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Preface 

The Macintosh is a revolutionary computer. It is the first reasonably-priced 
computer that can be called "human-oriented"-that is , easy for humans 
to use, rather than easy for engineers to build. However, this ease of use 
has been achieved at a price: programming on the Macintosh - at least 
the writing of serious applications programs - is more difficult to learn 
than on previous microcomputers. This is because the Macintosh contains 
a truly fantastic collection of software routines, mostly built into its ROM, 
to control menus, windows, graphics, the mouse, and other parts of the 
Mac's operations. To write serious programs on the Mac, you must learn 
about these routines, and about the concepts they are based on. In short, 
you must learn about the Mac's "Hidden Powers." 

This book explains how the Macintosh 's built-in software works and 
how to write applications programs that work with and take advantage of 
these built-in routines. The aim is to teach the philosophy and organiza­
tion of the Macintosh and its various system parts in an orderly, step-by­
step approach, so that understanding and learning to program the Mac 
becomes as simple as possible. 

Who This Book Is For 

xii 

This book is intended for anyone who wants to learn how to write serious 
applications programs for the Macintosh as well as those simply interested 
in how the Mac works. 

Although the book is introductory in nature, it is not intended for the 
computer novice. The Pascal language is used to demonstrate the various 
concepts, so you should have some exposure to Pascal or a modern, 
structured computer language like it. However, you are not expected to be 



a Pascal expert. In fact, we explain those features, such as pointers and 
data typing, that make Pascal different from other languages, yet are 
essential to understanding the Macintosh. 

You should have some familiarity with computer operating systems 
and computer operations in general, including such features as files, 
records, fields, interrupts, RAM, and ROM. Understanding the hexadeci­
mal numbering system and hexadecimal memory addressing is also help­
ful. It's useful, too, to have some understanding of what assembly language 
does, although you by no means need to be an assembly language pro­
grammer to follow this book. 

Finally, you should be familiar with the Macintosh's revolutionary 
features such as windows, menus, dialog boxes, and the mouse, and how 
they work together to create this amazingly easy-to-use machine. 

Although the example programs in this book were developed using 
the Lisa Pascal Workshop (the original development system for the Mac), 
they are written and explained so that they are useful no matter what 
program development system you are using. Thus, whether you program 
inC, Pascal, assembler, Forth, or some other language, you will still find 
that this book reveals the fundamental concepts of the Mac's operation in 
a way applicable to your particular programming environment. 

How This Book Is Organized 
This book is organized around example programs. This has the advantage 
of providing a concrete basis from which to launch the more abstract 
concept descriptions. Each program is designed to show how several built­
in Macintosh routines integrate into a working unit. By seeing how these 
routines work together, you will come to understand the ideas behind them 
and the overall philosophy behind the Macintosh design. In the case of 
the Macintosh, it is really true that the whole is greater than the sum of 
the parts. 

The first three chapters lay the groundwork, discussing the organi­
zation of the Mac in general terms. Subsequent chapters provide a series 
of programs that demonstrate the ideas behind the Mac's operation. 

Chapter 1 explains the basic philosophy and history behind the Mac­
intosh. It explains how Macintosh's windows and menus originated in 
research at Xerox's Palo Alto Research Center. 

Chapter 2 surveys the Macintosh's internal organization, explaining 
how the hardware "maps" to the memory addressing space and how the 
RAM and ROM are allotted to the various parts of the Operating System. 
This chapter also surveys the logical division of the Operating System 
into managers. 

PREFACE Xiii 



Chapter 3 discusses several fundamental aspects of the applications 
programming environment for the Macintosh, including how applications 
are constructed as collections of resources, some "pointers" on Pascal, 
and a debugging session. 

Chapter 4 introduces the details of QuickDraw. A series of short 
example programs introduces the basic features of QuickDraw- from a 
simple program that does no more than initialize the drawing environment 
to a program that shows how to control a number of pictures on the screen 
at once, a precursor to multiple windows. 

Chapter 5 introduces the Event Manager. An example program illus­
trates how the mouse and the keyboard can generate events. You see how 
the Event Manager handles these events, presenting them to the applica­
tions program as it is ready to handle them. You see how the facilities of 
QuickDraw track the mouse as it enters certain regions on the screen. This 
is a precursor to controls. 

Chapter 6 introduces the Window Manager and the Control Manager. 
An example program illustrates how to track the mouse through parts of 
a window, such as its drag region, goAway box, and grow box. It also 
illustrates how controls such as scroll bars work. 

Chapter 7 extends the concepts introduced in chapter 6 to multiple 
overlapping windows. It introduces Quick.Draw features such as polygons 
and pictures. 

Chapter 8 extends window management one more step by introducing 
the Dialog Manager. The example program illustrates how to use the high­
level management routines in this manager. We show you how to call a 
single routine to handle entire interactions between the Macintosh and 
the user. We also show how to share control of such interactions between 
the program and the system. 

Chapter 9 introduces the Menu Manager. An example program illus­
trates how to create menus and how to track the menu selection process. 
This example also illustrates some basic shapes and drawing attributes 
available in QuickDraw. 

Chapter 10 introduces the File Manager and Text Edit, the manager 
of text. An example program assembles these techniques, illustrating how 
a text editor applications program can be built that loads and saves text 
files from and to the disk. The program also uses the managers introduced 
in previous chapters, including QuickDraw, the Event Manager, the Win­
dow Manager, the Control Manager, and the Dialog Manager. This final 
example illustrates how these different system parts work cooperatively. 

With one exception, the example programs use features from current 
or previous chapters. The example programs illustrate the core features of 
Macintosh's built-in software, leading up to the final example in Chapter 
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10, which in many ways is a typical applications program. The purpose 
of these examples is to provide the simplest and clearest demonstration of 
the Mac's features, providing models for developing your own software. 
We are not attempting to create a cookbook of stand-alone utilities. 

All examples have been carefully coded to work closely with the 
Macintosh's built-in software. Each line has been checked for its role in 
making the example work right. 

Each example is fully explained in the text. These explanations in­
troduce the basic concepts of each chapter. Because the explanations are 
closely linked to the examples, you see in concrete terms what these 
concepts mean to an applications programmer. 

The Macintosh contains a wealth of software involving an immense 
number of concepts. It is thus impossible to cover every detail of the Mac's 
operation in a single book. In view of this, we have taken the approach of 
carefully selecting key concepts, guiding you to an overall, solid under­
standing of how the Macintosh works. From this foundation, you should 
be able to deal easily with its other, less critical features. 

We hope you find this book a unique and useful approach to the 
Macintosh, one that leads you to understanding how the Macintosh works 
and how to write programs that run on the Mac, and taking full advantage 
of its features. 
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1 
The Origins of the 
Macintosh Design 

This chapter covers the following new concepts: 

• The Human Interface 

• Smalltalk: Menus, Windows, and the Mouse 

• Object-based Systems 

• Modes 

• Editing 

• The Lisa 

• QuickDraw and the Macintosh Managers 

On January 24, 1984, Apple announced the Macintosh computer to its 
shareholders and the world, ushering in the most revolutionary and, for 
the programmer, one of the most complex machines of its time. In this 
chapter, we discuss the philosophy that underlies the Macintosh's design. 
We trace its origins to the early 1970s, when researchers first envisioned 
the windows and menus that distinguish the Macintosh's user-friendly, 
graphics-oriented operating system. We explain why the Macintosh uses 
windows and menus, why its Operating System is divided into managers , 
why so much software is built into the Macintosh, and what this means 
to the user and programmer. 

1 



The Idea of a Human Interface 
The intent of the Macintosh is to provide a natural and powerful setting 
for users to work in. It is, as Apple puts it, "the computer you already 
know how to use". Probably, it will be used mostly to produce documents 
such as reports, notes, manuscripts, memos, and letters. The Macintosh 
can also compute for such things as taxes, household expenses, and 
mathematical or scientific problems. 

The Macintosh can generate graphics either through a "paint" pro­
gram or by a program written in a high-level language such as BASIC or 
Pascal. These graphics can then be fully integrated into documents so 
that text and diagram appear on the screen exactly as they will be printed. 
Text can be displayed and printed in many sizes and styles, including a 
variety of fonts and effects, such as bold or italic. 

Much of the Macintosh's capabilities revolve around its approach to 
what is called the "human interface". It uses a crisp, high-resolution 
screen and a mouse to present the user with a highly interactive work 
environment. 

The computer can display images that put the user in familiar set­
tings. For example, the initial screen appears as a desktop with little 
images of objects, such as file folders and sheets of paper (see Figure 1-
1). These icons (small pictures that represent real objects) show the pos­
sible actions, and the mouse allows the user to quickly select a particular 
option. Complicated syntax for commands need not be looked up or 
memorized. This greatly increases productivity. 

The Origins of the Macintosh 
The Macintosh represents the first low-cost implementation of ideas de­
veloped during the 1970s at Xerox's Palo Alto Research Center (PARC). It 
was there that Alan Kay and others started to experiment with personal 
computers before such machines could realistically be built. 

Although it was not possible in the early seventies to build a computer 
that was both affordable and sufficiently powerful, the researchers at Xerox 
PARC decided to build prototype machines in any way possible. They had 
faith that hardware costs would continue to decline. They knew that 
improving chip technology would make the ideas, which could then be 
implemented only at ridiculously high cost, eventually quite practical for 
a desktop or home computer. 

The researchers at Xerox brought bright students from nearby schools 
into their labs to test new ideas as fast as the appropriate hardware and 
software could be built. The researchers also used these machines to 
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accomplish their own work , such as designing and developing the software 
and writing articles. The goal was to build machines that worked well for 
everyone, not just the technically oriented. 

We briefly explore here some of the ideas developed at Xerox PARC, 
since they provide a background to many of the concepts in the Macintosh 
and may aid in understanding some reasons behind the Macintosh design. 

Smalltalk 
The language Smalltalk was developed by these researchers. Smalltalk 
has a number of interesting features, including a high-resolution screen, 
a mouse as an input device, multiple overlapping windows, pop-out menus, 
and an object-based programming structure. It also incorporates some 
basic approaches to text editing. Let's look at these features in more detail. 

The Screen and the Mouse 

The display screen for Smalltalk is "bit mapped" : that is, each dot on the 
screen is individually controlled by a bit in memory. Thus, the programmer 
has control over every dot on the screen. This type of display is desirable 

Figure 1-1. A Macintosh Desktop 
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because it allows both text and graphics to be drawn and "integrated". 
The Macintosh also uses a bit-mapped screen. Later, we explore how this 
screen works. 

A Smalltalk mouse generally has three buttons. One button acts as a 
selector for windows and their contents. The other two buttons are for 
menu activation and selection. In Smalltalk, menus are often " hidden" 
when they are inactive; they need to be made active for you to see them. 

In contrast, the Macintosh's mouse has only one button for all three 
purposes. This is possible because Macintosh menus are always acces­
sible through the menu bar along the top of the screen. 

The mouse was invented by Douglas Engelhart in 1964 to help people 
better input "xy-position" information. Subsequent research proved it to 
be superior to other systems, such as cursor keys, digitizing tablets, and 
touch screens. 

Smalltalk Windows 

A Smalltalk window is a rectangular area with a title tab sticking up from 
the top edge (see Figure 1-2). Each window can be divided into a number 
of panes, each with its own scroll bar. Each window has a window menu 
that pops up, usually in response to pressing one of the mouse buttons. 
Each pane has its own pop-out menu. When a menu is not " popped up", 
it is normally invisible. 

Each Smalltalk window displays information for a particular task or 
program. The user can have many windows on the screen at once and 

Figure 1-2. A Smalltalk Window 
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thus is able to see the condition of many tasks at any moment. Having 
many windows open at once allows the user to work in a natural way, 
examining and working with many things at once. The fact that the 
windows overlap is crucial to efficient operation, since older windows 
need not be moved or resized as new windows appear. 

The Macintosh's windows are not related to separate tasks, but in­
stead display different information about the same task. That is, where 
Small talk uses several panes within a window, the Macintosh uses several 
windows on the screen. However, the Macintosh does have desk accesso­
ries, which are separate system tasks that can be run at the same time 
that an applications program is running. 

In Smalltalk, only one window (and thus task) is active at a time. The 
user can activate a window by moving the cursor to that window and 
clicking the selector button. When a window is selected, it comes to the 
front of the screen and is seen in its entirety. Only one pane of a window 
is active at any one time. The user operates the mouse selector button to 
activate panes. 

Window panes can work cooperatively, allowing the user to make a 
series of choices along a decision tree. The choice in the first pane may 
affect the choices in the second pane, and so on. 

Smalltalk may be programmed by making menu selections and by 
typing text into window panes. The programming process is like filling 
out forms. The machine helps the programmer by either providing the 
proper menu or displaying explanations of what is required. 

Objects 
Small talk is object-based. That is, instead of separate data structures and 
procedures, it has objects, which package sets of data structures contain­
ing procedures that work on that data. This offers a special layer of 
protection, since data cannot be corrupted arbitrarily by a part of the 
system not "trained" to deal with that data. This also makes it easy to 
run at once a number of "jobs" that share information. 

A Smalltalk program consists of messages that are sent to objects. 
Each object has a specific set of messages that it understands. Themes­
sages specify what is to be done but don't specify exactly how. If a message 
is received that is not appropriate, an error message is issued saying that 
the original message was not understood. 

The Macintosh is definitely not object-based. Instead, it is designed 
to perform one thing at a time with much less protection of data. The 
exception is its desk accessories, which run independently but must be 
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explicitly given little slices of time by the applications program. However, 
as we shall see, the way the Macintosh is divided into managers traces 
its origins to Smalltalk's object-based approach. 

Modes 

A basic motivation for developing Smalltalk's multiple overlapping win­
dows was to eliminate "modes". A mode is a set of options available to 
the computer user. For example, while in the editing mode, the user can 
perform a variety of editing commands. 

Traditionally, a computer presents the user with a series of modes in 
which to work. Only one mode is active at a time. For example, the user 
may start in the Operating System command mode, move to the text editing 
mode, then enter the file transfer mode. Within these modes are other 
modes. For example, within the text editing mode are command modes, 
insert modes, and search modes. 

Larry Tesler, a researcher at Xerox PARC and later one of the developers 
of the Macintosh, has observed that one of the most frustrating and coun­
terproductive features of computing is modes. In "The Smalltalk Envi­
ronment"(Byte Magazine, August 1981), he explains that programmers 
and secretaries alike complain about modes. Two chief problems occur: 
1) while in one mode, the user cannot do something that is available in 
another mode, and 2) a particular action has different effects depending 
on which mode the system is in. 

Smalltalk's overlapping windows solve this problem to some extent. 
Each window is, in some sense, in a mode. However, the user is given 
visual clues to which window is active and which windows are imme­
diately available. The ability to rapidly move from one window to another 
and then back to the original window reduces the "unavailability" prob­
lem. And a window's menus and text make its set of options easy to 
inspect and select, reducing the "multiple effects" problem. 

"Modeless" Text Editing 

Text editing presents some very interesting problems relating to modes. 
In particular, the process of searching and replacing strings of text can 
put the user in modes where command keys act differently than usual. 

The developers of Smalltalk invented a ''modeless'' method of text 
editing, using the ideas of "cut", "copy", and "paste", along with the idea 
of selection range. The selection range is always clearly indicated on the 
screen because it is highlighted. The cut command removes the text in 
the selection range, putting it into a special edit buffer. The paste com­
mand moves text from this buffer, replacing what was in the selection 
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range on the screen with the text in the edit buffer. The copy command 
copies the current selection range into the edit buffer without removing it 
from the screen. 

Apple 
In the late seventies and early eighties, Apple began research that led to 
the Macintosh family of computers. Originally, two separate teams at 
Apple worked on two different computers in this family: the Lisa and the 
Macintosh. Many involved were knowledgeable about Smalltalk and the 
work at Xerox PARC. At one point, Smalltalk was even implemented on 
the Lisa, but it was too slow to be practical. 

The Lisa 

The people at Apple began work on the Lisa during the early eighties. Bill 
Atkinson was the main designer. The Lisa has a high-resolution display 
screen, a single-button mouse, an MC68000 processor, and a hard disk. It 
included an extensive set of drawing routines called "QuickDraw", de­
veloped by Atkinson. 

The Lisa was designed mainly as an office tool for document prepa­
ration, but it also has facilities for program development. The Lisa Office 
System environment presents the user with a "desktop" with icons rep­
resenting the hardware and software that is available. Some of these icons 
are a wastebasket, a clock, a hard disk, a floppy disk, a pad of "stationery", 
a drawing program, and a text editing program. The mouse is used to 
select what is wanted. For example, to view and set the clock, click the 
mouse on the clock icon and the clock ''opens'' on the screen. 

The Lisa Pascal Workshop provides program development facilities. 
Here, the programmer is presented with a less graphic "user interface". 
Series of text menus appear across the top of the screen. The user/pro­
grammer selects menu items by hitting keys on the keyboard. However, 
the edit option "opens" a program that displays multiple overlapping 
windows in which text can be cut, copied, and pasted. 

The Lisa Pascal Workshop can be used to develop applications pro­
grams for both the Lisa and the Macintosh. The exact method of trans­
porting programs from one machine to another has evolved from using a 
serial communications line to having compatible 31fz inch Sony disk 
drives. 

In early 1985, the Lisa was merged with the Macintosh and called 
the Macintosh XL. 
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The Macintosh 

About 1979 Apple began work on an "appliance" computer that was to 
become the original Macintosh. At first, it was an eight-bit machine with 
not enough power. In 1981, Steve Jobs, one of the founders and chairman 
of the board of Apple, arranged for the Lisa efforts to be brought over to 
the Macintosh project. Burrell Smith was able to put together the hardware 
with the MC68000 processor configuration the way it is today. 

QuickDraw. Bill Atkinson moved from the Lisa project to work on the 
MacPaint applications program for the Macintosh. He moved QuickDraw 
from the Lisa to the Macintosh, greatly reducing its size while maintaining 
compatibility between Lisa QuickDraw and Macintosh QuickDraw. 

QuickDraw was originally written by Atkinson in Pascal, consuming 
about 160K bytes of memory. A reduction to about 24K bytes was accom­
plished by transforming it into assembly language. QuickDraw is a col­
lection of over 100 drawing commands. It includes routines to draw lines, 
rectangles, ovals, polygons, and irregular shapes, outlining or filling them 
with a variety of pen sizes and patterns. 

The Managers. The Macintosh software was developed as a collection of 
software modules called managers. Each manager is in charge of a specific 
area of responsibility within the machine. For example, file input and 
output are handled by the "File Manager", and you can think of QuickDraw 
as the Screen Manager. 

An applications program calls upon these different managers to get 
things done. In some sense, the managers are like the objects of Small talk, 
each with its own data and procedures. However, the formal construct of 
Smalltalk messages is missing, and data belonging to one manager can 
be accessed by other managers and applications programs (thus is not 
fully protected). But much of the data is protected to a considerable extent. 
For example, if you wish to move a window or change its size, you call 
the Window Manager to do this for you. 

The managers range from the fairly standard File Manager to a Dialog 
Manager, which acts as a mini-applications program, handling all inter­
actions between the user and the machine for an extended period. 

A crucial decision was to freeze the Operating System software in 
ROM, including QuickDraw and all managers. This ensures that all ap­
plications act basically alike, reducing the problem of "modes". That is, 
by placing the basic menu selection, window drawing, and text editing 
routines in ROM, all applications programs respond to the user in the 
same manner. Thus, the user needs only one set of basic commands for 
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all applications, reducing the "multiple effects" problem (same user action 
causing a different effect depending on the mode). 

The fact that so many low- and medium-level routines have already 
been written and built into the Macintosh relieves the applications pro­
gram of responsibility for developing lots of code. At the same time, it 
forces the programmer to understand more than he or she ever wanted to 
know about a rather complex set of rules and ideas. This book should 
make these ideas a lot clearer. 

Desk Accessories. Another feature of the Macintosh is its desk accesso­
ries. These are special built-in applications programs that can be run 
from each application, providing a wide set of facilities to users no matter 
where they are in the system. This was designed to reduce the unavaila­
bility problem associated with modes. 

The Macintosh was not set up to run several applications programs 
at once with separate windows, as in Smalltalk. However, the desk acces­
sories provides a small taste of what that is like. 

Outside Development. Apple also encouraged outside developers. It put 
together a development kit that included a set of programs and files to run 
on the Lisa with volumes of documentation. 

One emphasis in this documentation is the need for each application 
to present the user with a uniform way of doing things so that the entire 
Macintosh system remains well integrated and thereby easy to use. The 
example programs in this book adhere to these standards except as noted 
in our explanations about them. 

Summary 
In this chapter, we have introduced the Macintosh, explaining the basic 
ideas behind its design, including the mouse, high-resolution video screen, 
icons, windows, and menus, all of which are designed to help the user 
work efficiently. 

We have explained how the Macintosh's designers have tried to elim­
inate the problem of modes by providing a uniform human interface and 
by providing desk accessories. We have also discussed the way the soft­
ware is built in and how it is organized into managers for ease of design 
and programming. 
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2 
Macintosh System 
Organization 

10 

This chapter covers the following new concepts: 

• Physical and Logical Structure 

• RAMandROM 

• System Static Variables 

• Exception Vectors 

• System Communications Area 

• System Dispatch Table 

• Manager Globals 

• The Heap 

• System and Application Zones 

• Stack Area 

• Video and Sound Areas 

• Hardware Connections 

• Unimplemented Instruction Codes 

This chapter presents an overview of the Macintosh 's built-in software 
and its internal organization. The chapter describes the reasons behind 
Macintosh 's organization, what the various components are and how they 



fit together. We start by describing the physical components and structure 
of the Macintosh and work toward a description of its logical structure. 
(By "physical" we mean such things as the layout of memory address 
space.) This approach is designed to keep you firmly anchored in spite of 
some rather abstract ideas behind the Macintosh's organization and 
operation. 

In our description of the Macintosh's physical structure, we start with 
the locations of the RAM, ROM, and connection to hardware devices. We 
see how the RAM is divided into different areas, including an area for 
static system variables, an area for dynamic variables, a stack, and areas 
devoted to the video screen and the sound system. 

We will see how the Macintosh's built-in software is accessed using 
the MC 68000 microprocessor's unimplemented instruction codes to, in 
effect, extend the processor's original instruction set to include about 494 
new Macintosh instructions. 

Finally, we survey the logical structure of the Macintosh's built-in 
software. We see how the Macintosh's built-in software is divided into 
managers and drivers that perform essential logical functions. 

Memory Layout 
This book has been written for 128K and 512K Macintoshes using version 
1.1 of the Finder. (To find out which version of the Finder you have, select 
the "About the Finder" option of the Apple menu from the desktop.) 

We discuss actual addresses for the 128K and 512K Macintoshes. 
However, we also discuss the "relative" placement of these addresses, as 
well as where the system stores "official" copies of the addresses. This 
way you and your program can easily find things, even on Macintoshes of 
other memory sizes and Finder vintages. 

As we proceed, you will gradually understand the meaning of what 
is stored at these particular memory addresses. However, we often intro­
duce them without a complete explanation because they are "landmarks" 
or point to "landmarks". Don't despair, their exact function is explained 
later. 

Physical Memory Layout 
Physically, the Macintosh's 24-bit addressing capability gives it 16 mega­
bytes of addressing space (see Figure 2-1). Memory stretches from $0 to 
$FFFFFF. (Note: The dollar sign indicates hexadecimal system notation 
in this book.) However, only a relatively small part of the Macintosh's total 
addressing space has RAM installed. This of course depends upon the 
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size of the Macintosh. On a 128K Macintosh, the RAM stretches from $0 
to $1FFFF, and on the 512K Macintosh, to $7FFFF. 

For both sizes of Macintosh, the ROM begins at $400000 and stretches 
64K bytes to $40FFFF. This provides four megabytes beneath, leaving 
plenty of room for orderly expansion of RAM. On many machines, ROM 
occupies the lowest addresses. However, on the Macintosh, having RAM 

Figure 2-1. The Addressing Space: RAM and ROM 

$1 000000 .....-----. 

$FOOOOO -+----1 

$EOOOOO -+-----1 

$000000 -+----1 

$COOOOO -+----1 

$800000 -+----1 

$AOOOOO -+--___. 

$900000 -+----1 

$800000 -+----1 

$700000 -+---1 

$600000 +---I 

$500000 -+----1 

(ROMbase) ~ $4ooooo ~-""' ROM(64K) 

$300000 -+---1 

$200000 -+----1 

$1 00000 -+----1 

(memTop)~ ~ RAM( 128K) 
0 

1 28K Macintosh 

12 HIDDEN POWERS OF THE MACINTOSH 

$1000000 

$FOOOOO 

$EOOOOO 

$000000 

$COOOOO 

$800000 

$AOOOOO 

$900000 

$800000 

$700000 

$600000 

$500000 

(ROMbase)~ $4ooooo 

$300000 

$200000 -+-----+ 

$1 00000 --+-----+ 

(memTop)------? 
0 

ROM(64K) 

RAM(512K) 

51 2K Macintosh 



there allows certain hardware-dependent locations to be manipulated, 
namely the exception vectors. This is useful when debuggers are used or 
when new "drivers" are installed. 

Connections to the hardware, such as the disk controller and serial 
communications interface, use scattered locations in the upper half of the 
16-megabyte addressing space from $800000 to $FFFFFF. 

Now let's examine these various areas of the addressing space in 
detail. 

The RAM 
Let's start with the RAM (see Figure 2-2). At the lowest addresses is an 
area containing static system constants, variables, and tables. These quan­
tities are called static because they do not move during the operation of 
the machine. Above this area is another area called the heap, which is 
managed dynamically. Data structures that grow and shrink in size can 
be placed here. For example, when windows overlap, cutting each other 
off in complicated ways, the data structure describing their visible part 
grows in size. 

Above the heap is the stack, which grows downward toward the heap. 
Unlike the heap, the stack can only grow and shrink its data at one end. 
The Macintosh runs out of memory when the stack meets the heap. Above 
the stack is an area reserved for debuggers, and above that are areas for 
sound and video. 

These three types of storage (static, heap, and stack) allow the Mac­
intosh to take advantage of the best features of each, allowing it to place 
its data and code in just the right type of place. 

System Static Variables Area 

The lowest area of RAM contains the System Static Variables Area, which 
contains constants, variables, and tables needed by the Operating System 
and the Toolbox. As mentioned previously, these data structures are called 
static because they don't move around during machine operation. Many 
of these locations are referenced directly by the ROM; thus, they must be 
quite permanently fixed in position. 

This area is further subdivided into sections, which we describe next 
(see Figure 2-3). 

Exception Vectors. At the very lowest locations of the System Static Var­
iables Area are the exception vectors. These extend from $0 to $FF and 
are an essential part of the operation of the 68000 processor. There, 
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locations are completely determined by the 68000 itself and are described 
in Motorola's documents on the MC68000 processor. 

Each exception vector contains an address of a routine to handle a 
particular kind of exception to normal program execution. Some excep­
tions are generated by hardware interrupts, such as from the mouse or 
serial communications lines; some are generated by error conditions, such 

Figure 2-2. Layout of the RAM 
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as division by zero; and some are generated by unimplemented instruc­
tions used to access the Macintosh's built-in software. (We say more about 
this later.) 

For now, understand that the position of the mouse is constantly and 
automatically updated through hardware interrupts. That is , whenever 
the mouse is moved, it generates interrupts that cause the Macintosh to 
compute its new position. Other interrupts, which occur every sixtieth of 
a second, update the cursor on the screen. 

Figure 2-3 . Layout of the System Static Variables Area 
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System Communications Area. The System Communications Area 
stretches from about $100 to $33F. It contains certain fundamental con­
stants and variables that are shared among a number of system parts, as 
well as applications programs that run on the system. Because these 
quanti ties are shared by the rest of the system, they are often called global. 

Certain locations in the System Communications Area specify the 
Macintosh's video screen. For example, locations $102 and $104 contain 
the vertical and horizontal resolution of the screen in dots per inch, and 
location $106 specifies the total number of dots in each row. 

Other locations in the System Communications Area specify the mem­
ory layout. For example, location $108 (memtop) specifies the total amount 
of RAM in the machine, location $2B2 (RAMBase) contains the address 
of the beginning of the heap, location $2A6 (sysZone) contains the begin­
ning address of the part of the heap used by the system, location $2AA 
(applZone) contains the beginning address of the part of the heap used 
by an applications program, location $114 (heapEnd) specifies the highest 
point in the heap, location $10C (buiPtr) specifies the highest part of 
regular RAM (excluding areas currently used for video, sound, and de­
bugging), and location $2AE (ROMBase) contains the beginning address 
of the ROM. 

Still other locations hold the time, date, and current state of the 
keyboard and mouse. To learn more about these, you can look through the 
source code for the assembly language library files, that come with Apple's 
development system for the Macintosh. 

File System Globals. The file system globals are currently between $340 
and $3FF. This area contains static variables used by the File Manager. 

System Dispatch Table. The System Dispatch Table lies between $400 
and $7FF. As we describe later, it is loaded with addresses of the ROM 
routines in a special compact form, and the Macintosh's Operating System 
uses it to find these routines. 

The Mouse and Cursor System Globals. The mouse and cursor system 
globals currently go from $800 to $8FF. They can be thought of as 
QuickDraw's static variables. For example, location $824 contains the 
current beginning of screen RAM. This is one of the few locations refer­
enced directly from ROM. But even then, its address is stored in a special 
section of ROM along with several other RAM addresses so that its location 
could be easily changed as the ROM was being developed. 

16 HIDDEN POWERS OF THE MACINTOSH 



Operating System Manager System Globals. Other system globals go 
from $900 to $97F. This section contains static variables for various 
managers in the Operating System, including the Segment Loader, the 
Scrap Manager, and the Print Manager. 

ToolBox Global Variables. Toolbox global variables extend from $980 to 
$AFF. This section contains static variables used by the various managers 
in the Toolbox, such as the Resource Manager, the Font Manager, the 
Window Manager, the Menu Manager, the Control Manager, Text Edit, the 
Dialog Manager, and the Package Manager. We survey these managers at 
the end of this chapter. 

The Heap 

The heap currently begins at $BOO and extends upward toward the stack. 
As mentioned, the beginning address of the heap is contained in System 
Communications Area location $2B2 (RAMBase). The heap provides a 
place where dynamic data structures can be stored and moved as they 
change size. The heap stores Operating System routines, the Operating 
System's main program (called the ''Finder''), the user's applications pro­
gram, and many system and applications variables, including resources. 

The heap is managed by the part of the Operating System called the 
Memory Manager, which has routines that can be called by other managers 
and by applications programs. It also performs some of its tasks in the 
background, responding to the vertical retrace interrupt, which occurs 
every sixtieth of a second. 

Zones. The heap is divided into zones (see Figure 2-4). Each zone is 
separately managed by the Memory Manager. This allows memory to be 
"partitioned" for different uses (for example, system versus application). 
If the Macintosh were used as a multiuser system, then each user would 
have a separate zone. 

The first zone, devoted to the Operating System, is called the system 
zone. On a 128K Macintosh, it is normally 16.5K bytes long. On a 512K 
Macintosh, it is normally 48K bytes long. It contains code and data to run 
the "Finder" as well as such things as RAM routines that substitute for 
or supplement the ROM routines. Debuggers such as "MacNub", which 
are opened once a disk is booted, can also reside in this zone. 

The second zone of the heap, called the application zone, contains 
the applications program and all dynamic data under its control. The 
minimum size is 6K, but the Memory Manager adds more room to the 
application zone in 1K increments as needed. However, the Memory Man-
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ager cannot raise the top of this zone higher than within 1 K of the lowest 
address of the stack (current top of stack). On a 128K Macintosh, this can 
prove a severe limitation for large programs with lots of data. When the 
Memory Manager runs out of room in this way, it tries to swap out parts 
of the applications program already in memory. This in turn can cause a 
good deal of disk activity, slowing down your program. 

An application can call upon the Memory Manager to add more zones. 
Each zone begins with a special area of memory (about 52 bytes) called 

Figure 2-4. The Heap Zones 
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the zone header, which contains parameters that the Memory Manager 
needs to manage that zone. These include the addresses of key places 
within the zone. 

After the header, a zone is divided into blocks that are dynamically 
allocated and deallocated within the zone as memory is needed for the 
individual data structures stored in that zone. The system heap may be 
divided into about thirty or more such blocks, one for each logical program 
or data structure. Each block contains a header that is used by the Memory 
Manager to size it and determine how it is being used. 

In Chapter 3, we discuss how "pointers" and " handles" allow the 
Memory Manager to dynamically move data structures as they change 
size, yet still allow an application or other part of the system to properly 
access that data. 

Fragmentation. As blocks are allocated and deallocated in a heap zone, 
"holes" develop (see Figure 2-5). These are blocks of unused (free) memory 
sandwiched between blocks that are in use. When more memory is needed 
in the zone, the Memory Manager tries to use these free blocks. Often, 
however, these blocks are too small to be used, and they remain as holes. 
As more holes develop, the memory begins to "fragment", with more and 
more storage wasted in the holes. The Memory Manager eventually tries 
to rearrange the blocks to remove the holes. This is called "memory 
compactification". The Memory Manager also tries to remove (purge) 
blocks that are not in use. To assist in this process, you should divide 
larger programs into segments and tell the Memory Manager when you no 

Figure 2-5. Fragmentation 
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longer need a segment. Our example programs are small and thus do not 
need to be subdivided in this way. If your programs are large and require 
segmentation, you should consult Apple's Inside the Apple Macintosh TM 

(Cupertino: Apple Computer, Inc., 1985). 

Stack Area 

The Stack Area includes both the normal processor stack and some other 
areas of memory that act "stacklike". It starts at the address contained in 
location $10C (BufFtr) and grows downward toward the heap (see Figure 
2-6). You can see in this figure the processor stack used by the 68000 CPU 
and the other parts of the Stack Area above it. 

The stack represents an alternate approach to handling memory, dif­
ferent from how the system static variables or the dynamic heap work. It 
allows memory to be allocated and deallocated in a sequential manner. 
This is appropriate for a number of different quantities, such as return 
addresses and data for subroutines (the processor stack) and lists of 
variables used as global variables for an applications program. 

To operate the stack, a special register called the stack pointer (register 
A7) always points to (contains the address of) the location where the last 
quantity was placed on the stack. The stack consists of all locations from 
the stack pointer upward to where the stack begins. 

When new entries are added to the stack (see Figure 2-7) , the stack 
pointer is decremented by the appropriate amount according to the entry's 
size, and the new information is placed at this new location on the stack. 
This is called pushing entries onto the stack. Similarly, entries can be 

Figure 2-6. The Stack Area 
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popped off the stack by a reverse process. In this case the stack shrinks 
upward. 

Once entries are put on the stack using the stack pointer (or some 
other method), other registers such as A5 and A6 can be used to read and 
even change their values. This last feature is not really included in the 

Figure 2-7. Pushing and Popping the Stack 
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standard definition of a stack (which implies that you can access only the 
last stack entry). However, this is how the Macintosh and many other 
machines work, making the stack a much more valuable place to store 
things. 

The Application Jump Table, the Application Parameter Area, and 
the Application Globals Area occupy the upper part of the Stack Area, 
above the regular processor stack. The Application Jump Table contains 
a minimum of eight bytes and sits just below the address contained in 
"bu{Ptr" (stored at location $10C). The Application Parameter Area con­
tains 32 bytes and runs from the address contained in register AS up to 
the Application Jump Table. The Application Globals Area runs from just 
above the address contained in "curStackBase" to just below the address 
contained in register AS. 

The Application Jump Table contains information for referencing 
routines stored externally. This is needed when you divide your program 
into segments. 

The Application Parameter Area contains parameters shared by the 
Operating System and the application, thus providing an interface be­
tween the system and the applications program. For example, when 
QuickDraw (the Screen Manager) is initialized, it sets up a path (series 
of pointers) through this area and then into your applications program. 
During normal operation, this path allows QuickDraw to use the appli­
cation's drawing "environment" to determine how it will draw lines, text, 
and other shapes. 

When a Pascal program is compiled, its VAR section (containing all 
its global variables) is packed into memory in the stack area. These vari­
ables are stored in a downward order because they are "pushed" into 
memory as they are compiled from your program. This is natural because 
some of the best compiler algorithms are stack-oriented. 

When the system "launches" an applications program, it moves these 
stacks of variables toward the top of available memory (as specified by 
bu{Ptr). Once a program has been launched, the variables in these areas 
become static for the life of the program. On the other hand, a program's 
local variables are placed on the processor stack as the program executes. 
This provides a natural way to manage multiple copies of local variables 
that are needed for recursion, a valuable feature of Pascal that allows a 
procedure to call itself. Recursion methods are effective for such things 
as sorting. 
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Debugger Area 

The area just under the video RAM can be used for debuggers such as 
"Macbug", which are installed during boot-up time. When these are 
installed, "Bu£Ptr" is adjusted downward to point just below the debugger. 
Since the program launcher uses "BufPtr" to determine how much mem­
ory is available, any debugger installed in this manner remains safely 
tucked away, out of reach of the normal operation of the machine. 

Video and Sound Areas 

At the top of the RAM are areas that connect to the video and sound 
systems (see Figure 2-8). In many respects, they act as ordinary memory. 
However, they also connect to the screen and speaker. 

Two areas of memory are devoted to the screen. On the 512K Mac­
intosh, a primary area ranges from $7 A700 to $7FC7F, and a secondary 
area runs from $72700 to $77C7F. These same values work with a 128K 
Macintosh because this smaller Macintosh ignores some of the upper 
address bits of RAM, "wrapping" the memory around so that larger ad­
dresses access the same memory cells as smaller addresses. 

On the 128K machine, the "actual, addresses are $1A700 to $1FC7F 
for the primary area and $12700 to $17C7F for the secondary area. 

Two areas of memory are also devoted to the sound system. Here are 
stored the "wave forms'' for the sounds produced by the Macintosh. By 
controlling these bits, a programmer can produce a variety of custom 
sounds, just as a variety of pictures can be produced by controlling the 
bits of video memory. 

Sound uses only the lower bytes of the 16-bit words in these areas. 
On the 512K Macintosh, the primary area ranges from $7FDOO to $7FFE3, 
and a secondary area runs from $7 A100 to $7 A3E3. Again, these same 
values work with a 128K Macintosh because the larger memory addresses 
"wrap around" on the smaller machine. On the 128K machine, the "ac­
tual'' addresses are $1FDOO to $1FFE3 for the primary area and $1A100 
to $1A3E3 for the secondary area. 

Bit 6 of location $EFFFFE is used to switch between the primary and 
secondary areas of the video and sound. This belongs to the VIA chip, 
which we discuss later. A value of zero selects the primary area, and a 
value of one selects the secondary area. 

In Chapter 4 we examine how the video RAM works and how its 
memory "maps" to the screen. 
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The ROM 
The ROM begins at $400000. This is at the one-quarter point of the 16-
megabyte addressing space. In the last part of this chapter, we survey the 
built-in software that is stored in the ROM. In the rest of the book we 
explore it in detail. 

Figure 2-8. Video and Sound Areas 
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Hardware Connections 
The upper half of the addressing space from $800000 to $FFFFFF has a 
few scattered locations that are mapped to hardware devices. (See Figure 
2-9 for a block diagram of the Macintosh.) These so-called memory loca­
tions actually access registers in the Macintosh's controller chips. Most 
applications do not need to, and should not, access these chips directly, 
but should use the Macintosh device drivers that are already developed. 

Versatile Interface Adapter 

The Versatile Interface Adapter (VIA) controls access to the keyboard, 
real-time clock, and part of the disk, sound, video, and mouse. 

The VIA uses locations in the range from $EFE1FE to $EFFFFE. 

Serial Communications Controller 

The Serial Communications Controller (SCC) controls access to the two 
serial communications lines. The Macintosh uses a Zilog Z8530 SCC 
chip, a powerful, dual-channel, high-speed communications controller 
capable of supporting all popular serial communications protocols. 

Figure 2-9. Block Diagram of Macintosh 
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The serial interface chip uses locations in the range $9FFFF8 to 
$BFFFF9. 

Disk Controller 

The Macintosh uses two custom chips: one is called an Integrated Woz 
Machine (IWM) and the other a Microfloppy Controller Interface (MCI). It 
also uses an area of RAM to control the speed of the disk motor. This area 
is actually the upper bytes of the area in memory used for sound. 

The IWM chip uses locations in the range from $DFE1FF to $DFFFFF. 
Signals from the IWM chip, the special area of RAM, and the VIA go to 
the MCI chip, which is part of the disk subsystem. 

This completes our survey of the Macintosh's memory usage. 

Accessing the Macintosh Built-in 
Software 

Now lefs study the ingenious method that Apple uses for providing access 
to its built-in software. This method substitutes routines in Macintosh's 
memory for certain unimplemented instructions of its MC68000 micro­
processor, thus extending the original set of processor instructions by a 
whole new set of "Macintosh" instructions. In this section, we explain 
how this works. 

The instruction codes for the Macintosh's 68000 processor are 16-bit 
integers. However, many of the 65,536 possible values do not belong to 
any processor instruction. These are called unimplemented instruction 
codes. 

Two special families of unimplemented instruction codes are indi­
cated by their upper four bits (see Figure 2-10). A bit pattern equal to 
1010 in these bit positions indicates the family used by the Macintosh to 

Figure 2-10. The 1010 Family of Unimplemented Instructions 
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access its own routines. In hexadecimal notation, the bit pattern 1010 
corresponds to the digit "A". Thus, these codes are distinguished by a 
leftmost hexadecimal digit equal to a value of "A". A second family of 
unimplemented instruction codes, distinguished by a bit pattern 1111 in 
the leftmost bit positions, is unused by the Macintosh. Perhaps a clever 
programmer will use this family to implement an entirely new set of 
custom instructions. 

Whenever the processor encounters such a 1010 instruction code, it 
does a special interrupt called the 1010 unimplemented instruction in­
terrupt, which calls the dispatch routine. The exception vector for this 
interrupt is at location $28. 

The service routine that Apple installed to handle this particular 
interrupt branches to the appropriate Macintosh routine. To make this 
dispatcher routine work correctly, Apple has installed a table called the 
System Dispatch Table in the Macintosh's low RAM area that contains 
the addresses (in compressed format) of all the Macintosh's routines that 
are accessed in this manner. 

When the machine is turned on or restarted, this table is loaded from 
ROM and "unpacked" into low RAM (starting at address $400 and run­
ning to address $7FF). At this point, all addresses in the table supposedly 
point to ROM routines, although this is hard to verify because the machine 
does not do much except wait for a disk insertion when it starts up. When 
a disk is inserted, a few new routines are loaded and a few entries in this 
table are overwritten with address information for the new routines. Many 
of these new routines simply do a few extra things and then jump to the 
original ROM routine, but a few are complete replacements. This provides 
a convenient way to change the system as needed. 

Each entry in the address table is a 16-bit integer (see Figure 2-11) 
that is expanded by the dispatcher routine in the following manner. Bit 
position fifteen distinguishes between the built-in ROM routines and the 
additional RAM routines, and the lower 15-bit positions give the word 
offset for the routine. For ROM routines (bit 15 equals zero), the word 
offset is multiplied by two and added to the base address of the ROM 
($40000) to get the byte address of its entry point. For RAM routines (bit 
15 equals one), the word is multiplied by two and added to the beginning 
of the heap ($BOO) to give the byte address. 

About 494 routines are handled in this manner. Each routine is as­
signed a unique nine-bit instruction number between 0 and 511 corre­
sponding to its position in the dispatch table. About eighteen numbers 
scattered throughout this range are not used, and about twelve other num­
bers are assigned names but are not documented at this time. 
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The 16-bit operation codes for these instructions are computed by 
placing the special1010 bit pattern in the upper four bits (bits 13 through 
15) and the instruction number in the lower nine (bits 0 through 8). This 
leaves three bits in the middle for other purposes, such as setting certain 
instruction modes. 

To complicate the situation, the routines are divided into two classes: 
Operating System routines and Toolbox routines. Generally, Operating 
System routines are assigned instruction numbers between 0 and 255 and 
have bit 11 equal to zero, and Toolbox routines are assigned instruction 
numbers within the full range 0 through 511 and have bit 11 equal to 1 
(see Figure 2-12). 

For Operating System routines, bits 9 and 10 (called flag bits) send 
special information that depends on the particular routine, and bit 8 
indicates whether or not register AO is being used to pass information 
back from the routine. Again, this depends on the particular routine. 

For Toolbox routines, bits 9 and 10 are not used. Bit 10 was once 
used to distinguish a special "auto pop" mode for toolbox routines but 
is now unused. 

Notice that bit 8, part of the instruction number for Toolbox routines, 
indicates the parameter passing mode for Operating System routines, as 
described previously. 

Nice distinctions between Operating System and Toolbox are not 
always adhered to. Routines with instruction numbers 0 through 4F form 
the main part of the Operating System and follow all rules for Operating 
System routines. However, some routines that logically belong to the Op­
erating System behave as though they were Toolbox routines. That is, they 
have bit 11 turned on and may have instruction numbers greater than 
255. 

Figure 2-11. System Dispatch Table Entries 
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The Managers 
Now that you have an idea of the physical organization of the Macintosh's 
memory and instructions, you are ready for a first look at the software that 
occupies this memory space. 

As mentioned before, the Macintosh's built-in software is logically 
divided into modules called managers. Each manager has a specific area 
of responsibility in the system. For example, the Memory Manager man­
ages the heap, the Window Manager maintains various windows on the 
Macintosh screen (see Figure 2-13), and the File Manager is in charge of 
the file system. These managers work together to run the Macintosh just 
as people in an office work together to run a company. 

Some managers are considered part of the Operating System, and 
some are considered part of the Toolbox (see Table 2-1). However, this 
distinction is blurred and somewhat artificial. Generally, managers that 
relate to the operation of the screen are considered part of the Toolbox, 
and managers that manage other parts of the system such as files and 
memory are considered part of the Operating System. 

Figure 2-12. Operating System and Toolbox Instruction Codes 
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Dividing the total system into managerlike pieces is a well-estab­
lished practice to increase the speed of software development. This allows 
several members of a software development team to divide responsibilities, 
then smoothly bring their efforts together. It also makes further mainte­
nance development of the system easier and makes it much easier for an 
applications programmer to understand the system. 

Physically, these managers consist of routines mostly in ROM, but 
partly in RAM; and data structures in RAM. ROM routines belonging to 
a specific manager tend to be grouped together. However, some are inter­
mixed with routines from other managers. This intermixing occurs even 
in the dispatch table. 

Only at the software interface level are routines clearly organized by 
manager. Even at this level, distinctions blur. For example, the file system 
"open" routine is shared by the File Manager and the Device Manager, 
and string routines are scattered among QuickDraw, the Operating System 
utilities, the Resource Manager, and the Package Manager. 

In addition to managers, there are two collections of routines called 
utilities. The Toolbox utility routines do such tasks as bit manipulation. 

Figure 2-13. Macintosh Windows 
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The Operating System utility routines do such things as read and set the 
time and make a beeping sound on the speaker. 

In this section, we survey these managers and describe their most 
notable and useful features. In later chapters, we examine their operation 
in detail. 

The Screen Manager 
QuickDraw is the name of the set of built-in routines and data structures 
that directly manage the screen. It is considered part of the Toolbox. 

The Quick.Draw routines control the drawing environment by setting 
certain drawing parameters, such as the size and position of the drawing 
area, the size and pattern for the pen, and the size and style of text. 

QuickDraw also contains routines to move the pen around the drawing 
area, laying down lines with the various pen sizes and pen patterns. Other 
QuickDraw routines draw text in various sizes and styles. Others control 
the shape and appearance of the cursor. 

Still other QuickDraw routines draw a variety of shapes, such as 
lines, rectangles, ovals, rounded rectangles, polygons, and irregularly shaped 
areas called regions. With most of these shapes, there are the options of 
outlining (framing), filling, inverting, or erasing. 

Table 2·1. The Managers (in ROM) 

Toolbox 

QuickDraw (the Screen Manager) 
Toolbox Utilities 
Font Manager 
Event Manager 
Resource Manager 
Window Manager 
Control Manager 
Dialog Manager 
Menu Manager 
Desk Manager 
Text Edit (the Edit Manager) 
Scrap Manager 
Package Manager 

Operating System 

Event Manager 
O.S. Utilities 
Memory Manager 
File Manager 

Segment Loader 
Vertical Retrace Manager 
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Routines also detect when points and certain shapes are within other 
shapes. Other QuickDraw capabilities include storing and later replaying 
entire sequences of QuickDraw routines. 

The Font Manager 
Associated with QuickDraw is the Font Manager, which controls the 
storage of various character sets. It is considered part of the Toolbox. The 
Font Manager has routines that allow you to select from available character 
sets. QuickDraw does the actual drawing of text. 

The Memory Manager 
The Memory Manager controls dynamic memory allocation. It is consid­
ered part of the Operating System. 

The Memory Manager routines set up and control dynamic variables 
that are used by the Operating System, the Toolbox, or an applications 
program. These variables are stored in the heap and accessed through 
pointers and handles, which are described in Chapter 3. 

The Memory Manager routines are called by many of the other man­
agers when they need to store or manipulate their data structures. The 
Memory Manager also works in the background. 

The Event Manager 
The Event Manager controls the interactive nature of the Macintosh. As 
described in Chapter 5, part of the Event Manager resides in the Operating 
System and part resides in the Toolbox. 

The routines in this manager monitor hardware, such as the keyboard, 
mouse, screen, and disk. When these devices indicate user actions (events) 
such as key or mouse button presses, the Event Manager places the relevant 
information, including the nature of the event and the current time and 
position of the mouse, on an event queue (waiting line). The programmer 
can then get these events in an orderly manner by calling a special Event 
Manager routine. 

The Event Manager also contains routines to directly access the con­
dition of the mouse button and keyboard. 
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The Window Manager 
The Window Manager controls the various Macintosh windows that are 
set up by the Operating System or by an applications program. It is 
considered part of the Toolbox. 

The Window Manager routines define the size, position, and features 
of a window. This Manager has routines to draw, redraw, highlight, and 
erase windows, performing the appropriate actions as several overlapping 
windows are maintained on the screen at once. Other routines move and 
resize windows on the screen in response to mouse movements. 

The Control Manager 
The Control Manager maintains the various buttons, check boxes, dials, 
and scroll bars that appear within Macintosh windows (see Figure 2-14). 
It is considered part of the Toolbox. 

Associated with each control is a numerical value called its control 
value. The purpose of any control is to allow the user to manipulate that 

Figure 2-14. Macintosh Controls 

Control buttons 

This program i l lustrates how to manage 

A control window has butt on contr ols which 

two other windows appear. One of these wi 

Scroll bar controls 

MACINTOSH SYSTEM ORGANIZATION 33 



value. For example, each scroll bar control allows the user to control the 
horizontal or vertical displacement of the page. 

The Control Manager has routines to define the sizes, positions, and 
features of controls; routines to draw, redraw, highlight, and erase controls; 
routines to track the mouse as it interacts with controls; and routines to 
set and delimit the numerical value associated with each control. 

Tracking can be automatic or custom designed by the applications 
programmer. 

The Dialog Manager 
The Dialog Manager is a higher-level window manager, controlling entire 
user interactions without the intervention of the applications programmer. 
It is considered part of the Toolbox. 

The routines in the Dialog Manager define the size, position, features, 
and controls in a dialog; start up and end a dialog; transfer information 
in and out of a dialog; and allow editing of dialog text items. 

Routines also start up alerts, which reside at an even higher level 
than normal dialogs in that the programmer does much less to make these 
work. The programmer need call only one routine which handles the 
entire process. 

The Menu Manager 
The Menu Manager controls the Macintosh's pull-down menus. It is con­
sidered part of the Toolbox. 

The Menu Manager routines define menus and track the menu selec­
tion process. With these routines, a programmer can specify the name and 
styles of each item and know exactly which item of which menu was 
selected at the end of the selection process. 

The Desk Manager 
The Desk Manager controls the interaction between an applications pro­
gram and the desk accessories, such as the scrapbook, alarm clock, note 
pad, calculator, key caps, control panel, and puzzle. It is considered part 
of the Toolbox. 

The routines in this manager allow the application to start up a desk 
accessory and give it slices of time to keep it active until the user tells it 
to close. 
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The File Manager 
The File Manager provides access to the files on the disks and the serial 
communications lines. It is considered part of the Operating System. 

With the routines in the File Manager, an applications programmer 
can do all the usual operations with files, including create, open, close, 
read, write, rename, delete, get, and change file information such as file 
types and attributes. This Manager also has routines to mount, unmount, 
and eject disks and select files. 

Text Edit 
Text Edit is the manager that handles blocks of text being edited. It is 
considered part of the Toolbox. 

The Text Edit routines perform such functions as allocating and 
deallocating space in memory for text, formatting text for display, drawing 
and redrawing text, maintaining the blinking cursor or inverted selection 
range, inserting characters, scrolling text, and handling the usual editing 
functions such as cut, copy, and paste. 

Packages 
The Package Manager provides access to system routines into the system 
that are not included in the ROM. There can be as many as eight different 
"packages", and each package can contain a large number (as many as 
64K) of different routines. Currently, the largest number of routines in any 
package is nine. 

Some examples are a package of routines to help initialize disks, a 
package of routines to help select files, and a package of routines to handle 
time, dates, and strings according to various international rules. 

The Resource Manager 
The Resource Manager provides the applications programmer with access 
to an application's resources. It is considered part of the Toolbox. 

A Macintosh applications program consists of a collection of re­
sources (see Figure 2-15 ). One type of resource is the program code. Others 
include definitions of various objects managed by other managers. For 
example, the size, shape, and features of each window and control are 
normally stored in a separate resource. 

As shown in Chapter 3, part of the development process for an appli­
cations program consists of packaging its various resources into a file on 
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a Macintosh disk. Except for the code resource, resources are normally 
specified in what is called a Resource Definition File, which acts like 
source code for the various resources. 

Besides the resources packaged with an application, the Macintosh 
maintains other resources that can be accessed by the applications program. 

Much of the time, the Resource Manager stays behind the scenes, 
providing support for other managers when they need to get resources. 
For example, "GetNewWindow" is a Window Manager routine that calls 
upon the Resource Manager to get the parameters to define a new window. 

The Scrap Manager 

The Scrap Manager manages the clipboard to cut, copy, and paste. Clip­
board routines need to be called if an application transmits information 
to and from other parts of the system, such as desk accessories and other 
applications. 

Figure 2-15. A Program is a Collection of Resources 
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Other Managers 
The Macintosh contains other managers. Some are directly used by an 
applications program, some normally stay behind the scenes. Of course, 
a sufficiently adventuresome applications program could use some or all 
of these managers. 

In the Operating System 

Other managers in the Operating System include the Vertical Retrace 
Manager, the Device Manager, and the Printing Manager. 

The Vertical Retrace Manager is in charge of updating the system . 
every sixtieth of a second. At this time, the video system finishes a com­
plete scan of the screen and gets ready for the next scan. The screen is 
not written to during this "retrace", allowing the screen memory to be 
updated with fewer side effects. It is also a convenient time to update the 
system's time, check the stack size, check if a disk has been inserted, and 
move the cursor. An applications programmer may also call the Vertical 
Retrace Manager to install custom routines to be performed on a frequent 
and regular basis. 

The Device Manager provides access to devices such as the serial 
ports as though they were files with special control and status functions. 

The Printing Manager handles printing. It does not reside in ROM 
but is brought into RAM as needed. 

Other Parts of the System 
The Operating System contains a number of lower-level parts, including 
the dispatcher routine for Macintosh routines and device drivers. 

Device drivers form the interface between the higher-level managers 
and memory locations that control and pass information to devices such 
as the serial communications lines, the sound system, and the disk system. 
An applications program can talk directly to these drivers, but for the 
most part this should not be necessary. 

Summary 
In this chapter, we have described the overall internal structure of the 
Macintosh, starting with its physical layout and leading to its logical 
structure as a collection of managers. We study these managers in detail 
in subsequent chapters. 

MACINTOSH SYSTEM ORGANIZATION 3 7 



3 
Programming the 
Macintosh 

38 

This chapter covers the following new concepts: 

• The Program Development Environment 

• Source Code 

• Library Files 

• Resource Definition Files 

• Pascal Pointers 

• Static and Dynamic Variables 

·• Relocatable and Nonrelocatable Areas of Memory 

• Heaps and Stacks 

• Debugging 

This chapter introduces a standard programming environment for devel­
oping applications programs for the Macintosh. This programming envi­
ronment allows the user to develop programs such as spreadsheets, editors, 
and file utilities, making the Macintosh a powerful information handling 
tool. 

We explain why this particular environment was chosen and describe 
how the example programs in this book are developed. We present an 
example program and discuss how it is written and processed as a finished 
application that runs on the Macintosh. Although this section describes 



a program development environment, it emphasizes the basic functions 
that must be performed in any development system. These basic functions 
will be needed in any future program development environment. Thus, 
this discussion is valuable even when using a different development process. 

In this chapter, we introduce the idea of resources. Macintosh appli­
cations program development differs from most others in that its programs 
are packaged as collections of resources. An applications program uses 
these resources to perform its job. We explain this concept and show how 
the program code is one such resource in the package. 

We also explain how Pascal pointers work. Apple Pascal's implemen­
tation of pointers makes the language a very powerful tool for controlling 
the Macintosh's hardware while maintaining a modern, structured pro­
gramming environment in which large programs can be easily developed 
and maintained. 

We describe how to set up a debugger that allows us to see, and 
therefore fully understand, how features such as pointers work on the 
Macintosh. 

Programming Environment 
This section presents the programming environment used to develop the 
example programs in this book. We discuss the basic hardware and choice 
of programming language. 

In the next section, we describe the program development process in 
detail, presenting a simple example program. 

Choice of Hardware 
The preferred methods for developing programs will change as more soft­
ware tools are developed and the Macintosh's hardware becomes more 
powerful with larger main memory and larger, faster secondary storage 
(for example, well-integrated hard disks). However, as of this writing, 
efficient program development requires a Lisa (now called Macintosh XL) 
to run Pascal as well as two Macintoshes. In view of this evolution, we 
describe the process in general terms, mentioning the current hardware 
environment merely to illustrate the discussion. Thus no matter what 
system you use, you can gainfully read this chapter, substituting the 
details of your own system for the Lisa Pascal system. 

Currently, program files are written and processed on a Lisa (Mac­
intosh XL). The resulting application is then transferred to and run on a 
regular Macintosh. During program development, a second Macintosh 
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displays debugging information about the first Macintosh and controls the 
program. The finished program runs on a stand-alone Macintosh. 

Traditionally, applications for a new computer are first developed on 
an older, larger machine that already has the proper development tools 
written for it. Some large software development firms continue to use large 
computers to develop applications, even after a new machine is well 
established. However, many companies and individuals that cannot afford 
large computers use the "target" machine itself to develop applications. 

The Lisa is not so different from the Macintosh itself. In fact, Apple 
is in the process of merging it with the Macintosh. With the proper amount 
of main memory, fast disk storage, and a few changes in the Operating 
System, a basic Macintosh could actually be more powerful than the older 
Lisa (Macintosh XL), thus becoming a suitable environment for its own 
program development. Maybe by the time you read this book, Macintosh 
applications will be developed directly on a hard disk version of the basic 
Macintosh. 

Already, there are debuggers for the Macintosh that require only one 
machine, allowing you to flip back and forth between a debugging screen 
and the normal output. However, they will never be quite as good as a two­
machine debugging system, since it is always useful to completely sepa­
rate normal program input and output from that of the debugger. 

A two-machine Macintosh system is not unreasonably costly when 
considering the benefits, but it is desirable to eliminate the Lisa when its 
function can be taken over by one of the Macintoshes. The same kinds of 
tools should then be available for such a Macintosh. 

Why Use Pascal? 
The examples in this book are written in Pascal. Even if you don't know 
Pascal, you should find these examples easy to understand, and even if 
you don't plan to write your applications in Pascal, you will learn some 
very important lessons from these examples. Although the Pascal language 
is used here merely to explore the Macintosh's programming environment, 
the Apple version of Pascal is actually a good choice as a development 
language. 

First, let's discuss the advantages of Pascal. The primary advantage 
is that Pascal is the original development language for the Lisa and the 
Macintosh. Assembly language has also been used, but in a supplemen­
tary role to Pascal. Thus, the tools for Pascal are well developed and the 
basic structure of the Macintosh is oriented towards Pascal. Apple's doc­
umentation is also written in Pascal; that is, even though it is written in 
English, it uses Pascal contructs to explain the Macintosh's operations. 
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A second advantage is that Pascal is one of the first widely accepted 
structured languages; that is, it uses widely accepted program and data 
structures. Pascal was developed as a result of researching how such 
structures can and should make programming easier and more reliable. 

Pascal's structures appear to be ''generic'': its basic structures are so 
appropriate and necessary that they have been borrowed by other lan­
guages, such as BASIC, FORTRAN, and some assembly languages. Al­
though these languages have been around longer than Pascal, new versions 
of them have been developed that incorporate Pascal-like structures. This 
tends to make Pascal easy to read and understand, even for those who 
don't know the language but know modem versions of these other languages. 

Pascal-like structures are essential to good programming practices, 
allowing programs to be developed in a systematic manner so that the 
overall organization and structure of each component of the program can 
clearly be seen. It allows procedures (subroutines) to be written and given 
names that spell out their function. These names are then added to the 
vocabulary of things that your program can do. This can be done very 
effectively in a hierarchical manner so that each part of your program 
looks like an outline of what it is accomplishing. 

Data structures can also be organized hierarchically so that a larger 
structure can be referenced as a whole, but each piece can also be easily 
accessed. 

Apple Pascal 

Apple's implementation of Pascal has a number of advantages. It is a 
higher-level language that translates directly to the machine language 
used by the Macintosh's 68000 central processor. When we discuss de­
bugging, you will see how to display the resulting machine language in 
the form of 68000 assembly language in the windows of the debugging 
screen. You can then easily, interactively explore any of our example pro­
grams in assembly language. 

A consequence of Pascal's generic nature is the need for extensions. 
Of course, because of its hierarchical nature, it is self-extending; one can 
write packages, as Apple has done, that extend Pascal so that it conforms 
to a particular environment. However, basic elements such as dynamic 
strings are missing from standard Pascal. Fortunately, Apple Pascal has a 
nice extension to handle dynamic strings. 

Apple Pascal adds a number of features to an interesting set of Pascal 
structures called pointers. Pointers are essential to the operation of the 
Macintosh. Later, we discuss pointers and the special operations for them 
added by Apple. With these facilities Apple Pascal becomes a very pow-

PROGRAMMING THE MACINTOSH 41 



erful language that allows us to directly control the machine hardware 
while maintaining the advantages of a modern, structured, higher-level 
language. 

Perhaps a word of warning is in order. A few features in Pascal are 
not well defined. Different versions of Pascal may implement these features 
differently. For example, some data typing does not clearly define how it 
is packed into memory. In particular, the "subrange" of numbers "0 ... 255" 
may be interpreted as a byte-sized piece of data in one implementation of 
Pascal (the version we use for these programs) or as a subrange of 16-bit 
integers in another Pascal (the interpreted Pascal that runs directly on the 
Macintosh). However, this type of problem is really at the implementation 
level, since it relates to the way memory is implemented on the computer. 

The Development Process 
In this section, we describe the development process in broad terms, 
explaining the logical generic rather than the specific physical steps. This 
should help put the example programs into perspective and allow you to 
implement them on your own system. In particular, this section describes 
resources. 

As mentioned above, the exact steps vary that are required to put an 
application together. If you need a more detailed description of the current 
development process, please read Appendix B. 

We illustrate the development process with listings of a trivial pro­
gram. The program is not designed to be useful; it merely illustrates 
editing, compiling, linking, loading, and running - processes used in 
all the example programs in this book. By studying this program, you will 
understand how the other example programs as well as your own appli­
cations can be implemented on the Macintosh. 

Source Files 
The development process begins with source files. These textual "docu­
ments'' are written and modified using an editor and stored on some mass 
storage device such as a disk. They can range in size from a few characters 
(or even zero) to several thousand characters. The files for this book are 
written and stored on a Lisa. However, you can write such files directly 
on the Macintosh or on a different computer altogether. 

Because of the intrinsic nature of Macintosh applications programs, 
two source files are needed: one contains source code, the other contains 
resource definitions. Currently, these are in separate files, but other sys­
tems could possibly combine both types of information into one file. 
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The source code file contains the Pascal program. This is compiled 
into MC68000 machine language and linked with other machine language 
modules to form a complete machine language program. Later, we look at 
the Pascal source code file and associated files, called library files, that 
are supplied by Apple. 

Macintosh Resources 
First let's look at the resource definition file. To understand why this file 
is necessary and how it works, you should know something about the 
structure of applications as they sit upon a Macintosh disk. 

All files residing on a Macintosh disk consist of two parts - a data 
fork and a resource fork. Both parts must be present, but either part can 
be empty. 

The data fork contains normal user data, such as text in a text file or 
data from a spreadsheet program. In Chapter 10, we see how to open, 
read from, write to, and close the data forks of Macintosh files, like 
ordinary files on most computer systems. 

The resource fork contains the program. Officially, it contains a num­
ber of items called resources, but the primary resource is the 68000 
machine code and data that comprise your compiled program. Other 
resources might define the basic parameters for windows, dialogs, and text 
that are used by your program. We study these resources in later chapters. 
Table 3-1 lists the common types of resources. 

Currently, Apple supplies a program called a resource compiler (called 
"RMaker''), which converts your resource definition file along with your 
compiled program into a file that contains your finished application, ready 
to be run on the Macintosh in stand-alone mode. Currently, this finished 
file must be transferred from the Lisa to the Macintosh before it can be 
run. 

Apple is also developing a resource editor that allows a programmer 
to add, remove, and modify resources in a program. Each type of resource 
can be edited in its own manner. For example, icons, patterns, cursors, 
and fonts can be edited in enlarged forms just like "fat bits" in MacPaint. 

If we think of an application as a collection of resources, then we 
should think of the resource definition file as the main file for defining 
our application because it specifies the application's resources (see Figure 
3-1). 

In the example program for this chapter, the compiled program is the 
only resource. In later chapters, we gradually introduce other types of 
resources and the relevant concepts behind them. 
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Now let's examine the resource definition file for our example. Notice 
that the resource definition file does not actually contain the code resource, 
but names the object file where that code may be found. 

* resource file for Trivial demonstration program 
e l m/ Trivial. rsrc 

Type CODE 

clm/ TrivialL, O 

The first line is a comment. All comments in a resource definition 
file begin with an asterisk. You can have any number of lines of comments 
at the beginning. However, you must be careful about putting comments 
in other parts of the file because they might be interpreted as resource 
definition information. 

The second line of this file declares the name of the file where the 
finished application will be placed. Currently, this is a Lisa file, which is 
then moved by a file transfer program called "MacCom", onto a Macintosh 

Table 3-1. Common Types of Resources 

Type 

WIND 
MENU 
CNTL 
ALERT 
DLOG 
DITL 
ICON 
ICN# 
CURS 
PAT 
Pat# 
STR 
STR# 
DRVR 
FREF 
BNDL 
FONT 
CODE 
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Object Described 

Window 
Menu 
Control 
Alert 
Dialog 
List of items in an Alert or Dialog 
Icon 
List of Icons 
Cursor 
Pattern 
List of Patterns 
String of text 
List of strings 
Desk Accessory 
File reference 
Bundle 
Font 
Machine code for a program 



disk that is inserted into the Lisa disk drive. In the future, this may be 
your fini shed application file on the Macintosh . 

The third line is blank simply to make the file more readable. Al­
though some lines in a resource definition file must be blank, this one 
does not have to. 

The fourth and fifth lines specify the code resource to be included in 
the application. This is the compiled and linked program. 

The fourth line is a TYPE statement that declares the resource to be 
of type CODE. We encounter other types of resources later. The fifth line 
specifies a file where the machine code is found. In this case, the file is 
"clmffrivialL", which is the compiled and linked version of our Pascal 
program. 

Pascal Source File 
Let's now look at the source file for this trivial program. 

PROGRAM Trivial; 
{ $R- }{$X- } 

Figure 3-1. Resources and Data in Files 
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USES 
{$U obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{ $U obj / Toolintf 

BEGIN 

}Memtypes, 
}QuickDraw, 
}OSintf , 
}Toolintf; 

{This program does nothing} 
END. 

Program Statement 
The first line of this program is the program sta tement (as Pascal pro­
grammers know). This statement specifies the name of the program: in 
this case, "Trivial". 

Compiler Commands 
The second line of the program contains two compiler commands. A 
compiler command is an instruction to the compiler that is not part of 
the Pascal language. 

These compiler commands ensure that the program runs properly on 
the Macintosh. Note that the same Pascal compiler can compile programs 
that run on the Lisa. 

Each compiler command starts with a dollar sign and is enclosed in 
brackets as a Pascal comment. This hides them as far as the Pascal lan­
guage is concerned but allows the Pascal compiler to easily recognize 
them. 

The first compiler command is $R-, which disables range checking 
in your program. Range checking verifies whether variables such as array 
indices are withit:l designated bounds. The current version of the compiler 
does this incorrectly and may cause a program to crash. Since the default 
setting is $R +, which enables range checking, we need $R- to disable 
this particular feature. Future versions of the compi ler should have this 
bug fixed. 

The second compiler command is $X-. This command disables au­
tomatic stack expansion. Automatic stack expansion is desirable for pro­
grams that run on a Lisa; however, this feature is not appropriate for 
Macintosh programs because the Macintosh has a different way of han­
dling memory. The default setting is $X+, which enables automatic stack 
expansion; thus, we need the $X- command to turn this fea ture off. 

Apple also recommends that you invoke the $U- command to disable 
the use of Lisa library files. The Macintosh library fi les, di.scussed below, 
invoke this command for you. It is therefore not really necessary to issue 
this command from your program. 
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External Files 

The USES section of this program allows our program to take advantage 
of the large number of Pascal declarations developed by Apple that prov"ide 
access to the Macintosh's ROM. 

These definitions are stored in a number of compiled external Pascal 
files called library files. These are the physical containers of this infor­
mation. Each library file can contain one or more logical UNITs. A UNIT 
is a special module that is part of the Apple Pascal language. In Chapter 
4, we discuss the contents and structure of UNITs in detail. 

The $U compiler command connects the file name to the UNIT 
names. It causes the compiler to search the specified file for all UNITs 
mentioned subsequently in the USES section until the next $U command. 

In this program, we use the following external library files: "Mem­
Types", "QuickDraw", "OSintf", and "Toollntf" (all prefixed by an "obj/"). 
These library files contain only one UNIT. The name of the UNIT for these 
files is the same as the name of the file that contains it (ignoring the "obj/ 
"prefix to the file name). In each case, aU$ compiler command enclosed 
within Pascal comment brackets gives the file name, thus making it not 
part of Pascal. Immediately after, the corresponding UNIT name is given 
as part of the USES statement in Pascal. 

In Chapter 4, we discuss the structure and contents of UNITs. For 
now, understand that they give you extra data structures and procedures 
that are not a regular part of Pascal. 

Main Program 

The main program consists of a BEGIN and an END statement. This is 
the absolutely smallest main program in Pascal. As you can see, the 
program does no useful work. It merely signs on, then off. 

Putting It All Together 
The Pascal source code file needs to be compiled and linked, then com­
bined with the other resources to form the complete application (see Figure 
3-2). We describe this process only briefly here. Details of the current 
steps are in Appendix B. 

Currently, compiling takes two steps. First, a Pascal compiler trans­
lates the Pascal source code into intermediate code; then a code generator 
translates the intermediate code into 68000 machine code. 

The linking process combines several machine language files to form 
the complete program. Apple supplies a number of files that must be 
linked with your program for it to take advantage of the Macintosh's built-
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in software. These files contain external procedures that consist of a little 
extra code; chiefly, they connect the Pascal routines in the files declared 
in your USES section to the Macintosh's ROM routines. 

Figure 3-2. Developing an Application 
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The linked program, however, is not yet a complete application. It has 
to be packaged at the resource level. You must combine all resource 
definitions for your application, including the linked program and the 
various definitions of windows, control, dialogs, and text. Currently, a 
resource compiler called "RMaker" does this for you. 

In the current setup, each of these software tools, including the com­
piler, code generator, linker, and resource compiler, provides prompts 
asking for input files, options, and the names of output files. Fortunately, 
you can write command files called "exec" files, which automatically 
issue all commands and answer these prompts for you. You can invoke 
the entire process with a few keystrokes that start an exec file (discussed 
in Appendix B). 

Pascal Pointers 
Now let's look at pointers, a special part of Pascal that can cause confusion, 
yet that are very important to programming the Macintosh. Even if you 
know Pascal, this section merits attention because it explains the Apple 
Pascal implementation. 

Pointers are important because they, in conjunction with the Macin­
tosh's memory management system, allow dynamic variables. Such vari­
ables are needed to handle strings and essential parts of Macintosh's 
graphics interface to the user. We explore them at some length here because 
they are an aspect of Pascal that is important to understanding the Mac­
intosh, yet may be poorly understood even by experienced Pascal 
programmers. 

A Pascal pointer is a Pascal variable that references other Pascal 
variables (see Figure 3-3). All but the most minimal versions of Pascal 
have pointers, but they implement this feature differently. In Apple's Pascal 
compiler, pointers are implemented directly as memory addresses; that is, 
the value of the pointer is a memory address. Since addresses are stored 
as 32-bit integers by the 68000 processor, each pointer requires four bytes 
of storage. 

Each pointer variable is typed. That is, it is defined to "point to" 
variables of a specific data type. The compiler rejects attempts to make a 
pointer reference data of the wrong type. However, Apple Pascal can very 
nicely convert data and pointers from one type to another. This data typing 
is performed by the compiler at compile time, not by your program as it 
runs. Thus, the type of a pointer requires no extra storage in your running 
program. 

Realize that data typing is a tool to help protect your program from 
crashing as well as to help write better programs in shorter time. A caution: 
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any data typing should be done carefully and with good understanding of 
what you are doing to the machine. A debugging session might be nec­
essary to achieve that understanding. In the next section, we describe such 
a debugging session. 

As with any ordinary variable, pointers must be first declared in the 
VAR section of your program. Prefixing the name of any data type with a 
caret""" creates the name of a new data type. In the original descriptions 
of Pascal, an upward arrow symbol was used. However, it is not possible 
to make such an arrow on the Macintosh, so the caret is used instead. 

Variables of these new caret-prefixed types are called pointers be­
cause they "point" (that is, contain the address of) expressions of the 
original data types (see Figure 3-4). For example, starting with data type 
"INTEGER", the type ""INTEGER" is called "integer pointer" because 
variables of this type point only to integers. We can also assign a name 
to a pointer type in the TYPE section, then use this name as a known 
type in our VAR section. For example, in the TYPE section we could say 

Figure 3-3. Pascal Pointers 
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INTEGERPTR = ' INTEGER, then INTEGERPTR would be available as a 
valid data type. 

Pointers can provide access information not readily available through . 
other methods. For example, the information that controls the appearance 
of the video screen acts like a block of memory. We can direct a pointer 
to the various bytes of this memory, then turn on and off the individual 
bits that correspond to the dots (pixels) on the screen. In Chapter 4, you 
see an example program do this. 

Pointers allow the user to access data in a form different than origi­
nally stored. For example, if you wish to examine the individual bits of 
an integer, you can set up a pointer of type: 

PACKED ARRAY [0 .. 15] of BOOLEAN 

so that it points to your integer. Then you index this array to look at each 
bit. In Appendix C, we will do this to help examine and set certain file 
attributes. 

Pointers and Dynamic Variables 
Pointers also help manage memory by providing convenient methods of 
allocating and accessing dynamic variables (see Figure 3-5). 

Dynamic variables move around in memory as they change in size. 
They are stored in areas of memory that are "relocatable". 

Figure 3-5. Dynamic Variables 
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An example of a dynamic variable is a region. In Chapter 4 we study 
these in detail. Briefly, they store irregular shapes that are drawn on the 
screen (see Figure 3-6). 

When you initialize a region (using a special function called 
"NewRgn"), it contains ten bytes of data. As you define and modify a 
region's shape, the amount of data usually grows, but occasionally shrinks. 
Each time the region needs more space than is immediately available, it 
moves to a memory area where there is room. Thus, it leapfrogs through 
memory, jumping over the storage space of other variables as it searches 
for more storage (see Figure 3-7). 

Pointers can operate in various ways to form pointer expressions 
(formulas involving pointers). The compiler, however, prevents you from 
freely using such things as parentheses in these pointer expressions. This 
limits the ability to form pointer expressions. 

The most fundamental pointer operator is the trailing caret "A ". Use 
this whenever you want a pointer to store or retrieve data that it is pointing 
to. For example, if "theiPtr" is of type "A INTEGER", then "theiPtr" con­
tains an address; whereas "theiPtr"" acts as an integer expression whose 
value is stored at that address. 

When pointers manage dynamic variables, you often see two trailing 
carets after a pointer's name. In this case, the original pointer points to 
another pointer, which in turn points to the data (see Figure 3-8). For 
example, suppose that "the Rgn" is of type "RgnHandle" which is defined 

Figure 3-6. Regions 
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as type " A RgnPtr", and that "RgnPtr" is defined as type" A Region". Then 
"theRgn" is a region handle containing the address of "theRgnA ",a region 
pointer which in turn contains the address of " theRgnA A" which is where 
the actual data of the region is stored. 

More generally, handles are regular "static" variables, providing the 
means for the programmer to maintain access to "dynamic" variables 
which the system continually and automatically moves around in memory. 

Figure 3-7. Dynamic Variables Leapfrogging through Memory 
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As the name implies, "static" variables do not move during the execution 
of the program. On the other hand, dynamic variables are used with data 
structures that change size, grow, or must be shifted in memory as the 
program runs. 

The handle points to a pointer maintained by the Operating System 
in a special "nonrelocatable" area of memory called the master pointer 
list. Because the master pointer area is "nonrelocatable", these pointers 
don't move either. 

The pointers in the master pointer area point to the actual data. When 
the Operating System moves data, it also updates the new location of the 
pointer on the master pointer list. 

Thus, the handle can always access data by placing two carets after 
it. For example, if, as before, "theRgn" is a region handle (handle to a 
region), then "theRgn ~ " is in the master pointer area, and "theRgn • • " is 
the actual data of the region. The region data is a record structure whose 
fields can be accessed from this last expression. In particular, 
"theRgn • • .rgnSize" is the first field of the region's data. Such expressions 
are common in applications programs for the Macintosh. 

Nonstandard Pointer Operators 
So far, we have discussed standard pointer operators. Apple Pascal has 
other operators that make pointers into even more powerful programming 
tools. 

Let's start with the " @ " operator. When this operator is placed in 
front of a variable, it creates a pointer expression that points to that 
particular variable. This pointer expression can be assigned or otherwise 
passed to any pointer. Such a "typeless" pointer expression is said to be 
of type "NIL". For example, if "X" is of type " · INTEGER" and "Y" is 
any variable, then: 

X @Y; 

makes "X" point to "Y". As a bonus, "X~" is an integer that reinterprets 
the first two bytes of Y as an integer. 

The "ORD" and "POINTER" functions are also useful. The "ORD" 
function converts a pointer value into the corresponding numerical value. 
This numerical value is a long integer. For example, if Y is a variable, then: 

ORD(@Y) 

is the numerical value of the address where Y is currently stored. 
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The "POINTER" function converts a long integer (32-bit integer) into 
a pointer of type "NIL" that points to the memory location whose address 
is given by the long integer. For example, on the 128K Macintosh, the 
screen RAM is located at address $1A700. Thus, 

POINTER ($1A700 ) 

is a pointer expression that points to the beginning of the screen memory. 
You should be warned that this is not where the screen is on other sizes 
of Macintosh. In Chapter 4, we explore a way to get this address for all 
Macintoshes. 

The "ORD" and "POINTER" functions convert one type of pointer to 
another. For example, if "X" and "Z" are pointers of different types, then: 

X : = PO I NTER (ORD (Z) ); 

assigns the address in Z to the pointer X. 

'Ijrpe Coercion 
The last example can be more skillfully executed through the technique 
of type coercion. This method allows use of the name of a data type, just 
like a function, to convert one type of data to another. For example, if "X" 
is a pointer of type PTR, then: 

X PTR (Z) ; 

is equivalent to the last example; that is, it also assigns the address in Z 
to pointer X. Another example is the expression: 

LONGINT (X) 

which is the numerical value of the address contained in the pointer "X". 
This can substitute for the POINTER function. 

Be aware that the compiler doesn't li ke to use type coercion when 
two types of data require different amounts of storage. This can be over­
come by changing types at the pointer level, since all pointers require the 
same amount of storage- four bytes (32 bits). For example, if "numPtr" 
is defined in the TYPE section as: 

numPtr = "numArray , 
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where "numArray" is also defined in the TYPE section as: 

numArray =ARRAY [1 .. 1000] OF INTEGER 

then 

numPtr (theRgn· )· 

is an array of integers that contains the region data (see Figure 3-9). In 
Chapter 4, we use this technique to explore how regions work. 

Also be careful about the values you get when using type coercion: 
the results depend upon how data is stored. For example, if X is an integer, 
then the expression Ptr(@X) is a byte pointer that points to where X is 
located. However, the value of the byte there, as given by the expression 
Ptr(@Xr , is equal to the upper byte of X (not the lower byte as with some 

Figure 3-9. Converting Data to Integer Format 
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processors). The upper byte value of X hardly ever equals X itself, whereas 
the lower byte equals X if X is small enough. 

Using a Debugger 
Now that we've seen how pointers work, let's see how a debugger can 
chase them through memory. 

Debuggers are essential to understanding your program, especially 
when it's not doing what you wanted it to. Such knowledge can save 
hours. With a debugger you can follow the execution of your program in 
the machine step by step, examining the CPU registers and memory at 
will. 

We describe the process of running an example program on one 
Macintosh while using a second Macintosh to display debugging infor­
mation (see Figure 3-10). Even if you are using only one Macintosh as a 
debugger, you should have no trouble following the discussion. 

The two-Macintosh method has the advantage of two display screens: 
one to show program output, one to show all debugging information. Since 
applications programs use the screen so completely, it is very helpful to 
send debugging information to a second screen. Furthermore, the debug­
ging program used here works very effectively, filling the screen of the 
second Macintosh with windows containing information such as the state 
of the CPU registers , the stack, and a section of code of the program 
concurrently being executed. It also allows other windows to open show­
ing other areas of code or areas of data . 

Currently, debugging programs are available from Apple as part of the 
Macintosh development system. However, programs from other companies 
will no doubt appear. 

Figure 3-10. Mac-to-Mac Debugging 
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Hardware Setup 
A cable connects the two machines via their printer serial ports. Figure 
3-11 shows the pin assignments for this cable. The ports use an RS-422 
standard for serial transmission. This is a little different from the usual 
RS-232 standard but is compatible using slightly different cabling. 

The connector on each Mac printer port is a DB-9; that is, a D-shaped 
connector with nine pins. As shown, not all the pins are used. 

Pins 1 and 3 are ground. Pin 2 (not used) is + 5 volts. Pin 4 is data 
out plus, and pin 5 is data out minus. Pin 8 is data in plus, and pin 9 is 
data in minus. Two lines are required for each direction to conform with 
the RS-422 standard. Instead of comparing signals to a common ground, 
they are compared against each other. This reduces noise and allows longer 
transmission lines. 

Required Software 
To make this system work, you must execute a program (currently called 
"MacNub") on the first Macintosh (the one with your program). The 
"MacNub" program loads certain interrupt vectors and interrupt service 
routines into the Macintosh. These routines take over the basic functioning 
of the Macintosh, allowing debugging information to be sent out as the 
machine executes subsequent programs. 

Figure 3-11. Pin Assignments 
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You must also run a program (currently called "DB" or "MacDB") 
on the second Macintosh (the debugging Macintosh). This program con­
trols the display of the debugging information on the second Macintosh. 
Figure 3-12 shows a typical display. 

The Example Program 
Our example program for this debugging session initializes a region and 
then goes into an endless loop. The program signs on and then just waits 
for you to hit the interrupt button (to debug) or reset button (to restart the 
machine). 

As we debug this program, we carefully check some examples of the 
pointers that we presented in the previous section. We explain this check­
ing procedure after discussing the program. 

Here is the program: 

PROGRAM Endless; 
{ $R- }{$X- } 

Figure 3-12. Debugging Screen 
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USES 

VAR 

{$U obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{ $U obj /Toollntf 

theRgn : RgnHandle ; 

BEGIN 
theRgn : = NewRgn ; 
WHILE TRUE DO ; 

END. 

}Memtypes, 
}QuickDraw, 
}OSintf , 
}Toollntf ; 

The USES section, as in our earlier program, simply declares the 
external library files that can be used. 

The VAR sect ion declares the variable "theRgn" to be of type 
"RgnHandle". 

In the main part of the program, the first line invokes the function 
"NewRgn". In Chapter 4, we explain it in detail. For now, understand that 
this function allots room for and initializes a region, then returns a handle 
to the region data. In this program, we assign this handle value to the 
variable " theRgn". 

The second line of the main program is an infinite WHILE loop. The 
program continually executes this loop until you intervene by hitting the 
reset button, turning off the Macintosh, or using the debugger to change 
the program counter. 

Debugging 
Now let's describe the debugging process. First, compile, link, package, 
and transfer your program as described previously. Don't forget to change 
the name from "Trivial" to "Endless" in the exec and resource definition 
files. If you are using a Lisa, the Lisa editor can do the searching and 
replacement for you. 

Let's say we ran the exec file, and the finished application is stored 
on a Macintosh disk under the file name "Endless". Assume that "MacNub" 
is on the same disk and that this disk is inserted into a Macintosh which 
is cabled to a second Macintosh according to the pin assignments given 
above. 

Now run "MacNub" on the first Macintosh and run "DB" on the 
second (debugging) Macintosh. The exact order of running these programs 
doesn't matter. They can even run at the same time. However, understand 
that "MacNub" can run only once without restarting the Macintosh. 
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After " MacNub" is run on the first Macintosh, start up our "Endless" 
program. The second Macintosh should now tell you, with a dialog box, 
that it is waiting for an interrupt. 

When the disk stops on both Macintoshes, hit the interrupt key on 
the first Macintosh. This key is just behind the reset key. The second 
Macintosh's screen should now tell you where the first Macintosh stopped 
(see Figure 3-13). This should be on the WHILE loop. 

Now use the mouse to select the DEBUG button on the screen of the 
second Macintosh. You now see the debug windows fill with information. 
You can scroll the window to view the entire machine code for the program 
in the "PC" (Program Counter) window (see Figure 3-14). The location of 
the program counter itself is indicated by an " @" in front of the address 
that it points to. This is the address of the next instruction to be executed 
at the time that the interrupt key is hit. In our example this is a "BRA.S" 
(branch short) instruction to the same address. This is how the endless 
WHILE loop is translated into machine language. 

Now let's check out the region handle. Just before the "BRA.S" in­
struction there should be a "MOVE" instruction, and before that should 
be a "NewRgn" command. The "NewRgn" allocates space for and ini-

Figure 3-13. Got an Interrupt 
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tializes a region. It returns a handle to this data. This return value can 
be found on the stack. Register A7 is the stack pointer. The "MOVE" 
instruction moves the region handle from the top of the stack (using 
register A7) to "theRgn". Here, the address of " theRgn" is given by (AS) 
- 4; that is, four less than the address stored in register AS. 

Register AS is a key to locating data used by Macintosh programs. 
When the Operating System starts an application, it loads AS with the 
address of the beginning of an area in the stack called the application 
parameter area (see Figure 3-1S). This area contains variables that are 
outside of your Pascal program but are shared by the application and the 
Operating System. 

Just below the application parameter area are the program's global 
variables. These are also in the stack and, like all stack variables, are laid 
down in memory at successively lower addresses as they are placed on 
the stack. As a result, they appear in memory in the reverse order of that 
in which they are declared (see Figure 3-16). When your program refer­
ences global variab les, you will see addresses that use AS with a negative 
offset. 

Figure 3-14. Displaying the Program 
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DO = 0000 0000 
01 = 0000 0000 
02 = 0000 0000 
03 = FFFF FFFF 
04 = 0000 1200 
05 = 0000 08FF 
06 = 0000 FFFF 
07 = 0000 0000 

AO = 0000 CC8A 
AI = 0040 8E90 
A2 = 0007 9786 
R3 = 0007 A6FA 
A4 = 0000 0008 
A5 = 0007 A608 
A6 = 0007 9646 
A7 = 0007 A404 

7>7A404 0040 400E 
7A408 7800 7COO 
7A4DC 7EOO 7FOO 
7A4EO 0000 0000 
7A4E4 OCOO 4600 
7A4E8 0600 0300 
7A4EC 0300 0000 
7A4FO COOO EOOO 
7A4F4 FOOD F800 
7A4F8 FCOO FEOO 
7A4FC FFOO FF80 

464F 424A 
FFFF FFFF 
0000 308A 
0000 3074 
0000 30A6 
0000 30BE 
0000 3094 
0000 309A 
0000 3082 
0000 3088 



Our example has just one global variable, "theRgn" (see Figure 3-17). 
Since it requires four bytes of storage, it is located at four bytes less than 
the address in A5. This is indicated by the address reference code 
"$-4(A5)" in the "MOVE" instruction. 

Global variables declared in external library UNITs are placed after 
your global variables. They are referenced with negative offsets with larger 

Figure 3-15. Application Parameter Area 
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Figure 3-16. Global Variables 
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magnitudes than those for your own global variables. These parameters 
are used extensively throughout the book. 

Now that we have located our region handle " theRgn", let 's follow it 
to the data (see Figure 3-18). The exact addresses vary from system to 
system, but the method is the same. On our Macintosh , we find the address 
$7 A6D8 in A5 . Subtracting 4 gives the address of " theRgn" as equal to 
$7 A6D4. We create a window displaying the memory locations around 

Figure 3-17. Referencing Our Global Variable 

CA5) <:=..__1 _ A5 __ ~ 
$-4(A5) theRgn 

Figure 3-18. Chasing Our Region Handle 

CCSO : MOVE.L <A7 >+,A6 
CC52 : LINK A5 , $0 
CC56 : SUBA.L $IO<AS >, ~""'""------r 
CCSA : JSR $36<PC > ; 
CCSE : MOVE .L $-B<A5), 00 
CC62: CMP .L $-B<A5>, DD 
CC66 : CLA .L - <A7 > 
CC68 : NewRgn 
CC6A: MOVE.L <A7>+,$-4<AS) 

iCCOE : BRA .S *$-2 CCOE 
CC70 : JSR $26<PC) CC98 
CC74 : UNLK AS 
CC76 : JSR $ IS< PC > CC90 
CC7R : RTS 
CC7C : UNLK A6 
CC7E : RTS 
CCBO : EXG A2, A6 
CC82 : NEG A4 
CC84 : $4553 
CC86 : SUBQ .B •$1 , - <AO > 
CCBB : $0 
CCBA : CLR.L $ 10<A7 ) 
CCBE : RTS 
CC90 : RTS 
CC92: MOVE .L <A7 >+.AO 
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AO ., 0000 CCBA 
Al = 0040 BE90 
A2 = 0007 9786 
A3 = 0007 A6FR 
A4 = 0000 ODDS 
A5 " 0007 A608 
A6 = 0007 9646 
A7 = 0007 A404 

CCBO 
CCB2 
CCB4 
CCB6 
CCBB 

O>CCBA 

FFFF FFFF 
0000 308A 
0000 3074 
0000 30A6 
0000 30BE 
0000 3094 
0000 309A 
0000 3082 
0000 3088 
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lr--7-A6-DB.....,, 

Figure 3-19. The Heap and the Stack 

Figure 3-20. Debugging Session 
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this address. In this window we see that the address $CC14 is stored in 
"theRgn". This is the address of the region pointer "theRgn" ".We create 
another window displaying the locations around the pointer. Looking into 
this window, we see that the address stored in the pointer is $CCA8. This 
is the address of the region data. We create one more window to show this 
data. The first word contains "OOOA", which is the length (10 bytes) of 
the region data area. Initially, the remaining eight bytes contain zeros, as 
shown. 

Notice that the addresses of the region pointer and region data are 
much lower than the address in AS and the address of the region handle. 
That's because the region pointer and the region data are in an area called 
the heap (see Figure 3-19). In contrast to the stack, which starts high in 
memory and grows downward, the heap starts low in memory and grows 
upward. All dynamic variables are maintained in the heap. 

Figure 3-20 shows the relationships in the debugging session as a 
whole. 

Use this debugging system and the lessons learned here to explore 
other example programs. See how efficiently the compiler turns our Pascal 
source code into 68000 assembly language. Use the "Run" and "Bkpts" 
menus to step slowly through these programs to thoroughly understand 
how the Macintosh works. 

Summary 
This chapter has discussed three important aspects of programming the 
Macintosh: the programming environment, special features of the pro­
gramming language, and the debugging environment. 

The exact programming steps and language may differ in the system 
that you use, but this chapter should give you a good start towards working 
in any program development environment for the Macintosh. 
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4 
QuickDraw 

This chapter covers the following new concepts: 

• QuickDraw 

• QuickDraw Initialization and Default Variables 

• External Units 

• GrafPorts 

• Memory-Mapped Video 

• Pixels, Patterns, and Cursors 

• Bitlmages and BitMaps 

• Coordinate Systems 

• Points, Rectangles, and Regions 

• Visibility and Clipping 

• Local Coordinates 

• GrafPort Moving Routines 

This chapter introduces QuickDraw, a collection of routines and data that 
draw pictures on the Macintosh 's video screen. We present several short 
example programs that illustrate its basic structure and features . 

QuickDraw is essential to Macintosh's built-in software: it produces 
the graphics that are the primary means of conveying information from 
the Macintosh to the user. 
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QuickDraw routines are carefully optimized for speed and power, 
providing a rich set of drawing primitives representing years of develop­
ment. By taking full advantage of these routines, you can save considerable 
time, effort, and overhead to your program, and most likely get better 
results. 

QuickDraw routines govern a variety of shapes, from points to poly­
gons to irregularly shaped objects called regions. Each shape responds to 
such actions as framing, filling, and erasing. These shapes are very useful, 
as seen in our example programs. 

The Macintosh's Operating System and its applications call upon the 
same set of QuickDraw routines. For example, when you boot up a disk 
and see the desktop with icons and windows indicating disks, folders, 
data files, and program, you are looking at images created by Quick.Draw. 
Applications such as MacWrite and MacPaint use QuickDraw to draw 
characters, borders, patterns, and shapes such as rectangles, ovals, and 
irregular shapes. Even programming languages such as Macintosh Pascal 
and BASIC call upon QuickDraw routines to display all program listings 
and output. In short, everything that normally appears on the Macintosh's 
screen is produced by QuickDraw. 

Within the Operating System, Toolbox managers such as the Window 
Manager and the Control Manager (see Chapters 6 and 7), the Dialog 
Manager (see Chapter 8), the Menu Manager (see Chapter 9), and Text 
Edit (see Chapter 10) call QuickDraw directly to draw the various objects 
that they manage. Other Toolbox managers, such as Dialog Manager, call 
upon the Window Manager and Control Manager as well as QuickDraw to 
draw objects on the screen. 

This chapter begins by discussing the proper initialization of 
QuickDraw. An example program shows you minimal steps needed to do 
any drawing on the Macintosh's screen. 

Next is a discussion of patterns and cursors. We explain what they 
are and how they are used. An example program shows how to define your 
own patterns and cursor shapes and how to make them appear on the 
screen. 

A discussion of memory-mapped video explains the basic hardware 
of the screen display, leading to a discussion of pixels, points, and coor­
dinate systems. An example "Mouse points" program shows how to map 
any position of the mouse directly to the screen. This is the only example 
that does not use QuickDraw to draw on the screen. It demonstrates how 
the screen works, and it also illustrates the overhead saved by using 
QuickDraw. 

Rectangles and then regions are discussed next. These fundamendal 
constructs form the basis of much that QuickDraw can do. Rectangles 
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define and draw such things as windows and menus. Regions draw regular 
and irregular shapes, such as the parts of a window (grow box, drag area, 
and goAway box) and controls (scroll bars, buttons, and check boxes). 
Regions are also used in conjunction with mouse tracking; that is, finding 
the mouse and responding with proper highlighting. Regions are also used 
by the Window Manager to handle overlapping windows. Example pro­
grams show how to define and draw rectangles and how the internal 
structure of regions works. 

The chapter finishes with a discussion of grafPorts. A grafPort is a 
full set of parameters that defines the drawing environment. Understand­
ing grafPorts is essential to understanding QuickDraw. This is particularly 
necessary if you use a debugger on QuickDraw programs. An example 
program shows how to use grafForts to good advantage, switching rapidly 
among several grafPorts to illustrate how multiple windows can be imple­
mented in a concurrent fashion. 

Not all of QuickDraw is covered here - just enough to explain the 
fundamentals and show how to write programs that make useful drawings. 
A complete discussion of every QuickDraw feature would require an entire 
book. In subsequent chapters, we add more QuickDraw routines to our 
programming arsenal. 

After reading this chapter, you should understand and be able to 
properly initialize the Macintosh's drawing environment and draw shapes 
on the screen. 

Initialization 
Every applications program for the Macintosh requires an initialization 
process. This process ensures that certain variables contain proper values 
and certain subsystems are set up in the proper configuration. We are 
concerned here with QuickDraw and its initialization, including that of 
its working variables and the hardware that controls the display screen. 

We begin with an example program that demonstrates how to initial­
ize QuickDraw. When we examine this program we will see the specific 
things that need to be initialized and investigate their general structure, 
but understanding much of their detailed structure must wait until you 
have more background, which is provided later in this chapter. 

The Initial Example Program 
Our first example program performs a series of steps that initialize 
QuickDraw and the video screen. The program stops at a couple of key 
steps and waits for you to press the mouse button before proceeding to 
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the next step. This allows you to carefully examine what is happening on 
the screen. Otherwise, the application would immediately wipe out the 
results and begin returning to the Operating System. 

The program first displays a gray desktop with a white band where 
the menu bar is usually located along the top of the screen (see Figure 
4-1). A title, "!nit", appears in this white area. At this point, the cursor 
is the familiar "waiting watch" (see Figure 4-2). This is the condition of 
the screen before the applications program begins. 

Stopping here is very helpful if you want to use a debugger to see 
how QuickDraw is initialized. You would simply hit the interrupt switch 
at this point and the debugger takes over (if properly set up) . You could 
then use the debugger to step through the ROM routines. 

If you now click the mouse button , the cursor turns into the standard 
arrow (see Figure 4-3) . At this point, QuickDraw's default variables, a 
grafPort, and the cursor are all properly initialized. The first two steps do 
not change the appearance of the screen. We do not pause until after the 
third step, which does change the screen. 

The appearance of the arrow cursor normally tells the user that every­
thing required has been loaded and initialized, and to proceed. In this 

Figure 4-1. First Screen of the First Program 
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program, to proceed means one more click, which causes the program to 
terminate. 

Here is the program: 

PROGRAM Init ; 
{ $R- }{$X- } 

USES 
{$U obj / Memtypes 
{$U obj /QuickDraw 
{$U obj / OSintf 
{ $U obj /Toolintf 

PROCEDURE ClickButton; 
BEGIN 

}Memtypes, 
}QuickDraw, 
}OSintf, 
}Toolintf ; 

While Button DO ; 
While NOT Button DO ; 
While Button DO ; 

END; 

BEGIN {main program } 
{Wait before doing anything} 
Cl i ci<.But ton; 

{Initialize QuickDraw default variables} 
InitGraf (@thePort); 

{Allocate nonrelocatable space on heap for grafPort } 
NEW (thePort) ; 

{Initialize grafPort} 
OpenPort(thePort); 

Figure 4-2. The Waiting Watch 

•••••• •••••• •••••• •••••• • • • • • • • • • • •• • ••• •• • • • • • • 

QUICKDRAW 71 



{Initialize the cursor and wait} 
InitCursor ; 
ClickButton ; 

END. 

External Files 

We begin with the USES section, since we studied the program statement 
on the first line and the compiler commands on the second line in Chapter 3. 
Chapter 3 also mentioned the external files listed in the USES section. 
We study· these in detail here. 

The USES section of this program allows the program to take advan­
tage of the large number of Pascal declarations developed by Apple to 
interface to the Macintosh's ROM. 

These declarations are stored in several compiled external files that 
are referenced in the USES section. Each external file can contain one or 
more UNITs. A UNIT is a special kind of Apple Pascal module that 
interfaces data and procedures to a Pascal program. The data and pro­
cedures may be contained within the UNITS or may reside elsewhere, 
such as in the ROM. 

Figure 4-3. Second Screen of the First Program 
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The external library files are distributed to developers as text "source" 
files and in compiled form. 

Each UNIT begins with a UNIT statement that names the UNIT. The 
UNIT itself has two parts; an INTERFACE section and an IMPLEMEN­
TATION section. The INTERFACE section declares those data types, data 
variables, and procedures that should be public. The IMPLEMENTATION 
section contains the types, variables, and procedures that should be pri­
vate. The public entities are available to any program that USES the UNIT; 
the private entities are local to the UNIT. 

The compiler command $U followed by a file name tells the compiler 
to search a particular file for any UNITs referred to subsequently during 
any USES section of the program. In our program, each ·UNIT is in a 
separate file. 

The first UNIT in our USES section is called "Memtypes" and is 
contained in the file "obj/Memtypes". In our program, this file name 
appears within the comment delimiters immediately after the first $U 
command. On the same line, but after the comment, comes the UNIT name 
"Memtypes". 

The "Memtypes" UNIT declares certain data types used by all parts 
of the Macintosh's ROM, including QuickDraw. The definitions of types 
such as "SignedByte", "Byte", "Ptr", and "Handle" reside in this library 
file. These declarations are in the INTERFACE section. The IMPLEMEN­
TATION section is empty. 

The second UNIT in our USES section is called "QuickDraw", located 
in file "obj/QuickDraw". This UNIT contains a CONST section, which 
defines a number of public constants that identify various pen modes and 
color information. 

The "QuickDraw" UNIT also contains a TYPE section, which defines 
QuickDraw data types: "QDByte", "QDPtr", "Pattern", "Style", "Point", 
"Rect", "grafPort", and others. We encounter many of these data types 
throughout this book. 

The QuickDraw UNIT also has a VAR section, containing Quick­
Draw's public default variables. We study these as part of the initialization 
of QuickDraw in the main part of this program. Following the VAR section 
are declarations of all QuickDraw procedures and functions. The bodies 
of these procedures and functions generally consist of special "inline" 
machine-language calls to ROM routines (see Chapter 2). 

The IMPLEMENTATION section of the "QuickDraw" UNIT consists 
of a compiler command to include the file "obj/Quickdraw2", where the 
contents of the implementation section are actually located. Some private 
QuickDraw variables are declared here, which we discuss later. 
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Two other UNITS, "OSintf" and "Toollntf", are also invoked in our 
USES section. These allow us access to the "Button" function that appears 
in the routine "ClickButton", which is used to pause for button clicks in 
our program. Many of the data types, data variables, and procedures in 
these UNITS are discussed in later chapters. Each example program 
requires all of the UNITS that appear in the USES section of this program. 

The ClickButton Procedure 

Our program has one procedure called "ClickButton", which waits for a 
click of the mouse button. It consists of three WHILE loops that involve 
the Toolbox's "Button" function. In each case, the DO part of the loop is 
empty. 

The "Button" function is not part of QuickDraw. We have borrowed 
it because it provides the easiest and most elementary way to allow the 
user to control the progress of the program. In Chapter 5, we see how 
events provide better control of a program. 

The "Button" function returns a Boolean value that is true if the 
mouse button is down, false if it is up. 

Let's see how the "ClickButton" routine works. When this routine is 
called, the button can be up or down. If the button is down, then the first 
WHILE loop is executed until the button is released. The second WHILE 
loop executes as long as the button remains up. If we now press the button 
down, the second loop terminates and the third loop begins, continuing 
until the button is released. 

If the button is up, the first WHILE loop never fully executes, and the 
second WHILE loop executes so long as the button remains up. If we now 
press the button down, the second loop terminates and the third loop 
executes until the button is released. 

In either case, the routine terminates when the button is pressed, then 
released. 

The Main Program 

The main part of the first example program begins by calling our 
"ClickButton" routine. This stops the program before it does anything. 
Again, this is useful when using a debugger to see exactly how QuickDraw 
performs its own initialization. 

Initializing Default Variables. Following "ClickButton" is a call to 
"InitGraf". This call is required by most programs that run on the Mac­
intosh. It initializes all QuickDraw default variables. 
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The QuickDraw "InitGraf" routine expects one parameter, namely a 
pointer to the variable "thePort", the first of QuickDraw's public default 
variables. As discussed in Chapter 3, placing an "@" before a variable 
creates a pointer to that variable. 

In this case, "thePort" is a pointer to the current grafPort, a data 
structure containing all current drawing parameters such as pen size and 
pattern, text size and style, and the active drawing area (see Figure 4-4). 
As the chapter goes on, we explore this concept of gra.fPort, culminating 
in an example program where we see how to make "thePort" point to a 
series of gra£Ports to achieve interesting special effects. Here. however, the 
initialization routine "InitGraf" uses "thePort" mainly as a place holder. 
In fact, at this point in the program, there is no gra£Port. 

Default variables initialized by "InitGraf" are declared in the external 
UNIT "QuickDraw". For graphics programs to operate properly, you must 
include "QuickDraw" in the USES section of your program, as we have 
done here. Then "thePort" and other default variables automatically be­
come global variables in your program. The "InitGraf" routine uses the 
position of "thePort" to locate other default variab]es; thus, default vari­
ables must follow "thePort" in the exact order specified by the "Quick­
Draw" UNIT. 

This particular scheme allows you to use a built-in routine (namely, 
"InitGraf") to initialize variables that belong to your program. Since your 
program may be loaded into different places in memory and these variables 

Figure 4-4. ThePort and the GratPort 
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may be placed in different positions within your program, you must tell 
this routine where to find these variables. There are several ways to do 
this. However, "InitGraf" expects you to use the location of the first default 
variable to specify where all these variables are located. Thus you must 
use this method. 

If you examined the "QuickDraw" file, you would see the public 
default variables declared in the VAR section of the " QuickDraw" UNIT 
as follows: 

thePort : 
white : 
black: 
gray : 
1 tGray : 
dkGray : 
arrow: 
screenBi ts : 
randSeed : 

GrafPtr ; 
Pattern; 
Pattern; 
Pattern; 
Pattern; 
Pattern ; 
Cursor ; 
BitMap ; 
Longint ; 

The first variable is "thePort", which we just described. Note that 
"thePort'' is not the actual grafFort, merely a pointer to it. Calling "InitGraf" 
initializes " thePort" to NIL, indicating that there is no current grafFort 
without further action. Be patient; we will get to a real grafFort soon. 

The next five public default variables are "patterns" permanently 
available for filling or " painting" objects on the screen. Whenever you 
need a white, black, gray, light gray, or dark gray pattern to fill a rectangle, 
oval, or irregular shape, you simply pass the name of one of these variables. 

The next default variable, "arrow", contains data for drawing the 
familiar arrow cursor. In a later example program, we see how to define 
our cursor shape. 

Next comes a "BitMap" called "screenBits", which describes the 
Macintosh screen. This default variable is useful to define rectangles that 
cover the entire screen. In later chapters, they are used to set the limits 
for dragging "windows" around the screen. 

The variable "screenBits" also serves as a template for setting up 
certain fields of the grafFort. We study BitMaps in detail when we study 
grafPorts . 

The last public default variable, "randSeed", is a seed for a random 
number generator, which, surprisingly, is part of QuickDraw. 
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Now that we have quickly surveyed QuickDraw's public default var­
iables, let's list the private default variables, also initialized by "Initgraf": 

wideOpen : 
wideMaster : 
wideData : 
rgnBuff : 
rgnindex : 
rgnMax : 
playPic : 
playindex: 
thePoly: 
polyMax : 
patAlign : 
fontAdj : 
fontPtr : 
fontData : 

RgnHandle; 
RgnPtr; 
Region ; 
QDHandle ; 
Integer ; 
Integer ; 
PicHandle ; 
Integer; 
PolyHandle ; 
Integer; 
Point ; 
Lon tint; 
FMOutPtr ; 
FMOutRec ; 

The data types range from regions and associated pointers to a com­
plex record structure called FMOutRec. They are defined in the IMPLE­
MENTATION section of QuickDraw, contained in the file "QuickDraw2". 
They are only for internal use by QuickDraw's ROM routines, so we do 
not discuss them in detail. 

Initializing a GrafPort. Now let's talk about grafPorts. To really under­
stand what a grafPort is , you must know something about how graphics 
are programmed on a computer. 

Basically, a graphics program generates a sequence of graphics com­
mands that produce the picture on the screen or other graphics device, 
such as a plotter or printer. These graphics commands generally fa ll into 
two classes: drawing commands and attribute-setting commands. The 
drawing commands actua lly produce immediate visible results, such as 
lines or rectangles that appear on the screen, whereas the attribute-setting 
commands set parameters (attributes), such as line width, that affect how 
subsequent drawing commands are executed. 

As attribute-setting commands are executed, their effects accumu­
late. For example, if you set the text size and then the text style, both 
remain in effect until you change them. 

If we didn't use attributes in this way, we would have to pass a large 
number of parameters with each drawing command . Since many of these 
parameters remain the same for long periods, thi s would be considerably 
less efficient than using separa te attribute commands. 
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A grafPort provides storage for the drawing attributes while they are 
in effect. Later, when we study grafPorts in detail , we will see what these 
attributes are for the Macintosh. 

For now, understand that a grafPort is a Pascal record structure. That 
is , it is identified by a single name and yet contains a number of fields 
holding variables which can be any specified data type. For the grafPort, 
there are 24 individual fields ranging from integers to handles to complex 
data structures such as patterns, which we will study later in this chapter. 

Storing all attributes in one structure allows one to quickly switch 
from one set of attributes to another. This is useful for producing dynamic, 
interactive displays in which the parts of one or more pictures are main­
tained at once. The "Ports" program at the end of the chapter illustrates 
this. 

When you begin to draw, each attribute has a default setting. For 
example, lines are one unit wide and text has a plain style. Unfortunately, 
the programmer has to actually execute a command to set up these default 
attribute values. 

Now let's return to our example program to see how the next couple 
of s tatements in the main program initialize a grafPort. 

The first of the two statements invokes Pascal's "NEW" procedure to 
allocate space for the grafPort. The second statement calls QuickDraw's 
"OpenPort" to initialize the various fields of the grafPort. 

The "NEW" command expects a single parameter- a pointer to the 
particular type of data structure that we wish to allocate space for. The 
"NEW" command allocates an area in memory of the correct size and 
places its address in the pointer so that it now points to the newly allocated 
structure. 

In our program, we pass "thePort", which is of type "grafPtr", defined 
in the TYPE section of the UNIT QuickDraw as: 

grafPtr = ·grafPort; 

where "grafPort" is the Pascal record structure defined by: 

grafPort = RECORD 
device : 
portBi ts: 
portRect : 
visRgn : 
clipRgn : 
bkPat : 
fillPat : 
pnLoc : 

INTEGER; 
BitMap ; 
Re ct; 
RgnHandle; 
RgnHandle ; 
Pattern; 
Pattern; 
Point ; 

78 HIDDEN POWERS OF THE MACINTOSH 



END ; 

pnSize : 
pnMode : 
pnPat : 
pnVis : 
txFont : 
txFace: 
txMode : 
txSize : 
spExtra : 
fgColor : 
colrBi t: 
patStretch: 
picSave: 
rgnSave: 
polySave: 
grafProcs : 

Point; 
INTEGER; 
Pattern; 
INTEGER; 
INTEGER; 
Style; 
INTEGER; 
INTEGER; 
INTEGER; 
Longint ; 
INTEGER; 
INTEGER; 
QDHandle; 
QDHandle ; 
QDHandle; 
QDProcsPtr ; 

So this a grafPort. The entire structure sits in one continuous stretch 
of memory. Within this structure are 24 fi elds , each with its own distinct 
structure and use. Later, we will go through a number of these fields, but 
we need some more background before that is possible. Meanwhile, let's 
continue with this program. 

The "OpenPort" routine expects one parameter of type "grafPtr", 
which points to a grafPort that has been a !located but not yet initialized. 
The routine "OpenPort" initializes the various fields of this structure. We 
will indicate their "initial" values as we study them individually. 

Initializing the Cursor. The last initiali zation step of our program calls 
" InitCursor" to turn the cursor into the familiar arrow cursor that is stored 
as one of our default variables. 

The "InitCursor" routine expects no parameters. It simply sets the 
cursor equal to the standard arrow shape. In our next example program, 
we see how to define our own cursor shape. 

The last step of our program calls "ClickButton" aga in to pause the 
program before we allow it to terminate. 

You now know the fundamentals of initia lizing the variables in 
QuickDraw routines. You have a list of all QuickDraw default variables 
and a list of all fi elds of a grafPort. We study some of these in the remaining 
part of the chapter. 

Cursors and Patterns 
Let's look at cursors and patterns, some of the most fundamental default 
variables, and how they are defined. An example program demonstrates 
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how to define and draw your own patterns and cursors. This gives you a 
good start in learning about default variables and the fi elds of a grafPort. 
At the same time, you see interesting results on the screen. 

Defining Patterns 
The Macintosh does not have color: patterns distinguish different areas 
on the screen. They fill or "paint" shapes such as rectangles, ovals, and 
polygons. In this section, we fill the entire screen with a crosshatched 
pattern. 

The Macintosh's video screen, like most modern graphics screens, 
can be thought of as a two-dimensional array of small picture elements 
called pixels. Patterns are constructed by turning some of these pixels 
on, some off. 

For the Macintosh, this pixel array is 512 across by 342 down. Each 
pixel corresponds to a unique single bit in the computer's memory. To 
change the appearance of the pixels on the screen, you change the binary 
values stored in these bits of memory. A binary va lue of zero for a partic­
ular bit makes the corresponding pixel turn white, a binary value of one 
makes the pixel turn black. This is opposite of many computer screens, 
but it makes the Macintosh's screen look more like a normal sheet of paper 
with dark " ink" on a white background. 

A pattern is an eight-by-eight array of pixels that is repeatedly laid 
down on the screen in this larger pixel array whenever you draw, fill, or 
erase. Although patterns are geometric, they are stored in memory as 
numbers whose bit values correspond to the white/black color of the 
pixels. 

QuickDraw uses the following data structure for a pattern: 

Pattern = PACKED ARRAY [0 .. 7] OF 0 .. 255 ; 

This means that a pattern requires eight bytes of memory. 
Patterns can be defined by individually loading the eight bytes of this 

array, or they can be defined using QuickDraw's "StuffHex" routine, which 
allows you to see each bit of pattern as you load it. It is also possible to 
store patterns as resources. 

In this section, we learn how to "stuff" patterns. The routine "StuffHex" 
expects two parameters: a pointer and a string of hexadecimal digits. The 
routine converts thi s string into a sequence of binary numbers that it 
places in memory starting at the address indicated by the pointer. 

Our goal is to design and load a pattern using thi s procedure. We 
start by marking off an eight-by-eigh t block on graph paper and filling in 
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the squares in this block based on what we want to see in our pattern. 
Then we convert each row to a corresponding pattern of ones and zeros. 
Each row forms an eight-digit binary number, which we write as a two­
digit hexadecimal number. We "pack" these eight hexadecimal numbers 
(in top to bottom row order) to form a 16-digit number. The digits thus 
form a string that we can use in the StuffHex routine to define the pattern 
for the Macintosh (see Figure 4-5). This pattern serves as the background 
for our next example program. 

Defining Cursors 
The cursor shape reminds the user of the current "mode"; that is, which 
options are currently available to the user. As mentioned in Chapter 1, the 
developers of the Macintosh made every effort to avoid modes. However, 
in spite of those efforts, modes are inevitable. For example, the MacPaint 
program has a number of drawing modes, including pattern editing, 
"lasso" mode, line drawing, and erasing. These modes are indicated by a 
variety of cursor shapes, including an arrow, a pencil, a paint bucket, a 
cross-hair, and a lasso (see Figure 4-6). 

Figure 4-5. Designing a Pattern 
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Figure 4-6. Cursor Shapes 
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In this section , you see how the cursor is s tored and how to define 
and switch among your own cursor shapes. 

Let's see how a cursor is stored. The cursor on the Macintosh's screen 
resides in a data structure called "cursor", defined in the "QuickDraw" 
UNIT as: 

Cursor = RECORD 
data : Bits16 ; 
mask: Bits16 ; 
hotSpot: Point; 

END; 

where " Bits16" is defined as: 

Bits16 = ARRAY[O .. 15] OF INTEGER; 

Both the ".data" and ".mask" fields are of type "Bits16", which is a 
16 by 16 array of bits in memory that maps to a 16 by 16 array of pixels 
on the screen . Notice that these cursor arrays are twice as big horizontally 
and vertically as the pattern array just studied. This larger size allows the 
cursor shape to have enough resolution to make interesting pictures, such 
as those used by MacPaint. Other pattern arrays are smaller, so they are 
repeated often in order to be recognizable even when they are "painted" 
into small areas on the screen. 

The cursor has two image arrays to indicate how it should cover what 
is on the screen. For each bit position, the mask and data interact accord ing 
to the following table: 

If the mask bit is zero, the data bit determines whether or not the 
pixel is unchanged or reversed. If the mask bit is one, then the data bit 
determines whether the pixel is white or black. 

Table 4-1. Data and Mask for Cursors 

Mask Data Result 

0 0 Same as original 
0 1 Inverse of original 
1 0 White 
1 1 Black 
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The data and masks for cursors can be designed on graph paper in 
the same way that patterns are designed. Figure 4-7 shows the mask and 
data bit arrays for a "spider" cursor that we use in our last example 
program. 

The third field," .hotSpot", specifies the hot spot for the cursor. This 
is the point, such as the tip of the arrow cursor or pencil cursor, where 
the action is. For example, with the pencil cursor, the "hot spot" tip 
indicates the position of the pixel to be changed. With the arrow cursor, 
you place the hot spot within a region to select the corresponding object. 

Figure 4-7. The Mask and Data for the Spider Cursor 

Data Mask 
Binary Hex Binary Hex 

11 00 000 1 1000 00 11 C183 0000 0000 0000 0000 0000 
1110 0001 1000 0111 E187 0000 0000 0000 0000 0000 
0 111 000 1 1000 111 0 718E 0000 0000 0000 0000 0000 
00 11 1 00 1 1 00 1 11 00 399C 0000 0000 0000 0000 0000 
000 1 11 0 1 1 0 1 1 1000 1088 0000 0000 0000 0000 0000 
0000 1111 1111 0000 OFFO 0000 0111 1110 0000 07EO 
0000 0111 1110 0000 07EO 0000 0111 1110 0000 07EO 
1111 1110 0111 1111 FE7F 0000 0111 1110 0000 07EO 
1111 1110 0 111 1111 FE7F 0000 0111 1110 0000 07EO 
0000 0111 1110 0000 07EO 0000 0111 1110 0000 07EO 
0000 1111 1111 0000 OFFO 0000 0111 1110 0000 07EO 
000 1 110 1 1 0 11 1 000 1088 0000 0000 0000 0000 0000 
00 11 1 00 1 1 00 1 1 1 00 399C 0000 0000 0000 0000 0000 
0 111 000 1 1000 0 111 718E 0000 0000 0000 0000 0000 
1110 000 1 1 000 0 1 1 1 E187 0000 0000 0000 0000 0000 
1100 000 1 1 000 00 11 C183 0000 0000 0000 0000 0000 
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The Pattern Example 
Our next example program, called "Pattern", illustrates patterns and cursors. 

The program opens with a crosshatched screen that we developed 
(see Figure 4-8). The cursor has the "spider" shape as described previ­
ously. As you move this cursor, it interacts with the crosshatched pattern 
in the background to create a crawling effect. 

Here is the program: 

PROGRAM Pattern; 
{$R- }{$X-} 

84 

USES 
{$U obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{ $U obj / Toollntf 

} Memtypes, 
} QuickDraw, 
} OSintf , 
} Toollntf; 

Figure 4-8. The Pattern Program 
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PROCEDURE ClickButton; 
BEGIN 

WHILE Button DO ; 
WHILE NOT Button DO ; 
WHILE Button DO; 

END ; 

PROCEDURE SetUpSys ; 
BEGIN 

InitGraf (@thePort ); 
InitFonts ; 

{Initial ize QuickDraw default variables} 
{Initialize Font manager} 

NEW (thePort ); 
OpenPort (thePort ); 

END ; 

PROCEDURE MakePat ; 
VAR 

Pat Pattern ; 
Cur Cursor ; 

BEGIN 

{Set up grafPort } 

StuffHex (@Pat , '8142241818244281 ' ) ; 
FillRect (thePort · .portBits . Bounds , Pat); 

StuffHex (@Cur . data , 
' C183E187718E399C1DB80FF007EOFE7YYE7F07EOOFF01DB8399C718EE187Cl83 ' ); 

StuffHex (@CUr. mask , 
' 0000000000000000000007E007E007E007E007E007EOOOOOOOOOOOOOOOOOOOOO ' ); 

SetPt (Cur . hotSpot , 8 , 8 ); 
SetCursor (Cur ) ; 

END ; 

BEGIN {ma in program} 
SetUpSys ; 
MakePat ; 
ClickButton; 

END . 

Data Structures 

The "Pattern" program has the standard USES section. 

Procedures 

The "Pattern" program has a number of procedures, including the 
"ClickButton" procedure that appeared in the first program. 
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"SetUpSys" Procedure. The procedure "SetUpSys" contains some of the 
same initialization steps that comprised the main part of the last program. 
In future programs, we place all initialization steps in a routine of this 
name. 

Making Patterns and Cursors. The "MakePat" procedure sets up the 
crosshatched pattern on the screen and the spider cursor. It has two local 
variables: a pattern, "Pat", and a cursor, "Cur". 

The procedure begins by calling the built-in "StuffHex" routine to 
specify the pattern. We place "@Pat" in its first parameter to point to the 
pattern "Pat", declared as one of its local variables. We place the desired 
string of hexadecimal digits in the second parameter. 

The procedure then calls "StuffHex" two more times: once to define 
the ".data" field of our cursor, and once to define its ".mask" field. We 
also call "SetPoint" to define the location of the hot spot. We then call 
'' SetCursor'' to install the cursor. 

The Main Program 
The main part of the program calls our three routines in sequence. First, 
it calls "SetUpSys" to perform the proper initializations. Second, it calls 
"MakePat" to draw the new background pattern and set the spider cursor. 
Third, it calls "ClickButton" to pause, waiting for the user to hit the 
mouse button before the program exits. 

Notice that the program contains no commands to update the cursor 
as the mouse is moved by the user. Instead, this is automatically done by 
the Macintosh's Operating System as a background task. That is, every 
time the mouse is moved, interrupts are generated that update the coor­
dinates of its position, and periodically (as often as 60 times a second) 
the system automatically redraws the mouse on the screen. 

Memory-Mapped Video 
Now let's study QuickDraw's video screen and data structures. We begin 
with memory-mapped video, bitlmages, and bitMaps. Later, we introduce 
coordinate systems, points, rectangles, and regions, concepts that form 
shapes of increasing complexity. 

Pixel Array 
As we have shown, the Macintosh's video screen can be viewed as a two­
dimensional array of pixels. The position of each pixel is described by 
two indices that correspond to its row and column position. Both indices 

86 HIDDEN POWERS OF THE MACINTOSH 



run from zero, and the index value of [0,0] specifies the pixel in the upper 
left corner of the screen. A value [i,j] indicates the pixel in the ith column 
and jth row of the screen. That is, the first index gives the horizontal 
position, and the second gives the vertical position, of the pixel. 

Video RAM 
The bits that map to the screen reside in two areas of memory in the 
Macintosh called video RAM. The exact location of these areas depends 
on the amount of memory in your Macintosh. On the 128K Macintosh, the 
primary area starts at $1A700 (hexadecimal) and a secondary area starts 
at $12700. On the 512K Macintosh, these are at $7 A700 and $72700, 
respectively. In either case, both areas contain 21,888 bytes. Normally, the 
primary area is used, but there is a bit in the Mac's memory that switches 
back and forth between these two areas. This requires some special pro­
gramming because the secondary area is normally for other purposes. 

As with most microcomputer memory, the bits in the Macintosh's 
video memory are organized into bytes. Thus, video memory behaves just 
like regular memory. However, this adds an extra level of complexity to the 
mapping between the pixel array and the video RAM. That is, each bit is 
identified by a byte address and a bit position within that byte, whereas 
pixels are identified by their horizontal and vertical position numbers. 

Raster Scanning 
To understand this mapping, it helps to know how the video hardware 
inside the Macintosh works. The video hardware constantly scans the 
video RAM, converting its digital information into a video signal that 
produces the picture on the screen. As the hardware scans the memory, 
an electron beam scans the screen in what is called a "raster" pattern­
a series of closely spaced horizontal lines. 

Simultaneously scanning the memory and the screen creates the map­
ping from the memory to the screen. Each bit in memory maps to the 
unique pixel position on the screen where the beam is located when that 
bit is scanned. 

In the Macintosh, bytes are scanned in the increasing order of their 
addresses, from the beginning of video memory to its end. Within each 
byte, the bits are scanned starting with bit 7 and decreasing in order to 
bit 0 (see Figure 4-9). 

As a result, each byte of video memory maps to a horizontal row of 
eight pixels on the screen, with bit 7 on the left and bit 0 on the right (see 
Figure 4-10). 
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The first byte of video RAM maps to the eight pixels on the left of 
the top row of the screen. The next byte maps to the next eight pixels to 
the right, and so on. A total of 64 bytes maps in th is way to the top row 
of the screen. Each successive 64 bytes of video memory map to a new 
row of the screen in consecutive order. Thus, the 21,888 bytes of video 
RAM are divided into 342 continuous sections of 64 bytes, one section 
for each row of display. 

Formulas 
The corresponding bit for the pixel position [i,j] sits in a byte whose 
address in video RAM depends on the row and column indices according 
to the following formula: 

Base Address+ 64*j + int ( i / 8 ) 

The row index j is multiplied by 64 because there are 64 bytes of 
video RAM per row. The column index is divided by eight because there 
are eight pixels per byte. Note that 64 is the row length for the Macintosh 
screen, so this number figures significantly in the mapping formula. 

The formu la: 

7 - i mod 8 

Figure 4-9. Scanning the Bytes of Memory 
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gives the bit position within the byte. The term " i mod 8" gives the 
remainder when the horizontal index i is divided by the number of pixels 
per byte (that is, eight) . 

Bit/mages 
A Bitlmage is a simple, yet elegant , Quickdraw data structure correspond­
ing to the organization of video RAM. Its information indicates how an 
area of memory holds images. This leads to the concept of BitMap, which 
controls QuickOraw operations at the most primitive level. 

Technically, a Bit! mage is an area of memory defined by a base address 
(first address) and a row length measured in bytes. In general , the base 
address can be anywhere in memory and the row length can be any non­
negative integer. However, for the Macintosh screen, the base address is 
the beginning of video memory and the row length is equal to 64 bytes. 
Bitlmages with other base addresses can store pictures for later display 
on the screen, and Bitlmages with other row lengths can build images for 
display on other devices, such as printers or flat-screen displays. 

Figure 4-10. Mapping Bits to the Screen 

Memory Screen 
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BitMaps 
QuickDraw never declares "Bitlmage" as a data type. Instead, it incor­
porates the basic informat ion of a "Bitlmage" in the data structure called 
"BitMap". The default variable "screenBits" is of this type, as is the 
".portBits" field of a grafPort. Here is the "official" Pascal definition of a 
"BitMap" : 

BitMap =RECORD 
BaseAddr : Ptr ; 
RowBytes : INTEGER; 
Bounds : Rect ; 

END ; 

The first field , ".BaseAddr", is of type "Ptr". This stores the address 
of the first byte of the screen and locates the corresponding Bitlmage in 
memory. The second field , called "RowBytes", is of type INTEGER and 
defines the mapping. It gives the number of bytes per row. Multiplying 
this by eight gives the number of pixels per row on the real or imaginary 
screen. The last field, called "Bounds", is of type "Rect". It gives the 
corners of this screen , thereby delimiting the picture. 

It is important to realize that the BitMap does not contain the Bit­
Image (actual data on the screen). It merely points to and describes the 
data. That is, it contains the starting address, the size, and the number of 
bytes per row of this area, but not the contents of any bytes in it. 

Coordinate Systems 
In the last section, we saw the screen as a doubly indexed array of pixels. 
We now place a coordinate system on it to define "points", "rectangles", 
and "regions". The coordina te system allows us to address points more 
eas ily and provides minimum and maximum horizontal and vertical lim­
its for our screen images. 

At the lowest level, all such coordinates are stored as type INTEGER. 
Recall that the type INTEGER is stored in the Macintosh as ordinary 
signed 16-bit integers. As a result, any Quickdraw coordinate value ranges 
from -32,768 to 32,767 and can take on only integer values. 

QuickDraw approaches geometric objects differently than it does pix­
els on the screen. The difference is subtle but important. Points are con­
sidered zero-dimensional objects; that is, they are infinitesimally thin, 
with zero width and height. On the other hand, pixels are two-dimen­
sional; that is, they have unit width and height (see Figure 4-11). 
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QuickDraw has a coordinate system for the screen that closely cor­
responds to the pixel indexing. The horizontal axis runs across the top of 
the screen from left to right. The vertical axis runs along the left side of 
the screen from top to bottom. The units for the coordinates in each 
direction are measured in pixels (see Figure 4-12). 

As a result, the point with coordinates (i,j) always falls on the upper 
corner of the pixel indexed by [i,j]. In particular, the upper left corner of 
the screen has coordinates (0,0) (see Figure 4-12). Please note the use of 
round brackets for coordinates and square brackets for indices. 

Each QuickDraw graphics entity is defined by its own data structure, 
which describes how its coordinates are stored in the Macintosh's memory 
and accessed by the programmer. This chapter examines how this applies 
to points, rectangles, and regions. 

Figure 4-11. Points and Pixels 
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Figure 4-12. The Coordinate System 
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Points 
Let's look at the simplest graphics entity, the point. The point forms the 
basis of other shapes, such as rectangles and regions. 

Mathematically, a point is described by a coordinate pair (x,y). For 
QuickDraw, this means that a point requires two 16-bit words of memory 
(see Figure 4-13). The first contains the vertical coordinate (y coordinate), 
the second contains the horizontal coordinate (x coordinate). This is how 
the assembly language programmer views points. 

The Pascal programmer must deal with two ways to access points, 
creating an additional layer of complexity. Both ways are directly related 
to and are, in fact, equivalent to the low-level description. Two methods 
give the programmer more freedom. However, we normally use neither 
method, referring instead to points without getting into their internal 
structure. 

In the first method, a point is regarded as a record consisting of two 
fields, one for each coordinate. If Pt is a QuickDraw Pascal variable of 
type "Point", then Pt.v is the vertical coordinate (y coordinate), and Pt.h 
is the horizontal coordinate (x coordinate). 

The second method is more complicated. Here, the point is regarded 
as a record with one field, which is an array of two integers. That is, if 
"Pt" is a QuickDraw Pascal variable of type "Poinf', then Pt.vh[v] is its 
vertical coordinate and Pt.vh[h] is its horizontal coordinate. Here, "v" 
and "h" are identifiers belonging to a QuickDraw scalar type called 
"VHSelect". This method allows the programmer to use FOR loops and 
the like to index through the coordinates of the point. However, only two 
coordinates hardly make it worth the effort. 

Figure 4-13. Internal Storage of Points 
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These structures are built into the software as either an integral part 
of the software (in the case of the "Instant" Pascal interpreter) , or external 
fi les that must be " used" (in the case of the Pascal compiler). 

For the Pascal compiler, the QuickDraw UNIT contains the following 
TYPE declarations: 

VHSelect = (v, h); 

Point = RECORD CASE INTEGER OF 

END; 

0: (v : INTEGER; h : INTEGER); 
1: (vh : ARRAY [VHSe l ec t] OF INTEGER) 

Experienced Pascal programmers will recognize that "Point" is a 
variant record structure; that is, there are two ways to access this structure. 
These correspond to the preceding descriptions. The type "VHSelect" is 
defined first. It is a scalar type consisting of two identifiers , "v" (for 
vertical) and "h" (for horizontal). This assists in defining the second 
variant form. Next, "Point" itself is defined either as two integer fields, 
".v" and ".h", or as one field , ".vh", which is an array of two integers. 

Mouse Point Example Program 
Now that we understand "Point", let's look at a Pascal program that plots 
mouse points on the screen using the formulas developed earlier. 

In this example we use both forms of the data structure for a point, 
though this is not good programming practice unless special reasons call 
for mixing them. 

When this program is run , we first see a completely white screen. If 
we move the mouse, we see a trail of darkened pixels where the mouse 
was (see Figure 4-14). If the mouse is moved rapidly, the pixels are far 
apart; if the mouse moves slowly, the pixels tend to form a continuous 
trail. We have "hidden" the mouse cursor to prevent the cursor from 
interfering wi th the pixels being plotted. You can exit the program by 
moving the mouse point to the top of the screen. 

PROGRAM Pt ; 
{ $R- }{ $X- } 

USES 
{$U obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{$U obj / Toolintf 

}Memtypes , 
}Quic kDraw, 
}OSintf , 
}Toollntf ; 
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VAR 
MousePt : Point ; 

PROCEDURE SetUpSys ; 
BEGIN 

InitGraf(@thePort) ; 
NEW (thePort ); 
OpenPort(thePort); 
EraseRect (thePort · . portBits. bounds ); 
HideCursor; 

END; 

PROCEDURE PutMouse (thePt : Point); 
BEGIN 

BitSet (POINTER(ORD(screenBits.baseAddr ) 
+ screenBits . rowBytes * thePt . v 

+ thePt . h DIV 8) , 
thePt . vh[h) MOD 8); 

END ; 

BEGIN {main program} 
SetUpSys ; 
REPEAT 

GetMouse(MousePt ); 
PutMouse (MousePt) ; 

UNTIL MousePt . vh (v] < 20 ; 
END . 

Data Structures 

This program has the same USES section as our first program, allowing 
us access to the various data types, data variables, and procedures used 
by QuickDraw and other parts of the Macintosh 's built-in software. 

Figure 4-14. Output of the Mouse Point Program 
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The VAR section of this program contains one variable- "MousePf•, 
of type "Point". The type "Point'• is defined in the UNIT "QuickDraw,. 

"SetUpSys" Procedure 

The procedure "SetUpSys, initializes the system for this program. It 
contains some of the same initialization steps as the "SetUpSys, routine 
of the last program. However, it also contains a step to erase the screen, a 
task that was not necessary in the last program because the screen was 
filled with a pattern immediately after the "SetUpSys, routine was called. 
In the present program, we erase the screen using the "EraseRect, pro­
cedure on the ".bounds, field of the" .portBits, field of the gra£Port. The 
".portBits•• field is of type "BitMap••, discussed earlier. 

We also call "HideCursor•' so that the cursor does not interfere with 
the workings of our program. In future programs, we place all initializa­
tion steps in a routine of the same name, "SetUpSys,, that we used for 
this routine. 

"PutMouse" Procedure 

The procedure "PutMouse" plots a pixel whose position is give~. It ex­
pects one parameter of type "Point,, which specifies the location of the 
pixel. 

The procedure uses the "BitSet, procedure. "BitSet'' expects two 
arguments. The first argument must be of type "Ptr" and should point to 
a location in memory. The second argument of BitSet is of type Long 
Integer and gives the bit position, counting from left to right with bit 
position 0 on the left. 

The "BitSet" routine makes the bit in the specified bit position of 
memory equal to one, leaving the other bits in memory alone (see Figure 
4-15). 

Figure 4-15. BitSet Positions 
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The " BitSet" routine in ROM is very clever. It is not affected by byte 
(8-bit) versus word (16-bit) or even long word (32-bit) addressing consid­
erations. It uses the BSET processor instruction, which acts only on bytes 
when it addresses memory; yet the ROM routine properly handles very 
large bit positions. To accomplish this , the ROM routine uses some tricky 
code that involves a special indexing addressing mode. 

Let's look at the two parameters of "BitSet" in more detail. First, look 
at the type "Ptr" in the first parameter. The type "Ptr" is defined in the 
TYPE section of "Memtypes" by the following two type statements: 

SignedByte = -128 .. 127 ; 
Ptr = · signedByte; 

To the Pascal compiler, this means that type " Ptr" parameters can point 
to any byte in memory. Recognizing this, the Pascal compiler uses the 
byte addressing mode when translating memory fetched by this pointer. 

Note that Macintosh Pascal does not interpret this declaration in the 
same way. It treats a variable declared in this way as a pointer to integers 
and uses the 16-bit word addressing mode. when it accesses data using 
such a pointer. This can be disastrous when the address contained in the 
pointer is an odd number: the MC68000 processor does not accept odd 
addresses for 16-bit words. In fact, when the processor senses an odd 
address while in word mode, it interrupts and goes to a special error 
routine maintained by the Operating System. 

In the expression for the first parameter, we use the formula developed 
earlier to compute the address of the appropriate memory location. We 
use the fi elds ".baseAddr" and ".rowBytes" of the default variab le 
"screenBits" and the ".v" and ".h" fields of our own "Point" parameter. 
We use the first variant form of the data type " Point" to individually grab 
the horizontal and vertica l coordinates of the point. 

In the formula , the ORD function converts the pointer "screen­
Bits.baseAddr" to a long integer, and the POINTER function converts the 
long integer address back to a pointer. 

Now let's look at the second parameter. Notice that the BitSet routine 
numbers the bits opposite to their usual order. This simplifies the formula 
for plotting pixel bits. We use the formula: 

thePt . vh [h] MOD 8 
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instead of the reversed formula: 

7 - thePt . vh [hl MOD 8 

that we presented above. 
At this stage of the program, the second variant form for "Point" 

(" .vh[h] ") is used with " thePt" in our Bi tSet command. This simply 
illustrates that particular variant form. Normally, you should use the firs t, 
more straightforward variant form (" .h"). 

The Main Program 

The main program begins by calling the " SetUpSys" procedure to ini­
tialize QuickDraw. 

Next is the REPEAT loop where the program goes round and round , 
getting the mouse position and plotting it on the screen. The first statement 
calls the ROM routine "GetMouse" to determine the position of the mouse; 
then a second statement routine calls our " PutMouse" to plot the corre­
sponding pixel. 

The UNTIL statement at the bottom of the REPEAT loop monitors the 
vertical position of the mouse, continuing the loop as long as the mouse 
stays below the menu bar that occupies the top 20 rows of the screen . 
Again, the second variant form for "Point" is for illustration. 

Rectangles 
A level of complexity above points are rectangles. They describe shapes 
such as ovals and rounded rectangles and are used in the structure of a 
region, which is fundamental to Macintosh's overlapping windows. 

This section describes a QuickDraw rectangle as a variant record 
structure of four coordinate variables or two "Points". 

In computer graphics, a rectangle is a four-sided figure whose sides 
are always parallel to the coordinate axes. A rectangle is defined by its 
four corner points (x1,y1), (x1,y2) , (x2,y1) , and (x2,y2) (see Figure 4-16). 
It can be thought of as the set of points whose x coordinate lies between 
x1 and x2 and whose y coordinate lies between y1 and y2. 

In a QuickDraw rectangle, the point (x1,y1) is placed at the upper 
left corner of the rectangle, point (x1,y2) is the lower left corner, (x2 ,y1) 
is the upper right corner, and (x2,y2) is the lower right corner of the 
rectangle. In consideration of this arrangement, QuickDraw refers to x1 
as " left ", x2 as " right", y1 as " top", and y2 as "bottom". 
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For example, the screen itself is in the rectangle given by: 

left = 0 

right = 512 

top= 0 

bottom = 342 

Notice that (x,y) are the coordinates of points in the rectangle, not 
pixel indices. Pixel indices would be bounded by 511 and 341, not 512 
and 342 (see Figure 4-17). Also notice that the coordinates have a definite 
order: in this example, the value of "left" is less than the value of "right", 
and the value of "top" is less than the value of "bottom". In general, if 
"left" is greater than or equal to "right", or if "top" is greater than or 
equal to "bottom", then no points can satisfy the inequalities. In this 
case, we say the rectangle is empty. 

QuickDraw also specifies rectangles by the pair of opposite corners 
at the top left and bottom right of the rectangle (see Figure 4-18). The top 
left corner is called topLeft and has coordinates (left,top). The bottom 
right corner is called botRight and has coordinates (right,bottom). This 
specifies the same information as before, only in a slightly different format. 
Again, having two ways of doing something gives more freedom, allowing 
the programmer to use the more convenient form. 

Look at the example of the entire screen again. It is defined by the 
opposite corner points (0,0) and (512,342) (see Figure 4-19). Notice that 

Figure 4-16. Defining Rectangles 
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the point topLeft , with coordinates (0,0). is the upper left corner of the 
upper left pixel of the screen; the point botRight, with coordinates (512,342), 
is the lower left corner of its lower left p ixel. 

The Pascal data structure for the type "Rectangle" is as fo llows: 

Rect = RECORD CASE INTEGER OF 
0 : ( top : INTEGER; 

left : INTEGER; 
bottom : INTEGER; 
right : INTEGER) ; 

Figure 4-17. Bounding Rectangles 
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Figure 4-18. Opposite Corners Define a Rectangle 
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1 : (topLeft : Point ; 
botRight : Point) 

END ; 

Again, QuickDraw uses a variant record structure. In the firs t form, 
the four-integer coordinate values that define the rectangle are listed in 
the following order: top , left , bottom, right. In the second form, the two 
opposite points that define the rectangle are listed. 

It is important to note that the forms are equivalent and lead to the 
same internal storage of relevant coordinate information. To an assembly 
language programmer this structure is just a sequence or list of four 16-
bit integers (see Figure 4-20). 

An Example of Rectangles 
The following example of a Pascal program illustrates rectangles in their 
various forms (see Figure 4-21) . The program defines three rectangles­
a large square; a low, wide rectangle; a high, thin rectangle- then uses 
them to draw a checkerboard pattern on the screen. After each rectangle 
is drawn, you must click the mouse button to continue. 

PROGRAM Rectangle ; 
{ $R- }{ $X- } 

(0, 0) 

Figure 4-19. The Screen Limits 

(51 2, 342) 
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USES 

VAR 

{$U obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{$U obj / Toolintf 

}Memtypes, 
}QuickDraw, 
}OSintf , 
}Toollntf ; 

Square , Wide, Tall : Rect ; 

PROCEDURE ClickButton ; 
BEGIN 

While Button DO; 
While NOT Button DO ; 
While Button DO ; 

END; 

PROCEDURE SetUpSys ; 
BEGIN 

InitGraf (@thePort ); 
NEW (thePort ); 
OpenPort (thePort ); 
EraseRect (thePort · . portRect) ; 
InitCursor ; 

END ; 

BEGIN {main program} 
SetUpSys ; 

Square . left := 100 ; 
Square.top : = 30; 

Figure 4-20. Internal Storage of Rectangles 
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Square . right := 300; 
Square . bottom : = 230; 
FrameRect (Square ) ; 
Cl ickBut ton; 

Wide . topleft . h : = 100; 
Wide . topleft . v : = 100 ; 
Wide . botright . h : = 300 ; 
Wi de . botright .v : = 160 ; 
PaintRect (Wide ) ; 
ClickButton; 

Tall . topleft . vh [h] : = 170 ; 
Tall . topl eft . vh [v] : = 30; 
Tall . botright . vh[h] 230; 
Tall . botright . vh[v] 230; 
InvertRect (Tall ); 
ClickButton; 

END . 

Data Structures 

The USES section is the same as in the last compiler Pascal program. The 
VAR section declares the three rectangles "Square", "Wide", and "Tall" 
to be of type "Rect''. 

Procedures 

This program uses the same "ClickButton" and " SetUpSys" procedures 
that appeared in previous programs. 

Figure 4-21. The Rectangles 
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The Main Program 

In the main part of the program we specify the coordinates of these three 
rectangles. We demonstrate different ways to describe each rectangle. The 
square is specified by the first variant form, which directly addresses each 
coordinate: left, top, right, and bottom. The wide and the tall rectangles 
are specified by the second variant form of "Rect'', in which two opposite 
corner points are specified. The wide rectangle uses the first variant form 
of "Point", and the tall rectangle uses its second variant form. This gives 
all possible variant forms of "Rect''. 

The first rectangle is "framed" using the "FrameRect" QuickDraw 
routine. The second rectangle is "painted" (filled with black) using the 
"PaintRect" QuickDraw routine, and the third rectangle is "inverted" 
(white changes to black and vice versa) using the "InvertRect" QuickDraw 
ROM routine. After each rectangle is drawn, we call "ClickButton" to 
pause the display. 

In practice, the QuickDraw routine "SetRect" is more efficient to 
specify the corners of a rectangle. It expects five parameters: a rectangle 
and the four coordinates that delimit it. We see examples later. 

Regions 
Regions are important as the fundamental building blocks used by the 
Window Manager to draw and manage window parts such as the goAway 
box, the grow area, and the drag region; and for the Control Manager to 
draw control parts such as scroll bars, check boxes, and buttons. Regions 
are also used by the Window Manager to control visibility and updating 
when windows overlap. 

Regions have been carefully designed so that these window and con­
trol parts can be quickly drawn on the screen, then found with the mouse 
in any shape they take on. Understanding how regions work is the first 
step in understanding how the Macintosh's interactive programming fa­
cilities work. 

In this section we will study regions, an essential part of the picture­
making environment in which QuickDraw operates. Regions control the 
visibility of objects drawn on the screen and can define and display 
complicated shapes. 

This section discusses the internal structure of regions. An example 
program demonstrates how to display the internal structure of any region. 
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Regions and Data Structures 
A region is a dynamic data structure. That is, at different times a particular 
region may contain different amounts of data. To help manage this, each 
region contains an integer called "rgnSize" that tells how many bytes of 
data it currently contains. 

The simplest region contains 10 bytes and has the shape of a rectangle 
(see Figure 4-22). We call these regions rectangular. In this case, the 10 
bytes form five 16-bit integers, the first of which is "rgnSize"; the re­
maining four are corner coordinates of this rectangle, called the "rgnBBox". 

In general, a region can have any shape that can be drawn within the 
QuickDraw coordinate system (with its 16-bit integer coordinates) (see 
Figure 4-23). If this shape is not a rectangle, then we call the region 
nonrectangular. 

Nonrectangular regions contain the 10 bytes described above, plus 
additional bytes that give coordinate information about the "corners" of 
a shape. In this case, the rgnSize is greater than 10 and the rgnBBox is a 
rectangle that surrounds the shape, a description that aptly fits its full 
name, region boundary box. 

The data that defines the shape of a nonrectangular region is orga­
nized in an ingenious way. It is a list of integers that makes up a sequence 
of fields, each of which specifies the corner points of the shape that lie 
along one horizontal line in QuickDraw's coordinate system. Each field 
begins with a y coordinate that uniquely specifies the height of the hori­
zontal line, followed by a sequence of x coordinates that specify the 
horizontal positions of its corner points. Each field terminates with an 
integer whose value is 32767, and the entire list terminates with an extra 

Figure 4-22. Rectangular Regions 
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integer with the value of 32767. The fields are given in increasing order 
of their y coordinates, and the x coordinates within each field are also 
given in increasing order. 

Here is an example of the data for a simple L-shaped region (see 
Figure 4-24). First , it is shown as a list of integers. This is how it would 
be stored in the Macintosh's memory: 

100, 100, 200 , 32767 , 200 , 200 , 300, 32767, 300 , 100, 300, 32767 , 32767 

Now let's break it into fields, using the value 32767 as a terminator for 
each field . 

100, 100 , 
200, 200, 
300, 100, 
32767 

200, 
300 , 
300, 

32767' 
32767' 
32767 , 

Finally, let's extract the coordinates of each corner point of this shape. 
Remember that the first integer of each field is the y coordinate and the 

Figure 4-23. Nonrectangular Regions 
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subsequent integers are x coordinates. Look carefully to see where each 
coordinate fits. 

(100 , 100)' ( 200 , 100 ) 
(200 , 200 )' (300 , 200 ) 
(100 ,300 )' (300 , 300 ) 

Keeping Track of a Region's Data 
A region is a dynamic structure: it moves in memory as it grows or shrinks 
or as computations are performed on it. To keep track of where the data 
are currently located, regions are accessed through a series of pointers. 

Each region is normally accessed through a pointer called the region 
handle. The region handle does not point directly at the region but rather 
to another pointer called the region pointer, which points to the actual 
data. In Chapter 3, we discussed the reasons for such a system. 

To the Pascal programmer, a region is defined by the following set of 
Pascal TYPE statements in the external QuickDraw file: 

RgnHandle = "RgnPtr ; 
RgnPtr = "Region ; 
Region = RECORD ; 

rgnSizc : INTEGER; 
rgnBBox : Rect ; 

END; 

Figure 4-24. An L-Shaped Region 
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Here we see that type RgnHandle is a pointer to objects of type RgnPtr, 
that type RgnPtr a pointer to objects of type Region , and that type Region 
a record structure containing fields for "rgnSize" and "rgnBBox" (see 
Figure 4-25). 

Note that the "nonrectangular" part of the data is not declared be­
cause it is managed by the QuickDraw routines. Pascal needs to know 
only the total size of the data area. 

The Region Program 
Here is a Pascal program that defines the preceding region in a natural 
way by " unioning" two rectangular regions, then di splaying the corner 
points of this figure (see Figure 4-26) . 

This kind of exploratory program might be written to discover how 
something complex works in the computer. It contains a section to generate 
an object in a normal way and a procedure to pick this structure apart. 
In this case, use the "ShowCorners" procedure to peek at any region of 
your own design, produced by any method. 

PROGRAM Region; 
{ $R- }{$X- } 

USES 
{$U obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{ $U obj / Toolintf 

}Memtypes, 
}QuickDraw, 
}OSintf , 
}Toolintf; 

Figure 4-25. Region Pointers and Handles 
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VAR 
RgnA , RgnB : RgnHandle ; 

PROCEDURE ClickButton; 
BEGIN 

While Button DO ; 
While NOT Button DO ; 
While Button DO ; 

END; 

PROCEDURE SetUpSys ; 
BEGIN 

I nitGraf(@t hePort ) ; 
NEW (thePort); 
OpenPort (thePort ); 
EraseRe ct (thePort · . portRec t ) ; 
Initcursor ; 

END; 

PROCEDURE ShowCorners (theRgn : RgnHand l e ) ; 
TYPE 

numArray = ARRAY[l .. 1000] of INTEGER; 
numPtr = · numArray ; 

VAR 
nums : numArray ; 
dot : Re ct ; 
x , y , j : INTEGER; 

BEGIN 
nums nurnPtr (theRgn · ) ·; 

Figure 4-26. The Region Screen 
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IF nums[1) > 10 THEN 
BEGIN 

j : = 6; 
REPEAT 

y : = nwns [j I ; 
j : = s ucc (j ) ; 
REPEAT 

x : = nwns [j I ; 
j : = succ (j) ; 
SetRect(dot , x-2 , y-2 , x+2, y+2) ; 
Paintoval (dot) ; 

UNTIL nwns [j] = 32767 ; 
j : = succ (j) ; 

UNTIL nwns[j ] = 32767 ; 
END; {if } 

END ; 

BEGIN {main program } 
SetUpSys ; 

RgnA : = NewRgn ; 
SetRectRgn (RgnA , 100 , 100 , 200 , 300) ; 

RgnB : = NewRgn ; 
SetRectRgn(RgnB, 100, 200 , 300 , 300) ; 

UnionRgn(RgnA , RgnB, RgnA ) ; 
FillRgn(RgnA , ltGray) ; 

ShowCorners(RgnA) ; 
Click.Button; 

END . 

Data Structures 

The USES section is the same as in previous examples. 
The VAR section declares two region handles: RgnA and RgnB. They 

are handles, not the actual data. They provide access to the data. 

Procedures 

The first two procedures, "ClickButton" and "SetUpSys", are the same as 
in previous programs. The third procedure, "ShowCorners", is new. It 
displays the corner points of a region. It is a general-purpose routine that 
can display the corners of any region. Use it freely to peek at other regions 
as you learn to construct them. You will be surpri sed at how naturally 
even curved objects such as ovals can be represented by corners; of course, 
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it takes a lot of corners . That is why there are a thousand entries in the 
number array "Nums" in this procedure. 

The "ShowCorners" procedure expects one parameter of type 
rgnHandle (that is, a region handle). Its TYPE section defines two types: 
"numArray", which is an array of a thousand integers , and "NumPtr", 
which is a pointer to an object of type numArray. We use these types to 
access the integers stored in our regions. 

In the VAR section of this procedure, the variable " nums", of type 
"numArray"; "dot", which is a rectangle; and integers x, y, and j are 
declared. 

In the main part of "ShowCorners", the assignment s tatement: 

nums : =numPtr (theRgn' ) ' ; 

grabs the data for the region from where it is stored dynamically and 
copies it into static storage, where its internal structure can be carefully 
examined. This s tatement is rather tricky because it accomplishes some­
thing that Pascal normally tries to prevent, namely, accessing one type of 
data according to the ru les for another type. In our case, the data is 
originally s tored as a region, whereas we wish to access it as an array of 
numbers. Further complications are that the original structure is of vari­
able length and position in memory and is accessed indirectly through a 
handle ("theRgn"). whereas we wish to access it directly as an array 
(" nums") of fixed size and position in memory. 

Let's see how this statement works, examining it step by step starting 
with region handle " theRgn". We begin by suffixing a caret to this handle 
to obtain " theRgn • ", a pointer to the region. Next we apply the type 
identifier " numPtr" like a function to convert this region pointer to an 
expression of type " numPtr", which normally points to integer arrays of 
type "numArray". 

The use of this type identifier is an example of type coercion, a 
concept we studied in Chapter 3. In this case, we perform the type 
coercion between the pointers because the data types have different sizes 
and thus cannot be coerced from one to the other. 

The last step is to suffix another caret to obtain an expression of type 
"numArray", which refers to the data itself as an array of integers. As­
signing this expression to the variable "nums" makes the transfer. 

The above ass ignment statement moves the data in the entire structure 
to "nums". We need to move the data because the region is a dynamic 
structure and can be located at different places in memory as the program 
is executing, whereas " nums" is a static structure whose data remains in 
the same location throughout the execution of the "ShowCorners" proce-
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dure. Since we need the data throughout this procedure, we need to secure 
it at the beginning. (We found this s tep to be absolutely necessary to make 
this particular procedure work in a cons istent manner.) 

The final part of the "ShowCorners" procedure is conditional. That 
is, if the region is specified by its rgnBBox, with no additional data 
(nums[1] is equal to 10), then we should not try to decode those data. 

Now let's look at the actual code to display the corner points. The 
corner data begin at the sixth integer of the region data, so we set the 
index " j" equal to 6. Next we enter an "outer" REPEAT loop, which grabs 
the data for one horizontal line of data points . First, we get they coordinate 
value, then enter an "inner" REPEAT loop to get the successive x coor­
dinates. For each x coordinate, we draw a circle around the indica ted 
corner point, using the x coordinate and they coordinate picked up earlier. 
Notice that each time we pick up a coordinate, we advance our index " j ". 
This imitates the auto-incremented addressing mode that the MC68000 
processor would use if programmed in assembly language. 

To draw the circle around the corner point, we define the rectangle 
using the SetRect procedure, then invoke the PaintOval procedure to fill 
a circle of that size. The "SetRect" procedure assigns specified coordi­
nates to a specified rectangle. It expects five parameters: a rectangle, and 
four integers that will become its coordinates. They ap pear in the follow­
ing order: left, top, right , bottom. We used a circle rather than a single 
pixel because single pixels are hard to see and slightly offset from the 
points that they correspond to. (See the earlier discussion on the relation­
ship between pixels and coordinates. ) 

The inner REPEAT loop ends with an UNTIL statement that checks 
for the value of 32767. After this loop, we advance our index " j " to look 
for the next y coordinate. The UNTIL statement at the end of the outer 
loop checks for y values of 32767 , which indicate the end of the entire 
data structure. 

The Main Program 

Next comes the main part of the program. We call "SetUpSys" to perform 
the initialization. 

The remainder of the main program defines the L-shaped region and 
displays it and its corners. The region is defined by the union of two 
rectangular regions. The first region is the vertical part of the "L", defined 
by the statements: 

RgnA : = NewRgn; 
SetRectRgn(RgnA, 100 , 100 , 200, 300); 
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The second region is the horizontal part, defined by the statements: 

RgnB : = NewRgn; 
SetRectRgn (RgnB , 100 , 200 , 300, 300); 

In each case, the region is created with QuickDraw's NewRgn function, 
which gives the region handle to the newly created region; then the 
SetRectRgn routine defines it as a 10-byte rectangular region with the 
specified corner coordinates. The L-shaped rectangle replaces the first 
region. The routine UnionRgn is used as follows: 

Uni onRgn (RgnA, RgnB , RgnA); 

It computes the union of the first two arguments and places the results in 
the third. Notice that the third argument (destination) is the same as the 
first argument (one of the sources). This poses no problem, since QuickDraw 
always computes the destination in a separate location, then adjusts the 
pointers once the calculation is complete. Remember that these are region 
handles, not the regions themselves nor pointers directly to them. This 
third level of reference by handles frees QuickDraw to work dynamically 
and yet allows the programmer to reference the regions at any time. 

Next, we ca II "FillRgn" to fill the region with light gray. This routine 
expects two parameters: a region handle and a pattern. In our program, 
we pass the handle "RgnA" in the first parameter and the pattern "ltGray" 
in the second parameter. The pattern "ltGray" is a default variable ini­
tialized by " InitGraf". 

We then call our "ShowCorners" procedure to display the corner 
points: 

ShowCorners (RgnA) ; 

Again, we follow the same policy by referring to the region by its handle. 
Finally, we call "ClickButton" to wait for the button click. 

Scan Conversion of Regions 
Drawing a region involves scanning the region data and drawing the shape 
line by line on the screen. This is called scan conversion because it 
converts data into a series of scan lines on the screen. It is possible to 
write a Pascal procedure to do this. However, QuickDraw already does 
this so well that we won't try to beat it. You might want to try, or you 
might want to use a debugger to check the machine code in ROM. The 
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code for painting a region starts at location $408DA8 in the Macintosh 
ROM. It is quite complex because it must check myriad details before it 
performs its own work. You can be happy that Apple took care of this 
process for you. 

Positioning and Sizing GrafPorts 
Let's return to grafPorts. Recall that a grafPort is a Pascal record structure 
containing all current settings of the drawing parameters for your program. 
In this section, we explore those parameters that control the active drawing 
area associated with a grafPort. 

Each grafPort has several fields that determine its position and size. 
We see here how these fields specify a local coordinate system for each 
grafFort. 

PortBits 
We begin with the second field of a grafPort, a BitMap called ".portBits". 
It defines the screen from the point of view of the grafPort. The first field , 
".baseAddr", gives the base address of the video RAM; the second field, 
" .row Bytes", gives the number of bytes per row for the video mapping; 
and the last field of a BitMap is a rectangle called ".bounds". 

Initially, portBits is set by "OpenPort" to screenBits, a default vari­
able set by " InitGraf" to the following values: 

BaseAddr = $1A700 ($7A700 on the 512K Mac) 
RowBytes = 64 
Bounds.top = 0 
Bounds . left = 0 
Bounds.bottom = 342 
Bounds.right = 512 

Local Coordinates 
In this section, we see how the top left corner of the portBits " .bounds" 
rectangle specifies a "local" coordinate system for each grafPort. 

Keep in mind that all coordinate variables in a grafPort are expressed 
in terms of the local coordinate system for that grafPort. This is the key 
to understanding the peculiarities of how a grafPort stores information 
needed to convert between its local and the screen's global coordinates. 

Earlier, we described the coordinate system on the screen. This co­
ordinate system is called the global coordinate system for the screen. It 

QUICKDRAW 113 



originates in the upper left corner of the screen. Coordinate positions in 
this system correspond directly to pixel positions; that is, the point with 
coordinates (i,j) is at the upper left corner of pixel [i ,j] for each pixel on 
the screen. 

Each grafPort has its own local coordinate system in which all its 
coordinate values are expressed. This local coordinate system is related 
to the screen's global coordinate system through a simple translation: 

Ptlocal : = Ptglobal + delta 

where "Ptlocal" is the local coordinates of a point, " Ptglobal" is its global 
coordinates, and " delta", with the structure of a point, is the "translation 
vector". In terms of individual horizontal and vertical coordinates, this 
becomes: 

Ptlocal . h 
Ptlocal . v 

Ptglobal . h + delta . h 
Ptglobal . v + delta . v 

You can also solve for global coordinates in terms of local coordinates 
by the translation: 

Ptglobal : = Ptlocal - delta 

or 

Ptglobal . h := Ptlocal.h- delta . h 
Ptglobal . v : = Ptlocal . v- delta . v 

Because only a translation is involved, the global and all local coor­
dinate systems have the same scale and orientation, differing only by the 
position of their origins (see Figure 4-27). 

How PortBits Controls Local Coordinates 

A grafPort's portBits field holds the relationship between the grafPort's 
local coordinate system and the screen 's global system. However, the in­
formation is stored in a cleverly convoluted manner by providing the local 
coordinates of certain global landmarks. 

In particular, the portBits " .bounds" rectangle gives the limits of the 
video screen in lo ca l coordin a tes . Thi s mea ns tha t "port­
Bits.Bounds.topleft" contains the local coordinates for the top left point 
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of the screen, and "portBits.Bounds .botright" contains the local coordi­
nates for the bottom right corner of the screen . This is more than enough 
information to completely determine the relationship between local and 
global coordinates. In fact, we need only one corner point. 

The top left corner of the screen is the key. It forms a global reference 
point we can use to good advantage. Since it is the origin of the global 
coordinate system, its global coordinates are: 

(0, 0) 

Since it is the top left corner of " portBits.Bounds", its local coordinates 
are : 

PortBits . Bounds . topleft 

This for ces the " d elta " in our formulas to be equ a l to " port­
Bits.Bounds.topleft", thus completely determining these formulas: 

Ptlocal = Ptglobal + portBi t s . Bounds . topleft 

Ptgl obal = Ptlocal - portBits . Bounds.topl eft 

QuickDraw has routines that make these conversions . GlobaltoLocal 
uses the first formula to convert from global to local coordinates, and 
LocaltoGlobal uses the second formula to convert from local to global 
coordinates. 

Figure 4-27. Translations 
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PortRect 
The portRect is of type "Rect'' and forms the third field of a gra£Port. It 
specifies the active area of the gra£Port's coordinate system (see Figure 
4-28). This is the rectangular area of the screen where your pictures 
appear. Limiting pictures to rectangular areas of the screen is the first 
step having windows. In Chapter 6, we see how every window is associated 
with a gra£Port whose ".portBits" field defines its active or display area. 

An interesting complication arises when the portRect is specified. 
Like all coordinates in a gra{Port, the coordinates of portRect are local. 
Life would be easier if global coordinates were used. However, the resulting 
complications are handled mostly by QuickDraw's port-moving routines. 
Only when we try to understand exactly what is going on internally does 
the fun really begin. We look at four QuickDraw port-moving routines, 
what they do when called, and how they work internally. 

QuickDraw Port-Moving and Sizing 
Routines 
Four QuickDraw routines affect the portRect: "MovePortTo" moves the 
active area relative to the screen, "SetOrigin" moves the origin relative to 

Figure 4-28. The Active Area of the GrafPort 
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the active area, and "PortSize" and "ClipRegion" control the active area's 
width and height. 

These routines are normally called only by the Window Manager 
routines to position and size a window on the screen, as discussed in 
Chapter 6. However, our examples show how these routines work in the 
absence of windows. You might say that our understanding is at the pre­
window stage right now, just beginning to explore the QuickDraw tools 
that make windows work. 

MovePortTo Routine 

Let's start with "MovePortTo". It moves the active area on the screen. More 
precisely, if x and yare integers, then the Pascal statement: 

MovePortTo(x,y) 

moves the top left corner of the active area to the point whose global 
coordinates are (x,y). Although its global coordinates change, its local 
coordinates are not changed by this command. 

Internally, the routine simply computes the following "translation 
vector": 

delta= portRect . t opleft- portBits . Bounds . topleft- (x , y) 

and adds this to the corner points of portBits.Bounds according to the 
following formulas (see Figure 4-28): 

portBi t s .Bounds.topl eft 
portBits . Bounds . botright 

SetOrigin Routine 

portBits . Bounds. topl ef t + de lta 
portBits . Bounds. botr i ght + de lta 

Next let's look at "SetOrigin". If x and y are integers, then the Pascal 
statement: 

Setorigin (x, y ) 

shifts the graiPort's local coordinate system so that the local coordinates 
of the top left corner point of portRect become (x,y), but its global coor­
dinates are unchanged. That is, the active area does not change its position 
or size on the screen, but the local coordinates change, moving the local 
origin (see Figure 4-29). 
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Note: this is the opposite of the previous routine, which changes the 
global coordinates but not the local coordinates of this local reference 
point. 

Internally, this routine computes the translation vector: 

delta : = (x , y) - portRect . topleft 

and adds it to the corner points of portRect and portBits.Bounds, using 
the following formulas: 

portBits . Bounds . topleft 
portBits . Bounds . botright 
portRect . topleft 
portRect . botright 

The PortSize Routine 

portBits . Bounds. topleft +de lta 
portBits . Bounds . topright +delta 
portRect . topleft + delta 
portRect . topright +delta 

The third QuickDraw routine is "PortSize". If x and y are integers, then 
the command: 

PortSize (x , y ) 

changes portRect so that its width is x and its height is y. 
Internally, this routine recomputes portRect.botright with the formula: 

portRect . botright := portRect.topleft + (x , y) 

Figure 4-29. Setting the Local Origin 

portRect.bo tri gh t 
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Visibility and Clipping 
In this section, we discuss how visibility and clipping are implemented 
in QuickDraw by the" .visRgn" and the" .clipRgn" fields of the gra£Port. 
We also present three routines to help the programmer manage eli pping. 

Visibility 
Visibility relates to the way images overlap (see Figure 4-30). This is 
especially important in managing multiple overlapping windows, dis­
cussed in detail in Chapters 6 and 7. However, we preview it here in our 
"pre-window" stage of understanding. 

As we will see in Chapter 6, each window has its own gra£Port with 
its own visibility region. The gra£Port field ".visRgn" is a handle to this 
region (see Figure 4-31). When a window changes position relative to the 
screen and to other windows, the Window Manager uses this region to tell 
QuickDraw which parts of the window need redrawing during a "window 
updating" process because they are now visible. In Chapters 6 and 7 you 
will see (and hear) examples. 

Clipping 
Clipping relates to the way an image is "mounted" on a grafPort (see 
Figure 4-32). This in turn relates to the way an image is mounted on a 
window. 

Each gra£Port has a region called its clipping region. The gra£Port 
field" .clipRgn" is a handle to this region (see Figure 4-33). Any parts of 
shapes falling outside this region are "clipped" (not drawn). As we see 

Figure 4-30. Visibility 
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later, the programmer can control this eli pping region to create images 
that fall within the desired (active) area of the screen. 

Relation between Visibility and Clipping 
Visibility and clipping are treated separately by the Macintosh. One is 
controlled by the Window Manager, the other is controlled by the program­
mer. However, QuickDraw uses both, drawing only those pixels in the 
intersection of both regions. 

Because QuickDraw automatically draws only what is in both re­
gions, the programmer can freely draw images, not worrying about whether 
pixels fall "within the window" or are currently hidden by another window. 

Two different regions simplify the management of windows, allowing 
the Window Manager and the programmer separate data structures that 
do not interfere with one another. 

Clipping Routines 
l\bw let's see how we can directly control the clipping region. The QuickDraw 
procedure SetClip sets the clipping region equal to a specified region. It 
expects a single parameter, which is a region handle that leads to a valid 
region. 

Before you use this routine, your region handle must be associated 
with an actual region. Use the QuickDraw routine "NewRgn" to allot 
room for regions and routines such as "SetRectRgn" and "UnionRgn" to 
define their shapes. 

Figure 4-31. The Visibility Region 
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The QuickDraw routine "GetClip" returns the current clipping re­
gion. The two routines "GetClip" and "SetClip" perform opposite jobs 
and can operate in conjunction to manipulate the current clipping region. 

The procedure "GetClip" expects a single parameter, which is a 
region handle associated with a valid region. After this routine is called, 
this region handle leads to a copy of the current clipping region. The 
region handle does not change: it is not a "VAR" parameter, so it still 

Parts of 
image ~ 
outside the 
window are 
clipped 

Figure 4-32. Clipping 

0 fig 3-2 

IXJ~' 
I code 

I 
~ 

Edit Compile Jl 
' :. 

I intermediate 
code 

Re-edit generation Code ~ 

nhiPrt 

Figure 4-33. The Clipping Region 
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points to the same region pointer. However, this region pointer normally 
points to a new place on the heap where the copy of the current clipping 
region is stored. Note that this copy is disassociated from the current 
clipping region: it is stored in a different place from the current clipping 
region and uses different pointers and handles. 

The Ports Quick.Draw Example 
Here is a Pascal program called "Ports" that illustrates how grafPorts can 
be moved and sized. lt even demonstrates how to manage several grafports 
at once. It uses clipping to restrict each image to its own grafport. 

The program opens with a blank screen filled with gray and a wh ite 
title bar. When the cursor turns to the familiar arrow, you proceed. 

Click the mouse and you see four rectangular areas appear. They are 
labeled "port 1" through "port 4 ". Another click of the mouse button 
causes a design to be drawn in all four ports at once (see Figure 4-34). 
The next click causes the entire display to invert. A final click terminates 
the program. 

Figure 4-34. The Ports Program 

122 HIDDEN POWERS OF THE MACINTOSH 



Here is the program: 

PROGRAM Ports ; 
{$R-}{$X-} 

USES 
{$U obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{ $U obj / Toollntf 

VAR 
savePort : GrafPtr; 

Memtypes , 
QuickDraw , 
OSintf, 
Toolintf; 

Port : array[l . . 4] of GrafPtr; 

PROCEDURE ClickButton ; 
BEGIN 

WHILE Button DO ; 
WHILE NOT Button DO ; 
WHILE Button DO; 

END; 

PROCEDURE SetUpSys; 
BEGIN 

InitGraf(@thePort ) ; 
InitFont s; 

{Initialize default variables } 
{Initial ize Font Manager } 

NEW (thePort); 
OpenPort (thePort ); 
InitCursor; 

END; 

{Set up grafPort} 

PROCEDURE OPort (J , x , y : INTEGER; title 
BEGIN 

New (Port [J J ) ; 
OpenPort(Port[J)) ; 

PortSize (150,150) ; 
ClipRect(thePort· . portRect) ; 
MovePortTo (x , y); 

EraseRect (thePort' . portBits . Bounds); 
FrameRect (thePort· . portRect) ; 

MoveTo (10 , 20); 
DrawString(title ) ; 

END ; 

Str255) ; 
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PROCEDURE DrawPorts; 
BEGIN 

GetPort(savePort ) ; 
0Port(1, 102 , 27, 
0Port(2 , 259, 27, 
0Port(3 , 102, 184 , 
0Port (4, 259 , 184, 

END; 

PROCEDURE DrawDesigns; 
VAR 

I,J : Integer; 
R : Rect; 

BEGIN 

' Port 
'Port 
'Port 
'Port 

FOR I : = 0 to 20 DO 
FOR J : = 1 to 4 DO 

1 ' ); 
2'); 
3 I ) ; 
4 I ); 

BEGIN 
SetPort (Port[JJ ) ; 
MoveTo( 30 , 40 
LineTo( 130 , 140 
MoveTo( 30 + 5*i, 
LineTo(130 - 5*i , 

END; 

FOR I := 1 to 10 DO 
BEGIN 

+ 5*i); 
- 5*i) ; 

40 ); 
140) ; 

SetRect (R, 80 - 5*i, 90 - 5*i, 81 + 5*i, 91 + 5*i); 
FOR J : = 1 to 4 DO 

END; 
END ; 

BEGIN 
SetPort(Port[J) ); 
InvertOval (R) ; 

END; 

PROCEDURE InvertScreen; 
BEGIN 

SetPor t (savePort) ; 
InvertRect (thePort · . portBits.Bounds) ; 

END; 

BEGIN {main program } 
SetUpSys ; 
ClickButton; 

DrawPorts ; 
ClickButton ; 
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DrawDes i gns ; 
ClickButton; 

InvertScreen ; 
ClickButton ; 

END. 

Data Structures 
The "Ports" program has the standard USES section. Its VAR section 
declares two global variables: "savePort", which is a grafPtr, and "Port", 
which is an array of four grafPtrs. 

Procedures 

The "Ports" program has a number of procedures, including "Click­
Button" and "SetUpSys", that have already appeared. However, "Ports" 
has four new routines: " Oport", " DrawPorts ", "DrawDesigns ", and 
"InvertScreen". 

Setting Up a Port 

The procedure " OPort" sets up a specific grafPort of our array of graiPorts. 
The "OPort" procedure has four parameters: three integers - "J", 

"x", and "y" - and a string, " title". The first integer selects one of the 
four grafPorts. The second and third integers specify the position of its 
upper left corner. The string "title" specifies a title for the graf?ort. 

The procedure begins by calling "New" to allot space for the grafPort 
" Port[]]", then calls " OpenPort" to initialize it. 

Next, we call "PortSize" and "ClipRect" to specify the size of this 
graiPort and " MovePortTo" to specify its position. These QuickDraw rou­
tines operate on certain rectangles and regions associated with the current 
graf?ort as described above. 

We call "EraseRect" to erase it and "FrameRect" to draw a border 
around it. Then we call "MoveTo" to position the title and " DrawString" 
to draw the title. 

Drawing the Ports 

The procedure "DrawPorts" draws all four ports . It begins by calling the 
QuickDraw routine "GetPort" to save the current grafPort in our variable 
"savePort". Next, it calls our "OPort" procedure four times, once for each 
grafPort. 
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Drawing Designs 

The procedure "DrawDesigns" provides the fireworks. It draws the same 
figure on all four drawing areas at once by rapidly switching among the 
four different grafForts. 

The ''DrawDesigns'' procedure has three local variables: two integers 
and a rectangle. The two integers are indices to FOR loops within the 
procedure, and the rectangle draws the circles in the design. 

The procedure contains two double FOR loops. Within each FOR 
loop, another FOR loop switches among the grafForts, drawing the same 
tiny part of the figure on each grafFort. Even though the drawing is not 
simultaneous in each grafPort, the effect is the same: much like a time­
sharing computer that seems to simultaneously serve several users by 
rapidly switching among them. 

Let's look at the figure carefully. As noted earlier, the figure is drawn 
in two stages, using two different FOR loops. In the first FOR loop, we 
draw a set of radial lines through the center of a square. In the second 
stage, we invert a sequence of increasingly larger circles, creating a series 
of square rings that cross the radial lines. 

Inverting the Screen 

The procedure "InvertScreen" inverts the entire screen. It begins by call­
ing "SetPort" to restore the current grafFort to what was saved by the 
"savePort" grafPtr. In this program, we called "GetPort" earlier to place 
the original grafFort in this special save gra£Ptr. 

Next, it calls "InvertRect" to invert the rectangle "the­
Port" .portBits.Bounds". This is the bounds rectangle for the bitMap 
"portBits", which is a field of the current grafPort. 

The Main Program 
The main part of the program calls our routines, one after another, each 
followed by a call to "ClickButton" to pause for the user to hit the mouse 
button. 

It calls "DrawPorts" to draw and label the four graiPorts. It calls 
"DrawDesigns" to draw the design on all four ports. Finally, it calls 
"InvertScreen" to invert the entire display. 
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Summary 
In this chapter, we have introduced some of the basic concepts of QuickDraw: 
hardware, such as memory-mapped video; mathematics, such as coordi­
nates and coordinate systems; graphics, such as clipping and visibility; 
and QuickDraw data structures, such as pattern, cursor, point, Rect, BitMap, 
region, and gra£Port. 

We have presented six short example programs that illustrate these 
structures. 

In future chapters, we introduce more QuickDraw concepts, data 
structures, and routines as we need them. 

The following ROM routines are covered in this chapter: 

EM-Button 

QD-InitGraf 

QD-OpenPort 

QD-InitCursor 

~M-Init~onts 

QD-StuffHex 

QD-~illRect 

QD-SetPt 

QD-SetCursor 

QD-HideCursor 

QD-EraseRect 

TU-BitSet 

EM-GetMouse 

QD-~rameRect 

QD-PaintRect 

QD-InvertRect 

QD-SetRect 

QD-SetRectRgn 

QD-UnionRgn 

QD-~illRgn 

QD-PortSize 

QD-Cli pRect 

QD-MovePortTo 
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QD-MoveTo 

QD-DrawString 

QD-GetPort 

QD-SetPort 

QD-LineTo 

QD-InvertOval 
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5 
Introduction to Events 

This chapter covers the following new concepts: 

• Events 

• The Event Manager 

• The Event Queue 

• Vertical Retrace Manager 

• Event Records 

• Initialization of the Event Manager 

• Addressing the Video RAM 

• Accessing Events 

• Keyboard and Mouse Events 

In this chapter, we introduce events, a dynamic method of communication 
between the Operating System and an applications program. Events are 
the cornerstone of Macintosh's interactive programming capabilities, pro­
viding a way to organize input from the user into a form that can easily 
be handled by an applications program. 

Events are the official channel for transmitting user input to an ap­
plications program and a way to schedule other activities, such as updat­
ing the screen , that require coordination between the applications program 
and the Operating System. 

For the Macintosh, an event is a record (stored in a Pascal record 
structure) of a specific action, such as pressing and releasing a key on the 
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keyboard or the button on the mouse, inserting a disk in the disk drive, 
or a window changing position or coming to the front of the display screen. 
However, not all user actions generate an event. For example, moving the 
mouse across your desk without pressing the button is not an event. 

In less advanced computers, input from the user comes from the 
keyboard only. The applications program checks for or waits for single 
keystrokes or entire strings of text. Output consists of strings of text 
displayed line by line on the screen. Other parts of the system, such as 
the disk, are tended to separately. 

With the Macintosh, the situation is more complex, since input comes 
from both the keyboard and the mouse and output is handled through 
multiple overlapping windows. Each subsystem requires special atten­
tion. However, all Macintosh input and output can be reduced to a series 
of events, each requiring specific action from the applications program. 

The Macintosh's Event Manager monitors each event, placing a Pascal 
record structure containing vital information in a waiting line called a 
queue. The applications program can request these event records from the 
queue, one at a time, as it can handle them. The applications program can 
distinguish among the different types of events (key down, key up, mouse 
button down, mouse button up, disk insertion, screen update) by exam­
ining a field called ".what". It can also examine other fields, such as 
".where" to see where the mouse was and ".when" to see the time that 
the event occurred. Still other fields tell such things as key codes for 
keyboard events and identification numbers for screen update events. 

The event approach is an advantage: it sorts events for the applications 
program, presenting them in a uniform manner, allowing the applications 
program to concentrate on managing the system at a much higher level. 
This approach is more efficient. The Operating System can quickly handle 
each event, place it on the queue, then go to the next event or other task. 

In this chapter, we introduce the Macintosh's Event Manager and 
explain its relation to the rest of the system. We describe interrupts that 
generate events and event information at the lowest levels, the record 
structure that stores events, and the linked list structure used by the event 
queue. 

We also present an example program that illustrates how events a p­
pear to the user and how they are programmed. This straightforward model 
allows you to create your own interactive, event-driven programs. The 
model demonstrates keyboard events and mouse events, forming a foun­
dation for programming other types of events. In later chapters, we study 
how the Event Manager interacts with the Window Manager to control the 
Macintosh's multiple overlapping windows. 
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The Event Manager 
As we have seen, events are handled by the Event Manager, which is a set 
of routines and data structures in the Macintosh's memory. 

In its first manuals, Apple refers to two event managers, one in the 
Operating System, one in the Toolbox (see Figure 5-1). But such catego­
rizations are somewhat arbitrary. In particular, the distinction between 
Operating System and Toolbox is vague; in fact, Apple has moved certain 
Event Manager data structures from one category to the other as the 
software for the Macintosh has matured. 

We differ from Apple in that we consider there to be only one Event 
Manager- partly within the Operating System, partly within the Toolbox. 
This makes the distinction between Operating System and Toolbox less 
critical, and rearrangements of the two parts of the system seem more 
natural. 

Figure 5-1. The Event Manager(s) 
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The Operating System Part 
The Operating System part of the Event Manager (the OS Event Manager, 
for short) forms the lower levels of the Event Manager. This contains 
routines to manage the event queue. We use some of these routines in our 
program, so it is important to understand some details of this structure. 

Linked Lists 

The Macintosh maintains a list or queue of pending events in a linked 
list. This is a data structure consisting of items in which each item 
contains a pointer to (holds the address of) the next (see Figure 5-2). Thus, 

Figure 5-2. A Linked List 
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in a linked list the items themselves supply the information needed to 
hold the list together, and yet these items need not be next to each other. 
In fact, the items can be scattered in any order throughout memory, with 
the pointers forming a thread that ties them together in the intended order. 

Linked lists are particularly useful because of the ease with which 
they can be manipulated. For example, operations such as appending new 
items to the end, inserting new items in the middle, and deleting old 
items from anywhere in the list can be done quickly and efficiently, simply 
by placing new values in the pointers. By contrast, performing such 
operations on ordinary lists that do not have this linking structure requires 
their items to be moved around in memory at considerable loss of 
performance. 

Linked lists are advantageous when each item contains a moderate 
to large amount of data. However, they do require extra memory to hold 
the pointers and are therefore less desirable when each item is small. In 
fact, if we tried to organize lists of individual bytes as linked lists, we 
would spend much more memory on the linking than on the data. In the 
case of Macintosh events, however, there is enough data in each item to 
make a linked list an appropriate choice. In addition, the ability to place 
information in queues using this linking greatly increases the efficiency 
of the system. It takes very little time to add a new item to a queue, and 
once it's done, the system is free to go on to other matters. 

The routines in the Operating System part of the Event Manager can 
add, fetch, remove, and check events on this queue. We will use some of 
these routines in our example program. Note that the Macintosh's Oper­
ating System uses linked lists to manage other mechanisms, such as disk 
volumes and 110 service requests. 

Calls from Lower Levels 

The Vertical Retrace Manager maintains a number of background tasks 
for the Macintosh. These are jobs that operate independently of and at the 
same time as the applications program. For the Macintosh, these include 
updating the mouse cursor on the screen, updating the time and date, and 
monitoring the mouse button and disk insertion. 

The Vertical Retrace Manager is driven by an interrupt called the 
Vertical Retrace Interrupt, which is generated by the video hardware each 
time the video signal is blanked between scans of the screen. An interrupt 
is a hardware signal that causes the processor to stop, process the activity, 
then return to its previous task. 

Calling the Vertical Retrace Manager in this way increments a system 
variable called the tickCount and checks several functions, including the 
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system stack and the mouse position. The Vertical Retrace Manager also 
checks the mouse button every other time and the disk system every thirty 
times. It updates the cursor position if the mouse has moved (mouse 
movement itself is handled by another interrupt). If the mouse button has 
changed, the Vertical Retrace Manager calls the Event Manager to place a 
mouse event on the queue. Similarly, it places a disk event on the queue, 
if appropriate. 

Calls from Higher Levels 

At higher levels, the OS Event Manager routines may be called by the 
routines in the Toolbox part of the Event Manager or by an applications 
program. 

The 'lbolbox Part 
The Toolbox contains higher-level routines that interface the event queue 
to the user. We explore these higher-level routines in the remainder of this 
chapter. 

Example Program 
The example program demonstrates how to program events generated by 
the keyboard and the mouse button. This introduces the basic concepts 
needed to program other events. In Chapter 6, we will see how to handle 
screen updating events generated by the Window Manager. 

The uEvents" program graphically demonstrates keyboard and mouse 
activity. It displays the results of this activity in several boxes on the 
screen (see Figure 5-3). The two boxes with square corners show keyboard 
events, and the three boxes with rounded corners interact with the mouse. 

The program itself draws the boxes on the screen and then monitors 
events and other information from the Event Manager, displaying infor­
mation in these boxes. For example, if you hit a key on the keyboard, the 
Events program displays the corresponding character in a box called "Key". 

The program also displays the keyboard as a row of bits on the screen 
in a box called "Keyboard Array". Each bit corresponds to a particular 
key position. Pressing a key blackens the corresponding bit on the screen. 

At the same time, the program monitors mouse activity. The cursor 
moves around the screen as you move the mouse, and if you press the 
mouse button while the cursor is in certain boxes, then different things 
will happen depending on where the mouse is. If you press the button 
while the cursor is in the box labeled "Mouse Points", you will see points 
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(mouse droppings) appear within that box. If you press the button while 
the cursor is in the box labeled "Erase mouse points", the mouse droppings 
will be erased. Finally, if you press the button while the cursor is in the 
box labeled "Exit", the program will terminate. 

The mouse boxes are implemented by QuickDraw regions, a concept 
introduced in Chapter 4. Regions allow us to easily determine when the 
mouse is in a more complex shape such as a rounded rectangle. QuickDraw 
has a built-in procedure that can quickly determine whether a particular 
point is in a particular region. 

The mouse boxes in this program are primitive versions of controls. 
In Chapter 6, you will see how the Macintosh's Control Manager uses 
regions to automatically define and handle controls. 

Now let 's look at the program. 

PROGRAM Events ; 
{$R-} {$X-} 

Figure 5-3. Screen Layout for Events Program 
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USES 
{$U obj/Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{$U obj/Toolintf 

TYPE 
KeyPtr · KeyMap ; 

VAR 
theEvt : EventRecord ; 
done : BOOLEAN; 
theKeys : KeyPtr ; 
MPt : Point; 

Memtypes , 
QuickDraw, 
OSintf , 
Toollntf ; 

kbRect , keyRect , mouseRect , eraRect , exitRect 
mouseCurv, eraCurv, exitCurv : Point ; 
mouseRgn , eraRgn , exitRgn : rgnHandle ; 

FUNCTION VideoAddr (x , y : INTEGER) : Longint ; 
BEGIN 

VideoAddr : = ORD(screenBits.BaseAddr) 
+ x DIV 8 
+ y*screenBits.rowBytes ; 

END ; 

PROCEDURE Setup ; 
BEGIN 

InitGraf (@thePort); 
InitFonts ; 

NEW (thePort ); 
OpenPort (thePor t ); 

FlushEvents(EveryEvent , O) ; 
SetEventMask (EveryEvent ); 

InitCursor ; 
EraseRect(thePort · . portBits.Bounds ); 

END ; 

PROCEDURE MakeTitle (title : Str255); 
{Draw a centered title} 
BEGIN 

WITH thePort · . portRect DO 

Rect ; 

MoveTo ( (left + right- StringWidth(titlc)) DIV 2, 20); 
DrawString(title); 

END ; 
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PROCEDURE MakeRect(R : Rect; title 
BEGIN 

Str255) ; 

{Draw and label rectangle} 
EraseRect (R) ; 
FrameRect (R) ; 
MoveTo(R. left, R. top- 5); 
DrawString(title) ; 

END; 

FUNCTION MakeRRgn(R : Rect ; Curv Point) RgnHandle ; 
VAR 

Rgn : RgnHandle; 
BEGIN 

{Define a rounded rectangular region} 
Rgn : = NewRgn; 
OpenRgn; 

FrameRoundRect(R , Curv. h , Curv. v) ; 
CloseRgn (Rgn); 
MakeRRgn : = Rgn ; 

END; 

PROCEDURE DrawRRgn(Rgn : RgnHandle ; title : Str255); 
BEGIN 

{Draw and label rounded rectangular region} 
EraseRgn (Rgn ) ; 
Fr ameRgn ( Rgn) ; 
WITH Rgn·· . RgnBBox DO MoveTo(left,top-5) ; 
DrawString(title); 

END ; 

BEGIN {main program} 
Setup ; 
MakeTitle('Keyboard and Mouse Events') ; 

{Define rectangles and curvatures for regions} 
SetRect(kbRect , 16 , 80, 176, 100); 
SetRecttkeyRect,200 , 80 , 230, 100); 
SetRect(mouseRect , 10 , 160, 410 , 260) ; 
SetRect (eraRect,10, 300, 40 , 320); 
SetRect(exitRect , 210 , 300 , 240, 320) ; 
SetPt(mouseCurv, 32 , 32) ; 
SetPt(eraCurv, 16, 16); 
SetPt(exitCurv, 16, 16); 

{Set up display for keyboard array} 
MakeRect(kbRect , 'Keyboard Array'); 
theKeys : = POINTER(VideoAddr(kbRect . left+16 , kbRect . top+10)); 

{Set up box for key display} 
MakeRect(keyRect , 'Key') ; 
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{Set up MousePoint region} 
mouseRgn : = MakeRRgn (mouseRect , mouseCurv); 
DrawRRgn (mouseRgn , 'Mouse points ') ; 

{Set up Erase box region} 
eraRgn : = MakeRRgn (eraRect , eraCurv); 
DrawRRgn (eraRgn, 'Erase mouse points' ) ; 

{Set up Exit box region } 
exitRgn := MakeRRgn (exitRect , exitCurv); 
DrawRRgn (exitRgn , 'Exit' ) ; 

REPEAT { main loop } 
If GetNextEvent(everyEvent , theEvt) THEN 

CASE theEvt . what OF 

END ; 

mouseDown : {track the mouse } 
BEGIN 

GetMouse (MPt ) ; 

If PtinRgn(MPt,mouseRgn) THEN BEGIN 
MoveTo(MPt . h , MPt . v); 
Line (O, O) ; 

END ; 

If PtinRgn (MPt, eraRgn) THEN 
DrawRRgn(mous eRgn, 'Mouse points' ); 

If PtinRgn (MPt , exitRgn) THEN 
done : = true ; 

END ; 

keyDown : {display key character } 
BEGIN 

MoveTo(keyRect . left+lO , keyRect . bottom-5 ); 
DrawChar (chr (theEvt . message MOD 256 ) ) ; 

END ; 

keyUp : {erase key character } 
MakeRect (keyRect , 'Key' ); 

GetKeys(theKeys "); { Display key map } 

UNTIL done; 
END . 
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External Files 
The USES section of programs that involve events should invoke the 
following external fil es : " MemTypes", "QuickDraw", "OSintF", and 
"Toollntf". The first two files were discussed in Chapter 4. 

The third external file, "OSintf", defines parts of the Event Manager 
that are in the Operating System. This now includes all of its data struc­
tures and entry to some of its lower-level routines. 

The fourth file , "Toollntf", defines the Toolbox part of the Event Man­
ager. These are its higher-level, or user-oriented, routines. 

Data Structures 
In the TYPE section of the "Events" program, we define a type, "KeyPtr", 
which points to the variables of the type "KeyMap". The type "KeyMap" 
is defined in the external files as: 

KeyMap = ARRAY[O .. 3] OF LONGINT ; 

This definition has changed since the first appearance of the Macintosh 
development system. Originally, it was a packed array of 128 Boolean 
variables! It occupied the same amount of storage, since each Boolean 
variable was stored in its own bit. 

The VAR section declares the global variables for this program. 

Event Records 
The first global variable is " theEvt", which is an event record. This data 
structure transmits information about the event to the applications pro­
gram. An event record can be decribed by the following Pascal structure: 

EventRecord = RECORD 
what 
message 
when 
where 
modifiers 

END; 

INTEGER; 
Longint ; 
Longint ; 
Point ; 
INTEGER 

This format is somewhat like a recorded telephone message. It con­
tains information such as the time as well as specific information about 
what happened . 
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The first field, ''.what'', contains an integer that specifies the type of 
event that occurred. There are 16 possibilities, one for each bit position 
in a 16-bit integer. Later, we will see how all the event types are sometimes 
combined into one 16-bit integer that forms a "mask" indicating which 
types are selected or active. Currently, only 14 types are supported, as 
defined by the following constants statements: 

null Event = 0; 

mouse Down = 1; 

mouseUp = 2; 

keyDown = 3; 

keyUp = 4; 

autoKey = 5; 

updateEvt = 6; 

diskEvt = 7; 

activateEvt = 8; 

driverEvt = 11; 

app1Evt = 12; 

app2Evt = 13; 

app3Evt = 14; 

app4Evt = 15; 

To make your programs more readable, use these identifiers rather 
than the corresponding raw integer values. 

This chapter deals only with the following events: "null", 
"mouseDown", "keyDown", and "keyUp". A "null" event is reported if 
no events of the specified types are in the queue. Chapter 6, which intro­
duces windows, also discusses events of types "updateEvt" and 
''activateEvt''. 

The second field, ".message", is a long integer containing specific 
information about the event. The exact format depends on the type of 
event. 

For the keyboard events "keyDown", "keyUp", and "autoKey", the 
lowest byte of the message contains the extended ASCII code for the key, 
and the next to lowest byte of the message contains its position number 
on the keyboard matrix (see Figure 5-4). 

The message field for mouse events is zero. 
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The third field, ".when", gives the time that the event occurred, 
expressed in "ticks" since the system was last started (turned on or 
rebooted). 

The fourth field," .where", gives the global coordinates of the mouse 
when the event occurred. 

The fifth field, ".modifiers", is an integer (16-bit computer word) 
containing information about the modifier keys, mouse button, and other 
relevant data (see Figure 5-5). The modifier keys and button are each 
represented by a bit in this computer word. Figure 5-5 shows how. 

Done Flag 
The next variable declared in the example program is a BOOLEAN called 
"done". It controls the main loop of the program, which terminates when 
"done" becomes TRUE. Thus, its name aptly describes the role of this 
variable, making the loop control self-documenting. 

KeyPtr 
The next variable, "theKeys", is of type "KeyPtr", which was defined in 
the TYPE section. We have already discussed how this variable helps us 
to display the keyboard matrix. 

Mouse Point 
The variable "MPt", of type "Point", keeps track of the position of the 
mouse. 

QuickDraw Variables 
The rest of the variables in this program are QuickDraw data structures 
that define the shapes of the boxes displayed on the screen. 

Five rectangles define the sizes of these display boxes: "kbRect", 
''keyRect'', ''mouseRect'', ''eraRect'', and ''exitRect''. 

Figure 5-4. Message Field for Keyboard Events 
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Three points contain information about the roundedness or curvature 
of the three mouse boxes: " mouseCurv", eraCurv", and "exitCurv" (see 
Figure 5-6). For rounded rectangles that define the shapes of these boxes, 
the horizontal components of the points give the oval width, and the 
vertical components of the points give the oval height. 

Figure 5-5. Modifier Field for Events 

II 9 8 7 6 5 4 3 2 0 

l ttivote 

System/App 
window 

Figure 5-6. Specifying Rounded Rectangles 
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Regions 

The last three global variables- "mouseRgn", "eraRgn", and "exitRgn" 
-are region handles that access regions that form the underlying struc­
ture of the mouse boxes (see Figure 5-7). 

As shown in Chapter 5, a region is a fundamental QuickDraw data 
structure that allows us to define irregularly shaped areas on the screen 
so they can be quickly and easily displayed and manipulated and can be 
used for visibility considerations. This chapter discusses how to define 
irregularly shaped regions and to detect when a point is within an irreg­
ular area defined by a region. 

The regions in this chapter do not appear very irregular, just rounded 
rectangles. Yet, even for this simple shape, it would be difficult to write a 
program completely on your own to detect when a point is within the 
shape. We see how QuickDraw makes this job trivial for an applications 
programmer. 

Figure 5-7. The Mouse Region Handles 
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The three mouse region handles provide access to regions, which are 
dynamic structures stored in the heap. As we have discussed earlier, 
dynamic structures can grow in size and change position in memory. 

The region handles are static variables stored in the stack area. They 
will be set to point to dynamic variables called region pointers, which 
are stored in a special nonrelocatable area of memory in the heap (see 
Figure 5-8). 

These nonrelocatable variables in turn point to the actual region data 
that are stored in relocatable memory. As the Macintosh's Operating Sys­
tem relocates region data (as the size changes), it automatically updates 
the region pointers. That is, the Operating System controls both the po­
sition of the region data and the values stored in the region pointers, but 
it does not move the pointers. This way, the region handles never lose track 
of the regions, even when region data are moved. If the handle pointed 
directly to the data, then the Operating System would have to update it 
when data are moved; but the handle is in your program, which is your 
responsibility, not the responsibility of the Operating System. 

Procedures and Functions 
Many functions and procedures in this program are general purpose; that 
is, they can be used in a variety of programs. This is a good general 
practice. Such general functions help to develop programs with a mini­
mum of effort and apply code developed in one program to many others. 

Figure 5-8. Handles and Pointers 
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Addressing the Screen 
The first function is "VideoAddr". It returns the address of the byte in 
screen memory that contains the bit corresponding to an indicated pixel 
position. We use this function to place the image of the keyboard matrix 
on the screen. 

The parameters for the " VideoAddr" function are integers "x" and 
"y". The first variable, "x", gives the horizontal position of the pixel. The 
second variable, "y", gives its vertical position from the top of the screen. 

The "VideoAddr" function uses the default variable "screenBits" to 
provide its coefficients. This increases the portabilty of the program. Even 
if the dimensions or location of the screen change, we won't have to 
refigure the address. The formula for this function is given by the statement: 

VideoAddr : = ORD (screenBits . BaseAddr) 
+ x DIV 8 
+ y*screenBits . rowBytes ; 

The "BaseAddr" field of screenBits is a pointer to the beginning of 
video memory. To compute with it, you must use ORD to convert it to a 
long integer. The function ORD converts pointer values to the numerical 
value of the corresponding address. To do pointer "arithmetic", you must 
convert to long integer values. To get the contribution of the x coordinate 
to the byte address, we must divide it by 8, which is the number of pixels 
per byte. The "rowBytes" field specifies the number of bytes per row. We 
use it as the coefficient of the y coordinate. 

Initializing the Managers 
The procedure "Setup" initializes the managers. We initialize QuickDraw 
as before with the "InitGraf" routine. However, we also initialize the Font 
Manager before setting up our gra£Port with the " new" and "OpenPort" 
procedures, as before. · 

The "Setup" procedure continues by ini tializing the Event Manager. 
It calls the "FlushEvents" and the "SetEventMask" routines. The first is a 
ROM routine, the second is a RAM routine contained in an external file 
linked to your program; thus, this routine is loaded into memory with 
your program if it is used in your program. We will explain these routines, 
but first let's finish the "Setup" routine that called them. 

After " SetEventMask", the "Setup" procedure calls "InitCursor" to 
make the mouse cursor into a standard arrow; then it calls "EraseRect" 
to erase the entire screen. The specified rectangle to be erased is the 
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bounds rectangle of the portBits field for the current grafPort. Since the 
gra{Port was just initialized, we can rely on this being the entire screen. 

Event Queue 
Now let's look closer at "FlushEvents" and "SetEventMask". As described 
above, the Event Manager keeps track of events by means of its Event 
Queue, which we will now look at in detail. 

The Macintosh's event queue begins with a special header, containing 
a status word (an integer with some Boolean variables in bit form) and 
pointers to the first and last elements of the event queue (see Figure 5-9). 
This header is called "EventQueue" and is stored in a data area of the 
Operating System called the "System Communications Area". The event 
queue itself is stored in the heap. 

Each item in the event queue (see Figure 5-9) can be described by 
the following structure: 

evQE 1 = RECORD 
qLink 
qType 
eventdata 

El emPt r ; 
INTEGER; 
EventRecord; 

END ; 

The first field is a pointer to the next item in the queue. This gives 
the linking structure. The second field gives the queue type (which in this 
case has a va lue of four) because these items belong to the event queue, 
which is queue number four in the system. The third field is a copy of 
the event record. This particular description is not exactly the same as 
that currently used by Apple, but it is equivalent and easier to explain. 
Departing from Apple in this way is not critical, since Apple tends to 
change such details as its software matures. This has no effect on how 
applications are programmed. 

With this in mind, let's study FlushEvents. Basically, it traces through 
the event queue, removing selected types of events. It has two 16-bit integer 
parameters called "eventMask" and "stopMask". Both "masks" are really 
bit patterns whose individual bits select particular types of events (see 
Figure 5-10). The bit positions are numbered from zero to 15. A bit value 
of one selects the corresponding event and a bit value of zero deselects it. 
This explains why there are a maximum of 16 possible types of events. 

The following call : 

Fl ushEvents(event Mas k , s t opMask ) ; 
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removes all events specified by "eventMask" from the event queue up to, 
but not including, the first of any type specified by "stopMask". Normally, 
we set eventMask to $FFFF and stopMask to $0000. This specifies that 
all events are to be removed until the event queue is empty. In the external 
file "Toollntf", the value $FFFF is set equal to the constant "everyEvent", 
which is the first parameter for this function in our program. 

If we use other values for these parameters, the Event Manager has to 
selectively remove items from the list. This is handled automatically by 
the Event Manager by manipulating the "qlink" pointers (see Figure 5-11). 

The next procedure called in "Setup" is "SetEventMask". This is not 
a ROM routine. It is contained in a Pascal external file linked to your 
applications program. It merely places a specified eventMask in an Op­
erating System variable called "SysEventMask". The Event Manager then 
uses this mask to determine the types of events to be placed on the event 
queue. In our program, the value "everyEvent" specifies that every type 
of event be placed on the event queue. 

Figure 5-9. Event Queue Header 
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Making Titles 
The next procedure in our program is called "MakeTitle". It draws a 
specified title at the top center of the active area of the current grafPort 
(as specified by its port rectangle) . It has a single argument that is a 
dynamic string of type Str255, the standard type of string used by 
QuickDraw. 

The "MakeTitle" procedure begins by a WITH statement, allowing 
us to specify the various fields ("top", " left", "bottom", and " right") of 
the current port rectangle. This shortens our formulas and makes them 
easier to read. In the WITH statement, we "MoveTo" a position that we 
compute for the beginning of the title. 

The "MoveTo" procedure is a QuickDraw routine that moves the 
graphics pen around the screen without drawing anything. However, in 
combination with the "LineTo" routine, it can help draw any line or 
combination of lines on the screen . 

We use the following formula for computing its horizontal component: 

(left + right - StringWi dth (tit l e ) ) DIV 2 

This is equivalent to taking the midpoint of the screen and subtracting 
half of the physical length of the string on the screen. The QuickDraw 
function " String Width" computes this length as the number of pixels that 
are consumed in the horizontal direction by the string. The result will 

Figure 5-10. The Event Mask 
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depend on the font, size, and style of the text. The "StringWidth" function 
is very powerful because it physically sizes up your text, taking into 
account all these considerations - including proportional spacing. 

The vertical position of the text is twenty units from the top of the 
screen. This has to be adjusted for large text sizes. Note that the text is 
positioned so that its lower left corner falls at the current position (see 
Figure 5-12). Thus, the text stretches upward and to the right of the current 
position. 

The QuickDraw "DrawString" routine draws the text on the screen. 

Making Titled Rectangles 
The next procedure is called "MakeRect". In our program, it makes rec­
tangular boxes to display keyboard information. It has two parameters: a 
rectangle, "R", and a title, "title". It erases the rectangle, frames it, then 
draws a title above it. 

Figure 5-11. Removing an Event from the Queue 
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Making Rounded Rectangular Regions 
Next is the function "MakeRRgn". It makes three rounded "mouse boxes" 
that are implemented as regions. The "R" in the middle of its name stands 
for "Rounded". It has two parameters: a rectangle, "R", to determine the 
size of the box, and a variable, "Curv", of type "Point" to specify the 
roundedness or curvature of corners of the region (see Figure 5-13). The 
"MakeRRgn" procedure returns a region handle that allows you to prop­
erly access the newly created region. 

The procedure calls "NewRgn" to allocate space for the region. This 
returns a value for a region handle that we temporarily store in the local 
variable "Rgn". 

The "OpenRgn" routine allows us to "open" or start the region using 
QuickDraw routines to define the shape of the region. 

Instead of drawing to the screen when a region is "open", QuickDraw 
stores (records) "corner" data into a special "save" region whose handle 
is one of the fields of the grafPort. Chapter 4 describes how regions are 
stored in memory. 

We issue only one QuickDraw command, "FrameRoundRect", to de­
fine this region. The parameters to the "FrameRoundRect" command are 
the rectangle "R" to determine the basic size of the rounded rectangle, the 
value "Curv.h" to determine the width of its corner oval, and the value 
"Curv.v" to determine the height of its corner oval (see Figure 5-13). 

The region is "closed" with the "CloseRgn" statement. It is the op­
posite of "opening" the region. "CloseRgn" stops QuickDraw from draw­
ing into the grafFort's "save" region and causes subsequent drawing to 
appear on the screen. This routine has a single parameter, a region handle 
that is a handle to the newly created region. In our program, the parameter 
is "Rgn", initialized at the beginning of this procedure. 

Finally, we assign this handle value to the identifier "MakeRRgn" so 
that it is returned as the value of the "MakeRRgn" function. 

Figure 5-12. Positioning Text 
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Drawing the Mouse Boxes 
The final procedure in our program is "DrawRRgn". It draws the mouse 
boxes. It has two parameters: a region handle "Rgn" and a string, "title", 
of type Str255. The region handle specifies the region to be drawn, and 
the string specifies the title. 

Within the routine, the "EraseRgn" routine erases the region, the 
"FrameRgn" routine frames it (draws a line around it), and the "Draw­
String" routine places the title above it. Before drawing the title, we use 
the "MoveTo" routine in a WITH statement to move the current position 
to where we want the lower left corner of the title. 

The Main Program 
The main program consists of an initialization stage and a main REPEAT 
loop. 

Initialization 
The initialization stage begins by calling the "Setup" procedure to ini­
tialize QuickDraw, the Font Manager, and the Event Managers. It then calls 

Figure 5-13. Specifying Roundedness 
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"MakeTitle" to place the string "Keyboard and Mouse Events" centered 
at the top of the screen. 

Defining the Screen Layout 

Next we define the rectangles that size all of our boxes, and the points 
that define the curvatures for our rounded rectangular regions. The 
QuickDraw routine "SetRect" defines the rectangles, and the "SetPt" 
routine defines the points. These statements are grouped in one place, 
making it easy for a programmer to control the layout of the screen. In 
Chapter 6, we explore how the Macintosh allows you to define screen 
layouts in separate resource files. 

Setting up the Boxes 

The next part of the program sets up the boxes on the screen. It calls the 
various procedures and functions defined earlier. 

First, we make the box for the keyboard array by calling "MakeRect", 
passing it the keyboard rectangle "kbRect" and the title "Keyboard Array". 
We use the "VideoAddr" function to initialize the pointer "theKeys" so 
that it points to a spot in the box labeled "Keyboard Array" on the video 
screen where we want the display of the bits of the keyboard matrix to 
begin (see Figure 5-14). The "VideoAddr" function already knows where 
the screen is. Thus it can compute the proper location in video memory 
for any given point on the screen. Here, we specify a point relative to the 
upper left corner of the "kbRect" rectangle that defines the display box. 
Notice that the POINTER function converts the numerical value of the 
address to a pointer value. There is no conflict of types in the assignment 
of the pointer value returned from POINTER. In fact, pointer values re­
turned from the POINTER function can be assigned to any pointer variable 
without complaint from the compiler. 

Next, we set up the box for the key display by calling "MakeRect" 
with the parameters "keyRect" to define the size of the box and the literal 
string "Key" to title the box. 

Now we set up the mouse points region. First, we use MakeRRgn to 
define a rounded rectangular region. This function returns a handle to the 
region assigned to the variable "MouseRgn ". The size and position of this 
region is given by the first parameter, which is the rectangle "mouseRect"; 
its "curvature" is given by the second parameter, which is the point 
"mouseCurv". We then draw and label the region by calling our "DrawRRgn" 
procedure, passing the mouseRgn handle and the literal string "Mouse 
points" as the title. 

152 HIDDEN POWERS OF THE MACINTOSH 



The boxes to control mouse erasures and to exit the program are 
similarly set up, using the "MakeRRgn" function and "DrawRRgn" 
procedure. 

The Main Loop 
The heart of the program is a REPEAT . . . UNTIL loop called a polling 
loop. This loop continually gets events and handles them. Each time it 
gets the next event, it determines what occurred and performs an appro­
priate action. Many times there are no new events. In such a case, it will 
receive the "null" event, which it handles by doing no action except for 
getting the next event. 

This polling method is in distinct contrast to the interrupt method 
that underlies the Macintosh's management of low-level 1/0 transactions. 
It is interesting to note that both methods coexist in the machine at once, 
interrupts at the low levels and polling at the high levels. An alternate 
approach would be to have interrupts at both levels. That would make 
programming more interesting and efficient but more difficult to under­
stand and debug. 

The main loop begins with a call to the Event Manager's "Get­
NextEvent" function. This retrieves the event record of the next event of 
specified types from the event queue. Its first parameter is an integer that 
holds an event mask specifying those events to be taken from the queue. 
The second parameter, the event record, is passed by reference (as a VAR 
parameter), since it is returned. The function value returned by "Get­
NextEvent" is a Boolean variable that indicates whether or not the appli-

Figure 5-14. Positioning the Keyboard Array 
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cations program should try to handle the event or leave it for the Operating 
System. That's why we encase "GetNextEvent" within an IF ... THEN 
statement. The THEN clause is executed if the event should be handled 
by the applications program. 

The Cases 

Once we get the event and decide to handle it, we use a CASE statement 
to determine what type of event occurred. The cases that we check are 
mouseDown, keyDown, and keyUp. Typically, applications programs han­
dle more cases, but this program merely serves to introduce events, so it 
is as simple as possible. 

Within the "mouseDown" case, we see if the mouse is in any of the 
three mouse boxes. First, we get the local coordinates of the mouse into 
the point variable MPt by using the Event Manager's ''GetMouse'' routine. 
The global coordinates of the mouse are available in the field "theEvt.where". 
However, we want the local coordinates. We could use the "GlobaltoLocal" 
routine to convert this field to local coordinates. This is done in other 
example programs, but not here. Recall that the global coordinates are 
attached to the screen, whereas local coordinates are attached to specific 
grafports. Later, when we study Windows, we will see how local coordi­
nates define positions of objects (such as controls) relative to the windows 
that contain them. 

We use the '' PtinRgn'' function to see if the mouse point is within 
each region. If the mouse is within the mouse points region, we plot a 
point there by applying the "MoveTo" routine to MPt, then invoke the 
"Line(O,O)" statement. This last statement is a relative line-drawing com­
mand that draws a line from the current position to itself, making a single 
point at the current position. 

On the next line of the program, we see if the mouse is within the 
erase region. If it is, we redraw the mouse points box, which has the effect 
of erasing it. 

Next we see if the mouse is within the exit region. If it is, we set the 
"done" variable to true. This terminates the REPEAT UNTIL done loop 
and ends the program. 

The keyDown case displays the key within the key box. Here we first 
"MoveTo" a point within the key box. Then we plot the key character. The 
ASCII code for the key character is contained within the lowest eight bits 
of the message field of the event record. We use "MOD 256" to extract the 
ASCII code from the message field. Then we use the CHR function to 
convert it to a character and use the QuickDraw "DrawChar" routine to 
draw it. 
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The key Up case clears the key box by redrawing it with our "MakeRect" 
procedure. 

Displaying the Keyboard Matrix 

At the bottom of the loop we display the keyboard matrix by invoking the 
Event Manager's "GetKeys" routine. 

Generally, "GetKeys" has a single parameter of type "key Map", which 
is passed by reference. The routine loads a copy of the keyboard matrix 
into this variable. 

In this particular program, we pass to it the expression "the Keys" ". 
Since we loaded the address of a point on the screen into "theKeys", this 
expression specifies that particular location in video memory. Since 
"theKeys" is of type "KeyPtr", the expression has the correct type. 

Summary 
This chapter has discussed how to write applications programs that use 
the Macintosh's Event Manager. We have studied the data structures and 
routines that interact with this Manager and make the Event Manager 
work. 

We have seen the power of such programming. We have seen how it 
allows us to pick up keys and key combinations from the keyboard and 
how it allows us to track the mouse and easily determine when it is pressed 
in any area of the screen. 

We have also touched on the concepts of controls and resources, 
which are explored in later chapters. 

This chapter covers the following ROM rountines: 

EM-FlushEvents 

EM-SetEventMask 

QD-OpenRgn 

QD-FrameRoundRect 

QD-CloseRgn 

QD-EraseRgn 

QD-FrameRgn 

EM-GetNextEvent 

QD-PtlnRgn 

QD-DrawChar 

EM-GetKeys 
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6 
Introduction to Windows 

156 

This chapter covers the following new concepts: 

• Windows 

• Controls: Scroll Bars 

• Window Manager 

• Window Parts 

• Window Updating 

• Window Activation and Deactivation 

• Tracking, Dragging, and Sizing Windows 

• Standard Window Regions 

• QuickDraw Text Attributes 

Windows add another dimension to an applications program. They allow 
users to handle a multitude of separate pieces of information according 
to the specifications and control of the user rather than just the program­
mer (see Figure 6-1) . 

Windows are an extension of the Quick.Draw grafPort. Both are pic­
ture-drawing environments. However, windows have the friendly advan­
tage of being easily and naturally moved on the screen and resized by the 
user. 

In this chap ter, we introduce the fundamentals of managing a window. 
We describe how to draw pictures in a w indow and explore the structure 



of a window. We present an example program to show how some window 
parts can control the size and position of the window on the screen. 

We also introduce controls. These structures, attached both logically 
and physically to windows, allow the user to select values. Each control 
houses and manages a single control value. In our example program, we 
introduce a special kind of control called a scroll bar that houses scrolling 
values. We show how to scroll the contents of a window with these controls. 

The basic parameters that define windows and controls are stored as 
resources along with the machine code that forms your program. In this 
chapter, we see how to set up and use such resources. 

Window management is essentially performed by the collection of 
routines and data structures that form the Window Manager. However, this 
management requires the cooperation of the Event Manager, the applica­
tions program, and the Control Manager, as well as the Window Manager. 
The example program demonstrates the programming interrelationships 
of these different parts of the system. 

Figure 6-1. A Window 
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Parts of a Window 
A window has severa l parts that serve specific functions (see Figure 6-2). 
These include the frame, the title, the title bar, the goAway box, the grow 
box, the contents, and the vertical and horizontal scroll bars. You are 
familiar with these parts as a Macintosh user. 

The window frame consists of the title area containing the title bar, 
the goAway box, and the boundary lines around the window. The contents 
of a window include the area where the picture is drawn as well as the 
areas where the scroll bars and grow box appear. 

Each scroll bar consists of several parts, including the up button, the 
down button, the page up control, the page down control, and the thumb 
control (see Figure 6-3). 

The window frame, including the title, title bars, and goAway box, is 
drawn automatically by the Window Manager whenever the window is 
moved or resized. The grow box is redrawn by the Window Manager on 
special request. The scroll bars are drawn by the Control Manager on 
request by the applications program. We see how these requests are made 
as we continue. 

Figure 6-2. Parts of a Window 
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The Example Program 
The example program displays a single window on the screen entitled 
"Demonstration Window". When the program is executed , you see in thi s 
window the upper left portion of an illustration of different pen sizes. The 
title "PenSizes" with large, outlined italic lettering is partly visible. 

The entire illustration is too big to fit the screen. We have to use the 
scroll and size controls to see each section of this picture. 

All basic parts of a typical window are present and working. Assum­
ing that you have typed in and compiled the program, let 's try exercising 
them. 

First, try dragging the w indow to a new position , using the title bar 
to grab hold of it. Now try changing its size by dragging the size box. It 
grows to its new size when you release the mouse button. 

Next, try the scroll controls. Use the thumbs to scroll to any horizontal 
or vertical position. Use the page up and page down controls to move by 
entire pages, and use the up and down buttons to move one row or column 
at a time. Notice that the horizontal scroll bar directions are " left " and 
"right". 

Figure 6-3. Parts of a Scroll Bar 
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Finally, try selecting the "goAway" button to end the demonstration. 
Now let's examine this program. 

PROGRAM WM; 
{ $R- }{$X-} 
USES 

{$U obj/Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{$U obj / Toolintf 

Memtypes , 
QuickDraw, 
OSintf , 
Toolintf ; 

CONST 
isi ze 30 ; 

VAR 
done : BOOLEAN; 
theEvt : eventRecord; 
wRecord : windowRecord; 
myWindow, theWindow : windowPtr ; 
dragBnds , sizeBnds, drawRect , clipBnds: Rect ; 
hsbar , vsbar : controlHandle ; 

PROCEDURE Setup; 
BEGIN 

InitGraf(@thePort); 
InitFonts ; 
FlushEvents(everyEvent , O) ; 
SetEventMask (everyEvent) ; 
InitCursor; 

InitWindows ; 
myWindow := GetNewWindow (257 , @wRecord,POINTER (-1) ); 
hsbar GetNewControl (257 , myWindow) ; 
vsbar .- GetNewControl (258 , myWindow); 

END; 

PROCEDURE PenShapes (x , y , Maxi , MaxJ 
VAR 

I , J : Integer ; 

BEGIN 
EraseRect(drawRect) ; 

INTEGER); 

TextFont (Athens); 
TextFace ( [italic,outline,shadow]) ; 
TextSize (24) ; 
MoveTo (( i s i ze*Maxi-StringWidth('PenSizes')) DIV 2-x , 40-y); 
DrawString ( 'PenSizes' ); 
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MoveTo(10 - x, 60 - y); 
FOR J : = 1 to MaxJ DO 

BEGIN 
FOR I : = 1 to Maxi DO 

BEGIN 
PenSize (I, J); 
Line (0, OJ; 
Move (isize, 0 ) ; 

END; 
Move(-isize*Maxi , isize) ; 

END; 
PenNormal; 

END ; 

PROCEDURE ShowPict(theWindow: WindowPtr) ; 
BEGIN 

WITH theWindow· . portRect DO 
SetRect(clipBnds, left, top, right-15, bottom-15); 

ClipRect(cl i pBnds) ; 
IF theWindow = myWindow THEN 

PenShapes(GetCtlValue(hsbar) ,GetCtlValue(vsbar ) ,20, 20) ; 
ClipRect(drawRect) ; 

END; 

PROCEDURE WindowGrow(theWindow: WindowPtr; thePt : Point); 
VAR 

WSize : LONGINT; 
S : Point; 

BEGIN 
WSize := GrowWindow(theWindow,thePt,sizeBnds ) ; 
IF WSize = 0 THEN Exit (WindowGrow) ; 

SetPt (S, loWord(WSize) , hiWord (WSize)); 
SizeWindow(theWindow, S.h, S.v, true); 
DrawGrowicon(theWindow); 
SizeControl (hsbar, S. h-13 , 
MoveControl (hsbar, -1, 
SizeControl (vsbar, 16, 
MoveControl(vsbar , S. h - 15, 

END; 

16) ; 
S. v-15) ; 
S. v-13); 

-1) ; 

PROCEDURE ScrAction(theCtl : ControlHandle; partCode: INTEGER); 
VAR 

pagesize , delta : INTEGER; 
BEGIN 

WITH thePort· . portRect DO 
CASE GetCRefCon(theCtl) OF 

1: pagesize right - left 16; 
2 : pagesize : = bottom - top - 16; 
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otherwise 
END; 

CASE partCode OF 
inUpButton: 
inDownButton: 
inPageUp : 
inPageDown : 
otherwise 

Exit (ScrAction) ; 

delta -isize ; 
de lta +isize ; 
delta -pagesize ; 
delta +pagesize; 
Exit (ScrAction); 

END; 
SetCtlValue (theCtl , GetCtlValue (theCtl )+delta) ; 
ShowPict(thePort); 

END; 

PROCEDURE WindowScroll(theWindow : WindowPtr ; thePt : Point ); 
VAR 

theCtl : ControlHandle; 
BEGIN 

SetPort (theWindow) ; 
GlobalToLocal(thePt); 
CASE FindControl (thePt , theWindow,theCtl ) OF 

inUpButton , inDownButton, inPageUp , inPageDown : 
IF TrackControl (theCtl , thePt ,@ScrAction)<>O THEN; 

inThumb : 
IF TrackControl'(theCtl , thePt , NIL) <> 0 THEN 

ShowPict(theWindow); 
END ; 

END ; 

PROCEDURE WindowUpdate (theWindow: WindowPtr ); 
BEGIN 

SetPort(theWindow); 
BeginUpdate (theWindow); 

InvertRect (theWindow· . portRect); 
SysBeep (10) ; 
DrawControls (theWindow); 
DrawGrowicon (theWindow) ; 
ShowPict (theWindow); 

EndUpdate (theWindow); 
END ; 

BEGIN {main program} 
Setup ; 
SetRect (drawRect , 
SetRect (sizeBnds , 
SetRect (dragBnds , 

0 , 0 , 512 , 342 ); 
50, 50 , 512 , 342 ); 

4 , 24 , 508 , 338); 
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done : = fa l se ; 
REPEAT 

IF GetNextEvent (everyEvent , theEvt ) THEN 
CASE theEvt . what OF 

mouseDown : 
CASE FindWindow(theEvt . where , theWindow) OF 

inContent : 
WindowScroll (theWindow, theEvt . where ); 

inDrag : 
DragWindow (theWindow , theEvt . wher e , dragBnds ) ; 

inGrow: 
WindowGrow (theWindow , theEvt . where); 

inGoAway : 
done : = TrackGoAway(theWindow, theEvt . where ) ; 

END; 
updateEvt, activateEvt : 

WindowUpdate(POINTER (theEvt . message ) ) ; 
END ; {what event } 

UNTIL done; 
END. 

External Files 
The USES section of this program requests the same external files as the 
example program in Chapter 5. The new data structures for windows and 
controls are located in the file "Toollntf". However, we are building and 
drawing in our window using QuickDraw and the Event Manager, so we 
need the other external files as well. 

Constants 
The CONST section of this program defines only one contant: " isize". 
This defines the spacing within the diagram and helps control scrolling. 
It globally affects our program and thus belongs in the global constants 
section. 

Glob a I Variables 
The VAR section contains the Boolean variable " done" and the Event 
Record " theEvt", which manage events in much the same manner as 
described in Chapter 5. 
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Window Records 
In addition to event management variables, our program has a number of 
global variables to program our window. The first variable is "wRecord", 
which is a Window Record (Pascal data type "windowRecord"). 

In thi s section , we study this structure in detail. It contains all the 
information needed by the Window Manager to manage one window. A 
window really consists of three entities: the image of the window on the 
screen, the Window Record (studied in this section). and the Window 
Manager routines (introduced in this chapter). 

Other Macintosh concepts, including controls, dialogs, alerts, and 
menus, behave in the same three-part way. For each concept, we describe 
an image on the screen, a data structure, and a set of routines. As with 
windows, complete understanding and control of these concepts requires 
a detailed knowledge of each part, including the data structures in memory. 

Let's continue our discussion of windows. The data stored in a Win­
dow Record include a grafPort and a number of Boolean variables, point­
ers, and handles required to manage the window. These data are central 
to understanding how the Macintosh manages multiple overlapping 
windows. 

Let's look closer at this data structure: 

WindowRecord 
RECORD 

port : 
windowKind : 
visible : 
hili ted: 
goAwayFlag: 
spareFlag : 
strucRgn : 
contRgn: 
updateRgn : 
windowDefProc : 
dataHandle : 
ti tleHandle : 
ti tleWidth : 
controlList : 
next Window: 
windowPic: 
ref Con : 

END; 

GrafPort ; 
INTEGER; 
BOOLEAN ; 
BOOLEAN ; 
BOOLEAN; 
BOOLEAN; 
RgnHandle ; 
RgnHandle; 
RgnHandle ; 
Handle ; 
Handle ; 
StringHandle ; 
INTEGER; 
Handl e; 
WindowPe e k ; 
PicHandle ; 
Longint ; 

The first field, " .port", is the window's grafPort. As discussed in 
Chapter 4 , this contains drawing variables to specify the size and shape 
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of the drawing area; the pen size, pattern, and mode; and the text size, 
font, and face. 

The second field, ".windowKind", is an INTEGER that classifies the 
window. Currently, there are two supported kinds: a value of two indicates 
that the window is used as a dialog or alert, and a value of eight indicates 
that the window is a normal user-created window. 

The third field, ".visible", is a BOOLEAN that specifies if the window 
is visible. 

The fourth field, ".hili ted", is a BOOLEAN that specifies if the win­
dow is highlighted. 

The fifth field, ".goAwayFlag", is a BOOLEAN that specifies if the 
window has a ''goAway'' box. 

The sixth field, ".spareFlag", is a BOOLEAN reserved by Apple for 
future use. It is included because of memory alignment considerations. 
More precisely, the previous three fields are Boolean variables, each taking 
one byte of memory, placing us in the next field at an odd address. The 
"spare" flag adds another byte so that the following field has an even­
numbered address, as required by the 68000 processor to access integers 
and long integers. 

The seventh field, ".strucRgn", is a region handle (stored as a long 
integer) to the structure region of the window. This region delimits the 
entire window. 

The eighth field," .contRgn", is a region handle to the content region 
of the window. This is the area where drawing, the grow icon, and the 
scrolling controls are placed (see Figures 6-1, 6-2, and 6-3). 

The ninth field," .updateRgn", is a region handle to the update region. 
This region accumulates areas of the window for updating. We study 
updating later. 

The tenth field, ".windowDe£Proc", is a handle to the window defi­
nition procedure. This procedure performs a variety of functions, such 
as drawing the window frame, returning the region that the mouse was 
pressed in, calculating the structure and content regions, drawing the 
grow icon, and performing any needed initialization and disposal. When 
the Window Manager calls this routine, it sends a code which specifies 
the required action. Programmers can write and install window definition 
procedures to build custom windows. (This is beyond the scope of this 
book, but Apple manuals show how.) Programmers should use this capa­
bility wisely, for users expect applications to behave in a consistent man­
ner. Apple has provided guidelines, but programmers should play with 
the system and other applications programs to get a feel for what users 
want and expect. 
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The eleventh field, ".dataHandle", is a handle to data that the window 
definition procedure may need. 

The twelfth field , " .titleHandle", is a StringHandle that leads to the 
title of the window. StringHandles are defined by the following data 
structures: 

StringPtr 
StringHandle 

· str255 ; 
· stringPtr ; 

That is, they are handles to the standard type of strings used by QuickDraw. 
The thirteenth field , ".title Width", is an INTEGER that gives the 

width (in pixels) of the window's title. 
The fourteenth field , ".controlList", is a handle to the list of controls 

that belong to a window. This is a linked list that uses handles instead of 
pointers. In our program, our window points to its scroll bars via this 
field (see Figure 6-4). 

The fifteenth field, " .next Window", is of type " Window Peek" and 
points to the "next" window. The Window Manager maintains a linked 
list of all windows. A variable, "WindowList", in the Toolbox's data area 
points to the first window, and the linking is implemented by the 
".next Window" field of each window. 

The " WinduwPeek" data type is defined here by the Pascal type 
declaration: 

WindowPeek = ' WindowRecord ; 

That is , it points to the entire window record. In contrast, a type 
"WindowPtr" is defined by the Pascal type declaration: 

WindowPtr = GrafPtr; 

which accesses only the grafPort of the window, denying access to the 
window's remaining data structure. The more limited "WindowPtr" is the 
type normally used by an applications programmer, whereas "Window­
Peek" is typically used by the system. The Window Manager provides 
access to most fields of the window record by its routines . Thus, it is not 
necessary to access these fields directly. Using indirect methods such as 
routines to access data is a modern approach that provides better protec­
tion of vital data than more direct methods. 

The sixteenth field , " .window Pic", is a PicHandle. In Chapter 7, we 
introduce the pictures concept and explain this field. 
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The seventeenth field, ".refCon", is a Longlnt. This field can be used 
for any purpose. The programmer can use the "SetWRefCon" procedure 
to place numerical values in this field and the "GetWRefCon" to retrieve 
them. For example, programmers can use this field to hold the numerical 
value of a handle to another structure such as a control or a region, the 
address of a routine, or perhaps an index to an array. 

In this program, we use the static variable "wRecord" to store the 
data for our single window. It is possible to store this structure dynami-

Figure 6-4. The Control List 
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cally. It must then be stored in a nonrelocatable block of memory, since it 
is accessed by a pointer. Only data accessed by handles can be stored in 
relocatable blocks of memory (see Chapters 3 and 4). This can cause 
problems in large applications programs because nonrelocatable areas on 
the heap tend to "fragment" the heap, making it hard for the Memory 
Manager to remove "holes" by "compacting" memory. 

Some Wmdow Pointers 
The next global variables are "myWindow" and "theWindow". These are 
of type "windowPtr" and point to our window. The first defines the win­
dow, and the second is used in conjunction with the "FindWindow" 
routine, which identifies the window that the mouse is in. Since there is 
only one window, you might think this is always "myWindow". But some­
times the mouse cursor is in no window. In this case, "FindWindow" 
returns a NIL pointer. We definitely need another variable to accept this 
value when it occurs; otherwise we might lose track of our window. 

Window Limits 
The next four global variables are rectangles to help control dragging, 
sizing, drawing, and clipping of our window. 

The first rectangle, "dragBnds", describes how far (in global coordi­
nates) the top left corner of the window's content region can be dragged 
(see Figure 6-5). We don't want the window to be dragged completely off 
the screen. Later in the program, we specify appropriate values for the 
corner points of this rectangle. 

The second rectangle, "sizeBnds", sets limits on the size of the con­
tent region when we "grow" the window (see Figure 6-6). The" .topleft" 
corner point is the minimum value and the ".botright" corner point is the 
maximum value for its vertical and horizontal size. If a window is too 
small, we may have difficulty finding its controls and may lose control of 
it. 

The third rectangle, "drawRect", describes the drawing area. This 
may be much larger than the window and is related more to the picture 
than the window. In Chapter 7, it figures importantly in conjunction with 
pictures. 

The fourth rectangle, "clipBnds", specifies the area of the window's 
content region where the picture is seen. This is smaller than the entire 
content region because it excludes those areas of the content region where 
scroll bars and the grow icon appear. We have to recompute this rectangle 
at least every time the picture is resized. 
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Controls 
The last two global variables are the control handles to manage the scroll­
ing controls. The "hsbar" is a handle to the horizontal scroll bar, and the 
"vsbar" is a handle to the vertical scroll bar. 

Window 

Figure 6-5. Dragging Limits 
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These are the first of many controls studied in this book. In Chapter 7, 
we introduce s tandard button controls, and in Chapter 8, we introduce 
check boxes and radio buttons. 

A control allows the user to easily manage a single value. In our 
program, a horizontal displacement is stored in the data structure for the 
horizontal scroll bar, and a vertical displacement is stored in the data 
structure for the vertical scroll bar. These displacements are fed into the 
picture-making procedures to offset the position of the picture from the 
window. Scrolling is accomplished by drawing the picture as these dis­
placements change. 

Like windows, controls consist of three parts: the image of the control 
on the screen, the control 's data structures, and the Control Manager 
routines that operate on the control. As with other Macintosh concepts, 
studying the control 's data structure is a key to understanding how it 
works and what it is capable of. 

A control's data structures are defined by the following seri es of Pascal 
type declarations: 

ControlHandle 
ControlPtr 

· controlPtr ; 
· ControlRecord ; 

ControlRecord 
RECORD 

nextControl : 
contrlOwner : 
contrlRect : 
contrlVis : 
contrlHilite : 
contrlValue : 
contrlMin: 
contrlMax: 
contrlDefProc : 
contrlDa t a : 
contrlAction: 
contrlRCon : 
contrlTitle : 

END; 

ControlHandle ; 
WindowPtr ; 
Rect ; 
BOOLEAN ; 
BOOLEAN; 
INTEGER; 
INTEGER; 
INTEGER; 
Handle ; 
Handle; 
ProcPtr ; 
Longint ; 
Str255 ; 

That is, a control handle points to a control pointer, which points to a 
control record. 

Thus this structure contains fi elds to help manage the control's value, 
define how it is drawn , and connect it to other structures. 

As discussed, each window has a handle to a list of controls (see 
Figure 6-4 above). This is a linked list in which linking is by handles 
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rather than pointers. The first field," .nextControl", of each control record 
is a control handle. This control handle provides the linking to the next 
control in the list. The last control in a window's control list always has 
a NIL (zero) value in this field. 

The second field, ".contrlOwner", of a control record is a window 
pointer that points to the window record of the window that "owns" the 
control. Reciprocally, the "owner" window has the control in its control 
list (see Figure 6-7). 

The third field, ".contrlRect", is a rectangle that delimits the area that 
the control occupies within the window (see Figure 6-8). The control may 
occupy an irregular region smaller than this rectangle. 

The fourth field, ".contrlVis", is a BOOLEAN that specifies if the 
control is visible. 

The fifth field, ".contrlHilite", is a BOOLEAN that specifies if the 
control is highlighted. In Chapter 7, we exercise this feature. 

The sixth field, ".contrlValue", is an INTEGER containing the current 
value of the control. 

The seventh field, ".contrlMin", is an INTEGER that specifies the 
minimum value of the control. 

The eighth field, ".contrlMax", is an INTEGER that specifies the 
maximum value of the control. 

The ninth field, ".contrlDefProc", is a handle to the control's defini­
tion procedure. This procedure performs functions such as drawing the 
control, testing for the mouse point in the control, calculating the control's 
region, and updating the control's appearance. Programmers can install 
their own routines here. The earlier comments about custom window 
definition procedures apply here as well (see earlier ".windowDefProc" 
discussion). 

The tenth field, ".contrlData", is a handle to data for a control's 
definition procedure. 

The eleventh field," .contrlAction", is a pointer to the control's action 
procedure. This procedure tracks controls. 

The twelfth field, ".contrlRCon", is a Longlnt that can be used for 
any purpose, like the" .refCon" field of a window. 

The thirteenth field," .contrlTitle", is a dynamic string of type "Str255" 
that contains the title. 

Procedures and Functions 
Now that we've explored the data structures in our program, let's examine 
its procedures. 
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This program includes procedures and functions to initialize, to draw 
the figure that appears in the window, to "mount" the figure in the window, 
to resize the window, and to scroll the contents of the window. 

Figure 6-7. Ownership of Controls 
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The Setup 
The first procedure is " SetUp". It initializes the various managers, in­
cluding QuickDraw, the Font Manager, the Event Manager, and the Window 
Manager. 

The first part of this routine is similar to the "SetUp" routine in 
Chapter 5. However, here we do not open a grafPort: this is done automat­
ically when we initialize the Window Manager. 

Initializing the Window Manager 

The second part of the routine initializes the Window Manager, then sets 
up our window with its two scrolling controls. 

The first command, " lnitWindows", initiali zes the Window Manager, 
setting up a grafPort to cover the entire screen. This grafPort belongs to 
the Window Manager itself, not to any of its windows. 

Setting up the Window 

The next command: 

myWindow := GetNewWindow(257 , @wRecord,POINTER (-l ) ) ; 

sets up a window defined as a resource in the application 's disk file. 
The " GetNewWindow" routine draws the window frame and tells the 

Event Manager to generate a special event called an update event. An 
update event tells the applica tions program to draw the rest of the window 
as part of its regular window maintenance cycle. Later, we see how the 
applications program detects and responds to window update events. 

Figure 6-8. Control Rectangle 
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The "GetNewWindow" routine has three parameters: an integer 
"windowlD" that is the resource identification number for the window, a 
pointer "wStorage" that points to the area of memory where the window's 
window record is stored, and a window pointer "behind" that helps locate 
the window's " depth" in relation to other windows. 

Window Resources 

Now let 's examine window resources. Chapter 3 discussed how each 
applications program consists of a collection of resources. The program's 
code is one such resource; other resources include constants such as initial 
values for the fields of windows and controls. For our example programs, 
a resource definition file is like source code for these resources. It names 
the file where the raw machine code is located and explicitly gives window, 
control, and other resource definitions. When the application is processed 
into a file that is executable on the Macintosh, these resources are brought 
together. 

The window identification number specifies a resource of type "WIND" 
in our resource file that should contain the defining parameters for our 
particular window. We use a value of 257 for our identification number. 
It is larger than 256 to avoid any hint of conflict with the system's iden­
tification numbers. 

The following section of our resource definition file governs windows: 

Type WIND 
, 257 
Demonstration Window 
40 60 200 400 
Visible GoAway 
0 
0 

The first line is a type statement. It declares that the next item or 
items in the file (until we get to the next type statement) are definitions 
of windows. 

The next line is the first line of our window resource definition. It 
contains a comma followed by the resource's identifi cation number. 

The second line of the resource definition specifies its title. Here, we 
use the title "Demonstration Window". 

The third line of the resource gives the global coordinates of the 
corners of a window's port rectangle. 

The fourth line specifies the visibility of the window and the presence 
of the "goAway" box. Here, we specify the window to be "visible" (instead 
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of "hidden") and to have a "goAway" box (instead of "noGoAway" for no 
such box). 

The fifth line gives the window definition procedure's identification 
number. Here, we select zero, indicating to the Window Manager that it 
should use its procedure for a standard document window. Table 6-1 shows 
the choices for this parameter. 

The final line gives the initial value of the window's reference value. 
Remember that this number is available for the programmer's use. We 
place a zero here because we are not using this particular field. 

In "wStorage", the second parameter of the "GetNewWindow" rou­
tine, we place "@wRecord". This points to the static window record, a 
global variable. If the system is to allocate storage for the window record, 
we place a NIL value in this slot. Be aware that such storage is "nonre­
locatable": it is accessed only by a pointer, not a handle. This may make 
a difference if you are short on memory. 

The third parameter, "behind", points to the window that the new 
window is placed behind in the system's list of windows. This indicates 
how the windows appear on the screen. In this case, "POINTER(-1)" 
places it behind no other windows; that is, in front of all others. A value 
of NIL (that is, POINTER(O)) places it behind all other windows. In the 
case of this program, the particular value doesn't matter because there is 
only one window. 

The "GetNewWindow" function allocates (if necessary) and initial­
izes the window record, then returns a window pointer that points to this 
window record. In this case, we assign the value of this pointer to the 
variable "myWindow" so that "myWindow" now points to the newly 
created window. 

Table 6-1. Window Definition Procedure Numbers 

Identification Number 

0 
1 
2 
3 
4 

16 

Window Type 

Standard document window 
Alert or dialog box 
Plain box 
Plain box 
Document window without size box 
Rounded-corner window 
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hsbar 
vsbar 

Setting up Controls 

Once we have fetched the window, we set up its scrolling bar controls 
with the following statements to invoke the "GetNewControl" function: 

GetNewControl (257 , myWindow); 
GetNewControl (258,myWindow); 

The "GetNewControl" function has two parameters: an integer to specify 
a resource identification number for the control and a window pointer to 
specify the window that "owns" the control. The function returns a handle 
to the newly created control. 

Here, we define the control with resource identification numbers 257 
and 258. Again, we pick numbers larger than 256 to avoid conflict with 
the system's identification numbers. 

Control Resources 

The section of the resource file for these controls appears as follows: 

Type CNTL 
, 257 
horizontal scroll bar 
145 - 1 161 326 
Visible 
16 
1 
0 0 500 

,258 
vert i cal scroll bar 
- 1 325 146 341 
Visible 
16 
2 
0 0 500 

The first line declares that the following items (until the next "type" 
statement) are resources of type "CNTL", the resource type for controls. 
The first line of each control resource contains its resource identification 
number preceded by a comma. Here, we have resources 257 and 258. 

The second line of each control resource contains the control 's title. 
In our case, we use the title merely as documentation to label the resource 
in the resource file, since scroll bars do not actually display titles. 
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The third line specifies the control's bounds rectangle, expressed in 
local coordinates of the window to which it belongs. In our case, we 
carefully choose numbers to place the scroll bars where they belong 
relative to the initial size of our window (see Figure 6-9). (The method 
for getting the correct placement is called " trial and error".) 

The fourth line specifies whether the control is "visible" or "hidden". 
Both our scroll bars are "visible". 

The fifth line specifies the control 's procedure definition identification 
number (see Table 6-1). We select 16 to identify the procedure that draws 
scroll bars. 

The sixth line specifies the initial value of the control's reference 
value. Here, the reference value for the horizontal scroll bar equals one 
and the reference value for the vertical scroll bar equals two. Our program 
uses these values to select the proper scrolling parameters. 

The last line of the control resource defin ition specifies the initial 
settings for the current, minimum, and maximum values of the control. 
For our program, we choose a current value of zero, a minimum value of 

Figure 6-9. Initial Placement of Scroll Bars 
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zero, and a maximum value of 500 for both controls. These values control 
the displacement (in pixels) of the picture relative to the window. 

Drawing the Picture 
The procedure "PenShapes" draws a diagram that illustrates Quickdraw's 
pen size attribute. It shows an array of pen sizes. However, it could easily 
display some other diagram or document. The procedure is independent 
of window management. It simply uses QuickDraw routines to make a 
picture. The exact appearance of that picture (how much is displayed and 
where) depends on the window's size and position on the screen. 

The "PenShapes" procedure has four INTEGER parameters. The first 
two specify the horizontal and vertical displacement for scrolling the 
diagram. The second two specify the number of columns and rows in the 
display array. In this program, we display 400 pen sizes in a 20 by 20 
array by passing a value of 20 for the last two parameters when this 
procedure is called. 

Titling the Picture 

The procedure erases the screen, then draws a fancy title at the top of the 
illustration. We call several QuickDraw routines to control the fanciness 
of the title. 

We call "TextFont" to set the font. In this case, we use the constant 
"Athens" to specify font number seven. Table 6-2 lists other choices. Not 
all choices may be available on the disk you use. 

We then call "TextFace" to set the style. The parameter for the "TextFace" 
routine is a Pascal set. More precisely, it is of type "Style", defined by the 
following Pascal type declarations: 

Styleitem (bold, italic , under line , outline, 
shadow, condense, extend) ; 

Style = SET OF Styleitem; 

In our program, we select " italic", "outline", and "shadow", passing them 
in Pascal's square bracket set notation. 

Next, we call "TextSize" to set the text size to 24 points. The text 
size is the vertical distance between lines of text - about 72 points per 
inch; thus, our title is contained within a height of about one-third inch. 
In general, any integer size can be specified. However, the results look best 
when the text corresponds to an existing size for the selected font. The 
next best results occur when the text size is an even multiple of an existing 
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size. The Font Manager has routines to determine the existing fonts and 
sizes. Applications such as "Font Mover" also allow you to specify the 
sizes of the fonts on your disk. 

The title is positioned with a "MoveTo" command. The position 
depends on the displacement "vector" (x,y) specified by the first two 
parameters of the " PenShapes" routine (see Figure 6-10). In our program, 
this di splacement is controlled by the horizontal and vertical scroll bars. 

To place the picture in the correct "scrolling" position, we subtract 
the displacement vector from the normal position. We center the title over 
the diagram, using a formu la similar to the one in the "Title" procedure 
(see Chapter 5). We use "StringWidth" to size our title and "DrawString" 
to draw the ti tie. 

Now let's draw the pens - a study in relative motions (see Figure 
6-11). First, we move to an absolute location within the window. This 
location is determined by subtracting the displacement vector (x,y) from 
the location of the first pen shape (in local coordinates). Everything in the 
diagram is drawn relative to this point. 

The pen shapes are drawn within a double FOR loop that indexes all 
the rows and columns of the display. At the core of this double loop are 
three statements: 

PenSi ze (I , J ); 
Line (0 , 0 ); 
Move (i s ize , OJ; 

Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Table 6-2. Fonts 

Name 

systemFont (normally Chicago) 
applFont 
New York 
Geneva 
Monaco 
Venice 
London 
Athens 
San Fran 
Toronto 
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These statements set the pen size, draw a single image of the pen , and 
move to the next horizontal position of the pen. Here, the constant "isize" 
specifies the size of the imaginary box occupied by each pen image, 
therefore the size of the relative move between boxes. 

After each row follows the statement: 

Move( - isize*Maxi , isize); 

to move to the beginning of the next row. After the entire array is drawn, 
the "PenNormal" routine resets the attributes of the pen to normal and 
exits our procedure. If we do not call "PenNormal", lines around the scroll 
bars become too fat and cover the grow box and scroll bars. 

Showing the Picture 
The "ShowPict" routine "mounts" the diagram on the window. It interfaces 
the drawing procedure to the Window Manager's routines. Its only param­
eter is a window pointer, which points to the window that the picture is 
drawn in. 

Figure 6-10. Positioning the Title 
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The procedure begins by calling the "ClipRect" routine to set the 
current limits of the clipping bounds region " clipBnds" (see Figure 6-12) . 
As discussed in Chapter 4, QuickDraw automatically clips anything it 
draws to this gra£Port region. 

Clipping is needed because the full illustration is usually larger than 
the window area in which it is displayed. If the illustration is not clipped 
to this display area , then it spills into the scroll bars or beyond the window. 

Since the window can "grow", this area changes size under the user's 
control and must be adjusted each time we draw the picture. 

The limits of the clip region are computed by taking the window's 
port rectangle minus 15 pixels on the right and bottom for the scroll bars 
and grow box. This places the region in the center of the window, below 
the title bar, and to the left and above the scroll bars and grow box. 

A WITH statement around this calculation simplifies the formula, 
allowing direct use of the various fields of theWindow' .portRect. We use 
the QuickDraw routine to set the clipping. 

The next statement ca lls our "PenShapes" procedure, but only if the 
current window (given by the window pointer "theWindow") is our draw­
ing window (given by the window pointer "myWindow"). In general, we 

Figure 6-11. Relative Position of the Pens 

(I 0-x, 60- y) 
~ . - -

o first pen posllion 
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make such tests to avoid drawing in the wrong window, such as one 
belonging to a desk accessory. 

Of course, we don't have any desk accessories in this program, but 
the current w indow could be "empty". This happens when you select a 
point outside a w indow. In this case, the window pointer "theWindow" is 
NIL (zero value). Drawing under such circumstances could cause a very 
strange crash. 

When dealing with several windows, we can use a CASE sta tement 
to branch to a procedure to draw the picture belonging to a given window. 

When we call "Penshapes", we pass the scrolling displacement in 
the first two parameters. Using the "GetCtlValue" function, we fetch the 
horizontal displacement from the horizontal scroll bar control and the 
vertical displacement from the vertica l scroll bar control. Thus, we use 
the control's own value field to store these essential quantities. We see the 
advantages of this later. 

Before returning from thi s procedure, we reset the clip region to 
"drawRect". This ensures that the scroll bars and grow box operate prop­
erly. Otherwise, they might not update in response to the user's mouse 
commands. 

Figure 6-12. The Clip Bounds 
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Growing Windows 
The next procedure, "WindowGrow", manages the resizing of the window 
in response to dragging the grow box (see Figure 6-13). This routine is 
called from the main program when the mouse is pressed in the grow box. 

The procedure has two parameters: " the Window", which is a window 
pointer, and "thePt", which is a point. The procedure "grows" "the­
Window" starting with the cursor at "theFt". 

The procedure has two variables: a long integer "WSize" and a point 
"S". Both hold the window's size, but differently. 

The "WindowGrow" procedure first invokes the Window Manager's 
"GrowWindow" function to track the motions of the grow box and return 
the final window size when the mouse button is released. "GrowWindow" 
has three parameters: a window pointer, a point, and a rectangle. The first 
two parameters are the same as those described for our " WindowGrow" 
procedure, so we pass " theWindow" and " theFt" along from our proce­
dure to this routine. The third parameter specifies the minimum and 
maximum allowable sizes for the window. We pass "SizeBnds" in this 
slot. The exact values are specified in the main program a long with limits 

Figure 6-13. Dragging the Grow Box 
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for other rectangles. "GrowWindow" returns a long integer that specifies 
the size in a "packed" form. 

We grab the value returned from "GrowWindow" in the long integer 
"WSize". However, if the grow box is not moved but merely clicked, this 
returned value is zero. If WSize is zero, we should do nothing else: the 
size is wrong (zero!), and the scroll bars cannot move properly in response 
to no amount. 

If WSize is zero (no motion), we call the Pascal "Exit" procedure to 
exit from the routine. If the window is to be resized, we continue. (We 
could instead surround the last part of this routine with an IF. .. THEN 
statement, but that increases the complexity of the program's structure, 
adding another level of indentation.) 

First, we use "SetPt" with the "loWord" and "hiWord" functions to 
convert the window's size from its "packed" form in the long integer 
"WSize" to "S", which is a point. This provides easier access to its 
individual horizontal and vertical components. 

Next, we call "Size Window" to move the window frame. This routine 
has four parameters: a window pointer to the affected window, an integer 
to specify the new horizontal size, an integer to specify the new vertical 
size, and a Boolean to specify whether the system should generate an 
update event after the window is resized by this command. We pass 
''theWindow'' to the first parameter. We pass the horizontal component of 
the size in the form "S.h" to the second parameter. We pass the vertical 
component of the size in the form "S.v" to the third parameter. We pass 
"true" to the fourth parameter, indicating that we want the Window Man­
ager to generate update events when the window is resized. 

The growicon and the scroll bars do not automatically move when 
the window is resized. We must move them ourselves. We call "Draw­
Growlcon" to redraw the grow box and call "SizeControl" and "Move­
Control'' for each scroll bar. The sizes and positions for the scroll bars 
depend directly on the size of the window (see Figure 6-14). Closely 
examine the figure and the program to see what these dimensions are. 

The Scroll Routine 
The next procedure, "ScrAction", is unusual: it involves a unique coop­
eration between the Macintosh's built-in software and an applications 
program. It is never directly called by an applications program. Instead, 
it is an action routine called by the Control Manager's tracking routine to 
repeatedly perform a specified action during tracking. This occurs when 
our program calls the tracking routine, which in turn calls the action 
procedure. 
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When we track the scroll bars in our program , we want to repeatedly 
scroll the picture as the user presses the up or down buttons or the page 
up or down controls. Yet , we want the Control Manager to perform high­
lighting and other tracking operations. 

Our control action routine has two parameters: a control handle to 
specify the control being tracked and a part code to specify a particular 
part of that control. 

The parts for scroll bars have codes, specifi ed by the following Pascal 
constants statements: 

inUpButton = 20; 
inDownButton = 21; 
inPageUp 22; 
inPageDown 23; 
inThumb 129; 

( -

The first four parts require special action; the las t, "inThumb", does 
not. The difference is that the first four parts are " buttonlike" and signal 
the program that the user wants to do something; the last part is an 

Figure 6-14. Relative Size and Positions of Scroll Bars 
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"indicator" that the Control Manager knows how to drag and update. In 
our case, we tell the Control Manager to use our action procedure only if 
the first four parts occur. If an action routine were used for the " inThumb" 
case, we would require a different syntax for our action routine - one 
with no parameters . 

Now let's look at our action procedure. It has two local variables: 
" pagesize" and " delta", both integers. These help to determine the amount 
and direction of scrolling. 

The procedure begins by setting the "pagesize". This is the distance 
that we scroll if the user selects " page up" or "page down" (see Figure 
6-15). 

The value of "pagesize" depends on the size of the current port 
rectangle as well as the direction in which we scroll. The entire statement 
is surrounded by a " WITH thePort" .thePort DO" statement so that we can 
directly use the " right", " left", "bottom ", and "top" fields of this rectangle. 

We use the reference values in the horizontal and vertical scroll bar 
controls to drive a CASE statement. A value of one indicates the horizontal 

Figure 6-15. Page Size 
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scroll bar. A value of two indicates the vertical scroll bar. The formula for 
the horizontal direction is: 

pagesize : = right - left - 16; 

The formula for the vertical direction is: 

pagesi ze : =bottom - top - 16; 

We must subtract 16 in each formula due to the space occupied by the 
scroll bars. 

We immediately exit the procedure if neither case occurs. 
We then see which part of the control is selected and set "delta" 

accordingly. If none of the four parts is selected , we immediately exit the 
procedure. 

Now we use "GetCtlValue" and "SetCtlValue" to increment the con­
trol 's value by " delta". We then call "ShowPict" to display our picture in 
its new position. That's all there is to scrolling: change the displacement 
and redraw the picture. However, the procedure can be refined. For ex­
ample, " ScrollRect" may shift only part of the picture, and the update 
region can be set to redraw only newly visible parts. 

Test the scrolling controls to see how all this works. 

Managing Window Scrolling 
The routine "WindowScroll" manages scrolling in our program. It is called 
from the main program when the mouse is pressed in the content region 
of the window. 

The procedure has two parameters: a window pointer that points to 
the window we want to scroll, and a point that is the current mouse 
position. 

The procedure has a local variable, " theCtl", a control handle used 
to select one of the two scroll controls. 

We begin the procedure by ca lling the QuickDraw "SetPort" routine 
to make the grafPort of the specified window into the current grafPort. 
Next, we call the QuickDraw "GlobaltoLocal" procedure to convert the 
mouse position from global to local coordinates. Once a window is se­
lected , its local coordinates are used for all drawing and all controls. 

Now we find and track the controls. First , we call the Control Man­
ager's "FindControl" function to see if the mouse is pressed in one of the 
two controls. 
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The Control Manager's "FindControl" has three parameters: a point 
that specifies the current mouse position in the window's local coordi­
nates, a window pointer that points to the desired window, and a control 
handle that is passed by reference. If the mouse is pressed in a control, 
the function returns a handle to it in the last parameter. The function also 
returns the part code as the return value of the function. If the mouse is 
not pressed in a currently active control, it returns a zero as the part code 
and NIL for a control handle. The special feature called "hilite code" is 
not used. 

We feed the part code from "FindControl" into a CASE statement. 
Each case uses the "TrackControl" function to track the control; that is, 
perform normal highlighting as the user moves the mouse with the mouse 
button down. 

The "TrackControl" function has three parameters: a control handle 
to the selected control, a point that is the current position of the mouse 
in local coordinates, and a pointer to the programmer's action procedure 
(if any). The "TrackControl" funtion returns the part code once the mouse 
button is released. If the mouse is released in a part other than where 
pressed, this part code is zero. 

If the part code from ''FindControl'' indicates one of the ''buttonlike'' 
controls, we call "TrackControl", passing the address of our "Scroll­
Action" procedure to update the control's value and the picture during 
tracking. In this case, the "Track Control" function is surrounded by a 
''dummy'' IF..THEN statement, since we don't want to waste a variable to 
pick up its returned part code. This also indicates that nothing is required 
after tracking. 

If the part code from "FindControl" indicates the thumb indicator, 
we call "TrackControl", passing a pointer value of NIL for the action 
routine. Again, we place "TrackControl" in an IF..THEN statement. How­
ever, in this case, we call our "ShowPict" routine if the returned part code 
is nonzero; that is, the picture is redrawn only after all the tracking is 
completed. 

Updating and Activating a Window 
Our last procedure, "WindowUpdate", controls the updating and activa­
tion of our display window. Updating occurs when a window is resized 
or dragged so that parts formerly hidden become visible. These need to 
be redrawn, or at least specified, by the applications program. Activation 
occurs when a window is first created or selected. With several windows, 
both activate and deactivate events occur as different windows are se-
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lected. In our case, the activate event occurs only once as a result of the 
"GetNewWindow" command. 

Our "WindowUpdate" procedure has one parameter: a window pointer 
to the window that needs attention. 

We begin the procedure by calling the QuickDraw "SetPort" routine 
to make the grafPort of the specified window into the current grafPort. 
Next, we call the Window Manager's ''BeginUpdate'' routine to begin the 
update process. This routine replaces the window's "visRgn" with the 
intersection of the window's visRgn and update region. The picture is 
thus restricted to only those areas of the window needing attention. The 
window's update region is then emptied, assuming that updating is com­
plete for that particular window. 

The next two lines are just for fun and should not be placed in a real 
application. The first inverts the update region, the second beeps for a 
time. This gives a chance to see the areas of the screen being updated. 

Now we update. Be aware that three separate parts of the system 
cooperate in the updating process. The Control Manager's "DrawControls" 
is called to draw the scrolling controls. The Window Manager's "Draw­
Growlcon" is called to draw the grow box. The "ShowPicf' procedure is 
called to draw the picture. 

Finally, we call "EndUpdate" to restore the orginal visRgn of the 
window's grafPort. 

The Main Program 
The main program controls the flow of events. Like the example program 
in Chapter 5, it has an initialization section and a main loop. 

Initializing Section 
In the initialization section, we call our "SetUp" procedure to initialize 
QuickDraw and the various managers. Next, we initialize the three rec­
tangles, "drawRect'', "sizeBnds", and "dragBnds", which define the de­
limiting parameters to draw, resize, and drag. In this program, these limits 
are gathered in one place for the convenience of the programmer who 
maintains this program. 

The main loop is a REPEAT ... UNTIL loop. As before, the Boolean 
variable "done" in the UNTIL clause controls the loop. Before the loop, it 
is set to false. In the loop, the user can set it to true. That happens in this 
program if the user selects the window's "go Away" box. 

As in the Chapter 5 program, the loop begins by calling the "Get­
NextEvent" function in an IF. .. THEN statement. The THEN part is exe-
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cuted only if the Boolean from "GetNextEvent" is true, indicating that our 
program is to handle the event. 

At the heart of the loop is a CASE s tatement driven by the "Get­
NextEvent" function. In thi s program, we want to deal only with " mouse­
down", " update", and "activa te" events. Of course, you can add other 
cases to expand the capabilities of the program. Within the " mouseDown" 
case is another CASE statement dri ven by the "FindWindow" fun ction to 
determine which part of the window the mouse was in when pressed. It 
also finds out which window it was in. Of course, in our program there 
is only one window to find. 

The "FindWindow" funct ion has two parameters: a point to show 
where the mouse cursor is or was; and a window pointer that , upon return , 
points to the mouse's window. The last parameter is passed by reference. 
The function returns an integer w ith a "part code" for the window. The 
following Pascal statements give the standard window part codes: 

inDes k = 0 ; 
inMenuBar = 1; 
inSysWindow = 2 ; 
inContent = 3 ; 
inDrag = 4 ; 
inGrow = 5 ; 
inGoAway = 6 ; 

In this program, we use only the last four statements: "inContent", " inOrag", 
" inGrow", and " inGoAway". 

If the mouse is pressed in the content region, we branch to the 
"inContent" case, where we call our "WindowScroll " procedure. It verifies 
that the mouse position is in one of the scrol l controls. If so, it provides 
the appropriate tracking and scrolling. 

If the mouse is pressed in the drag region, which for our window is 
the title bar (except for the goAway box), we branch to the "inDrag" case, 
where we ca ll the Window Manager's "OragWindow" routine. This routine 
handles the entire window dragging process except for updating. The 
Window Manager generates an update event when parts of the window's 
contents are dragged into view from outside the viewing screen. 

The "DragWindow" routine has three parameters: a window pointer 
that points to the affected window, a point that contains the mouse position 
in global coordinates when the button is pressed, and a rectangle that 
specifies the limits in global coordinates so that you can drag the top left 
corner of the content region of the window. In our program, the "dragB nds" 
is passed as this last parameter. Earlier, it was set to a rectangle slightly 
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smaller than the active part of the screen so that the window is never 
dragged completely out of sight. 

If the mouse is pressed in the grow box, we branch to the " inGrow" 
case, where we call our "WindowGrow" procedure. This routine resizes 
our window. It usually generates update events, which we handle with 
the " update" case. 

If the mouse is pressed in the goAway box, we branch to the " in­
GoAway" case, where we call the Window Manager 's "TrackGoAway" 
function. This function does the proper highlighting actions for tracking 
the cursor, which in th is case is drawing little star-shaped lines - or 
" highlights"- around the goAway box until the user releases the mouse 
button. It then returns with a Boolean that is true if the mouse is still in 
the goAway region and false if not. In our case, we assign this result to 
our Boolean variable "done". 

These are a ll the cases for "mouseDow n ". For " u pdate" and 
"activateEvt", we call our "Window Activate" routine. Again , this updates 
(redraws) just those portions of the content region of the window that 
need updating. In this program, we can use the same procedure to update 
and activate windows. For update and activate events, the" .message" field 
of the event record contains a numerical value that is the address of a 
pointer to the given window. We pass this pointer value in the following 
form: 

POINTER (theEvt . message) 

to our "WindowUpdate" routine. 
That's all there is to the loop. It continues until the go away condition 

is met by the user. 

Summary 
In this chapter, we have studied the Window Manager and the Control 
Manager, which allow us to control a single window on the screen . We 
have seen how to scroll , drag, resize, and update a w indow, and how to 
make it go away. In Chapter 7, we introduce those concepts that allow us 
to handle several windows at once. 

This chapter covered the following ROM routines: 

WM-InitWindows 

WM-GetNewWindow 

CM -GetNewControl 
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QD-TextFont 

QD-TextFace 

QD-TextSize 

QD-PenSize 

QD-Move 

QD-PenNormal 

CM-GetCtlValue 

WM-GrowWindow 

WM-SizeWindow 

CM-SizeControl 

CM-MoveControl 

WM-DrawGrowlcon 

CM-GetCRefCon 

CM-SetCtlValue 

QD-GlobaltoLocal 

CM-FindControl 

CM-TrackControl 

WM-BeginUpdate 

OU-SysBeep 

CM-DrawControls 

WM-EndUpdate 

WM-Find Window 

WM-DragWindow 

WM-TrackGoAway 
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7 
Overlapping Windows 

This chapter covers the following new concepts: 

• Pictures 

• Polygons 

• String Resource 

• Overlapping Windows 

• Hiding and Showing Windows 

• Window Selection and Highlighting 

• Window Updating 

In this chapter we describe how to manage multiple overlapping windows. 
We also introduce more advanced techniques in picture making and 
window management , including pictures, polygon s, and fine scrolling. We 
begin with short descriptions of p ictures and polygons, then describe a 
programming example that illustrates how to manage several windows at 
once. We fill one window with an image drawn with a picture and fill 
another window with a series of images drawn with polygons. 

Pictures 
A picture is a list of basic QuickDraw drawing commands in a compressed 
format in which each drawing command is encoded as a single-command 
byte followed by data bytes. This is more efficient than using the com­
mand 's full name or trap code. As we see later, frequently used commands 
have shortened versions for easier access. 
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A picture is a way to handle graphics information to be displayed in 
a Macintosh window. However, uses of pictures include storage of graphics 
information on disk and transmission of graphics information to a remote 
device such as an intelligent printer. The compressed format is useful in 
these applications because it saves memory space, transmission time, and 
execution time. 

In this section , we briefly review this format so that you understand 
the picture-drawing facilities of Quickdraw. For example, you see how 
quantities that determine the s ize and shape of objects in the picture are 
frozen as constants when the picture is made. This is valuable when 
planning or debugging your own graphics programs. 

As of this writing, Apple has not documented this format, which 
makes it subject to change. The routines that generate and interpret these 
commands are in ROM, so any change is unlikely, although possible, since 
new RAM routines can be substituted for the original ROM routines. 

A picture is accessed through a picture handle that is defined through 
the following Pascal data s tatements: 

PicHandle 
PicPtr 
Pic ture 

· PicPtr ; 
· Picture ; 
RECORD 

picSize : INTEGER; 
picFrame : Rect ; 
{picture definition data } 

END; 

That is , a "PicHand le" is a pointer to a "PicPtr", which in turn points to 
a "Picture" (see Figure 7-1). Recall that this double pointer system is 
required if the picture is to be properly handled as a dynamic variable. 

Given the above declaration, we see that "Picture" is a record con­
sisting of two fields that Pascal knows about, plus data that only Quick.Draw 

Figure 7-1. Picture Handles, Pointers, and Data 
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knows about. The Pascal field ". picSize" gives the number of data bytes 
in the picture. This information is needed by the Memory Manager. The 
field ".picFrame" is a rectangle that encloses the picture. 

The picture definition data follows the second field . Picture-drawing 
commands are stored in this data as sequences of bytes, like a kind of 
machine language. In this case, the machine language consists of graphics 
commands. These commands are called picture definition code rather 
than central processor commands. Think of the picture-drawing process 
as running a graphics "processor" that executes these picture-drawing 
commands. Of course, this particular graphics processor is constructed 
of software. But imagine a hardware processor, perhaps in some peripheral 
equipment, that reads and executes such graphics "programs". 

Each picture-drawing command begins with a command byte, acting 
like a machine language operation code. Following each command byte 
are several data bytes. These data bytes contain "literal" values needed 
by QuickDraw to draw the picture. For example, the command to change 
the pen size to (2, 3) is encoded in hexadecimal as follows: 

07 , 0003 , 0002 

The "07" is the command byte for pen size, " 0003" is an integer constant 
that specifies the vertical size of the pen, and "0002" is an integer constant 
that specifies the horizontal size of the pen. Notice that the vertical com­
ponent is stored first, corresponding to the way these quantities are stored 
internally. 

There are a variety of line-drawing commands. For example, the com­
mand byte with hexadecimal value $20 followed by integers y1, x1, y2, 
x2 draws a line from (x1,y1) to (x2,y2), and the command byte $21 
followed by integers y, x draws a line from the previous current position 
to the point (x,y). Also, a command for "short" lines uses byte-sized 
vertical and horizontal displacements. This last command uses only three 
bytes of picture definition code, therefore runs faster and requires less 
storage. 

The commands for drawing text specify a location (absolute or rela­
tive) and a literal string. For example, a command byte $28 followed by 
integers y and x and a string moves the pen to the position (x,y) and draws 
the string there. 

It is important to understand that all expressions are evaluated when 
the picture definition is created and that only the resulting constant or 
literal values are stored in the picture definition data. This means that 
once the picture is created, you cannot effectively control parameters in 
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your program to determine the placement of lines, the size and spacing of 
rectangles or text strings, and the patterns to fill shapes. 

f\Tote that not every QuickDraw command is immediately converted 
to a corresponding picture definition command. For example, "Move" and 
"MoveTo" are not translated until something is drawn, such as a line or 
a string. 

Polygons 
Polygons are figures formed by a series of line segments (see Figure 7-2). 
Once a polygon is defined, it can be outlined, filled, erased, or inverted, 
just like rectangles, ovals, and regions in previous chapters. 

The "Stars" procedure of our example program, discussed later, il­
lustrates how polygons are defined and drawn. You may want to look at it 
before proceeding with this discussion. 

Structure of Polygons 
We begin with the internal structure of polygons. Normally, the program­
mer refers to a polygon only by its handle, not needing to know the internal 
structure. But to truly understand polygons, we must look at this structure. 

A polygon handle is a variable of type "polyHandle", defined by the 
following declaration: 

Po l yHandle 
PolyPtr 

"PolyPtr ; 
"Polygon ; 

Line 

Figure 7-2. A Polygon 
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Polygon = RECORD 
polySize: INTEGER ; 
polyBBox: Rect ; 
polyPoints : ARRAY [0 .. 0) OF Point; 

END; 

That is, a "PolyHandle" is a pointer to a "PolyPtr", which points to a 
"Polygon". A "Polygon" is where the data is stored. 

A polygon is a record structure with three fields (see Figure 7-3). The 
first field, " .polySize", is an integer that specifies the number of data bytes 
stored in the polygon. This is required for memory management. The 
second field , " .PolyBBox", is a rectangle that bounds the polygon. In our 
"star" example, we see how this ".polyBBox" increases the performance 
of our drawing. 

The third field , ".polyPoints", is an array of points that specifies the 
vertices of the polygon. Later, we explain how to load values into these 
vertices. 

Defining Polygons 
Polygons are defined using the " OpenPoly" function and the "ClosePoly" 
procedure. The "OpenPoly" function returns a handle to a newly created 

Figure 7-3. Internal Structure of Polygons 
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polygon, turns off drawing to the screen, and causes subsequent line­
drawing commands to accumulate as part of the polygon. 

Once a polygon is open, you can define the polygon with "Line" and 
"LineTo" commands (and perhaps an initial "Move" or "MoveTo"). The 
first "Line" or "LineTo" command places the two end points of the line 
in the" .poly Point" array. The first point is the current position before the 
first line is drawn. The second point is the current position after the 
"line" command. Each subsequent line-drawing command places the new 
position in the" .poly Point" array. Thus, the number of vertices is always 
one more than the number of lines drawn. 

The polygon is closed by the "ClosePoly" command. This computes 
a rectangle that fits around the polygon, storing it in the" .polyBBox" field 
of the polygon, and shows the pen again. 

Drawing Polygons 
Once a polygon is defined, you can use the commands "FramePoly", 
"FillPoly", "PaintPoly", "ErasePoly", and "InvertPoly" to draw with it. 
Each of these commands is invoked with the polygon handle as a parameter. 

You can use the "OffsetPoly" routine to move a polygon around, 
drawing anywhere on the screen. We do this in our "stars" procedure. 

The Example Program 
The example program in this chapter demonstrates how to manage several 
windows at once. The windows can be moved and resized so that they 
overlap or even hide each other. The Window Manager takes care of all 
such details if we do our part. 

When the program signs on, only one window is visible (see Figure 
7-4). It is called the control window, and its sole function is to control 
other windows. It has the form of a rounded rectangle and contains two 
control buttons. A button labeled "graphics" makes a window containing 
graphics appear. The button labeled "text" makes a window containing 
text appear (see Figure 7-5). The control window has a goAway box that, 
when pressed, terminates the program. 

The text window and the graphics windows are called display win­
dows because they display graphics or textual information. Both have 
vertical and horizontal scroll bars that allow scrolling by thumb, page, 
and button controls. They also have grow boxes for resizing and goAway 
boxes to make them disappear. 

The graphics window displays an array of stars, illustrating absolute 
and relative "move" and "line" commands and polygon drawing. 
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The text window displays some text that describes the program. This 
window illustrates string resources and pictures. 

Now let's look at the program. It is longer than our previous programs, 
but it is divided into easy-to-understand segments. 

PROGRAM Windows; 
{ $R- }{$X- } 

USES 
{SU obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{$U obj / Toolintf 

CONST 

VAR 

isize = 4; 

done : boolean ; 
theEvt : eventRecord; 

Memtypes , 
QuickDraw, 
OSintf , 
Tool!ntf; 

CtlWindow, theWindow: WindowPtr ; 

Figure 7-4. The Control Window 
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URgn: RgnHandle ; 
dragBnds , sizeBnds : Rect ; 
Pi ct : ARRAY [1 . . 2] OF PicHandle ; 
pi cBnds : ARRAY [1 .. 2] OF Rect ; 
CtlButton: ARRAY [1 .. 2] OF ControlHandle ; 
hsbar, vsbar : ARRAY (1. . 2] OF ControlHandle ; 

PROCEDURE SetUpSys; 
BEGIN 

InitGraf (@thePort) ; 
InitFonts ; 
InitWindows ; 
FlushEvents (everyEvent,Ol ; 
SetEventMask(everyEvent) ; 
InitCursor ; 
URgn : = NewRgn ; 

SetRect (picBnds[1] , 
SetRect(picBnds[2] , 
SetRect (sizeBnds , 
SetRect (dragBnds, 

0, 
0 , 

50 , 
4 , 

0 , 
0 , 

50 , 
24 , 

512, 
512 , 
512 , 
508 , 

342) ; 
342 ); 
342) ; 
338) ; 

Figure 7-5. The Graphics and Text Windows 
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done 
END; 

fal se ; 

PROCEDURE Stars (VRgn RgnHandle ); 
CONST 

maxi 
maxJ 

VAR 
I , J 
Star 

BEGIN 

= 10; 
10; 

INTEGER; 
PolyHandle ; 

Moveto (10 , 0); 
Star := OpenPol y; 

Line (-17 , -7 ) ; 
Line (7, 17 ) ; 
Line (?, -17 ); 
Line( -17 , 7); 
Line(17 , 7); 
Line ( -7 , - 17) ; 
Line ( -7 , 17 ) ; 
Line (l7 , -7 ); 

ClosePoly ; 
OffsetPoly (Star, 30 , 40l; 
FOR I : = 1 to Maxi DO BEGIN 

FOR J : = 1 to MaxJ DO BEGIN 
IF RectinRgn (Star ·· . polyBBox, VRgn) THEN FramePoly (Star); 
OffsetPoly (Star , 50 , 0) ; 

END; 
OffsetPoly (Star , -50*Maxi , 50) ; 

END; 
END; 

PROCEDURE Explain; 
VAR 

theText : Handle ; 
IPtr : • INTEGER; 
S : StringPtr ; 
i : INTEGER; 

BEGIN 
t heText := GetResource( 'STR#' , 256); 
HLock (theText ); 

IPtr := POINTER (ORD(theText") ) ; {point to nurn of s trings } 
S : = POINTER (ORO (theText • J + 2); {point to first string} 
FORi := 1 TO IPtr" DO BEGIN 

MoveTo (l0,10+20*i J; 
DrawString(s· ); 
S := POINTER ( ORD ( S) +LE~GTH ( S " )+l) ; 

END; 
HUnLock(theText ); 

END ; 

{beginning of line} 
{draw the string} 
{point to next string} 
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PROCEDURE SetUpWindows; 
BEGIN 

{set up control window ! 
CtlWindow : = GetNewWindow(257 , NIL,POINTER(-l)) ; 
CtlButton[l] := GetNewControl(257 , CtlWi ndow) ; 
Ct1Button[2) : = GetNewControl (258 , CtlWindow); 

{set up graphics window} 

theWindow := GetNewWindow (258, NIL ,NIL) ; 
SetCRefCon (CtlButton[l] , ORD(theWindow)); 
hsbar[l ] : = GetNewControl (259, theWindow) ; 
vsbar[l) := GetNewControl(260 , theWindow); 

{set up text window} 
theWindow : = GetNewWindow(259,NIL,NIL) ; 
SetCRefCon (CtlButton[2] ,0RD (theWindow)); 
hsbar[2] := GetNewControl(26l,theWindow); 
vsbar[2) : = GetNewControl(262 , theWindow) ; 
SetPort(theWindow); 
ClipRect(picBnds[2J l; 
Pi ct[2) := OpenPicture(picBnds[2] ); 

Expl ain ; 
ClosePicture ; 

END; 

PROCEDURE UpdatePic(i 
VAR 

S: Point ; 
BEGIN 

INTEGER; URgn RgnHandle ); 

If i = 0 THEN Exit(UpdatePic) ; 
SetPt(S, GetCtlValue(hsbar[i] ) , GetCtlValue (vsbar[i)) ); 
SetOrigin (S. h, S. v); 
OffsetRgn(URgn,S . h, S. v); 
SetClip (URgn); 
EraseRgn (URgn); 
CASE i OF 

1: Stars (URgn) ; 
2: BEGIN 

Hlock(Handle (Pict[i) )); 
DrawPicture (Pict[i] , picBnds[i) ); 

HUnlock(Handle (Pict[i) )); 
END ; 

END; 
SetOrigin (0, 0); 
ClipRect (thePort · . portRect); 

END; 
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PROCEDURE ScrAction (theCtl : ControlHandle; partCode: INTEGER); 
VAR 

pageSize , delta , i : INTEGER; 
S, dS : Point ; 
viewBnds : Rect ; 

BEGIN 
i : = GetWRefCon (theWindow); 
If i = 0 THEN Exit(ScrAction); 

WITH thePort · . portRect DO 
CASE GetCRefCon (theCtl ) OF 

1: pagesize := right - left - 16 ; 
2: pagesize := bottom - top - 16 ; 
otherwise Exit (ScrAction); 
END; 

CASE partCode OF 
inUpButton: 
inDownButton : 
inPageUp: 
inPageDown: 
otherwise 
END; 

delta -isize; 
delta : = +isize; 
delta : = -pagesize; 
delta := +pagesize; 
Exit (ScrAction) ; 

SetPt (S, GetCtlValue (hsbar[i]) ,GetCtlValue(vsbar[i] )) ; 
SetCtlValue (theCtl ,GetCtlValue (theCtl )+delta); 
SetPt (dS , S. h-GetCtlValue (hsbar[i]) ,S.v-GetCtlValue(vsbar[i) )); 

WITH thePort · . portRect DO 
SetRect (viewBnds,left , top , right-15,bottom-15 ); 

ScrollRect(viewBnds , dS . h, dS . v , URgn) ; 
UpdatePic (i , URgn ) ; 

END; 

PROCEDURE WindowControl (thePt : Point) ; 
VAR 

theCtl : ControlHandle ; 
BEGIN 

IF theWi ndow = FrontWindow THEN BEGIN 
SetPort (theWindow) ; 
GlobalToLocal(thePt ) ; 
CASE FindControl (thePt , theWindow, theCtl ) OF 

inButton : 
IF TrackControl (theCtl , thePt,NIL) <> 0 THEN BEGIN 

HiliteControl (theCtl , 255 ) ; 
ShowWindow (POINTER(GetCRefCon(theCtl ) ) ) ; 

END ; 
inUpButton, inDownButton, inPageUp , inPageDown: 

IF TrackControl(theCtl , thePt ,@ScrAction) <> 0 THEN; 
inThumb: 
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IF TrackControl(theCtl , thePt , NIL) <> 0 THEN BEGIN 
WITH theWindow· . portRect DO 

SetRectRgn(URgn, left , top, r ight-15,bott om-15) ; 
UpdatePic(GetWRefCon(theWindow) , URgn) ; 

END; 
END; 

END 
ELSE BEGIN 

Sel ectWindow(theWindow) ; 
DrawGrowicon(theWindow) ; 
DrawCont rols(theWindow) ; 

END; 
END; 

PROCEDURE WindowGrow (i : INTEGER); 
VAR 

Wsize : LONGINT; 
S : Point; 

BEGIN 
WSi ze := GrowWindow (theWindow, theEvt.where,sizeBnds) ; 
IF WSize = 0 THEN Exit (WindowGrow) ; 

SetPt (S, loWord(WSize) , hiWor d (WSize) ); 
SizeWindow(theWindow, S. h , S. v, true ) ; 
SetPort (theWindow); 
Cl ipRect(thePor t · . portRect); 
SizeControl(hsbar[i] , S.h-13 , 
MoveControl (hsbar [ i ] , -1 , 
Si zeControl (vsbar [i] , 16 , 
MoveContro l (vsbarli] , S. h- 15 , 

END; 

PROCEDURE WindowGoAway (i : INTEGER) ; 
BEGIN 

16) ; 
S.v-15) ; 
S. v- 13) ; 

-1) ; 

IF TrackGoAway(theWindow, theEvt . where) THEN 
CASE i OF 

END ; 

0: {the control window} 
done := TRUE; 

1, 2: {the display windows } 
BEGIN 

HideWindow(theWindow) ; 
HiliteControl(CtlButton[i] , 0); 

END ; 
END; 

PROCEDURE WindowUpdate(i 
VAR 

INTEGER); 

growArea : Rect ; 

204 HIDDEN POWERS OF THE MACINTOSH 



BEGIN 
SetPort (theWindowl; 
IF i <> 0 THEN BEGIN 

WITH thePort · . portRect DO 
SetRect (growArea , right-15 , bottom-15 , right , bottom) ; 

InvalRect (growArea); 
IF theWindow = FrontWindow THEN BEGIN 

ShowControl(hsbar[i] ); 
ShowControl (vsbar[i] l ; 

END 
ELSE BEGIN 

HideControl (hsbar[i ]l ; 
HideControl (vsbar[i ]l; 

END; 
END; 
BeginUpdate (theWindow); 

InvertRect(theWindow· . por tRect); 
SysBeep (10) ; 
EraseRect (theWindow· . portRect); 
DrawGrowicon (theWindow); 
DrawControls( theWi ndow); 
WITH theWindow· . portRect DO 

SetRectRgn(URgn , left , top , right-15, bottom-15 ) ; 
UpdatePi c (i , URgn ); 

EndUpdate (theWi ndow); 
END ; {Update} 

BEGIN {main program } 
SetupSys ; 
Se tupWindows; 

REPEAT 
IF GetNextEvent(ever yEvent , theEvt ) THEN 

CASE theEvt . what OF 
mouseDown: 

CASE Fi ndWindow (theEvt . where , theWindow) OF 
inDes k: 

Se l ectWindow (Ct l Window); 
inContent : 

WindowControl( theEvt . where ); 
inDrag: 

DragWindow (theWindow, theEvt.where, dragBnds ) ; 
i nGrow: 

Wi ndowGr ow(GetWRefCon (theWindow)); 
i nGoAway: 

WindowGoAway (GetWRefCon (theWindow)); 
END; {FindWindow} 
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UpdateEvt , ActivateEvt : {update window} 
BEGIN 

theWindow := POINTER (theEvt.message); 
WindowUpdate (GetWRefCon (theWindow)) ; 

END; 
END ; {Event} 

UNTIL done; 
END. 

Data Structures 
The USES section is the same as before. The CONST section contains a 
global constant , " isize", to determine the displacement for fine scrolling 
when using the scroll bars. It is set to a value of four pixels per scroll. A 
smaller value yields finer, but slower, scrolling. A larger value yields larger, 
but fas ter, scrolling. 

Global Variables 
The VAR section contains declarations for several variables. The first two , 
"done" and "theEvt", are used in the example programs in Chapters 5 
and 6 to help manage events. The next two variables are window pointers. 
The first window pointer, "CtlWindow", permanently points to the control 
window. The second window pointer, "theWindow", is a general-purpose 
window pointer that points to the window being selected or modified. 

The global variable "URgn" helps to update windows. It is a region 
handle used repeatedly. Apple indicates that you should dispose of these 
handles after each use; but reusing the same handle has about the same 
effect. 

The next two rectangles, "dragBnds" and "sizeBnds", set limits on 
dragging and sizing. These limits are explained in Chapter 6. 

The last global variables are arrays that are indexed by the display 
window they control or belong to. This is a simple way of accessing the 
data for each window. 

The first global array, " Pict", is an array of picture handles. In this 
program, only the text display window uses a picture, but we have allo­
cated a picture handle for both. You can modify the program so that the 
graphics display window also uses a picture. However, this slows the 
graphics display scroll. We explain later some interesting techniques that 
allow us to draw faster than "pictures" can be drawn. 

The next global array, "PicBnds", is an array of rectangles that frame 
the pictures. This picture "frame" is used when a picture is defined and 
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when it is displayed. Use the same frame in both instances if the picture 
is to be drawn undistorted. 

The last global arrays are control handles. The first control array, 
"CtlButton", holds handles for the two control buttons that appear in our 
control window. 

The arrays ''hsbar'' and ''vsbar'' hold handles to control the horizontal 
and vertical scroll bars on each of the two display windows. 

Procedures 
This program has several procedures, including those to initialize the 
system, to draw pictures that are displayed, to set up windows, and to 
handle events. Let's examine these procedures. 

Setup 
The first procedure, "SetUpSys", initializes QuickDraw, the Font Manager, 
the Window Manager, the Event Manager, and the cursor. 

This procedure also allocates space for the region handle "URgn" by 
assigning it a value from the function "NewRgn". We do this once in the 
entire program, rather than each time the handle is used as Apple tends 
to do in the example programs that it provides with its development 
systems. This reduces the size of our program by a small amount. 

Next, the "SetUpSys" procedure sets the delimiting values for the 
picture bounds, size bounds, and drag bounds rectangles. The picture 
bounds are arbitrarily set up for an entire screen size. The size and drag 
bounds are set up as in the previous program. 

Lastly, this routine sets the "done" variable equal to FALSE. As in 
previous programs, "done" controls the main loop. 

Drawing Stars 
The next procedure, "Stars", draws an array of stars for the graphics 
window. Each star is drawn as a polygon, a QuickDraw data structure 
introduced earlier in the chapter. 

The "Stars" procedure expects a single parameter that is a region 
handle to the region which delimits the portion of the window to be 
drawn. We draw only the stars that touch this region. This feature greatly 
increases the speed at which the display is drawn. Speed is important for 
fine scrolling. 
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Our procedure has a CONST section in which two constants, maxi 
and maxJ, are defined and both set to a value of 10. They determine the 
number of rows and columns in the array of stars. 

Our "Stars" procedure has several local variables declared in its VAR 
section. The first two are integers "I" and "J", which index through the 
star array. The last local variable, "Star", is a "polyHandle" that provides 
access to our "Star" polygon (see the earlier discussion on polygons). 

The procedure begins by setting up the ''Star'' polygon. The first step 
is to use "OpenPoly" to "open" the polygon. This function returns a 
handle to the new polygon and begins saving all line drawing commands 
into this polygon. It also "hides" the pen so that no drawing shows on 
the screen while the polygon is open. 

In our program, we call a series of QuickDraw's relative "Line" com­
mands to form the polygon. The first "line" command places the two end 
points of the line in the polygon. The first point is the original position 
of the polygon when opened. The second point is the current position 
after the ''line'' command. Each subsequent line drawing command places 
the new position in the polygon (see Figure 7-6). The polygon is closed 
with the "ClosePoly" command. 

Once the polygon is defined, we use the "OffsetPoly" routine to move 
it around, drawing at all the positions of the array. The first "OffsetPoly" 
moves it to the upper left corner of the array, where the first star is drawn. 
Then, a double FOR loop indexed by I and J runs through all rows and 

Figure 7-6. The Star Polygon 
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columns of the array. "OffsetPoly" provides a relative motion of the poly­
gon, making the basic structure of this double loop like that of the "PenSize" 
loop in the example program of Chapter 6. 

At each position we draw the polygon only if the polygon's ".poly­
BBox" touches the "VRgn" region that was passed to the routine (see 
Figure 7-7). This provides a quick way to ensure that we draw only those 
polygons needing to be updated. 

A polygon 's bounding box (given by its" .polyBBox") defines what is 
called the extent of the polygon (see Figure 7-8). More generally, the extent 
of any figure is a rectangle that specifies the limits of the figure (minimum 
and maximum horizontal and vertical coordinates). Since the extent is a 
rectangle, it is easier to work with than the original figure, providing a 
quicker test to determine if the figure falls within a certain area on the 
screen. 

Since the extent is larger than the figure, it is possible for the extent 
to intersect an area even if the figure does not. Think of extent checking 
more as a way of eliminating parts of a picture that should not be drawn 
than as a way to find only those parts that need to be drawn. 

Extent checking really speeds up the display in our program. There 
is a total of 100 stars, each containing eight line segments, thus making 

Figure 7-7. "PolyBox" and "VRgn" 
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BOO line segments. Drawing so many lines takes a significant fraction of 
a second. If we redraw the entire display for each step of a fine scroll, the 
scrolling appears sluggish. However, if we draw only the five to twelve 
stars that need updating each time, the drawing is eight to twenty times 
faster, and fine scrolling proceeds at an acceptable pace. 

In our program, the "star" polygon is drawn with the "FramePoly" 
command. Other polygon drawing commands, such as "PaintPoly", 
"ErasePoly", "InvertPoly", and "FillPoly", produce results similar to the 
corresponding commands for other shapes, such as rectangles, ovals, and 
regions. 

Drawing Text with Pictures 
The procedure "Explain" draws the text displayed in the text window. 
The text is not located in the Pascal program itself but in a "string list" 
resource attached to the program. 

In this procedure, we directly access the internal structure of the 
"string list" resource. In Chapter 10, we learn how the built-in routine 
"GetindStr" makes this easier. Our procedure, which resembles the built­
in routine, illustrates what a programmer would have to do if this routine 
were not available. 

Our "Explain" procedure has several local variables. The first is 
"theText", a handle that accesses the "string list" resource. The second 
is "IPtr", a pointer to integers. The third is "S", a pointer to strings. The 

Figure 7-8. The Extent of a Polygon 
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, 256 

, 256 

"IPtr" and "S" pointers access information in the "string list" resource. 
The last local variable is an integer used as a loop index. 

The procedure begins with "GetResource" to access resource number 
256 of type "STR#", where we store a multiline explanation of the pro­
gram. The resource type "STR#" is a list of strings. The format of this 
resource in the resource file consists of the resource identification line, 
which in our case is simply: 

followed by as many lines of text as desired. This format allows us to 
freely compose whole blocks of text in the resource file. A blank line (a 
line of length zero or only spaces) terminates the text. 

What the resource definition looks for in this string list reads like an 
introductory explanation to our example program. This is the same text 
that we see in our text window: 

This program illustrates how to manage several windows . A 
control window has button controls that make two other windows 
appear . One of these windows displays an array of stars , the 
other displays this explanation. Both windows can be sized and 
scrolled. The control window has a goAway box that ends the 
program . The other two windows each contain a goAway box that 
makes its particular window disappear . 

The "GetResource" function returns a handle to the resource. We store 
this handle in the variable " theText". Then, we call the "BLock" proce­
dure to " lock" the block of memory containing the text data so that it 
doesn 't move as we directly access it with our own pointers. Otherwise, 
the text might get garbled. 

Once the text is locked, we set up our pointers to get the data. The 
internal format of the resource consists of an integer that specifies how 
many strings are in the list, followed directly by the strings. Each string 
consists of a byte that gives its current size, followed by the bytes con­
taining the ASCII codes of the strings. In our program, we first point 
"IPtr" to the beginning of the resource so that it points to the integer 
specifying the number of strings. Then, we point "S" to the first string, 
which is two bytes later. 

A FOR loop indexed by i runs through all strings in the resource. 
Within the loop, we use the "MoveTo" procedure to move to the beginning 
of the line on the screen and the "DrawString" procedure to draw the 
text. We then adjust the string pointer "S" to point to the next string in 
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the list. After the FOR loop, we call "HUnLock", which allows the text 
resource to be dynamically moved in memory by the memory manager. 

Setting Windows 
The procedure "SetUpWindows" initializes all three windows. It begins 
with the "GetNewWindow" routine to get the control window, then calls 
"GetNewControl" twice to get the two button controls. 

Here is the resource definition for the control window: 

,2 57 
Control Window 
40 10 80 198 
Visible goAway 
16 
0 

The first line of the control window resource definition is its identi­
fication number; in this case, 257. The second line is its title, "Control 
Window". The third line delimits its port rectangle in global coordinates. 
The fourth line specifies that it is visible and has a goAway box. The fifth 
line specifies an identification number for its window definition proce­
dure. In this case, a value of 16 indicates a rounded-corner window (see 
Figure 7-9). (In Chapter 6, we listed other possibilities.) The sixth line 
specifies the reference number. For the control window, the reference num­
ber is set to zero. 

Here are the resource definitions for the button controls: 

Type CNTL 
,257 
graphics 
10 20 3 0 100 
Vi s ible 
0 
0 
0 0 0 

Figure 7-9. Rounded-Corner Window 

0 Control Window 
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,258 
text 
10 120 30 1 68 
Visible 
0 
0 
0 0 0 

The first line of the resource for the graphics control button is its 
resource identification number; in this case, 257. The second line is the 
title, "graphics". The third line is the limits in local coordinates. The 
fourth line specifies that the control is visible. The fifth line is the control 
definition procedure; in this case, zero, indicating a standard button. The 
sixth line specifies its reference number, which is zero. We change this 
field in our Pascal program. The seventh line gives the initial values for 
the control's current value, minimum value, and maximum value. All 
three are zero for this button. 

The text control button has a similar resource. The title and location 
are different, but the other lines are the same. 

We store handles to these resources in "CtlWindow", "CtlButton[l]", 
and "CtlButton[2]", respectively. Instead of a regular window, we could 
use a dialog box for our control window, but we want to illustrate that 
dialog boxes are simply windows with a few extra "bells and whistles". 
Chapter 8 is devoted to dialogs. 

Next, we set up the window and scrolling controls for the graphics 
window. Again, we use "GetNewWindow" and "GetNewControl" to get 
the initial parameters from the resource file. Here is the resource definition 
for this window: 

Type WIND 
, 258 
Graphics Window 
100 100 200 400 
Invisible goAway 
0 
1 

Notice that it is a standard document window (see Figure 7-10). 
Here are the resource definitions for the scroll controls for the graphics 

window: 

Type CNTL 
,259 
horizontal scroll bar 
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85 -1 101 286 
Invisible 
16 
1 
0 0 450 

, 260 
vertical scroll bar 
-1 285 86 301 
Invisible 
16 
2 
0 0 450 

The graphics window uses the generic "theWindow" to temporarily 
store its window pointer. We immediately place the address of this pointer 
in the reference field of the first control button and in the "owner" fields 
of its scroll bars. We can then reuse the pointer " theWindow" for other 
purposes. This conserves the number of variables in the program, thereby 
shortening and simplifying the program. We can always recover a pointer 
to the graphics window by accessing any of these three fields. 

Finally, we set up the text window. We grab the window and scrolling 
controls as before and also create the picture for the text window. We call 
"SetPort" to make sure that the current grafPort is the text window's 
grafPort. Then , we call "ClipRect" to set the clipping region to the picture 
bounds. This is neccessary because the limits of the clipping region are 
stored in the picture definition data. The default value is a maximum 
clipping area, stretching from -32767 to 32767 in both horizontal and 
vertical directions. If you use the default setting and then try to move or 
expand the picture by drawing it to another rectangle, you will run into 
overflow problems. To avoid this, always clip before you define the picture. 

Figure 7-10. Standard Document Window 

Graphics Window 
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Now we call "OpenPicture" to start saving the picture into the picture 
handle "Pict[2]". We call the "Explain" subroutine to draw the text into 
the "opened" picture, then call "ClosePicture" to end the picture-making 
process. Here are the resource definitions for the text window and its 
controls: 

Type WIND 
, 259 
Text Window 
200 60 300 360 
Invisible goAway 
0 
2 

Type CNTL 
,261 
horizontal scrol l bar 
85 - 1 101 286 
Invisible 
16 
1 
0 0 400 

,262 
vertical scroll bar 
- 1 285 86 301 
Invisible 
16 
2 
0 0 120 

Look through the resources for these three windows. Notice that the 
control window is defined to have reference number 0, the graphics win­
dow to have reference number 1, and the text window to have reference 
number 2. These reference numbers play an important role in our program, 
allowing us to quickly determine which window we are dealing with. 

Updating Pictures 
The next procedure, "UpdatePic", draws and redraws the contents of the 
display windows as needed for scrolling and window updating. 

The procedure expects two parameters: an integer, " i", that identifies 
which window needs updating, and a region handle, "URgn", that spec­
ifies which region needs updating. 
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The "UpdatePic" procedure has a single local variable, "S", of type 
"Point". This variable temporarily holds the displacement for scrolling. 

The procedure begins by checking the specified window. If it is the 
control window, it exits immediately. This statement, though not absolutely 
necessary, is good programming practice, since certain statements in the 
procedure demand that integer "i" take on values in the range 1 .. 2. This 
precaution helps if we change the program in such a way that "i" takes 
on other values upon entry to the routine. 

We next call "SetPt" to set the horizontal and vertical components of 
"S" equal to the displacements stored in the control values for the hori­
zontal and vertical scroll bars that belong to the indicated display window. 

We then call '' SetOrigin'' to translate the local coordinate system by 
"S" followed by "OffsetRgn" to translate the "URgn" by the same amount. 
This takes care of the accumulated effects of scrolling and keeps the 
specified region in the same area of the window. 

Now we use ''SetClip'' to set the clipping region equal to the specified 
region. This ensures that only those parts needing to be drawn are drawn. 
We then erase the region. Otherwise, when we scroll to the edges of our 
drawings, the new parts do not completely fill the window; thus, they do 
not completely cover the outdated parts. 

A CASE statement now determines which of the two display windows 
is being updated. For the graphics window (assigned a reference value of 
one), we call the "Stars" procedure. For the text window, we draw the 
picture stored under the picture handle Pict[2). 

Notice that we call the Memory Manager's "HLock" routine before, 
and its "HUnLock" routine after, the "DrawPicture" command. Always 
surround the "DrawPicture" command in this way to ensure that the 
picture pointers do not tangle during the picture-drawing process. 

The "HLock" and "HUnLock" routines expect a parameter of type 
"Handle", but we want to pass a picture handle (type "PicHandle"). The 
Pascal compiler objects if we do this directly. One solution: use the ORD 
function to convert the picture handle to a long integer (its address), then 
use the POINTER function to convert this address into a neutral type of 
pointer that can be passed as a "Handle" or any other type of pointer. 

In our program, we solve the typing problem by a feature of the Pascal 
compiler called "type coercion", described in Chapter 3. This method 
uses the identifier of the desired type as a function to operate on an 
expression of the original type, returning a value of the desired type. For 
example, "Handle(Pict[2])" is an expression of type "Handle" that has 
been "coerced" from "Pict[2]", which is an expression of type "PicHandle". 

Once the picture is drawn, we use "SetOrigin" to place the origin 
back to (0,0). If we leave the origin where it is, the scrolling controls do 

216 HIDDEN POWERS OF THE MACINTOSH 



not work properly. Finally, we set the clipping region equal to the entire 
port rectangle so that the scroll bars are properly highlighted when selected. 

Scrolling 
"ScrAction" is the action procedure for scrolling. The Control Manager 
calls this procedure as it tracks a control. It updates the scrolling control 
values and scrolls the display as part of the tracking process. 

Our routine is a generalization of the scroll action procedure from 
Chapter 6. It has the same parameters, namely a control handle, "theCtl", 
and an integer, "partcode", that specifies which part of the control is 
selected. 

The procedure has several local variables. The variables "pageSize" 
and "delta" are integers that determine the amount of scrolling. The 
variable "i" is an integer that specifies which window is being scrolled. 
The variables "S" and "dS" are of type "Point" and determine the dis­
placement and change of displacement for scrolling. The variable 
''view Bnds'' is a rectangle that eli ps the drawing area of the window. 

The routine begins by loading the reference value of "theWindow" 
into the variable "i". The window pointer "theWindow" is the currently 
selected window. After this statement, we can use "i" to drive CASE 
statements and IF statements to quickly determine which window is se­
lected and therefore which action is required. 

If "the Window" is the control window (i = 0), we call "Exit" to leave 
the routine because there is no scrolling for the control window. Again, 
as in the "UpdatePic" routine, we protect against this case, even though 
it is not supposed to happen. 

The next section repeats the action routine of the program in Chapter 
6. It determines whether the horizontal or the vertical scroll bar has been 
selected and sets the page size accordingly. If neither is selected, we call 
"Exit". When we find out which part of the scroll bar is selected, we set 
"delta" to the indicated change in horizontal or vertical displacement 
values for scrolling. If no valid part is being tracked, we call "Exit" and 
leave the routine without further action. 

Next, we update the control values for the scroll bars and determine 
the actual change in displacement values for scrolling. The actual change 
differs from the indicated change when scrolling displacement reaches its 
minimum or maximum limits. In these cases, the button control should 
be tracked, but the corresponding control value should not exceed the 
delimiting value. 

We use the built-in facilities of the Control Manager to properly 
handle the control limits. First, we read the values from the scroll controls 

OVERLAPPING WINDOWS 217 



into the local variable "S" to temporarily save the original values. Then 
we update the controls by adding delta to the selected control value. Now 
we compute the difference between the original value as stored in "S" 
and the new control values. The result is placed in dS. 

We can now call QuickDraw's "ScrollRect" to perform any fine scroll­
ing by shuffling bits on the screen. We then call our own "UpdatePic" to 
redraw those parts of the picture that have come into view as a result of 
the scroll. This completes the scroll. 

Control Management 
The procedure "WindowControl" performs the general management of 
controls. It expects one parameter, a point we call "thePt". This is the 
position of the mouse when the mouse button is pressed. 

The procedure has one local variable: a control handle, "theCtl", 
which is used in the control selection process. 

The procedure begins by checking whether the mouse is pressed in 
the "front" window. This is the currently active window, in front of the 
other windows. If the mouse is in the active window, we track the controls. 
Otherwise, we make the selected window into the currently active window. 

If we decide to track the controls, we use ''SetPort'' to set the gra£Port 
to the grafPort of the active window. We use "GlobaltoLocal" to transform 
the coordinates of the mouse point to the local coordinates of "the­
Window", then use the CASE statement to determine which part of which 
control is selected (if any). 

If the "inButton" is selected, we are in the control window because 
other windows have no regular buttons. Two control buttons are in the 
control window: one for the graphics window, one for the text window. In 
this case, we call ''TrackControl'' to track the selected control. This high­
lights the button when the mouse is in the button region. For the control 
buttons, we don't want any special programmer action routine, so we set 
the third parameter of "TrackControl" equal to NIL. 

If the tracking function returns a nonzero result, the mouse has not 
left the selected control and we can safely perform the indicated action. 
In this case, we want to "unhighlight" the control button and make the 
corresponding display window visible, if it is not already so. 

If the "inUpButton", "inDownButton", "inPageUp", or "inPage 
Down'' control is chosen, we are in one of the scroll bars. In this case, we 
need to track the control with our special action routine, which we pass 
as the third parameter to the "TrackControl" routine. When this tracking 
routine returns, we don't need to perform any action. All special action 
is performed within the tracking by our "ScrAction" routine. 
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If the "inThumb" control part is selected, we track the control with 
no action routine, but we update the picture when we finish tracking. 
Before calling "UpdatePic'' we set the update region, as specified by 
"URgn", equal to the entire viewing area so that the entire picture is 
redrawn. 

This covers all cases when the selected window is the front window. 
If the selected window is not the front window, we execute the "ELSE" 
part. We call ''SelectWindow'' to highlight the selected window and bring 
it to the front. We call "DrawGrowlcon" to redraw its grow icon, and call 
"DrawControls" to redraw its controls. 

Sizing Windows 
The procedure "WindowGrow" lets the user resize a selected display 
window. It expects one parameter: an integer, "i", that specifies which of 
the three windows is selected. It has two local variables: WSize, a long 
integer to hold the horizontal and vertical components of the new window 
size; and a point, "S", a more convenient way of holding this same 
information. 

The routine begins by calling "GrowWindow" to track the grow icon 
and return the new size in "WSize". If the window's size has not changed, 
we call "Exit" and leave the routine. Otherwise, we proceed. We call 
"SetPt" to convert the size into the form of a point in "S". Then, we call 
"SizeWindow" to resize the window. 

Once the window is resized, we need to redraw its scroll controls. 
First we call "SetPort" to make sure that we draw to the right gra£Port. 
We set the clipping limits to the new window size, then resize and move 
the scrolling controls. This resembles the window sizing routine in Chap­
ter 7. 

The GoAway Box 
The procedure "WindowGoAway" handles the goAway box. It expects a 
single integer parameter, "i", which specifies one of the three windows. 

The procedure calls "TrackGoAway" to track the goAway box. If this 
Boolean function returns a TRUE, then the mouse stayed in the box when 
the button was released, and we take appropriate action. For the control 
window, we set ''done'' equal to TRUE. For a display window, we call 
"Hide Window" to make it disappear and "HiliteControl" to "undim" the 
corresponding control button. According to Apple, a button should remain 
"undimmed" as long as it can do something and "dimmed" if it cannot. 
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In this case, the button is "undimmed" because it is able to bring the 
display window back into view. 

Updating Windows 
The procedure "Window Update" provides the overall management of up­
dating windows. It properly updates the grow box, the window controls, 
and the picture in the window when an update or activate event occurs. 

The procedure expects one parameter: an integer, "i", that specifies 
which window is being updated. It has one local parameter, "growarea", 
which delineates the grow box. This updates the grow box each time the 
window is updated. 

The procedure begins by calling" SetPort" in preparation for drawing 
to the window. If the selected window is not the control window, we 
perform a series of tasks. First, we set the position of the "growarea" 
relative to the port rectangle. A WITH statement helps to shorten the 
formulas. We add the "growarea" to the update region by calling "InvalRect". 
If the selected display window is the front window, we call "ShowControl" 
to ensure that its scrolling controls are visible. Otherwise, we call 
"Hi deControl" to ensure that they are invisible. 

We now perform a series of tasks for all windows. We call "Begin­
Update" to start the updating process. This sets the visRegion equal to 
the update region and makes the update region empty. Again, we invert 
the port rectangle and "beep" in order to see what is being updated. Of 
course, these two steps are removed in an actual application. 

Next, we erase the window (only the updated part will erase), redraw 
the controls and grow box, and update the picture. Finally, we call 
"EndUpdate" to restore the VisRegion. 

The Main Program 
The main program begins by calling "SetUpSys" to initialize the system 
and "SetUp Windows" to initialize the windows and their controls. 

Most of the main program consists of a REPEAT loop that sorts the 
events and calls the approriate procedures to handle them. It is similar to 
the main loop of the example program in Chapter 6. 

The REPEAT loop begins by calling the "GetNextEvent" function in 
an IF statement. If this function returns true, we must handle the event. 
We use a CASE statement to examine the" .what" field. 

The first case of ".what" is "mouseDown". We check ".where" the 
mouse is. If it is "inDesk", we simply select the control window. If it is 
"inContent", we call our "WindowControl" procedure to check for the 
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selection of controls. If it is "inDrag", we call "DragWindow" to drag the 
window to a new location. If it is "inGrow", we call our "WindowGrow" 
procedure to resize the window and its contents. If it is "inGoAway", we 
call our "WindowGoAway" procedure to handle the goAway boxes. 

The second cases of ".what" are "UpdateEvt" and "ActivateEvt". 
Both are handled by setting "the Window" equal to the message field for 
these window updating events and calling our "WindowUpdate'' proce­
dure to handle the updating, as described previously. 

The REPEAT loop continues looping through these events until the 
Boolean "done" becomes true (whenever the goAway box of the control 
window is selected). 

Summary 
In this chapter, we have extended our knowledge of window management 
to handle multiple windows. We have seen how to manage multiple 
graphics and text windows as well as multiple button and scroll controls. 
We have seen how pictures and polygons can help us draw pictures faster 
and easier. We have also seen how to make windows and their controls 
appear and disappear at our command. 

The following ROM routines were covered in this chapter: 

QD-OpenPoly 

QD-Line 

QD-ClosePoly 

QD-OffsetPoly 

QD-RectlnRgn 

QD-Frame Poly 

MM-HLock 

MM-HUnLock 

CM-SetCRefCon 

QD-OpenPicture 

QD-ClosePicture 

QD-SetOrigin 

QD-OffsetRgn 

QD-DrawPicture 

WM -Get WRefCon 

QD-ScrollRect 
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WM-Front Window 

CM-HiliteControl 

WM-ShowWindow 

WM-SelectWindow 

WM-HideWindow 

WM-InvalRect 

CM-ShowControl 

CM-HideControl 
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8 
Dialogs and Alerts 

This chapter covers the following new concepts: 

• The Dialog Manager 

• Dialogs and Alerts 

• Modal and Modeless Dialogs 

• Dialog Record Structure 

• Dialog Item Lists 

• Setting Up Dialogs 

• Tracking Dialogs 

• Dialog Text and Control Items 

• Types of Alerts 

In this chapter, we explore dialogs and alerts. From the user's point of 
view, a dialog box is a convenient way to enter a variety of different types 
of input, including immediate actions, setting of Boolean variables, se­
lection from a few alternatives, and fully edited text. Programmers find 
dialogs convenient because they require minimal effort to program fully 
developed standard control structures for input of vital program data. 

To prove how convenient dialogs are to both the user and the program, 
we present an extremely short example program that manages control 
structures that can be successfully operated by a three-year-old child. 

Dialogs and alerts are managed by the Dialog Manager. This manager 
operates at a higher level than many managers in the Macintosh. In fact, 
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certain of its alert routines are like mini-applications. These routines first 
draw a window with controls, then loop around, repeatedly calling the 
Event Manager's "GetNextEvent" routine and the Window Manager's 
"FindWindow" routine to track the mouse as it selects its control items. 

The Dialog Manager has a number of levels, just like an applications 
program. At the lowest levels, it calls the Window Manager, the Control 
Manager, the Event Manager, Text Edit, the Desk Manager, and the Resource 
Manager. At higher levels, it mainly calls its own lower-level routines. 

Dialogs and Alerts 
Dialogs and alerts are special forms of interaction between the program 
and the user. They can be thought of as processes that have their own data 
structures and execute for awhile, like programs, in the machine. 

During a dialog or alert, information from the Macintosh to the user 
appears in a dialog box or alert box. The user inputs information in the 
usual way through the mouse and the keyboard. 

Dialogs and alerts are managed by the Macintosh's Dialog Manager, 
which, like the other managers, consists of routines and data structures 
in the Macintosh's memory. 

Dialog and alert boxes are implemented as windows (see Chapters 6 
and 7) and usually have controls associated with them. In addition to 
controls, a dialog or alert can have other entities, such as text strings, 
icons, and pictures. Associated with each dialog and alert is a list of all 
entities under its control. This dialog list is normally specified in the 
program's resource file, and the entities it contains are called dialog items. 

Much of the control tracking can be automatically handled by the 
Dialog Manager. However, a programmer can substitute a custom routine, 
called a filter, that handles these controls and other entities in the dialog 
or alert. This feature is not discussed here because the standard built-in 
routines are adequate for most purposes. However, an example of such a 
routine is contained in Appendix C. 

Comparison of Dialogs and Alerts 
The difference between dialogs and alerts is in the amount of information 
they return to the program that calls them and when that information is 
returned. 

Alerts are designed to return only a single selection variable. Their 
main purpose is to communicate a special message to the user, usually 
an error or exception message (see Figure 8-1). Normally, the only infor-
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mation returned by the user after an alert is the item number of the item 
selected. Often, this is just the "OK" button. 

Dialogs can return several kinds of information, including Boolean 
variables, sdections from a small number of possibilities, and fully edited 
text. There are two forms of dialogs: modal dialogs and modeless dialogs 
(see Figure 8-2). A modal dialog takes over all communication between 
the user and the Macintosh while it is active. In contrast, a modeless 
dialog allows other information to be exchanged while the dialog is active. 
In both cases, the applications program loops, repeatedly calling for in­
formation from the dialog and potentially using it while the dialog is still 
active. This contrasts to an alert, which disappears as soon as it returns 
information to the program. 

In this chapter, we explore modal dialogs and alerts with our example 
program. We see how just a few calls allow a programmer to set up a 
dialog or an alert, leaving most of the work to the Dialog Manager's 
routines, which deliver the results. Thus, tasks that we had to program 
ourselves in previous chapters are now done automatically in the example 
program here. 

Figure 8-1. An Alert Box 

A message can go here. 
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The Example Program 
The example program in Chapter 8 presents a dialog box with a multitude 
of buttons, boxes, and labels (see Figure 8-3). The program also displays 
two alert boxes with special system icons and our own messages. 

These controls are not connected to a true application; however, they 
can easily supply several types of data to an application. 

The programs open by drawing a large, empty dialog box on the 
screen. The dialog box is outlined with a double border consisting of a 
thick frame line surrounded by a thinner frame line. 

In the lower left corner of the dialog box are two buttons: the "OK 
button" and the "cancel" button. If you press either button, the dialog 
ends. Pressing the OK button retains any selection made during the dialog. 
Pressing the cancel button exits without saving any selection. 

At the top of the screen is a message: ''Modal Dialog Demonstration'' 
and "Type "quit" to exit.". Below this message is a box to enter text. If 
you strike keys on the keyboard, the corresponding characters appear in 

Figure 8-2. Alerts, Modal Dialogs, and Modeless Dialogs 

Alert I ======= 

Yes 
> Modal dialog I =+=Coone?) 

...____._ fNo 

Other Yes 
Modeless dialog (Done?' 

_.. .. .. selection .. 

. ~ ~ 
No 
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this box as a text string. You may edit this text in the normal way, hitting 
backspace to erase the last character, using the mouse to move the insertion 
point, or using the mouse to select a portion of text to be erased by hitting 
the backspace. In addition, "cut", "copy", and "paste" buttons in the 
bottom center of the dialog box allow you to perform the indicated action 
on this text. 

On the left side of the dialog box, about halfway down, are three check 
boxes. You can "toggle" the value of each check box; that is, each check 
box is either unchecked (blank) or checked (filled with an "x"). You switch 
between these two states by clicking the mouse in the box; one click 
"checks" the box, another click unchecks it, a third checks it again, and 
so on. That is, each check box acts like a Boolean variable that can assume 
only two values. 

On the lower right side of the dialog box are two groups of " rad io 
buttons". These buttons behave like the buttons on a car radio; that is , 
pressing any button selects that button and " deselects" all others in the 
same group. This gives a way to select one option out of several: each 
group of radio buttons acts like an integer variable that can assume a 
small number of values. The radio buttons in the first group are labeled 

Figure 8-3. The Dialog Box Filled with Items 

Modal Dialog Demonstr ation Type "quit" to exit. 

D Check Button # 1 ® Radio Button 1a 

~Check Button #2 0 Radio Button 1 b 

D Check Button #3 0 Radio Button 1 c 

OK Button~ 

Cancel 

Cut 

Copy 
0 Radio Button 2a 

@ Radio Button 2b 

DIALOGS AND ALERTS 227 



"radio button 1a", "radio button 1b", and "radio button 1c"; the second 
group of radio buttons are labeled "radio button 2a" and "radio button 
2b". 

You end the dialog by selecting the OK button or cancel button or by 
hitting the I Enter I or I Return I keys on the keyboard. The dialog box then 
disappears. If you type the word "quit" in the first four spaces of the text 
box, an alert box appears with a "stop" icon, stating that you can press 
its OK button to end the program (see Figure 8-4). You are committed to 
end the program once you get to this point. You have only two choices: 
select the OK button or hit the reset button. In either case, the program 
terminates. This mimics the way many programs bomb out on the Mac­
intosh. Perhaps, in this case, the OK button ought to be called the "Got 
Ya" button. We see later how to alleviate this situation. 

If the "quit" condition is not met, then an alert box appears with a 
"note" alert. The message states that the values entered from the dialog 
can now be used by an application (see Figure 8-5). If you select the OK 
button in this alert box, you return to the original dialog. 

If we don't exit right away, then we can change the settings and the 
text in various ways (see Figure 8-6). 

Figure 8-4. The Stop Alert 

Press OK to exit the program. 
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Here is the program: 

PROGRAM DialogDemo ; 
{ $R- }{$X- } 

USES 
{$U obj /Memtypes 
{$U obj /QuickDraw 
{$U obj / OSintf 
{$U obj /Toollntf 

CONST 
{Dialog items} 
OKBtn = 1; 
cancelBtn = 2; 
statTxt = 3; 
edTxt = 4; 
cutBtn = 5; 
copyBtn = 6; 
pasteBtn 7; 
chkBtnl 8; 
chkBtn2 9; 

Memtypes, 
QuickDraw, 
OSintf , 
Toollntf ; 

Figure 8-5 . The Note Alert 

Now an app 1 i cation can use the 
1nformalion from the d1alog. 

Press OK to return to the dialog. 
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chkBtn3 = 10; 
radBtn1a 11 ; 
radBt n1b = 12 ; 
radBtn1c = 13 ; 
radBtn2a = 14 ; 
radBtn2b = 15 ; 
numCBut tons 3; 
nwnRGroups = 2; 

VAR 
done: BOOLEAN ; 
theDialog: DialogPtr ; 
theType , ItemHit , theitem: INTEGER; 
ItemHdl: Handl e; 
ItemBox: Rect ; 
theText : STR255 ; 
CArray: ARRAY [1 .. numCButtons] OF BOOLEAN; 
RGroup: ARRAY [1 .. nwnRGroups] OF 

RECORD 
min , max, default : INTEGER 

END; 

Figure 8-6. Dialog Box After Some Changes 
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PROCEDURE SetUpSys ; 
BEGIN 

InitGraf(@thePort ); 
InitFonts ; 
InitWindows ; 
TEini t ; 
InitDialogs (NIL) ; 
SetEventMask (everyEventJ ; 
SetDAFont ( 1) ; 

END; 

PROCEDURE SetDefaults ; 
BEGIN 

theText : = 1 1 
; 

CArray[1) : = FALSE ; 
CArray[2) := TRUE; 
CArray[3) := FALSE ; 
RGroup[1] . min 
RGroup[1] . max 
RGroup[1) . default 
RGroup [2) . min 
RGroup[ 2] . max 
RGroup[2] . default 

rad8tn1a ; 
: = radBtnlc ; 
: = radBtnla; 
: = rad8tn2a ; 
: = rad8tn2b ; 
: = rad8tn2b ; 

END; 

FUNCTION CtlHdl (theitem : INTEGER) : ControlHandle ; 
BEGIN 

GetDitem (theDialog , theitem1 theType 1 ItemHdl,ItemBox); 
CtlHdl := Contro l Handle (ItemHdl) ; 

END; 

PROCEDURE SetUpDialog; 
VAR 

I I J : INTEGER; 
BEGIN 

theDi alog : = GetNewDialog (1000 1 NIL 1 POINTER(-1) ) ; 
For I : = Chk8tn1 TO Chk8tn3 DO 

SetCtlValue (CtlHdl (I l 1 0RD (CArray[I - chkBtn1+1)) ) ; 
For I : = 1 to numRGroups DO 

For J : = RGroup [I] . min TO RGroup[I] . max DO BEGIN 
SetCRefCon (CtlHdl (J J I I ) ; 
SetCtlValue (CtlHdl(J) 1 0RD (J = RGroup[I ] . default) ) ; 
END; 

SetiText (Handle (CtlHdl (EdTxt ) ) 1 theText) ; 
SeliText (theDialog ,EdTxtllength(theText) 1 length (theText ) ); 

END ; 
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PROCEDURE SetStdBtn (theitem : INTEGER); 
BEGIN 

CASE theitem OF 
cutBtn: DlgCut(theDialog) ; 
copyBtn: Dl gCopy (theDialog) ; 
pasteBtn : DlgPaste(theDialog); 
END; 

END; 

PROCEDURE SetChkBox (theitem: INTEGER); 
BEGIN 

SetCtlValue(CtlHdl (theitem) 1 1-GetCtlValue(CtlHdl(theitem) )); 
END; 

PROCEDURE SetRadBtn (theitem: INTEGER) ; 
VAR 

I I J : INTEGER; 
BEGIN 

I : = GetCRefCon(CtlHdl(theitem)); 
FOR J := RGroup[I] . min TO RGroup[I] . max DO 

SetCtlValue(CtlHdl(J ) 1 0RD(J = theitem)); 
END; 

PROCEDURE UpdateDefaults; 
VAR 

I I J : INTEGER; 
BEGIN 

FOR I := 1 TO numCButtons DO 
CArray[IJ : = GetCtlValue(CtlHdl(chkBtn1+I -1 )) <> 0; 

FOR I : = 1 t o numRGroups DO 
FOR J : = RGroup[I] . min TO RGroup[I] . max DO 

IF GetCtlValue(CtlHdl (J) ) = 1 
THEN RGroup[I] .default : = J ; 

GetiText(Handle(ctlHdl(EdTxt)) 1 theText ); 
END; 

PROCEDURE DoDialog; 
BEGIN 

FlushEvents(everyEvent 1 0) ; 
REPEAT 

ModalDialog(NIL 1 itemHit) ; 
CASE itemHit OF 

cutBtn .. pasteBtn: 
chkBtn1 .. chkBtn3 : 
radBtn1a .. radBtn2b : 
END ; 

SetStdBtn (itemHit ) ; 
SetChkBox(itemHit) ; 
SetRadBtn(itemHit); 

UNTIL itemHit in IOKBtn iCancelBtn] ; 
IF itemHit = OKBtn THEN UpdateDefaults; 
done (theText = •quit' ) ; 

END; 
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BEGIN {main } 
SetupSys ; 
SetDefaults ; 
InitCursor ; 
REPEAT 

SetupDialog; 
DoDialog; 
DisposDialog (theDialog) ; 
If done THEN theitem : = StopAlert (lOOl , NIL) 

ELSE theitem : = NoteAlert (l002 , NIL); 
UNTIL done ; 

END . 

Data Structures 
The "DialogDemo" opens with the standard USES section. 

Global Constants 
In this program, the CONST section provides a convenient interface be­
tween the resource definition file and the program. It li sts all items that 
belong to the dialog in the precise order that they appear in the resource 
definition file. In addition, two constants give the number of check buttons 
and the number of radio button groups. This list was extremely valuable 
during the development of this program. As we rearranged and added 
items, we found that the program still worked perfectly as long as we 
updated the constants for each change. 

Let's look at these constants in detail. 
The first two global constants, "OKbtn" and "cancelBtn", indicate 

the position in the resource list of the OK button and the cancel button. 
The global constant "statTxt" gives the list position (position in the 

dialog list) of the title message. Then the "edTxt" global constant gives 
the list position of the editable text that appears in the text box. 

The constants "cutBtn", "copyBtn", and "pasteBtn" describe the list 
positions of the cut, copy, and paste buttons used to edit our text. 

The constants "chkBtnl ", "chkBtn2", and "chkBtn3" give the list 
positions of the check buttons. The constants "radBtnla", "radBtnlb", 
and "radBtnlc" give the list positions of the first group of radio buttons, 
and constants "radBtn2a" and "radBtnlc" give the list positions of the 
second set of radio buttons. Al l radio buttons must appear in order and 
together in the list for the program to work properly. 

The constant " numCButtons" gives the number of check buttons, 
which is three. The constant " numRGroups" gives the number of radio 
button groups, which is two. 
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Global Variables 
The VAR section declares several global variables. 

Global variable "done" is a Boolean variable used for loop control, 
as in earlier programs. 

Global variable "theDialog" is a dialog pointer that locates the dialog's 
data structure. 

The next three global variables are integers. Integer "theType" holds 
a type code for the dialog it~ms. Table 8-1 lists these type codes. Notice 
that this type code allows us to distinguish different kinds of buttons, 
text items, and other items. This feature is not used in our program. 

Integer "ItemHit" holds the list position of a selected item. Both 
"theType" and "ItemHit" are returned from the Dialog Manager. 

Integer "theltem" is used as a "dummy" variable when the alerts are 
called. 

Global variable "ItemHdl" is a handle returned from the Dialog Man­
ager to provide access to the data structures of dialog resource items. 

Global variable ''ItemBox'' is a rectangle that is returned by the Dialog 
Manager and gives the "extent" or bounding box for a selected dialog 
item. This is called the item's display box. 

Global variable "theText" is a string that holds the text from the text 
box when requested. 

The remaining global variables are arrays that hold values from the 
check and radio buttons. "CArray" is an array of Boolean variables that 
holds values from the check buttons. "RArray" is an array of records that 

Table 8-1. Item Type Codes 

Type 

ctrlltem 
Ctrl 
chkCtrl 
tradCtrl 
tresCtrl 
statText 
editText 
icon Item 
picltem 
itemDisable 

234 HIDDEN POWERS OF THE MACINTOSH 

Code 

4 (Add to following four) 
0 
1 
2 
3 
8 

16 
32 

0 
128 



holds "minimum", " maximum", and "default" position values for each 
group of radio buttons. As global variables, they retain va lues from the 
dialog even after the dialog has been disposed of. 

Dialog and Alert Data Structures 
From the point of view of data structures, a dialog or an alert is an 
extension of a window, which is an extension of a grafPort. That is, each 
dialog contains a window, and each window contains a grafFort. Like 
windows, dialogs and alerts are accessed through pointers, not handles , 
and therefore are stored in nonrelocatable blocks in the heap. 

Also as with windows, there are two levels of pointers to the data. 
One grants access only to the grafPort section of the data. The other, a 
"peek" variable, grants access to the entire structure. These pointers and 
structures are defined through the following Pascal declarations: 

OialogPtr = WindowPtr; 
DialogPeek = "OialogRecord; 
OialogRecord = RECORD 
window : WindowRecord; 
i terns : Handle; 
textH: TEHandle ; 
edi tField: INTEGER; 
editOpen : INTEGER; 
aDefitem: INTEGER; 
END; 

Here, the type "DialogPtr" is defined as equal to the type "WindowPtr", 
which was previously defined as equal to the type "GrafPtr". Here also, 
the type "DialogPeek" is a pointer to a variable of type " DialogRecord", 
containing the entire record structure that houses the data. 

The dialog record contains several fields (see Figure 8-7). The first 
field, " .window", is the dialog's window record structure. The second 
field, ".i tems", is a handle to the item list for the dialog. 

The next three fields are used with editable text items and apply to 
the current editable text item (if any) . This text item displays the insertion 
point. 

The " . textH" field is a handle to the current editable text. The 
".editField" is the item number of the current editable text in the dialog 
list. It contains one less than its position number. The " .editOpen" field 
is for internal purposes. 

The ".aDefltem" field contains the item number of the button used 
to exit the dialog. This is called the default button and is usually the OK 
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button but sometimes the cancel button. For modal dialogs, this field has 
a value equal to one, indicating the first item in the list. For alerts, which 
are treated internally as modal dialogs, this field is one or two depending 
on staging information supplied by the alert's resource definition. We 
examine this later. 

Functions and Procedures 
The functions and procedures in this example program include initial­
izing the various managers, setting default values for buttons and text, 
setting up the dialog, and running the dialog. 

Setting up the System 
The procedure "SetUpSys" initializes QuickDraw, the Font Manager, the 
Window Manager, the Event Manager, Text Edit, and the Dialog Manager. 
The routines "TEinit" to initialize Text Edit and "InitDialogs" to initialize 
the Dialog Manager are new. We pass a "NIL" pointer to "InitDialogs" to 
indicate that we want the standard error alert when the machine "bombs 
out". 

Figure 8-7. Dialog Record Structure 

DialogRecord 
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Besides initializing managers, the "SetUpSyS" procedure also calls 
"SetDAFont" to tell the Dialog Manager to use font number one for its 
text items. This includes both editable text items and "static" text items 
that hold messages. It does not include labels for buttons, which always 
use the system font. 

The ''SetDAFont'' routine expects only one parameter, an integer that 
specifies the font number. 

Setting the Default Parameters 
The "SetDefaults" procedure sets the original default setting for the con­
trols and text items in the dialog. 

The procedure begins by setting "theText" equal to the empty string. 
This is later placed in the dialog as the current value of the editable text 
in the text box. 

The procedure initializes the Boolean "CArray" for the check buttons 
as FALSE, TRUE, FALSE. That is, the first check button is off, the second 
is on, and third is off. 

Finally, the procedure initializes the minimum, maximum, and de­
fault position values for the groups of radio buttons (see Figure 8-8). For 
the first group, the minimum position value is given as radBtnla, the first 
radio button; the maximum position value is given as radBtnlc, the last 
radio button. The default value is radBtnla. For the second group, the 

Figure 8-8. Setting Minimum, Maximum, and Default Values 

D Check Button #l<F==== False 

181 Check Button #2 True 

D Check Button #3 False 

®Radio Button 1 a ~ RGroup[ 1 lmin 

0 Radio Button 1 b ~ RGroup[ 1 ].default 

0 Radio Button 1 c 4==== RGroup[ 1 lmax 

0 Radio Button 2a <'==== RGroup[2lmin 

@ Radio Button 2b L RGroup[2].defaul t 

RGroup[2lmax 

DIALOGS AND ALERTS 237 



minimum position value is given as radBtn2a, the first radio button; the 
maximum position value is given as radBtn2b, the last radio button. The 
default value is radBtn2b. The minimum and maximum values are de­
termined by how the items are arranged in our list. The default values are 
chosen by the programmer. 

Getting a Control Handle 
Next, function "CtlHdl" gets the control handle associated with a given 
item. It expects a single parameter that is the position number of the item 
in the dialog list. 

The function first calls "GetDitem" to find the vital statistics of the 
item. This routine returns both the type code for the item and a handle to 
it. 

"GetDitem" expects four parameters. The first two are passed to the 
Dialog Manager by value. The second two are passed from the Dialog 
Manager by reference. The first parameter is a dialog pointer that points 
to the current dialog. The second parameter is an integer that holds the 
desired item number in the dialog's resource list. The third is an integer 
that holds the returned type code. The fourth is a handle to access the 
item's data. 

Our "CtlHdl" function finishes by coercing the returned handle from 
type "Handle" to type "ControlHandle", placing the result in "CtlHdl" 
for return as a Pascal function. 

Setting up Dialogs 
The "SetUpDialog" function initializes our dialog, making it active on 
the screen. It has two local variables, "I" and "J", for loop control within 
the procedure. 

Our procedure begins by calling the Dialog Manager's "GetNew­
Dialog". This routine fetches the dialog and its list of resources from the 
resource file and allocates storage for them in memory. This step makes 
the dialog's window appear on the screen if it is declared visible in the 
resource definition file. 

The "GetNewDialog" routine is similar to the "GetNewWindow" rou­
tine. It expects the same types of parameters and performs a similar 
function. In particular, the "GetNewDialog" routine expects three param­
eters. The first parameter is the resource identification number of the 
dialog. We choose a value of 1000 to correspond to our resource definition 
for the dialog (given later). The second parameter is a pointer to our storage 
for the dialog record data. We pass a NIL pointer here to indicate that the 
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Macintosh is to find a place for it on the heap. The third parameter is a 
pointer to indicate the dialog window's "visual priority". We send the 
expression POINTER(-1) to indicate that it should first appear in front of 
all other windows. 

After fetching the dialog from the resource file, our procedure places 
the current default values into the check buttons (into their control values). 
Here, a FOR loop is used around the "SetCtlValue" routine. We use our 
own function, "CtlHdl ", to convert the item number into a control handle. 
We use the expression: 

ORD(CArray[I - chkBtnl+l) ) 

to convert the Boolean value stored in "CArray" to a long integer. Here 
"ORD" converts FALSE to a numerical value of zero and TRUE to a 
numerical value of one. 

Next, our procedure sets up the radio buttons. For each group of radio 
buttons, we set the reference values equal to the group number (one for 
the first group of rad io buttons, two for the second group of radio buttons). 
The control value is set to zero for all buttons in the group except the 
default button, whose value is set to one. We use the expression: 

ORD (J = RGr oup[I] . default) 

to compute the numerical value to place in each control value. 
Next, our procedure initializes the editable text. It calls "SetiText" 

to pass the text stored in " theText" (a string) to the "EdTxt" item belonging 
to the dialog. 

The "SetiText" routine expects two parameters: a handle that leads 
to the text item in the dialog, and a string that contains the text. In our 
case, the handle is computed by calling our "CtlHdl " function, then 
coercing the resulting control handle back to type "Handle". 

We call "SeliText" to move the insertion point to the end of the string. 
The "SeliText" routine expects four parameters. The first parameter is a 
dialog pointer that specifies the dialog. The second parameter is the item 
number of the text edit. The third and fourth parameters are integers that 
delimit the selection range of the text. If they are equal (as here), their 
common value determines the position of a single insertion point in the 
text. In our case, we use the " length" function to get the position of the 
end of the string. 
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Resource Definitions 
Now let's look at the resource definitions for our dialog and its associated 
list of items. 

The dialog is defined as follows: 

Type DLOG 
, 1000 
40 85 310 425 
Visible 1 NoGoAway 0 
1000 

Modal Dialog Demonstration Window 

The first line declares that the next resource definition(s) is of type 
"DLOG". 

The second line begins the definition of our dialog. It gives its resource 
identification number, which in this case is 1000. 

The second line of the dialog's definition gives global coordinates for 
the corners of its window. You can determine the size and position of your 
dialogs by sketching a picture of them on paper or on the screen using a 
program such as MacPaint. However, you might have to fine tune the 
results by adjusting the numbers in the resource definition file as you 
develop the program. 

The third line of the dialog's definition (our fourth line) gives its 
visibility when first fetched, the resource identification number of its 
definition procedure, whether it has a "goAway" box, and the value ini­
tially stored in its reference field . In our case, we want the dialog to be 
visible, we want to draw a standard dialog box, we want to have no 
"goAway" box, and we need no particular value for the reference field. 

The next line gives the resource identification number of the dialog's 
list of controls and other items. We choose the value 1000, the same as 
the identification number of the dialog. Since the dialog definition and 
the dialog list are of different resource types, there is no conflict. In fact, 
it makes good sense to use the same number. 

The final line is optional. It gives a title that is never displayed on 
the Macintosh screen but merely serves to document the dialog definition 
in the resource definition file. 

Let's examine the dialog list definition: 

Type DITL 
, 1000 
15 
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Btnltem Enabled 
205 10 225 100 

OK Button 

Btnltem Enabled 
235 10 255 100 

Cancel 

StatText Disabled 
10 10 30 330 

Modal Dialog Demonstration 

EditText Enabled 
40 10 104 330 

Btnitem Enabled 
195 120 215 200 

Cut 

Btnitem Enabled 
220 120 240 200 

Copy 

Btnrtem Enabled 
245 120 265 200 

Paste 

Chkltem Enabled 
120 10 144 150 

Check Button #1 

Chkrtem Enabled 
144 10 168 150 

Check Button #2 

Chkltem Enabled 
168 10 192 150 

Check Button #3 

Radioltem Enabled 
120 210 144 350 

Radio Button 1a 

Radioitem Enabled 
144 210 168 350 

Radio Button 1b 

Radioitem Enabled 
168 210 192 350 

Radio Button 1c 

Type "quit" to exit . 
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Radioltem Enabled 
208 210 232 350 

Radio Button 2a 

Radioltem Enabled 
232 210 256 350 

Radio Button 2b 

The first line declares that subsequent definitions are of resource type 
"DITL", which stands for Dialog ITem List. 

The definition opens with its resource identification number, followed 
on the next line by the number of items in the list. 

Each item is listed on three lines , with a blank line separating items. 
On the first line of each item definition is the item type and whether the 
item is enabled. The types are listed in Table 8-2. Disabled items cannot 
be selected, enabled items can. 

The second line of each item's definition gives the position in local 
coordinates of its display box. Again, you can design the dialog box on 
paper to get these coordinates, then "fine tune" them as you test the 
program. 

The third line gives the dialog's title, message, or, in some cases, the 
resource identification number. 

In our case, we have fifteen items in our dialog item list: five standard 
buttons (type "Btnitem"), three check boxes (type "Chkltem"), five radio 
buttons (type "Radioitem"), one message (type "StatText"), and one ed­
itable text item (type "EditText" ). 

Table 8-2. Dialog Item Types 

Item Type in Resource Definition 

User Item 
Btnltem 
Chkltem 
Radioltem 
ResCitem 
StatText 
EditText 
Icon Item 
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Setting Standard Buttons 
The procedure "SetStdBtn" is designed to handle "standard" buttons 
selected in the dialog. In our program, these include the OK button, the 
cancel button, the cut button, the copy button, and the paste button. It is 
called from the "DoDialog" procedure. 

Our "SetStdBtn" procedure expects one parameter, "theltem ", an 
integer that specifies the item number of a selected standard button. It 
calls the appropriate dialog edit routines: " OlgCut", " OlgCopy", or 
"DlgPaste", depending on the value contained in "theltem". If "theltem" 
indicates the OK button or the cancel button, the procedure does nothing. 
Later, we discuss how these buttons are handled. 

Setting Check Boxes 
The procedure "SetChkBox" is designed to handle check box items se­
lected in the dialog. It is called from our "DoDialog" procedure. 

The procedure expects one parameter, " theltem", an integer speci­
fying the item number of the selected check button. This procedure calls 
"SysBeep" to make a quick "beep" sound, then calls "GetCtlValue" and 
"SetCtlValue" to perform a "complement" action on the value stored in 
the button's control. This complement switches zero values to one values 
and vice versa, using the formula: 

X : = 1 - X 

Setting Radio Buttons 
The procedure "SetRadBtn" is designed to handle radio buttons selected 
in the dialog. It is called from the "DoDialog" procedure. 

Like the previous two procedures, it expects a single parameter, 
"theltem", an integer specifying the item number of the selected button. 
The procedure begins by calling "SysBeep" to make a beep. Then it calls 
"GetCRefCon" to get the reference value of the button. This gives the 
group number of the radio button. We scan through the buttons in this 
group, setting all control values to zero except the one selected. We use 
the expression: 

ORO (J = the Ite m) 

to set these values. 
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Updating the Defaults 
The "UpdateDefaults" procedure updates the default variables for the 
check buttons, radio buttons, and editable text when the OK button is 
pressed in the dialog. It is called from our "DoDialog" procedure. 

Its two local variables, "I" and "J", are integers used as indices in 
loops. 

The "UpdateDefault" procedure begins by updating the Boolean val­
ues for the check boxes. It checks each check box for a nonzero value, 
placing TRUE in the corresponding entry of CArray if it finds such a value 
and FALSE if not. 

The procedure then uses a double FOR loop to run through each radio 
button in each group, setting the RGroup default value equal to the item 
number of the radio buttons whose control values are equal to one. 

Finally, the procedure calls "GetiText" to load the text from the 
editable text item into the string "theText". 

Doing the Dialog 
The procedure "DoDialog" runs the dialog. It begins by calling 
"FlushEvents" to empty the event queue. Then it has a REPEAT loop, 
where most of the work is done. 

The REPEAT loop begins by calling the Dialog Manager's "Modal­
Dialog" routine. This routine performs several tasks. It calls the event 
manager, automatically draws the controls, and tracks the mouse. Tracking 
the mouse consists of monitoring the position of the mouse and reporting 
where the mouse cursor is whenever the user releases the mouse button. 
The "ModalDialog" routine relieves us of most of the work except for 
setting the control values and our own variables accordingly. 

The "ModalDialog" routine expects two parameters. The first param­
eter is a procedure pointer to a procedure that can perform customized 
tracking. This is called a filter procedure. In our case, we place a NIL 
pointer here to indicate that we want the standard filter procedure pro­
vided by the Dialog Manager. The second parameter is an integer passed 
by reference that indicates which item was selected. 

After the "ModalDialog" routine, we sort out which item was selected 
using a CASE statement driven by "itemHit". The cases are ranges, a 
special feature of Lisa Pascal. For the range: 

cutBtn . . pasteBtn 

244 HIDDEN POWERS OF THE M ACINTOSH 



we call our "SetStdBtn" procedure, since these items are standard but­
tons. For the range: 

chkBtnl .. chkBtn3 

we call our "SetChkBox" procedure, since these items are check boxes. 
And for the range: 

radBtnla . . radBtn2b 

we call our "SetRadBtn" procedure, since these items are radio buttons. 
The REPEAT loop continues until "itemHit" indicates that the OK 

button or the cancel button was selected. Pressing the I Return I or I Enter I key 
has the same effect as selecting the OK button. This is a feature of the 
standard filter procedure for dialogs. In its instructions to developers, 
Apple encourages applications programmers to include this feature in all 
custom dialog filter routines. Thus, a user always can finish entering text 
by hitting I Enter I or I Return I. as with most computer programs. 

After the REPEAT loop, we check for the OK case (OK button, I Enter I 
key, or I Return I key). If it is true, we call "UpdateDefaults" to set the new 
default values for the buttons and text. 

Finally, we set "done" equal to the truth value of the statement: 

theText = 'quit' 

The Main Program 
The main program is very short and clearly indicates the overall simple 
structure of the program. It begins by calling "SetUpSys", "SetDefaults", 
and "InitCursor" to initialize the various managers, the default variables, 
and the cursor. 

Next, a REPEAT loop continues as long as the user does not enter the 
word "quit", which sets "done" to TRUE. 

Within the REPEAT loop, we call "SetUpDialog" to allocate room for 
and initialize the dialog and its controls. We call "DoDialog" to track the 
action and set our variables accordingly. Next, we call "DisposDialog" to 
erase the dialog from memory and from the screen. If "done" is true, we 
call "StopAlert" to display an alert, warning that we are exiting the 
program. If "done" is false, we call "NoteAlert" to present a message 
explaining that we can now use any values generated by the dialog. In a 
real application, you would insert your own routine to use the data here. 
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These two alert calls belong to a class of four alert calls: "Alert", 
"StopAlert", "NoteAlert", and "CautionAlert". In all four cases, an alert 
is put into action. The last three cases are distinguished by special system 
icons displayed in the alert box (see Figure 8-9). 

Each of these alert routines expects two parameters: an integer that 
is its resource identification number and a procedure pointer that points 
to a "filter" procedure to provide custom service for handling the alert. 
These routines return a function value that is the item number of the item 
selected. 

Custom filters are advanced topics. In our program, we pass NIL both 
times to indicate that we want to use the standard service routine provided 
by the system. This means that we can respond only by selecting the OK 
button for both of our alerts. Otherwise, we must write and insert our own 
filter procedure. In Appendix C, we use such a filter to intercept disk 
insertion events which are not handled by the standard filter. 

Alert Resource Definitions 
Associated with each alert is a resource definition. The alert definition 
for our stop alert is: 

Type ALRT 
, 1001 
100 70 200 440 
1001 
7654 

The first line identifies the alert as resource type "ALRT". The second 
line specifies the resource identification number. The third line gives the 
global coordinates of the position of the alert's window. The fourth line 
gives the resource identification number of the alert's dialog item list. The 
last line is a hexadecimal number describing the alert's staging information. 

Each alert has four stages, allowing the alert to execute differently in 
appearance, action , and sound according to how many times it has been 

Figure 8-9. System Alert Icons 

Note Caution Stop 
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called by the user. The first time the user causes an alert to be invoked, it 
behaves according to the rules for stage one, the second time it behaves 
according to the rules for stage two, and so on. However, all alerts beyond 
stage four behave as stage four. 

For each stage, we can specify the type of sound issued, whether the 
alert box is drawn, and the choice of default button (OK or cancel). Figure 
8-10 shows how this works. 

Here is the dialog item list definition for the stop alert. It uses a 
standard button for the OK button and "StatText" for the "Press OK to 
exit program." message. 

Type DITL 
,1001 
2 

Btnrtem Enabled 
70 10 90 100 

OK 

StatText Disabled 
10 150 90 360 

Press OK to exit the program . 

Here is the resource definition for the note alert. It has a description 
almost identical to that of the stop alert. 

Type ALRT 
, 1002 
100 70 200 440 
1002 
7654 

Figure 8-10. Encoding Alert Stages 

Stege 4 Stege 3 Stege 2 Stage 
_____ __,A..___~ _____ __,A..___~ ~-----A~--~ _____ __,A~--~ 
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Here are the dialog item list definitions for the note alert. They use a 
standard button for the OK button and "StatText" for messages. The first 
message reads "Now an application can use the information from the 
dialog." Recall that this alert appears right after the main dialog concludes. 
This message indicates that the programmer can replace this alert by a 
routine that uses the information given by the user during the dialog. 

The second message indicates that the user can press the "OK" button 
to return to the main dialog. 

Type DITL 
, 1002 
3 

Btnltem Enabled 
70 10 90 100 

OK 

StatText Disabled 
10 150 50 360 

Now an application can use the information from the dialog. 

StatText Di sabled 
50 150 90 380 

Press OK to return to the dialog. 

Summary 
In this chapter, we have examined a higher level of the Macintosh's built­
in software. The example program is shorter than most, yet does as much 
or more. 

We have seen how only one routine, "ModalDialog", allows us to give 
most of the tracking and drawing functions to the Macintosh, so that we 
can concentrate on using user-supplied information, rather than spending 
a lot of effort gathering it. 

The following ROM routines were covered in this chapter: 

DL-SetDAFont [Pascal only] 

DL-GetDitem 

DL-GetNewDialog 

DL-SetiText 

DL-SeliText 

DL-DlgCut [Pascal only] 

DL-DlgCopy [Pascal only] 
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DL-DlgPaste [Pascal only] 

DL-Getltext 

DL-ModalDialog 

DL-DisposDialog 

DL-StopAlert 

DL-NoteAlert 
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9 
Menus 

250 

This chapter covers the following new concepts: 

• Using Menus 

• Menu Structure 

• Menu Display 

• Menu Selection 

• Menu Resources 

• Desk Accessories 

• QuickDraw Shapes and Pen Attributes 

Macintosh users are familiar with "pull-down" menus and know how to 
use them in applications programs to select options. In this chapter, we 
investigate how these menus work and how to make them work for us. 

Menus are managed by the Macintosh 's Menu Manager, which , li ke 
the other managers, consists of routines and data structures in the Mac­
intosh 's memory. The Menu Manager calls on QuickDraw to draw its 
menus and menu bars, calls on the Resource Manager to help define its 
menus, and calls on the Event Manager while tracking the mouse for menu 
selection. 

Following a discussion of menus and the Menu Manager, we present 
an example program that demonstrates how to use the Menu Manager's 
routines to set up and track menus. This example also shows how an 
applications program can use the selection information returned from the 
Menu Manager. 



Menus 
Menus are lists of options available to the user. Each application has a 
different set of menus because it has a different set of actions. For example, 
in this chapter's program, our actions focus on drawing various shapes 
and selecting how they are drawn. A special "Apple" menu also allows 
us to select various desk accessories. 

We see how menus appear to the user, then examine their data struc­
tures and how to program them. 

How Menus Appear to the User 
At the top of the screen, in the topmost 20 rows of pixels, sits the menu 
bar, which provides access to an application's active menus. The title of 
each active menu appears in the menu bar. 

Normally, no windows are allowed to overlap this area of the screen. 
In particular, the initial positions of all windows should be defined so 
that they avoid the menu bar. The drag bounds should also be set for 
subsequent window positions so that the windows can never be dragged 
into the menu bar. 

When the mouse cursor is pressed in the title area of a menu, the 
menu should be immediately displayed underneath its title. The menu 
itself may be wider than its title, overlapping space that is occupied by 
adjacent menus when they appear. However, only one menu appears at a 
time, though all titles are visible at once (see Figure 9-1). 

Once a menu is selected, the user can run the mouse cursor down 
the menu as the mouse button is pressed down, highlighting each item 
as the cursor passes over it. When the mouse button is released over an 
item, that item is selected, and control returns to the applications program. 

The entire menu selection process, from the time the mouse button 
is pressed until it is released, is controlled by one Menu Manager routine 
called "MenuSelect". We see how this routine is invoked when we study 
our example program. 

Menu Lists and Structures 
For most purposes, you do not have to know how the Menu Manager stores 
information about menus. You only have to call the appropriate Menu 
Manager routine; the Menu Manager takes care of the details. However, if 
you are interested in how the Menu Manager works, you must first under­
stand its data structures. This is the only way to unlock the Macintosh's 
"hidden powers" to understand the full capabilities of the Menu Manager, 
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to define your custom menus, and to answer difficult questions that could 
arise while using a debugger. We don't set up custom menus in this book. 
However, reading the following menu descriptions should provide a good 
foundation for doing so. Details are contained in Apple's Inside the Apple 
Macintosh. 

The Menu Manager stores all menus under its control in a master list 
of menus. The system variable "MenuList", stored in the low memory of 
the Macintosh, contains a handle to this list. The list contains six bytes 
for each menu. The first four bytes contain a handle to the menu's data 
structure, and the last two bytes contain the horizontal position of the 
menu's title in the title bar (see Figure 9-2). 

Each menu is accessed through a handle of type "MenuHandle". This 
points to a pointer of type "MenuPtr", which points to the actual data. 
Here is the Pascal declaration for the menu data structure: 

MenuHandle = · MenuP t r ; 
MenuPtr = · Menuinf o ; 
Menuinfo = RECORD 

menuiD : I NTEGER ; 

Figure 9-1. A Menu is Selected 
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menuWidth: INTEGER; 
menuHeight : INTEGER; 
menuProc : Handle; 
enableFlags : PACKED ARRAY [0 . . 31] OF BOOLEAN; 
menuData : Str255 ; 

END; 

This "Menuinfo" structure contains the data for managing a single 
menu, including its size, the name and style of each item, and the location 
of the procedure to draw and track the menu. 

The ".menuiD" field contains an integer assigned by the programmer 
to the menu when it is first defined. Thereafter, it can be used by the 
programmer to reference the menu and is used by the Menu Manager to 
specify the selected menu from the menu selection process. 

The " .menuWidth" field contains the width in pixels and the 
".menuHeight" field contains the height in pixels of the menu. 

The " .menuProc" field contains a handle to the menu definition 
procedure. This procedure draws the menu, determines its size, and 
performs tracking functions during the menu selection process. Program­
mers can insert their own menu definition procedures in this field, thereby 
customizing their own nonstandard types of menus. However, this is 

System 
variabl es 

Figure 9-2. The Master List of Menus 

Menu list 

Menu 
•t 
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beyond the scope of this book. To define your menus, consult Apple's 
Inside the Apple Macintosh. 

The ".enableFlags" field contains 32 Boolean variables, one for the 
entire menu and one for each entry (see Figure 9-3). The first Boolean 
determines if the menu itself is enabled or disabled, as do subsequent 
Booleans for each item in the menu. In standard menus, "disabled" means 
that the item's name appears in light gray rather than black and cannot 
be selected by the user. When defining your custom menus, you can 
indicate the enable/disable status of menu items in any way. 

As far as Pascal is concerned, the ".menuData" field is a string. That 
string contains the menu's title, followed by the title of each item in the 
string and such information as the style for each item, key equivalents, 
any marks in front of items, and any icons associated with these menu 
items. 

Again, it is usually not necessary for a programmer to directly access 
the fields of a menu's record structure. A number of Menu Manager 
routines change such features as items' titles, styles, check marks, and 
enable status. A programmer may want to read a menu's title from the last 
field of its record structure, but he or she should never modify the menu's 
title as it sits in the menu data string. This could destroy the remaining 
menu data. 

Figure 9-3. Enable Flags 

Menu title I 
l 

Item #1 

Item #2 

31 210 

111111111111111111111111111111111 
.enabl eFl egs 
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The Example Program 
The example program in this chapter demonstrates how to manage menus. 
It also illustrates how to manage desk accessories such as the scrapbook, 
alarm clock, note pad, and calculator, which are treated as system tasks. 
In addition, it allows you to quickly explore a number of QuickDraw 
shapes and drawing attributes (see Figure 9-4). 

This program allows you to create standard shapes - rectangles, 
ovals , and rounded rectangles- that can be drawn with various shades 
of gray using framing, filling, painting, erasing, and inverting. Appropri­
ately, the program is "menu-driven", demonstrating how menus can be 
used to select options and commands. 

Now let's look at the program in detail. When the program starts, it 
displays a blank window and a full menu bar. The window is entitled 
"Menu Driven QuickDraw Demo". The menu bar contains titles for the 
following seven menus: 

Apple menu 

Command menu 

Figure 9-4. Our Menu Program 

Fill Pattern Pen Pattern Pen Size 

ethe~sh~o~p~e~~~F~~~~~::~~~~~~~~~~~~~ Paint the shape ~P 

Erase the shape ~E 

lnuert the shape ~ I 
Fill the shape ~L 

Erose Window ~c 
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Shape menu 

Fill Pattern menu 

Pen Pattern menu 

Pen Size menu 

Pen mode 

across the top of the screen (see Figure 9-5). 
You can examine the contents of a given menu by pressing the mouse 

button in the appropriate region of the menu bar. This pulls the menu 
down, making it appear in front of everything on the screen except the 
cursor (see Figure 9-6). 

The Apple menu is divided into two parts. One part contains a special 
"About Menu" entry, the other part contains the titles of the desk acces­
sories (see Figure 9-7) . 

To select an item in the Apple menu, pull it down, move the mouse 
button down until the desired item is selected , then release the mouse 

Figure 9-5. Our Menu Bar 
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button. A single call in our program makes this entire process happen 
automatically. 

The Command menu selects an action to be performed immediately 
(see Figure 9-8). These include framing, painting, erasing, inverting, and 
filling a shape, as well as erasing the window's contents and quitting the 
program. The option of quitting the program is separated from other 
options and written in boldface. 

The remaining menus act differently than the first two menus. They 
use check marks to set parameters rather than directly cause an action. 
Whenever you pull down one of these menus, you see that the currently 
selected item is checked. If you select another item, then that item is 
checked the next time that you pull down the menu. 

The Shape menu is used to select the particular shape that is drawn 
(see Figure 9-8). The available shapes are square, wide rectangle, and tall 
rectangle, circle, wide oval, tall oval, rounded square, wide rounded rec­
tangle, and tall rounded rectangle. Initially, the square is selected. 

The Fill Pattern menu selects the pattern that is used when the shape 
is filled. The available fill patterns are the QuickDraw default patterns 

Figure 9-6. Selecting a Shape 

Pen Pattern Pen Size 

-=~~~~~~~Square:~::~------l:~~~~~~~~~~~~~~ ~ Wide Rectangle 
Tall Rectangle 
Circle 
Wide Dual 
Tall Dual 
Rounded Square 
Wide Rounded Rectangle 
Tall Rounded Recto 
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White, Black, Gray, LtGray, and DkGray. Initially, the Fill Pattern is set to 
Gray. 

The Pen Pattern menu selects the pattern for framing and painting 
objects. Its available patterns are the same as for the Fill Pattern menu. 
Initially, it is set to Black. 

The Pen Size menu offers a range of pen sizes including 1 by 1, 1 by 
5, 5 by 1 , 5 by 5, and 10 by 10. The initial size is 1 by 1. 

The Pen Mode menu selects one of the pen modes- Copy, Or, Xor, 
Bic, NotCopy, NotOr, NotXor, and NotBic (see Figure 9-9). The initial mode 
is Copy. These are the eight pen patterns available to the programmer. 
They determine how the bits in the pen pattern are combined with what 
is on the screen. Note that the pen modes work with "Paint" commands 
but not "Fill " commands. 

Let's review how these eight pen modes work and what they do. 
In the Copy mode, the pattern is "copied" directly to the screen, 

overwriting what was there. This is the default pen mode (see Table 9-1). 
In the Or mode, the bit values in the pattern are Ored with what was 

on the screen (see Table 9-2). This tends to overstrike what was on the 
screen. 

Command 
Scrapbook 
Alarm Clock 
Note Pad 

Figure 9-7. Selecting a Desk Accessory 

previous page. 
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In the Xor mode, the bits in the pattern are Xored with what is on 
the screen (see Table 9-3). This is useful for creating cursorlike objects, 
since it reverses the bits on screen that are equal to one in the pattern and 
leaves other bits alone. When the same pattern is Xored a second time to 
the same place on the screen, the bits in the screen return to their previous 
state. To move a cursor, Xor it to its current position, thus erasing it; then 
Xor it to its new position, making it appear there. 

In the Bic mode, the bits in the pattern are combined with those on 
the screen using the bit clear operation (see Table 9-4). All bits on the 
screen that correspond to bits in the pattern (set equal to one) are cleared 
(set equal to zero). This is useful to selectively erase portions of the screen. 

In the four Not modes, the pattern is inverted as it is applied to the 
screen using one of the four Not operations. These options are not dis­
cussed here. 

When a drawing command is selected from the Command menu, 
drawing occurs only in our display window. This window can be dragged 
but not resized or scrolled. Resizing can be added without too much 
difficulty. However, scrolling is harder, since the picture is composed of a 
potentially long sequence of drawing commands; therefore, updating the 

Figure 9-8. Selecting a Command 

Shape Pen Pattern Pen Siz e 
., 
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picture requires special attention. As it is, the program does not try to 
properly update the picture. This is evident if you move desk accessories 
in front of the display menu. 

Experiment with this program, exploring its various modes, shapes, 
sizes, and patterns. 

Here is the program: 

PROGRAM MenuDemo ; 
{ $R- }{$X-} 

USES 
{$U Obj / MemTypes 
{$U Obj / QuickDraw 
{$U Obj / OSintf 
{ $U Obj / Toollntf 

CONST 
{menu IDs} 
AppleMenu 
ComMenu 
ShapeMenu 

1000; 
1001 ; 
1002 ; 

} MemTypes, 
} QuickDraw, 
} OSintf, 
} Toolintf ; 

{ des k accessory menu} 
{ Command menu} 
{ Shape menu} 

Figure 9-9. Selecting a Pen Mode 
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Fi llPatMenu 
PenPatMenu 
PenSizeMenu = 
PenModeMenu = 
lastMenu = 7; 

VAR 

1003 ; 
1004 ; 
1005; 
1006; 

done : BOOLEAN; 
theEvt : EventRecord; 

{ Fill Pattern menu} 
{ Pen Pattern menu} 
{ Pen Size menu} 
{ Pen Mode menu} 
{ number of menus} 

mainWindow, theWindow: WindowPtr ; 
dragBnds: Rect; 
myMenus : ARRAY [1 .. lastMenu] OF MenuHandle; 
theShape, theFillPat, thePenPat , thePenSize , thePenMode INTEGER; 

PROCEDURE SetUpSys; 
BEGIN 

InitGraf(@thePort ); 
InitFonts ; 
InitWindows ; 

Table 9-1. The Copy Mode 

Originally on Screen 

0 
0 
1 
1 

Result = New 

New Pattern 

0 
1 
0 
1 

Table 9-2. The Or Mode 

Result = Original OR New Pattern 

Originally on Screen 

0 
0 
1 
1 

New Pattern 

0 
1 
0 
1 

Result 

0 
1 

0 
1 

Result 

0 
1 
1 
1 
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InitDialogs(NIL); 
TEinit ; 
SetEventMask (everyEvent); 
FlushEvents (everyEvent , O); 
InitCursor; 

{Define bounds for dragging the window} 
WITH screenBits . Bounds DO 

SetRect(dragBnds , lef t +4 , top+24 , right- 4,bottorn- 4); 

rnainWindow := GetNewWindow(256 , NIL, POINTER(-1) ); 
done FALSE; 

END; 

PROCEDURE Clickitern (rnenuindex , theitern: INTEGER; 
VAR i temNurn: INTEGER); 

BEGIN 
Checki tern(rnyMenus[rnenuindex] , itemNurn, FALSE) ; 
itemNurn : = theitern; 

Table 9-3. The XOR Mode 

Result = Original XOR New Pattern 

Originally on Screen New Pattern 

0 0 
0 1 
1 0 
1 1 

Table 9-4. The BIC Mode 

Result = Bit Clear Original Using New Pattern as Mask 

Originally on Screen New Pattern 

0 0 
0 1 
1 0 
1 1 
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Checkitem (myMenus [menuindex],itemNum , TRUE) ; 
END; 

PROCEDURE SetUpMenu; 
VAR 

I : INTEGER; 
BEGIN 

InitMenus; 
myMenus[1] 
myMenus[2 ] 
myMenus [3J 
myMenus [4] . ­
myMenus[5) 
myMenus [6] 
myMenus[7] 

GetMenu (AppleMenu); 
GetMenu (ComMenu); 
GetMenu (ShapeMenu); 
GetMenu(FillPatMenu); 
GetMenu (PenPatMenu); 
GetMenu (PenSizeMenu); 
GetMenu(PenModeMenu) ; 

AddResMenu(myMenus[1] , 'DRVR '); 
FOR I:= 1 TO lastMenu DO InsertMenu(myMenus[I] , O) ; 
DrawMenuBar ; 

{initial option values } 
theShape - 1 · 

' theFillPat - 3 · . 
thePenPat - 2 · 

' thePenSize - 1 • 
thePenMode - 1• 

' 

{check marks for initial option values} 
Checkitem(myMenus[3] , theShape , TRUE) ; 
Checkitem(myMenus[4],theFillPat,TRUE) ; 
Checkitem(myMenus[5],thePenPat, TRUE); 
Checkitem (myMenus[6],thePenSize , TRUE) ; 
Checkitem(myMenus[7],thePenMode,TRUE); 

END; {of SetUpMenus } 

PROCEDURE DrawShape(theCommand: INTEGER); 
VAR 

shapeRect, theScreen : Rect ; 
curv Point; 
dpat : Pattern; 

BEGIN 
SetPort(mainWindow); 
theScreen := thePort ' . portRect ; 
SetPt(curv, 30 , 30); 

MENUS 263 



CASE theFillPat OF 
1: dpat White; 
2: dpat Black ; 
3: dpat Gray ; 
4: dpat LtGray; 
5: dpat DkGray; 
END; 

CASE thePenPat OF 
1 : PenPat (White); 
2: PenPat (Black) ; 
3: PenPat (Gray) ; 
4: PenPat(LtGray) ; 
5: PenPat (DkGray ) ; 
END; 

CASE thePenSi ze OF 
1: PenSize (1 , 1); 
2: PenSize (1 ,5); 
3: PenSize( 5, 1) ; 
4: PenSi ze(5 , 5); 
5: PenSize(10 , 10); 
END ; 

CASE thePenMode OF 
1: PenMode(PatCopy); 
2: PenMode(PatOr ); 
3: PenMode(PatXor ) : 
4: PenMode(PatBic ) ; 
5: PenMode(NotPa t Copy) ; 
6: PenMode(NotPatOr ); 
7: PenMode(NotPa tXor ); 
8: PenMode(NotPatBicl ; 
END ; 

CASE theShape OF 
1 , 4, 7: Se tRect (shapeRect , 100 , 30 , 300 , 230); {Square } 
2 , 5, 8: SetRect (shapeRect, 100 , 100 , 300 , 160); {WideRect } 
3, 6 ,9: Se tRec t (shapeRect , 170 , 30 , 230 , 230) ; {TallRect} ; 
END ; {a s pect ratio } 

CASE theShape OF 
1 , 2,3: CASE theCommand OF 

1: FrameRect(shapeRect); 
2: Pa intRect(s hapeRect); 
3: EraseRect(s hapeRec t ); 
4 : InvertRect( shapeRect ); 
5: FillRect (shapeRect , dpat ); 
6: Er aseRect (theScr een) ; 
8 : done := TRUE; 
END; {of Shapes 1, 2 , 3: r ec tangles } 
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4 1516: CASE theCommand OF 
1 : FrameOval (shapeRect ); 
2: PaintOval (shapeRect) : 
3: EraseOval (shapeRect) ; 
4 : InvertOval (shapeRect) ; 
5: FillOval(shapeRect 1dpat ); 
6: EraseRect (theScreen); 
8 : done := TRUE; 
END; {of Shapes 41 5 I 6: ovals} 

71819: CASE theCommand OF 
1: FrameRoundRec t (shapeRect lcurv . h l curv.v); 
2: PaintRoundRect(shapeRect lcurv . h 1CUTv.v) ; 
3: EraseRoundRect (shapeRect 1CUTV.h1curv.v) ; 
4: InvertRoundRect (shapeRect 1CUTV.h1curv.v) ; 
5: FillRoundRect (shapeRect lcurv. h 1CUTV. v 1dpat) ; 
6: EraseRect (theScreen); 
8 : done := TRUE; 
END; {of Shapes 7 I 81 9 : wide rounded rectangle } 

END; {of shapes} 
END; {DrawShape } 

PROCEDURE DoAppleMenu(theitem: INTEGER); 
VAR 

refNum: INTEGER; 
name : Str255 ; 

BEGIN 
If theitem = 1 

THEN theitem Alert(1001 1NIL) 
ELSE 

BEGIN 
Getitem (myMenus[1] 1theiteml name); 
refNum OpenDeskAcc(name); 

END; 
END ; 

PROCEDURE SelectMenu(s election : Longint ); 
VAR 

theMenul theitem : INTEGER; 
BEGIN 

theMenu : = HiWord (selection) ; 
theitem : = LoWord(selection) ; 
CASE theMenu OF 

AppleMenu: 
ComMenu: 
ShapeMenu: 
FillPatMenu: 
PenPatMenu: 

DoAppleMenu(the item) ; 
DrawShape (theitem); 
Clickitem(3 1 theiteml 
Clickitem(4 1 theitem l 
Clickitem (51 the item l 

theShape); 
theFillPat ) ; 
thePenPat ) ; 
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PenSizeMenu : Clickitem(6, theitem, thePenSize) ; 
PenModeMenu : Clickitem (7, theitem, thePenMode) ; 
END; {of theMenu CASE } 

HiliteMenu(O) ; {to unhighlight selected menu in menu bar} 
END; 

BEGIN {main program} 
SetupSys ; 
SetUpMenu ; 

REPEAT 
SystemTask; 
IF GetNextEvent(everyEvent, theEvt) THEN 

CASE theEvt . what OF 
mouseDown: 

CASE FindWindow(theEvt . where,theWindow) OF 
inMenuBar : 

SelectMenu (MenuSelect(theEvt . where) ); 
inSysWindow: 

SystemClick(theEvt , theWindow); 
inDrag: 

DragWindow(theWindow, theEvt . where , dragBnds ) ; 
inContent , inGrow: 

SelectWindow(theWindow) ; 
END; 

keyDown: 
SelectMenu (MenuKey(Chr(theEvt.message MOD 256))); 

updateEvt, activateEvt : 
BEGIN 

theWindow : = windowPtr(theEvt . message) ; 
BeginUpdate (theWindow) ; 
EndUpdate (theWindow); 

END; 
END ; {of what event} 

UNTIL done ; 
END. 

Data Structures 
Our " MenuDemo" program has the standard USES section. The CONST 
section defines the menu identification numbers of the menus, assigning 
constant identifiers for each . It also defines the constant " lastMenu" as 
equal to seven, the total number of menus. Using constants in this manner 
makes the program more readable and easier to maintain. 
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Global Variables 
The VAR section contains a number of global variables. Some are familiar 
from previous programs, some are peculiar to menu management. 

The first two global variables, "done" and "theEvt", have been used 
to manage events before. The first is a Boolean that controls the termina­
tion of the main loop. The second is an event record that holds the "what" 
and "where" information for our events. 

The global variables "mainWindow" and "theWindow" are window 
pointers. The first- points to our main window, which displays the shapes. 
The second is a general-purpose window pointer, as used in the example 
programs of the last few chapters. 

The rectangle "dragBounds" provides the bounds for window drag­
ging. Later, we set these bounds so that the windows never go completely 
off the screen or overlap the menu bar. 

The global array of menu handles, "myMenus", provides access to 
the menus in our program. Later we will see how this array structure 
makes it easy to initialize all menus at once in a simple FOR loop. 

Finally, the integers "theShape", "theFillPat", "thePenPat", "the­
PenSize", and "thePenMode" hold current choices from the last five menus. 
These use check mark options; that is, they show which menu items are 
selected by displaying check marks. 

Procedures 
The various procedures in this program initialize the system, initialize 
the menus, draw the shapes, and track the menus. Let's look at them in 
detail. 

Initializing the System 
The first procedure, "SetUpSys", initializes QuickDraw, the Font Manager, 
the Window Manager, the Dialog Manager, Text Edit, and the Event Man­
ager. It also calls "TEinit" to initialize Text Edit. Though you might not 
need all these managers in your program, they must be initialized to 
ensure that the desk accessories do not crash. 

"SetUpSys" has a more sophisticated way to set the window drag 
limits in the rectangle "dragBnds". "SetRect" (surrounded by a WITH 
statement) defines the drag limits relative to the screen limits as given by 
"screenBits.Bounds". The drag limits are set so that some portion of the 
window always stays within the screen and windows do not cover any 
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portion of the menu bar. Because we use "screenBits" to define the drag 
limits, our program should work even if the screen size changes. 

This initialization procedure next calls "GetNewWindow" to get the 
window definition parameters from our resource file and draw the window. 
Here is the resource definition for this window: 

Type WIND 
, 256 
Menu Driven QuickDraw Demo 
50 40 300 450 
Visible NoGoAway 
0 
0 

Lastly, the procedure sets "done" equal to false for our event loop. 

Checking Menu Items 
The "Clickltem" procedure updates check marks for the last five menus. 
It expects three integer parameters: "menulndex", to specify a particular 
menu; "theltem", to specify the new item that should be checked in that 
menu; and "itemNum", to specify the item that is currently checked in 
that menu. The procedure removes the check mark from the previously 
checked item, updates the variable "theltem" so that it now indicates the 
current choice, and places a check mark on this new choice. 

The procedure begins by calling the Menu Manager routine 
"Checkltem" to uncheck the currently checked item. This routine expects 
three parameters: a menu handle that specifies a menu, an integer that 
specifies a particular item within that menu, and a Boolean that specifies 
whether the item is to be checked or unchecked. In this case, we pass 
"myMenus[menulndex]" in the first parameter to indicate the menu to be 
modified, "itemNum" in the second parameter to indicate the currently 
checked item, and FALSE to the third parameter to indicate that it should 
be unchecked. 

The procedure then updates "itemNum" by assigning the value of 
"theltem" to it. 

Finally, the procedure checks the new choice by calling "Checkltem" 
with the same expressions in its first two parameters, indicating the same 
menu with the updated choice of item. We pass TRUE to the last parameter 
to indicate that we want the item checked. 

268 HIDDEN POWERS OF THE MACINTOSH 



Setting Up Menus 
The procedure "SetUpMenus" initializes all menus for this program. It 
has one local variable, an integer "I", which is an index to a FOR loop. 

The procedure begins by calling "InitMenus" to initialize the Menu 
Manager. 

We call "GetMenu" seven times to get the menu descriptions for all 
seven menus from our resource file attached to our program. In each case, 
we pass an identifier defined in our CONST section. The names of these 
identifier constants have been chosen for ease of recognition. For example, 
"AppleMenu" identifies the Apple menu, "ComMenu" identifies the Com­
mand menu, and "ShapeMenu" identifies the Shape menu. 

Menu identification numbers should differ from each other and should 
never equal zero, since zero signals a "nonchoice". 

We then use a FOR loop to add these menus to the Menu Manager's 
master list of menus. This loop is indexed by I and runs from 1 to 
"lastMenu". It calls "lnsertMenu" to add each menu to the list. 

The "lnsertMenu" routine expects two parameters: the menu handle 
of the menu we wish to add to the master list of menus, and an integer 
that specifies where in the list that menu should go. In our case, we pass 
zero to indicate that each menu, in turn, is added to the end of the list. 
In general, if this integer parameter is one of the menus already in the list, 
then the new menu is added before that menu. 

The first menu, the Apple menu, is different from the others; it is not 
completely defined in the resource definition file. Only its first two entries 
are defined there. We must call "AddResMenu" to search the resource 
files for the titles and identification numbers of the system's desk acces­
sories to add them to the Apple menu. 

The "AddResMenu" routine expects two parameters: a menu handle 
and a resource type. We specify the menu handle as "myMenus[l]", which 
we have just set up for the Apple menu, and we specify 'DRVR' to indicate 
that the system should search for resources of the type of desk accessories. 

We then call "DrawMenuBar" to display the titles of all our menus 
across the menu bar. The routine expects no parameters. It merely uses 
the Menu Manager's master list of menus to find these titles. 

Finally, we use assignment statements to initialize the current values 
of the choices in the last five menus, then make calls to "Checkltem" to 
initialize the check marks in the actual menus. 
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Menu Resource Definitions 

Let's look at how these menus are defined in the resource definition field 
attached to our program. 

As mentioned earlier, the definition for the Apple menu is not com­
pletely contained in our resource definition file. The last part is gathered 
from system resources using the "AddResMenu" procedure. 

The Apple menu appears as follows in the resource definition file: 

Type MENU 
, 1000 
\ 14 

About Menu . .. 
(-- --- -------- -

The first line after the "Type" specification contains the menu iden­
tification number, preceded by a comma. The next line contains the title; 
in this case, the Apple symbol. The "\ 14" indicates the ASCII code of 
this symbol. In particular, the "\" is a meta-character indicating that the 
next digits specify the hexadecimal representation of a number. 

Table 9-5 lists these special meta-characters. 
The first menu item, "About Menu", allows us to display an alert box 

with information about our program. The second menu item serves as a 
separator between the "About Menu" command and the commands that 
open desk accessories. It appears in the menu as a disabled dashed line 
and is indicated in the resource definition by a left parenthesis followed 
by the dashed line. The left parenthesis is also a meta-character. It specifies 
that the item is disabled. We see later how other items are filled in when 
the program executes. 

Table 9-5. Meta-Characters for Menu Definitions 

Meta-Character 

; or < CR> 

< 
I 
( 
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Meaning 

Separates items 
Item icon 
Item mark 
Item style 
Item keyboard equivalent 
Item is disabled 



The remaining menus are defined in our resource definition file. The 
Command menu definition appears as follows: 

Type MENU 
, 1001 
Command 

Frame the shape / F 
Paint the shape / P 
Erase the shape / E 
Invert the shape / ! 
Fill the shape / L 
Erase Window / C 
(- ---- -- ---------
Quit / Q <B 

The first line contains the menu identification number, preceded by 
a comma. The second line contains the title "Command". 

Each remaining line contains a title for an item in this menu. Items 
one through six and item eight have keyboard equivalents. These are 
indicated (after the title) by the meta-character slash followed by the key 
symbol. They are an alternative to selecting menu items. To use these key 
equivalents, the user must hold down the 00 key like a shift key while 
pressing the indicated key. 

As an example of key equivalents, the item title "Frame the shape" 
is followed by "IF", which indicates that its keyboard equivalent is ob­
tained by hitting 00 F 

The seventh menu item is as a separator between the Quick.Draw 
commands and the "Quit" command. It appears in the menu as a disabled 
dashed line and is indicated in the resource definition by a left parenthesis 
followed by the dashed line. Again, the left parenthesis is a meta-character 
that specifies that the item is disabled. 

The eighth line appears in boldface. This is indicated by the meta­
character"<" followed by a "B" for boldface immediately after the title. 
Table 9-6 lists the other style options. 

The remaining fi ve menus are less fancy and contain no meta-characters: 

Type MENU 
, 1002 
Shape 

Square 
Wide Rectangle 
Tall Rectangle 
Circle 
Wide Oval 
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Tall Oval 
Rounded Square 
Wide Rounded Rectangle 
Tall Rounded Rectangle 

, 1003 
Fill Pattern 

White 
Black 
Gray 
LtGray 
DkGray 

,1004 
Pen Pattern 

White 
Black 
Gray 
LtGray 
DkGray 

,1005 
Pen Size 

1 by 
1 by 
5 by 
5 by 

10 by 

, 1006 
Pen Mode 

Copy 
Or 
X or 
Bic 

1 
5 
1 
5 
10 

Table 9-6. Style Options for Menu Items 

Symbol 

B 
I 
u 
0 
s 
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Meaning 

Bold 
Italic 
Underline 
Outline 
Shadow 



NotCopy 
No tor 
NotXor 
NotBic 

Drawing the Shapes 
The procedure "DrawShape" draws the various shapes in our display 
window. It expects one parameter, which specifies a command from the 
Command menu. 

The "DrawShapes" proce dure has several local parameters: 
"shapeRect", a rectangle that determines the aspect ratio of the shape to 
be drawn; " theScreen", a rectangle that specifies the size of the screen; 
"curv", of type "Point", that specifies the curvature of the rounded rec­
tangles; and "dpat", a pattern that fills the shape (as opposed to painting 
it). 

We begin the procedure by calling "SetPort" to make our "main­
Window" into the current window. Next, we assign " thePort ' .portRect" 
to the variable " theScreen". This simplifies erasing the contents of the 
window later in the program. 

Next, we set "curv" equal to (30,30) to specify the curvature of the 
rounded rectangles. 

The rest of the program sorts the selections that determine the shape 
and draw it. 

First, we use a CASE statement to determine the fill pattern, setting 
"dpat" according to the selection made. Next, we use another CASE 
statement to determine the pen pattern, calling "PenPat" with the appro­
priate pattern. Then we determine the pen size with a third CASE state­
ment, calling "PenSize" with the appropriate sizes. The pen mode is 
determined by a simple CASE statement, calling " penMode" with the 
appropriate parameters. 

The shape is a more complicated matter. A CASE statement first 
assigns the aspect ratio of the shape to "shapeRect". For shape selections 
one, four, and seven, we choose a square; for shape selections two, six, 
and eight, we choose a wide rectangle; and for selections three, six, and 
nine, we choose a tall rectangle. This means, for example, that a tall oval 
is assigned the underlying shape of a tall rectangle, a wide oval is assigned 
the underlying shape of a wide rectangle, and so on. 

Next, we determine the set of shape commands to draw the shape. 
For shape selections one, two, and three, we use rectangle commands; for 
shape selections four, five, and six, we use oval commands; and for shape 
selections seven, eight, and nine, we use rounded rectangle commands. 
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Within each shape case, a CASE statement determines the particular 
command to be executed. For the first five commands in each case, we 
frame, paint, erase, invert, or fill the shape. In the sixth case, we erase the 
screen. There is no seventh case, since the seventh item of this menu is a 
disabled dashed line. However, there is an eighth line (the "Quit" com­
mand) that sets "done" equal to true, causing the main loop to terminate 
and thereby terminating the program. 

Doing the Apple Menu 
The next procedure, " DoAppleMenu", handles the options available under 
the Apple menu. It expects one parameter to specify the item selected 
from the Apple menu. 

It has two local variables- an integer "refNum," and a string " name" 
-which are used with desk accessories. 

The procedure begins by checking if item one, "About Menu", was 
selected. If so, it calls the Dialog Manager's "Alert" function to display a 
message on the screen in an alert box. Here are the resource definitions 
associated with the alert box: 

Type ALRT 
, 1001 
100 70 200 440 
1001 
4444 

Type DITL 
, 1001 
3 

Btnitem Enabled 
70 10 90 100 

OK 

StatText Disabled 
10 10 30 360 

Menu , a demonstration program for menus 

StatText Disabled 
30 10 50 360 

Christopher L. Morgan , 1985 

If the item selected is not "About Menu", we call "Getltem" to get 
the name of the associated desk accessory, then "OpenDeskAcc" to acti­
vate that particular accessory. 
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Selecting the Menu Item 
The procedure "SelectMenu" determines which menu is selected (if any). 
It also tracks the selection of an item and calls the appropriate action for 
the selected item. 

The "SelectMenu" procedure has one parameter: a long integer 
"selection" to pass menu selection information generated by the Menu 
Manager. 

It has two local variables, both integers: "the Menu" specifies the 
menu, and "theltem" selects the particular item within the menu. 

We begin this procedure by extracting the menu identification number 
and the item number from the "selection" parameter. The upper 16 bits 
of "selection" (its "hi" part) contain the identification number of the 
selected menu. The lower bits (its "lo" part) contain the item number of 
the selected item within that menu. We store its "hi" part in "theMenu", 
its "lo" part in "theltem". 

We now use a CASE statement to determine which menu is selected 
(if any; a zero indicates no selection). The various cases of "theMenu" are 
identified by menu identification numbers. 

If the Apple menu is selected, we call "DoAppleMenu", described 
previously. If the Command menu is selected, we call "DrawShape". If 
any of the remaining menus are selected, we call the "Clickltem" proce­
dure to update the variable that holds the choice for that menu and update 
the check mark in that menu. 

After the CASE statement, we call "HiliteMenu", passing a zero to 
unhighlight all menus. If we don't do this, the title of the selected menu 
remains highlighted. 

The Menu Manager's "HiliteMenu" routine expects one parameter, 
an integer that contains the menu identification number of the menu item 
to be highlighted. If the value passed in this parameter does not match 
the identification number of any menu in the Menu Manager's list of 
menus, then the routine unhighlights any highlighted menu item. Since 
no menu identification number is equal to zero, passing a zero to this 
routine unhighlights all menus. 

The Main Program 
The main program has much the same structure as main programs in 
previous example programs. It consists of an initialization section and a 
main REPEAT loop controlled by "done". 
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The initialization section calls the procedure "SetUpSys" to initial­
ize QuickDraw, the various managers, and some of our global variables, 
and then calls the "SetUpMenus" procedure to initialize the menus. 

We begin the main REPEAT loop by calling the Desk Manager's 
"SystemTask" routine to allow all open desk accessories to perform any 
required ''background'' actions. For example, the control panel has several 
parts that blink or change periodically. 

In the main loop, we have the usual IF statement that surrounds the 
"GetNextEvent" function. Recall that this Event Manager function returns 
a value of true if we are to handle the event in our program. The "Get­
NextEvent" function returns the event record "theEvt" as its second vari­
able, which we use to drive the CASE statements in the rest of our REPEAT 
loop. 

The" .what" field of the event record drives the main CASE statement. 
The cases are "mouseDown", "keyDown", "updateEvt", and "activateEvt". 
The last two are lumped together. 

For "mouseDown", we have a CASE statement driven by the result 
returned from "FindWindow". We have five cases: "inMenuBar", "in­
SysWindow", "inDrag", "inContent", and "inGrow". Again, the last two 
cases are lumped together. 

In our program, only one window is under direct program control. 
However, each desk accessory has its own window. The various cases of 
"Find Window" select from among these windows as well as the menu bar 
at the top of the screen. 

For the "inMenuBar" case of "mouseDown", we call our "Select­
Menu" procedure, passing to it the value of an expression directly in­
volving the Menu Manager's "MenuSelect" routine. 

The "MenuSelect" routine tracks the menu selection process, includ­
ing pulling down the menus and highlighting their items as the mouse is 
held down and moved around. When the button is released, the routine 
returns (as a Pascal function) with long integer selection information 
containing the menu identification number and the item number. If no 
item is selected, it returns with a value of zero. 

The "MenuSelect" routine expects a single parameter that is the 
location of the mouse in global screen coordinates at the time that the 
mouse button was pressed. In this case, we pass to it "theEvt. where" from 
the Event Manager. Interestingly, the entire menu selection process hap­
pens on a single line of Pascal during the evaluation of a single expression 
that is passed as a parameter. 

For the "inSys Window" case of" mouseDown ", we call "System Click" 
to allow the currently selected desk accessory to perform a given action. 
This desk accessory is associated with the currently selected window. 
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For the "inDrag" case of "mouseDown", we call "DragWindow". As 
in other programs, this allows the user to drag the window around the 
screen but not off the screen and not into the menu bar. 

For the "inContent" and "inGrow" cases of "mouseDown", we call 
''SelectWindow'' to bring the selected window to the front and highlight 
it. When a desk accessory becomes active, its window comes to the front, 
deselecting all other windows including our display window. Having a 
way to "select" windows allows us to bring our own display window to 
the front again. 

For the "keyDown" case, we also call "SelectMenu". This provides a 
way to select menu items by using the keyboard rather than the mouse. 

In the previous case, we passed an expression that involved the 
mouse's "MenuSelect" routine. This time, we pass an expression involving 
the keyboard's "MenuKey" routine to "map" keys from the keyboard to 
those menu items that have key equivalents. In our program, these are the 
items in the Command menu. We find the ASCII code for the key in the 
lowest eight bits of the ".message" field of the event record. We then use 
"Chr" to convert it to type "Char" and "MenuKey" to map it to the long 
integer selection information. 

For the "updateEvt" and "activateEvt" cases, we do an empty 
"BeginUpdate"/"EndUpdate" sequence. This allows the desk accessories 
to be properly updated as windows move around. Though our program 
doesn't "know" enough to explicity redraw a desk accessory when it 
needs updating, the "BeginUpdate" sequence signals the desk accessory 
to update itself at this point. 

Before the "BeginUpdate", we point to the window to be updated by 
loading the ".message" field of "theEvt" into "theWindow", we use the 
type "windowPtr" like a function to coerce this quantity from type "Longlnt" 
to type "windowPtr". 

This takes care of all cases in our program, completing the REPEAT 
loop and the program. 

Summary 
In this chapter, we have studied the Menu Manager through an example 
program that manipulates seven menus, including the Apple menu filled 
with desk accessories and an information entry that activates an alert. 
The program also illustrates the various shapes, drawing actions, and 
drawing attributes available in QuickDraw, which menus organize in easy­
to-use form. 
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The following ROM routines are covered in this chapter: 

DL-Ini tD ialogs 

TE-TEinit 

MN-Checkltem 

MN-InitMenus 

MN-NewMenu 

MN-AddResMenu 

MN-GetMenu 

MN-InsertMenu 

MN-DrawMenuBar 

QD-PenPat 

QD-PenSize 

QD-PenMode 

QD-FrameOval 

QD-PaintOval 

QD-EraseOval 

QD-FillOval 

QD-PaintRoundRect 

QD-EraseRoundRect 

QD-InvertRoundRect 

QD-FillRoundRect 

TU-HiWord 

MN-Getltem 

DS-OpenDeskAcc 

MN-HiliteMenu 

DS-SystemTask 

MN-MenuSelect 

DS-SystemClick 

MN-MenuKey 
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10 
Text and Files 

This chapter covers the following new concepts: 

• The File Manager 

• The Package Manager 

• The Standard File Package 

• Creating, Opening, and Closing Files 

• Writing to and Reading from Files 

• Text Edit 

• Text Records 

• Editing and Displaying Text 

• Scrolling Text 

This chapter explores fi les and text. An example program illustrates how 
to program these two essential operations of applications programs. 

Both text and files involve the management of blocks of information. 
Files store these blocks on disk and allow them to be transferred to and 
from memory. Text manages these blocks in memory. Of course, files can 
store information other than text: the way files are programmed is inde­
pendent of the type of information they contain. 

Our example program also uses many of the features - menus, 
windows, dialogs, and alerts - introduced in previous chapters. This 
program illustrates how a complete application should work, providing a 
fitting conclusion to the book. The challenge is to combine these old 
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concepts and handle the new concepts of text and files. As we see, every­
thing fits into a grander structure controlled by a very simple but powerful 
main program that can run without change for a variety of applications 
and serves as an overview to Macintosh applications programming. 

We could introduce text without files, but then our example would be 
useless: we would have no way to save the text or to conveniently supply 
examples of text to test our program. 

This chapter discusses three new managers: the File Manager, Text 
Edit, and the Package Manager. The File Manager is considered part of 
the Operating System. It provides access to the file systems of the disks. 
It calls the lower levels of the system, such as the disk drivers. Text Edit 
is considered part of the Toolbox. It provides routines to edit blocks of 
text in memory. It calls lower levels, such as the Memory Manager. The 
Package Manager provides access to ROM-like routines that go beyond 
those in the ROM. 

The Example Program 
The example program is a simple text editor. Three menus define its major 
functions (see Figure 1 0-1). 

The first menu, titled with the Apple symbol, allows the user to select 
desk accessories. The second menu, titled "File", has entries "New", 
"Open", "Close", "Save", and "Save As ... " to set up, load, and save files, 
and "Quit" to exit the program. The third menu, titled "Edit", has entries 
"Cut", "Copy", and "Paste" to perform standard editing functions. 

The first menu connects the program with other features and capa­
bilities of the Macintosh. The second and third menus make this program 
into a simple text editor. Other menus could easily be added to provide 
options such as variable fonts, text faces, and text sizes. 

The program also displays what is called the text window. At first, 
the text window is "Untitled" and empty. Later, it fills with text and is 
titled with the name of the file currently being edited. The text window 
has several features, including a vertical scroll bar that allows the user to 
scroll through the text, drag bars that allow the user to move the window, 
and a grow icon that allows the user to resize it. 

Now let's examine each menu in more detail. 

The Apple Menu 
The Apple menu contains the desk accessories. We discussed these in 
Chapter 9. 
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The File Menu 
The File menu contains seven entries: "New", "Open", "Close", "Save", 
"Save As ... ", a disabled entry filled with dashes, and "Quit" (see Figure 
10-2). 

The entry "New" sets up an "untitled" text window. The entry "Open ... " 
loads a selected text file, displaying its contents in the text window and 
its name in the title bar. 

The three dots after the word "Open" indicate that a dialog appears 
when this item is selected (see Figure 10-3). This dialog is a standard 
dialog that displays the available text files. The user can select a file by 
double clicking it or by clicking an "open " button. The dialog also lets 
the user change disks. 

The entry "Close" saves the file if it has been modified and makes 
the text window disappear. The entry "Save" of the File menu causes the 
current file to be saved on the disk. 

The "Save" command proceeds without any special selection dialog. 
In contrast, the entry "Save As ... " displays a standard dialog (see Figure 
10-4) that allows the user to select the drive and file name under which 

Figure 10-1. The Menus 

• File Edit 
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the file will be saved. Again, the three dots indicate that a dialog is to 
appear, requesting further information from the user. When we study this 
program, we see how these standard file dialogs, which open and save 
files, are available through the Package Manager. 

To prevent undesirable actions, such as opening a text file when one 
is already open, the items in the file menu are selectively enabled and 
disabled. We explore this in detail when we study the workings of the 
program. 

The Edit Menu 
The Edit menu contains three entries: "Cut", "Copy", and "Paste" (see 
Figure 10-5). They preform their standard operations on our text in our 
text window. They also perform standard operations on desk accessories. 
However, the program does not allow transfer of text between our text 
window and any desk accessory. Such a transfer is handled by the Scrap 
Manager, which is not studied here. 

S<lll <~ 
Saue As •.• 

Quit a&Q 

Figure 10-2. The File Menu 
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When not using the menus, the user can enter, view, and edit text in 
the text window. Notice that the window does not automatically scroll 
when it reaches the bottom of the screen. This feature is not built into the 
Macintosh; it must be programmed by the applications programmer. 

Although this program is long, it contains many familiar routines and 
a modular structure that makes it easy to understand how the new parts 
fit in. 

PROGRAM FileDemo ; 
{$R- }{ $X- } 

USES 
{$U obj / Memtypes 
{$U obj / QuickDraw 
{$U obj / OSintf 
{$U obj / Toollntf 
{$U Obj / Packlntf 

Memtypes , 
QuickDraw, 
OSintf , 
Toollntf , 
Packlntf ; 

Figure 10-3. The Standard File Open Dialog 
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CONST 
{menu IDs l 
appleMenu = 
FileMenu 
EditMenu 
lastMenu 

1000; 
1001 ; 
1002 ; 
3 ; 

desk accessory menu } 
File menu} 
Edit menu} 
number of menus } 

{common dialog and alert items } 
OKBtn 1; 
cancelBtn = 2; 

VAR 
done , present, titled, modified: BOOLEAN; 
dragBnds , sizeBnds, dRect , vRect: Rect ; 
where : Point ; 
myMenus: ARRAY [1. . lastMenu] OF MenuHandle ; 
theEvt : EventRecord; 
theWindow, textWindow: WindowPtr ; 
vsbar : Contro lHandle ; 
theDialog: DialogPtr; 
fRefNum, vRefNum : INTEGER; 

Figure 10-4. The Standard File Save As Dialog 
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fName : Str255; 
theTE : TEHandle ; 

PROCEDURE SetLimits; 
BEGIN 

WITH screenBits.Bounds DO 
SetRect(dragBnds , left+4 , top+24,right - 4, bottom- 4) ; 

SetRect (sizeBnds , 50 , 50 , 512 , 342) ; 
SetPt (where , 100, 100); 

END ; 

PROCEDURE SetUpMenus ; 
VAR 

I : INTEGER; 
BEGIN 

InitMenus ; 

myMenus[l) : = GetMenu(appleMenu); 
myMenus[2) : = GetMenu(FileMenu) ; 
myMenus[3) : = GetMenu(EditMenu); 

Figure 10-5. The Edit Menu 

s1mple 
utt 1 i ty. It can be used to open 
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AddResMenu(myMenus[1] , 'DRVR' J; 
FOR I := 1 TO lastMenu DO InsertMenu (myMenus[I] , 0) ; 
DrawMenuBar ; 

END; {of SetUpMenus} 

PROCEDURE SetUpWindows; 
BEGIN 

textWindow := GetNewWindow(1000,NIL, POINTER(-1 )); 
vsbar : = GetNewControl (1000 , textWindow) ; 

END; 

PROCEDURE UpdateFState; 

PROCEDURE MenultemEnable (theitem: INTEGER; enabled: BOOLEAN) ; 
BEGIN 

IF enabled THEN Enableitem( myMenus[2) , theitem) 
ELSE Disableitem(myMenus[2] , theltem) ; 

END; 

BEGIN 
MenuitemEnable (1,NOT present); 
MenuitemEnable (2 , NOT present); 
MenuitemEnable (3, present ); 
MenuitemEnable (4 , titled AND modified); 
MenuitemEnable (5, present ) ; 

END ; 

PROCEDURE UpdateScroll ; 
VAR 

maxvalue: INTEGER; 
BEGIN 

maxvalue : = theTE'' . nLines - 3; 
IF maxvalue<O THEN maxvalue 
SetCtlMax (vsbar,maxvalue); 

END; 

o· 
' 

FUNCTION SetErrMess(theErr : OSErr ) : BOOLEAN; 
VAR 

Errindex, theitem: INTEGER; 
ErrMess , ErrStr : Str255; 
closeErr : BOOLEAN; 

BEGIN 
CASE theErr OF 

noErr : Err Index - 2· 
' bdNamErr : Err Index - 4· 
' fnfErr : Err Index - 5· 
' ioErr : Err Index - 6 ; 

mFulErr : Err Index - 7 ; 
nsvErr : Err Index - 8 · 

' 
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opWrErr : Err Index - 9· I 

tmfoErr : Err Index - 10; 
eofErr : Err Index - 11 ; 
paramErr : Err Index - 12 ; {exact meaning depends } 
nsDrvErr : Err Index - 13; 
dupFNErr : Err Index - 14 ; 
dirFulErr : Err Index - 15; 
vLckdErr : Err Index - 16 ; 
wPrErr : Err Index - 17; 
fnOpnErr : Err Index - 1 8; 
rfNumErr : Err Index - 19; 
dskFulErr : Err Index - 20 ; 
fLckdErr : Err Index - 21 ; 
wrPerrnErr : Err Index - 22 ; 
posErr : Er r Index - 23 ; 
extFSErr : Err Index - 24 ; 
Otherwise Err Index - 3; 
END; 

GetindStr (ErrMeSS 1 1000 1 Errindex); 
NumToStr(theErr 1 ErrStr) ; 
ParamText (ErrMess I ErrStr I ' 'I ' ' ) ; 

IF theErr <> noErr 
THEN theitem : = StopAlert (1003 1 NIL) ; 

IF (theErr = opWrErr) OR (theErr = dskFulErr ) 
THEN closeErr : = SetErrMess (FSClose (fRefNum) ) ; 

SetErrMess (theErr <> noErr ); 
END; 

PROCEDURE NewTextWindow; 
BEGIN 

SetPor t (textWindow) ; 
WITH textWindow· . portRect DO 

SetRect (dRect l left+41 top l r i ght - 19 1 bottom-15) ; 
vRect : = dRect; 
theTE : = TENew (dRect lvRect) ; 
SetCtlValue(vsbar 1 0) ; 

END; 

PROCEDURE NewFile ; 
BEGIN 

NewTextWindow; 
GetindStr (fName 1 1000 1 1); { ' ' Untitled' ' } 
SetWTitle (textWindow 1 fName) ; 
ShowWindow (textWindow); 

fName : = '' ; 
vRefNum : = 0; 
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present 
titled 
modified 

: =TRUE ; 
FALSE; 

: = FALSE; 
END; 

PROCEDURE OpenFile ; 
VAR 

typeLi st: 
reply : 

SFTypeList; 
SFReply ; 
Longint ; CharCount : 

PROCEDURE FLCall (theErr : OSErr) ; 
BEGIN 

IF SetErrMess (theErr ) THEN Exit(OpenFi l e); 
END; 

BEGIN 
typeLis t[O] : = 'TEXT' ; 
SFGetFile (where , ' ', NIL, 1, typeList , NIL , reply) ; 
IF reply .good THEN BEGIN 

NewTextWindow; 

FLCall (FSOpen(reply.fName , reply.vRefNum,fRefNum) ); 
FLCall(GetEOF(fRefNum,charCount)) ; 
therE· · . TELength := charcount; 
SetHandleSize(theTE··. hText , charCount); 
FLCall (FSRead(fRefNurn,charCount , theTE •.. hText · l l; 
FLCall(FSClose (fRefNum)); 

TECalText (theTE); 

fName := reply . fName ; 
vRefNurn := reply . vRefNum; 
SetWTitle(textWindow,fName) ; 
ShowWindow(textWindow) ; 

present : = TRUE ; 
titl ed := TRUE ; 
modi fied := FALSE; 

END; 
END; 

PROCEDURE SaveFile ; 
VAR 

charCount : Longint; 

PROCEDURE FLCall (theErr : OSErr ) ; 
BEGIN 

IF SetErrMess(theErr ) THEN Exit(SaveFile); 
END; 
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BEGIN 
charCount : = theTE· · . TELength; 
FLCall (FSOpen (fName , vRefNum, fRefNum)); 
FLCall (FSWrite (fRefNum ,charCount , theTE· · . hText . )) ; 
FLCall (FSClose(fRefNum)) ; 
modified := FALSE; 

END; 

PROCEDURE SaveAsFile; 
VAR 

reply: SFReply; 
theErr : OSErr; 
charCount : Longint ; 

PROCEDURE FLCall (theErr : OSErr ); 
BEGIN 

IF SetErrMess(theErr ) THEN Exit(SaveAsFile) ; 
END; 

BEGIN 
SFPutFile (where , ' Save text as : ',fName,NIL ,reply ) ; 
IF reply . good THEN BEGIN 

charCount : = theTE·· .TELength; 
theErr := FSOpen(reply. fName,reply . vRefNum, fRefNum); 
IF theErr = fnfErr THEN BEGIN 

FLCall (Create (reply . fName , reply . vRefNum, ' ',' TEXT' )); 
FLCall (FSOpen (reply . fName , reply . vRefNum, fRefNum) ) ; 
END 

ELSE FLCall (theErr ); 
FLCal l (FSWr i te (fRefNum ,charCount,theTE·· . hText.)); 
FLCal l (FSClose (fRefNum)); 

fName := reply.fName ; 
vRefNum := reply . vRefNum; 
SetWTitle(textWindow, fName ); 
titled TRUE; 
modified FALSE; 

END; 
END; 

PROCEDURE CloseFile; 
BEGIN 

IF modified THEN 
CASE CautionAlert (1004 , NIL) OF 

OKBtn: IF titled THEN SaveFile 
ELSE SaveAsFile ; 

cancelBtn: Exit(CloseFile) ; 
END; 
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HideWi ndow {text Window) ; 
TEDispose(theTEl; 
present := FALSE ; 
titled FALSE ; 

END; 

PROCEDURE QuitFile ; 
BEGIN 

IF present THEN CloseFi le ; 
done := NOT present ; 

END; 

PROCEDURE SetUpSys ; 
BEGIN 

InitGraf (@thePort ); 
Ini tFonts ; 
InitWindows; 
TEini t ; 
InitDialogs(NIL ) ; 
SetEventMask(everyEvent) ; 
FlushEvents(everyEvent , O); 

SetLimits ; 
SetupWindows ; 
SetupMenus ; 
NewFi l e; 
InitCursor ; 
done := FALSE; 

END; 

PROCEDURE UpdateSys ; 
BEGIN 

Sys temTask; 
UpdateFState ; 
IF present THEN BEGIN 

TEidle (theTE); 
UpdateScroll ; 
END; 

END ; 

PROCEDURE DoAppleMenu (theitem: INTEGER); 
VAR 

refNum: INTEGER; 
name : Str255 ; 

BEGIN 
If theitem = 1 

THEN the item := Alert (lOOl , NIL) 
ELSE 

290 HIDDEN POWERS OF T HE MACINTOSH 



BEGIN 
Getitem (myMenus[1] , t he i tem,name) ; 
refNum OpenDesk.Acc (name); 

END; 
END; 

PROCEDURE DoFileMenu (theitem: INTEGER); 
BEGIN 

CASE theltem OF 
1: NewFile ; 
2: OpenFile ; 
3: CloseFile; 
4: SaveFile ; 
5: SaveAsFile; 
7: QuitFile; 

END; 
END ; 

PROCEDURE DoEditMenu (theitem: INTEGER); 
BEGIN 

IF NOT SystemEdit (thei tem+l) THEN BEGIN 
SetPort (textWindow); 

END ; 

modified: = (theitem in [1,3] ) ; 
CASE theitem OF 

1: TECut (theTE); 
2: TECopy (theTE) ; 
3: TEPaste(theTE); 
END ; 

END; 

PROCEDURE SelectMenu (selection : Longint ); 
BEGIN 

CASE HiWord (selection) OF 
appleMenu: DoAppleMenu (LoWord (selection)) ; 
FileMenu: DoFileMenu (LoWord (selection )) ; 
EditMenu: DoEditMenu (LoWord (selection) ); 
END; 

HiliteMenu (O); {to unhighlight selected menu in menu bar } 
END; 

PROCEDURE WindowDrag (thePt : Point ); 
BEGIN 

DragWindow(theWindow, t hePt , dragBnds) ; 
END; {SelectMenu} 

PROCEDURE ScrAction(theCtl : Contro l Handle ; partCode : INTEGER); 
VAR 

pageSize , delta: INTEGER; 
S, dS : Point ; 
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BEGIN 
WITH theTE •• DO 

pagesize : = (viewRect . bottom - vi ewRect . top) DIV lineHeight; 

delta -1 ; 
delta +1; 

CASE partCode OF 
inUpButton : 
inDownButton : 
inPageUp: 
inPageDown: 
otherwise 

delta -pagesize ; 

END; 

delta := +pagesize ; 
Exit (ScrAction); 

SetPt(S,O ,GetCtlValue(theCtl ) ); 
SetCtlValue (theCtl , GetCtlValue (theCtl )+delta) ; 
SetPt(dS , O, S. v-GetCtlValue(theCtl ) ) ; 
TEScroll (O,dS. v*theTE •. . lineHeight , theTE) ; 

END; 

PROCEDURE WindowControl (thePt : Point ); 
VAR 

theCtl : ControlHandle ; 
S, dS : Point; 

BEGIN 
IF (theWindow = frontWindow) AND present THEN BEGIN 

SetPort(theWindow) ; 
GlobalToLocal (thePt); 
IF PtinRect (thePt,theTE· · . viewRect ) 

THEN TEClick (thePt , BitTst (@theEvt . modifiers,6) , theTE) 
ELSE CASE FindControl(thePt,theWindow, theCtl) OF 

inUpButton, inDownButton, inPageUp , inPageDown: 
IF TrackControl (theCtl,thePt ,@ScrAction)<>O THEN; 

inThumb : 
BEGIN 
SetPt (S, O,GetCtlValue (theCtl )); 
IF TrackControl(theCtl,thePt , NIL) <>O THEN BEGIN 

SetPt (dS , O, S. v- GetCtlValue (theCtl) ) ; 
TEScroll(O,dS . v*theTE· ·. lineHeight , theTE); 
END; 

END; 
END; 

END 
ELSE BEGIN 

SelectWindow(theWindow) ; 
DrawControls(theWindow) ; 
DrawGrowicon(theWindow); 

END ; 
END; {WindowControl } 
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PROCEDURE WindowGrow (thePt : Point) ; 
VAR 

Wsize : LONGINT; 
S : Point ; 

BEGIN 
WSize : = GrowWindow(theWindow, thePt , sizeBnds ) ; 
IF WSize = 0 THEN Exit (WindowGrow) ; 

SetPort(theWindow) ; 
SetPt(S , loWord(WSize ) , hiWord (WSize ) ) ; 
SizeWindow (theWindow, S. h, S.v,true) ; 
ClipRect(thePort ' . portRect ) ; 

SizeControl (vsbar , 16 , S. v-13 ); 
MoveControl (vsbar , S. h-15, - 1); 
InvalRect(theWindow· .portRect); 

DrawGrowicon (theWindow) ; 
IF present THEN 

WITH theTE"" DO BEGIN 
viewRect . right viewRect . left+S. h- 23 ; 
vi ewRect . bottom : = viewRect . top +S. v-15 ; 

END; 
END; IWindowGrow l 

PROCEDURE KeyEvent (theKey : Char) ; 
BEGIN 

IF BitTst (@theEvt . modifiers , 7) !check for command key } 
THEN Sel ectMenu (MenuKey(theKey) ) 
ELSE IF (textWindow = frontWindow) AND present THEN 

BEGIN 
TEKey (theKey ,theTE) ; 
modified :=TRUE ; 

END; 
END; IKeyEvent l 

PROCEDURE WindowUpdate ; 
BEGIN 

theWindow : = windowPtr (theEvt . message); 
SetPort (theWindow) ; 
IF lheWindow- FrontWindow THEN ShowControl (vsbar ) 

ELSE HideControl (vsbar) ; 
BeginUpdate(theWindow); 

EraseRect (theWindow· . portRect); 
IF (theWindow = textWindow) AND present THEN 

TEUpdate(theWindow· . visRgn· · . rgnBBox, theTE); 
DrawControls (theWindow) ; 
DrawGrowicon (theWindow) ; 

EndUpdate (theWindow) ; 
END; !Update l 
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PROCEDURE WindowActivate; 
BEGIN 

WindowUpdate ; 
IF present THEN 

IF ODD(theEvt . modifiers ) THEN TEActivate(theTE) 
ELSE TEDeactivate (theTE); 

END; {Activate } 

BEGIN {main program } 
SetupSys ; 
REPEAT 

UpdateSys ; 
IF GetNextEvent (everyEvent , theEvt ) THEN 

CASE theEvt .what OF 
mouseDown: 

CASE FindWindow (theEvt . where,theWindow) OF 
inMenuBar : SelectMenu(MenuSelect (theEvt . where) ); 
inSysWindow: SystemClick (theEvt , theWindow); 
inDrag: WindowDrag (theEvt . where ) ; 
inContent: WindowControl (theEvt .where ); 
inGrow: WindowGrow(theEvt.where) ; 
END; 

keyDown, autoKey : KeyEvent (Chr(theEvt. message MOD 256)) ; 
updateEvt : WindowUpdate; 
activateEvt : WindowActivate ; 
END ; {of what event} 

UNTIL done; 
END. 

External Files 
The program begins with a USES section , which , in addition to standard 
files, also uses a file called "Packlntf". This allows us to use special file 
dialogs and conversion routines between numbers and strings. 

Global Constants 
The CONST section is a useful interface between the program and its 
resource file. It assigns names to various numbers that identify the menus 
and dia log items in the resource file . This allows us to develop the resource 
definition file without constantly changing numbers in the program. 

The three menus are "appleMenu", "FileMenu", and "EditMenu". 
The " lastMenu" is set equal to three to indicate a total of three menus. 

Two button items are used in an alert: "OKBtn" and "CancelBtn". 
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Global Variables 
The VAR section declares a number of variables used globally in this 
program. 

Four Boolean variables keep track of the program. The Boolean vari­
able ''done'' controls the main loop to determine if the program is finished. 
The user controls "done" by the "Quit" command of the File menu. The 
three remaining Boolean variables set the file state in reference to other 
file commands. 

File States 

This program has five possible states for loading and saving files (see 
Figure 10-6). These states form a "finite state machine" whose state 
transitions are given by the file commands listed in the file menu. 

The three global Boolean variables "present", "titled", and "modi­
fied" can form eight possible value choices. Here we allow only five of 
those possibilities: 

Figure 10-6. File States 
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1. No window. In this state, "present" is FALSE, "titled" is FALSE, and 
"modified" is FALSE. This state occurs after a file closes. 

2. Newly untitled. In this state, "present" is TRUE, "titled" is FALSE, 
and "modified" is FALSE. This state occurs after the text window is 
newly initialized, such as when the program starts or after the "New" 
command is issued. 

3. Old untitled. In this state, "present" is TRUE, "titled" is FALSE, and 
"modified" is TRUE. This state occurs after text enters an untitled 
window. 

4. Newly titled. In this state, "present" is TRUE, "titled" is TRUE, and 
"modified" is FALSE. This state occurs after a file is opened or saved 
but no changes have been made. 

5. Old titled. In this state, "present" is TRUE, "titled" is TRUE, and 
"modified" is TRUE. This state occurs after a file is opened or saved 
and changes are made. 

For each state, certain items from the file menu are enabled, others 
disabled. For example, in the "no window" state, the "New" and "Open" 
commands are enabled, but "Close", "Save", and "Save As" are disabled. 
We later see how. 

The next four variables are rectangles that determine limits. The first 
rectangle, "dragBnds", provides the limits for dragging windows. The 
second rectangle, "sizeBnds", provides the limits for resizing windows. 

The third and fourth rectangles size the text. The third rectangle, 
"dRect", is called the destination rectangle. The text is mapped into this 
rectangle using "word wrap". That is, the text is laid out so that it falls 
within the horizontal dimensions of this rectangle, breaking text lines 
only at word boundaries. In the vertical direction, text may continue 
beyond the bottom of this rectangle. This rectangle may be larger or 
smaller than the screen (see Figure 10-7). It defines the "full" image of 
the text. 

Figure 10-7. The Destination Rectangle for Text 
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The fourth rectangle, "vRect", is the viewing rectangle. It acts like a 
"window" for viewing the text. Only that part of the text that falls within 
the view rectangle (and the visible parts of the window) is displayed (see 
Figure 10-8). To scroll, move the destination rectangle while keeping the 
view rectangle fixed. 

The next global variable is a point, "where", that locates the upper 
left corner of the alerts in this program. 

Next, two window pointers are declared: "theWindow" is a general 
window pointer, and "textWindow" points to our text window. The global 
variable "vsbar" is a control handle to the vertical scroll bar of the text 
window. 

Next, "myMenus" is an array of menu handles to access our four 
menus. An event record, " theEvt", tracks events as in previous programs. 

A dialog pointer, "theDialog", points to the various dialogs and alerts 
in the program. It is reused a number of times , since dialogs are disposed 
of once they are closed. 

Two global integers, "fRefNum" and "vRefNum", hold reference num­
bers for files and volumes, respectively. The string "fName" holds the 
current file name. 

The text handle "theTE" is a handle to the text edit record, described 
by the following Pascal declarations: 

TEPtr "TERec; 
TEHandle = "TEPtr; 
TERe c RECORD 

destRect : 
viewRect : 
se lRect : 

Rect; 
Rect; 
Rect ; 

Figure 10-8. The Viewing Rectangle for Text 
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lineHeight : 
fontAscent : 
selPoint : 
selStart : 
selEnd: 
active : 
wordBreak: 
clikLoop : 
clikTime: 
clikLoc : 
caretTime: 
caretState : 
just: 
TELength : 
hText : 
recalBack: 
recalLines : 
clikStuff : 
crOnly: 
txFont : 
txFace : 
tx.Mode : 
txSize : 
inPort : 
highHook : 
caretHook: 
nLines : 
LineS tarts : 

END; 

INTEGER; 
INTEGER; 
Point ; 
INTEGER; 
INTEGER; 
BOOLEAN; 
LONG I NT; 
LONG I NT ; 
LONG I NT ; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
Handle ; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER ; 
GrafPtr ; 
PTR; 
PTR; 
INTEGER ; 
ARRAY [0 . . 16000] OF INTEGER; 

A text handle (type "TEHandle") points to a text pointer (type "TEPtr") 
that points to a text record (type "TERec"). A text record has a number 
of fields to describe the appearance of the text and its internal structure. 

The first two fields , ".destRect" and ". viewRect", contain the current 
values of the destination and view rectangles, respectively (see Figure 
10-9). The third field , ".selRect", contains a rectangle to delimit these­
lection area in the text's grafPort. 

The fourth field, ".lineHeight", contains the line height or vertical 
distance between lines (see Figure 10-10). 

The" .fontAscent" field contains the font ascent of the text (see Figure 
10-11). 

The" .selPoint" field is the location of the mouse when clicked within 
the text display on the screen. 

The ".selStart" and ".selEnd" fields give the starting and editing 
limits of the selection range. If these agree, then an insertion point occurs 
at their common value. This insertion point is indicated by a caret (blink-
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ing vertical line). These quantities range from zero (before the first char­
acter) to the number that represents the character position after the last 
character of text. However, since these and the ".TElength" field are inte­
gers, an edit record cannot control more characters than the largest 16-
bit signed integer, which is 32,767. Documents with more characters 
should be divided into smaller edit records, perhaps by paragraph or page. 

Figure 10-9. Destination, View and Selection Rectangles 
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The ".active" field indicates if the text is active (caret is blinking and 
editing working). A nonzero value indicates active. 

The ".wordBreak" field contains a long integer that points to the 
procedure for handling word breaks. The" .clikLoop" field contains a long 
integer that points to the procedure for handling mouse clicks. 

The ".clikTime" field contains a long integer that specifies the time 
of the first click of the mouse button. This is useful for handling double 
clicks. The ".clikLoc" field contains an integer that specifies the character 
position of the mouse where clicked. 

The ".caretTime" field contains a long integer that specifies the time 
for the next blink of the caret. The ".caretState'' contains an integer whose 
bits act like Boolean variables that specify the active and on/off state of 
the caret. 

The ".just" field determines the justification of the text. A value of 
zero indicates left justification, a value of one indicates centered text, and 
a value of minus 1 indicates right justification. 

The ".TElength" field contains the length of the text; that is, the 
number of characters in the text. As noted previously, this is a 16-bit 
integer, thus limiting the number of characters controlled by an edit 
record. 

The" .hText" field is a handle to the text itself. 
The ".recalBack", ".recalLines", and "clikStuff" fields are integers 

that the Text Manager uses to recalculate "line starts" for the text. These 
places within the text occur at the beginning of lines when the text is 
displayed on the screen (see Figure 10-11). 

The ".crOnly" turns wrapping text line on and off (see Figure 10-12). 
If this field is zero, then standard word wrap is used. If this field is minus 

Figure 10-10. Line Height and Font Ascent 
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one, then lines that extend beyond the horizontal limits of the destination 
rectangle are truncated (chopped off). In that case, only the carriage return 
terminates a displayed line of text before it is truncated. 

The next four fields-" .txFont", ".txFace", ".txMode", and" .txSize" 
-are attributes of the text. Normally, an application has menus that allow 
the user to change these fields. 

The ".inPort" field points to a grafPort associated with the text. This 
is the grafPort that was current when the text opened. 

The ".highHook" and ".caretHook" fields contain pointers to routines 
for advanced programmers to customize the highlighting of carets and 
selection areas. 

The" .nLines" field contains an integer that specifies the number of 
lines of text controlled by the text record. The ".lineS tarts" field is an 
array of integers that specify where each line starts. 

Functions and Procedures 
This program combines a number of features introduced in Chapter 9, so 
many of the functions and procedures in this program should be familiar. 
However, this program contains new routines and new wrinkles to old 
routines. 

The procedures are ordered according to "level"; that is, they are 
arranged according the usual Pascal calling sequence wherein each rou­
tine can be called only after it is defined (no forward references). The 
procedures and functions are also grouped according to their function. 
For example, all lowest level initialization procedures are grouped together. 

Figure 10-11. Line Starts 
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Low-Level Initialization Procedures 
The first few procedures- "SetLimits", "SetUp Windows", and "SetUp­
Menus" - initialize subsystems of the Macintosh, including rectangle 
and point limits, windows, and menus. These routines reside at the lowest 
level of our program; that is, they don't call other procedures. You can 
place your own low-level initialization routines in this section for any 
program you write for the Macintosh. 

Setting Limits 

The procedure ''SetLimits'' sets the limit values for several rectangles and 
a point. The rectangles are "dragBnds" and "sizeBnds"; the point is 
"where". The two rectangles are set with the standard limits. The point 
"where" locates the upper left corner of alert boxes and is set equal to 
( 100,1 00), placing the alerts toward the middle of the screen. Your program 
may have other variables to be initialized. This is a good place to do it. 

Setting Up Menus 

The procedure "SetUpMenus" initializes the menus. It has one local 
variable, "1", an index to a loop. 

Figure 10-12. Wrapping and Truncating Text Lines 

Word wrap 
The filedemo program acts as a simple 
text editor end a file utility. It can be 
used to open text files from the disk, edit 
them, end then seve them beck onto the 
disk~ 

lb Terminated by carriage return 

Truncated r Not seen 

The filedemo program acts as a simple text editor end a file utility. It can be 

302 HIDDEN POWERS OF THE MACINTOSH 



It calls " InitMenus" to initialize the Menu Manager. It calls "Get­
Menu" to get the definition of the four menus from the resource file, 
initialize the menus, then return a handle to them. We store these handles 
in the array " myMenus". 

These menus are defined in the resource definition file as follows: 

Type MENU 
, 1000 
\ 14 

, 1001 
File 

About FileDemo .. . 
(-- --- ---- -----

New 
Open .. . 
Close 
Save 
Save As . . . 
(--- ------

Quit / Q <B 

, 1002 
Edit 

Cut / X 
Copy/ C 
Paste / V 

In thi s program, as in the last, the Apple menu is partly defined in 
the resource file and partly defined by using "AddResMenu" to add all 
available desk accessories to it. You may want to add other system re­
sources to other menus at this point. 

The "SetUpMenus" procedure concludes with a FOR loop that uses 
"InsertMenu" to add each menu to the master list of menus , then calls 
"DrawMenuBar" to draw the menu titles on the screen. 

Setting up Windows 

The procedure "SetWindows" initializes the text window and its scroll 
bar. It ca lls "GetNewWindow" to initialize the text window and obtain a 
handle to it. It calls "GetNewControl" to initiali ze the scroll control, attach 
the scroll control to the text window, and obtain its handle. These are 
defined in the resource definition file as: 
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Type WIND 
, 1000 
Untitled 
50 10 300 480 
Visible NoGoAway 
0 
0 

Type CNTL 
,1000 
vertical scroll bar 
-1 455 235 471 
Invisible 
16 
2 
0 0 450 

Other windows and controls in your program should be initialized 
here. 

Low-Level Updating Routines 
The next two procedures, "UpdateFState" and "UpdateScroll", update 
various variables and subsystems as part of the main event loop. They are 
also low level - they do not call other procedures or functions in our 
program. 

The procedures are called by the procedure "UpdateSys", which is 
called each time the main event loop is executed. Other routines are also 
called in this master update procedure, but they are already defined in 
external files. We see how such updating routines fit together when we 
study this master "UpdateSys" procedure. 

You may wish to add other low-level routines at this place in your 
program. 

Updating the File State 

The procedure "UpdateFState" updates the file menu according to the 
state of file loading and saving. 
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As discussed , the file state can be described by the three Boolean 
variables "present", "titled", and " modified". Only certain commands 
should be enabled for any particular state. 

We use the Menu Manager routines "Enableltem" and " Disableltem" 
to enable and disable menu items in the file menu. These routines expect 
two parameters. The first is a hand le to the particular menu; the second 
is an int~ger index to the particular item. 

A subprocedure, "MenultemEnable", does the actual enabling and 
disabling. It expects two parameters: the item's number and a Boolean 
that specifies if the item should be enabled. 

The fi rs t two items, "New" and " Open ... ", are enabled only if the text 
window is not "present". The items "Close" and "Save As ... " are enabled 
only if the text window is "present". 

The "Save" menu item is handled differently. It is enabled when the 
text window is " titled" and "modified", bu t disabled otherwise. 

Updating Scroll Limits 

The procedure "UpdateScroll" updates the scroll limits and highlighting 
according to the amount of text in the system. It has one local variable, 
"maxvalue", an integer. 

The procedure calls "SetCtlMax" to set the maximum value accord­
ing to the formula: 

max(O,theTE'' . nLines- 3) 

Since this Pascal doesn 't have a maximum value function , we first use 
an inequality to ensure that we don't set the maximum value less than 
zero. The local var iable "maxvalue" holds the value during computation. 

File Menu Procedures and Functions 
The next procedures and functions in this program illustrate how to 
program the loading and saving of files. They implement the fi le com­
mands in the File menu. To support these commands, we first need an 
error handler function and a routine to set up a new text window. 
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Errors 

The function "SetErrMess" is a general -purpose routine to handle errors. 
It has one parameter, of type "OSErr" (equal to type INTEGER). This 
parameter contains the error code returned from a File Manager routine. 

Our "SetErrMess" function returns a Boolean variable that is true 
only if an error occurs. 

The function has five local variables. The first two are integers: 
" Errlndex" indexes into our list of errors in our resource definition file, 
and " theltem" is used in conjunction with a special error alert. The next 
two are strings: "ErrMess" holds the error message, and "ErrStr" holds 
the error number. Both strings are displayed in the stop alert. The last 
local variable is the Boolean variable "closeErr", which holds a result 
returned from a close file command that is issued in response to certa in 
errors. 

The "SetErrMess" function begins by using a CASE statement to map 
the error code " theErr" to the index "Errlndex" in our list of errors . 

We then ca ll "GetlndStr" to look up the appropriate s tring in our 
resource file. The "GetindStr" routine expects three parameters: a string 
that is returned, the resource number of a string list resource (type 'STR#'), 
and an index into this list. This list is defined in the resource definition 
file as: 

Type STR# 
, 1000 

Untitled 
No error 
Unknown Error 
Bad file or volume Name 
File not found 
Disk I / 0 Error 
Memory full 
No such volume 
File already open for writing 
Too many files open 
End of file 
Bad number 
No such drive 
Duplicate file name 
Directory full 
Software volume lock 
Hardware volume lock 
File not open 
Bad reference number 
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Disk full 
Permission denied to access file 
File position out of range 
External file system 

Next, we call "NumToStr" to convert the error code to the s tring 
"ErrStr". We use "ParamText" to load these strings for di splay in the next 
dialog or alert box. 

If an error (theErr < > noErr) occurs, we call "StopAlert" to display 
the appropriate alert. This alert is defined in the resource file as follows: 

Type ALRT 
,1003 
100 70 200 440 
1003 
7654 

Type DITL 
, 1003 
3 

Btnltem Enabled 
70 10 90 100 

OK 

StatText Disabled 
10 150 50 360 

File Error : · o 

StatText Disabled 
60 150 90 360 

ID number : '1 

If the error was "File open for writing" (opWrErr) or "Disk fu ll" 
(dskFulErr) , we attempt to close the file, ca lling the "SetErrMess" recur­
sively and passing the File Manager's "FSClose" routine as its parameter. 

The last statement in this function returns the Boolean value of the 
function determined by whether or not an error occurred. 

Making a New Text Window 

The procedure "NewTextWindow" sets up a new text window for the 
"New" or "Open .. . " commands. 

It begins by calling "SetPort" to set the current grafPort to the 
textWindow grafPort. Next, it sets the global destination rectangle "dRect" 
and view rec tangle "vRect" to just within the port rectangle, making room 
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for scroll bars and a small margin on either side of the "page". These 
margins keep the text looking tidy, as if it were on a sheet of paper. 

In particular, the left-hand limits are four pixels to the right of the 
left-hand limit of the port rectangle, the right-hand limits are nineteen 
pixels to the left of the right-hand limit of the port rectangle, the upper 
limits agree, and the bottom limits are fifteen pixels above the lower limit 
of the port rectangle. 

Next, it calls "TENew" to open up the text record with the destination 
and view rectangles just set. The "TENew" routine returns a handle to 
the text record. We store this handle in " theTE". 

Finally, we call "SetCtlValue" to set the control value for the scroll 
bar equal to zero. 

New File Command 

The "NewFile" procedure implements the "New" command of the File 
menu. The "New File" procedure begins by calling our "NewTextWindow" 
procedure to set up a new text window. It then calls "SetWTitle" to set 
the title of this window to " Untitled", and then uses "ShowWindow" to 
bring the text window into view. 

It sets the file name stored in the global "FName" equal to the empty 
string and the volume reference number stored in the global variable 
"vRefNum" equal to zero (the default drive). 

Finally, we set the Boolean variables "present" equal to true, "titled" 
equal to false, and "modified" equal to false. This puts us into the "newly 
untitled" state. 

Notice that this routine does not call any disk commands. 

Open File Command 

The "OpenFile" procedure implements the "Open ... " command of the 
File menu. It has three local variables: "typeList" is of type "SFTypeList" 
and specifies the desired file type, "charCount" is a long integer that 
temporarily stores the length of the file, and "reply" is of type "SFReply" 
and holds the results from the Package Manager's standard file selection 
routine. 

The type "SFTypeList" is defined by the following Pascal declaration: 

SFTypeList = ARRAY [0 .. 3] OF OSType; 

This is simply an array of four items, each a four-character string 
specifying a file type. 
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The type "SFReply" is defined by the following Pascal declaration: 

SFReply = RECORD 
good : 
copy : 
FType : 
vRefNwn: 
version: 
fName : 

END; 

BOOLEAN; 
BOOLEAN; 
OSType ; 
INTEGER; 
INTEGER; 
STRING [ 63] ; 

This is a record structure. The first field, ".good", is a Boolean vari­
able that specifies if a file selection is to be made (OK button or [ Return I 
key is hit). The second field," .copy", is not used. The third field ," .FType", 
is the file type of the selected file. The fourth field, ". vRefNum", is an 
integer that specifies the particular disk to find the file on. The fifth field, 
".version", is the version number of the Operating System associated with 
the disk. This should be zero for now. The sixth field, " .fName", is the file 
name. 

The "OpenFile" procedure has one subprocedure, "FLCall", that 
helps call disk routines. This subprocedure has one parameter, of type 
"OSErr". If this parameter is not equal to "noErr", it displays an alert that 
shows the error message and its identification number and causes a quick 
exit from our "OpenFile" routine. 

The "FLCall" subprocedure has only one Pascal statement, an IF..THEN 
statement that calls our "SetErrMess" routine in the IF part to determine 
if an error occurred. The THEN part is an "Exit" from the "OpenFile". 

The "OpenFile" procedure begins by setting the zeroth entry of 
"typeList" equal to "TEXT", which is the type of file we wish to find. It 
then calls the Standard File Package's "SFGetFile" routine to select the 
file to be opened. It displays a standard dialog that allows the user to 
scroll through all files of the specified type(s) (see Figure 10-14). 

The "SFGetFile" routine is not part of the ROM. It is part of the 
software called the Standard File Package, stored as a resource in the 
Operating System file called "System" (see Figure 10-13). In our program, 
we simply call the routine "SFGetFile". However, the Macintosh performs 
a rather complicated sequence of events in response to this call. The 
beginning of the "SFGetFile" routine is in the external UNIT "Packintf". 
This routine calls one of the Package Manager ROM routines ("Pack3") to 
execute this resource. The "Pack3" routine gives access to all routines in 
the Standard File Package. A special function selector number (in this 
case, two) must be passed to "Pack3" to determine which routine in the 
package is executed. 
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In addition to the Standard File Package, the following packages are 
available: the International Utilities Package, the Disk Initialization Pack­
age, the Floating Point Package, the Transcendental Functions Package, 
and the Binary-Decimal Conversion Package. Each package is called by a 
different "Pack" routine. 

The "SFGetFile" routine expects seven parameters. The first param­
eter is a point that determines where the upper left corner of the dialog 
window appears. In our program, we pass the global point "where", which 
we set in our "SetLimits" procedure. 

The second parameter, a string, is ignored. In earlier versions of the 
Macintosh, it served as a prompt in the dialog, but it is no longer used. It 
is retained for compatibility. In our program, we pass the string "Open 
text file:". 

The third parameter is a procedure pointer to a filter procedure to 
help determine which files are displayed in the dialog for the file selection 
process. In our program, we pass NIL to indicate no filter. 

The fourth parameter is an integer that specifies how many types we 
are looking for. If this parameter is set equal to minus one, then it looks 
for all types in our dialog. In our program, we pass a value of one to 
indicate just one type of file. The fifth parameter is a file type list. In our 
program, we pass the type list just initialized. 

The sixth parameter is a procedure pointer to a filter procedure for 
dialog. In our program, we pass NIL to indicate no special filter. The 
seventh parameter is a reply record of type "SFReply", discussed previ­
ously. In our program, we place "reply" here to receive our responses from 
this dialog. 

If the ".good" field of "reply" is true, indicating that a valid file 
selection was made in the dialog, we attempt to get the text from the file. 

Figure 10-13. The Standard File Package 
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We start by calling our "NewTextWindow" to set up a new text window. 
Then we call a series of File Manager routines to open, read from, then 
close the selected file. In each case, we call our ''FLCall'' routine, passing 
it the expression consisting of the particular file routine. This causes the 
error code generated by that file routine to be passed to the "FLCall" 
routine, which in turn passes it to our "SetErrMess" procedure. If there 
is no error, the file routine is executed without further ado. 

Let's look at each file routine in detail. The routine "FSOpen" at­
tempts to open a file. If it is successful, it makes the file "active", setting 
up the file so that it can be read or written to. The "FSOpen" routine 
expects three parameters: a file name, a volume reference number, and a 
file reference number that is passed by reference as a returned value. It 
returns the error code as a function return value. The file reference number 
is used for subsequent calls to the opened file. 

The routine "GetEOF" returns the number of bytes in the file. It 
expects two parameters: an integer that is a file reference number, and a 
long integer that returns (by reference) the number of valid bytes in the 
file. In our case, we place the long integer variable "charCount" in the 
second parameter. We assign this value to the ". TELength" field of our 
text record and use it to assign the size of the data accessed by the text 
handle field" .hText". We also pass it to the "FSRead" routine to determine 
how many bytes to read from the file. 

The "FSRead" routine reads a specified number of bytes from a file 
and places them at a specified location in memory. It expects three param­
eters: an integer that holds the file reference number, a long integer that 
specifies the number of bytes to read, and a pointer that points to where 
the file bytes should be stored. The second parameter is passed by refer­
ence. If the routine is unable to read the entire amount specified in this 
parameter, then, upon return, this parameter contains the actual number 
of bytes read. 

The last step in accessing the file is to close it with the "FSClose" 
routine. The "FSClose" routine expects one parameter, which is an integer 
containing the file's reference number. 

If any of these calls fail, the "OpenFile" procedure aborts. If all are 
successful, then we get to the last part of the routine, where we call 
"TECalText" to calculate all positions of the "line starts" of the text. 
Recall that these are the positions within the block of text that correspond 
to the beginnings of lines as they are displayed on the screen. We then 
update the file name in "FName" and the volume reference number in 
"VRefNum". Previously, these were held in the respective fields of "reply". 
Finally, we update the file state Boolean variables "present", "titled", and 
''modified'', setting the first two to true and the last to false. 
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Save File Command 

The "SaveFile" procedure implements the "Save" command of the File 
menu. Its local variable, "charCount", is a long integer that temporarily 
stores the number of bytes in the file. It attempts to open the current file, 
write the entire text to it, then close it. 

The "SaveFile" procedure also has a local "FLCall" routine to handle 
errors. This is identical to the previous "FLCall" routine, except that the 
target of the "Exit" is now our "SaveFile" procedure. 

The procedure assigns the length of the file (as stored in the ".TE­
Length" field of the edit record) to the local variable "charCount". It then 
makes a series of calls to the File Manager to open, write, and close the 
file. Again, we use our "FLCall" procedure to intercept possible errors 
generated by each call to the File Manager. 

We have studied the File Manager routines to open and close files. 
Let's now look at the routine "FSWrite" to write data to files. The "FSWrite" 
routine expects three parameters: an integer that specifies the reference 
number of the file, a long integer passed by reference that specifies the 
number of bytes to write, and a pointer to the area of memory from which 
the bytes are taken. 

The routine finishes by setting the Boolean variable "modified" equal 
to false. 

Save As File Command 

The "SaveAsFile" procedure implements the "Save As ... " command of 
the File menu. It has three local variables: "charCount" is a long integer 
that stores the number of bytes in the file, "reply" is of type "SFReply" 
and holds the results from the Package Manager's standard file selection 
routine, and "theErr" is of type "OSErr" and temporarily stores the error 
code. 

Our procedure has one subprocedure, "FLCall ", to handle errors. It 
is similar to the "FLCall" subprocedures of the "OpenFile" and "SaveFile" 
procedures discussed earlier. Again, the difference is that the target of 
the "Exit" is the current procedure, "SaveAsFile". 

The "SaveAsFile" procedure calls the routine "SFPutFile", which 
uses a dialog to get a specified file from the user. The "SFPutFile" is part 
of the Standard File Package. 

This "SFPutFile" routine expects five parameters. The first parameter 
is a point that determines where the upper left corner is placed. The 
second parameter is a string that is displayed as a prompt in the dialog. 
The third parameter is a default file name that appears in the editable text 
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box when the dialog appears. The fourth parameter is a procedure pointer 
to a filter procedure for the dialog. The fifth parameter is a reply record of 
type "SFReply". 

In our program, we pass the global point "where" as the first param­
eter, the string "Save text as:" as the second parameter, "fName" (the 
current name of the file) as the third parameter, NIL as the fourth parameter 
(no filter), and "reply" as the fifth parameter. 

If the ".good" field of the "reply" record is true, indicating that a 
valid file is selected, we attempt to save the file. The file may not exist or 
it may differ from the current file, so the rules for saving the file are 
different. First, call "FSOpen" to find out whether the file exists or needs 
to be created. The error code indicates that the file does not yet exist, so 
we call "FCreate" to create it and "FSOpen" to open it. If the file already 
exists, we pass the error code to our local "FLCall" procedure. We then 
proceed to write the bytes to the file and close it as before. We use "FLCall" 
to catch any errors from each File Manager routine. 

Once the file is properly saved, we load the new file name and volume 
reference number into the variables "fName" and "vRefNum", which hold 
the current values of these quantities. Notice that we use the values of 
these quantities obtained from "reply" to open our file. Thus, if the file 
saving is unsuccessful, the original file name and volume reference num­
ber remain. 

We also load the new file name as the new window title and set the 
Boolean variable "titled" equal to true and the Boolean variable "modi­
fied'' equal to false. 

This file activity and this last updating activity are performed if the 
reply is good. We indent the entire section of code to indicate that it 
belongs in the THEN clause for "IF reply.good". 

Close File Command 

The "CloseFile" procedure implements the "Close" command of the File 
menu. It tries to save the file if it is modified, then disposes of the text 
record and hides the text window. 

"CloseFile" resides at a higher level than previous file commands; 
that is, it calls them to save any files. 

The procedure first checks "modified". If "modified" is true, then it 
calls a "caution" alert to see if the user wants to save the file or cancel 
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the "Close" command (see Figure 10-14). T he caution alert is defined in 
the resource definition file as follows: 

Type ALRT 
,1004 
100 70 200 440 
1004 
7654 

Type DITL 
'1004 
4 

Btnltem Enabled 
70 10 90 60 

Yes 

Btnrtem Enabled 
70 130 90 180 

Cancel 

Figure 10-14. File Save Caution Alert 

Saue the Changes? 
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No 

Btnltem Enabled 
70 70 90 120 

StatText Disabled 
10 150 50 360 

Save the Changes? 

If the user wants to save the file, we check "titled" to see if we should 
use "SaveFile" or "SaveAsFile" to save it. If the user presses the cancel 
button, we "Exit" the "CloseFile" command. 

After these preliminaries, we call "Hide Window" to make the window 
disappear and "TEDispose" to dispose of the text edit record, then set 
the Boolean variables "present" and "titled" to false. 

Quit Command 

The "QuitFile" procedure implements the " Quit" command of the File 
menu. It causes the program to terminate. However, it first tries to close 
the file , terminating only if the file successfully closes. 

This procedure is actually a level above the "CloseFile" routine. It 
checks the Boolean variable "present" for a text window. If "present" 
indicates a text window, it calls "CloseFile" to attempt to close it. Then 
it sets "done" equal to "NOT present" so that the program terminates if 
"CloseFile" is successful or if there is no window to close. 

Higher Level Initialization 
The procedure "SetUpSys" performs all program initialization. It is ca lled 
from the main program. 

The "SetUpSys" procedure calls the standard initialization routines 
for each manager. It calls the "SetLimits", "SetUpWindows", "SetUp­
Menus", and "NewFile" procedures. We then initialize the cursor and set 
the global Boolean variable " done" equal to false. 

Higher Level Updating 
The procedure "UpdateSys" performs all updating in the main REPEAT 
loop. 

It calls "SystemTask", which allows active desk accessories to update 
themselves. It then calls our "UpdateFState" routine to update the enable/ 
disable state of the file menu items. 
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If "present" is true, it updates the text by ca lling "TEidle" to allow 
the text caret to blink. The caret blinks at a fixed rate if th is "idle" routine 
is called often enough. We also call our " UpdateScroll " routine if "pres­
ent" is true. This updates the vertical scroll bar limit according to the 
current size of the text. 

Implementing Menus 
The next procedures implement our four menus. Except for the Apple 
menu, which involves desk accessories , they have a standard CASE struc­
ture: the routine that implements each menu item fall s under each case. 
The procedure "DoAppleMenu" is nearly identical to the procedure of 
the same name in the example program for menus in Chapter 9. 

For completeness, here are the resource definitions associa ted with 
the "About. .. " a lert: 

Type ALRT 
' 1001 
100 70 200 450 
1001 
4444 

Type DITL 
, 1001 

OK 

3 

Btnltem Enabled 
70 10 90 100 

StatText Disabled 
10 10 30 370 

FileDemo, a demonstration program for text and files 

StatText Disabled 
30 10 50 360 

Christopher L. Morgan , 1985 

Following these menu routi nes is a master menu selection routine. 

File Menu 

The procedure "DoFileMenu " implements the File menu. It has one pa­
rameter, an integer that specifies the menu item number. It consists of a 
CASE statement OF the item number parameter. The cases list the imple-
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mentation procedures "NewFile", "OpenFile", "CloseFile", "SaveFile", 
"SaveAsFile", and "QuitFile". Notice that we skip item six because it is 
a disabled dashed line that separates "Quit" from the rest. 

A real application would also have items in this menu to control the 
printing of files, but that is a more advanced topic not covered here. 

Edit Menu 

The procedure "DoEditMenu" implements the Edit menu. It has one 
parameter, the integer "theltem ", which specifies the menu item number. 

Our editing menu has only three commands: "Cut", "Copy", and 
"Paste". Many edit menus have more items. The standard menu has an 
"Undo" item, a unused item, then "Cut", "Copy", "Paste", and finally 
"Clear". This places our commands in the third, fourth, and fifth positions. 

Now let's examine the procedure. It passes the editing command to a 
routine called "SystemEdit", which in turn passes editing commands to 
desk accessories. We add one to "theltem" to bring the "Cut", "Copy", 
and "Paste" command codes to two, three, and four (the standard posi­
tions starting the count from zero) before passing "theltem" to the 
"SystemEdit" routine. 

If "SystemEdit" does not treat the edit command as an action on a 
desk accessory, it returns a value of false. In this case, we set the grafPort 
to the text window, set the Boolean variable "modified" equal to true if 
the item is "Cut" or "Paste", and execute a CASE statement to perform 
the appropriate "Cut", "Copy", or "Paste" command on the text window: 
Editing desk accessories and editing the text in the window are indepen­
dent operations. The choice is determined by which window is currently 
selected. 

Selecting Menus 
The procedure ''SelectMenu'' is a general menu selection procedure called 
from the main event loop. It provides the proper structure for transmitting 
the selection information to the procedures that implement the various 
menus. 

The "SelectMenu" procedure has one parameter, a long integer that 
contains both the menu and menu item selection information. The upper 
word is an integer that contains the resource identification number of the 
menus; the lower word is an integer that contains the item number of the 
item within that menu. 

The procedure consists essentially of a CASE statement driven by the 
upper word of the selection information that selects the particular menu. 
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Each case in this CASE statement is a call to a procedure to handle the 
corresponding menu. These are "DoAppleMenu", "DoFileMenu", and 
"DoEditMenu", discussed previously. In each case, we pass the lower 
word (containing the item number) of the selection information to the 
individual menu procedure. 

After the CASE statement, we call "HiliteMenu" to unhighlight the 
selected menu. 

Dragging Windows 
"WindowDrag" is a procedure called from the main event loop to handle 
the dragging of windows. It has one parameter, a point that specifies where 
the mouse cursor is when the mouse button is pressed. 

The "WindowDrag" procedure calls the Window Manager's 
"DragWindow" procedure, passing the appropriate parameters to it. It 
makes the main event loop appear more compact and readable. 

Scroll Action 
The procedure "ScrAction" is an action procedure for scrolling. Action 
procedures were introduced in Chapter 6. 

The procedure has two parameters: a control handle to specify a 
particular control and a part code to specify a particular part of that 
control. It has four local variables. It has two integers: "pageSize" specifies 
the number of text lines in the currently sized text window, and "delta" 
specifies how many lines to scroll. The procedure also has two points, 
"S" and "dS", which hold the amounts to be scrolled as they are computed. 

The procedure first computes "pageSize" by dividing the height of 
the view rectangle by the height of a line of text. It uses information in 
the text record "theTE". Next, it executes a CASE statement to find which 
buttonlike part of the scroll bar is selected. For the up and down buttons, 
we select a value of minus and plus one; for the up and down page 
selectors, we select minus or plus the "pageSize". The appropriate value 
is placed in "delta". If none of these cases is selected, we immediately 
exit. 

Once the raw amount to scroll is selected, we use the scroll control 
to determine the actual amount to scroll. This clips values that are beyond 
the scrolling limits. We temporarily store the current scroll value in "S", 
use "delta" to update the scroll value, then place the difference between 
the original value and the new value in dS. We pass dS times the line 
height to the scrolling routine "TEScroll ". Because we store the number 
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of text lines (not the number of pixels) in the scroll control, we always 
scroll by a whole number of lines. 

The Text Edit scroll routine, "TEScroll ", expects three parameters: 
the horizontal amount to scroll, the vertica l amount to scroll , and a handle 
to the text edit record. In our program, we pass zero for the hori zontal 
scrolling amount and "theTE" for the text edit hand le. 

Controlling the Window 
The procedure " WindowControl " is called from the main event loop to 
handle mouse events that occur within a window's content area, including 
its scroll bars. 

Two main cases ari se: the selected window is in front (selected or 
highlighted window) or it is not. If the selected window is in front, we 
must transform the mouse point to local coordinates and look at two 
cases: the mouse point is in the text viewing area or is not (see Figure 
10-15). If the mouse point fall s within the text viewing area, we call Text 
Edit's "TEClick" routine to allow text selection. 

Figure 10-15. Where's the Mouse? 

• File Edi 

-~~--
- - - - ----- --
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The "TEClick" procedure has three parameters: a point that specifies 
the mouse position, a Boolean that specifies if we are in the extended 
mode (the shift key is down during selection), and a handle to the text 
record. In this program, we use the "BitTst" routine to test the shift key 
bit in the ".modifier" field of the event record. 

If the mouse point is not in the text viewing area, we call "Find­
Control" to find a control that it might be in. In particular, we want to 
see if it is in the vertical scroll control bar. The basic structure of this 
section is explained in Chapter 6. 

If the mouse point is not in the front window, we call ''Select Window'' 
and a couple of other routines to make it the front window, as in Chapter 7. 

Growing Windows 
The procedure "WindowGrow" is called from the main event loop to resize 
the window when the grow icon is selected. It is much the same as the 
"WindowGrow" procedure introduced in Chapter 6. However, it resizes 
one window (our text window) with only one scroll control (the vertical 
scroll bar). To simplify programming, it causes the entire port rectangle 
to update each time the window is resized. It also resizes the viewing 
area according to the new window size. The viewing area is slightly 
indented within the center of the window (see Figure 10-16). 

Handling Key Events 
The procedure "KeyEvent" is called from the main event loop to handle 
keyboard events. It has one parameter, of type CHAR, that specifies which 
key was hit. 

The "Key Event" procedure checks to see if the command key is down. 
We use the "BitTst" routine to test bit seven (from the left) of the" .mod­
ifiers" field of the event record. 

If the command key is down, we call the Menu Manager's "MenuKey" 
to map the key into menu selection information, then our "SelectMenu" 
routine to handle the selection. In our program, this takes care of the 
command key alternatives: "Q" for "Quit", "X" for "Cut", "C" for "Copy", 
and "V" for "Paste". 

If the command key is not selected, we see if the text window is the 
front window and the text record is open. If these are both true, then we 
call Text Edit's "TEKey" to insert the key character into the text and 
display the newly modified text on the screen. We also set the Boolean 
variable "modified" equal to true to indicate that the text has been modified. 
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At this point in the program, you can add code to provide automatic 
scrolling as the text caret s lips below the viewing area of the text window. 
This code must compute the lines in the window using the size of the 
window and the size and vertical separation of the text. Then it must 
compare the line starts with the selection range to determine where the 
caret is in relation to the page. Finally, it must ca ll for the proper amount 
of scrolling to keep the caret within the window. 

Updating Windows 
The procedure "WindowUpdate" is called from the main event loop to 
update a window in response to an update event. It works much the same 
as in previous chapters, except that we call Text Edit's "TEUpdate" to 
update the text between the "BeginUpdate" and "EndUpdate" routines. 
However, we call il only if the window that we are updating is the text 
window and the text record is open . 

The "TEUpdate" routine expects two parameters: a rectangle that 
specifies where we need to update, and a handle to the text record. In our 

Figure 10-16. The Text Viewing Area (in black) 

• File Edit 
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program, we pass the region boundary box of the visible region of the 
window as the update rectangle, and we pass "theTE" as the text handle. 

Activating Windows 
The procedure "WindowActivate" is called from the main event loop in 
response to an activate event. It first calls our "WindowUpdate" routine, 
then calls "TEActivate" to activate or "TEDeActivate" to deactivate the 
text, depending on the lowest order bit of the" .modifiers" field of the event 
record. This bit specifies whether the activate event indicates activation 
or a deactivation. 

The Main Program 
The main program is a generic event loop with an initialization section 
(see Figure 10-17). Each major part of this structure is encapsulated in a 
procedure assigned to perform a specific function in relation to the event 
loop. Many useful applications programs have this basic structure and 
could use this same main program. 

The first step of the main program is a call to ''Set UpSys'' which 
performs the entire initialization of the program. Our procedure "Set­
UpSys" intializes a number of different managers and sets up our menus 
and main window as well as some global limits, such as the drag and size 
limits. 

Figure 10-17. Event Loop with Initialization 

Event Joop 
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Next, the main REPEAT .. UNTIL loop begins with a call to "UpdateSys". 
This is a different initialization procedure, done each time through the 
loop. Thus, we call it an update routine. In our program, "UpdateSys" 
allows such actions as a slice of background task for the desk accessories, 
the blinking of the text caret, updating scrolling limits, and updating the 
enable/disable state of the File menu. 

After the update procedure, we call "GetNextEvent" in an IF.. THEN 
statement. Within the THEN clause, we have a CASE statement driven by 
the'' .what'' field of the event record. The cases under this CASE statement 
form a list of the kinds of events tracked by our program. In this program, 
we track mouse down, key down, auto key, update, and activate. 

Within mouse down, we have a CASE statement that sorts where the 
mouse was when its button was pressed. The cases are in the menu bar, 
in a system window such as a desk accessory, in the drag region of a 
window, in the contents region of a window, and in the grow region of a 
window. In each case, we call a routine to perform a particular action on 
whichever window is there. 

Files and text are not manifested directly in the main program; yet 
they affect many of the procedures that are called by the main program. 
This applies particularly to text. That is, the text routines of Text Edit act 
like a number of fingers that must be inserted in just the right places to 
make a piece of machinery (our program) work properly (see Figure 
10-18). 

Figure 10-18. Text Edit's "Figures" 

Text 

SetUpSystem 

SelectMenu 

WindowGrow 

Wi ndowUpdate 

Window Activate 
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In the case of files, the initialization procedure "SetUpSys" must 
initialize the File and Information menus and some file variables, the 
update procedure "UpdateSys" must update the File menu, and the menu 
select procedure "SelectMenu" must list the File and Information menus. 

In the case of text, much more is required. Almost every procedure 
called from the main program must perform a vital text task. For example, 
text is initialized in "SetUpSys", sized in "UpdateSys", edited and loaded 
and saved into files within "SelectMenu", scrolled within "Window­
Control", activated in window resizing in "WindowGrow", edited within 
"KeyEvent", and redrawn within "WindowUpdate" and "Window­
Activate". This makes programming text especially difficult, because of 
the interrelationship of statements that are scattered throughout the program. 

Summary 
In this chapter, we have studied files and text. We have seen how they can 
be programmed into useful applications, such as a text editor or a file 
utility. We have seen how they relate to each other and to the basic structure 
of an event-driven applications program. 

The following ROM routines are covered in this chapter: 

ROM Routines 

MN-Enableltem 

MN-Disableltem 

CM-SetCtlMax 

PK -GetlndStr 

PK-NumToString 

DL-ParamText 

TE-TENew 

WM-SetWTitle 

PK -SFGetFile 

FL-FSOpen 

FL-GetEOF 

MM-SetHandleSize 

FL-FSRead 

FL-FSClose 

TE-TECalText 
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FL-FSWrite 

PK-SFPutFile 

FL-Create 

TE-TEDispose 

FL-Get Vlnfo 

FL-Eject 

FL-GetFinfo 

FL-SetFinfo 

TE-TEidle 

DS-SystemEdit 

TE-TECut 

TE-TECopy 

TE-TEPaste 

TE-TEScroll 

TE-TEClick 

TU-BitTst 

TE-TEKey 

TE-TEUpdate 

TE-TEActivate 

TE-TEDeactivate 
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A 
ROM Routines 
Sorted by Name 

326 

Appendix A contains a table of the ROM routines sorted by name in 
alphabetical order. The first column contains the instruction number (see 
Chapter 2) , the second column contains the address in ROM or RAM 
where that routine is currently located, the third column contains the 
name of the routine, and the fourth column contains the manager to which 
it belongs and the page number in the edition of Inside the Apple Mac­
intosh (Cupertino: Apple Computer, Inc., 1985) used during the develop­
ment process. 

If you type this list into your computer, update the last column to 
match your edition of Inside the Apple Macintosh. You then can sort it by 
columns and print out these sorted listings for your own reference. 

The first few entries are instruction numbers that are not used and 
therefore have no names. 

A list of Apple's abbreviations for the various managers is included. 

Table A-1. List of Abbreviations 

Abbreviation 

CM 
OL 
OS 
ov 
EM 

Manager 

Control Manager 
Dialog Manager 
Desk Manager 
Device Manager 
Event Manager 



Number 

060 
oaF 
095 
09F 
OB5 
OD7 
OF7 
OFD 
152 
153 
16D 
178 
184 
1C3 
1C4 
1C5 
1F8 
1FF 

04E 
07E 

Abbreviation 

FL 
MM 
MN 
ou 
PK 
QD 
RM 
SL 
SM 
TE 
TU 
VR 
WM 

Address 

40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 
40 0594 

40 174A 
40 5BB4 

Table A-2. 

Name 

AddDrive 
AddPt 

Manager 

File Manager 
Memory Manager 
Menu Manager 
Operating System Utilities 
Package Manager 
QuickDraw 
Resource Manager 
Segment Loader 
Scrap Manager 
Text Edit 
Toolbox Utilities 
Vertical Retrace Manager 
Window Manager 

List of Routines 

Module 

OS3.2-52 
QD-65 
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Number Address Name Module 

lAC 40 E21C AddReference RM-26 
140 40 0072 AddResMenu MN-16 
lAB 40 E14A Add Resource RM-25 
185 40 E4B8 Alert OL-23 
010 00 2180 Allocate FL-21,FL-44 
OC4 40 89CC AngleFromSlope 
133 40 CEE8 AppendMenu MN-17 
063 40 5486 BackColor Q0-46 
07C 40 5BAO BackPat Q0-39 
122 40 C2EE Begin Update WM-32 
058 40 53B4 BitAnd TU-08 
05F 40 541A BitClr TU-07 
05A 40 53CA BitNot TU-08 
05B 40 5302 BitOr TU-08 
05E 40 5408 BitSet TU-07 
05C 40 530C BitShift TU-08 
050 40 53F2 BitTst TU-07 
059 40 53BE BitXor TU-08 
02E 00 26BO BlockMove MM-47 
120 40C1FA BringToFront WM-25 
174 40 B6AC Button EM-19 
148 00 27FO CalcMenuSize MN-26 
109 40 B8F6 Calc Vis WM-36 
lOA 40 B94E Calc VisBehind WM-37 
188 40 E4B4 CautionAlert DL-24 
1F3 404COC Chain SL-06 
lAA 00 2226 ChangedResOata RM-24 
080 40 5E2C Char Width QD-44 
145 40COA6 Check! tern MN-23 
111 40 BBA4 Check Update WM-35 
134 40C7AO ClearMenuBar MN-19 
lOB 40 B992 ClipAbove WM-31 
07B 405B8A ClipRect QD-38 
001 40 138A Close FL-22 ,FL-45 ,OV -07 ,OV -14 
1B7 40 F1F4 CloseDeskAcc DS-07 
182 40E7BO CloseDialog OL-21 
OF4 40A69C ClosePicture Q0-62 
ace 40 8B94 ClosePoly Q0-63 
070 40 59E2 ClosePort Q0-36 
19A 00 2376 CloseResFile RM-16 
OOB 408EEA CloseRgn Q0-56 
120 00 21A2 Close Window WM-22 
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03C 40 4EOE CmpString OU-12 
064 40 548C Color Bit QD-46 
04C 40 2BAO CompactMem MM-39 
004 oo 291C Control DV-08,DV-17 
OEC 40 9BA4 Copy Bits QD-60 
ODC 40 8F42 CopyRgn QD-55 
189 40 E84A Could Alert DL-25 
179 00 23DA CouldDialog DL-23 
150 40 D142 CountMitems MN-26 
19C 40 DAE8 CountResources RM-19 
19E 40 DB40 CountTypes RM-18 
008 40 3FBC Create FL-18,FL-37 
1B1 40 D876 Create Res File RM-16 
194 40 E096 Cur Res File RM-18 
1C7 40 FF96 Date2Secs OU-15 
03B 404DFC Delay OU-22 
009 40 408E Delete FL-24,FL-51 
136 40C84E DeleteMenu MN-18 
14F 40 BF80 DeltaPoint 
16E 40 OB44 Dequeue OU-19 
192 40 E018 DetachResource RM-22 
180 40E6DE DialogSelect DL-21 
OE6 40 913C DiffRgn QD-57 
13A 40C9AC Disableltem MN-22 
155 40D2A6 DisposControl CM-16 
183 40 E81E DisposDialog DL-23 
023 40 2CC8 DisposHandle MM-31 
01F 40 2C6A DisposPtr MM-35 
OD9 '40 8EA6 DisposRgn QD-54 
114 00 21AA Dispos Window WM-23 
132 40CCD2 DisposeMenu MN-16 
167 40 D4B2 DragControl CM-21 
105 40 C424 DragGrayRgn WM-33 
126 40 C430 DragTheRgn TU-07 (WM-30 called DragGreyRgn) 
125 40C36A Drag Window WM-28 
083 40 5DEC DrawChar QD-44 
169 40 D648 DrawControls CM-18 
181 40E79A Draw Dialog DL-23 
104 40 C746 DrawGrowlcon WM-26 
137 00 258C DrawMenuBar MN-18 
10F 40BAFC Draw New WM-36 
OF6 40 A6E8 Draw Picture QD-62 
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084 40 5DFE DrawString QD-44 
085 40 5E12 Draw Text QD-44 
03D 40 14A6 Drvrlnstall 
03E 40 14F4 DrvrRemove 
017 00 20FA Eject FL-17 ,FL-36 
02B 402DOA Empty Handle MM-41 
OAE 40 7160 EmptyRect QD-48 
OE2 40 90EO EmptyRgn QD-58 
139 40 C990 Enableltem MN-23 
123 40 C328 End Update WM-32 
16F 40 OB20 Enqueue OU-19 
081 40 5BFA EqualPt QD-65 
OA6 40 7146 EqualRect QD-48 
OE3 40 90FO EqualRgn QD-58 
oco 40 8038 Erase Arc QD-53 
OB9 40 7E2C EraseOval QD-50 
OC8 40 8B3A Erase Poly QD-65 
OA3 00 1E8A Eras eRect QD-49 
OD4 408DAE EraseRgn QD-59 
OB2 40 7D52 EraseRoundRect QD-51 
18C 40E8F6 Error Sound DL-18 
171 40 B75E EventAvail EM-18 
1F4 00 205C ExitToShell SL-07 
101 00 25B6 FMSwapFont FM-11 
OC2 40 8044 Fill Arc QD-54 
OBB 40 7E38 Fill Oval QD-50 
OCA 40 8B46 Fill Poly QD-65 
OA5 40 6FFO FillRect QD-49 
OD6 408DBA FillRgn QD-59 
OB4 40 7D5E FillRoundRect QD-52 
16C 40D6B6 Find Control CM-19 
12C 40C6C4 Find Window WM-26 
068 40 57DC FixMul TU-04 
069 00 25CO FixRatio TU-04 
06C 40 5854 FixRound TU-04 
14C 00 2670 FlashMenuBar MN-26 
032 40 389A FlushEvents EM-19,0SEM-04 
045 40 4796 FlushFile FL-45 
013 40 3C94 Flush Vol FL-17 ,FL-34 
062 40 5480 ForeColor QD-45 
OBE 40 802C Frame Arc QD-52 
OB7 40 7E20 FrameOval QD-50 
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OC6 40 8B2E Frame Poly QD-64 
OA1 40 6FD8 FrameRect QD-49 
OD2 40 80A2 FrameRgn Q0-58 
OBO 40 7046 FrameRoundRect QD-51 
18A 40 E88E Free Alert DL-25 
17A 00 2406 FreeOialog DL-23 
01C 40 2BEO FreeMem MM-38 
124 00 25F8 Front Window WM-26 
1F5 40 4030 GetAppParms SL-06,ST-09 
15A 40 0350 GetCRefCon CM-25 
15E 4003CA GetCTitle CM-19 
07A 40 5B76 GetClip Q0-38 
16A 40036E GetCtlAction CM-24 
160 40 0424 GetCtlValue CM-23 
1B9 40 F228 Get Cursor TU-09 
180 40 E8FE GetOitem DL-26 
011 40 483E GetEOF FL-20,FL-43 
OFF 40 B5B2 GetFName FM-10 
100 40 B5FO GetFNum FM-10 
018 40 448C GetFPos FL-20,FL-42 
ooc 40 4390 GetFilelnfo FL-22,FL-46 
08B 40 600E GetFontlnfo Q0-45 
025 00 2710 GetHandleSize MM-31 
190 40 E972 GetiText DL-27 
1BB 40 F238 Getlcon TU-07 
190 40 OB24 GetlndResource RM-19 
19F 400B88 GetlndType RM-18 
146 40 CE46 Getltem MN-22 
13F 40CD8E Getltmlcon MN-24 
143 40C09E GetltmMark MN-25 
141 40 CD96 GetltmStyle MN-24 
176 40 B690 GetKeys EM-20 
149 40 D004 GetMHandle MN-26 
162 40 0436 GetMaxCtl CM-23 
13B 40CCAE GetMenuBar MN-19 
161 40 0432 GetMinCtl CM-23 
172 40 B702 GetMouse EM-19 
1A1 40DCOC GetNamedResource RM-20 
1BE 40 F29E GetNewControl CM-18 
17C 40 E5D4 GetNewDialog DL-21 
1CO 40 F32E GetNewMBar MM-19 
1BD 40 F248 GetNewWindow WM-22 
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170 DO 241E GetNextEvent EM-17 
031 40 387C GetOSEvent OSEM-04 
1B8 40 F20E GetPattern TU-09 
09A 40 68A8 GetPen QD-40 
098 40 6882 GetPenState QD-41 
lBC 40 F240 GetPicture TU-10 
065 40 564A GetPixel QD-68 
074 40 5AA4 GetPort QD-36 
021 40 2C74 GetPtrSize MM-36 
lBF 40 F2EE GetRMenu MM-16 
1A6 40 E09E GetResAttrs RM-22 
1F6 40D8EA GetResFileAttr RM-29 
1A8 40 EODC GetReslnfo RM-22 
lAO 40 DBE2 GetResource RM-20 
lFD 40 FDDC GetScrap SM-12 
lBA 40 F230 Get String TU-04 
046 40 108E GetTrapAddress OU-21 
014 40 3E40 Get Vol FL-16 .FL-3 3 
007 40 3E74 GetVollnfo FL-16,FL-32 
110 40 BB9A GetWMgrPort WM-21 
117 40 BEEO GetWRefCon WM-33 
119 40 BFOA GetWTitle WM-23 
12F 40 BF04 Get Window Pic WM-33 
OtA 40 2B92 GetZone MM-29 
071 40 5A74 Global To Local QD-66 
072 40 5A94 Graffievice QD-36 
12B 40C5BE Grow Window WM-29 
029 40 2044 HLock MM-42 
04A 40 2D68 HNoPurge MM-43 
049 40 2D5C HPurge MM-43 
02A 40 2D50 HUnlock MM-42 
1E4 40 EF16 HandAndHand OU-11 
lEt 00 2694 Hand To Hand OU-09 
026 40 2CF6 HandleZone MM-33 
06A 40 5840 Hi Word TU-06 
158 40 D2F8 Hi deControl CM-17 
052 40 5366 HideCursor QD-39 
096 40 686E Hide Pen QD-40 
116 40 BEB6 Hide Window WM-23 
15D 40 D39E Hili teControl CM-18 
138 40 C966 HiliteMenu MN-21 
11C 40COD2 HiliteWindow WM-25 
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1A4 40 E080 HomeResFile RM-18 
1F9 40 FCE2 Info Scrap SM-10 
1E6 00 262A InitAllPacks PK-05 
02C 00 201A InitApplZone MM-25 
050 40 533A InitCursor QD-39 
17B 40 E440 InitDialogs DL-18 
OFE 00 2598 InitFonts FM-09 
06E 00 2566 InitGraf QD-34 
130 40 C764 InitMenus MN-15 
1E5 40 FE82 InitPack PK-05 
06D 40 5962 InitPort QD-35 
016 40 39AO InitQueue FL-31 
195 40 D744 Ini tResources RM-15 
03F 40 4F5A InitUtil OU-17 
112 00 2578 InitWindows WM-20 
019 00 285C InitZone MM-27 
135 40C7AC InsertMenu MN-18 
151 40 D07A InsertResMenu MN-18 
OA9 00 2554 InsetRect QD-47 
OE1 40 903A InsetRgn QD-57 
128 40 C598 InvalRect WM-31 
127 40 C558 InvalRgn WM-32 
OD5 40 8DB4 InverRgn QD-59 
OC1 40 803E lnvertArc QD-54 
OBA 40 7E32 Invert Oval QD-50 
OC9 40 8B40 lnvertPoly QD-65 
OA4 406FEA InvertRect QD-49 
OB3 40 7D58 lnvertRoundRect QD-52 
17F 40E6A4 IsDialogEvent DL-20 
156 40D2C8 Kill Controls CM-17 
006 401468 KilliO DV-10,DV-18 
OF5 40A6E4 KillPicture QD-62 
OCD 40 8C02 KillPoly QD-63 
1F2 40 4C12 Launch SL-07 
092 40 67BE Line QD-42 
091 40 67A8 Line To QD-42 
06B 40 584A LoWord TU-06 
1A2 40DFCA LoadResource RM-20 
1FO 404B44 LoadSeg SL-08 
070 40 5A54 Local ToG lobal QD-66 
1FB 40 FD66 LodeS crap SM-11 
067 40 5776 LongMul TU-07 
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OFC 40 BC22 Map Poly QD-70 
OF9 40 BlBE MapPt QD-69 
OFA 40 BlFO MapRect QD-69 
OFB 40 9396 MapRgn QD-69 
OlD 40 2COB MaxMem MM-3B 
13E 40CDBA MenuKey MN-21 
130 40 C9E2 Menu Select MN-20 
191 40 E71E ModalDialog DL-21 
036 00 273C More Masters 
OOF 00 20BA Mount Vol FL-31 
094 40 67E2 Move QD-42 
159 40 0312 MoveControl CM-21 
077 40 5AEB Move Port QD-37 
093 40 6706 Move To QD-42 
llB 40BF9A Move Window WM-2B 
lEO 00 2B06 Munger TU-05 
154 40 D19A NewControl CM-15 
170 40 E60C New Dialog DL-20 
022 00 292C New Handle MM-30 
131 40CE9E New Menu MN-15 
OlE 40 2C4E NewPtr MM-35 
ODB 40 BEB2 NewRgn QD-54 
106 40 BB6B New String TU-04 
113 40 BCEB New Window WM-21 
1B7 40 E4BO NoteAlert DL-24 
030 40 37F4 OSEventAvail OSEM-03 
056 40 53BO ObscureCursor QD-40 
035 00 20F4 Offline FL-35 
OCE 40 BC06 OffsetPoly QD-63 
DAB 40 717A OffsetRect QD-46 
OEO 40 900B OffsetRgn QD-56 
000 401262 Open FL-1B,FL-3B,DV-07,DV-14 
1B6 40 FlAB OpenDeskAcc DS-07 
OF3 40 A5EE OpenPicture QD-61 
OCB 40 BB5E OpenPoly QD-62 
06F 40 594A OpenPort QD-35 
OOA 40 3F04 OpenRF FL-39 
197 oo 21CA OpenResFile RM-16 
ODA 40BEBA OpenRgn QD-55 
1E7 40 FFOE PackO PK-04 
1EB 40 FFlO Packl PK-04 
1E9 40 FF12 Pack2 PK-04 
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lEA 40 FF14 Pack3 PK-04 
1E8 40 FF16 Pack4 PK-04 
lEC 40 FF18 Packs PK-04 
lED 40 FFlA Pack6 PK-04 
lEE 40 FFlC Pack7 PK-04 
OCF 40 9042 PackBits 
08F 40 8032 PaintArc QD-53 
100 40 8A62 Paint8ehind WM-36 
lOC 40 8986 Paint One WM-36 
OB8 40 7E26 PaintOval QD-50 
OC7 40 8834 PaintPoly QD-64 
OA2 40 6FDE PaintRect QD-49 
003 40 8DA8 PaintRgn QD-59 
OB1 40 7D4C PaintRoundRect QD-51 
188 40E8D2 ParamText DL-25 
09C 40 68C6 PenMode QD-41 
09E 40 68EO PenNormal QD-42 
090 40 68CC PenPat QD-42 
098 40 68B8 PenSize QD-41 
OF2 40A5D8 PicComment QD-62 
14E 401006 PinRect WM-33,TU-07 
14B 40 D15E Plotlcon TU-07 
076 40 5AC8 PortSize QD-37 
02F 40 377C PostEvent EM-18,0SEM-03 
OAC 40 7280 Pt2Rect QD-47 
OAD 40 7286 PtinRect QD-47 
OE8 40 923E PtlnRgn QD-58 
OC3 40 89FE PtToAngle QD-48 
lEF 40 DFlA PtrAndHand OU-11 
1E3 40 EEFC PtrToHand OU-10 
1E2 40 EEF4 PtrToXHand OU-10 
048 40 2C88 PtrZone MM-37 
040 40 28C4 PurgeMem MM-40 
lCA 40 0790 Putlcon 
lFE 40 FE3A PutS crap SM-13 
04F 404D4C RDrvrlnstall 
061 40 542C Random QD-67 
027 40 2D1A ReAllocHandle MM-34 
002 00 1CB2 Read FL-19,FL-40,DV -08,DV -15 
039 404DEA ReadDateTime OU-14 
037 404DA8 ReadParm 
102 40 865A Real Font FM-10 
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028 40 2CFE Recover Handle MM-33 
OE9 40 929E RectlnRgn QD-58 
ODF 40 8FFA RectRgn QD-55 
1A3 40 E008 ReleaseResource RM-21 
OOB 40 4122 Rename FL-23,FL-50 
lAF 40 E334 Res Error RM-17 
040 40 2BEA ResrvMem MM-39 
lAE 40 E30C RmveReference RM-26 
lAD 40 E288 RmveResource RM-26 
196 40 D81A RsrcZonelnit RM-15 
042 40 4274 RstFilLock FL-23,FL-48 
lOE 40BACE SaveOld WM-36 
OF8 40 B136 ScalePt QD-68 
OEF 40 9C40 ScrollRect QD-59 
1C6 40 FFlE Secs2Date OU-16 
OAA 40 719E SectRect QD-47 
OE4 40 9130 SectRgn QD-57 
17E 40E9EC SeliText DL-27 
11F 40C1CA Select Window WM-23 
121 40 C298 SendBehind WM-25 
057 40 2AE6 SetAppBase MM-26 
02D 00 2728 SetA pplLimi t MM-28 
15B 40 D35E SetCRefCon CM-24 
15F 40 D3E2 SetCTitle CM-18 
079 40 5B66 SetClip QD-38 
16B 40 D372 SetCtlAction CM-24 
163 40 D43A SetCtlValue CM-22 
051 40 5348 SetCursor QD-39 
18E 40 E93C SetDitem DL-26 
03A 404DF4 SetDateTime OU-15 
012 40 48CO SetEOF FL-21 ,FL-43 
ODD 40 8F90 SetEmptyRgn QD-55 
044 40 4490 SetFPos FL-20,FL-42 
041 40 426A SetFilLOck FL-23,FL-48 
043 40 423E SetFilType FL-49 
OOD 40 429E SetFilelnfo FL-22,FL-47 
103 00 27DA SetFontLock FM-10 
04B 00 2876 SetGrowZone MM-44 
024 40 2CE4 SetHandleSize MM-32 
18F 40 E992 SetiText DL-27 
147 40 D024 Setltem MN-22 
140 40CD92 Setltmlcon MN-23 
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144 40CDA2 SetltmMark MN-25 
142 40CD9A SetltmStyle MN-24 
14A 40 D068 SetMFlash MN-25 
165 40 D480 SetMaxCtl CM-23 
13C 40 CCC4 SetMenu8ar MN-19 
164 40 D47C SetMinCtl CM-23 
078 40 5818 SetOrigin QD-38 
075 40 5A80 SetPBits QD-37 
099 40 6886 SetPenState QD-41 
073 40 5A9A SetPort QD-36 
080 40 58FO SetPt QD-65 
020 40 2C7E SetPtrSize MM-37 
OA7 40 7138 SetRect QD-46 
ODE 40 8F9C SetRectRgn QD-55 
1A7 00 2254 SetResAttrs RM-24 
1F7 40D8F4 SetResFileAttr RM-29 
1A9 00 2274 SetReslnfo RM-23 
198 40 DAEO SetResLoad RM-19 
193 40DA88 SetResPurge RM-28 
OEA 40 59FE SetStdProcs QD-71 
107 40 8880 SetString TU-04 
047 40 109C SetTrapAddress OU-21 
015 40 3E2E Set Vol FL-16,FL-33 
118 40 8EEE SetWRefCon WM-33 
11A 40 BF22 SetWTitle WM-23 
12E 40 8EFE SetWindowPic WM-33 
01B 40 2898 SetZone :MM-29 
055 40 536E Shield Cursor TU-10 
157 40D2DA ShowControl CM-17 
053 40 536A ShowCursor QD-39 
108 40 885C Show Hide WM-24 
097 40 6878 Show Pen QD-40 
115 40 8E90 Show Window WN-21 
15C 40 D376 SizeControl CM-23 
1A5 00 21FC SizeResource RM-01 
11D 40 C112 Size Window WM-30 • 
08C 40 8830 SlopeFromAngle 
08E 40 5DDE SpaceExtra QD-44 
005 401444 Status DV -09,DV -17 
08D 40 7F86 StdArc QD-72 
OEB 40 9A1E StdBits QD-72 
OF1 40A4DC StdComment QD-73 
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Number Address Name Module 

OEE 40 A544 StdGetPic QD-73 
090 40 6710 StdLine QD-71 
OB6 40 7076 StdOval QD-72 
OC5 40 8A94 StdPoly QD-72 
OFO 40 A568 StdPutPic QD-73 
OAF 40 7C8A StdRRect QD-72 
OAO 40 6F1C StdRect QD-72 
OD1 40 8D18 StdRgn QD-72 
082 40 5C06 StdText QD-71 
OED 40 5EBE StdTxMeas QD-73 
173 40 B718 Still Down EM-19 
186 40E4AC Stop Alert DL-24 
08C 40 5E46 String Width QD-45 
066 40 5686 StuffHex QD-68 
07F 40 5BD2 SubPt QD-65 
1C8 00 2644 SysBeep OU-22 
1C2 40 F17A SysEdit DS-08 
1C9 40 0944 SysError 
1B3 00 27C6 SystemClick DS-07 
182 oo 25DC SystemEvent DS-09 
1B5 40 F132 SystemMenu DS-10 
1B4 40 FOBA System Task DS-08 
108 40 FB1E TEActivate TE-18 
1DO 40 F43C TECalText TE-19 
1D4 40 F53E TEClick TE-17 
1D5 40 F8BE TECopy TE-15 
1D6 40 F8E2 TECut TE-15 
1D9 40 FB40 TEDeacti vate TE-18 
1D7 40 F8FO TEDelete TE-16 
1CD 40 F3C2 TEDispose TE-14 
1CB 40 F390 TEGetText TE-14 
1DA 40 FB56 TEidle TE-18 
1CC 40 F39C TEl nit TE-13 
1DE 40FBEA TEinsert TE-16 
1DC 40 FC18 TEKey TE-14 
1D2 40 F4A2 TENew TE-13 
1DB 40 FB80 TEPaste TE-15 
1DD 40 FC56 TEScroll TE-19 
1DF 40 FC94 TESetJust TE-17 
1D1 40 F480 TESetSelect TE-17 
1CF 40 F416 TESetText TE-14 
1D3 40 F50A TEUpdate TE-18 

338 HIDDEN POWERS OF THE MACINTOSH 



Number Address Name Module 

166 400484 TestControl CM-18 
1CE 40 F3DA TextBox TE-19 
088 40 5DC2 TextFace QD-43 
087 40 5DBC TextFont QD-43 
089 40 5DD2 TextMode QD-43 
08A 40 5DD8 Text Size QD-43 
086 40 5E5A Text Width QD-45 
175 40 B6BE TickCount EM-22 
168 40 D55A TrackControl CM-19 
11E 40 C160 TrackGoAway WM-26 
ODO 40 9DD8 UnPackBits 
OAB 40 723C UnionRect QD-47 
OE5 40 9136 UnionRgn QD-57 
1C1 40DBA8 UniqueiD RM-22 
1F1 404BBC UnloadSeg SL-06 
1FA 40 FD32 UnlodeScrap SM-11 
OOE 40 3C8A UnmountVol FL-17 ,FL-3 5 
199 00 22A8 UpdateResFile RM-27 
054 404E82 UprString OU-13 
198 40 D8E2 UseResFile RM-18 
033 00 2774 Vlnstall VR-06 
034 00 2752 VRemove VR-06 
12A 40C5BA ValidRect WM-32 
129 40C5B6 ValidRgn WM-32 
177 40 B740 WaitMouseUp EM-20 
003 401422 Write FL-19,FL-41 ,DV -08,DV -16 
038 404DC2 WriteParm OU-18 
1BO 40 E050 Wri teResource RM-27 
OE7 40 9142 XorRgn QD-57 
1FC 40 FD96 Zero Scrap SM-12 
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B 
Using the Lisa Pascal 
Development System 

Appendix B describes how the example programs in this book were 
developed. The development process for Macintosh programs is rapidly 
evolving; thus, by the time you read this, a different system will probably 
be in use. Cha pter 3 provides a genera l description of the process. However, 
it is useful to have a specific description of how the examples were 
compiled and tested. 

A number of s teps are involved in developing an applications program 
for the Macintosh. Unfortunately, there are more steps than on most sys­
tems; fortunately, most s teps occur automatically once the proper files are 
set up and used. 

Editing 

340 

Currently, the files are wri tten by an editor that is part of the Lisa Pascal 
workshop running on the Lisa (now the Macintosh XL). 

This editor is invoked from the Lisa's main menu by typing "E". Once 
in the ed itor, you can use the Lisa mouse to move the cursor and to select 
items from pull-down menus, much as in typica l Macintosh applications 
programs. If you are familiar with any of the editors on the Macintosh, it 
won't take you long to learn how this Lisa editor works. 

Four files must be present before you can proceed: a Pascal source 
code file containing the program itself, library files containing external 
Pascal definitions and declarations, a resource defin ition file containing 
resource definitions , and an exec file containing a series. of commands to 
prepare your program for running on the Macintosh. Normally, you would 



write a ll but the library files, which are supplied by Apple as part of the 
Macintosh development sys tem. 

A very simple example, the "Trivial " program in Chapter 3, explains 
how the process works. In Chapter 3, we di scussed the resource definition 
file and the Pascal source code file. In this a ppendix, we di scuss the exec 
file, which ru ns the entire development process. 

The Exec File 
The exec file describes the entire preparation process. It includes all the 
steps for transforming the source code, library, and resource definition 
files of an application into a file on a Macintosh disk. 

Naming the File 
The name of our exec file is "clm/trivialX". Let's see how this name uses 
some file naming conventions recommended by Apple. 

The initial "elm/" acts as a prefix and serves to uniquely identify all 
files written or otherwise generated in the examples developed in this 
book. These are the author's initials; perhaps you want to use your initials 
or a project name as the prefix. The prefix is part of the file name as fa r 
as the Lisa is concerned; but the Lisa sorts files alphabetically when listing 
its directory, so all files with the same prefi x are listed together. Fi les 
supplied by Apple have several suggestive prefixes, such as "example/", 
"obj/", " fragment/", "intrfc/", "QD/", and "TlAsm/". 

In the middle of the name, " trivial" identifies the particular example 
that we are developing. All files associated with this example contain thi s 
name in their full name. 

The trailing "X" on our file name identifies this particular file as an 
exec file. Apple suggests that you place an "X" as the last character of the 
file name of a ll your exec files . 

The "clm/trivia lX" fil e has a file extension , " .text", often not explic­
itly mentioned . This extension identifies the file as fi lled with ASCII 
characters. Such " text" fi les can be edited with the Lisa editor and 
directly transferred to other computers through communications lines. 

Using the Exec File 
The exec file is run on the Lisa using the " R" command in the main 
menu. The syntax for running our example is: 

<clm/ t rivial X 

USING TilE LISA PASCAL DEVELOPMENT SYSTEM 341 



in response to the "Run what program?" prompt. The " < " indicates that 
the file is a source of input statements to the Lisa through the EXEC 
program on the Lisa. This left arrow symbol is followed by the file name 
"clm/trivialX" of our particular exec file. 

Understanding the Exec File 
Let's look at what our exec file does . Refer to Figure 3-2 in Chapter 3 for 
a diagram of the major steps in the fi le. These are the essential steps: 
1. Call the Pascal compiler to compile your source code into intermediate 

code. 
2. Call a code generator to convert this intermediate code into 68000 

machine language. 
3. Call a linker to combine it with other machine-language modules. 

4. Call a resource compiler to combine the machine code with special 
data that can specify the sizes, shapes, and text in your application. 

5. Call a transfer program to transfer your application to a Macintosh 
disk. 

6. Call the file system to clean up by erasing the intermediate fi les gen­
erated during the process. 

7. Call the editor to allow you to view and change the program while you 
test it on the Macintosh. 

Here is the "clmfrrivialX" exec file. 

$EXEC 
Pclm/ Trivial{compile the Pascal program} 

G$M+{generate code for the Macintosh } 
elm/ Trivial 

L{ink}clm/ Trivial 
obj / QuickDraw 
obj / tooltraps 
obj / ostraps 
obj / macpaslib 

clm/ Tri vi alL 
R{un }Rmaker{resource maker} 
c l m/ TrivialR 
R{un }MacCom{disk transfer program} 
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Fy 
Lc lm/ Trivi a l . RSRC 
Trivi al 
APPL {set t ype t o APPL } 
{set cr eator t o ????} 
N{o bundle bit }Q{uit MacCom } 
F{il e sys t em}D{e l ete }c lm/ Trivial . I 
yD {elete }clm/ Tr i vi al . obj 
yD{elet e}clm/ Trivial L. obj 
yQ {ui t Fil e command} 
E{dit } 
$END EXEC 

The first line contains the "$EXEC" command, the last line contains 
the "$ENDEXEC" command . These commands must bracket the list of 
commands contained in the exec file. Each command in that list must 
contain the normal keystrokes that you would type from the keyboard if 
you were to process the application files manually. You can insert com­
ments within the exec file by enclosing them with curly brackets, the same 
as in Pascal. The " (*" brackets of Pascal, however, will not work. 

Compiling 

The second line, "Pclm/Trivial", starts the Pascal compiler. This line 
consists of a " P" command that ca lls the Pascal compiler from the main 
menu, followed by a file name that is the name of the file to be compiled. 
This is our Pascal source code fi le. The file name "elm/Trivial" has our 
own " elm/" prefix followed by the name "Trivial". The fi le has the fi le 
extension ". text". However, this extension is not explicitly mentioned in 
the exec file (or in the editor when creating the fi le). 

Notice that there is no trailing letter for our source code file name, 
such as the " X" used for exec fil es . Apple recommends that you label 
your Pascal source code in this manner. 

If you were typing these commands manually, the "P" would load the 
Pascal compiler, which would then prompt you for an "Input fi le". You 
would then type the name of your Pascal source code fi le (assuming a file 
extension of " text"). 

The next two lines of the exec file are blank. They tell the Pascal 
compiler that you don 't want a listing file and that you want the output 
file from the compiler to use the same name as the source code fi le. The 
output file from the compiler is given the file extension " .1" to distinguish 
it from the source file. 
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Generating Code 

The ".I" output file from the compiler contains an intermediate code that 
has to be processed by a code generator to turn it into 68000 assembly 
language. Other higher-level language compilers could be designed to 
produce such intermediate code, which could then be fed into this same 
code generator. Also, if Apple were to change processors, it could still 
use the same compiler with a different code generator. 

The line "G$M +" of the exec file calls the code generator and tells 
it to generate code for the Macintosh rather than the Lisa. 

If you typed this command manually, the "G" would load the code 
generator, which would prompt you for an "Input file". Instead of giving 
it an input file, you would type the "$M +" to inform it that it must 
produce Macintosh code, not Lisa code. 

On the next two lines of the exec file, we specify the input file ''chn/ 
Trivial" and the output file. The output file is specified by a blank line, 
indicating that it has the same name as the input file. The input file 
assumes a file extension of ".I", making it agree with the full name of the 
output file from the Pascal compiler. The output file from the code gener­
ator assumes a file extension of" .OBJ". 

If you typed these manually, you would type "elm/Trivial" in response 
to an "Input file" prompt, then hit the I Return I key in reponse to the "Output 
file" prompt. 

Linking 

The line "L{ink}clm/Trivial" loads the linker and tells it that its first input 
file is "elm/Trivial". The file extension of this input file is ".OBJ", that is, 
this file is the same as the file just output from the code generator. Note 
the comment "{ink}" following the "L". You can use this commenting 
technique to inform users of the full name of the command without 
interfering with output from the operation of the exec file. 

The next few lines input the files "obj/QuickDraw", "obj/tooltraps", 
"obj/ostraps", and "obj/macpaslib". These input files are assumed to have 
the file extension "OBJ". These files contain assembly-language proce­
dures that Macintosh applications need, including "trap" instructions to 
access ROM routines (see Chapter 2). 

The linker starts with the first file and searches subsequent files for 
references to procedures and functions that are required to put the pro­
gram together. It does not include procedures and functions from external 
files that are not needed. 
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The two lines following the list of input files to the linker are blank. 
This indicates that we have finished specifying input files and will send 
the listing from the linker to the Lisa console screen. 

The line "clm/TrivialL" specifies the output file for the linker. The 
file name is the same as our source code file except for a trailing "L" to 
indicate that its output from the linker. It is assumed to have the file 
extension ".OBJ", the same file extension as the input to the linker. We 
could use the same nall}e for output as for input; however, we would then 
have the same name for two very different files, one before the link and 
one after. The linker could handle this, but we might get confused if 
something happens during program development. Occasionally this hap­
pens, especially if you take over manual operation of the process. 

If this information were entered manually, ''L'' would load the linker, 
which would then prompt us for input files until we hit a I Return 1. It would 
ask for the listing file, then the output file, and would begin to link all 
input files once the output file was entered. 

The Resource Maker 

The next step is peculiar to the Macintosh development process. To un­
derstand it, you should know something about the structure of applications 
as they sit on a Macintosh disk, as described in Chapter 3. 

Recall that each file in the Macintosh file system has a data fork and 
a resource fork. The resource fork contains the program code and speci­
fications for windows, controls, and menus. In our case, the resource fork 
contains the contents of the "clm/TrivialL" file. 

Currently, the "RMaker" program on the Lisa reads a file that you 
write on the Lisa called a resource definition file and generates a file that 
contains your finished application, ready to be transferred to the Macintosh. 

For our "trivial" application, the resource definition file is "elm/ 
TrivialR". The trailing "R" stands for "Resource". Since this is a text file 
written on the Lisa editor, it has the file extension" .text". 

The line "R{un}Rmaker" runs the resource maker. The next line, "elm/ 
TrivialR", tells it which resource definition file to use. As we shall see, 
the resource defintion file specifies the file where the code is found and 
the file where output from the resource maker is placed. In our case, "elm/ 
TrivialL" contains the code, and "clm/Trivial.RSRC" is where the result­
ing output is placed. 

Transferring the File 

The next few lines cause the application to be transferred from the Lisa 
to a Macintosh disk. For this program, we use a transfer program called 
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"MacCom" that runs on the Lisa. This allows the Lisa to access files on 
a Macintosh disk that is placed in the Lisa's three-inch drive, the so­
called lower drive. 

The program "sendOne" is another way to transfer files, by sending 
files over a communcations line from the Lisa to the Macintosh. In this 
method, the Macintosh must receive the file using a program called "Disk 
Utility". This method requires special cabling between the Lisa and the 
Macintosh. It can also be hazardous: the disk utility program has a "but­
ton" that, when pressed, wipes out a Macintosh disk without asking if 
this is what you really want. 

The "R{un}MacCom" line of the exec file loads the "MacCom" file 
transfer program. The next line, "Fy", tells MacCom to let you set the 
"Finder" information for the application. This specifies information such 
as the file type. The program "Finder" controls the system when your 
machine is displaying the desktop with its disk icons and file folders. In 
some sense, "Finder" is the primary application of the Macintosh; its job 
is to find and load other applications. 

The line "L{isa to Mac}clm/Trivial.RSRC" tells MacCom to send the 
file "clm/Trivial.RSRC" to the Macintosh disk sitting in the lower drive. 
The next line, "Trivial", specifies what it will be called once it gets there. 

The line "APPL" specifies the file type. In our case, we have set the 
file type equal to "APPL", which stands for application. The file type 
helps the finder assign the proper icon to the file and know whether it 
should be launched as a regular application. File types can also be used 
by applications programs to deal with files. For example, in Chapter 10, 
we use the file type "TEXT" for our text files to ensure that the example 
editor program accesses only files that are supposed to contain text. 

The next two lines specify another kind of "Finder" information. The 
first is called the "creator", the second is called the "bundle" bit. In our 
case, we leave the "creator" equal to "????" and the "bundle" bit off. 
However, if you set the "creator" field equal to something more interesting 
(must be four ASCII characters) and you set its "bundle" bit on, then your 
application can attach itself to its working files by setting their "creator" 
fields equal to the application's "creator" field. When the system is set up 
in this manner, selecting one of these working files automatically loads 
the application first. 

Also included in the bundle bit line is a "Q" to exit "macCom". The 
quit command also ejects your Macintosh disk, which is now ready to be 
placed in the Macintosh so that you can run the program. 
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Cleaning Up 

The last few commands of the exec file erase some of the intermediate 
files and return to the editor. The "FH command enters the file management 
subsystem, and the "D" command starts the deletion process. The follow­
ing files are removed from the Lisa disk: the output file "elm/Trivial.!" 
from the Pascal compiler, the output file "clm/Trivial.obj" from the code 
generator, and the output file "clm/TrivialL.obj" from the linker. 

The "E" command returns you to the editor. We found this convienent 
because the complete development cycle goes around a number of times 
before the application is exact. You can now view the source code on the 
Lisa while the program runs on the Macintosh. With such a system, you 
need hardly any paper listings. 
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c 
Disk and Volume 
Information 

348 

Appendix C presents an example of an application that demonstrates 
how to access information about volumes (disks) and fi les. It brings to­
gether concepts such as menus, d ia logs, and alerts. We list both the Pascal 
source code and the complete resource definiti on file. This example there­
fore provides a model of how a complete application is put together. 

This example has three menus: an Apple menu, a File menu , and an 
Information menu. The Apple menu gives access to an "About Filelnfo" 
alert and the s tandard desk accessories (see Figure C-1). The File menu 
has a single entry, "Quit", which allows the user to terminate the program 
(see Figure C-2). 

The third menu , " Information", has two entries : " volume informa­
tion" and "file information " (see Figure C-3 ). Both cause dialogs to appear 
which contain information that is available without actually opening any 
fi le. Both dia logs allow some degree of interaction between the user and 
the Macintosh. 

The " volume information" command displays a dia log with infor­
mation about disks in each of the two disk drives (see Figure C-4). This 
information consists of the name of the volume (disk), the volume refer­
ence number, and the num ber of free bytes on the d isk. If no disk is 
present in a drive, the information is blank. For each drive, there is also 
a button labeled "Eject" to eject the di sk, and there is an " OK" button at 
the bottom of the display to end the dialog. 

When a user clicks an "Eject" button , the corresponding disk is 
ejected and its in formation goes blank. If the user inserts a disk, then the 
proper information ap pears for the new disk. Note how the reference 



numbers work. They are always negative. The first disk that is mounted 
is labeled -1, the second is labeled -2, and so on. If a disk is reinserted , 
its original reference number is used. If the Macintosh is reset by the 
programmer switch or by turning it off and then on again , the sequence 
of reference numbers begins over with -1. 

The "file information" dialog comes in two parts. First, the standard 
open file dialog appears (see Figure C-5). From this dialog, the user can 
select a particular file to be examined. The dialog for this command 
displays all files on the disk. 

Once a file is selected , a new dialog appears that displays information 
about that file (see Figure C-6). It shows the file's name, type, creator, 
fo lder, horizontal position, vertical position, and flags. Type and creator 
have boxes around them, indicating that they can be edi ted. You can 
change these to any four-character combination. 

The folder is a number that specifies the folder in which the file's 
icon is located. Each folder on a disk is assigned a unique integer. The 
main window is given the number zero. If the file's icon is on the desktop, 
it is given the number -2. If the file's icon is in the trash, it is given the 
number -3. Other folders are usually given large positive numbers. 

Scrapbook 
Alarm Clock 
Note Pad 
Calculator 
Key Caps 
Control Panel 

Figure C-1. The Apple Menu 
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The horizontal position and the vertica l position describe the position 
of the file 's icon with in its fo lder's window. 

The flags field is an integer that describes certain file attributes. The 
values of bits in the upper byte of the flags are di splayed in check boxes. 
The bits can be individually changed by cl icking these check boxes . Some 
of these bits are "public", some are for internal use by the Operating 
System. Among the public bits are bit 5, which is the "bundle" bit; bit 6 , 
wh ich is the "invisible " bit; and bit 7, which is the " locked " bit. 

The " bundle" bit allows an application to be involved automatica lly 
when an associated document file is selected. If an application has the 
bund le bit on and its "creator" type matches the "creator" type of a 
document, then trying to open the document causes the Finder to open 
thi s associated application firs t. 

The " invisible" bit determines if the file's icon is visible. A value of 
one causes the icon to be invisible. Setting the " locked" bit prevents a file 
from being thrown away. 

Figure C-2. The File Menu 

350 HIDDEN POWERS OF THE MACINTOSH 



The Program 
Here is the program: 

PROGRAM Fileinfo; 
{$R- }{ $X-} 

USES 
{$U obj / Memtypes 
{SU obj / QuickDraw 
{ $U obj / OSintf 
{ $U obj /Tool Intf 
{SU Obj / Packintf 

CONST 
{menu IDs } 
appleMenu = 1000 : 
FileMenu = 1001 : 
InfoMenu 1002 ; 
lastMenu 3; 

Memtypes, 
QuickDraw, 
OSintf , 
Toolintf, 
Packintf ; 

desk accessory menu } 
File menu} 
Information menu } 
number of menus} 

Figure C-3. The Information Menu 
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{common dialog and alert items } 
OKBtn 1; 
cancelBtn = 2; 

{other items for vo lume dialog } 
STV1Ti tle 
Ej ectlBtn 
STV1TName 
STV1DName 
STV1TRef 
STV1DRef 
STV1Tfree 
STV1Dfree 
STV2Title 
Eject2Btn = 
STV2TName 
STV2DName 
STV2TRef 
STV2DRef 
STV2Tfree 
STV2Dfree 
Insertl 
Insert2 

2; 
3; 
4 · 

' 5; 
6; 
7; 
8 · 

' 9 · 
' 10 ; 

11 ; 
12 ; 
13 ; 
14 ; 
15 ; 
16; 
17 ; 
1001 ; 
1002: 

Figure C-4. 

Internal Driue: 

Uolume Name: 

Uolume RefNum: 

free bytes: 

EHternal Oriue: 

Uolume Name: 

Uolume RefNum: 

free bytes: 

OK 

Volume Information Dialog 

Eject 
figures App 

-1 

358400 

Eject 
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{other items for file dialog} 
STFTName = 3 ; 
STFDName = 4 ; 
STFTType 5 ; 
ETFDType 6 ; 
STFTCrtr 7; 
ETFDCrtr 8 ; 
STFTFold 9 ; 
STFDFold 10 ; 
STFTHPos 11 ; 
STFDHPos 12; 
STFTVPos 13; 
STFDVPos 14; 
STFTFlag 15 ; 
STFDFlag 16; 
STFTchk 17 ; 
chkBtnO 18 ; 
chkBtn1 19 ; 
chkBtn2 20 ; 
chkBtn3 21 ; 
chkBtn4 22 ; 
chkBtn5 23 ; 
chkBtn6 24 ; 

Figure C-5. File Information Open Dialog 

DeskTop 
ewample file 
Ewplain Demo 
fig B- 1 
Flnfo 
MacNub 
Screen 0 

Cancel 

figures Rpp 

Eject 

Driue 
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chkBtn7 25 ; 
numCButtons = 8; 

VAR 
done: BOOLEAN ; 
where : Point; 
myMenus: ARRAY [ 1. . lastMenu] OF MenuHandle ; 
theEvt : EventRecord; 
theWindow: WindowPtr ; 
theDialog: DialogPtr; 
vRefNum: INTEGER; 

PROCEDURE SetLimits ; 
BEGIN 

SetPt(where , lOO, lOO J; 
END ; 

PROCEDURE SetupMenus ; 
VAR 

I : INTEGER; 
BEGIN 

InitMenus; 

Figure C-6. The File Information Dialog 

Screen o 
type: IPNTG 

creator: MPNT 
flag bits: 

Obit o 
folder: 0 0 bit 1 
horz pos: 0 O bit 2 

uert pos: 0 Obit 3 

flags: 0 Obit 4 

0 bit 5 - bundle 

OK 
0 bit 6 - inuisible 

0 bit 7 

Cancel 
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myMenus[11 
myMenus[21 
myMenus[31 

GetMenu(appl eMenu); 
Getmenu(FileMenu); 
Getmenu 1 InfoMenu); 

AddResMenu (myMenus[1l , 'DRVR') ; 
FOR I : = 1 TO lastMenu DO InsertMenu(myMenus[Il ,0); 
DrawMenuBar; 

END; {of SetUpMenus } 

FUNCTION SetErrMess (theErr: OSErr): BOOLEAN; 
VAR 

Errindex, theitem : INTEGER; 
ErrMess , ErrStr : Str255; 
closeErr : BOOLEAN; 

BEGIN 
CASE theErr OF 

noErr : Err Index - 2· . 
bd.NamErr : Err Index - 4· 

' fnfErr : Err Index - 5· 
' 

ioErr : Err Index - 6; 
mFulErr : Err Index - 7; 
nsvErr : Err Index - 8; 
opWrErr: Err Index - 9 · 

' tmfoErr : En· Index - 10; 
eofErr : Err Index - 11 ; 
paramErr : Err Index - 12; 
nsDr vErr : Err Index - 13; 
dupFNErr : Err Index - 14; 
dirFulErr : Err Index - 15 ; 
vLckdErr: Err Index - 16; 
wPrErr : Err Index - 17; 
fnOpnErr : Err Index - 18; 
rfNumErr : Err Index - 19; 
dskFulErr : Err Index - 20; 
fLckdErr : Err Index - 21; 
wrPermErr : Err Index - 22 : 
posErr : Err Index - 23 ; 
extFSErr: Err Index - 24 ; 
Otherwise Err Index - 3· 

' 
END; 

{exact 

Get indStr (ErrMes s , 1000 , Errindex) ; 
NumToStr(theErr ,ErrStr ); 
ParamText (ErrMess , ErrStr , " . "); 
IF theErr <> noErr 

meaning 

THEN the Item : = StopAlert(1003,NIL) ; 
SetErrMess - (theErr <> noErr) ; 

END; 

depends} 
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PROCEDURE QuitFile ; 
BEGIN 

done 
END ; 

TRUE ; 

FUNCTION IHandl e(theitem: INTEGER) : Handle ; 
VAR 

theType : INTEGER; 
ItemHdl : Handl e ; 
ItemBox : Rect ; 

BEGIN 
GctDitem(theDialog, theltem , theType , ItemHdl, ItemBox) ; 
!Handle ItemHdl; 

END; 

FUNCTION CHandle( theitem: INTEGER ): ControlHandle ; 
BEGIN 

CHandle ControlHandle( IHandle (theiteml l ; 
END: 

PROCEDURE SetChkBox(theitem: INTEGER) : 
BEGIN 

Se tCt lValue (CHandle (theitem) , 1-GetCtlValue(CHandle(theitem) ll; 
END; 

PROCEDURE ShowDNwn (theNum: Longint; theltem: INTEGER) ; 
VAR 

nwnString : Str255 ; 
BEGIN 

NumToString(theNum, nwnStringJ; 
SetiText( IHandle(theiteml , numString); 

END: 

FUNCTION VFiltcr (theDi a l og: DialogPtr ; 
VAR theEvent : EventRecord; 
VAR itemHit: INTEGER) : BOOLEAN; 

BEGIN 
ItemHi t 0; 
IF theEvent.what = nullEvent THEN 

IF GctNextEvent(diskMask , t heEvent ) THEN 
CASE loWord(theEvent . message) OF 

1: ItemHit Insert! ; 
2: ItemHit := Insert2 ; 
END; 

Vfil t er (Itcmhit in [Insertl , Insert2Jl ; 
END; 

PROCEDURE ShowVollnf o; 
VAR 
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vRefNum, theltem: INTEGER; 
free : Longlnt ; 
vName: Str255 ; 

PROCEDURE ShowDr(Drive,STVDName , STVDRef , STVDFree : INTEGER) ; 
BEGIN 

IF GetVInfo ( Drive. ~vName , vRefNum,free l = noErr THEN BEGIN 
SetiText(IHandle(STVDName) ,vName); 
ShowDNum(vRefNum, STVDRefl; 
ShowDNum (free , STVDFreel ; 

END; 
END; 

PROCEDURE EjectDr(Drive , STVDName , STVDRef , STVDFree : INTEGER) ; 
BEGIN 

IF Eject (NIL,Drive) = noErr THEN BEGIN 
Set!Text (!Handle (STVDName) , "l; 
Set! Text (!Handle (STVDRef l , "l ; 
SetiText (!Handle (STVDFree) , "l; 

END; 
END; 

BEGIN 
theDialog : = GetNewDialog (lOOl , NIL . POINTER(-1 ) l : 
ShowDr (l , STVlDName , STVlDRef , STVlDFree) ; 
ShowDr(2 , STV2DName , STV2DRef , STV2DFree) ; 

FlushEvents (everyEvent , Ol; 
REPEAT 

ModalDialog (@VFilter , theitem) ; 
CASE theltem OF 

Insert! : ShowDr (l,STVlDName , STVlDRef , STVlDFree) ; 
Insert2 : ShowDr (2,STV2DName , STV2DRef,STV2DFree) ; 
EjectlBtn : EjectDr(l , STVlDName , STVlDRef , STVlDFree) ; 
Eject2Btn : EjectDr(2 , STV2DName , STV2DRef,STV2DFree) ; 
END; 

UNTIL the!tem = OKBtn ; 
DisposDialog(theDialogl ; 

END ; 

PROCEDURE ShowFileinfo ; 
TYPE 

BtnArray = PACKED ARRAY [0 .. 15) OF BOOLEAN ; 

VAR 
I , ItemHi t : 
typeList : 
reply: 
theFi nfo : 

INTEGER; 
SFTypcList ; 
SFReply; 
Finfo ; 
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fType , fCreator : Str255 ; 
CArray : BtnArray ; 

PROCEDURE FLCall (t heErr : OSErr); 
BEGIN 

IF Set~rrMess ( theErr) THEN Exit(ShowFileinfo); 
END ; 

BEGI N 
REPEAT 

SFGetFile(where , " , NIL , -1,typeList , NIL , reply ) ; 
IF reply . good Tr~N BEGIN 

FLCall (GetFinfo (reply . fName , reply . vRefNum. theFinfo)); 
theDialog : = GetNewDialog (1002 , NIL , POINTER (-1 ) l; 

CArray : = BtnArray (theFinfo . fdFlagsJ ; 
FOR I : = 0 TO numCButtons-1 DO 

SetCtlValue(CHandle (chkBtnO+IJ , ORD(CArray( I lll; 

SetiText(IHandle (STFDName) , reply . fName); 

fType : = I 
1

; 

FOR I : = 1 TO 4 DO fType[I l : = theFinfo . fdType[I l; 
SetiText (IHandle (ETFDType) , fType) ; 

fCreator : = 1 
' ; 

FOR I : = 1 TO 4 DO fCreator[I] : = theFinfo . fdCreator[I] ; 
SetiText (IHandle (ETFDCrtr ) . fCreator ) ; 

ShowDNum(theFinfo.fdFldr , STFDFold); 
ShowDNum(theFinfo.fdFlags , STFDFlagl ; 
ShowDNum(theFinfo. fdLocation . h, STFDHPos) ; 
ShowDNum(theFinfo . fdLocation . v, STFDVPOS) ; 

FlushEvents (everyEvent . O) ; 
REPEAT 

ModalDi a l og(NIL, i temHit J; 
IF itemHit in [chkBtnO .. Chk8tn7] THEN BEGIN 

SetChkBoxritemHit ); 
FOR I : = 0 TO numCButtons-1 DO 

CArray[Il : = GetCtlVal ue(CHandle(chkBtnO+I ) J<>O; 
ShowDNum (INTEGER (CArray) , STFDFlag); 

END; 
UNTIL itemHit in [OKBtn , CancelBtnl ; 

IF itemHi t = OKBtn THEN BEGIN 
theFinfo . fdFlags : = INTEGER (CArray); 
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GetiText(IHandle(ETFDType) , fType) ; 
FOR I : = 1 TO 4 DO 

theFinfo . fdType[IJ := fType(IJ : 

GetiTcxt(IHandle(ETFDCrtr) , fCreator) ; 
FOR I := 1 TO 4 DO 

theFinfo . fdCreator[IJ : = fCreator[Il ; 

FLCall (SetFinfo (reply. fName , reply.vRefNum, theFinfo)J; 
END ; 

DisposDialog(theDialogl; 
END; 

UNTIL NOT reply . good; 
END; 

PROCEDURE SetUpSys; 
BEGIN 

InitGraf(@thePortJ ; 
InitFonts; 
In i tWindows ; 
TEini t; 
InitDialogs(NILl; 
SetEventMask (everyEvent ); 
FlushEvents (everyEvent,O); 

SetLimits; 
SetupMenus; 
InitCursor ; 
vRefNum : = 0; 
done := FALSE ; 

END; 

PROCEDURE UpdateSys ; 
BEGIN 

SystemTask; 
END; 

PROCEDURE DoAppleMenu (theitcm : INTEGER); 
VAR 

r efNum : INTEGER; 
name : Str255 : 

BEGIN 
If the Item = 1 

THEN theitem Alert(1004,NIL) 
ELSE 

BEGIN 
Getitem (myMenus [1 J ,theitem,nameJ ; 
refNum OpenDeskAcc(nameJ ; 

END; 
END; 
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PROCEDURE DoFileMenu (theltem : INTEGER) ; 
BEGIN 

CASE thcltem OF 
1: QuitFile ; 

END; 
END; 

PROCEDURE DoinfoMenu (theitem: INTEGER! ; 
BEGIN 

CASE theitem OF 
1: ShowVollnfo ; 
2: ShowFileinfo; 

END; 
END ; 

PROCEDURE SelectMenu (selection Longint) ; 
BEGIN 

CASE HiWord (selectionJ OF 
appleMenu: DoAppleMenu (LoWord (se l ectionJJ; 
FileMenu: DoFileMenu (LoWord(selectionJJ ; 
InfoMenu : DoinfoMenu (LoWord(sel ectionJJ ; 
END; 

HiliteMcnu(O l ; {to unhighl ight selected menu i n menu bar} 
END; 

PROCEDURE KeyEvent (theKey : Char ) ; 
BEGIN 

IF BitTs t (@theEvt . modifiers,7) {check for command key} 
THEN SelectMenu(MenuKey (theKeyJ J ; 

END; {KeyEvent } 

PROCEDURE WindowUpdate ; 
BEGIN 

theWi ndow : = windowPtr(theEvt . message); 
SetPort(theWindow); 
BeginUpdate ctheWindowt ; 

EraseRect (theWindow· . portRect); 
DrawControls (theWindow) ; 
DrawGrowicon ( theWindow) ; 

EndUpdate (thcWindow) ; 
END; {Update} 

PROCEDURE WindowActivate ; 
BEGIN 

WindowUpdate; 
END; {Activate } 

BEGIN {main program } 
SetupSys ; 
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REPEAT 
UpdateSys; 
IF GetNextEvent(everyEvent , theEvt J THEN 

CASE theEvt . what OF 
mouseDown: 

CASE FindWindow (theEvt . where , theWindow) OF 
inMenuBar : SelectMcnu(MenuSelect (theEvt.where ) J; 
inSysWindow: SystemClick(theEvt, t heWindow) ; 
END; 

keyDown, autoKey : KeyEvent(Chr (theEvt . message MOD 256 JJ ; 
updateEvt : Wi ndowUpdate; 
activateEvt : WindowActivate; 
END; {of what event} 

UNTIL done; 
END. 

The Resource Definition File 
Here is its complete resource definition file: 

* Resource Definition File for Fileinfo Demo 

clm/ Finfo.Rsr c 

Type MENU 
,1000 
\ 14 

, 1001 
Fi l e 

About File Info .. . 
(- -- -------- -----

Quit / Q <B 

,1002 
Information 

Volume Information 
File Informati on 

Type STR# 
, 1000 

Untitled 
No error 
Unknown Error 
Ba d fil e or vo lume Name 
File not found 
Disk I /0 Error 
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Memory full 
No such volume 
File already open for writing 
Too many files open 
End of file 
Bad number 
No such drive 
Duplicate file name 
Directory full 
Software volume lock 
Hardware volume lock 
File not open 
Bad reference number 
Disk full 
Permission denied to access file 
File position out of range 
External file system 

Type DLOG 
, 1001 
40 85 290 425 
Visible 1 NoGoAway 0 
1001 

Volume Display Window 

Type DITL 
,1001 
17 

Btnitem Enabled 
200 20 220 120 

OK 

StatText Disabled 
10 10 30 140 

Internal Drive : 

Btnltem Enabled 
10 140 30 200 

Eject 

StatText Disabled 
30 10 50 140 

Volume Name : 

StatText Disabled 
30 140 50 320 
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StatText Disabled 
50 10 70 140 

Volume RcfNum : 

StatText Disabled 
50 140 70 320 

StatTcxt Disabled 
70 10 90 140 

free bytes : 

StatText Disabled 
70 140 90 320 

StatText Disabled 
110 10 130 140 

External Drive : 

Btnitem Enabled 
110 140 130 200 

Eject 

StatText Disabled 
130 10 150 140 

Volume Name : 

StatText Disabled 
130 140 150 320 

StatText Disabled 
150 10 170 140 

Volume RefNum : 

StatText Disabled 
150 140 170 320 

StatText Disabled 
170 10 190 140 

free bytes: 

StatText Disabled 
170 140 190 320 
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Type DLOG 
, 1002 
40 85 310 425 
Visible 1 NoGoAway 0 
1002 

File Display Window 

Type DITL 
,1002 
25 

Btnitem Enabled 
200 20 220 120 

OK 

Btnitem Enabled 
230 20 250 120 

Cancel 

StatText Disabled 
10 10 30 70 

name : 

StatText Disabled 
10 80 30 320 

StatText Disabled 
35 10 55 70 

type: 

EditText Disabled 
35 80 55 140 

StatText Disabled 
60 10 80 70 

creator: 

EditText Disabled 
60 80 80 140 

StatTcxt Disabled 
85 10 105 80 

fo l der : 
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StatText Disabled 
85 80 105 140 

StatText Disabled 
110 10 130 80 

horz pos : 

StatText Disabled 
110 80 130 140 

StatText Disabled 
135 10 155 80 

vert pos : 

StatText Disabled 
135 80 155 140 

StatText Disabled 
160 10 180 80 

flags : 

StatText Disabled 
160 80 180 140 

StatText Disabled 
50 180 70 250 

flag bits : 

Chkitem Enabled 
70 180 90 250 

bit 0 

Chkltem Enabled 
90 180 110 250 

bit 1 

Chkitem Enabled 
110 180 130 250 

bit 2 

Chkltem Enabled 
130 180 150 250 

bit 3 
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Chkltem Enabled 
150 180 170 250 

bit 4 

Chkltem Enabled 
170 1 80 190 320 

bit 5 - bundle 

Chkitem Enabled 
190 180 210 320 

bit 6 - invisible 

Chkltem Enabled 
210 180 230 250 

bit 7 

Type ALRT 
' 1003 
100 70 200 440 
1003 
7654 

Type DITL 
, 1003 

OK 

3 

Btnltem Enabled 
70 10 90 100 

StatText Disabled 
10 150 50 360 

F i le Error : · 0 

StatText Disabled 
60 150 90 360 

ID number : ·1 

Type ALRT 
' ] 004 
100 70 200 450 
1004 
4444 

Type DITL 
,1004 
3 
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OK 

Btnltem Enabled 
70 10 90 100 

StatTcxt Disabled 
10 10 30 370 

Filelnfo , a demonstration program for fi les 

StatText Disabled 
30 10 50 360 

Chri stopher L. Morgan , 1985 

Type CODE 
clm/ FinfoL, 0 

Descriptions 
This appendix describes only the key routines ; in this case, the procedures 
that implement the file information dialog. 

First, we discuss a filter routine for one of the information dialogs, 
then the procedures to implement both of the file information menu items. 

A Modal Dialog Filter 
The function "VFilter" serves as a filter procedure for the modal dialog 
in the "ShowVollnfo" procedure. It modifies events generated in the dialog 
before they are sent to the user as item "hits". This particular filter 
modifies null events, turning one of them into a special disk insertion 
event whenever a disk is inserted into a disk drive. 

A dialog filter procedure has three parameters: a dialog pointer that 
points to the current dialog, an event record passed by reference, and an 
integer passed by reference that contains the code of the item that was 
hit. A dialog filter function returns a value of fal se if the event from the 
filter needs further processing by the dialog, true if we want the modal 
dialog to return immediately with the results of our filter. 

The procedure begins by setting "ItemHit" equal to zero. This ini­
tializes it to a neutral value for a test at the end of the routine. If the 
" .what" field of the event record indicates the null event, then we call 
"GetNextEvent" with an event mask equal to " diskMask" to pick up any 
disk insertion events. We then check the low word of the " .message" field 
of the event record to determine in which drive the disk was inserted. If 
it is inserted in the internal drive (drive 1), we set "ItemHit" equal to thE;) 
constant " Insertl "; if it is inserted into the external drive (drive 2 ), we 

DISK AND VOLUME INFORMATION 367 



set "ItemHit" equal to the constant "lnsert2". These constants are larger 
than any possible item numbers from this dialog. If we set "ItemHit" 
equal to one of these values, then we set the Boolean return value of our 
filter function equal to true, causing the modal dialog to immediately 
return with one of these item numbers in "ItemHit". 

Displaying Volume Information 
The procedure"ShowVollnfo" implements the "volume information" com­
mand of the Information menu. It has four local parameters: the integers 
"vRefNum" and "theltem" to hold a volume reference number and the 
item number, the long integer "free" to contain the number of free bytes 
on a disk, and a string to hold the volume name. 

The "ShowVollnfo" procedure has two subprocedures: "ShowDr" 
displays the volume information for a selected drive, and "EjectOr" ejects 
a disk from a specified disk drive and erases the volume information. 

Let's look at the "Show Dr" and "EjectDr" routines. Both routines have 
four integer parameters: "Drive" specifies the drive, "STVDName" spec­
ifies the item number of the static text item where the volume name is 
displayed, "STVDRef" specifies the item number of the static text item 
where the volume reference number is displayed, and "STVDFree" spec­
ifies the item number of the static text item where the number of free 
bytes on the disk is displayed. 

The "Show Dr" procedure calls the File Manager's "GetVInfo" routine 
to get the volume information. It returns the volume name, volume refer­
ence number, and number of free bytes on the disk. If this routine is 
successful, we call "SetiText" to place the volume name in the dialog and 
"ShowDNum" to display the volume reference number and number of 
free bytes on the disk. 

The "EjectDr" procedure calls the File Manager's "Eject" routine to 
eject the disk from the specified drive. If this is successful, the procedure 
calls "SetiText" three times to place blank strings in the appropriate static 
text i terns of the dialog. 

The "ShowVollnfo" procedure is like a small version of the entire 
program. It has an initialization section and an event loop implemented 
with a REPEAT .. UNTIL loop. The initialization section begins by calling 
"GetNewDialog" to grab the dialog definition from the resource file, dis­
play the dialog, and return a handle to it. The resource definition of this 
dialog and its dialog list can be found in the resource definition file as 
DLOG and DITL resources, both with resource ID number 1001. We store 
this handle in "theDialog". 
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The procedure continues by calling "ShowDr" twice to attempt to 
show the volume information for both drives. If no disk is in a drive or if 
the drive isn 't attached, no information is displayed. Finally, it calls 
"FlushEvents" to remove all events before going into the event loop. 

The event loop calls "ModalDialog" to get the item number of the 
item hit . In this program, we pass a pointer to our filter as the first 
parameter of "ModalDialog" and pass "theltem" as the second. In this 
way, "theltem" gets the item number. A CASE statement detects which 
item is hit and acts accordingly. If it is the " Insert1" item generated by 
our filter routine when a disk was inserted into the internal drive, then 
we call our "ShowDr" to show the volume information for the disk in the 
internal drive. Likewise, in response to a value of " Insert2", we show the 
information for the external drive. A value of "Eject1Btn" means that the 
first eject button was selected. In response, we call "EjectOr" to try to 
eject the disk (if any) in the internal drive. A value of " lnsert2" means 
that we should call "EjectOr" to eject the disk in the external drive. The 
event loop continues until the OK button is detected. 

Before the procedure ends, it calls "DisposDialog" to dispose of the 
dialog, wiping it from view. 

Displaying File Information 
The procedure "ShowFilelnfo" implements the "File Information" com­
mand of the Information menu, displaying a dialog filled with file infor­
mation, some of which can be changed. 

It has one local type and a number of local variables. The local type 
is called "BtnArray" and is defined as a packed array of 16 Boolean 
variables. Each Boolean is stored as a bit. 

The first two local variables are integers: " I" is used as an index to a 
FOR loop, and "ItemHit" holds an item number from the file dialog. The 
next two local variables are used with the standard file get routine. Here, 
"typelist" is of type "SFtypelist" and "reply" is of type "SFReply". We 
use these types to open and save files. The next local variable, "theFinfo", 
is of type "Finfo" and is a record structure that holds file information. It 
is defined as follows: 

Flnfo = RECORD 
fdType : 
fdCreator : 
fdFlags : 
fdLocation : 
fdFldr : 

END; 

OSType ; 
OSType; 
INT!i:GER; 
Point ; 
INTEGER; 
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These are the fields that we wish to display. The first field, ".fdType", 
is a four-character file type. The second field, ".fdCreator", is a four­
character designator to help a document locate its associated applications 
program. The next," .fdFlags", holds certain file attributes, such as "locked", 
"bundle", and "invisible". The next field, ".fdLocation", is a point that 
gives the location of the file's icon within its window. Finally, the field 
".fdFldr" is an integer that identifies which folder contains the file's icon. 

The next two local variables, "fType" and "£Creator", are strings to 
hold the file type and creator fields. The last local variable, "CArray", is 
of type "BtnArray", which we defined above. We use this variable to hold 
the bits of the "fdFlags" field. 

The "ShowFileinfo" procedure has one subprocedure, "FLCall", which 
handles errors. 

The ''ShowFileinfo'' procedure consists of an outer REPEAT .. UNTIL 
loop that first calls the Standard File Package's "SFGetFile" procedure 
used in the "OpenFile" procedure. Here, we instruct it to display files of 
all types by passing -1 in the fourth parameter. The last parameter is the 
"reply", which contains fields that specify if a valid file has been selected. 
If a valid file is selected, this parameter gives the file name and volume 
reference number. 

If there is a valid selection ("reply.good" is true), then we call "GetFinfo" 
to get the file information. Notice that we don't have to open the file to 
make this call. The "GetFinfo" routine expects three parameters: the file 
name, the volume reference number, and a variable of type "flnfo" passed 
by reference. 

We next call "GetNewDialog" to set up the file dialog. It gets the 
dialog's definition from the resource file and displays the dialog on the 
screen. We store the resulting handle in the variable "theDialog". The 
resource definition for this dialog and its dialog list can be found in the 
resource definition file as resources of type DLOG and DITL, both with 
ID 1002. 

Next, we copy the" .fdFlags" field into our button array, coercing the 
type from an integer to a packed array of 16 Booleans. We then load the 
first eight of these into the control values for our eight check boxes. We 
use the ORD function to convert each Boolean into a long integer for the 
control value. 

We call "SetiText" to put the file name into the corresponding dialog 
item. We move the file type and creator field into strings, one character at 
a time, and display the resulting strings in the dialog. These are placed 
in editable text items because they can be edited by the user. 
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We use our "ShowDNum" to display the ".fdFldr", ".fdFlags", and 
both coordinates of the file's location as numbers in the dialog. 

Next comes a REPEAT .. UNTIL loop, which acts like an event loop for 
our file dialog. It calls "ModalDialog" to see which item is selected. If it 
is a check box, we call our "SetChkBox" to click the check box, then 
update the numerical value displayed for the flags. The REPEAT loop 
continues until the user hits the OK button or cancel button. 

After the REPEAT loop, we update the ".fdFlags", ".fdType", and 
".fdCreator" fields, then call the File Manager's "SetFinfo" routine to 
place this new file information back onto the disk. Finally, we dispose of 
the dialog. 

This concludes our discussion of the '' Filelnfo'' example. You are 
welcome to type it in and give it a try. 

DISK AND VOLUME INFORMATION 371 



D 
Macintosh Routines Used 
in Example Programs 

372 

Appendix 0 contains a table of the built-in Macintosh routines used 
in this book. They were sorted alphabetically by the manager. 

Control Manager 
CM-0 ra wControls 
CM-FindControl 
CM-GetCRefCon 
CM-GetCtlValue 
CM -GetNewControl 
CM-HideControl 
CM-Hili teControl 
CM-MoveControl 
CM -SetCRefCon 
CM-SetCtlMax 
CM-SetCt!Value 
CM-ShowControl 
CM-SizeControl 
CM-TrackControl 

Dialog Manager 
OL-OisposOialog 
OL-DlgCopy [Pascal only] 
OL-OlgCut [Pascal only] 
OL-DlgPaste [Pascal only] 
OL-GetDitem 
OL-Getltext 
OL-GetNewOialog 
OL-InitOialogs 
OL-ModalOialog 
OL-NoteAlert 

OL-ParamText 
OL-SeliText 
OL-SetDAFont [Pascal only] 
OL-SetiText 
OL-StopAlert 

Desk Manager 
OS-OpenDeskAcc 
OS-SystemClick 
OS-SystemEdit 
OS-SystemTask 

Event Manager 
EM-Button 
EM-FlushEvents 
EM-GetKeys 
EM -GetMouse 
EM -GetNextEvent 
EM-SetEventMask 

File Manager 
FL-Create 
FL-Eject 
FL-FSClose 
FL-FSOpen 
FL-FSRead 
FL-FSWrite 



FL-GetEOF 
FL-GetFinfo 
FL-Get Vlnfo 
FL-SetFinfo 

Font Manager 
FM-InitFonts 

Memory Manager 
MM-HLock 
MM-HUnLock 
MM-SetHandleSize 

Menu Manager 
MN-AddResMenu 
MN-Checkltem 
MN-Disableltem 
MN-DrawMenuBar 
MN-Enableltem 
MN-Getltem 
MN-GetMenu 
MN-HiliteMenu 
MN-InitMenus 
MN-InsertMenu 
MN-MenuKey 
MN-MenuSelect 
MN-NewMenu 

Operating System Utilities 
OU-SysBeep 

Package Manager 
PK-GetlndStr 
PK-NumToString 
PK-SFGetFile 
PK-SFPutFile 

QuickDraw 
QD-ClipRect 
QD-ClosePicture 
QD-ClosePoly 

QD-CloseRgn 
QD-DrawChar 
QD-DrawPicture 
QD-DrawString 
QD-EraseOval 
QD-EraseRect 
QD-EraseRgn 
QD-EraseRoundRect 
QD-FillOval 
QD-FillRect 
QD-FillRgn 
QD-FillRoundRect 
QD-FrameOval 
QD-Frame Poly 
QD-FrameRect 
QD-FrameRgn 
QD-FrameRoundRect 
QD-GetPort 
QD-GlobaltoLocal 
QD-HideCursor 
QD-InitCursor 
QD-InitGraf 
QD-lnverRoundRect 
QD-InvertOval 
QD-InvertRect 
QD-Line 
QD-LineTo 
QD-Move 
QD-MovePortTo 
QD-MoveTo 
QD-NewRgn 
QD-OffsetPoly 
QD-OffsetRgn 
QD-OpenPicture 
QD-OpenPoly 
QD-OpenPort 
QD-OpenRgn 
QD-PaintOval 
QD-PaintRect 
QD-PaintRoundRect 
QD-PenMode 
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QD-PenNormal 
QD-PenPat 
QD-PenSize 
QD-PenSize 
QD-PortSize 
QD-PtlnRgn 
QD-RectlnRgn 
QD-ScrollRect 
QD-SetCursor 
QD-SetOrigin 
QD-SetPort 
QD-SetPt 
QD-SetRect 
QD-SetRectRgn 
QD-StuffHex 
QD-TextFace 
QD-TextFont 
QD-TextSize 
QD-UnionRgn 

Text Edit 
TE-TEActivate 
TE-TECalText 
TE-TEClick 
TE-TECopy 
TE-TECut 
TE-TEDeactivate 
TE-TEDispose 
TE-TEidle 
TE-TEinit 

TE-TEKey 
TE-TENew 
TE-TEPaste 
TE-TEScroll 
TE-TEUpdate 

Toolbox Utilities 
TU-BitSet 
TU-BitTst 
TU-HiWord 
TU-LoWord 

Window Manager 
WM-BeginUpdate 
WM-Drag Window 
WM-DrawGrowicon 
WM-EndUpdate 
WM-FindWindow 
WM-Front Window 
WM-GetNewWindow 
WM-GetWRefCon 
WM-GrowWindow 
WM-HideWindow 
WM-InitWindows 
WM-lnvalRect 
WM-Select Window 
WM-SetWTitle 
WM-ShowWindow 
WM-SizeWindow 
WM-TrackGoAway 
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Index 

@ operator, 54 

A 
A5, 62 
A7, 62 
Activate, 190 
AddResMenu , 269 
Alarm clock, 255 
Alert, 223, 246 

note, 228 
stages of, 246 
stop, 228 

Application Jump Table, 22 
Application Parameter Area, 22 
Application zone, 17 
Arrow, 76 
Attributes, 77 

B 
BaseAddr, 145 
Begin-Update, 189, 220 
Bit-mapped, 3 
Bitlmage, 86, 89 
BitMap, 76, 86, 89, 90 
BitSet, 95 
BitTst , 320 
Box,223,225 

alert , 223 
dialog, 223 

BufPtr, 20 
Buttons, 74, 225 

mouse, 4 

c 
Calculator, 255 
Caret, 50 
Check boxes, 226 
Checkltem, 268 
ClickButton, 74 
Clipping, 119 
Cli pRect, 181, 214 
Cli pRegion, 117 
Close,280,281,313 
ClosePicture, 215 
ClosePoly, 197 
CloseRgn , 150 
CNTL, 176 
Code generator, 47 
Compiler, 4 7 

com mand , 46 
Control , 157, 169, 218 

handles, 169, 170 
Manager, 33 , 157, 217 
pointer, 170 
record, 170 

Coord inate systems, 68, 86 
Coordinates, 90 

global, 113 
local, 113 
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Copy, 6, 226, 280, 282, 317 
Cursor, 68, 79, 81, 93 
Cut,6,226,280,282,317 

D 
Data fork, 43 
DB, 59 
Debugger, 39, 57 
Desk accessories, 5, 9, 255, 277 
Desk Manager, 34 
Development, 42 
Device drivers, 37 
Device Manager, 3 7 
Devices, 11 
Dialog, 223, 240 

list, 223 
Manager, 34, 223 
modal, 224 
modeless, 224 

DialogPeek, 235 
DialogPtr, 235 
DialogRecord, 235 
Disabled, 242, 254 
Disableltem, 305 
Disk drivers, 280 
DisposDialog, 245 
DITL, 242 
DlgCopy, 243 
DlgCut, 243 
DlgPaste, 243 
DLOG, 240 
DragWindow, 190,221,318 
DrawControls, 189, 219 
DrawGrowlcon, 184,219 
DrawMenuBar, 269 
DrawString, 151 
Drivers, 11 
DRVR, 269 
Dynamic variables, 51 

E 
Enableltem, 305 
EndUpdate, 189, 220 
ErasePoly, 198 
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EraseRect, 95 
EraseRgn, 151 
Event, 129 

Manager, 32, 130, 131 
queue,32, 130,146 
Record, 139 
when, 130 
where, 130 

eventMask, 146 
Exception vectors, 13 
Exit, 184 

F 
FCreate, 313 
File Manager, 35,280 
FillPoly, 198 
FillRgn, 112 
Filter, 244, 246 
FindControl, 187, 188, 320 
Finder, 11 
FindWindow, 168,276 
Finite state machine, 295 
FlushEvents, 145, 146 
Font Manager, 32, 179 
Font Mover, 179 
Fragmentation, 19 
FramePoly, 198,210 
FrameRect, 103 
FrameRgn, 151 
FrameRoundRect, 150 
FSClose, 307,311 
FSOpen, 311 
FSRead, 311 
FSWrite, 312 

G 
GetClip, 121 
GetCRefCon, 243 
GetCtlValue, 182, 187, 243 
GetDitem, 238 
GetEOF, 311 
GetlndStr, 210, 306 
Getltem, 2 7 4 
GetiText, 244 



Get Keys, 15 5 
GetMouse, 97, 154 
GetNewControl, 176, 212 
GetNewDialog, 238 
GetNewWindow, 173 
GetNextEvent, 153 
GetResource, 211 
GlobaltoLocal, 115 
grafPort, 69, 75, 77, 164 
grafPtr, 78 
GrowWindow, 183, 219 

H 
Heap,13,17 
HideControl, 220 
HideCursor, 95 
HideWindow, 219 
Hilite menu, 275 
HiliteControl, 219 
hiWord, 184 
HLock, 211, 216 
hotSpot, 83 
Human interface, 2 
HUnlock, 212, 216 

I 
Icons, 2 
inContent, 190 
inDrag, 190 
inGoAway, 190 
inGrow, 190 
InitCursor, 79 
InitDialog, 236 
InitGraf, 7 4 
InitMenus, 269 
InitWindows, 173 
Insertion point, 239 
InsertMenu, 269 
Instruction codes, 26 
Integrated Woz Machine (IWM), 26 
Intermediate code, 4 7 
Interrupt, 130, 153 
InvalRect, 220 

InvertPoly, 198 
InvertRect, 103 

K 
Key equivalents, 2 71 
keyDown, 140 
keyUp, 140 

L 
Length, 239 
Library files, 4 7 
Line, 198 
LineTo, 148, 198 
Link, 47 
Linked list, 130, 132 
Lisa, 7, 39 
LocaltoGlobal, 115 
loWord, 184 

M 
Macbug, 23 
MacNub, 58 
MacPaint, 68, 81 
MacWrite, 68 
Managers, 1,8,29 
Mask, 82 
Master pointer, 54 
MC68000, 7 
Memory, 11 
Memory layout, 16 
Memory Manager, 17,32 
Memory-mapped video, 86 
Memtypes, 73 
Menu, 1, 250 

bar, 251 
Manager, 34,250 
identification numbers of, 269 
selection of, 275 

Menuinfo, 253 
MenuKey, 320 
MenuList, 252 
MenuSelect, 251, 276 
Message, 140 
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Meta-character, 270 
ModalDialog, 244 
Mode, 6 
Modifiers, 141 
Mouse, 3 
mouseDown, 140,190 
Move, 196 
MoveControl, 184 
MovePortTo, 116, 117 
MoveTo, 148, 196 

N 
New, 280, 281, 308 
NewRgn, 112,207 
NJnrelocatable, 54, 144 
Note pad, 255 
NoteAlert, 245 
NumToStr, 307 

0 
Objects, 5 
OffsetPoly, 198, 208 
OffsetRgn, 216 
Open,280,281,308 
OpenDeskAcc, 274 
OpenPicture, 215 
OpenPoly, 197,208 
OpenPort, 79 
OpenRgn, 150 
Operating System routines, 28 
ORD, 54 
OSintf, 74, 139 
Ovals, 68 

p 
Package Manager, 35,280 
Packages,310 
PaintPoly, 198 
PaintRect, 103 
Pascal, 2, 40 
Paste, 6, 226, 280, 282, 317 
Patterns, 68, 76, 79, 80 
Pen 

modes of, 258 
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patterns of, 258 
sizes of, 258 

PenNJrmal, 180 
Pictures, 193 
Pixels, 68 
Point, 68, 86, 92 
POINTER, 54, 152 
Pointers, 39, 49 
Polling,153 
Polygons, 68, 193, 196, 207 
portBits, 95, 113 
PortSize, 117, 118 
Printing Manager, 3 7 
PtlnRgn, 154 

Q 
Queue, 132 
QuickDraw, 7, 31, 67, 73 

R 
Radio buttons, 226 
RAM, 11 
randSeed, 76 
Record, 129 
Rectangles, 68, 86, 97 
Reference numbers, 297 
Reference value, 217 
Region,52,68,86, 103,135,143 

handle, 106 
pointer, 106 

Resource, 39,42 
definition, 42, 43, 174, 212,246 
definition file, 43, 174 
fork, 43 
Manager, 35 

rgnBBox, 104 
rgnSize, 104 
ROM, 11,24 
rowBytes, 145 
RS-422, 58 

s 
Save,280,281,312 
Save As, 280, 281, 312 



Scrap Manager, 36 
Scrapbook, 255 
Screen, 3 
screenBits, 76 
Scroll bar, 4, 158, 185 

down button, 158 
page down, 158 
page up, 158 
thumb control, 158 
up button, 158 

Scrolling, 193, 217 
ScrollRect, 218 
SelectWindow, 219 
Serial Communications Controller 

(SCC), 25 
SetClip, 120 
SetCtlMax, 305 
SetCtlValue, 187, 239, 243 
SetCursor, 86 
SetDAFont, 237 
SetEventMask, 145 
SetiText, 239 
SetOrigin, 116, 117, 216 
SetPoint, 86 
SetPort, 214 
SetPt, 184 
SetRect, 103, 111 
SetRectRgn, 112 
SetWTitle, 308 
SFGetFile, 309 
SFPutFile, 312 
ShowControl, 220 
SizeControl, 184 
SizeWindow, 184,219 
Smalltalk, 3 
Sound,23 
Source, 42 

file, 42, 45 
Stack, 13 

Area, 20 
pointer, 62 

Stages, 246 
Standard button, 170 
Standard File Package, 309 

Static variables, 13, 53 
StopAlert, 245 
STR#, 211 
String list, 210 
StringWidth, 148 
StuffHex, 80 
Style, 178 
SysBeep,243 
System Communications Area, 16 
System Dispatch Table, 16, 2 7 
System globals, 17 
System tasks, 255 
SystemClick, 276 
SystemEdit, 317 
SystemTask, 276, 315 

T 
TEActivate, 322 
TECalText, 311 
TEClick, 319 
TEDeActivate, 322 
TEDispose, 315 
TEidle, 316 
TEinit, 236, 267 
TEKey, 320 
TENew, 308 
TEScroll, 318 
TEUpdate, 321 
Text Edit, 35, 280 
Text editing, 6 
Text record, 298 
TextFace, 178 
TextFont, 178 
TextSize, 178 
thePort, 75 
tick Count, 13 3 
Toolbox global variables, 17 
Toolbox routines, 28 
Toollntf, 74, 139 
TrackControl, 188, 218 
TrackGoAway, 219 
Tracking, 184, 244 
Type coercion, 55, 110, 216 
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u 
Unimplemented instruction codes, 26 
UNIT, 47,72 
Update, 190 
Update event, 173 
USES, 47,72 
Utilities, 30 

v 
Variables, 11 
Versatile Interface Adapter (VIA), 25 
Vertical Retrace Manager, 3 7, 13 3 
VHSelect, 92 
Video, 23 

RAM,87 
Visibility, 119 
visRgn, 189 

w 
What, 140 
When, 141 
Where, 141 
WIND, 174 
Window, 1, 156, 193 

definition procedure, 165 
Manager, 33, 157 
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Window parts 
codes, 190 
contents, 158 
frame, 158 
goAway box, 158 
grow box, 158 
Smalltalk, 4 
title, 158 
title bar, 158 

Window Record, 164 
windowiD, 174 
WindowPeek, 166 
WindowPtr, 166, 235 
Windows, 1, 156, 193 
eli pping, 168 
dragging, 168 
drawing, 168 
sizing, 168 

Windows, Smalltalk, 4 
Word wrap, 296 

X 
Xerox, 2 

z 
Zones, 17 



Look for these other Plume/Waite titles on the Macintosh®: 

D Games and Utilities for the Macintosh® by Dan Shafer. Thirty exciting games and 
useful utility programs in Macintosh Pascal, ready for you to type in and run. Something 
for everyone, from ucrypto-quotes," "Parachute Man," and "Logic Probe," to sort 
routines and icon and menu constructors. Full-sized and expertly written, these pro­
grams are not only entertaining and useful, they are also a valuable education in the 
finer points of Madntosh programming. (256410-$18.95) 

D Pascal Primer for the Macintosh® by Dan Shafer. A friendly, easy-to-follow introduction 
to Apple's exdting new version of Pascal. For first-time programmers as well as those 
familiar with earlier, less sophisticated versions of this important language. Extensive 
hands-on examples, exerdses, and a relaxed, supportive style make learning Madntosh 
Pascal easy, even for the novice. Covers files, events, QuickDraw, windows, the mouse, 
and more. (256402-$19.95) 

D Basic Primer for the Macintosh® by Emil Flock and Miriam Flock. Apple's own 
Macintosh Basic is one of the best-structured, fastest, easiest-to-learn versions of Basic 
ever developed. Using entertaining, carefully graded programming examples, this book 
takes the complete novice from simple one-line programs to full mastery of the language. 
Later chapters cover such advanced topics as sound, files, and using the Mac's QuickDraw 
and Toolbox routines. 

D Assembly Language Primer for the Macintosh® by Keith Mathews. Many serious 
application programs must be written in assembly language, which alone has the speed 
and versatility to handle tough problems. Assuming no previous knowledge of assembly 
language, this books shows you, in easy, step-by-step style, how to master 68000 code, 
and at the same time, how to access all of the Mac's features from your programs: 
windows, the mouse, text editing, and more. 



Plume/Waite books on the TRS-80® Model 100: 

O Introducing the TRS-80® Model tOO, by Diane Burns and S. Venit. This book, intended 
for newcomers to the ModellOO, offers simple step-by-step explanations of how to set 
up your Model 100 and how to use its built-in programs: TEXT, ADDRSS, SCHEDL, 
TELCOM, and BASIC. Specific instructions are given for connecting the ModellOO to 
the cassette recorder, other computers, the telephone lines, the optional disk drive/video 
interface, and the optional bar code reader. (255740-$15.95) 

O Mastering BASIC on the TRS-80® Model tOO, by Bernd Enders. An exceptionally easy­
to-follow introduction to the built-in programming language on the Model 100. Also 
serves as a comprehensive reference guide for the advanced user. Covers all Model100 
BASIC features including graphics, sound, and file-handling. With this book and the 
Model100 you can learn BASIC anywhere! (255759-$19.95) 

0 Games and Utilities for the TRS-80® Model 100, by Ron Karr, Steven Olsen, and 
Robert Lafore. A collection of powerful programs to enhance your Model100. Enjoy 
fast-paced, exciting card games, arcade games, music, art, and learning games. Help 
yourself to practical utilities that let you count words in a text file, turn your Model100 
into a scientific calculator, show file sizes, and generally increase your Model 100's 
usefulness, and your own grasp of programming. (255775-$16. 95) 

0 Practical Finance on the TRS-80® Model tOO, by S. Venit and Diane Bums. The perfect 
book for anyone using the Model 100 in business: investors, real estate brokers, man­
agers. Contains short but powerful programs to perform production planning, and 
access financial and other information from CompuServe® and the Dow Jones News/ 
Retrieval® service. (255767-$15.95) 

0 Hidden Powers of the TRS-80® Model tOO, by Christopher L. Morgan. This amazing 
book takes you deep inside the Model100 to reveal for the first time how it really works. 
You'll learn about the amazing power buried in the ROM, and how to use this power 
in your own programs. You can print in reverse video, prevent any screen lines from 
scrolling, dial the telephone from BASIC, control external devices from the cassette port, 
and discover many other fascinating secrets hidden within your Model 100. 
(255783-$19. 95) 



Other Plume/Waite books available from New American Library: 

0 BASIC PRIMER for the IBM® PC and XT by Bernd Enders and Bob Petersen. An 
exceptionally easy-to-follow entry into BASIC programming that also serves as a 
comprehensive reference guide for the advanced user. Includes thorough coverage of 
all IBM BASIC features: color graphics, sound, disk access, and floating point. (254957-
$16.95) 

D DOS PRIMER for the IBM® PC and XT by Mitchell Waite, John Angermeyer and Mark 
Noble. An easy-to-understand guide to IBM's disk operating system, versions 1.1 and 
2.0, which explains-from the ground up-what a DOS does and how to use it. Also 
covered are advanced topics such as the fixed disk, tree-structured directories, and 
redirection. (254949-$14.95) 

D PASCAL PRIMER for the IBM® PC by Michael Pardee. An authoritative guide to this 
important structured language. Using sound and graphics examples, this book takes 
the reader from simple concepts to advanced topics such as files, linked lists, campi­
lands, pointers, and the heap. (254965-$17.95) 

0 ASSEMBLY LANGUAGE PRIMER for the IBM® PC and XT by Robert Lafore. This 
unusual book teaches assembly language to the beginner. The author's unique ap­
proach, using DEBUG and DOS functions, gets the reader programming fast without 
the usual confusion and overhead found in most books on this fundamental subject. 
Covers sound, graphics, and disk access. {254973-$24.95) 

0 BLUEBOOK OF ASSEMBLY ROUTINES for the IBM® PC and XT by Christopher 
Morgan. A collection of expertly written "cookbook" routines that can be plugged in 
and used in any BASIC, Pascal, or assembly language program. Included are graphics, 
sound, arithmetic conversions. Get the speed and power of assembly language in your 
program, even if you don't know the language! (254981-$19.95) 



Over 400 built-in ROM routines give the Mac intosh® 
a power no personal computer has had before. 
But to program the Mac you must know the 
concepts behind these routines and how to 
harness them. 

Using simple working program examples. this book 
follows a logical. step-by-step approach to explain 
how to access the Mac's built-in software. You'll 
learn how these routines are grouped into 
managers. like the event manager. menu 
manager. and window manager; about such 
graphics concepts as GrafPorts. bit-maps, regions. 
and clipping; and about events, files. and memory 
management. Special attention is paid to 
fundamental programming concepts like handles 
and pointers as they are used on the Mac. 

Apple's own Development Pascal is used as a 
model. but a ll discussions are general enough that 
the book is equally applicable to software 
development in any language. The program 
examples not only demonstrate the concepts 
Involved but can also be used to generate 
full-blown applications programs. 
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