

.,

Another book by the bestselling authors of ASSEMBLY
LANGUAGE PRIMER FOR THE IBM® PC & XT and BLUEBOOK
OF ASSEMBLY ROUTINES FOR THE IBM® PC & XT And rave
reviews for The Waite Group:

"Anyone who is new to assembly language programming on the IBM PC
and feels completely at sea will find a welcome port in Robert Lafore's
Assembly Language Primer for the IBM PC & XT."

- John Figueras, reviewing
Assembly Language Primer for the IBM PC & XT, in Byte

" [Chris Morgan] has succeeded in producing a volume that no assembly
language programmer can do without."

- Bluebook of Assembly Language Subroutines,
reviewed in The Reader's Guide to Microcomputer Books

"An outstanding example of how to write a technical book for the begin­
ner .. . refreshingly enjoyable . . . accurate, readable, understandable, and
indispensible. Don't stay home without it."

-Ken Barber, reviewing
CP/M Primer, in Microcomputing

"Mitch Waite ... has left a distinctive contribution to the literature of
computer graphics ... seeing it here is like understanding it for the first
time."

-Computer Graphics Primer, reviewed in
Computer Graphics World

"It's hard to imagine that a field only a decade old already has a classic,
but Waite's book is just that."

- Tony Dirksen, reviewing
Computer Graphics Primer in Interface Age

" .. . does an excellent job of demystifying the whole study of computer
programming in BASIC."

- Annie Fox, reviewing
BASIC Primer in Creative Computing

Christopher L. Morgan is a professor at California State University,
Hayward, where he teaches mathematics and computer science,
including computer graphics, assembly language programming,
computer architecture, and operating systems. Dr. Morgan has
given talks and authored papers in pure mathematics and on
representations of higher-dimensional objects on computers. He
is director of the computer graphics lab at Hayward and is a
member of a number of professional associations, including the
American Mathematical Society, the National Council of Teachers
of Mathematics, and the Association for Computing Machinery.
He is coauthor along with Mitchell Waite of 808618088 16-Bit
Microprocessor Primer, Graphics Primer for the IBM® PC and
XT and Hidden Powers of the TRS-80® Model 100.

Christopher L. Morgan

Hidden Powers
of the Macintosh®

A Plume/Waite Book
New American Library
New York and Scarborough, Ontario

NAL BOOKS ARE AVAILABLE AT QUANTITY DISCOUNTS WHEN USED TO PROMOTE PRODUCTS
OR SERVICES. FOR INFORMATION PLEASE WRITE TO PREMIUM MARKETING DIVISION, NEW
AMERICAN LIBRARY, 1633 BROADWAY, NEW YORK, NEW YORK 10019.

Copyright © 1985 by The Waite Group, Inc. All rights reserved. For information address New
American Library.

Several trademarks and/or service marks appear in this book. The companies listed below are the
owners of the trademarks and/or service marks following their names.

Apple Computer, Inc.: Apple, Lisa, Macintosh, Macintosh XL, MacPaint, MacWrite

The Trustees of Dartmouth College: BASIC

®
PLUME TRADEMARK REG. U.S. PAT. OFF. AND FOREIGN COUNTRIES
REGISTERED TRADEMARK- MARCA REGISTRADA
HECHO EN WESTFORD, MASS., U.S.A.

SIGNET, SIGNET CLASSIC, MENTOR, PLUME, MERIDIAN and NAL BOOKS are published in the
United States by New American Library, 1633 Broadway, New York, New York 10019, in Canada
by The New American Library of Canada Limited, 81 Mack Avenue, Scarborough, Ontario M1L1M8

Library of Congress Cataloging-in-Publication Data

Morgan, Christopher L.
Hidden powers of the Macintosh.

"A Plume/Waite book."
On t.p. the registered trademark symbol 'R' is

superscript following "Macintosh" in the title.
1. Macintosh (Computer)-Programming. I. Title.

QA76.8.M3M67 1985 005.2'65 85-15514
ISBN 0-452-25643-7

Interior design by Rick Chafian

Typography by Walker Graphics

First Printing, October 1985

123456789

PRINTED IN THE UNITED STATES OF AMERICA

To .my 'fa·mily

·. ·-

Contents

Acknowledgments xi
Preface xii

1 Origins of the Macintosh Design 1

The Idea of a Human Interface 2
The Origins of the Macintosh 2
Smalltalk 3
Apple 7
Summary 9

2 Macintosh System Organization 10

Memory Layout 11
Accessing the Macintosh Built-in Software 26
The Managers 29
Other Parts of the System 3 7
Summary 37

3 Programming the Macintosh 38

Programming Environment 39
The Development Process 42
Pascal Pointers 49
Using a Debugger 57
Summary 66

vii

4 QuickDraw 67

Initialization 69
Cursors and Patterns 79
Memory Mapped Video 86
Coordinate Systems 90
Points 92
Rectangles 97
Regions 103
Positioning and Sizing GrafPorts 113
Visibility and Clipping 119
The Ports QuickDraw Example 122
Summary 127

5 Introduction to Events 129

The Event Manager 131
Example Program 134
External Files 139
The Data Structures 139
The Procedures and Functions 144
The Main Program 151
Summary 155

6 Introduction to Windows 156

Parts of a Window 158
The Example Program 159
External Files 163
Constants 163
Global Variables 163
The Procedures and Functions 171
The Main Program 189
Summary 191

Viii CONT ENTS

7 Overlapping Windows 193

Pictures 193
Polygons 196
The Example Program 198
Data Structures 206
Procedures 207
The Main Program 220
Summary 221

8 Dialogs and Alerts 223

Dialogs and Alerts 224
The Example Program 226
Data Structures 233
Functions and Procedures 236
The Main Program 245
Summary 248

9 Menus 250

Menus 251
The Example Program 255
Data Structures 266
Procedures 267
The Main Program 275
Summary 277

10 Text and Files 279

The Example Program 280
The External Files 294
The Global Constants 294
The Global Variables 295
Functions and Procedures 301
The Main Program 322
Summary 324

CONTENTS ix

A ROM Routines Sorted by Name 326

B Using the Lisa Pascal Development System 340
Editing 340
The Exec File 341

C Disk and Volume Information 348
The Program 351
The Resource Definition File 361
Descriptions 367

D Macintosh Routines Used in Example Programs 372

Index 375

X CONTENTS

Acknowledgments

There are a number of people to whom I am indebted for their help in
making this book possible.

The Waite Group has provided invaluable support. Mitchell Waite
initiated and oversaw the entire project. Robert Lafore has served admi­
rably as technical and managing editor. Kim House provided technical
support. Lyn Cordell oversaw the production, and Joan Frank handled the
details of production.

Steve Jasic provided a copy of his disassembler to give me another
view of the Macintosh's ROM.

The people at Apple provided development support including prelim­
inary copies of software and technical reference manuals.

My wife Carol and my children Elizabeth and Thomas patiently
supported me while I worked on this book.

xi

Preface

The Macintosh is a revolutionary computer. It is the first reasonably-priced
computer that can be called "human-oriented"-that is , easy for humans
to use, rather than easy for engineers to build. However, this ease of use
has been achieved at a price: programming on the Macintosh - at least
the writing of serious applications programs - is more difficult to learn
than on previous microcomputers. This is because the Macintosh contains
a truly fantastic collection of software routines, mostly built into its ROM,
to control menus, windows, graphics, the mouse, and other parts of the
Mac's operations. To write serious programs on the Mac, you must learn
about these routines, and about the concepts they are based on. In short,
you must learn about the Mac's "Hidden Powers."

This book explains how the Macintosh 's built-in software works and
how to write applications programs that work with and take advantage of
these built-in routines. The aim is to teach the philosophy and organiza­
tion of the Macintosh and its various system parts in an orderly, step-by­
step approach, so that understanding and learning to program the Mac
becomes as simple as possible.

Who This Book Is For

xii

This book is intended for anyone who wants to learn how to write serious
applications programs for the Macintosh as well as those simply interested
in how the Mac works.

Although the book is introductory in nature, it is not intended for the
computer novice. The Pascal language is used to demonstrate the various
concepts, so you should have some exposure to Pascal or a modern,
structured computer language like it. However, you are not expected to be

a Pascal expert. In fact, we explain those features, such as pointers and
data typing, that make Pascal different from other languages, yet are
essential to understanding the Macintosh.

You should have some familiarity with computer operating systems
and computer operations in general, including such features as files,
records, fields, interrupts, RAM, and ROM. Understanding the hexadeci­
mal numbering system and hexadecimal memory addressing is also help­
ful. It's useful, too, to have some understanding of what assembly language
does, although you by no means need to be an assembly language pro­
grammer to follow this book.

Finally, you should be familiar with the Macintosh's revolutionary
features such as windows, menus, dialog boxes, and the mouse, and how
they work together to create this amazingly easy-to-use machine.

Although the example programs in this book were developed using
the Lisa Pascal Workshop (the original development system for the Mac),
they are written and explained so that they are useful no matter what
program development system you are using. Thus, whether you program
inC, Pascal, assembler, Forth, or some other language, you will still find
that this book reveals the fundamental concepts of the Mac's operation in
a way applicable to your particular programming environment.

How This Book Is Organized
This book is organized around example programs. This has the advantage
of providing a concrete basis from which to launch the more abstract
concept descriptions. Each program is designed to show how several built­
in Macintosh routines integrate into a working unit. By seeing how these
routines work together, you will come to understand the ideas behind them
and the overall philosophy behind the Macintosh design. In the case of
the Macintosh, it is really true that the whole is greater than the sum of
the parts.

The first three chapters lay the groundwork, discussing the organi­
zation of the Mac in general terms. Subsequent chapters provide a series
of programs that demonstrate the ideas behind the Mac's operation.

Chapter 1 explains the basic philosophy and history behind the Mac­
intosh. It explains how Macintosh's windows and menus originated in
research at Xerox's Palo Alto Research Center.

Chapter 2 surveys the Macintosh's internal organization, explaining
how the hardware "maps" to the memory addressing space and how the
RAM and ROM are allotted to the various parts of the Operating System.
This chapter also surveys the logical division of the Operating System
into managers.

PREFACE Xiii

Chapter 3 discusses several fundamental aspects of the applications
programming environment for the Macintosh, including how applications
are constructed as collections of resources, some "pointers" on Pascal,
and a debugging session.

Chapter 4 introduces the details of QuickDraw. A series of short
example programs introduces the basic features of QuickDraw- from a
simple program that does no more than initialize the drawing environment
to a program that shows how to control a number of pictures on the screen
at once, a precursor to multiple windows.

Chapter 5 introduces the Event Manager. An example program illus­
trates how the mouse and the keyboard can generate events. You see how
the Event Manager handles these events, presenting them to the applica­
tions program as it is ready to handle them. You see how the facilities of
QuickDraw track the mouse as it enters certain regions on the screen. This
is a precursor to controls.

Chapter 6 introduces the Window Manager and the Control Manager.
An example program illustrates how to track the mouse through parts of
a window, such as its drag region, goAway box, and grow box. It also
illustrates how controls such as scroll bars work.

Chapter 7 extends the concepts introduced in chapter 6 to multiple
overlapping windows. It introduces Quick.Draw features such as polygons
and pictures.

Chapter 8 extends window management one more step by introducing
the Dialog Manager. The example program illustrates how to use the high­
level management routines in this manager. We show you how to call a
single routine to handle entire interactions between the Macintosh and
the user. We also show how to share control of such interactions between
the program and the system.

Chapter 9 introduces the Menu Manager. An example program illus­
trates how to create menus and how to track the menu selection process.
This example also illustrates some basic shapes and drawing attributes
available in QuickDraw.

Chapter 10 introduces the File Manager and Text Edit, the manager
of text. An example program assembles these techniques, illustrating how
a text editor applications program can be built that loads and saves text
files from and to the disk. The program also uses the managers introduced
in previous chapters, including QuickDraw, the Event Manager, the Win­
dow Manager, the Control Manager, and the Dialog Manager. This final
example illustrates how these different system parts work cooperatively.

With one exception, the example programs use features from current
or previous chapters. The example programs illustrate the core features of
Macintosh's built-in software, leading up to the final example in Chapter

XiV PREFACE

10, which in many ways is a typical applications program. The purpose
of these examples is to provide the simplest and clearest demonstration of
the Mac's features, providing models for developing your own software.
We are not attempting to create a cookbook of stand-alone utilities.

All examples have been carefully coded to work closely with the
Macintosh's built-in software. Each line has been checked for its role in
making the example work right.

Each example is fully explained in the text. These explanations in­
troduce the basic concepts of each chapter. Because the explanations are
closely linked to the examples, you see in concrete terms what these
concepts mean to an applications programmer.

The Macintosh contains a wealth of software involving an immense
number of concepts. It is thus impossible to cover every detail of the Mac's
operation in a single book. In view of this, we have taken the approach of
carefully selecting key concepts, guiding you to an overall, solid under­
standing of how the Macintosh works. From this foundation, you should
be able to deal easily with its other, less critical features.

We hope you find this book a unique and useful approach to the
Macintosh, one that leads you to understanding how the Macintosh works
and how to write programs that run on the Mac, and taking full advantage
of its features.

PREFACE XV

1
The Origins of the
Macintosh Design

This chapter covers the following new concepts:

• The Human Interface

• Smalltalk: Menus, Windows, and the Mouse

• Object-based Systems

• Modes

• Editing

• The Lisa

• QuickDraw and the Macintosh Managers

On January 24, 1984, Apple announced the Macintosh computer to its
shareholders and the world, ushering in the most revolutionary and, for
the programmer, one of the most complex machines of its time. In this
chapter, we discuss the philosophy that underlies the Macintosh's design.
We trace its origins to the early 1970s, when researchers first envisioned
the windows and menus that distinguish the Macintosh's user-friendly,
graphics-oriented operating system. We explain why the Macintosh uses
windows and menus, why its Operating System is divided into managers ,
why so much software is built into the Macintosh, and what this means
to the user and programmer.

1

The Idea of a Human Interface
The intent of the Macintosh is to provide a natural and powerful setting
for users to work in. It is, as Apple puts it, "the computer you already
know how to use". Probably, it will be used mostly to produce documents
such as reports, notes, manuscripts, memos, and letters. The Macintosh
can also compute for such things as taxes, household expenses, and
mathematical or scientific problems.

The Macintosh can generate graphics either through a "paint" pro­
gram or by a program written in a high-level language such as BASIC or
Pascal. These graphics can then be fully integrated into documents so
that text and diagram appear on the screen exactly as they will be printed.
Text can be displayed and printed in many sizes and styles, including a
variety of fonts and effects, such as bold or italic.

Much of the Macintosh's capabilities revolve around its approach to
what is called the "human interface". It uses a crisp, high-resolution
screen and a mouse to present the user with a highly interactive work
environment.

The computer can display images that put the user in familiar set­
tings. For example, the initial screen appears as a desktop with little
images of objects, such as file folders and sheets of paper (see Figure 1-
1). These icons (small pictures that represent real objects) show the pos­
sible actions, and the mouse allows the user to quickly select a particular
option. Complicated syntax for commands need not be looked up or
memorized. This greatly increases productivity.

The Origins of the Macintosh
The Macintosh represents the first low-cost implementation of ideas de­
veloped during the 1970s at Xerox's Palo Alto Research Center (PARC). It
was there that Alan Kay and others started to experiment with personal
computers before such machines could realistically be built.

Although it was not possible in the early seventies to build a computer
that was both affordable and sufficiently powerful, the researchers at Xerox
PARC decided to build prototype machines in any way possible. They had
faith that hardware costs would continue to decline. They knew that
improving chip technology would make the ideas, which could then be
implemented only at ridiculously high cost, eventually quite practical for
a desktop or home computer.

The researchers at Xerox brought bright students from nearby schools
into their labs to test new ideas as fast as the appropriate hardware and
software could be built. The researchers also used these machines to

2 HIDDEN POWERS OF THE MACINTOSH

accomplish their own work , such as designing and developing the software
and writing articles. The goal was to build machines that worked well for
everyone, not just the technically oriented.

We briefly explore here some of the ideas developed at Xerox PARC,
since they provide a background to many of the concepts in the Macintosh
and may aid in understanding some reasons behind the Macintosh design.

Smalltalk
The language Smalltalk was developed by these researchers. Smalltalk
has a number of interesting features, including a high-resolution screen,
a mouse as an input device, multiple overlapping windows, pop-out menus,
and an object-based programming structure. It also incorporates some
basic approaches to text editing. Let's look at these features in more detail.

The Screen and the Mouse

The display screen for Smalltalk is "bit mapped" : that is, each dot on the
screen is individually controlled by a bit in memory. Thus, the programmer
has control over every dot on the screen. This type of display is desirable

Figure 1-1. A Macintosh Desktop

CJCJ
Empty Folder System Folder MacP aint

r1l s
Printer MacNub A MacNub B

THE ORIGINS OF THE MACINTOSH DESIGN 3

because it allows both text and graphics to be drawn and "integrated".
The Macintosh also uses a bit-mapped screen. Later, we explore how this
screen works.

A Smalltalk mouse generally has three buttons. One button acts as a
selector for windows and their contents. The other two buttons are for
menu activation and selection. In Smalltalk, menus are often " hidden"
when they are inactive; they need to be made active for you to see them.

In contrast, the Macintosh's mouse has only one button for all three
purposes. This is possible because Macintosh menus are always acces­
sible through the menu bar along the top of the screen.

The mouse was invented by Douglas Engelhart in 1964 to help people
better input "xy-position" information. Subsequent research proved it to
be superior to other systems, such as cursor keys, digitizing tablets, and
touch screens.

Smalltalk Windows

A Smalltalk window is a rectangular area with a title tab sticking up from
the top edge (see Figure 1-2). Each window can be divided into a number
of panes, each with its own scroll bar. Each window has a window menu
that pops up, usually in response to pressing one of the mouse buttons.
Each pane has its own pop-out menu. When a menu is not " popped up",
it is normally invisible.

Each Smalltalk window displays information for a particular task or
program. The user can have many windows on the screen at once and

Figure 1-2. A Smalltalk Window

• Scroll
bors

4 HIDDEN POWERS OF THE M ACINTOSH

thus is able to see the condition of many tasks at any moment. Having
many windows open at once allows the user to work in a natural way,
examining and working with many things at once. The fact that the
windows overlap is crucial to efficient operation, since older windows
need not be moved or resized as new windows appear.

The Macintosh's windows are not related to separate tasks, but in­
stead display different information about the same task. That is, where
Small talk uses several panes within a window, the Macintosh uses several
windows on the screen. However, the Macintosh does have desk accesso­
ries, which are separate system tasks that can be run at the same time
that an applications program is running.

In Smalltalk, only one window (and thus task) is active at a time. The
user can activate a window by moving the cursor to that window and
clicking the selector button. When a window is selected, it comes to the
front of the screen and is seen in its entirety. Only one pane of a window
is active at any one time. The user operates the mouse selector button to
activate panes.

Window panes can work cooperatively, allowing the user to make a
series of choices along a decision tree. The choice in the first pane may
affect the choices in the second pane, and so on.

Smalltalk may be programmed by making menu selections and by
typing text into window panes. The programming process is like filling
out forms. The machine helps the programmer by either providing the
proper menu or displaying explanations of what is required.

Objects
Small talk is object-based. That is, instead of separate data structures and
procedures, it has objects, which package sets of data structures contain­
ing procedures that work on that data. This offers a special layer of
protection, since data cannot be corrupted arbitrarily by a part of the
system not "trained" to deal with that data. This also makes it easy to
run at once a number of "jobs" that share information.

A Smalltalk program consists of messages that are sent to objects.
Each object has a specific set of messages that it understands. Themes­
sages specify what is to be done but don't specify exactly how. If a message
is received that is not appropriate, an error message is issued saying that
the original message was not understood.

The Macintosh is definitely not object-based. Instead, it is designed
to perform one thing at a time with much less protection of data. The
exception is its desk accessories, which run independently but must be

THE ORIGINS OF THE MACINTOSH DESIGN 5

explicitly given little slices of time by the applications program. However,
as we shall see, the way the Macintosh is divided into managers traces
its origins to Smalltalk's object-based approach.

Modes

A basic motivation for developing Smalltalk's multiple overlapping win­
dows was to eliminate "modes". A mode is a set of options available to
the computer user. For example, while in the editing mode, the user can
perform a variety of editing commands.

Traditionally, a computer presents the user with a series of modes in
which to work. Only one mode is active at a time. For example, the user
may start in the Operating System command mode, move to the text editing
mode, then enter the file transfer mode. Within these modes are other
modes. For example, within the text editing mode are command modes,
insert modes, and search modes.

Larry Tesler, a researcher at Xerox PARC and later one of the developers
of the Macintosh, has observed that one of the most frustrating and coun­
terproductive features of computing is modes. In "The Smalltalk Envi­
ronment"(Byte Magazine, August 1981), he explains that programmers
and secretaries alike complain about modes. Two chief problems occur:
1) while in one mode, the user cannot do something that is available in
another mode, and 2) a particular action has different effects depending
on which mode the system is in.

Smalltalk's overlapping windows solve this problem to some extent.
Each window is, in some sense, in a mode. However, the user is given
visual clues to which window is active and which windows are imme­
diately available. The ability to rapidly move from one window to another
and then back to the original window reduces the "unavailability" prob­
lem. And a window's menus and text make its set of options easy to
inspect and select, reducing the "multiple effects" problem.

"Modeless" Text Editing

Text editing presents some very interesting problems relating to modes.
In particular, the process of searching and replacing strings of text can
put the user in modes where command keys act differently than usual.

The developers of Smalltalk invented a ''modeless'' method of text
editing, using the ideas of "cut", "copy", and "paste", along with the idea
of selection range. The selection range is always clearly indicated on the
screen because it is highlighted. The cut command removes the text in
the selection range, putting it into a special edit buffer. The paste com­
mand moves text from this buffer, replacing what was in the selection

6 HIDDEN POWERS OF THE MACINTOSH

range on the screen with the text in the edit buffer. The copy command
copies the current selection range into the edit buffer without removing it
from the screen.

Apple
In the late seventies and early eighties, Apple began research that led to
the Macintosh family of computers. Originally, two separate teams at
Apple worked on two different computers in this family: the Lisa and the
Macintosh. Many involved were knowledgeable about Smalltalk and the
work at Xerox PARC. At one point, Smalltalk was even implemented on
the Lisa, but it was too slow to be practical.

The Lisa

The people at Apple began work on the Lisa during the early eighties. Bill
Atkinson was the main designer. The Lisa has a high-resolution display
screen, a single-button mouse, an MC68000 processor, and a hard disk. It
included an extensive set of drawing routines called "QuickDraw", de­
veloped by Atkinson.

The Lisa was designed mainly as an office tool for document prepa­
ration, but it also has facilities for program development. The Lisa Office
System environment presents the user with a "desktop" with icons rep­
resenting the hardware and software that is available. Some of these icons
are a wastebasket, a clock, a hard disk, a floppy disk, a pad of "stationery",
a drawing program, and a text editing program. The mouse is used to
select what is wanted. For example, to view and set the clock, click the
mouse on the clock icon and the clock ''opens'' on the screen.

The Lisa Pascal Workshop provides program development facilities.
Here, the programmer is presented with a less graphic "user interface".
Series of text menus appear across the top of the screen. The user/pro­
grammer selects menu items by hitting keys on the keyboard. However,
the edit option "opens" a program that displays multiple overlapping
windows in which text can be cut, copied, and pasted.

The Lisa Pascal Workshop can be used to develop applications pro­
grams for both the Lisa and the Macintosh. The exact method of trans­
porting programs from one machine to another has evolved from using a
serial communications line to having compatible 31fz inch Sony disk
drives.

In early 1985, the Lisa was merged with the Macintosh and called
the Macintosh XL.

THE ORIGINS OF THE MACINTOSH DESIGN 7

The Macintosh

About 1979 Apple began work on an "appliance" computer that was to
become the original Macintosh. At first, it was an eight-bit machine with
not enough power. In 1981, Steve Jobs, one of the founders and chairman
of the board of Apple, arranged for the Lisa efforts to be brought over to
the Macintosh project. Burrell Smith was able to put together the hardware
with the MC68000 processor configuration the way it is today.

QuickDraw. Bill Atkinson moved from the Lisa project to work on the
MacPaint applications program for the Macintosh. He moved QuickDraw
from the Lisa to the Macintosh, greatly reducing its size while maintaining
compatibility between Lisa QuickDraw and Macintosh QuickDraw.

QuickDraw was originally written by Atkinson in Pascal, consuming
about 160K bytes of memory. A reduction to about 24K bytes was accom­
plished by transforming it into assembly language. QuickDraw is a col­
lection of over 100 drawing commands. It includes routines to draw lines,
rectangles, ovals, polygons, and irregular shapes, outlining or filling them
with a variety of pen sizes and patterns.

The Managers. The Macintosh software was developed as a collection of
software modules called managers. Each manager is in charge of a specific
area of responsibility within the machine. For example, file input and
output are handled by the "File Manager", and you can think of QuickDraw
as the Screen Manager.

An applications program calls upon these different managers to get
things done. In some sense, the managers are like the objects of Small talk,
each with its own data and procedures. However, the formal construct of
Smalltalk messages is missing, and data belonging to one manager can
be accessed by other managers and applications programs (thus is not
fully protected). But much of the data is protected to a considerable extent.
For example, if you wish to move a window or change its size, you call
the Window Manager to do this for you.

The managers range from the fairly standard File Manager to a Dialog
Manager, which acts as a mini-applications program, handling all inter­
actions between the user and the machine for an extended period.

A crucial decision was to freeze the Operating System software in
ROM, including QuickDraw and all managers. This ensures that all ap­
plications act basically alike, reducing the problem of "modes". That is,
by placing the basic menu selection, window drawing, and text editing
routines in ROM, all applications programs respond to the user in the
same manner. Thus, the user needs only one set of basic commands for

8 HIDDEN POWERS OF THE MACINTOSH

all applications, reducing the "multiple effects" problem (same user action
causing a different effect depending on the mode).

The fact that so many low- and medium-level routines have already
been written and built into the Macintosh relieves the applications pro­
gram of responsibility for developing lots of code. At the same time, it
forces the programmer to understand more than he or she ever wanted to
know about a rather complex set of rules and ideas. This book should
make these ideas a lot clearer.

Desk Accessories. Another feature of the Macintosh is its desk accesso­
ries. These are special built-in applications programs that can be run
from each application, providing a wide set of facilities to users no matter
where they are in the system. This was designed to reduce the unavaila­
bility problem associated with modes.

The Macintosh was not set up to run several applications programs
at once with separate windows, as in Smalltalk. However, the desk acces­
sories provides a small taste of what that is like.

Outside Development. Apple also encouraged outside developers. It put
together a development kit that included a set of programs and files to run
on the Lisa with volumes of documentation.

One emphasis in this documentation is the need for each application
to present the user with a uniform way of doing things so that the entire
Macintosh system remains well integrated and thereby easy to use. The
example programs in this book adhere to these standards except as noted
in our explanations about them.

Summary
In this chapter, we have introduced the Macintosh, explaining the basic
ideas behind its design, including the mouse, high-resolution video screen,
icons, windows, and menus, all of which are designed to help the user
work efficiently.

We have explained how the Macintosh's designers have tried to elim­
inate the problem of modes by providing a uniform human interface and
by providing desk accessories. We have also discussed the way the soft­
ware is built in and how it is organized into managers for ease of design
and programming.

THE ORIGINS OF THE MACINTOSH DESIGN 9

2
Macintosh System
Organization

10

This chapter covers the following new concepts:

• Physical and Logical Structure

• RAMandROM

• System Static Variables

• Exception Vectors

• System Communications Area

• System Dispatch Table

• Manager Globals

• The Heap

• System and Application Zones

• Stack Area

• Video and Sound Areas

• Hardware Connections

• Unimplemented Instruction Codes

This chapter presents an overview of the Macintosh 's built-in software
and its internal organization. The chapter describes the reasons behind
Macintosh 's organization, what the various components are and how they

fit together. We start by describing the physical components and structure
of the Macintosh and work toward a description of its logical structure.
(By "physical" we mean such things as the layout of memory address
space.) This approach is designed to keep you firmly anchored in spite of
some rather abstract ideas behind the Macintosh's organization and
operation.

In our description of the Macintosh's physical structure, we start with
the locations of the RAM, ROM, and connection to hardware devices. We
see how the RAM is divided into different areas, including an area for
static system variables, an area for dynamic variables, a stack, and areas
devoted to the video screen and the sound system.

We will see how the Macintosh's built-in software is accessed using
the MC 68000 microprocessor's unimplemented instruction codes to, in
effect, extend the processor's original instruction set to include about 494
new Macintosh instructions.

Finally, we survey the logical structure of the Macintosh's built-in
software. We see how the Macintosh's built-in software is divided into
managers and drivers that perform essential logical functions.

Memory Layout
This book has been written for 128K and 512K Macintoshes using version
1.1 of the Finder. (To find out which version of the Finder you have, select
the "About the Finder" option of the Apple menu from the desktop.)

We discuss actual addresses for the 128K and 512K Macintoshes.
However, we also discuss the "relative" placement of these addresses, as
well as where the system stores "official" copies of the addresses. This
way you and your program can easily find things, even on Macintoshes of
other memory sizes and Finder vintages.

As we proceed, you will gradually understand the meaning of what
is stored at these particular memory addresses. However, we often intro­
duce them without a complete explanation because they are "landmarks"
or point to "landmarks". Don't despair, their exact function is explained
later.

Physical Memory Layout
Physically, the Macintosh's 24-bit addressing capability gives it 16 mega­
bytes of addressing space (see Figure 2-1). Memory stretches from $0 to
$FFFFFF. (Note: The dollar sign indicates hexadecimal system notation
in this book.) However, only a relatively small part of the Macintosh's total
addressing space has RAM installed. This of course depends upon the

MACINTOSH SYSTEM ORGANIZATION 11

size of the Macintosh. On a 128K Macintosh, the RAM stretches from $0
to $1FFFF, and on the 512K Macintosh, to $7FFFF.

For both sizes of Macintosh, the ROM begins at $400000 and stretches
64K bytes to $40FFFF. This provides four megabytes beneath, leaving
plenty of room for orderly expansion of RAM. On many machines, ROM
occupies the lowest addresses. However, on the Macintosh, having RAM

Figure 2-1. The Addressing Space: RAM and ROM

$1 000000-----.

$FOOOOO -+----1

$EOOOOO -+-----1

$000000 -+----1

$COOOOO -+----1

$800000 -+----1

$AOOOOO -+--___.

$900000 -+----1

$800000 -+----1

$700000 -+---1

$600000 +---I

$500000 -+----1

(ROMbase) ~ $4ooooo ~-""' ROM(64K)

$300000 -+---1

$200000 -+----1

$1 00000 -+----1

(memTop)~ ~ RAM(128K)
0

1 28K Macintosh

12 HIDDEN POWERS OF THE MACINTOSH

$1000000

$FOOOOO

$EOOOOO

$000000

$COOOOO

$800000

$AOOOOO

$900000

$800000

$700000

$600000

$500000

(ROMbase)~ $4ooooo

$300000

$200000 -+-----+

$1 00000 --+-----+

(memTop)------?
0

ROM(64K)

RAM(512K)

51 2K Macintosh

there allows certain hardware-dependent locations to be manipulated,
namely the exception vectors. This is useful when debuggers are used or
when new "drivers" are installed.

Connections to the hardware, such as the disk controller and serial
communications interface, use scattered locations in the upper half of the
16-megabyte addressing space from $800000 to $FFFFFF.

Now let's examine these various areas of the addressing space in
detail.

The RAM
Let's start with the RAM (see Figure 2-2). At the lowest addresses is an
area containing static system constants, variables, and tables. These quan­
tities are called static because they do not move during the operation of
the machine. Above this area is another area called the heap, which is
managed dynamically. Data structures that grow and shrink in size can
be placed here. For example, when windows overlap, cutting each other
off in complicated ways, the data structure describing their visible part
grows in size.

Above the heap is the stack, which grows downward toward the heap.
Unlike the heap, the stack can only grow and shrink its data at one end.
The Macintosh runs out of memory when the stack meets the heap. Above
the stack is an area reserved for debuggers, and above that are areas for
sound and video.

These three types of storage (static, heap, and stack) allow the Mac­
intosh to take advantage of the best features of each, allowing it to place
its data and code in just the right type of place.

System Static Variables Area

The lowest area of RAM contains the System Static Variables Area, which
contains constants, variables, and tables needed by the Operating System
and the Toolbox. As mentioned previously, these data structures are called
static because they don't move around during machine operation. Many
of these locations are referenced directly by the ROM; thus, they must be
quite permanently fixed in position.

This area is further subdivided into sections, which we describe next
(see Figure 2-3).

Exception Vectors. At the very lowest locations of the System Static Var­
iables Area are the exception vectors. These extend from $0 to $FF and
are an essential part of the operation of the 68000 processor. There,

MACINTOSH SYSTEM ORGANIZATION 13

locations are completely determined by the 68000 itself and are described
in Motorola's documents on the MC68000 processor.

Each exception vector contains an address of a routine to handle a
particular kind of exception to normal program execution. Some excep­
tions are generated by hardware interrupts, such as from the mouse or
serial communications lines; some are generated by error conditions, such

Figure 2-2. Layout of the RAM

$1 0000 -+---t

(RAMBase) ~
0

~Heop
~Stot1c

vor1obles

1 28K Macintosh

14 HIDDEN POWERS OF THE MACINTOSH

$70000~--+

$60000-+---+

$50000 -t---t

$40000 -+----1

$30000 -t---t

$20000 -+----1

(RAMBase)--+
0

+- Heop

+-Stot1c
vor1obles

51 2K Macintosh

as division by zero; and some are generated by unimplemented instruc­
tions used to access the Macintosh's built-in software. (We say more about
this later.)

For now, understand that the position of the mouse is constantly and
automatically updated through hardware interrupts. That is , whenever
the mouse is moved, it generates interrupts that cause the Macintosh to
compute its new position. Other interrupts, which occur every sixtieth of
a second, update the cursor on the screen.

Figure 2-3 . Layout of the System Static Variables Area

$1 000 -r----,

$FOO+-- --l

$EOO~---i

$000+----l

$C00+----l

Toolbox global variables

Operati ng system globals

Mouse and cursor globals

System dispatch table

File system globals

System communi cations area

Excepti on vector s

MACINTOSH SYSTEM ORGANIZATION 15

System Communications Area. The System Communications Area
stretches from about $100 to $33F. It contains certain fundamental con­
stants and variables that are shared among a number of system parts, as
well as applications programs that run on the system. Because these
quanti ties are shared by the rest of the system, they are often called global.

Certain locations in the System Communications Area specify the
Macintosh's video screen. For example, locations $102 and $104 contain
the vertical and horizontal resolution of the screen in dots per inch, and
location $106 specifies the total number of dots in each row.

Other locations in the System Communications Area specify the mem­
ory layout. For example, location $108 (memtop) specifies the total amount
of RAM in the machine, location $2B2 (RAMBase) contains the address
of the beginning of the heap, location $2A6 (sysZone) contains the begin­
ning address of the part of the heap used by the system, location $2AA
(applZone) contains the beginning address of the part of the heap used
by an applications program, location $114 (heapEnd) specifies the highest
point in the heap, location $10C (buiPtr) specifies the highest part of
regular RAM (excluding areas currently used for video, sound, and de­
bugging), and location $2AE (ROMBase) contains the beginning address
of the ROM.

Still other locations hold the time, date, and current state of the
keyboard and mouse. To learn more about these, you can look through the
source code for the assembly language library files, that come with Apple's
development system for the Macintosh.

File System Globals. The file system globals are currently between $340
and $3FF. This area contains static variables used by the File Manager.

System Dispatch Table. The System Dispatch Table lies between $400
and $7FF. As we describe later, it is loaded with addresses of the ROM
routines in a special compact form, and the Macintosh's Operating System
uses it to find these routines.

The Mouse and Cursor System Globals. The mouse and cursor system
globals currently go from $800 to $8FF. They can be thought of as
QuickDraw's static variables. For example, location $824 contains the
current beginning of screen RAM. This is one of the few locations refer­
enced directly from ROM. But even then, its address is stored in a special
section of ROM along with several other RAM addresses so that its location
could be easily changed as the ROM was being developed.

16 HIDDEN POWERS OF THE MACINTOSH

Operating System Manager System Globals. Other system globals go
from $900 to $97F. This section contains static variables for various
managers in the Operating System, including the Segment Loader, the
Scrap Manager, and the Print Manager.

ToolBox Global Variables. Toolbox global variables extend from $980 to
$AFF. This section contains static variables used by the various managers
in the Toolbox, such as the Resource Manager, the Font Manager, the
Window Manager, the Menu Manager, the Control Manager, Text Edit, the
Dialog Manager, and the Package Manager. We survey these managers at
the end of this chapter.

The Heap

The heap currently begins at $BOO and extends upward toward the stack.
As mentioned, the beginning address of the heap is contained in System
Communications Area location $2B2 (RAMBase). The heap provides a
place where dynamic data structures can be stored and moved as they
change size. The heap stores Operating System routines, the Operating
System's main program (called the ''Finder''), the user's applications pro­
gram, and many system and applications variables, including resources.

The heap is managed by the part of the Operating System called the
Memory Manager, which has routines that can be called by other managers
and by applications programs. It also performs some of its tasks in the
background, responding to the vertical retrace interrupt, which occurs
every sixtieth of a second.

Zones. The heap is divided into zones (see Figure 2-4). Each zone is
separately managed by the Memory Manager. This allows memory to be
"partitioned" for different uses (for example, system versus application).
If the Macintosh were used as a multiuser system, then each user would
have a separate zone.

The first zone, devoted to the Operating System, is called the system
zone. On a 128K Macintosh, it is normally 16.5K bytes long. On a 512K
Macintosh, it is normally 48K bytes long. It contains code and data to run
the "Finder" as well as such things as RAM routines that substitute for
or supplement the ROM routines. Debuggers such as "MacNub", which
are opened once a disk is booted, can also reside in this zone.

The second zone of the heap, called the application zone, contains
the applications program and all dynamic data under its control. The
minimum size is 6K, but the Memory Manager adds more room to the
application zone in 1K increments as needed. However, the Memory Man-

MACINTOSH SYSTEM ORGANIZATION 17

ager cannot raise the top of this zone higher than within 1 K of the lowest
address of the stack (current top of stack). On a 128K Macintosh, this can
prove a severe limitation for large programs with lots of data. When the
Memory Manager runs out of room in this way, it tries to swap out parts
of the applications program already in memory. This in turn can cause a
good deal of disk activity, slowing down your program.

An application can call upon the Memory Manager to add more zones.
Each zone begins with a special area of memory (about 52 bytes) called

Figure 2-4. The Heap Zones

$1 0000 -r---.

$FOOO -+----1

0 -L--.....J

App J 1 cat 1 on heap zone

~ (app 1 Zone)

System heap zone

~ (sysZone)

18 HIDDEN POWERS OF THE MACINTOSH

the zone header, which contains parameters that the Memory Manager
needs to manage that zone. These include the addresses of key places
within the zone.

After the header, a zone is divided into blocks that are dynamically
allocated and deallocated within the zone as memory is needed for the
individual data structures stored in that zone. The system heap may be
divided into about thirty or more such blocks, one for each logical program
or data structure. Each block contains a header that is used by the Memory
Manager to size it and determine how it is being used.

In Chapter 3, we discuss how "pointers" and " handles" allow the
Memory Manager to dynamically move data structures as they change
size, yet still allow an application or other part of the system to properly
access that data.

Fragmentation. As blocks are allocated and deallocated in a heap zone,
"holes" develop (see Figure 2-5). These are blocks of unused (free) memory
sandwiched between blocks that are in use. When more memory is needed
in the zone, the Memory Manager tries to use these free blocks. Often,
however, these blocks are too small to be used, and they remain as holes.
As more holes develop, the memory begins to "fragment", with more and
more storage wasted in the holes. The Memory Manager eventually tries
to rearrange the blocks to remove the holes. This is called "memory
compactification". The Memory Manager also tries to remove (purge)
blocks that are not in use. To assist in this process, you should divide
larger programs into segments and tell the Memory Manager when you no

Figure 2-5. Fragmentation

D Free

II Used

MACINTOSH SYSTEM ORGANIZATION 19

longer need a segment. Our example programs are small and thus do not
need to be subdivided in this way. If your programs are large and require
segmentation, you should consult Apple's Inside the Apple Macintosh TM

(Cupertino: Apple Computer, Inc., 1985).

Stack Area

The Stack Area includes both the normal processor stack and some other
areas of memory that act "stacklike". It starts at the address contained in
location $10C (BufFtr) and grows downward toward the heap (see Figure
2-6). You can see in this figure the processor stack used by the 68000 CPU
and the other parts of the Stack Area above it.

The stack represents an alternate approach to handling memory, dif­
ferent from how the system static variables or the dynamic heap work. It
allows memory to be allocated and deallocated in a sequential manner.
This is appropriate for a number of different quantities, such as return
addresses and data for subroutines (the processor stack) and lists of
variables used as global variables for an applications program.

To operate the stack, a special register called the stack pointer (register
A7) always points to (contains the address of) the location where the last
quantity was placed on the stack. The stack consists of all locations from
the stack pointer upward to where the stack begins.

When new entries are added to the stack (see Figure 2-7) , the stack
pointer is decremented by the appropriate amount according to the entry's
size, and the new information is placed at this new location on the stack.
This is called pushing entries onto the stack. Similarly, entries can be

Figure 2-6. The Stack Area

(bufPtr)~

(register AS) ~

(curStackBase)

(register A 7)~

20 HIDDEN POWERS OF THE MACINTOSH

Application jump table
Application parameter area
Application globals area

Processor stack

~stack pointer

popped off the stack by a reverse process. In this case the stack shrinks
upward.

Once entries are put on the stack using the stack pointer (or some
other method), other registers such as A5 and A6 can be used to read and
even change their values. This last feature is not really included in the

Figure 2-7. Pushing and Popping the Stack

PUSH: Before After

Top of
stack

To~ of
sack

POP: Before After

To~ of
sack

Top of
stack

(Copied)

MACINTOSH SYSTEM ORGANIZATION 21

standard definition of a stack (which implies that you can access only the
last stack entry). However, this is how the Macintosh and many other
machines work, making the stack a much more valuable place to store
things.

The Application Jump Table, the Application Parameter Area, and
the Application Globals Area occupy the upper part of the Stack Area,
above the regular processor stack. The Application Jump Table contains
a minimum of eight bytes and sits just below the address contained in
"bu{Ptr" (stored at location $10C). The Application Parameter Area con­
tains 32 bytes and runs from the address contained in register AS up to
the Application Jump Table. The Application Globals Area runs from just
above the address contained in "curStackBase" to just below the address
contained in register AS.

The Application Jump Table contains information for referencing
routines stored externally. This is needed when you divide your program
into segments.

The Application Parameter Area contains parameters shared by the
Operating System and the application, thus providing an interface be­
tween the system and the applications program. For example, when
QuickDraw (the Screen Manager) is initialized, it sets up a path (series
of pointers) through this area and then into your applications program.
During normal operation, this path allows QuickDraw to use the appli­
cation's drawing "environment" to determine how it will draw lines, text,
and other shapes.

When a Pascal program is compiled, its VAR section (containing all
its global variables) is packed into memory in the stack area. These vari­
ables are stored in a downward order because they are "pushed" into
memory as they are compiled from your program. This is natural because
some of the best compiler algorithms are stack-oriented.

When the system "launches" an applications program, it moves these
stacks of variables toward the top of available memory (as specified by
bu{Ptr). Once a program has been launched, the variables in these areas
become static for the life of the program. On the other hand, a program's
local variables are placed on the processor stack as the program executes.
This provides a natural way to manage multiple copies of local variables
that are needed for recursion, a valuable feature of Pascal that allows a
procedure to call itself. Recursion methods are effective for such things
as sorting.

22 HIDDEN POWERS OF THE MACINTOSH

Debugger Area

The area just under the video RAM can be used for debuggers such as
"Macbug", which are installed during boot-up time. When these are
installed, "Bu£Ptr" is adjusted downward to point just below the debugger.
Since the program launcher uses "BufPtr" to determine how much mem­
ory is available, any debugger installed in this manner remains safely
tucked away, out of reach of the normal operation of the machine.

Video and Sound Areas

At the top of the RAM are areas that connect to the video and sound
systems (see Figure 2-8). In many respects, they act as ordinary memory.
However, they also connect to the screen and speaker.

Two areas of memory are devoted to the screen. On the 512K Mac­
intosh, a primary area ranges from $7 A700 to $7FC7F, and a secondary
area runs from $72700 to $77C7F. These same values work with a 128K
Macintosh because this smaller Macintosh ignores some of the upper
address bits of RAM, "wrapping" the memory around so that larger ad­
dresses access the same memory cells as smaller addresses.

On the 128K machine, the "actual, addresses are $1A700 to $1FC7F
for the primary area and $12700 to $17C7F for the secondary area.

Two areas of memory are also devoted to the sound system. Here are
stored the "wave forms'' for the sounds produced by the Macintosh. By
controlling these bits, a programmer can produce a variety of custom
sounds, just as a variety of pictures can be produced by controlling the
bits of video memory.

Sound uses only the lower bytes of the 16-bit words in these areas.
On the 512K Macintosh, the primary area ranges from $7FDOO to $7FFE3,
and a secondary area runs from $7 A100 to $7 A3E3. Again, these same
values work with a 128K Macintosh because the larger memory addresses
"wrap around" on the smaller machine. On the 128K machine, the "ac­
tual'' addresses are $1FDOO to $1FFE3 for the primary area and $1A100
to $1A3E3 for the secondary area.

Bit 6 of location $EFFFFE is used to switch between the primary and
secondary areas of the video and sound. This belongs to the VIA chip,
which we discuss later. A value of zero selects the primary area, and a
value of one selects the secondary area.

In Chapter 4 we examine how the video RAM works and how its
memory "maps" to the screen.

MACINTOSH SYSTEM ORGANIZATION 23

The ROM
The ROM begins at $400000. This is at the one-quarter point of the 16-
megabyte addressing space. In the last part of this chapter, we survey the
built-in software that is stored in the ROM. In the rest of the book we
explore it in detail.

Figure 2-8. Video and Sound Areas

Hexadeci mel
address
$80000

$7FOOO

$7EOOO

$70000

$7COOO

$78000

$77000

$76000

$75000

$74000

$73000

51 2K Macintosh

24 HIDDEN POWERS OF THE MACINTOSH

Pr1 mary sound

Pr1mary v1deo

Secondary sound

Secondary v1 deo

Hardware Connections
The upper half of the addressing space from $800000 to $FFFFFF has a
few scattered locations that are mapped to hardware devices. (See Figure
2-9 for a block diagram of the Macintosh.) These so-called memory loca­
tions actually access registers in the Macintosh's controller chips. Most
applications do not need to, and should not, access these chips directly,
but should use the Macintosh device drivers that are already developed.

Versatile Interface Adapter

The Versatile Interface Adapter (VIA) controls access to the keyboard,
real-time clock, and part of the disk, sound, video, and mouse.

The VIA uses locations in the range from $EFE1FE to $EFFFFE.

Serial Communications Controller

The Serial Communications Controller (SCC) controls access to the two
serial communications lines. The Macintosh uses a Zilog Z8530 SCC
chip, a powerful, dual-channel, high-speed communications controller
capable of supporting all popular serial communications protocols.

Figure 2-9. Block Diagram of Macintosh

Serial Serial Key-

Dis»k poyt B Mouse c~ck faro

r 6 controller~ lvJ
n n U U

L------1 1 68000 CPU 1 d n
II -~ D ==E Disk speed

~I RAM I VIdeo dale

Sound

MACINTOSH SYSTEfvt ORGANIZATION 25

The serial interface chip uses locations in the range $9FFFF8 to
$BFFFF9.

Disk Controller

The Macintosh uses two custom chips: one is called an Integrated Woz
Machine (IWM) and the other a Microfloppy Controller Interface (MCI). It
also uses an area of RAM to control the speed of the disk motor. This area
is actually the upper bytes of the area in memory used for sound.

The IWM chip uses locations in the range from $DFE1FF to $DFFFFF.
Signals from the IWM chip, the special area of RAM, and the VIA go to
the MCI chip, which is part of the disk subsystem.

This completes our survey of the Macintosh's memory usage.

Accessing the Macintosh Built-in
Software

Now lefs study the ingenious method that Apple uses for providing access
to its built-in software. This method substitutes routines in Macintosh's
memory for certain unimplemented instructions of its MC68000 micro­
processor, thus extending the original set of processor instructions by a
whole new set of "Macintosh" instructions. In this section, we explain
how this works.

The instruction codes for the Macintosh's 68000 processor are 16-bit
integers. However, many of the 65,536 possible values do not belong to
any processor instruction. These are called unimplemented instruction
codes.

Two special families of unimplemented instruction codes are indi­
cated by their upper four bits (see Figure 2-10). A bit pattern equal to
1010 in these bit positions indicates the family used by the Macintosh to

Figure 2-10. The 1010 Family of Unimplemented Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I· I o I I o I I I I I I I I I I I I I
~

A

26 HIDDEN POWERS OF THE MACINTOSH

access its own routines. In hexadecimal notation, the bit pattern 1010
corresponds to the digit "A". Thus, these codes are distinguished by a
leftmost hexadecimal digit equal to a value of "A". A second family of
unimplemented instruction codes, distinguished by a bit pattern 1111 in
the leftmost bit positions, is unused by the Macintosh. Perhaps a clever
programmer will use this family to implement an entirely new set of
custom instructions.

Whenever the processor encounters such a 1010 instruction code, it
does a special interrupt called the 1010 unimplemented instruction in­
terrupt, which calls the dispatch routine. The exception vector for this
interrupt is at location $28.

The service routine that Apple installed to handle this particular
interrupt branches to the appropriate Macintosh routine. To make this
dispatcher routine work correctly, Apple has installed a table called the
System Dispatch Table in the Macintosh's low RAM area that contains
the addresses (in compressed format) of all the Macintosh's routines that
are accessed in this manner.

When the machine is turned on or restarted, this table is loaded from
ROM and "unpacked" into low RAM (starting at address $400 and run­
ning to address $7FF). At this point, all addresses in the table supposedly
point to ROM routines, although this is hard to verify because the machine
does not do much except wait for a disk insertion when it starts up. When
a disk is inserted, a few new routines are loaded and a few entries in this
table are overwritten with address information for the new routines. Many
of these new routines simply do a few extra things and then jump to the
original ROM routine, but a few are complete replacements. This provides
a convenient way to change the system as needed.

Each entry in the address table is a 16-bit integer (see Figure 2-11)
that is expanded by the dispatcher routine in the following manner. Bit
position fifteen distinguishes between the built-in ROM routines and the
additional RAM routines, and the lower 15-bit positions give the word
offset for the routine. For ROM routines (bit 15 equals zero), the word
offset is multiplied by two and added to the base address of the ROM
($40000) to get the byte address of its entry point. For RAM routines (bit
15 equals one), the word is multiplied by two and added to the beginning
of the heap ($BOO) to give the byte address.

About 494 routines are handled in this manner. Each routine is as­
signed a unique nine-bit instruction number between 0 and 511 corre­
sponding to its position in the dispatch table. About eighteen numbers
scattered throughout this range are not used, and about twelve other num­
bers are assigned names but are not documented at this time.

MACINTOSH SYSTEM ORGANIZATION 27

The 16-bit operation codes for these instructions are computed by
placing the special1010 bit pattern in the upper four bits (bits 13 through
15) and the instruction number in the lower nine (bits 0 through 8). This
leaves three bits in the middle for other purposes, such as setting certain
instruction modes.

To complicate the situation, the routines are divided into two classes:
Operating System routines and Toolbox routines. Generally, Operating
System routines are assigned instruction numbers between 0 and 255 and
have bit 11 equal to zero, and Toolbox routines are assigned instruction
numbers within the full range 0 through 511 and have bit 11 equal to 1
(see Figure 2-12).

For Operating System routines, bits 9 and 10 (called flag bits) send
special information that depends on the particular routine, and bit 8
indicates whether or not register AO is being used to pass information
back from the routine. Again, this depends on the particular routine.

For Toolbox routines, bits 9 and 10 are not used. Bit 10 was once
used to distinguish a special "auto pop" mode for toolbox routines but
is now unused.

Notice that bit 8, part of the instruction number for Toolbox routines,
indicates the parameter passing mode for Operating System routines, as
described previously.

Nice distinctions between Operating System and Toolbox are not
always adhered to. Routines with instruction numbers 0 through 4F form
the main part of the Operating System and follow all rules for Operating
System routines. However, some routines that logically belong to the Op­
erating System behave as though they were Toolbox routines. That is, they
have bit 11 turned on and may have instruction numbers greater than
255.

Figure 2-11. System Dispatch Table Entries

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

O:ROM
1=RAM---------..

Word Offset

28 HIDDEN POWERS OF THE MACINTOSH

The Managers
Now that you have an idea of the physical organization of the Macintosh's
memory and instructions, you are ready for a first look at the software that
occupies this memory space.

As mentioned before, the Macintosh's built-in software is logically
divided into modules called managers. Each manager has a specific area
of responsibility in the system. For example, the Memory Manager man­
ages the heap, the Window Manager maintains various windows on the
Macintosh screen (see Figure 2-13), and the File Manager is in charge of
the file system. These managers work together to run the Macintosh just
as people in an office work together to run a company.

Some managers are considered part of the Operating System, and
some are considered part of the Toolbox (see Table 2-1). However, this
distinction is blurred and somewhat artificial. Generally, managers that
relate to the operation of the screen are considered part of the Toolbox,
and managers that manage other parts of the system such as files and
memory are considered part of the Operating System.

Figure 2-12. Operating System and Toolbox Instruction Codes

Operating system codes

15 14 13 12 11 10 g .:6 7 6 5 4 3 2 0

~t
Flag AO
bits addressing

mode

Instruction
number

Too 1 box codes

15 14 13 12 11 10 g 6 7 6 5 4 3 2 0

~'---------------Not
used

Instruction
number

MACINTOSH SYSTEM ORGANIZATION 29

Dividing the total system into managerlike pieces is a well-estab­
lished practice to increase the speed of software development. This allows
several members of a software development team to divide responsibilities,
then smoothly bring their efforts together. It also makes further mainte­
nance development of the system easier and makes it much easier for an
applications programmer to understand the system.

Physically, these managers consist of routines mostly in ROM, but
partly in RAM; and data structures in RAM. ROM routines belonging to
a specific manager tend to be grouped together. However, some are inter­
mixed with routines from other managers. This intermixing occurs even
in the dispatch table.

Only at the software interface level are routines clearly organized by
manager. Even at this level, distinctions blur. For example, the file system
"open" routine is shared by the File Manager and the Device Manager,
and string routines are scattered among QuickDraw, the Operating System
utilities, the Resource Manager, and the Package Manager.

In addition to managers, there are two collections of routines called
utilities. The Toolbox utility routines do such tasks as bit manipulation.

Figure 2-13. Macintosh Windows

- -- - -
=---:____ - - -=:....==.....---=---- --

This program 111ustrates how to manage

A control window has button controls which

two other windows appear. One of these wi

array of stars, and the other displays this

30 HIDDEN POWERS OF THE MACINTOSH

The Operating System utility routines do such things as read and set the
time and make a beeping sound on the speaker.

In this section, we survey these managers and describe their most
notable and useful features. In later chapters, we examine their operation
in detail.

The Screen Manager
QuickDraw is the name of the set of built-in routines and data structures
that directly manage the screen. It is considered part of the Toolbox.

The Quick.Draw routines control the drawing environment by setting
certain drawing parameters, such as the size and position of the drawing
area, the size and pattern for the pen, and the size and style of text.

QuickDraw also contains routines to move the pen around the drawing
area, laying down lines with the various pen sizes and pen patterns. Other
QuickDraw routines draw text in various sizes and styles. Others control
the shape and appearance of the cursor.

Still other QuickDraw routines draw a variety of shapes, such as
lines, rectangles, ovals, rounded rectangles, polygons, and irregularly shaped
areas called regions. With most of these shapes, there are the options of
outlining (framing), filling, inverting, or erasing.

Table 2·1. The Managers (in ROM)

Toolbox

QuickDraw (the Screen Manager)
Toolbox Utilities
Font Manager
Event Manager
Resource Manager
Window Manager
Control Manager
Dialog Manager
Menu Manager
Desk Manager
Text Edit (the Edit Manager)
Scrap Manager
Package Manager

Operating System

Event Manager
O.S. Utilities
Memory Manager
File Manager

Segment Loader
Vertical Retrace Manager

MACINTOSH SYSTEM ORGANIZATION 31

Routines also detect when points and certain shapes are within other
shapes. Other QuickDraw capabilities include storing and later replaying
entire sequences of QuickDraw routines.

The Font Manager
Associated with QuickDraw is the Font Manager, which controls the
storage of various character sets. It is considered part of the Toolbox. The
Font Manager has routines that allow you to select from available character
sets. QuickDraw does the actual drawing of text.

The Memory Manager
The Memory Manager controls dynamic memory allocation. It is consid­
ered part of the Operating System.

The Memory Manager routines set up and control dynamic variables
that are used by the Operating System, the Toolbox, or an applications
program. These variables are stored in the heap and accessed through
pointers and handles, which are described in Chapter 3.

The Memory Manager routines are called by many of the other man­
agers when they need to store or manipulate their data structures. The
Memory Manager also works in the background.

The Event Manager
The Event Manager controls the interactive nature of the Macintosh. As
described in Chapter 5, part of the Event Manager resides in the Operating
System and part resides in the Toolbox.

The routines in this manager monitor hardware, such as the keyboard,
mouse, screen, and disk. When these devices indicate user actions (events)
such as key or mouse button presses, the Event Manager places the relevant
information, including the nature of the event and the current time and
position of the mouse, on an event queue (waiting line). The programmer
can then get these events in an orderly manner by calling a special Event
Manager routine.

The Event Manager also contains routines to directly access the con­
dition of the mouse button and keyboard.

32 HIDDEN POWERS OF THE MACINTOSH

The Window Manager
The Window Manager controls the various Macintosh windows that are
set up by the Operating System or by an applications program. It is
considered part of the Toolbox.

The Window Manager routines define the size, position, and features
of a window. This Manager has routines to draw, redraw, highlight, and
erase windows, performing the appropriate actions as several overlapping
windows are maintained on the screen at once. Other routines move and
resize windows on the screen in response to mouse movements.

The Control Manager
The Control Manager maintains the various buttons, check boxes, dials,
and scroll bars that appear within Macintosh windows (see Figure 2-14).
It is considered part of the Toolbox.

Associated with each control is a numerical value called its control
value. The purpose of any control is to allow the user to manipulate that

Figure 2-14. Macintosh Controls

Control buttons

This program i l lustrates how to manage

A control window has butt on contr ols which

two other windows appear. One of these wi

Scroll bar controls

MACINTOSH SYSTEM ORGANIZATION 33

value. For example, each scroll bar control allows the user to control the
horizontal or vertical displacement of the page.

The Control Manager has routines to define the sizes, positions, and
features of controls; routines to draw, redraw, highlight, and erase controls;
routines to track the mouse as it interacts with controls; and routines to
set and delimit the numerical value associated with each control.

Tracking can be automatic or custom designed by the applications
programmer.

The Dialog Manager
The Dialog Manager is a higher-level window manager, controlling entire
user interactions without the intervention of the applications programmer.
It is considered part of the Toolbox.

The routines in the Dialog Manager define the size, position, features,
and controls in a dialog; start up and end a dialog; transfer information
in and out of a dialog; and allow editing of dialog text items.

Routines also start up alerts, which reside at an even higher level
than normal dialogs in that the programmer does much less to make these
work. The programmer need call only one routine which handles the
entire process.

The Menu Manager
The Menu Manager controls the Macintosh's pull-down menus. It is con­
sidered part of the Toolbox.

The Menu Manager routines define menus and track the menu selec­
tion process. With these routines, a programmer can specify the name and
styles of each item and know exactly which item of which menu was
selected at the end of the selection process.

The Desk Manager
The Desk Manager controls the interaction between an applications pro­
gram and the desk accessories, such as the scrapbook, alarm clock, note
pad, calculator, key caps, control panel, and puzzle. It is considered part
of the Toolbox.

The routines in this manager allow the application to start up a desk
accessory and give it slices of time to keep it active until the user tells it
to close.

34 HIDDEN POWERS OF THE MACINTOSH

The File Manager
The File Manager provides access to the files on the disks and the serial
communications lines. It is considered part of the Operating System.

With the routines in the File Manager, an applications programmer
can do all the usual operations with files, including create, open, close,
read, write, rename, delete, get, and change file information such as file
types and attributes. This Manager also has routines to mount, unmount,
and eject disks and select files.

Text Edit
Text Edit is the manager that handles blocks of text being edited. It is
considered part of the Toolbox.

The Text Edit routines perform such functions as allocating and
deallocating space in memory for text, formatting text for display, drawing
and redrawing text, maintaining the blinking cursor or inverted selection
range, inserting characters, scrolling text, and handling the usual editing
functions such as cut, copy, and paste.

Packages
The Package Manager provides access to system routines into the system
that are not included in the ROM. There can be as many as eight different
"packages", and each package can contain a large number (as many as
64K) of different routines. Currently, the largest number of routines in any
package is nine.

Some examples are a package of routines to help initialize disks, a
package of routines to help select files, and a package of routines to handle
time, dates, and strings according to various international rules.

The Resource Manager
The Resource Manager provides the applications programmer with access
to an application's resources. It is considered part of the Toolbox.

A Macintosh applications program consists of a collection of re­
sources (see Figure 2-15). One type of resource is the program code. Others
include definitions of various objects managed by other managers. For
example, the size, shape, and features of each window and control are
normally stored in a separate resource.

As shown in Chapter 3, part of the development process for an appli­
cations program consists of packaging its various resources into a file on

MACINTOSH SYSTEM ORGANIZATION 35

a Macintosh disk. Except for the code resource, resources are normally
specified in what is called a Resource Definition File, which acts like
source code for the various resources.

Besides the resources packaged with an application, the Macintosh
maintains other resources that can be accessed by the applications program.

Much of the time, the Resource Manager stays behind the scenes,
providing support for other managers when they need to get resources.
For example, "GetNewWindow" is a Window Manager routine that calls
upon the Resource Manager to get the parameters to define a new window.

The Scrap Manager

The Scrap Manager manages the clipboard to cut, copy, and paste. Clip­
board routines need to be called if an application transmits information
to and from other parts of the system, such as desk accessories and other
applications.

Figure 2-15. A Program is a Collection of Resources

Resources of
an app 1 i cation

Resource header

Routines (code)

Window data

Controls data

Alerts data

Dialog items

Menu data

Strings

Resource map
(To locate everything)

36 HIDDEN POWERS OF THE MACINTOSH

Other Managers
The Macintosh contains other managers. Some are directly used by an
applications program, some normally stay behind the scenes. Of course,
a sufficiently adventuresome applications program could use some or all
of these managers.

In the Operating System

Other managers in the Operating System include the Vertical Retrace
Manager, the Device Manager, and the Printing Manager.

The Vertical Retrace Manager is in charge of updating the system .
every sixtieth of a second. At this time, the video system finishes a com­
plete scan of the screen and gets ready for the next scan. The screen is
not written to during this "retrace", allowing the screen memory to be
updated with fewer side effects. It is also a convenient time to update the
system's time, check the stack size, check if a disk has been inserted, and
move the cursor. An applications programmer may also call the Vertical
Retrace Manager to install custom routines to be performed on a frequent
and regular basis.

The Device Manager provides access to devices such as the serial
ports as though they were files with special control and status functions.

The Printing Manager handles printing. It does not reside in ROM
but is brought into RAM as needed.

Other Parts of the System
The Operating System contains a number of lower-level parts, including
the dispatcher routine for Macintosh routines and device drivers.

Device drivers form the interface between the higher-level managers
and memory locations that control and pass information to devices such
as the serial communications lines, the sound system, and the disk system.
An applications program can talk directly to these drivers, but for the
most part this should not be necessary.

Summary
In this chapter, we have described the overall internal structure of the
Macintosh, starting with its physical layout and leading to its logical
structure as a collection of managers. We study these managers in detail
in subsequent chapters.

MACINTOSH SYSTEM ORGANIZATION 3 7

3
Programming the
Macintosh

38

This chapter covers the following new concepts:

• The Program Development Environment

• Source Code

• Library Files

• Resource Definition Files

• Pascal Pointers

• Static and Dynamic Variables

·• Relocatable and Nonrelocatable Areas of Memory

• Heaps and Stacks

• Debugging

This chapter introduces a standard programming environment for devel­
oping applications programs for the Macintosh. This programming envi­
ronment allows the user to develop programs such as spreadsheets, editors,
and file utilities, making the Macintosh a powerful information handling
tool.

We explain why this particular environment was chosen and describe
how the example programs in this book are developed. We present an
example program and discuss how it is written and processed as a finished
application that runs on the Macintosh. Although this section describes

a program development environment, it emphasizes the basic functions
that must be performed in any development system. These basic functions
will be needed in any future program development environment. Thus,
this discussion is valuable even when using a different development process.

In this chapter, we introduce the idea of resources. Macintosh appli­
cations program development differs from most others in that its programs
are packaged as collections of resources. An applications program uses
these resources to perform its job. We explain this concept and show how
the program code is one such resource in the package.

We also explain how Pascal pointers work. Apple Pascal's implemen­
tation of pointers makes the language a very powerful tool for controlling
the Macintosh's hardware while maintaining a modern, structured pro­
gramming environment in which large programs can be easily developed
and maintained.

We describe how to set up a debugger that allows us to see, and
therefore fully understand, how features such as pointers work on the
Macintosh.

Programming Environment
This section presents the programming environment used to develop the
example programs in this book. We discuss the basic hardware and choice
of programming language.

In the next section, we describe the program development process in
detail, presenting a simple example program.

Choice of Hardware
The preferred methods for developing programs will change as more soft­
ware tools are developed and the Macintosh's hardware becomes more
powerful with larger main memory and larger, faster secondary storage
(for example, well-integrated hard disks). However, as of this writing,
efficient program development requires a Lisa (now called Macintosh XL)
to run Pascal as well as two Macintoshes. In view of this evolution, we
describe the process in general terms, mentioning the current hardware
environment merely to illustrate the discussion. Thus no matter what
system you use, you can gainfully read this chapter, substituting the
details of your own system for the Lisa Pascal system.

Currently, program files are written and processed on a Lisa (Mac­
intosh XL). The resulting application is then transferred to and run on a
regular Macintosh. During program development, a second Macintosh

PROGRAMMING THE MACINTOSH 39

displays debugging information about the first Macintosh and controls the
program. The finished program runs on a stand-alone Macintosh.

Traditionally, applications for a new computer are first developed on
an older, larger machine that already has the proper development tools
written for it. Some large software development firms continue to use large
computers to develop applications, even after a new machine is well
established. However, many companies and individuals that cannot afford
large computers use the "target" machine itself to develop applications.

The Lisa is not so different from the Macintosh itself. In fact, Apple
is in the process of merging it with the Macintosh. With the proper amount
of main memory, fast disk storage, and a few changes in the Operating
System, a basic Macintosh could actually be more powerful than the older
Lisa (Macintosh XL), thus becoming a suitable environment for its own
program development. Maybe by the time you read this book, Macintosh
applications will be developed directly on a hard disk version of the basic
Macintosh.

Already, there are debuggers for the Macintosh that require only one
machine, allowing you to flip back and forth between a debugging screen
and the normal output. However, they will never be quite as good as a two­
machine debugging system, since it is always useful to completely sepa­
rate normal program input and output from that of the debugger.

A two-machine Macintosh system is not unreasonably costly when
considering the benefits, but it is desirable to eliminate the Lisa when its
function can be taken over by one of the Macintoshes. The same kinds of
tools should then be available for such a Macintosh.

Why Use Pascal?
The examples in this book are written in Pascal. Even if you don't know
Pascal, you should find these examples easy to understand, and even if
you don't plan to write your applications in Pascal, you will learn some
very important lessons from these examples. Although the Pascal language
is used here merely to explore the Macintosh's programming environment,
the Apple version of Pascal is actually a good choice as a development
language.

First, let's discuss the advantages of Pascal. The primary advantage
is that Pascal is the original development language for the Lisa and the
Macintosh. Assembly language has also been used, but in a supplemen­
tary role to Pascal. Thus, the tools for Pascal are well developed and the
basic structure of the Macintosh is oriented towards Pascal. Apple's doc­
umentation is also written in Pascal; that is, even though it is written in
English, it uses Pascal contructs to explain the Macintosh's operations.

40 HIDDEN POWERS OF THE MACINTOSH

A second advantage is that Pascal is one of the first widely accepted
structured languages; that is, it uses widely accepted program and data
structures. Pascal was developed as a result of researching how such
structures can and should make programming easier and more reliable.

Pascal's structures appear to be ''generic'': its basic structures are so
appropriate and necessary that they have been borrowed by other lan­
guages, such as BASIC, FORTRAN, and some assembly languages. Al­
though these languages have been around longer than Pascal, new versions
of them have been developed that incorporate Pascal-like structures. This
tends to make Pascal easy to read and understand, even for those who
don't know the language but know modem versions of these other languages.

Pascal-like structures are essential to good programming practices,
allowing programs to be developed in a systematic manner so that the
overall organization and structure of each component of the program can
clearly be seen. It allows procedures (subroutines) to be written and given
names that spell out their function. These names are then added to the
vocabulary of things that your program can do. This can be done very
effectively in a hierarchical manner so that each part of your program
looks like an outline of what it is accomplishing.

Data structures can also be organized hierarchically so that a larger
structure can be referenced as a whole, but each piece can also be easily
accessed.

Apple Pascal

Apple's implementation of Pascal has a number of advantages. It is a
higher-level language that translates directly to the machine language
used by the Macintosh's 68000 central processor. When we discuss de­
bugging, you will see how to display the resulting machine language in
the form of 68000 assembly language in the windows of the debugging
screen. You can then easily, interactively explore any of our example pro­
grams in assembly language.

A consequence of Pascal's generic nature is the need for extensions.
Of course, because of its hierarchical nature, it is self-extending; one can
write packages, as Apple has done, that extend Pascal so that it conforms
to a particular environment. However, basic elements such as dynamic
strings are missing from standard Pascal. Fortunately, Apple Pascal has a
nice extension to handle dynamic strings.

Apple Pascal adds a number of features to an interesting set of Pascal
structures called pointers. Pointers are essential to the operation of the
Macintosh. Later, we discuss pointers and the special operations for them
added by Apple. With these facilities Apple Pascal becomes a very pow-

PROGRAMMING THE MACINTOSH 41

erful language that allows us to directly control the machine hardware
while maintaining the advantages of a modern, structured, higher-level
language.

Perhaps a word of warning is in order. A few features in Pascal are
not well defined. Different versions of Pascal may implement these features
differently. For example, some data typing does not clearly define how it
is packed into memory. In particular, the "subrange" of numbers "0 ... 255"
may be interpreted as a byte-sized piece of data in one implementation of
Pascal (the version we use for these programs) or as a subrange of 16-bit
integers in another Pascal (the interpreted Pascal that runs directly on the
Macintosh). However, this type of problem is really at the implementation
level, since it relates to the way memory is implemented on the computer.

The Development Process
In this section, we describe the development process in broad terms,
explaining the logical generic rather than the specific physical steps. This
should help put the example programs into perspective and allow you to
implement them on your own system. In particular, this section describes
resources.

As mentioned above, the exact steps vary that are required to put an
application together. If you need a more detailed description of the current
development process, please read Appendix B.

We illustrate the development process with listings of a trivial pro­
gram. The program is not designed to be useful; it merely illustrates
editing, compiling, linking, loading, and running - processes used in
all the example programs in this book. By studying this program, you will
understand how the other example programs as well as your own appli­
cations can be implemented on the Macintosh.

Source Files
The development process begins with source files. These textual "docu­
ments'' are written and modified using an editor and stored on some mass
storage device such as a disk. They can range in size from a few characters
(or even zero) to several thousand characters. The files for this book are
written and stored on a Lisa. However, you can write such files directly
on the Macintosh or on a different computer altogether.

Because of the intrinsic nature of Macintosh applications programs,
two source files are needed: one contains source code, the other contains
resource definitions. Currently, these are in separate files, but other sys­
tems could possibly combine both types of information into one file.

42 HIDDEN POWERS OF THE MACINTOSH

The source code file contains the Pascal program. This is compiled
into MC68000 machine language and linked with other machine language
modules to form a complete machine language program. Later, we look at
the Pascal source code file and associated files, called library files, that
are supplied by Apple.

Macintosh Resources
First let's look at the resource definition file. To understand why this file
is necessary and how it works, you should know something about the
structure of applications as they sit upon a Macintosh disk.

All files residing on a Macintosh disk consist of two parts - a data
fork and a resource fork. Both parts must be present, but either part can
be empty.

The data fork contains normal user data, such as text in a text file or
data from a spreadsheet program. In Chapter 10, we see how to open,
read from, write to, and close the data forks of Macintosh files, like
ordinary files on most computer systems.

The resource fork contains the program. Officially, it contains a num­
ber of items called resources, but the primary resource is the 68000
machine code and data that comprise your compiled program. Other
resources might define the basic parameters for windows, dialogs, and text
that are used by your program. We study these resources in later chapters.
Table 3-1 lists the common types of resources.

Currently, Apple supplies a program called a resource compiler (called
"RMaker''), which converts your resource definition file along with your
compiled program into a file that contains your finished application, ready
to be run on the Macintosh in stand-alone mode. Currently, this finished
file must be transferred from the Lisa to the Macintosh before it can be
run.

Apple is also developing a resource editor that allows a programmer
to add, remove, and modify resources in a program. Each type of resource
can be edited in its own manner. For example, icons, patterns, cursors,
and fonts can be edited in enlarged forms just like "fat bits" in MacPaint.

If we think of an application as a collection of resources, then we
should think of the resource definition file as the main file for defining
our application because it specifies the application's resources (see Figure
3-1).

In the example program for this chapter, the compiled program is the
only resource. In later chapters, we gradually introduce other types of
resources and the relevant concepts behind them.

PROGRAMMING THE MACINTOSH 43

Now let's examine the resource definition file for our example. Notice
that the resource definition file does not actually contain the code resource,
but names the object file where that code may be found.

* resource file for Trivial demonstration program
e l m/ Trivial. rsrc

Type CODE

clm/ TrivialL, O

The first line is a comment. All comments in a resource definition
file begin with an asterisk. You can have any number of lines of comments
at the beginning. However, you must be careful about putting comments
in other parts of the file because they might be interpreted as resource
definition information.

The second line of this file declares the name of the file where the
finished application will be placed. Currently, this is a Lisa file, which is
then moved by a file transfer program called "MacCom", onto a Macintosh

Table 3-1. Common Types of Resources

Type

WIND
MENU
CNTL
ALERT
DLOG
DITL
ICON
ICN#
CURS
PAT
Pat#
STR
STR#
DRVR
FREF
BNDL
FONT
CODE

44 HIDDEN POWERS OF THE MACINTOSH

Object Described

Window
Menu
Control
Alert
Dialog
List of items in an Alert or Dialog
Icon
List of Icons
Cursor
Pattern
List of Patterns
String of text
List of strings
Desk Accessory
File reference
Bundle
Font
Machine code for a program

disk that is inserted into the Lisa disk drive. In the future, this may be
your fini shed application file on the Macintosh .

The third line is blank simply to make the file more readable. Al­
though some lines in a resource definition file must be blank, this one
does not have to.

The fourth and fifth lines specify the code resource to be included in
the application. This is the compiled and linked program.

The fourth line is a TYPE statement that declares the resource to be
of type CODE. We encounter other types of resources later. The fifth line
specifies a file where the machine code is found. In this case, the file is
"clmffrivialL", which is the compiled and linked version of our Pascal
program.

Pascal Source File
Let's now look at the source file for this trivial program.

PROGRAM Trivial;
{ $R- }{$X- }

Figure 3-1. Resources and Data in Files

Resource fork

Machine 1 anguage
program

Etc.

Data fork

Text from word

Etc.

PROGRAMMING T I-lE MACINTOSI-1 45

USES
{$U obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{ $U obj / Toolintf

BEGIN

}Memtypes,
}QuickDraw,
}OSintf ,
}Toolintf;

{This program does nothing}
END.

Program Statement
The first line of this program is the program sta tement (as Pascal pro­
grammers know). This statement specifies the name of the program: in
this case, "Trivial".

Compiler Commands
The second line of the program contains two compiler commands. A
compiler command is an instruction to the compiler that is not part of
the Pascal language.

These compiler commands ensure that the program runs properly on
the Macintosh. Note that the same Pascal compiler can compile programs
that run on the Lisa.

Each compiler command starts with a dollar sign and is enclosed in
brackets as a Pascal comment. This hides them as far as the Pascal lan­
guage is concerned but allows the Pascal compiler to easily recognize
them.

The first compiler command is $R-, which disables range checking
in your program. Range checking verifies whether variables such as array
indices are withit:l designated bounds. The current version of the compiler
does this incorrectly and may cause a program to crash. Since the default
setting is $R +, which enables range checking, we need $R- to disable
this particular feature. Future versions of the compi ler should have this
bug fixed.

The second compiler command is $X-. This command disables au­
tomatic stack expansion. Automatic stack expansion is desirable for pro­
grams that run on a Lisa; however, this feature is not appropriate for
Macintosh programs because the Macintosh has a different way of han­
dling memory. The default setting is $X+, which enables automatic stack
expansion; thus, we need the $X- command to turn this fea ture off.

Apple also recommends that you invoke the $U- command to disable
the use of Lisa library files. The Macintosh library fi les, di.scussed below,
invoke this command for you. It is therefore not really necessary to issue
this command from your program.

46 HIDDEN POWERS OF THE MACINTOSH

External Files

The USES section of this program allows our program to take advantage
of the large number of Pascal declarations developed by Apple that prov"ide
access to the Macintosh's ROM.

These definitions are stored in a number of compiled external Pascal
files called library files. These are the physical containers of this infor­
mation. Each library file can contain one or more logical UNITs. A UNIT
is a special module that is part of the Apple Pascal language. In Chapter
4, we discuss the contents and structure of UNITs in detail.

The $U compiler command connects the file name to the UNIT
names. It causes the compiler to search the specified file for all UNITs
mentioned subsequently in the USES section until the next $U command.

In this program, we use the following external library files: "Mem­
Types", "QuickDraw", "OSintf", and "Toollntf" (all prefixed by an "obj/").
These library files contain only one UNIT. The name of the UNIT for these
files is the same as the name of the file that contains it (ignoring the "obj/
"prefix to the file name). In each case, aU$ compiler command enclosed
within Pascal comment brackets gives the file name, thus making it not
part of Pascal. Immediately after, the corresponding UNIT name is given
as part of the USES statement in Pascal.

In Chapter 4, we discuss the structure and contents of UNITs. For
now, understand that they give you extra data structures and procedures
that are not a regular part of Pascal.

Main Program

The main program consists of a BEGIN and an END statement. This is
the absolutely smallest main program in Pascal. As you can see, the
program does no useful work. It merely signs on, then off.

Putting It All Together
The Pascal source code file needs to be compiled and linked, then com­
bined with the other resources to form the complete application (see Figure
3-2). We describe this process only briefly here. Details of the current
steps are in Appendix B.

Currently, compiling takes two steps. First, a Pascal compiler trans­
lates the Pascal source code into intermediate code; then a code generator
translates the intermediate code into 68000 machine code.

The linking process combines several machine language files to form
the complete program. Apple supplies a number of files that must be
linked with your program for it to take advantage of the Macintosh's built-

PROGRAMMING THE MACINTOSH 4 7

in software. These files contain external procedures that consist of a little
extra code; chiefly, they connect the Pascal routines in the files declared
in your USES section to the Macintosh's ROM routines.

Figure 3-2. Developing an Application

Edit

Re-edit

D
D

Run on
Macintosh

Finished
code

Source
code

Compile~

Intermediate
code

'-

Code II
generation~

Object
cod;::-::e:;....__ __,

v
Resource
definition
file

Resource
compilation

External
library
files

link

Object
code

48 HIDDEN POWERS OF THE MACINTOSH

The linked program, however, is not yet a complete application. It has
to be packaged at the resource level. You must combine all resource
definitions for your application, including the linked program and the
various definitions of windows, control, dialogs, and text. Currently, a
resource compiler called "RMaker" does this for you.

In the current setup, each of these software tools, including the com­
piler, code generator, linker, and resource compiler, provides prompts
asking for input files, options, and the names of output files. Fortunately,
you can write command files called "exec" files, which automatically
issue all commands and answer these prompts for you. You can invoke
the entire process with a few keystrokes that start an exec file (discussed
in Appendix B).

Pascal Pointers
Now let's look at pointers, a special part of Pascal that can cause confusion,
yet that are very important to programming the Macintosh. Even if you
know Pascal, this section merits attention because it explains the Apple
Pascal implementation.

Pointers are important because they, in conjunction with the Macin­
tosh's memory management system, allow dynamic variables. Such vari­
ables are needed to handle strings and essential parts of Macintosh's
graphics interface to the user. We explore them at some length here because
they are an aspect of Pascal that is important to understanding the Mac­
intosh, yet may be poorly understood even by experienced Pascal
programmers.

A Pascal pointer is a Pascal variable that references other Pascal
variables (see Figure 3-3). All but the most minimal versions of Pascal
have pointers, but they implement this feature differently. In Apple's Pascal
compiler, pointers are implemented directly as memory addresses; that is,
the value of the pointer is a memory address. Since addresses are stored
as 32-bit integers by the 68000 processor, each pointer requires four bytes
of storage.

Each pointer variable is typed. That is, it is defined to "point to"
variables of a specific data type. The compiler rejects attempts to make a
pointer reference data of the wrong type. However, Apple Pascal can very
nicely convert data and pointers from one type to another. This data typing
is performed by the compiler at compile time, not by your program as it
runs. Thus, the type of a pointer requires no extra storage in your running
program.

Realize that data typing is a tool to help protect your program from
crashing as well as to help write better programs in shorter time. A caution:

PROGRAMMING THE MACINTOSH 49

any data typing should be done carefully and with good understanding of
what you are doing to the machine. A debugging session might be nec­
essary to achieve that understanding. In the next section, we describe such
a debugging session.

As with any ordinary variable, pointers must be first declared in the
VAR section of your program. Prefixing the name of any data type with a
caret""" creates the name of a new data type. In the original descriptions
of Pascal, an upward arrow symbol was used. However, it is not possible
to make such an arrow on the Macintosh, so the caret is used instead.

Variables of these new caret-prefixed types are called pointers be­
cause they "point" (that is, contain the address of) expressions of the
original data types (see Figure 3-4). For example, starting with data type
"INTEGER", the type ""INTEGER" is called "integer pointer" because
variables of this type point only to integers. We can also assign a name
to a pointer type in the TYPE section, then use this name as a known
type in our VAR section. For example, in the TYPE section we could say

Figure 3-3. Pascal Pointers

........
-,.. Pointer

...

Figure 3-4. Pointer Data Typing

=~>I,. __ _....
Type: Type:

"INTEGER INTEGER

50 HIDDEN POWERS OF THE MACINTOSH

INTEGERPTR = ' INTEGER, then INTEGERPTR would be available as a
valid data type.

Pointers can provide access information not readily available through .
other methods. For example, the information that controls the appearance
of the video screen acts like a block of memory. We can direct a pointer
to the various bytes of this memory, then turn on and off the individual
bits that correspond to the dots (pixels) on the screen. In Chapter 4, you
see an example program do this.

Pointers allow the user to access data in a form different than origi­
nally stored. For example, if you wish to examine the individual bits of
an integer, you can set up a pointer of type:

PACKED ARRAY [0 .. 15] of BOOLEAN

so that it points to your integer. Then you index this array to look at each
bit. In Appendix C, we will do this to help examine and set certain file
attributes.

Pointers and Dynamic Variables
Pointers also help manage memory by providing convenient methods of
allocating and accessing dynamic variables (see Figure 3-5).

Dynamic variables move around in memory as they change in size.
They are stored in areas of memory that are "relocatable".

Figure 3-5. Dynamic Variables

D

PROGRAMMING THE MACINTOSH 51

An example of a dynamic variable is a region. In Chapter 4 we study
these in detail. Briefly, they store irregular shapes that are drawn on the
screen (see Figure 3-6).

When you initialize a region (using a special function called
"NewRgn"), it contains ten bytes of data. As you define and modify a
region's shape, the amount of data usually grows, but occasionally shrinks.
Each time the region needs more space than is immediately available, it
moves to a memory area where there is room. Thus, it leapfrogs through
memory, jumping over the storage space of other variables as it searches
for more storage (see Figure 3-7).

Pointers can operate in various ways to form pointer expressions
(formulas involving pointers). The compiler, however, prevents you from
freely using such things as parentheses in these pointer expressions. This
limits the ability to form pointer expressions.

The most fundamental pointer operator is the trailing caret "A ". Use
this whenever you want a pointer to store or retrieve data that it is pointing
to. For example, if "theiPtr" is of type "A INTEGER", then "theiPtr" con­
tains an address; whereas "theiPtr"" acts as an integer expression whose
value is stored at that address.

When pointers manage dynamic variables, you often see two trailing
carets after a pointer's name. In this case, the original pointer points to
another pointer, which in turn points to the data (see Figure 3-8). For
example, suppose that "the Rgn" is of type "RgnHandle" which is defined

Figure 3-6. Regions

52 HIDDEN POWERS OF THE MACINTOSH

as type " A RgnPtr", and that "RgnPtr" is defined as type" A Region". Then
"theRgn" is a region handle containing the address of "theRgnA ",a region
pointer which in turn contains the address of " theRgnA A" which is where
the actual data of the region is stored.

More generally, handles are regular "static" variables, providing the
means for the programmer to maintain access to "dynamic" variables
which the system continually and automatically moves around in memory.

Figure 3-7. Dynamic Variables Leapfrogging through Memory

D

D
Figure 3-8. Handles, Master Pointers, and Dynamic Data

theRgn Static variables (handle)

Dynamic relocatable (dete)

Dynamic nonre I ocat ab I e (pointer)

PROGRAMMING THE MACINTOSH 53

As the name implies, "static" variables do not move during the execution
of the program. On the other hand, dynamic variables are used with data
structures that change size, grow, or must be shifted in memory as the
program runs.

The handle points to a pointer maintained by the Operating System
in a special "nonrelocatable" area of memory called the master pointer
list. Because the master pointer area is "nonrelocatable", these pointers
don't move either.

The pointers in the master pointer area point to the actual data. When
the Operating System moves data, it also updates the new location of the
pointer on the master pointer list.

Thus, the handle can always access data by placing two carets after
it. For example, if, as before, "theRgn" is a region handle (handle to a
region), then "theRgn ~ " is in the master pointer area, and "theRgn • • " is
the actual data of the region. The region data is a record structure whose
fields can be accessed from this last expression. In particular,
"theRgn • • .rgnSize" is the first field of the region's data. Such expressions
are common in applications programs for the Macintosh.

Nonstandard Pointer Operators
So far, we have discussed standard pointer operators. Apple Pascal has
other operators that make pointers into even more powerful programming
tools.

Let's start with the " @ " operator. When this operator is placed in
front of a variable, it creates a pointer expression that points to that
particular variable. This pointer expression can be assigned or otherwise
passed to any pointer. Such a "typeless" pointer expression is said to be
of type "NIL". For example, if "X" is of type " · INTEGER" and "Y" is
any variable, then:

X @Y;

makes "X" point to "Y". As a bonus, "X~" is an integer that reinterprets
the first two bytes of Y as an integer.

The "ORD" and "POINTER" functions are also useful. The "ORD"
function converts a pointer value into the corresponding numerical value.
This numerical value is a long integer. For example, if Y is a variable, then:

ORD(@Y)

is the numerical value of the address where Y is currently stored.

54 HIDDEN POWERS OF THE MACINTOSH

The "POINTER" function converts a long integer (32-bit integer) into
a pointer of type "NIL" that points to the memory location whose address
is given by the long integer. For example, on the 128K Macintosh, the
screen RAM is located at address $1A700. Thus,

POINTER ($1A700)

is a pointer expression that points to the beginning of the screen memory.
You should be warned that this is not where the screen is on other sizes
of Macintosh. In Chapter 4, we explore a way to get this address for all
Macintoshes.

The "ORD" and "POINTER" functions convert one type of pointer to
another. For example, if "X" and "Z" are pointers of different types, then:

X : = PO I NTER (ORD (Z));

assigns the address in Z to the pointer X.

'Ijrpe Coercion
The last example can be more skillfully executed through the technique
of type coercion. This method allows use of the name of a data type, just
like a function, to convert one type of data to another. For example, if "X"
is a pointer of type PTR, then:

X PTR (Z) ;

is equivalent to the last example; that is, it also assigns the address in Z
to pointer X. Another example is the expression:

LONGINT (X)

which is the numerical value of the address contained in the pointer "X".
This can substitute for the POINTER function.

Be aware that the compiler doesn't li ke to use type coercion when
two types of data require different amounts of storage. This can be over­
come by changing types at the pointer level, since all pointers require the
same amount of storage- four bytes (32 bits). For example, if "numPtr"
is defined in the TYPE section as:

numPtr = "numArray ,

PROGRAMMING THE MACINTOSH 55

where "numArray" is also defined in the TYPE section as:

numArray =ARRAY [1 .. 1000] OF INTEGER

then

numPtr (theRgn·)·

is an array of integers that contains the region data (see Figure 3-9). In
Chapter 4, we use this technique to explore how regions work.

Also be careful about the values you get when using type coercion:
the results depend upon how data is stored. For example, if X is an integer,
then the expression Ptr(@X) is a byte pointer that points to where X is
located. However, the value of the byte there, as given by the expression
Ptr(@Xr , is equal to the upper byte of X (not the lower byte as with some

Figure 3-9. Converting Data to Integer Format

theRgn""

..._t.he.R .. g"""n_ .. ~=* I theRgn· ~ =* .._ ___ ..
Region Region
handle pointer

Type
Coercion

numPtr(theRgn·) ===*

Region
data

numPtr(theRgn·)·

numPtr Region data as an
array of integers

56 HIDDEN POWERS OF THE MACINTOSH

'

processors). The upper byte value of X hardly ever equals X itself, whereas
the lower byte equals X if X is small enough.

Using a Debugger
Now that we've seen how pointers work, let's see how a debugger can
chase them through memory.

Debuggers are essential to understanding your program, especially
when it's not doing what you wanted it to. Such knowledge can save
hours. With a debugger you can follow the execution of your program in
the machine step by step, examining the CPU registers and memory at
will.

We describe the process of running an example program on one
Macintosh while using a second Macintosh to display debugging infor­
mation (see Figure 3-10). Even if you are using only one Macintosh as a
debugger, you should have no trouble following the discussion.

The two-Macintosh method has the advantage of two display screens:
one to show program output, one to show all debugging information. Since
applications programs use the screen so completely, it is very helpful to
send debugging information to a second screen. Furthermore, the debug­
ging program used here works very effectively, filling the screen of the
second Macintosh with windows containing information such as the state
of the CPU registers , the stack, and a section of code of the program
concurrently being executed. It also allows other windows to open show­
ing other areas of code or areas of data .

Currently, debugging programs are available from Apple as part of the
Macintosh development system. However, programs from other companies
will no doubt appear.

Figure 3-10. Mac-to-Mac Debugging

) ,h ... , ,.,.
EZ!!J

<_,.
0

Program display Debug di sp 1 ay

PROGRAMMING THE MACINTOSH 57

Hardware Setup
A cable connects the two machines via their printer serial ports. Figure
3-11 shows the pin assignments for this cable. The ports use an RS-422
standard for serial transmission. This is a little different from the usual
RS-232 standard but is compatible using slightly different cabling.

The connector on each Mac printer port is a DB-9; that is, a D-shaped
connector with nine pins. As shown, not all the pins are used.

Pins 1 and 3 are ground. Pin 2 (not used) is + 5 volts. Pin 4 is data
out plus, and pin 5 is data out minus. Pin 8 is data in plus, and pin 9 is
data in minus. Two lines are required for each direction to conform with
the RS-422 standard. Instead of comparing signals to a common ground,
they are compared against each other. This reduces noise and allows longer
transmission lines.

Required Software
To make this system work, you must execute a program (currently called
"MacNub") on the first Macintosh (the one with your program). The
"MacNub" program loads certain interrupt vectors and interrupt service
routines into the Macintosh. These routines take over the basic functioning
of the Macintosh, allowing debugging information to be sent out as the
machine executes subsequent programs.

Figure 3-11. Pin Assignments

Macintosh No. 1 Macintosh No. 2

pin 1 ---9"'-0-u-nd~- pin 1
pin 2 pin 2
pin 3 ground pin 3
pin 4 + pin 4
pin 5 - - pin 5
pin 6 pin 6
pfn 7 pin 7
pin 8 pin 8
pin 9 - pin 9

58 HIDDEN POWERS OF THE MACINTOSH

You must also run a program (currently called "DB" or "MacDB")
on the second Macintosh (the debugging Macintosh). This program con­
trols the display of the debugging information on the second Macintosh.
Figure 3-12 shows a typical display.

The Example Program
Our example program for this debugging session initializes a region and
then goes into an endless loop. The program signs on and then just waits
for you to hit the interrupt button (to debug) or reset button (to restart the
machine).

As we debug this program, we carefully check some examples of the
pointers that we presented in the previous section. We explain this check­
ing procedure after discussing the program.

Here is the program:

PROGRAM Endless;
{ $R- }{$X- }

Figure 3-12. Debugging Screen

4i Debu
- --- --- -
=---=---==-- -

i'CC6E
CC70
CC74
CC76
CC7A
CC7C
CC7E
ccao
CC82
CC84
CC86
cess
CCSA
CCSE
CC90
CC92
CC94
CC96
CC98
CC9A
CC9E
CCAO
CCA2
CCA6
CCAA

SRA .S •$-2 CC6E
JSR $20<PC> CC98
UNLK A5
JSR $18(PC) CC90
RTS
UNLK A6 ~
RTS "'\"
EXG A2, A6
NEG A4
$4553
SU8Q .8 8 $1 , - <AO>
$0
CLR.L $ 10(A7>
RTS
RTS
MOVE.L <A7)+, AO
UNLK A5
JMP <AO>
MOUE .L <A7 >+, AO
LINK A5, $0
JMP <AO>
S8CO 00, 00
OR I .8 8 $0, AO
ORI •$8000 ,<AO >+
ORI .8 • $0 , <A2 >

Window

DO = 0000 0000
0 1 = 0000 0000
02 = 0000 0000
03 = FFFF FFFF
04 = 0000 1200
05 = 0000 08FF
06 = 0000 FFFF
07 = 0000 0000

AO = 0000 CC8A
AI = 0040 8E90
A2 = 0007 9786
A3 = 0007 A6FA
A4 = 0000 0008
A5 = 0007 A608
A6 = 0007 9646
A7 = 0007 A404

0040 4DOE
7800 ?COO
7EOO 7FOO
0000 0000
6COO 4600
0600 0300
0300 0000
COOO EOOO
FOOD FSOO
FCOO FEOO
FFOO FFSO

464F 424A
FFFF FFFF
0000 308A
0000 3074
0000 30A6
0000 308E
0000 3094
0000 309A
0000 3082
0000 3088

PROGRAMMING THE MACINTOSH 59

USES

VAR

{$U obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{ $U obj /Toollntf

theRgn : RgnHandle ;

BEGIN
theRgn : = NewRgn ;
WHILE TRUE DO ;

END.

}Memtypes,
}QuickDraw,
}OSintf ,
}Toollntf ;

The USES section, as in our earlier program, simply declares the
external library files that can be used.

The VAR sect ion declares the variable "theRgn" to be of type
"RgnHandle".

In the main part of the program, the first line invokes the function
"NewRgn". In Chapter 4, we explain it in detail. For now, understand that
this function allots room for and initializes a region, then returns a handle
to the region data. In this program, we assign this handle value to the
variable " theRgn".

The second line of the main program is an infinite WHILE loop. The
program continually executes this loop until you intervene by hitting the
reset button, turning off the Macintosh, or using the debugger to change
the program counter.

Debugging
Now let's describe the debugging process. First, compile, link, package,
and transfer your program as described previously. Don't forget to change
the name from "Trivial" to "Endless" in the exec and resource definition
files. If you are using a Lisa, the Lisa editor can do the searching and
replacement for you.

Let's say we ran the exec file, and the finished application is stored
on a Macintosh disk under the file name "Endless". Assume that "MacNub"
is on the same disk and that this disk is inserted into a Macintosh which
is cabled to a second Macintosh according to the pin assignments given
above.

Now run "MacNub" on the first Macintosh and run "DB" on the
second (debugging) Macintosh. The exact order of running these programs
doesn't matter. They can even run at the same time. However, understand
that "MacNub" can run only once without restarting the Macintosh.

60 HIDDEN POWERS OF THE MACINTOSH

After " MacNub" is run on the first Macintosh, start up our "Endless"
program. The second Macintosh should now tell you, with a dialog box,
that it is waiting for an interrupt.

When the disk stops on both Macintoshes, hit the interrupt key on
the first Macintosh. This key is just behind the reset key. The second
Macintosh's screen should now tell you where the first Macintosh stopped
(see Figure 3-13). This should be on the WHILE loop.

Now use the mouse to select the DEBUG button on the screen of the
second Macintosh. You now see the debug windows fill with information.
You can scroll the window to view the entire machine code for the program
in the "PC" (Program Counter) window (see Figure 3-14). The location of
the program counter itself is indicated by an " @" in front of the address
that it points to. This is the address of the next instruction to be executed
at the time that the interrupt key is hit. In our example this is a "BRA.S"
(branch short) instruction to the same address. This is how the endless
WHILE loop is translated into machine language.

Now let's check out the region handle. Just before the "BRA.S" in­
struction there should be a "MOVE" instruction, and before that should
be a "NewRgn" command. The "NewRgn" allocates space for and ini-

Figure 3-13. Got an Interrupt

j Debug Hun HI< I) t s 11Hnt1ow

PROGRAMMING THE MACINTOSH 61

tializes a region. It returns a handle to this data. This return value can
be found on the stack. Register A7 is the stack pointer. The "MOVE"
instruction moves the region handle from the top of the stack (using
register A7) to "theRgn". Here, the address of " theRgn" is given by (AS)
- 4; that is, four less than the address stored in register AS.

Register AS is a key to locating data used by Macintosh programs.
When the Operating System starts an application, it loads AS with the
address of the beginning of an area in the stack called the application
parameter area (see Figure 3-1S). This area contains variables that are
outside of your Pascal program but are shared by the application and the
Operating System.

Just below the application parameter area are the program's global
variables. These are also in the stack and, like all stack variables, are laid
down in memory at successively lower addresses as they are placed on
the stack. As a result, they appear in memory in the reverse order of that
in which they are declared (see Figure 3-16). When your program refer­
ences global variab les, you will see addresses that use AS with a negative
offset.

Figure 3-14. Displaying the Program

,.. ~

• Debug Run Bkpts

CC50 :
CC52 :
CC56 :
CC5A :
CC5E :
CC62:
CC66 :
CC68 :
CC6A :

i\CCOE :
lr&C70 :
~C74 :
CC76 :
CC7A :
CC7C.
CC7E :
CCBO :
CC82 :
CC84 :
CCS6 :
CCSB :
CCSA :
CCBE :
CC90 :
CC92 :

~- ------
=------=-------~-

::··: :

~UE . L <A7H, A6
LINK A5 , $0
SU8A .L $10<A5 >, A7
JSR $36<PC > ; CC92
MOUE .L $-8(A5), 00
CMP.L $-8<A5 >, DO
CLR.L - <A7 >
NewR9n
MOUE .L <A7 >+, $-4<A5)
8RA .S *$-2 CC6E
JSR $26<PC > CC98
UNLK A5
JSR $18<PC> CC90
RTS
UNLK A6
RTS
EXG A2, A6
NEG A4
$4553
SU8Q .8 •$1 , - <AO>
$0
CLR .L $ 10<A7)
RTS
RTS
MOUE .L <A7 >+ . AO

62 HIDDEN POWERS OF THE MACINTOSH

DO = 0000 0000
01 = 0000 0000
02 = 0000 0000
03 = FFFF FFFF
04 = 0000 1200
05 = 0000 08FF
06 = 0000 FFFF
07 = 0000 0000

AO = 0000 CC8A
AI = 0040 8E90
A2 = 0007 9786
R3 = 0007 A6FA
A4 = 0000 0008
A5 = 0007 A608
A6 = 0007 9646
A7 = 0007 A404

7>7A404 0040 400E
7A408 7800 7COO
7A4DC 7EOO 7FOO
7A4EO 0000 0000
7A4E4 OCOO 4600
7A4E8 0600 0300
7A4EC 0300 0000
7A4FO COOO EOOO
7A4F4 FOOD F800
7A4F8 FCOO FEOO
7A4FC FFOO FF80

464F 424A
FFFF FFFF
0000 308A
0000 3074
0000 30A6
0000 30BE
0000 3094
0000 309A
0000 3082
0000 3088

Our example has just one global variable, "theRgn" (see Figure 3-17).
Since it requires four bytes of storage, it is located at four bytes less than
the address in A5. This is indicated by the address reference code
"$-4(A5)" in the "MOVE" instruction.

Global variables declared in external library UNITs are placed after
your global variables. They are referenced with negative offsets with larger

Figure 3-15. Application Parameter Area

Stock

Stock

Figure 3-16. Global Variables

Application
parameter
area

Global
variables

PROGRAMMING THE MACINTOSH 63

magnitudes than those for your own global variables. These parameters
are used extensively throughout the book.

Now that we have located our region handle " theRgn", let 's follow it
to the data (see Figure 3-18). The exact addresses vary from system to
system, but the method is the same. On our Macintosh , we find the address
$7 A6D8 in A5 . Subtracting 4 gives the address of " theRgn" as equal to
$7 A6D4. We create a window displaying the memory locations around

Figure 3-17. Referencing Our Global Variable

CA5) <:=..__1 _ A5 __ ~
$-4(A5) theRgn

Figure 3-18. Chasing Our Region Handle

CCSO : MOVE.L <A7 >+,A6
CC52 : LINK A5 , $0
CC56 : SUBA.L $IO<AS >, ~""'""------r
CCSA : JSR $36<PC > ;
CCSE : MOVE .L $-B<A5), 00
CC62: CMP .L $-B<A5>, DD
CC66 : CLA .L - <A7 >
CC68 : NewRgn
CC6A: MOVE.L <A7>+,$-4<AS)

iCCOE : BRA .S *$-2 CCOE
CC70 : JSR $26<PC) CC98
CC74 : UNLK AS
CC76 : JSR $ IS< PC > CC90
CC7R : RTS
CC7C : UNLK A6
CC7E : RTS
CCBO : EXG A2, A6
CC82 : NEG A4
CC84 : $4553
CC86 : SUBQ .B •$1 , - <AO >
CCBB : $0
CCBA : CLR.L $ 10<A7)
CCBE : RTS
CC90 : RTS
CC92: MOVE .L <A7 >+.AO

64 HIDDEN POWERS OF THE MACINTOSH

AO ., 0000 CCBA
Al = 0040 BE90
A2 = 0007 9786
A3 = 0007 A6FR
A4 = 0000 ODDS
A5 " 0007 A608
A6 = 0007 9646
A7 = 0007 A404

CCBO
CCB2
CCB4
CCB6
CCBB

O>CCBA

FFFF FFFF
0000 308A
0000 3074
0000 30A6
0000 30BE
0000 3094
0000 309A
0000 3082
0000 3088

A5

lr--7-A6-DB.....,,

Figure 3-19. The Heap and the Stack

Figure 3-20. Debugging Session

The region
hondle

theRgn

(A5)-4 CC 14 ===* CC 14

J
7A6DB CCBO

The region The region
pointer doto

theRgn· theRgn-

CCBO ==* CCBO A
~---1

0

0

0

0

PROGRAMMING THE MACINTOSH 65

this address. In this window we see that the address $CC14 is stored in
"theRgn". This is the address of the region pointer "theRgn" ".We create
another window displaying the locations around the pointer. Looking into
this window, we see that the address stored in the pointer is $CCA8. This
is the address of the region data. We create one more window to show this
data. The first word contains "OOOA", which is the length (10 bytes) of
the region data area. Initially, the remaining eight bytes contain zeros, as
shown.

Notice that the addresses of the region pointer and region data are
much lower than the address in AS and the address of the region handle.
That's because the region pointer and the region data are in an area called
the heap (see Figure 3-19). In contrast to the stack, which starts high in
memory and grows downward, the heap starts low in memory and grows
upward. All dynamic variables are maintained in the heap.

Figure 3-20 shows the relationships in the debugging session as a
whole.

Use this debugging system and the lessons learned here to explore
other example programs. See how efficiently the compiler turns our Pascal
source code into 68000 assembly language. Use the "Run" and "Bkpts"
menus to step slowly through these programs to thoroughly understand
how the Macintosh works.

Summary
This chapter has discussed three important aspects of programming the
Macintosh: the programming environment, special features of the pro­
gramming language, and the debugging environment.

The exact programming steps and language may differ in the system
that you use, but this chapter should give you a good start towards working
in any program development environment for the Macintosh.

66 HIDDEN POWERS OF THE MACINTOSH

4
QuickDraw

This chapter covers the following new concepts:

• QuickDraw

• QuickDraw Initialization and Default Variables

• External Units

• GrafPorts

• Memory-Mapped Video

• Pixels, Patterns, and Cursors

• Bitlmages and BitMaps

• Coordinate Systems

• Points, Rectangles, and Regions

• Visibility and Clipping

• Local Coordinates

• GrafPort Moving Routines

This chapter introduces QuickDraw, a collection of routines and data that
draw pictures on the Macintosh 's video screen. We present several short
example programs that illustrate its basic structure and features .

QuickDraw is essential to Macintosh's built-in software: it produces
the graphics that are the primary means of conveying information from
the Macintosh to the user.

67

QuickDraw routines are carefully optimized for speed and power,
providing a rich set of drawing primitives representing years of develop­
ment. By taking full advantage of these routines, you can save considerable
time, effort, and overhead to your program, and most likely get better
results.

QuickDraw routines govern a variety of shapes, from points to poly­
gons to irregularly shaped objects called regions. Each shape responds to
such actions as framing, filling, and erasing. These shapes are very useful,
as seen in our example programs.

The Macintosh's Operating System and its applications call upon the
same set of QuickDraw routines. For example, when you boot up a disk
and see the desktop with icons and windows indicating disks, folders,
data files, and program, you are looking at images created by Quick.Draw.
Applications such as MacWrite and MacPaint use QuickDraw to draw
characters, borders, patterns, and shapes such as rectangles, ovals, and
irregular shapes. Even programming languages such as Macintosh Pascal
and BASIC call upon QuickDraw routines to display all program listings
and output. In short, everything that normally appears on the Macintosh's
screen is produced by QuickDraw.

Within the Operating System, Toolbox managers such as the Window
Manager and the Control Manager (see Chapters 6 and 7), the Dialog
Manager (see Chapter 8), the Menu Manager (see Chapter 9), and Text
Edit (see Chapter 10) call QuickDraw directly to draw the various objects
that they manage. Other Toolbox managers, such as Dialog Manager, call
upon the Window Manager and Control Manager as well as QuickDraw to
draw objects on the screen.

This chapter begins by discussing the proper initialization of
QuickDraw. An example program shows you minimal steps needed to do
any drawing on the Macintosh's screen.

Next is a discussion of patterns and cursors. We explain what they
are and how they are used. An example program shows how to define your
own patterns and cursor shapes and how to make them appear on the
screen.

A discussion of memory-mapped video explains the basic hardware
of the screen display, leading to a discussion of pixels, points, and coor­
dinate systems. An example "Mouse points" program shows how to map
any position of the mouse directly to the screen. This is the only example
that does not use QuickDraw to draw on the screen. It demonstrates how
the screen works, and it also illustrates the overhead saved by using
QuickDraw.

Rectangles and then regions are discussed next. These fundamendal
constructs form the basis of much that QuickDraw can do. Rectangles

68 HIDDEN POWERS OF THE MACINTOSH

define and draw such things as windows and menus. Regions draw regular
and irregular shapes, such as the parts of a window (grow box, drag area,
and goAway box) and controls (scroll bars, buttons, and check boxes).
Regions are also used in conjunction with mouse tracking; that is, finding
the mouse and responding with proper highlighting. Regions are also used
by the Window Manager to handle overlapping windows. Example pro­
grams show how to define and draw rectangles and how the internal
structure of regions works.

The chapter finishes with a discussion of grafPorts. A grafPort is a
full set of parameters that defines the drawing environment. Understand­
ing grafPorts is essential to understanding QuickDraw. This is particularly
necessary if you use a debugger on QuickDraw programs. An example
program shows how to use grafForts to good advantage, switching rapidly
among several grafPorts to illustrate how multiple windows can be imple­
mented in a concurrent fashion.

Not all of QuickDraw is covered here - just enough to explain the
fundamentals and show how to write programs that make useful drawings.
A complete discussion of every QuickDraw feature would require an entire
book. In subsequent chapters, we add more QuickDraw routines to our
programming arsenal.

After reading this chapter, you should understand and be able to
properly initialize the Macintosh's drawing environment and draw shapes
on the screen.

Initialization
Every applications program for the Macintosh requires an initialization
process. This process ensures that certain variables contain proper values
and certain subsystems are set up in the proper configuration. We are
concerned here with QuickDraw and its initialization, including that of
its working variables and the hardware that controls the display screen.

We begin with an example program that demonstrates how to initial­
ize QuickDraw. When we examine this program we will see the specific
things that need to be initialized and investigate their general structure,
but understanding much of their detailed structure must wait until you
have more background, which is provided later in this chapter.

The Initial Example Program
Our first example program performs a series of steps that initialize
QuickDraw and the video screen. The program stops at a couple of key
steps and waits for you to press the mouse button before proceeding to

QUICKDRAW 69

the next step. This allows you to carefully examine what is happening on
the screen. Otherwise, the application would immediately wipe out the
results and begin returning to the Operating System.

The program first displays a gray desktop with a white band where
the menu bar is usually located along the top of the screen (see Figure
4-1). A title, "!nit", appears in this white area. At this point, the cursor
is the familiar "waiting watch" (see Figure 4-2). This is the condition of
the screen before the applications program begins.

Stopping here is very helpful if you want to use a debugger to see
how QuickDraw is initialized. You would simply hit the interrupt switch
at this point and the debugger takes over (if properly set up) . You could
then use the debugger to step through the ROM routines.

If you now click the mouse button , the cursor turns into the standard
arrow (see Figure 4-3) . At this point, QuickDraw's default variables, a
grafPort, and the cursor are all properly initialized. The first two steps do
not change the appearance of the screen. We do not pause until after the
third step, which does change the screen.

The appearance of the arrow cursor normally tells the user that every­
thing required has been loaded and initialized, and to proceed. In this

Figure 4-1. First Screen of the First Program

70 HIDDEN POWERS OF THE M ACINTOSII

program, to proceed means one more click, which causes the program to
terminate.

Here is the program:

PROGRAM Init ;
{ $R- }{$X- }

USES
{$U obj / Memtypes
{$U obj /QuickDraw
{$U obj / OSintf
{ $U obj /Toolintf

PROCEDURE ClickButton;
BEGIN

}Memtypes,
}QuickDraw,
}OSintf,
}Toolintf ;

While Button DO ;
While NOT Button DO ;
While Button DO ;

END;

BEGIN {main program }
{Wait before doing anything}
Cl i ci<.But ton;

{Initialize QuickDraw default variables}
InitGraf (@thePort);

{Allocate nonrelocatable space on heap for grafPort }
NEW (thePort) ;

{Initialize grafPort}
OpenPort(thePort);

Figure 4-2. The Waiting Watch

•••••• •••••• •••••• •••••• • • • • • • • • • • •• • ••• •• • • • • • •

QUICKDRAW 71

{Initialize the cursor and wait}
InitCursor ;
ClickButton ;

END.

External Files

We begin with the USES section, since we studied the program statement
on the first line and the compiler commands on the second line in Chapter 3.
Chapter 3 also mentioned the external files listed in the USES section.
We study· these in detail here.

The USES section of this program allows the program to take advan­
tage of the large number of Pascal declarations developed by Apple to
interface to the Macintosh's ROM.

These declarations are stored in several compiled external files that
are referenced in the USES section. Each external file can contain one or
more UNITs. A UNIT is a special kind of Apple Pascal module that
interfaces data and procedures to a Pascal program. The data and pro­
cedures may be contained within the UNITS or may reside elsewhere,
such as in the ROM.

Figure 4-3. Second Screen of the First Program

72 HIDDEN POWERS OF THE MACINTOSH

The external library files are distributed to developers as text "source"
files and in compiled form.

Each UNIT begins with a UNIT statement that names the UNIT. The
UNIT itself has two parts; an INTERFACE section and an IMPLEMEN­
TATION section. The INTERFACE section declares those data types, data
variables, and procedures that should be public. The IMPLEMENTATION
section contains the types, variables, and procedures that should be pri­
vate. The public entities are available to any program that USES the UNIT;
the private entities are local to the UNIT.

The compiler command $U followed by a file name tells the compiler
to search a particular file for any UNITs referred to subsequently during
any USES section of the program. In our program, each ·UNIT is in a
separate file.

The first UNIT in our USES section is called "Memtypes" and is
contained in the file "obj/Memtypes". In our program, this file name
appears within the comment delimiters immediately after the first $U
command. On the same line, but after the comment, comes the UNIT name
"Memtypes".

The "Memtypes" UNIT declares certain data types used by all parts
of the Macintosh's ROM, including QuickDraw. The definitions of types
such as "SignedByte", "Byte", "Ptr", and "Handle" reside in this library
file. These declarations are in the INTERFACE section. The IMPLEMEN­
TATION section is empty.

The second UNIT in our USES section is called "QuickDraw", located
in file "obj/QuickDraw". This UNIT contains a CONST section, which
defines a number of public constants that identify various pen modes and
color information.

The "QuickDraw" UNIT also contains a TYPE section, which defines
QuickDraw data types: "QDByte", "QDPtr", "Pattern", "Style", "Point",
"Rect", "grafPort", and others. We encounter many of these data types
throughout this book.

The QuickDraw UNIT also has a VAR section, containing Quick­
Draw's public default variables. We study these as part of the initialization
of QuickDraw in the main part of this program. Following the VAR section
are declarations of all QuickDraw procedures and functions. The bodies
of these procedures and functions generally consist of special "inline"
machine-language calls to ROM routines (see Chapter 2).

The IMPLEMENTATION section of the "QuickDraw" UNIT consists
of a compiler command to include the file "obj/Quickdraw2", where the
contents of the implementation section are actually located. Some private
QuickDraw variables are declared here, which we discuss later.

QUICKDRAW 73

Two other UNITS, "OSintf" and "Toollntf", are also invoked in our
USES section. These allow us access to the "Button" function that appears
in the routine "ClickButton", which is used to pause for button clicks in
our program. Many of the data types, data variables, and procedures in
these UNITS are discussed in later chapters. Each example program
requires all of the UNITS that appear in the USES section of this program.

The ClickButton Procedure

Our program has one procedure called "ClickButton", which waits for a
click of the mouse button. It consists of three WHILE loops that involve
the Toolbox's "Button" function. In each case, the DO part of the loop is
empty.

The "Button" function is not part of QuickDraw. We have borrowed
it because it provides the easiest and most elementary way to allow the
user to control the progress of the program. In Chapter 5, we see how
events provide better control of a program.

The "Button" function returns a Boolean value that is true if the
mouse button is down, false if it is up.

Let's see how the "ClickButton" routine works. When this routine is
called, the button can be up or down. If the button is down, then the first
WHILE loop is executed until the button is released. The second WHILE
loop executes as long as the button remains up. If we now press the button
down, the second loop terminates and the third loop begins, continuing
until the button is released.

If the button is up, the first WHILE loop never fully executes, and the
second WHILE loop executes so long as the button remains up. If we now
press the button down, the second loop terminates and the third loop
executes until the button is released.

In either case, the routine terminates when the button is pressed, then
released.

The Main Program

The main part of the first example program begins by calling our
"ClickButton" routine. This stops the program before it does anything.
Again, this is useful when using a debugger to see exactly how QuickDraw
performs its own initialization.

Initializing Default Variables. Following "ClickButton" is a call to
"InitGraf". This call is required by most programs that run on the Mac­
intosh. It initializes all QuickDraw default variables.

7 4 HIDDEN POWERS OF THE MACINTOSH

The QuickDraw "InitGraf" routine expects one parameter, namely a
pointer to the variable "thePort", the first of QuickDraw's public default
variables. As discussed in Chapter 3, placing an "@" before a variable
creates a pointer to that variable.

In this case, "thePort" is a pointer to the current grafPort, a data
structure containing all current drawing parameters such as pen size and
pattern, text size and style, and the active drawing area (see Figure 4-4).
As the chapter goes on, we explore this concept of gra.fPort, culminating
in an example program where we see how to make "thePort" point to a
series of gra£Ports to achieve interesting special effects. Here. however, the
initialization routine "InitGraf" uses "thePort" mainly as a place holder.
In fact, at this point in the program, there is no gra£Port.

Default variables initialized by "InitGraf" are declared in the external
UNIT "QuickDraw". For graphics programs to operate properly, you must
include "QuickDraw" in the USES section of your program, as we have
done here. Then "thePort" and other default variables automatically be­
come global variables in your program. The "InitGraf" routine uses the
position of "thePort" to locate other default variab]es; thus, default vari­
ables must follow "thePort" in the exact order specified by the "Quick­
Draw" UNIT.

This particular scheme allows you to use a built-in routine (namely,
"InitGraf") to initialize variables that belong to your program. Since your
program may be loaded into different places in memory and these variables

Figure 4-4. ThePort and the GratPort

thePort

Current
grafPort

QUICKDRAW 7 5

may be placed in different positions within your program, you must tell
this routine where to find these variables. There are several ways to do
this. However, "InitGraf" expects you to use the location of the first default
variable to specify where all these variables are located. Thus you must
use this method.

If you examined the "QuickDraw" file, you would see the public
default variables declared in the VAR section of the " QuickDraw" UNIT
as follows:

thePort :
white :
black:
gray :
1 tGray :
dkGray :
arrow:
screenBi ts :
randSeed :

GrafPtr ;
Pattern;
Pattern;
Pattern;
Pattern;
Pattern ;
Cursor ;
BitMap ;
Longint ;

The first variable is "thePort", which we just described. Note that
"thePort'' is not the actual grafFort, merely a pointer to it. Calling "InitGraf"
initializes " thePort" to NIL, indicating that there is no current grafFort
without further action. Be patient; we will get to a real grafFort soon.

The next five public default variables are "patterns" permanently
available for filling or " painting" objects on the screen. Whenever you
need a white, black, gray, light gray, or dark gray pattern to fill a rectangle,
oval, or irregular shape, you simply pass the name of one of these variables.

The next default variable, "arrow", contains data for drawing the
familiar arrow cursor. In a later example program, we see how to define
our cursor shape.

Next comes a "BitMap" called "screenBits", which describes the
Macintosh screen. This default variable is useful to define rectangles that
cover the entire screen. In later chapters, they are used to set the limits
for dragging "windows" around the screen.

The variable "screenBits" also serves as a template for setting up
certain fields of the grafFort. We study BitMaps in detail when we study
grafPorts .

The last public default variable, "randSeed", is a seed for a random
number generator, which, surprisingly, is part of QuickDraw.

76 HIDDEN POWERS OF THE MACINTOSH

Now that we have quickly surveyed QuickDraw's public default var­
iables, let's list the private default variables, also initialized by "Initgraf":

wideOpen :
wideMaster :
wideData :
rgnBuff :
rgnindex :
rgnMax :
playPic :
playindex:
thePoly:
polyMax :
patAlign :
fontAdj :
fontPtr :
fontData :

RgnHandle;
RgnPtr;
Region ;
QDHandle ;
Integer ;
Integer ;
PicHandle ;
Integer;
PolyHandle ;
Integer;
Point ;
Lon tint;
FMOutPtr ;
FMOutRec ;

The data types range from regions and associated pointers to a com­
plex record structure called FMOutRec. They are defined in the IMPLE­
MENTATION section of QuickDraw, contained in the file "QuickDraw2".
They are only for internal use by QuickDraw's ROM routines, so we do
not discuss them in detail.

Initializing a GrafPort. Now let's talk about grafPorts. To really under­
stand what a grafPort is , you must know something about how graphics
are programmed on a computer.

Basically, a graphics program generates a sequence of graphics com­
mands that produce the picture on the screen or other graphics device,
such as a plotter or printer. These graphics commands generally fa ll into
two classes: drawing commands and attribute-setting commands. The
drawing commands actua lly produce immediate visible results, such as
lines or rectangles that appear on the screen, whereas the attribute-setting
commands set parameters (attributes), such as line width, that affect how
subsequent drawing commands are executed.

As attribute-setting commands are executed, their effects accumu­
late. For example, if you set the text size and then the text style, both
remain in effect until you change them.

If we didn't use attributes in this way, we would have to pass a large
number of parameters with each drawing command . Since many of these
parameters remain the same for long periods, thi s would be considerably
less efficient than using separa te attribute commands.

QUICKDRAW 77

A grafPort provides storage for the drawing attributes while they are
in effect. Later, when we study grafPorts in detail , we will see what these
attributes are for the Macintosh.

For now, understand that a grafPort is a Pascal record structure. That
is , it is identified by a single name and yet contains a number of fields
holding variables which can be any specified data type. For the grafPort,
there are 24 individual fields ranging from integers to handles to complex
data structures such as patterns, which we will study later in this chapter.

Storing all attributes in one structure allows one to quickly switch
from one set of attributes to another. This is useful for producing dynamic,
interactive displays in which the parts of one or more pictures are main­
tained at once. The "Ports" program at the end of the chapter illustrates
this.

When you begin to draw, each attribute has a default setting. For
example, lines are one unit wide and text has a plain style. Unfortunately,
the programmer has to actually execute a command to set up these default
attribute values.

Now let's return to our example program to see how the next couple
of s tatements in the main program initialize a grafPort.

The first of the two statements invokes Pascal's "NEW" procedure to
allocate space for the grafPort. The second statement calls QuickDraw's
"OpenPort" to initialize the various fields of the grafPort.

The "NEW" command expects a single parameter- a pointer to the
particular type of data structure that we wish to allocate space for. The
"NEW" command allocates an area in memory of the correct size and
places its address in the pointer so that it now points to the newly allocated
structure.

In our program, we pass "thePort", which is of type "grafPtr", defined
in the TYPE section of the UNIT QuickDraw as:

grafPtr = ·grafPort;

where "grafPort" is the Pascal record structure defined by:

grafPort = RECORD
device :
portBi ts:
portRect :
visRgn :
clipRgn :
bkPat :
fillPat :
pnLoc :

INTEGER;
BitMap ;
Re ct;
RgnHandle;
RgnHandle ;
Pattern;
Pattern;
Point ;

78 HIDDEN POWERS OF THE MACINTOSH

END ;

pnSize :
pnMode :
pnPat :
pnVis :
txFont :
txFace:
txMode :
txSize :
spExtra :
fgColor :
colrBi t:
patStretch:
picSave:
rgnSave:
polySave:
grafProcs :

Point;
INTEGER;
Pattern;
INTEGER;
INTEGER;
Style;
INTEGER;
INTEGER;
INTEGER;
Longint ;
INTEGER;
INTEGER;
QDHandle;
QDHandle ;
QDHandle;
QDProcsPtr ;

So this a grafPort. The entire structure sits in one continuous stretch
of memory. Within this structure are 24 fi elds , each with its own distinct
structure and use. Later, we will go through a number of these fields, but
we need some more background before that is possible. Meanwhile, let's
continue with this program.

The "OpenPort" routine expects one parameter of type "grafPtr",
which points to a grafPort that has been a !located but not yet initialized.
The routine "OpenPort" initializes the various fields of this structure. We
will indicate their "initial" values as we study them individually.

Initializing the Cursor. The last initiali zation step of our program calls
" InitCursor" to turn the cursor into the familiar arrow cursor that is stored
as one of our default variables.

The "InitCursor" routine expects no parameters. It simply sets the
cursor equal to the standard arrow shape. In our next example program,
we see how to define our own cursor shape.

The last step of our program calls "ClickButton" aga in to pause the
program before we allow it to terminate.

You now know the fundamentals of initia lizing the variables in
QuickDraw routines. You have a list of all QuickDraw default variables
and a list of all fi elds of a grafPort. We study some of these in the remaining
part of the chapter.

Cursors and Patterns
Let's look at cursors and patterns, some of the most fundamental default
variables, and how they are defined. An example program demonstrates

QUICKORAW 79

how to define and draw your own patterns and cursors. This gives you a
good start in learning about default variables and the fi elds of a grafPort.
At the same time, you see interesting results on the screen.

Defining Patterns
The Macintosh does not have color: patterns distinguish different areas
on the screen. They fill or "paint" shapes such as rectangles, ovals, and
polygons. In this section, we fill the entire screen with a crosshatched
pattern.

The Macintosh's video screen, like most modern graphics screens,
can be thought of as a two-dimensional array of small picture elements
called pixels. Patterns are constructed by turning some of these pixels
on, some off.

For the Macintosh, this pixel array is 512 across by 342 down. Each
pixel corresponds to a unique single bit in the computer's memory. To
change the appearance of the pixels on the screen, you change the binary
values stored in these bits of memory. A binary va lue of zero for a partic­
ular bit makes the corresponding pixel turn white, a binary value of one
makes the pixel turn black. This is opposite of many computer screens,
but it makes the Macintosh's screen look more like a normal sheet of paper
with dark " ink" on a white background.

A pattern is an eight-by-eight array of pixels that is repeatedly laid
down on the screen in this larger pixel array whenever you draw, fill, or
erase. Although patterns are geometric, they are stored in memory as
numbers whose bit values correspond to the white/black color of the
pixels.

QuickDraw uses the following data structure for a pattern:

Pattern = PACKED ARRAY [0 .. 7] OF 0 .. 255 ;

This means that a pattern requires eight bytes of memory.
Patterns can be defined by individually loading the eight bytes of this

array, or they can be defined using QuickDraw's "StuffHex" routine, which
allows you to see each bit of pattern as you load it. It is also possible to
store patterns as resources.

In this section, we learn how to "stuff" patterns. The routine "StuffHex"
expects two parameters: a pointer and a string of hexadecimal digits. The
routine converts thi s string into a sequence of binary numbers that it
places in memory starting at the address indicated by the pointer.

Our goal is to design and load a pattern using thi s procedure. We
start by marking off an eight-by-eigh t block on graph paper and filling in

80 HIDDEN POWERS OF THE MACINTOSH

I

the squares in this block based on what we want to see in our pattern.
Then we convert each row to a corresponding pattern of ones and zeros.
Each row forms an eight-digit binary number, which we write as a two­
digit hexadecimal number. We "pack" these eight hexadecimal numbers
(in top to bottom row order) to form a 16-digit number. The digits thus
form a string that we can use in the StuffHex routine to define the pattern
for the Macintosh (see Figure 4-5). This pattern serves as the background
for our next example program.

Defining Cursors
The cursor shape reminds the user of the current "mode"; that is, which
options are currently available to the user. As mentioned in Chapter 1, the
developers of the Macintosh made every effort to avoid modes. However,
in spite of those efforts, modes are inevitable. For example, the MacPaint
program has a number of drawing modes, including pattern editing,
"lasso" mode, line drawing, and erasing. These modes are indicated by a
variety of cursor shapes, including an arrow, a pencil, a paint bucket, a
cross-hair, and a lasso (see Figure 4-6).

Figure 4-5. Designing a Pattern

10000001 1000 0001 61
01000010 0100 0010 42
00100100 0010 0100 24
00011000

~
0001 1000 16

~ 00011000 0001 1000 ~ 16
00100100 0010 0100 24
01000100 0100 0100 42
10000001 1000 0001 61

u
6142241616244281

Figure 4-6. Cursor Shapes

p +

QUICKDRAW 81

In this section , you see how the cursor is s tored and how to define
and switch among your own cursor shapes.

Let's see how a cursor is stored. The cursor on the Macintosh's screen
resides in a data structure called "cursor", defined in the "QuickDraw"
UNIT as:

Cursor = RECORD
data : Bits16 ;
mask: Bits16 ;
hotSpot: Point;

END;

where " Bits16" is defined as:

Bits16 = ARRAY[O .. 15] OF INTEGER;

Both the ".data" and ".mask" fields are of type "Bits16", which is a
16 by 16 array of bits in memory that maps to a 16 by 16 array of pixels
on the screen . Notice that these cursor arrays are twice as big horizontally
and vertically as the pattern array just studied. This larger size allows the
cursor shape to have enough resolution to make interesting pictures, such
as those used by MacPaint. Other pattern arrays are smaller, so they are
repeated often in order to be recognizable even when they are "painted"
into small areas on the screen.

The cursor has two image arrays to indicate how it should cover what
is on the screen. For each bit position, the mask and data interact accord ing
to the following table:

If the mask bit is zero, the data bit determines whether or not the
pixel is unchanged or reversed. If the mask bit is one, then the data bit
determines whether the pixel is white or black.

Table 4-1. Data and Mask for Cursors

Mask Data Result

0 0 Same as original
0 1 Inverse of original
1 0 White
1 1 Black

82 HIDDEN POWERS OF THE MACINTOSH

The data and masks for cursors can be designed on graph paper in
the same way that patterns are designed. Figure 4-7 shows the mask and
data bit arrays for a "spider" cursor that we use in our last example
program.

The third field," .hotSpot", specifies the hot spot for the cursor. This
is the point, such as the tip of the arrow cursor or pencil cursor, where
the action is. For example, with the pencil cursor, the "hot spot" tip
indicates the position of the pixel to be changed. With the arrow cursor,
you place the hot spot within a region to select the corresponding object.

Figure 4-7. The Mask and Data for the Spider Cursor

Data Mask
Binary Hex Binary Hex

11 00 000 1 1000 00 11 C183 0000 0000 0000 0000 0000
1110 0001 1000 0111 E187 0000 0000 0000 0000 0000
0 111 000 1 1000 111 0 718E 0000 0000 0000 0000 0000
00 11 1 00 1 1 00 1 11 00 399C 0000 0000 0000 0000 0000
000 1 11 0 1 1 0 1 1 1000 1088 0000 0000 0000 0000 0000
0000 1111 1111 0000 OFFO 0000 0111 1110 0000 07EO
0000 0111 1110 0000 07EO 0000 0111 1110 0000 07EO
1111 1110 0111 1111 FE7F 0000 0111 1110 0000 07EO
1111 1110 0 111 1111 FE7F 0000 0111 1110 0000 07EO
0000 0111 1110 0000 07EO 0000 0111 1110 0000 07EO
0000 1111 1111 0000 OFFO 0000 0111 1110 0000 07EO
000 1 110 1 1 0 11 1 000 1088 0000 0000 0000 0000 0000
00 11 1 00 1 1 00 1 1 1 00 399C 0000 0000 0000 0000 0000
0 111 000 1 1000 0 111 718E 0000 0000 0000 0000 0000
1110 000 1 1 000 0 1 1 1 E187 0000 0000 0000 0000 0000
1100 000 1 1 000 00 11 C183 0000 0000 0000 0000 0000

QUICKDRAW 83

The Pattern Example
Our next example program, called "Pattern", illustrates patterns and cursors.

The program opens with a crosshatched screen that we developed
(see Figure 4-8). The cursor has the "spider" shape as described previ­
ously. As you move this cursor, it interacts with the crosshatched pattern
in the background to create a crawling effect.

Here is the program:

PROGRAM Pattern;
{$R- }{$X-}

84

USES
{$U obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{ $U obj / Toollntf

} Memtypes,
} QuickDraw,
} OSintf ,
} Toollntf;

Figure 4-8. The Pattern Program

~ >0<;>6
"""'

\,><,\>< ~

*' .;<,. 'J6(

~
:X:

:> ;(<,

'V

O?o< M
>6

K XX
""' 0.

® 0 'V

X"). ~ 0.
"""' ~

;x; ')X
>6

~ 2 ~ ~ 2 ::><::><~

""' ~~
">(' ~)?< ?Q< O.« ~~ ~ ?¢<"

~~ ><>® ~ 6 >N'
~ ')(")

~>(> ""' "'-?Q<
"0.">(' ')(rx

0.>¢<K 0N
">(' X: N<.

">('
~ ~ % w ,N<,l<,l' ,(<,.>yo, " '"" "" '"" "'"'

HIDDEN POWERS OF THE MACINTOSH

~

XX>O :.%

(<,. ~ ~

~

>6

.;<,.

~ ~~
'Y'

~ ~~
~
-6.

Qo -6.

""'
" ,,l',l) ~

PROCEDURE ClickButton;
BEGIN

WHILE Button DO ;
WHILE NOT Button DO ;
WHILE Button DO;

END ;

PROCEDURE SetUpSys ;
BEGIN

InitGraf (@thePort);
InitFonts ;

{Initial ize QuickDraw default variables}
{Initialize Font manager}

NEW (thePort);
OpenPort (thePort);

END ;

PROCEDURE MakePat ;
VAR

Pat Pattern ;
Cur Cursor ;

BEGIN

{Set up grafPort }

StuffHex (@Pat , '8142241818244281 ') ;
FillRect (thePort · .portBits . Bounds , Pat);

StuffHex (@Cur . data ,
' C183E187718E399C1DB80FF007EOFE7YYE7F07EOOFF01DB8399C718EE187Cl83 ');

StuffHex (@CUr. mask ,
' 0000000000000000000007E007E007E007E007E007EOOOOOOOOOOOOOOOOOOOOO ');

SetPt (Cur . hotSpot , 8 , 8);
SetCursor (Cur) ;

END ;

BEGIN {ma in program}
SetUpSys ;
MakePat ;
ClickButton;

END .

Data Structures

The "Pattern" program has the standard USES section.

Procedures

The "Pattern" program has a number of procedures, including the
"ClickButton" procedure that appeared in the first program.

QU!CKORAW 85

"SetUpSys" Procedure. The procedure "SetUpSys" contains some of the
same initialization steps that comprised the main part of the last program.
In future programs, we place all initialization steps in a routine of this
name.

Making Patterns and Cursors. The "MakePat" procedure sets up the
crosshatched pattern on the screen and the spider cursor. It has two local
variables: a pattern, "Pat", and a cursor, "Cur".

The procedure begins by calling the built-in "StuffHex" routine to
specify the pattern. We place "@Pat" in its first parameter to point to the
pattern "Pat", declared as one of its local variables. We place the desired
string of hexadecimal digits in the second parameter.

The procedure then calls "StuffHex" two more times: once to define
the ".data" field of our cursor, and once to define its ".mask" field. We
also call "SetPoint" to define the location of the hot spot. We then call
'' SetCursor'' to install the cursor.

The Main Program
The main part of the program calls our three routines in sequence. First,
it calls "SetUpSys" to perform the proper initializations. Second, it calls
"MakePat" to draw the new background pattern and set the spider cursor.
Third, it calls "ClickButton" to pause, waiting for the user to hit the
mouse button before the program exits.

Notice that the program contains no commands to update the cursor
as the mouse is moved by the user. Instead, this is automatically done by
the Macintosh's Operating System as a background task. That is, every
time the mouse is moved, interrupts are generated that update the coor­
dinates of its position, and periodically (as often as 60 times a second)
the system automatically redraws the mouse on the screen.

Memory-Mapped Video
Now let's study QuickDraw's video screen and data structures. We begin
with memory-mapped video, bitlmages, and bitMaps. Later, we introduce
coordinate systems, points, rectangles, and regions, concepts that form
shapes of increasing complexity.

Pixel Array
As we have shown, the Macintosh's video screen can be viewed as a two­
dimensional array of pixels. The position of each pixel is described by
two indices that correspond to its row and column position. Both indices

86 HIDDEN POWERS OF THE MACINTOSH

run from zero, and the index value of [0,0] specifies the pixel in the upper
left corner of the screen. A value [i,j] indicates the pixel in the ith column
and jth row of the screen. That is, the first index gives the horizontal
position, and the second gives the vertical position, of the pixel.

Video RAM
The bits that map to the screen reside in two areas of memory in the
Macintosh called video RAM. The exact location of these areas depends
on the amount of memory in your Macintosh. On the 128K Macintosh, the
primary area starts at $1A700 (hexadecimal) and a secondary area starts
at $12700. On the 512K Macintosh, these are at $7 A700 and $72700,
respectively. In either case, both areas contain 21,888 bytes. Normally, the
primary area is used, but there is a bit in the Mac's memory that switches
back and forth between these two areas. This requires some special pro­
gramming because the secondary area is normally for other purposes.

As with most microcomputer memory, the bits in the Macintosh's
video memory are organized into bytes. Thus, video memory behaves just
like regular memory. However, this adds an extra level of complexity to the
mapping between the pixel array and the video RAM. That is, each bit is
identified by a byte address and a bit position within that byte, whereas
pixels are identified by their horizontal and vertical position numbers.

Raster Scanning
To understand this mapping, it helps to know how the video hardware
inside the Macintosh works. The video hardware constantly scans the
video RAM, converting its digital information into a video signal that
produces the picture on the screen. As the hardware scans the memory,
an electron beam scans the screen in what is called a "raster" pattern­
a series of closely spaced horizontal lines.

Simultaneously scanning the memory and the screen creates the map­
ping from the memory to the screen. Each bit in memory maps to the
unique pixel position on the screen where the beam is located when that
bit is scanned.

In the Macintosh, bytes are scanned in the increasing order of their
addresses, from the beginning of video memory to its end. Within each
byte, the bits are scanned starting with bit 7 and decreasing in order to
bit 0 (see Figure 4-9).

As a result, each byte of video memory maps to a horizontal row of
eight pixels on the screen, with bit 7 on the left and bit 0 on the right (see
Figure 4-10).

QUICKDRAW 87

The first byte of video RAM maps to the eight pixels on the left of
the top row of the screen. The next byte maps to the next eight pixels to
the right, and so on. A total of 64 bytes maps in th is way to the top row
of the screen. Each successive 64 bytes of video memory map to a new
row of the screen in consecutive order. Thus, the 21,888 bytes of video
RAM are divided into 342 continuous sections of 64 bytes, one section
for each row of display.

Formulas
The corresponding bit for the pixel position [i,j] sits in a byte whose
address in video RAM depends on the row and column indices according
to the following formula:

Base Address+ 64*j + int (i / 8)

The row index j is multiplied by 64 because there are 64 bytes of
video RAM per row. The column index is divided by eight because there
are eight pixels per byte. Note that 64 is the row length for the Macintosh
screen, so this number figures significantly in the mapping formula.

The formu la:

7 - i mod 8

Figure 4-9. Scanning the Bytes of Memory

Bits-+

Scan order
8 0

7 6 5 4 3 2 1 0
~1 2 3 4 5 6 7 8

y 1 9 10 11 12 13 14 15 16
t

2 e 17 18 19 20 21 22 23 24

s 3 25 26
~

Memory

88 HIDDEN POWERS OF THE MACINTOSH

gives the bit position within the byte. The term " i mod 8" gives the
remainder when the horizontal index i is divided by the number of pixels
per byte (that is, eight) .

Bit/mages
A Bitlmage is a simple, yet elegant , Quickdraw data structure correspond­
ing to the organization of video RAM. Its information indicates how an
area of memory holds images. This leads to the concept of BitMap, which
controls QuickOraw operations at the most primitive level.

Technically, a Bit! mage is an area of memory defined by a base address
(first address) and a row length measured in bytes. In general , the base
address can be anywhere in memory and the row length can be any non­
negative integer. However, for the Macintosh screen, the base address is
the beginning of video memory and the row length is equal to 64 bytes.
Bitlmages with other base addresses can store pictures for later display
on the screen, and Bitlmages with other row lengths can build images for
display on other devices, such as printers or flat-screen displays.

Figure 4-10. Mapping Bits to the Screen

Memory Screen

QUICKDRAW 89

BitMaps
QuickDraw never declares "Bitlmage" as a data type. Instead, it incor­
porates the basic informat ion of a "Bitlmage" in the data structure called
"BitMap". The default variable "screenBits" is of this type, as is the
".portBits" field of a grafPort. Here is the "official" Pascal definition of a
"BitMap" :

BitMap =RECORD
BaseAddr : Ptr ;
RowBytes : INTEGER;
Bounds : Rect ;

END ;

The first field , ".BaseAddr", is of type "Ptr". This stores the address
of the first byte of the screen and locates the corresponding Bitlmage in
memory. The second field , called "RowBytes", is of type INTEGER and
defines the mapping. It gives the number of bytes per row. Multiplying
this by eight gives the number of pixels per row on the real or imaginary
screen. The last field, called "Bounds", is of type "Rect". It gives the
corners of this screen , thereby delimiting the picture.

It is important to realize that the BitMap does not contain the Bit­
Image (actual data on the screen). It merely points to and describes the
data. That is, it contains the starting address, the size, and the number of
bytes per row of this area, but not the contents of any bytes in it.

Coordinate Systems
In the last section, we saw the screen as a doubly indexed array of pixels.
We now place a coordinate system on it to define "points", "rectangles",
and "regions". The coordina te system allows us to address points more
eas ily and provides minimum and maximum horizontal and vertical lim­
its for our screen images.

At the lowest level, all such coordinates are stored as type INTEGER.
Recall that the type INTEGER is stored in the Macintosh as ordinary
signed 16-bit integers. As a result, any Quickdraw coordinate value ranges
from -32,768 to 32,767 and can take on only integer values.

QuickDraw approaches geometric objects differently than it does pix­
els on the screen. The difference is subtle but important. Points are con­
sidered zero-dimensional objects; that is, they are infinitesimally thin,
with zero width and height. On the other hand, pixels are two-dimen­
sional; that is, they have unit width and height (see Figure 4-11).

90 HIDDEN POWERS Of THE MACINTOSH

QuickDraw has a coordinate system for the screen that closely cor­
responds to the pixel indexing. The horizontal axis runs across the top of
the screen from left to right. The vertical axis runs along the left side of
the screen from top to bottom. The units for the coordinates in each
direction are measured in pixels (see Figure 4-12).

As a result, the point with coordinates (i,j) always falls on the upper
corner of the pixel indexed by [i,j]. In particular, the upper left corner of
the screen has coordinates (0,0) (see Figure 4-12). Please note the use of
round brackets for coordinates and square brackets for indices.

Each QuickDraw graphics entity is defined by its own data structure,
which describes how its coordinates are stored in the Macintosh's memory
and accessed by the programmer. This chapter examines how this applies
to points, rectangles, and regions.

Figure 4-11. Points and Pixels

Point===l> 0
L:J

Figure 4-12. The Coordinate System

Origin
"\, Hor1zontel ~

v
e
r
t
i
c
e
1

QUICKDRAW 91

Points
Let's look at the simplest graphics entity, the point. The point forms the
basis of other shapes, such as rectangles and regions.

Mathematically, a point is described by a coordinate pair (x,y). For
QuickDraw, this means that a point requires two 16-bit words of memory
(see Figure 4-13). The first contains the vertical coordinate (y coordinate),
the second contains the horizontal coordinate (x coordinate). This is how
the assembly language programmer views points.

The Pascal programmer must deal with two ways to access points,
creating an additional layer of complexity. Both ways are directly related
to and are, in fact, equivalent to the low-level description. Two methods
give the programmer more freedom. However, we normally use neither
method, referring instead to points without getting into their internal
structure.

In the first method, a point is regarded as a record consisting of two
fields, one for each coordinate. If Pt is a QuickDraw Pascal variable of
type "Point", then Pt.v is the vertical coordinate (y coordinate), and Pt.h
is the horizontal coordinate (x coordinate).

The second method is more complicated. Here, the point is regarded
as a record with one field, which is an array of two integers. That is, if
"Pt" is a QuickDraw Pascal variable of type "Poinf', then Pt.vh[v] is its
vertical coordinate and Pt.vh[h] is its horizontal coordinate. Here, "v"
and "h" are identifiers belonging to a QuickDraw scalar type called
"VHSelect". This method allows the programmer to use FOR loops and
the like to index through the coordinates of the point. However, only two
coordinates hardly make it worth the effort.

Figure 4-13. Internal Storage of Points

Words of memory

Vertical Coordinate J
Point

Horizon t a 1 Coordinate

92 HIDDEN POWERS OF THE MACINTOSH

These structures are built into the software as either an integral part
of the software (in the case of the "Instant" Pascal interpreter) , or external
fi les that must be " used" (in the case of the Pascal compiler).

For the Pascal compiler, the QuickDraw UNIT contains the following
TYPE declarations:

VHSelect = (v, h);

Point = RECORD CASE INTEGER OF

END;

0: (v : INTEGER; h : INTEGER);
1: (vh : ARRAY [VHSe l ec t] OF INTEGER)

Experienced Pascal programmers will recognize that "Point" is a
variant record structure; that is, there are two ways to access this structure.
These correspond to the preceding descriptions. The type "VHSelect" is
defined first. It is a scalar type consisting of two identifiers , "v" (for
vertical) and "h" (for horizontal). This assists in defining the second
variant form. Next, "Point" itself is defined either as two integer fields,
".v" and ".h", or as one field , ".vh", which is an array of two integers.

Mouse Point Example Program
Now that we understand "Point", let's look at a Pascal program that plots
mouse points on the screen using the formulas developed earlier.

In this example we use both forms of the data structure for a point,
though this is not good programming practice unless special reasons call
for mixing them.

When this program is run , we first see a completely white screen. If
we move the mouse, we see a trail of darkened pixels where the mouse
was (see Figure 4-14). If the mouse is moved rapidly, the pixels are far
apart; if the mouse moves slowly, the pixels tend to form a continuous
trail. We have "hidden" the mouse cursor to prevent the cursor from
interfering wi th the pixels being plotted. You can exit the program by
moving the mouse point to the top of the screen.

PROGRAM Pt ;
{ $R- }{ $X- }

USES
{$U obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{$U obj / Toolintf

}Memtypes ,
}Quic kDraw,
}OSintf ,
}Toollntf ;

QUICKORAW 93

VAR
MousePt : Point ;

PROCEDURE SetUpSys ;
BEGIN

InitGraf(@thePort) ;
NEW (thePort);
OpenPort(thePort);
EraseRect (thePort · . portBits. bounds);
HideCursor;

END;

PROCEDURE PutMouse (thePt : Point);
BEGIN

BitSet (POINTER(ORD(screenBits.baseAddr)
+ screenBits . rowBytes * thePt . v

+ thePt . h DIV 8) ,
thePt . vh[h) MOD 8);

END ;

BEGIN {main program}
SetUpSys ;
REPEAT

GetMouse(MousePt);
PutMouse (MousePt) ;

UNTIL MousePt . vh (v] < 20 ;
END .

Data Structures

This program has the same USES section as our first program, allowing
us access to the various data types, data variables, and procedures used
by QuickDraw and other parts of the Macintosh 's built-in software.

Figure 4-14. Output of the Mouse Point Program

94 HIDDEN POWERS OF THE MACINTOSH

The VAR section of this program contains one variable- "MousePf•,
of type "Point". The type "Point'• is defined in the UNIT "QuickDraw,.

"SetUpSys" Procedure

The procedure "SetUpSys, initializes the system for this program. It
contains some of the same initialization steps as the "SetUpSys, routine
of the last program. However, it also contains a step to erase the screen, a
task that was not necessary in the last program because the screen was
filled with a pattern immediately after the "SetUpSys, routine was called.
In the present program, we erase the screen using the "EraseRect, pro­
cedure on the ".bounds, field of the" .portBits, field of the gra£Port. The
".portBits•• field is of type "BitMap••, discussed earlier.

We also call "HideCursor•' so that the cursor does not interfere with
the workings of our program. In future programs, we place all initializa­
tion steps in a routine of the same name, "SetUpSys,, that we used for
this routine.

"PutMouse" Procedure

The procedure "PutMouse" plots a pixel whose position is give~. It ex­
pects one parameter of type "Point,, which specifies the location of the
pixel.

The procedure uses the "BitSet, procedure. "BitSet'' expects two
arguments. The first argument must be of type "Ptr" and should point to
a location in memory. The second argument of BitSet is of type Long
Integer and gives the bit position, counting from left to right with bit
position 0 on the left.

The "BitSet" routine makes the bit in the specified bit position of
memory equal to one, leaving the other bits in memory alone (see Figure
4-15).

Figure 4-15. BitSet Positions

=====~Blposition

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

I I I II~'~'~'~~~~~~
QUICKDRAW 95

The " BitSet" routine in ROM is very clever. It is not affected by byte
(8-bit) versus word (16-bit) or even long word (32-bit) addressing consid­
erations. It uses the BSET processor instruction, which acts only on bytes
when it addresses memory; yet the ROM routine properly handles very
large bit positions. To accomplish this , the ROM routine uses some tricky
code that involves a special indexing addressing mode.

Let's look at the two parameters of "BitSet" in more detail. First, look
at the type "Ptr" in the first parameter. The type "Ptr" is defined in the
TYPE section of "Memtypes" by the following two type statements:

SignedByte = -128 .. 127 ;
Ptr = · signedByte;

To the Pascal compiler, this means that type " Ptr" parameters can point
to any byte in memory. Recognizing this, the Pascal compiler uses the
byte addressing mode when translating memory fetched by this pointer.

Note that Macintosh Pascal does not interpret this declaration in the
same way. It treats a variable declared in this way as a pointer to integers
and uses the 16-bit word addressing mode. when it accesses data using
such a pointer. This can be disastrous when the address contained in the
pointer is an odd number: the MC68000 processor does not accept odd
addresses for 16-bit words. In fact, when the processor senses an odd
address while in word mode, it interrupts and goes to a special error
routine maintained by the Operating System.

In the expression for the first parameter, we use the formula developed
earlier to compute the address of the appropriate memory location. We
use the fi elds ".baseAddr" and ".rowBytes" of the default variab le
"screenBits" and the ".v" and ".h" fields of our own "Point" parameter.
We use the first variant form of the data type " Point" to individually grab
the horizontal and vertica l coordinates of the point.

In the formula , the ORD function converts the pointer "screen­
Bits.baseAddr" to a long integer, and the POINTER function converts the
long integer address back to a pointer.

Now let's look at the second parameter. Notice that the BitSet routine
numbers the bits opposite to their usual order. This simplifies the formula
for plotting pixel bits. We use the formula:

thePt . vh [h] MOD 8

96 HIDDEN POWERS OF THE MACINTOSH

instead of the reversed formula:

7 - thePt . vh [hl MOD 8

that we presented above.
At this stage of the program, the second variant form for "Point"

(" .vh[h] ") is used with " thePt" in our Bi tSet command. This simply
illustrates that particular variant form. Normally, you should use the firs t,
more straightforward variant form (" .h").

The Main Program

The main program begins by calling the " SetUpSys" procedure to ini­
tialize QuickDraw.

Next is the REPEAT loop where the program goes round and round ,
getting the mouse position and plotting it on the screen. The first statement
calls the ROM routine "GetMouse" to determine the position of the mouse;
then a second statement routine calls our " PutMouse" to plot the corre­
sponding pixel.

The UNTIL statement at the bottom of the REPEAT loop monitors the
vertical position of the mouse, continuing the loop as long as the mouse
stays below the menu bar that occupies the top 20 rows of the screen .
Again, the second variant form for "Point" is for illustration.

Rectangles
A level of complexity above points are rectangles. They describe shapes
such as ovals and rounded rectangles and are used in the structure of a
region, which is fundamental to Macintosh's overlapping windows.

This section describes a QuickDraw rectangle as a variant record
structure of four coordinate variables or two "Points".

In computer graphics, a rectangle is a four-sided figure whose sides
are always parallel to the coordinate axes. A rectangle is defined by its
four corner points (x1,y1), (x1,y2) , (x2,y1) , and (x2,y2) (see Figure 4-16).
It can be thought of as the set of points whose x coordinate lies between
x1 and x2 and whose y coordinate lies between y1 and y2.

In a QuickDraw rectangle, the point (x1,y1) is placed at the upper
left corner of the rectangle, point (x1,y2) is the lower left corner, (x2 ,y1)
is the upper right corner, and (x2,y2) is the lower right corner of the
rectangle. In consideration of this arrangement, QuickDraw refers to x1
as " left ", x2 as " right", y1 as " top", and y2 as "bottom".

QUICKDRAW 97

For example, the screen itself is in the rectangle given by:

left = 0

right = 512

top= 0

bottom = 342

Notice that (x,y) are the coordinates of points in the rectangle, not
pixel indices. Pixel indices would be bounded by 511 and 341, not 512
and 342 (see Figure 4-17). Also notice that the coordinates have a definite
order: in this example, the value of "left" is less than the value of "right",
and the value of "top" is less than the value of "bottom". In general, if
"left" is greater than or equal to "right", or if "top" is greater than or
equal to "bottom", then no points can satisfy the inequalities. In this
case, we say the rectangle is empty.

QuickDraw also specifies rectangles by the pair of opposite corners
at the top left and bottom right of the rectangle (see Figure 4-18). The top
left corner is called topLeft and has coordinates (left,top). The bottom
right corner is called botRight and has coordinates (right,bottom). This
specifies the same information as before, only in a slightly different format.
Again, having two ways of doing something gives more freedom, allowing
the programmer to use the more convenient form.

Look at the example of the entire screen again. It is defined by the
opposite corner points (0,0) and (512,342) (see Figure 4-19). Notice that

Figure 4-16. Defining Rectangles

(x_1 .. _y:;_1_) _________ ---=-Cx__,2 .. y 1)
y1 -- r--

y2--
(x 1 .. y2) (x2 .. y2)
I~============~ I

x1 x2

98 HIDDEN POWERS OF THE MACINTOSH

the point topLeft , with coordinates (0,0). is the upper left corner of the
upper left pixel of the screen; the point botRight, with coordinates (512,342),
is the lower left corner of its lower left p ixel.

The Pascal data structure for the type "Rectangle" is as fo llows:

Rect = RECORD CASE INTEGER OF
0 : (top : INTEGER;

left : INTEGER;
bottom : INTEGER;
right : INTEGER) ;

Figure 4-17. Bounding Rectangles

~
rJi

;::

t/

Point
(511 ,341)

Pixel
[511 ,341)

' Point
(512,342)

Figure 4-18. Opposite Corners Define a Rectangle

(xl, yl)

(x2. y2)

QUICKDRAW 99

1 : (topLeft : Point ;
botRight : Point)

END ;

Again, QuickDraw uses a variant record structure. In the firs t form,
the four-integer coordinate values that define the rectangle are listed in
the following order: top , left , bottom, right. In the second form, the two
opposite points that define the rectangle are listed.

It is important to note that the forms are equivalent and lead to the
same internal storage of relevant coordinate information. To an assembly
language programmer this structure is just a sequence or list of four 16-
bit integers (see Figure 4-20).

An Example of Rectangles
The following example of a Pascal program illustrates rectangles in their
various forms (see Figure 4-21) . The program defines three rectangles­
a large square; a low, wide rectangle; a high, thin rectangle- then uses
them to draw a checkerboard pattern on the screen. After each rectangle
is drawn, you must click the mouse button to continue.

PROGRAM Rectangle ;
{ $R- }{ $X- }

(0, 0)

Figure 4-19. The Screen Limits

(51 2, 342)

100 HIDDEN POWERS OF THE M ACINTOSH

USES

VAR

{$U obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{$U obj / Toolintf

}Memtypes,
}QuickDraw,
}OSintf ,
}Toollntf ;

Square , Wide, Tall : Rect ;

PROCEDURE ClickButton ;
BEGIN

While Button DO;
While NOT Button DO ;
While Button DO ;

END;

PROCEDURE SetUpSys ;
BEGIN

InitGraf (@thePort);
NEW (thePort);
OpenPort (thePort);
EraseRect (thePort · . portRect) ;
InitCursor ;

END ;

BEGIN {main program}
SetUpSys ;

Square . left := 100 ;
Square.top : = 30;

Figure 4-20. Internal Storage of Rectangles

Verti cal first point

Horizontal first point

Vert ical second poi nt

Horizontal second point

Rectongle

QUICKDRAW 101

Square . right := 300;
Square . bottom : = 230;
FrameRect (Square) ;
Cl ickBut ton;

Wide . topleft . h : = 100;
Wide . topleft . v : = 100 ;
Wide . botright . h : = 300 ;
Wi de . botright .v : = 160 ;
PaintRect (Wide) ;
ClickButton;

Tall . topleft . vh [h] : = 170 ;
Tall . topl eft . vh [v] : = 30;
Tall . botright . vh[h] 230;
Tall . botright . vh[v] 230;
InvertRect (Tall);
ClickButton;

END .

Data Structures

The USES section is the same as in the last compiler Pascal program. The
VAR section declares the three rectangles "Square", "Wide", and "Tall"
to be of type "Rect''.

Procedures

This program uses the same "ClickButton" and " SetUpSys" procedures
that appeared in previous programs.

Figure 4-21. The Rectangles

102 HIDDEN POWERS OF TH E MACINTOSH

The Main Program

In the main part of the program we specify the coordinates of these three
rectangles. We demonstrate different ways to describe each rectangle. The
square is specified by the first variant form, which directly addresses each
coordinate: left, top, right, and bottom. The wide and the tall rectangles
are specified by the second variant form of "Rect'', in which two opposite
corner points are specified. The wide rectangle uses the first variant form
of "Point", and the tall rectangle uses its second variant form. This gives
all possible variant forms of "Rect''.

The first rectangle is "framed" using the "FrameRect" QuickDraw
routine. The second rectangle is "painted" (filled with black) using the
"PaintRect" QuickDraw routine, and the third rectangle is "inverted"
(white changes to black and vice versa) using the "InvertRect" QuickDraw
ROM routine. After each rectangle is drawn, we call "ClickButton" to
pause the display.

In practice, the QuickDraw routine "SetRect" is more efficient to
specify the corners of a rectangle. It expects five parameters: a rectangle
and the four coordinates that delimit it. We see examples later.

Regions
Regions are important as the fundamental building blocks used by the
Window Manager to draw and manage window parts such as the goAway
box, the grow area, and the drag region; and for the Control Manager to
draw control parts such as scroll bars, check boxes, and buttons. Regions
are also used by the Window Manager to control visibility and updating
when windows overlap.

Regions have been carefully designed so that these window and con­
trol parts can be quickly drawn on the screen, then found with the mouse
in any shape they take on. Understanding how regions work is the first
step in understanding how the Macintosh's interactive programming fa­
cilities work.

In this section we will study regions, an essential part of the picture­
making environment in which QuickDraw operates. Regions control the
visibility of objects drawn on the screen and can define and display
complicated shapes.

This section discusses the internal structure of regions. An example
program demonstrates how to display the internal structure of any region.

QUICK DRAW 103

Regions and Data Structures
A region is a dynamic data structure. That is, at different times a particular
region may contain different amounts of data. To help manage this, each
region contains an integer called "rgnSize" that tells how many bytes of
data it currently contains.

The simplest region contains 10 bytes and has the shape of a rectangle
(see Figure 4-22). We call these regions rectangular. In this case, the 10
bytes form five 16-bit integers, the first of which is "rgnSize"; the re­
maining four are corner coordinates of this rectangle, called the "rgnBBox".

In general, a region can have any shape that can be drawn within the
QuickDraw coordinate system (with its 16-bit integer coordinates) (see
Figure 4-23). If this shape is not a rectangle, then we call the region
nonrectangular.

Nonrectangular regions contain the 10 bytes described above, plus
additional bytes that give coordinate information about the "corners" of
a shape. In this case, the rgnSize is greater than 10 and the rgnBBox is a
rectangle that surrounds the shape, a description that aptly fits its full
name, region boundary box.

The data that defines the shape of a nonrectangular region is orga­
nized in an ingenious way. It is a list of integers that makes up a sequence
of fields, each of which specifies the corner points of the shape that lie
along one horizontal line in QuickDraw's coordinate system. Each field
begins with a y coordinate that uniquely specifies the height of the hori­
zontal line, followed by a sequence of x coordinates that specify the
horizontal positions of its corner points. Each field terminates with an
integer whose value is 32767, and the entire list terminates with an extra

Figure 4-22. Rectangular Regions

10
y 1

(X 1, y 1)

x1
y2
x2

(x2, y2)

104 HIDDEN POWERS OF THE MACINTOSH

integer with the value of 32767. The fields are given in increasing order
of their y coordinates, and the x coordinates within each field are also
given in increasing order.

Here is an example of the data for a simple L-shaped region (see
Figure 4-24). First , it is shown as a list of integers. This is how it would
be stored in the Macintosh's memory:

100, 100, 200 , 32767 , 200 , 200 , 300, 32767, 300 , 100, 300, 32767 , 32767

Now let's break it into fields, using the value 32767 as a terminator for
each field .

100, 100 ,
200, 200,
300, 100,
32767

200,
300 ,
300,

32767'
32767'
32767 ,

Finally, let's extract the coordinates of each corner point of this shape.
Remember that the first integer of each field is the y coordinate and the

Figure 4-23. Nonrectangular Regions

r

~ ·

QUICKDRAW 105

subsequent integers are x coordinates. Look carefully to see where each
coordinate fits.

(100 , 100)' (200 , 100)
(200 , 200)' (300 , 200)
(100 ,300)' (300 , 300)

Keeping Track of a Region's Data
A region is a dynamic structure: it moves in memory as it grows or shrinks
or as computations are performed on it. To keep track of where the data
are currently located, regions are accessed through a series of pointers.

Each region is normally accessed through a pointer called the region
handle. The region handle does not point directly at the region but rather
to another pointer called the region pointer, which points to the actual
data. In Chapter 3, we discussed the reasons for such a system.

To the Pascal programmer, a region is defined by the following set of
Pascal TYPE statements in the external QuickDraw file:

RgnHandle = "RgnPtr ;
RgnPtr = "Region ;
Region = RECORD ;

rgnSizc : INTEGER;
rgnBBox : Rect ;

END;

Figure 4-24. An L-Shaped Region

(100, 100) (200, 1 00)

(300,200)

(100, 300)
(300,300)

106 HIDDEN POWERS OF THE MACINTOSH

Here we see that type RgnHandle is a pointer to objects of type RgnPtr,
that type RgnPtr a pointer to objects of type Region , and that type Region
a record structure containing fields for "rgnSize" and "rgnBBox" (see
Figure 4-25).

Note that the "nonrectangular" part of the data is not declared be­
cause it is managed by the QuickDraw routines. Pascal needs to know
only the total size of the data area.

The Region Program
Here is a Pascal program that defines the preceding region in a natural
way by " unioning" two rectangular regions, then di splaying the corner
points of this figure (see Figure 4-26) .

This kind of exploratory program might be written to discover how
something complex works in the computer. It contains a section to generate
an object in a normal way and a procedure to pick this structure apart.
In this case, use the "ShowCorners" procedure to peek at any region of
your own design, produced by any method.

PROGRAM Region;
{ $R- }{$X- }

USES
{$U obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{ $U obj / Toolintf

}Memtypes,
}QuickDraw,
}OSintf ,
}Toolintf;

Figure 4-25. Region Pointers and Handles

::

0 ' :: ::

:: l'
:: .

QU ICKDRAW 107

VAR
RgnA , RgnB : RgnHandle ;

PROCEDURE ClickButton;
BEGIN

While Button DO ;
While NOT Button DO ;
While Button DO ;

END;

PROCEDURE SetUpSys ;
BEGIN

I nitGraf(@t hePort) ;
NEW (thePort);
OpenPort (thePort);
EraseRe ct (thePort · . portRec t) ;
Initcursor ;

END;

PROCEDURE ShowCorners (theRgn : RgnHand l e) ;
TYPE

numArray = ARRAY[l .. 1000] of INTEGER;
numPtr = · numArray ;

VAR
nums : numArray ;
dot : Re ct ;
x , y , j : INTEGER;

BEGIN
nums nurnPtr (theRgn ·) ·;

Figure 4-26. The Region Screen

108 HIDDEN POWERS OF THE MACINTOSH

IF nums[1) > 10 THEN
BEGIN

j : = 6;
REPEAT

y : = nwns [j I ;
j : = s ucc (j) ;
REPEAT

x : = nwns [j I ;
j : = succ (j) ;
SetRect(dot , x-2 , y-2 , x+2, y+2) ;
Paintoval (dot) ;

UNTIL nwns [j] = 32767 ;
j : = succ (j) ;

UNTIL nwns[j] = 32767 ;
END; {if }

END ;

BEGIN {main program }
SetUpSys ;

RgnA : = NewRgn ;
SetRectRgn (RgnA , 100 , 100 , 200 , 300) ;

RgnB : = NewRgn ;
SetRectRgn(RgnB, 100, 200 , 300 , 300) ;

UnionRgn(RgnA , RgnB, RgnA) ;
FillRgn(RgnA , ltGray) ;

ShowCorners(RgnA) ;
Click.Button;

END .

Data Structures

The USES section is the same as in previous examples.
The VAR section declares two region handles: RgnA and RgnB. They

are handles, not the actual data. They provide access to the data.

Procedures

The first two procedures, "ClickButton" and "SetUpSys", are the same as
in previous programs. The third procedure, "ShowCorners", is new. It
displays the corner points of a region. It is a general-purpose routine that
can display the corners of any region. Use it freely to peek at other regions
as you learn to construct them. You will be surpri sed at how naturally
even curved objects such as ovals can be represented by corners; of course,

QUlCKORAW 109

it takes a lot of corners . That is why there are a thousand entries in the
number array "Nums" in this procedure.

The "ShowCorners" procedure expects one parameter of type
rgnHandle (that is, a region handle). Its TYPE section defines two types:
"numArray", which is an array of a thousand integers , and "NumPtr",
which is a pointer to an object of type numArray. We use these types to
access the integers stored in our regions.

In the VAR section of this procedure, the variable " nums", of type
"numArray"; "dot", which is a rectangle; and integers x, y, and j are
declared.

In the main part of "ShowCorners", the assignment s tatement:

nums : =numPtr (theRgn') ' ;

grabs the data for the region from where it is stored dynamically and
copies it into static storage, where its internal structure can be carefully
examined. This s tatement is rather tricky because it accomplishes some­
thing that Pascal normally tries to prevent, namely, accessing one type of
data according to the ru les for another type. In our case, the data is
originally s tored as a region, whereas we wish to access it as an array of
numbers. Further complications are that the original structure is of vari­
able length and position in memory and is accessed indirectly through a
handle ("theRgn"). whereas we wish to access it directly as an array
(" nums") of fixed size and position in memory.

Let's see how this statement works, examining it step by step starting
with region handle " theRgn". We begin by suffixing a caret to this handle
to obtain " theRgn • ", a pointer to the region. Next we apply the type
identifier " numPtr" like a function to convert this region pointer to an
expression of type " numPtr", which normally points to integer arrays of
type "numArray".

The use of this type identifier is an example of type coercion, a
concept we studied in Chapter 3. In this case, we perform the type
coercion between the pointers because the data types have different sizes
and thus cannot be coerced from one to the other.

The last step is to suffix another caret to obtain an expression of type
"numArray", which refers to the data itself as an array of integers. As­
signing this expression to the variable "nums" makes the transfer.

The above ass ignment statement moves the data in the entire structure
to "nums". We need to move the data because the region is a dynamic
structure and can be located at different places in memory as the program
is executing, whereas " nums" is a static structure whose data remains in
the same location throughout the execution of the "ShowCorners" proce-

110 HIDDEN POWERS Of' THE M t\CINTOSH

dure. Since we need the data throughout this procedure, we need to secure
it at the beginning. (We found this s tep to be absolutely necessary to make
this particular procedure work in a cons istent manner.)

The final part of the "ShowCorners" procedure is conditional. That
is, if the region is specified by its rgnBBox, with no additional data
(nums[1] is equal to 10), then we should not try to decode those data.

Now let's look at the actual code to display the corner points. The
corner data begin at the sixth integer of the region data, so we set the
index " j" equal to 6. Next we enter an "outer" REPEAT loop, which grabs
the data for one horizontal line of data points . First, we get they coordinate
value, then enter an "inner" REPEAT loop to get the successive x coor­
dinates. For each x coordinate, we draw a circle around the indica ted
corner point, using the x coordinate and they coordinate picked up earlier.
Notice that each time we pick up a coordinate, we advance our index " j ".
This imitates the auto-incremented addressing mode that the MC68000
processor would use if programmed in assembly language.

To draw the circle around the corner point, we define the rectangle
using the SetRect procedure, then invoke the PaintOval procedure to fill
a circle of that size. The "SetRect" procedure assigns specified coordi­
nates to a specified rectangle. It expects five parameters: a rectangle, and
four integers that will become its coordinates. They ap pear in the follow­
ing order: left, top, right , bottom. We used a circle rather than a single
pixel because single pixels are hard to see and slightly offset from the
points that they correspond to. (See the earlier discussion on the relation­
ship between pixels and coordinates.)

The inner REPEAT loop ends with an UNTIL statement that checks
for the value of 32767. After this loop, we advance our index " j " to look
for the next y coordinate. The UNTIL statement at the end of the outer
loop checks for y values of 32767 , which indicate the end of the entire
data structure.

The Main Program

Next comes the main part of the program. We call "SetUpSys" to perform
the initialization.

The remainder of the main program defines the L-shaped region and
displays it and its corners. The region is defined by the union of two
rectangular regions. The first region is the vertical part of the "L", defined
by the statements:

RgnA : = NewRgn;
SetRectRgn(RgnA, 100 , 100 , 200, 300);

QUICKORAW 111

The second region is the horizontal part, defined by the statements:

RgnB : = NewRgn;
SetRectRgn (RgnB , 100 , 200 , 300, 300);

In each case, the region is created with QuickDraw's NewRgn function,
which gives the region handle to the newly created region; then the
SetRectRgn routine defines it as a 10-byte rectangular region with the
specified corner coordinates. The L-shaped rectangle replaces the first
region. The routine UnionRgn is used as follows:

Uni onRgn (RgnA, RgnB , RgnA);

It computes the union of the first two arguments and places the results in
the third. Notice that the third argument (destination) is the same as the
first argument (one of the sources). This poses no problem, since QuickDraw
always computes the destination in a separate location, then adjusts the
pointers once the calculation is complete. Remember that these are region
handles, not the regions themselves nor pointers directly to them. This
third level of reference by handles frees QuickDraw to work dynamically
and yet allows the programmer to reference the regions at any time.

Next, we ca II "FillRgn" to fill the region with light gray. This routine
expects two parameters: a region handle and a pattern. In our program,
we pass the handle "RgnA" in the first parameter and the pattern "ltGray"
in the second parameter. The pattern "ltGray" is a default variable ini­
tialized by " InitGraf".

We then call our "ShowCorners" procedure to display the corner
points:

ShowCorners (RgnA) ;

Again, we follow the same policy by referring to the region by its handle.
Finally, we call "ClickButton" to wait for the button click.

Scan Conversion of Regions
Drawing a region involves scanning the region data and drawing the shape
line by line on the screen. This is called scan conversion because it
converts data into a series of scan lines on the screen. It is possible to
write a Pascal procedure to do this. However, QuickDraw already does
this so well that we won't try to beat it. You might want to try, or you
might want to use a debugger to check the machine code in ROM. The

112 HIDDEN POWERS OF THE MACINTOSH

code for painting a region starts at location $408DA8 in the Macintosh
ROM. It is quite complex because it must check myriad details before it
performs its own work. You can be happy that Apple took care of this
process for you.

Positioning and Sizing GrafPorts
Let's return to grafPorts. Recall that a grafPort is a Pascal record structure
containing all current settings of the drawing parameters for your program.
In this section, we explore those parameters that control the active drawing
area associated with a grafPort.

Each grafPort has several fields that determine its position and size.
We see here how these fields specify a local coordinate system for each
grafFort.

PortBits
We begin with the second field of a grafPort, a BitMap called ".portBits".
It defines the screen from the point of view of the grafPort. The first field ,
".baseAddr", gives the base address of the video RAM; the second field,
" .row Bytes", gives the number of bytes per row for the video mapping;
and the last field of a BitMap is a rectangle called ".bounds".

Initially, portBits is set by "OpenPort" to screenBits, a default vari­
able set by " InitGraf" to the following values:

BaseAddr = $1A700 ($7A700 on the 512K Mac)
RowBytes = 64
Bounds.top = 0
Bounds . left = 0
Bounds.bottom = 342
Bounds.right = 512

Local Coordinates
In this section, we see how the top left corner of the portBits " .bounds"
rectangle specifies a "local" coordinate system for each grafPort.

Keep in mind that all coordinate variables in a grafPort are expressed
in terms of the local coordinate system for that grafPort. This is the key
to understanding the peculiarities of how a grafPort stores information
needed to convert between its local and the screen's global coordinates.

Earlier, we described the coordinate system on the screen. This co­
ordinate system is called the global coordinate system for the screen. It

QUICKDRAW 113

originates in the upper left corner of the screen. Coordinate positions in
this system correspond directly to pixel positions; that is, the point with
coordinates (i,j) is at the upper left corner of pixel [i ,j] for each pixel on
the screen.

Each grafPort has its own local coordinate system in which all its
coordinate values are expressed. This local coordinate system is related
to the screen's global coordinate system through a simple translation:

Ptlocal : = Ptglobal + delta

where "Ptlocal" is the local coordinates of a point, " Ptglobal" is its global
coordinates, and " delta", with the structure of a point, is the "translation
vector". In terms of individual horizontal and vertical coordinates, this
becomes:

Ptlocal . h
Ptlocal . v

Ptglobal . h + delta . h
Ptglobal . v + delta . v

You can also solve for global coordinates in terms of local coordinates
by the translation:

Ptglobal : = Ptlocal - delta

or

Ptglobal . h := Ptlocal.h- delta . h
Ptglobal . v : = Ptlocal . v- delta . v

Because only a translation is involved, the global and all local coor­
dinate systems have the same scale and orientation, differing only by the
position of their origins (see Figure 4-27).

How PortBits Controls Local Coordinates

A grafPort's portBits field holds the relationship between the grafPort's
local coordinate system and the screen 's global system. However, the in­
formation is stored in a cleverly convoluted manner by providing the local
coordinates of certain global landmarks.

In particular, the portBits " .bounds" rectangle gives the limits of the
video screen in lo ca l coordin a tes . Thi s mea ns tha t "port­
Bits.Bounds.topleft" contains the local coordinates for the top left point

114 HIDDEN POWERS OF THE MACINTOSH

of the screen, and "portBits.Bounds .botright" contains the local coordi­
nates for the bottom right corner of the screen . This is more than enough
information to completely determine the relationship between local and
global coordinates. In fact, we need only one corner point.

The top left corner of the screen is the key. It forms a global reference
point we can use to good advantage. Since it is the origin of the global
coordinate system, its global coordinates are:

(0, 0)

Since it is the top left corner of " portBits.Bounds", its local coordinates
are :

PortBits . Bounds . topleft

This for ces the " d elta " in our formulas to be equ a l to " port­
Bits.Bounds.topleft", thus completely determining these formulas:

Ptlocal = Ptglobal + portBi t s . Bounds . topleft

Ptgl obal = Ptlocal - portBits . Bounds.topl eft

QuickDraw has routines that make these conversions . GlobaltoLocal
uses the first formula to convert from global to local coordinates, and
LocaltoGlobal uses the second formula to convert from local to global
coordinates.

Figure 4-27. Translations

t
v '

v

/ O_ri-=g'--in_·-t-_h_'_~ _ _

Or igin h~

QUICKORAW 115

PortRect
The portRect is of type "Rect'' and forms the third field of a gra£Port. It
specifies the active area of the gra£Port's coordinate system (see Figure
4-28). This is the rectangular area of the screen where your pictures
appear. Limiting pictures to rectangular areas of the screen is the first
step having windows. In Chapter 6, we see how every window is associated
with a gra£Port whose ".portBits" field defines its active or display area.

An interesting complication arises when the portRect is specified.
Like all coordinates in a gra{Port, the coordinates of portRect are local.
Life would be easier if global coordinates were used. However, the resulting
complications are handled mostly by QuickDraw's port-moving routines.
Only when we try to understand exactly what is going on internally does
the fun really begin. We look at four QuickDraw port-moving routines,
what they do when called, and how they work internally.

QuickDraw Port-Moving and Sizing
Routines
Four QuickDraw routines affect the portRect: "MovePortTo" moves the
active area relative to the screen, "SetOrigin" moves the origin relative to

Figure 4-28. The Active Area of the GrafPort

portBi ts. topleft

:·:.:::·::"::· :.:-:·/.·.

:~ ·.....,..3!==. ~:~::·~i;,; ::H; <GA=1== :~:~ ye

""""""'.....,.....,......,....,.~...,.....,....,...,"").' · .. ·~,. ~ of
............................ ~'--""-""~~"""~"""~ ~ ~~~::. ·-· grafPort

7\: ·:-:·,t:~-... ':1•
"""""""'.._,..._,..............,"""""""'""""",..._,..._,.....,.....,~ A-_) -~ ,, I
IV"\.......,....._,.~~ww....,...,....,....,.._~ ·.-..,.5~.:·

'-

portBi ts.botRi ght

116 HIDDEN POWERS OF THE MACINTOSH

the active area, and "PortSize" and "ClipRegion" control the active area's
width and height.

These routines are normally called only by the Window Manager
routines to position and size a window on the screen, as discussed in
Chapter 6. However, our examples show how these routines work in the
absence of windows. You might say that our understanding is at the pre­
window stage right now, just beginning to explore the QuickDraw tools
that make windows work.

MovePortTo Routine

Let's start with "MovePortTo". It moves the active area on the screen. More
precisely, if x and yare integers, then the Pascal statement:

MovePortTo(x,y)

moves the top left corner of the active area to the point whose global
coordinates are (x,y). Although its global coordinates change, its local
coordinates are not changed by this command.

Internally, the routine simply computes the following "translation
vector":

delta= portRect . t opleft- portBits . Bounds . topleft- (x , y)

and adds this to the corner points of portBits.Bounds according to the
following formulas (see Figure 4-28):

portBi t s .Bounds.topl eft
portBits . Bounds . botright

SetOrigin Routine

portBits . Bounds. topl ef t + de lta
portBits . Bounds. botr i ght + de lta

Next let's look at "SetOrigin". If x and y are integers, then the Pascal
statement:

Setorigin (x, y)

shifts the graiPort's local coordinate system so that the local coordinates
of the top left corner point of portRect become (x,y), but its global coor­
dinates are unchanged. That is, the active area does not change its position
or size on the screen, but the local coordinates change, moving the local
origin (see Figure 4-29).

QUICKDRAW 117

Note: this is the opposite of the previous routine, which changes the
global coordinates but not the local coordinates of this local reference
point.

Internally, this routine computes the translation vector:

delta : = (x , y) - portRect . topleft

and adds it to the corner points of portRect and portBits.Bounds, using
the following formulas:

portBits . Bounds . topleft
portBits . Bounds . botright
portRect . topleft
portRect . botright

The PortSize Routine

portBits . Bounds. topleft +de lta
portBits . Bounds . topright +delta
portRect . topleft + delta
portRect . topright +delta

The third QuickDraw routine is "PortSize". If x and y are integers, then
the command:

PortSize (x , y)

changes portRect so that its width is x and its height is y.
Internally, this routine recomputes portRect.botright with the formula:

portRect . botright := portRect.topleft + (x , y)

Figure 4-29. Setting the Local Origin

portRect.bo tri gh t

118 HIDDEN POWERS OF THE MACINTOSH

Visibility and Clipping
In this section, we discuss how visibility and clipping are implemented
in QuickDraw by the" .visRgn" and the" .clipRgn" fields of the gra£Port.
We also present three routines to help the programmer manage eli pping.

Visibility
Visibility relates to the way images overlap (see Figure 4-30). This is
especially important in managing multiple overlapping windows, dis­
cussed in detail in Chapters 6 and 7. However, we preview it here in our
"pre-window" stage of understanding.

As we will see in Chapter 6, each window has its own gra£Port with
its own visibility region. The gra£Port field ".visRgn" is a handle to this
region (see Figure 4-31). When a window changes position relative to the
screen and to other windows, the Window Manager uses this region to tell
QuickDraw which parts of the window need redrawing during a "window
updating" process because they are now visible. In Chapters 6 and 7 you
will see (and hear) examples.

Clipping
Clipping relates to the way an image is "mounted" on a grafPort (see
Figure 4-32). This in turn relates to the way an image is mounted on a
window.

Each gra£Port has a region called its clipping region. The gra£Port
field" .clipRgn" is a handle to this region (see Figure 4-33). Any parts of
shapes falling outside this region are "clipped" (not drawn). As we see

Figure 4-30. Visibility

partially obscured.
age s part i ally obscured.

This image is part i all obscured.
This image is partial

QUICKDRAW 119

later, the programmer can control this eli pping region to create images
that fall within the desired (active) area of the screen.

Relation between Visibility and Clipping
Visibility and clipping are treated separately by the Macintosh. One is
controlled by the Window Manager, the other is controlled by the program­
mer. However, QuickDraw uses both, drawing only those pixels in the
intersection of both regions.

Because QuickDraw automatically draws only what is in both re­
gions, the programmer can freely draw images, not worrying about whether
pixels fall "within the window" or are currently hidden by another window.

Two different regions simplify the management of windows, allowing
the Window Manager and the programmer separate data structures that
do not interfere with one another.

Clipping Routines
l\bw let's see how we can directly control the clipping region. The QuickDraw
procedure SetClip sets the clipping region equal to a specified region. It
expects a single parameter, which is a region handle that leads to a valid
region.

Before you use this routine, your region handle must be associated
with an actual region. Use the QuickDraw routine "NewRgn" to allot
room for regions and routines such as "SetRectRgn" and "UnionRgn" to
define their shapes.

Figure 4-31. The Visibility Region

.visRgn
~ I Pointer I =jj ..---.,

. . ~ Visibility
region

grafPort

120 HIDDEN POWERS OF THE MACINTOSH

The QuickDraw routine "GetClip" returns the current clipping re­
gion. The two routines "GetClip" and "SetClip" perform opposite jobs
and can operate in conjunction to manipulate the current clipping region.

The procedure "GetClip" expects a single parameter, which is a
region handle associated with a valid region. After this routine is called,
this region handle leads to a copy of the current clipping region. The
region handle does not change: it is not a "VAR" parameter, so it still

Parts of
image ~
outside the
window are
clipped

Figure 4-32. Clipping

0 fig 3-2

IXJ~'
I code

I
~

Edit Compile Jl
' :.

I intermediate
code

Re-edit generation Code ~

nhiPrt

Figure 4-33. The Clipping Region

.clipRgn ==,
41..-P_o_i-nt_e_r-,1 ~ .------..

Clipping
region

grafPort

I

QUICKDRAW 121

points to the same region pointer. However, this region pointer normally
points to a new place on the heap where the copy of the current clipping
region is stored. Note that this copy is disassociated from the current
clipping region: it is stored in a different place from the current clipping
region and uses different pointers and handles.

The Ports Quick.Draw Example
Here is a Pascal program called "Ports" that illustrates how grafPorts can
be moved and sized. lt even demonstrates how to manage several grafports
at once. It uses clipping to restrict each image to its own grafport.

The program opens with a blank screen filled with gray and a wh ite
title bar. When the cursor turns to the familiar arrow, you proceed.

Click the mouse and you see four rectangular areas appear. They are
labeled "port 1" through "port 4 ". Another click of the mouse button
causes a design to be drawn in all four ports at once (see Figure 4-34).
The next click causes the entire display to invert. A final click terminates
the program.

Figure 4-34. The Ports Program

122 HIDDEN POWERS OF THE MACINTOSH

Here is the program:

PROGRAM Ports ;
{$R-}{$X-}

USES
{$U obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{ $U obj / Toollntf

VAR
savePort : GrafPtr;

Memtypes ,
QuickDraw ,
OSintf,
Toolintf;

Port : array[l . . 4] of GrafPtr;

PROCEDURE ClickButton ;
BEGIN

WHILE Button DO ;
WHILE NOT Button DO ;
WHILE Button DO;

END;

PROCEDURE SetUpSys;
BEGIN

InitGraf(@thePort) ;
InitFont s;

{Initialize default variables }
{Initial ize Font Manager }

NEW (thePort);
OpenPort (thePort);
InitCursor;

END;

{Set up grafPort}

PROCEDURE OPort (J , x , y : INTEGER; title
BEGIN

New (Port [J J) ;
OpenPort(Port[J)) ;

PortSize (150,150) ;
ClipRect(thePort· . portRect) ;
MovePortTo (x , y);

EraseRect (thePort' . portBits . Bounds);
FrameRect (thePort· . portRect) ;

MoveTo (10 , 20);
DrawString(title) ;

END ;

Str255) ;

QUICKDRAW 123

PROCEDURE DrawPorts;
BEGIN

GetPort(savePort) ;
0Port(1, 102 , 27,
0Port(2 , 259, 27,
0Port(3 , 102, 184 ,
0Port (4, 259 , 184,

END;

PROCEDURE DrawDesigns;
VAR

I,J : Integer;
R : Rect;

BEGIN

' Port
'Port
'Port
'Port

FOR I : = 0 to 20 DO
FOR J : = 1 to 4 DO

1 ');
2');
3 I) ;
4 I);

BEGIN
SetPort (Port[JJ) ;
MoveTo(30 , 40
LineTo(130 , 140
MoveTo(30 + 5*i,
LineTo(130 - 5*i ,

END;

FOR I := 1 to 10 DO
BEGIN

+ 5*i);
- 5*i) ;

40);
140) ;

SetRect (R, 80 - 5*i, 90 - 5*i, 81 + 5*i, 91 + 5*i);
FOR J : = 1 to 4 DO

END;
END ;

BEGIN
SetPort(Port[J));
InvertOval (R) ;

END;

PROCEDURE InvertScreen;
BEGIN

SetPor t (savePort) ;
InvertRect (thePort · . portBits.Bounds) ;

END;

BEGIN {main program }
SetUpSys ;
ClickButton;

DrawPorts ;
ClickButton ;

124 HIDDEN POWERS OF THE MACINTOSH

DrawDes i gns ;
ClickButton;

InvertScreen ;
ClickButton ;

END.

Data Structures
The "Ports" program has the standard USES section. Its VAR section
declares two global variables: "savePort", which is a grafPtr, and "Port",
which is an array of four grafPtrs.

Procedures

The "Ports" program has a number of procedures, including "Click­
Button" and "SetUpSys", that have already appeared. However, "Ports"
has four new routines: " Oport", " DrawPorts ", "DrawDesigns ", and
"InvertScreen".

Setting Up a Port

The procedure " OPort" sets up a specific grafPort of our array of graiPorts.
The "OPort" procedure has four parameters: three integers - "J",

"x", and "y" - and a string, " title". The first integer selects one of the
four grafPorts. The second and third integers specify the position of its
upper left corner. The string "title" specifies a title for the graf?ort.

The procedure begins by calling "New" to allot space for the grafPort
" Port[]]", then calls " OpenPort" to initialize it.

Next, we call "PortSize" and "ClipRect" to specify the size of this
graiPort and " MovePortTo" to specify its position. These QuickDraw rou­
tines operate on certain rectangles and regions associated with the current
graf?ort as described above.

We call "EraseRect" to erase it and "FrameRect" to draw a border
around it. Then we call "MoveTo" to position the title and " DrawString"
to draw the title.

Drawing the Ports

The procedure "DrawPorts" draws all four ports . It begins by calling the
QuickDraw routine "GetPort" to save the current grafPort in our variable
"savePort". Next, it calls our "OPort" procedure four times, once for each
grafPort.

Q UJCKDRAW 125

Drawing Designs

The procedure "DrawDesigns" provides the fireworks. It draws the same
figure on all four drawing areas at once by rapidly switching among the
four different grafForts.

The ''DrawDesigns'' procedure has three local variables: two integers
and a rectangle. The two integers are indices to FOR loops within the
procedure, and the rectangle draws the circles in the design.

The procedure contains two double FOR loops. Within each FOR
loop, another FOR loop switches among the grafForts, drawing the same
tiny part of the figure on each grafFort. Even though the drawing is not
simultaneous in each grafPort, the effect is the same: much like a time­
sharing computer that seems to simultaneously serve several users by
rapidly switching among them.

Let's look at the figure carefully. As noted earlier, the figure is drawn
in two stages, using two different FOR loops. In the first FOR loop, we
draw a set of radial lines through the center of a square. In the second
stage, we invert a sequence of increasingly larger circles, creating a series
of square rings that cross the radial lines.

Inverting the Screen

The procedure "InvertScreen" inverts the entire screen. It begins by call­
ing "SetPort" to restore the current grafFort to what was saved by the
"savePort" grafPtr. In this program, we called "GetPort" earlier to place
the original grafFort in this special save gra£Ptr.

Next, it calls "InvertRect" to invert the rectangle "the­
Port" .portBits.Bounds". This is the bounds rectangle for the bitMap
"portBits", which is a field of the current grafPort.

The Main Program
The main part of the program calls our routines, one after another, each
followed by a call to "ClickButton" to pause for the user to hit the mouse
button.

It calls "DrawPorts" to draw and label the four graiPorts. It calls
"DrawDesigns" to draw the design on all four ports. Finally, it calls
"InvertScreen" to invert the entire display.

126 HIDDEN POWERS OF THE MACINTOSH

Summary
In this chapter, we have introduced some of the basic concepts of QuickDraw:
hardware, such as memory-mapped video; mathematics, such as coordi­
nates and coordinate systems; graphics, such as clipping and visibility;
and QuickDraw data structures, such as pattern, cursor, point, Rect, BitMap,
region, and gra£Port.

We have presented six short example programs that illustrate these
structures.

In future chapters, we introduce more QuickDraw concepts, data
structures, and routines as we need them.

The following ROM routines are covered in this chapter:

EM-Button

QD-InitGraf

QD-OpenPort

QD-InitCursor

~M-Init~onts

QD-StuffHex

QD-~illRect

QD-SetPt

QD-SetCursor

QD-HideCursor

QD-EraseRect

TU-BitSet

EM-GetMouse

QD-~rameRect

QD-PaintRect

QD-InvertRect

QD-SetRect

QD-SetRectRgn

QD-UnionRgn

QD-~illRgn

QD-PortSize

QD-Cli pRect

QD-MovePortTo

QUICKDRAW 127

QD-MoveTo

QD-DrawString

QD-GetPort

QD-SetPort

QD-LineTo

QD-InvertOval

128 HIDDEN POWERS OF THE MACINTOSH

5
Introduction to Events

This chapter covers the following new concepts:

• Events

• The Event Manager

• The Event Queue

• Vertical Retrace Manager

• Event Records

• Initialization of the Event Manager

• Addressing the Video RAM

• Accessing Events

• Keyboard and Mouse Events

In this chapter, we introduce events, a dynamic method of communication
between the Operating System and an applications program. Events are
the cornerstone of Macintosh's interactive programming capabilities, pro­
viding a way to organize input from the user into a form that can easily
be handled by an applications program.

Events are the official channel for transmitting user input to an ap­
plications program and a way to schedule other activities, such as updat­
ing the screen , that require coordination between the applications program
and the Operating System.

For the Macintosh, an event is a record (stored in a Pascal record
structure) of a specific action, such as pressing and releasing a key on the

129

keyboard or the button on the mouse, inserting a disk in the disk drive,
or a window changing position or coming to the front of the display screen.
However, not all user actions generate an event. For example, moving the
mouse across your desk without pressing the button is not an event.

In less advanced computers, input from the user comes from the
keyboard only. The applications program checks for or waits for single
keystrokes or entire strings of text. Output consists of strings of text
displayed line by line on the screen. Other parts of the system, such as
the disk, are tended to separately.

With the Macintosh, the situation is more complex, since input comes
from both the keyboard and the mouse and output is handled through
multiple overlapping windows. Each subsystem requires special atten­
tion. However, all Macintosh input and output can be reduced to a series
of events, each requiring specific action from the applications program.

The Macintosh's Event Manager monitors each event, placing a Pascal
record structure containing vital information in a waiting line called a
queue. The applications program can request these event records from the
queue, one at a time, as it can handle them. The applications program can
distinguish among the different types of events (key down, key up, mouse
button down, mouse button up, disk insertion, screen update) by exam­
ining a field called ".what". It can also examine other fields, such as
".where" to see where the mouse was and ".when" to see the time that
the event occurred. Still other fields tell such things as key codes for
keyboard events and identification numbers for screen update events.

The event approach is an advantage: it sorts events for the applications
program, presenting them in a uniform manner, allowing the applications
program to concentrate on managing the system at a much higher level.
This approach is more efficient. The Operating System can quickly handle
each event, place it on the queue, then go to the next event or other task.

In this chapter, we introduce the Macintosh's Event Manager and
explain its relation to the rest of the system. We describe interrupts that
generate events and event information at the lowest levels, the record
structure that stores events, and the linked list structure used by the event
queue.

We also present an example program that illustrates how events a p­
pear to the user and how they are programmed. This straightforward model
allows you to create your own interactive, event-driven programs. The
model demonstrates keyboard events and mouse events, forming a foun­
dation for programming other types of events. In later chapters, we study
how the Event Manager interacts with the Window Manager to control the
Macintosh's multiple overlapping windows.

130 HIDDEN POWERS OF THE MACINTOSH

The Event Manager
As we have seen, events are handled by the Event Manager, which is a set
of routines and data structures in the Macintosh's memory.

In its first manuals, Apple refers to two event managers, one in the
Operating System, one in the Toolbox (see Figure 5-1). But such catego­
rizations are somewhat arbitrary. In particular, the distinction between
Operating System and Toolbox is vague; in fact, Apple has moved certain
Event Manager data structures from one category to the other as the
software for the Macintosh has matured.

We differ from Apple in that we consider there to be only one Event
Manager- partly within the Operating System, partly within the Toolbox.
This makes the distinction between Operating System and Toolbox less
critical, and rearrangements of the two parts of the system seem more
natural.

Figure 5-1. The Event Manager(s)

Apple's
view:

Our
view:

Event
Manager

OS
Event
Manager

Event
Manager

Toolbox

Operating
System

Toolbox

Operating
System

INTRODUCfiON TO EVENTS 131

The Operating System Part
The Operating System part of the Event Manager (the OS Event Manager,
for short) forms the lower levels of the Event Manager. This contains
routines to manage the event queue. We use some of these routines in our
program, so it is important to understand some details of this structure.

Linked Lists

The Macintosh maintains a list or queue of pending events in a linked
list. This is a data structure consisting of items in which each item
contains a pointer to (holds the address of) the next (see Figure 5-2). Thus,

Figure 5-2. A Linked List

-+ Link

Item 3 Data

Link -Item 1
Data

L. Link
Item 2 Data

L Link -
Item 4 Data

L Link

Item 5 Data

132 HIDDEN POWERS OF THE MACINTOSH

in a linked list the items themselves supply the information needed to
hold the list together, and yet these items need not be next to each other.
In fact, the items can be scattered in any order throughout memory, with
the pointers forming a thread that ties them together in the intended order.

Linked lists are particularly useful because of the ease with which
they can be manipulated. For example, operations such as appending new
items to the end, inserting new items in the middle, and deleting old
items from anywhere in the list can be done quickly and efficiently, simply
by placing new values in the pointers. By contrast, performing such
operations on ordinary lists that do not have this linking structure requires
their items to be moved around in memory at considerable loss of
performance.

Linked lists are advantageous when each item contains a moderate
to large amount of data. However, they do require extra memory to hold
the pointers and are therefore less desirable when each item is small. In
fact, if we tried to organize lists of individual bytes as linked lists, we
would spend much more memory on the linking than on the data. In the
case of Macintosh events, however, there is enough data in each item to
make a linked list an appropriate choice. In addition, the ability to place
information in queues using this linking greatly increases the efficiency
of the system. It takes very little time to add a new item to a queue, and
once it's done, the system is free to go on to other matters.

The routines in the Operating System part of the Event Manager can
add, fetch, remove, and check events on this queue. We will use some of
these routines in our example program. Note that the Macintosh's Oper­
ating System uses linked lists to manage other mechanisms, such as disk
volumes and 110 service requests.

Calls from Lower Levels

The Vertical Retrace Manager maintains a number of background tasks
for the Macintosh. These are jobs that operate independently of and at the
same time as the applications program. For the Macintosh, these include
updating the mouse cursor on the screen, updating the time and date, and
monitoring the mouse button and disk insertion.

The Vertical Retrace Manager is driven by an interrupt called the
Vertical Retrace Interrupt, which is generated by the video hardware each
time the video signal is blanked between scans of the screen. An interrupt
is a hardware signal that causes the processor to stop, process the activity,
then return to its previous task.

Calling the Vertical Retrace Manager in this way increments a system
variable called the tickCount and checks several functions, including the

INTRODUCTION TO EVENTS 133

system stack and the mouse position. The Vertical Retrace Manager also
checks the mouse button every other time and the disk system every thirty
times. It updates the cursor position if the mouse has moved (mouse
movement itself is handled by another interrupt). If the mouse button has
changed, the Vertical Retrace Manager calls the Event Manager to place a
mouse event on the queue. Similarly, it places a disk event on the queue,
if appropriate.

Calls from Higher Levels

At higher levels, the OS Event Manager routines may be called by the
routines in the Toolbox part of the Event Manager or by an applications
program.

The 'lbolbox Part
The Toolbox contains higher-level routines that interface the event queue
to the user. We explore these higher-level routines in the remainder of this
chapter.

Example Program
The example program demonstrates how to program events generated by
the keyboard and the mouse button. This introduces the basic concepts
needed to program other events. In Chapter 6, we will see how to handle
screen updating events generated by the Window Manager.

The uEvents" program graphically demonstrates keyboard and mouse
activity. It displays the results of this activity in several boxes on the
screen (see Figure 5-3). The two boxes with square corners show keyboard
events, and the three boxes with rounded corners interact with the mouse.

The program itself draws the boxes on the screen and then monitors
events and other information from the Event Manager, displaying infor­
mation in these boxes. For example, if you hit a key on the keyboard, the
Events program displays the corresponding character in a box called "Key".

The program also displays the keyboard as a row of bits on the screen
in a box called "Keyboard Array". Each bit corresponds to a particular
key position. Pressing a key blackens the corresponding bit on the screen.

At the same time, the program monitors mouse activity. The cursor
moves around the screen as you move the mouse, and if you press the
mouse button while the cursor is in certain boxes, then different things
will happen depending on where the mouse is. If you press the button
while the cursor is in the box labeled "Mouse Points", you will see points

134 HIDDEN POWERS OF THE MACINTOSH

(mouse droppings) appear within that box. If you press the button while
the cursor is in the box labeled "Erase mouse points", the mouse droppings
will be erased. Finally, if you press the button while the cursor is in the
box labeled "Exit", the program will terminate.

The mouse boxes are implemented by QuickDraw regions, a concept
introduced in Chapter 4. Regions allow us to easily determine when the
mouse is in a more complex shape such as a rounded rectangle. QuickDraw
has a built-in procedure that can quickly determine whether a particular
point is in a particular region.

The mouse boxes in this program are primitive versions of controls.
In Chapter 6, you will see how the Macintosh's Control Manager uses
regions to automatically define and handle controls.

Now let 's look at the program.

PROGRAM Events ;
{$R-} {$X-}

Figure 5-3. Screen Layout for Events Program

Keyboard and Mouse Euents

Keyboard Array Key

[TI

Mouse points

.....

' · .. ~

Erase mouse points [Hit

0 0

INTRODUCTION TO EVENTS 135

USES
{$U obj/Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{$U obj/Toolintf

TYPE
KeyPtr · KeyMap ;

VAR
theEvt : EventRecord ;
done : BOOLEAN;
theKeys : KeyPtr ;
MPt : Point;

Memtypes ,
QuickDraw,
OSintf ,
Toollntf ;

kbRect , keyRect , mouseRect , eraRect , exitRect
mouseCurv, eraCurv, exitCurv : Point ;
mouseRgn , eraRgn , exitRgn : rgnHandle ;

FUNCTION VideoAddr (x , y : INTEGER) : Longint ;
BEGIN

VideoAddr : = ORD(screenBits.BaseAddr)
+ x DIV 8
+ y*screenBits.rowBytes ;

END ;

PROCEDURE Setup ;
BEGIN

InitGraf (@thePort);
InitFonts ;

NEW (thePort);
OpenPort (thePor t);

FlushEvents(EveryEvent , O) ;
SetEventMask (EveryEvent);

InitCursor ;
EraseRect(thePort · . portBits.Bounds);

END ;

PROCEDURE MakeTitle (title : Str255);
{Draw a centered title}
BEGIN

WITH thePort · . portRect DO

Rect ;

MoveTo ((left + right- StringWidth(titlc)) DIV 2, 20);
DrawString(title);

END ;

136 HIDDEN POWERS OF THE MACINTOSH

PROCEDURE MakeRect(R : Rect; title
BEGIN

Str255) ;

{Draw and label rectangle}
EraseRect (R) ;
FrameRect (R) ;
MoveTo(R. left, R. top- 5);
DrawString(title) ;

END;

FUNCTION MakeRRgn(R : Rect ; Curv Point) RgnHandle ;
VAR

Rgn : RgnHandle;
BEGIN

{Define a rounded rectangular region}
Rgn : = NewRgn;
OpenRgn;

FrameRoundRect(R , Curv. h , Curv. v) ;
CloseRgn (Rgn);
MakeRRgn : = Rgn ;

END;

PROCEDURE DrawRRgn(Rgn : RgnHandle ; title : Str255);
BEGIN

{Draw and label rounded rectangular region}
EraseRgn (Rgn) ;
Fr ameRgn (Rgn) ;
WITH Rgn·· . RgnBBox DO MoveTo(left,top-5) ;
DrawString(title);

END ;

BEGIN {main program}
Setup ;
MakeTitle('Keyboard and Mouse Events') ;

{Define rectangles and curvatures for regions}
SetRect(kbRect , 16 , 80, 176, 100);
SetRecttkeyRect,200 , 80 , 230, 100);
SetRect(mouseRect , 10 , 160, 410 , 260) ;
SetRect (eraRect,10, 300, 40 , 320);
SetRect(exitRect , 210 , 300 , 240, 320) ;
SetPt(mouseCurv, 32 , 32) ;
SetPt(eraCurv, 16, 16);
SetPt(exitCurv, 16, 16);

{Set up display for keyboard array}
MakeRect(kbRect , 'Keyboard Array');
theKeys : = POINTER(VideoAddr(kbRect . left+16 , kbRect . top+10));

{Set up box for key display}
MakeRect(keyRect , 'Key') ;

INTRODUCTION TO EVENTS 13 7

{Set up MousePoint region}
mouseRgn : = MakeRRgn (mouseRect , mouseCurv);
DrawRRgn (mouseRgn , 'Mouse points ') ;

{Set up Erase box region}
eraRgn : = MakeRRgn (eraRect , eraCurv);
DrawRRgn (eraRgn, 'Erase mouse points') ;

{Set up Exit box region }
exitRgn := MakeRRgn (exitRect , exitCurv);
DrawRRgn (exitRgn , 'Exit') ;

REPEAT { main loop }
If GetNextEvent(everyEvent , theEvt) THEN

CASE theEvt . what OF

END ;

mouseDown : {track the mouse }
BEGIN

GetMouse (MPt) ;

If PtinRgn(MPt,mouseRgn) THEN BEGIN
MoveTo(MPt . h , MPt . v);
Line (O, O) ;

END ;

If PtinRgn (MPt, eraRgn) THEN
DrawRRgn(mous eRgn, 'Mouse points');

If PtinRgn (MPt , exitRgn) THEN
done : = true ;

END ;

keyDown : {display key character }
BEGIN

MoveTo(keyRect . left+lO , keyRect . bottom-5);
DrawChar (chr (theEvt . message MOD 256)) ;

END ;

keyUp : {erase key character }
MakeRect (keyRect , 'Key');

GetKeys(theKeys "); { Display key map }

UNTIL done;
END .

138 HIDDEN POWERS OF THE MACINTOSH

External Files
The USES section of programs that involve events should invoke the
following external fil es : " MemTypes", "QuickDraw", "OSintF", and
"Toollntf". The first two files were discussed in Chapter 4.

The third external file, "OSintf", defines parts of the Event Manager
that are in the Operating System. This now includes all of its data struc­
tures and entry to some of its lower-level routines.

The fourth file , "Toollntf", defines the Toolbox part of the Event Man­
ager. These are its higher-level, or user-oriented, routines.

Data Structures
In the TYPE section of the "Events" program, we define a type, "KeyPtr",
which points to the variables of the type "KeyMap". The type "KeyMap"
is defined in the external files as:

KeyMap = ARRAY[O .. 3] OF LONGINT ;

This definition has changed since the first appearance of the Macintosh
development system. Originally, it was a packed array of 128 Boolean
variables! It occupied the same amount of storage, since each Boolean
variable was stored in its own bit.

The VAR section declares the global variables for this program.

Event Records
The first global variable is " theEvt", which is an event record. This data
structure transmits information about the event to the applications pro­
gram. An event record can be decribed by the following Pascal structure:

EventRecord = RECORD
what
message
when
where
modifiers

END;

INTEGER;
Longint ;
Longint ;
Point ;
INTEGER

This format is somewhat like a recorded telephone message. It con­
tains information such as the time as well as specific information about
what happened .

INTRODUCTION TO EVENTS 139

The first field, ''.what'', contains an integer that specifies the type of
event that occurred. There are 16 possibilities, one for each bit position
in a 16-bit integer. Later, we will see how all the event types are sometimes
combined into one 16-bit integer that forms a "mask" indicating which
types are selected or active. Currently, only 14 types are supported, as
defined by the following constants statements:

null Event = 0;

mouse Down = 1;

mouseUp = 2;

keyDown = 3;

keyUp = 4;

autoKey = 5;

updateEvt = 6;

diskEvt = 7;

activateEvt = 8;

driverEvt = 11;

app1Evt = 12;

app2Evt = 13;

app3Evt = 14;

app4Evt = 15;

To make your programs more readable, use these identifiers rather
than the corresponding raw integer values.

This chapter deals only with the following events: "null",
"mouseDown", "keyDown", and "keyUp". A "null" event is reported if
no events of the specified types are in the queue. Chapter 6, which intro­
duces windows, also discusses events of types "updateEvt" and
''activateEvt''.

The second field, ".message", is a long integer containing specific
information about the event. The exact format depends on the type of
event.

For the keyboard events "keyDown", "keyUp", and "autoKey", the
lowest byte of the message contains the extended ASCII code for the key,
and the next to lowest byte of the message contains its position number
on the keyboard matrix (see Figure 5-4).

The message field for mouse events is zero.

140 HIDDEN POWERS OF THE MACINTOSH

The third field, ".when", gives the time that the event occurred,
expressed in "ticks" since the system was last started (turned on or
rebooted).

The fourth field," .where", gives the global coordinates of the mouse
when the event occurred.

The fifth field, ".modifiers", is an integer (16-bit computer word)
containing information about the modifier keys, mouse button, and other
relevant data (see Figure 5-5). The modifier keys and button are each
represented by a bit in this computer word. Figure 5-5 shows how.

Done Flag
The next variable declared in the example program is a BOOLEAN called
"done". It controls the main loop of the program, which terminates when
"done" becomes TRUE. Thus, its name aptly describes the role of this
variable, making the loop control self-documenting.

KeyPtr
The next variable, "theKeys", is of type "KeyPtr", which was defined in
the TYPE section. We have already discussed how this variable helps us
to display the keyboard matrix.

Mouse Point
The variable "MPt", of type "Point", keeps track of the position of the
mouse.

QuickDraw Variables
The rest of the variables in this program are QuickDraw data structures
that define the shapes of the boxes displayed on the screen.

Five rectangles define the sizes of these display boxes: "kbRect",
''keyRect'', ''mouseRect'', ''eraRect'', and ''exitRect''.

Figure 5-4. Message Field for Keyboard Events

31 24 23 16 15 8 7 0

0 0 I Keg position I ASCII code I

INTRODUCTION TO EVENTS 141

Three points contain information about the roundedness or curvature
of the three mouse boxes: " mouseCurv", eraCurv", and "exitCurv" (see
Figure 5-6). For rounded rectangles that define the shapes of these boxes,
the horizontal components of the points give the oval width, and the
vertical components of the points give the oval height.

Figure 5-5. Modifier Field for Events

II 9 8 7 6 5 4 3 2 0

l ttivote

System/App
window

Figure 5-6. Specifying Rounded Rectangles

Oval
4= width~

~
Oval height

~

142 HIDDEN POWERS OF THE MACINTOSH

Regions

The last three global variables- "mouseRgn", "eraRgn", and "exitRgn"
-are region handles that access regions that form the underlying struc­
ture of the mouse boxes (see Figure 5-7).

As shown in Chapter 5, a region is a fundamental QuickDraw data
structure that allows us to define irregularly shaped areas on the screen
so they can be quickly and easily displayed and manipulated and can be
used for visibility considerations. This chapter discusses how to define
irregularly shaped regions and to detect when a point is within an irreg­
ular area defined by a region.

The regions in this chapter do not appear very irregular, just rounded
rectangles. Yet, even for this simple shape, it would be difficult to write a
program completely on your own to detect when a point is within the
shape. We see how QuickDraw makes this job trivial for an applications
programmer.

Figure 5-7. The Mouse Region Handles

mouseRgn

fC3\
~

exitRgn

Pointer ~ L...--.--v

~_P_o_i_n_te_r ________ >

mouse
points
Region

era
Region

exit
Region

INTRODUCTION TO EVENTS 143

The three mouse region handles provide access to regions, which are
dynamic structures stored in the heap. As we have discussed earlier,
dynamic structures can grow in size and change position in memory.

The region handles are static variables stored in the stack area. They
will be set to point to dynamic variables called region pointers, which
are stored in a special nonrelocatable area of memory in the heap (see
Figure 5-8).

These nonrelocatable variables in turn point to the actual region data
that are stored in relocatable memory. As the Macintosh's Operating Sys­
tem relocates region data (as the size changes), it automatically updates
the region pointers. That is, the Operating System controls both the po­
sition of the region data and the values stored in the region pointers, but
it does not move the pointers. This way, the region handles never lose track
of the regions, even when region data are moved. If the handle pointed
directly to the data, then the Operating System would have to update it
when data are moved; but the handle is in your program, which is your
responsibility, not the responsibility of the Operating System.

Procedures and Functions
Many functions and procedures in this program are general purpose; that
is, they can be used in a variety of programs. This is a good general
practice. Such general functions help to develop programs with a mini­
mum of effort and apply code developed in one program to many others.

Figure 5-8. Handles and Pointers

144 HIDDEN POWERS OF THE MACINTOSH

Dynamic
r e locatabl e

Addressing the Screen
The first function is "VideoAddr". It returns the address of the byte in
screen memory that contains the bit corresponding to an indicated pixel
position. We use this function to place the image of the keyboard matrix
on the screen.

The parameters for the " VideoAddr" function are integers "x" and
"y". The first variable, "x", gives the horizontal position of the pixel. The
second variable, "y", gives its vertical position from the top of the screen.

The "VideoAddr" function uses the default variable "screenBits" to
provide its coefficients. This increases the portabilty of the program. Even
if the dimensions or location of the screen change, we won't have to
refigure the address. The formula for this function is given by the statement:

VideoAddr : = ORD (screenBits . BaseAddr)
+ x DIV 8
+ y*screenBits . rowBytes ;

The "BaseAddr" field of screenBits is a pointer to the beginning of
video memory. To compute with it, you must use ORD to convert it to a
long integer. The function ORD converts pointer values to the numerical
value of the corresponding address. To do pointer "arithmetic", you must
convert to long integer values. To get the contribution of the x coordinate
to the byte address, we must divide it by 8, which is the number of pixels
per byte. The "rowBytes" field specifies the number of bytes per row. We
use it as the coefficient of the y coordinate.

Initializing the Managers
The procedure "Setup" initializes the managers. We initialize QuickDraw
as before with the "InitGraf" routine. However, we also initialize the Font
Manager before setting up our gra£Port with the " new" and "OpenPort"
procedures, as before. ·

The "Setup" procedure continues by ini tializing the Event Manager.
It calls the "FlushEvents" and the "SetEventMask" routines. The first is a
ROM routine, the second is a RAM routine contained in an external file
linked to your program; thus, this routine is loaded into memory with
your program if it is used in your program. We will explain these routines,
but first let's finish the "Setup" routine that called them.

After " SetEventMask", the "Setup" procedure calls "InitCursor" to
make the mouse cursor into a standard arrow; then it calls "EraseRect"
to erase the entire screen. The specified rectangle to be erased is the

INTRODUCTION TO EVENTS 145

bounds rectangle of the portBits field for the current grafPort. Since the
gra{Port was just initialized, we can rely on this being the entire screen.

Event Queue
Now let's look closer at "FlushEvents" and "SetEventMask". As described
above, the Event Manager keeps track of events by means of its Event
Queue, which we will now look at in detail.

The Macintosh's event queue begins with a special header, containing
a status word (an integer with some Boolean variables in bit form) and
pointers to the first and last elements of the event queue (see Figure 5-9).
This header is called "EventQueue" and is stored in a data area of the
Operating System called the "System Communications Area". The event
queue itself is stored in the heap.

Each item in the event queue (see Figure 5-9) can be described by
the following structure:

evQE 1 = RECORD
qLink
qType
eventdata

El emPt r ;
INTEGER;
EventRecord;

END ;

The first field is a pointer to the next item in the queue. This gives
the linking structure. The second field gives the queue type (which in this
case has a va lue of four) because these items belong to the event queue,
which is queue number four in the system. The third field is a copy of
the event record. This particular description is not exactly the same as
that currently used by Apple, but it is equivalent and easier to explain.
Departing from Apple in this way is not critical, since Apple tends to
change such details as its software matures. This has no effect on how
applications are programmed.

With this in mind, let's study FlushEvents. Basically, it traces through
the event queue, removing selected types of events. It has two 16-bit integer
parameters called "eventMask" and "stopMask". Both "masks" are really
bit patterns whose individual bits select particular types of events (see
Figure 5-10). The bit positions are numbered from zero to 15. A bit value
of one selects the corresponding event and a bit value of zero deselects it.
This explains why there are a maximum of 16 possible types of events.

The following call :

Fl ushEvents(event Mas k , s t opMask) ;

146 IIIODEN POWERS OF THE MACINTOSH

removes all events specified by "eventMask" from the event queue up to,
but not including, the first of any type specified by "stopMask". Normally,
we set eventMask to $FFFF and stopMask to $0000. This specifies that
all events are to be removed until the event queue is empty. In the external
file "Toollntf", the value $FFFF is set equal to the constant "everyEvent",
which is the first parameter for this function in our program.

If we use other values for these parameters, the Event Manager has to
selectively remove items from the list. This is handled automatically by
the Event Manager by manipulating the "qlink" pointers (see Figure 5-11).

The next procedure called in "Setup" is "SetEventMask". This is not
a ROM routine. It is contained in a Pascal external file linked to your
applications program. It merely places a specified eventMask in an Op­
erating System variable called "SysEventMask". The Event Manager then
uses this mask to determine the types of events to be placed on the event
queue. In our program, the value "everyEvent" specifies that every type
of event be placed on the event queue.

Figure 5-9. Event Queue Header

OS system
commun1cot1ons
area r---~~

INTRODUCTION TO EVENTS 147

Making Titles
The next procedure in our program is called "MakeTitle". It draws a
specified title at the top center of the active area of the current grafPort
(as specified by its port rectangle) . It has a single argument that is a
dynamic string of type Str255, the standard type of string used by
QuickDraw.

The "MakeTitle" procedure begins by a WITH statement, allowing
us to specify the various fields ("top", " left", "bottom", and " right") of
the current port rectangle. This shortens our formulas and makes them
easier to read. In the WITH statement, we "MoveTo" a position that we
compute for the beginning of the title.

The "MoveTo" procedure is a QuickDraw routine that moves the
graphics pen around the screen without drawing anything. However, in
combination with the "LineTo" routine, it can help draw any line or
combination of lines on the screen .

We use the following formula for computing its horizontal component:

(left + right - StringWi dth (tit l e)) DIV 2

This is equivalent to taking the midpoint of the screen and subtracting
half of the physical length of the string on the screen. The QuickDraw
function " String Width" computes this length as the number of pixels that
are consumed in the horizontal direction by the string. The result will

Figure 5-10. The Event Mask

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

User defined

Driver

148 HIDDEN POWERS OF THE MACINTOSH

11 L~:~~wn
Mouse up

Key dow n
Key up

Auto key

Update

Di sk insert

Activate

depend on the font, size, and style of the text. The "StringWidth" function
is very powerful because it physically sizes up your text, taking into
account all these considerations - including proportional spacing.

The vertical position of the text is twenty units from the top of the
screen. This has to be adjusted for large text sizes. Note that the text is
positioned so that its lower left corner falls at the current position (see
Figure 5-12). Thus, the text stretches upward and to the right of the current
position.

The QuickDraw "DrawString" routine draws the text on the screen.

Making Titled Rectangles
The next procedure is called "MakeRect". In our program, it makes rec­
tangular boxes to display keyboard information. It has two parameters: a
rectangle, "R", and a title, "title". It erases the rectangle, frames it, then
draws a title above it.

Figure 5-11. Removing an Event from the Queue

Before:

After:

J

(Removed)

INTRODUCTION TO EVENTS 149

Making Rounded Rectangular Regions
Next is the function "MakeRRgn". It makes three rounded "mouse boxes"
that are implemented as regions. The "R" in the middle of its name stands
for "Rounded". It has two parameters: a rectangle, "R", to determine the
size of the box, and a variable, "Curv", of type "Point" to specify the
roundedness or curvature of corners of the region (see Figure 5-13). The
"MakeRRgn" procedure returns a region handle that allows you to prop­
erly access the newly created region.

The procedure calls "NewRgn" to allocate space for the region. This
returns a value for a region handle that we temporarily store in the local
variable "Rgn".

The "OpenRgn" routine allows us to "open" or start the region using
QuickDraw routines to define the shape of the region.

Instead of drawing to the screen when a region is "open", QuickDraw
stores (records) "corner" data into a special "save" region whose handle
is one of the fields of the grafPort. Chapter 4 describes how regions are
stored in memory.

We issue only one QuickDraw command, "FrameRoundRect", to de­
fine this region. The parameters to the "FrameRoundRect" command are
the rectangle "R" to determine the basic size of the rounded rectangle, the
value "Curv.h" to determine the width of its corner oval, and the value
"Curv.v" to determine the height of its corner oval (see Figure 5-13).

The region is "closed" with the "CloseRgn" statement. It is the op­
posite of "opening" the region. "CloseRgn" stops QuickDraw from draw­
ing into the grafFort's "save" region and causes subsequent drawing to
appear on the screen. This routine has a single parameter, a region handle
that is a handle to the newly created region. In our program, the parameter
is "Rgn", initialized at the beginning of this procedure.

Finally, we assign this handle value to the identifier "MakeRRgn" so
that it is returned as the value of the "MakeRRgn" function.

Figure 5-12. Positioning Text

[text
t Current position

150 HIDDEN POWERS OF THE MACINTOSH

Drawing the Mouse Boxes
The final procedure in our program is "DrawRRgn". It draws the mouse
boxes. It has two parameters: a region handle "Rgn" and a string, "title",
of type Str255. The region handle specifies the region to be drawn, and
the string specifies the title.

Within the routine, the "EraseRgn" routine erases the region, the
"FrameRgn" routine frames it (draws a line around it), and the "Draw­
String" routine places the title above it. Before drawing the title, we use
the "MoveTo" routine in a WITH statement to move the current position
to where we want the lower left corner of the title.

The Main Program
The main program consists of an initialization stage and a main REPEAT
loop.

Initialization
The initialization stage begins by calling the "Setup" procedure to ini­
tialize QuickDraw, the Font Manager, and the Event Managers. It then calls

Figure 5-13. Specifying Roundedness

4= Curv.h ~

R.topleft
•

t
Curv.v

l

• R.botR 1ght

INTRODUCTION TO EVENTS 151

"MakeTitle" to place the string "Keyboard and Mouse Events" centered
at the top of the screen.

Defining the Screen Layout

Next we define the rectangles that size all of our boxes, and the points
that define the curvatures for our rounded rectangular regions. The
QuickDraw routine "SetRect" defines the rectangles, and the "SetPt"
routine defines the points. These statements are grouped in one place,
making it easy for a programmer to control the layout of the screen. In
Chapter 6, we explore how the Macintosh allows you to define screen
layouts in separate resource files.

Setting up the Boxes

The next part of the program sets up the boxes on the screen. It calls the
various procedures and functions defined earlier.

First, we make the box for the keyboard array by calling "MakeRect",
passing it the keyboard rectangle "kbRect" and the title "Keyboard Array".
We use the "VideoAddr" function to initialize the pointer "theKeys" so
that it points to a spot in the box labeled "Keyboard Array" on the video
screen where we want the display of the bits of the keyboard matrix to
begin (see Figure 5-14). The "VideoAddr" function already knows where
the screen is. Thus it can compute the proper location in video memory
for any given point on the screen. Here, we specify a point relative to the
upper left corner of the "kbRect" rectangle that defines the display box.
Notice that the POINTER function converts the numerical value of the
address to a pointer value. There is no conflict of types in the assignment
of the pointer value returned from POINTER. In fact, pointer values re­
turned from the POINTER function can be assigned to any pointer variable
without complaint from the compiler.

Next, we set up the box for the key display by calling "MakeRect"
with the parameters "keyRect" to define the size of the box and the literal
string "Key" to title the box.

Now we set up the mouse points region. First, we use MakeRRgn to
define a rounded rectangular region. This function returns a handle to the
region assigned to the variable "MouseRgn ". The size and position of this
region is given by the first parameter, which is the rectangle "mouseRect";
its "curvature" is given by the second parameter, which is the point
"mouseCurv". We then draw and label the region by calling our "DrawRRgn"
procedure, passing the mouseRgn handle and the literal string "Mouse
points" as the title.

152 HIDDEN POWERS OF THE MACINTOSH

The boxes to control mouse erasures and to exit the program are
similarly set up, using the "MakeRRgn" function and "DrawRRgn"
procedure.

The Main Loop
The heart of the program is a REPEAT . . . UNTIL loop called a polling
loop. This loop continually gets events and handles them. Each time it
gets the next event, it determines what occurred and performs an appro­
priate action. Many times there are no new events. In such a case, it will
receive the "null" event, which it handles by doing no action except for
getting the next event.

This polling method is in distinct contrast to the interrupt method
that underlies the Macintosh's management of low-level 1/0 transactions.
It is interesting to note that both methods coexist in the machine at once,
interrupts at the low levels and polling at the high levels. An alternate
approach would be to have interrupts at both levels. That would make
programming more interesting and efficient but more difficult to under­
stand and debug.

The main loop begins with a call to the Event Manager's "Get­
NextEvent" function. This retrieves the event record of the next event of
specified types from the event queue. Its first parameter is an integer that
holds an event mask specifying those events to be taken from the queue.
The second parameter, the event record, is passed by reference (as a VAR
parameter), since it is returned. The function value returned by "Get­
NextEvent" is a Boolean variable that indicates whether or not the appli-

Figure 5-14. Positioning the Keyboard Array

Keyboard array
kbRect. topleft

(+161 +10)

t__ 128 bits of keyboard array

Start 1 ng po1 nt
(kbRect.h+ 161 kbRect. v+ 1 0)

INTRODUCTION TO EVENTS 153

cations program should try to handle the event or leave it for the Operating
System. That's why we encase "GetNextEvent" within an IF ... THEN
statement. The THEN clause is executed if the event should be handled
by the applications program.

The Cases

Once we get the event and decide to handle it, we use a CASE statement
to determine what type of event occurred. The cases that we check are
mouseDown, keyDown, and keyUp. Typically, applications programs han­
dle more cases, but this program merely serves to introduce events, so it
is as simple as possible.

Within the "mouseDown" case, we see if the mouse is in any of the
three mouse boxes. First, we get the local coordinates of the mouse into
the point variable MPt by using the Event Manager's ''GetMouse'' routine.
The global coordinates of the mouse are available in the field "theEvt.where".
However, we want the local coordinates. We could use the "GlobaltoLocal"
routine to convert this field to local coordinates. This is done in other
example programs, but not here. Recall that the global coordinates are
attached to the screen, whereas local coordinates are attached to specific
grafports. Later, when we study Windows, we will see how local coordi­
nates define positions of objects (such as controls) relative to the windows
that contain them.

We use the '' PtinRgn'' function to see if the mouse point is within
each region. If the mouse is within the mouse points region, we plot a
point there by applying the "MoveTo" routine to MPt, then invoke the
"Line(O,O)" statement. This last statement is a relative line-drawing com­
mand that draws a line from the current position to itself, making a single
point at the current position.

On the next line of the program, we see if the mouse is within the
erase region. If it is, we redraw the mouse points box, which has the effect
of erasing it.

Next we see if the mouse is within the exit region. If it is, we set the
"done" variable to true. This terminates the REPEAT UNTIL done loop
and ends the program.

The keyDown case displays the key within the key box. Here we first
"MoveTo" a point within the key box. Then we plot the key character. The
ASCII code for the key character is contained within the lowest eight bits
of the message field of the event record. We use "MOD 256" to extract the
ASCII code from the message field. Then we use the CHR function to
convert it to a character and use the QuickDraw "DrawChar" routine to
draw it.

154 HIDDEN POWERS OF THE MACINTOSH

The key Up case clears the key box by redrawing it with our "MakeRect"
procedure.

Displaying the Keyboard Matrix

At the bottom of the loop we display the keyboard matrix by invoking the
Event Manager's "GetKeys" routine.

Generally, "GetKeys" has a single parameter of type "key Map", which
is passed by reference. The routine loads a copy of the keyboard matrix
into this variable.

In this particular program, we pass to it the expression "the Keys" ".
Since we loaded the address of a point on the screen into "theKeys", this
expression specifies that particular location in video memory. Since
"theKeys" is of type "KeyPtr", the expression has the correct type.

Summary
This chapter has discussed how to write applications programs that use
the Macintosh's Event Manager. We have studied the data structures and
routines that interact with this Manager and make the Event Manager
work.

We have seen the power of such programming. We have seen how it
allows us to pick up keys and key combinations from the keyboard and
how it allows us to track the mouse and easily determine when it is pressed
in any area of the screen.

We have also touched on the concepts of controls and resources,
which are explored in later chapters.

This chapter covers the following ROM rountines:

EM-FlushEvents

EM-SetEventMask

QD-OpenRgn

QD-FrameRoundRect

QD-CloseRgn

QD-EraseRgn

QD-FrameRgn

EM-GetNextEvent

QD-PtlnRgn

QD-DrawChar

EM-GetKeys

INTRODUCflON TO EVENTS 155

6
Introduction to Windows

156

This chapter covers the following new concepts:

• Windows

• Controls: Scroll Bars

• Window Manager

• Window Parts

• Window Updating

• Window Activation and Deactivation

• Tracking, Dragging, and Sizing Windows

• Standard Window Regions

• QuickDraw Text Attributes

Windows add another dimension to an applications program. They allow
users to handle a multitude of separate pieces of information according
to the specifications and control of the user rather than just the program­
mer (see Figure 6-1) .

Windows are an extension of the Quick.Draw grafPort. Both are pic­
ture-drawing environments. However, windows have the friendly advan­
tage of being easily and naturally moved on the screen and resized by the
user.

In this chap ter, we introduce the fundamentals of managing a window.
We describe how to draw pictures in a w indow and explore the structure

of a window. We present an example program to show how some window
parts can control the size and position of the window on the screen.

We also introduce controls. These structures, attached both logically
and physically to windows, allow the user to select values. Each control
houses and manages a single control value. In our example program, we
introduce a special kind of control called a scroll bar that houses scrolling
values. We show how to scroll the contents of a window with these controls.

The basic parameters that define windows and controls are stored as
resources along with the machine code that forms your program. In this
chapter, we see how to set up and use such resources.

Window management is essentially performed by the collection of
routines and data structures that form the Window Manager. However, this
management requires the cooperation of the Event Manager, the applica­
tions program, and the Control Manager, as well as the Window Manager.
The example program demonstrates the programming interrelationships
of these different parts of the system.

Figure 6-1. A Window

INTRODUCTION TO WINDOWS 15 7

Parts of a Window
A window has severa l parts that serve specific functions (see Figure 6-2).
These include the frame, the title, the title bar, the goAway box, the grow
box, the contents, and the vertical and horizontal scroll bars. You are
familiar with these parts as a Macintosh user.

The window frame consists of the title area containing the title bar,
the goAway box, and the boundary lines around the window. The contents
of a window include the area where the picture is drawn as well as the
areas where the scroll bars and grow box appear.

Each scroll bar consists of several parts, including the up button, the
down button, the page up control, the page down control, and the thumb
control (see Figure 6-3).

The window frame, including the title, title bars, and goAway box, is
drawn automatically by the Window Manager whenever the window is
moved or resized. The grow box is redrawn by the Window Manager on
special request. The scroll bars are drawn by the Control Manager on
request by the applications program. We see how these requests are made
as we continue.

Figure 6-2. Parts of a Window

I I • • • • • -

I I • • • • • •

I I I • • • • •

I I I • • • • •

I I I I • • • •

I I I I I • • •

158 HIDDEN POWERS OF THE MACINTOSH

The Example Program
The example program displays a single window on the screen entitled
"Demonstration Window". When the program is executed , you see in thi s
window the upper left portion of an illustration of different pen sizes. The
title "PenSizes" with large, outlined italic lettering is partly visible.

The entire illustration is too big to fit the screen. We have to use the
scroll and size controls to see each section of this picture.

All basic parts of a typical window are present and working. Assum­
ing that you have typed in and compiled the program, let 's try exercising
them.

First, try dragging the w indow to a new position , using the title bar
to grab hold of it. Now try changing its size by dragging the size box. It
grows to its new size when you release the mouse button.

Next, try the scroll controls. Use the thumbs to scroll to any horizontal
or vertical position. Use the page up and page down controls to move by
entire pages, and use the up and down buttons to move one row or column
at a time. Notice that the horizontal scroll bar directions are " left " and
"right".

Figure 6-3. Parts of a Scroll Bar

I I • • • • - -

I • • • • • • -

I I I • • • • •

I I I • • • • •

I I I I • • • •

I I I I • • • •

I I I I I I • •

INTRODUCfiON TO WINDOWS 159

Finally, try selecting the "goAway" button to end the demonstration.
Now let's examine this program.

PROGRAM WM;
{ $R- }{$X-}
USES

{$U obj/Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{$U obj / Toolintf

Memtypes ,
QuickDraw,
OSintf ,
Toolintf ;

CONST
isi ze 30 ;

VAR
done : BOOLEAN;
theEvt : eventRecord;
wRecord : windowRecord;
myWindow, theWindow : windowPtr ;
dragBnds , sizeBnds, drawRect , clipBnds: Rect ;
hsbar , vsbar : controlHandle ;

PROCEDURE Setup;
BEGIN

InitGraf(@thePort);
InitFonts ;
FlushEvents(everyEvent , O) ;
SetEventMask (everyEvent) ;
InitCursor;

InitWindows ;
myWindow := GetNewWindow (257 , @wRecord,POINTER (-1));
hsbar GetNewControl (257 , myWindow) ;
vsbar .- GetNewControl (258 , myWindow);

END;

PROCEDURE PenShapes (x , y , Maxi , MaxJ
VAR

I , J : Integer ;

BEGIN
EraseRect(drawRect) ;

INTEGER);

TextFont (Athens);
TextFace ([italic,outline,shadow]) ;
TextSize (24) ;
MoveTo ((i s i ze*Maxi-StringWidth('PenSizes')) DIV 2-x , 40-y);
DrawString ('PenSizes');

160 HIDDEN POWERS OF THE MACINTOSH

MoveTo(10 - x, 60 - y);
FOR J : = 1 to MaxJ DO

BEGIN
FOR I : = 1 to Maxi DO

BEGIN
PenSize (I, J);
Line (0, OJ;
Move (isize, 0) ;

END;
Move(-isize*Maxi , isize) ;

END;
PenNormal;

END ;

PROCEDURE ShowPict(theWindow: WindowPtr) ;
BEGIN

WITH theWindow· . portRect DO
SetRect(clipBnds, left, top, right-15, bottom-15);

ClipRect(cl i pBnds) ;
IF theWindow = myWindow THEN

PenShapes(GetCtlValue(hsbar) ,GetCtlValue(vsbar) ,20, 20) ;
ClipRect(drawRect) ;

END;

PROCEDURE WindowGrow(theWindow: WindowPtr; thePt : Point);
VAR

WSize : LONGINT;
S : Point;

BEGIN
WSize := GrowWindow(theWindow,thePt,sizeBnds) ;
IF WSize = 0 THEN Exit (WindowGrow) ;

SetPt (S, loWord(WSize) , hiWord (WSize));
SizeWindow(theWindow, S.h, S.v, true);
DrawGrowicon(theWindow);
SizeControl (hsbar, S. h-13 ,
MoveControl (hsbar, -1,
SizeControl (vsbar, 16,
MoveControl(vsbar , S. h - 15,

END;

16) ;
S. v-15) ;
S. v-13);

-1) ;

PROCEDURE ScrAction(theCtl : ControlHandle; partCode: INTEGER);
VAR

pagesize , delta : INTEGER;
BEGIN

WITH thePort· . portRect DO
CASE GetCRefCon(theCtl) OF

1: pagesize right - left 16;
2 : pagesize : = bottom - top - 16;

INTRODUCfiON TO WINDOWS 161

otherwise
END;

CASE partCode OF
inUpButton:
inDownButton:
inPageUp :
inPageDown :
otherwise

Exit (ScrAction) ;

delta -isize ;
de lta +isize ;
delta -pagesize ;
delta +pagesize;
Exit (ScrAction);

END;
SetCtlValue (theCtl , GetCtlValue (theCtl)+delta) ;
ShowPict(thePort);

END;

PROCEDURE WindowScroll(theWindow : WindowPtr ; thePt : Point);
VAR

theCtl : ControlHandle;
BEGIN

SetPort (theWindow) ;
GlobalToLocal(thePt);
CASE FindControl (thePt , theWindow,theCtl) OF

inUpButton , inDownButton, inPageUp , inPageDown :
IF TrackControl (theCtl , thePt ,@ScrAction)<>O THEN;

inThumb :
IF TrackControl'(theCtl , thePt , NIL) <> 0 THEN

ShowPict(theWindow);
END ;

END ;

PROCEDURE WindowUpdate (theWindow: WindowPtr);
BEGIN

SetPort(theWindow);
BeginUpdate (theWindow);

InvertRect (theWindow· . portRect);
SysBeep (10) ;
DrawControls (theWindow);
DrawGrowicon (theWindow) ;
ShowPict (theWindow);

EndUpdate (theWindow);
END ;

BEGIN {main program}
Setup ;
SetRect (drawRect ,
SetRect (sizeBnds ,
SetRect (dragBnds ,

0 , 0 , 512 , 342);
50, 50 , 512 , 342);

4 , 24 , 508 , 338);

162 HIDDEN POWERS OF THE MACINTOSH

done : = fa l se ;
REPEAT

IF GetNextEvent (everyEvent , theEvt) THEN
CASE theEvt . what OF

mouseDown :
CASE FindWindow(theEvt . where , theWindow) OF

inContent :
WindowScroll (theWindow, theEvt . where);

inDrag :
DragWindow (theWindow , theEvt . wher e , dragBnds) ;

inGrow:
WindowGrow (theWindow , theEvt . where);

inGoAway :
done : = TrackGoAway(theWindow, theEvt . where) ;

END;
updateEvt, activateEvt :

WindowUpdate(POINTER (theEvt . message)) ;
END ; {what event }

UNTIL done;
END.

External Files
The USES section of this program requests the same external files as the
example program in Chapter 5. The new data structures for windows and
controls are located in the file "Toollntf". However, we are building and
drawing in our window using QuickDraw and the Event Manager, so we
need the other external files as well.

Constants
The CONST section of this program defines only one contant: " isize".
This defines the spacing within the diagram and helps control scrolling.
It globally affects our program and thus belongs in the global constants
section.

Glob a I Variables
The VAR section contains the Boolean variable " done" and the Event
Record " theEvt", which manage events in much the same manner as
described in Chapter 5.

INTRODUCTION TO WINDOWS 163

Window Records
In addition to event management variables, our program has a number of
global variables to program our window. The first variable is "wRecord",
which is a Window Record (Pascal data type "windowRecord").

In thi s section , we study this structure in detail. It contains all the
information needed by the Window Manager to manage one window. A
window really consists of three entities: the image of the window on the
screen, the Window Record (studied in this section). and the Window
Manager routines (introduced in this chapter).

Other Macintosh concepts, including controls, dialogs, alerts, and
menus, behave in the same three-part way. For each concept, we describe
an image on the screen, a data structure, and a set of routines. As with
windows, complete understanding and control of these concepts requires
a detailed knowledge of each part, including the data structures in memory.

Let's continue our discussion of windows. The data stored in a Win­
dow Record include a grafPort and a number of Boolean variables, point­
ers, and handles required to manage the window. These data are central
to understanding how the Macintosh manages multiple overlapping
windows.

Let's look closer at this data structure:

WindowRecord
RECORD

port :
windowKind :
visible :
hili ted:
goAwayFlag:
spareFlag :
strucRgn :
contRgn:
updateRgn :
windowDefProc :
dataHandle :
ti tleHandle :
ti tleWidth :
controlList :
next Window:
windowPic:
ref Con :

END;

GrafPort ;
INTEGER;
BOOLEAN ;
BOOLEAN ;
BOOLEAN;
BOOLEAN;
RgnHandle ;
RgnHandle;
RgnHandle ;
Handle ;
Handle ;
StringHandle ;
INTEGER;
Handl e;
WindowPe e k ;
PicHandle ;
Longint ;

The first field, " .port", is the window's grafPort. As discussed in
Chapter 4 , this contains drawing variables to specify the size and shape

164 HIDDEN POWERS OF THE MACINTOSH

of the drawing area; the pen size, pattern, and mode; and the text size,
font, and face.

The second field, ".windowKind", is an INTEGER that classifies the
window. Currently, there are two supported kinds: a value of two indicates
that the window is used as a dialog or alert, and a value of eight indicates
that the window is a normal user-created window.

The third field, ".visible", is a BOOLEAN that specifies if the window
is visible.

The fourth field, ".hili ted", is a BOOLEAN that specifies if the win­
dow is highlighted.

The fifth field, ".goAwayFlag", is a BOOLEAN that specifies if the
window has a ''goAway'' box.

The sixth field, ".spareFlag", is a BOOLEAN reserved by Apple for
future use. It is included because of memory alignment considerations.
More precisely, the previous three fields are Boolean variables, each taking
one byte of memory, placing us in the next field at an odd address. The
"spare" flag adds another byte so that the following field has an even­
numbered address, as required by the 68000 processor to access integers
and long integers.

The seventh field, ".strucRgn", is a region handle (stored as a long
integer) to the structure region of the window. This region delimits the
entire window.

The eighth field," .contRgn", is a region handle to the content region
of the window. This is the area where drawing, the grow icon, and the
scrolling controls are placed (see Figures 6-1, 6-2, and 6-3).

The ninth field," .updateRgn", is a region handle to the update region.
This region accumulates areas of the window for updating. We study
updating later.

The tenth field, ".windowDe£Proc", is a handle to the window defi­
nition procedure. This procedure performs a variety of functions, such
as drawing the window frame, returning the region that the mouse was
pressed in, calculating the structure and content regions, drawing the
grow icon, and performing any needed initialization and disposal. When
the Window Manager calls this routine, it sends a code which specifies
the required action. Programmers can write and install window definition
procedures to build custom windows. (This is beyond the scope of this
book, but Apple manuals show how.) Programmers should use this capa­
bility wisely, for users expect applications to behave in a consistent man­
ner. Apple has provided guidelines, but programmers should play with
the system and other applications programs to get a feel for what users
want and expect.

INTRODUCTION TO WINDOWS 165

The eleventh field, ".dataHandle", is a handle to data that the window
definition procedure may need.

The twelfth field , " .titleHandle", is a StringHandle that leads to the
title of the window. StringHandles are defined by the following data
structures:

StringPtr
StringHandle

· str255 ;
· stringPtr ;

That is, they are handles to the standard type of strings used by QuickDraw.
The thirteenth field , ".title Width", is an INTEGER that gives the

width (in pixels) of the window's title.
The fourteenth field , ".controlList", is a handle to the list of controls

that belong to a window. This is a linked list that uses handles instead of
pointers. In our program, our window points to its scroll bars via this
field (see Figure 6-4).

The fifteenth field, " .next Window", is of type " Window Peek" and
points to the "next" window. The Window Manager maintains a linked
list of all windows. A variable, "WindowList", in the Toolbox's data area
points to the first window, and the linking is implemented by the
".next Window" field of each window.

The " WinduwPeek" data type is defined here by the Pascal type
declaration:

WindowPeek = ' WindowRecord ;

That is , it points to the entire window record. In contrast, a type
"WindowPtr" is defined by the Pascal type declaration:

WindowPtr = GrafPtr;

which accesses only the grafPort of the window, denying access to the
window's remaining data structure. The more limited "WindowPtr" is the
type normally used by an applications programmer, whereas "Window­
Peek" is typically used by the system. The Window Manager provides
access to most fields of the window record by its routines . Thus, it is not
necessary to access these fields directly. Using indirect methods such as
routines to access data is a modern approach that provides better protec­
tion of vital data than more direct methods.

The sixteenth field , " .window Pic", is a PicHandle. In Chapter 7, we
introduce the pictures concept and explain this field.

166 HIDDEN POWERS OF THE MACINTOSH

The seventeenth field, ".refCon", is a Longlnt. This field can be used
for any purpose. The programmer can use the "SetWRefCon" procedure
to place numerical values in this field and the "GetWRefCon" to retrieve
them. For example, programmers can use this field to hold the numerical
value of a handle to another structure such as a control or a region, the
address of a routine, or perhaps an index to an array.

In this program, we use the static variable "wRecord" to store the
data for our single window. It is possible to store this structure dynami-

Figure 6-4. The Control List

Control

..... l is t_--t ~I Pointer I :IJ

It; Handle I
Window
Record Control #l

Control #2

====O>NIL

Control #3

INTRODUCTION TO WINDOWS 167

cally. It must then be stored in a nonrelocatable block of memory, since it
is accessed by a pointer. Only data accessed by handles can be stored in
relocatable blocks of memory (see Chapters 3 and 4). This can cause
problems in large applications programs because nonrelocatable areas on
the heap tend to "fragment" the heap, making it hard for the Memory
Manager to remove "holes" by "compacting" memory.

Some Wmdow Pointers
The next global variables are "myWindow" and "theWindow". These are
of type "windowPtr" and point to our window. The first defines the win­
dow, and the second is used in conjunction with the "FindWindow"
routine, which identifies the window that the mouse is in. Since there is
only one window, you might think this is always "myWindow". But some­
times the mouse cursor is in no window. In this case, "FindWindow"
returns a NIL pointer. We definitely need another variable to accept this
value when it occurs; otherwise we might lose track of our window.

Window Limits
The next four global variables are rectangles to help control dragging,
sizing, drawing, and clipping of our window.

The first rectangle, "dragBnds", describes how far (in global coordi­
nates) the top left corner of the window's content region can be dragged
(see Figure 6-5). We don't want the window to be dragged completely off
the screen. Later in the program, we specify appropriate values for the
corner points of this rectangle.

The second rectangle, "sizeBnds", sets limits on the size of the con­
tent region when we "grow" the window (see Figure 6-6). The" .topleft"
corner point is the minimum value and the ".botright" corner point is the
maximum value for its vertical and horizontal size. If a window is too
small, we may have difficulty finding its controls and may lose control of
it.

The third rectangle, "drawRect", describes the drawing area. This
may be much larger than the window and is related more to the picture
than the window. In Chapter 7, it figures importantly in conjunction with
pictures.

The fourth rectangle, "clipBnds", specifies the area of the window's
content region where the picture is seen. This is smaller than the entire
content region because it excludes those areas of the content region where
scroll bars and the grow icon appear. We have to recompute this rectangle
at least every time the picture is resized.

168 HIDDEN POWERS OF THE MACINTOSH

Controls
The last two global variables are the control handles to manage the scroll­
ing controls. The "hsbar" is a handle to the horizontal scroll bar, and the
"vsbar" is a handle to the vertical scroll bar.

Window

Figure 6-5. Dragging Limits

This point~ rl==Title

stays within Wt' ndow
drag bounds.

Drog bounds

Figure 6-6. Sizing Limits

rr Smoll est window size

~~
SizeBnds

t . d -~ Lorges w1 n ow s1 ze

INTRODUCTION TO WINDOWS 169

These are the first of many controls studied in this book. In Chapter 7,
we introduce s tandard button controls, and in Chapter 8, we introduce
check boxes and radio buttons.

A control allows the user to easily manage a single value. In our
program, a horizontal displacement is stored in the data structure for the
horizontal scroll bar, and a vertical displacement is stored in the data
structure for the vertical scroll bar. These displacements are fed into the
picture-making procedures to offset the position of the picture from the
window. Scrolling is accomplished by drawing the picture as these dis­
placements change.

Like windows, controls consist of three parts: the image of the control
on the screen, the control 's data structures, and the Control Manager
routines that operate on the control. As with other Macintosh concepts,
studying the control 's data structure is a key to understanding how it
works and what it is capable of.

A control's data structures are defined by the following seri es of Pascal
type declarations:

ControlHandle
ControlPtr

· controlPtr ;
· ControlRecord ;

ControlRecord
RECORD

nextControl :
contrlOwner :
contrlRect :
contrlVis :
contrlHilite :
contrlValue :
contrlMin:
contrlMax:
contrlDefProc :
contrlDa t a :
contrlAction:
contrlRCon :
contrlTitle :

END;

ControlHandle ;
WindowPtr ;
Rect ;
BOOLEAN ;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER;
Handle ;
Handle;
ProcPtr ;
Longint ;
Str255 ;

That is, a control handle points to a control pointer, which points to a
control record.

Thus this structure contains fi elds to help manage the control's value,
define how it is drawn , and connect it to other structures.

As discussed, each window has a handle to a list of controls (see
Figure 6-4 above). This is a linked list in which linking is by handles

170 HIDDEN POWERS OF THE MACINTOSH

rather than pointers. The first field," .nextControl", of each control record
is a control handle. This control handle provides the linking to the next
control in the list. The last control in a window's control list always has
a NIL (zero) value in this field.

The second field, ".contrlOwner", of a control record is a window
pointer that points to the window record of the window that "owns" the
control. Reciprocally, the "owner" window has the control in its control
list (see Figure 6-7).

The third field, ".contrlRect", is a rectangle that delimits the area that
the control occupies within the window (see Figure 6-8). The control may
occupy an irregular region smaller than this rectangle.

The fourth field, ".contrlVis", is a BOOLEAN that specifies if the
control is visible.

The fifth field, ".contrlHilite", is a BOOLEAN that specifies if the
control is highlighted. In Chapter 7, we exercise this feature.

The sixth field, ".contrlValue", is an INTEGER containing the current
value of the control.

The seventh field, ".contrlMin", is an INTEGER that specifies the
minimum value of the control.

The eighth field, ".contrlMax", is an INTEGER that specifies the
maximum value of the control.

The ninth field, ".contrlDefProc", is a handle to the control's defini­
tion procedure. This procedure performs functions such as drawing the
control, testing for the mouse point in the control, calculating the control's
region, and updating the control's appearance. Programmers can install
their own routines here. The earlier comments about custom window
definition procedures apply here as well (see earlier ".windowDefProc"
discussion).

The tenth field, ".contrlData", is a handle to data for a control's
definition procedure.

The eleventh field," .contrlAction", is a pointer to the control's action
procedure. This procedure tracks controls.

The twelfth field, ".contrlRCon", is a Longlnt that can be used for
any purpose, like the" .refCon" field of a window.

The thirteenth field," .contrlTitle", is a dynamic string of type "Str255"
that contains the title.

Procedures and Functions
Now that we've explored the data structures in our program, let's examine
its procedures.

INTRODUCfiON TO WINDOWS 171

This program includes procedures and functions to initialize, to draw
the figure that appears in the window, to "mount" the figure in the window,
to resize the window, and to scroll the contents of the window.

Figure 6-7. Ownership of Controls

Window
record

Control
list

~!Pointer I:J
Cr Handle

I Pointer I :J

Control •1

Control •2

C1 Handle ==::::::e~NIL

Control #3

172 HIDDEN POWERS OF THE MACINTOSH

The Setup
The first procedure is " SetUp". It initializes the various managers, in­
cluding QuickDraw, the Font Manager, the Event Manager, and the Window
Manager.

The first part of this routine is similar to the "SetUp" routine in
Chapter 5. However, here we do not open a grafPort: this is done automat­
ically when we initialize the Window Manager.

Initializing the Window Manager

The second part of the routine initializes the Window Manager, then sets
up our window with its two scrolling controls.

The first command, " lnitWindows", initiali zes the Window Manager,
setting up a grafPort to cover the entire screen. This grafPort belongs to
the Window Manager itself, not to any of its windows.

Setting up the Window

The next command:

myWindow := GetNewWindow(257 , @wRecord,POINTER (-l)) ;

sets up a window defined as a resource in the application 's disk file.
The " GetNewWindow" routine draws the window frame and tells the

Event Manager to generate a special event called an update event. An
update event tells the applica tions program to draw the rest of the window
as part of its regular window maintenance cycle. Later, we see how the
applications program detects and responds to window update events.

Figure 6-8. Control Rectangle

~Control
rectangle

INTRODUCTION TO WINDOWS 173

The "GetNewWindow" routine has three parameters: an integer
"windowlD" that is the resource identification number for the window, a
pointer "wStorage" that points to the area of memory where the window's
window record is stored, and a window pointer "behind" that helps locate
the window's " depth" in relation to other windows.

Window Resources

Now let 's examine window resources. Chapter 3 discussed how each
applications program consists of a collection of resources. The program's
code is one such resource; other resources include constants such as initial
values for the fields of windows and controls. For our example programs,
a resource definition file is like source code for these resources. It names
the file where the raw machine code is located and explicitly gives window,
control, and other resource definitions. When the application is processed
into a file that is executable on the Macintosh, these resources are brought
together.

The window identification number specifies a resource of type "WIND"
in our resource file that should contain the defining parameters for our
particular window. We use a value of 257 for our identification number.
It is larger than 256 to avoid any hint of conflict with the system's iden­
tification numbers.

The following section of our resource definition file governs windows:

Type WIND
, 257
Demonstration Window
40 60 200 400
Visible GoAway
0
0

The first line is a type statement. It declares that the next item or
items in the file (until we get to the next type statement) are definitions
of windows.

The next line is the first line of our window resource definition. It
contains a comma followed by the resource's identifi cation number.

The second line of the resource definition specifies its title. Here, we
use the title "Demonstration Window".

The third line of the resource gives the global coordinates of the
corners of a window's port rectangle.

The fourth line specifies the visibility of the window and the presence
of the "goAway" box. Here, we specify the window to be "visible" (instead

174 HIDDEN POWERS OF T HE MACINTOSH

of "hidden") and to have a "goAway" box (instead of "noGoAway" for no
such box).

The fifth line gives the window definition procedure's identification
number. Here, we select zero, indicating to the Window Manager that it
should use its procedure for a standard document window. Table 6-1 shows
the choices for this parameter.

The final line gives the initial value of the window's reference value.
Remember that this number is available for the programmer's use. We
place a zero here because we are not using this particular field.

In "wStorage", the second parameter of the "GetNewWindow" rou­
tine, we place "@wRecord". This points to the static window record, a
global variable. If the system is to allocate storage for the window record,
we place a NIL value in this slot. Be aware that such storage is "nonre­
locatable": it is accessed only by a pointer, not a handle. This may make
a difference if you are short on memory.

The third parameter, "behind", points to the window that the new
window is placed behind in the system's list of windows. This indicates
how the windows appear on the screen. In this case, "POINTER(-1)"
places it behind no other windows; that is, in front of all others. A value
of NIL (that is, POINTER(O)) places it behind all other windows. In the
case of this program, the particular value doesn't matter because there is
only one window.

The "GetNewWindow" function allocates (if necessary) and initial­
izes the window record, then returns a window pointer that points to this
window record. In this case, we assign the value of this pointer to the
variable "myWindow" so that "myWindow" now points to the newly
created window.

Table 6-1. Window Definition Procedure Numbers

Identification Number

0
1
2
3
4

16

Window Type

Standard document window
Alert or dialog box
Plain box
Plain box
Document window without size box
Rounded-corner window

INTRODUCTION TO WINDOWS 17 5

hsbar
vsbar

Setting up Controls

Once we have fetched the window, we set up its scrolling bar controls
with the following statements to invoke the "GetNewControl" function:

GetNewControl (257 , myWindow);
GetNewControl (258,myWindow);

The "GetNewControl" function has two parameters: an integer to specify
a resource identification number for the control and a window pointer to
specify the window that "owns" the control. The function returns a handle
to the newly created control.

Here, we define the control with resource identification numbers 257
and 258. Again, we pick numbers larger than 256 to avoid conflict with
the system's identification numbers.

Control Resources

The section of the resource file for these controls appears as follows:

Type CNTL
, 257
horizontal scroll bar
145 - 1 161 326
Visible
16
1
0 0 500

,258
vert i cal scroll bar
- 1 325 146 341
Visible
16
2
0 0 500

The first line declares that the following items (until the next "type"
statement) are resources of type "CNTL", the resource type for controls.
The first line of each control resource contains its resource identification
number preceded by a comma. Here, we have resources 257 and 258.

The second line of each control resource contains the control 's title.
In our case, we use the title merely as documentation to label the resource
in the resource file, since scroll bars do not actually display titles.

176 HIDDEN POWERS OF THE MACINTOSH

The third line specifies the control's bounds rectangle, expressed in
local coordinates of the window to which it belongs. In our case, we
carefully choose numbers to place the scroll bars where they belong
relative to the initial size of our window (see Figure 6-9). (The method
for getting the correct placement is called " trial and error".)

The fourth line specifies whether the control is "visible" or "hidden".
Both our scroll bars are "visible".

The fifth line specifies the control 's procedure definition identification
number (see Table 6-1). We select 16 to identify the procedure that draws
scroll bars.

The sixth line specifies the initial value of the control's reference
value. Here, the reference value for the horizontal scroll bar equals one
and the reference value for the vertical scroll bar equals two. Our program
uses these values to select the proper scrolling parameters.

The last line of the control resource defin ition specifies the initial
settings for the current, minimum, and maximum values of the control.
For our program, we choose a current value of zero, a minimum value of

Figure 6-9. Initial Placement of Scroll Bars

INTRODUCTION TO WINDOWS 177

zero, and a maximum value of 500 for both controls. These values control
the displacement (in pixels) of the picture relative to the window.

Drawing the Picture
The procedure "PenShapes" draws a diagram that illustrates Quickdraw's
pen size attribute. It shows an array of pen sizes. However, it could easily
display some other diagram or document. The procedure is independent
of window management. It simply uses QuickDraw routines to make a
picture. The exact appearance of that picture (how much is displayed and
where) depends on the window's size and position on the screen.

The "PenShapes" procedure has four INTEGER parameters. The first
two specify the horizontal and vertical displacement for scrolling the
diagram. The second two specify the number of columns and rows in the
display array. In this program, we display 400 pen sizes in a 20 by 20
array by passing a value of 20 for the last two parameters when this
procedure is called.

Titling the Picture

The procedure erases the screen, then draws a fancy title at the top of the
illustration. We call several QuickDraw routines to control the fanciness
of the title.

We call "TextFont" to set the font. In this case, we use the constant
"Athens" to specify font number seven. Table 6-2 lists other choices. Not
all choices may be available on the disk you use.

We then call "TextFace" to set the style. The parameter for the "TextFace"
routine is a Pascal set. More precisely, it is of type "Style", defined by the
following Pascal type declarations:

Styleitem (bold, italic , under line , outline,
shadow, condense, extend) ;

Style = SET OF Styleitem;

In our program, we select " italic", "outline", and "shadow", passing them
in Pascal's square bracket set notation.

Next, we call "TextSize" to set the text size to 24 points. The text
size is the vertical distance between lines of text - about 72 points per
inch; thus, our title is contained within a height of about one-third inch.
In general, any integer size can be specified. However, the results look best
when the text corresponds to an existing size for the selected font. The
next best results occur when the text size is an even multiple of an existing

178 HIDDEN POWERS OF THE MACINTOSH

size. The Font Manager has routines to determine the existing fonts and
sizes. Applications such as "Font Mover" also allow you to specify the
sizes of the fonts on your disk.

The title is positioned with a "MoveTo" command. The position
depends on the displacement "vector" (x,y) specified by the first two
parameters of the " PenShapes" routine (see Figure 6-10). In our program,
this di splacement is controlled by the horizontal and vertical scroll bars.

To place the picture in the correct "scrolling" position, we subtract
the displacement vector from the normal position. We center the title over
the diagram, using a formu la similar to the one in the "Title" procedure
(see Chapter 5). We use "StringWidth" to size our title and "DrawString"
to draw the ti tie.

Now let's draw the pens - a study in relative motions (see Figure
6-11). First, we move to an absolute location within the window. This
location is determined by subtracting the displacement vector (x,y) from
the location of the first pen shape (in local coordinates). Everything in the
diagram is drawn relative to this point.

The pen shapes are drawn within a double FOR loop that indexes all
the rows and columns of the display. At the core of this double loop are
three statements:

PenSi ze (I , J);
Line (0 , 0);
Move (i s ize , OJ;

Number

0
1
2
3
4
5
6
7
8
9

Table 6-2. Fonts

Name

systemFont (normally Chicago)
applFont
New York
Geneva
Monaco
Venice
London
Athens
San Fran
Toronto

INTRODUCTION TO WINDOWS 179

These statements set the pen size, draw a single image of the pen , and
move to the next horizontal position of the pen. Here, the constant "isize"
specifies the size of the imaginary box occupied by each pen image,
therefore the size of the relative move between boxes.

After each row follows the statement:

Move(- isize*Maxi , isize);

to move to the beginning of the next row. After the entire array is drawn,
the "PenNormal" routine resets the attributes of the pen to normal and
exits our procedure. If we do not call "PenNormal", lines around the scroll
bars become too fat and cover the grow box and scroll bars.

Showing the Picture
The "ShowPict" routine "mounts" the diagram on the window. It interfaces
the drawing procedure to the Window Manager's routines. Its only param­
eter is a window pointer, which points to the window that the picture is
drawn in.

Figure 6-10. Positioning the Title

180 HIDDEN POWERS OF THE MACINTOSH

The procedure begins by calling the "ClipRect" routine to set the
current limits of the clipping bounds region " clipBnds" (see Figure 6-12) .
As discussed in Chapter 4, QuickDraw automatically clips anything it
draws to this gra£Port region.

Clipping is needed because the full illustration is usually larger than
the window area in which it is displayed. If the illustration is not clipped
to this display area , then it spills into the scroll bars or beyond the window.

Since the window can "grow", this area changes size under the user's
control and must be adjusted each time we draw the picture.

The limits of the clip region are computed by taking the window's
port rectangle minus 15 pixels on the right and bottom for the scroll bars
and grow box. This places the region in the center of the window, below
the title bar, and to the left and above the scroll bars and grow box.

A WITH statement around this calculation simplifies the formula,
allowing direct use of the various fields of theWindow' .portRect. We use
the QuickDraw routine to set the clipping.

The next statement ca lls our "PenShapes" procedure, but only if the
current window (given by the window pointer "theWindow") is our draw­
ing window (given by the window pointer "myWindow"). In general, we

Figure 6-11. Relative Position of the Pens

(I 0-x, 60- y)
~ . - -

o first pen posllion

INTRODUCTION TO WINDOWS 181

make such tests to avoid drawing in the wrong window, such as one
belonging to a desk accessory.

Of course, we don't have any desk accessories in this program, but
the current w indow could be "empty". This happens when you select a
point outside a w indow. In this case, the window pointer "theWindow" is
NIL (zero value). Drawing under such circumstances could cause a very
strange crash.

When dealing with several windows, we can use a CASE sta tement
to branch to a procedure to draw the picture belonging to a given window.

When we call "Penshapes", we pass the scrolling displacement in
the first two parameters. Using the "GetCtlValue" function, we fetch the
horizontal displacement from the horizontal scroll bar control and the
vertical displacement from the vertica l scroll bar control. Thus, we use
the control's own value field to store these essential quantities. We see the
advantages of this later.

Before returning from thi s procedure, we reset the clip region to
"drawRect". This ensures that the scroll bars and grow box operate prop­
erly. Otherwise, they might not update in response to the user's mouse
commands.

Figure 6-12. The Clip Bounds

182 HIDDEN POWERS OF THE MACINTOSH

Growing Windows
The next procedure, "WindowGrow", manages the resizing of the window
in response to dragging the grow box (see Figure 6-13). This routine is
called from the main program when the mouse is pressed in the grow box.

The procedure has two parameters: " the Window", which is a window
pointer, and "thePt", which is a point. The procedure "grows" "the­
Window" starting with the cursor at "theFt".

The procedure has two variables: a long integer "WSize" and a point
"S". Both hold the window's size, but differently.

The "WindowGrow" procedure first invokes the Window Manager's
"GrowWindow" function to track the motions of the grow box and return
the final window size when the mouse button is released. "GrowWindow"
has three parameters: a window pointer, a point, and a rectangle. The first
two parameters are the same as those described for our " WindowGrow"
procedure, so we pass " theWindow" and " theFt" along from our proce­
dure to this routine. The third parameter specifies the minimum and
maximum allowable sizes for the window. We pass "SizeBnds" in this
slot. The exact values are specified in the main program a long with limits

Figure 6-13. Dragging the Grow Box

INTRODUCTION TO WINDOWS 183

for other rectangles. "GrowWindow" returns a long integer that specifies
the size in a "packed" form.

We grab the value returned from "GrowWindow" in the long integer
"WSize". However, if the grow box is not moved but merely clicked, this
returned value is zero. If WSize is zero, we should do nothing else: the
size is wrong (zero!), and the scroll bars cannot move properly in response
to no amount.

If WSize is zero (no motion), we call the Pascal "Exit" procedure to
exit from the routine. If the window is to be resized, we continue. (We
could instead surround the last part of this routine with an IF. .. THEN
statement, but that increases the complexity of the program's structure,
adding another level of indentation.)

First, we use "SetPt" with the "loWord" and "hiWord" functions to
convert the window's size from its "packed" form in the long integer
"WSize" to "S", which is a point. This provides easier access to its
individual horizontal and vertical components.

Next, we call "Size Window" to move the window frame. This routine
has four parameters: a window pointer to the affected window, an integer
to specify the new horizontal size, an integer to specify the new vertical
size, and a Boolean to specify whether the system should generate an
update event after the window is resized by this command. We pass
''theWindow'' to the first parameter. We pass the horizontal component of
the size in the form "S.h" to the second parameter. We pass the vertical
component of the size in the form "S.v" to the third parameter. We pass
"true" to the fourth parameter, indicating that we want the Window Man­
ager to generate update events when the window is resized.

The growicon and the scroll bars do not automatically move when
the window is resized. We must move them ourselves. We call "Draw­
Growlcon" to redraw the grow box and call "SizeControl" and "Move­
Control'' for each scroll bar. The sizes and positions for the scroll bars
depend directly on the size of the window (see Figure 6-14). Closely
examine the figure and the program to see what these dimensions are.

The Scroll Routine
The next procedure, "ScrAction", is unusual: it involves a unique coop­
eration between the Macintosh's built-in software and an applications
program. It is never directly called by an applications program. Instead,
it is an action routine called by the Control Manager's tracking routine to
repeatedly perform a specified action during tracking. This occurs when
our program calls the tracking routine, which in turn calls the action
procedure.

184 HIDDEN POWERS OF THE MACINTOSH

When we track the scroll bars in our program , we want to repeatedly
scroll the picture as the user presses the up or down buttons or the page
up or down controls. Yet , we want the Control Manager to perform high­
lighting and other tracking operations.

Our control action routine has two parameters: a control handle to
specify the control being tracked and a part code to specify a particular
part of that control.

The parts for scroll bars have codes, specifi ed by the following Pascal
constants statements:

inUpButton = 20;
inDownButton = 21;
inPageUp 22;
inPageDown 23;
inThumb 129;

(-

The first four parts require special action; the las t, "inThumb", does
not. The difference is that the first four parts are " buttonlike" and signal
the program that the user wants to do something; the last part is an

Figure 6-14. Relative Size and Positions of Scroll Bars

INTRODUCTION TO WINDOWS 185

"indicator" that the Control Manager knows how to drag and update. In
our case, we tell the Control Manager to use our action procedure only if
the first four parts occur. If an action routine were used for the " inThumb"
case, we would require a different syntax for our action routine - one
with no parameters .

Now let's look at our action procedure. It has two local variables:
" pagesize" and " delta", both integers. These help to determine the amount
and direction of scrolling.

The procedure begins by setting the "pagesize". This is the distance
that we scroll if the user selects " page up" or "page down" (see Figure
6-15).

The value of "pagesize" depends on the size of the current port
rectangle as well as the direction in which we scroll. The entire statement
is surrounded by a " WITH thePort" .thePort DO" statement so that we can
directly use the " right", " left", "bottom ", and "top" fields of this rectangle.

We use the reference values in the horizontal and vertical scroll bar
controls to drive a CASE statement. A value of one indicates the horizontal

Figure 6-15. Page Size

186 HIDDEN POWERS OF T ilE MACINTOSH

scroll bar. A value of two indicates the vertical scroll bar. The formula for
the horizontal direction is:

pagesize : = right - left - 16;

The formula for the vertical direction is:

pagesi ze : =bottom - top - 16;

We must subtract 16 in each formula due to the space occupied by the
scroll bars.

We immediately exit the procedure if neither case occurs.
We then see which part of the control is selected and set "delta"

accordingly. If none of the four parts is selected , we immediately exit the
procedure.

Now we use "GetCtlValue" and "SetCtlValue" to increment the con­
trol 's value by " delta". We then call "ShowPict" to display our picture in
its new position. That's all there is to scrolling: change the displacement
and redraw the picture. However, the procedure can be refined. For ex­
ample, " ScrollRect" may shift only part of the picture, and the update
region can be set to redraw only newly visible parts.

Test the scrolling controls to see how all this works.

Managing Window Scrolling
The routine "WindowScroll" manages scrolling in our program. It is called
from the main program when the mouse is pressed in the content region
of the window.

The procedure has two parameters: a window pointer that points to
the window we want to scroll, and a point that is the current mouse
position.

The procedure has a local variable, " theCtl", a control handle used
to select one of the two scroll controls.

We begin the procedure by ca lling the QuickDraw "SetPort" routine
to make the grafPort of the specified window into the current grafPort.
Next, we call the QuickDraw "GlobaltoLocal" procedure to convert the
mouse position from global to local coordinates. Once a window is se­
lected , its local coordinates are used for all drawing and all controls.

Now we find and track the controls. First , we call the Control Man­
ager's "FindControl" function to see if the mouse is pressed in one of the
two controls.

INTRODUCTION TO WINDOWS 187

The Control Manager's "FindControl" has three parameters: a point
that specifies the current mouse position in the window's local coordi­
nates, a window pointer that points to the desired window, and a control
handle that is passed by reference. If the mouse is pressed in a control,
the function returns a handle to it in the last parameter. The function also
returns the part code as the return value of the function. If the mouse is
not pressed in a currently active control, it returns a zero as the part code
and NIL for a control handle. The special feature called "hilite code" is
not used.

We feed the part code from "FindControl" into a CASE statement.
Each case uses the "TrackControl" function to track the control; that is,
perform normal highlighting as the user moves the mouse with the mouse
button down.

The "TrackControl" function has three parameters: a control handle
to the selected control, a point that is the current position of the mouse
in local coordinates, and a pointer to the programmer's action procedure
(if any). The "TrackControl" funtion returns the part code once the mouse
button is released. If the mouse is released in a part other than where
pressed, this part code is zero.

If the part code from ''FindControl'' indicates one of the ''buttonlike''
controls, we call "TrackControl", passing the address of our "Scroll­
Action" procedure to update the control's value and the picture during
tracking. In this case, the "Track Control" function is surrounded by a
''dummy'' IF..THEN statement, since we don't want to waste a variable to
pick up its returned part code. This also indicates that nothing is required
after tracking.

If the part code from "FindControl" indicates the thumb indicator,
we call "TrackControl", passing a pointer value of NIL for the action
routine. Again, we place "TrackControl" in an IF..THEN statement. How­
ever, in this case, we call our "ShowPict" routine if the returned part code
is nonzero; that is, the picture is redrawn only after all the tracking is
completed.

Updating and Activating a Window
Our last procedure, "WindowUpdate", controls the updating and activa­
tion of our display window. Updating occurs when a window is resized
or dragged so that parts formerly hidden become visible. These need to
be redrawn, or at least specified, by the applications program. Activation
occurs when a window is first created or selected. With several windows,
both activate and deactivate events occur as different windows are se-

188 HIDDEN POWERS OF THE MACINTOSH

lected. In our case, the activate event occurs only once as a result of the
"GetNewWindow" command.

Our "WindowUpdate" procedure has one parameter: a window pointer
to the window that needs attention.

We begin the procedure by calling the QuickDraw "SetPort" routine
to make the grafPort of the specified window into the current grafPort.
Next, we call the Window Manager's ''BeginUpdate'' routine to begin the
update process. This routine replaces the window's "visRgn" with the
intersection of the window's visRgn and update region. The picture is
thus restricted to only those areas of the window needing attention. The
window's update region is then emptied, assuming that updating is com­
plete for that particular window.

The next two lines are just for fun and should not be placed in a real
application. The first inverts the update region, the second beeps for a
time. This gives a chance to see the areas of the screen being updated.

Now we update. Be aware that three separate parts of the system
cooperate in the updating process. The Control Manager's "DrawControls"
is called to draw the scrolling controls. The Window Manager's "Draw­
Growlcon" is called to draw the grow box. The "ShowPicf' procedure is
called to draw the picture.

Finally, we call "EndUpdate" to restore the orginal visRgn of the
window's grafPort.

The Main Program
The main program controls the flow of events. Like the example program
in Chapter 5, it has an initialization section and a main loop.

Initializing Section
In the initialization section, we call our "SetUp" procedure to initialize
QuickDraw and the various managers. Next, we initialize the three rec­
tangles, "drawRect'', "sizeBnds", and "dragBnds", which define the de­
limiting parameters to draw, resize, and drag. In this program, these limits
are gathered in one place for the convenience of the programmer who
maintains this program.

The main loop is a REPEAT ... UNTIL loop. As before, the Boolean
variable "done" in the UNTIL clause controls the loop. Before the loop, it
is set to false. In the loop, the user can set it to true. That happens in this
program if the user selects the window's "go Away" box.

As in the Chapter 5 program, the loop begins by calling the "Get­
NextEvent" function in an IF. .. THEN statement. The THEN part is exe-

INTRODUCTION TO WINDOWS 189

cuted only if the Boolean from "GetNextEvent" is true, indicating that our
program is to handle the event.

At the heart of the loop is a CASE s tatement driven by the "Get­
NextEvent" function. In thi s program, we want to deal only with " mouse­
down", " update", and "activa te" events. Of course, you can add other
cases to expand the capabilities of the program. Within the " mouseDown"
case is another CASE statement dri ven by the "FindWindow" fun ction to
determine which part of the window the mouse was in when pressed. It
also finds out which window it was in. Of course, in our program there
is only one window to find.

The "FindWindow" funct ion has two parameters: a point to show
where the mouse cursor is or was; and a window pointer that , upon return ,
points to the mouse's window. The last parameter is passed by reference.
The function returns an integer w ith a "part code" for the window. The
following Pascal statements give the standard window part codes:

inDes k = 0 ;
inMenuBar = 1;
inSysWindow = 2 ;
inContent = 3 ;
inDrag = 4 ;
inGrow = 5 ;
inGoAway = 6 ;

In this program, we use only the last four statements: "inContent", " inOrag",
" inGrow", and " inGoAway".

If the mouse is pressed in the content region, we branch to the
"inContent" case, where we call our "WindowScroll " procedure. It verifies
that the mouse position is in one of the scrol l controls. If so, it provides
the appropriate tracking and scrolling.

If the mouse is pressed in the drag region, which for our window is
the title bar (except for the goAway box), we branch to the "inDrag" case,
where we ca ll the Window Manager's "OragWindow" routine. This routine
handles the entire window dragging process except for updating. The
Window Manager generates an update event when parts of the window's
contents are dragged into view from outside the viewing screen.

The "DragWindow" routine has three parameters: a window pointer
that points to the affected window, a point that contains the mouse position
in global coordinates when the button is pressed, and a rectangle that
specifies the limits in global coordinates so that you can drag the top left
corner of the content region of the window. In our program, the "dragB nds"
is passed as this last parameter. Earlier, it was set to a rectangle slightly

190 HIDDEN POWERS OF THE MACINTOSH

smaller than the active part of the screen so that the window is never
dragged completely out of sight.

If the mouse is pressed in the grow box, we branch to the " inGrow"
case, where we call our "WindowGrow" procedure. This routine resizes
our window. It usually generates update events, which we handle with
the " update" case.

If the mouse is pressed in the goAway box, we branch to the " in­
GoAway" case, where we call the Window Manager 's "TrackGoAway"
function. This function does the proper highlighting actions for tracking
the cursor, which in th is case is drawing little star-shaped lines - or
" highlights"- around the goAway box until the user releases the mouse
button. It then returns with a Boolean that is true if the mouse is still in
the goAway region and false if not. In our case, we assign this result to
our Boolean variable "done".

These are a ll the cases for "mouseDow n ". For " u pdate" and
"activateEvt", we call our "Window Activate" routine. Again , this updates
(redraws) just those portions of the content region of the window that
need updating. In this program, we can use the same procedure to update
and activate windows. For update and activate events, the" .message" field
of the event record contains a numerical value that is the address of a
pointer to the given window. We pass this pointer value in the following
form:

POINTER (theEvt . message)

to our "WindowUpdate" routine.
That's all there is to the loop. It continues until the go away condition

is met by the user.

Summary
In this chapter, we have studied the Window Manager and the Control
Manager, which allow us to control a single window on the screen . We
have seen how to scroll , drag, resize, and update a w indow, and how to
make it go away. In Chapter 7, we introduce those concepts that allow us
to handle several windows at once.

This chapter covered the following ROM routines:

WM-InitWindows

WM-GetNewWindow

CM -GetNewControl

INTRODUCTION TO WINDOWS 191

QD-TextFont

QD-TextFace

QD-TextSize

QD-PenSize

QD-Move

QD-PenNormal

CM-GetCtlValue

WM-GrowWindow

WM-SizeWindow

CM-SizeControl

CM-MoveControl

WM-DrawGrowlcon

CM-GetCRefCon

CM-SetCtlValue

QD-GlobaltoLocal

CM-FindControl

CM-TrackControl

WM-BeginUpdate

OU-SysBeep

CM-DrawControls

WM-EndUpdate

WM-Find Window

WM-DragWindow

WM-TrackGoAway

192 HIDDEN POWERS OF THE MACINTOSH

7
Overlapping Windows

This chapter covers the following new concepts:

• Pictures

• Polygons

• String Resource

• Overlapping Windows

• Hiding and Showing Windows

• Window Selection and Highlighting

• Window Updating

In this chapter we describe how to manage multiple overlapping windows.
We also introduce more advanced techniques in picture making and
window management , including pictures, polygon s, and fine scrolling. We
begin with short descriptions of p ictures and polygons, then describe a
programming example that illustrates how to manage several windows at
once. We fill one window with an image drawn with a picture and fill
another window with a series of images drawn with polygons.

Pictures
A picture is a list of basic QuickDraw drawing commands in a compressed
format in which each drawing command is encoded as a single-command
byte followed by data bytes. This is more efficient than using the com­
mand 's full name or trap code. As we see later, frequently used commands
have shortened versions for easier access.

193

A picture is a way to handle graphics information to be displayed in
a Macintosh window. However, uses of pictures include storage of graphics
information on disk and transmission of graphics information to a remote
device such as an intelligent printer. The compressed format is useful in
these applications because it saves memory space, transmission time, and
execution time.

In this section , we briefly review this format so that you understand
the picture-drawing facilities of Quickdraw. For example, you see how
quantities that determine the s ize and shape of objects in the picture are
frozen as constants when the picture is made. This is valuable when
planning or debugging your own graphics programs.

As of this writing, Apple has not documented this format, which
makes it subject to change. The routines that generate and interpret these
commands are in ROM, so any change is unlikely, although possible, since
new RAM routines can be substituted for the original ROM routines.

A picture is accessed through a picture handle that is defined through
the following Pascal data s tatements:

PicHandle
PicPtr
Pic ture

· PicPtr ;
· Picture ;
RECORD

picSize : INTEGER;
picFrame : Rect ;
{picture definition data }

END;

That is , a "PicHand le" is a pointer to a "PicPtr", which in turn points to
a "Picture" (see Figure 7-1). Recall that this double pointer system is
required if the picture is to be properly handled as a dynamic variable.

Given the above declaration, we see that "Picture" is a record con­
sisting of two fields that Pascal knows about, plus data that only Quick.Draw

Figure 7-1. Picture Handles, Pointers, and Data

I Hendl e I ===il •__ __ ____, "'VI Pointer

194 HIDDEN POWERS OF THE MACINTOSH

ljb..-----,
Picture
date

knows about. The Pascal field ". picSize" gives the number of data bytes
in the picture. This information is needed by the Memory Manager. The
field ".picFrame" is a rectangle that encloses the picture.

The picture definition data follows the second field . Picture-drawing
commands are stored in this data as sequences of bytes, like a kind of
machine language. In this case, the machine language consists of graphics
commands. These commands are called picture definition code rather
than central processor commands. Think of the picture-drawing process
as running a graphics "processor" that executes these picture-drawing
commands. Of course, this particular graphics processor is constructed
of software. But imagine a hardware processor, perhaps in some peripheral
equipment, that reads and executes such graphics "programs".

Each picture-drawing command begins with a command byte, acting
like a machine language operation code. Following each command byte
are several data bytes. These data bytes contain "literal" values needed
by QuickDraw to draw the picture. For example, the command to change
the pen size to (2, 3) is encoded in hexadecimal as follows:

07 , 0003 , 0002

The "07" is the command byte for pen size, " 0003" is an integer constant
that specifies the vertical size of the pen, and "0002" is an integer constant
that specifies the horizontal size of the pen. Notice that the vertical com­
ponent is stored first, corresponding to the way these quantities are stored
internally.

There are a variety of line-drawing commands. For example, the com­
mand byte with hexadecimal value $20 followed by integers y1, x1, y2,
x2 draws a line from (x1,y1) to (x2,y2), and the command byte $21
followed by integers y, x draws a line from the previous current position
to the point (x,y). Also, a command for "short" lines uses byte-sized
vertical and horizontal displacements. This last command uses only three
bytes of picture definition code, therefore runs faster and requires less
storage.

The commands for drawing text specify a location (absolute or rela­
tive) and a literal string. For example, a command byte $28 followed by
integers y and x and a string moves the pen to the position (x,y) and draws
the string there.

It is important to understand that all expressions are evaluated when
the picture definition is created and that only the resulting constant or
literal values are stored in the picture definition data. This means that
once the picture is created, you cannot effectively control parameters in

OVERLAPPING WINDOWS 195

your program to determine the placement of lines, the size and spacing of
rectangles or text strings, and the patterns to fill shapes.

f\Tote that not every QuickDraw command is immediately converted
to a corresponding picture definition command. For example, "Move" and
"MoveTo" are not translated until something is drawn, such as a line or
a string.

Polygons
Polygons are figures formed by a series of line segments (see Figure 7-2).
Once a polygon is defined, it can be outlined, filled, erased, or inverted,
just like rectangles, ovals, and regions in previous chapters.

The "Stars" procedure of our example program, discussed later, il­
lustrates how polygons are defined and drawn. You may want to look at it
before proceeding with this discussion.

Structure of Polygons
We begin with the internal structure of polygons. Normally, the program­
mer refers to a polygon only by its handle, not needing to know the internal
structure. But to truly understand polygons, we must look at this structure.

A polygon handle is a variable of type "polyHandle", defined by the
following declaration:

Po l yHandle
PolyPtr

"PolyPtr ;
"Polygon ;

Line

Figure 7-2. A Polygon

Line 3

Line 4

Line 5

Ys

196 HIDDEN POWERS OF THE MACINTOSH

Polygon = RECORD
polySize: INTEGER ;
polyBBox: Rect ;
polyPoints : ARRAY [0 .. 0) OF Point;

END;

That is, a "PolyHandle" is a pointer to a "PolyPtr", which points to a
"Polygon". A "Polygon" is where the data is stored.

A polygon is a record structure with three fields (see Figure 7-3). The
first field, " .polySize", is an integer that specifies the number of data bytes
stored in the polygon. This is required for memory management. The
second field , " .PolyBBox", is a rectangle that bounds the polygon. In our
"star" example, we see how this ".polyBBox" increases the performance
of our drawing.

The third field , ".polyPoints", is an array of points that specifies the
vertices of the polygon. Later, we explain how to load values into these
vertices.

Defining Polygons
Polygons are defined using the " OpenPoly" function and the "ClosePoly"
procedure. The "OpenPoly" function returns a handle to a newly created

Figure 7-3. Internal Structure of Polygons

polySize

pol yBox
polyBox

Yo Yo
YJ
y2

y3 Ys
y4

Ys
y6

y7

OVERLAPPI NG WINDOWS 197

polygon, turns off drawing to the screen, and causes subsequent line­
drawing commands to accumulate as part of the polygon.

Once a polygon is open, you can define the polygon with "Line" and
"LineTo" commands (and perhaps an initial "Move" or "MoveTo"). The
first "Line" or "LineTo" command places the two end points of the line
in the" .poly Point" array. The first point is the current position before the
first line is drawn. The second point is the current position after the
"line" command. Each subsequent line-drawing command places the new
position in the" .poly Point" array. Thus, the number of vertices is always
one more than the number of lines drawn.

The polygon is closed by the "ClosePoly" command. This computes
a rectangle that fits around the polygon, storing it in the" .polyBBox" field
of the polygon, and shows the pen again.

Drawing Polygons
Once a polygon is defined, you can use the commands "FramePoly",
"FillPoly", "PaintPoly", "ErasePoly", and "InvertPoly" to draw with it.
Each of these commands is invoked with the polygon handle as a parameter.

You can use the "OffsetPoly" routine to move a polygon around,
drawing anywhere on the screen. We do this in our "stars" procedure.

The Example Program
The example program in this chapter demonstrates how to manage several
windows at once. The windows can be moved and resized so that they
overlap or even hide each other. The Window Manager takes care of all
such details if we do our part.

When the program signs on, only one window is visible (see Figure
7-4). It is called the control window, and its sole function is to control
other windows. It has the form of a rounded rectangle and contains two
control buttons. A button labeled "graphics" makes a window containing
graphics appear. The button labeled "text" makes a window containing
text appear (see Figure 7-5). The control window has a goAway box that,
when pressed, terminates the program.

The text window and the graphics windows are called display win­
dows because they display graphics or textual information. Both have
vertical and horizontal scroll bars that allow scrolling by thumb, page,
and button controls. They also have grow boxes for resizing and goAway
boxes to make them disappear.

The graphics window displays an array of stars, illustrating absolute
and relative "move" and "line" commands and polygon drawing.

198 HIDDEN POWERS OF THE MACINTOSH

The text window displays some text that describes the program. This
window illustrates string resources and pictures.

Now let's look at the program. It is longer than our previous programs,
but it is divided into easy-to-understand segments.

PROGRAM Windows;
{ $R- }{$X- }

USES
{SU obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{$U obj / Toolintf

CONST

VAR

isize = 4;

done : boolean ;
theEvt : eventRecord;

Memtypes ,
QuickDraw,
OSintf ,
Tool!ntf;

CtlWindow, theWindow: WindowPtr ;

Figure 7-4. The Control Window

OVERLAPPING WINDOWS 199

URgn: RgnHandle ;
dragBnds , sizeBnds : Rect ;
Pi ct : ARRAY [1 . . 2] OF PicHandle ;
pi cBnds : ARRAY [1 .. 2] OF Rect ;
CtlButton: ARRAY [1 .. 2] OF ControlHandle ;
hsbar, vsbar : ARRAY (1. . 2] OF ControlHandle ;

PROCEDURE SetUpSys;
BEGIN

InitGraf (@thePort) ;
InitFonts ;
InitWindows ;
FlushEvents (everyEvent,Ol ;
SetEventMask(everyEvent) ;
InitCursor ;
URgn : = NewRgn ;

SetRect (picBnds[1] ,
SetRect(picBnds[2] ,
SetRect (sizeBnds ,
SetRect (dragBnds,

0,
0 ,

50 ,
4 ,

0 ,
0 ,

50 ,
24 ,

512,
512 ,
512 ,
508 ,

342) ;
342);
342) ;
338) ;

Figure 7-5. The Graphics and Text Windows

200 HIDDEN POWERS OF THE MACINTOSH

done
END;

fal se ;

PROCEDURE Stars (VRgn RgnHandle);
CONST

maxi
maxJ

VAR
I , J
Star

BEGIN

= 10;
10;

INTEGER;
PolyHandle ;

Moveto (10 , 0);
Star := OpenPol y;

Line (-17 , -7) ;
Line (7, 17) ;
Line (?, -17);
Line(-17 , 7);
Line(17 , 7);
Line (-7 , - 17) ;
Line (-7 , 17) ;
Line (l7 , -7);

ClosePoly ;
OffsetPoly (Star, 30 , 40l;
FOR I : = 1 to Maxi DO BEGIN

FOR J : = 1 to MaxJ DO BEGIN
IF RectinRgn (Star ·· . polyBBox, VRgn) THEN FramePoly (Star);
OffsetPoly (Star , 50 , 0) ;

END;
OffsetPoly (Star , -50*Maxi , 50) ;

END;
END;

PROCEDURE Explain;
VAR

theText : Handle ;
IPtr : • INTEGER;
S : StringPtr ;
i : INTEGER;

BEGIN
t heText := GetResource('STR#' , 256);
HLock (theText);

IPtr := POINTER (ORD(theText")) ; {point to nurn of s trings }
S : = POINTER (ORO (theText • J + 2); {point to first string}
FORi := 1 TO IPtr" DO BEGIN

MoveTo (l0,10+20*i J;
DrawString(s·);
S := POINTER (ORD (S) +LE~GTH (S ")+l) ;

END;
HUnLock(theText);

END ;

{beginning of line}
{draw the string}
{point to next string}

OVERLAPPING WINDOWS 201

PROCEDURE SetUpWindows;
BEGIN

{set up control window !
CtlWindow : = GetNewWindow(257 , NIL,POINTER(-l)) ;
CtlButton[l] := GetNewControl(257 , CtlWi ndow) ;
Ct1Button[2) : = GetNewControl (258 , CtlWindow);

{set up graphics window}

theWindow := GetNewWindow (258, NIL ,NIL) ;
SetCRefCon (CtlButton[l] , ORD(theWindow));
hsbar[l] : = GetNewControl (259, theWindow) ;
vsbar[l) := GetNewControl(260 , theWindow);

{set up text window}
theWindow : = GetNewWindow(259,NIL,NIL) ;
SetCRefCon (CtlButton[2] ,0RD (theWindow));
hsbar[2] := GetNewControl(26l,theWindow);
vsbar[2) : = GetNewControl(262 , theWindow) ;
SetPort(theWindow);
ClipRect(picBnds[2J l;
Pi ct[2) := OpenPicture(picBnds[2]);

Expl ain ;
ClosePicture ;

END;

PROCEDURE UpdatePic(i
VAR

S: Point ;
BEGIN

INTEGER; URgn RgnHandle);

If i = 0 THEN Exit(UpdatePic) ;
SetPt(S, GetCtlValue(hsbar[i]) , GetCtlValue (vsbar[i)));
SetOrigin (S. h, S. v);
OffsetRgn(URgn,S . h, S. v);
SetClip (URgn);
EraseRgn (URgn);
CASE i OF

1: Stars (URgn) ;
2: BEGIN

Hlock(Handle (Pict[i)));
DrawPicture (Pict[i] , picBnds[i));

HUnlock(Handle (Pict[i)));
END ;

END;
SetOrigin (0, 0);
ClipRect (thePort · . portRect);

END;

202 HIDDEN POWERS OF THE MACINTOSH

PROCEDURE ScrAction (theCtl : ControlHandle; partCode: INTEGER);
VAR

pageSize , delta , i : INTEGER;
S, dS : Point ;
viewBnds : Rect ;

BEGIN
i : = GetWRefCon (theWindow);
If i = 0 THEN Exit(ScrAction);

WITH thePort · . portRect DO
CASE GetCRefCon (theCtl) OF

1: pagesize := right - left - 16 ;
2: pagesize := bottom - top - 16 ;
otherwise Exit (ScrAction);
END;

CASE partCode OF
inUpButton:
inDownButton :
inPageUp:
inPageDown:
otherwise
END;

delta -isize;
delta : = +isize;
delta : = -pagesize;
delta := +pagesize;
Exit (ScrAction) ;

SetPt (S, GetCtlValue (hsbar[i]) ,GetCtlValue(vsbar[i])) ;
SetCtlValue (theCtl ,GetCtlValue (theCtl)+delta);
SetPt (dS , S. h-GetCtlValue (hsbar[i]) ,S.v-GetCtlValue(vsbar[i)));

WITH thePort · . portRect DO
SetRect (viewBnds,left , top , right-15,bottom-15);

ScrollRect(viewBnds , dS . h, dS . v , URgn) ;
UpdatePic (i , URgn) ;

END;

PROCEDURE WindowControl (thePt : Point) ;
VAR

theCtl : ControlHandle ;
BEGIN

IF theWi ndow = FrontWindow THEN BEGIN
SetPort (theWindow) ;
GlobalToLocal(thePt) ;
CASE FindControl (thePt , theWindow, theCtl) OF

inButton :
IF TrackControl (theCtl , thePt,NIL) <> 0 THEN BEGIN

HiliteControl (theCtl , 255) ;
ShowWindow (POINTER(GetCRefCon(theCtl))) ;

END ;
inUpButton, inDownButton, inPageUp , inPageDown:

IF TrackControl(theCtl , thePt ,@ScrAction) <> 0 THEN;
inThumb:

OVERLAPPING WINDOWS 203

IF TrackControl(theCtl , thePt , NIL) <> 0 THEN BEGIN
WITH theWindow· . portRect DO

SetRectRgn(URgn, left , top, r ight-15,bott om-15) ;
UpdatePic(GetWRefCon(theWindow) , URgn) ;

END;
END;

END
ELSE BEGIN

Sel ectWindow(theWindow) ;
DrawGrowicon(theWindow) ;
DrawCont rols(theWindow) ;

END;
END;

PROCEDURE WindowGrow (i : INTEGER);
VAR

Wsize : LONGINT;
S : Point;

BEGIN
WSi ze := GrowWindow (theWindow, theEvt.where,sizeBnds) ;
IF WSize = 0 THEN Exit (WindowGrow) ;

SetPt (S, loWord(WSize) , hiWor d (WSize));
SizeWindow(theWindow, S. h , S. v, true) ;
SetPort (theWindow);
Cl ipRect(thePor t · . portRect);
SizeControl(hsbar[i] , S.h-13 ,
MoveControl (hsbar [i] , -1 ,
Si zeControl (vsbar [i] , 16 ,
MoveContro l (vsbarli] , S. h- 15 ,

END;

PROCEDURE WindowGoAway (i : INTEGER) ;
BEGIN

16) ;
S.v-15) ;
S. v- 13) ;

-1) ;

IF TrackGoAway(theWindow, theEvt . where) THEN
CASE i OF

END ;

0: {the control window}
done := TRUE;

1, 2: {the display windows }
BEGIN

HideWindow(theWindow) ;
HiliteControl(CtlButton[i] , 0);

END ;
END;

PROCEDURE WindowUpdate(i
VAR

INTEGER);

growArea : Rect ;

204 HIDDEN POWERS OF THE MACINTOSH

BEGIN
SetPort (theWindowl;
IF i <> 0 THEN BEGIN

WITH thePort · . portRect DO
SetRect (growArea , right-15 , bottom-15 , right , bottom) ;

InvalRect (growArea);
IF theWindow = FrontWindow THEN BEGIN

ShowControl(hsbar[i]);
ShowControl (vsbar[i] l ;

END
ELSE BEGIN

HideControl (hsbar[i]l ;
HideControl (vsbar[i]l;

END;
END;
BeginUpdate (theWindow);

InvertRect(theWindow· . por tRect);
SysBeep (10) ;
EraseRect (theWindow· . portRect);
DrawGrowicon (theWindow);
DrawControls(theWi ndow);
WITH theWindow· . portRect DO

SetRectRgn(URgn , left , top , right-15, bottom-15) ;
UpdatePi c (i , URgn);

EndUpdate (theWi ndow);
END ; {Update}

BEGIN {main program }
SetupSys ;
Se tupWindows;

REPEAT
IF GetNextEvent(ever yEvent , theEvt) THEN

CASE theEvt . what OF
mouseDown:

CASE Fi ndWindow (theEvt . where , theWindow) OF
inDes k:

Se l ectWindow (Ct l Window);
inContent :

WindowControl(theEvt . where);
inDrag:

DragWindow (theWindow, theEvt.where, dragBnds) ;
i nGrow:

Wi ndowGr ow(GetWRefCon (theWindow));
i nGoAway:

WindowGoAway (GetWRefCon (theWindow));
END; {FindWindow}

OVERLAPPING WINDOWS 205

UpdateEvt , ActivateEvt : {update window}
BEGIN

theWindow := POINTER (theEvt.message);
WindowUpdate (GetWRefCon (theWindow)) ;

END;
END ; {Event}

UNTIL done;
END.

Data Structures
The USES section is the same as before. The CONST section contains a
global constant , " isize", to determine the displacement for fine scrolling
when using the scroll bars. It is set to a value of four pixels per scroll. A
smaller value yields finer, but slower, scrolling. A larger value yields larger,
but fas ter, scrolling.

Global Variables
The VAR section contains declarations for several variables. The first two ,
"done" and "theEvt", are used in the example programs in Chapters 5
and 6 to help manage events. The next two variables are window pointers.
The first window pointer, "CtlWindow", permanently points to the control
window. The second window pointer, "theWindow", is a general-purpose
window pointer that points to the window being selected or modified.

The global variable "URgn" helps to update windows. It is a region
handle used repeatedly. Apple indicates that you should dispose of these
handles after each use; but reusing the same handle has about the same
effect.

The next two rectangles, "dragBnds" and "sizeBnds", set limits on
dragging and sizing. These limits are explained in Chapter 6.

The last global variables are arrays that are indexed by the display
window they control or belong to. This is a simple way of accessing the
data for each window.

The first global array, " Pict", is an array of picture handles. In this
program, only the text display window uses a picture, but we have allo­
cated a picture handle for both. You can modify the program so that the
graphics display window also uses a picture. However, this slows the
graphics display scroll. We explain later some interesting techniques that
allow us to draw faster than "pictures" can be drawn.

The next global array, "PicBnds", is an array of rectangles that frame
the pictures. This picture "frame" is used when a picture is defined and

206 HIDDEN POWERS OF THE MACINTOSH

when it is displayed. Use the same frame in both instances if the picture
is to be drawn undistorted.

The last global arrays are control handles. The first control array,
"CtlButton", holds handles for the two control buttons that appear in our
control window.

The arrays ''hsbar'' and ''vsbar'' hold handles to control the horizontal
and vertical scroll bars on each of the two display windows.

Procedures
This program has several procedures, including those to initialize the
system, to draw pictures that are displayed, to set up windows, and to
handle events. Let's examine these procedures.

Setup
The first procedure, "SetUpSys", initializes QuickDraw, the Font Manager,
the Window Manager, the Event Manager, and the cursor.

This procedure also allocates space for the region handle "URgn" by
assigning it a value from the function "NewRgn". We do this once in the
entire program, rather than each time the handle is used as Apple tends
to do in the example programs that it provides with its development
systems. This reduces the size of our program by a small amount.

Next, the "SetUpSys" procedure sets the delimiting values for the
picture bounds, size bounds, and drag bounds rectangles. The picture
bounds are arbitrarily set up for an entire screen size. The size and drag
bounds are set up as in the previous program.

Lastly, this routine sets the "done" variable equal to FALSE. As in
previous programs, "done" controls the main loop.

Drawing Stars
The next procedure, "Stars", draws an array of stars for the graphics
window. Each star is drawn as a polygon, a QuickDraw data structure
introduced earlier in the chapter.

The "Stars" procedure expects a single parameter that is a region
handle to the region which delimits the portion of the window to be
drawn. We draw only the stars that touch this region. This feature greatly
increases the speed at which the display is drawn. Speed is important for
fine scrolling.

OVERLAPPING WINDOWS 207

Our procedure has a CONST section in which two constants, maxi
and maxJ, are defined and both set to a value of 10. They determine the
number of rows and columns in the array of stars.

Our "Stars" procedure has several local variables declared in its VAR
section. The first two are integers "I" and "J", which index through the
star array. The last local variable, "Star", is a "polyHandle" that provides
access to our "Star" polygon (see the earlier discussion on polygons).

The procedure begins by setting up the ''Star'' polygon. The first step
is to use "OpenPoly" to "open" the polygon. This function returns a
handle to the new polygon and begins saving all line drawing commands
into this polygon. It also "hides" the pen so that no drawing shows on
the screen while the polygon is open.

In our program, we call a series of QuickDraw's relative "Line" com­
mands to form the polygon. The first "line" command places the two end
points of the line in the polygon. The first point is the original position
of the polygon when opened. The second point is the current position
after the ''line'' command. Each subsequent line drawing command places
the new position in the polygon (see Figure 7-6). The polygon is closed
with the "ClosePoly" command.

Once the polygon is defined, we use the "OffsetPoly" routine to move
it around, drawing at all the positions of the array. The first "OffsetPoly"
moves it to the upper left corner of the array, where the first star is drawn.
Then, a double FOR loop indexed by I and J runs through all rows and

Figure 7-6. The Star Polygon

V2= (0~ 1 0)

v5= (7~7)

v0 =(1 o~o)

208 HIDDEN POWERS OF THE MACINTOSH

columns of the array. "OffsetPoly" provides a relative motion of the poly­
gon, making the basic structure of this double loop like that of the "PenSize"
loop in the example program of Chapter 6.

At each position we draw the polygon only if the polygon's ".poly­
BBox" touches the "VRgn" region that was passed to the routine (see
Figure 7-7). This provides a quick way to ensure that we draw only those
polygons needing to be updated.

A polygon 's bounding box (given by its" .polyBBox") defines what is
called the extent of the polygon (see Figure 7-8). More generally, the extent
of any figure is a rectangle that specifies the limits of the figure (minimum
and maximum horizontal and vertical coordinates). Since the extent is a
rectangle, it is easier to work with than the original figure, providing a
quicker test to determine if the figure falls within a certain area on the
screen.

Since the extent is larger than the figure, it is possible for the extent
to intersect an area even if the figure does not. Think of extent checking
more as a way of eliminating parts of a picture that should not be drawn
than as a way to find only those parts that need to be drawn.

Extent checking really speeds up the display in our program. There
is a total of 100 stars, each containing eight line segments, thus making

Figure 7-7. "PolyBox" and "VRgn"

OVERLAPPING WINDOWS 209

BOO line segments. Drawing so many lines takes a significant fraction of
a second. If we redraw the entire display for each step of a fine scroll, the
scrolling appears sluggish. However, if we draw only the five to twelve
stars that need updating each time, the drawing is eight to twenty times
faster, and fine scrolling proceeds at an acceptable pace.

In our program, the "star" polygon is drawn with the "FramePoly"
command. Other polygon drawing commands, such as "PaintPoly",
"ErasePoly", "InvertPoly", and "FillPoly", produce results similar to the
corresponding commands for other shapes, such as rectangles, ovals, and
regions.

Drawing Text with Pictures
The procedure "Explain" draws the text displayed in the text window.
The text is not located in the Pascal program itself but in a "string list"
resource attached to the program.

In this procedure, we directly access the internal structure of the
"string list" resource. In Chapter 10, we learn how the built-in routine
"GetindStr" makes this easier. Our procedure, which resembles the built­
in routine, illustrates what a programmer would have to do if this routine
were not available.

Our "Explain" procedure has several local variables. The first is
"theText", a handle that accesses the "string list" resource. The second
is "IPtr", a pointer to integers. The third is "S", a pointer to strings. The

Figure 7-8. The Extent of a Polygon

Max v

Min v

Minh Max h

210 HIDDEN POWERS OF THE MACINTOSH

, 256

, 256

"IPtr" and "S" pointers access information in the "string list" resource.
The last local variable is an integer used as a loop index.

The procedure begins with "GetResource" to access resource number
256 of type "STR#", where we store a multiline explanation of the pro­
gram. The resource type "STR#" is a list of strings. The format of this
resource in the resource file consists of the resource identification line,
which in our case is simply:

followed by as many lines of text as desired. This format allows us to
freely compose whole blocks of text in the resource file. A blank line (a
line of length zero or only spaces) terminates the text.

What the resource definition looks for in this string list reads like an
introductory explanation to our example program. This is the same text
that we see in our text window:

This program illustrates how to manage several windows . A
control window has button controls that make two other windows
appear . One of these windows displays an array of stars , the
other displays this explanation. Both windows can be sized and
scrolled. The control window has a goAway box that ends the
program . The other two windows each contain a goAway box that
makes its particular window disappear .

The "GetResource" function returns a handle to the resource. We store
this handle in the variable " theText". Then, we call the "BLock" proce­
dure to " lock" the block of memory containing the text data so that it
doesn 't move as we directly access it with our own pointers. Otherwise,
the text might get garbled.

Once the text is locked, we set up our pointers to get the data. The
internal format of the resource consists of an integer that specifies how
many strings are in the list, followed directly by the strings. Each string
consists of a byte that gives its current size, followed by the bytes con­
taining the ASCII codes of the strings. In our program, we first point
"IPtr" to the beginning of the resource so that it points to the integer
specifying the number of strings. Then, we point "S" to the first string,
which is two bytes later.

A FOR loop indexed by i runs through all strings in the resource.
Within the loop, we use the "MoveTo" procedure to move to the beginning
of the line on the screen and the "DrawString" procedure to draw the
text. We then adjust the string pointer "S" to point to the next string in

OVERLAPPING WINDOWS 211

the list. After the FOR loop, we call "HUnLock", which allows the text
resource to be dynamically moved in memory by the memory manager.

Setting Windows
The procedure "SetUpWindows" initializes all three windows. It begins
with the "GetNewWindow" routine to get the control window, then calls
"GetNewControl" twice to get the two button controls.

Here is the resource definition for the control window:

,2 57
Control Window
40 10 80 198
Visible goAway
16
0

The first line of the control window resource definition is its identi­
fication number; in this case, 257. The second line is its title, "Control
Window". The third line delimits its port rectangle in global coordinates.
The fourth line specifies that it is visible and has a goAway box. The fifth
line specifies an identification number for its window definition proce­
dure. In this case, a value of 16 indicates a rounded-corner window (see
Figure 7-9). (In Chapter 6, we listed other possibilities.) The sixth line
specifies the reference number. For the control window, the reference num­
ber is set to zero.

Here are the resource definitions for the button controls:

Type CNTL
,257
graphics
10 20 3 0 100
Vi s ible
0
0
0 0 0

Figure 7-9. Rounded-Corner Window

0 Control Window

212 HIDDEN POWERS OF THE MACINTOSH

,258
text
10 120 30 1 68
Visible
0
0
0 0 0

The first line of the resource for the graphics control button is its
resource identification number; in this case, 257. The second line is the
title, "graphics". The third line is the limits in local coordinates. The
fourth line specifies that the control is visible. The fifth line is the control
definition procedure; in this case, zero, indicating a standard button. The
sixth line specifies its reference number, which is zero. We change this
field in our Pascal program. The seventh line gives the initial values for
the control's current value, minimum value, and maximum value. All
three are zero for this button.

The text control button has a similar resource. The title and location
are different, but the other lines are the same.

We store handles to these resources in "CtlWindow", "CtlButton[l]",
and "CtlButton[2]", respectively. Instead of a regular window, we could
use a dialog box for our control window, but we want to illustrate that
dialog boxes are simply windows with a few extra "bells and whistles".
Chapter 8 is devoted to dialogs.

Next, we set up the window and scrolling controls for the graphics
window. Again, we use "GetNewWindow" and "GetNewControl" to get
the initial parameters from the resource file. Here is the resource definition
for this window:

Type WIND
, 258
Graphics Window
100 100 200 400
Invisible goAway
0
1

Notice that it is a standard document window (see Figure 7-10).
Here are the resource definitions for the scroll controls for the graphics

window:

Type CNTL
,259
horizontal scroll bar

OVERLAPPING WINDOWS 213

85 -1 101 286
Invisible
16
1
0 0 450

, 260
vertical scroll bar
-1 285 86 301
Invisible
16
2
0 0 450

The graphics window uses the generic "theWindow" to temporarily
store its window pointer. We immediately place the address of this pointer
in the reference field of the first control button and in the "owner" fields
of its scroll bars. We can then reuse the pointer " theWindow" for other
purposes. This conserves the number of variables in the program, thereby
shortening and simplifying the program. We can always recover a pointer
to the graphics window by accessing any of these three fields.

Finally, we set up the text window. We grab the window and scrolling
controls as before and also create the picture for the text window. We call
"SetPort" to make sure that the current grafPort is the text window's
grafPort. Then , we call "ClipRect" to set the clipping region to the picture
bounds. This is neccessary because the limits of the clipping region are
stored in the picture definition data. The default value is a maximum
clipping area, stretching from -32767 to 32767 in both horizontal and
vertical directions. If you use the default setting and then try to move or
expand the picture by drawing it to another rectangle, you will run into
overflow problems. To avoid this, always clip before you define the picture.

Figure 7-10. Standard Document Window

Graphics Window

214 HIDDEN POWERS OF THE MACINTOSH

Now we call "OpenPicture" to start saving the picture into the picture
handle "Pict[2]". We call the "Explain" subroutine to draw the text into
the "opened" picture, then call "ClosePicture" to end the picture-making
process. Here are the resource definitions for the text window and its
controls:

Type WIND
, 259
Text Window
200 60 300 360
Invisible goAway
0
2

Type CNTL
,261
horizontal scrol l bar
85 - 1 101 286
Invisible
16
1
0 0 400

,262
vertical scroll bar
- 1 285 86 301
Invisible
16
2
0 0 120

Look through the resources for these three windows. Notice that the
control window is defined to have reference number 0, the graphics win­
dow to have reference number 1, and the text window to have reference
number 2. These reference numbers play an important role in our program,
allowing us to quickly determine which window we are dealing with.

Updating Pictures
The next procedure, "UpdatePic", draws and redraws the contents of the
display windows as needed for scrolling and window updating.

The procedure expects two parameters: an integer, " i", that identifies
which window needs updating, and a region handle, "URgn", that spec­
ifies which region needs updating.

OVERLAPPING WINDOWS 215

The "UpdatePic" procedure has a single local variable, "S", of type
"Point". This variable temporarily holds the displacement for scrolling.

The procedure begins by checking the specified window. If it is the
control window, it exits immediately. This statement, though not absolutely
necessary, is good programming practice, since certain statements in the
procedure demand that integer "i" take on values in the range 1 .. 2. This
precaution helps if we change the program in such a way that "i" takes
on other values upon entry to the routine.

We next call "SetPt" to set the horizontal and vertical components of
"S" equal to the displacements stored in the control values for the hori­
zontal and vertical scroll bars that belong to the indicated display window.

We then call '' SetOrigin'' to translate the local coordinate system by
"S" followed by "OffsetRgn" to translate the "URgn" by the same amount.
This takes care of the accumulated effects of scrolling and keeps the
specified region in the same area of the window.

Now we use ''SetClip'' to set the clipping region equal to the specified
region. This ensures that only those parts needing to be drawn are drawn.
We then erase the region. Otherwise, when we scroll to the edges of our
drawings, the new parts do not completely fill the window; thus, they do
not completely cover the outdated parts.

A CASE statement now determines which of the two display windows
is being updated. For the graphics window (assigned a reference value of
one), we call the "Stars" procedure. For the text window, we draw the
picture stored under the picture handle Pict[2).

Notice that we call the Memory Manager's "HLock" routine before,
and its "HUnLock" routine after, the "DrawPicture" command. Always
surround the "DrawPicture" command in this way to ensure that the
picture pointers do not tangle during the picture-drawing process.

The "HLock" and "HUnLock" routines expect a parameter of type
"Handle", but we want to pass a picture handle (type "PicHandle"). The
Pascal compiler objects if we do this directly. One solution: use the ORD
function to convert the picture handle to a long integer (its address), then
use the POINTER function to convert this address into a neutral type of
pointer that can be passed as a "Handle" or any other type of pointer.

In our program, we solve the typing problem by a feature of the Pascal
compiler called "type coercion", described in Chapter 3. This method
uses the identifier of the desired type as a function to operate on an
expression of the original type, returning a value of the desired type. For
example, "Handle(Pict[2])" is an expression of type "Handle" that has
been "coerced" from "Pict[2]", which is an expression of type "PicHandle".

Once the picture is drawn, we use "SetOrigin" to place the origin
back to (0,0). If we leave the origin where it is, the scrolling controls do

216 HIDDEN POWERS OF THE MACINTOSH

not work properly. Finally, we set the clipping region equal to the entire
port rectangle so that the scroll bars are properly highlighted when selected.

Scrolling
"ScrAction" is the action procedure for scrolling. The Control Manager
calls this procedure as it tracks a control. It updates the scrolling control
values and scrolls the display as part of the tracking process.

Our routine is a generalization of the scroll action procedure from
Chapter 6. It has the same parameters, namely a control handle, "theCtl",
and an integer, "partcode", that specifies which part of the control is
selected.

The procedure has several local variables. The variables "pageSize"
and "delta" are integers that determine the amount of scrolling. The
variable "i" is an integer that specifies which window is being scrolled.
The variables "S" and "dS" are of type "Point" and determine the dis­
placement and change of displacement for scrolling. The variable
''view Bnds'' is a rectangle that eli ps the drawing area of the window.

The routine begins by loading the reference value of "theWindow"
into the variable "i". The window pointer "theWindow" is the currently
selected window. After this statement, we can use "i" to drive CASE
statements and IF statements to quickly determine which window is se­
lected and therefore which action is required.

If "the Window" is the control window (i = 0), we call "Exit" to leave
the routine because there is no scrolling for the control window. Again,
as in the "UpdatePic" routine, we protect against this case, even though
it is not supposed to happen.

The next section repeats the action routine of the program in Chapter
6. It determines whether the horizontal or the vertical scroll bar has been
selected and sets the page size accordingly. If neither is selected, we call
"Exit". When we find out which part of the scroll bar is selected, we set
"delta" to the indicated change in horizontal or vertical displacement
values for scrolling. If no valid part is being tracked, we call "Exit" and
leave the routine without further action.

Next, we update the control values for the scroll bars and determine
the actual change in displacement values for scrolling. The actual change
differs from the indicated change when scrolling displacement reaches its
minimum or maximum limits. In these cases, the button control should
be tracked, but the corresponding control value should not exceed the
delimiting value.

We use the built-in facilities of the Control Manager to properly
handle the control limits. First, we read the values from the scroll controls

OVERLAPPING WINDOWS 217

into the local variable "S" to temporarily save the original values. Then
we update the controls by adding delta to the selected control value. Now
we compute the difference between the original value as stored in "S"
and the new control values. The result is placed in dS.

We can now call QuickDraw's "ScrollRect" to perform any fine scroll­
ing by shuffling bits on the screen. We then call our own "UpdatePic" to
redraw those parts of the picture that have come into view as a result of
the scroll. This completes the scroll.

Control Management
The procedure "WindowControl" performs the general management of
controls. It expects one parameter, a point we call "thePt". This is the
position of the mouse when the mouse button is pressed.

The procedure has one local variable: a control handle, "theCtl",
which is used in the control selection process.

The procedure begins by checking whether the mouse is pressed in
the "front" window. This is the currently active window, in front of the
other windows. If the mouse is in the active window, we track the controls.
Otherwise, we make the selected window into the currently active window.

If we decide to track the controls, we use ''SetPort'' to set the gra£Port
to the grafPort of the active window. We use "GlobaltoLocal" to transform
the coordinates of the mouse point to the local coordinates of "the­
Window", then use the CASE statement to determine which part of which
control is selected (if any).

If the "inButton" is selected, we are in the control window because
other windows have no regular buttons. Two control buttons are in the
control window: one for the graphics window, one for the text window. In
this case, we call ''TrackControl'' to track the selected control. This high­
lights the button when the mouse is in the button region. For the control
buttons, we don't want any special programmer action routine, so we set
the third parameter of "TrackControl" equal to NIL.

If the tracking function returns a nonzero result, the mouse has not
left the selected control and we can safely perform the indicated action.
In this case, we want to "unhighlight" the control button and make the
corresponding display window visible, if it is not already so.

If the "inUpButton", "inDownButton", "inPageUp", or "inPage
Down'' control is chosen, we are in one of the scroll bars. In this case, we
need to track the control with our special action routine, which we pass
as the third parameter to the "TrackControl" routine. When this tracking
routine returns, we don't need to perform any action. All special action
is performed within the tracking by our "ScrAction" routine.

218 HIDDEN POWERS OF THE MACINTOSH

If the "inThumb" control part is selected, we track the control with
no action routine, but we update the picture when we finish tracking.
Before calling "UpdatePic'' we set the update region, as specified by
"URgn", equal to the entire viewing area so that the entire picture is
redrawn.

This covers all cases when the selected window is the front window.
If the selected window is not the front window, we execute the "ELSE"
part. We call ''SelectWindow'' to highlight the selected window and bring
it to the front. We call "DrawGrowlcon" to redraw its grow icon, and call
"DrawControls" to redraw its controls.

Sizing Windows
The procedure "WindowGrow" lets the user resize a selected display
window. It expects one parameter: an integer, "i", that specifies which of
the three windows is selected. It has two local variables: WSize, a long
integer to hold the horizontal and vertical components of the new window
size; and a point, "S", a more convenient way of holding this same
information.

The routine begins by calling "GrowWindow" to track the grow icon
and return the new size in "WSize". If the window's size has not changed,
we call "Exit" and leave the routine. Otherwise, we proceed. We call
"SetPt" to convert the size into the form of a point in "S". Then, we call
"SizeWindow" to resize the window.

Once the window is resized, we need to redraw its scroll controls.
First we call "SetPort" to make sure that we draw to the right gra£Port.
We set the clipping limits to the new window size, then resize and move
the scrolling controls. This resembles the window sizing routine in Chap­
ter 7.

The GoAway Box
The procedure "WindowGoAway" handles the goAway box. It expects a
single integer parameter, "i", which specifies one of the three windows.

The procedure calls "TrackGoAway" to track the goAway box. If this
Boolean function returns a TRUE, then the mouse stayed in the box when
the button was released, and we take appropriate action. For the control
window, we set ''done'' equal to TRUE. For a display window, we call
"Hide Window" to make it disappear and "HiliteControl" to "undim" the
corresponding control button. According to Apple, a button should remain
"undimmed" as long as it can do something and "dimmed" if it cannot.

OVERLAPPING WINDOWS 219

In this case, the button is "undimmed" because it is able to bring the
display window back into view.

Updating Windows
The procedure "Window Update" provides the overall management of up­
dating windows. It properly updates the grow box, the window controls,
and the picture in the window when an update or activate event occurs.

The procedure expects one parameter: an integer, "i", that specifies
which window is being updated. It has one local parameter, "growarea",
which delineates the grow box. This updates the grow box each time the
window is updated.

The procedure begins by calling" SetPort" in preparation for drawing
to the window. If the selected window is not the control window, we
perform a series of tasks. First, we set the position of the "growarea"
relative to the port rectangle. A WITH statement helps to shorten the
formulas. We add the "growarea" to the update region by calling "InvalRect".
If the selected display window is the front window, we call "ShowControl"
to ensure that its scrolling controls are visible. Otherwise, we call
"Hi deControl" to ensure that they are invisible.

We now perform a series of tasks for all windows. We call "Begin­
Update" to start the updating process. This sets the visRegion equal to
the update region and makes the update region empty. Again, we invert
the port rectangle and "beep" in order to see what is being updated. Of
course, these two steps are removed in an actual application.

Next, we erase the window (only the updated part will erase), redraw
the controls and grow box, and update the picture. Finally, we call
"EndUpdate" to restore the VisRegion.

The Main Program
The main program begins by calling "SetUpSys" to initialize the system
and "SetUp Windows" to initialize the windows and their controls.

Most of the main program consists of a REPEAT loop that sorts the
events and calls the approriate procedures to handle them. It is similar to
the main loop of the example program in Chapter 6.

The REPEAT loop begins by calling the "GetNextEvent" function in
an IF statement. If this function returns true, we must handle the event.
We use a CASE statement to examine the" .what" field.

The first case of ".what" is "mouseDown". We check ".where" the
mouse is. If it is "inDesk", we simply select the control window. If it is
"inContent", we call our "WindowControl" procedure to check for the

220 HIDDEN POWERS OF THE MACINTOSH

selection of controls. If it is "inDrag", we call "DragWindow" to drag the
window to a new location. If it is "inGrow", we call our "WindowGrow"
procedure to resize the window and its contents. If it is "inGoAway", we
call our "WindowGoAway" procedure to handle the goAway boxes.

The second cases of ".what" are "UpdateEvt" and "ActivateEvt".
Both are handled by setting "the Window" equal to the message field for
these window updating events and calling our "WindowUpdate'' proce­
dure to handle the updating, as described previously.

The REPEAT loop continues looping through these events until the
Boolean "done" becomes true (whenever the goAway box of the control
window is selected).

Summary
In this chapter, we have extended our knowledge of window management
to handle multiple windows. We have seen how to manage multiple
graphics and text windows as well as multiple button and scroll controls.
We have seen how pictures and polygons can help us draw pictures faster
and easier. We have also seen how to make windows and their controls
appear and disappear at our command.

The following ROM routines were covered in this chapter:

QD-OpenPoly

QD-Line

QD-ClosePoly

QD-OffsetPoly

QD-RectlnRgn

QD-Frame Poly

MM-HLock

MM-HUnLock

CM-SetCRefCon

QD-OpenPicture

QD-ClosePicture

QD-SetOrigin

QD-OffsetRgn

QD-DrawPicture

WM -Get WRefCon

QD-ScrollRect

OVERLAPPING WINDOWS 221

WM-Front Window

CM-HiliteControl

WM-ShowWindow

WM-SelectWindow

WM-HideWindow

WM-InvalRect

CM-ShowControl

CM-HideControl

222 HIDDEN POWERS OF THE MACINTOSH

8
Dialogs and Alerts

This chapter covers the following new concepts:

• The Dialog Manager

• Dialogs and Alerts

• Modal and Modeless Dialogs

• Dialog Record Structure

• Dialog Item Lists

• Setting Up Dialogs

• Tracking Dialogs

• Dialog Text and Control Items

• Types of Alerts

In this chapter, we explore dialogs and alerts. From the user's point of
view, a dialog box is a convenient way to enter a variety of different types
of input, including immediate actions, setting of Boolean variables, se­
lection from a few alternatives, and fully edited text. Programmers find
dialogs convenient because they require minimal effort to program fully
developed standard control structures for input of vital program data.

To prove how convenient dialogs are to both the user and the program,
we present an extremely short example program that manages control
structures that can be successfully operated by a three-year-old child.

Dialogs and alerts are managed by the Dialog Manager. This manager
operates at a higher level than many managers in the Macintosh. In fact,

223

certain of its alert routines are like mini-applications. These routines first
draw a window with controls, then loop around, repeatedly calling the
Event Manager's "GetNextEvent" routine and the Window Manager's
"FindWindow" routine to track the mouse as it selects its control items.

The Dialog Manager has a number of levels, just like an applications
program. At the lowest levels, it calls the Window Manager, the Control
Manager, the Event Manager, Text Edit, the Desk Manager, and the Resource
Manager. At higher levels, it mainly calls its own lower-level routines.

Dialogs and Alerts
Dialogs and alerts are special forms of interaction between the program
and the user. They can be thought of as processes that have their own data
structures and execute for awhile, like programs, in the machine.

During a dialog or alert, information from the Macintosh to the user
appears in a dialog box or alert box. The user inputs information in the
usual way through the mouse and the keyboard.

Dialogs and alerts are managed by the Macintosh's Dialog Manager,
which, like the other managers, consists of routines and data structures
in the Macintosh's memory.

Dialog and alert boxes are implemented as windows (see Chapters 6
and 7) and usually have controls associated with them. In addition to
controls, a dialog or alert can have other entities, such as text strings,
icons, and pictures. Associated with each dialog and alert is a list of all
entities under its control. This dialog list is normally specified in the
program's resource file, and the entities it contains are called dialog items.

Much of the control tracking can be automatically handled by the
Dialog Manager. However, a programmer can substitute a custom routine,
called a filter, that handles these controls and other entities in the dialog
or alert. This feature is not discussed here because the standard built-in
routines are adequate for most purposes. However, an example of such a
routine is contained in Appendix C.

Comparison of Dialogs and Alerts
The difference between dialogs and alerts is in the amount of information
they return to the program that calls them and when that information is
returned.

Alerts are designed to return only a single selection variable. Their
main purpose is to communicate a special message to the user, usually
an error or exception message (see Figure 8-1). Normally, the only infor-

224 HIDDEN POWERS OF THE MACINTOSH

mation returned by the user after an alert is the item number of the item
selected. Often, this is just the "OK" button.

Dialogs can return several kinds of information, including Boolean
variables, sdections from a small number of possibilities, and fully edited
text. There are two forms of dialogs: modal dialogs and modeless dialogs
(see Figure 8-2). A modal dialog takes over all communication between
the user and the Macintosh while it is active. In contrast, a modeless
dialog allows other information to be exchanged while the dialog is active.
In both cases, the applications program loops, repeatedly calling for in­
formation from the dialog and potentially using it while the dialog is still
active. This contrasts to an alert, which disappears as soon as it returns
information to the program.

In this chapter, we explore modal dialogs and alerts with our example
program. We see how just a few calls allow a programmer to set up a
dialog or an alert, leaving most of the work to the Dialog Manager's
routines, which deliver the results. Thus, tasks that we had to program
ourselves in previous chapters are now done automatically in the example
program here.

Figure 8-1. An Alert Box

A message can go here.

DIALOGS AND ALERTS 225

The Example Program
The example program in Chapter 8 presents a dialog box with a multitude
of buttons, boxes, and labels (see Figure 8-3). The program also displays
two alert boxes with special system icons and our own messages.

These controls are not connected to a true application; however, they
can easily supply several types of data to an application.

The programs open by drawing a large, empty dialog box on the
screen. The dialog box is outlined with a double border consisting of a
thick frame line surrounded by a thinner frame line.

In the lower left corner of the dialog box are two buttons: the "OK
button" and the "cancel" button. If you press either button, the dialog
ends. Pressing the OK button retains any selection made during the dialog.
Pressing the cancel button exits without saving any selection.

At the top of the screen is a message: ''Modal Dialog Demonstration''
and "Type "quit" to exit.". Below this message is a box to enter text. If
you strike keys on the keyboard, the corresponding characters appear in

Figure 8-2. Alerts, Modal Dialogs, and Modeless Dialogs

Alert I =======

Yes
> Modal dialog I =+=Coone?)

...____._ fNo

Other Yes
Modeless dialog (Done?'

_.. selection ..

. ~ ~
No

226 HIDDEN POWERS OF THE MACINTOSH

this box as a text string. You may edit this text in the normal way, hitting
backspace to erase the last character, using the mouse to move the insertion
point, or using the mouse to select a portion of text to be erased by hitting
the backspace. In addition, "cut", "copy", and "paste" buttons in the
bottom center of the dialog box allow you to perform the indicated action
on this text.

On the left side of the dialog box, about halfway down, are three check
boxes. You can "toggle" the value of each check box; that is, each check
box is either unchecked (blank) or checked (filled with an "x"). You switch
between these two states by clicking the mouse in the box; one click
"checks" the box, another click unchecks it, a third checks it again, and
so on. That is, each check box acts like a Boolean variable that can assume
only two values.

On the lower right side of the dialog box are two groups of " rad io
buttons". These buttons behave like the buttons on a car radio; that is ,
pressing any button selects that button and " deselects" all others in the
same group. This gives a way to select one option out of several: each
group of radio buttons acts like an integer variable that can assume a
small number of values. The radio buttons in the first group are labeled

Figure 8-3. The Dialog Box Filled with Items

Modal Dialog Demonstr ation Type "quit" to exit.

D Check Button # 1 ® Radio Button 1a

~Check Button #2 0 Radio Button 1 b

D Check Button #3 0 Radio Button 1 c

OK Button~

Cancel

Cut

Copy
0 Radio Button 2a

@ Radio Button 2b

DIALOGS AND ALERTS 227

"radio button 1a", "radio button 1b", and "radio button 1c"; the second
group of radio buttons are labeled "radio button 2a" and "radio button
2b".

You end the dialog by selecting the OK button or cancel button or by
hitting the I Enter I or I Return I keys on the keyboard. The dialog box then
disappears. If you type the word "quit" in the first four spaces of the text
box, an alert box appears with a "stop" icon, stating that you can press
its OK button to end the program (see Figure 8-4). You are committed to
end the program once you get to this point. You have only two choices:
select the OK button or hit the reset button. In either case, the program
terminates. This mimics the way many programs bomb out on the Mac­
intosh. Perhaps, in this case, the OK button ought to be called the "Got
Ya" button. We see later how to alleviate this situation.

If the "quit" condition is not met, then an alert box appears with a
"note" alert. The message states that the values entered from the dialog
can now be used by an application (see Figure 8-5). If you select the OK
button in this alert box, you return to the original dialog.

If we don't exit right away, then we can change the settings and the
text in various ways (see Figure 8-6).

Figure 8-4. The Stop Alert

Press OK to exit the program.

228 HIDDEN POWERS OF THE MACINTOSH

Here is the program:

PROGRAM DialogDemo ;
{ $R- }{$X- }

USES
{$U obj /Memtypes
{$U obj /QuickDraw
{$U obj / OSintf
{$U obj /Toollntf

CONST
{Dialog items}
OKBtn = 1;
cancelBtn = 2;
statTxt = 3;
edTxt = 4;
cutBtn = 5;
copyBtn = 6;
pasteBtn 7;
chkBtnl 8;
chkBtn2 9;

Memtypes,
QuickDraw,
OSintf ,
Toollntf ;

Figure 8-5 . The Note Alert

Now an app 1 i cation can use the
1nformalion from the d1alog.

Press OK to return to the dialog.

DIALOGS AND ALERTS 229

chkBtn3 = 10;
radBtn1a 11 ;
radBt n1b = 12 ;
radBtn1c = 13 ;
radBtn2a = 14 ;
radBtn2b = 15 ;
numCBut tons 3;
nwnRGroups = 2;

VAR
done: BOOLEAN ;
theDialog: DialogPtr ;
theType , ItemHit , theitem: INTEGER;
ItemHdl: Handl e;
ItemBox: Rect ;
theText : STR255 ;
CArray: ARRAY [1 .. numCButtons] OF BOOLEAN;
RGroup: ARRAY [1 .. nwnRGroups] OF

RECORD
min , max, default : INTEGER

END;

Figure 8-6. Dialog Box After Some Changes

Modal Dial og Demonstration Type "quit" t o ex it.

Her e we er e enter i ng some IIIIJ.

~ Check Button # 1

0 Check Button #2

~ Check Button #3

OK Button

Cancel

(Cut) ...
()

230 HIDDEN POWERS OF THE MACINTOSH

0 Radio Button 1 a

@ Radio Button 1 b

0 Radio Button 1 c

@ Radio Button 2a

0 Radio Button 2b

PROCEDURE SetUpSys ;
BEGIN

InitGraf(@thePort);
InitFonts ;
InitWindows ;
TEini t ;
InitDialogs (NIL) ;
SetEventMask (everyEventJ ;
SetDAFont (1) ;

END;

PROCEDURE SetDefaults ;
BEGIN

theText : = 1 1
;

CArray[1) : = FALSE ;
CArray[2) := TRUE;
CArray[3) := FALSE ;
RGroup[1] . min
RGroup[1] . max
RGroup[1) . default
RGroup [2) . min
RGroup[2] . max
RGroup[2] . default

rad8tn1a ;
: = radBtnlc ;
: = radBtnla;
: = rad8tn2a ;
: = rad8tn2b ;
: = rad8tn2b ;

END;

FUNCTION CtlHdl (theitem : INTEGER) : ControlHandle ;
BEGIN

GetDitem (theDialog , theitem1 theType 1 ItemHdl,ItemBox);
CtlHdl := Contro l Handle (ItemHdl) ;

END;

PROCEDURE SetUpDialog;
VAR

I I J : INTEGER;
BEGIN

theDi alog : = GetNewDialog (1000 1 NIL 1 POINTER(-1)) ;
For I : = Chk8tn1 TO Chk8tn3 DO

SetCtlValue (CtlHdl (I l 1 0RD (CArray[I - chkBtn1+1))) ;
For I : = 1 to numRGroups DO

For J : = RGroup [I] . min TO RGroup[I] . max DO BEGIN
SetCRefCon (CtlHdl (J J I I) ;
SetCtlValue (CtlHdl(J) 1 0RD (J = RGroup[I] . default)) ;
END;

SetiText (Handle (CtlHdl (EdTxt)) 1 theText) ;
SeliText (theDialog ,EdTxtllength(theText) 1 length (theText));

END ;

DIALOGS AND ALERTS 231

PROCEDURE SetStdBtn (theitem : INTEGER);
BEGIN

CASE theitem OF
cutBtn: DlgCut(theDialog) ;
copyBtn: Dl gCopy (theDialog) ;
pasteBtn : DlgPaste(theDialog);
END;

END;

PROCEDURE SetChkBox (theitem: INTEGER);
BEGIN

SetCtlValue(CtlHdl (theitem) 1 1-GetCtlValue(CtlHdl(theitem)));
END;

PROCEDURE SetRadBtn (theitem: INTEGER) ;
VAR

I I J : INTEGER;
BEGIN

I : = GetCRefCon(CtlHdl(theitem));
FOR J := RGroup[I] . min TO RGroup[I] . max DO

SetCtlValue(CtlHdl(J) 1 0RD(J = theitem));
END;

PROCEDURE UpdateDefaults;
VAR

I I J : INTEGER;
BEGIN

FOR I := 1 TO numCButtons DO
CArray[IJ : = GetCtlValue(CtlHdl(chkBtn1+I -1)) <> 0;

FOR I : = 1 t o numRGroups DO
FOR J : = RGroup[I] . min TO RGroup[I] . max DO

IF GetCtlValue(CtlHdl (J)) = 1
THEN RGroup[I] .default : = J ;

GetiText(Handle(ctlHdl(EdTxt)) 1 theText);
END;

PROCEDURE DoDialog;
BEGIN

FlushEvents(everyEvent 1 0) ;
REPEAT

ModalDialog(NIL 1 itemHit) ;
CASE itemHit OF

cutBtn .. pasteBtn:
chkBtn1 .. chkBtn3 :
radBtn1a .. radBtn2b :
END ;

SetStdBtn (itemHit) ;
SetChkBox(itemHit) ;
SetRadBtn(itemHit);

UNTIL itemHit in IOKBtn iCancelBtn] ;
IF itemHit = OKBtn THEN UpdateDefaults;
done (theText = •quit') ;

END;

232 HIDDEN POWERS OF THE MACINTOSH

BEGIN {main }
SetupSys ;
SetDefaults ;
InitCursor ;
REPEAT

SetupDialog;
DoDialog;
DisposDialog (theDialog) ;
If done THEN theitem : = StopAlert (lOOl , NIL)

ELSE theitem : = NoteAlert (l002 , NIL);
UNTIL done ;

END .

Data Structures
The "DialogDemo" opens with the standard USES section.

Global Constants
In this program, the CONST section provides a convenient interface be­
tween the resource definition file and the program. It li sts all items that
belong to the dialog in the precise order that they appear in the resource
definition file. In addition, two constants give the number of check buttons
and the number of radio button groups. This list was extremely valuable
during the development of this program. As we rearranged and added
items, we found that the program still worked perfectly as long as we
updated the constants for each change.

Let's look at these constants in detail.
The first two global constants, "OKbtn" and "cancelBtn", indicate

the position in the resource list of the OK button and the cancel button.
The global constant "statTxt" gives the list position (position in the

dialog list) of the title message. Then the "edTxt" global constant gives
the list position of the editable text that appears in the text box.

The constants "cutBtn", "copyBtn", and "pasteBtn" describe the list
positions of the cut, copy, and paste buttons used to edit our text.

The constants "chkBtnl ", "chkBtn2", and "chkBtn3" give the list
positions of the check buttons. The constants "radBtnla", "radBtnlb",
and "radBtnlc" give the list positions of the first group of radio buttons,
and constants "radBtn2a" and "radBtnlc" give the list positions of the
second set of radio buttons. Al l radio buttons must appear in order and
together in the list for the program to work properly.

The constant " numCButtons" gives the number of check buttons,
which is three. The constant " numRGroups" gives the number of radio
button groups, which is two.

DIALOGS AND ALERTS 233

Global Variables
The VAR section declares several global variables.

Global variable "done" is a Boolean variable used for loop control,
as in earlier programs.

Global variable "theDialog" is a dialog pointer that locates the dialog's
data structure.

The next three global variables are integers. Integer "theType" holds
a type code for the dialog it~ms. Table 8-1 lists these type codes. Notice
that this type code allows us to distinguish different kinds of buttons,
text items, and other items. This feature is not used in our program.

Integer "ItemHit" holds the list position of a selected item. Both
"theType" and "ItemHit" are returned from the Dialog Manager.

Integer "theltem" is used as a "dummy" variable when the alerts are
called.

Global variable "ItemHdl" is a handle returned from the Dialog Man­
ager to provide access to the data structures of dialog resource items.

Global variable ''ItemBox'' is a rectangle that is returned by the Dialog
Manager and gives the "extent" or bounding box for a selected dialog
item. This is called the item's display box.

Global variable "theText" is a string that holds the text from the text
box when requested.

The remaining global variables are arrays that hold values from the
check and radio buttons. "CArray" is an array of Boolean variables that
holds values from the check buttons. "RArray" is an array of records that

Table 8-1. Item Type Codes

Type

ctrlltem
Ctrl
chkCtrl
tradCtrl
tresCtrl
statText
editText
icon Item
picltem
itemDisable

234 HIDDEN POWERS OF THE MACINTOSH

Code

4 (Add to following four)
0
1
2
3
8

16
32

0
128

holds "minimum", " maximum", and "default" position values for each
group of radio buttons. As global variables, they retain va lues from the
dialog even after the dialog has been disposed of.

Dialog and Alert Data Structures
From the point of view of data structures, a dialog or an alert is an
extension of a window, which is an extension of a grafPort. That is, each
dialog contains a window, and each window contains a grafFort. Like
windows, dialogs and alerts are accessed through pointers, not handles ,
and therefore are stored in nonrelocatable blocks in the heap.

Also as with windows, there are two levels of pointers to the data.
One grants access only to the grafPort section of the data. The other, a
"peek" variable, grants access to the entire structure. These pointers and
structures are defined through the following Pascal declarations:

OialogPtr = WindowPtr;
DialogPeek = "OialogRecord;
OialogRecord = RECORD
window : WindowRecord;
i terns : Handle;
textH: TEHandle ;
edi tField: INTEGER;
editOpen : INTEGER;
aDefitem: INTEGER;
END;

Here, the type "DialogPtr" is defined as equal to the type "WindowPtr",
which was previously defined as equal to the type "GrafPtr". Here also,
the type "DialogPeek" is a pointer to a variable of type " DialogRecord",
containing the entire record structure that houses the data.

The dialog record contains several fields (see Figure 8-7). The first
field, " .window", is the dialog's window record structure. The second
field, ".i tems", is a handle to the item list for the dialog.

The next three fields are used with editable text items and apply to
the current editable text item (if any) . This text item displays the insertion
point.

The " . textH" field is a handle to the current editable text. The
".editField" is the item number of the current editable text in the dialog
list. It contains one less than its position number. The " .editOpen" field
is for internal purposes.

The ".aDefltem" field contains the item number of the button used
to exit the dialog. This is called the default button and is usually the OK

DIALOGS AND ALERTS 235

button but sometimes the cancel button. For modal dialogs, this field has
a value equal to one, indicating the first item in the list. For alerts, which
are treated internally as modal dialogs, this field is one or two depending
on staging information supplied by the alert's resource definition. We
examine this later.

Functions and Procedures
The functions and procedures in this example program include initial­
izing the various managers, setting default values for buttons and text,
setting up the dialog, and running the dialog.

Setting up the System
The procedure "SetUpSys" initializes QuickDraw, the Font Manager, the
Window Manager, the Event Manager, Text Edit, and the Dialog Manager.
The routines "TEinit" to initialize Text Edit and "InitDialogs" to initialize
the Dialog Manager are new. We pass a "NIL" pointer to "InitDialogs" to
indicate that we want the standard error alert when the machine "bombs
out".

Figure 8-7. Dialog Record Structure

DialogRecord

I DialogPtr 'J
I Di a 1 ogPeekj

Window

items

textH

edltField

editOpen

aDefitem

236 HIDDEN POWERS OF THE MACINTOSH

The Items

rl....._ __ -JI~joK button

:r*l I
(One less than oosition I cancel button l
number of current i tern) . .
(Internal use)
(Position number of
exit but ton)

Current editable
text

Besides initializing managers, the "SetUpSyS" procedure also calls
"SetDAFont" to tell the Dialog Manager to use font number one for its
text items. This includes both editable text items and "static" text items
that hold messages. It does not include labels for buttons, which always
use the system font.

The ''SetDAFont'' routine expects only one parameter, an integer that
specifies the font number.

Setting the Default Parameters
The "SetDefaults" procedure sets the original default setting for the con­
trols and text items in the dialog.

The procedure begins by setting "theText" equal to the empty string.
This is later placed in the dialog as the current value of the editable text
in the text box.

The procedure initializes the Boolean "CArray" for the check buttons
as FALSE, TRUE, FALSE. That is, the first check button is off, the second
is on, and third is off.

Finally, the procedure initializes the minimum, maximum, and de­
fault position values for the groups of radio buttons (see Figure 8-8). For
the first group, the minimum position value is given as radBtnla, the first
radio button; the maximum position value is given as radBtnlc, the last
radio button. The default value is radBtnla. For the second group, the

Figure 8-8. Setting Minimum, Maximum, and Default Values

D Check Button #l<F==== False

181 Check Button #2 True

D Check Button #3 False

®Radio Button 1 a ~ RGroup[1 lmin

0 Radio Button 1 b ~ RGroup[1].default

0 Radio Button 1 c 4==== RGroup[1 lmax

0 Radio Button 2a <'==== RGroup[2lmin

@ Radio Button 2b L RGroup[2].defaul t

RGroup[2lmax

DIALOGS AND ALERTS 237

minimum position value is given as radBtn2a, the first radio button; the
maximum position value is given as radBtn2b, the last radio button. The
default value is radBtn2b. The minimum and maximum values are de­
termined by how the items are arranged in our list. The default values are
chosen by the programmer.

Getting a Control Handle
Next, function "CtlHdl" gets the control handle associated with a given
item. It expects a single parameter that is the position number of the item
in the dialog list.

The function first calls "GetDitem" to find the vital statistics of the
item. This routine returns both the type code for the item and a handle to
it.

"GetDitem" expects four parameters. The first two are passed to the
Dialog Manager by value. The second two are passed from the Dialog
Manager by reference. The first parameter is a dialog pointer that points
to the current dialog. The second parameter is an integer that holds the
desired item number in the dialog's resource list. The third is an integer
that holds the returned type code. The fourth is a handle to access the
item's data.

Our "CtlHdl" function finishes by coercing the returned handle from
type "Handle" to type "ControlHandle", placing the result in "CtlHdl"
for return as a Pascal function.

Setting up Dialogs
The "SetUpDialog" function initializes our dialog, making it active on
the screen. It has two local variables, "I" and "J", for loop control within
the procedure.

Our procedure begins by calling the Dialog Manager's "GetNew­
Dialog". This routine fetches the dialog and its list of resources from the
resource file and allocates storage for them in memory. This step makes
the dialog's window appear on the screen if it is declared visible in the
resource definition file.

The "GetNewDialog" routine is similar to the "GetNewWindow" rou­
tine. It expects the same types of parameters and performs a similar
function. In particular, the "GetNewDialog" routine expects three param­
eters. The first parameter is the resource identification number of the
dialog. We choose a value of 1000 to correspond to our resource definition
for the dialog (given later). The second parameter is a pointer to our storage
for the dialog record data. We pass a NIL pointer here to indicate that the

238 HIDDEN POWERS OF THE MACINTOSH

Macintosh is to find a place for it on the heap. The third parameter is a
pointer to indicate the dialog window's "visual priority". We send the
expression POINTER(-1) to indicate that it should first appear in front of
all other windows.

After fetching the dialog from the resource file, our procedure places
the current default values into the check buttons (into their control values).
Here, a FOR loop is used around the "SetCtlValue" routine. We use our
own function, "CtlHdl ", to convert the item number into a control handle.
We use the expression:

ORD(CArray[I - chkBtnl+l))

to convert the Boolean value stored in "CArray" to a long integer. Here
"ORD" converts FALSE to a numerical value of zero and TRUE to a
numerical value of one.

Next, our procedure sets up the radio buttons. For each group of radio
buttons, we set the reference values equal to the group number (one for
the first group of rad io buttons, two for the second group of radio buttons).
The control value is set to zero for all buttons in the group except the
default button, whose value is set to one. We use the expression:

ORD (J = RGr oup[I] . default)

to compute the numerical value to place in each control value.
Next, our procedure initializes the editable text. It calls "SetiText"

to pass the text stored in " theText" (a string) to the "EdTxt" item belonging
to the dialog.

The "SetiText" routine expects two parameters: a handle that leads
to the text item in the dialog, and a string that contains the text. In our
case, the handle is computed by calling our "CtlHdl " function, then
coercing the resulting control handle back to type "Handle".

We call "SeliText" to move the insertion point to the end of the string.
The "SeliText" routine expects four parameters. The first parameter is a
dialog pointer that specifies the dialog. The second parameter is the item
number of the text edit. The third and fourth parameters are integers that
delimit the selection range of the text. If they are equal (as here), their
common value determines the position of a single insertion point in the
text. In our case, we use the " length" function to get the position of the
end of the string.

DIALOGS AND ALERTS 239

Resource Definitions
Now let's look at the resource definitions for our dialog and its associated
list of items.

The dialog is defined as follows:

Type DLOG
, 1000
40 85 310 425
Visible 1 NoGoAway 0
1000

Modal Dialog Demonstration Window

The first line declares that the next resource definition(s) is of type
"DLOG".

The second line begins the definition of our dialog. It gives its resource
identification number, which in this case is 1000.

The second line of the dialog's definition gives global coordinates for
the corners of its window. You can determine the size and position of your
dialogs by sketching a picture of them on paper or on the screen using a
program such as MacPaint. However, you might have to fine tune the
results by adjusting the numbers in the resource definition file as you
develop the program.

The third line of the dialog's definition (our fourth line) gives its
visibility when first fetched, the resource identification number of its
definition procedure, whether it has a "goAway" box, and the value ini­
tially stored in its reference field . In our case, we want the dialog to be
visible, we want to draw a standard dialog box, we want to have no
"goAway" box, and we need no particular value for the reference field.

The next line gives the resource identification number of the dialog's
list of controls and other items. We choose the value 1000, the same as
the identification number of the dialog. Since the dialog definition and
the dialog list are of different resource types, there is no conflict. In fact,
it makes good sense to use the same number.

The final line is optional. It gives a title that is never displayed on
the Macintosh screen but merely serves to document the dialog definition
in the resource definition file.

Let's examine the dialog list definition:

Type DITL
, 1000
15

240 HIDDEN POWERS OF THE MACINTOSH

Btnltem Enabled
205 10 225 100

OK Button

Btnltem Enabled
235 10 255 100

Cancel

StatText Disabled
10 10 30 330

Modal Dialog Demonstration

EditText Enabled
40 10 104 330

Btnitem Enabled
195 120 215 200

Cut

Btnitem Enabled
220 120 240 200

Copy

Btnrtem Enabled
245 120 265 200

Paste

Chkltem Enabled
120 10 144 150

Check Button #1

Chkrtem Enabled
144 10 168 150

Check Button #2

Chkltem Enabled
168 10 192 150

Check Button #3

Radioltem Enabled
120 210 144 350

Radio Button 1a

Radioitem Enabled
144 210 168 350

Radio Button 1b

Radioitem Enabled
168 210 192 350

Radio Button 1c

Type "quit" to exit .

DIALOGS AND ALERTS 241

Radioltem Enabled
208 210 232 350

Radio Button 2a

Radioltem Enabled
232 210 256 350

Radio Button 2b

The first line declares that subsequent definitions are of resource type
"DITL", which stands for Dialog ITem List.

The definition opens with its resource identification number, followed
on the next line by the number of items in the list.

Each item is listed on three lines , with a blank line separating items.
On the first line of each item definition is the item type and whether the
item is enabled. The types are listed in Table 8-2. Disabled items cannot
be selected, enabled items can.

The second line of each item's definition gives the position in local
coordinates of its display box. Again, you can design the dialog box on
paper to get these coordinates, then "fine tune" them as you test the
program.

The third line gives the dialog's title, message, or, in some cases, the
resource identification number.

In our case, we have fifteen items in our dialog item list: five standard
buttons (type "Btnitem"), three check boxes (type "Chkltem"), five radio
buttons (type "Radioitem"), one message (type "StatText"), and one ed­
itable text item (type "EditText").

Table 8-2. Dialog Item Types

Item Type in Resource Definition

User Item
Btnltem
Chkltem
Radioltem
ResCitem
StatText
EditText
Icon Item

242 HIDDEN POWERS OF THE M ACINTOSH

Code (Add 128 to disable)

0
4
5
6
7
8

16
64

Setting Standard Buttons
The procedure "SetStdBtn" is designed to handle "standard" buttons
selected in the dialog. In our program, these include the OK button, the
cancel button, the cut button, the copy button, and the paste button. It is
called from the "DoDialog" procedure.

Our "SetStdBtn" procedure expects one parameter, "theltem ", an
integer that specifies the item number of a selected standard button. It
calls the appropriate dialog edit routines: " OlgCut", " OlgCopy", or
"DlgPaste", depending on the value contained in "theltem". If "theltem"
indicates the OK button or the cancel button, the procedure does nothing.
Later, we discuss how these buttons are handled.

Setting Check Boxes
The procedure "SetChkBox" is designed to handle check box items se­
lected in the dialog. It is called from our "DoDialog" procedure.

The procedure expects one parameter, " theltem", an integer speci­
fying the item number of the selected check button. This procedure calls
"SysBeep" to make a quick "beep" sound, then calls "GetCtlValue" and
"SetCtlValue" to perform a "complement" action on the value stored in
the button's control. This complement switches zero values to one values
and vice versa, using the formula:

X : = 1 - X

Setting Radio Buttons
The procedure "SetRadBtn" is designed to handle radio buttons selected
in the dialog. It is called from the "DoDialog" procedure.

Like the previous two procedures, it expects a single parameter,
"theltem", an integer specifying the item number of the selected button.
The procedure begins by calling "SysBeep" to make a beep. Then it calls
"GetCRefCon" to get the reference value of the button. This gives the
group number of the radio button. We scan through the buttons in this
group, setting all control values to zero except the one selected. We use
the expression:

ORO (J = the Ite m)

to set these values.

DIALOGS AND ALERTS 243

Updating the Defaults
The "UpdateDefaults" procedure updates the default variables for the
check buttons, radio buttons, and editable text when the OK button is
pressed in the dialog. It is called from our "DoDialog" procedure.

Its two local variables, "I" and "J", are integers used as indices in
loops.

The "UpdateDefault" procedure begins by updating the Boolean val­
ues for the check boxes. It checks each check box for a nonzero value,
placing TRUE in the corresponding entry of CArray if it finds such a value
and FALSE if not.

The procedure then uses a double FOR loop to run through each radio
button in each group, setting the RGroup default value equal to the item
number of the radio buttons whose control values are equal to one.

Finally, the procedure calls "GetiText" to load the text from the
editable text item into the string "theText".

Doing the Dialog
The procedure "DoDialog" runs the dialog. It begins by calling
"FlushEvents" to empty the event queue. Then it has a REPEAT loop,
where most of the work is done.

The REPEAT loop begins by calling the Dialog Manager's "Modal­
Dialog" routine. This routine performs several tasks. It calls the event
manager, automatically draws the controls, and tracks the mouse. Tracking
the mouse consists of monitoring the position of the mouse and reporting
where the mouse cursor is whenever the user releases the mouse button.
The "ModalDialog" routine relieves us of most of the work except for
setting the control values and our own variables accordingly.

The "ModalDialog" routine expects two parameters. The first param­
eter is a procedure pointer to a procedure that can perform customized
tracking. This is called a filter procedure. In our case, we place a NIL
pointer here to indicate that we want the standard filter procedure pro­
vided by the Dialog Manager. The second parameter is an integer passed
by reference that indicates which item was selected.

After the "ModalDialog" routine, we sort out which item was selected
using a CASE statement driven by "itemHit". The cases are ranges, a
special feature of Lisa Pascal. For the range:

cutBtn . . pasteBtn

244 HIDDEN POWERS OF THE M ACINTOSH

we call our "SetStdBtn" procedure, since these items are standard but­
tons. For the range:

chkBtnl .. chkBtn3

we call our "SetChkBox" procedure, since these items are check boxes.
And for the range:

radBtnla . . radBtn2b

we call our "SetRadBtn" procedure, since these items are radio buttons.
The REPEAT loop continues until "itemHit" indicates that the OK

button or the cancel button was selected. Pressing the I Return I or I Enter I key
has the same effect as selecting the OK button. This is a feature of the
standard filter procedure for dialogs. In its instructions to developers,
Apple encourages applications programmers to include this feature in all
custom dialog filter routines. Thus, a user always can finish entering text
by hitting I Enter I or I Return I. as with most computer programs.

After the REPEAT loop, we check for the OK case (OK button, I Enter I
key, or I Return I key). If it is true, we call "UpdateDefaults" to set the new
default values for the buttons and text.

Finally, we set "done" equal to the truth value of the statement:

theText = 'quit'

The Main Program
The main program is very short and clearly indicates the overall simple
structure of the program. It begins by calling "SetUpSys", "SetDefaults",
and "InitCursor" to initialize the various managers, the default variables,
and the cursor.

Next, a REPEAT loop continues as long as the user does not enter the
word "quit", which sets "done" to TRUE.

Within the REPEAT loop, we call "SetUpDialog" to allocate room for
and initialize the dialog and its controls. We call "DoDialog" to track the
action and set our variables accordingly. Next, we call "DisposDialog" to
erase the dialog from memory and from the screen. If "done" is true, we
call "StopAlert" to display an alert, warning that we are exiting the
program. If "done" is false, we call "NoteAlert" to present a message
explaining that we can now use any values generated by the dialog. In a
real application, you would insert your own routine to use the data here.

DIALOGS AND ALERTS 245

These two alert calls belong to a class of four alert calls: "Alert",
"StopAlert", "NoteAlert", and "CautionAlert". In all four cases, an alert
is put into action. The last three cases are distinguished by special system
icons displayed in the alert box (see Figure 8-9).

Each of these alert routines expects two parameters: an integer that
is its resource identification number and a procedure pointer that points
to a "filter" procedure to provide custom service for handling the alert.
These routines return a function value that is the item number of the item
selected.

Custom filters are advanced topics. In our program, we pass NIL both
times to indicate that we want to use the standard service routine provided
by the system. This means that we can respond only by selecting the OK
button for both of our alerts. Otherwise, we must write and insert our own
filter procedure. In Appendix C, we use such a filter to intercept disk
insertion events which are not handled by the standard filter.

Alert Resource Definitions
Associated with each alert is a resource definition. The alert definition
for our stop alert is:

Type ALRT
, 1001
100 70 200 440
1001
7654

The first line identifies the alert as resource type "ALRT". The second
line specifies the resource identification number. The third line gives the
global coordinates of the position of the alert's window. The fourth line
gives the resource identification number of the alert's dialog item list. The
last line is a hexadecimal number describing the alert's staging information.

Each alert has four stages, allowing the alert to execute differently in
appearance, action , and sound according to how many times it has been

Figure 8-9. System Alert Icons

Note Caution Stop

246 HIDDEN POWERS OF THE MACINTOSH

called by the user. The first time the user causes an alert to be invoked, it
behaves according to the rules for stage one, the second time it behaves
according to the rules for stage two, and so on. However, all alerts beyond
stage four behave as stage four.

For each stage, we can specify the type of sound issued, whether the
alert box is drawn, and the choice of default button (OK or cancel). Figure
8-10 shows how this works.

Here is the dialog item list definition for the stop alert. It uses a
standard button for the OK button and "StatText" for the "Press OK to
exit program." message.

Type DITL
,1001
2

Btnrtem Enabled
70 10 90 100

OK

StatText Disabled
10 150 90 360

Press OK to exit the program .

Here is the resource definition for the note alert. It has a description
almost identical to that of the stop alert.

Type ALRT
, 1002
100 70 200 440
1002
7654

Figure 8-10. Encoding Alert Stages

Stege 4 Stege 3 Stege 2 Stage
_____ __,A..___~ _____ __,A..___~ ~-----A~--~ _____ __,A~--~

DIALOGS AND ALERTS 24 7

Here are the dialog item list definitions for the note alert. They use a
standard button for the OK button and "StatText" for messages. The first
message reads "Now an application can use the information from the
dialog." Recall that this alert appears right after the main dialog concludes.
This message indicates that the programmer can replace this alert by a
routine that uses the information given by the user during the dialog.

The second message indicates that the user can press the "OK" button
to return to the main dialog.

Type DITL
, 1002
3

Btnltem Enabled
70 10 90 100

OK

StatText Disabled
10 150 50 360

Now an application can use the information from the dialog.

StatText Di sabled
50 150 90 380

Press OK to return to the dialog.

Summary
In this chapter, we have examined a higher level of the Macintosh's built­
in software. The example program is shorter than most, yet does as much
or more.

We have seen how only one routine, "ModalDialog", allows us to give
most of the tracking and drawing functions to the Macintosh, so that we
can concentrate on using user-supplied information, rather than spending
a lot of effort gathering it.

The following ROM routines were covered in this chapter:

DL-SetDAFont [Pascal only]

DL-GetDitem

DL-GetNewDialog

DL-SetiText

DL-SeliText

DL-DlgCut [Pascal only]

DL-DlgCopy [Pascal only]

248 HIDDEN POWERS OF THE MACINTOSH

DL-DlgPaste [Pascal only]

DL-Getltext

DL-ModalDialog

DL-DisposDialog

DL-StopAlert

DL-NoteAlert

DIALOGS AND ALERTS 249

9
Menus

250

This chapter covers the following new concepts:

• Using Menus

• Menu Structure

• Menu Display

• Menu Selection

• Menu Resources

• Desk Accessories

• QuickDraw Shapes and Pen Attributes

Macintosh users are familiar with "pull-down" menus and know how to
use them in applications programs to select options. In this chapter, we
investigate how these menus work and how to make them work for us.

Menus are managed by the Macintosh 's Menu Manager, which , li ke
the other managers, consists of routines and data structures in the Mac­
intosh 's memory. The Menu Manager calls on QuickDraw to draw its
menus and menu bars, calls on the Resource Manager to help define its
menus, and calls on the Event Manager while tracking the mouse for menu
selection.

Following a discussion of menus and the Menu Manager, we present
an example program that demonstrates how to use the Menu Manager's
routines to set up and track menus. This example also shows how an
applications program can use the selection information returned from the
Menu Manager.

Menus
Menus are lists of options available to the user. Each application has a
different set of menus because it has a different set of actions. For example,
in this chapter's program, our actions focus on drawing various shapes
and selecting how they are drawn. A special "Apple" menu also allows
us to select various desk accessories.

We see how menus appear to the user, then examine their data struc­
tures and how to program them.

How Menus Appear to the User
At the top of the screen, in the topmost 20 rows of pixels, sits the menu
bar, which provides access to an application's active menus. The title of
each active menu appears in the menu bar.

Normally, no windows are allowed to overlap this area of the screen.
In particular, the initial positions of all windows should be defined so
that they avoid the menu bar. The drag bounds should also be set for
subsequent window positions so that the windows can never be dragged
into the menu bar.

When the mouse cursor is pressed in the title area of a menu, the
menu should be immediately displayed underneath its title. The menu
itself may be wider than its title, overlapping space that is occupied by
adjacent menus when they appear. However, only one menu appears at a
time, though all titles are visible at once (see Figure 9-1).

Once a menu is selected, the user can run the mouse cursor down
the menu as the mouse button is pressed down, highlighting each item
as the cursor passes over it. When the mouse button is released over an
item, that item is selected, and control returns to the applications program.

The entire menu selection process, from the time the mouse button
is pressed until it is released, is controlled by one Menu Manager routine
called "MenuSelect". We see how this routine is invoked when we study
our example program.

Menu Lists and Structures
For most purposes, you do not have to know how the Menu Manager stores
information about menus. You only have to call the appropriate Menu
Manager routine; the Menu Manager takes care of the details. However, if
you are interested in how the Menu Manager works, you must first under­
stand its data structures. This is the only way to unlock the Macintosh's
"hidden powers" to understand the full capabilities of the Menu Manager,

MENUS 251

to define your custom menus, and to answer difficult questions that could
arise while using a debugger. We don't set up custom menus in this book.
However, reading the following menu descriptions should provide a good
foundation for doing so. Details are contained in Apple's Inside the Apple
Macintosh.

The Menu Manager stores all menus under its control in a master list
of menus. The system variable "MenuList", stored in the low memory of
the Macintosh, contains a handle to this list. The list contains six bytes
for each menu. The first four bytes contain a handle to the menu's data
structure, and the last two bytes contain the horizontal position of the
menu's title in the title bar (see Figure 9-2).

Each menu is accessed through a handle of type "MenuHandle". This
points to a pointer of type "MenuPtr", which points to the actual data.
Here is the Pascal declaration for the menu data structure:

MenuHandle = · MenuP t r ;
MenuPtr = · Menuinf o ;
Menuinfo = RECORD

menuiD : I NTEGER ;

Figure 9-1. A Menu is Selected

252 HIDDEN POWERS OF THE M ACINTOSH

menuWidth: INTEGER;
menuHeight : INTEGER;
menuProc : Handle;
enableFlags : PACKED ARRAY [0 . . 31] OF BOOLEAN;
menuData : Str255 ;

END;

This "Menuinfo" structure contains the data for managing a single
menu, including its size, the name and style of each item, and the location
of the procedure to draw and track the menu.

The ".menuiD" field contains an integer assigned by the programmer
to the menu when it is first defined. Thereafter, it can be used by the
programmer to reference the menu and is used by the Menu Manager to
specify the selected menu from the menu selection process.

The " .menuWidth" field contains the width in pixels and the
".menuHeight" field contains the height in pixels of the menu.

The " .menuProc" field contains a handle to the menu definition
procedure. This procedure draws the menu, determines its size, and
performs tracking functions during the menu selection process. Program­
mers can insert their own menu definition procedures in this field, thereby
customizing their own nonstandard types of menus. However, this is

System
variabl es

Figure 9-2. The Master List of Menus

Menu list

Menu
•t

MENUS 253

beyond the scope of this book. To define your menus, consult Apple's
Inside the Apple Macintosh.

The ".enableFlags" field contains 32 Boolean variables, one for the
entire menu and one for each entry (see Figure 9-3). The first Boolean
determines if the menu itself is enabled or disabled, as do subsequent
Booleans for each item in the menu. In standard menus, "disabled" means
that the item's name appears in light gray rather than black and cannot
be selected by the user. When defining your custom menus, you can
indicate the enable/disable status of menu items in any way.

As far as Pascal is concerned, the ".menuData" field is a string. That
string contains the menu's title, followed by the title of each item in the
string and such information as the style for each item, key equivalents,
any marks in front of items, and any icons associated with these menu
items.

Again, it is usually not necessary for a programmer to directly access
the fields of a menu's record structure. A number of Menu Manager
routines change such features as items' titles, styles, check marks, and
enable status. A programmer may want to read a menu's title from the last
field of its record structure, but he or she should never modify the menu's
title as it sits in the menu data string. This could destroy the remaining
menu data.

Figure 9-3. Enable Flags

Menu title I
l

Item #1

Item #2

31 210

111111111111111111111111111111111
.enabl eFl egs

254 HIDDEN POWERS OF THE MACINTOSH

Bit 0 controls
entire menu
B1 t 1 controls
item •1

Bit 2 contro 1 s
1tem •2

The Example Program
The example program in this chapter demonstrates how to manage menus.
It also illustrates how to manage desk accessories such as the scrapbook,
alarm clock, note pad, and calculator, which are treated as system tasks.
In addition, it allows you to quickly explore a number of QuickDraw
shapes and drawing attributes (see Figure 9-4).

This program allows you to create standard shapes - rectangles,
ovals , and rounded rectangles- that can be drawn with various shades
of gray using framing, filling, painting, erasing, and inverting. Appropri­
ately, the program is "menu-driven", demonstrating how menus can be
used to select options and commands.

Now let's look at the program in detail. When the program starts, it
displays a blank window and a full menu bar. The window is entitled
"Menu Driven QuickDraw Demo". The menu bar contains titles for the
following seven menus:

Apple menu

Command menu

Figure 9-4. Our Menu Program

Fill Pattern Pen Pattern Pen Size

ethe~sh~o~p~e~~~F~~~~~::~~~~~~~~~~~~~ Paint the shape ~P

Erase the shape ~E

lnuert the shape ~ I
Fill the shape ~L

Erose Window ~c

MENUS 255

Shape menu

Fill Pattern menu

Pen Pattern menu

Pen Size menu

Pen mode

across the top of the screen (see Figure 9-5).
You can examine the contents of a given menu by pressing the mouse

button in the appropriate region of the menu bar. This pulls the menu
down, making it appear in front of everything on the screen except the
cursor (see Figure 9-6).

The Apple menu is divided into two parts. One part contains a special
"About Menu" entry, the other part contains the titles of the desk acces­
sories (see Figure 9-7) .

To select an item in the Apple menu, pull it down, move the mouse
button down until the desired item is selected , then release the mouse

Figure 9-5. Our Menu Bar

256 HIDDEN POWERS OF THE MACINTOSH

button. A single call in our program makes this entire process happen
automatically.

The Command menu selects an action to be performed immediately
(see Figure 9-8). These include framing, painting, erasing, inverting, and
filling a shape, as well as erasing the window's contents and quitting the
program. The option of quitting the program is separated from other
options and written in boldface.

The remaining menus act differently than the first two menus. They
use check marks to set parameters rather than directly cause an action.
Whenever you pull down one of these menus, you see that the currently
selected item is checked. If you select another item, then that item is
checked the next time that you pull down the menu.

The Shape menu is used to select the particular shape that is drawn
(see Figure 9-8). The available shapes are square, wide rectangle, and tall
rectangle, circle, wide oval, tall oval, rounded square, wide rounded rec­
tangle, and tall rounded rectangle. Initially, the square is selected.

The Fill Pattern menu selects the pattern that is used when the shape
is filled. The available fill patterns are the QuickDraw default patterns

Figure 9-6. Selecting a Shape

Pen Pattern Pen Size

-=~~~~~~~Square:~::~------l:~~~~~~~~~~~~~~ ~ Wide Rectangle
Tall Rectangle
Circle
Wide Dual
Tall Dual
Rounded Square
Wide Rounded Rectangle
Tall Rounded Recto

MENUS 257

White, Black, Gray, LtGray, and DkGray. Initially, the Fill Pattern is set to
Gray.

The Pen Pattern menu selects the pattern for framing and painting
objects. Its available patterns are the same as for the Fill Pattern menu.
Initially, it is set to Black.

The Pen Size menu offers a range of pen sizes including 1 by 1, 1 by
5, 5 by 1 , 5 by 5, and 10 by 10. The initial size is 1 by 1.

The Pen Mode menu selects one of the pen modes- Copy, Or, Xor,
Bic, NotCopy, NotOr, NotXor, and NotBic (see Figure 9-9). The initial mode
is Copy. These are the eight pen patterns available to the programmer.
They determine how the bits in the pen pattern are combined with what
is on the screen. Note that the pen modes work with "Paint" commands
but not "Fill " commands.

Let's review how these eight pen modes work and what they do.
In the Copy mode, the pattern is "copied" directly to the screen,

overwriting what was there. This is the default pen mode (see Table 9-1).
In the Or mode, the bit values in the pattern are Ored with what was

on the screen (see Table 9-2). This tends to overstrike what was on the
screen.

Command
Scrapbook
Alarm Clock
Note Pad

Figure 9-7. Selecting a Desk Accessory

previous page.

258 HIDDEN POWERS OF THE MACINTOSH

.,

In the Xor mode, the bits in the pattern are Xored with what is on
the screen (see Table 9-3). This is useful for creating cursorlike objects,
since it reverses the bits on screen that are equal to one in the pattern and
leaves other bits alone. When the same pattern is Xored a second time to
the same place on the screen, the bits in the screen return to their previous
state. To move a cursor, Xor it to its current position, thus erasing it; then
Xor it to its new position, making it appear there.

In the Bic mode, the bits in the pattern are combined with those on
the screen using the bit clear operation (see Table 9-4). All bits on the
screen that correspond to bits in the pattern (set equal to one) are cleared
(set equal to zero). This is useful to selectively erase portions of the screen.

In the four Not modes, the pattern is inverted as it is applied to the
screen using one of the four Not operations. These options are not dis­
cussed here.

When a drawing command is selected from the Command menu,
drawing occurs only in our display window. This window can be dragged
but not resized or scrolled. Resizing can be added without too much
difficulty. However, scrolling is harder, since the picture is composed of a
potentially long sequence of drawing commands; therefore, updating the

Figure 9-8. Selecting a Command

Shape Pen Pattern Pen Siz e
.,

MENUS 259

picture requires special attention. As it is, the program does not try to
properly update the picture. This is evident if you move desk accessories
in front of the display menu.

Experiment with this program, exploring its various modes, shapes,
sizes, and patterns.

Here is the program:

PROGRAM MenuDemo ;
{ $R- }{$X-}

USES
{$U Obj / MemTypes
{$U Obj / QuickDraw
{$U Obj / OSintf
{ $U Obj / Toollntf

CONST
{menu IDs}
AppleMenu
ComMenu
ShapeMenu

1000;
1001 ;
1002 ;

} MemTypes,
} QuickDraw,
} OSintf,
} Toolintf ;

{ des k accessory menu}
{ Command menu}
{ Shape menu}

Figure 9-9. Selecting a Pen Mode

260 HIDDEN POWERS OF THE MACINTOSH

Hor
Bic
Not Copy
No tOr
No tHor

.,

Fi llPatMenu
PenPatMenu
PenSizeMenu =
PenModeMenu =
lastMenu = 7;

VAR

1003 ;
1004 ;
1005;
1006;

done : BOOLEAN;
theEvt : EventRecord;

{ Fill Pattern menu}
{ Pen Pattern menu}
{ Pen Size menu}
{ Pen Mode menu}
{ number of menus}

mainWindow, theWindow: WindowPtr ;
dragBnds: Rect;
myMenus : ARRAY [1 .. lastMenu] OF MenuHandle;
theShape, theFillPat, thePenPat , thePenSize , thePenMode INTEGER;

PROCEDURE SetUpSys;
BEGIN

InitGraf(@thePort);
InitFonts ;
InitWindows ;

Table 9-1. The Copy Mode

Originally on Screen

0
0
1
1

Result = New

New Pattern

0
1
0
1

Table 9-2. The Or Mode

Result = Original OR New Pattern

Originally on Screen

0
0
1
1

New Pattern

0
1
0
1

Result

0
1

0
1

Result

0
1
1
1

MENUS 261

InitDialogs(NIL);
TEinit ;
SetEventMask (everyEvent);
FlushEvents (everyEvent , O);
InitCursor;

{Define bounds for dragging the window}
WITH screenBits . Bounds DO

SetRect(dragBnds , lef t +4 , top+24 , right- 4,bottorn- 4);

rnainWindow := GetNewWindow(256 , NIL, POINTER(-1));
done FALSE;

END;

PROCEDURE Clickitern (rnenuindex , theitern: INTEGER;
VAR i temNurn: INTEGER);

BEGIN
Checki tern(rnyMenus[rnenuindex] , itemNurn, FALSE) ;
itemNurn : = theitern;

Table 9-3. The XOR Mode

Result = Original XOR New Pattern

Originally on Screen New Pattern

0 0
0 1
1 0
1 1

Table 9-4. The BIC Mode

Result = Bit Clear Original Using New Pattern as Mask

Originally on Screen New Pattern

0 0
0 1
1 0
1 1

262 HIDDEN POWERS OF THE MACINTOSH

Result

0
1
1
0

Res ult

0
0
1
0

Checkitem (myMenus [menuindex],itemNum , TRUE) ;
END;

PROCEDURE SetUpMenu;
VAR

I : INTEGER;
BEGIN

InitMenus;
myMenus[1]
myMenus[2]
myMenus [3J
myMenus [4] . ­
myMenus[5)
myMenus [6]
myMenus[7]

GetMenu (AppleMenu);
GetMenu (ComMenu);
GetMenu (ShapeMenu);
GetMenu(FillPatMenu);
GetMenu (PenPatMenu);
GetMenu (PenSizeMenu);
GetMenu(PenModeMenu) ;

AddResMenu(myMenus[1] , 'DRVR ');
FOR I:= 1 TO lastMenu DO InsertMenu(myMenus[I] , O) ;
DrawMenuBar ;

{initial option values }
theShape - 1 ·

' theFillPat - 3 · .
thePenPat - 2 ·

' thePenSize - 1 •
thePenMode - 1•

'

{check marks for initial option values}
Checkitem(myMenus[3] , theShape , TRUE) ;
Checkitem(myMenus[4],theFillPat,TRUE) ;
Checkitem(myMenus[5],thePenPat, TRUE);
Checkitem (myMenus[6],thePenSize , TRUE) ;
Checkitem(myMenus[7],thePenMode,TRUE);

END; {of SetUpMenus }

PROCEDURE DrawShape(theCommand: INTEGER);
VAR

shapeRect, theScreen : Rect ;
curv Point;
dpat : Pattern;

BEGIN
SetPort(mainWindow);
theScreen := thePort ' . portRect ;
SetPt(curv, 30 , 30);

MENUS 263

CASE theFillPat OF
1: dpat White;
2: dpat Black ;
3: dpat Gray ;
4: dpat LtGray;
5: dpat DkGray;
END;

CASE thePenPat OF
1 : PenPat (White);
2: PenPat (Black) ;
3: PenPat (Gray) ;
4: PenPat(LtGray) ;
5: PenPat (DkGray) ;
END;

CASE thePenSi ze OF
1: PenSize (1 , 1);
2: PenSize (1 ,5);
3: PenSize(5, 1) ;
4: PenSi ze(5 , 5);
5: PenSize(10 , 10);
END ;

CASE thePenMode OF
1: PenMode(PatCopy);
2: PenMode(PatOr);
3: PenMode(PatXor) :
4: PenMode(PatBic) ;
5: PenMode(NotPa t Copy) ;
6: PenMode(NotPatOr);
7: PenMode(NotPa tXor);
8: PenMode(NotPatBicl ;
END ;

CASE theShape OF
1 , 4, 7: Se tRect (shapeRect , 100 , 30 , 300 , 230); {Square }
2 , 5, 8: SetRect (shapeRect, 100 , 100 , 300 , 160); {WideRect }
3, 6 ,9: Se tRec t (shapeRect , 170 , 30 , 230 , 230) ; {TallRect} ;
END ; {a s pect ratio }

CASE theShape OF
1 , 2,3: CASE theCommand OF

1: FrameRect(shapeRect);
2: Pa intRect(s hapeRect);
3: EraseRect(s hapeRec t);
4 : InvertRect(shapeRect);
5: FillRect (shapeRect , dpat);
6: Er aseRect (theScr een) ;
8 : done := TRUE;
END; {of Shapes 1, 2 , 3: r ec tangles }

264 HIDDEN POWERS OF THE MACINTOSH

4 1516: CASE theCommand OF
1 : FrameOval (shapeRect);
2: PaintOval (shapeRect) :
3: EraseOval (shapeRect) ;
4 : InvertOval (shapeRect) ;
5: FillOval(shapeRect 1dpat);
6: EraseRect (theScreen);
8 : done := TRUE;
END; {of Shapes 41 5 I 6: ovals}

71819: CASE theCommand OF
1: FrameRoundRec t (shapeRect lcurv . h l curv.v);
2: PaintRoundRect(shapeRect lcurv . h 1CUTv.v) ;
3: EraseRoundRect (shapeRect 1CUTV.h1curv.v) ;
4: InvertRoundRect (shapeRect 1CUTV.h1curv.v) ;
5: FillRoundRect (shapeRect lcurv. h 1CUTV. v 1dpat) ;
6: EraseRect (theScreen);
8 : done := TRUE;
END; {of Shapes 7 I 81 9 : wide rounded rectangle }

END; {of shapes}
END; {DrawShape }

PROCEDURE DoAppleMenu(theitem: INTEGER);
VAR

refNum: INTEGER;
name : Str255 ;

BEGIN
If theitem = 1

THEN theitem Alert(1001 1NIL)
ELSE

BEGIN
Getitem (myMenus[1] 1theiteml name);
refNum OpenDeskAcc(name);

END;
END ;

PROCEDURE SelectMenu(s election : Longint);
VAR

theMenul theitem : INTEGER;
BEGIN

theMenu : = HiWord (selection) ;
theitem : = LoWord(selection) ;
CASE theMenu OF

AppleMenu:
ComMenu:
ShapeMenu:
FillPatMenu:
PenPatMenu:

DoAppleMenu(the item) ;
DrawShape (theitem);
Clickitem(3 1 theiteml
Clickitem(4 1 theitem l
Clickitem (51 the item l

theShape);
theFillPat) ;
thePenPat) ;

MENUS 265

PenSizeMenu : Clickitem(6, theitem, thePenSize) ;
PenModeMenu : Clickitem (7, theitem, thePenMode) ;
END; {of theMenu CASE }

HiliteMenu(O) ; {to unhighlight selected menu in menu bar}
END;

BEGIN {main program}
SetupSys ;
SetUpMenu ;

REPEAT
SystemTask;
IF GetNextEvent(everyEvent, theEvt) THEN

CASE theEvt . what OF
mouseDown:

CASE FindWindow(theEvt . where,theWindow) OF
inMenuBar :

SelectMenu (MenuSelect(theEvt . where));
inSysWindow:

SystemClick(theEvt , theWindow);
inDrag:

DragWindow(theWindow, theEvt . where , dragBnds) ;
inContent , inGrow:

SelectWindow(theWindow) ;
END;

keyDown:
SelectMenu (MenuKey(Chr(theEvt.message MOD 256)));

updateEvt, activateEvt :
BEGIN

theWindow : = windowPtr(theEvt . message) ;
BeginUpdate (theWindow) ;
EndUpdate (theWindow);

END;
END ; {of what event}

UNTIL done ;
END.

Data Structures
Our " MenuDemo" program has the standard USES section. The CONST
section defines the menu identification numbers of the menus, assigning
constant identifiers for each . It also defines the constant " lastMenu" as
equal to seven, the total number of menus. Using constants in this manner
makes the program more readable and easier to maintain.

266 HIDDEN POWERS OF THE MACINTOSH

Global Variables
The VAR section contains a number of global variables. Some are familiar
from previous programs, some are peculiar to menu management.

The first two global variables, "done" and "theEvt", have been used
to manage events before. The first is a Boolean that controls the termina­
tion of the main loop. The second is an event record that holds the "what"
and "where" information for our events.

The global variables "mainWindow" and "theWindow" are window
pointers. The first- points to our main window, which displays the shapes.
The second is a general-purpose window pointer, as used in the example
programs of the last few chapters.

The rectangle "dragBounds" provides the bounds for window drag­
ging. Later, we set these bounds so that the windows never go completely
off the screen or overlap the menu bar.

The global array of menu handles, "myMenus", provides access to
the menus in our program. Later we will see how this array structure
makes it easy to initialize all menus at once in a simple FOR loop.

Finally, the integers "theShape", "theFillPat", "thePenPat", "the­
PenSize", and "thePenMode" hold current choices from the last five menus.
These use check mark options; that is, they show which menu items are
selected by displaying check marks.

Procedures
The various procedures in this program initialize the system, initialize
the menus, draw the shapes, and track the menus. Let's look at them in
detail.

Initializing the System
The first procedure, "SetUpSys", initializes QuickDraw, the Font Manager,
the Window Manager, the Dialog Manager, Text Edit, and the Event Man­
ager. It also calls "TEinit" to initialize Text Edit. Though you might not
need all these managers in your program, they must be initialized to
ensure that the desk accessories do not crash.

"SetUpSys" has a more sophisticated way to set the window drag
limits in the rectangle "dragBnds". "SetRect" (surrounded by a WITH
statement) defines the drag limits relative to the screen limits as given by
"screenBits.Bounds". The drag limits are set so that some portion of the
window always stays within the screen and windows do not cover any

MENUS 267

portion of the menu bar. Because we use "screenBits" to define the drag
limits, our program should work even if the screen size changes.

This initialization procedure next calls "GetNewWindow" to get the
window definition parameters from our resource file and draw the window.
Here is the resource definition for this window:

Type WIND
, 256
Menu Driven QuickDraw Demo
50 40 300 450
Visible NoGoAway
0
0

Lastly, the procedure sets "done" equal to false for our event loop.

Checking Menu Items
The "Clickltem" procedure updates check marks for the last five menus.
It expects three integer parameters: "menulndex", to specify a particular
menu; "theltem", to specify the new item that should be checked in that
menu; and "itemNum", to specify the item that is currently checked in
that menu. The procedure removes the check mark from the previously
checked item, updates the variable "theltem" so that it now indicates the
current choice, and places a check mark on this new choice.

The procedure begins by calling the Menu Manager routine
"Checkltem" to uncheck the currently checked item. This routine expects
three parameters: a menu handle that specifies a menu, an integer that
specifies a particular item within that menu, and a Boolean that specifies
whether the item is to be checked or unchecked. In this case, we pass
"myMenus[menulndex]" in the first parameter to indicate the menu to be
modified, "itemNum" in the second parameter to indicate the currently
checked item, and FALSE to the third parameter to indicate that it should
be unchecked.

The procedure then updates "itemNum" by assigning the value of
"theltem" to it.

Finally, the procedure checks the new choice by calling "Checkltem"
with the same expressions in its first two parameters, indicating the same
menu with the updated choice of item. We pass TRUE to the last parameter
to indicate that we want the item checked.

268 HIDDEN POWERS OF THE MACINTOSH

Setting Up Menus
The procedure "SetUpMenus" initializes all menus for this program. It
has one local variable, an integer "I", which is an index to a FOR loop.

The procedure begins by calling "InitMenus" to initialize the Menu
Manager.

We call "GetMenu" seven times to get the menu descriptions for all
seven menus from our resource file attached to our program. In each case,
we pass an identifier defined in our CONST section. The names of these
identifier constants have been chosen for ease of recognition. For example,
"AppleMenu" identifies the Apple menu, "ComMenu" identifies the Com­
mand menu, and "ShapeMenu" identifies the Shape menu.

Menu identification numbers should differ from each other and should
never equal zero, since zero signals a "nonchoice".

We then use a FOR loop to add these menus to the Menu Manager's
master list of menus. This loop is indexed by I and runs from 1 to
"lastMenu". It calls "lnsertMenu" to add each menu to the list.

The "lnsertMenu" routine expects two parameters: the menu handle
of the menu we wish to add to the master list of menus, and an integer
that specifies where in the list that menu should go. In our case, we pass
zero to indicate that each menu, in turn, is added to the end of the list.
In general, if this integer parameter is one of the menus already in the list,
then the new menu is added before that menu.

The first menu, the Apple menu, is different from the others; it is not
completely defined in the resource definition file. Only its first two entries
are defined there. We must call "AddResMenu" to search the resource
files for the titles and identification numbers of the system's desk acces­
sories to add them to the Apple menu.

The "AddResMenu" routine expects two parameters: a menu handle
and a resource type. We specify the menu handle as "myMenus[l]", which
we have just set up for the Apple menu, and we specify 'DRVR' to indicate
that the system should search for resources of the type of desk accessories.

We then call "DrawMenuBar" to display the titles of all our menus
across the menu bar. The routine expects no parameters. It merely uses
the Menu Manager's master list of menus to find these titles.

Finally, we use assignment statements to initialize the current values
of the choices in the last five menus, then make calls to "Checkltem" to
initialize the check marks in the actual menus.

MENUS 269

Menu Resource Definitions

Let's look at how these menus are defined in the resource definition field
attached to our program.

As mentioned earlier, the definition for the Apple menu is not com­
pletely contained in our resource definition file. The last part is gathered
from system resources using the "AddResMenu" procedure.

The Apple menu appears as follows in the resource definition file:

Type MENU
, 1000
\ 14

About Menu . ..
(-- --- -------- -

The first line after the "Type" specification contains the menu iden­
tification number, preceded by a comma. The next line contains the title;
in this case, the Apple symbol. The "\ 14" indicates the ASCII code of
this symbol. In particular, the "\" is a meta-character indicating that the
next digits specify the hexadecimal representation of a number.

Table 9-5 lists these special meta-characters.
The first menu item, "About Menu", allows us to display an alert box

with information about our program. The second menu item serves as a
separator between the "About Menu" command and the commands that
open desk accessories. It appears in the menu as a disabled dashed line
and is indicated in the resource definition by a left parenthesis followed
by the dashed line. The left parenthesis is also a meta-character. It specifies
that the item is disabled. We see later how other items are filled in when
the program executes.

Table 9-5. Meta-Characters for Menu Definitions

Meta-Character

; or < CR>

<
I
(

270 HIDDEN POWERS OF THE MACINTOSH

Meaning

Separates items
Item icon
Item mark
Item style
Item keyboard equivalent
Item is disabled

The remaining menus are defined in our resource definition file. The
Command menu definition appears as follows:

Type MENU
, 1001
Command

Frame the shape / F
Paint the shape / P
Erase the shape / E
Invert the shape / !
Fill the shape / L
Erase Window / C
(- ---- -- ---------
Quit / Q <B

The first line contains the menu identification number, preceded by
a comma. The second line contains the title "Command".

Each remaining line contains a title for an item in this menu. Items
one through six and item eight have keyboard equivalents. These are
indicated (after the title) by the meta-character slash followed by the key
symbol. They are an alternative to selecting menu items. To use these key
equivalents, the user must hold down the 00 key like a shift key while
pressing the indicated key.

As an example of key equivalents, the item title "Frame the shape"
is followed by "IF", which indicates that its keyboard equivalent is ob­
tained by hitting 00 F

The seventh menu item is as a separator between the Quick.Draw
commands and the "Quit" command. It appears in the menu as a disabled
dashed line and is indicated in the resource definition by a left parenthesis
followed by the dashed line. Again, the left parenthesis is a meta-character
that specifies that the item is disabled.

The eighth line appears in boldface. This is indicated by the meta­
character"<" followed by a "B" for boldface immediately after the title.
Table 9-6 lists the other style options.

The remaining fi ve menus are less fancy and contain no meta-characters:

Type MENU
, 1002
Shape

Square
Wide Rectangle
Tall Rectangle
Circle
Wide Oval

MENUS 271

Tall Oval
Rounded Square
Wide Rounded Rectangle
Tall Rounded Rectangle

, 1003
Fill Pattern

White
Black
Gray
LtGray
DkGray

,1004
Pen Pattern

White
Black
Gray
LtGray
DkGray

,1005
Pen Size

1 by
1 by
5 by
5 by

10 by

, 1006
Pen Mode

Copy
Or
X or
Bic

1
5
1
5
10

Table 9-6. Style Options for Menu Items

Symbol

B
I
u
0
s

272 HIDDEN POWERS OF THE MACINTOSH

Meaning

Bold
Italic
Underline
Outline
Shadow

NotCopy
No tor
NotXor
NotBic

Drawing the Shapes
The procedure "DrawShape" draws the various shapes in our display
window. It expects one parameter, which specifies a command from the
Command menu.

The "DrawShapes" proce dure has several local parameters:
"shapeRect", a rectangle that determines the aspect ratio of the shape to
be drawn; " theScreen", a rectangle that specifies the size of the screen;
"curv", of type "Point", that specifies the curvature of the rounded rec­
tangles; and "dpat", a pattern that fills the shape (as opposed to painting
it).

We begin the procedure by calling "SetPort" to make our "main­
Window" into the current window. Next, we assign " thePort ' .portRect"
to the variable " theScreen". This simplifies erasing the contents of the
window later in the program.

Next, we set "curv" equal to (30,30) to specify the curvature of the
rounded rectangles.

The rest of the program sorts the selections that determine the shape
and draw it.

First, we use a CASE statement to determine the fill pattern, setting
"dpat" according to the selection made. Next, we use another CASE
statement to determine the pen pattern, calling "PenPat" with the appro­
priate pattern. Then we determine the pen size with a third CASE state­
ment, calling "PenSize" with the appropriate sizes. The pen mode is
determined by a simple CASE statement, calling " penMode" with the
appropriate parameters.

The shape is a more complicated matter. A CASE statement first
assigns the aspect ratio of the shape to "shapeRect". For shape selections
one, four, and seven, we choose a square; for shape selections two, six,
and eight, we choose a wide rectangle; and for selections three, six, and
nine, we choose a tall rectangle. This means, for example, that a tall oval
is assigned the underlying shape of a tall rectangle, a wide oval is assigned
the underlying shape of a wide rectangle, and so on.

Next, we determine the set of shape commands to draw the shape.
For shape selections one, two, and three, we use rectangle commands; for
shape selections four, five, and six, we use oval commands; and for shape
selections seven, eight, and nine, we use rounded rectangle commands.

MENUS 273

Within each shape case, a CASE statement determines the particular
command to be executed. For the first five commands in each case, we
frame, paint, erase, invert, or fill the shape. In the sixth case, we erase the
screen. There is no seventh case, since the seventh item of this menu is a
disabled dashed line. However, there is an eighth line (the "Quit" com­
mand) that sets "done" equal to true, causing the main loop to terminate
and thereby terminating the program.

Doing the Apple Menu
The next procedure, " DoAppleMenu", handles the options available under
the Apple menu. It expects one parameter to specify the item selected
from the Apple menu.

It has two local variables- an integer "refNum," and a string " name"
-which are used with desk accessories.

The procedure begins by checking if item one, "About Menu", was
selected. If so, it calls the Dialog Manager's "Alert" function to display a
message on the screen in an alert box. Here are the resource definitions
associated with the alert box:

Type ALRT
, 1001
100 70 200 440
1001
4444

Type DITL
, 1001
3

Btnitem Enabled
70 10 90 100

OK

StatText Disabled
10 10 30 360

Menu , a demonstration program for menus

StatText Disabled
30 10 50 360

Christopher L. Morgan , 1985

If the item selected is not "About Menu", we call "Getltem" to get
the name of the associated desk accessory, then "OpenDeskAcc" to acti­
vate that particular accessory.

274 HIDDEN POWERS OF THE MACINTOSH

Selecting the Menu Item
The procedure "SelectMenu" determines which menu is selected (if any).
It also tracks the selection of an item and calls the appropriate action for
the selected item.

The "SelectMenu" procedure has one parameter: a long integer
"selection" to pass menu selection information generated by the Menu
Manager.

It has two local variables, both integers: "the Menu" specifies the
menu, and "theltem" selects the particular item within the menu.

We begin this procedure by extracting the menu identification number
and the item number from the "selection" parameter. The upper 16 bits
of "selection" (its "hi" part) contain the identification number of the
selected menu. The lower bits (its "lo" part) contain the item number of
the selected item within that menu. We store its "hi" part in "theMenu",
its "lo" part in "theltem".

We now use a CASE statement to determine which menu is selected
(if any; a zero indicates no selection). The various cases of "theMenu" are
identified by menu identification numbers.

If the Apple menu is selected, we call "DoAppleMenu", described
previously. If the Command menu is selected, we call "DrawShape". If
any of the remaining menus are selected, we call the "Clickltem" proce­
dure to update the variable that holds the choice for that menu and update
the check mark in that menu.

After the CASE statement, we call "HiliteMenu", passing a zero to
unhighlight all menus. If we don't do this, the title of the selected menu
remains highlighted.

The Menu Manager's "HiliteMenu" routine expects one parameter,
an integer that contains the menu identification number of the menu item
to be highlighted. If the value passed in this parameter does not match
the identification number of any menu in the Menu Manager's list of
menus, then the routine unhighlights any highlighted menu item. Since
no menu identification number is equal to zero, passing a zero to this
routine unhighlights all menus.

The Main Program
The main program has much the same structure as main programs in
previous example programs. It consists of an initialization section and a
main REPEAT loop controlled by "done".

MENUS 275

The initialization section calls the procedure "SetUpSys" to initial­
ize QuickDraw, the various managers, and some of our global variables,
and then calls the "SetUpMenus" procedure to initialize the menus.

We begin the main REPEAT loop by calling the Desk Manager's
"SystemTask" routine to allow all open desk accessories to perform any
required ''background'' actions. For example, the control panel has several
parts that blink or change periodically.

In the main loop, we have the usual IF statement that surrounds the
"GetNextEvent" function. Recall that this Event Manager function returns
a value of true if we are to handle the event in our program. The "Get­
NextEvent" function returns the event record "theEvt" as its second vari­
able, which we use to drive the CASE statements in the rest of our REPEAT
loop.

The" .what" field of the event record drives the main CASE statement.
The cases are "mouseDown", "keyDown", "updateEvt", and "activateEvt".
The last two are lumped together.

For "mouseDown", we have a CASE statement driven by the result
returned from "FindWindow". We have five cases: "inMenuBar", "in­
SysWindow", "inDrag", "inContent", and "inGrow". Again, the last two
cases are lumped together.

In our program, only one window is under direct program control.
However, each desk accessory has its own window. The various cases of
"Find Window" select from among these windows as well as the menu bar
at the top of the screen.

For the "inMenuBar" case of "mouseDown", we call our "Select­
Menu" procedure, passing to it the value of an expression directly in­
volving the Menu Manager's "MenuSelect" routine.

The "MenuSelect" routine tracks the menu selection process, includ­
ing pulling down the menus and highlighting their items as the mouse is
held down and moved around. When the button is released, the routine
returns (as a Pascal function) with long integer selection information
containing the menu identification number and the item number. If no
item is selected, it returns with a value of zero.

The "MenuSelect" routine expects a single parameter that is the
location of the mouse in global screen coordinates at the time that the
mouse button was pressed. In this case, we pass to it "theEvt. where" from
the Event Manager. Interestingly, the entire menu selection process hap­
pens on a single line of Pascal during the evaluation of a single expression
that is passed as a parameter.

For the "inSys Window" case of" mouseDown ", we call "System Click"
to allow the currently selected desk accessory to perform a given action.
This desk accessory is associated with the currently selected window.

2 76 HIDDEN POWERS OF THE MACINTOSH

For the "inDrag" case of "mouseDown", we call "DragWindow". As
in other programs, this allows the user to drag the window around the
screen but not off the screen and not into the menu bar.

For the "inContent" and "inGrow" cases of "mouseDown", we call
''SelectWindow'' to bring the selected window to the front and highlight
it. When a desk accessory becomes active, its window comes to the front,
deselecting all other windows including our display window. Having a
way to "select" windows allows us to bring our own display window to
the front again.

For the "keyDown" case, we also call "SelectMenu". This provides a
way to select menu items by using the keyboard rather than the mouse.

In the previous case, we passed an expression that involved the
mouse's "MenuSelect" routine. This time, we pass an expression involving
the keyboard's "MenuKey" routine to "map" keys from the keyboard to
those menu items that have key equivalents. In our program, these are the
items in the Command menu. We find the ASCII code for the key in the
lowest eight bits of the ".message" field of the event record. We then use
"Chr" to convert it to type "Char" and "MenuKey" to map it to the long
integer selection information.

For the "updateEvt" and "activateEvt" cases, we do an empty
"BeginUpdate"/"EndUpdate" sequence. This allows the desk accessories
to be properly updated as windows move around. Though our program
doesn't "know" enough to explicity redraw a desk accessory when it
needs updating, the "BeginUpdate" sequence signals the desk accessory
to update itself at this point.

Before the "BeginUpdate", we point to the window to be updated by
loading the ".message" field of "theEvt" into "theWindow", we use the
type "windowPtr" like a function to coerce this quantity from type "Longlnt"
to type "windowPtr".

This takes care of all cases in our program, completing the REPEAT
loop and the program.

Summary
In this chapter, we have studied the Menu Manager through an example
program that manipulates seven menus, including the Apple menu filled
with desk accessories and an information entry that activates an alert.
The program also illustrates the various shapes, drawing actions, and
drawing attributes available in QuickDraw, which menus organize in easy­
to-use form.

MENUS 277

The following ROM routines are covered in this chapter:

DL-Ini tD ialogs

TE-TEinit

MN-Checkltem

MN-InitMenus

MN-NewMenu

MN-AddResMenu

MN-GetMenu

MN-InsertMenu

MN-DrawMenuBar

QD-PenPat

QD-PenSize

QD-PenMode

QD-FrameOval

QD-PaintOval

QD-EraseOval

QD-FillOval

QD-PaintRoundRect

QD-EraseRoundRect

QD-InvertRoundRect

QD-FillRoundRect

TU-HiWord

MN-Getltem

DS-OpenDeskAcc

MN-HiliteMenu

DS-SystemTask

MN-MenuSelect

DS-SystemClick

MN-MenuKey

2 78 HIDDEN POWERS OF THE MACINTOSH

10
Text and Files

This chapter covers the following new concepts:

• The File Manager

• The Package Manager

• The Standard File Package

• Creating, Opening, and Closing Files

• Writing to and Reading from Files

• Text Edit

• Text Records

• Editing and Displaying Text

• Scrolling Text

This chapter explores fi les and text. An example program illustrates how
to program these two essential operations of applications programs.

Both text and files involve the management of blocks of information.
Files store these blocks on disk and allow them to be transferred to and
from memory. Text manages these blocks in memory. Of course, files can
store information other than text: the way files are programmed is inde­
pendent of the type of information they contain.

Our example program also uses many of the features - menus,
windows, dialogs, and alerts - introduced in previous chapters. This
program illustrates how a complete application should work, providing a
fitting conclusion to the book. The challenge is to combine these old

279

concepts and handle the new concepts of text and files. As we see, every­
thing fits into a grander structure controlled by a very simple but powerful
main program that can run without change for a variety of applications
and serves as an overview to Macintosh applications programming.

We could introduce text without files, but then our example would be
useless: we would have no way to save the text or to conveniently supply
examples of text to test our program.

This chapter discusses three new managers: the File Manager, Text
Edit, and the Package Manager. The File Manager is considered part of
the Operating System. It provides access to the file systems of the disks.
It calls the lower levels of the system, such as the disk drivers. Text Edit
is considered part of the Toolbox. It provides routines to edit blocks of
text in memory. It calls lower levels, such as the Memory Manager. The
Package Manager provides access to ROM-like routines that go beyond
those in the ROM.

The Example Program
The example program is a simple text editor. Three menus define its major
functions (see Figure 1 0-1).

The first menu, titled with the Apple symbol, allows the user to select
desk accessories. The second menu, titled "File", has entries "New",
"Open", "Close", "Save", and "Save As ... " to set up, load, and save files,
and "Quit" to exit the program. The third menu, titled "Edit", has entries
"Cut", "Copy", and "Paste" to perform standard editing functions.

The first menu connects the program with other features and capa­
bilities of the Macintosh. The second and third menus make this program
into a simple text editor. Other menus could easily be added to provide
options such as variable fonts, text faces, and text sizes.

The program also displays what is called the text window. At first,
the text window is "Untitled" and empty. Later, it fills with text and is
titled with the name of the file currently being edited. The text window
has several features, including a vertical scroll bar that allows the user to
scroll through the text, drag bars that allow the user to move the window,
and a grow icon that allows the user to resize it.

Now let's examine each menu in more detail.

The Apple Menu
The Apple menu contains the desk accessories. We discussed these in
Chapter 9.

280 HIDDEN POWERS OF THE MACINTOSH

The File Menu
The File menu contains seven entries: "New", "Open", "Close", "Save",
"Save As ... ", a disabled entry filled with dashes, and "Quit" (see Figure
10-2).

The entry "New" sets up an "untitled" text window. The entry "Open ... "
loads a selected text file, displaying its contents in the text window and
its name in the title bar.

The three dots after the word "Open" indicate that a dialog appears
when this item is selected (see Figure 10-3). This dialog is a standard
dialog that displays the available text files. The user can select a file by
double clicking it or by clicking an "open " button. The dialog also lets
the user change disks.

The entry "Close" saves the file if it has been modified and makes
the text window disappear. The entry "Save" of the File menu causes the
current file to be saved on the disk.

The "Save" command proceeds without any special selection dialog.
In contrast, the entry "Save As ... " displays a standard dialog (see Figure
10-4) that allows the user to select the drive and file name under which

Figure 10-1. The Menus

• File Edit

TEXT AND FILES 281

the file will be saved. Again, the three dots indicate that a dialog is to
appear, requesting further information from the user. When we study this
program, we see how these standard file dialogs, which open and save
files, are available through the Package Manager.

To prevent undesirable actions, such as opening a text file when one
is already open, the items in the file menu are selectively enabled and
disabled. We explore this in detail when we study the workings of the
program.

The Edit Menu
The Edit menu contains three entries: "Cut", "Copy", and "Paste" (see
Figure 10-5). They preform their standard operations on our text in our
text window. They also perform standard operations on desk accessories.
However, the program does not allow transfer of text between our text
window and any desk accessory. Such a transfer is handled by the Scrap
Manager, which is not studied here.

S<lll <~
Saue As •.•

Quit a&Q

Figure 10-2. The File Menu

282 HIDDEN POWERS OF THE MACINTOSH

When not using the menus, the user can enter, view, and edit text in
the text window. Notice that the window does not automatically scroll
when it reaches the bottom of the screen. This feature is not built into the
Macintosh; it must be programmed by the applications programmer.

Although this program is long, it contains many familiar routines and
a modular structure that makes it easy to understand how the new parts
fit in.

PROGRAM FileDemo ;
{$R- }{ $X- }

USES
{$U obj / Memtypes
{$U obj / QuickDraw
{$U obj / OSintf
{$U obj / Toollntf
{$U Obj / Packlntf

Memtypes ,
QuickDraw,
OSintf ,
Toollntf ,
Packlntf ;

Figure 10-3. The Standard File Open Dialog

eHample file Q
EHplain Demo O~Hm figures Ch10

~ Eject

Cancel OriiJP

0

TEXT AND FILES 283

CONST
{menu IDs l
appleMenu =
FileMenu
EditMenu
lastMenu

1000;
1001 ;
1002 ;
3 ;

desk accessory menu }
File menu}
Edit menu}
number of menus }

{common dialog and alert items }
OKBtn 1;
cancelBtn = 2;

VAR
done , present, titled, modified: BOOLEAN;
dragBnds , sizeBnds, dRect , vRect: Rect ;
where : Point ;
myMenus: ARRAY [1. . lastMenu] OF MenuHandle ;
theEvt : EventRecord;
theWindow, textWindow: WindowPtr ;
vsbar : Contro lHandle ;
theDialog: DialogPtr;
fRefNum, vRefNum : INTEGER;

Figure 10-4. The Standard File Save As Dialog

284 HIDDEN POWERS OF THE MACINTOSH

figures Ch 1 0

Eject

OriiH~

fName : Str255;
theTE : TEHandle ;

PROCEDURE SetLimits;
BEGIN

WITH screenBits.Bounds DO
SetRect(dragBnds , left+4 , top+24,right - 4, bottom- 4) ;

SetRect (sizeBnds , 50 , 50 , 512 , 342) ;
SetPt (where , 100, 100);

END ;

PROCEDURE SetUpMenus ;
VAR

I : INTEGER;
BEGIN

InitMenus ;

myMenus[l) : = GetMenu(appleMenu);
myMenus[2) : = GetMenu(FileMenu) ;
myMenus[3) : = GetMenu(EditMenu);

Figure 10-5. The Edit Menu

s1mple
utt 1 i ty. It can be used to open
text - from the disk, edit
them, end t hen seve them beck
onto the disk.

TEXT AND FILES 285

AddResMenu(myMenus[1] , 'DRVR' J;
FOR I := 1 TO lastMenu DO InsertMenu (myMenus[I] , 0) ;
DrawMenuBar ;

END; {of SetUpMenus}

PROCEDURE SetUpWindows;
BEGIN

textWindow := GetNewWindow(1000,NIL, POINTER(-1));
vsbar : = GetNewControl (1000 , textWindow) ;

END;

PROCEDURE UpdateFState;

PROCEDURE MenultemEnable (theitem: INTEGER; enabled: BOOLEAN) ;
BEGIN

IF enabled THEN Enableitem(myMenus[2) , theitem)
ELSE Disableitem(myMenus[2] , theltem) ;

END;

BEGIN
MenuitemEnable (1,NOT present);
MenuitemEnable (2 , NOT present);
MenuitemEnable (3, present);
MenuitemEnable (4 , titled AND modified);
MenuitemEnable (5, present) ;

END ;

PROCEDURE UpdateScroll ;
VAR

maxvalue: INTEGER;
BEGIN

maxvalue : = theTE'' . nLines - 3;
IF maxvalue<O THEN maxvalue
SetCtlMax (vsbar,maxvalue);

END;

o·
'

FUNCTION SetErrMess(theErr : OSErr) : BOOLEAN;
VAR

Errindex, theitem: INTEGER;
ErrMess , ErrStr : Str255;
closeErr : BOOLEAN;

BEGIN
CASE theErr OF

noErr : Err Index - 2·
' bdNamErr : Err Index - 4·
' fnfErr : Err Index - 5·
' ioErr : Err Index - 6 ;

mFulErr : Err Index - 7 ;
nsvErr : Err Index - 8 ·

'

286 HIDDEN POWERS OF THE MACINTOSH

{New}
{Open ... }
{Close }
{Save}
{Save As . .. }

opWrErr : Err Index - 9· I

tmfoErr : Err Index - 10;
eofErr : Err Index - 11 ;
paramErr : Err Index - 12 ; {exact meaning depends }
nsDrvErr : Err Index - 13;
dupFNErr : Err Index - 14 ;
dirFulErr : Err Index - 15;
vLckdErr : Err Index - 16 ;
wPrErr : Err Index - 17;
fnOpnErr : Err Index - 1 8;
rfNumErr : Err Index - 19;
dskFulErr : Err Index - 20 ;
fLckdErr : Err Index - 21 ;
wrPerrnErr : Err Index - 22 ;
posErr : Er r Index - 23 ;
extFSErr : Err Index - 24 ;
Otherwise Err Index - 3;
END;

GetindStr (ErrMeSS 1 1000 1 Errindex);
NumToStr(theErr 1 ErrStr) ;
ParamText (ErrMess I ErrStr I ' 'I ' ') ;

IF theErr <> noErr
THEN theitem : = StopAlert (1003 1 NIL) ;

IF (theErr = opWrErr) OR (theErr = dskFulErr)
THEN closeErr : = SetErrMess (FSClose (fRefNum)) ;

SetErrMess (theErr <> noErr);
END;

PROCEDURE NewTextWindow;
BEGIN

SetPor t (textWindow) ;
WITH textWindow· . portRect DO

SetRect (dRect l left+41 top l r i ght - 19 1 bottom-15) ;
vRect : = dRect;
theTE : = TENew (dRect lvRect) ;
SetCtlValue(vsbar 1 0) ;

END;

PROCEDURE NewFile ;
BEGIN

NewTextWindow;
GetindStr (fName 1 1000 1 1); { ' ' Untitled' ' }
SetWTitle (textWindow 1 fName) ;
ShowWindow (textWindow);

fName : = '' ;
vRefNum : = 0;

TEXT AND FILES 287

present
titled
modified

: =TRUE ;
FALSE;

: = FALSE;
END;

PROCEDURE OpenFile ;
VAR

typeLi st:
reply :

SFTypeList;
SFReply ;
Longint ; CharCount :

PROCEDURE FLCall (theErr : OSErr) ;
BEGIN

IF SetErrMess (theErr) THEN Exit(OpenFi l e);
END;

BEGIN
typeLis t[O] : = 'TEXT' ;
SFGetFile (where , ' ', NIL, 1, typeList , NIL , reply) ;
IF reply .good THEN BEGIN

NewTextWindow;

FLCall (FSOpen(reply.fName , reply.vRefNum,fRefNum));
FLCall(GetEOF(fRefNum,charCount)) ;
therE· · . TELength := charcount;
SetHandleSize(theTE··. hText , charCount);
FLCall (FSRead(fRefNurn,charCount , theTE •.. hText · l l;
FLCall(FSClose (fRefNum));

TECalText (theTE);

fName := reply . fName ;
vRefNurn := reply . vRefNum;
SetWTitle(textWindow,fName) ;
ShowWindow(textWindow) ;

present : = TRUE ;
titl ed := TRUE ;
modi fied := FALSE;

END;
END;

PROCEDURE SaveFile ;
VAR

charCount : Longint;

PROCEDURE FLCall (theErr : OSErr) ;
BEGIN

IF SetErrMess(theErr) THEN Exit(SaveFile);
END;

288 HIDDEN POWERS OF THE MACINTOSH

BEGIN
charCount : = theTE· · . TELength;
FLCall (FSOpen (fName , vRefNum, fRefNum));
FLCall (FSWrite (fRefNum ,charCount , theTE· · . hText .)) ;
FLCall (FSClose(fRefNum)) ;
modified := FALSE;

END;

PROCEDURE SaveAsFile;
VAR

reply: SFReply;
theErr : OSErr;
charCount : Longint ;

PROCEDURE FLCall (theErr : OSErr);
BEGIN

IF SetErrMess(theErr) THEN Exit(SaveAsFile) ;
END;

BEGIN
SFPutFile (where , ' Save text as : ',fName,NIL ,reply) ;
IF reply . good THEN BEGIN

charCount : = theTE·· .TELength;
theErr := FSOpen(reply. fName,reply . vRefNum, fRefNum);
IF theErr = fnfErr THEN BEGIN

FLCall (Create (reply . fName , reply . vRefNum, ' ',' TEXT'));
FLCall (FSOpen (reply . fName , reply . vRefNum, fRefNum)) ;
END

ELSE FLCall (theErr);
FLCal l (FSWr i te (fRefNum ,charCount,theTE·· . hText.));
FLCal l (FSClose (fRefNum));

fName := reply.fName ;
vRefNum := reply . vRefNum;
SetWTitle(textWindow, fName);
titled TRUE;
modified FALSE;

END;
END;

PROCEDURE CloseFile;
BEGIN

IF modified THEN
CASE CautionAlert (1004 , NIL) OF

OKBtn: IF titled THEN SaveFile
ELSE SaveAsFile ;

cancelBtn: Exit(CloseFile) ;
END;

TEXT AND FILES 289

HideWi ndow {text Window) ;
TEDispose(theTEl;
present := FALSE ;
titled FALSE ;

END;

PROCEDURE QuitFile ;
BEGIN

IF present THEN CloseFi le ;
done := NOT present ;

END;

PROCEDURE SetUpSys ;
BEGIN

InitGraf (@thePort);
Ini tFonts ;
InitWindows;
TEini t ;
InitDialogs(NIL) ;
SetEventMask(everyEvent) ;
FlushEvents(everyEvent , O);

SetLimits ;
SetupWindows ;
SetupMenus ;
NewFi l e;
InitCursor ;
done := FALSE;

END;

PROCEDURE UpdateSys ;
BEGIN

Sys temTask;
UpdateFState ;
IF present THEN BEGIN

TEidle (theTE);
UpdateScroll ;
END;

END ;

PROCEDURE DoAppleMenu (theitem: INTEGER);
VAR

refNum: INTEGER;
name : Str255 ;

BEGIN
If theitem = 1

THEN the item := Alert (lOOl , NIL)
ELSE

290 HIDDEN POWERS OF T HE MACINTOSH

BEGIN
Getitem (myMenus[1] , t he i tem,name) ;
refNum OpenDesk.Acc (name);

END;
END;

PROCEDURE DoFileMenu (theitem: INTEGER);
BEGIN

CASE theltem OF
1: NewFile ;
2: OpenFile ;
3: CloseFile;
4: SaveFile ;
5: SaveAsFile;
7: QuitFile;

END;
END ;

PROCEDURE DoEditMenu (theitem: INTEGER);
BEGIN

IF NOT SystemEdit (thei tem+l) THEN BEGIN
SetPort (textWindow);

END ;

modified: = (theitem in [1,3]) ;
CASE theitem OF

1: TECut (theTE);
2: TECopy (theTE) ;
3: TEPaste(theTE);
END ;

END;

PROCEDURE SelectMenu (selection : Longint);
BEGIN

CASE HiWord (selection) OF
appleMenu: DoAppleMenu (LoWord (selection)) ;
FileMenu: DoFileMenu (LoWord (selection)) ;
EditMenu: DoEditMenu (LoWord (selection));
END;

HiliteMenu (O); {to unhighlight selected menu in menu bar }
END;

PROCEDURE WindowDrag (thePt : Point);
BEGIN

DragWindow(theWindow, t hePt , dragBnds) ;
END; {SelectMenu}

PROCEDURE ScrAction(theCtl : Contro l Handle ; partCode : INTEGER);
VAR

pageSize , delta: INTEGER;
S, dS : Point ;

TEXT AND FILES 291

BEGIN
WITH theTE •• DO

pagesize : = (viewRect . bottom - vi ewRect . top) DIV lineHeight;

delta -1 ;
delta +1;

CASE partCode OF
inUpButton :
inDownButton :
inPageUp:
inPageDown:
otherwise

delta -pagesize ;

END;

delta := +pagesize ;
Exit (ScrAction);

SetPt(S,O ,GetCtlValue(theCtl));
SetCtlValue (theCtl , GetCtlValue (theCtl)+delta) ;
SetPt(dS , O, S. v-GetCtlValue(theCtl)) ;
TEScroll (O,dS. v*theTE •. . lineHeight , theTE) ;

END;

PROCEDURE WindowControl (thePt : Point);
VAR

theCtl : ControlHandle ;
S, dS : Point;

BEGIN
IF (theWindow = frontWindow) AND present THEN BEGIN

SetPort(theWindow) ;
GlobalToLocal (thePt);
IF PtinRect (thePt,theTE· · . viewRect)

THEN TEClick (thePt , BitTst (@theEvt . modifiers,6) , theTE)
ELSE CASE FindControl(thePt,theWindow, theCtl) OF

inUpButton, inDownButton, inPageUp , inPageDown:
IF TrackControl (theCtl,thePt ,@ScrAction)<>O THEN;

inThumb :
BEGIN
SetPt (S, O,GetCtlValue (theCtl));
IF TrackControl(theCtl,thePt , NIL) <>O THEN BEGIN

SetPt (dS , O, S. v- GetCtlValue (theCtl)) ;
TEScroll(O,dS . v*theTE· ·. lineHeight , theTE);
END;

END;
END;

END
ELSE BEGIN

SelectWindow(theWindow) ;
DrawControls(theWindow) ;
DrawGrowicon(theWindow);

END ;
END; {WindowControl }

292 HIDDEN POWERS OF THE M ACINTOSH

PROCEDURE WindowGrow (thePt : Point) ;
VAR

Wsize : LONGINT;
S : Point ;

BEGIN
WSize : = GrowWindow(theWindow, thePt , sizeBnds) ;
IF WSize = 0 THEN Exit (WindowGrow) ;

SetPort(theWindow) ;
SetPt(S , loWord(WSize) , hiWord (WSize)) ;
SizeWindow (theWindow, S. h, S.v,true) ;
ClipRect(thePort ' . portRect) ;

SizeControl (vsbar , 16 , S. v-13);
MoveControl (vsbar , S. h-15, - 1);
InvalRect(theWindow· .portRect);

DrawGrowicon (theWindow) ;
IF present THEN

WITH theTE"" DO BEGIN
viewRect . right viewRect . left+S. h- 23 ;
vi ewRect . bottom : = viewRect . top +S. v-15 ;

END;
END; IWindowGrow l

PROCEDURE KeyEvent (theKey : Char) ;
BEGIN

IF BitTst (@theEvt . modifiers , 7) !check for command key }
THEN Sel ectMenu (MenuKey(theKey))
ELSE IF (textWindow = frontWindow) AND present THEN

BEGIN
TEKey (theKey ,theTE) ;
modified :=TRUE ;

END;
END; IKeyEvent l

PROCEDURE WindowUpdate ;
BEGIN

theWindow : = windowPtr (theEvt . message);
SetPort (theWindow) ;
IF lheWindow- FrontWindow THEN ShowControl (vsbar)

ELSE HideControl (vsbar) ;
BeginUpdate(theWindow);

EraseRect (theWindow· . portRect);
IF (theWindow = textWindow) AND present THEN

TEUpdate(theWindow· . visRgn· · . rgnBBox, theTE);
DrawControls (theWindow) ;
DrawGrowicon (theWindow) ;

EndUpdate (theWindow) ;
END; !Update l

TEXT A ND FILES 293

PROCEDURE WindowActivate;
BEGIN

WindowUpdate ;
IF present THEN

IF ODD(theEvt . modifiers) THEN TEActivate(theTE)
ELSE TEDeactivate (theTE);

END; {Activate }

BEGIN {main program }
SetupSys ;
REPEAT

UpdateSys ;
IF GetNextEvent (everyEvent , theEvt) THEN

CASE theEvt .what OF
mouseDown:

CASE FindWindow (theEvt . where,theWindow) OF
inMenuBar : SelectMenu(MenuSelect (theEvt . where));
inSysWindow: SystemClick (theEvt , theWindow);
inDrag: WindowDrag (theEvt . where) ;
inContent: WindowControl (theEvt .where);
inGrow: WindowGrow(theEvt.where) ;
END;

keyDown, autoKey : KeyEvent (Chr(theEvt. message MOD 256)) ;
updateEvt : WindowUpdate;
activateEvt : WindowActivate ;
END ; {of what event}

UNTIL done;
END.

External Files
The program begins with a USES section , which , in addition to standard
files, also uses a file called "Packlntf". This allows us to use special file
dialogs and conversion routines between numbers and strings.

Global Constants
The CONST section is a useful interface between the program and its
resource file. It assigns names to various numbers that identify the menus
and dia log items in the resource file . This allows us to develop the resource
definition file without constantly changing numbers in the program.

The three menus are "appleMenu", "FileMenu", and "EditMenu".
The " lastMenu" is set equal to three to indicate a total of three menus.

Two button items are used in an alert: "OKBtn" and "CancelBtn".

294 HIDDEN POWERS OF THE MACINTOSH

Global Variables
The VAR section declares a number of variables used globally in this
program.

Four Boolean variables keep track of the program. The Boolean vari­
able ''done'' controls the main loop to determine if the program is finished.
The user controls "done" by the "Quit" command of the File menu. The
three remaining Boolean variables set the file state in reference to other
file commands.

File States

This program has five possible states for loading and saving files (see
Figure 10-6). These states form a "finite state machine" whose state
transitions are given by the file commands listed in the file menu.

The three global Boolean variables "present", "titled", and "modi­
fied" can form eight possible value choices. Here we allow only five of
those possibilities:

Figure 10-6. File States

Close 1
Close I ~

1

,... ____ ..;.;.........; ___ _,) No window
1
t-----,

New ~~ I Newly untitled I E

t as Close Open

ModHy

I Newly titled I Close

"''
Save as

"v Modify Save
.._ __ ,,....0-l_d_u_n_t ,-. t_l_e_d....,~

TEXT AND FILES 295

1. No window. In this state, "present" is FALSE, "titled" is FALSE, and
"modified" is FALSE. This state occurs after a file closes.

2. Newly untitled. In this state, "present" is TRUE, "titled" is FALSE,
and "modified" is FALSE. This state occurs after the text window is
newly initialized, such as when the program starts or after the "New"
command is issued.

3. Old untitled. In this state, "present" is TRUE, "titled" is FALSE, and
"modified" is TRUE. This state occurs after text enters an untitled
window.

4. Newly titled. In this state, "present" is TRUE, "titled" is TRUE, and
"modified" is FALSE. This state occurs after a file is opened or saved
but no changes have been made.

5. Old titled. In this state, "present" is TRUE, "titled" is TRUE, and
"modified" is TRUE. This state occurs after a file is opened or saved
and changes are made.

For each state, certain items from the file menu are enabled, others
disabled. For example, in the "no window" state, the "New" and "Open"
commands are enabled, but "Close", "Save", and "Save As" are disabled.
We later see how.

The next four variables are rectangles that determine limits. The first
rectangle, "dragBnds", provides the limits for dragging windows. The
second rectangle, "sizeBnds", provides the limits for resizing windows.

The third and fourth rectangles size the text. The third rectangle,
"dRect", is called the destination rectangle. The text is mapped into this
rectangle using "word wrap". That is, the text is laid out so that it falls
within the horizontal dimensions of this rectangle, breaking text lines
only at word boundaries. In the vertical direction, text may continue
beyond the bottom of this rectangle. This rectangle may be larger or
smaller than the screen (see Figure 10-7). It defines the "full" image of
the text.

Figure 10-7. The Destination Rectangle for Text

,L Destination rectang1e

The flledemo program acts as a simple~
text editor ahd a file ut llity. It can be ~-''J, 1 ~~~~
used to open text flles from the disk, edit
them, and then save them back onto the
disk.

296 HIDDEN POWERS OF THE MACINTOSH

The fourth rectangle, "vRect", is the viewing rectangle. It acts like a
"window" for viewing the text. Only that part of the text that falls within
the view rectangle (and the visible parts of the window) is displayed (see
Figure 10-8). To scroll, move the destination rectangle while keeping the
view rectangle fixed.

The next global variable is a point, "where", that locates the upper
left corner of the alerts in this program.

Next, two window pointers are declared: "theWindow" is a general
window pointer, and "textWindow" points to our text window. The global
variable "vsbar" is a control handle to the vertical scroll bar of the text
window.

Next, "myMenus" is an array of menu handles to access our four
menus. An event record, " theEvt", tracks events as in previous programs.

A dialog pointer, "theDialog", points to the various dialogs and alerts
in the program. It is reused a number of times , since dialogs are disposed
of once they are closed.

Two global integers, "fRefNum" and "vRefNum", hold reference num­
bers for files and volumes, respectively. The string "fName" holds the
current file name.

The text handle "theTE" is a handle to the text edit record, described
by the following Pascal declarations:

TEPtr "TERec;
TEHandle = "TEPtr;
TERe c RECORD

destRect :
viewRect :
se lRect :

Rect;
Rect;
Rect ;

Figure 10-8. The Viewing Rectangle for Text

_r Destination rectangle

The filedemo program acts as a simple ~ Viewing
~t_ex_t_e~d_i_to_r_a_n_d_a_f_il_e_u_t_i l_it~~Y~··_I_t _c_an __ be __ ~~~~ rectangle

Top l ine ~ used to open text files from the disk, edit
of di sp 1 ay them, and t hen save them back onto the

di sk.

TEXT AND FILES 297

lineHeight :
fontAscent :
selPoint :
selStart :
selEnd:
active :
wordBreak:
clikLoop :
clikTime:
clikLoc :
caretTime:
caretState :
just:
TELength :
hText :
recalBack:
recalLines :
clikStuff :
crOnly:
txFont :
txFace :
tx.Mode :
txSize :
inPort :
highHook :
caretHook:
nLines :
LineS tarts :

END;

INTEGER;
INTEGER;
Point ;
INTEGER;
INTEGER;
BOOLEAN;
LONG I NT;
LONG I NT ;
LONG I NT ;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
Handle ;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER ;
GrafPtr ;
PTR;
PTR;
INTEGER ;
ARRAY [0 . . 16000] OF INTEGER;

A text handle (type "TEHandle") points to a text pointer (type "TEPtr")
that points to a text record (type "TERec"). A text record has a number
of fields to describe the appearance of the text and its internal structure.

The first two fields , ".destRect" and ". viewRect", contain the current
values of the destination and view rectangles, respectively (see Figure
10-9). The third field , ".selRect", contains a rectangle to delimit these­
lection area in the text's grafPort.

The fourth field, ".lineHeight", contains the line height or vertical
distance between lines (see Figure 10-10).

The" .fontAscent" field contains the font ascent of the text (see Figure
10-11).

The" .selPoint" field is the location of the mouse when clicked within
the text display on the screen.

The ".selStart" and ".selEnd" fields give the starting and editing
limits of the selection range. If these agree, then an insertion point occurs
at their common value. This insertion point is indicated by a caret (blink-

298 HIDDEN POWERS OF THE MACINTOSH

ing vertical line). These quantities range from zero (before the first char­
acter) to the number that represents the character position after the last
character of text. However, since these and the ".TElength" field are inte­
gers, an edit record cannot control more characters than the largest 16-
bit signed integer, which is 32,767. Documents with more characters
should be divided into smaller edit records, perhaps by paragraph or page.

Figure 10-9. Destination, View and Selection Rectangles

Ettplain Demo

Destination rectangle

Viewing rectangle

The filedemo program acts as
a simple text editor and a
file utility. !lii!ijMQI to
open te xt f {'r
edit them, II
them back Selection rectangle

TEXT AND FILES 299

The ".active" field indicates if the text is active (caret is blinking and
editing working). A nonzero value indicates active.

The ".wordBreak" field contains a long integer that points to the
procedure for handling word breaks. The" .clikLoop" field contains a long
integer that points to the procedure for handling mouse clicks.

The ".clikTime" field contains a long integer that specifies the time
of the first click of the mouse button. This is useful for handling double
clicks. The ".clikLoc" field contains an integer that specifies the character
position of the mouse where clicked.

The ".caretTime" field contains a long integer that specifies the time
for the next blink of the caret. The ".caretState'' contains an integer whose
bits act like Boolean variables that specify the active and on/off state of
the caret.

The ".just" field determines the justification of the text. A value of
zero indicates left justification, a value of one indicates centered text, and
a value of minus 1 indicates right justification.

The ".TElength" field contains the length of the text; that is, the
number of characters in the text. As noted previously, this is a 16-bit
integer, thus limiting the number of characters controlled by an edit
record.

The" .hText" field is a handle to the text itself.
The ".recalBack", ".recalLines", and "clikStuff" fields are integers

that the Text Manager uses to recalculate "line starts" for the text. These
places within the text occur at the beginning of lines when the text is
displayed on the screen (see Figure 10-11).

The ".crOnly" turns wrapping text line on and off (see Figure 10-12).
If this field is zero, then standard word wrap is used. If this field is minus

Figure 10-10. Line Height and Font Ascent

I his

300 HIDDEN POWERS OF THE MACINTOSH

Base line

Base line

Descent 1 i ne

one, then lines that extend beyond the horizontal limits of the destination
rectangle are truncated (chopped off). In that case, only the carriage return
terminates a displayed line of text before it is truncated.

The next four fields-" .txFont", ".txFace", ".txMode", and" .txSize"
-are attributes of the text. Normally, an application has menus that allow
the user to change these fields.

The ".inPort" field points to a grafPort associated with the text. This
is the grafPort that was current when the text opened.

The ".highHook" and ".caretHook" fields contain pointers to routines
for advanced programmers to customize the highlighting of carets and
selection areas.

The" .nLines" field contains an integer that specifies the number of
lines of text controlled by the text record. The ".lineS tarts" field is an
array of integers that specify where each line starts.

Functions and Procedures
This program combines a number of features introduced in Chapter 9, so
many of the functions and procedures in this program should be familiar.
However, this program contains new routines and new wrinkles to old
routines.

The procedures are ordered according to "level"; that is, they are
arranged according the usual Pascal calling sequence wherein each rou­
tine can be called only after it is defined (no forward references). The
procedures and functions are also grouped according to their function.
For example, all lowest level initialization procedures are grouped together.

Figure 10-11. Line Starts

rr====~ The filedemo program acts as a simple
text editor and a fi 1 e ut i1 ity. It can be
used to open text fi 1 es from the disk, edit
them, and then save them back onto the
disk.

"'The filedemo program acts as a simple"'text editor and a file utility. It can be

TEXT AND FILES 301

Low-Level Initialization Procedures
The first few procedures- "SetLimits", "SetUp Windows", and "SetUp­
Menus" - initialize subsystems of the Macintosh, including rectangle
and point limits, windows, and menus. These routines reside at the lowest
level of our program; that is, they don't call other procedures. You can
place your own low-level initialization routines in this section for any
program you write for the Macintosh.

Setting Limits

The procedure ''SetLimits'' sets the limit values for several rectangles and
a point. The rectangles are "dragBnds" and "sizeBnds"; the point is
"where". The two rectangles are set with the standard limits. The point
"where" locates the upper left corner of alert boxes and is set equal to
(100,1 00), placing the alerts toward the middle of the screen. Your program
may have other variables to be initialized. This is a good place to do it.

Setting Up Menus

The procedure "SetUpMenus" initializes the menus. It has one local
variable, "1", an index to a loop.

Figure 10-12. Wrapping and Truncating Text Lines

Word wrap
The filedemo program acts as a simple
text editor end a file utility. It can be
used to open text files from the disk, edit
them, end then seve them beck onto the
disk~

lb Terminated by carriage return

Truncated r Not seen

The filedemo program acts as a simple text editor end a file utility. It can be

302 HIDDEN POWERS OF THE MACINTOSH

It calls " InitMenus" to initialize the Menu Manager. It calls "Get­
Menu" to get the definition of the four menus from the resource file,
initialize the menus, then return a handle to them. We store these handles
in the array " myMenus".

These menus are defined in the resource definition file as follows:

Type MENU
, 1000
\ 14

, 1001
File

About FileDemo .. .
(-- --- ---- -----

New
Open .. .
Close
Save
Save As . . .
(--- ------

Quit / Q <B

, 1002
Edit

Cut / X
Copy/ C
Paste / V

In thi s program, as in the last, the Apple menu is partly defined in
the resource file and partly defined by using "AddResMenu" to add all
available desk accessories to it. You may want to add other system re­
sources to other menus at this point.

The "SetUpMenus" procedure concludes with a FOR loop that uses
"InsertMenu" to add each menu to the master list of menus , then calls
"DrawMenuBar" to draw the menu titles on the screen.

Setting up Windows

The procedure "SetWindows" initializes the text window and its scroll
bar. It ca lls "GetNewWindow" to initialize the text window and obtain a
handle to it. It calls "GetNewControl" to initiali ze the scroll control, attach
the scroll control to the text window, and obtain its handle. These are
defined in the resource definition file as:

TEXT AND FILES 303

Type WIND
, 1000
Untitled
50 10 300 480
Visible NoGoAway
0
0

Type CNTL
,1000
vertical scroll bar
-1 455 235 471
Invisible
16
2
0 0 450

Other windows and controls in your program should be initialized
here.

Low-Level Updating Routines
The next two procedures, "UpdateFState" and "UpdateScroll", update
various variables and subsystems as part of the main event loop. They are
also low level - they do not call other procedures or functions in our
program.

The procedures are called by the procedure "UpdateSys", which is
called each time the main event loop is executed. Other routines are also
called in this master update procedure, but they are already defined in
external files. We see how such updating routines fit together when we
study this master "UpdateSys" procedure.

You may wish to add other low-level routines at this place in your
program.

Updating the File State

The procedure "UpdateFState" updates the file menu according to the
state of file loading and saving.

304 HIDDEN POWERS OF THE MACINTOSH

As discussed , the file state can be described by the three Boolean
variables "present", "titled", and " modified". Only certain commands
should be enabled for any particular state.

We use the Menu Manager routines "Enableltem" and " Disableltem"
to enable and disable menu items in the file menu. These routines expect
two parameters. The first is a hand le to the particular menu; the second
is an int~ger index to the particular item.

A subprocedure, "MenultemEnable", does the actual enabling and
disabling. It expects two parameters: the item's number and a Boolean
that specifies if the item should be enabled.

The fi rs t two items, "New" and " Open ... ", are enabled only if the text
window is not "present". The items "Close" and "Save As ... " are enabled
only if the text window is "present".

The "Save" menu item is handled differently. It is enabled when the
text window is " titled" and "modified", bu t disabled otherwise.

Updating Scroll Limits

The procedure "UpdateScroll" updates the scroll limits and highlighting
according to the amount of text in the system. It has one local variable,
"maxvalue", an integer.

The procedure calls "SetCtlMax" to set the maximum value accord­
ing to the formula:

max(O,theTE'' . nLines- 3)

Since this Pascal doesn 't have a maximum value function , we first use
an inequality to ensure that we don't set the maximum value less than
zero. The local var iable "maxvalue" holds the value during computation.

File Menu Procedures and Functions
The next procedures and functions in this program illustrate how to
program the loading and saving of files. They implement the fi le com­
mands in the File menu. To support these commands, we first need an
error handler function and a routine to set up a new text window.

TEXT AND FILES 305

Errors

The function "SetErrMess" is a general -purpose routine to handle errors.
It has one parameter, of type "OSErr" (equal to type INTEGER). This
parameter contains the error code returned from a File Manager routine.

Our "SetErrMess" function returns a Boolean variable that is true
only if an error occurs.

The function has five local variables. The first two are integers:
" Errlndex" indexes into our list of errors in our resource definition file,
and " theltem" is used in conjunction with a special error alert. The next
two are strings: "ErrMess" holds the error message, and "ErrStr" holds
the error number. Both strings are displayed in the stop alert. The last
local variable is the Boolean variable "closeErr", which holds a result
returned from a close file command that is issued in response to certa in
errors.

The "SetErrMess" function begins by using a CASE statement to map
the error code " theErr" to the index "Errlndex" in our list of errors .

We then ca ll "GetlndStr" to look up the appropriate s tring in our
resource file. The "GetindStr" routine expects three parameters: a string
that is returned, the resource number of a string list resource (type 'STR#'),
and an index into this list. This list is defined in the resource definition
file as:

Type STR#
, 1000

Untitled
No error
Unknown Error
Bad file or volume Name
File not found
Disk I / 0 Error
Memory full
No such volume
File already open for writing
Too many files open
End of file
Bad number
No such drive
Duplicate file name
Directory full
Software volume lock
Hardware volume lock
File not open
Bad reference number

306 HIDDEN POWERS OF THE MACINTOSH

Disk full
Permission denied to access file
File position out of range
External file system

Next, we call "NumToStr" to convert the error code to the s tring
"ErrStr". We use "ParamText" to load these strings for di splay in the next
dialog or alert box.

If an error (theErr < > noErr) occurs, we call "StopAlert" to display
the appropriate alert. This alert is defined in the resource file as follows:

Type ALRT
,1003
100 70 200 440
1003
7654

Type DITL
, 1003
3

Btnltem Enabled
70 10 90 100

OK

StatText Disabled
10 150 50 360

File Error : · o

StatText Disabled
60 150 90 360

ID number : '1

If the error was "File open for writing" (opWrErr) or "Disk fu ll"
(dskFulErr) , we attempt to close the file, ca lling the "SetErrMess" recur­
sively and passing the File Manager's "FSClose" routine as its parameter.

The last statement in this function returns the Boolean value of the
function determined by whether or not an error occurred.

Making a New Text Window

The procedure "NewTextWindow" sets up a new text window for the
"New" or "Open .. . " commands.

It begins by calling "SetPort" to set the current grafPort to the
textWindow grafPort. Next, it sets the global destination rectangle "dRect"
and view rec tangle "vRect" to just within the port rectangle, making room

TEXT AND FILES 307

for scroll bars and a small margin on either side of the "page". These
margins keep the text looking tidy, as if it were on a sheet of paper.

In particular, the left-hand limits are four pixels to the right of the
left-hand limit of the port rectangle, the right-hand limits are nineteen
pixels to the left of the right-hand limit of the port rectangle, the upper
limits agree, and the bottom limits are fifteen pixels above the lower limit
of the port rectangle.

Next, it calls "TENew" to open up the text record with the destination
and view rectangles just set. The "TENew" routine returns a handle to
the text record. We store this handle in " theTE".

Finally, we call "SetCtlValue" to set the control value for the scroll
bar equal to zero.

New File Command

The "NewFile" procedure implements the "New" command of the File
menu. The "New File" procedure begins by calling our "NewTextWindow"
procedure to set up a new text window. It then calls "SetWTitle" to set
the title of this window to " Untitled", and then uses "ShowWindow" to
bring the text window into view.

It sets the file name stored in the global "FName" equal to the empty
string and the volume reference number stored in the global variable
"vRefNum" equal to zero (the default drive).

Finally, we set the Boolean variables "present" equal to true, "titled"
equal to false, and "modified" equal to false. This puts us into the "newly
untitled" state.

Notice that this routine does not call any disk commands.

Open File Command

The "OpenFile" procedure implements the "Open ... " command of the
File menu. It has three local variables: "typeList" is of type "SFTypeList"
and specifies the desired file type, "charCount" is a long integer that
temporarily stores the length of the file, and "reply" is of type "SFReply"
and holds the results from the Package Manager's standard file selection
routine.

The type "SFTypeList" is defined by the following Pascal declaration:

SFTypeList = ARRAY [0 .. 3] OF OSType;

This is simply an array of four items, each a four-character string
specifying a file type.

308 HIDDEN POWERS Of THE MACINTOSH

The type "SFReply" is defined by the following Pascal declaration:

SFReply = RECORD
good :
copy :
FType :
vRefNwn:
version:
fName :

END;

BOOLEAN;
BOOLEAN;
OSType ;
INTEGER;
INTEGER;
STRING [63] ;

This is a record structure. The first field, ".good", is a Boolean vari­
able that specifies if a file selection is to be made (OK button or [Return I
key is hit). The second field," .copy", is not used. The third field ," .FType",
is the file type of the selected file. The fourth field, ". vRefNum", is an
integer that specifies the particular disk to find the file on. The fifth field,
".version", is the version number of the Operating System associated with
the disk. This should be zero for now. The sixth field, " .fName", is the file
name.

The "OpenFile" procedure has one subprocedure, "FLCall", that
helps call disk routines. This subprocedure has one parameter, of type
"OSErr". If this parameter is not equal to "noErr", it displays an alert that
shows the error message and its identification number and causes a quick
exit from our "OpenFile" routine.

The "FLCall" subprocedure has only one Pascal statement, an IF..THEN
statement that calls our "SetErrMess" routine in the IF part to determine
if an error occurred. The THEN part is an "Exit" from the "OpenFile".

The "OpenFile" procedure begins by setting the zeroth entry of
"typeList" equal to "TEXT", which is the type of file we wish to find. It
then calls the Standard File Package's "SFGetFile" routine to select the
file to be opened. It displays a standard dialog that allows the user to
scroll through all files of the specified type(s) (see Figure 10-14).

The "SFGetFile" routine is not part of the ROM. It is part of the
software called the Standard File Package, stored as a resource in the
Operating System file called "System" (see Figure 10-13). In our program,
we simply call the routine "SFGetFile". However, the Macintosh performs
a rather complicated sequence of events in response to this call. The
beginning of the "SFGetFile" routine is in the external UNIT "Packintf".
This routine calls one of the Package Manager ROM routines ("Pack3") to
execute this resource. The "Pack3" routine gives access to all routines in
the Standard File Package. A special function selector number (in this
case, two) must be passed to "Pack3" to determine which routine in the
package is executed.

TEXT AND FILES 309

In addition to the Standard File Package, the following packages are
available: the International Utilities Package, the Disk Initialization Pack­
age, the Floating Point Package, the Transcendental Functions Package,
and the Binary-Decimal Conversion Package. Each package is called by a
different "Pack" routine.

The "SFGetFile" routine expects seven parameters. The first param­
eter is a point that determines where the upper left corner of the dialog
window appears. In our program, we pass the global point "where", which
we set in our "SetLimits" procedure.

The second parameter, a string, is ignored. In earlier versions of the
Macintosh, it served as a prompt in the dialog, but it is no longer used. It
is retained for compatibility. In our program, we pass the string "Open
text file:".

The third parameter is a procedure pointer to a filter procedure to
help determine which files are displayed in the dialog for the file selection
process. In our program, we pass NIL to indicate no filter.

The fourth parameter is an integer that specifies how many types we
are looking for. If this parameter is set equal to minus one, then it looks
for all types in our dialog. In our program, we pass a value of one to
indicate just one type of file. The fifth parameter is a file type list. In our
program, we pass the type list just initialized.

The sixth parameter is a procedure pointer to a filter procedure for
dialog. In our program, we pass NIL to indicate no special filter. The
seventh parameter is a reply record of type "SFReply", discussed previ­
ously. In our program, we place "reply" here to receive our responses from
this dialog.

If the ".good" field of "reply" is true, indicating that a valid file
selection was made in the dialog, we attempt to get the text from the file.

Figure 10-13. The Standard File Package

310 HIDDEN POWERS OF THE MACINTOSH

We start by calling our "NewTextWindow" to set up a new text window.
Then we call a series of File Manager routines to open, read from, then
close the selected file. In each case, we call our ''FLCall'' routine, passing
it the expression consisting of the particular file routine. This causes the
error code generated by that file routine to be passed to the "FLCall"
routine, which in turn passes it to our "SetErrMess" procedure. If there
is no error, the file routine is executed without further ado.

Let's look at each file routine in detail. The routine "FSOpen" at­
tempts to open a file. If it is successful, it makes the file "active", setting
up the file so that it can be read or written to. The "FSOpen" routine
expects three parameters: a file name, a volume reference number, and a
file reference number that is passed by reference as a returned value. It
returns the error code as a function return value. The file reference number
is used for subsequent calls to the opened file.

The routine "GetEOF" returns the number of bytes in the file. It
expects two parameters: an integer that is a file reference number, and a
long integer that returns (by reference) the number of valid bytes in the
file. In our case, we place the long integer variable "charCount" in the
second parameter. We assign this value to the ". TELength" field of our
text record and use it to assign the size of the data accessed by the text
handle field" .hText". We also pass it to the "FSRead" routine to determine
how many bytes to read from the file.

The "FSRead" routine reads a specified number of bytes from a file
and places them at a specified location in memory. It expects three param­
eters: an integer that holds the file reference number, a long integer that
specifies the number of bytes to read, and a pointer that points to where
the file bytes should be stored. The second parameter is passed by refer­
ence. If the routine is unable to read the entire amount specified in this
parameter, then, upon return, this parameter contains the actual number
of bytes read.

The last step in accessing the file is to close it with the "FSClose"
routine. The "FSClose" routine expects one parameter, which is an integer
containing the file's reference number.

If any of these calls fail, the "OpenFile" procedure aborts. If all are
successful, then we get to the last part of the routine, where we call
"TECalText" to calculate all positions of the "line starts" of the text.
Recall that these are the positions within the block of text that correspond
to the beginnings of lines as they are displayed on the screen. We then
update the file name in "FName" and the volume reference number in
"VRefNum". Previously, these were held in the respective fields of "reply".
Finally, we update the file state Boolean variables "present", "titled", and
''modified'', setting the first two to true and the last to false.

TEXT AND FILES 311

Save File Command

The "SaveFile" procedure implements the "Save" command of the File
menu. Its local variable, "charCount", is a long integer that temporarily
stores the number of bytes in the file. It attempts to open the current file,
write the entire text to it, then close it.

The "SaveFile" procedure also has a local "FLCall" routine to handle
errors. This is identical to the previous "FLCall" routine, except that the
target of the "Exit" is now our "SaveFile" procedure.

The procedure assigns the length of the file (as stored in the ".TE­
Length" field of the edit record) to the local variable "charCount". It then
makes a series of calls to the File Manager to open, write, and close the
file. Again, we use our "FLCall" procedure to intercept possible errors
generated by each call to the File Manager.

We have studied the File Manager routines to open and close files.
Let's now look at the routine "FSWrite" to write data to files. The "FSWrite"
routine expects three parameters: an integer that specifies the reference
number of the file, a long integer passed by reference that specifies the
number of bytes to write, and a pointer to the area of memory from which
the bytes are taken.

The routine finishes by setting the Boolean variable "modified" equal
to false.

Save As File Command

The "SaveAsFile" procedure implements the "Save As ... " command of
the File menu. It has three local variables: "charCount" is a long integer
that stores the number of bytes in the file, "reply" is of type "SFReply"
and holds the results from the Package Manager's standard file selection
routine, and "theErr" is of type "OSErr" and temporarily stores the error
code.

Our procedure has one subprocedure, "FLCall ", to handle errors. It
is similar to the "FLCall" subprocedures of the "OpenFile" and "SaveFile"
procedures discussed earlier. Again, the difference is that the target of
the "Exit" is the current procedure, "SaveAsFile".

The "SaveAsFile" procedure calls the routine "SFPutFile", which
uses a dialog to get a specified file from the user. The "SFPutFile" is part
of the Standard File Package.

This "SFPutFile" routine expects five parameters. The first parameter
is a point that determines where the upper left corner is placed. The
second parameter is a string that is displayed as a prompt in the dialog.
The third parameter is a default file name that appears in the editable text

312 HIDDEN POWERS OF THE MACINTOSH

box when the dialog appears. The fourth parameter is a procedure pointer
to a filter procedure for the dialog. The fifth parameter is a reply record of
type "SFReply".

In our program, we pass the global point "where" as the first param­
eter, the string "Save text as:" as the second parameter, "fName" (the
current name of the file) as the third parameter, NIL as the fourth parameter
(no filter), and "reply" as the fifth parameter.

If the ".good" field of the "reply" record is true, indicating that a
valid file is selected, we attempt to save the file. The file may not exist or
it may differ from the current file, so the rules for saving the file are
different. First, call "FSOpen" to find out whether the file exists or needs
to be created. The error code indicates that the file does not yet exist, so
we call "FCreate" to create it and "FSOpen" to open it. If the file already
exists, we pass the error code to our local "FLCall" procedure. We then
proceed to write the bytes to the file and close it as before. We use "FLCall"
to catch any errors from each File Manager routine.

Once the file is properly saved, we load the new file name and volume
reference number into the variables "fName" and "vRefNum", which hold
the current values of these quantities. Notice that we use the values of
these quantities obtained from "reply" to open our file. Thus, if the file
saving is unsuccessful, the original file name and volume reference num­
ber remain.

We also load the new file name as the new window title and set the
Boolean variable "titled" equal to true and the Boolean variable "modi­
fied'' equal to false.

This file activity and this last updating activity are performed if the
reply is good. We indent the entire section of code to indicate that it
belongs in the THEN clause for "IF reply.good".

Close File Command

The "CloseFile" procedure implements the "Close" command of the File
menu. It tries to save the file if it is modified, then disposes of the text
record and hides the text window.

"CloseFile" resides at a higher level than previous file commands;
that is, it calls them to save any files.

The procedure first checks "modified". If "modified" is true, then it
calls a "caution" alert to see if the user wants to save the file or cancel

TEXT AND FILES 313

the "Close" command (see Figure 10-14). T he caution alert is defined in
the resource definition file as follows:

Type ALRT
,1004
100 70 200 440
1004
7654

Type DITL
'1004
4

Btnltem Enabled
70 10 90 60

Yes

Btnrtem Enabled
70 130 90 180

Cancel

Figure 10-14. File Save Caution Alert

Saue the Changes?

314 HIDDEN POWERS OF THE M ACINTOSH

No

Btnltem Enabled
70 70 90 120

StatText Disabled
10 150 50 360

Save the Changes?

If the user wants to save the file, we check "titled" to see if we should
use "SaveFile" or "SaveAsFile" to save it. If the user presses the cancel
button, we "Exit" the "CloseFile" command.

After these preliminaries, we call "Hide Window" to make the window
disappear and "TEDispose" to dispose of the text edit record, then set
the Boolean variables "present" and "titled" to false.

Quit Command

The "QuitFile" procedure implements the " Quit" command of the File
menu. It causes the program to terminate. However, it first tries to close
the file , terminating only if the file successfully closes.

This procedure is actually a level above the "CloseFile" routine. It
checks the Boolean variable "present" for a text window. If "present"
indicates a text window, it calls "CloseFile" to attempt to close it. Then
it sets "done" equal to "NOT present" so that the program terminates if
"CloseFile" is successful or if there is no window to close.

Higher Level Initialization
The procedure "SetUpSys" performs all program initialization. It is ca lled
from the main program.

The "SetUpSys" procedure calls the standard initialization routines
for each manager. It calls the "SetLimits", "SetUpWindows", "SetUp­
Menus", and "NewFile" procedures. We then initialize the cursor and set
the global Boolean variable " done" equal to false.

Higher Level Updating
The procedure "UpdateSys" performs all updating in the main REPEAT
loop.

It calls "SystemTask", which allows active desk accessories to update
themselves. It then calls our "UpdateFState" routine to update the enable/
disable state of the file menu items.

TEXT A ND FILES 315

If "present" is true, it updates the text by ca lling "TEidle" to allow
the text caret to blink. The caret blinks at a fixed rate if th is "idle" routine
is called often enough. We also call our " UpdateScroll " routine if "pres­
ent" is true. This updates the vertical scroll bar limit according to the
current size of the text.

Implementing Menus
The next procedures implement our four menus. Except for the Apple
menu, which involves desk accessories , they have a standard CASE struc­
ture: the routine that implements each menu item fall s under each case.
The procedure "DoAppleMenu" is nearly identical to the procedure of
the same name in the example program for menus in Chapter 9.

For completeness, here are the resource definitions associa ted with
the "About. .. " a lert:

Type ALRT
' 1001
100 70 200 450
1001
4444

Type DITL
, 1001

OK

3

Btnltem Enabled
70 10 90 100

StatText Disabled
10 10 30 370

FileDemo, a demonstration program for text and files

StatText Disabled
30 10 50 360

Christopher L. Morgan , 1985

Following these menu routi nes is a master menu selection routine.

File Menu

The procedure "DoFileMenu " implements the File menu. It has one pa­
rameter, an integer that specifies the menu item number. It consists of a
CASE statement OF the item number parameter. The cases list the imple-

316 HIDDEN POWERS OF THE MACINTOSH

mentation procedures "NewFile", "OpenFile", "CloseFile", "SaveFile",
"SaveAsFile", and "QuitFile". Notice that we skip item six because it is
a disabled dashed line that separates "Quit" from the rest.

A real application would also have items in this menu to control the
printing of files, but that is a more advanced topic not covered here.

Edit Menu

The procedure "DoEditMenu" implements the Edit menu. It has one
parameter, the integer "theltem ", which specifies the menu item number.

Our editing menu has only three commands: "Cut", "Copy", and
"Paste". Many edit menus have more items. The standard menu has an
"Undo" item, a unused item, then "Cut", "Copy", "Paste", and finally
"Clear". This places our commands in the third, fourth, and fifth positions.

Now let's examine the procedure. It passes the editing command to a
routine called "SystemEdit", which in turn passes editing commands to
desk accessories. We add one to "theltem" to bring the "Cut", "Copy",
and "Paste" command codes to two, three, and four (the standard posi­
tions starting the count from zero) before passing "theltem" to the
"SystemEdit" routine.

If "SystemEdit" does not treat the edit command as an action on a
desk accessory, it returns a value of false. In this case, we set the grafPort
to the text window, set the Boolean variable "modified" equal to true if
the item is "Cut" or "Paste", and execute a CASE statement to perform
the appropriate "Cut", "Copy", or "Paste" command on the text window:
Editing desk accessories and editing the text in the window are indepen­
dent operations. The choice is determined by which window is currently
selected.

Selecting Menus
The procedure ''SelectMenu'' is a general menu selection procedure called
from the main event loop. It provides the proper structure for transmitting
the selection information to the procedures that implement the various
menus.

The "SelectMenu" procedure has one parameter, a long integer that
contains both the menu and menu item selection information. The upper
word is an integer that contains the resource identification number of the
menus; the lower word is an integer that contains the item number of the
item within that menu.

The procedure consists essentially of a CASE statement driven by the
upper word of the selection information that selects the particular menu.

TEXT AND FILES 317

Each case in this CASE statement is a call to a procedure to handle the
corresponding menu. These are "DoAppleMenu", "DoFileMenu", and
"DoEditMenu", discussed previously. In each case, we pass the lower
word (containing the item number) of the selection information to the
individual menu procedure.

After the CASE statement, we call "HiliteMenu" to unhighlight the
selected menu.

Dragging Windows
"WindowDrag" is a procedure called from the main event loop to handle
the dragging of windows. It has one parameter, a point that specifies where
the mouse cursor is when the mouse button is pressed.

The "WindowDrag" procedure calls the Window Manager's
"DragWindow" procedure, passing the appropriate parameters to it. It
makes the main event loop appear more compact and readable.

Scroll Action
The procedure "ScrAction" is an action procedure for scrolling. Action
procedures were introduced in Chapter 6.

The procedure has two parameters: a control handle to specify a
particular control and a part code to specify a particular part of that
control. It has four local variables. It has two integers: "pageSize" specifies
the number of text lines in the currently sized text window, and "delta"
specifies how many lines to scroll. The procedure also has two points,
"S" and "dS", which hold the amounts to be scrolled as they are computed.

The procedure first computes "pageSize" by dividing the height of
the view rectangle by the height of a line of text. It uses information in
the text record "theTE". Next, it executes a CASE statement to find which
buttonlike part of the scroll bar is selected. For the up and down buttons,
we select a value of minus and plus one; for the up and down page
selectors, we select minus or plus the "pageSize". The appropriate value
is placed in "delta". If none of these cases is selected, we immediately
exit.

Once the raw amount to scroll is selected, we use the scroll control
to determine the actual amount to scroll. This clips values that are beyond
the scrolling limits. We temporarily store the current scroll value in "S",
use "delta" to update the scroll value, then place the difference between
the original value and the new value in dS. We pass dS times the line
height to the scrolling routine "TEScroll ". Because we store the number

318 HIDDEN POWERS OF THE MACINTOSH

of text lines (not the number of pixels) in the scroll control, we always
scroll by a whole number of lines.

The Text Edit scroll routine, "TEScroll ", expects three parameters:
the horizontal amount to scroll, the vertica l amount to scroll , and a handle
to the text edit record. In our program, we pass zero for the hori zontal
scrolling amount and "theTE" for the text edit hand le.

Controlling the Window
The procedure " WindowControl " is called from the main event loop to
handle mouse events that occur within a window's content area, including
its scroll bars.

Two main cases ari se: the selected window is in front (selected or
highlighted window) or it is not. If the selected window is in front, we
must transform the mouse point to local coordinates and look at two
cases: the mouse point is in the text viewing area or is not (see Figure
10-15). If the mouse point fall s within the text viewing area, we call Text
Edit's "TEClick" routine to allow text selection.

Figure 10-15. Where's the Mouse?

• File Edi

-~~--
- - - - ----- --

TEXT A ND FILES 319

The "TEClick" procedure has three parameters: a point that specifies
the mouse position, a Boolean that specifies if we are in the extended
mode (the shift key is down during selection), and a handle to the text
record. In this program, we use the "BitTst" routine to test the shift key
bit in the ".modifier" field of the event record.

If the mouse point is not in the text viewing area, we call "Find­
Control" to find a control that it might be in. In particular, we want to
see if it is in the vertical scroll control bar. The basic structure of this
section is explained in Chapter 6.

If the mouse point is not in the front window, we call ''Select Window''
and a couple of other routines to make it the front window, as in Chapter 7.

Growing Windows
The procedure "WindowGrow" is called from the main event loop to resize
the window when the grow icon is selected. It is much the same as the
"WindowGrow" procedure introduced in Chapter 6. However, it resizes
one window (our text window) with only one scroll control (the vertical
scroll bar). To simplify programming, it causes the entire port rectangle
to update each time the window is resized. It also resizes the viewing
area according to the new window size. The viewing area is slightly
indented within the center of the window (see Figure 10-16).

Handling Key Events
The procedure "KeyEvent" is called from the main event loop to handle
keyboard events. It has one parameter, of type CHAR, that specifies which
key was hit.

The "Key Event" procedure checks to see if the command key is down.
We use the "BitTst" routine to test bit seven (from the left) of the" .mod­
ifiers" field of the event record.

If the command key is down, we call the Menu Manager's "MenuKey"
to map the key into menu selection information, then our "SelectMenu"
routine to handle the selection. In our program, this takes care of the
command key alternatives: "Q" for "Quit", "X" for "Cut", "C" for "Copy",
and "V" for "Paste".

If the command key is not selected, we see if the text window is the
front window and the text record is open. If these are both true, then we
call Text Edit's "TEKey" to insert the key character into the text and
display the newly modified text on the screen. We also set the Boolean
variable "modified" equal to true to indicate that the text has been modified.

320 HIDDEN POWERS OF THE MACINTOSH

At this point in the program, you can add code to provide automatic
scrolling as the text caret s lips below the viewing area of the text window.
This code must compute the lines in the window using the size of the
window and the size and vertical separation of the text. Then it must
compare the line starts with the selection range to determine where the
caret is in relation to the page. Finally, it must ca ll for the proper amount
of scrolling to keep the caret within the window.

Updating Windows
The procedure "WindowUpdate" is called from the main event loop to
update a window in response to an update event. It works much the same
as in previous chapters, except that we call Text Edit's "TEUpdate" to
update the text between the "BeginUpdate" and "EndUpdate" routines.
However, we call il only if the window that we are updating is the text
window and the text record is open .

The "TEUpdate" routine expects two parameters: a rectangle that
specifies where we need to update, and a handle to the text record. In our

Figure 10-16. The Text Viewing Area (in black)

• File Edit

TEXT AND FILES 321

program, we pass the region boundary box of the visible region of the
window as the update rectangle, and we pass "theTE" as the text handle.

Activating Windows
The procedure "WindowActivate" is called from the main event loop in
response to an activate event. It first calls our "WindowUpdate" routine,
then calls "TEActivate" to activate or "TEDeActivate" to deactivate the
text, depending on the lowest order bit of the" .modifiers" field of the event
record. This bit specifies whether the activate event indicates activation
or a deactivation.

The Main Program
The main program is a generic event loop with an initialization section
(see Figure 10-17). Each major part of this structure is encapsulated in a
procedure assigned to perform a specific function in relation to the event
loop. Many useful applications programs have this basic structure and
could use this same main program.

The first step of the main program is a call to ''Set UpSys'' which
performs the entire initialization of the program. Our procedure "Set­
UpSys" intializes a number of different managers and sets up our menus
and main window as well as some global limits, such as the drag and size
limits.

Figure 10-17. Event Loop with Initialization

Event Joop

322 HIDDEN POWERS OF THE MACINTOSH

Next, the main REPEAT .. UNTIL loop begins with a call to "UpdateSys".
This is a different initialization procedure, done each time through the
loop. Thus, we call it an update routine. In our program, "UpdateSys"
allows such actions as a slice of background task for the desk accessories,
the blinking of the text caret, updating scrolling limits, and updating the
enable/disable state of the File menu.

After the update procedure, we call "GetNextEvent" in an IF.. THEN
statement. Within the THEN clause, we have a CASE statement driven by
the'' .what'' field of the event record. The cases under this CASE statement
form a list of the kinds of events tracked by our program. In this program,
we track mouse down, key down, auto key, update, and activate.

Within mouse down, we have a CASE statement that sorts where the
mouse was when its button was pressed. The cases are in the menu bar,
in a system window such as a desk accessory, in the drag region of a
window, in the contents region of a window, and in the grow region of a
window. In each case, we call a routine to perform a particular action on
whichever window is there.

Files and text are not manifested directly in the main program; yet
they affect many of the procedures that are called by the main program.
This applies particularly to text. That is, the text routines of Text Edit act
like a number of fingers that must be inserted in just the right places to
make a piece of machinery (our program) work properly (see Figure
10-18).

Figure 10-18. Text Edit's "Figures"

Text

SetUpSystem

SelectMenu

WindowGrow

Wi ndowUpdate

Window Activate

TEXT AND FILES 323

In the case of files, the initialization procedure "SetUpSys" must
initialize the File and Information menus and some file variables, the
update procedure "UpdateSys" must update the File menu, and the menu
select procedure "SelectMenu" must list the File and Information menus.

In the case of text, much more is required. Almost every procedure
called from the main program must perform a vital text task. For example,
text is initialized in "SetUpSys", sized in "UpdateSys", edited and loaded
and saved into files within "SelectMenu", scrolled within "Window­
Control", activated in window resizing in "WindowGrow", edited within
"KeyEvent", and redrawn within "WindowUpdate" and "Window­
Activate". This makes programming text especially difficult, because of
the interrelationship of statements that are scattered throughout the program.

Summary
In this chapter, we have studied files and text. We have seen how they can
be programmed into useful applications, such as a text editor or a file
utility. We have seen how they relate to each other and to the basic structure
of an event-driven applications program.

The following ROM routines are covered in this chapter:

ROM Routines

MN-Enableltem

MN-Disableltem

CM-SetCtlMax

PK -GetlndStr

PK-NumToString

DL-ParamText

TE-TENew

WM-SetWTitle

PK -SFGetFile

FL-FSOpen

FL-GetEOF

MM-SetHandleSize

FL-FSRead

FL-FSClose

TE-TECalText

324 HIDDEN POWERS OF THE MACINTOSH

FL-FSWrite

PK-SFPutFile

FL-Create

TE-TEDispose

FL-Get Vlnfo

FL-Eject

FL-GetFinfo

FL-SetFinfo

TE-TEidle

DS-SystemEdit

TE-TECut

TE-TECopy

TE-TEPaste

TE-TEScroll

TE-TEClick

TU-BitTst

TE-TEKey

TE-TEUpdate

TE-TEActivate

TE-TEDeactivate

TEXT AND FILES 325

A
ROM Routines
Sorted by Name

326

Appendix A contains a table of the ROM routines sorted by name in
alphabetical order. The first column contains the instruction number (see
Chapter 2) , the second column contains the address in ROM or RAM
where that routine is currently located, the third column contains the
name of the routine, and the fourth column contains the manager to which
it belongs and the page number in the edition of Inside the Apple Mac­
intosh (Cupertino: Apple Computer, Inc., 1985) used during the develop­
ment process.

If you type this list into your computer, update the last column to
match your edition of Inside the Apple Macintosh. You then can sort it by
columns and print out these sorted listings for your own reference.

The first few entries are instruction numbers that are not used and
therefore have no names.

A list of Apple's abbreviations for the various managers is included.

Table A-1. List of Abbreviations

Abbreviation

CM
OL
OS
ov
EM

Manager

Control Manager
Dialog Manager
Desk Manager
Device Manager
Event Manager

Number

060
oaF
095
09F
OB5
OD7
OF7
OFD
152
153
16D
178
184
1C3
1C4
1C5
1F8
1FF

04E
07E

Abbreviation

FL
MM
MN
ou
PK
QD
RM
SL
SM
TE
TU
VR
WM

Address

40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594
40 0594

40 174A
40 5BB4

Table A-2.

Name

AddDrive
AddPt

Manager

File Manager
Memory Manager
Menu Manager
Operating System Utilities
Package Manager
QuickDraw
Resource Manager
Segment Loader
Scrap Manager
Text Edit
Toolbox Utilities
Vertical Retrace Manager
Window Manager

List of Routines

Module

OS3.2-52
QD-65

ROM ROUTINES SORTED BY NAME 327

Number Address Name Module

lAC 40 E21C AddReference RM-26
140 40 0072 AddResMenu MN-16
lAB 40 E14A Add Resource RM-25
185 40 E4B8 Alert OL-23
010 00 2180 Allocate FL-21,FL-44
OC4 40 89CC AngleFromSlope
133 40 CEE8 AppendMenu MN-17
063 40 5486 BackColor Q0-46
07C 40 5BAO BackPat Q0-39
122 40 C2EE Begin Update WM-32
058 40 53B4 BitAnd TU-08
05F 40 541A BitClr TU-07
05A 40 53CA BitNot TU-08
05B 40 5302 BitOr TU-08
05E 40 5408 BitSet TU-07
05C 40 530C BitShift TU-08
050 40 53F2 BitTst TU-07
059 40 53BE BitXor TU-08
02E 00 26BO BlockMove MM-47
120 40C1FA BringToFront WM-25
174 40 B6AC Button EM-19
148 00 27FO CalcMenuSize MN-26
109 40 B8F6 Calc Vis WM-36
lOA 40 B94E Calc VisBehind WM-37
188 40 E4B4 CautionAlert DL-24
1F3 404COC Chain SL-06
lAA 00 2226 ChangedResOata RM-24
080 40 5E2C Char Width QD-44
145 40COA6 Check! tern MN-23
111 40 BBA4 Check Update WM-35
134 40C7AO ClearMenuBar MN-19
lOB 40 B992 ClipAbove WM-31
07B 405B8A ClipRect QD-38
001 40 138A Close FL-22 ,FL-45 ,OV -07 ,OV -14
1B7 40 F1F4 CloseDeskAcc DS-07
182 40E7BO CloseDialog OL-21
OF4 40A69C ClosePicture Q0-62
ace 40 8B94 ClosePoly Q0-63
070 40 59E2 ClosePort Q0-36
19A 00 2376 CloseResFile RM-16
OOB 408EEA CloseRgn Q0-56
120 00 21A2 Close Window WM-22

328 HIDDEN POWERS OF THE MACINTOSH

Number Address Name Module

03C 40 4EOE CmpString OU-12
064 40 548C Color Bit QD-46
04C 40 2BAO CompactMem MM-39
004 oo 291C Control DV-08,DV-17
OEC 40 9BA4 Copy Bits QD-60
ODC 40 8F42 CopyRgn QD-55
189 40 E84A Could Alert DL-25
179 00 23DA CouldDialog DL-23
150 40 D142 CountMitems MN-26
19C 40 DAE8 CountResources RM-19
19E 40 DB40 CountTypes RM-18
008 40 3FBC Create FL-18,FL-37
1B1 40 D876 Create Res File RM-16
194 40 E096 Cur Res File RM-18
1C7 40 FF96 Date2Secs OU-15
03B 404DFC Delay OU-22
009 40 408E Delete FL-24,FL-51
136 40C84E DeleteMenu MN-18
14F 40 BF80 DeltaPoint
16E 40 OB44 Dequeue OU-19
192 40 E018 DetachResource RM-22
180 40E6DE DialogSelect DL-21
OE6 40 913C DiffRgn QD-57
13A 40C9AC Disableltem MN-22
155 40D2A6 DisposControl CM-16
183 40 E81E DisposDialog DL-23
023 40 2CC8 DisposHandle MM-31
01F 40 2C6A DisposPtr MM-35
OD9 '40 8EA6 DisposRgn QD-54
114 00 21AA Dispos Window WM-23
132 40CCD2 DisposeMenu MN-16
167 40 D4B2 DragControl CM-21
105 40 C424 DragGrayRgn WM-33
126 40 C430 DragTheRgn TU-07 (WM-30 called DragGreyRgn)
125 40C36A Drag Window WM-28
083 40 5DEC DrawChar QD-44
169 40 D648 DrawControls CM-18
181 40E79A Draw Dialog DL-23
104 40 C746 DrawGrowlcon WM-26
137 00 258C DrawMenuBar MN-18
10F 40BAFC Draw New WM-36
OF6 40 A6E8 Draw Picture QD-62

ROM ROUTINES SORTED BY NAME 329

Number Address Name Module

084 40 5DFE DrawString QD-44
085 40 5E12 Draw Text QD-44
03D 40 14A6 Drvrlnstall
03E 40 14F4 DrvrRemove
017 00 20FA Eject FL-17 ,FL-36
02B 402DOA Empty Handle MM-41
OAE 40 7160 EmptyRect QD-48
OE2 40 90EO EmptyRgn QD-58
139 40 C990 Enableltem MN-23
123 40 C328 End Update WM-32
16F 40 OB20 Enqueue OU-19
081 40 5BFA EqualPt QD-65
OA6 40 7146 EqualRect QD-48
OE3 40 90FO EqualRgn QD-58
oco 40 8038 Erase Arc QD-53
OB9 40 7E2C EraseOval QD-50
OC8 40 8B3A Erase Poly QD-65
OA3 00 1E8A Eras eRect QD-49
OD4 408DAE EraseRgn QD-59
OB2 40 7D52 EraseRoundRect QD-51
18C 40E8F6 Error Sound DL-18
171 40 B75E EventAvail EM-18
1F4 00 205C ExitToShell SL-07
101 00 25B6 FMSwapFont FM-11
OC2 40 8044 Fill Arc QD-54
OBB 40 7E38 Fill Oval QD-50
OCA 40 8B46 Fill Poly QD-65
OA5 40 6FFO FillRect QD-49
OD6 408DBA FillRgn QD-59
OB4 40 7D5E FillRoundRect QD-52
16C 40D6B6 Find Control CM-19
12C 40C6C4 Find Window WM-26
068 40 57DC FixMul TU-04
069 00 25CO FixRatio TU-04
06C 40 5854 FixRound TU-04
14C 00 2670 FlashMenuBar MN-26
032 40 389A FlushEvents EM-19,0SEM-04
045 40 4796 FlushFile FL-45
013 40 3C94 Flush Vol FL-17 ,FL-34
062 40 5480 ForeColor QD-45
OBE 40 802C Frame Arc QD-52
OB7 40 7E20 FrameOval QD-50

330 HIDDEN POWERS OF THE MACINTOSH

Number Address Name Module

OC6 40 8B2E Frame Poly QD-64
OA1 40 6FD8 FrameRect QD-49
OD2 40 80A2 FrameRgn Q0-58
OBO 40 7046 FrameRoundRect QD-51
18A 40 E88E Free Alert DL-25
17A 00 2406 FreeOialog DL-23
01C 40 2BEO FreeMem MM-38
124 00 25F8 Front Window WM-26
1F5 40 4030 GetAppParms SL-06,ST-09
15A 40 0350 GetCRefCon CM-25
15E 4003CA GetCTitle CM-19
07A 40 5B76 GetClip Q0-38
16A 40036E GetCtlAction CM-24
160 40 0424 GetCtlValue CM-23
1B9 40 F228 Get Cursor TU-09
180 40 E8FE GetOitem DL-26
011 40 483E GetEOF FL-20,FL-43
OFF 40 B5B2 GetFName FM-10
100 40 B5FO GetFNum FM-10
018 40 448C GetFPos FL-20,FL-42
ooc 40 4390 GetFilelnfo FL-22,FL-46
08B 40 600E GetFontlnfo Q0-45
025 00 2710 GetHandleSize MM-31
190 40 E972 GetiText DL-27
1BB 40 F238 Getlcon TU-07
190 40 OB24 GetlndResource RM-19
19F 400B88 GetlndType RM-18
146 40 CE46 Getltem MN-22
13F 40CD8E Getltmlcon MN-24
143 40C09E GetltmMark MN-25
141 40 CD96 GetltmStyle MN-24
176 40 B690 GetKeys EM-20
149 40 D004 GetMHandle MN-26
162 40 0436 GetMaxCtl CM-23
13B 40CCAE GetMenuBar MN-19
161 40 0432 GetMinCtl CM-23
172 40 B702 GetMouse EM-19
1A1 40DCOC GetNamedResource RM-20
1BE 40 F29E GetNewControl CM-18
17C 40 E5D4 GetNewDialog DL-21
1CO 40 F32E GetNewMBar MM-19
1BD 40 F248 GetNewWindow WM-22

ROM ROUTINES SORTED BY NAME 331

Number Address Name Module

170 DO 241E GetNextEvent EM-17
031 40 387C GetOSEvent OSEM-04
1B8 40 F20E GetPattern TU-09
09A 40 68A8 GetPen QD-40
098 40 6882 GetPenState QD-41
lBC 40 F240 GetPicture TU-10
065 40 564A GetPixel QD-68
074 40 5AA4 GetPort QD-36
021 40 2C74 GetPtrSize MM-36
lBF 40 F2EE GetRMenu MM-16
1A6 40 E09E GetResAttrs RM-22
1F6 40D8EA GetResFileAttr RM-29
1A8 40 EODC GetReslnfo RM-22
lAO 40 DBE2 GetResource RM-20
lFD 40 FDDC GetScrap SM-12
lBA 40 F230 Get String TU-04
046 40 108E GetTrapAddress OU-21
014 40 3E40 Get Vol FL-16 .FL-3 3
007 40 3E74 GetVollnfo FL-16,FL-32
110 40 BB9A GetWMgrPort WM-21
117 40 BEEO GetWRefCon WM-33
119 40 BFOA GetWTitle WM-23
12F 40 BF04 Get Window Pic WM-33
OtA 40 2B92 GetZone MM-29
071 40 5A74 Global To Local QD-66
072 40 5A94 Graffievice QD-36
12B 40C5BE Grow Window WM-29
029 40 2044 HLock MM-42
04A 40 2D68 HNoPurge MM-43
049 40 2D5C HPurge MM-43
02A 40 2D50 HUnlock MM-42
1E4 40 EF16 HandAndHand OU-11
lEt 00 2694 Hand To Hand OU-09
026 40 2CF6 HandleZone MM-33
06A 40 5840 Hi Word TU-06
158 40 D2F8 Hi deControl CM-17
052 40 5366 HideCursor QD-39
096 40 686E Hide Pen QD-40
116 40 BEB6 Hide Window WM-23
15D 40 D39E Hili teControl CM-18
138 40 C966 HiliteMenu MN-21
11C 40COD2 HiliteWindow WM-25

332 HIDDEN POWERS OF THE MACINTOSH

Number Address Name Module

1A4 40 E080 HomeResFile RM-18
1F9 40 FCE2 Info Scrap SM-10
1E6 00 262A InitAllPacks PK-05
02C 00 201A InitApplZone MM-25
050 40 533A InitCursor QD-39
17B 40 E440 InitDialogs DL-18
OFE 00 2598 InitFonts FM-09
06E 00 2566 InitGraf QD-34
130 40 C764 InitMenus MN-15
1E5 40 FE82 InitPack PK-05
06D 40 5962 InitPort QD-35
016 40 39AO InitQueue FL-31
195 40 D744 Ini tResources RM-15
03F 40 4F5A InitUtil OU-17
112 00 2578 InitWindows WM-20
019 00 285C InitZone MM-27
135 40C7AC InsertMenu MN-18
151 40 D07A InsertResMenu MN-18
OA9 00 2554 InsetRect QD-47
OE1 40 903A InsetRgn QD-57
128 40 C598 InvalRect WM-31
127 40 C558 InvalRgn WM-32
OD5 40 8DB4 InverRgn QD-59
OC1 40 803E lnvertArc QD-54
OBA 40 7E32 Invert Oval QD-50
OC9 40 8B40 lnvertPoly QD-65
OA4 406FEA InvertRect QD-49
OB3 40 7D58 lnvertRoundRect QD-52
17F 40E6A4 IsDialogEvent DL-20
156 40D2C8 Kill Controls CM-17
006 401468 KilliO DV-10,DV-18
OF5 40A6E4 KillPicture QD-62
OCD 40 8C02 KillPoly QD-63
1F2 40 4C12 Launch SL-07
092 40 67BE Line QD-42
091 40 67A8 Line To QD-42
06B 40 584A LoWord TU-06
1A2 40DFCA LoadResource RM-20
1FO 404B44 LoadSeg SL-08
070 40 5A54 Local ToG lobal QD-66
1FB 40 FD66 LodeS crap SM-11
067 40 5776 LongMul TU-07

ROM ROUTINES SORTED BY NAME 333

Number Address Name Module

OFC 40 BC22 Map Poly QD-70
OF9 40 BlBE MapPt QD-69
OFA 40 BlFO MapRect QD-69
OFB 40 9396 MapRgn QD-69
OlD 40 2COB MaxMem MM-3B
13E 40CDBA MenuKey MN-21
130 40 C9E2 Menu Select MN-20
191 40 E71E ModalDialog DL-21
036 00 273C More Masters
OOF 00 20BA Mount Vol FL-31
094 40 67E2 Move QD-42
159 40 0312 MoveControl CM-21
077 40 5AEB Move Port QD-37
093 40 6706 Move To QD-42
llB 40BF9A Move Window WM-2B
lEO 00 2B06 Munger TU-05
154 40 D19A NewControl CM-15
170 40 E60C New Dialog DL-20
022 00 292C New Handle MM-30
131 40CE9E New Menu MN-15
OlE 40 2C4E NewPtr MM-35
ODB 40 BEB2 NewRgn QD-54
106 40 BB6B New String TU-04
113 40 BCEB New Window WM-21
1B7 40 E4BO NoteAlert DL-24
030 40 37F4 OSEventAvail OSEM-03
056 40 53BO ObscureCursor QD-40
035 00 20F4 Offline FL-35
OCE 40 BC06 OffsetPoly QD-63
DAB 40 717A OffsetRect QD-46
OEO 40 900B OffsetRgn QD-56
000 401262 Open FL-1B,FL-3B,DV-07,DV-14
1B6 40 FlAB OpenDeskAcc DS-07
OF3 40 A5EE OpenPicture QD-61
OCB 40 BB5E OpenPoly QD-62
06F 40 594A OpenPort QD-35
OOA 40 3F04 OpenRF FL-39
197 oo 21CA OpenResFile RM-16
ODA 40BEBA OpenRgn QD-55
1E7 40 FFOE PackO PK-04
1EB 40 FFlO Packl PK-04
1E9 40 FF12 Pack2 PK-04

334 HIDDEN POWERS OF THE MACINTOSH

Number Address Name Module

lEA 40 FF14 Pack3 PK-04
1E8 40 FF16 Pack4 PK-04
lEC 40 FF18 Packs PK-04
lED 40 FFlA Pack6 PK-04
lEE 40 FFlC Pack7 PK-04
OCF 40 9042 PackBits
08F 40 8032 PaintArc QD-53
100 40 8A62 Paint8ehind WM-36
lOC 40 8986 Paint One WM-36
OB8 40 7E26 PaintOval QD-50
OC7 40 8834 PaintPoly QD-64
OA2 40 6FDE PaintRect QD-49
003 40 8DA8 PaintRgn QD-59
OB1 40 7D4C PaintRoundRect QD-51
188 40E8D2 ParamText DL-25
09C 40 68C6 PenMode QD-41
09E 40 68EO PenNormal QD-42
090 40 68CC PenPat QD-42
098 40 68B8 PenSize QD-41
OF2 40A5D8 PicComment QD-62
14E 401006 PinRect WM-33,TU-07
14B 40 D15E Plotlcon TU-07
076 40 5AC8 PortSize QD-37
02F 40 377C PostEvent EM-18,0SEM-03
OAC 40 7280 Pt2Rect QD-47
OAD 40 7286 PtinRect QD-47
OE8 40 923E PtlnRgn QD-58
OC3 40 89FE PtToAngle QD-48
lEF 40 DFlA PtrAndHand OU-11
1E3 40 EEFC PtrToHand OU-10
1E2 40 EEF4 PtrToXHand OU-10
048 40 2C88 PtrZone MM-37
040 40 28C4 PurgeMem MM-40
lCA 40 0790 Putlcon
lFE 40 FE3A PutS crap SM-13
04F 404D4C RDrvrlnstall
061 40 542C Random QD-67
027 40 2D1A ReAllocHandle MM-34
002 00 1CB2 Read FL-19,FL-40,DV -08,DV -15
039 404DEA ReadDateTime OU-14
037 404DA8 ReadParm
102 40 865A Real Font FM-10

ROM ROUTINES SORTED BY NAME 335

Number Address Name Module

028 40 2CFE Recover Handle MM-33
OE9 40 929E RectlnRgn QD-58
ODF 40 8FFA RectRgn QD-55
1A3 40 E008 ReleaseResource RM-21
OOB 40 4122 Rename FL-23,FL-50
lAF 40 E334 Res Error RM-17
040 40 2BEA ResrvMem MM-39
lAE 40 E30C RmveReference RM-26
lAD 40 E288 RmveResource RM-26
196 40 D81A RsrcZonelnit RM-15
042 40 4274 RstFilLock FL-23,FL-48
lOE 40BACE SaveOld WM-36
OF8 40 B136 ScalePt QD-68
OEF 40 9C40 ScrollRect QD-59
1C6 40 FFlE Secs2Date OU-16
OAA 40 719E SectRect QD-47
OE4 40 9130 SectRgn QD-57
17E 40E9EC SeliText DL-27
11F 40C1CA Select Window WM-23
121 40 C298 SendBehind WM-25
057 40 2AE6 SetAppBase MM-26
02D 00 2728 SetA pplLimi t MM-28
15B 40 D35E SetCRefCon CM-24
15F 40 D3E2 SetCTitle CM-18
079 40 5B66 SetClip QD-38
16B 40 D372 SetCtlAction CM-24
163 40 D43A SetCtlValue CM-22
051 40 5348 SetCursor QD-39
18E 40 E93C SetDitem DL-26
03A 404DF4 SetDateTime OU-15
012 40 48CO SetEOF FL-21 ,FL-43
ODD 40 8F90 SetEmptyRgn QD-55
044 40 4490 SetFPos FL-20,FL-42
041 40 426A SetFilLOck FL-23,FL-48
043 40 423E SetFilType FL-49
OOD 40 429E SetFilelnfo FL-22,FL-47
103 00 27DA SetFontLock FM-10
04B 00 2876 SetGrowZone MM-44
024 40 2CE4 SetHandleSize MM-32
18F 40 E992 SetiText DL-27
147 40 D024 Setltem MN-22
140 40CD92 Setltmlcon MN-23

336 HIDDEN POWERS OF THE MACINTOSH

Number Address Name Module

144 40CDA2 SetltmMark MN-25
142 40CD9A SetltmStyle MN-24
14A 40 D068 SetMFlash MN-25
165 40 D480 SetMaxCtl CM-23
13C 40 CCC4 SetMenu8ar MN-19
164 40 D47C SetMinCtl CM-23
078 40 5818 SetOrigin QD-38
075 40 5A80 SetPBits QD-37
099 40 6886 SetPenState QD-41
073 40 5A9A SetPort QD-36
080 40 58FO SetPt QD-65
020 40 2C7E SetPtrSize MM-37
OA7 40 7138 SetRect QD-46
ODE 40 8F9C SetRectRgn QD-55
1A7 00 2254 SetResAttrs RM-24
1F7 40D8F4 SetResFileAttr RM-29
1A9 00 2274 SetReslnfo RM-23
198 40 DAEO SetResLoad RM-19
193 40DA88 SetResPurge RM-28
OEA 40 59FE SetStdProcs QD-71
107 40 8880 SetString TU-04
047 40 109C SetTrapAddress OU-21
015 40 3E2E Set Vol FL-16,FL-33
118 40 8EEE SetWRefCon WM-33
11A 40 BF22 SetWTitle WM-23
12E 40 8EFE SetWindowPic WM-33
01B 40 2898 SetZone :MM-29
055 40 536E Shield Cursor TU-10
157 40D2DA ShowControl CM-17
053 40 536A ShowCursor QD-39
108 40 885C Show Hide WM-24
097 40 6878 Show Pen QD-40
115 40 8E90 Show Window WN-21
15C 40 D376 SizeControl CM-23
1A5 00 21FC SizeResource RM-01
11D 40 C112 Size Window WM-30 •
08C 40 8830 SlopeFromAngle
08E 40 5DDE SpaceExtra QD-44
005 401444 Status DV -09,DV -17
08D 40 7F86 StdArc QD-72
OEB 40 9A1E StdBits QD-72
OF1 40A4DC StdComment QD-73

ROM ROUTINES SORTED BY NAME 337

Number Address Name Module

OEE 40 A544 StdGetPic QD-73
090 40 6710 StdLine QD-71
OB6 40 7076 StdOval QD-72
OC5 40 8A94 StdPoly QD-72
OFO 40 A568 StdPutPic QD-73
OAF 40 7C8A StdRRect QD-72
OAO 40 6F1C StdRect QD-72
OD1 40 8D18 StdRgn QD-72
082 40 5C06 StdText QD-71
OED 40 5EBE StdTxMeas QD-73
173 40 B718 Still Down EM-19
186 40E4AC Stop Alert DL-24
08C 40 5E46 String Width QD-45
066 40 5686 StuffHex QD-68
07F 40 5BD2 SubPt QD-65
1C8 00 2644 SysBeep OU-22
1C2 40 F17A SysEdit DS-08
1C9 40 0944 SysError
1B3 00 27C6 SystemClick DS-07
182 oo 25DC SystemEvent DS-09
1B5 40 F132 SystemMenu DS-10
1B4 40 FOBA System Task DS-08
108 40 FB1E TEActivate TE-18
1DO 40 F43C TECalText TE-19
1D4 40 F53E TEClick TE-17
1D5 40 F8BE TECopy TE-15
1D6 40 F8E2 TECut TE-15
1D9 40 FB40 TEDeacti vate TE-18
1D7 40 F8FO TEDelete TE-16
1CD 40 F3C2 TEDispose TE-14
1CB 40 F390 TEGetText TE-14
1DA 40 FB56 TEidle TE-18
1CC 40 F39C TEl nit TE-13
1DE 40FBEA TEinsert TE-16
1DC 40 FC18 TEKey TE-14
1D2 40 F4A2 TENew TE-13
1DB 40 FB80 TEPaste TE-15
1DD 40 FC56 TEScroll TE-19
1DF 40 FC94 TESetJust TE-17
1D1 40 F480 TESetSelect TE-17
1CF 40 F416 TESetText TE-14
1D3 40 F50A TEUpdate TE-18

338 HIDDEN POWERS OF THE MACINTOSH

Number Address Name Module

166 400484 TestControl CM-18
1CE 40 F3DA TextBox TE-19
088 40 5DC2 TextFace QD-43
087 40 5DBC TextFont QD-43
089 40 5DD2 TextMode QD-43
08A 40 5DD8 Text Size QD-43
086 40 5E5A Text Width QD-45
175 40 B6BE TickCount EM-22
168 40 D55A TrackControl CM-19
11E 40 C160 TrackGoAway WM-26
ODO 40 9DD8 UnPackBits
OAB 40 723C UnionRect QD-47
OE5 40 9136 UnionRgn QD-57
1C1 40DBA8 UniqueiD RM-22
1F1 404BBC UnloadSeg SL-06
1FA 40 FD32 UnlodeScrap SM-11
OOE 40 3C8A UnmountVol FL-17 ,FL-3 5
199 00 22A8 UpdateResFile RM-27
054 404E82 UprString OU-13
198 40 D8E2 UseResFile RM-18
033 00 2774 Vlnstall VR-06
034 00 2752 VRemove VR-06
12A 40C5BA ValidRect WM-32
129 40C5B6 ValidRgn WM-32
177 40 B740 WaitMouseUp EM-20
003 401422 Write FL-19,FL-41 ,DV -08,DV -16
038 404DC2 WriteParm OU-18
1BO 40 E050 Wri teResource RM-27
OE7 40 9142 XorRgn QD-57
1FC 40 FD96 Zero Scrap SM-12

ROM ROUTINES SORTED BY NAME 339

B
Using the Lisa Pascal
Development System

Appendix B describes how the example programs in this book were
developed. The development process for Macintosh programs is rapidly
evolving; thus, by the time you read this, a different system will probably
be in use. Cha pter 3 provides a genera l description of the process. However,
it is useful to have a specific description of how the examples were
compiled and tested.

A number of s teps are involved in developing an applications program
for the Macintosh. Unfortunately, there are more steps than on most sys­
tems; fortunately, most s teps occur automatically once the proper files are
set up and used.

Editing

340

Currently, the files are wri tten by an editor that is part of the Lisa Pascal
workshop running on the Lisa (now the Macintosh XL).

This editor is invoked from the Lisa's main menu by typing "E". Once
in the ed itor, you can use the Lisa mouse to move the cursor and to select
items from pull-down menus, much as in typica l Macintosh applications
programs. If you are familiar with any of the editors on the Macintosh, it
won't take you long to learn how this Lisa editor works.

Four files must be present before you can proceed: a Pascal source
code file containing the program itself, library files containing external
Pascal definitions and declarations, a resource defin ition file containing
resource definitions , and an exec file containing a series. of commands to
prepare your program for running on the Macintosh. Normally, you would

write a ll but the library files, which are supplied by Apple as part of the
Macintosh development sys tem.

A very simple example, the "Trivial " program in Chapter 3, explains
how the process works. In Chapter 3, we di scussed the resource definition
file and the Pascal source code file. In this a ppendix, we di scuss the exec
file, which ru ns the entire development process.

The Exec File
The exec file describes the entire preparation process. It includes all the
steps for transforming the source code, library, and resource definition
files of an application into a file on a Macintosh disk.

Naming the File
The name of our exec file is "clm/trivialX". Let's see how this name uses
some file naming conventions recommended by Apple.

The initial "elm/" acts as a prefix and serves to uniquely identify all
files written or otherwise generated in the examples developed in this
book. These are the author's initials; perhaps you want to use your initials
or a project name as the prefix. The prefix is part of the file name as fa r
as the Lisa is concerned; but the Lisa sorts files alphabetically when listing
its directory, so all files with the same prefi x are listed together. Fi les
supplied by Apple have several suggestive prefixes, such as "example/",
"obj/", " fragment/", "intrfc/", "QD/", and "TlAsm/".

In the middle of the name, " trivial" identifies the particular example
that we are developing. All files associated with this example contain thi s
name in their full name.

The trailing "X" on our file name identifies this particular file as an
exec file. Apple suggests that you place an "X" as the last character of the
file name of a ll your exec files .

The "clm/trivia lX" fil e has a file extension , " .text", often not explic­
itly mentioned . This extension identifies the file as fi lled with ASCII
characters. Such " text" fi les can be edited with the Lisa editor and
directly transferred to other computers through communications lines.

Using the Exec File
The exec file is run on the Lisa using the " R" command in the main
menu. The syntax for running our example is:

<clm/ t rivial X

USING TilE LISA PASCAL DEVELOPMENT SYSTEM 341

in response to the "Run what program?" prompt. The " < " indicates that
the file is a source of input statements to the Lisa through the EXEC
program on the Lisa. This left arrow symbol is followed by the file name
"clm/trivialX" of our particular exec file.

Understanding the Exec File
Let's look at what our exec file does . Refer to Figure 3-2 in Chapter 3 for
a diagram of the major steps in the fi le. These are the essential steps:
1. Call the Pascal compiler to compile your source code into intermediate

code.
2. Call a code generator to convert this intermediate code into 68000

machine language.
3. Call a linker to combine it with other machine-language modules.

4. Call a resource compiler to combine the machine code with special
data that can specify the sizes, shapes, and text in your application.

5. Call a transfer program to transfer your application to a Macintosh
disk.

6. Call the file system to clean up by erasing the intermediate fi les gen­
erated during the process.

7. Call the editor to allow you to view and change the program while you
test it on the Macintosh.

Here is the "clmfrrivialX" exec file.

$EXEC
Pclm/ Trivial{compile the Pascal program}

G$M+{generate code for the Macintosh }
elm/ Trivial

L{ink}clm/ Trivial
obj / QuickDraw
obj / tooltraps
obj / ostraps
obj / macpaslib

clm/ Tri vi alL
R{un }Rmaker{resource maker}
c l m/ TrivialR
R{un }MacCom{disk transfer program}

342 HIDDEN POWERS OF THE MACINTOSH

Fy
Lc lm/ Trivi a l . RSRC
Trivi al
APPL {set t ype t o APPL }
{set cr eator t o ????}
N{o bundle bit }Q{uit MacCom }
F{il e sys t em}D{e l ete }c lm/ Trivial . I
yD {elete }clm/ Tr i vi al . obj
yD{elet e}clm/ Trivial L. obj
yQ {ui t Fil e command}
E{dit }
$END EXEC

The first line contains the "$EXEC" command, the last line contains
the "$ENDEXEC" command . These commands must bracket the list of
commands contained in the exec file. Each command in that list must
contain the normal keystrokes that you would type from the keyboard if
you were to process the application files manually. You can insert com­
ments within the exec file by enclosing them with curly brackets, the same
as in Pascal. The " (*" brackets of Pascal, however, will not work.

Compiling

The second line, "Pclm/Trivial", starts the Pascal compiler. This line
consists of a " P" command that ca lls the Pascal compiler from the main
menu, followed by a file name that is the name of the file to be compiled.
This is our Pascal source code fi le. The file name "elm/Trivial" has our
own " elm/" prefix followed by the name "Trivial". The fi le has the fi le
extension ". text". However, this extension is not explicitly mentioned in
the exec file (or in the editor when creating the fi le).

Notice that there is no trailing letter for our source code file name,
such as the " X" used for exec fil es . Apple recommends that you label
your Pascal source code in this manner.

If you were typing these commands manually, the "P" would load the
Pascal compiler, which would then prompt you for an "Input fi le". You
would then type the name of your Pascal source code fi le (assuming a file
extension of " text").

The next two lines of the exec file are blank. They tell the Pascal
compiler that you don 't want a listing file and that you want the output
file from the compiler to use the same name as the source code fi le. The
output file from the compiler is given the file extension " .1" to distinguish
it from the source file.

USING THE LISA PASCAL DEVELOPMENT SYSTEM 343

Generating Code

The ".I" output file from the compiler contains an intermediate code that
has to be processed by a code generator to turn it into 68000 assembly
language. Other higher-level language compilers could be designed to
produce such intermediate code, which could then be fed into this same
code generator. Also, if Apple were to change processors, it could still
use the same compiler with a different code generator.

The line "G$M +" of the exec file calls the code generator and tells
it to generate code for the Macintosh rather than the Lisa.

If you typed this command manually, the "G" would load the code
generator, which would prompt you for an "Input file". Instead of giving
it an input file, you would type the "$M +" to inform it that it must
produce Macintosh code, not Lisa code.

On the next two lines of the exec file, we specify the input file ''chn/
Trivial" and the output file. The output file is specified by a blank line,
indicating that it has the same name as the input file. The input file
assumes a file extension of ".I", making it agree with the full name of the
output file from the Pascal compiler. The output file from the code gener­
ator assumes a file extension of" .OBJ".

If you typed these manually, you would type "elm/Trivial" in response
to an "Input file" prompt, then hit the I Return I key in reponse to the "Output
file" prompt.

Linking

The line "L{ink}clm/Trivial" loads the linker and tells it that its first input
file is "elm/Trivial". The file extension of this input file is ".OBJ", that is,
this file is the same as the file just output from the code generator. Note
the comment "{ink}" following the "L". You can use this commenting
technique to inform users of the full name of the command without
interfering with output from the operation of the exec file.

The next few lines input the files "obj/QuickDraw", "obj/tooltraps",
"obj/ostraps", and "obj/macpaslib". These input files are assumed to have
the file extension "OBJ". These files contain assembly-language proce­
dures that Macintosh applications need, including "trap" instructions to
access ROM routines (see Chapter 2).

The linker starts with the first file and searches subsequent files for
references to procedures and functions that are required to put the pro­
gram together. It does not include procedures and functions from external
files that are not needed.

344 HIDDEN POWERS OF THE MACINTOSH

The two lines following the list of input files to the linker are blank.
This indicates that we have finished specifying input files and will send
the listing from the linker to the Lisa console screen.

The line "clm/TrivialL" specifies the output file for the linker. The
file name is the same as our source code file except for a trailing "L" to
indicate that its output from the linker. It is assumed to have the file
extension ".OBJ", the same file extension as the input to the linker. We
could use the same nall}e for output as for input; however, we would then
have the same name for two very different files, one before the link and
one after. The linker could handle this, but we might get confused if
something happens during program development. Occasionally this hap­
pens, especially if you take over manual operation of the process.

If this information were entered manually, ''L'' would load the linker,
which would then prompt us for input files until we hit a I Return 1. It would
ask for the listing file, then the output file, and would begin to link all
input files once the output file was entered.

The Resource Maker

The next step is peculiar to the Macintosh development process. To un­
derstand it, you should know something about the structure of applications
as they sit on a Macintosh disk, as described in Chapter 3.

Recall that each file in the Macintosh file system has a data fork and
a resource fork. The resource fork contains the program code and speci­
fications for windows, controls, and menus. In our case, the resource fork
contains the contents of the "clm/TrivialL" file.

Currently, the "RMaker" program on the Lisa reads a file that you
write on the Lisa called a resource definition file and generates a file that
contains your finished application, ready to be transferred to the Macintosh.

For our "trivial" application, the resource definition file is "elm/
TrivialR". The trailing "R" stands for "Resource". Since this is a text file
written on the Lisa editor, it has the file extension" .text".

The line "R{un}Rmaker" runs the resource maker. The next line, "elm/
TrivialR", tells it which resource definition file to use. As we shall see,
the resource defintion file specifies the file where the code is found and
the file where output from the resource maker is placed. In our case, "elm/
TrivialL" contains the code, and "clm/Trivial.RSRC" is where the result­
ing output is placed.

Transferring the File

The next few lines cause the application to be transferred from the Lisa
to a Macintosh disk. For this program, we use a transfer program called

USING THE LISA PASCAL DEVELOPMENT SYSTEM 345

"MacCom" that runs on the Lisa. This allows the Lisa to access files on
a Macintosh disk that is placed in the Lisa's three-inch drive, the so­
called lower drive.

The program "sendOne" is another way to transfer files, by sending
files over a communcations line from the Lisa to the Macintosh. In this
method, the Macintosh must receive the file using a program called "Disk
Utility". This method requires special cabling between the Lisa and the
Macintosh. It can also be hazardous: the disk utility program has a "but­
ton" that, when pressed, wipes out a Macintosh disk without asking if
this is what you really want.

The "R{un}MacCom" line of the exec file loads the "MacCom" file
transfer program. The next line, "Fy", tells MacCom to let you set the
"Finder" information for the application. This specifies information such
as the file type. The program "Finder" controls the system when your
machine is displaying the desktop with its disk icons and file folders. In
some sense, "Finder" is the primary application of the Macintosh; its job
is to find and load other applications.

The line "L{isa to Mac}clm/Trivial.RSRC" tells MacCom to send the
file "clm/Trivial.RSRC" to the Macintosh disk sitting in the lower drive.
The next line, "Trivial", specifies what it will be called once it gets there.

The line "APPL" specifies the file type. In our case, we have set the
file type equal to "APPL", which stands for application. The file type
helps the finder assign the proper icon to the file and know whether it
should be launched as a regular application. File types can also be used
by applications programs to deal with files. For example, in Chapter 10,
we use the file type "TEXT" for our text files to ensure that the example
editor program accesses only files that are supposed to contain text.

The next two lines specify another kind of "Finder" information. The
first is called the "creator", the second is called the "bundle" bit. In our
case, we leave the "creator" equal to "????" and the "bundle" bit off.
However, if you set the "creator" field equal to something more interesting
(must be four ASCII characters) and you set its "bundle" bit on, then your
application can attach itself to its working files by setting their "creator"
fields equal to the application's "creator" field. When the system is set up
in this manner, selecting one of these working files automatically loads
the application first.

Also included in the bundle bit line is a "Q" to exit "macCom". The
quit command also ejects your Macintosh disk, which is now ready to be
placed in the Macintosh so that you can run the program.

346 HIDDEN POWERS OF THE MACINTOSH

Cleaning Up

The last few commands of the exec file erase some of the intermediate
files and return to the editor. The "FH command enters the file management
subsystem, and the "D" command starts the deletion process. The follow­
ing files are removed from the Lisa disk: the output file "elm/Trivial.!"
from the Pascal compiler, the output file "clm/Trivial.obj" from the code
generator, and the output file "clm/TrivialL.obj" from the linker.

The "E" command returns you to the editor. We found this convienent
because the complete development cycle goes around a number of times
before the application is exact. You can now view the source code on the
Lisa while the program runs on the Macintosh. With such a system, you
need hardly any paper listings.

USING THE LISA PASCAL DEVELOPMENT SYSTEM 34 7

c
Disk and Volume
Information

348

Appendix C presents an example of an application that demonstrates
how to access information about volumes (disks) and fi les. It brings to­
gether concepts such as menus, d ia logs, and alerts. We list both the Pascal
source code and the complete resource definiti on file. This example there­
fore provides a model of how a complete application is put together.

This example has three menus: an Apple menu, a File menu , and an
Information menu. The Apple menu gives access to an "About Filelnfo"
alert and the s tandard desk accessories (see Figure C-1). The File menu
has a single entry, "Quit", which allows the user to terminate the program
(see Figure C-2).

The third menu , " Information", has two entries : " volume informa­
tion" and "file information " (see Figure C-3). Both cause dialogs to appear
which contain information that is available without actually opening any
fi le. Both dia logs allow some degree of interaction between the user and
the Macintosh.

The " volume information" command displays a dia log with infor­
mation about disks in each of the two disk drives (see Figure C-4). This
information consists of the name of the volume (disk), the volume refer­
ence number, and the num ber of free bytes on the d isk. If no disk is
present in a drive, the information is blank. For each drive, there is also
a button labeled "Eject" to eject the di sk, and there is an " OK" button at
the bottom of the display to end the dialog.

When a user clicks an "Eject" button , the corresponding disk is
ejected and its in formation goes blank. If the user inserts a disk, then the
proper information ap pears for the new disk. Note how the reference

numbers work. They are always negative. The first disk that is mounted
is labeled -1, the second is labeled -2, and so on. If a disk is reinserted ,
its original reference number is used. If the Macintosh is reset by the
programmer switch or by turning it off and then on again , the sequence
of reference numbers begins over with -1.

The "file information" dialog comes in two parts. First, the standard
open file dialog appears (see Figure C-5). From this dialog, the user can
select a particular file to be examined. The dialog for this command
displays all files on the disk.

Once a file is selected , a new dialog appears that displays information
about that file (see Figure C-6). It shows the file's name, type, creator,
fo lder, horizontal position, vertical position, and flags. Type and creator
have boxes around them, indicating that they can be edi ted. You can
change these to any four-character combination.

The folder is a number that specifies the folder in which the file's
icon is located. Each folder on a disk is assigned a unique integer. The
main window is given the number zero. If the file's icon is on the desktop,
it is given the number -2. If the file's icon is in the trash, it is given the
number -3. Other folders are usually given large positive numbers.

Scrapbook
Alarm Clock
Note Pad
Calculator
Key Caps
Control Panel

Figure C-1. The Apple Menu

DISK AND VOLUME INFORMATION 349

The horizontal position and the vertica l position describe the position
of the file 's icon with in its fo lder's window.

The flags field is an integer that describes certain file attributes. The
values of bits in the upper byte of the flags are di splayed in check boxes.
The bits can be individually changed by cl icking these check boxes . Some
of these bits are "public", some are for internal use by the Operating
System. Among the public bits are bit 5, which is the "bundle" bit; bit 6 ,
wh ich is the "invisible " bit; and bit 7, which is the " locked " bit.

The " bundle" bit allows an application to be involved automatica lly
when an associated document file is selected. If an application has the
bund le bit on and its "creator" type matches the "creator" type of a
document, then trying to open the document causes the Finder to open
thi s associated application firs t.

The " invisible" bit determines if the file's icon is visible. A value of
one causes the icon to be invisible. Setting the " locked" bit prevents a file
from being thrown away.

Figure C-2. The File Menu

350 HIDDEN POWERS OF THE MACINTOSH

The Program
Here is the program:

PROGRAM Fileinfo;
{$R- }{ $X-}

USES
{$U obj / Memtypes
{SU obj / QuickDraw
{ $U obj / OSintf
{ $U obj /Tool Intf
{SU Obj / Packintf

CONST
{menu IDs }
appleMenu = 1000 :
FileMenu = 1001 :
InfoMenu 1002 ;
lastMenu 3;

Memtypes,
QuickDraw,
OSintf ,
Toolintf,
Packintf ;

desk accessory menu }
File menu}
Information menu }
number of menus}

Figure C-3. The Information Menu

DISK AND VOLUME INFORMATION 351

{common dialog and alert items }
OKBtn 1;
cancelBtn = 2;

{other items for vo lume dialog }
STV1Ti tle
Ej ectlBtn
STV1TName
STV1DName
STV1TRef
STV1DRef
STV1Tfree
STV1Dfree
STV2Title
Eject2Btn =
STV2TName
STV2DName
STV2TRef
STV2DRef
STV2Tfree
STV2Dfree
Insertl
Insert2

2;
3;
4 ·

' 5;
6;
7;
8 ·

' 9 ·
' 10 ;

11 ;
12 ;
13 ;
14 ;
15 ;
16;
17 ;
1001 ;
1002:

Figure C-4.

Internal Driue:

Uolume Name:

Uolume RefNum:

free bytes:

EHternal Oriue:

Uolume Name:

Uolume RefNum:

free bytes:

OK

Volume Information Dialog

Eject
figures App

-1

358400

Eject

352 HIDDEN POWERS Or THE MACINTOSH

{other items for file dialog}
STFTName = 3 ;
STFDName = 4 ;
STFTType 5 ;
ETFDType 6 ;
STFTCrtr 7;
ETFDCrtr 8 ;
STFTFold 9 ;
STFDFold 10 ;
STFTHPos 11 ;
STFDHPos 12;
STFTVPos 13;
STFDVPos 14;
STFTFlag 15 ;
STFDFlag 16;
STFTchk 17 ;
chkBtnO 18 ;
chkBtn1 19 ;
chkBtn2 20 ;
chkBtn3 21 ;
chkBtn4 22 ;
chkBtn5 23 ;
chkBtn6 24 ;

Figure C-5. File Information Open Dialog

DeskTop
ewample file
Ewplain Demo
fig B- 1
Flnfo
MacNub
Screen 0

Cancel

figures Rpp

Eject

Driue

DISK AND VOLUME INFORMATION 353

chkBtn7 25 ;
numCButtons = 8;

VAR
done: BOOLEAN ;
where : Point;
myMenus: ARRAY [1. . lastMenu] OF MenuHandle ;
theEvt : EventRecord;
theWindow: WindowPtr ;
theDialog: DialogPtr;
vRefNum: INTEGER;

PROCEDURE SetLimits ;
BEGIN

SetPt(where , lOO, lOO J;
END ;

PROCEDURE SetupMenus ;
VAR

I : INTEGER;
BEGIN

InitMenus;

Figure C-6. The File Information Dialog

Screen o
type: IPNTG

creator: MPNT
flag bits:

Obit o
folder: 0 0 bit 1
horz pos: 0 O bit 2

uert pos: 0 Obit 3

flags: 0 Obit 4

0 bit 5 - bundle

OK
0 bit 6 - inuisible

0 bit 7

Cancel

354 HIDDEN POWERS OF THE MACINTOSH

myMenus[11
myMenus[21
myMenus[31

GetMenu(appl eMenu);
Getmenu(FileMenu);
Getmenu 1 InfoMenu);

AddResMenu (myMenus[1l , 'DRVR') ;
FOR I : = 1 TO lastMenu DO InsertMenu(myMenus[Il ,0);
DrawMenuBar;

END; {of SetUpMenus }

FUNCTION SetErrMess (theErr: OSErr): BOOLEAN;
VAR

Errindex, theitem : INTEGER;
ErrMess , ErrStr : Str255;
closeErr : BOOLEAN;

BEGIN
CASE theErr OF

noErr : Err Index - 2· .
bd.NamErr : Err Index - 4·

' fnfErr : Err Index - 5·
'

ioErr : Err Index - 6;
mFulErr : Err Index - 7;
nsvErr : Err Index - 8;
opWrErr: Err Index - 9 ·

' tmfoErr : En· Index - 10;
eofErr : Err Index - 11 ;
paramErr : Err Index - 12;
nsDr vErr : Err Index - 13;
dupFNErr : Err Index - 14;
dirFulErr : Err Index - 15 ;
vLckdErr: Err Index - 16;
wPrErr : Err Index - 17;
fnOpnErr : Err Index - 18;
rfNumErr : Err Index - 19;
dskFulErr : Err Index - 20;
fLckdErr : Err Index - 21;
wrPermErr : Err Index - 22 :
posErr : Err Index - 23 ;
extFSErr: Err Index - 24 ;
Otherwise Err Index - 3·

'
END;

{exact

Get indStr (ErrMes s , 1000 , Errindex) ;
NumToStr(theErr ,ErrStr);
ParamText (ErrMess , ErrStr , " . ");
IF theErr <> noErr

meaning

THEN the Item : = StopAlert(1003,NIL) ;
SetErrMess - (theErr <> noErr) ;

END;

depends}

DISK AND VOLUME INFORMATION 355

PROCEDURE QuitFile ;
BEGIN

done
END ;

TRUE ;

FUNCTION IHandl e(theitem: INTEGER) : Handle ;
VAR

theType : INTEGER;
ItemHdl : Handl e ;
ItemBox : Rect ;

BEGIN
GctDitem(theDialog, theltem , theType , ItemHdl, ItemBox) ;
!Handle ItemHdl;

END;

FUNCTION CHandle(theitem: INTEGER): ControlHandle ;
BEGIN

CHandle ControlHandle(IHandle (theiteml l ;
END:

PROCEDURE SetChkBox(theitem: INTEGER) :
BEGIN

Se tCt lValue (CHandle (theitem) , 1-GetCtlValue(CHandle(theitem) ll;
END;

PROCEDURE ShowDNwn (theNum: Longint; theltem: INTEGER) ;
VAR

nwnString : Str255 ;
BEGIN

NumToString(theNum, nwnStringJ;
SetiText(IHandle(theiteml , numString);

END:

FUNCTION VFiltcr (theDi a l og: DialogPtr ;
VAR theEvent : EventRecord;
VAR itemHit: INTEGER) : BOOLEAN;

BEGIN
ItemHi t 0;
IF theEvent.what = nullEvent THEN

IF GctNextEvent(diskMask , t heEvent) THEN
CASE loWord(theEvent . message) OF

1: ItemHit Insert! ;
2: ItemHit := Insert2 ;
END;

Vfil t er (Itcmhit in [Insertl , Insert2Jl ;
END;

PROCEDURE ShowVollnf o;
VAR

356 HIDDEN POWERS OF THE MACINTOSH

vRefNum, theltem: INTEGER;
free : Longlnt ;
vName: Str255 ;

PROCEDURE ShowDr(Drive,STVDName , STVDRef , STVDFree : INTEGER) ;
BEGIN

IF GetVInfo (Drive. ~vName , vRefNum,free l = noErr THEN BEGIN
SetiText(IHandle(STVDName) ,vName);
ShowDNum(vRefNum, STVDRefl;
ShowDNum (free , STVDFreel ;

END;
END;

PROCEDURE EjectDr(Drive , STVDName , STVDRef , STVDFree : INTEGER) ;
BEGIN

IF Eject (NIL,Drive) = noErr THEN BEGIN
Set!Text (!Handle (STVDName) , "l;
Set! Text (!Handle (STVDRef l , "l ;
SetiText (!Handle (STVDFree) , "l;

END;
END;

BEGIN
theDialog : = GetNewDialog (lOOl , NIL . POINTER(-1) l :
ShowDr (l , STVlDName , STVlDRef , STVlDFree) ;
ShowDr(2 , STV2DName , STV2DRef , STV2DFree) ;

FlushEvents (everyEvent , Ol;
REPEAT

ModalDialog (@VFilter , theitem) ;
CASE theltem OF

Insert! : ShowDr (l,STVlDName , STVlDRef , STVlDFree) ;
Insert2 : ShowDr (2,STV2DName , STV2DRef,STV2DFree) ;
EjectlBtn : EjectDr(l , STVlDName , STVlDRef , STVlDFree) ;
Eject2Btn : EjectDr(2 , STV2DName , STV2DRef,STV2DFree) ;
END;

UNTIL the!tem = OKBtn ;
DisposDialog(theDialogl ;

END ;

PROCEDURE ShowFileinfo ;
TYPE

BtnArray = PACKED ARRAY [0 .. 15) OF BOOLEAN ;

VAR
I , ItemHi t :
typeList :
reply:
theFi nfo :

INTEGER;
SFTypcList ;
SFReply;
Finfo ;

DISK AND VOLUME INFORMATION 357

fType , fCreator : Str255 ;
CArray : BtnArray ;

PROCEDURE FLCall (t heErr : OSErr);
BEGIN

IF Set~rrMess (theErr) THEN Exit(ShowFileinfo);
END ;

BEGI N
REPEAT

SFGetFile(where , " , NIL , -1,typeList , NIL , reply) ;
IF reply . good Tr~N BEGIN

FLCall (GetFinfo (reply . fName , reply . vRefNum. theFinfo));
theDialog : = GetNewDialog (1002 , NIL , POINTER (-1) l;

CArray : = BtnArray (theFinfo . fdFlagsJ ;
FOR I : = 0 TO numCButtons-1 DO

SetCtlValue(CHandle (chkBtnO+IJ , ORD(CArray(I lll;

SetiText(IHandle (STFDName) , reply . fName);

fType : = I
1

;

FOR I : = 1 TO 4 DO fType[I l : = theFinfo . fdType[I l;
SetiText (IHandle (ETFDType) , fType) ;

fCreator : = 1
' ;

FOR I : = 1 TO 4 DO fCreator[I] : = theFinfo . fdCreator[I] ;
SetiText (IHandle (ETFDCrtr) . fCreator) ;

ShowDNum(theFinfo.fdFldr , STFDFold);
ShowDNum(theFinfo.fdFlags , STFDFlagl ;
ShowDNum(theFinfo. fdLocation . h, STFDHPos) ;
ShowDNum(theFinfo . fdLocation . v, STFDVPOS) ;

FlushEvents (everyEvent . O) ;
REPEAT

ModalDi a l og(NIL, i temHit J;
IF itemHit in [chkBtnO .. Chk8tn7] THEN BEGIN

SetChkBoxritemHit);
FOR I : = 0 TO numCButtons-1 DO

CArray[Il : = GetCtlVal ue(CHandle(chkBtnO+I) J<>O;
ShowDNum (INTEGER (CArray) , STFDFlag);

END;
UNTIL itemHit in [OKBtn , CancelBtnl ;

IF itemHi t = OKBtn THEN BEGIN
theFinfo . fdFlags : = INTEGER (CArray);

358 HIDDEN POWERS OF THE MACINTOSH

GetiText(IHandle(ETFDType) , fType) ;
FOR I : = 1 TO 4 DO

theFinfo . fdType[IJ := fType(IJ :

GetiTcxt(IHandle(ETFDCrtr) , fCreator) ;
FOR I := 1 TO 4 DO

theFinfo . fdCreator[IJ : = fCreator[Il ;

FLCall (SetFinfo (reply. fName , reply.vRefNum, theFinfo)J;
END ;

DisposDialog(theDialogl;
END;

UNTIL NOT reply . good;
END;

PROCEDURE SetUpSys;
BEGIN

InitGraf(@thePortJ ;
InitFonts;
In i tWindows ;
TEini t;
InitDialogs(NILl;
SetEventMask (everyEvent);
FlushEvents (everyEvent,O);

SetLimits;
SetupMenus;
InitCursor ;
vRefNum : = 0;
done := FALSE ;

END;

PROCEDURE UpdateSys ;
BEGIN

SystemTask;
END;

PROCEDURE DoAppleMenu (theitcm : INTEGER);
VAR

r efNum : INTEGER;
name : Str255 :

BEGIN
If the Item = 1

THEN theitem Alert(1004,NIL)
ELSE

BEGIN
Getitem (myMenus [1 J ,theitem,nameJ ;
refNum OpenDeskAcc(nameJ ;

END;
END;

DISK AND VOLUME INFORMATION 359

PROCEDURE DoFileMenu (theltem : INTEGER) ;
BEGIN

CASE thcltem OF
1: QuitFile ;

END;
END;

PROCEDURE DoinfoMenu (theitem: INTEGER! ;
BEGIN

CASE theitem OF
1: ShowVollnfo ;
2: ShowFileinfo;

END;
END ;

PROCEDURE SelectMenu (selection Longint) ;
BEGIN

CASE HiWord (selectionJ OF
appleMenu: DoAppleMenu (LoWord (se l ectionJJ;
FileMenu: DoFileMenu (LoWord(selectionJJ ;
InfoMenu : DoinfoMenu (LoWord(sel ectionJJ ;
END;

HiliteMcnu(O l ; {to unhighl ight selected menu i n menu bar}
END;

PROCEDURE KeyEvent (theKey : Char) ;
BEGIN

IF BitTs t (@theEvt . modifiers,7) {check for command key}
THEN SelectMenu(MenuKey (theKeyJ J ;

END; {KeyEvent }

PROCEDURE WindowUpdate ;
BEGIN

theWi ndow : = windowPtr(theEvt . message);
SetPort(theWindow);
BeginUpdate ctheWindowt ;

EraseRect (theWindow· . portRect);
DrawControls (theWindow) ;
DrawGrowicon (theWindow) ;

EndUpdate (thcWindow) ;
END; {Update}

PROCEDURE WindowActivate ;
BEGIN

WindowUpdate;
END; {Activate }

BEGIN {main program }
SetupSys ;

360 HIDDEN POWERS OF THE MACINTOSH

REPEAT
UpdateSys;
IF GetNextEvent(everyEvent , theEvt J THEN

CASE theEvt . what OF
mouseDown:

CASE FindWindow (theEvt . where , theWindow) OF
inMenuBar : SelectMcnu(MenuSelect (theEvt.where) J;
inSysWindow: SystemClick(theEvt, t heWindow) ;
END;

keyDown, autoKey : KeyEvent(Chr (theEvt . message MOD 256 JJ ;
updateEvt : Wi ndowUpdate;
activateEvt : WindowActivate;
END; {of what event}

UNTIL done;
END.

The Resource Definition File
Here is its complete resource definition file:

* Resource Definition File for Fileinfo Demo

clm/ Finfo.Rsr c

Type MENU
,1000
\ 14

, 1001
Fi l e

About File Info .. .
(- -- -------- -----

Quit / Q <B

,1002
Information

Volume Information
File Informati on

Type STR#
, 1000

Untitled
No error
Unknown Error
Ba d fil e or vo lume Name
File not found
Disk I /0 Error

DISK AND VOLUME INFORMATION 361

Memory full
No such volume
File already open for writing
Too many files open
End of file
Bad number
No such drive
Duplicate file name
Directory full
Software volume lock
Hardware volume lock
File not open
Bad reference number
Disk full
Permission denied to access file
File position out of range
External file system

Type DLOG
, 1001
40 85 290 425
Visible 1 NoGoAway 0
1001

Volume Display Window

Type DITL
,1001
17

Btnitem Enabled
200 20 220 120

OK

StatText Disabled
10 10 30 140

Internal Drive :

Btnltem Enabled
10 140 30 200

Eject

StatText Disabled
30 10 50 140

Volume Name :

StatText Disabled
30 140 50 320

362 HIDDEN POWERS OF THE MACINTOSH

StatText Disabled
50 10 70 140

Volume RcfNum :

StatText Disabled
50 140 70 320

StatTcxt Disabled
70 10 90 140

free bytes :

StatText Disabled
70 140 90 320

StatText Disabled
110 10 130 140

External Drive :

Btnitem Enabled
110 140 130 200

Eject

StatText Disabled
130 10 150 140

Volume Name :

StatText Disabled
130 140 150 320

StatText Disabled
150 10 170 140

Volume RefNum :

StatText Disabled
150 140 170 320

StatText Disabled
170 10 190 140

free bytes:

StatText Disabled
170 140 190 320

DISK AND VOLUME INFORMATION 363

Type DLOG
, 1002
40 85 310 425
Visible 1 NoGoAway 0
1002

File Display Window

Type DITL
,1002
25

Btnitem Enabled
200 20 220 120

OK

Btnitem Enabled
230 20 250 120

Cancel

StatText Disabled
10 10 30 70

name :

StatText Disabled
10 80 30 320

StatText Disabled
35 10 55 70

type:

EditText Disabled
35 80 55 140

StatText Disabled
60 10 80 70

creator:

EditText Disabled
60 80 80 140

StatTcxt Disabled
85 10 105 80

fo l der :

364 HIDDEN POWERS OF THE MACINTOSH

StatText Disabled
85 80 105 140

StatText Disabled
110 10 130 80

horz pos :

StatText Disabled
110 80 130 140

StatText Disabled
135 10 155 80

vert pos :

StatText Disabled
135 80 155 140

StatText Disabled
160 10 180 80

flags :

StatText Disabled
160 80 180 140

StatText Disabled
50 180 70 250

flag bits :

Chkitem Enabled
70 180 90 250

bit 0

Chkltem Enabled
90 180 110 250

bit 1

Chkitem Enabled
110 180 130 250

bit 2

Chkltem Enabled
130 180 150 250

bit 3

DISK AND VOLUME INFORMATION 365

Chkltem Enabled
150 180 170 250

bit 4

Chkltem Enabled
170 1 80 190 320

bit 5 - bundle

Chkitem Enabled
190 180 210 320

bit 6 - invisible

Chkltem Enabled
210 180 230 250

bit 7

Type ALRT
' 1003
100 70 200 440
1003
7654

Type DITL
, 1003

OK

3

Btnltem Enabled
70 10 90 100

StatText Disabled
10 150 50 360

F i le Error : · 0

StatText Disabled
60 150 90 360

ID number : ·1

Type ALRT
'] 004
100 70 200 450
1004
4444

Type DITL
,1004
3

366 HIDDEN POWERS OF THE MACINTOSH

OK

Btnltem Enabled
70 10 90 100

StatTcxt Disabled
10 10 30 370

Filelnfo , a demonstration program for fi les

StatText Disabled
30 10 50 360

Chri stopher L. Morgan , 1985

Type CODE
clm/ FinfoL, 0

Descriptions
This appendix describes only the key routines ; in this case, the procedures
that implement the file information dialog.

First, we discuss a filter routine for one of the information dialogs,
then the procedures to implement both of the file information menu items.

A Modal Dialog Filter
The function "VFilter" serves as a filter procedure for the modal dialog
in the "ShowVollnfo" procedure. It modifies events generated in the dialog
before they are sent to the user as item "hits". This particular filter
modifies null events, turning one of them into a special disk insertion
event whenever a disk is inserted into a disk drive.

A dialog filter procedure has three parameters: a dialog pointer that
points to the current dialog, an event record passed by reference, and an
integer passed by reference that contains the code of the item that was
hit. A dialog filter function returns a value of fal se if the event from the
filter needs further processing by the dialog, true if we want the modal
dialog to return immediately with the results of our filter.

The procedure begins by setting "ItemHit" equal to zero. This ini­
tializes it to a neutral value for a test at the end of the routine. If the
" .what" field of the event record indicates the null event, then we call
"GetNextEvent" with an event mask equal to " diskMask" to pick up any
disk insertion events. We then check the low word of the " .message" field
of the event record to determine in which drive the disk was inserted. If
it is inserted in the internal drive (drive 1), we set "ItemHit" equal to thE;)
constant " Insertl "; if it is inserted into the external drive (drive 2), we

DISK AND VOLUME INFORMATION 367

set "ItemHit" equal to the constant "lnsert2". These constants are larger
than any possible item numbers from this dialog. If we set "ItemHit"
equal to one of these values, then we set the Boolean return value of our
filter function equal to true, causing the modal dialog to immediately
return with one of these item numbers in "ItemHit".

Displaying Volume Information
The procedure"ShowVollnfo" implements the "volume information" com­
mand of the Information menu. It has four local parameters: the integers
"vRefNum" and "theltem" to hold a volume reference number and the
item number, the long integer "free" to contain the number of free bytes
on a disk, and a string to hold the volume name.

The "ShowVollnfo" procedure has two subprocedures: "ShowDr"
displays the volume information for a selected drive, and "EjectOr" ejects
a disk from a specified disk drive and erases the volume information.

Let's look at the "Show Dr" and "EjectDr" routines. Both routines have
four integer parameters: "Drive" specifies the drive, "STVDName" spec­
ifies the item number of the static text item where the volume name is
displayed, "STVDRef" specifies the item number of the static text item
where the volume reference number is displayed, and "STVDFree" spec­
ifies the item number of the static text item where the number of free
bytes on the disk is displayed.

The "Show Dr" procedure calls the File Manager's "GetVInfo" routine
to get the volume information. It returns the volume name, volume refer­
ence number, and number of free bytes on the disk. If this routine is
successful, we call "SetiText" to place the volume name in the dialog and
"ShowDNum" to display the volume reference number and number of
free bytes on the disk.

The "EjectDr" procedure calls the File Manager's "Eject" routine to
eject the disk from the specified drive. If this is successful, the procedure
calls "SetiText" three times to place blank strings in the appropriate static
text i terns of the dialog.

The "ShowVollnfo" procedure is like a small version of the entire
program. It has an initialization section and an event loop implemented
with a REPEAT .. UNTIL loop. The initialization section begins by calling
"GetNewDialog" to grab the dialog definition from the resource file, dis­
play the dialog, and return a handle to it. The resource definition of this
dialog and its dialog list can be found in the resource definition file as
DLOG and DITL resources, both with resource ID number 1001. We store
this handle in "theDialog".

368 HIDDEN POWERS OF THE MACINTOSH

The procedure continues by calling "ShowDr" twice to attempt to
show the volume information for both drives. If no disk is in a drive or if
the drive isn 't attached, no information is displayed. Finally, it calls
"FlushEvents" to remove all events before going into the event loop.

The event loop calls "ModalDialog" to get the item number of the
item hit . In this program, we pass a pointer to our filter as the first
parameter of "ModalDialog" and pass "theltem" as the second. In this
way, "theltem" gets the item number. A CASE statement detects which
item is hit and acts accordingly. If it is the " Insert1" item generated by
our filter routine when a disk was inserted into the internal drive, then
we call our "ShowDr" to show the volume information for the disk in the
internal drive. Likewise, in response to a value of " Insert2", we show the
information for the external drive. A value of "Eject1Btn" means that the
first eject button was selected. In response, we call "EjectOr" to try to
eject the disk (if any) in the internal drive. A value of " lnsert2" means
that we should call "EjectOr" to eject the disk in the external drive. The
event loop continues until the OK button is detected.

Before the procedure ends, it calls "DisposDialog" to dispose of the
dialog, wiping it from view.

Displaying File Information
The procedure "ShowFilelnfo" implements the "File Information" com­
mand of the Information menu, displaying a dialog filled with file infor­
mation, some of which can be changed.

It has one local type and a number of local variables. The local type
is called "BtnArray" and is defined as a packed array of 16 Boolean
variables. Each Boolean is stored as a bit.

The first two local variables are integers: " I" is used as an index to a
FOR loop, and "ItemHit" holds an item number from the file dialog. The
next two local variables are used with the standard file get routine. Here,
"typelist" is of type "SFtypelist" and "reply" is of type "SFReply". We
use these types to open and save files. The next local variable, "theFinfo",
is of type "Finfo" and is a record structure that holds file information. It
is defined as follows:

Flnfo = RECORD
fdType :
fdCreator :
fdFlags :
fdLocation :
fdFldr :

END;

OSType ;
OSType;
INT!i:GER;
Point ;
INTEGER;

DISK AND VOLUME INFORMATION 369

These are the fields that we wish to display. The first field, ".fdType",
is a four-character file type. The second field, ".fdCreator", is a four­
character designator to help a document locate its associated applications
program. The next," .fdFlags", holds certain file attributes, such as "locked",
"bundle", and "invisible". The next field, ".fdLocation", is a point that
gives the location of the file's icon within its window. Finally, the field
".fdFldr" is an integer that identifies which folder contains the file's icon.

The next two local variables, "fType" and "£Creator", are strings to
hold the file type and creator fields. The last local variable, "CArray", is
of type "BtnArray", which we defined above. We use this variable to hold
the bits of the "fdFlags" field.

The "ShowFileinfo" procedure has one subprocedure, "FLCall", which
handles errors.

The ''ShowFileinfo'' procedure consists of an outer REPEAT .. UNTIL
loop that first calls the Standard File Package's "SFGetFile" procedure
used in the "OpenFile" procedure. Here, we instruct it to display files of
all types by passing -1 in the fourth parameter. The last parameter is the
"reply", which contains fields that specify if a valid file has been selected.
If a valid file is selected, this parameter gives the file name and volume
reference number.

If there is a valid selection ("reply.good" is true), then we call "GetFinfo"
to get the file information. Notice that we don't have to open the file to
make this call. The "GetFinfo" routine expects three parameters: the file
name, the volume reference number, and a variable of type "flnfo" passed
by reference.

We next call "GetNewDialog" to set up the file dialog. It gets the
dialog's definition from the resource file and displays the dialog on the
screen. We store the resulting handle in the variable "theDialog". The
resource definition for this dialog and its dialog list can be found in the
resource definition file as resources of type DLOG and DITL, both with
ID 1002.

Next, we copy the" .fdFlags" field into our button array, coercing the
type from an integer to a packed array of 16 Booleans. We then load the
first eight of these into the control values for our eight check boxes. We
use the ORD function to convert each Boolean into a long integer for the
control value.

We call "SetiText" to put the file name into the corresponding dialog
item. We move the file type and creator field into strings, one character at
a time, and display the resulting strings in the dialog. These are placed
in editable text items because they can be edited by the user.

3 70 HIDDEN POWERS OF THE MACINTOSH

We use our "ShowDNum" to display the ".fdFldr", ".fdFlags", and
both coordinates of the file's location as numbers in the dialog.

Next comes a REPEAT .. UNTIL loop, which acts like an event loop for
our file dialog. It calls "ModalDialog" to see which item is selected. If it
is a check box, we call our "SetChkBox" to click the check box, then
update the numerical value displayed for the flags. The REPEAT loop
continues until the user hits the OK button or cancel button.

After the REPEAT loop, we update the ".fdFlags", ".fdType", and
".fdCreator" fields, then call the File Manager's "SetFinfo" routine to
place this new file information back onto the disk. Finally, we dispose of
the dialog.

This concludes our discussion of the '' Filelnfo'' example. You are
welcome to type it in and give it a try.

DISK AND VOLUME INFORMATION 371

D
Macintosh Routines Used
in Example Programs

372

Appendix 0 contains a table of the built-in Macintosh routines used
in this book. They were sorted alphabetically by the manager.

Control Manager
CM-0 ra wControls
CM-FindControl
CM-GetCRefCon
CM-GetCtlValue
CM -GetNewControl
CM-HideControl
CM-Hili teControl
CM-MoveControl
CM -SetCRefCon
CM-SetCtlMax
CM-SetCt!Value
CM-ShowControl
CM-SizeControl
CM-TrackControl

Dialog Manager
OL-OisposOialog
OL-DlgCopy [Pascal only]
OL-OlgCut [Pascal only]
OL-DlgPaste [Pascal only]
OL-GetDitem
OL-Getltext
OL-GetNewOialog
OL-InitOialogs
OL-ModalOialog
OL-NoteAlert

OL-ParamText
OL-SeliText
OL-SetDAFont [Pascal only]
OL-SetiText
OL-StopAlert

Desk Manager
OS-OpenDeskAcc
OS-SystemClick
OS-SystemEdit
OS-SystemTask

Event Manager
EM-Button
EM-FlushEvents
EM-GetKeys
EM -GetMouse
EM -GetNextEvent
EM-SetEventMask

File Manager
FL-Create
FL-Eject
FL-FSClose
FL-FSOpen
FL-FSRead
FL-FSWrite

FL-GetEOF
FL-GetFinfo
FL-Get Vlnfo
FL-SetFinfo

Font Manager
FM-InitFonts

Memory Manager
MM-HLock
MM-HUnLock
MM-SetHandleSize

Menu Manager
MN-AddResMenu
MN-Checkltem
MN-Disableltem
MN-DrawMenuBar
MN-Enableltem
MN-Getltem
MN-GetMenu
MN-HiliteMenu
MN-InitMenus
MN-InsertMenu
MN-MenuKey
MN-MenuSelect
MN-NewMenu

Operating System Utilities
OU-SysBeep

Package Manager
PK-GetlndStr
PK-NumToString
PK-SFGetFile
PK-SFPutFile

QuickDraw
QD-ClipRect
QD-ClosePicture
QD-ClosePoly

QD-CloseRgn
QD-DrawChar
QD-DrawPicture
QD-DrawString
QD-EraseOval
QD-EraseRect
QD-EraseRgn
QD-EraseRoundRect
QD-FillOval
QD-FillRect
QD-FillRgn
QD-FillRoundRect
QD-FrameOval
QD-Frame Poly
QD-FrameRect
QD-FrameRgn
QD-FrameRoundRect
QD-GetPort
QD-GlobaltoLocal
QD-HideCursor
QD-InitCursor
QD-InitGraf
QD-lnverRoundRect
QD-InvertOval
QD-InvertRect
QD-Line
QD-LineTo
QD-Move
QD-MovePortTo
QD-MoveTo
QD-NewRgn
QD-OffsetPoly
QD-OffsetRgn
QD-OpenPicture
QD-OpenPoly
QD-OpenPort
QD-OpenRgn
QD-PaintOval
QD-PaintRect
QD-PaintRoundRect
QD-PenMode

MACINTOSH ROUTINES USED IN EXAMPLE PROGRAMS 3 73

QD-PenNormal
QD-PenPat
QD-PenSize
QD-PenSize
QD-PortSize
QD-PtlnRgn
QD-RectlnRgn
QD-ScrollRect
QD-SetCursor
QD-SetOrigin
QD-SetPort
QD-SetPt
QD-SetRect
QD-SetRectRgn
QD-StuffHex
QD-TextFace
QD-TextFont
QD-TextSize
QD-UnionRgn

Text Edit
TE-TEActivate
TE-TECalText
TE-TEClick
TE-TECopy
TE-TECut
TE-TEDeactivate
TE-TEDispose
TE-TEidle
TE-TEinit

TE-TEKey
TE-TENew
TE-TEPaste
TE-TEScroll
TE-TEUpdate

Toolbox Utilities
TU-BitSet
TU-BitTst
TU-HiWord
TU-LoWord

Window Manager
WM-BeginUpdate
WM-Drag Window
WM-DrawGrowicon
WM-EndUpdate
WM-FindWindow
WM-Front Window
WM-GetNewWindow
WM-GetWRefCon
WM-GrowWindow
WM-HideWindow
WM-InitWindows
WM-lnvalRect
WM-Select Window
WM-SetWTitle
WM-ShowWindow
WM-SizeWindow
WM-TrackGoAway

3 7 4 MACINTOSH ROUTINES USED IN EXAMPLE PROGRAMS

Index

@ operator, 54

A
A5, 62
A7, 62
Activate, 190
AddResMenu , 269
Alarm clock, 255
Alert, 223, 246

note, 228
stages of, 246
stop, 228

Application Jump Table, 22
Application Parameter Area, 22
Application zone, 17
Arrow, 76
Attributes, 77

B
BaseAddr, 145
Begin-Update, 189, 220
Bit-mapped, 3
Bitlmage, 86, 89
BitMap, 76, 86, 89, 90
BitSet, 95
BitTst , 320
Box,223,225

alert , 223
dialog, 223

BufPtr, 20
Buttons, 74, 225

mouse, 4

c
Calculator, 255
Caret, 50
Check boxes, 226
Checkltem, 268
ClickButton, 74
Clipping, 119
Cli pRect, 181, 214
Cli pRegion, 117
Close,280,281,313
ClosePicture, 215
ClosePoly, 197
CloseRgn , 150
CNTL, 176
Code generator, 47
Compiler, 4 7

com mand , 46
Control , 157, 169, 218

handles, 169, 170
Manager, 33 , 157, 217
pointer, 170
record, 170

Coord inate systems, 68, 86
Coordinates, 90

global, 113
local, 113

375

Copy, 6, 226, 280, 282, 317
Cursor, 68, 79, 81, 93
Cut,6,226,280,282,317

D
Data fork, 43
DB, 59
Debugger, 39, 57
Desk accessories, 5, 9, 255, 277
Desk Manager, 34
Development, 42
Device drivers, 37
Device Manager, 3 7
Devices, 11
Dialog, 223, 240

list, 223
Manager, 34, 223
modal, 224
modeless, 224

DialogPeek, 235
DialogPtr, 235
DialogRecord, 235
Disabled, 242, 254
Disableltem, 305
Disk drivers, 280
DisposDialog, 245
DITL, 242
DlgCopy, 243
DlgCut, 243
DlgPaste, 243
DLOG, 240
DragWindow, 190,221,318
DrawControls, 189, 219
DrawGrowlcon, 184,219
DrawMenuBar, 269
DrawString, 151
Drivers, 11
DRVR, 269
Dynamic variables, 51

E
Enableltem, 305
EndUpdate, 189, 220
ErasePoly, 198

376 INDEX

EraseRect, 95
EraseRgn, 151
Event, 129

Manager, 32, 130, 131
queue,32, 130,146
Record, 139
when, 130
where, 130

eventMask, 146
Exception vectors, 13
Exit, 184

F
FCreate, 313
File Manager, 35,280
FillPoly, 198
FillRgn, 112
Filter, 244, 246
FindControl, 187, 188, 320
Finder, 11
FindWindow, 168,276
Finite state machine, 295
FlushEvents, 145, 146
Font Manager, 32, 179
Font Mover, 179
Fragmentation, 19
FramePoly, 198,210
FrameRect, 103
FrameRgn, 151
FrameRoundRect, 150
FSClose, 307,311
FSOpen, 311
FSRead, 311
FSWrite, 312

G
GetClip, 121
GetCRefCon, 243
GetCtlValue, 182, 187, 243
GetDitem, 238
GetEOF, 311
GetlndStr, 210, 306
Getltem, 2 7 4
GetiText, 244

Get Keys, 15 5
GetMouse, 97, 154
GetNewControl, 176, 212
GetNewDialog, 238
GetNewWindow, 173
GetNextEvent, 153
GetResource, 211
GlobaltoLocal, 115
grafPort, 69, 75, 77, 164
grafPtr, 78
GrowWindow, 183, 219

H
Heap,13,17
HideControl, 220
HideCursor, 95
HideWindow, 219
Hilite menu, 275
HiliteControl, 219
hiWord, 184
HLock, 211, 216
hotSpot, 83
Human interface, 2
HUnlock, 212, 216

I
Icons, 2
inContent, 190
inDrag, 190
inGoAway, 190
inGrow, 190
InitCursor, 79
InitDialog, 236
InitGraf, 7 4
InitMenus, 269
InitWindows, 173
Insertion point, 239
InsertMenu, 269
Instruction codes, 26
Integrated Woz Machine (IWM), 26
Intermediate code, 4 7
Interrupt, 130, 153
InvalRect, 220

InvertPoly, 198
InvertRect, 103

K
Key equivalents, 2 71
keyDown, 140
keyUp, 140

L
Length, 239
Library files, 4 7
Line, 198
LineTo, 148, 198
Link, 47
Linked list, 130, 132
Lisa, 7, 39
LocaltoGlobal, 115
loWord, 184

M
Macbug, 23
MacNub, 58
MacPaint, 68, 81
MacWrite, 68
Managers, 1,8,29
Mask, 82
Master pointer, 54
MC68000, 7
Memory, 11
Memory layout, 16
Memory Manager, 17,32
Memory-mapped video, 86
Memtypes, 73
Menu, 1, 250

bar, 251
Manager, 34,250
identification numbers of, 269
selection of, 275

Menuinfo, 253
MenuKey, 320
MenuList, 252
MenuSelect, 251, 276
Message, 140

INDEX 377

Meta-character, 270
ModalDialog, 244
Mode, 6
Modifiers, 141
Mouse, 3
mouseDown, 140,190
Move, 196
MoveControl, 184
MovePortTo, 116, 117
MoveTo, 148, 196

N
New, 280, 281, 308
NewRgn, 112,207
NJnrelocatable, 54, 144
Note pad, 255
NoteAlert, 245
NumToStr, 307

0
Objects, 5
OffsetPoly, 198, 208
OffsetRgn, 216
Open,280,281,308
OpenDeskAcc, 274
OpenPicture, 215
OpenPoly, 197,208
OpenPort, 79
OpenRgn, 150
Operating System routines, 28
ORD, 54
OSintf, 74, 139
Ovals, 68

p
Package Manager, 35,280
Packages,310
PaintPoly, 198
PaintRect, 103
Pascal, 2, 40
Paste, 6, 226, 280, 282, 317
Patterns, 68, 76, 79, 80
Pen

modes of, 258

378 INDEX

patterns of, 258
sizes of, 258

PenNJrmal, 180
Pictures, 193
Pixels, 68
Point, 68, 86, 92
POINTER, 54, 152
Pointers, 39, 49
Polling,153
Polygons, 68, 193, 196, 207
portBits, 95, 113
PortSize, 117, 118
Printing Manager, 3 7
PtlnRgn, 154

Q
Queue, 132
QuickDraw, 7, 31, 67, 73

R
Radio buttons, 226
RAM, 11
randSeed, 76
Record, 129
Rectangles, 68, 86, 97
Reference numbers, 297
Reference value, 217
Region,52,68,86, 103,135,143

handle, 106
pointer, 106

Resource, 39,42
definition, 42, 43, 174, 212,246
definition file, 43, 174
fork, 43
Manager, 35

rgnBBox, 104
rgnSize, 104
ROM, 11,24
rowBytes, 145
RS-422, 58

s
Save,280,281,312
Save As, 280, 281, 312

Scrap Manager, 36
Scrapbook, 255
Screen, 3
screenBits, 76
Scroll bar, 4, 158, 185

down button, 158
page down, 158
page up, 158
thumb control, 158
up button, 158

Scrolling, 193, 217
ScrollRect, 218
SelectWindow, 219
Serial Communications Controller

(SCC), 25
SetClip, 120
SetCtlMax, 305
SetCtlValue, 187, 239, 243
SetCursor, 86
SetDAFont, 237
SetEventMask, 145
SetiText, 239
SetOrigin, 116, 117, 216
SetPoint, 86
SetPort, 214
SetPt, 184
SetRect, 103, 111
SetRectRgn, 112
SetWTitle, 308
SFGetFile, 309
SFPutFile, 312
ShowControl, 220
SizeControl, 184
SizeWindow, 184,219
Smalltalk, 3
Sound,23
Source, 42

file, 42, 45
Stack, 13

Area, 20
pointer, 62

Stages, 246
Standard button, 170
Standard File Package, 309

Static variables, 13, 53
StopAlert, 245
STR#, 211
String list, 210
StringWidth, 148
StuffHex, 80
Style, 178
SysBeep,243
System Communications Area, 16
System Dispatch Table, 16, 2 7
System globals, 17
System tasks, 255
SystemClick, 276
SystemEdit, 317
SystemTask, 276, 315

T
TEActivate, 322
TECalText, 311
TEClick, 319
TEDeActivate, 322
TEDispose, 315
TEidle, 316
TEinit, 236, 267
TEKey, 320
TENew, 308
TEScroll, 318
TEUpdate, 321
Text Edit, 35, 280
Text editing, 6
Text record, 298
TextFace, 178
TextFont, 178
TextSize, 178
thePort, 75
tick Count, 13 3
Toolbox global variables, 17
Toolbox routines, 28
Toollntf, 74, 139
TrackControl, 188, 218
TrackGoAway, 219
Tracking, 184, 244
Type coercion, 55, 110, 216

INDEX 379

u
Unimplemented instruction codes, 26
UNIT, 47,72
Update, 190
Update event, 173
USES, 47,72
Utilities, 30

v
Variables, 11
Versatile Interface Adapter (VIA), 25
Vertical Retrace Manager, 3 7, 13 3
VHSelect, 92
Video, 23

RAM,87
Visibility, 119
visRgn, 189

w
What, 140
When, 141
Where, 141
WIND, 174
Window, 1, 156, 193

definition procedure, 165
Manager, 33, 157

380 INDEX

Window parts
codes, 190
contents, 158
frame, 158
goAway box, 158
grow box, 158
Smalltalk, 4
title, 158
title bar, 158

Window Record, 164
windowiD, 174
WindowPeek, 166
WindowPtr, 166, 235
Windows, 1, 156, 193
eli pping, 168
dragging, 168
drawing, 168
sizing, 168

Windows, Smalltalk, 4
Word wrap, 296

X
Xerox, 2

z
Zones, 17

Look for these other Plume/Waite titles on the Macintosh®:

D Games and Utilities for the Macintosh® by Dan Shafer. Thirty exciting games and
useful utility programs in Macintosh Pascal, ready for you to type in and run. Something
for everyone, from ucrypto-quotes," "Parachute Man," and "Logic Probe," to sort
routines and icon and menu constructors. Full-sized and expertly written, these pro­
grams are not only entertaining and useful, they are also a valuable education in the
finer points of Madntosh programming. (256410-$18.95)

D Pascal Primer for the Macintosh® by Dan Shafer. A friendly, easy-to-follow introduction
to Apple's exdting new version of Pascal. For first-time programmers as well as those
familiar with earlier, less sophisticated versions of this important language. Extensive
hands-on examples, exerdses, and a relaxed, supportive style make learning Madntosh
Pascal easy, even for the novice. Covers files, events, QuickDraw, windows, the mouse,
and more. (256402-$19.95)

D Basic Primer for the Macintosh® by Emil Flock and Miriam Flock. Apple's own
Macintosh Basic is one of the best-structured, fastest, easiest-to-learn versions of Basic
ever developed. Using entertaining, carefully graded programming examples, this book
takes the complete novice from simple one-line programs to full mastery of the language.
Later chapters cover such advanced topics as sound, files, and using the Mac's QuickDraw
and Toolbox routines.

D Assembly Language Primer for the Macintosh® by Keith Mathews. Many serious
application programs must be written in assembly language, which alone has the speed
and versatility to handle tough problems. Assuming no previous knowledge of assembly
language, this books shows you, in easy, step-by-step style, how to master 68000 code,
and at the same time, how to access all of the Mac's features from your programs:
windows, the mouse, text editing, and more.

Plume/Waite books on the TRS-80® Model 100:

O Introducing the TRS-80® Model tOO, by Diane Burns and S. Venit. This book, intended
for newcomers to the ModellOO, offers simple step-by-step explanations of how to set
up your Model 100 and how to use its built-in programs: TEXT, ADDRSS, SCHEDL,
TELCOM, and BASIC. Specific instructions are given for connecting the ModellOO to
the cassette recorder, other computers, the telephone lines, the optional disk drive/video
interface, and the optional bar code reader. (255740-$15.95)

O Mastering BASIC on the TRS-80® Model tOO, by Bernd Enders. An exceptionally easy­
to-follow introduction to the built-in programming language on the Model 100. Also
serves as a comprehensive reference guide for the advanced user. Covers all Model100
BASIC features including graphics, sound, and file-handling. With this book and the
Model100 you can learn BASIC anywhere! (255759-$19.95)

0 Games and Utilities for the TRS-80® Model 100, by Ron Karr, Steven Olsen, and
Robert Lafore. A collection of powerful programs to enhance your Model100. Enjoy
fast-paced, exciting card games, arcade games, music, art, and learning games. Help
yourself to practical utilities that let you count words in a text file, turn your Model100
into a scientific calculator, show file sizes, and generally increase your Model 100's
usefulness, and your own grasp of programming. (255775-$16. 95)

0 Practical Finance on the TRS-80® Model tOO, by S. Venit and Diane Bums. The perfect
book for anyone using the Model 100 in business: investors, real estate brokers, man­
agers. Contains short but powerful programs to perform production planning, and
access financial and other information from CompuServe® and the Dow Jones News/
Retrieval® service. (255767-$15.95)

0 Hidden Powers of the TRS-80® Model tOO, by Christopher L. Morgan. This amazing
book takes you deep inside the Model100 to reveal for the first time how it really works.
You'll learn about the amazing power buried in the ROM, and how to use this power
in your own programs. You can print in reverse video, prevent any screen lines from
scrolling, dial the telephone from BASIC, control external devices from the cassette port,
and discover many other fascinating secrets hidden within your Model 100.
(255783-$19. 95)

Other Plume/Waite books available from New American Library:

0 BASIC PRIMER for the IBM® PC and XT by Bernd Enders and Bob Petersen. An
exceptionally easy-to-follow entry into BASIC programming that also serves as a
comprehensive reference guide for the advanced user. Includes thorough coverage of
all IBM BASIC features: color graphics, sound, disk access, and floating point. (254957-
$16.95)

D DOS PRIMER for the IBM® PC and XT by Mitchell Waite, John Angermeyer and Mark
Noble. An easy-to-understand guide to IBM's disk operating system, versions 1.1 and
2.0, which explains-from the ground up-what a DOS does and how to use it. Also
covered are advanced topics such as the fixed disk, tree-structured directories, and
redirection. (254949-$14.95)

D PASCAL PRIMER for the IBM® PC by Michael Pardee. An authoritative guide to this
important structured language. Using sound and graphics examples, this book takes
the reader from simple concepts to advanced topics such as files, linked lists, campi­
lands, pointers, and the heap. (254965-$17.95)

0 ASSEMBLY LANGUAGE PRIMER for the IBM® PC and XT by Robert Lafore. This
unusual book teaches assembly language to the beginner. The author's unique ap­
proach, using DEBUG and DOS functions, gets the reader programming fast without
the usual confusion and overhead found in most books on this fundamental subject.
Covers sound, graphics, and disk access. {254973-$24.95)

0 BLUEBOOK OF ASSEMBLY ROUTINES for the IBM® PC and XT by Christopher
Morgan. A collection of expertly written "cookbook" routines that can be plugged in
and used in any BASIC, Pascal, or assembly language program. Included are graphics,
sound, arithmetic conversions. Get the speed and power of assembly language in your
program, even if you don't know the language! (254981-$19.95)

Over 400 built-in ROM routines give the Mac intosh®
a power no personal computer has had before.
But to program the Mac you must know the
concepts behind these routines and how to
harness them.

Using simple working program examples. this book
follows a logical. step-by-step approach to explain
how to access the Mac's built-in software. You'll
learn how these routines are grouped into
managers. like the event manager. menu
manager. and window manager; about such
graphics concepts as GrafPorts. bit-maps, regions.
and clipping; and about events, files. and memory
management. Special attention is paid to
fundamental programming concepts like handles
and pointers as they are used on the Mac.

Apple's own Development Pascal is used as a
model. but a ll discussions are general enough that
the book is equally applicable to software
development in any language. The program
examples not only demonstrate the concepts
Involved but can also be used to generate
full-blown applications programs.

COMPUTER • Z5643 • $24.9
CANADA • $33.2!

The Waite Group is a Sausalito, California-based
producer of high-quality books on personal
~omputing . Ack.nowledged as a leader in thEf
Industry, the Wa1te Group has written and
produced over thirty-five titles, including such best
sellers as Pascal Primer for the Macintosh.">
Assembly Language Primer for the IBM PC &)([
Bluebook of Assembly Routines for the IBM PC &)([
and DOS Primer for the IBM PC & XT Internationally
known and award winning, Waite Group books
are distributed worldwide. and have been
repackaged with the products of such major
companies as Epson, Wang, Xerox, Tandy
Radio-Shack. NCR and Exxon. Mr. Waite, President
of the Waite Group, has been involved in the
computer industry since 1976 when he bought
his first Apple I computer from Steven Jobs.

.. 11111111111111111 11111111111 111
Warehouse - BK24705087

Hidden Powers of the Macintosh
Used, Good

18:!S/- (UG) S 1m

I SBN 0-~ 52-25643-7

