.11 Submenu 2 — more input

SUBMENU 3—Modify a
Plan

Select plan

List plan details
Select a specification
Modify

a. Change a plan’s contents

> O D~

b. Change plan specifications

Delete an area
6. Returnto Main Menu

lllustration 6.12 Submenu 3 — processing module

PROGRAM PLANNING 59

SUBMENU 4—Print Plan

1. Print a specific area
2. Scale and print entire plan

6. Returnto Main Menu

lllustration 6.13 Submenu 4 — output module

SUBMENU 5—Estimate
Costs

List presently filed costs
Change listed costs
Calculate

Rank estimated costs

o > 0D o=

Return to Main Menu

lllustration 6.14 Submenu 5 — processing module

SUBMENU 6—Utilities

Display memory variables, contents
Sort files
Change scale

Dump all fields of a plan

o > o=

Return to Main Menu

lllustration 6.15 Submenu 6 — processing (utilities)

60 GRAPHICS FOR THE MACINTOSH

The program that you write can be structured in such a fashion as shown in the
sequence of menus in lllustrations 6.9 to0 6.15. In fact, it is good practice to structure
your programs this way to keep them modular, so that small segments can be
developed and tested one at a time. We have discussed this practice before, so
let's see what a program could look like if it is subdivided into main and sub-
modules.

The central idea in developing program modules is the subroutine. In most
programming languages, the subroutine is compiled separately from the main
program, which further isolates it. In BASIC, however, both the subroutine and the
main program are together, and they use common variables. This somewhat
unconventional approach to subroutines has advantages and hazards. Certainly it
is handy to be able to see both sections of source code at once. But it can become
burdensome to remember all of the variables that the subroutine alters in its
execution, so as not to use those variables in the main program.

We have developed a skeleton program that can serve as a shell for most large
programs. This shell design depends on the program dealing with user menus, so
the two concepts go together nicely. The overall, most generalized, structure is
shown below:

General Structure

1. Main Program

Initialize variables

GOSUB Main Menu display routine

If (user response) then goto 1.b.

If (user response) then stop

ON (user response) GOSUB Subroutine-1,-2,-3,...
GOTO 1.b.

-~ ® o 0 T ®

2. Tool Subroutines -- callable from anywhere

Generalized list
Error handling
Menu display

o o o o

PROGRAM PLANNING 61

3. Subroutine-1

Display sub-menu1

If (user response) is <RETURN > then return

ON (user response) GOSUB Subroutine-3a,-3b,-3c,...
GOTO 3.a.

oo g o

4. Subroutine-2

Display sub-menu2

If (user response) is <RETURN > then return

ON (user response) GOSUB Subroutine-4a,4b,4c,...
GOTO4.a. |

Qa0 o w

5.

This highly flexible skeleton for any complex program can be modified or
extended in different ways. For example, instead of going to amain subroutine, the
program can branch to a CHAIN statement that will transfer control to an entirely
different program. In this way, the internal memory limitations of the Macintosh are
no longer bothersome.

In the next chapter, we will explore some of the excellent features of Microsoft
BASIC on the Macintosh that allow very large systems to be developed in a
modular fashion, such as CHAIN, MERGE, COMMON, and mouse-driven menus.

[+] H A P T E R S E v E N
- THEOER
Vi, — OO,
AN BRAS
7\IN I\

@ Introduction: In Defense
of BASIC

BASIC hasreceived considerable criticism, at leastin part because of its historical
roots in educational settings as an elementary language that is simple to learn. In
fact, during the last ten years it has matured into a successful small-business and
personal computer system language. What are these criticisms, and how have
most of them been overcome?

9 X7

1. %7/ Non-standard subroutines: Most high-level languages have the
built-in capability to separately compile subroutines that calls the main pro-
gram (or another subroutine). This has two advantages: first, the subroutine
can be developed, tested, and compiled during one phase of the system's
development; second, the subroutine’s variable names are totally indepen-
dent of the calling program. They are local variables, whose names can be
used in other subroutines, or in the main program. BASIC uses global
variable names in its subroutines, because the subroutine is no more than a
section of code in the program from which control can return to the statement
below the GOSUB. This means that you must take care when writing a
subroutine to invent variable names that are not used in the other programs
that might call the subroutine.

The American National Standards Institute (ANSI) has recently proposed
several changes to BASIC, one of them being the concept of true sub-
routines, that can pass variables and return variables, and that can use local
variables with the same names as those found in the calling program with no
effect. Microsoft BASIC has a CALL statement, but it is reserved for calling
subroutines in machine language only. We use a programming standard of
our own, which may be more accurately described as a stylistic habit rather

64 GRAPHICS FOR THE MACINTOSH

than a standard. This style names locally used variables in subroutines with a
certain suffix, say the digit 7 or 8. Thus a subroutine’s variables could be W8,
T8, and B8, while its calling programs would never use any variable names
ending with the digit 8. This style is effective but crude.

P
2. Slow, interpreted code: In many business systems and in most

personal systems, this has little effect, because BASIC is still fast enough for
most purposes. However, when a SORT is executed, or when you are
developing a graphics program that simulates animation, there is a signifi-
cant slowdown in execution speed. This slowdown is especially prevalentin
hardware systems that are driven by 8-bit microprocessors, such as the older
personal computers (APPLE-Il, Radio Shack TRS-80, Commodore 64, or
IBM PC, for example).

The Macintosh uses the 16-bit MC68000 microprocessor as a CPU, so itis
somewhat faster. However, any 8-bit-based personal computer that runs a
compiled BASIC program will execute its program between 20 and 100
times faster! More and more vendors are supplying BASIC compilers to
overcome this difficulty, and perhaps some day the ANSI standard will
demand compilers as a standard language processor. Until then, there are
enough clever tricks that programmers can use to significantly speed up
execution.

3. Lack of advanced language features: This criticism often comes

from those programmers whose primary language is Pascal, or COBOL, and
even from some who still write in FORTRAN. Of course, BASIC doesn't have
some of the features of these languages. But neither do they have some of
BASIC's bells and whistles. So much of this type of criticism is based on what
a programmer is used to, that it becomes a sort of chauvinistic trademark.

Some newer languages based on Pascal, but containing improvements
such as Ada and Modula-ll, compare favorably with BASIC in terms of
language features. In truth BASIC has almost all of the programming struc-
tures (IF-THEN-ELSE, ON-GOTO and ON-GOSUB, integer, real, double
precision, and string variables, and sequential and direct access file manip-
ulation,for example) that are the earmarks of a good language. Ontop of that,
BASIC's excellent string manipulation functions are singularly good, and they
are easy to use.

Microsoft's BASIC as developed for the Macintosh is so much like the BASIC
it has prepared for the IBM PC, the HP-150, the TRS-80, and the many other
micros, that it is in essence the de facto standard for small-business and
personal computers. The Macintosh BASIC has, in addition to this excellent
core of features, access to the Mac's toolbox of machine-language routines

MAC, THE USER, AND BASIC

in the Quickdraw section of its ROM. This feature alone gives BASIC an
unusually flexible power. This book will develop many programs that use
these routines.

Program Development
Tools

Microsoft BASIC has several useful tricks up its sleeve when it comes to develop-
ing large systems of programs in which there are several separate programs
developed as system modules and each of these modules is accessed by either a
single main program or by all other system modules. Consider these two system

designs:

Subroutine 1 | Subroutine 3 ' Subroutine S
Subroutine 2 Subroutine 4

lllustration 7.1 Top-down system design chart

Main Program

Subr‘ou ‘! .Submtm 5

Subroutine 4

Subroutme 2

Iustration 7.2 Network design chart

66 GRAPHICS FOR THE MACINTOSH

Inthe top-down design, every time a subroutine is called, it must return to the main
program module in order to access another subroutine. In the network design, any
module can call any other, and the source of the passage of control is not
important. Both system design structures are achievable in Microsoft BASIC, but
we will deal mostly with the first, top-down design.

CHAIN

The CHAIN command in BASIC is used to pass control to another program. We
are not talking about a segment of the same program here, but an entirely different
program saved as a different file. We will summarize the CHAIN command. Refer
to the Microsoft BASIC Interpreter Manual for a more detailed explanation.

Example 1: (Line 210 in the program called MAIN)
210 CHAIN "SUBPROGRAM ONE’

This command transfers control to the first line of the file called SUBPROGRAM
ONE. In addition, it keeps open all files that were open in MAIN. Iis effectis identical
to

210 LOAD “SUBPROGRAM ONE", R

Example 2: Suppose some variables have been established in the program
MAIN, and you wish to keep them active in the program called
‘SUBPROGRAM TWQO".

210 CHAIN “SUBPROGRAM TWO",,ALL

These examples transfer control while keeping all variables active as well. Also, it
keeps the files open during the transfer. Again, control resumes at the first line of
“SUBPROGRAM TWO".

Example 3: If you wish to keep the variables active, the files open, and transfer
control to line 700 of the file called “SUBPROGRAM THREE", you
would issue this instruction in the program:

210 CHAIN “SUBPROGRAM THREE",700,ALL
If you know that the line you want to transfer to in the file “SUB-
PROGRAM THREE" is 100 times the value of P, you could write

either of these:

210 CHAIN “SUBPROGRAM THREE",100*P,ALL

MAC, THE USER, AND BASIC 67

Example 4: To bringin a second file as an overfay to the first, that is, to wipe out all
common lines in the first so as to reduce the size of the program in
memory and yet keep some of the original lines in the final version,
you can use the MERGE option. Suppose you want to keep all lines
below #100 in the MAIN program intact, but to replace all lines 1000
and above with those from the file SUBFOUR.

210 CHAIN MERGE "SUBFOUR",1000,ALL,DELETE 1000-9999

This example shows the typical instruction used to create an overlay. First, the
lines 1000-9999 in MAIN are deleted, although if some of them were executed and
assigned values to variables, they are kept active. Then, the file SUBFOUR,
previously saved in ASCII with a command such as

SAVE “SUBFOUR",A

is brought into memory and merged with all of the remaining lines of MAIN.
Execution of the program resumes at line 1000 of this newly created program.

COMMON

There are many times when you might want to CHAIN to another program, but
keep only some of the variables active in memory. This means that you can't use
the ALL option in the CHAIN instruction. Instead, you must use the COMMON
statement within the MAIN, or calling, program. For example, if you want to keep
the simple numeric variables A, B, and C; the string array X$; and the integer array
T% active in the program SUBFIVE, and you want to have execution begin at line
4270 in SUBFIVE, this is what you do:

Inthe program MAIN, preferably close to the beginning, you place the COMMON
statement:

10 FILENAME: “MAIN"
50 DIMENSION T%(200), X$(30),
80 COMMON A, B, C, X8(), T%()

210 CHAIN “SUBFIVE" 1000

68 GRAPHICS FOR THE MACINTOSH

One note of caution: When you CHAIN to another program and you are not using
the MERGE option, you lose the effect of all DEF-type statements. Therefore it is
necessary for you to re-establish variable typing and function definitions immedi-
ately after CHAINing. There is a simple way to keep all variables active, to CHAIN
to another program, and yet to keep the program’s size in memory smaller. Thisis
done by maintaining all variables as integers by default, as shown in this example:

10 ‘FILENAME: “MAIN®
20 DEFINT A-Z
30 DIM X(200), T(50), A$(20), ...

300 CHAIN “SUBPROGT,500 ALL
10 ‘FILENAME: “SUBPROGT

500 DEFINT A-Z

The CHAIN instruction with the ALL and MERGE options, and the COMMON
instruction, immensely improve the flexibility of BASIC as a systems development
language. We urge you to begin using these easy-to-use statements so that you
can develop your graphics software applications in modular fashion.

CLEAR to Increase Memory

Because the Macintosh has such a rich supply of support software builtin, most of
the 128K of RAM is taken up with APPLE systems programs, leaving you with only
14K of usable space for your BASIC program. There is a way around that, and itis
to use the CLEAR command to steal memory from the Macintosh Heap. This area
of memory manages windows and desk accessories, so you give up something in
order to have more memory for your program. We recommend that you limit your
use of the CLEAR instruction to only the largest programs, and only when neces-
sary. Remember that there are other ways to increase memory, such as using
integer variables when possible, instead of allowing the system to default to its
double-precision variable typing.

MAC, THE USER, AND BASIC 69

The CLEAR command in its simplest form does not save you memory, but it does
perform several important actions. If you execute the instruction

50 CLEAR

in your program, BASIC resets everything. All files are closed, all COMMON
variables are cleared, all numeric and array variables are set to zero, all string
variables are set to null, all disk buffers are released to the system, and all stack
space, string space, and DEF-typing is reset to the default values. Because the
CLEAR is so powerful, you must use it with caution. We recommend that you
restrict its use. At first use CLEAR only in the first section of the first program in a
series of programs in your largest systems.

When you want to use the CLEAR to increase memory space, remember that the
instruction will perform all of the above actions as well. The example below shows a
CLEAR instruction that releases 20K bytes from the Macintosh Heap and the desk
accessories.

30 CLEAR, 20000

The usual order of operations, which we recommend because we have found that
it works well, is shown.

10 ‘FILENAME: “MAIN”
20 CLEAR, 20000

30 DEFINT A-Z

40 DIM B$(20), X(500), T(40), V #(100), ...

300 ON K GOTO 410, 420, 430, 440, ...

410 CHAIN “SUBONE", 500, ALL
420 CHAIN “SUBTWO', 500, ALL
430 CHAIN “SUBTHREE", 500, ALL
440 CHAIN “SUBFOUR’, 500, ALL

.10 ‘FILENAME: “SUBONE"
500 DEFINT A-Z

(continued)

70 GRAPHICS FOR THE MACINTOSH

10 ‘FILENAME: “SUBTWO"
500 DEFINT A-Z

10 FILENAME: “SUBTHREE”
500 DEFINT A-Z

= User Interaction with the
Mouse

Because the Mouse is such an integral part of the entire Macintosh system, any
software that is developed for this machine should make use of this clever device
for user input. We have written a simple system to be used on the Macintosh. In so
doing we have developed a generalized subroutine that displays a menu of
choices, much like the MAC's puildown menus, and we allow the user to select
from the menu with the mouse.

We have coded it within our system as atool subroutine callable from anywherein
the program. We placed this subroutine that displays the menu and intercepts the
mouse drags and clicks in lines 1000 to 1210 of our simple system. You could
relocate this module anywhere within your program by RENUMDbering the code
and saving it as an ASClI file to be MERGEd to its new location.

The listing of the program “MENU" below is the driver program that invokes the
menu display subroutine. The program's overall function is to display a menu titled
“Pfruits”. This menu shows three fruits whose names begin with the letter P. When
the user makes a selection, the program CHAINs to the appropriate program to
display a list of peaches, pears, or plums.

The user can return to the main menu by clicking the mouse anywhere on the
screen when within one of these three programs. Notice that line 30 of MENU
places the variable D$ in COMMON for use in all programs in the system. It is
defined in line 40 as the filename for this program, “MENU".

Listing, Menu

10 ' menu driven system
20 DIM M$(10)

30 COMMON Ds

40 D$="MENU"

50 X=200:Y=45

60 READ Ts$,N

70 FOR I=1 TO N

80 READ Ms(1)

MAC, THE USER, ANDBASIC 71

90 NEXT |

100 DATA Pfruits,4,Pears,Peaches,Plums, Exit

110 GOSUB 1000

120 IF W>0 AND W<N THEN CHAIN M$(W) ELSE STOP

130 IF INKEY$="" THEN 130 ELSE STOP

1000 ' menu

1010 CLS: CALL TEXTFONT{O)

1020 CALL MOVETO(X+3,Y-10): PRINT Ts$

1030 X8=X+7:Y8=Y-4

1040 M8=0

1050 FOR 18=1 TO N

1060 Y8=Y8+16

1070 CALL MOVETO(XS8,Y8): PRINT M$(18)

1080 |F LEN(MS$(-18))>M8 THEN M8=LEN(MS(18))

1090 NEXT 18

1100 LINE(X-5,Y-4)-(X+10"M8+5,Y+16"N+4),33.8

1110 P8=N-1

1120 |IF MOUSE(0}>0 AND X8 >=X AND X8<=X+10"M8 AND
Y8>=Y AND Y8<=Y+16°N THEN 120 0

1130 LINE(X,Y+P8*16)-(X+M8"10,Y+P8°16+16).30.8B

1140 IF MOUSE({D)<>-1 THEN 1120

1150 X8=MOUSE(5): Y8=MOUSE(6)

1160 IF X8<X OR X8>X+10"MB OR Y8<Y OR Y8>Y+16™N
THEN 1120

1170 P8=(Y8-Y)/16

1180 LINE{X,Y+PB*16)—-(X+MB"10,Y+P8"16+16),33.8B

1190 GOTO 1120

1200 W=P8+1

1210 RETURN

Annotated Menu Listing

Let's take each one of these lines in the subroutine above to see the complexities
of developing a menu driver that interacts with the user with the mouse.

1000 'Show menu. M$ = array of menu entries, N = number of menu entries, T$

= menutitle, X & Y = coordinates of upper left corner

1010 CLS: CALL TEXTFONT(0) ‘Chicago font

1020 CALL MOVETO(X+3,Y —10): PRINT T$ ‘Position cursor and print menu
title

1030 X8=X+7: Y8=Y -4 'Indent menu selections. X8 & Y8 are local variables
for cursor position

1040 M8 =0 ‘Maximum entry length in characters

1050 FOR I8 =1TO N ‘Display entries and get maximum entry length M8

72 GRAPHICS FOR THE MACINTOSH

1060 Y8=Y8 + 16 ‘Adjust down 16 pixels to next line

1070 CALL MOVETOQO(X8,Y8): PRINT M$(18) ‘Move and print

1080 IF LEN(M$(18))>M8 THEN M8 = LEN(M$(18)) ‘Get max. length M8

1080 NEXT I8

1100 LINE(X—5,Y —4)—(X+10*M8+5,Y +16*N +4),33,B ‘Draw box around
entire menu

1110 P8=N —1'P8 points to menu entry. Initial value is assumed to be last entry

1120 IF MOUSE(0)>0 AND X8> =X AND X8< =X+10*M8 AND Y8> =Y
AND Y8 < =Y +16*N THEN 1200 ‘Is the mouse within selection area and is
button up after drag? If so, return W, menu number selected.

1130 LINE(X,Y +P8*16)—(X+M8*10,Y +P8*16 +16),30,B ‘Blank out box
around entry pointed to but not selected

1140 IF MOUSE(0) < > —1 THEN 1120 'If clicked but not a drag, return to check
mouse again

1150 X8=MOUSE(5): Y8=MOUSE(6) ‘Coordinates of drag end where user
released button

1160 IF X8 <X OR X8>X+10*M8 ORY8<Y OR Y8>Y+16*N THEN 1120 ‘Not
within menu area

1170 P8=(Y8-Y) \ 16 'User released in menu entry # P8

1180 LINE(X,Y +P8*16) — (X +M8*10,Y + P8*16 +16),33,B ‘Place box around
menu selection under dragged pointer

1190 GOTO 1120 ‘Keep checking mouse

1200 W=P8+1‘Menu item selected

1210 RETURN

Before we proceed with any further annotation of the code, look at a typical main
program's menu display, shown in lllustration 7.3.

Pfruits

Pears
Peaches
Plums
Eait

lllustration 7.3 Menu of Pfruits

MAC, THE USER, AND BASIC 73

lllustration 7.4 shows the Pfruits menu display again, only this time the user has

stopped the drag on the Plums entry, and a rectangle is drawn around that entry.
lllustration 7.5 shows the output from the Plums program.

" & File Edit Control

menu

Pfruits

Pears
Peaches

! Plums
Enit

lllustration 7.4 Pfruits menu with Plums selected

r

& File Edit Control

—_— Plums

Plum Varieties

Shropshire
Damson

Tecumseh
Queen Anne
Burbank
Casselman
Canada
Chickasaw

Wild Goose
Stanley

Hortulana
Pacific

k

Click to return to MENU

=]

lllustration 7.5 Plums program output

74 GRAPHICS FOR THE MACINTOSH

The listings that follow show the three programs that complete the Pfruits pro-
gram. These are CHAINed to from the main program (MENU). Notice that in each

one, the last two lines are:

150 CALL MOVETO(25,265): PRINT “Click to return to * + D$
160 IF MOUSE(0) < >0 THEN CHAIN D$ ELSE 160

Line 150 moves the cursor position to the bottom of the screen so that the
message “Click to return to MENU" doesn't disturb the program's output. The
variable D$ is the one that was placed in COMMON in the first program. It provides
the link back to the main menu driver whose filename is “MENU".

Line 160 checks the condition of the mouse. Ifitis clicked, the program CHAINs to

MENU. If not, it continues to check in an infinite loop.

Listing, Pears Program

10

20
30
40
50
60
70

80

90

100
110
120
130
140
150

160

Pears

DIM P$(12),P(12)

FOR I=1 TO 12

READ P$(1)

NEXT |

DATA "Anjou”,"Winter N

DATA "Bosc","Wilder Ea
"Comet"”

DATA “"Comice”,"Kieffer
Bartlett"”

CLS

PRINT: PRINT TAB(5);"

FOR I=1 TO 12

P(1)=3"1+10

PRINT TAB{P{1)):P$(1)

NEXT |

CALL MOVETO(25,265):
“+D$

elis”,"Hardy","Bartlett"
rly","Clapp Favorite",

“,"Seckel”,"Early

Pear Varieties": PRINT

PRINT "Click to return to

[F MOUSE(0)<>0 THEN CHAIN D$ ELSE 160

Listing, Peaches Program

10

20
30
40
50
60
70

Peaches

DIM P$(12),P(12)

FOR I=1 TO 12

READ P$(1}

NEXT |

DATA "Carmen”, "Waddel |
DATA "Champion”™,"Waldo

","Elberta","Rochester”
" "Wilma","Honey"

MAC, THE USER, AND BASIC 75

80 DATA "Greensboro","Cabler”,"Chairs”,“Fitzgerald”

90 CLS

100 PRINT: PRINT TAB(5);"Peach Varieties”: PRINT

110 FOR I=1 T0 12

120 P(1}=35-ABS{13-1-1)

130 PRINT TAB(P{1)):Ps(1)})

140 NEXT |

150 CALL MOVETO(25,265): PRINT "Click to return to
"+D$

160 IF MOUSE(0)<>0 THEN CHAIN D$: STOP ELSE 160

Listing, Plums Program

10 ' Plums

20 DIM P$(12),P(12)

30 FOR 1=1 T0 12

40 READ Ps$(1)

50 NEXT 1

60 DATA "Shropshire”,"Damson”,"Tecumseh”,
"Queen Anne"

70 DATA "Burbank”,"Casselman”,"Canada”,"Chickasaw"

80 DATA "Wild Goose","Stanley”,"Hortulana",
"Pacific”

90 CLS: RANDOMIZE TIMER

100 PRINT: PRINT TAB(5):"Plum Varieties”: PRINT

110 FOR I=1 TO 12

120 P(1)=RND(1)*25+12

130 PRINT TAB(P(1)):Ps(1)

140 NEXT |

150 CALL MOVETO0(25,265): PRINT "Click to return to

"+D$
160 IF MOUSE(0)<>0 THEN CHAIN D$ ELSE 160

C H A P T E R E | G H T
— 1\ — — €N
OTYE iy DAY P, QS

e b W\ \J
AN "OYNC
\i | b

This chapter introduces graphics production with programs written in BASIC.
Because Microsoft BASIC has been adopted by so many microcomputer vendors,
the programs in the rest of the book tend to be adaptable to many other machines.
This is one of the major strengths of Microsoft's version of BASIC. It's graphics
commands are powerful and easily used.

What Microsoft does not provide as tools for graphics programming, the Macin-
tosh makes available in its Quickdraw ROM. The 64K Macintosh ROM contains a
whole host of prewritten programs. The cluster of programs which Apple refers to
asits Quickdraw routines is available through Microsoft BASIC by way of the CALL
statement. With the CALL statement, you can write programs that begin to
approach the glorious graphics of MacPaint. Because you are writing them,
however, these programs have great flexibility and can be altered to suit many
more applications.

This chapter contains many small programs, illustrating graphics production with
BASIC. We introduce several concepts whose understanding is essential to the
creation of images on the Macintosh screen.

The simplest and most important component of any graphics image is the pixel,
which, as you may remember, is the smallest element of an image on the screen.
Onthe Macintosh, the pixel is a square dot. Macintosh's resolution determines how
many pixels can fit on the screen. The screen image is made up of 512 vertical
columns and 342 horizontal rows forming 174,104 pixels.

Each one of the pixels is either black or white (the Mac is not yet a color machine)
and can be represented internally as a single bit, on or off. The entire screenimage
is stored, this way, as 10,944 16-bit integers. In Chapters 9 and 12, you will see how
the integer representation of the screen image can be manipulated to make
patterns of your choosing.

Each of the pixel positions on the screen is individually addressable by its column
number (X-coordinate) and by its row number (Y-coordinate) as shown in lllustra-
tion 8.1. The top left corner's address is (0,0); the top right, (511,0); the bottom left,
(0,341); and the bottom right, (511,341). Notice that the X-coordinate comes first, as
in Cartesian coordinate geometry. Notice also that the X-coordinates start atthe left

78 GRAPHICS FOR THE MACINTOSH

912

~N

ﬂ/\

(0,0)

342

(511,34%

A 4

Ilustration 8.1 512 x 342 screen grid and coordinate system

edge of the screen at 0 and proceed to the right to 511, whereas the Y-coordinates
start at the top of the screen at 0, and go down to 341. This is contrary to the
ordinary Cartesian coordinates you see in lllustration 8.2, and is important to
remember.

Microsoft BASIC uses four commands to manipulate individual pixels. These are
two instructions, PSET and PRESET; and two functions, POINT and PTAB.

The PSET syntax can be in any one of four forms:

1. PSET (x,y) draw a black pixel at screen coordinate position x,y.

2. PSET STEP (dx,dy) move dx columns and dy rows from the present
location and draw pixel.

3. PSET (x,y,c) draw pixel with color ¢ at location x,y. The only two colors
available on the Macintosh (as of this writing) are black (color =33) and white
(color =30). Any integer other than these two assumes the color black.

4. PSET STEP (dx,dy,c) move dx columns and dy rows, draw pixel with color
c.

PIXEL GRAPHICS AND ICONS 79

X-axis

Illustration 8.2 Cartesian coordinate system

The two functions POINT and PTAB are used as follows:

1. X = POINT(x,y) determine the color of the pixel at x,y and place it in X.
POINT is useful in an IF statement to find out if a specific location has been
painted black.

2. PRINT PTAB(x); v prints the variable v starting at the horizontal position x.
The 512 column positions are all available as starting positions for printing
variables, either numeric or string. PRINT PTAB has an interesting feature. If
the current print position is to the right of the PTAB pixel position, the variable
retreats to the PTAB pixel onthe same line. You can write text from right to left
using this feature, if you're careful — or weird — or boustrophedontic (look it
up).

Application 1: Binomial distribution

This program is called Pachinko after the game of that name which resembles a
pinball machine. The program simulates a process that determines the path of a
ball through a maze of pins. Consider a large flat board with nails placed intoitin a

80 GRAPHICS FOR THE MACINTOSH

pattern (lllustration 8.3) with a marble positioned carefully on the topmost nail.
When the board is tipped, the marble can take any path around the pins.

Each time the marble lands on a nalil, it can go either left or right. As it proceeds
through the maze, it will go left on the average about as many times as it goes right.
Therefore the most frequently traveled paths are those down the center of the
board. The likelihood of a marble always taking a left, or always a right, is very low.

lllustration 8.3 Pachinko board

If you place vertical traps below the rows of pins to trap the marbles as they fall,
you can actually observe the distribution of the paths taken. The program simu-
lates this process, by providing columns to hold the marbles as they fall through.
llustrations 8.4 and 8.5 show two stages of output from the program.

PIXEL GRAPHICS AND ICONS 81

bl

" & File Edit Control
FE pachinko ﬂl

P

bl

=]

lllustration 8.4 Early output from program “PACHINKQO"

" & File Edit Control Y

e

VN

i

lllustration 8.5 Later output from program “PACHINKO"

82 GRAPHICS FOR THE MACINTOSH

Below is a listing of the program.

Listing, PACHINKO

10 ' pachinko

20 CLS

30 RANDOMIZE TIMER

40 DIM N(50)

50 X=250:Y=10:L=1:H=49:H2=(H+1)/2
60 B=Y+H+H+100

70 FOR I=1 TO H

80 J=X-L"(I-1)

90 FOR K=1 T0 |

100 PSET(J,Y+L"1)

110 J=J+L+L

120 NEXT K

130 NEXT |

140 FOR =1 TO H+1

150 N(1)=0

160 NEXT |

170 FOR M=1 TO 10000

180 J=X

190 FOR I=1 T0 H

200 PRESET(J,Y+L"1)

210 FOR Z=1 T0 5: NEXT £
220 PSET(J.Y+L"1)

230 |IF RND>.5 THEN J=J-L ELSE J=J+L
240 NEXT |

250 W=H2-(J-X)/{L+L)

260 N{(W)=N(W)+1

270 PSET(J.B-N(W))

280 NEXT M

You can follow the program step by step, outlined here in pseudocode.

1. 20 Clear the screen.

2. 30 Start the random number generator with a random seed.

3. 40 Reserve 50 counters — N.

4, 50 Position top of pyramid at X=250,Y =10.

5. Set L, distance between pins in pyramid to 1.

6. Set H, height of pyramid, to 49.

7. Calculate H2, midheight of pyramid.

8. 60 Set B, base of histogram portion of display, to
Y+H+H+100.

9. 70-130 Build pyramid of dots.

10. 140-160 Zero all counters N.

11. 170-280 Do forever:

12. 180 Start X at middle of pyramid.

13. 180-240 For | = 1 to H (height of pyramid) do:
14, 200-210 White out this pixel, pause.

PIXEL GRAPHICS AND ICONS 83

15. 220 Color this pixel.
16. 230 Set direction left or right at random, advance to next row
down.
TZ. 240 Enddo.
18. 250 Increment appropriate counter.
Notes:

We have generalized this program purposely so that you can alter it to suit your
tastes. Line 50 in particular sets up several important variables. With minor altera-
tion these variables produce quite different displays. The screen image in lllustra-
tion 8.6, shows the results of changing L from 1to 2.

You can increase the height of the pyramid, the spacing between pins, the size of
the ball, even the random distribution. You can skew the distribution as if the board
were tilting slightly to the right or left by altering line 230. For example:

r

& File Edit Control
pachinko

Ll

Illustration 8.6 Output, more widely spaced pins

IFRND>.3 THEN J=J - L ELSE J=J +L ‘Skew left
IFRND>.7 THEN J=J - L ELSE J=J + L 'Skew right

This change makes the ball fall to the right or to the left 7 out of 10 times, which
produces a strikingly different distribution.

Instead of the random distribution seen in lllustration 8.6, you can produce others
by altering line 230. It's a visually captivating way to study chance events.

84 GRAPHICS FOR THE MACINTOSH

Application
2: Mathematically Derived
Curves

The following series of small programs is based on a common thread of ideas.
The theory is to use the PSET instruction to trace a series of points as a mathe-
matical function advances through a series of iterations. The curves and shapes
formed are familiar territory to graphics programmers, not only because they are
pretty to look at, but because they are useful in many practical applications. Their
derivation was made necessary in order to track physical movements.

The examples that follow are indicative of the way a mathematical expression can
be translated into a BASIC program. We used various sources such as
encyclopedias, dictionaries, and handbooks of mathematical tables. Here are two
sources to get you started: Van Nostrand's Scientific Encyclopedia, 3rd. Edition (D.
Van Nostrand Company, Inc., New Jersey, 1958) and CRC Standard Mathe-
matical Tables, 14th. Edition Samuel Selby, Editor (The Chemical Rubber Co.,
Cleveland, 1965).

We tested various values for variables until we were satisfied with the end resuilt.
One of the great rewards of programming these mathematical functions was being
able to see from the book what the end result should look like on the screen. We
were surprised in some cases, and learned much in the process.

In describing each of the following curves, we first provide you with a sketch of the
curve as described in the references we mention above. At the bottom of the
sketch weinclude the mathematical description of the curve, followed by the actual
output that the Macintosh produces. Finally, we show you the listing that produced
the output.

Prolate Cycloid

YII \V

lllustration 8.7 Prolate cycloid in
Cartesian coordinates

x=af-bsingd, y=a-bcos&, a<b

PIXEL GRAPHICS AND ICONS 85

" & File Edit Control
ESE==——==——=—=—— prolale

lllustration 8.8 Macintosh output, prolate cycloid

The output (lllustration 8.8) is upside down from lllustration 8.7, which shows the
usual orientation found in the math books. The reason for this is that the Y-
coordinate on the Macintosh goes positive down the screen. This is opposite of its
positive direction in the Cartesian system.

To re-orientthe computer's output to match the format shown in most math books,
simply change line 90 in the listing of “Prolate Cycloid” to:

90Y = B * COS(R)- A

Listing, Prolate Cycloid

10 ' Prolate cycloid

20 CLS

30 C=50:D=50:A=30

40 FOURPI=16"ATN(1)

50 PIOVER100=FOURPI/400
60 B=A"1.25

70 FOR R=0 TO FOURPI STEP PIOVER100
80 X=A"R-B*SIN(R)

90 Y=A-B"COS(R)

100 PSET(C+X,D+Y)

110 NEXT R

86 GRAPHICS FOR THE MACINTOSH

Suggestions:

40 FOR D=50 TO 200 STEP SQR(D)
120 NEXTD

60 FORB=.75"ATO2*ASTEP .2
120 NEXT B

Curtate Cycloid

Change the Prolate Cycloid, which has closed loops at every cycle, to the Curtate
Cycloid, which has no loops, (lllustration 8.9) by keeping A>B.

T * X
lllustration 8.9 Curtate cycloid,
Cartesian coordinates
x=af-bsing, y=a-bcosd, a>b
Involute of Circle

Notice that again the curve doesn't go in the same direction as on the sketch, for
the same reason that the cycloids were upside down.

&

IMlustration 8.10 Involute of circle

x=rcos@ + rfsin@, y=rsin@-rdcos@

PIXEL GRAPHICS AND ICONS 87

lllustration 8.11 Macintosh output, Involute of circle

Listing, Involute of circle

10 ' Involute of Circle

20 CLS

30 C=250:D=120:A=16

40 TWOPI=8"ATN(1)

50 PIOVER100=TWOPI /200

60 FOR R=0 TO TWOP! STEP PIOVER100
70 X=A"COS(R)+A"R*SIN(R)

80 Y=A"SIN(R)-A"R*COS(R)

90 PSET{C+X,D+Y)

100 NEXT R

Suggestions;

55FORA=8TO24 STEP2
110 NEXT A

85Y=-Y ‘thisreverses the direction of the curve

88 GRAPHICS FOR THE MACINTOSH

r hl

€ File Edit Control

e——rmy————————|

lllustration 8.12 Macintosh output of multiple involutes

Cardioid

lllustration 8.13 Cardioid

(%2 + y2 + ax)?2 = a(x2 + y2),
p=a(l-cos) or p= —a(l + cosf)

PIXEL GRAPHICS AND ICONS 89

lllustration 8.14 Macintosh output, Cardioid

Listing, Cardioid

10 ' Cardioid

20 CLS

30 C=250:D=150:A=60

40 TWOPI=8"ATN(1)

50 PIOVER100=TWOPI/200
60 FOR R=0 TO TWOP! STEP PIOVER100
70 T=A*(1-COS(R))

80 X=T*COS(R)

90 Y=T"SIN(R)

100 PSET(C+X,D+Y)

110 NEXTR

Suggestions:

40 FOR A=10 TO 100 STEP 10 ‘or step sqr(a)
120 NEXT A

Reverse the heart's direction with

100 PSET(C - X, D-Y)

55 FOR C=200 TO 500 STEP 20
57 D=(C-50)/2

120 NEXTC

80 GRAPHICS FOR THE MACINTOSH

Evolute of Ellipse

t

llustration 8.15 Evolute of Ellipse

x=Acos3f, y =Bsin3g

r

€ File Edit Control
euclute

<>

M

lllustration 8.16 Macintosh output, Evolute of ellipse

PIXEL GRAPHICS AND ICONS 91

Listing, Evolute of Ellipse

10 ' Evolute of Eilipse
20 CLS

30 C=250:D=150:A=30

40 TWOPI=8"ATN(1)

50 PIOVER100=TWOPI/200
60 B=A".75

70 FOR R=0 TO TWOPI STEP PIOVER100
80 X=A"COS(R) 3

90 Y=B"SIN(R) 3

100 PSET{C+X,D+Y)

110 NEXT R

Suggestions: As usual, form a loop changing the angle A. Or play with the
derivations of X and Y, such as X=A*COS(R)2. You can flatten the image by
changing line60to 60 B=A* .4

Hypocycloid of Four Cusps
(Astroid)

Note that the word is Astroid, not Asteroid.

¢

lllustration 8.17 Hypocycloid of
Four Cusps (Astroid)

x = acos’f, y = asin3f

92 GRAPHICS FOR THE MACINTOSH

" & File Edit Control 2
hypocychoid BHet——7—————

<>

lllustration 8.18 Macintosh output, Hypocycloid

Thisimage is closely related to the Evolute of Ellipse shown previously. This oneis
based on a circle, while the Evolute is based on an ellipse.

Listing, Hypocycloid of Four Cusps (Astroid)

10 ' Hypocycloid of Four Cusps (Astroid)
20 ELS

30 C=250:D=150:A=30

40 TWOPI=8"ATN(1)

50 PIOVER100=TWOPI/200

60 FOR R=0 TO TWOPI STEP PIOVER100

70 X=A*COS(R) 3

80 Y=A"SIN(R) 3

90 PSET(C+X,D+Y)

100 NEXT R

PIXEL GRAPHICS AND ICONS 93

Roses

OIS

Illustration 8.19 Three-leaved rose lllustration 8.20 Four-leaved rose

p = acos 3@ p = asin 2@

" & File Edit Control 2

== roses E‘

Illustration 8.21 Various Macintosh roses

94 GRAPHICS FOR THE MACINTOSH

Listing, Roses

10 * Roses

20 CLS

30 C=50:D=150:A=30

40 TWOPI=8"ATN(1}

50 PIOVER100=TWOP1/200

60 S=0

70 FOR 1=3 TO 8

80 N=INT((I+1)/2)

90 S=1-§

100 FOR R=0 TO TWOPI STEP PIOVER100
110 IF S=0 THEN T=A°"COS(N°R) ELSE T=A"SIN(N"R)
120 X=T*COS{R)

130 Y=T*SIN(R)

140 PSET(C+X,D+Y)

150 NEXT R

160 C=C+75

170 NEXT |

Notes: This program produces enough roses that you can begin to understand
what's going on. The little table below shows the values of |, N, and S for all six
images.

[N S T

3 2 1 A sin(nr)
4 2 0 A cos(nr)
5 3 1 A sin(nr)
6 3 0 A cos(nr)
7 4 1 A sin(nr)
8 4 0 A cos(nr)

lllustration 8.22 Table of relationships among roses

To increase the number of lobes, increase N; but note that when N is 2, the two
lobes are duplicated across the center, making it look like four lobes. If you set nto
5, you get five lobes; but if you set N to 6, you get 12 lobes. To orient the rose with
one lobe vertical, set Sto 0.

We can't leave this topic without providing you with a hint at some other curves so
that you can try a few exercises of your own. We have imbedded within phrases the
names of some of our favorite mathematically derived curves for you to program.
Their names prove that some mathematicians are poets at heart. Here we suggest
some jargon you can take to your next party to impress your friends.

“Waiter! | have a Limacon of Pascal in my soup!”

“Why dont you dress up as a Witch of Cassini for the party?”

“Come on over sometime, and I'l show you my Cissoid of Diocles”

PIXEL GRAPHICS AND ICONS 95

‘My Strophoid and Ovals of Cassini need work, but what a Bifolium!”

“Your tie resembles Bernoulli's Lemniscate.”

“Folium of Descartes leads Conchoid of Nicomedes by a nose, and Spiral of
Archimedes trails the pack.”

And soon.

Application 3: Birthdays

The next time you get together with 25 or more people, find out if two people were
born on the same day and month. If you had a gang of 182 people you might think
that the odds of two people having the same birthday would be about fifty-fifty (182
ishalf of 365). In fact, the odds are much better than that. For a full discussion of this
probability problem, we refer you to Popular Computing, July 1984, p. 190. The
program we include here is an adaptation of the one in that magazine; we even
kept some of the variables.

r bl

& File Edit Control
= btithireb e————=——1
0 10 20 30 40 50 60 70 B0 90 100

ot

“hwnao N D0 —

%
o

ﬁ

lllustration 8.23 Macintosh output, Birthday program

Listing, Birthday

10 " birthday

20 ' adapted from Popular Computing, July 1984, p 190.
30DIMX(100)

40 M=100

50 PB=1 "initial probability multiplier

60 FOR G=1TO M

70 P=(365-G+1)/365: PB=P"PB: X(G)=1-PB

80 NEXT G

90 CLS

(continued)

86 GRAPHICS FOR THE MACINTOSH

100 FOR I=50 TO 350 STEP 30

110 PRINT PTAB(1-18); {1-50)/3:: NEXT I: PRINT
120 FOR J=20 TO 220 STEP 20

130 CALL MOVETO(352,J+4): PRINT (240-J)/200-.1
140 NEXT J

150 CALL TEXTMODE (1)

160 CALL PENSIZE(2.2)

170 FOR G=1TO M

180 X=6"3+50

190 Y=220 -200"X(G)

200 CALL MOVETO(X,Y):PSET(X.Y)

210 NEXT G

999 GOTO 999

Below is an outline of the steps in Pseudocode.

30 Save 100 positions of X, probabilities for up to 100 people.

60-80 For each of the 100 populations, calculate the probability.

90 Clear the screen.

100-110 Set horizontal screen positions | from 50 to 350 in steps of 30.
Tab to pixel i-18 and print values 0 to 100 in steps of 10.

120-140 For J=20 to 220 in steps of 20 do: Move to column 352, row
J +4 Print probability (1 to O in steps of .1)
Enddo.

150 Set Macintosh textmode to OR what is on the screen, so that it
shows through.

160 Set Macintosh pensize to a 2x2 (4-pixel) dot instead of the
standard 1x1 (single-pixel) dot.

170-210 For G=1to 100 do:

Calculate X displacement as 3* G + 350
Calculate Y displacement as 220 - 200 * X(G)
Move to location X,Y and place the 2x2 dot there.
Enddo.

Notes: This program uses several CALLSs to the Macintosh Quickdraw routines,
and they need some attention.

CALL MOVETO(x,y) Lines 130 and 200 use a Toolbox subroutine to move the
cursor position to a screen pixel location. The two variables (x,y) are absolute
screen coordinates.

CALL TEXTMODE(m) In line 150, we reset the usual textmode. This allows us to
write without obliterating what is already on the screen. Inthe listing shown, this line
is not necessary. However, you could change line 200 to use a PRINT instead of a
PSET if you wanted the chart to be a series of asterisks. Then you would want the
last few PRINT statements to stay clear of the “1” printed in the probability column.
The PRINT statement carries with it a line width of 15 pixels and one or more blanks
atthe end of the line. This is the result of the default textmode(0), which causes the

PIXEL GRAPHICS AND ICONS 97

text to replace whatever is on the screen. Mode 1 causes the text output to be
superimposed (ORed) on the screen. Here's a summary of the four textmodes you
can use.

CALL TEXTMODE(m) Effect

m =0 (default) Text replaces whatever is on screen;
copy mode.

m=1 Text superimposes (ORs) screen image.

m=2 Screeninverts if pixel existsintext (XOR).

m=3 (BIC mode) Screen inverts if pixel is black (Black Is
Changed).

CALL PENSIZE(w,h) redefinesthe pen’'s dimensions. Line 160 uses this routine to
change the PSET's output from one pixel to four, for higher clarity. This CALL is
most commonly used when you want to draw thicker lines than the standard
(default) one-pixel width. Here we use it to make fatter points.

Application 4: Stars and
Motion

Our aim is to show you how to design objects and manipulate them on the
screen to simulate motion using the GET and PUT.

The GET and PUT are related graphics instructions that grab (GET) arectangle
of pixels from the screen and place (PUT) them elsewhere, perhaps in a different
size. You must define the rectangle as an integer array that can contain as many
bits as there are pixels in the image. The BASIC manual's description of how to
compute the size of the array to be DIMensioned is a bit complex, so here's a
simpler rule: Consider your rectangle to be X by Y pixels. The number of integers
you must reserveis 2 + X*Y/16.

For example, suppose you have a screen image that can be enclosed com-
pletely by a rectangle that is 40 pixels across and 35 pixels deep. If you want to
GET and PUT the array IMAGE, that array variable must be DIMensioned atleast 2
+ 40735/16 = 90. Therefore the DIM statement would be

20 DIM IMAGE(90)

There is no way to be wrong if your DIM statement allows for a larger array,
such as DIM IMAGE(100) in the above example. However, you must reserve at
least as much space, in integers, as indicated by the formula 2 + X*Y/16.

The syntax of the GET and PUT are explained well in the Microsoft BASIC
manual, so we won't repeat this. We will show you what we did with these
instructions in our programs, and in this way you should discover some good
graphics tricks, as we did.

98 GRAPHICS FOR THE MACINTOSH

Shooting Star

r

& File Edit Control

lllustration 8.24 Shooting star at start of run

Al

lllustration 8.25 Shooting star halfway through run

Listing, Shooting Star

10 °

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

shooting st
DEFINT A-Z
DIM A(65).G(5
CLS:INPUT “en
CLS
X1=5:Y1=5:X2=
A(0})=32:A(1)=
A(2)=0:A(3)=0
A(4)=0:A(5)=0
A(B)=0:A(7)=
A(8)=0:A(9)=
A(10)=0:A(11
A(12)=7:A(13
A{14)=8H1F:A
A{16)=&H7F:A
A{18)=&HFF:A
A{20)=&H3FF
A(22)=&H3DF
A(24)=&HTFF
A(26)=&HTFF:
A(28)=&HFFF
A(30)=&HFFF
A(32)=&HFFF
A(34)=&HFFF
A(36)=8&HFFF
A(38)=8&HFFF
A{40)=8&H7FE
A(42)=&HTFF:
A{44)=8H1FC
A(46)=&H7F9
A(48)=8&HCF3

5)
(7
(9

ar

)

ter size of star .. "

X148°32-1:Y2=Y148"32-1

32

0

&H70
)=&H1F8
)=&HE30C
(15)=&HFEOC
(17)=8&HFE18
(19)=&HFF30

tA{21)=8&HFFED
:A(23)=8HFFAQ
:A(25)=8HFF60

A(27)=8HFEED

:A(29)=&HFEFO
:A(31)=&HFCFO
‘A(33)=&HFIFO
:A(35)=&HF3FO
:A(37)=8HIFFO
:A(39)=8HCFFO
‘A(41)=8H3FED

A(43)=&HDFEO

:A(45)=&HFFCO
:A{47)=&HFFCO
:A{49)=&HFFOD

PIXEL GRAPHICS AND ICONS 99

320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

A(50)=&H186F:A(51)=&HFCO00
A(52)=&H303F:A(53)=&HF800
A(54)=&H30C7:A(55)=&HEQOD
A(56)=&H1F80:A(57)=0
A(58)=&HE00:A({59)=0
A(60)=0:A(61)=0
A(62)=0:A(63)=0
A{64)=0:A(65)=0

F=150

D=3:E=1

FOR I=1 70 F
PUT(X1,Y1)-(X2,Y2),A,PSET
X2=X2+D:X1=X1+D
Y2=Y2+E:Y1=Y1+E

NEXT |

IF INKEY$="" THEN 470 ELSE 40

100

GRAPHICS FOR THE MACINTOSH

Below is an outline of the Shooting Star Program.

20
30
40
50
60

70-390

Define all variables integer

Declare Array A for image, reserve 65 integers for it.

Clear screen, get scale S from user. Scale should be 1-10.
Clear screen again to remove dialog.

Define upper left (X1,Y1) and lower right (X2,Y2) coordinates for
rectangle to be manipulated in GET and PUT.

Describe theimage to be manipulated and transfer it to the array
A. Because A is DIMensioned 65, a total of 66 16-bit integers
must be defined. The first two positions of the array are always
the size of the array in bits, so A(0) contains the width, of the array
in pixels, and A(1) contains the height of the array, in pixels. Line
60 has described a rectangle thatis 32 by 32 forascale Sof 1, 64
by 64 if S=2, and so on. We need only define 32x32 bits, or 64
16-bit integers. Scaling will be taken care of with the PUT.
Because each pair of array elements defines 32 bits, A(2) and
A(3) define the first row of 32 bits; A(4) and A(5) define the
second row; and so on, until A(64) and A(65) define the bottom
row of the 32x32-bit square. The easiest way to build yourimage
is to take grid paper, sketch out your image, and place a 1 where
there is black, a 0 where the image is white. The result is then
reduced to a rectangle (try to make that rectangle’s width divisi-
ble by 16) and translated into hexadecimal from this binary
picture.

For example, suppose you want your image to be a frog, like
the lower-case “c” in Cairo font, and you want that image to be
contained within a rectangle 16 bits wide by 32 bits deep. First,
DIMension the integer array FROG %(33). Define FROG %(0) =
16 and FROG % (1) =32, the design’'s column and row dimen-
sions. Then, lay out your pattern in 1s and Os on grid paper, as
shown in lllustration 8.26.

PIXEL GRAPHICS AND ICONS 101

{LIC I LIt
LI I LIl
| LIt
LU LI

0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

0111 0000 00000
22 0011 100000001110
23 0001 1100 0001 1100
[124 00000110 0011 0000
25 000000110110 0000
26 000000110110 0000
27 000011100011 1000
28 001111000001 1110
29 0000 0000 0000 0000
30 0000 0000 0000 0000
31 0000 0000 0000 0000
32 0000 0000 0000 0000

1
2
3
4
BORCOO00 (IS5 1010 0000 0000 0101
M6 0111001101100011
[] M7 01100001 11000111
M8 01100011 11100011
MO 01110111 11110111
§ (110 0011 1111 1111 1110
11 00000111 1111 0000
[]12 0000 0011 1110 0000
13 0000 0011 1110 0000
114 0000 0001 1100 0000
0 115 00000111 1111 000D
0 []16 0001 1111 1111 1100
[717 0011 1111 0111 1110
W18 011111000001 1111
] M 19 01110000 0000 0111
[mm| B 20 0110 0000 0000 0011
EZI 11

[
[
[
[

lllustration 8.26 Sketch of 16x32 frog with binary equivalent

102 GRAPHICS FOR THE MACINTOSH

Your next task is to transfer that image line by line into the array FROG %, starting
with FROG %(2) through FROG %(33). The easiest way to transfer the 16-bit groups
is to define them as four hexadecimal digits. For the sake of completeness, we
review those for you here in lllustration 8.27.

Binary Hex Binary Hex
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

lllustration 8.27 Bit representation of hexadecimal digits

So the frog's definition is

FROG % (0) =16: FROG % (1) = 32: FROG % (2) = &H0000
FROG % (3) = &H0000: FROG % (4) = &H0000
FROG % (5) = &H0000: FROG % (6) = &HA005
FROG % (7) = &H7363: FROG % (8) = &H61C7
FROG % (9) = &HB3E3: FROG %(10) = &H77F7
FROG % (11) = &H3FFE: FROG %(12) = &HO7FO
FROG % (13) = &HO3EQ: FROG % (14) = &HO3EQ
FROG % (15) = &H01C0: FROG % (16) = &HO7FO0
FROG % (17) = &H1FFC: FROG % (18) = &H3F7E
FROG %(19) = &H7C1F: FROG % (20) = &H7007
FROG % (21) = &H6003: FROG %(22) = &H7007
FROG %(23) = &H380E: FROG % (24) = &H1C1C
FROG % (25) = &H0630: FROG % (26) = &H0360
FROG %(27) = &H0360: FROG % (28) = &HOE38
FROG % (29) = &H3C1E: FROG % (30) = &H0000
FROG % (31) = &H0000: FROG % (32) = &H0000
FROG %(33) = &H0000

PIXEL GRAPHICS AND ICONS 103

Now let's get back to our program.

400 Define F, number of times through loop to move the object.

410 Define horizontal displacement D, and vertical displacement E.

420-460 Forl=1to FDO:

430 PUT the array A into area defined by (X1,Y1) and (X2,Y2). Use
the PSET action verb to place it there.

440-450 Increment coordinates by D and E.

460 ENDDO.

470 Wait for a keystroke from user, then return to beginning.

The reason that two PUTs with the XOR option (as suggested in the manual to
simulate motion) aren't needed in this program is because the increments for the
picture’s shift D and E cause the picture to move so little that the pixels that are
turned on arent left on. This automatic erasure is caused by the picture’s definition
with a 3-pixel white border surrounding the entire design of the star. If D and E are
defined to be greater than three pixels, then some residue is left behind because
the new image's border doesn't overlap the old image entirely. Play around with the
values of D and E, and you will see what happens.

Enlarge Star program

" & flle Edit Control

lllustration 8.28 Enlarge Star output when star is small

104 GRAPHICS FOR THE MACINTOSH

r

& File Edit Control
E— LI ERGE—

lllustration 8.29 Enlarge Star output when star is large

This program is identical to the last, except we have no loop for moving the star
across the screen. What we wanted to show here was the effect of changing the
scale S. As you enter different values for Sin line 40, the image that is PUT onto the
screen changes. When S=1, itis at its real size, as defined inthe array. When S =
2, the image is twice as large (the area of the square is really four times as much,
but each dimension across and down is only twice as much).

Listing, Enlarge Star

10 " enlarge star
20 DEFINT A-Z

30 DIM A(65)
40 CLS:INPUT "enter size of star .. ",$§
50 CLS

60 X1=0:Y1=0:X2=X1+5"32-1:Y2=Y1+5"32-1
70 A{0)=32:A(1)=32

80 A(2)=0:A(3)=0

90 A(4)=0:A(5)=0

100 A(6)=0:A(7)=0

110 A(8)=0:A(9)=&H70

120 A(10)=0:A(11)=&H1F8

130 A(12)=7:A(13)=&HE30C

140 A(14)=&H1F:A(15)=&HFEOC
150 A(16)=&H7F:A(17)=&HFE18
160 A(18)=&HFF:A(19)=&HFF30
170 A(20)=8&H3FF:A(21)=&HFFED
180 A(22)=&H3DF:A(23)=&HFFAD
190 A(24)=&HT7FF:A(25)=&HFF60
200 A(26)=8&H7FF:A(27)=8HFEED

PIXEL GRAPHICS AND ICONS 105

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

A(28)=&HFFF:
A(30)=&HFFF:
A(32)=&HFFF:
A(34)=&HFFF:
A(36)=&HFFF:
A(38)=&HFFF:
A(40)=&HTFE:
A(42)=&HTFF:
A(44)=8H1FC:
A(46)=&HTF9:
A(48)=&HCF3:

A(50)=&H186F:A(51)=&HFCO0
A(52)=&H303F:A(53)=&HFB00
A(54)=&H30C7:A(55)=&HE0DOD

A(29)=&HFEFOQ
A(31)=&HFCFO
A(33)=&HFIFO
A(35)=&HF3F0
A(37)=&HIFFO
A(39)=&HCFFO
A(41)=&H3FED
A(43)=&HDFED
A(45)=8HFFCO
A(47)=&HFFCO
A(49)=&HFF00

A(56)=&H1F80:A(57)=0

A(58)=&HEOD:
A(60)=0:A(61

A(59)=0
)=0

A(62)=0:A(63)=0
A(64)=0:A(65)=0

PUT(X1,Y1)—(

IF INKEY$="" THEN 410 ELSE 40

r

X2,Y2).A

Racing Stars program

& File Edit Control

Saturn
22

Death Star
14

[
®

lllustration 8.30 Racing Stars program at beginning

106 GRAPHICS FOR THE MACINTOSH

r

& File Edit Control

racing stars

Saturn ‘
260
Death Star
314 .

'

lllustration 8.31 Racing Stars, program at end

Listing, Racing Stars

10

20
30
40
50
60
70
80
90
100
110
120
130
140
150

160

170

180

190

200

210

racing stars
RANDOMIZE TIMER
DEFINT A-Z
DIM A(65),B(65)
CLS
A{D)=32:A(1)=32:B(0)=32:B(1)=32
A(2)=0:A(3)=0:B(2)=0:B(3)=0
A(4)=0:A(5)=0:B(4)=0:B(5)=0
A(6)=0:A(7)=0:B(6)=0:B(7)=0
A(B)=0:A(9)=&H70:B(8)=0:B(9)=0
A(10)=0:A(11)=&H1F8:B(10)=7:B(11)=&HE000
A(12)=7:A(13)=&HE30C:B(12)=&H1F:B(13)=&HFCO0
A(14)=&H1F:A{15)=&HFEOC:B(14)=&HT7F:B(15)=&HFEODD
A(16)=&HTF:A(17)=&HFE18:B(16)=&HFF:B(17)=&HFF00
A{18)=&HFF:A(19)=&HFF30:B(18)=&H1FF:B(19)=
&HFFBO
A(20)=&H3FF:A(21)=&HFFED:B(20)=&H3FF:B(21)=
&HFFCO
A(22)=8H3DF:A(23)=&HFFAD:B(22)=&H3FF:B(23)=
&HFFCO
A(24)=BHT7FF:A(25)=&HFF60:B(24)=&HT7FF:B(25)=
&HFFED
A(26)=8H7FF:A(27)=&HFEED:B(26)=&H76F:B(27)=
&HFFED
A(28)=8&HFFF:A(29)=&HFEFO0:B(28)=&HFFF:B(29)=
&HFFFO
A(30)=&HFFF:A(31)=&HFCF0:B(30)=&HFFF:B(31)=
&HFFFO

PIXEL GRAPHICS AND ICONS 107

220

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

520
530
540
550

A(32)=8HFFF:A(33)=&HFIFO0:B(32)=8HEFB:B(33)=
&HFFFO
A(34)=8HFFF:A(35)=&HF3FO
A(36)=8HFFF:A(37)=&HIFFO
A(38)=8HFFF:A(39)=&HCFFO
A(40)=8HTFE:A(41)=&H3FEOD
A(42)=&HTFF:A(43)=&HDFED
A(44)=8H1FC:A(45)=&HFFCO
A(46)=8HTF9:A(47)=&HFFCO
A(48)=8HCF3:A(49)=&HFFOO
A(50)=&H186F:A(51)=&HFCO0
A(52)=8H303F:A(53)=&HFB00
A{(54)=8&H30CT7:A(55)=&HE00D
A(56)=&H1F80:A(57)=0
A(58)=&HE00:A(59)=0
A({60)=0:A({61)=0
A(62)=0:A(63)=0
A(64)=0:A(65)=0

FOR =34 TO 64 STEP 2
B(1)=B(66-1):B(I+1}=B(67-1)

NEXT |

S=1:P=8"32

CALL MOVETO(2.41):PRINT "Saturn"

CALL MOVETO{2.41+P):PRINT "Death Star”
X1=80:Y1=25:X2=X1+8"32-1:Y2=Y1+5"32-1

X3=X1:X4=X3+P-1:Y3=Y1+P:Y4=Y3+P-1
D=1:F=700/D

FOR 1=1 TO F
PUT(X1,Y1)-(X2,Y2) A, PSET

PUT(X3,Y3)-(X4,Y4),B,PSET

IF RND{1)>.5 THEN X2=X2+D:X1=X1+D ELSE
X4=X4+4D:X3=X3+D

CALL MOVETO(12,53):PRINT X1-80

CALL MOVETO(12,53+P):PRINT X3-80

NEXT |

IF INKEY$="" THEN 550 ELSE 60

This program is a take-off on the previous one. Here we define two stars, the
original ringed one, and the other a simple sphere with several white spots init as
highlights. The definition of this new object is found in lines 60 through 410 as hex
constants placed into the array B, DIMensioned 65. The array A remains
unchanged. Notice how the bottom half of the new star, B(34) through B(65) are
defined as the upside-down definition of B(2) through B(33). You can do this with
any symmetrical object.

After the two objects’ definitions, the program prints an identifying name on the
screen, and loops through PUTs of A and B across the screen. The trick is in line
510, where the horizontal displacement of each star is increased by D at random.
This is what makes the race interesting. When the loop in lines 480-540 is through
and the race is over, there is no way to predetermine which star will win.

108 GRAPHICS FOR THE MACINTOSH

Approaching Star program

" & File Edit Control 3

approaching stor E— |

lllustration 8.32 Approaching Star from far away

bl

" & File Edit Control
[approaching star EI

S —— —

Illustration 8.33 Approaching Star closer

PIXEL GRAPHICS AND ICONS 109

= approaching star 6 —eu—0u—o———

Illustration 8.34 Approaching Star very close

~

" & Flle Edit Control

IE approaching star %

lllustration 8.35 Approaching Star receding

110 GRAPHICS FOR THE MACINTOSH

Listing, Approaching Star program

10 ' approaching star

20 DEFINT A-Z

30 DIM A{65),G(5)
40 CLS

50 A(0)=32:A({ 32

1)=
60 A{2)=0:A(3)=0
70 A(4)=0:A(5)=0
80 A(6)=0:A(7)=0
90 A(8)=0:A(9)=8H70

100 A{10)=0:A(11)=&H1F8

110 A(12)=7:A(13)=&HE30C

120 A{14)=&H1F:A(15)=8HFEOC

130 A(16)=&H7F:A(17)=8&HFET8

140 A(18)=&HFF:A(19)=8HFF30

150 A(20)=&H3FF:A(21)=&HFFEOD

160 A(22)=&H3DF:A(23)=&HFFAD

170 A(24)=&HTFE:A(25)=&HFF60

180 A(26)=8H7FF:A(27)=&HFEED

190 A(28)=&HFFF:A(29)=&HFEFOD

200 A{30)=&HFFF:A(31)=&HFCFD

210 A(32)=&HFFF:A({33)=&HFIFO

220 A{34)=&HFFF:A({35)=8&HF3F0

230 A(36)=&HFFF:A(37)=&HIFFO

240 A(38)=&HFFF:A(39)=&HCFFO

250 A(40)=&HTFE:A(41)=&H3FED

260 A(42)=&HTFF:A(43)=8HDFEO

270 A(44)=&H1FC:A(45)=&HFFCO

280 A(46)=&HTF9:A(47)=8HFFCO

290 A(48)=&HCF3:A(49)=&HFFOO

300 A(50)=&H186F:A(51)=&HFCO0

310 A(52)=&H303F:A(53)=&HF800

320 A(54)=&H30C7:A(55)=&HE0Q0

330 A(56)=&H1F80:A(57)=0

340 A(58)=&HE00:A(59)=0

350 A(60)=0:A(61)=0

360 A(62)=0:A(63)=0

370 A(64)=0:A(65)=0

380 S=1

390 X1=100:Y1=0:X2=X1+31:Y2=Y1+31
400 D=1:E=0

410 FOR 1=0 TO 500

420 PUT(X1,Y1)-(X2,Y2), A, PSET

430 IF 1=260 THEN D=0:E=1

440 IF 1>245 AND 1<255 THEN €=0:D=0
450 X2=X2+D:X1=X1+E

460 Y2=Y2+D:Y1=Y1+E

470 NEXT |

480 |F INKEYS$="" THEN 480 ELSE 40

PIXEL GRAPHICS AND ICONS 111

This program uses only one image definition, the same one as has existed right
along, the ringed planet. The key difference is within the loop in lines 410-470. Here
the PUT in line 420 will be executed 500 times, but the values for the rectangle's
coordinates not only shift diagonally across the screen, but they redefine the size of
the rectangle.

Look at line 400, where the upper left coordinate’s displacement D startsas 1, and
the lower right coordinate's displacement E starts as 0. Until | is greater then 245
(see line 440) the image grows and seems to come toward you from the upper left
because D is fixed, while the lower right coordinate moves down and to the right
because E is 1. When | is between 245 and 255, the image pauses because both
displacements are set to zero. Later, when | is 260 or larger, the lower right
coordinate is the one that is fixed, while the upper left one approaches it. This
produces the effect of recession, because the star is shrinking toward the lower
right.

Revolving Stars program

" & File Edit Control

| revolving stars

% o

o

lllustration 8.36 Revolving stars, first view

112 GRAPHICS FOR THE MACINTOSH

-

" & File Edit Control

revolving stars e

]

T e e T T e e R e e T T T Lo r e e uJ
Illustration 8.37 Revolving stars, second view

r

& File Edit Control
reuoluing stars

e ®°

lllustration 8.38 Revolving stars, third view

Listing, Revolving Stars

10 °

20
30
40
50
60
70

revolving stars
DEFINT A-G

DIM A(B5).B(65)

CLS

A(D)=32:A(1)=32
A(2)=&H7F:A(3)=8&H0D
A(4)=&H1FF:A(5)=&HCO0D

PIXEL GRAPHICS AND ICONS 113

80 A(6)=&HT7FF:A(7)=&HF000

90 A(8)=&HFFF:A(9)=&HF800

100 A{0)=32:A(1)=32:B({0)=32:B(1)=32

110 A{2)=0:A{3)=0:B(2)=0:B(3}=0

120 A(4)=0:A{5)=0:B(4)=0:B(5)=0

130 A(6)=0:A(7)=0:B(6)=0:B(7)=0

140 A(8)=0:A{9)=&H70:B(8)=0:B(9)=0

150 A(10)=0:A(11)=&H1F8:B(10)=7:B(11)=&HE00O

160 A(12)=7:A(13)=8&HE30C:B(12)=8&HT1F:B(13)=&HFCO0

170 A(14)=&H1F:A(15)=&HFEQC:B(14)=&H7F:B(15)=&HFE00

180 A(16)=&H7F:A(17)=&HFE18:B(16)=&HFF:B(17)=&HFF00

190 A(18)=&HFF:A(19)=&HFF30:B(18)=&H1FF:B(19)=
&HFF80

200 A(20)=&H3FF:A({21)=8HFFE0:B(20)=&H3FF:B{21)=
&HFFCO

210 A(22)=&H3DF:A(23)=8HFFA0:B(22)=&H3FF:B(23)=
&HFFCO

220 A(24)=8HTFF:A(25)=8&HFF60:B({24)=&H7FF:B(25)=
&HFFEO

230 A(26)=&H7FF:A(27)=8HFEE0:B(26)=8H76F:B{27)=
&HFFED

240 A(28)=8HFFF:A{29)=&HFEF0:B(28)=&HFFF:B{29)=
&HFFFO

250 A(30)=&HFFF:A(31)=8&HFCFO0:B(30)}=&HFFF:B(31)=
&HFFFO

260 A(32)=BHFFF:A(33)=&HFIF0:B(32)=&HEFB:B(33)=
&HFFFO

270 A(34)=8HFFF:A(35)=&HF3F0

280 A(36)=&HFFF:A{37)=&HIFFO

290 A(38)=&HFFF:A(39)=&HCFFO

300 A(40)=&H7FE:A(41}=8H3FEQ

310 A(42)=8HTFF:A(43)=&HDFEOQ

320 A(44)=8H1FC:A{45)=&HFFCO

330 A(46)=8H7F9:A(47)=&HFFCO

340 A(48)=8HCF3:A(49)=&HFFO00

350 A(50)=&H186F:A(51)=&HFC00

360 A(52)=&H303F:A(53)=&HF800

370 A(54)=&H30C7:A(55)=&HE000

380 A(56)=8H1F80:A(57)=0

390 A(58)=8HE0D0:A({59)=0

400 A(60)=0:A(61)=0

410 A(62)=0:A(63)=0

420 A(64)=0:A(65)=0

430 FOR 1=34 TO 64 STEP 2

440 B{1)=B(66-1):B(1+1)=B(67-1)

450 NEXT |

460 S$1=1:82=2:83=1

470 XA=220:YA=120:XB=220:YB=105:XC=220:YC=115

480 P1=4"ATN({1):PIDEL1=PI/130:PIDEL2=P1/220:PIDEL3=

P1/90
(continued)

114 GRAPHICS FOR THE MACINTOSH

490 T1=PI1/13:T2=P1/7:T3=T2+P1/4

500 R1=120:R2=10:R3=90

510 X1=XA+R1°1.4°COS(T1):Y1=YA+R1°SIN{T1):X2=
X1+81%32-1:Y2=Y1+32°S1-1

520 X3=XB+R2"COS(T2):Y3=YB+R2"SIN(T2):X4=
X3+52°32-1:Y4=Y3+432°S2-1

530 X5=XC+R3°COS{T3):Y5=YC+R3I".8"SIN(T3):X6=
X5+83°32-1:Y6=Y5+32"S83-1

540 PUT(X1,Y1)-(X2,Y2).B,PSET

550 PUT({X3,Y3)-(X4,Y4), A PSET

560 PUT (X5.Y5)-(X6.Y6).B,PSET

570 T1=T1-PIDEL1:T2=T2+PIDEL2:T3=T3+PIDEL3

580 GOTO 510

This program uses two planets, as did the racing stars. In this program, though,
one of the planets is used in two different places on the screen, so you have three
objects to follow in their motions. Instead of racing the three planets, we decided to
make them revolve around each other. The largest, ringed, planet traces a small
circleinthe center of the screen. The two smaller ones revolve around it in opposite
directions, one closer than the other.

The effectis indeed striking, and it is hard to describe either in words or pictures. If
there is any one program in this book that you must run, it is this one.

The three planets are moved through “space” with the three PUT statements in
lines 540-560. The ringed planet, you remember, is the image stored in array A.
Array B holds the image for both other planets, as they are identical. We have set
up the orbits of these three objects in lines 510-530, in which the X and Y
displacements from the center of rotation are calculated. We will return to these
calculations later. First, consider the overall problem as a list of goals:

e Each object must revolve in a fixed orbit.

* Object A (let's call it Alpha) will be defined within a rectangle with corner
coordinates (X3,Y3)-(X4,Y4), it will revolve around a center at (XB,YB). Its
orbit will be a circle, with radius R2.

e One object B (beta) will be in rectangle (X1,Y1)-(X2,Y2), it will revolve
around a center (XA,YA), its orbit will be an ellipse with eccentricity 1.4,
and the orbit's radius will be R1.

¢ The other object B (we'll call it gamma) will be in rectangle (X5,Y5)-(X6,Y6),
with center (XC,YC), elliptical orbit with eccentricity 0.9, and orbit radius of
R3.

We could calculate the orbital velocity based on eccentricity and radius. If we
were especially ambitious, we could take into account the masses and positions of
the neighboring objects. To keep it simple, we let the three objects take on the
motions described above, with three orbital velocities chosen by programmer
whim.

PIXEL GRAPHICS AND ICONS 115

Now, let's identify the lines that do all this.

4860 Define scales of the objects.

470 Define the center coordinates for all three objects.

480 Choose the incremental angles for rotation speed.

490 Establish the starting positions for each object.

500 Set the three centers of rotation.

510-580 Loop to revolve the planets.

510 Calculate the new corner coordinates for Alpha.

520 Calculate the new corner coordinates for Beta.

530 Calculate the new corner coordinates for Gamma.

540-560 Paint them in.

570 Increment the angles. Notice that Alpha's angle increment is
negative, so it will revolve in the opposite direction from the other
planets.

580 Repeat lines 510-570 ad nauseam.

We are continually amazed at the Macintosh’s outstanding graphics capabilities.

Even in BASIC, considering all of the statements that must be interpreted into
machine code again and again, the machine operates at a sufficient speed to
simulate motion. The sophistication of the BASIC itself is a great boon to this
computer, because it takes advantage of so many of the Macintosh’s superb
Quickdraw routines.

1 =N
.

In this chapter we will explore the instructions LINE and CIRCLE. We will also
work with TEXTFONT, TEXTFACE, TEXTSIZE, TEXTMODE, PENSIZE, PEN-
MODE, and PENNORMAL text management commands which are available in
the Macintosh ROM as CALLs to Quickdraw routines.

We have chosen clock faces as a theme for our graphics designs, because they
allow a wide range of artistic freedom. It is not our intention to suggest that you
convert your Macintosh into a clock. Rather, we recommend these application
programs for your scrutiny as exercises in using some of the computer's more
sophisticated graphics.

CALLs to Text
Management Routines

You should be familiar with the Macintosh top-line menu displays provided when
dealing with text in either MacPaint or MacWrite. The two pull-down menus, Font
and Style provide three sets of facilities. Font allows you to choose among the
available fonts — Chicago, New York, Geneva, Monaco, and other fonts accessi-
ble through the Macintosh’s Fontfinder. Style provides two menus in one. The first
gives you a choice of textfaces — plain, bold, italic, underline, outline, shadow,
and others; and the second gives you a list of textsizes — 9, 10, 12, 14, 18, and
others. Another variation which affects text as it is positioned on the screen is
textmode, which allows you to AND, OR, XOR or invert text pixels with those
already on the screen.

BASIC, through the use of Quickdraw CALLSs, allows you to alter the output fonts
in all of these ways. lilustration 9.1, 9.2 and 9.3 will indicate how you can do this.

"7

118 GRAPHICS FOR THE MACINTOSH

CALL TEXTFONT(n)

Other fonts besides those in lllustration 9.1 should be available to you on the
BASIC disk. You can discover them by investigating the systems font files.

n Name Optimum Description
sizes
0 Chicago 2 System font used for windows
and menus

1 New York g=2 4 Default BASIC output font

Geneva @-:24 System font (icon titles)

L

4 Monaco 8, 12 Non-proportional font

Illustration 9.1 TEXTFONT calls

CALL TEXTFACE (n)

The textfaces in lllustration 9.2 can be added together to provide more stylish
options. For example, Bold-italic can be specified with CALL TEXTFACE(3);
Underline-Outline would be provided with a CALL TEXTFACE(12) because

12=8+4.
bit # value(n) Description
0 1 Bold
1 2 felic
2 4 Underline
3] Dutline
4 16 Shadow
5 32 Condensed (squeeze characters)
6 64 Expanded (stretch characters)

Illustration 9.2 TEXTFACE calls

CLOCKS 119

CALL TEXTSIZE(n)

This option is perhaps the most direct and easy to use. Simply use the fontsize you
want — 9,10, 12, 14, ...(up to 72 on some fonts)— as the argument in the CALL.

CALL TEXTMODE(n)
n Mode Description
0 Copy Default mode. Text replaces contents of screen.
1 OR Text superimposes screen image. Used to keep area

around text from "whiting out” image below.

(g

XOR Text inverts existing image. You can "see through” text.

3 BIC Black ls Changed. Text pixels are ch&énged to white.
The effect resembles the opposite of the OR mode.

lllustration 9.3 TEXTMODE calls

Application 1: Wall Clock

This program serves as a model for most programs in this chapter. Since it
contains many of the features needed by most of the clock programs, we will
describe it in more detail than the others.

r

€ File Edit Control
= — —— wallcdock

lllustration 9.4 Wall Clock program output

120 GRAPHICS FOR THE MACINTOSH

Listing, Wall Clock

10 " wall clock driver

20 CLS

30 X=100:Y=120:F=0

40 GOSUB 1000

50 T$=MIDS$(TIMES,5,1)

60 IF INKEY$="/" THEN CALL MOVETO(5,300):STOP
70 IF T$=MIDS(TIMES$,5,1) THEN 60

80 GOSUB 1000:GOTO 50

90 GOTO 70

1000 " wall clock

1010 P8=8"ATN{1)

1020 FO=1:FA=8:S1=12:M0=1:G0SUB 2000

1030 FOR J8=80 TO 86 STEP 2

1040 LINE(X,Y=-J8)-(X-J8,Y):LINE{X-J8,Y)-(X,Y+J8)
1050 LINE(X,Y+J8)—(X+JB,Y):LINE(X+J8,Y)-(X,Y-J8)
1060 NEXT J8

1070 J8=3

1080 FOR 18=0 TO P8 STEP P8/12

1090 X8=48"COS(18):Y8=48"SIN(18)

1100 CALL MOVETO({X+X8-13,Y+Y8+5):PRINT J8
1110 J8=J8+1

1120 IF J8>12 THEN J8=1

1130 NEXT 18

1140 CIRCLE(X,Y),2,33,0,P8

1150 T8$=TIMES

1160 H8=VAL{LEFTS$(T8s,2))

1170 M8=VAL(MIDS$(T8%.4,2))

1180 CALL PENSIZE({3,3)

1190 IF F=1 THEN LINE(X,Y)-(X+X7,Y+Y7),30
1200 IF F=1 THEN LINE(X,Y)-(X+X9,Y+Y9),30
1210 K8=(H8-3)*P8/12+M8°P8B/720

1220 X7=30°COS(K8):Y7=30"SIN(K8)

1230 LINE(X,Y)=-(X+X7,Y+Y7),b33

1240 CALL PENSIZE(2,2)

1250 L8=(M8-15)"P8/60

1260 X9=37°COS(L8):Y9=37"SIN(L8)

1270 LINE(X,Y)-(X+X9,Y+Y9),33

1280 CALL PENNORMAL:F=1

1290 FO=1:FA=0:S1=12:M0=0:GOSUB 2000

1300 RETURN

2000 ' set text values

2010 CALL TEXTFONT(FO):CALL TEXTFACE(FA)
2020 CALL TEXTSIZE(S!):CALL TEXTMODE(MO)
2030 RETURN

CLOCKS 121

Below is the outline of the program in pseudocode.

20 Clear screen

30 Define X and Y coordinates for clock’s center. Set F, first CALL
indicator, to 0.

40 Perform Wall Clock Routine. This first time around, the clock is

drawn and the time displayed. From then on, because F will not
be zero, the frame and digits of the clock are not drawn.

50 Isolate in T$ the second digit in the Minutes portion of TIMES. The
system variable TIMES$ has the format “HH:MM:SS” so the fifth
character is the digit we want.

60 If user hits “/” then move cursor to bottom of screen, stop.

70 If the fifth character in TIME$ is still the same, check for user
interrupt {(go to line 60).

80 Time has advanced to next minute. Perform Wall Clock Routine,
and go back to reset T$ in line 50.

1000 Wall Clock Routine

1010 Define P8 as 2*pi. The angle whose tangent is 1 is 450, which is
pi/4 radians. Therefore 2*pi is 8*ATN(1)

1020 Set FO (Font) to 1 (New York); FA (Face) to 8 (outlined); Sl (size) to

12; and MO (Mode) to 1 (Superimposed, ORed text). Then Per-
form Set Text Values routine at line 2000.

1030-1060 Draw clock border or frame.

1070-1130 Print the numbers on the clock face. Notice that line 1100
includes a slight shift to attempt to account for different number
widths, because 10, 11, and 12 are twice as wide as the other

numbers.

1140 Draw a small circle at center of clock. The hands will revolve
around this center.

1150-1170 Place in H8 the hour and in M8 the minutes.

1180 Redefine size of pen for drawing hour hand to a 3x3 pixel point.

1190-1200 If F< >0 (not first call) then erase old hands. This is done by
drawing old hands in white (cclor = 30).

1210-1230 Calculate position of hour hand and draw it. K8 is angle of hour
hand. M8*P8/720 is fraction of hour, (needed so that if time is
1:30, hour hand is halfway between 1 and 2).

1240 Calculate L8, angle of minute hand.

1250 Redefine size of pen to draw a thinner minute hand, 2x2 pixels.
1260 Calculate coordinates for tip of minute hand.

1270 Draw minute hand in black (color = 33).

1280 Reset pen size to normal, set F to 1 indicating hands drawn.

122 GRAPHICS FOR THE MACINTOSH

1290 Reset all TEXT values to system defaults: FO (Font) = 1 (New
York); FA (Face) = 0 (plain); SI (Size) = 12; and MO (Mode) = 0
(copy mode). Then perform Set Text Values routine at line 2000.

1300 Return. .

2000 Set Text Values routine.

2010 Using CALLs to Macintosh ROM, set font, face, size, and mode.
2020 Return.

In this program, the LINE command and the CIRCLE command were used. LINE
is a coordinate-to-coordinate instruction. Therefore, when a line of length R has to
be drawn from point X,Y at an angle A, some transformations must be calculated.
Inthe program, lines 1220 and 1260 show these calculations. Here's the procedure
for line 1220.

1. Line 1210 calculates K8, the angle of the hour hand, based on the values of
H8 and M8, H8 and M8 are the hour and minute values derived from the
system variable TIMES. The angle is one twelith of a full circle (P8) for each
hour, plus one 720th of a full circle for each minute. Note that the hour
corresponding to an angle of 0 is three o'clock, not noon, so we subtract
three in that calculation.

2. Line 1220 calculates X7 and Y7, the horizontal and vertical displacements
from the center of the clock. We calculate the endpoints Xy and Y7 using
polar coordinates to draw a line of angle K8 and radius length 30.

- o

‘l..h.---v_-".,-f
(x+r cos g, y+r sin @)

lllustration 9.5 X-distance and Y-distance calculations using the length of the
hour hand as 30 and the angle as K8

CLOCKS 123

3. Line 1230 draws the hour hand from the center of the clock X,Y to its proper
position around the face, which is X,Y displaced by X7,Y7.

Other noteworthy aspects of this first clock program are the use of PENNORMAL
and PENSIZE to change the thickness of lines drawn. We have found a reference
which we recommend highly. The magazine Macworld, published by PC World
Communications, Inc., at 555 De Haro St., San Francisco, CA 94107, is an
invaluable aid for hints and tricks on the Macintosh. The July/August 1984 issue in
particular has helped us, especially the article, Open Window — An exchange of
Macintosh discoveries, by Tandy Trower, Microsoft's marketing manager for lan-
guage products. In this article, the Toolbox Calls to the Macintosh ROM are
discussed in enough detail (far more than in the BASIC manual) to use with
confidence in your own BASIC programs. We urge you to subscribe to this
magazine, and if you can't do that, at least get a copy of this particular issue.

Application 2: Digital Clock

lllustration 9.6 The Macintosh digital clock

Listing, Digital Clock

10 ' digital clock driver

20 CLS

30 X=70

40 Y=50:M=0:GOSUB 1000

50 Y=150:M=1:G0SUB 1000

60 T$=MIDS$(TIMES$,5,1)

70 IF INKEY$="/" THEN CALL MOVETO(5,300):STOP
80 IF T$=MIDS(TIMES,5,1) THEN 70

(continued)

124 GRAPHICS FOR THE MACINTOSH

90 Y=50:M=0:G0OSUB 1000
100 Y=150:M=1:G0SUB 1000

110 GOTO 60

1000 ' digital clock

1010 FO=0:FA=8:S1=40:M0=1:G0OSUB 2000

1020 CALL PENSIZE(3.3)

1030 CALL MOVETO(X,Y)

1040 LINE(X,Y)-{X+280,Y+80),33,BF

1050 LINE(X+10,Y+10)-(X+270,Y+70),30.8B

1060 CALL MOVETO({X+32,Y+54)

1070 T8$=TIMES

1080 HB=VAL{LEFTS$(T8%,2))

1090 IF M=) THEN T8$=" "+LEFT$(T8%,5):G0T0 1140
1100 IF HB<12 THEN S8$="am” ELSE S8$="pm"

1110 H8=H8 MOD 12

1120 IF H8=0 THEN HB8=12

1130 T8$=RIGHTS${STR$({100+H8),2)+MIDS$(T8S,3,3}+"

"+58¢

1140 PRINT T8s$
1150 CALL PENNORMAL
1160 FO=1:FA=0:S1=12:M0=0:G0SUB 2000

1170 RETURN

2000 ' set text values
2010 CALL TEXTFONT(FO):CALL TEXTFACE(FA)
2020 CALL TEXTSIZE(S!):CALL TEXTMODE(MO)

2030 RETURN

The notes on the program below outline the steps involved in the program.

20
30-40

50

60
70
80
20
100
110
1000
1010

1020-1050

1060

Clear screen

Define upper left corner of top display (12-hour clock) and set
M=0 , indicating 12-hour clock. Then perform Digital Clock
Routine at line 1000.

Define upper left corner of bottom display (24-hour clock) and
set M=1, indicating 24-hour clock. Then perform Digital Clock
Routine at line 1000.

Get second digit in minutes portion of TIMES$.

If user hits /" then move cursor out of way, stop.

If time hasn't changed, go back to line 70.

Perform Digital Clock routine for 12-hour (top) clock.

Perform Digital Clock routine for 24-hour clock.

Goto line 60 to check time.

Digital Clock Routine.

Set Font=Chicago, Face =Outline, Size =40, Mode =Overlay
(OR). Perform Set Text Values routine.

Set fat pen size, draw large black rectangle. Then move in 10
units, draw white rectangle.

Position cursor for time to be displayed.

CLOCKS 125

1070-1080 Get hours in H8.

1090 If 24-hour clock, simply print out first five characters of TIME$
“HH:MM", so skip lines 1100-1130.

1100-1130 Set "am” or “pm” as appropriate, get 12-hour time, place leading
zero iftime is less than 10 o'clock.

1140 Print time. Note that the textface is outline and the textsize is 40.
Whatever gets printed produces its own large black rectangle as
a surrounding area.

1150-1160 Reset pen and text attributes to normal so that system messages
and future program runs will be standard. Perform Set Text
Values routine to do this.

1170 Return

2000 Set Text Values Routine.

2010-2020 Use Toolbox calls to set fonts

2020 Return.

Application 3: Two Clocks

This application is simply a combination of the two previous programs. The point
of this exercise is to demonstrate the flexibility of these subroutines.

r

& File Edit Control

lllustration 9.7 Two Macintosh clocks

126 GRAPHICS FOR THE MACINTOSH

Listing, Two Clocks

10 ' two clocks driver

20 CLS

30 X=10:Y=10:M=0:G0SUB 2000

40 X=350:Y=190:G0SUB 1000

50 T$=MIDS{TIMES$,5,1)

60 IF INKEY$="/" THEN CALL MOVETO(5,300):STOP
70 IF T$=MIDS(TIMES,5,1) THEN 60

80 X=10:Y=10:M=0:G0SUB 2000

90 X=350:Y=190:G0SuB 1000

100 GOTO 50

1000 " wall clock

1010 P8=8"ATN(1}

1020 FO=1:FA=8:S1=12:M0=1:G0SUB 3000

1030 FOR J8=80 TO 86 STEP 2

1040 LINE(X,Y-J8)-(X-J8,Y):LINE(X-J8,Y)-(X,Y+J8)
1050 LINE(X,Y+J8)-(X+J8.Y):LINE(X+J8.Y)-(X,Y-J8)
1060 NEXT J8

1070 J8=3

1080 FOR 18=0 TO P8 STEP P8/12

1090 X8=48°C0S(18):Y8=48"SIN(18)

1100 CALL MOVETO(X+X8-13,Y+Y8+5):PRINT J8
1110 J8=J8+1

1120 IF J8>12 THEN J8=1

1130 NEXT 18

1140 CIRCLE(X,Y),2,33.0,P8

1150 T8$=TIMES

1160 HB8=VAL(LEFT${T8%.,2))

1170 M8=VAL(MIDS$(T8s.4.2))

1180 CALL PENSIZE(3.3)

1190 IF F=1 THEN LINE(X,Y)-{(X+X7,Y+Y7),30
1200 IF F=1 THEN LINE(X,Y)-{X+X9,Y+Y9),30
1210 K8=(H8-3)*P8/12+M8*P8/720

1220 X7=30°"COS(K8):Y7=30"SIN(K8)

1230 LINE(X,Y)-{X+X7,Y+Y7),33

1240 CALL PENSIZE(2,2)

1250 L8=(M8-15)"P8/60

1260 X9=37"COS(L8):Y9=37"SIN(L8)

1270 LINE(X.Y)-(X+X9,Y+Y9),b33

1280 CALL PENNORMAL:F=1

1290 FO=1:FA=0:S1=12:M0=0:G0SUB 3000

1300 RETURN

2000 ' digital clock

2010 FO=0:FA=8:S1=40:M0=1:G0SUB 3000

2020 CALL PENSIZE({3.3)

2030 CALL MOVETOD(X,Y)

2040 LINE(X.Y)-(X+280,Y+80),33,BF

2050 LINE(X+10,Y+10)-(X+270,Y+70),30,8
2060 CALL MOVETO(X+32,Y+54)

CLOCKS 127

2070 T8S$=TIMES

2080 H8=VAL(LEFTS$(T8%,2))

2090 IF M=1 THEN T8$=" "+LEFT$(T8%,5):G0T0 2140

2100 IF HB<12 THEN S8%="am" ELSE S85="pm"

2110 H8=H8 MOD 12

2120 |F HB8=0 THEN H8=12

2130 TBS$=RIGHTS(STRS$(100+HB),2)+MIDS(T8%,3,3)+"
"+58%

2140 PRINT T8$

2150 CALL PENNORMAL

2160 FO=1:FA=0:S1=12:M0=0:GNSUB 3000

2170 RETURN

3000 ' set text values

3010 CALL TEXTFONT(FO):CALL TEXTFACE(FA)

3020 CALL TEXTSIZE(S!):CALL TEXTMODE (MOD)

3030 RETURN

In this program, lines 1000-1300 are unchanged from the Wall Clock you saw
previously. Lines 2000-2170 are identical to lines 1000-1170 in the Digital Clock
program. Even the checks for 12-hour or 24-hour clocks were left in. The Set Text
Values routine was jogged to lines 3000-3030, again unchanged.

Application 4: Mantel
Clock

" & File Edit Control i

lllustration 9.8 Output from Mantel Clock program

128 GRAPHICS FOR THE MACINTOSH

Listing, Mantel Clock

10 ' mantel clock driver

20 CLS

30 X=240:Y=120:F=0

40 GOSUB 1000

50 T$=MIDS(TIMES$,5,1)

60 IF INKEYS$="/" THEN CALL MOVETO(5,300):STOP

70 IF T$=MIDS(TIMES$,5,1) THEN GOTO 60

80 GOSUB 1000

90 GOTO 50

1000 ' mantel clock

1010 FO0=9:FA=1:S1=12:M0=1:G0SUB 2000

1020 P8=8"ATN(1)

1030 FOR J8=58 TO 62 STEP 2

1040 CIRCLE(X.,Y),J8.33.0,P8

1050 NEXT J8

1060 CIRCLE(X,Y),2,33,0,P8

1070 T8$=TIMES$

1080 HB8=VAL(LEFT$(T8s%,2))

1090 M8=VAL(MIDS$(T78%,4,2))

1100 CALL PENSIZE(3,3)

1110 IF F=1 THEN LINE(X,Y)~-(X+X7.Y+Y7),30

1120 IF F=1 THEN LINE(X,Y)-(X+X9,Y+Y9),30

1130 K8=(H8-3)"P8/12+M8°P8/720

1140 X7=30"COS(K8):Y7=30"SIN(KB)

1150 LINE(X,Y)=(X+X7,Y+Y7),33

1160 CALL PENSIZE(2,2)

1170 LB8=(M8-15)"P8/60

1180 X9=40°COS(L8):Y9=40"SIN{L8)

1190 LINE(X,Y)-{X+X9,Y+Y9),633

1200 CALL PENSIZE(2.,2)

1210 CIRCLE(X,Y+80),160,33,P8/2,P8,1.4

1220 LINE(X-123,Y+80)-(X+123,Y+92),33.,8B

1230 CALL PENNORMAL

1240 J8=1

1250 FOR 18=0 TO P8 STEP P8/4

1260 X8=48"C0S(18):Y8=48"SIN{18)

1270 CALL MOVETO(X+X8-12,Y+Y8+6):PRINT MIDS("I11 VI
IXXPI™,3%(J8-1}+1,3)

1280 J8=J8+1

1290 NEXT 18

1300 F=1

1310 FO=1:FA=0:S1=12:M0=0::GOSUB 2000

1320 RETURN

2000 ' set text values

2010 CALL TEXTFONT(FO):CALL TEXTFACE(FA)

2020 CALL TEXTSIZE(S!):CALL TEXTMODE({MO)

2030 RETURN

CLOCKS 129

Some selected remarks about this program:
1030-1050 Draw three circles with center XY, radius J8 (58, 60, 62),

color =33 (black), starting at angle 0 and ending at angle P8 (two
pi). The last two arguments in line 1040, start and end angles, are
optional if you are going to draw a full circle. But if you want to
draw only part of a circle, they must be specified.

1060-1190 Much the same as Wall Clock.
1210-1220 Draw clock frame. Notice that the CIRCLE command uses start-

ing and ending angles of P8/2 and P8, and that the aspect of the
circleis 1.4. This is what gives the mantel clock its oval outline.

1250-1290 Draw Roman numerals on clock face by printing them as strings

on the face.

Application 5: News Room

Clock
" & File Edit Control i
=—————— news clocks

Petaluma Pocatello

=]

lllustration 9.9 Newsroom clocks ala Macintosh

Listing, Newsroom Clocks

10 '

20
30
40
50
60
70
80
90

news room clock driver

CLS

DIM M$(12).N$(4)

FOR I=1 TO 12

READ M$ (1)

NEXT |

DATA “Petaluma”,"Pomona”,"Pisma Beach”
DATA "Provo","Pueblo”,"Pocatello”

DATA “"Pascagoula”,"Ponchatoula”, "Peoria”
(continued)

130 GRAPHICS FOR THE MACINTOSH

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

1000 °

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300

"noon

DATA "Provincetown”,"Portsmouth”,"Punxsutawney"

RANDOMIZE TIMER

X=-30:Y=70:F=0

FOR I=1 TO 4

NS (1)=M${3"I1-INT(3°RND))

X=X+110

GOSUB 1000

NEXT |

T$=MIDS(TIMES$,5,1)

IF INKEY$="/" THEN CALL MOVETO(5,300):STOP

IF T$=MIDS(TIMES,5,1) THEN 190

X=-30

FOR I=1 T0 4

X=X+110

GOSUB 1000

NEXT 1|

GOTO 180

news room clocks

P8=8°ATN{1)

CALL TEXTMODE(1)

FOR J8=44 TO 48 STEP 4

CIRCLE(X.Y),J8,33,0,P8

NEXT J8

CIRCLE(X,Y),2,33,0,P8

T8$=TIMES

H8=VAL(LEFTS$(T8%,2))~4+I

M8=VAL(MIDS$(T8%,4,2))

CALL PENSIZE(3.3)

IF F>3 THEN LINE(X,Y)=(X+X7(1),Y+Y7(1)),30

IF F>3 THEN LINE(X,Y)-(X+X9{1),Y+Y9(1)),30

K8=(H8-3)"P8/12+M8°P8/720

X7(1)=30"COS(K8):Y7(1)=30"SIN(K8)

LINE(X,Y)=(X+X7(1),Y+Y7(1)),33

L8={MB-15)"P8/60

X9(1)=40"COS(L8B):YS(1)=40"SIN(L8)

CALL PENNORMAL

LINE(X,Y)=(X+X9(1),Y+Y9(1}),33

F0=4:FA=0:S1=9:M0=1:G0SUB 2000

CALL TEXTFONT(4):CALL TEXTSIZE{(9)

J8=3

FOR 18=—-P8/100 TO P8-P8/100 STEP P8/12

X8=36"C0S(18):Y8=36"SIN(18)

CALL MOVETO(X+X8-9,Y+Y8+4):PRINT J8

J8=J8+1

I1F J8>12 THEN J8=1

NEXT 18

CALL TEXTMODE(D)

IF F<4 THEN CALL MOVETO(X-3*LEN(NS(1)),Y+68):
PRINT N$(1)

CLOCKS 131

1310 F=F+1

1320 RETURN

2000 ' set text values

2010 CALL TEXTFONT({FO):CALL TEXTFACE(FA)
2020 CALL TEXTSIZE(S!):CALL TEXTMODE (MO)
2030 RETURN

The array M$ holds twelve town names, three for each time zone. Lines 130-170
place into array N§ four of these cities — one at random from the first three; another
at random from the second three; a third at random from the third three; and a
fourth at random from the fourth three in M$. This gives variety to the display so that
itis rare that you get two identical sets of four names in a given series of runs.

Lines 220-250 move each clock over from the preceding one.

Lines 1230-1280 drawthe numbers on the face of the clock whenever the hands
have been drawn, because in lines 1110 and 1120 the pre-
viously drawn hands must be whited out, and that would leave
a white streak in the numerals.

The displacement in the X and Y directions for the hour and minute hands (X7,Y7
for hour hand and X9,Y9 for minute hand) are DIMensioned to hold four different
pairs of numbers (there are four clocks). Notice that lines 1110-1120 use these
subscripted array values so that each clock’s hour hand is different. In a newsroom
display like this, where each clock represents the four different time zones, each
clock's hour hand is displaced by one hour from the previous one. Only the hour
hand's angle changes between clocks. Remember that the endpoints of both
hands change between clock faces, so all endpoint coordinates must be kept.

Application 6: Egg Timer

" & File Edit Control
EV———=——————=— egg timer

lllustration 9.10 Output from Egg Timer Program

132 GRAPHICS FOR THE MACINTOSH

Listing, Egg Timer

10 ' egg timer driver

20 CLS:F=0

30 INPUT "enter number of seconds ..";T
40 CLS

50 X=200:Y=100:V=T

60 WHILE V>0

70 1F INKEY$="/" THEN CALL MOVETO(5,300):STOP
80 GOSUB 1000

90 WEND

100 BEEP:BEEP:CALL MOVETO(10,250):STOP
1000 ' egg timer

1010 P8=8"ATN(1)

1020 IF F=1 THEN 1180

1030 F=1

1040 T8=TIMER

1050 FO=7:FA=1:S1=18:M0=1:G0SUB 2000
1060 FOR A8=1 TO 3

1070 CIRCLE(X-40,Y),100+A8,33,0,P8,.7+A8/100
1080 NEXT A8

1090 FOR A8=1 TO0 2

1100 CIRCLE(X-A8.,Y),62+A8,33,0,P8

1110 NEXT A8

1120 J8=0

1130 FOR 18=0 TO P8 STEP P8/10

1140 X8=48"COS(18):Y8=48"SIN(I8)

1150 CALL MOVETO(X+X8-18,Y+YB+10):PRINT J8
1160 J8=J8+1

1170 NEXT 18

1180 D8=TIMER-T8:V8=T-D8

1190 IF V8=V THEN RETURN ELSE Vv=V8

1200 M8=INT(V/60):S8=V-60"M8

1210 K8=MB8"P8/10

1220 CALL PENSIZE(4,4)

1230 LINE(X+X6,Y+Y6)-(X+X7.Y+Y7),30

1240 X6=32"COS(K8):Y6=32"SIN(KB)

1250 X7=36°COS(K8):Y7=36"SIN(K8)

1260 LINE(X+X6,Y+Y6)-(X+X7,Y+Y7),33

1270 L8=S8°P8/60

1280 CALL PENSIZE(2,.2)

1290 LINE(X,Y)-(X+X9,Y+Y9),30

1300 X9=37"COS(LB):Y9=37"SIN(L8)

1310 LINE(X,Y)=(X+X9,Y+Y9),33

1320 CALL PENNORMAL

1330 FO=1:FA=0:S1=12:M0=0:G0SUB 2000
1340 RETURN

2000 ' set text values

2010 CALL TEXTFONT(FO):CALL TEXTFACE(FA)
2020 CALL TEXTSIZE(S!):CALL TEXTMODE(MO)
2030 RETURN

CLOCKS

133

Below are our notes on the Egg Timer Program.

20 Clear screen, set First Time Flag (F) to 0.

30 Get number of seconds T from user.

40 Clear screen of dialog.

50 Define X,Y as center of clock. Settimer Vto T. V will gofrom T to
0, and as long as it is positive, the clock will run.

60-30 While there are still some seconds left in V, continue to perform
the Egg Timer routine at line 1000.

100 WhenV reaches 0, beep the speaker, move the cursor out of the
way, and stop.

1000 Egg timer routine.

1010 Define 2*pi, a full circle in radians.

1020-1170 If F=0then setitto 1 and draw frame of egg timer.

1050 Set Font = Athens, Face =Bold, Size =18, Mode = overlay (OR).

1060-1080 Draw egg shape ellipse using CIRCLE.

1090-1110 Draw circles around clock face.

1130-1170 Place digits O through 9 at six minute intervals.

1180 Set D8, seconds since last call to egg timer.

1190 V8 is seconds left. If V, return else set V=V8.

1200 M8 is number of full minutes left. S8 is number of seconds left in

partial minutes.
1210-1260 Position minutes left blob on egg timer.
1270-1310 Erase and redraw the second hand.
1320-1340 Restore all font attributes and return.
2000 Set text values routine. No change from all others.

Conclusion

In this chapter you saw how the LINE and CIRCLE commands can help you to
draw figures of many kinds. In particular, you saw how the CIRCLE command is
perhaps a little misnamed, because it really draws ellipses. The circle is, after all, a
special case of ellipse with eccentricity of 0 (what Microsoft's documentation on
CIRCLE calls the aspect of the circle). The CIRCLE command is also flexible
because you can draw a portion of a circle, or an arc. LINE and CIRCLE used
together allowed us to draw that nicely shaped half-oval outline for the mantel
clock.

In Chapter 12, you will see another way to form circle parts with the Toolbox calls
do ARC and do OVAL, where do can be FRAME, PAINT, ERASE, INVERT, and
FILL. We don't use all of the options, only enough to give you a taste of their power.

UL

VIIVI/ \I N

When Microsoft® developed its BASIC interpreter for personal computers, it
recognized the need for commands that would support the ever-growing set of
users that produce graphics in their programs. Microsoft has been supplying
BASIC to many vendors before Apple's interest in it for the Macintosh. Microsoft
developed the venerable Radio Shack TRS-80™ Model I's advanced BASIC, for
which owners paid a premium, as well as the IBM PC's BASIC, and the Radio
Shack’s Color Computer, and all the rest of the latter company’s hardware.

Our introduction to Microsoft's BASIC was in 1977, on a Model | TRS-80. We
discovered the PSET and PRESET instructions, the POINT function, and drew our
lines in the highest resolution possible at that time, 48 rows by 128 columns.
Imagine our pleasure at discovering the enhanced graphics instructions available
on the TRS-80's Color Computer! Here was high resolution, with 192 rows and 280
columns, color, and commands like LINE and CIRCLE, and even a DRAW. Qur
exploration of that system left us jaded. Whenever we ran across a BASIC, we
would check first if it had a LINE and CIRCLE, then if it had a DRAW.

The MAC’s graphics instructions are good, and its resolution is marvellous.
However, we miss the DRAW command that Microsoft provided for the TRS-80
Color Computer. Microsoft did provide DRAW in its BASIC version called
GWBASIC (Gee Whiz BASIC), but the DRAW command is not on the MAC. Fear
not, we will give you the DRAW command as a subroutine later in this chapter.

LINE Instruction

Before we discuss the DRAW command in detail, let’s review the LINE command,
especially its standard form, which is

LINE (X1,Y7) - (X2,Y2)

This instruction syntax allows you to specify the endpoints of the line in Cartesian
coordinate fashion, so that you can draw the line directly from the first point (X1,Y1)
to the second point (X2,Y2).

135

136 GRAPHICS FOR THE MACINTOSH

Using Angle and Radius
with LINE

Suppose you want your line to start at a point (X1,Y1) and you want it to be R units
long, as in a circle’s radius, and to form the angle A with the horizontal line

(Nustration 10.1).

COS # =

w =%

—
"y,
w
1
=
=
1}
3 A=

,,

=
1
-
@

lllustration 10.1 Sketch of line in polar coordinates.

In this case, you don't know the X-Y displacement from the original point, so you
can't use the straightforward

LINE (X1,Y1) - (X2,Y2)

because you don't know (X2,Y2). You can calculate these coordinates using
elementary trigonometry. The horizontal distance from (X1,Y1) to the endpoint of

thelineis

DX=R*COS(A)

where A is the angle in radians (lllustration 10.2).

THE LINE COMMAND 137

DX

lllustration 10.2 Triangle with DX
highlighted

The vertical distance from (X1,Y1) to the endpoint of the line is
DY =R*SIN(A)

again with A in radians (lllustration 10.3).

lllustration 10.3 Triangle with DY
highlighted

Now, you can draw your line with the LINE command as
LINE (X1,Y1) - (X1+DX,Y1+ DY)

If the cursor is already at (X1,Y1), it's even simpler.
LINE STEP (DX,DY)

The problem with both of these examples is that in either case you have to
calculate the displacements DX and DY using the trigonometric sine and cosine

functions. These are substantially slower to execute than a simple addition, or even
several multiplications.

138

GRAPHICS FOR THE MACINTOSH

Advanced Applications of
LINE

Calculating sines and cosines to determine the endpoint of a line is one of the
several justifications for the DRAW command. With it, we can draw aline of a given
length at any one of the eight angles (0, 45, 90, 135, 180, 225, 270, and 325
degrees) without using BASIC's SIN and COS functions. Before we do so, how-
ever, let us explore the LINE command in more detail.

Tessellation

Tessellation is the process of filling in an area with a geometric pattern. You can
think of the hexagonal beehive pattern as one that can completely fill a surface with
no gaps, regardless of the surface's area. Simple tessellation patterns, such as
squares or triangles, don't offer much in visual appeal. More complex patterns,
when chosen to fill an area, can be quite stunning.

We have found that tessellation at random is in many ways, different and more
exciting than regular tessellation. For example, itis a simple task to write a program
that produces squares over the entire surface of the screen. But if the squares are
produced to fill the screen randomly, it becomes a visual “game” to see which area
gets filled next. Consider each of the examples of tessellation that follow, and
explore this intriguing technique.

ANGLEWALK: Random
Tessellation with LINE

The Random Walk Problem is a classic environment in which to explore random
tessellation. This problem involves a drunkard's aimless motions near a lightpost.
Suppose the drunkard is leaning against the lamppost and steps away one pace.
Then he steps off one more pace, but in any one of eight directions, including back
to the post (lllustration 10.4). What path does that drunkard leave in his wander-
ings?

Let's code the problem on the Macintosh, using the LINE command as a tracing
mechanism for the drunkard's motions.

THE LINE COMMAND 139

Tl o
- gy
% § o5, Sy
] a :_'.h'. o
i g S
. LI
o A& o
- Lol T Bl
x U T
kN G
i o0 &
. L -
L1 WY . = "
., o " as
pLR T S T e LI L A
{‘-L‘-.-:‘-t. e m %
- P K L e s
I A T
b R N R E S
e faen R
% ERE
- " - il
| Inebriated T A
Tenah Y
LI

person

Lamppost

lllustration 10.4 Sketch of lamppost, drunkard, and random walk

~

" & File Edit Control
iﬁ anglewalk EI

lllustration 10.5 Output of ANGLEWALK, L=10

140 GRAPHICS FOR THE MACINTOSH

The output in lllustration 10.5 shows several key features of a random talk that is
bounded on four sides. When the drunkard hits a wall, he doesn't learn to avoid
that wall, and may hang around in the area for some time, as did ours in the
example we show in lllustration 10.6.

" & File Edit Control [
E=———————— anglewalk

7

lllustration 10.6 Same program, much later

Notice that the lower right corner has been investigated thoroughly by our
inebriant. His walk has left a pattern of squares with diagonals that resembles tiling.
This is the beginnings of the tessellation of the complete screen.

Listing, ANGLEWALK

10 " anglewalk

20 CLS: RANDOMIZE TIMER

30 LFB=10: RTB=480: UPB=10: LWB=270: L=10

40 X=250: Y=140: CALL MOVETO(X,Y): PSET(X,Y)

50 DX=L"(INT(RND"*3)-1): DY=L"(INT(RND*3)-1): GOSUB
1000

60 GOTO 50

1000 ' random line routine

1010 |F X+DX<LFB OR X+DX>RTB THEN DX=-DX

1020 IF Y+DY<UPB OR Y+DY>LWB THEN DY=-DY

1030 LINE -STEP(DX,DY)

1040 X=X+DX: Y=Y+DY

1050 RETURN

THE LINE COMMAND 141

Below are notes on the ANGLEWALK program.

20 Clear screen and seed random number generator to whatever
the internal clock contains.

30 Define the bounds of the screen. LFB, RTB, UPB, and LWB are
the left, right, upper, and lower bounds of the screen respec-
tively.

40 Move to the center of the screen and plant a point there.

50 Calculate random displacements DX and DY in the horizontal

and vertical directions. RND*3 produces a value between
0.0000...and 2.999.... INT(RND*3) therefore fetchesa0, 1, or 2.
If we subtract 1 from that result, we end up witha —1, 0, or +1.
Multiply that by L, the length of the pace, and we have defined
both DX and DY as individually random displacements in both
the X and Y directions. Now we call the subroutine to take the
step.

60 This statement provides an infinite loop for the random walk.

1010-1020 Check if this added displacement DX or DY places the destina-
tion outside the bounds of the screen. If so, simply reverse the
direction of that displacement. Consider it the drunkard's reac-
tion if he hits a wall, or if he is afraid of the dark beyond the
immediate area around the lamppost. Hell either bounce or
retreat a step.

1030 Draw that step.
1040 Reset X and Y, the place where the drunk is standing now.
1050 Return

Square Tessellation:

& File Edit Control k :
==———————— squarewalk

r

lllustration 10.7 Sqguare tessellation

142 GRAPHICS FOR THE MACINTOSH

The only change we made to the ANGLEWALK program was to add this line in
the subroutine:

1005 IF DX< >0AND DY < >0 THEN RETURN

This forces either DX or DY or both to have a value of zero in order to draw the
pace. This means that the pace will be either vertical or horizontal. You can modify
it further by changing the pace length L from 10 to some other length.

Listing, SQUAREWALK

10 ' squarewalk

20 CLS: RANDOMIZE TIMER

30 LFB=10: RTB=480: UPB=10: LWB=270: L=10

40 X=250: Y=140: CALL MOVETO(X,Y): PSET(X.Y)

50 DX=L"(INT(RND*3)-1): DY=L"(INT(RND*3)-1): GOSUB
1000

60 GOTO 50

1000 " random line routine

1005 IF DX<>0 AND DY<>0 THEN RETURN ' modification

to anglewalk

1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX

1020 IF Y+DY<UPB OR Y+DY>LWB THEN DY=-DY

1030 LINE -STEP(DX,DY)

1040 X=X+DX: Y=Y+DY

1050 RETURN

Diamond Tessellation

" & File Edit Control k i
diamondwalk

lllustration 10.8 Diamond tessellation

THE LINE COMMAND

143

The step size was left at 10 for this pattern, and line 1005 was changed to

1005 IF DX=0OR DY =0 THEN RETURN
which forces the step to stay on a diagonal.

Listing, DIAMONDWALK

10 " diamondwalk

20 CLS: RANDOMIZE TIMER

30 LFB=10: RTB=480: UPB=10: LWB=270: L=10

40 X=250: Y=140: CALL MOVETO(X,Y): PSET(X,Y)

50 DX=L*(INT(RND*3)-1): DY=L*(INT(RND*3)-1): GOSUB
1000

60 GOTD 50

1000 ' random |ine routine

1005 IF DX=0 OR DY=0 THEN RETURN ' modification to

anglewalk

1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX

1020 |F Y+DY<UPB OR Y+DY>LWB THEN DY=-DY

1030 LINE -STEP(DX,DY)

1040 X=X+DX: Y=Y+DY

1050 RETURN

Four-pointed Star
Tessellation

" & File Edit Control &

AKX KK

*I
I*I\(‘*

4)
o

&L
D
D

S

lllustration 10.9 Four-pointed stars output from STARWALK

144 GRAPHICS FOR THE MACINTOSH

Here we avoided both the 45-degree diagonals and the horizontal and vertical
orientations. Rather, we forced the program to draw 30-degree and 60-degree
lines. These angles cannot be drawn using the DRAW subroutine you will see later.
We altered the line's angle with a new line 1030:

1030 LINE — STEP (2*DX,DY): LINE — STEP(DX,2*DY)

We kept line 1005 as before, to eliminate the horizontals and the verticals.

Listing, STARWALK

10 " starwalk

20 CLS: RANDOMIZE TIMER

30 LFB=10: RTB=480: UPB=10: LWB=270: L=10

40 X=250: Y=140: CALL MOVETO(X,Y): PSET(X.Y)

50 DX=L"(INT(RND*3)-1): DY=L"{INT(RND*3)-1): GOSUB

1000

60 GOTO 50

1000 ' random line routine

1005 |IF DX=0 OR DY=0 THEN RETURN ' modification to
anglewalk

1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX

1020 IF Y+DY<UPB OR Y+DY>LWB THEN DY=-DY

1030 LINE -STEP(2°DX,DY): LINE -STEP(DX,2*DY)
modification

1040 X=X+DX+DX: Y=Y+DY+DY ' modification

1050 RETURN

Complex Tessellation

& File Edit Control
E=————— vinyl floorwalk

r

/

o W

T H

lllustration 10.10 Vinyl flooring tiles output, VINYL FLOORWALK

THE LINE COMMAND 145

lllustration 10.10 shows the output if you remove line 1005 to allow horizontals and
verticals back into the fray. Notice that the last two figures seem to go out of
bounds. That's because the bounds check is on X+ DX and Y + DY rather than
X +2*DX and y+DY. The Macintosh takes it in stride, never complaining about
plotting points outside the bounds of the screen. However, don't try to remove lines
1010 and 1020 to simplify the process, because the plotting may get very busy
outside of the screen's range, and that tends to slow down the action on the screen.

Listing, VINYL FLOORWALK

10 ' vinyl floorwalk

20 CLS: RANDOMIZE TIMER

30 LFB=10: RTB=480: UPB=10: LWB=270: L=10

40 X=250: Y=140: CALL MOVETO(X,Y): PSET(X.Y)

50 DX=L"(INT(RND"3}-1): DY=L"(INT(RND"3)-1): GOSUB
1000

60 GOTO 50

1000 ' random line routine

1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX

1020 |F Y+DY<UPB OR Y+DY>LWB THEN DY=-DY

1030 LINE -STEP(2°DX,DY): LINE -STEP(DX,2°DY}

1040 X=X+DX+DX: Y=Y+DY+DY

1050 RETURN

Suggestions:

[]

1030 LINE - STEP(3*DX,DY): LINE — STEP(DX,3*DY)
1030 LINE - STEP(3*DX,2*DY): LINE - STEP(2*DX,3*DY)
1030 LINE — STEP(DX,DY): CIRCLE(X,Y), ABS(DX +DY)/3
1030 CIRCLE(X,Y), ABS(DX + DY)/3

25 DEFINT A-Z

We encourage you to explore this simple program further. You will discover a
multitude of rewarding patterns, all different and all imbued with that captivating
combination of randomness and symmetry.

146 GRAPHICS FOR THE MACINTOSH

Stars and Circles

We have modified the program in line 1030 three different ways to show you how
so small a change can cause major changes in output. The first is STARS and
CIRCLES.

" & File Edit Control

stars@circles

M

lllustration 10.11 Stars & Circles
Listing, STARS&CIRCLES

10 ' stars & circles

20 CLS: RANDOMIZE TIMER

30 LFB=10: RTB=480: UPB=10: LWB=270: L=30

40 X=250: Y=140: CALL MOVETO(X.,Y): PSET(X,Y)

50 DX=L"(INT(RND*3)-1): DY=L"{INT{RND"3)-1): GOSUB
1000

60 GOTO 50

1000 ' random circle routine

1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX

1020 IF Y+DY<UPB OR Y+DY>LWB THEN DY=-DY

1030 LINE -STEP(DX,DY): CIRCLE(X.,Y),ABS({{DX+DY)/3)

1040 X=X+DX: Y=Y+DY

1050 RETURN

THE LINE COMMAND 147

" & File Edit Control
_——————— = circles

Illustration 10.12 Circles

" & File Edit Control)

=

(D
..
AV,

@
o

X
)
< 2
3
o4
D)
,"
%))
P
)

¢
y
9
)

0)
<
X4
G
Y
10
X ﬂ ¢
).‘\
<7
5

5
it

\/ \J
94
</
».«.
S
).\.
R
LX)
o
o
ot

)

-
()

LYY
L)
L)
-
k)
S—<F
X0
0
-
ogo
&‘

o’ao
o(oooo‘doomou

:_;Q:o‘;g:ggz.:ogogooooooooooooogo@
o0(0(0(0(0(0 00000000‘0000),0600)
go:go;g;q:g’ggogo.o:o0‘6'0"6‘0‘0‘0000000000)
r.(‘f.v.(.\».#.b.v‘.\.(.\v.(.v..’v v’.\r <

Illustration 10.13 Circles later

148 GRAPHICS FOR THE MACINTOSH

Listing, Circles

10

20 CLS:

circles

RANDOMIZE TIMER

30 LFB=10: RTB=480: UPB=10: LWB=270: L=30
40 X=250: Y=140: CALL MOVETO(X,Y): PSET(X,Y)
50 DX=L*(INT(RND"3)-1): DY=L*(INT(RND*3)-1): GOSUB

1000
60 GOTO 50
1000 random circle routine
1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX
1020 IF Y+DY<UPB OR Y+DY>LWB THEN DY=-DY
1030 CIRCLE(X,Y), ABS((DX+DY)/3)
1040 X=X+DX: Y=Y+DY
1050 RETURN

" & File Edit Control
more circles

NGOG

<% \,xilrz‘\'.*f;v.r'{-}‘\-.!é.‘....‘\.’J'\e/&‘\ £
G W . Sow S S e w P ‘-"l"
LAV R) ol,ggj_o;‘,ld A ()Y
3 LRy KRk
OO0 O A O

llustration 10.14 More Circles

Listing, MORE CIRCLES

10

" more circles
20 CLS:

RANDOMIZE TIMER

30 LFB=10: RTB=480: UPB=10: LWB=270: L=30
40 X=250: Y=140: CALL MOVETO(X,Y): PSET(X.Y)
50 DX=L"(INT(RND*3)-1): DY=L"(INT(RND*3)-1): GOSUB

1000

60 GOTO 50

1000
1010
1020
1030
1040
1050

random circle routine

|F X+DX<LFB OR X+DX>RTB THEN DX=-DX
IF Y+DY<UPB OR Y+DY>LWB THEN DY=-DY
CIRCLE(X,Y),ABS{(DX+DY)/3)+5
X=X+DX: Y=Y+DY

RETURN

THE LINE COMMAND 149

Sierpinski Patterns

In the July 1984 issue of Creative Computing, (pages 148-180) was a most
intriguing article by David Ahl on a class of patterns named after their originator,
Sierpinski. We transferred the programs listed in the magazine relatively
unchanged, and ran them on the Macintosh. We were rewarded with an incredible
visual experience. What you see in this chapter is only the stale shadow of the
program’s real reward, which is to watch the pattern being generated on the
screen. It's almost as if there were a live psychotic bug tracing these intriguing
patterns within the computer.

" & File Edit Control

sierpinski

lllustration 10.15 Sierpinski

The program is a model of tight code, and it uses recursion, a feature of Microsoft
BASIC that is not often found in other versions of this language. Recursion is the
process of a routine calling itself until a condition is met, at which time it returns.

The listing of our version of this fine program is shown below. Note that line 230 in
the subroutine starting at line 200 is

230 GOSUB 200: A=H: B= —H: GOSUB 800

This is an example of recursion in which a statement in the subroutine calls the
subroutine itself. Line 210 is the escape from this seemingly infinite loop. If the
condition is met, control is transferred back to the statement in line 230 following
GOSUB 200, which is A=H. Control is returned to line 150 only when line 280 is
executed.

150 GRAPHICS FOR THE MACINTOSH

Listing, Sierpinski

10 °
15 °

20

30

40

60

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
300
310
320
330
340
350
360
370
380

sierpinski

148-160 David H. Ahl
DEFINT A-Z
CLS
FOR DI=1 TO 7
GOSUB 100
NEXT DI
GOTO 90

H0=512: SP=0: H=H0/4: X=H+H: Y=X+H:

I=1+1: X=X-H: H=H/2: Y=Y+H

IF I<DI THEN 110

PS=1: GOSUB 600

GOSuUB 200: H: B=-H: GOSUB 800
GOSuUB 300: -H: B=-H: GOSUB 800
GOSuB 400: ~H: B=H: GOSUB 800
GOSUB 500: =H: GOSUB 800
GOSUB 700

RETURN

>» > >>
x

: B

IF TP<=0 THEN RETURN

PS=TP-1: GOSUB 600

GOSUB 200: A=H: B=-H: GOSUB 800
GOSUB 300: A=H+H: B=0: GOSUB 800
GOSUB 500: A=H: B=H: GOSUB 800
GOSUB 200

GOSuUB 700

RETURN

IF TP<=0 THEN RETURN

PS=TP-1: GOSUB 600

GOSUB 300: A=-H: B=-H: GOSUB 800
GOSUB 400: A=0: B=-2"H: GOSUB 800
GOSUB 200: A=H: B=-H: GOSUB 800
GOSuB 300

GOSUB 700

RETURN

400 °

410
420
430
440
450
460

IF TP<=0 THEN RETURN

PS=TP-1: GOSUB 600

GOSUB 400: A=-H: B=H: GOSUB 800
GOSUB 500: A=-2"H: B=0: GOSUB 800
GOSUB 300: A=-H: B=-H: GOSUB 800
GOSUB 400

Creative Computing, July 1984 vi0,

#1.

=0

pp.-

THE LINE COMMAND 151

470 GOSUB 700

480 RETURN

500 '

510 IF TP<=0 THEN RETURN

520 PS=TP-1: GOSUB 600

530 GOSUB 500: A=H: B=H: GOSUB 800
540 GOSUB 200: A=0: B=H+H: GOSUB 800
550 GOSUB 400: A=-H: B=H: GOSUB 800
560 GOSUB 500

570 GOSUB 700

580 RETURN

600

610 SP=SP+1: ST(SP)=PS

620 TP=PS: RETURN

700

710 SP=SP-1: TP=ST(SP): RETURN

800 '

810 LINE(X,Y)-(X+A,Y+B)

820 X=X+A: Y=Y+B: RETURN

The geometric design shown in lllustration 10.16 has square “points™ at each
corner. The next iteration produces a smaller design in the center of the first one;
this smaller design has corners that are made up of images of itself.

r

& File Edit Control b
IE sierpinski 1‘

lllustration 10.16 Sierpinski in its first stages

152 GRAPHICS FOR THE MACINTOSH

" & File Edit Control

sierpinski

lllustration 10.17 Sierpinski some time later

Asthe program proceeds, the center design gets smaller and its corners grow not
in size but in detail. This process produces an image called a fractal, which is a
mathematically derived pattern that maintains the same level of detail no matter
what the magnification of the image. We recommend to you the following sources if
you are interested in this topic.

List of
References on
Fractals

McGraw-Hill Yearbook on Science and Technology (McGraw-Hill, Inc., New York)
1984, p. 191.

Gannes, Stuart, “Lights, Cameras ... Computers”, Discover, August 1984 (Time,
Inc., Los Angeles), pp. 76-79.

Mandelbrot, Benoit B., The Fractal Geometry of Nature(W. H. Freeman & Co., San
Francisco, 1977).

Mandelbrot, Benoit B., Fractals, Form, Chance and Dimension (W. H. Freeman &
Co., San Francisco, 1977).

McDermott, Jeanne, “Geometrical Forms Known as Fractals Find Sense in
Chaos’, p. 110, Smithsonian Magazine December 1983, p. 110.

Sorensen, Peter R., “Simulating Reality with Computer Graphics’, Byte 9 #3
(McGraw-Hill, Inc., N.H. March 1984) pp. 106-134.

Tucker, Jonathan B., “Computer Graphics Achieve New Realism®, High Tech-
nology 4 (High Technology Publishing Co., Los Angeles), June 1984, p. 42,

Van Dam, Andries, “Computer Software for Graphics”, Scientific American 251 # 3
(Sept. 1984, Scientific American Inc., New York), pp. 146-159.

THE LINE COMMAND

153

Centered Sierpinskis

You may note that the Sierpinski curves above were oriented to the left of the
screen. This is only because the Macintosh screen is roughly twice as wide as it is
high. We can change the program slightly where it defines the width of the screen
inline 100. The variable HO refers to the screen width (or height, as Sierpinskis fill a
square area) so change HO=256 to HO=512. With this small change, we can
center the image, and double its size at the expense of not seeing the bottom half.

<

lllustration 10.18 Stage one of centered Sierpinski

r Al

€ File Edit Control
e ———— sieninski 6S5SEF——————

O O OD =N KUK K

lllustration 10.19 Stage two

154 GRAPHICS FOR THE MACINTOSH

" & File Edit Control

sierpinski s

XX KX

lllustration10.20 Stage three

" & File Edit Control

~

IE sierpinski E‘
bate 5 s
o x gﬁ % %g %
G PN
. = s
» - LU ni— ""iﬂs'r
‘gl = =
x "?1_ tu
L .
| 5
i)
()
WM
3 : SRR
— e (=)

Illustration 10.21 Stage four

THE LINE COMMAND 155

F =
& File Edit Control
=—————— sierpinski

1A

lllustration10.22 Stage five

One of the intriguing aspects of these patterns is the different lock of the patterns.
The first ones with minimal detail seem somewhat boxy. Then the next set begin to
take on the look of a tiled floor, which of course is the topic here, tessellation. The
last patterns appear to be lace-like, with symmetry of course, but with a touch of
roundedness that is caused by the miniscule squares that are drawn.

One last note about this series of images. Each major iteration in the program
draws the top half on-screen and the bottom half off-screen. So the computer
seems inactive for half of the time. This pause becomes quite long during the latter
part of the program run because of the excruciatingly large number of lines the
program must draw. Consider:

Firstimage: 16 straight lines

Second image: 12 + 4 * 15 = 72 straight lines

Third image: 12 + 4 * 72 = 300 straight lines
Fourth image: 12 + 4 * 300 = 1212 straight lines
Fifth image: 12 + 4 * 1212 = 4860 straight lines
Sixth image: 12 + 4 * 4860 = 19452 straight lines

Seventh image: 12 + 4 * 19452 = 77820 straight lines
Eighth (last)image: 12 + 4 * 77820 = 311292 straight lines

Al of this takes time, so you must have patience with this program. You will be
rewarded with these fascinating images.

156 GRAPHICS FOR THE MACINTOSH

Bent Sierpinskis

r

& File Edit Control
E==————————= bent sierpinski

lllustration 10.23 Bent Sierpinski centered

bl

€ File Edit Control
S====——=—————== bentsierpinski EEE=—————m=———

T S i E

Illustration 10.24 Bent Sierpinski shifted right

THE LINE COMMAND 157

The last two screen images you see in lllustrations 10.23 and 10.24 were
produced with a minor modification to the program. Change the program this way:

Listing, Bent Sierpinski

10 ' bent sierpinski

15 " Creative Computing, July 1984 v10, #7, pp.
148-160 David H. Ahl

20 DEFINT A-2Z

30 CLS

40 FOR DI=1 TO 7

60 GOSUB 100

80 NEXT DI

90 GOTO 90

100 HO=512: SP=0: H=HO/4: X=H+H: Y=X+H: 1=0

110 I=141: X=X-H: H=H/2: Y=Y+H

115 YP=SQR({Y)"7

116 XP=X"(-Y/(HO+HO)+1)+Y/4

120 1F <Dl THEN 110

130 PS=I1: GOSUB 600

140 GOSUB 200: A=H: B=-H: GOSUB 800
150 GOSUB 300: A=-H: B=-H: GOSUB 800
160 GOSUB 400: A=-H: B=H: GOSUB 800
170 GOSUB 500: A=H: B=H: GOSUB 800

180 GOSUB 700

190 RETURN

200

210 1F TP<=0 THEN RETURN

220 PS=TP-1: GOSUB 600

230 GOSUB 200: A=H: B=-H: GOSUB 800

240 GOSUB 300: A=H+H: B=0: GOSUB 800

250 GOSUB 500: A=H: B=H: GOSUB 800

260 GOSUB 200

270 GOSUB 700

280 RETURN

300

310 IF TP<=0 THEN RETURN

320 PS=TP-1: GOSUB 600

330 GOSUB 300: A=-H: B=-H: GOSUB 800

340 GOSUB 400: A=0: B=-2"H: GOSUB 800

350 GOSUB 200: A=H: B=-H: GOSUB 800

360 GOSUB 300

370 GOSUB 700

380 RETURN

400

410 |F TP<=0 THEN RETURN

420 PS=TP-1: GOSUB 600

430 GOSUB 400: A=-H: B=H: GOSUB 800

440 GOSUB 500: A=-2°H: B=0: GOSUB 800

450 GOSUB 300: A=-H: B=-H: GOSUB 800
(continued)

158 GRAPHICS FOR THE MACINTOSH

460 GOSUB 400

470 GOSuUB 700

480 RETURN

500 °

510 IF TP<=0 THEN RETURN

520 PS=TP-1: GOSUB 600

530 GOSUB 500: A=H: B=H: GOSUB 800
540 GOSUB 200: A=0: B=H+H: GOSUB 800
550 GOSUB 400: A=-H: B=H: GOSUB 800
560 GOSUB 500

570 GOSUB 700

580 RETURN

600 °

610 SP=SP+1: ST(SP)=PS

620 TP=PS: RETURN

700 °

710 SP=SP-1: TP=ST(SP): RETURN

800 °

802 X=X+A: Y=Y+B: YQ=SQR(Y)"7

804 XQ=X"(-Y/(HO+HO)+1)+Y/4

806 LINE(XP,YP)-(XQ,YQ): XP=XQ: YP=YQ: RETURN

The effect is to produce images that seem to recede from view.
We now leave these remarkable tessellations to explore the syntax of the
DRAW command and our DRAW subroutine in detail.

¢ H A P T E R E L E V E N

SUBR

C
p
[

The DRAW Command’s
Syntax

The DRAW command is different from most that you find in BASIC. It executes
according to the way you want it to. You specify a string that describes the way you
want the computer to draw, and DRAW that string. For example, if you have
defined a string A$ as a set of commands for the computer to execute with the
DRAW command, you would write the line

DRAW A$

We can' rewrite BASIC for you, but we will provide you with a subroutine that will
execute A$ thus:

S$ =A$: GOSUB 1000

You place the string into a new variable called S$, branch to the subroutine at line
1000, and EUREKA! the string is drawn.

When you define S$, the string of commands to be drawn, you have availabie a
wide variety of parameters that will make this a truly powerful subroutine. lllustra-
tion 11.1 provides an overview of the DRAW commands.

159

160 GRAPHICS FOR THE MACINTOSH

Command

Mx,y
Mxx £y

Ud

Dd
Ld
Rd
Ed
Fd
Gd
Hd

Motion Commands:

Example Action

“M250,200" Move the draw position to specified X,Y coordinates
“M+20,-10" Move relative to current position. Much like the LINE

STEP command

“U20" Move up a displacement of d pixels from current posi-
tion

“D30” Move down a displacement of d pixels

“L100" Move left d pixels

“R40” Move right d pixels

“ESQ” Move up and right (think of New England)

“F20° Move down and right (Florida)

‘G3” Move down and left (Gila monsters?)

“H20" Move up and left (Mount St. Helens?)

lllustration 11.1 Table of motion commands for DRAW

D

llustration 11.2 Sketch of 8 directions for motion with DRAW

THE DRAW SUBROUTINE 161

These MOVE commands can be combined into a string of several moves at a
time. Thisis what makes the DRAW command so powerful, for otherwise you might
as well do a LINE STEP(20,20) instead of a DRAW “F20".

Note: The LINE STEP(20,20) and DRAW “F20" are equivalent, even though you
might think that the DRAW command would draw a line 20 pixels long. It doesn't. It
draws a diagonal line whose horizontal and vertical components are each 20
pixels long. The actual length is

r=V202 + 202 = 28.28

20

20

r = ¥20°+ 20° = 28.28

lllustration 11.3 Triangle with diagonal measured as the square root of sum of
squares (Pythagorean theorem)

To combine several MOVE instructions within a single string for the DRAW
command to execute, simply enter them one after the other, and separate them (if
you desire, as it is optional) with a semicolon.

Examples:

DRAW “R40;D70,L40;U70"

A rectangle is drawn with the longer side vertical.

DRAW “M250,200;E40;F40,G40;H40"

A diamond is drawn down from the center of the screen.

162 GRAPHICS FOR THE MACINTOSH

DRAW “M0,0;R100D100L100U100"

A square at the top left of the screen.

FOR I=1TO 100
DRAW “42, -1
NEXT |

A 30-degree diagonal up and to the right.

Options:
Command Example Action
B “BMO,0" Blank move. Like a “Lift up pen”
N ‘R20ND20" No position change. This example draws from
origin right 20, then from origin down 20.
X A$= Execute the substring defined in the DRAW.
“BM250,220" This example draws left 25, up 25, then
DRAW executes the command A$. We did not imple-
“L25U25; ment the X option when we wrote the DRAW
XAS$' subroutine.

lllustration 11.4 Options of DRAW command

Modes:
Mode Example Action
Ax “R20;A1; Changes angle of all subsequent draws.
R20;A2; x=0, no change

R20;A3;R20" x=1, 90 degrees clockwise
x=2, 180 degrees clockwise
x =3, 270 degrees clockwise
In the example above, a line is drawn right, then down,
then left, then up — even though the command suggests
all lines go right. We did not implement the A mode.

Cc “C33;R20" Color is 33. This command is not used in the DRAW
subroutine as we wrote it, as it is generally useful only on
color systems.

THE DRAW SUBROUTINE

163

Sx “S2;R20;
S4;R20"

Scale, with x a number from 1 to 62.
x=1, 1/4 scale

x=2, 2/4 scale (1/2 scale)

x=3, 3/4 scale

x=4, full scale

lllustration 11.5 Modes of the DRAW command

DRAW Subroutine

In order to clarify the next tessellation with the DRAW subroutine, we will describe
the subroutine in pseudocode. The pseudocode listing will be keyed to line
numbers in the subroutine you will find on pages 166 and 167 as part of the
program ANGLEDRAW, so that you can follow the logic of the program as you
trace the instructions.

1010

1020
1030
1040
1050
1060
1070

1080
1080
1100
1110
1120

1.

Initialize flags if F =0 (first time called).
B = Blank Move flag. Set B=0 (draw).
N = No Position Change flag. Set N=1 (change).
S = Scale. Set S=4 (full scale).
Q = scale multiplier. Set Q=1 (full scale).
F = Firsttime called. Set F =1 (first time).
Set character (char.) counter 18 to 1.
WHILE I8th. char. in S$isnota“#" DO:
a. Call 18th. char. S88.
b. IF char.isB thensetB=0.
c. IF char.isN then set N=0.
d. IF char. is a directed move (U,D,L,R,E,F,G, or H) then
PERFORM Process Directed Move.
e. IF char. is M then PERFORM Process Move.
f. IF char. is S then PERFORM Process Scale.
g. Add 1 to char. counter I8.
ENDDO.
RETURN

164 GRAPHICS FOR THE MACINTOSH

1210
1220

1230 -~

1240

1250

1260

1310
1320
1330
1340
1350
1360
1370
1380

1330
1400

1410

N —

10.

o

11.

COoN

Process Move

PERFORM Pick up digits, sign if any routine at 1900.
Save B88% in X8%

Add1tol8

PERFORM Pick up digits, sign if any routine at 1900.
Save B88%in Y8%

Set X8 to be value of X8% times Q, the scale

Set Y8 to be value of Y88 times Q

IF first char. in X8% is“+"or“-"

THEN
aX=X+ X8
b.Y=Y+Y8

ELSE
a.X=X8
b.Y=Y8

IF B = 1 (not ablank move)
THEN draw line to (X,Y)
ELSE move cursor to (X,Y)

RETURN

Process Directed Move

Set X8 and Y8 =0
PERFORM pick up digits, sign if any at 1900.
Set B8 to value of B8%
Set P8 to position of char. S8% in string “LRUDEFGH"
IFP8=10rP8>6
THEN X8= —-B8 (S8 is“L", “G”", or *H")
IFP8=20rP8=50rP8=6
THEN X8 = B8 (S8%is“R", “E", or “F")
IFP8=30rP8=50rP8=8
THEN Y8 = —B8 (S8% is“U", “E", or “H")
IFP8=40rP8=60rP8=7
THEN Y8 = B8 (S8%is ‘D", “F", or “G")
IF X+ X8 out of bounds THEN X8 = — X8
IFY +Y8 out of bounds THEN Y8 = — Y8
Draw line to (X8,Y8)
IFN=1
THEN
a. X=X+X8
b.Y=Y+Y8
ELSE
a. Move to (X,Y)
b.SetN=1
RETURN

THE DRAW SUBROUTINE 165

Process Pick up Sign,

Digits if any
1810 & 1 Set B8$ = null.
1920 2. WHILE I8th char. is one of chars. in “0123456789 — +" DO:
1930 Add to B8$ the character found in S§

Add1tol8
1940 3. ENDDO.
1950 RETURN
Applications of DRAW
Subroutine

The first program that uses the DRAW is very short. It provides the same output as
the first tessellation program that was demonstrated in this chapter.

Remember that in that program we selected a 10-unit-long line to be drawn in a
random vertical, horizontal, or diagonal direction from where we were. The result
was a trace of a random walk, which when allowed to proceed for some time
ended up as a tessellation of the screen (lllustration 11.6 and 11.7).

r b

& File Edit Control
Ee————— gy |

T, s J

lllustration 11.6 Angle draw

166 GRAPHICS FOR THE MACINTOSH

r ~

€ File Edit Control

angledraw

I

N

o1

| IoEmww TR TRY —

lllustration 11.7 Angle draw, longer segments

Here we do the same thing, only we use the Directed Move portion of the DRAW
subroutine to select the direction of our drunkard's next step. Study the listing.

Listing, ANGLEDRAW Program

10 " angledraw

20 CLS: RANDOMIZE TIMER: F=0

30 S$="BM200,120S3#":GOSUB 1000

40 S$=MIDS$("UDLREFGH",1+8*RND,1)+"10#":GOSUB 1000

50 GOTO 40

1000 ' DRAW subroutine

1010 IF F=0 THEN B=1:N=1:S=4:0=1:F=1

1020 18=1

1030 WHILE MIDS$(S$,18,1)<>"#"

1040 SBS=MIDS$(Ss,18,1)

1050 IF S8%="B" THEN B=0: GOTO 1100

1060 |IF S8%="N" THEN N=0: GOTO 1100

1070 IF INSTR("UDLREFGH",S8%)<>0 THEN GOSUB 1300:
GOTO 1100

1080 IF S8$="M" THEN GOSUB 1200: GOTO 1100

1090 IF S8$="S" THEN GOSUB 1900: S=VAL(BB8$): Q=S/4:
GOTO 1100

1100 18=18+1

1110 WEND

1120 RETURN

1200 ' process M

1210 GOSUB 1900 '>>>> get digits, sign for X

THE DRAW SUBROUTINE 167

1220 X8$=B8$: 18=18+1: GOSUB 1900 '>>>> bypass
comma, get digits, sign for Y

1230 Y8$=B8$: XB8=Q"VAL(X8$):Y8=0"VAL(Y8S$)

1240 IF INSTR("+-", LEFT$(X8%,1))<>0 THEN
X=X+X8:Y=Y+Y8 ELSE X=X8:Y=Y8

1250 IF B=1 THEN CALL LINETO(X,Y) ELSE CALL
MOVETO{X,Y) :B=1

1260 RETURN

1300 'process directed move

1310 X8=0: Y8=0: GOSUB 1900 '>>>> get digits

1320 B8=0"VAL(B8S): P8=INSTR("LRUDEFGH",S8%)

1330 |F P8=1 OR P8>6 THEN X8=-BS8

1340 |F P8=2 OR P8=b OR P8=6 THEN X8=B8

1350 IF P8=3 OR P8=5 OR P8=8 THEN Y8=-B8

1360 1F P8=4 OR P8=6 OR P8=7 THEN Y8=BS8

1370 IF X+X8<0 OR X+X8>500 THEN X8=-X8

1380 IF Y+Y8<0 OR Y+Y8>280 THEN Y8=-Y8

1390 CALL LINE(X8,Y8)

1400 IF N=1 THEN X=X+X8: Y=Y+Y8 ELSE CALL
MOVETO(X.Y): N=1

1410 RETURN :

1900 ‘pick up digits, sign if any

1910 BBs=""

1920 WHILE INSTR{"0123456789-+" ,MID$(S$,18+1,1))<>0

1930 B8S=BBS+MIDS(S$,18+1,1): 18=18+1

1940 WEND

1950 RETURN

9999 END

20 Clearsthe screen, seeds the random number generator, and sets F, the First
Time Flag that DRAW needs, to 0.

30 Establish the starting point of our tessellation at (200,120), and scale at 3/4.

40 Determine the direction of the drunkard's random step by choosing the Move
direction at random from the string “UDLREFGH". Then it sets the step size as
10. The DRAW string is terminated with a “#”, and the DRAW subroutine is
invoked.

50 Loop back to Line 40 to provide us with an infinite loop.
You can have great fun with this very simple program. We suggest that you start
by altering line 40 in each of several ways:
40 S$=MID$("LLRRUDFH"
40 S$=MID$("'UUDDLREG"
40 S$=MID$('‘EFGHEFGH"
40 S$=MID$(‘LRUDLRUD"

168 GRAPHICS FOR THE MACINTOSH

You can also tessellate the screen by selecting a random square area on the
screen to fill with patterns of your choice. Subdivide the screen as a grid of squares,
or rectangles, as shownin lllustration 11.8:

" & File Edit Control
squaredraw

E E | | L
DD Bil= DD am H_HD %:
i =) (158 OO O

_DD E O B0

lllustration 1.8 Square tessellation with DRAW

Listing, SQUAREDRAW

1Q

squaredraw

20 CLS: RANDOMIZE TIMER: F=0

30 R1=INT(25°RND) 20

40 R2=INT(14"RND)"20

50 R1$=MIDS$ (STR$(R1),2): R2$=MID$(STR$(R2),2)
60 S$="BM"+R1$+","+R2$

70 S$=S$+"R18D18L18U1BH"

80 GOSUB 1000

90 GOTO 30

1000 ' DRAW subroutine

1010 IF F=0 THEN B=1:N=1:S=4:0=1:F=1

1020 18=1

1030 WHILE MIDS(Ss.18,1)<>"#"

1040 S8$=MIDS$(S$.,18,1)

1050 IF S85="B" THEN B=0: GOTO 1100

1060 IF S8$="N" THEN N=0: GOTO 1100

1070 IF INSTR("UDLREFGH",S8%)<>0 THEN GOSUB 1300:
GOTO 1100

1080 IF S8$="M" THEN GOSUB 1200: GOTO 1100

1090 IF SB8$="S" THEN GOSUB 1900: S=VAL(B8s): 0=S/4:

1100

GOTO 1100
[8=18+1

THE DRAW SUBROUTINE 169

1110 WEND

1120 RETURN

1200 ' process M

1210 GOSUB 1900 '>>>> get digits, sign for X

1220 X8$=B8$: 18=18+1: GOSUB 1900 '>>>> bypass
comma, get digits, sign for Y

1230 Y8$=BBS$: X8=Q"VAL(X8$):Y8=Q"VAL(YBS)

1240 §IF INSTR({"+-", LEFT$(X8$,1))<>0 THEN
X=X+X8:Y=Y+Y8 ELSE X=X8:Y=Y8

1250 |F B=1 THEN CALL LINETO(X.Y) ELSE CALL
MOVETO(X,Y):B=1

1260 RETURN

1300 ‘process directed move

1310 X8=0: Y8=0: GOSUB 1900 '>>>> get digits

1320 B8=Q"VAL(B8$): P8=INSTR({"LRUDEFGH",6S8%)

1330 |F P8=t OR P8>6 THEN X8=-B8

1340 |F P8=2 OR P8=5 OR P8=6 THEN X8=B8

1350 IF P8=3 OR P8=5 OR P8=8 THEN Y8=-B8

1360 IF P8=4 OR P8=6 OR P8=7 THEN Y8=B§

1370 IF X+X8<0 OR X+X8>500 THEN X8=-X8

1380 IF Y+Y8<0 OR Y+Y8>280 THEN Y8=-Y8

1390 CALL LINE(X8,Y8)

1400 IF N=1 THEN X=X+X8: Y=Y+Y8 ELSE CALL
MOVETO(X.Y): N=1

1410 RETURN

1900 ‘'pick up digits, sign if any

1910 B8sS=""

1920 WHILE INSTR("0123456789-+" ,MIDS$(S$,18+1,1))<>0

1930 B8$=B8S+MIDS(S$,18+1,1): 18=18+1

1940 WEND

1950 RETURN

9999 END

You can do this by selecting the upper left corner of a random grid area this
way:

100 ‘get random square grid area

110 ‘horiz. coord. R1is 0, 20, 40, 60, ... to 500

120 R1=INT(25*RND)*20

130 ‘vert. coord. R2is 0, 20, 40, 60, ... to 280

140 R2=INT(14*RND)*20

160 ‘String representation of R1 and R2 for DRAW:
170 R1$=MID$(STR$(R1),2): R2%$ =MID$(STR$(R2).2)

Once you have established the random corner coordinates, you can issue a
DRAW command to place your pattern in that area. For example, suppose you
want to draw a diamond with a vertical and horizontal line within it, as shown in
llustration 11.9:

170 GRAPHICS FOR THE MACINTOSH

"BM+10,+ONF 10D20NE10H10NR20E10"

Illustration 11.9 Diamond with vertical and horizontal lines

To the code above, you add these lines:

180 S$="BM"+R1$+"."+R2% ‘move to random corner
190 S$=S$+"BM+10, + ONFIOD20ONE1OHI1ONR20E10 #"
200 GOSUB 1000

Line 190 defines the DRAW command as

Blank move right 10 from present position.

Draw down and right 10, go back to top of diamond.
Draw down 20.

Draw up and right 10, go back to bottom of diamond.
Draw up and left 10.

Draw right 20, go back to left point of diamond.
Draw up and right 10, return for next DRAW.

You can define your tile area as a rectangle by modifying line 120 as shown below:
120 R1=INT(20*RND)*25)

This allows 20 rectangles across the screen, each 25 units wide. Now you can
define a new pattern in this different tile.

THE DRAW SUBROUTINE 171

Alphabet Generator

The last application we have chosen to demonstrate using the DRAW command
is an alphabet generator. What we do in this program is to define 37 different
DRAW commands as DATA strings, representing the motions necessary to trace
the 26 letters of the alphabet, the 10 digits, and the space character. When these 37
strings are stored in an array, the program can select them by position and execute
them. The commands to draw the A are stored as a string in the first array position;
those to draw the B in the second consecutively to the Z in the 26th. Thus to draw
an A, place the contents of the first array position into S$, and call the DRAW

subroutine.
position AS
1 Command string to draw "A" 20 Command string to draw "
2 Command string to draw "B” 21 Command string to draw '
3 Command string to draw " 22 Command string to draw *
4 Command string to draw " 23 Command string to draw "
5 Command string to draw " 24 Command string to draw '
6 Command string to draw ° 25 Command string to draw "
7 Command string to draw ' 26 Command string to draw "
8 Command string to draw ' 27 Command string to draw "
9 Command string to draw ’ 28 Command string to draw ”
0 Command string to draw '’ 29 Command string to draw "

—
-—

Command string to draw ' 30 Command string to draw ”

lolo|N|o|alsluls|=|o|N|<|%|£[<(<|H

Sl] Il el (ST ed e d Ll B (o rd B] i] S)

12 Command string to draw ’ 31 Command string to draw "
13 Command string to draw ° 32 Command string to draw ’
14 Command string to draw ' 33 Command string to draw "
15 Command string to draw ’ 34 Command string to draw *
16 Command string to draw ' 35 Command string to draw *
17 Command string to draw ' 36 Command string to draw ’
18 Command string to draw ' 37 Command string to draw "
19 Command string to draw ”

lllustration 11.10 Sketch of array with commands stored

172 GRAPHICS FOR THE MACINTOSH

Here's the listing of the program that allows you to write (to DRAW) wordsin a new
font.

Listing, ALPHABET DRAW

10 ' alphabet draw

20 DIM A$(37)

30 CLS:CALL MOVETO(10.,10):X=10:Y=10:F=0

40 FOR I=1 TO 37

50 READ As$(1)

60 NEXT |

70 DATA "BM+0,+20E120D8NL8D4BM+8,-20"

80 DATA "BM+0,+8R12012L12U12U8BM+20,+0"

90 DATA "BM+12,+20L12U12NR12BM+20,-8"

100 DATA "BM+0,+8R12012L12U12BM+12,+0U8BM+8,+0)

110 DATA "BM+12,+20L12U12NR12BM+0,+6R12BM+8,-14"

120 DATA "BM+0,+8NR12D12U6R8BM+12,-14"

130 DATA "BM+0,+8R12D12L12U12BM+12,+12D8L6BM+14, -
28"

140 DATA "BM+12,+20U12L12ND12U8BM+20,+0"

150 DATA "BM+6,+8D12BM+6,+0L12BM+6,-18D02BM+14,-4"

160 DATA "BM+12,+8D20L12U8BM+12,-18D2BM+8,-4"

170 DATA "D20UBNE12E2F10BM+8,-20"

180 DATA "D20R12BM+8,-20"

190 DATA "BM+12,+20U12L12ND12BM+6,+0D12BM+14,-20"

200 DATA "BM+12,+20U12L12ND12BM+20,-8"

210 DATA "BM+0,+8R12D12L12U12BM+20,-8"

220 DATA "BM+0,+8R12D12L12U12D20BM+20,-28"

230 DATA "BM+0,+8R12D12L12U12BM+12,+0D20BM+8,-28"

240 DATA "BM+12,+8L12D12BM+20,-20"

250 DATA "BM+12,+8L12D6R12D6L12BM+20,-20"

260 DATA "BM+0,+B8RGND12R6BM+8,-8"

270 DATA "BM+12,+8D12L12U012BM+20,-8"

280 DATA "BM+0,+8D12E12BM+8,-8"

290 DATA "BM+12,+8012L12U012BM+6,+0D12BM+14,-20"

300 DATA "BM+6,+14NEGNFENGENHEBM+14,-14"

310 DATA "BM+12,+8D12L12U12BM+6,+12D8BM+14,-28"

320 DATA "BM+0,+8R12G12R12BM+8,-20"

330 DATA "D20R12U20L12BM+20,+0"

340 DATA "BM+6.+ONG4D20NR6LEBM+20,-20"

350 DATA "R12D10L12D10R12BM+8,~20"

360 DATA "R12D10NL12D10L12BM+20,-20"

370 DATA "D10R12NU10D10BM+8.-20"

380 DATA "NR12D10R12D10L12BM+20,-20"

390 DATA "MNR4D20R12U10L12BM+20,-10"

400 DATA "R12D20BM+8,-20"

410 DATA "ND20R12D10ONL12D10L12BM+20,-20"

420 DATA "ND10OR12D10NL12D10BM+8,-20"

430 DATA "BM+20,+0"

THE DRAW SUBROUTINE 173

440 SS=INKEYS$:IF S$="" THEN 440

450 |IF S$<>CHR$(13) THEN 480

460 X=10:Y=Y+36"Q: S$="BM"+STRS(X)+","+STRS(Y)+"#"

470 GOSUB 1000: GOTO 440

480 IF S$="/" THEN STOP

490 J=INSTR({"abcdefghijk!mnopgrstuvwxyz0123456789
",8%)

500 IF J=0 THEN J=37

510 S$=As(J)

520 S$="S16"+S$+"#"

530 GOSUB 1000

540 GOTO 440

1000 ' DRAW subroutine

1010 IF F=0 THEN B=1:N=1:S=4:0=1:F=1

1020 18=t

1030 WHILE MIDS(Ss.,18,1)<> 4"

1040 S8$=MID$(S$,18,1)

1050 IF S8$="B" THEN B=0: GOTO 1100

1060 IF S8$="N" THEN N=0: GOTO 1100

1070 IF INSTR("UDLREFGH",S8%)<>0 THEN GOSUB 1200:
GOTO0 1100

1080 IF S8$="M" THEN GOSUB 1130: GOTO 1100

1090 IF S8%="S" THEN GOSUB 1320: S=VAL(B8$): 0=S/4:
GOTO 1100

1100 18=18+1

1110 WEND

1120 RETURN

1130 ' process M

1140 GOSUB 1320 ">>>> get digits, sign for X

1150 X85=B8s: 18=18+1: GOSUB 1320 '>>>> bhypass
comma, get digits, sign for Y

1160 YB8$=B8$: X8=Q"VAL(X8s$):Y8=Q"VAL(Y8S$)

1170 IF INSTR{"+-", LEFT${X8$,1))<>0 THEN
X=X+X8:Y=Y+Y8 ELSE X=X8:Y=Y8

1180 IF B=1 THEN CALL LINETO(X,Y) ELSE CALL
MOVETO(X,Y) :B=1

1190 RETURN

1200 'process directed move

1210 X8=0: Y8=0: GOSUB 1320 '>>>> get digits

1220 B8=0"VAL(B8%): PB=INSTR("LRUDEFGH",6S8%)

1230 IF P8=1 OR P8>6 THEN X8=-B8

1240 |F P8=2 OR P8=5 OR P8=6 THEN X8=BS8

1250 |F P8=3 OR P8=5 OR P8=8 THEN Y8=-B8

1260 IF P8=4 OR P8=6 OR P8=7 THEN Y8=BS8

1270 IF X+X8<0 OR X+X8>500 THEN XB8=-X8

1280 IF Y+Y8<0 OR Y+Y8>280 THEN Y8=-Y8

1290 CALL LINE(X8,Y8)

1300 IF N=1 THEN X=X+X8: Y=Y+Y8 ELSE CALL
MOVETO(X,Y): N=t

(continued)

174 GRAPHICS FOR THE MACINTOSH

1310 RETURN

1320 "pick up digits, sign if any

1330 Bgs=""

1340 WHILE INSTR("0123456789-+" MID$(S$,18+1,1))<>0
1350 BBS=BBS+MIDS(Ss,18+1,1): 18=18+1

1360 WEND
1370 RETURN
9999 END

20
30

40-60
70-430

440
450-480

480
500

510
520
530
540

Define array A$ to hold 37 command strings.

Clear screen, more cursor to upper left corner, set X and Y
starting points to that cursor position, set First Time Flag F to 0.
Read command strings into array A$.

Commands themselves. Consider line 70 as a typical example,
defining the letter A. It states:

“Blank Move (relative to current position) 20 down (go to bottom
left of 20-by-20 square), go up and right 12 units’ (lllustration
11.11).

“Go down 8 units, left 8 units, return to previous position” (lllustra-
tion 11.12).

“Go down 4 units to finish off the A" (lllustration 11.13).

“‘Blank Move right 8, up 20 to top right of this drawing area, which
is top left of next area.”

Pick up a keystroke from user.

IF char. ="/"then STOP

ELSE return cursor to new line, 10 over and 36*Q down.

Place in J position of S§ in array, if it is one of the 37.

Define character as a blank if it is not one of the 37 acceptable
characters.

Place in S$ the appropriate command string from the array A$.
Set scale to 16 and place terminator symbol at end of S§.
Perform DRAW subroutine.

Loop back to pick up another character.

THE DRAW SUBROUTINE 175

Start

LICICIE] L] AN
mDﬂmmmmmﬂmﬂm_ﬂ__m_ﬂ__m_ﬂ_ﬂ_ﬂ_ﬂ__ﬂ_mﬂD_H__H_D_H__H
EEEENEEN

N

Illustration 11.11 Diagonal bar of A in rectangle

(O T A [1 1 1 [
ENENEEEEE NN

176 GRAPHICS FOR THE MACINTOSH

/ Continue
<

I EEEEE EEEEE ENEEEEEEEEEN
I O O
NN O
A O
IO ICIC I IEIC 0T 01T T e {0 0 e e

CICCICIC O]

LI
LI
N
MMMDDDDDDDDDDDDDDIDDDDDDM
Lo O

N O
AN EEEEEAEE EEnn

A

lllustration 11.12 Letter A later

THE DRAW SUBROUTINE 177

Finish

CICIC I I

ENEEEEEERENN

|

Ll

Illustration 11.13 Finished letter A

178 GRAPHICS FOR THE MACINTOSH

The screen images below (lllustration 11.14 - 11.17) indicate some of the flexibility of
this program. Of course you are free to define your own fonts by rewriting the
command strings in lines 70-430. That's half the fun of this program.

" & File Edit Control k
=———————=— alphabet draw

A ==

——— 2

lllustration 11.14 The Year of the Apple

" & File Edit Controk

alphabet draw

mC1lnTOsh

MmAC OU M
qrAVEHETELH

corTL and

lllustration 11.15 An Apple by any other name

THE DRAW SUBROUTINE 179

" & File Edit Control R N

1 jonaTthan
£ golLden delicious
1 pippin

H russeT

5 FameusE

E norTthern spu
w

lilustration 11.16 An Apple a day, never on Sunday

1 roxbury russetr @ grimes golden 3 ben davis
Y westrleld seek no Further S palmer greening
b tydemans red 7 summerrsd B minjon 9 prima
10 melLrose 11 spigold 12 monroe 13 sparTan
14 wapne 15 porter 1b malden blush 17 holly
18 summer rambo 19 white 4strachan 20 Lady

21 whiTte pearmain 22 smoKehouse @23 wolr river
24 hunt russet &5 Tolman sweev 2b chenango

21 garly harvest 2B reqent 29 yellow horse
30 bL4cK gliLlLirlLower 31 northuesTern gresnlng
32 granny smith 33 esopus spiTtzenberg 34 King
35 yellow bellrlowsr 3b red June 37 baldwin

lllustration 11.17 How ‘bout them apples?

This chapter has demonstrated several features of the Macintosh graphics that
you can create in BASIC. As usual, you are encouraged to play with these ideas,
and to expand on the possibilities.

C H A P T E R T w E L \' E
2N
oy
'/ \J L
TANS
7\l N\UJ

We revisit the topic of tangrams in this chapter, though in a very different guise. In
Chapter Seven the subject was tangrams produced by manipulating figures in
MacPaint. Here we used MacPaint tools such as the lasso, the marquee, and the
Edit menu's powerful Flip vertical and Flip horizontal. We will describe, and discuss
in detail, a program in BASIC that uses the mouse to select and execute com-

mands to draw the tangram.

lllustration 12.1 shows how the screen output area of BASIC was subdivided into
four parts, each with its own function. The four area labels, selection square,
command line, tan display, and tangram display are used to provide a referencein

the discussion only.

/ select square

6 /

| 35 /command line

N

N

cursor

AN

N

tan display

N

tangram display

lllustration 12.1 The four screen output areas

181

182 GRAPHICS FOR THE MACINTOSH

The procedure for using this application is best described by briefly listing the
operations used to produce a familiar tangram, and by displaying the screen
image of each different step.

1. Upon typing “‘RUN’, the program displays the four areas. The select square
area shows the square tangram formed by the seventans, each labeled by a
number. The command line area shows, in Los Angeles font, the word
“begin”. The other two areas are empty (lllustration 12.2). The purpose of this
display is to give you time to become familiar with the four areas.

lllustration 12.2 Screen display after the command “RUN"

2. Position the cursor in the command line area and click the mouse. The
command line changes from “begin’ to “select tan” (lllustration 12.3).

3. Move the cursor over any one of the digits identifying the seven tans, and
click. The selected tan is copied into the tan display area and begins to rotate
in 45-degree increments, and the command line changes from “select tan” to
“orient tan”.

4. Move the cursor in the command line. When the tan that is rotating assumes
the position you wish it to have in your tangram, click the mouse. The tan
stops rotating and the command line changes from “orient tan” to “grab tan”.

5. Move the cursor to the tan display area, to any one of the vertices. The
cursor's hotspot must be within three pixels of the tan's vertex in order to be
activated. When you click the mouse to “grab” the tan and the hotspot is close
enough, an image of the tan vibrates, much as it would had you lassoed it in
MacPaint. However, you do not have to drag the tan to the tangram display

MOUSE TANS 183

" & File E¢it Control

select tan

illustration 12.3 Screen during tan selection

area. Moving the mouse is sufficient to move the tan (lllustration 12.4). Our
thought was to simplify the move of the tan for you. You want to be careful
aboutits placement, and you shouldn't have to worry about the mouse button
being depressed during this careful operation.

" & File Edit Control

M

lllustration 12.4 Screen with tan moved to display area

184 GRAPHICS FOR THE MACINTOSH

6. To “let go" of the tan when you have it exactly where you want it. Click the
mouse. The command line changes from “position tan” to “do undo”. This
choice allows you to change your mind. For example, you might click the
mouse at the wrong time during its rotation, so that its orientation is wrong.
Simply click “undo” here and you go back to the select tan stage of the
program. |f you misplaced the tan, even though it was properly oriented, you
can “undo” your mistake. In all cases, clicking the undo command will take
you back to select the same or another tan.

7. Asyou repeat the steps 2 through 6 above, you develop your picture. When
all seven tans have been selected, oriented, grabbed, and positioned, your
tangram is done and the command line shows “‘tangram complete”. The
three areas to the left of the tangram display area are erased, as shown in
llustration 12.5.

lllustration 12.5 Screen with completed stork tangram

The listing of the Tangrams program has several noteworthy features, among
them a reliance on structure with many subroutines, and some heavy use of the
Macintosh's Quickdraw ROM routines.

MOUSE TANS 18§

Listing, Tangrams program

10 ° tan application

20 DEFINT A-Z

30 DIM C{34).GP(233)

40 DIM TT(7),0T(7),VT(7).XT(7),YT(7)
50 DIM ST(4,3,2),MT(4,3,2),50(2.4.2),PA(4,4,2)
60 M1=7:M2=104:F=0

70 FOR I1=0 TO 3

80 C{1)=0:C(15-1)=0

90 NEXT |

100 C(4)=&H7E0:C(11)=&HT7ED

110 FOR 1=5 TO 10

120 C(1)=&H810

130 NEXT |

140 FOR 1=0 TO 15

150 C(1+16)=C(1)

160 NEXT |

170 C(32)=8:C(33)=8

180 CALL SETCURSOR({VARPTR{C(0)))
190 CLS

200 GOSUB 4000 ' draw tangram tile
210 FOR 1=1 TO 4

220 FOR J=1 T0 3

230 FOR K=1 T0 2

240 READ ST(!.,J.K)

250 NEXT K

260 NEXT J

270 NEXT |

280 ° small triangles —-tans 1 & 5
290 ' large trianges —tans 4 & 6 are 2x
300 DATA 0,0,19,-19,38.,0

310 DATA 0,0,27,0,27,27

320 DATA 0,0,19,19,0,38

330 DATA 0,0,0,27,-27,27

340 FOR I=1 TO 4

350 FOR J=1 TO 3

360 FOR K=1 TO 2

370 READ MT(!.,J.K)

380 NEXT K

390 NEXT J

400 NEXT |

410 ' medium triangle -tan 2

420 DATA 0,0,38,-38,38.,0

430 DATA 0,0,54,0,27,27

440 DATA 0,0,38,38,0,38

450 DATA 0,0,0,54,-27,27

460 FOR 1=1 T0 2

470 FOR J=1 TO 4

(continued)

188 GRAPHICS FOR THE MACINTOSH

480
490
500
510
520

530 °

540
550
560
570
580
580
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740

750
760
770
780
790
800
810
820
830
840
850
880

870
880

FOR K=1 TO 2

READ SQ(1,J,K)

NEXT K

NEXT J

NEXT |

square -tan 3

DATA 0,0,19,-19,38,0,19,19
DATA 0,0,27,0,27,27,0,27

FOR 1=1 TO 4

FOR J=1 TO 4

FOR K=1 TO 2

READ PA(1,J.K)

NEXT K

NEXT J

NEXT |

' parallelogram —tan 7

DATA 0,0,0,-38,19,-57,19,-19

DATA 0,0,27,-27,54,-27,27,0

DATA 0,0,38,0,57,19,19,19

DATA 0,0,27,27,27,54,0,27

GOSUB 5000:PRINT"begin”

IF MOUSE(0)=1 THEN 700 ELSE 690

A=MOUSE (1) :B=MOUSE(2)

IF B>90 AND B<110 AND A<180 THEN 730

GOTO 690 :

GOSUB 5000

IF F<7 THEN PRINT "select tan":GOTO 770 ELSE
GOSus 8000

CALL MOVETO(5,15):PRINT "tangram complete”:CALL
INITCURSOR

{F INKEY$="" THEN 760 ELSE STOP

LINE{1,111)-(179,299),30,BF

X=5:Y=7:T=0

IF (A>X+2 AND A<X+20) AND (B>Y+34 AND B<Y+52)
THEN T=4

IF (A>X+6 AND A<X+24) AND (B>Y+64 AND B<Y+82)
THEN T=1

IF (A>X+25 AND A<X+43) AND (B>Y+9 AND B<Y+27)
THEN T=6

IF (A>X+26 AND A<X+44) AND (B>Y+53 AND B<Y+71)
THEN T=3

IF {A>X+37 AND A<X+55) AND (B>Y+34 AND B<Y+52)
THEN T=5

IF (A>X+54 AND A<X+72) AND (B>Y+25 AND B<Y+43)
THEN T=7

IF (A>X+51 AND A<X+69) AND (B>Y+60 AND B<Y+78)
THEN T=2

A=MOUSE (1) :B=MOUSE(2)

IF MOUSE(0)=0 OR T=0 THEN 790

X=90:Y=200

MOUSE TANS 187

890 0=1

800 GOSUB 2000 ' set orientation

910 GOSUB 3000 ' draw tan

920 GOSUB 5000:PRINT “"orient tan"

930 A=MOUSE({1):B=MOUSE(2)

940 FOR Z=1 TO 1000:NEXT 2Z

950 IF MOUSE(0)=1 AND B>90 AND B<110 AND A<180 THEN
1050

960 0=0+1

970 LINE(1,111)~-(179,299),30,BF

980 IF T=7 AND 0>16 THEN 0=1

990 IF T=3 AND 0>2 THEN 0=1

1000 IF T<>3 AND T<>7 AND 0>8 THEN 0=t

1010 GOSUB 2000 ' set orientation

1020 GOSUB 3000 ' draw tan

1030 IF MOUSE(O)=1 THEN 1050

1040 GOTD 930

1050 GOSUB 5000:PRINT "grab tan”

1060 IF T=3 OR T=7 THEN L=4 ELSE L=3

1070 |F MOUSE(0)=1 THEN A=MOUSE(1):B=MOUSE(2):G0TO
1090

1080 GOTO 1070

1090 FOR I=1 TO L

1100 |F ABS{A-P{I,1)-X)<3 AND ABS(B-P(1,2)-Y)<3
THEN 1140

1110 A=MOUSE(1):B=MOUSE(2)

1120 NEXT |

1130 GOTO 1070

1140 XG=0:YG=0

1150 FOR 1=1 TO L

1160 IF ABS(P(1,1))>ABS(XG) THEN XG=P(1.,1)

1170 1F ABS(P{!,2))>ABS(YG) THEN YG=P({1,2)

1180 NEXT |

1190 GET(X,Y)-(X+XG,Y+YG),GP

1200 IF T=3 AND 0=1 THEN GET(X,Y+YG)}-(X+XG.Y-YG),GP

1210 GOSUB 5000:PRINT"position tan”

1220 X=MOUSE({1):Y=MOUSE(2)

1230 IF T=3 AND 0O=1 THEN 1270

1240 PUT(X.Y)-{X+XG,Y+YG),GP,X0R

1250 PUT(X.,Y)-{X+XG,Y+YG),GP,X0OR

1260 GOTO 1290

1270 PUT(X,Y+YG)-(X+XG,Y-YG),GP, XOR

1280 PUT(X,Y+YG)~(X+XG,Y-YG),GP, X0OR

1290 IF MOUSE(0)=1 THEN 1300 ELSE 1220

1300 IF X<180 THEN 1210

1310 GOSuB 3000

1320 GOSUB 5000:PRINT"do"

1330 LINE(90,91)-(90,109):CALL MOVETO(90+M1,M2):
PRINT"undo"

(continued)

188 GRAPHICS FOR THE MACINTOSH

1340 IF MOUSE(0)<>1 THEN 1330

1350 A=MOUSE(1):B=MOUSE(2)

1360 IF B>90 AND B<110 AND A>90 AND A<180 THEN
GOSUB 7000 ELSE GOSUB 6000

1370 GOTO 730

1380 CALL TEXTMODE(O)

2000 ' set orientation

2010 |F T=3 THEN 2160

2020 IF T=7 THEN 2220

2030 |F T=2 THEN 2340

2040 IF T=1 THEN B=0+0:M=1

2050 IF T=5 THEN B=0+6:M=1

2060 IF T=4 THEN B=0+2:M=2

2070 |F T=6 THEN B=0+4:M=2

2080 IF B>8 THEN B=B-8

2090 1F B>4 THEN K=B-4:M=-M ELSE K=B

2100 FOR I=1 TO 3

2110 FOR J=1 TO0 2

2120 P(1.,J)=ST{K,1,J)"M
2130 NEXT J

2140 NEXT |

2150 RETURN

2160 FOR 1=1 T0 4

2170 FOR J=1 T0 2

2180 P(1,J)=S0(0,1,J)
2190 NEXT J

2200 NEXT 1

2210 RETURN

2220 B=(0-1) MOD 8 + 1
2230 1F B>4 THEN K=B-4:M=-1 ELSE K=B:M=1
2240 FOR I=1 TO 4

2250 FOR J=1 TO 2

2260 P(1,J)=PA(K,I,J)"M
2270 NEXT J

2280 NEXT |

2290 IF 0<9 THEN RETURN
2300 FOR I=1 T0 4

2310 P(1,1)==P(1,1)
2320 NEXT |

2330 RETURN

2340 IF 0>4 THEN K=0-4:M=-1 ELSE K=0:M=1
2350 FOR I=1 T0 3

2360 FOR J=1 TO 2

2370 P{1,J)=MT(K,I,J)"M
2380 NEXT J

2390 NEXT |

2400 RETURN

3000 ' draw tan

3010 |F T=3 OR T=7 THEN L=3 ELSE L=2
3020 FOR =1 TO L

MOUSE TANS 189

3030 LINE(X+P(1,1) Y+P(1,2)}=(X+P(1+1,1),Y+P
(1+1,2))

3040 NEXT |

3050 LINE(X+P(L+1,1),Y+P(L+1,2))=(X+P{1,1),Y+P
{(1.2))

3060 RETURN

4000 ' draw tangram tile

4010 X=0:Y=0

4020 LINE(0C,0)-(180,300),.8B

4030 LINE(O,90)-(180,110),,8

4040 X=X+5:Y=Y+7

4050 LINE(X,Y)-(X+76,Y+76),.B

4060 LINE(X,Y+76)-(X+76.Y)

4070 LINE(X+38,Y+76)-{X+76,Y+38)

4080 LINE(X,Y)-(X+57,Y+57)

4090 LINE(X+57,Y+57)-(X+57.,Y+19)

4100 LINE(X+19,Y+57)-(X+38,Y+76)

4110 CALL TEXTMODE(1):CALL TEXTFONT(12)

4120 CALL MOVETO(X+15,Y+73):PRINT "1"

4130 CALL MOVETO(X+60,Y+69):PRINT "2"

4140 CALL MOVETO(X+35,Y+62):PRINT "3"

4150 CALL MOVETO(X+11,Y+43):PRINT "4"

4160 CALL MOVETO(X+46,Y+43) :PRINT "5"

4170 CALL MOVETO(X+34,Y+18):PRINT "6"

4180 CALL MOVETO(X+63,Y+34):PRINT "7"

4190 CALL TEXTMODE(0)

4200 RETURN

5000 ' prompt manager

5010 LINE(1,91)-(179,109),.30,8F

5020 CALL MOVETO(M1,M2)

5030 CALL TEXTMODE(1)

5040 RETURN

6000 ' save tan info

6010 F=F+1

6020 TT(F)=T:0T(F)=0:XT(F)=X:YT(F)=Y

6030 RETURN

7000 ' undo

7010 LINE(181,1)-(499,299),30,BF

7020 FOR 2=1 TO F

7030 T=TT(Z2):0=0T(Z):X=XT(Z):Y=YT(Z)

7040 GOSUB 2000:GOSUB 3000

7050 NEXT 2

7060 RETURN

8000 * wrap up

8010 GOSUB 5000:PRINT “tangram complete”

8020 LINE (0,0)-(500,300),30,BF

8030 XD=100:YD=100

8040 FOR Z22=1 T0 F

8050 T=TT(Z2):0=0T(Z22):X=XT(22):Y=YT(Z2)

(continued)

190 GRAPHICS FOR THE MACINTOSH

8060 GOSUB 2000

8070 IF Z2=P1 THEN XS=X-XD:YS=Y-YD
8080 X=X-XS:Y=Y-YS§

8090 GOSUB 3000

8100 NEXT Z2

8110 RETURN

Commonly Used
Variables

Let's review some of the most commonly used variables.

C — new cursor. ‘C" is an integer array DIMensioned 34. Cursors in BASIC are
most easily defined in hex images of a binary 16-bit number. The cursor design
begins as a 16x16 grid, with the filled (dark) pixels marked and the “Hot Spot” pixel
pair identified. lllustration 12.6 shows the design for our cursor shaped like a
rounded square with the center dot being the “Hot Spot”.

C<0)>=&HO000
C(1>=&H0CO00
C(2)>=&H0C000
C(3)>=&HO000
C(4)=&HO?VED
C(5>=&HO8 10
C(6=&HO810
C(?)=gHO8 10
C(8>=&HO8 10
C<(9)>=HO810
C(10>=gHO8 10
C(11>=gHO?ED
C¢125>=gH0000
C(13>=gH0O000
C< 14 >=gHO000
C(15>=&H0000

OO

[l
[l
[]
[
[
[
[
[
L]
[

LI

I

[1[]
[[]
[1[]
][]
L]
][]
LI
L]
L]
[1]
[1[]
[[]
[]
L]
L[]
L]

00

[
[
O

Illustration 12.6 Square cursor in 16x16 grid

MOUSE TANS 191

Each grid position is a bit, and each row in the grid is a 16-bit integer. In binary, for
example, the fifth row is "0000011111100000", which is the hex number “7EQ". To
define the cursor in BASIC, you define the first 16 positions of the cursor array, C(0)
through C(15), as follows:

1. Define first four rows as hex zeros
2. Define the fifth and twelfth rows as hex 7E0
3. Define rows six through 11 ashex 810

The cursor’s “Hot Spot” is defined as X-Y coordinates in C(32) and C(33). Itisnt a
single pixel. Rather, it is the intersecting point between four pixels, the one
identified by coordinates, the one to its left, the one above, and the one above and

to the left (lllustration 12.7).
In our cursor, the “Hot Spot” is defined as

C(32)=8: C(33) =8 'vertical and horizontal coordinates

The BASIC command CALL INITCURSOR: restores the system cursor, and the
command.

IO e e
OO []
ENRENENEEN]
ANN]
LI
LI
L] L1

Hot Spot ——fum L
C(32>=8 j%E n - %
C(33>=8 :“:": :l i—

sii :
| 100
LI
RN L]

llustration 12.7 Hot spot intersection

192 GRAPHICS FOR THE MACINTOSH

CALL SETCURSOR(VARPTR(C(0))): sets our cursor to be the active one.

While we're on the subject of ROM routines that deal with the cursor, we should
mention some others that you may wish to use to embellish your applications.

CALL HIDECURSOR: turns off the cursor so that it becomes invisible, even if the
mouse is dragged.

CALL SHOWCURSOR: is the reverse, making the mouse visible.
CALL OBSCURECURSOR: is an interesting variant of HHDECURSOR.

It hides the mouse cursor until the mouse moves. In the MacWrite program, for
example, the cursor disappears when a character is typed, and appears only
when the mouse is moved. This is especially nice when you want a clean screen
with the cursor out of the way until you need it.

Other variables

GP — contains a picture of the tan piece that was selected, oriented, and
positioned. The largesttanis Tan #4 or Tan #6. The picture is stored as an integer
array for GETs and PUTSs. lllustration 12.8 indicates the space needed in GP to

store the tans.
(0,0
0 39
N ——

T #

"~ (38,76)

4 + (76-0+1) * 2 * INT((38-0+16)/16)

466 bytes
233 elements

lilustration 12.8 Large triangle with corners marked

MOUSE TANS 193

The array must be DIMensioned to hold 233 integers, according to the formula
from the Microsoft BASIC manual:

4 + (76-0+1)* 2 * INT((38 - 0+16)/ 16)
= 466 bytes, or 233 16-bit integers

TT — Contains the tan piece numbers. TT(1) might be 3 if the square were the first
tan piece manipulated.

OT — orientation of the tan piece. For tan pieces 1, 2, 4, 5, 6 there are eight
orientations for each of the pieces: 45° x 8 = 360°.

XT, YT — absolute coordinates of final position for tan TT.

ST — Smalltriangles (tans #1and # 5) and large triangles which are twice the size
ofthe small (tans #4 and # 6). Because of symmetry, only four orientations need to
be stored, as all others are derived from them. See the Set Orientation subroutine
at lines 1400-1800.

P — relative coordinates of tan’s vertices after orientation has been selected.

MT — Medium triangle (tan #2). The same comments apply here as do above for
the small triangles.

SQ — square (tan #3). Only has two orientations, but four vertices. 2 x 4 x 2.

PA — parallelogram (tan #7). Has eight orientations, but has eight more when
flipped. Still, only four orientations need to be stored, because the rest of them can
be derived from those four.

M1,M2 — X and Y coordinates of the beginning of the command line area. F isthe
count of tans used. NOTE: Although the number of tans is checked, there is no
check on whether a specific tan is used more than once. Thus, a tangram with
seven squares, or seven parallelograms.

70-180 Define a circutar cursor with hot spot at center.

200 Subroutine to draw initial screen with tangram tile menu in the
select tan area.

210-670 Load tan arrays with orientation information.

680 Prompt Manager at 5000 to position the cursor for printing in the
command line area.

690 If mouse button not clicked, cycle.

700-710 Check to see if the command line area has been clicked. If so,
store coordinates in A and B. If not, GOSUB 5000 to position
cursor at prompt area.

740-760 As long as more tans are available (F<7), “seiect tan” and
continue , else we're done. Print “‘tangram complete” and wait for
keystroke.

770 Clear the select tan area.

780 Thisis X,Y position of upper left corner of select tan area.

790-850 IF filter to see which one of the seven tans is being selected
(single-clicked).

880 This X,Y will be the position of the selected tan when drawnin the

tan orientation area.

194 GRAPHICS FOR THE MACINTOSH

890

900

910-930
940
950-960

970
980-1000
1050

1060
1070-1130
1140-1180
1200

1210
1220-1300

1320-1360

1370

2000

3000

3000

5000

6000

7000

8000

We begin with orientation 0 = 1 and step through orientations at
45° increments until a click occurs with mouse pointing in
prompt area. Each tan selected starts at its original orientation in
the square tangram tile.

GOSUB 3000 to set orientation. Actually defines the vertices of
the selected tan in array P(,))

Redraws tan with new orientation, prompts user.

Pause.

If mouse clicked in prompt area, orientation has been selected,
else show its next orientation.

Clear orientation area.

Keep track of wraparound counting of angle.

Prepare to grab tan piece whose orientation has been selected.
Number of vertices.

Need to click on a vertex to “grab’” the tan.

Need to find perimeter of tan piece (the smallest rectangle into
which it will fit) in preparation for a GET at line 1200.

Tan #3, the square, is a special case if orientation is 1.

Prepare to position tan piece in positioning area.

Grab the tan. As mouse moves, tan will follow it. The two PUTs at
1240-1250 or 1270-1280 (tan # 3 is still a special case) XOR it
along without changing the background.

Click the “do”in the prompt area and the taniis in position forever.
Click the “undo” and the tan is erased with any previously posi-
tioned tans redrawn.

Get another tan piece?

Set orientation subroutine. Manipulations to establish the relative
vertices of the tan piece selected and oriented.

Draw the tan. Given coordinates X,Y of where thetanisto go, itis
simply a matter of three or four lines being drawn.

Draw tangram tile. Sets up screen with tangram tile menu and
number in place. Los Angeles type font selected with
TEXTMODE (1). Printing on top of background without destroy-
ing it.

Prompt manager.

Save taninformation. When atan s finally positioned, we needto
remember which tan T, what orientation Theta, wherethetan Tis
with orientation O was drawn (X,Y)

Redo (undo) routine. Clear entire tan orientation area. The pic-
ture being drawn is erased! Not to worry, however. We've
remembered allimportant information about the previously posi-
tioned tans. Redraws the tans already placed.

Wrap-up. Clear screen and redraw tangram developed by user.
Perhaps this routine could display the saved tan information for
later redrawing of the figure. That's one of the many embellish-
ments we leave to you.

MOUSE TANS 195

Consider the possibilities! Why tans? Why not some other design primitives that
you can describe to the program by way of the same arrangement of menu,
command, orientation, and sketch areas? What about a scaling routine? Think
how easy it would be to design a house plan with design primitives such as doors,
walls, windows, closets, appliances, what have you. Or what about a flowchart, or
organization chart, or HIPO chart, or PERT chart drawing program?

This is what the Tangrams application is all about — not the simplistic design of
tangrams, although that is a great deal of fun — but the translation of this program
into another application tuned to a specific area or profession. With some imagina-
tion, and with this program as a skeletal start, you should be capable of developing
atruly strong application worthy of the marketplace.

-
C H A P T E R T H I R T E E N

\ ﬁ ==
/I \
AW B

1\ o7\ 1 I\b

Of all graphics applications of a computer, certainly the most familiar is the
production of business-oriented charts and graphs. True, more computer hard-
ware is being used for CAD/CAM (Computer-Aided Design/Computer-Aided
Manufacture) applications. However, for many those engineering uses are less
popular, due chiefly to their sophistication and expense. Business graphics still
remain the most often discussed graphics applications in the popular press.

Business graphics software has become a necessary part of a computer ven-
dor's portfolio of goods. The hardware won' sell if it doesn't have good software
with it, and lately that has meant the gamut of business applications —
spreadsheets, word processors, and graphics. These software packages are most
commonly written in a higher level language and compiled to make them execute
faster. Sometimes, they are written in assembly language (often called machine
language) so that the final program runs quickly.

In all cases, the user of such a package must live with what he or she buys. You
can't customize a commercial business graphics application any more than you
can customize MacPaint or MacWrite, even though you might sometimes wish you
could. The programs we supply in this chapter are not written in BASIC to be
compiled, nor are they written in assembly language to run quickly. We wrote them
in BASIC sothat you could customize them to suit your application. As of this date,
no software supplier has made a BASIC compiler available, so if you want a
language processor that executes code fast, you must rewrite these programs in
MacPascal or MacForth, both of which are available.

Inthis chapter, we will discuss their features in some detail, especially their use of
the Macintosh Quickdraw routines.

Raw Data Program

The first program we include in this chapter is not an application at all. Rather, it is
a sample program that generates data for the business graphics applications we
show later. It's a simple program, but the data it generates is typical of most

197

198 GRAPHICS FOR THE MACINTOSH

business graphics applications. The idea is that the data will consist of both
numbers and titles. Therefore our graphing programs must handle the numeric
data indicating the proportion of each component, and they must provide string
labels for each component.

The program includes the names of ten foreign breweries and their associated
annual production for a given hypothetical year, say in zillions of barrels. The
names were chosen to be typical of string data. Tennet's has an apostrophe; Ben
Truman istwo names; and the lengths of the names vary from Skol to Ben Truman.
The numeric data also varies, from 426 to 873, atypical range of values in business
charts.

In order to test our chart-making applications thoroughly, we designed this
program to provide any number of breweries' names and production, from two to
all ten. Thus the programs must be able to display just two breweries, or deal with
up to ten breweries; and each display must be appropriately scaled and centered.

r

% File Edit Control k ke

1 709 Watneys

2 426 Whitbread
3 873 Guiness

4 497 Ind Coope
5 510 Labatt

6 668 Tennet's

7 431 Harp

8 74 Heineken

9 358 Ben Truman
10 420 Skol

||

lllustration 13.1 Typical run of Raw Data program

Listing, RAWDATA program

10 ' raw data
20 DIM X(10),Ts$(10)
30 CLS

40 RANDOMIZE TIMER
50 CALL TEXTFONT(O)

60 READ N

70 FOR I=1 TO N
80 READ X(1),T$(I)
90 NEXT |

100 DATA 10,709, "Watneys"

CHART APPLICATIONS 199

110 DATA 426, "Whitbread",873,"Guiness",497,"Ind
Coope”

120 DATA 510,"Labatt”,668,"Tennet's",431," "Harp"

130 DATA 774,"Heineken”,358,"Ben Truman",420,"Skol"

140 N=2+INT((N-1)°"RND)

150 PRINT:PRINT

160 FOR I=1 TO N

170 PRINT 1, X(1).T${1)

180 NEXT |

190 IF MOUSE(0)=1 THEN RESTORE: GOTO 30 ELSE 190

20 Define 10 numeric values X, 10 string titles T$
30 Clear the screen
40 Seed random number generator with random seed
50 Set textfont to Chicago
60 Read N, number of breweries
70-90 Read numeric production and brewery names into X and T$.
100-130 Establish all datain DATA statements
140 Define new N as random integer from 2to 10
150-180 Print selected breweries and their production
190 Sense mouse. If clicked, restore and repeat process

Notice that the program will always display Watneys and Whitbread, regardless of
the number of breweries selected, because they are the first two in the list. In order
to select two to 10 breweries at random from the pool in the DATA statements, you
can modify the program. Alter the program to shuffle the X and T$ arrays before
selecting the random number N and printing the random breweries.

92FOR I=1T0 20

94 P1=INT(RND*10+1): P2=INT(RND*10+1)

96 SWAP T$(P1), T8(P2): SWAP X(P1),X(P2) ‘
98 NEXT |

The four lines above effectively shuffle the ten brewery names and numeric
values.

Application 1: Piechart

Before we list and discuss the program and its output, let us describe how you can
establish several patterns for use in any program. Remember that any screen
image is produced by displaying integers in the Macintosh memory. Many of the
Quickdraw routines allow you to paint areas with patterns you have defined,
instead of default system pattern. When you define a pattern to the Macintosh, you
must define an array of four integers, each of which is stored as a 16-bit binary

200 GRAPHICS FORTHE MACINTOSH

value in memory. These 64 bits are rearranged internally to become an 8-by-8-bit
grid, each signifying a pixel.

For example, suppose you want a pattern that looks like little squares, as in
lllustration13.2.

e QR
eyt 1 i
SOPATE(2)=RH3EOD"D“E

EEEEE

SQPATE(3)=RHOD00 = EEE

llustration 13.2 Definition of pattern

You define the four 16-bit integers as follows:

20 DIM SQPAT$PC(3) ‘really four integers, SQPAT$PC(0) through SQPATS$PC(3)
30 SQPAT$PC(0) = &HO003E ‘binary 0000000000111100, first 2 rows

40 SQPAT$PC(1) = &H2424 ‘binary 0010010000100100, second 2 rows

50 SQPAT$PC(2) = &H3EOQO ‘binary 0011110000000000, third 2 rows

60 SQPAT$PC(3) = &H0000 'binary 0000000000000000, fourth 2 rows

You can define more than one pattern in the same array by using a second
subscript as a pattern number. We have done this in these programs, and we
recommend it to you as a common practice when you have more than one pattern
to deal with. Here's how you do it:

1. Define an integer array (let's call it P%) DIMensioned 3 by the number of
patterns you want (let's say 10).

Place first pattern in P%(0,1), P%(1,1),P%(2,1), and P%(3,1).
3. Place second patternin P%(0,2), P%(1,2), P%(2,2), and P%(3,2).
Continue until all ten patterns are defined.
Hint: We recommend that you establish two patterns, grey and black, as a matter
of course whenever you work with multiple patterns.
Black is & HFFFF, &HFFFF, &HFFFF, &HFFFF where you define all dots in the 8-

by-8 grid as 1s. Another way to do this is to define the four pattern integers as -1,
because the integer -1is a binary 1111111111111111, which is a hex FFFF.

CHART APPLICATIONS 201

Grey is &H55AA, &H55AA, &HS55AA, &H55AA.

When you use patterns with a CALL to the Macintosh Quickdraw routines, you
must use the VARPTR function. You will always refer to a pattern as, for example,
VARPTR(SQPAT$PC(0)) or VARPTR(P %(0,1)) or VARPTR(P %(0,2)). lllustration
13.3 and 13.4 are examples of pie charts using patterns. The two illustrations are
followed by the piechart listing.

" & File Edit Control k 2

Watneys
@$EF Whitbread
/77 Guiness
@ 1nd coope

Illustration 13.3 Piechart of a few breweries

" & File Edit Control Rk 5
= = — ———— pie charl

Watneys
Whitbread
Guiness

N - Ind Coope

\ Labatt
Tennet's

D Harp

HELIIELIE PP I
PILIIILLIIIS,
PELIIIII Yy
110722,
)

\\\\\

e M

lllustration 13.4 Piechart of many breweries

202 GRAPHICS FOR THE MACINTOSH

Listing, Piechart

10

20
30
40
50
60
70
80
90
100
110

120
130
140
150
160

170
180

180
200
210
220

230
240

250
260
270

280
290
300
310
320
330
340
350
360
370

pie chart

DIM X{10),P%(3.12).R%{(3).L%(3).Ts(10)

CLS

RANDOMIZE TIMER

CALL TEXTFONT(O)

READ N

FOR 1=1 TO N

READ X(1),Ts(1)

NEXT |

DATA 10,709, "Watneys"

DATA 426,"Whitbread",873,"Guiness",497,
"Ind Coope”

DATA 510,"Labatt”,668,"Tennet's”, 431, "Harp"

DATA 774 ,"Heineken",358,"Ben Truman",b420,"Skol"

N=2+INT{(N-1)"RND)

GOSUB 1000 ' <<<< normalize data

P%(0,1)=&H55AA:P%{1,1)=&HS55AA:P%(2,1)=
&H55AA:P%{3,1)=&H55AA

P%{0.,2)=—1:P%{1,2)=—1:P%{2,2)=-1:P%(3,2)=-1

P%{0,3)=&HB040:P%{1,3)=&H2010:P%(2.3)=
&HB8040:P%(3,3)=&H2010

P%(0,4)=&HFEDC:P%{1,4)=&HBAI8:P%(2,4)=
&H7654:P%(3,4)=&H3210

P%(0,5)=&H1122:P%(1,5)=&H4488:P%(2,5)=
&H1122:P%(3,5)=&H4488

P%(0,6)=&H77FF:P%(1.6)=&HDDFF:P%(2,.6)=
&HTTFF:P%(3,6)=&HDDFF

P%(0,7)=&HBB44:P%(1,7)=8&H2211:P%(2,7)=
&HB8844:P%(3,7)=&H2211

P%(0,8)=-1:P%(1,8)=0:P%(2,8)=-1:P%(3.8)=0

P%(0,9)=&H9966:P%(1,9)=&H3311:P%(2,9)=
&H1133:P%(3,9)=&H6699

P%(0,10)=&HCCCC:P%(1,10)=&H3333:P%(2,10)=
&HCCCC:P%(3,10)=&H3333

P%(0,11)=&H33AA:P%(1,11)=&H33AA:P%(2,11)=
&H33AA:P%(3,11)=&H33AA

PB(0,12)=8H1111:P%(1,12)=&H1111:P%(2,12)=
&H1111:P%(3,12)=&H1111

R%{0)=25:R%(1)=30:R%(2)=225:R%(3)=230

CALL FILLOVAL{VARPTR(R%(0)).VARPTR{P%(0.1)})

CALL FRAMEOVAL{VARPTR({R%(0)))

FOR J=0 TO0 3

R%{J)=R%(J}-5

NEXT J

CALL FILLOVAL(VARPTR(R%(0})),VARPTR(P%(0.,2)))

A=0

S=10"(10-N)+7

E=280

CHART APPLICATIONS 203

380 FOR 1=1 TO N

390 W=INT(X(1)"360+.5)

400 CALL FILLARC(VARPTR(R%(0

410 CALL FILLARC({VARPTR(R%(0
(P%(0,1+2)))

420 A=A+W

430 D=20"1+S

440 L%(0)=0:L%{1)=E:L%(2)=D+16:L%(3)=E+36

450 CALL FILLROUNDRECT({VARPTR(L%(0)).15,15,6 VARPTR
(P%(0.1)))

460 FOR J=0 TO 3

470 L%(J)=L%(J)-2

——

). AW, VARPTR(P%(0,2)))
), A.W,VARPTR

480 NEXT J
490 CALL FILLROUNDRECT(VARPTR{L%(0)).15,15, 6 VARPTR
{P%(0.1+2)))

500 CALL FRAMEROUNDRECT(VARPTR(L%(0)).15,15)
510 CALL MOVETO(320,D+13):PRINT Ts$(I)

520 CALL FRAMEOVAL(VARPTR(R%(0)})

530 NEXT |

540 |F MOUSE(0)=1 THEN RESTORE: GOTO 30 ELSE 540
1000 ' data normalization

1010 S8=X{(1)

1020 FOR 18=2 TO N

1030 S8=S8+X(18)

1040 NEXT 18

1050 FOR 18=1 TO N

1060 X(18)=X{18)/S8

1070 NEXT 18

1080 RETURN

20 Define X and T$ as production and brewery names.
Define P% for 12 patterns.
Define R% for rectangle coordinates.
Define L % for filled rectangle coordinates.

30-140 Establish a random number N of breweries to be graphed.

150 Perform Normalize Data subroutine (lines 1000-1080)

160 Define grey pattern starting at P%(0,1).

170 Define black pattern starting at P%(0,2).

180-270 Define 10 patterns, one for each different brewery, at P%(0,3)
through P%(0,12).

280 Define R% as rectangle with upper-left and lower-right coordi-
nates of (15,10) and (215,210). It must hold a 200-pixel-diameter
circle.

290-300 Fill oval with grey pattern, frame it.

310-340 Shift coordinates of oval, draw another.

350 Start angle accumulator A to zero.

360-370 Define S and E to position text on chart.

380-530 Forl = 1to N do:

204 GRAPHICS FOR THE MACINTOSH

390
400-410
420
430

440

450
460-500
510-520
530
540

1000
1010
1020-1040
1050-1070

Set size of wedge W.

Fill wedge with its pattern (# 1+ 2).

Accumulate angle A, now starting position for next wedge.
Calculate displacement D used for rounded rectangle containing
appropriate pattern (# 1+ 2).

Define upper-left, lower-right coordinates for rounded rectangle
as (D,E) and (D +16,E + 36).

Fill rounded rectangle associating wedge and text.

Shift coordinates, draw again.

Print text next to this rectangle.

Enddo.

Sense mouse. If clicked, restore data and return to show another
chart.

Data normalization subroutine.

Set X8 as first value in array X.

Calculate S8, sum of all N elements of X.

Calculate new X for each position dividing old X by S8. This
makes all X values proportional, but none greater than 1.

Application 2: Icon Chart

This program produces a chart like those you've seen many times in magazines,
in which the value of a variable is shown as a symbol of what it is (lllustration 13.5
and 13.6). For example, car production could be shown as different-sized symbols

of cars, orthe po

pulation of several countries could be shown as several symbolic

people of varying size. These charts are sometimes called ideograms, but we
prefer to call them icon charts to conform to the Macintosh’s terminology.

" & File

Edit Control k 2
iconchainE6656F65-F8F79 ——— ——

Watneys
Whitbread
I Guiness
I]
L s

lllustration 13.5 Icon chart output with few breweries

CHART APPLICATIONS

205

Whitbread
Guiness
| Ind Coope
S
Labatt
Tennet's
L & Harp
Heineken
| Ben Truman

SEETS
I | Skol

lllustration 13.6 Icon chart output with many breweries

Listing, Icon Chart

10

20
30
40
50
60
70
80
90
100
110

120
130
140
150
160

170
180
190
200
210
220
230
240

icon chart

DIM X(10),P%(3),R%(3),L%(3).T$(10)
CLS

RANDOMIZE TIMER

CALL TEXTFONT(DO)

READ N

FOR I=1 TO N
READ X(1),Ts(1)
NEXT |

DATA 10,709, "Watneys"

DATA 426,"Whitbread",873,"Guiness",497,"Ind
Coope"

DATA 510, "Labatt"”,668, " "Tennet's",431, "Harp"”

DATA 774,"Heineken",358,"Ben Truman",420,"Skol"

N=2+INT({N-1)*RND)

GOSUB 1000 ' <<<< normalize data

P%(0)=&H55AA:P%(1)=&H55AA:P%(2)=
&H55AA: P%(3)=&HHHAA

X=15440°(10-N) /2

FOR 1=1 TO N

S=80"X(1)

Y=20"1+10"(10-N)+4

GOSUB 2000

D=16"1-15

CALL MOVETO(X,Y-4):PRINT T$(1I)

X=X+50"X(1)+13

(continued)

206 GRAPHICS FOR THE MACINTOSH

250 NEXT |

260 IF MOUSE(0)=t THEN RESTORE: GOTO 30 ELSE 260

1000 ' data normalization

1010 S8=X{1)

1020 FOR 18=2 TO N

1030 IF S8<X(18) THEN S8=X(18)

1040 NEXT 18

1050 FOR 18=1 TO N

1060 X(I8)=X{18)/S8

1070 NEXT 18

1080 RETURN

2000 ' draw icon

2010 P4%=S:P5%=.6"S

2020 P1%=.12"S:P2%=.85"S:P3%=.15"$S

2030 R%(0)=Y:R%{1)=X:R%(2)=Y+P4%:R%(3)=X+P5%

2040 CALL FRAMEROUNDRECT(VARPTR(R%(0)).P1%,P4%)

2050 LINE(X,Y+P3%)—(X,Y+P2%):LINE(X+P5%, Y+P3%)-
(X+P5%, Y+P2%)

2060 R%(0)=Y+P2%:R%(2)=Y+P4%

2070 CALL FRAMEARC(VARPTR(R%(0)).90,180)

2080 R%(0)=Y:R%({2)=Y+P3%

2090 CALL FILLOVAL(VARPTR(R%(0)).VARPTR(P%(0)))

2100 CALL FRAMEOVAL (VARPTR(R%(0)))

2110 RETURN

20-160 See discussion in previous program. All stays the same, except
that only one patternis defined, a grey, andit is stored in the array
P% inline 160. Line 20 shows that P% is singly dimensioned, as
we deal with only one pattern.

170 Define X as horizontal starting position, further over if N is small,
because we want to center the icons.

180-250 Forl = 1toNDO:

190 Set S, scale of icon, to max. vertical size =80.

200 Set Y, width oficon, to max. =48.

210 Perform Draw Icon routine.

220 Locate position for text, print brewery name.

230 Adjust X so that next can is over 13 pixels + its proper propor-
tional width.

240 Enddo.

250 Sense mouse. [f clicked, return for another icon chart.

1000-1080 Data normalization routine. Notice that it is different from the last

one. This one divides every value in X by the largest value in X.

2000 Draw Icon Routine
2010-2020 Define P1% through P6% as dimensions based on scale S.
P1% = .12S, is oval width for can’s bottom.

CHART APPLICATIONS 207

2030

2040
2060
2070
2080
2090
2100
2110
2120

P2% = .85S, is height of edge of beer can.

P3% = .158S, is width of can's top.

P4% = S, is oval height for can's bottom.

P5% = .6S, iscan's width to height ratio.

Establish round rectangle’s coordinates based on X, Y, P4%,
P5%.

Draw can’s outline using FRAMEROUNDRECT.

Outline can with straight lines as well.

Set up bottom of can’s arc using P2% and P4 %.

Draw can’s bottom using FRAMEARC.

Set up can's top for shading using P3%.

Shade can's top grey using pattern P% and FILLOVAL.
Draw can’s top edge using FRAMEOVAL.

return

Application 3: Bar Chart

The bar chart remains one of the most popular graphic displays for showing
relative differences among several variables. It suits our example of the European
breweries well, for that is what we have — from two to 10 numeric values whose
differences are hard to detect. It is also difficult to get a sense of who's big and
who's smallin any list of numbers if that list has more than three or four elements.
The bar chart makes this easy by making the larger values stand out above the
crowd, and the smaller values look small because of their short bars (lllustration
13.7 and 13.8).

r

llluinags

€8 whitbread
¢/ Guiness

@ 11d coope

Illlustration 13.7 Bar chart, few breweries

208 GRAPHICS FOR THE MACINTOSH

" & File Edit Control R B!

= ber chart =5

Watneys
Whitbread
Guiness
Ind Coope
Labatt
Tennet's
Harp
Heineken

TT
b33
N
N
oy
N
Dy
>3
Ry
b3
N
N
N
N
g
3
b
>y
b3
N
N
>N
N
i1
13

o H

lllustration 13.8 Bar chart output, many breweries

Listing, Bar Chart Program

10 ' bar chart

20 DIM X(10),P%(3,12) ,R%(3).L%(3).T$(10)

30 CLS

40 RANDOMIZE TIMER

50 CALL TEXTFONT(D)

60 READ N

70 FOR I1=1 TO N

80 READ X(I),T$(1I)

90 NEXT

100 DATA 10,709, "Watneys"

110 DATA 426,"Whitbread"”,873,"Guiness", 497,
"Ind Coope”

120 DATA 510,"Labatt”,668,"Tennet's",431,"Harp"

130 DATA 774 ,"Heineken".358,"Ben Truman",420,"Skol"

140 N=2+INT({N-1)*RND)

150 GOSUB 1000 ' <<<< normalize data

160 P%(0,1)=&H55AA:P%(1,1)=&H55AA:P%(2,1)=&H55AA: P%
(3,1)=&H55AA

170 P%(0,2)=-1:P%(1,2)=-1:P%(2,2)=—1:P%(3,2)=-1

180 P%(0,3)=&HB040:P%(1,3)=&H2010:P%(2,3)=
&HB040:P%(3,3)=&H2010

190 P%(0,4)=&HFEDC:P%(1,4)=&HBA9S:P%(2,4)=
&H7654 :P%(3,4)=8&H3210

200 P%(0,5)=&H1122:P%(1,5)=&H4488:P%(2,5)=
&H1122:P%(3.5)=&H4488

210 P%(0,6)=&H77FF:P%(1,6)=&HDDFF:P%(2,6)=
&H7TFF:P%(3,6)=&HDDFF

CHART APPLICATIONS

209

220

230
240

250
260
270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

450
460
470
480

490
500
510
520

1000 °

1010
1020
1030
1040
1050
1060
1070
1080
1080
1100

P%(0,7)=8H8844:P%(1,7)=&H2211:P%(2.,7)=
&HB8844:P%(3,7)=&H2211

P%(0,8)=-1:P%(1,8)=0:P%(2,8)=-1:P%(3,8)=0

P%{0,9)=&H9966:P%(1,9)=&H3311:P%(2,9)=
&H1133:P%(3,9)=&H6699

P%{0,10)=&HCCCC:P%(1,10)=&H3333:P%(2.10)=
&HCCCC:P%(3,10)=8&H3333

P%(0,11)=&H33AA:P%(1,11)=&H33AA:P%(2,11)=
&H33AA:P%(3,11)=&H33AA

P%(0,12)=&H1111:P%(1,12)=&H1111:P%{2,12}=
&H1111:P%(3,12)=&H1111

W=20:H=100

S=10"(10-N)

X=15+S+$S

E=X+55+25"N:B=250

FOR I1=1 TO N

V=X(1)"H

R%(0)=B-V:R%(1)=X:R%(2)=B:R%{3)=X+W

CALL FILLRECT(VARPTR(R%(0)),VARPTR(P%(0.,1)))

FOR J=0 TO 3

R%(J}=R%(J)-3

NEXT J

CALL FILLRECT(VARPTR(R%(0)),VARPTR{P%(0,1+2})))

CALL FRAMERECT(VARPTR(R%(0)))

X=X+25 !

0=20"1+8S

L%(0)=D:L%(1)=E:L%{2)=D+16:L%(3)=E+36

CALL FILLROUNDRECT({VARPTR(L%(0)),15,15, VARPTR
(P%{0,1)))

FOR J=0 TO 3

L%(J)=L%(J)-2

NEXT J

CALL FILLROUNDRECT(VARPTR{L%(0)).15,15,VARPTR
(P%{0,1+2)))

CALL FRAMEROUNDRECT(VARPTR(L%(0)).,15,15)

CALL MOVETO(E+40,D+13):PRINT T$(I)

NEXT 1

IF MOUSE(0)=1 THEN RESTORE: GOTO 30 ELSE 520

data normalization

T8=X(1):B8=X(1)

FOR 18=2 TO N

IF T8<X{18) THEN T8=X(18)

IF B8>X(18) THEN B8=X(18)

NEXT 18

M8=(T8+B8)/2

FOR 18=1 TO N

X(18)=X(18)/M8

NEXT 18

RETURN

210 GRAPHICS FOR THE MACINTOSH

Our application uses shadowed bars that have different patterns, and it has a
legend of patterns identifying the breweries. It seems to be missing a vertical scale
to the left of the bars at first glance, but if you reflect a bit on the display, you will see
that this feature is unnecessary if you are interested in refative performance of the

breweries.

10-140 Same asicon chart above, except we reestablish the 12 patterns
that were defined in the pie chart.

150 Perform data normalization, only this time use mid-range for-
mula.

160-270 Pattern definitions.

280 W = 20 (width), H = 100 (height) of high and low.

290 S is used to help center legend text from top to bottom.

300 X is left edge of first bar.

310 E is position of legend from right edge of bar.

320-510 For | = 1to N, number ob bars, DO:

320-380 V is this bar's proportional height, R% defines coordinates of
bar's rectangle for shading with pattern. Bar is filled at line 370,
and bar constraints adjusted.

390-400 Draw and fili bar.

400 Redefine X for next bar.

420-470 Establish legend box, shadow it, adjust constraints.

480-490 Fill and frame legend box.

500 Move to appropriate place, print legend.

510 Enddo.

520 Sense mouse. If clicked, restore data, return for another chart.

1000 Data normalization routine this time uses yet another form of

adjusting data values. We find the midrange by finding the
lowest and highest values, and averaging those two values.
Then each X is divided by that mean.

We were sorely tempted to add more applications to this book. We enjoy the
simple process of taking an existing program developed on another machine and
making it do its tricks on the Macintosh. Also, we have found that the Macintosh’'s
outstanding built-in software makes such conversions a joy. The resulting pro-
grams are commonly shorter, run faster, and because of better resolution, provide
more accurate graphics. ltis enough to introduce these ideas, to discuss them with
only sufficient detail that you feel tempted to play with them.

That has been our goal from the outset. If we have stimulated you to take some of
them and to stretch them here and shrink them there, so that the resultis something
you wanted but couldn't quite do, then we have achieved our purpose in writing
this book. Computer graphics on a oersonal computer is, more than anything else,
a fun exercise. When it becomes tedium, when it no longer teases you to explore
the “what if" of a program’s variables, graphics will not have its charm and
excitement.

CHART APPLICATIONS 211

But you're in luck. Graphics will assume its appropriate position in the range of
computer activities, and it will forever stay as the most exciting procedure for
displaying information on a computer's screen, and on its printer's paper.

We await the day when the Macintosh has more memory, a color display, a
compiler BASIC, light pens, and who knows what other goodies to help us interact
with our pictorial program output. The Macintosh hardware and software, as it
exists, is good. Like everything else it willimprove, and we will chuckle at some of
the simplistic things we did in this book. Still, we are confident that many of the
exercises we performed here will make it easier for us in the future, and we won't
regret having spent the time to do them. We hope you feel the same way.

ALPHABET DRAW program 172

ANGLEDRAW program 166

ANGLEWALK program 140

ANSI 63

APPROACHING STAR program 110

ASTROID program 92

Active window printing 25

Ada 64

Alphabet generator 171

Alphabet 16, 23

American National Standards Institute
(ANS!) 83

Annotated artwork 17

Applemenu 13

Apples with ALPHABET DRAW 178

Architectural system 49

ArtistsVenn 25

Astroid 91
Athens font 25, 27
Atkinson, Bill 1

BAR CHART program 208
BASIC 63

BENT SIERPINSKI program 157
BIRTHDAY program 95
Barcharts 207

Beers 198

Bent Sierpinskis 156
Bicycleicon 32

Binomial distribution application 79
Birthdays application 95
Bleedingimages 32
Breweries 198

Brick wall 7

Brush selectionmenu 2

Index

Brush shape display, edit 3
Brush 1

Bucket 7

Buenos Aires font 29
Businesscard 15

CAD/CAM 197
CALLFILLARC 203

CALL FILLOVAL 202,206
CALL FILLRECT 209

CALL FILLROUNDRECT 203
CALL FRAMEARC 206
CALL FRAMEOVAL 202, 206
CALL FRAMEROUNDREC 206
CALL HIDECURSOR 192
CALL INITCURSOR 191
CALLMOVETO 96

CALL OBSCURECURSOR 192
CALL PENSIZE 97

CALL SETCURSOR 192
CALL SHOWCURSOR 192
CALL TEXTFONT 205

CALL TEXTMODE 96

CALL statement 63

CALLs to text management routines 117
CARDIOID program 89
CHAIN 61,66

CIRCLE 122

CIRCLES program 148
CLEAR 68

COBOL 64

COMMON 61,67

CPU 64

Cairo fontillustrated 12
Cairofont 17,100

213

GRAPHICS FOR THE MACINTOSH

Cardioid 88

Cartesian coordinates 135
Case structure 56
Centered Sierpinskis 153
Chart applications 197
Charts, bar 207
Charts, icon 204
Charts, pie 201

Charts, various 27
Chelmsford font 29
Chicagofont 12

Clocks 117
Commandkey 11
Compilers 64

Complex tessellation 145
Constraint 22, 26
Coordinates, screen 77
Copy 13
Copying a picture 11
Cursor design 190
Curtate cycloid 86
Curves, mathematical 84
Cut 13

Cycloid, curtate 86
Cycloid, prolate 84

DEF-type statements 68
DIAMONDWALK program 143
DIGITAL CLOCK program 123
DOUNTIL structure 55
DOWHILE structure 54

DRAW alphabet 171

DRAW command modes 162
DRAW command options 162
DRAW command syntax 159
DRAW commands, letter A 175
DRAW motion commands 160
DRAW subroutine applications 165
DRAW subroutine pseudocode 163
DRAW 135

Decision structure 53

Design, program 47

Diamond pattern with DRAW 170
Diamond tessellation 142
Directions for DRAW 160
Drunkard's walk 139

Duplicating animage 18

EGG TIMER program 132
ENLARGE STAR program 104
EVOLUTE OF ELLIPSE program 91
Edit brush shape display 3

Edit brush shape 1

Edit brush shapes 8

Egyptian hieroglyphics 12

Eraser 9,16,22

Evolute of ellipse 90

FILLARC 203
FILLOVAL 202,206
FILLRECT 209
FILLROUNDRECT 203
FORTRAN 64
FRAMEARC 206
FRAMEOVAL 202, 206
FRAMEROUNDREC 206
Fatbits 18, 32
Filemenu 9

Filling patterns 200
Fish scales 7

Flip horizontal 19

Flip vertical 19
Flipping animage 17
Font application 29
Font producticn 31
Fontsillustrated 30
Fontsize menu 12
Four-pointed star tessellation 143
Fractals 152
Frogicondesign 100
Full screenfiling 25
Full screen printing 25

GET 97
GWBASIC 135
Ganttcharts 27
Genevafont 12
Goodiesmenu 16
Goodies 21
Grabber 18,23, 25
Graffitiwall 7
Grid 16,23,33

HIDECURSOR 192
HIPO chart 26,195

INDEX 215

Hierarchy chart 49

Hierarchy of Input-Process-Output (HIPO)
chart 26

Hieroglyphics 12

Hipochart 26

Hot spot 191

House plan menu system 57

Hypocycloid of four cusps 91

ICON CHART program 205
INITCURSOR 191
INVOLUTE OF CIRCLE program 87
lcon application 31
lconcharts 204
lconideaslist 34

lcons 29

Ideograms 204

image resolution 77

Input design 48
Interpreted code 64
Involute of circle 86

LINE STEP 137

LINE, advanced applications 138
LINE 135

Lasso with option key 41

Lasso 17,22,32

Letter ADRAW commands 175
Local variables 63

Londonfont 19

Loop structures 54

Los Angeles font 14

MANTEL CLOCK program 128
MC68000 64

MENU program listing 70
MERGE 61,67

MORE CIRCLES program 148
MOVE instruction, DRAW command 161
Maintenance, program 51
Marquee 11,18

Mathematical curves 84
Menu, brush selection 2
Menus 57

Modes, DRAW command 162
Modula-ll 64

Modular programming 45

Modules, program 49
Monacofont 12

Motion commands, DRAW 160
Mousetans 181

Mouse, user interaction with 70
Moving a picture 11

NEWS ROOM CLOCK program 129
New York font 12
No bicyclingicon 32

OBSCURECURSOR 192
Olympicicons 31

Optionkey 11,15

Options, DRAW command 162
Organization charts 27
Output design 47
Overlapping circles 21
Overlay 67

PACHINKO program 82
PEACHES program 74
PEARS program 74
PERT chart 195

PERT charts 27
PIECHART program 202
PLUMS program 75
POINT 79,135
PROLATE CYCLOID program 85
PSET 78,135

PTAB 79

PUT 97

Pachinko game 79
Paint bucket 18

Palette 1

Pascal 64

Paste 13

Pattern definition 200
Pencilto erase 18
Pencil 1

Pfruits 72

Pie charts 201

Pixel 18

Pixels and resclution 77
Plums 73

Posters and flyers 33
Print Draft 25

216 GRAPHICS FOR THE MACINTOSH

Probability of same bithdays 95
Processes design, programming 48
Processes, DRAW subroutine 164, 165
Program ALPHABET DRAW 172
Program ANGLEDRAW 166
Program ANGLEWALK 140
Program APPROACHING STAR 110
Program ASTROID 92

Program BAR CHART 208
Program BENT SIERPINSKI 157
Program BIRTHDAY 95

Program CARDIOCID 89

Program CIRCLES 148

Program DIAMONDWALK 143
Program DIGITAL CLOCK 123
Program EGG TIMER 132

Program ENLARGE STAR 104
Program EVOLUTE OF ELLIPSE 91
Program ICON CHART 205
Program INVOLUTE OF CIRCLE 87
Program MANTEL CLOCK 128
Program MENU 70

Program MORE CIRCLES 148
Program NEWS ROOM CLOCK 129
Program PACHINKO 82

Program PEACHES 74

Program PEARS 74

Program PIECHART 202

Program PLUMS 75

Program PROLATE CYCLOID 85
Program RACING STARS 106
Program RAW DATA 198

Program REVOLVING STARS 112
Program ROSES 94

Program SHOOTING STAR 99
Program SIERPINSK| 150

Program SQUAREDRAW 168
Program SQUAREWALK 142
Program STARS & CIRCLES 146
Program STARWALK 144

Program TAN APPLICATION 185
Program TWO CLOCKS 126
Program VINYL FLOORWALK 145
Program WALL CLOCK 120
Program coding and testing 51
Program design 45

Program flowcharts 27

Program maintenance 51

Program modules 46, 49

Program planning 45

Programming, structured 50
Programs 57
Prolate cycloid 84

Pseudocode for ALPHABET DRAW 174

Pseudocode, DRAW subroutine 163
Pseudocode 49
Pythagorean theorem 161

Quickdraw CALLs 117
Quickdraw routines 65, 197

RACING STARS program 106
RAW DATA program 198
REVOLVING STARS program 112
ROSES program 94

Racing invitation application 33
Random walk problem 138
Random walk with DRAW 165
Recursion 149

References on fractals 152
References ontangrams 43
Resolution 77

Roses 93

Rounded rectangle 26

Row of Macs 13

SETCURSOR 192

SHOOTING STAR program 99

SHOWCURSOR 192

SIERPINSKI program 150

SQUAREDRAW program 168

SQUAREWALK program 142

STARS & CIRCLES program 146

STARWALK program 144

Scrapbook 13

Screen coordinates 77

Screen displays, TAN APPLICATION
program 182

Sequential structure 52

Show page 24

Shrink 15

Shrinking a picture 11

Sierpinski patterns 149

Sierpinskis, centered 153

Spraycan 5

Square tessellation 141

Stars and circles tessellation 146

- INDEX 217

Stars and motion application 97

Stepsin program planning 47

Storage design 48

Storage, MacPaint documents 29

Stork tangram production 41

Stork with TAN APPLICATION
program 184

Storks, legal and illegal 39

Structure, case 56

Structure, decision 53

Structure, general 60

Structure, sequential 52

Structured pregramming 50

Structures, loop 54

Stylemenu 12,17

Submenus 57

Subprograms 57

Subroutines 60

System flowcharts 27

System modules 65

TAN APPLICATION program 185
TAN APPLICATION variables 190
TEXTFACE 118

TEXTFONT 118, 205
TEXTMODE 119

TEXTSIZE 119

TWO CLOCKS program 126
Tan tile production 40

Tangram animals 42

Tangram display screen 181
Tangram history 38

Tangram production rules 38
Tangram reference list 43

Tangrams 37

Tans BASIC program 181
Tans 37

Tessellation with DRAW 168
Tessellation 138

Text management routines 117
Textfaces 117

Textsizes 117

Tiles, brocken 37

Toclbox 64

Top-down design 45, 46, 65, 66
Topological rigor 37
Tree&grass 6

Tree&leaves 5

Tree&limbs 4

Treetrunk 3

Twoheads 17

UPC symbol 16
Undo 26
User friendliness 47

VINYL FLOORWALK program 145
Variables in TAN APPLICATION 190
Variables, local 63

Venice font 12, 33

Venn diagram 21

WALL CLOCK program 120
Waffletiling 7

Waltham font 29

Webbing 7

FPT >517.95

ISBN D-D3-000477-2

RET:0385:001745:50

