
- 'I'

CD-ROM
INCLUDES

CooL
JAVASCRIPTS

Add Flexibility and Interactivity
to Your Web Pages with]avaScript

Matt Shobe and Tim Ritchey /

JavaScript .
for Macintosh®

1------1
M.att Shobe

Tim Ritchey
L....-...-j

Hayden Books

Publisher
Lyn Blake

Marketing Manager
Nancy Price

Publishing Manager
Laurie Petrycki

Managing Editor
Lisa Wtlson

Acquisitions Editor
Brian Gill

Development Editor
Steve Mulder

Copy/Production Editor
Bront Davis

Technical Editor
Mason Hale

Publishing Coordinator
Rosemary Lewis

Cover Designer
Karen Ruggles

Book Designer
Sandra Schroeder

Manufacturing Coordinator
Brook Farling

Production Team Supervisor
Laurie Casey

Production Team
Heather Butler
Angela Calvert
Dan Caparo
Kim Cofer
Terrie Deemer
Tricia Flodder
Aleata Howard
Joe Millay
Erika Millen
Christine Tyner
Karen \Valsh

Indexer
Tom Dinse

JavaScript for Macintosh®
© 1996 Hayden Books

All rights reserved. Printed in the United States of
America. No part of this book may be used or re­
produced in any form or by any means, or stored in
a database or retrieval system, without prior written
permission of the publisher except in the case of
brief quotations embodied in critical articles and
reviews. Making copies of any part of this book for
any purpose other than your own personal use is a
violation of United States copyright laws. For infor­
mation, address Hayden Books, 201 W. 1 03rd
Street, Indianapolis, Indiana 46290.

Library of Congress Catalog Number: 96-75189

ISBN: 1-56830-278-9

Copyright © 1996 Hayden Books

Printed in the United States of America 1 2 3 4 56
7890

Warning and Disclaimer

This book is sold as is, without warranty of any
kind, either express or implied. While every precau­
tion has been taken in the preparation of this book,
the authors and Hayden Books assume no responsi­
bility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the
information or instructions contained herein. It is
further stated that the publisher and authors are not
responsible for any damage or loss to your data or
your equipment that results directly or indirectly
from your use of this book.

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks
or services marks have been appropriately capitalized. Hayden
Books cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Hayden Books
The staff of Hayden Books is committed to bringing you the best
computer books. What our readers think of Hayden is important to
our ability to serve our customers. If you have any comments, no
matter how great or how small, we'd appreciate your taking the
time to send us a note.

You can reach Hayden Books at the following:

Hayden Books
201 West 103rd Street
Indianapolis, IN 46290
(800) 428-5331 voice
(800) 448-3804 fax

Email addresses:

America Online:
Internet:

Hayden Bks
hayden@hayden.com

Visit the Hayden Books Web site at http:/ /www.hayden.com

Contents at a Glance
Introduction .. 1

Chapter 1: Cool StuffYou Can Do with JavaScript 5

Chapter 2: Introduction to the Java Family 17

Chapter 3: JavaScript Fundamentals .. 53

Chapter 4: Control Flow and Functions in J avaScript 87

Chapter 5: Using and Creating Objects in JavaScript 111

Chapter 6: JavaScript and Built-in Objects 145

Chapter 7: Netscape Navigator Objects:
The Document Object .. 167

Chapter 8: The Forms, Wmdow, History,
and Location Objects .. 193

Appendix A: Object Reference .. 231

Appendix B: JavaScripts from Around the Web 249

Index ... 311

Table of Contents

Introduction 1

The Purpose of This Book .. 2
The Organization of This Book .. 3
Conventions Used in This Book ... 3
Before You Begin ... 4

1 Cool Stuff You Can Do with JavaScript 5

Stand-Alone Applications .. 6
ColorCenter™ ... 6
SuperSearch .. 7
HTMLjive ... 8

Worksheets, Lookups, and Calculators .. 9
1040EZ Income Tax Return ... 10
Mortgage Scenario Analyzer .. 11
Quarterback Passing Rater ... 12

Subtly J avaScript-Enhanced HTML .. 13
Mr. Rodgers' World ofWorld Geography 13
The WWW Speed trap Registry .. 14
Dave's Tekno Dive .. 15

Summary .. 16

2 Introduction to the Java Family 17

The World Wide Web and HTML ... 18
History of the Internet .. 19
Development of the WWW ... 21
Features of the HTML Language .. 22
Hello, World! Page in HTML ... 24

The Java Language ... 28
Features of the Java Language ... 31
Hello, World! as a Java Applet ... 37

The J avaScript Language .. 42
Features of the J avaScript Language .. 43

Hello, World! as a JavaScript Function .. 47
A Comparison of Java and J avaScript .. 48
Netscape 2.0 and the Java Family .. 50

Built-In JavaScript Interpretation .. 51
Built-In Java Run-Time Engine ... 51

Summary .. 51

vi J avaScript for Macintosh

3 JavaScript Fundamentals 53
JavaScript and HTML .. 55

Embedding a Script within an HTML Document 55
Loading Script Source Files ... 56
Commenting out JavaScript Source Code 57
Additional HTML Considerations ... 58
Processing Order ... 59

J avaScript Architecture and Writing Code 59
Comments .. 60
Literals .. 63
Identifiers .. 68
Keywords" 70
Separators ... 71

Declaring Variables ... 71
Using var for Variables .. 73

Creating Expressions and Using Operators 75
Casting Variables ... 77
Arithmetic Expressions .. 78
Logical Operators on Boolean Types 83
Operators on Floating-Point Numbers 85
Operators on Strings ... 85

Summary .. 86

4 Control Flow and Functions in JavaScript 87

Control Flow in J avaScript .. 88
Using Blocks and Comments to Organize Code 89
Using if-else Statements to Make Decisions 93
The for Loop for Repeating Code ... 96
Using Conditional while Loops ... 98
Using break and continue to Control Loops 99

Creating Functions in J avaScript ... 100
Using the return Statement in a Function 102
Using var in Functions ...)' : 103
Allowing for Variable Argument Lengths 104

Using Functions and Events ... 105
Triggering Functions Using Event Handlers I 07

Summary .. 109

5 Using and Creating Objects in JavaScript 111

Using Objects in JavaScript : 112
Object Properties ... " 114
Object Methods .. 117
Using this · • 120

Contents vii

Creating Objects .. 120
The Constructor Function .. 121

Creating Arrays .. 123
Creating a Directory for a Web Page ... 126
Summary .. 143

6 JavaScript and Built-In Objects 145
Built-In Objects and Functions ... 146

The String Object .. 147
The Math Object .. 153
The Date Object .. 159
The eval, parseint, parseFloat, escape, unEscape,
and isNaN Functions ... 163

Summary .. 165

7 Netscape Navigator Objects: The Document Object 167

Introducing the Navigator Object Hierarchy 167
Introducing Window Object Properties 169

The Document Object ... 171
The HTML Equivalent of the Document Object 171
The Document Object Properties .. 174
The Document Object Methods .. 186
The Document Object Event Handlers 191

Summary .. 191

8 The Forms, Window, History, and Location Objects 193

Using the Forms Object ... 194
Properties ... 19 5
Forms Object Methods ... 197
Accessing Form Information ... 198
Elements of a Form ... 203
Event Handlers in Forms Object Elements 215

Controlling Window Objects .. 217
Properties of the Window Object .. 218
Methods of the Window Object .. 220
Event Handlers in the Window Object 223

Using the History and Location Objects 224
The History Object ... 224
The Location Object ... 225

Moving on to Java .. 226
Summary .. 228

viii JavaScript for Macintosh

Appendix A: Object Reference 231

Anchor (Client) .. 231
Button (Client) .. 232
Checkbox (Client) .. 232
Date (Common) .. 233
Document (Client) ... 234
Form (Client) ... 235
Frame (Client) .. 236
Hidden (Client) ... 237
History (Client) ... 238
Link (Client) .. 238
Location (Client) .. 239
Math (Common) .. 239
Navigator (Client) .. 240
Password (Client) ... 241
Radio (Client) .. 242
Reset (Client) ... 242
Select (Client) .. 243
String (Common) ... 244
Submit (Client) .. 245
Text (Client) .. 245
Textarea (Client) .. 246
Window (Client) .. 247

Appendix B: JavaScripts from Around the Web 249
Craig's JavaScript Page ... 250
UC Berkeley GPA Calculator .. 261
Julian Day .. 266
Arto's String Calculator .. 268
Car Cost Calculator .. 275
MUD ... 280
Test Your Response Time ... 283
The Amazing J avaScript Maze .. 287
JavaScript Noughts & Crosses .. 295
The Connecting Point: WWW Code breaker 298
Rainbo\v Text ... 307

Index 311

INTRODUCTION

With the release ofNetscape Navigator 2.0 for Macintosh, Steve
Jobs must be pleased simply because Netscape 2.0 enables unreal­
ized new potential for "insanely great" Web pages. Netscape's latest
browser, fully caffeinated with the new J avaScript language, enables
first-time Web page designers, with little programming experience,
to create Web pages that can "listen" and respond to user actions
quickly and intuitively. Witl1 a little J avaScript code mixed in to the
HTML documents you're already writing today, your Web pages
can become more interactive, professional, and fun to use than you
ever thought possible. Of course, you want to get your site up-to­
speed with JavaScript as soon as possible. This book takes you
through this exciting and powerful new language and gives you the
ability to create dynamic and interactive Web pages immediately,
using lots of examples. JavaScript is based upon Java, a full-blown,
object-oriented development environment that is very powerful and
naturally takes a long time to learn effectively. The fact that Java is
complex and intricate does not mean J avaScript is too; in fact, any­
one who can program in BASIC or infer that the code snippet

document.write ("Hey Mom! Send money!");

will simply print a line on the screen has a great shot at mastering
J avaScript. On the flip side, that J avaScript is a simplified subset of
Java does not mean that you don't have much power. As you will
see, JavaScript offers many flexible ways to make your Web pages
more like real Macintosh applications that accept user input and
respond quickly.

2 J avaScript for Macintosh

The Purpose of This Book
This book was written to lead you through the JavaScript program­
ming language and to provide you with the skills you need to de­
velop scripts that add vitality and interactivity to your Web pages.

You will learn how to program J avaScript into your pages so that
they can respond to users and their "client-side" computing envi­
ronment. By sending all your scripts to the client machine (the
computer at the other end of a modem or network from your Web
server), as JavaScript does, you can do away with bothersome and
often arcane CGI scripting. CGI scripting too often means scrupu­
lously maintaining not only your Web documents, but also the CGI
program files and directory structure on the server machine. With
J avaScript, you incorporate code in an HTML document, which
binds document and script as a single point of maintenance. If you
want to change something in a script-enabled page, you simply load
up your favorite text editor and change it just like any other HTML
or plain text document. And even after you have learned the intri­
cacies of J avaScript, you can apply your knowledge to the more
complex and powerful world of Java applets, because JavaScript's
syntax and concepts are established by its big brother, Java.

If you have already done any programming in J avaScript or Java,
then this book can provide you with a single handy reference to
both of these languages. The special reference section in the back
of the book should prove especially helpful when you are pounding
out that long script and can't remember the name of a method or
the arguments the history object takes.

If you are an experienced programmer who wants to learn more
about J avaScript, this book will guide you through the language
and point out comparisons to and differences from other popular
languages such as C and C++. Because Java and JavaScript are
loosely based on the C++ language, you should have no problems
getting up-to-speed quickly and moving through both sections on
Java and J avaScript, enabling you to start writing programs as soon
as possible.

Introduction 3

The Organization of This Book
The first chapter introduces you to some of the cool stuff you can
do with JavaScript. Chapters 2 through 8 present the JavaScript
language and the Netscape Navigator objects that J avaScript can
interact with.

2. Introduction to the Java Family

3. J avaScript Fundamentals

4. Control Flow and Functions in JavaScript

5. Using and Creating Objects in JavaScript

6. JavaScript and Built-In Objects

7. Netscape Navigator Objects: The Document Object

8. The Forms, Window, History, and Location Objects

The appendices provide several references for the JavaScript lan­
guage and objects, as well as a collection of fine examples of Java­
Script in action around the Net.

Conventions Used in This Book
Before you begin to read, you should be aware of several different
types of print that are used.

0 Print that looks like this is program code.

0 Print that uses italics in programming code indicates the word
is a variable-the actual word varies according to you and
your situation.

0 Italics are also used to indicate new words that are followed by
a definition.

Icons also are used to illustrate notes and warnings. The author
made an effort to set these aside for your added information.

4 J avaScript for Macintosh

NOTE

WARNING

~

Notes include extra information or useful tips that complement the
discussion.

A warning. cautions you to be. aware of certain tricky situations
that can arise. during a particular step in a process~ Make sure you
read these carefully.

With these special formatting conventions in mind, you should find
this book easier to read and remember.

Before You Begin
For the J avaScript sections of this book, you will need only the
Netscape Navigator 2.0 browser and a plain text editor, such
as SimpleText or BBEdit. You can check out Netscape's site at
http:/ /home.netscape.com for downloading instructions.

J avaScript enables you to immediately change the look and feel of
your Web pages. It also serves as a worthy introduction to more
sophisticated and powerful capabilities of Java, which might drag
you even deeper into this nasty, addictive business of Internet con­
tent programming. Have no fear. What you learn here will only
entertain, improve the interactive experience for your Web site's
users, and make your trusty Mac a powerful Web content develop­
ment workstation. Good luck and smooth programming.

Matthew Shobe, Seattle, Washington

Timothy Ritchey, Cambridge, England

CHAPTER

Cool Stuff You Can Do with
JavaScript

This chapter could be considered the "Quick Start" section of the
book, because we want to show you right away some of the poten­
tial JavaScript has for improving Netscape users' everyday experi­
ence with Web pages they access-especially yours. Whether you
bought this book with the goal of improving your own personal
home page or revitalizing your company's entire Web site, you
should know that JavaScript will require you to think about the
capabilities of these pages differently. No longer is their content
pretty, yet static at best. Items on the page, such as hyperlinks and
form elements (for example, buttons, text areas, and list boxes),
now can respond to user actions directly and with great speed,
because the programming that drives tl1em is downloaded to tl1e
user's computer. Just moving the mouse pointer over a link, for
example, could trigger a JavaScript-enabled page to display a brief
summary of that link's contents in the Netscape status bar at the
bottom of the window, instead of an inscrutable URL. Also, click­
ing a button could cause a particular image on the page to be
updated, changed, or affected by values tl1e user has entered.

The following sections describe potential application areas and pro­
vide examples from the Web or ones we have written. Don't be
concerned if you don't know a tl1ing about JavaScript syntax or
programming in general at this point; we're simply taking tl1e
"cooking show approach" and previewing the finished dishes witl1-
out a list of ingredients or instructions on how to combine them­
yet. Sit back, fire up Netscape 2.0, and try these links to see how
they act on your Macintosh.

6 JavaScript for Macintosh

Stand-Alone Applications
JavaScript sites in this category attempt to transcend the invisible
boundary that separates "read-only" Web page content from an
actual application that supports a particular task or user goal. Be­
fore JavaScript, you could read a Web page that explained how to
create colored backgrounds, text, and links; with scripting, the
same page can now dynamically help you pick colors, test back­
ground patterns, and copy the results for your own later use. The
potential for JavaScript changing the way we view the Web seems
greatest here-imagine applications that can apply current stock
prices to the value of a portfolio you've predefined, or host a live
auction of secondhand computer equipment in which you can in­
stantly receive bids or place your own goods on the block.

ColorCenter™
http:/ jwww.hidaho.com/ colorcenter/ cc.html

Figure 1.1 The ColorCenterTM, a javaScript-enhanced Web page.

Chapter 1 Cool StuffYou Can Do with JavaScript 7

This is the JavaScript color-choosing example we oh-so-subtly men­
tioned in the previous paragraph. As shown in Figure 1.1, Color­
Center enables its users to preview HTML link and background
color choices directly in the frame shown in the upper left-hand
corner of the browser window. Using the CodeCenter feature, you
can even cut and paste the HTML of a page you're currently working
on and see how it might look with several color and background
pattern treatments. Although the interface is a bit complicated, the
usefulness of this application for previewing color choices should be
clear to anyone who has ever scratched his head, wondering what
the hexadecimal code for a certain shade of chartreuse might be.

SuperSearch
http:/ jwww.wineasy.se/robban/ss.htm

Figure 1.2 The SuperSearch site combines seven ofthe Net~s top
search sites.

8 J avaScript for Macintosh

Even if you've browsed the Web only once, odds are you've visited
at least one site that offers a comprehensive, searchable index of
millions of existing Web sites . The only trouble is, each one uses
somewhat different methods of cataloging Internet content, and so
the same search can often produce different results at different
sites. Thus, to really know what's available out there on the topic
of, say, JavaScript, you need to visit each site, type your keywords,
and start exploring the results.

Robban's SuperSearch is an excellent solution for reducing the
amow1t of travel you need to make between Lycos, Yahoo, Excite,
and others. We consider it a JavaScript application because it acts as
a middleman between you and several search engines. Type your
search keywords, select which search sites you want to scour, and
watch the results from each search engine appear in frames on the
right-hand side.

HTMLjive
http:/ / www.cris.com/ - raydaly / hjdemo.shtmJ

Nehc~e: HTM lue Demo - HTML Editor In Jauasu1pt ~ ...

¢0~~ ~~~~.SJ!XIj =:! jgj
tMttloaljM~://,_.vV-rr¥t~U)Jilrljdtme...,..tm.r

~<\,-',[-·•....,!• - :J/,IiotOr""?L,.!l!:!!..J

HTMLjive
IJJlU41Nii&HTMLectim· wtitltniaJ~t.Youl'INICINt~1.00totJ:.tau!lptti:IIIIJ......:ripl
brwst2'1il\o:dnto._ Jt'J'Mijhe Tbilif&dtmooftbtedlsoTW •"ttt:n=l.21 SJ6.Ql.l)

~u!:~~~o:ncr:.:r~=.~~~·=:Ut:f~;.:.~=.a
~J' b:::orpcul.b lhitocdl WO rt..vWtb fMp eJ rGCWp wil:hU.peJlllilri:mofU.aa:tboJ

==~..==:.-to a.s..viooo-.Jy-"""0.:-. n;,

OWtJ~4t.,.utalloft'&&llblt Mtn. Hnn.jilecd"o.

-- -------
Pft-tl-'t u ntac.
.. l p rtt.t- : ~ :.~ 'B 5uph 0 Pr-olopt ftUI. ao4•:

~(@ ~ ~ ~
0CI:X@C§JQID@J@@J@)@@~
~ ~ ~® ~
~Do< r.

'"""'' (}
d'TTUocnnu~

•IIIW>•
tiOllb
' IJOll''t'~ c /UI:SL)

II

Figure 1.3 HTMLjive, an HTML editor written in JavaScript.

Chapter 1 Cool StuffYou Can Do with JavaScript 9

HTMLjive is a page that can truly stand on its own. This site offers
an HTML editor written entirely in J avaScript; although it pales in
comparison to full-featured editors, it is novel simply because we
have here Web content that can create more Web content. There's
something hideously organic about this. The author enables you to
save the source file for this page on your Macintosh; if you do this,
and open it with Netscape 2.0, you have an HTML editor that
works much like a stand-alone application-no network connection
needed to run it. HTMLjive only hints at the possibilities that so­
phisticated J avaScript (and, more likely, Java) can deliver directly to
your computer.

Worksheets, Lookups, and Calculators
Using JavaScript's computational capabilities on the end user's
machine only makes sense-if you fill out an HTML l 040 income
tax form, why should a remote senrer use a CGI script to compute
your tax when you've got a perfectly good Macintosh CPU sitting
right in front of you? Moreover, do you really want to send your
Adjusted Gross Income sailing across the Infobahn? Sites in this
category offer unique worksheets and models for solving mathe­
matical problems, both commonplace and arcane. Using JavaScript
to deliver customized calculators, what-if analysis worksheets, and
simple database lookup tables across a local network or the entire
Internet might be one of the easiest ways to learn the language and
still provide a dynamic, unique experience for your Web sites' users.

10 JavaScript for Macintosh

1040EZ Income Tax Return

http:/ /www.homepages.com/ fun/ l 040EZ.html

[II~ Neht ope:JouoScrlpl1040[2 ot Home Poqes. Inc:.~

~ ~!!l.§J~ _j II
~:J•np 11.,_~•-lt~IIO&Oat.t~l
....... _ ,, c: l _ , ,~_..,

1040HZ

lrw::ome Tax Return for Sln&ie and
Joint File" With No Dopondouts
1995

Ste Luawdtu •• brk l.NI lA r•m
JUetZ ... Idn

PreaUeiUW tfottl OIKhltt..,.i .. diX)fdwf'JOm
~:~ W.tor rdx•J«~r r.J...-1 Yrt No

(Serp~pll) Ooyot~..USJtopto tUt\md? 0 0

Incomt

A.nat•c.,ru
tHtlllll6)
W-2M~.

~j=l~doftytnfpCaM.uiSl 0 0

Figure 1.4 Uncle Sam) meet]avaScript: the 1040EZ Income Tax
R eturn.

Sure, the 1 040EZ is a pretty easy return as IRS forms go, but be­
cause authors can immediately update their Web pages' content,
wouldn' t an entire battery of forms online, available for download,
be the next logical step? Each form should be updated to also show
the latest IRS rules, deductions, exemptions, and, well, loopholes?
Hello, Intuit?

Chapter 1 Cool StuffYou Can Do with JavaScript 11

Mortgage Scenario Analyzer

http:/ jwww.homefair.com/homefair/ sept95/ fravrate.html

Ne·tscepe: Mortoe~a Stenerlo Anot,yzer

~~ ~l~lfil~~ ..J 11
"'-"'*'~"-"".MmthW' _,._,.~l,.,mlf'r•vr•I•Mml

.,....,_, -··-•! ,_ I,.,....., f,!"" .. ""'" - ... I

Mor1pp-~
~

n..,..ioponol"tllo~''""'

Up!Jiodvo-y~l.ll96

-. - -... - .. ,_._lit
lllaiiZ1Idaft

U.,.tW-1-.doloi>IJIIot_,_~.,.~,...-.nlo_.,

~-'!:!*~:'.::!!'21~!:!.-:'::rf(•••r.tb ,,.. Olra-.t~fbl• ~
l'lo&nm~.- ~ - - -s ~·rr ~ _... -,..., tor. - rr "" "" -lo»l 61S ID Jl·-~lr

""""'] ~p,: •JI'T 2 2

fu"l'lllt. " '·' ',., 2' ., 2 -p 2 '
-CIIob

y-'l" r......-. ••Ill

(ea..,.:.) - Ill

Figure 1.5 Buying a home? Try the Scenario Analyzer and wow
your banker.

Ifyou're a homeowner or planning to become one, one of the
trickiest aspects of the entire purchase process can be choosing the
right mortgage. Do I choose a fixed, adjustable, or 7-23 reset rate?
Tllis Web page offers a sophisticated yet simple blade for cutting
the homebuyer's Gordian Financing Knot. Access this site, plug in
some numbers, and run some what-if scenarios. It sure beats cor­
rectly entering tl1e formulas yourself in Excel.

12 J avaScript for Macintosh

Quarterback Passing Rater

http:/ /delta.com/prime.com/javaqbr.htm

A .-s Netnepe: Ouerterbect Pouer Retlng Calculator · JauaScr1pt •
~~~.~~ .!.] 11 
t.to.tiM ;E£1f ./lftl1 t _,,.._.e_,~·--~~tm 
.,....,.....,, ....... ,,.,.,1 ....,. I "''""'" I!'~ ........., I 

n.....,.-.ua.a.acat~to-• ... ,..,14.1~ - Quarterback Passer Rating Calculator 
~ 

QII'IICalnMo- ...,..,.._ 
:-.:.::::.:: .. :.e:..t!:.;tt":.t~:. ...... - A- 22 

loobwl!lon7boz--·--..-~~ ... ~-,, 

......-k..-.oawur~ .... .-·CJ<D1Dl 
"""""YIIdt "" rr,....,....,_.,_.,._"""' .... "'*-" Too:lrl;bnr· s ,. ... ~~ .......... ,... 

n.,...,.,.tw1 ....... ~ ~· 

I c:.nlou Rwc) 

' 
: Ootl!OthtroJIC r ... • 

• l~.,._, MIU 

•! Yoltp..A~ ..... 
•1T..,.._,P._J ...... 
· ~Ptlc:nf~ IIIIU 

.l Ql-~~ 
"'----... .. - il 

Figure 1. 6 Armchair quarterbacks, unite! R ate Troy, Steve, 
Warren, or Brett JVith stats from the Monday morning 
spo1·ts page. 

It was only a matter of time before sports fans realized the Net is a 
great place to both transmit and analyze their favorite athletes' sta­
tistics. With JavaScript, making and displaying calculations are rela­
tively straightforward tasks. An interesting extension of this site 
might involve buttons that download the necessary passing statistics 
from ESPNet SportsZone for all the NFL quarterbacks who played 
on a given Sunday. 



Chapter l Cool StuffYou Can Do with JavaScript 13 

Subtly JavaScript-Enhanced HTML 
Ahh, the art of being discreet . If you can use JavaScript to quietly 
improve tl1e appearance and performance of a typical HTML site, 
why not do just that~ The sites in tltis category don't take forever 
to transmit, and look for the most part like ordinary Web pages 
(whatever those might be). But JavaScript is in the details, friends . 

Mr. Rodgers' World of World Geography 
http:/ jwww.millcomm.com/ - bar/l rodgers.html 

nil __ ... .,.... .. .....,..,, -CIIdl-•pt-

Figure 1.7 Is this the future of junior high education? 

Clearly, Mr. Rodgers wants the kids in his classroom to be well­
informed, wired, and wise about tl1e world. (Our apologies, but we 
have an alliteration quota to fill. ) His home page offers everything 
you ntight need to keep up in his class as a student or look in on his 
methods as a parent. The subtle JavaScript at work here is the 



14 J avaScript for Macintosh 

scrolling marquee in the status area of the Netscape window-see it 
down there on the bottom? Apparently, Mr. Rodgers is pleased that 
a recent school district bond levy passed. Scrolling marquees like 
tl1is one are a neat way to draw the user's attention using motion 
and to highlight late-breaking information. Keep the marquee mes­
sage short, though, or risk quickly losing users' attention. 

The WWW Speedtrap Registry 

http:/ /www.speedtrap.com/speedtrap/ java-index.html 

THE WWW Speed trap Registry 

~~~~~~ rw' United States N·Z 

~.!)aM. foreign t-::====::iiili!ll
Submit Traps t-
Credlts
PubllcH

Figure 1.8 Keeping one step ahead ofthe laWy state-by-state.

The popular Speedtrap Registry helps leadfoots in 50 states avoid
known radar traps, although, according to its author, "This page is

· not meant to be an effort to undercut the efforts of police to con­
trol motorists' speeds on dangerous roads." Regardless of your
stance on its First Amendment rights, as a user you will be pleased
by its simplified navigation structure, thanks to JavaScript. In the
old version of the Registry, you had to choose your state from a list
of 50 links on one page; that's a lot ofvertical scrolling to reach
Wyoming. The JavaScript-enhanced version simply subcategorizes

Chapter 1 Cool StuffYou Can Do with JavaScript 15

them using the pop-up menu at the bottom center of the page,
splitting the states A-M and N-Z. Forms for submitting new traps
and other feedback also are accessible through this menu. Simply
click Select and you're taken to the form of your choice.

Dave's Tekno Dive
http:/ jwww.well.com/ user/tcircus/Dave/

What is your nm name? r--- (ReP•• I
No reconl or you •1slti11a In last38 days.

Yoa're"intornurber ,,,,,,,,.

Figure 1.9 Dave)sgot ahold of your cookie. Ouch!

Although there's not much subtlety in Dave's design aesthetic, his
use ofJavaScript to personalize your visit to his home page is some­
thing you should expect to see a lot more often. Using a Netscape
feature called a cookie, Dave can tell whether you've visited his site
before and potentially present customized content to you when you
visit. Using his Control Panel, you can even set the background
color for his page to your liking. You'lllearn how to use tl1e cookie
in Chapter 7, "The Form, History, and Document Objects."

16 J avaScript for Macintosh

Summary
In this chapter you've been given a sampling of what's possible
with JavaScript. Hopefully you noticed a pattern here: most of
these sites' authors are mere mortals who've seen the potential of
JavaScript and realized their vision in a Web site that works. Just
like you, they were interested in what scripting could do to improve
their content and more important, the users' experience while at
their site. Keep the potential user in mind as you read through this
book; you might think of something really technically challenging
to do with J avaScript, such as 16 floating tool bars with flashing
clocks and animated GIF images on each one, but what about the
user who hits your site with a 14.4 modem?

The following chapters introduce you to J avaScript syntax, proce­
dures, and structure. Your left brain will eat it up. The purpose of
this chapter and the Web surfing you're sure to do on your own is
to build a well-balanced JavaScript brain: what the creative right­
side can do with the left-side knowledge ofJavaScript.

CHAPTER

Introduction to the Java Family
Welcome to the Java language family. The Java family is comprised
of Java, Sun Microsystems' development environment and lan­
guage, and JavaScript, an HTML (HyperText Markup Language)
scripting tool developed by Netscape. These two languages support
the development of dynamic content for the World Wide Web, and
are built into the Netscape Navigator 2 .0 browser (with full Java
support expected in the 2.1 release for Macintosh). Because you are
reading this book, you are obviously interested in what Java can do
for you, and what it can do for your Web presence. In short-and
forgive the melodramatics-the Java fami ly brings your Web pages
to life. Whether by means of a Java applet or a JavaScript function,
many static, CGI script-based HTML pages arc being replaced by
pages that provide dynamic content and can automatically react to
the user actions on the client side without reverting to server-side
scripting.

The World Wide Web (WWW) is one of the fastest growing media
for the transfer of multimedia information between computer users
in homes, schools, businesses, and governments across the globe.
What was even a year ago an arcane subject reserved for techno­
gurus is now almost universally advertised. Many newspaper, maga­
zine, and television ads now include WWW Uniform Resource
Locators (URLs) for business home pages. With this increase in
commercial usage comes the demand for more sophisticated pre­
sentations. The day of the text-based terminal is over. Full-motion
video and interactive virtual reality with stereo sound are the holy
grails sought by Internet-savvy companies these days. Much

18 J avaScript for Macintosh

development work also is geared toward standardizing such media
protocols as VRML and MPEG II. In the midst of the fray comes
Java-a new programming language that promises to make much
of the potential of the Internet a little closer to reality.

The following sections provide a brief synopsis and comparison of
HTML, J avaScript, and Java, including what they bring to the Web
and how they compare with each other. These languages comprise
an entire package for developing dynamic, interactive Web content­
from the page layout to the scripting of events and execution of
full-blown applications. Although this book presents JavaScript to
the new programmer who uses Macintosh computers, having this
background will help you understand the larger importance of Java
to multi-platform Internet content development, and make you
sound more authoritative at water cooler bull sessions.

Netscape Navigator 2.0, with its integration of Java and JavaScript,
provides a unified environment for dealing with the problems of
creating dynamic client-side HTML pages. Therefore, in addition
to discussing language specifications for writing programs in Java
and JavaScript, this chapter discusses specific implementation details
of these languages in Netscape Navigator 2.0 and how these fea­
tures relate to running Java applets and JavaScript scripts.

The World Wide Web and HTML
The World Wide Web and HTML are a subset of the global net­
work widely known as the Internet. The Web is popularly viewed as
being synonymous with the Internet, because it is the most fre­
quently used Internet protocol. In actuality, however, it is only one
of many protocols used to deliver information over the Internet. A
protocol in Internet terms is an agreed-upon format for transmitting
information. Protocols specify the exact format of the data and how
it is transmitted. Examples of such protocols are FTP, Gopher,
HTTP (the World Wide Web), and email. To understand the role
of J avaScript and Java as client-side execution languages, it is also
important to understand the HTML protocol and the way it relates
to the formatting and presentation ofWeb pages in a browser.

Chapter 2 Introduction to the Java Family 19

HTML is the first thing with which a Web developer should be
thoroughly familiar when learning how to create a WWW presence.
It is beyond the scope of this book to cover the entire HTML lan­
guage in depth; therefore, if you don't already know how to create
HTML pages, it is imperative that you pick up a cotnprehensive
HTML book-such as The World Wide Web Design Guide by Hay­
den Books-and study it before attempting to take on J avaScript or
Java. This book will, however, show you examples of how the
HTML elements work whenever there is an instance in which Java­
Script interacts with the HTML language. If you are familiar with
HTML, you might already be acquainted with some of the follow­
ing introduction to the Internet. Those of you who are unfamiliar,
on the other hand, might be interested in the historical background
of the Internet, World Wide Web, and HTML.

History of the Internet
In 1957, the U.S.S.R. launched the Sputnik satellite, much to the
surprise of the U.S. government. Hoping to close the gap in the
space race, the U.S. government created ARPA-the Advanced
Research Projects Agency. The purpose of this agency was to
research advanced technologies that were too risky for private
enterprise to undertake, but were seen to be important steps in a
technology-driven time. In 1969, the Department of Defense com­
missioned the ARPAnet to be created for research into networking
protocols. Early on, it was realized that this network of computers
would need a standardized protocol, so the TCP /IP protocol was
created in 1973 to fulfill this need. This is the same protocol that
still drives the transport of information over the Internet.

TCP/IP, or Transmission Control Protocol/Internet Protocol, is
a collection of protocols that enable different networked platforms
to interchange information. In today's computing environment,
the hardware-based standard for routing network data is Ethernet;
however, when TCP /IP was developed, there was no standard
for networked computers. TCP /IP is considered a hardware­
independent protocol that is carried along on top of whatever
hardware-based protocol is being used. This means that you can
use Ethernet, ATM, or whatever new hardware methods for trans­
mitting data that are in use, or might be developed.

20 JavaScript for Macintosh

However, it wasn't the standardization of the protocol that popu­
larized TCP /IP. In 1983, the University of California at Berkeley
released a version of its UNIX operating system that incorporated
the TCP /IP protocol. Because UNIX was running on many of the
computers connected to ARPAnet, the TCP /IP protocol became
the de facto standard for connecting to the ARPAnet. It is interest­
ing to note that this scenario is very similar to the current relation­
ship between Java and Netscape. Alone, Java might be a difficult
sale, but by Netscape's inclusion of the Java run-time engine in one
of the World Wide Web's most popular browsers, developers and
supporters of the language have a guaranteed potential audience.

In 1983 there were 500 Internet hosts. In 1986, the National Sci­
ence Foundation entered the fray by creating NSFnet, a backbone
running at 56 Kbps that spanned five supercomputing centers
around the country. By the end of the year, there were 5,000 Inter­
net hosts. In 1989, with more than 100,000 hosts on the Internet,
NSFnet was upgraded to a 1.5 Mbps T1 line. The next year, the
role of the Advanced Research Projects Agency in the Internet was
finished and ARPAnet ceased to exist, with all of its functionality
being subsumed by the larger NSFnet and Internet in general. What
was once a purely academic research project was now suddenly the
next Big Thing on college campuses and large corporations.

NOTE Although it:tool<20yea.rs for the original ARPAnet to r~~c;h the'
1,000,000hoSts·markin·1·992,withinoneyearofreachingthat
mark the numb~rof:'Hc>sts dqubl~d.

By 1992 there were more than 1,000,000 hosts on the Internet,
and it was just beginning its meteoric rise. By the end of 1994, the
Internet had more than 4,000,000 hosts connected, and in 1995,
the NSF decommissioned the NSF net. The role of the government
in starting this fledgling technology was over, and private industry
was expected to take up the slack. In March of 199 5, the official
number of com, or business addresses passed that of edu, or educa­
tional addresses for the first time, signaling the true beginning of a
commercial model for the future of the Internet.

Chapter 2 Introduction to the Java Family 21

Development of the WWW

When the Internet began, it was widely perceived as an arcane
and mysterious network useable only by UNIX gurus and the
technically inclined. In many cases this was true. The protocols and
commands were a dizzying array of cryptic codes for sending bits
of information this way and that. However, there were attempts at
making the Internet more useful, and applications such as email
and ncwsgroups increased the everyday use of the Internet by non­
technical users in the early eighties. Of course, these applications
were all passive-the files being transmitted were static documents
or images that were set once by the creator and typically did not
change that often without significant work. The email file was just
an electronic version of a letter, and newsgroups were simply elec­
tronic bulletin boards. As more and more users began to get onto
the Internet, the demand for more and more useful programs grew.

In 1990, Tim Berners-Lee, from the European particle research
laboratory CERN, developed a protocol for delivering different
types of files over the Internet using a common protocol. This pro­
tocol was the beginning of the World Wide Web. At that time, the
Web still had a text-based interface, and while popular, it didn't
become the major force it is today until the National Center for
Supercomputing Applications (NCSA) in Illinois developed a
graphical interface for the Web. This interface was known as
Mosaic.

Almost overnight the Web became the golden child of the Internet.
It was impossible for Net surfers not to be swept away by its for­
matted text and fancy graphics-a far cry from what the Internet
had been just a few years before. The text-based commands were
gone; in fact, the command prompts themselves were gone! It was
simply point, click, and poof, there it was-like magic. Of course, it
wasn't exactly magic under the hood. Pretty soon, Web authors
were incorporating more than just GIF images or audio files, and
when they got away from the files that the browser could handle,
browser users were forced to search the Net for a program that
could display the latest cool media on their computer platform,
often finding out that their operating system wasn't supported.

22 J avaScript for Macintosh

Despite these inconveniences, navigating the Web with Mosaic or
one of the many other graphical browsers was worlds easier than it
was before, and browser developers were constantly including more
functionality for all platforms. Even though it was just point and
click, the end user's mouse-clicking finger was still the most dy­
namic part of the system. The content provided was still as passive
and static as ever-it was just getting easier to make it appear where
you wanted it.

Features of the HTML Language
The new language that drove the World Wide Web's growth was
the HyperText Markup Language (HTML). This language is a
series of tags and directives inserted into a plain text file. These tags
and directives indicate how the elements of the page are to be dis­
played. With HTML, you can do the following:

0 Create platform-independent documents

0 Create links to other documents on the Internet

0 Include graphics and multimedia

0 Link to additional resources on the Internet

The first and most important feature of the World Wide Web and
HTML is that both are platform-independent. This means that the
designer of the Web page can create one file that will work on all
the PCs, Macs, and UNIX computers attached to the Internet.
Because of the heterogeneous nature of the Internet, this feature
was of primary importance. Because Web authors could not be sure
what computer their file would be displayed on, depending upon
platform-specific implementations would be too burdensome.

The ability to link to other documents is where the term hyper
comes into play. Hypertext refers to the ability to create links in a
document that send the reader to related information at the push
of a button. This nonlinear approach to document design is in­
tended to aid learning and increase interest in a subject by allowing
readers to follow the paths they prefer, instead of relying upon the
linear approach that has dominated text since the advent of writing.

Chapter 2 Introduction to the Java Family 23

In addition to displaying standard text in the browser window,
HTML provides methods for including digitized media such as
sounds, images, and movies. In addition, Netscape provides the
capability to embed additional programs inside the browser window
so that it can display more advanced media such as VRML and
Shockwave Director files. By doing so, the HTML file is able to
extend its functionality beyond the mere text representation used to
create the HTML files.

The HTML language also can implement any new protocols that
are added in the future. Because it uses a text tag format, any new
tag can be ignored by a browser when it cannot handle it. This
feature enables different Internet protocols to be called in the
HTML file, thus adding to the extensibility of the language.

HTML has proved to be a highly extensible and versatile language
for creating documents and presentations over the Internet. When
HTML was first created, the Internet and the World Wide Web
were still text-based, and many of the first Web browsers were text­
only programs such as Lynx. In fact, in many pages you can see a
"text only" link that enables users of these types of browsers to
view HTML files that don't depend upon visual media such as im­
age maps. It wasn't until Marc Andreessen, who later went on to
start Netscape with Jim Clark, developed Mosaic at the NCSA that
the Web was seen as a graphical medium. For a language to make
the transition from simple text files to complex multimedia presen­
tations, as HTML has done, is certainly a feat.

Today, there is less reliance on text as the principal content in Hy­
perText Markup Language documents. Sure, the tags and directives
are still there to tell the browser how to display the page, but they
are more often displaying pictures, playing animation, or calling up
an embedded, in-line program such as WebFX or Macromedia's
Shockwave. However, even as complicated as modern Web pages
can get, they are still created with the text-based HTML language
that was used to create the relatively simple pages that got the
WWW off the ground.

24 JavaScript for Macintosh

Hello, Worldl Page in HTML
Since the publication of Kernighan and Ritchie's C Programming
Language book, a little program known as Hello, World! has been
used to introduce individuals to new programming languages. In
that tradition, as HTML, Java, and JavaScript are introduced, Hel­
lo, World! will be used in this book to show you how each language
differs and how each compares. In the case of the version of the
Hello, World! program in this text, a few extras will be added to
further display the features of each language.

HTML works by telling the client browser, such as Netscape or the
Microsoft Internet Explorer, how to display text, inline images,
sounds, and other sundry file types that browsers and their helper
applications now support. HTML performs this magic by using
tags. Because you are most likely familiar with developing HTML
pages, the details of how these tags work should not be necessary.
Suffice it to say that these tags are interpreted by the browser and
instruct it how to display the page for the end user. The following
code is a simple HTML page that displays the words "Hello,
World!"

<HTML>
<TITLE>Say Hello:</TITLE>
<BODY>
Hello, World!

<HR>
Send me some mail:

</BODY>
</HTML>

This file can be found on the CD-ROM in the Html subfolder of
the JavaScript folder as Hello, World!.html. In Netscape 2.0, you
should see what is shown in Figure 2 .1.

Chapter 2 Introduction to the Java Family 25

Netscepe: Sou Hello:

~~ Cli!al;alai~X~I _j • 11
t..liDfl l

""''''"'•'I .,...,...,,1 ._ I ""'""" I"""""""] .. , • .,.. I

Figure 2.1 The Hello) World! program as an HTMLfile.

This short little program demonstrates each of the four main fea­
tures of the HTML language that were previously discussed:

0 It is portable.

0 It uses media other than text.

0 It links to another site on the Internet.

0 It invokes a non-World Wide Web protocol.

The first thing this HTML file proves is that HTML is completely
portable. This book will return to this issue again and again in deal­
ing with technologies that will direct the future of the Internet. It
is essential that these technologies be able to run on the diverse

26 JavaScript for Macintosh

platforms that are available to users and that are connected and
running on the Internet. Such is the case with HTML files. Files
are saved in a standard ASCII format that is portable across all
computer and operating systems. The tags themselves are defined
by an international committee, and as long as you stick to their
specifications, you can be confident that your document will display
properly on any platform that implements the correct browser stan­
dards. If, as in the case of J avaScript and Java, you are not using the
standard tags that all browsers are expected to handle, there are
methods this book covers later that hide from unequipped browsers
newer elements such as scripts and applets.

NOTE It is important to keep iri mind individuals who don,t have the
means to view or execute the latest protocols and design your
Web page with them in mind, whether you are inserting JPEG
images, VRML worlds, or JavaScript programs.

Second, the Hello, World! HTML file brings in two images from
the /images folder and tells the browser to display them in the
document. In other words, the file deals with multiple media, and
has the capability to direct browsers how to display them. It is im­
portant to notice that in the case of the HTML language, you need
know nothing about the actual image itsel£ HTML defines only
how to display the image, and depends upon the browser to under­
stand the niceties of decoding GIF images and actually displaying
them. In fact, the HTML language doesn't deal with the data at
all-it simply indicates where the files can be found. You will see
later on that the Java language overcomes this limitation and can
actually perform the data manipulation and display that is required
for more complex behavior such as image drawing. You will also see
that JavaScript falls somewhere between the HTML and Java lan­
guages. J avaScript is actually more akin to the scripting qualities of
HTML, although it retains the capability to call upon a more ad­
vanced programming syntax. At the same time, however, JavaScript
is unable to implement Java's more advanced low-level behavior,
such as direct display drawing.

Chapter 2 Introduction to the Java Family 27

The Hello, World! program also illustrates a third point about
HTML. When you look at the Hello, World! page in your Web
browser, you may notice that the Hello, World! words are high­
lighted. You should be familiar with the hypertext link that takes
viewers to another location on the Web. This location could be a
target in the same page, a new page on the current page's server, or
a completely different site altogether. By using Uniform Resource
Locators (URLs), HTML can dictate any file in the Web as a target
as long as the file is accessible through the Internet. This is the
hypertext portion of HTML.

J avaScript and Java both use tags similar to the HTML's HREF
and IMG tags to indicate files to load into the browser. In the case
of Java, these files are compiled programs-called classes in Java
parlance-which load and then run on the client machine. In future
releases J avaScript will have a similar option for loading scripts by
using a URL. The ability to load scripts from the server and exe­
cute them on the client machine is a major element in the distribu­
tion of these new technologies. Instead of having the executable
programs or scripts either running on another computer with the
results being sent to you (as is the case with CGI scripts), or already
existing on the client and running there, the Java and J avaScript
files can be brought to the client over the Internet dynamically, and
then executed locally.

Finally, in the case of the Hello, World! program, there are two im­
ages. The planet is a stand-alone image, while the mailbox is a link
to send an email message. The HREF tag used to send the email
message does not use the HTTP protocol, which is the transport
method used by the World Wide Web. Instead, if you are using a
mail-enabled browser such as Netscape, a mail composition window
appears, and you can send an email to the address indicated.
This email message is then transported using the traditional email
methods without using the HTTP protocol that runs the Web. This
process keeps HTML from becoming overburdened with "feature­
iris," as some refer to the ever-increasing size and functionality of
modern applications. There was no reason for HTTP to implement
its own mail system-it had one in place it could easily use. In many

28 JavaScript for Macintosh

ways this economy of features sums up the entire philosophy of the
HTML language-keep it simple and platform-independent. The
syntax itself is built around directing the display of many different
media without regard for implementation-specific issues.

The Java Language
In April 1991, a small group of Sun employees moved off campus
to Sand Hill Road, breaking direct LAN connection and most com­
munication with the parent company. Settling on the name Green
for their project, work began on what they considered a move into
commercial electronics. In May 1995, Sun officially announced
Java and HotJava at Sun World '95. Over this four-year period, the
Green group moved through consumer electronics, PDAs, set-top
boxes, and CD-ROMs to emerge with a product that is the most
likely contender as the ubiquitous programming language of the
Internet in the next decade. What follows is a history of how the
Java language came to be.

When the Green group was first envisioned as a foray into selling
modern software technology to consumer electronics companies, it
was realized early on that a platform-independent development en­
vironment would be needed. The public was not interested in what
processor was inside their machines, as long as it worked well; in
other words, developing for a single platform would be commercial
suicide. James Gosling began Green's work by attempting to extend
the C++ compiler, but soon realized that C++ would need too much
work for it to succeed. Gosling then proceeded to develop a new
language called Oak. The name came to Gosling when he saw a tree
outside his window as he was entering the directory structure for
the new language. After failing a trademark search, however, the
name came to be known as Java.

Originally, four elements-Oak, an operating system known as the
GreenOS, User Interface, and hardware-were put together into a
PDA-like device known as *7 (star seven), named for the telephone
sequence used to answer any ringing phone from any other in the
Sand Hill offices. The small handheld device was good enough to

Chapter 2 Introduction to the Java Family 29

impress Sun executives, but they were uncertain what the next step
should be.

The technology in *7 was at first envisioned by the Green team as a
marketable product that could be sold to consumer electronics
manufacturers who would place the company logo on the front of
boxes: a similar concept to what Dolby Labs had been doing for
years. However, in early 1993 the Green team, now incorporated as
FirstPerson, Inc., heard that Time-Warner was asking for proposals
for set-top box operating systems and video-on-demand technol­
ogy. These boxes would be used to decode the data stream that
entertainment companies would be sending to consumers all over
the country for display on television sets.

Ironically, at the same time FirstPerson heard about and began to
focus on the set-top box market for interactive television, NCSA
Mosaic 1.0, the first graphical Web browser, was released. Even as
the Green technology was being developed for one market-set­
top boxes-the field in which it would gain the most acceptance
was just getting started itself. The Web had, of course, been around
for several years by this time, developed at CERN by Tim Berners­
Lee in 1990. Up to this point, however, the Web still retained the
text-based presentation, which reminded people too much of
UNIX and DOS. NCSA's Mosaic "prettied" the face of the Inter­
net by enabling graphics and text to be merged into a seamless
interface from what had been a cryptic and confusing system of
protocols and commands.

Java and the Web were both developed at the beginning of the
decade, an ocean apart. It would take another three years for the
potential of the Web to be realized in Mosaic, and another two years
before Java was made available to the wider Internet community.

At the time of Mosaic's release, FirstPerson was bidding on the
Time-Warner TV trial, where hundreds of homes would be fitted
with experimental video-on -demand hardware for testing. In June
1993, Time-Warner chose Silicon Graphics, Inc. over Sun. By early

30 J avaScript for Macintosh

1994, after a near deal with 3DO fell through, and no new partners
or marketing strategy were forthcoming, FirstPerson 's public
launch was canceled. Half of the staff left for Sun Interactive to
work on digital video servers and FirstPerson was dissolved. How­
ever, with the remaining staff, work continued at Sun on applying
FirstPerson's technology to CD-ROM, online multimedia, and
network-based computing.

At the same time that FirstPerson was losing the race for interactive
television, the World Wide Web was winning the bandwidth race
on the Internet. There was no doubt about it-the Web was big
and getting bigger. In September 1994, after realizing the potential
of Oak and the World Wide Web, Naughton and Payne finished
WebRunner, later to be renamed HotJ ava. Soon, Arthur Van Hoff,
who had joined the Sun team a year before, implemented the Java
compiler in Java itself, where Gosling's original compiler had been
implemented in C. This showed that Java was a full-featured lan­
guage, and not merely an oversimplified toy.

Java took four years, and an evolution of purpose, to make it into
the Internet mainstream. With Netscape Communications, maker
of the popular Web browser Netscape Navigator, incorporating Java
into its software, along with Java's potential in future applications
such as intelligent agents and artificial intelligence, it is almost cer­
tain that Java is destined to be the most overarching technology of
the Internet in the next decade.

Of course, Java's debut on the Internet is not the end of the Java
mission. Sun sees Java's success on the Internet to be the first step
in employing Java in interactive television set-top boxes, hand-held
devices, and other consumer electronics products-exactly where
Java began four years ago. Its portable nature and robust design
enable it to be used for cross-platform development in competitive
and unforgiving environments such as consumer electronics.

Chapter 2 Introduction to the Java Family 31

Features of the Java Language
The Java language (including JavaScript) changes the passive nature
of the Internet and World Wide Web by allowing platform­
independent code to be dynamically loaded and run on a heteroge­
neous network of machines, such as the Internet. Java provides this
capability by incorporating the following features into its architec­
ture. These features make Java a promising contender for being the
major protocol for the Internet.

0 Portable. This means that it can run on any machine that has
the Java interpreter ported to it. This is an important feature
for a language to be used on the Internet, where almost any
type of computer could be sitting at the receiving end of an
Ethernet connection.

0 Robust. The features of the language and run-time environ­
ment make sure that the code is well behaved. This comes
primarily as a result of the push for portability and the need
for solid applications that won't bring down a system when a
user accesses a home page with a small animation.

0 Secure. In addition to protecting the client against uninten­
tional attacks, the Java environment must protect it against
intentional ones as well. The Internet's law-abiding develop­
ment community is all too familiar with Trojan horses, viruses,
and worms created by a few outlaw programmers with mali­
cious intent.

0 Object-oriented. The language is object-oriented at its founda­
tion, and allows the inheritance and reuse of code both in a
static and dynamic fashion. This news should excite the sea­
soned programmers among you.

0 Dynamic. The dynamic nature of Java, which is an extension
of its object-oriented design, allows for run-time extensibility.

0 High performance. The Java language supports several high­
performance features such as multithreading, just-in-time
compiling, and native code usage.

32 JavaScript for Macintosh

0 Easy. Because the language itself could be considered a deriva­
tive of C and C++, it is familiar to developers who currently
use those languages. At the same time, the environment takes
over many of the trickier tasks from the programmer, such as
pointers and memory management. This point should further
excite experienced, war-weary developers.

The job of providing dynamic content for the Internet is daunting,
but the protocol that succeeds will become as universal as email or
HTML is today. Java is the likeliest candidate so far to become just
this protocol.

Java Is Portable
The Java programming language provides portability in several
ways, including the following:

0 The Java language is interpreted. This means that every com­
puter it wants to run on must have a program to convert the
Java codes into native code that particular machine under­
stands.

0 The Java language does not allow a particular machine to
implement different sizes for fundamental types, such as inte­
gers or bytes.

By executing in an interpreted environment, the Java code does not
have to conform to any single hardware platform. The Java compiler
that creates the executable programs from source code compiles for
a machine tl1at doesn't exist-the Java Virtual Machine. The Java
Virtual Machine is a specification for a hypothetical processor that
can run Java code. The problem with traditional interpreters has
always been their performance, or rather their lack of it. Java
attempts to overcome this by compiling to an intermediate stage,
converting the source code to bytecode, which can then be effi­
ciently converted into native code for a particular processor.

Chapter 2 Introduction to the Java Family 33

In addition to specifying a virtual machine code specification to
ensure portability, the Java language also makes sure that data takes
up the same amount of space in all implementations. C program­
ming language data types, on the other hand, change depending
upon the underlying hardware and operating system. For example,
an integer that occupied 2 bytes on a 68 KB Macintosh now takes
up 4 bytes in PPC environments. The same problem exists across
processor platforms, where some computers like the DEC Alpha
are 64 bits, while others such as Intel's 486 are only 32 bits. By
creating a single standard for data size, Java makes sure that its pro­
grams remain hardware-independent.

These are some of the features that make Java capable of running
on any machine for which its interpreter is ported. This way, once a
single application has been ported, the developer and user have the
benefit of every program written for Java.

Java Is Robust
The Java environment is robust because it gets rid of the traditional
problems programmers have with creating solid code. The Java
inventors looked at extending C++ to include the functionality
required by a distributed program, but soon realized that it would
be too problematic. The two major problems in making C++ a
portable program are its use of pointers to directly address memory
locations and its lack of automatic memory management. These
features enable the programmer to write code that is syntactically
and semantically correct, and yet still proceeds to crash the system
for one reason or another. Java, on the other hand, ensures a robust
environment by eliminating pointers and providing automatic
memory management.

Because the whole point of the Java programs is to be able to load
and run automatically, it would be unacceptable for one of those
applications to have a bug that could bring down the system by
writing over the operating system's memory space, for example.
For this reason, Java does not employ the use of pointers; a pro­
grammer cannot employ pointer arithmetic to move through mem­
ory. Additionally, Java provides for array bounds checking so that a
program cannot access memory space not allocated to the array.

34 J avaScript for Macintosh

NOTE

Java provides automatic memory management in the form of an
automatic garbage collector. This garbage collector keeps track of
all objects and references to those objects in a Java program. When
an object has no more references, the garbage collector tags it for
removal. The garbage collector runs as a low priority thread in the
background and clears the object, returning its memory back to the
pool either when the program is not using many processor cycles or
when there is an immediate need for more memory. By running as
a separate thread, the garbage collector can provide the ease of use
and robustness of automatic memory management without the
overhead of a full-time memory management scheme.

Java Is Secure
The necessities of distributed computing demand the highest levels
of security for client operating systems. Java provides security
through several features of the Java run-time environment.

0 A bytecode verifier

0 Run-time memory layout

0 File access restrictions

When Java code first enters the interpreter, before it gets a chance
to run, it is checked for language compliance. Even though the
compiler generates only correct code, the interpreter checks it again
just to make sure, because the code could have been intentionally
or unintentionally changed between compile time and runtime.

The Java interpreter then determines the memory layout for the
classes.

The class is Java's basic execution unit-equivalent to an object in
object-oriented programming parlance.

Chapter 2 Introduction to the Java Family 35

This means that hackers (the "outlaw programmers" I referred to
previously) cannot infer anything about what the structure of a
class might be on the hardware itself and then use that information
to forge accesses. Additionally, the class loader places each class
loaded from the network in its own memory area.

Even then, the Java interpreter's security checks continue by mak­
ing sure that classes loaded do not access the file system except in
the specific manner they are permitted to do so by the client
browser or end user. Altogether, this makes Java one of the most
secure applications for any system. Although site administrators
may squirm in their Steelcase seats at the idea of programs fresh off
an Internet site automatically loading and running on their net­
work's computers, the Java team has made every effort to assure
administrators that their worst fears, such as an especially effective
virus or Trojan horse, will never become reality.

Java Is Object-Oriented
Java's most important feature is that it is a truly object-oriented
language. The Java designers decided to break from any existing
language and create one from scratch. Although Java has the look
and feel of C++, it is in fact a wholly independent language, de­
signed to be object-oriented from the start. This independence
provides several benefits, including the following:

0 Reusability of code

0 Extensibility

0 Dynamic applications

Java provides the fundamental element of object-oriented program­
ming (OOP)-the object-in the class. The class is a collection of
variables and methods, or functions, that is a self-contained blue­
print for an object. This means that once the class has been created,
it can be used as a template for creating additional classes that pro­
vide additional functionality. For example, a programmer might

36 JavaScript for Macintosh

create a class for displaying rectangles on the screen, and then de­
cide that it would be nice to have a filled rectangle. Instead of writ­
ing a whole new class, the programmer can simply direct Java to
use the old class, with a few extra features (often referred to as a
"subclass"). In fact, the programmer can do so without even having
the original source code.

After a class has been created, the Java run-time environmental­
lows for the dynamic loading of classes. This means that existing
applications can add functionality by linking in new classes that
encapsulate the methods needed. For example, you might be surf­
ing the Net and find a file for which you don't have a helper appli­
cation that will display it. Today, you would most likely use your
favorite search engine to pinpoint an application that could display
the file. A Java browser, on the other hand, can ask the server with
the file for a class that can handle the file, dynamically load it in
along with the file, and display the file without ever missing a step.

Java's High Performance
Typically the cost of such portability, security, and robustness is a
loss of performance. It is unreasonable to believe that interpreted
code can run at the same speed as native code; however, Java has a
few tricks that reduce the amount of overhead significantly.

0 Built-in multithreading

0 Efficient bytecodes

0 Just-in-time compilation

0 The capability to link in native C methods

One way Java overcomes the performance problems of traditional
interpreters is by including built-in multithreading capability. It is
rare for a program to constantly be using up CPU cycles. Instead,
programs must wait for user input, file, or network access. These
actions leave the processor idle in single-threaded applications. In­
stead, Java uses this idle time to perform the necessary garbage
cleanup and general system maintenance that causes interpreters to
slow down many applications.

Chapter 2 Introduction to the Java Family 37

Additionally, the compiled Java bytecodes are very close to machine
code, so interpreting them on any specific platform should be very
efficient. In cases where the interpreter isn't going to be enough,
the programmer has two options: compiling the code at runtime to
native code, or linking in native C code. Compiling at runtime
means that code is still portable, but there is an initial delay while
the code compiles. Linking in native C code is the quicker of the
two, but places an additional burden on the programmer and re­
duces portability.

Java's Ease of Use
Finally, the Java language is relatively easy for an object-oriented
environment, while JavaScript is as easy as any full-featured, proce­
dural programming language, such as BASIC. The Java language is
simple and effective because of its well-thought-out design and
implementation. The three most important elements that make it
an easy language to use are as follows:

D It should be familiar to many developers because it is fash­
ioned after C++.

D It eliminates problematic language elements.

D It provides powerful class libraries.

Java is consciously fashioned after the C++ language, providing a
look and feel that many experienced programmers are comfortable
with. At the same time, Java eliminates difficult and problematic
elements of C++ such as pointers and memory management. This
means that programmers can spend less time debugging and more
time developing functionality. Java also has a powerful set of class
libraries that provide much of the basic functionality needed to
develop an application quickly and effectively.

Hello, World I as a Java Applet
As you have read, the Java language is a far cry from the limitations
ofHTML. Java is a full-fledged language in its own right, and can
provide capabilities unavailable to plain old HTML. The following

38 JavaScript for Macintosh

source code implements the Hello, World! program again. This
time, the additional images have been left out, and the program
merely displays the text "Hello, World!" in the document. This
simple program exhibits many of the features of the Java language.

import java.awt.Graphics

public class HelloWorld extends java.applet.Applet
public void init() {

resize(150,50)

public void paint(Graphics g)
g.drawString("Hello, World!", 50, 25)

}

Of course, this is not the only code we need. Notice the second line
of the code:

public class HelloWorld extends java.applet.Applet {

This code is saying to the compiler to create a class named
HelloWorld that is a subclass of Applet. All applets expect to run in
a particular environment, which is typically provided by a browser
such as Netscape 2.0. This means that an applet needs to be called
from an HTML file. The following listing is the HTML file that
loads the Hello, World! applet.

<html>
<head>
<title>hello, world!</title>
</head>
<body>
say hi to everyone:
<applet align=middle code="helloworld.class• width=150 height=50>
'-</applet>
</body>
</html>

This file can be loaded into Netscape from a local disk by entering
the path to the file with a leading file directive such as:

file:///CD·ROM/Java Examples/Hello, Worldl/Hello, Worldl.html

NOTE

Chapter 2 Introduction to the Java Family 39

Say Hi to Evetyone: Helb, Worldl

Figure 2.2 The H ello) World! program as a Java applet and
HTMLftle.

Please note that the screens shown in Figure 2.2 and in Figure 2.3

are from the Windows 95 version of Netscape 2.0. At the time of

this writing, Netscape 2.1 with Java applet support for Macintosh

was not yet available.

Pretty captivating, eh? Okay, so maybe it is a little less snazzy than
the previous HTML-only page, but because the purpose of this
example is to introduce each language, it wasn't meant to be
snazzy.

The fact that this particular Java applet does not draw pictures gives
a good indication of one feature of Java: as a language, it is very
low level. Whereas with HTML, a simple tag pointing to the image
file is enough to get it to display; with Java, because it is working at
such a lower level, to program that behavior from scratch, it takes a
much larger example than belongs in an introductory chapter. At
the same time, though, t!1e features of t!1e Java language enable you
to build upon the work of others easily, while not limiting yourself
to a particular browser implementation. When the HTML H ello,

40 J avaScript for Macintosh

World! picture was loaded using the HTML file , all of the function­
ality was subsumed by the browser. As Web page developers, we
depend upon the features we expect everyone's browser to have,
such as the capabili ty to display GIF and JPEG image formats. With
Java, dependence upon these features is not necessary. A Java pro­
gram that creates a repeating animation will work on any system,
anywhere that can download and display Java applets in HTML
documents. However, an example applet by Sun that does just this
is 883lines long. The power of Java comes at the expense of com­
plexity.

Y.-< Nels cape - [The Am mat or Applcl[I!II!J JE3

Figure 2.3 The Animator Applet from the Sun Java Development
K it in Netscape 2.0 for Windows 95.

Even though Java is complex, at the same time it is easy. Easy,
that is, for the author of an HTML page that uses a finished Java
applet. Take a look at the HTML file example l.html in the
java\demo\Animator directory of the CD-ROM:

<title>The Animator Applet< /title>
<hr>

Chapter 2 Introduction to the Java Family 41

<applet code=Animator.class width=100 height=200>
<param name=imagesource value=uimages/Duke">
<param name=endimage value=10>
<param name=soundsource value="audio">
<param name=soundtrack value=spacemusic.au>
<param name=sounds
-.value="1.au:2.au:3.au:4.au:s.au:s.au:7.au:s.au:s.au:0.au">
<param name=pause value=200>
</applet>

<hr>
<hr>
The source.

As you can see, after the class file is created, it can be used in eight
lines ofHTML code, as compared to the 883 lines needed for the
class file itself. The page author simply provides the images and
sounds, and tells the applet what to do. For the HTML-only au­
thor, Java class files are as easy to use as any other media.

This book's coverage of Java will focus solely on its role in the area
of applet creation and use, and how this role can be tied in with the
JavaScript language. Java has a wider functionality associated with
stand-alone programs, but for the Web page designer, this feature
will be less important than the applet functionality that is imple­
mented by the forthcoming Netscape 2.1 browser for the
Macintosh. It is for this reason, therefore, that the stand-alone
functions of Java will not be considered.

The biggest feature of the Java language to keep in mind is its
object-oriented nature. In the program listing for Hello, World!,
you should have noticed some organizational features of the pro­
gram. In essence, you have a class, which is Java's representation of
an object declared by this statement:

public class HelloWorld extends java.applet.Applet

The declaration public class HelloWorld tells the Java compiler to
create a new class or object that is based upon the applet object.
Suffice it. to say that Java is an object-oriented programming lan­
guage at its core, and all Java programs are required to follow this

42 J avaScript for Macintosh

methodology. Thus, our Hello, World! program must define itself
as an object. Everything inside the outside braces are what defines
our Hello, World! applet, and this is the basic building block for
any Java class.

Inside the object definition, you can see two additional blocks de­
fined by the curly braces:

public void init() {
resize(150,50)

public void paint(Graphics g)
g.drawString("Hello, World!", 50, 25)

These two statements are known as methods in Java. In addition to
methods, Java objects or classes can also have variables or contain­
ers for information. When we look at J avaScript, we will see that
JavaScript objects have the same properties. However, where in
Java objects are a requirement, J avaScript is much more lenient, and
will allow more standard procedural styles of programming. BASIC
programmers and others who don't currently "cut code," breathe a
sigh of relief. And take heart; the following section covers this
book's hero: JavaScript.

The JavaScript Language
The new arrival in the Java family is J avaScript. This scripting Ian­
guage has been implemented for the first time in the 2.0 version of
Netscape, and aims to provide a compact, object-based language
that is used to both create dynamic stand-alone scripts that can be
embedded in HTML pages and interact with Java applets, linking
together objects in a page. In addition, JavaScript will be available
for server-side scripts in much the same way as Common Gateway
Interface (CGI) programs are used today. This functionality will
provide HTML authors with the flexibility to create powerful pre­
sentations without relying on a complicated system of CGI pro­
grams and server calls to process user input.

Chapter 2 Introduction to the Java Family 43

JavaScript, while linked with Sun's Java programming language,
was actually created at Netscape, and is in reality a completely sepa­
rate language from Java. In its first beta release, the language was
referred to as LiveScript-relating the language to the LiveWire
server protocol that Netscape was developing for its line ofHTIP
products. In fact, you may still see it referred to as LiveScript in
some documentation on Netscape's site. Soon, it became apparent
that Java was poised to take over much of the job being performed
by server-side scripts and programs, and that a client-side scripting
tool would be useful. Because LiveScript fit that bill nicely,
Netscape partnered with Sun and renamed the language JavaScript,
and began to market it as the companion scripting tool for the Java
language. The main connections between Java and JavaScript are
the similar syntax and the capability of J avaScript to access the pub­
lic members of a Java class. J avaScript also is a very useful language
on its own, and can be used to create complex programs that can
interact with the user without relying on network transmission to
run programs using the CGI method.

The J avaScript language is an interpreted script that is part of the
standard HTML file. When the file is loaded, the Netscape 2.0
browser interprets the script and performs the operations specified.
JavaScript works only on browsers that implement the JavaScript
engine, and right now Netscape 2.0 is the only program that does
this. Netscape has been a convincing leader in the browser market,
and the role that J avaScript fills in relation to the Java language is
an important and potentially lucrative one. Therefore, you can ex­
pect other companies to bring J avaScript into their browser imple­
mentations as well. Indeed, Microsoft announced in December of
199 5 its support for Java in its Internet Explorer browser.

Features of the JavaScript Language
The development of J avaScript necessitated a balance between a
full-blown language, such as Java, and a simple scripting language
for controlling browser functionality, such as HTML. Of course,
the J avaScript developers did not want to compete with either of
these standards, and instead made their language do a good job of
carrying out the tasks that fall between these two implementations.

44 J avaScript for Macintosh

The J avaScript language has several important features that make it
a powerful addition to client-side Web development.

D Simple. J avaScript is simple and based upon the syntax of Java,
which makes it an easy language to learn for those who are
used to Java or C++ already, and not too hairy for HTML­
only folks. It is also a good stepping stone for those wishing
to learn Java after J avaScript, as presented in this book.

D Dynamic. J avaScript is dynamic and can react to user and eli­
ent system input without recourse to server-side programs,
such as CGI scripts.

D Object oriented. JavaScript is object-based, which means it can
implement its own objects. It can also interact with objects in
the browser and other object plug-ins. In future releases, Java­
Script will be able to interact with Java applets that are loaded
on a page-by-page basis.

The combination of features upon which J avaScript is built define it
in relation to HTML and Java, each of which has either already set
itself as the de facto standard for Web page creation (HTML) or
has made impressive strides toward capturing the high ground of
Internet application delivery (Java). It is important to understand
these features and be able to weigh them against your own Web
requirements when designing, building, and maintaining a Web
presence.

JavaScript Is Simple
The JavaScript language can be seen as a simple and compact de­
sign that takes on the basic syntax and control-flow structure of
Java to facilitate a quick transition between the languages. For ex­
ample, all of the control-flow statements that JavaScript uses are
present in Java such as i f ... else and while and for loops. In
addition, all of the expressions for arithmetic, logical, and string
statements are present in JavaScript from Java. This means that
programmers are able to use a common language set for creating
both Java applets and J avaScript scripts.

Chapter 2 Introduction to the Java Family 45

J avaScript is not a strictly typed language, and therefore
variables are not declared as in Java. In Java, whenever you create
a variable to hold a value, you must tell the compiler what type of
variable it is. From then on, the compiler will check to make sure
that the variable stays as that type. This is known as strict type check­
ing. For example, the following code creates two variables in Java.
The third line generates an error because the two types of variables
are not the same.

int number= 10 //create a variable which holds a number such as
•1 J 5 J 100 J 32 J 056 ...
String text= "20" //create a variable which holds a String such as
•"Hello, World!"
number= letter //this line would produce an error

This type of strict type checking is not present in J avaScript; a vari­
able can be freely associated with any type of data. When declaring
variables, there is no need to indicate what type of variable it is to
be. This freedom has both benefits and drawbacks, but for most
scripting, the strict type checking of Java would be unnecessary.

number = 10
text = "20"
•a test•
number = text

II create a variable and assign it the number 10
11 create a variable and assign it the string "this is

II this would convert

In addition to loose type checking, J avaScript also does not enforce
the creation of classes and an object-oriented paradigm. This en­
ables the programmer to use the language in the most efficient way
possible without resorting to more complicated class hierarchies
and inheritance. Instead of creating a class, member methods, and
variables for a very simple function, the programmer can simply
write the function and call it when its capabilities are needed. This
behavior will be detailed in Chapter 4, "Control Flow and Func­
tions in J avaScript."

JavaScript Is Dynamic

One great benefit ofJavaScript is its capability to elegantly handle
dynamic events in its environment. By interacting with the graphi­
cal form input built into HTML and the Netscape objects available

46 J avaScript for Macintosh

NOTE

to J avaScript, the programs created can react to user input in
an event-driven manner, much like a stand-alone Macintosh
application. This capability is an important benefit in developing
client-side behavior without too much complexity or reliance on
server-side network calls.

JavaScript Is Object-Based
While not a truly object-oriented programming language in the
strictest sense, JavaScript can be considered object-based-that is,
much of its functionality comes from the interaction of the scripts
with objects that have exposed their methods to the scripting envi­
ronment. These objects include the window, location, history, and
document objects that Netscape provides, any applet objects that
are loaded in a document, and any in-line programs that have been
integrated with the Netscape browser. By interacting with these
objects, the J avaScript language is able to incorporate the powerful
capabilities these advanced programs can provide.

The JavaScript version implemented in Netscape NaVJgator,z~o
does not enable interaction with Java applets. However, ;F4ture
releases are expected to have this functionality.

The objects provided by Netscape to the JavaScript interpreter
enable programmers to gather information about the execution
environment and alter the way in which documents are displayed
accordingly. For example, you can access the document history of
the browser session and control where to go next depending upon
where the user had been. Additionally, you can control the display
characteristics such as the background color. Whereas with HTML
you are stuck with one setting per file, with J avaScript you can
make these changes immediately without requesting a new page
from the server.

In addition to built-in objects, you will also be able to access ap­
plets and in-line programs that might be loaded by an HTML doc­
ument. For example, you could load an animator applet, and call its
stop () or start () method, depending upon events occurring in a

Chapter 2 Introduction to the Java Family 47

form. You could alter the animation an applet was playing depend­
ing upon which form item had the focus, displaying pertinent infor­
mation for that control. This enables you to use the simple form
creation methods available in HTML and link them to a more
complicated behavior provided by the Java applet. You wouldn't
necessarily have to know how the Java applet worked beyond the
functions you called to get the behavior you desired. This capability
to script together objects in an easy fashion is one of the more pow­
erful features of the J avaScript language. As mentioned before, this
is a feature slated for incorporation in future releases. For now, you
can still load applets to be run when a page is opened, but you can­
not interact with them in any way beyond what is already available
with standard HTML tags.

Hello, World~ as a JavaScript Function
The following code implements the Hello, World! program in Java­
Script style, and shows off the dynamic ability of the language.

<HTML>
<HEAD>
<TITLE>Say Hello:</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<1·· this line hides the script from old browsers

function helloWorld{) {
alert{"Hello, World!")

}
II this is the end of the script and comment structure-·>
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button• VALUE="Say Hi:" ONCLICK="helloWorld{)">
</FORM>
<HR>
</BODY>
</HTML>

As you can see, the code is integrated into the HTML file. In a
way, J avaScript can be considered a type of HTML, but the behav­
ior it invokes is much more complicated. Notice the creation of a
function known as helloWor ld, which makes a call to a function
named alert. The helloWorld function can then be used anywhere in

48 J avaScript for Macintosh

the HTML file to enact the behavior specified in the function dec­
laration. In this case, the bmton created by the HTML code calls
the fimction helloWorld when it is clicked. T he helloWorld function
then calls the method al ert,(), which brings up a dialog box with
the string indicated in the method call . Figure 2.4 shows the result­
ing display.

t>hLOP ~ &.i kroUtr:

~~~ ~~~J.§]~ QJ 
L•u tt.:) 

. ,II[ 

- ··-•1 .,.,.,.,..,1 ,._I ,., .. _I~ ...,. ... I 
( s.yH>.) 

-- --- -

~ Joudcrlpt Alert: 
tle llo, Wor1dl 

DO 

l tzl..l.!H _~;o-

Figure 2.4 The Hello, World! program as a ]avaScript Junction. 

In the next chapter, "JavaScript Fundamentals," you will learn 
right away the specific details of how a JavaScript program is put 
together and how to begin using JavaScript code in your own 
HTMLpages. 

A Comparison of Java and JavaScript 
Now that you have gone over each of the languages in general 
terms, there are more specific implementation details that can be 
seen in comparing Java and JavaScript. Table 2.1 shows the d iffer­
ent ways in which Java and JavaScript have been implemented. 



Chapter 2 Introduction to the Java Family 49 

Table 2.1 A Comparison of java and ]avaScript 

Feature Implementation 

Execution Java: Java source code is compiled before it is 
sent to the client to be executed. There still 
has to be an emulator or interpreter to execute 
the file on a specific platform. 

JavaScript: JavaScript is not compiled at all 
before it is sent to the client; rather, it arrives 
as a plain text file, to be interpreted line by line 
in the browser. 

Object methodology Java: Java is a truly object-oriented program­
ming language, and the programmer is re­
quired to develop objects even for the simplest 
programs. 

Use in HTML 

JavaScript: JavaScript is an object-based lan­
guage that does not have classes or inheritance. 
However, objects of a sort can be created and 
the language can interact with objects created 
in other programming languages. 

Java: Java is a separate format from HTML 
and must be loaded like an in-line image or 
sound file. 

J avaScript: J avaScript is plain text and can be 
either integrated into the HTML file directly 
or embedded and loaded dynamically. Either 
way, the resulting code is still in a text format. 

Variable declaration Java: Java uses strong type checking, and all 
variables must be declared at compile time 
before they are sent to the client machine. 

continttes 



50 J avaScript for Macintosh 

Table 2.1 Continued 

Feature Implementation 

Object references 

J avaScript: J avaScript uses loose type checking 
in that the interpreter evaluates the data type 
at runtime and makes the appropriate assign­
ments. 

Java: Java object references must be available 
at compile time for the compiler to be able to 
implement strong typing. This is referred to as 
static binding. 

J avaScript: J avaScript object references are left 
to be checked until runtime. This is because 
without compilation there is no way to even 
implement object reference checking. This is 
considered dynamic binding. 

In addition to the previous features, it is worth noting that both 
Java and J avaScript implement a strong security philosophy, and 
neither are allowed to access the end user's local hard disk. 

Netscape 2.0 and the Java Family 
Java and JavaScript are currently implemented only in Netscape 
Navigator 2.0 for Windows, but many companies have indicated 
support for these standards. Java is in a more mature state than 
J avaScript, and has therefore more support in the development 
community. Companies such as Metrowerks, Natural Intelligence, 
Tradewave, Microsoft, Symantec, and others are all busy developing 
Java-enabled browsers and development tools. By the time you 
read this, there may be other companies which have released 
versions of browsers that are Java -enabled. Of course, Sun is 
working on its own browser, HotJ ava, which will support Java 
and J avaScript. 



Chapter 2 Introduction to the Java Family 51 

Because JavaScript is in a much earlier stage, there are no firm com­
mitments yet by companies promising to implement J avaScript in 
their browsers. As the role of Java burgeons on the Internet, how­
ever, so too will the need for such a scripting language, and it can 
be expected that J avaScript will take on a similar importance. For 
now, Netscape 2.0 is the only game in town that plays by JavaScript 
rules on the Macintosh. 

Built-In JavaScript Interpretation 

The JavaScript engine is built into Netscape 2.0 for every platform, 
from PC to Mac to UNIX. Ifyou are running Netscape 2.0, you 
can run JavaScript programs. Netscape's JavaScript implementation 
is of course the de facto standard now for the language. The Java­
Script specification is being placed before Internet committees in an 
attempt to position it as an open standard on the Internet. This 
means that other companies will be likely to implement it because 
they are freed from licensing fees to Netscape. 

Built-In Java Run-Time Engine 

The Java run-time engine-enabled Netscape 2.0 is currently only 
available in 32-bit Windows (that is Windows 95, Windows NT) 
and UNIX versions. It does not support 16-bit Windows (that is 
Windows 3.x) nor the MacOS. Although a 16-bit version for Win­
dows is not expected, work is underway at several companies, in­
cluding Sun, to develop a Macintosh version. Sun released a beta 
version of the Java Development Kit for Macintosh in February. 
You can download this kit in its latest version from http:// 
www.javasoft.com. 

Summary 
The functionality and versatility of Java and J avaScript for the Web 
site developer are bound to make tl1cm a cornerstone of the next 
generation of Internet content development. Each language brings 
unique features to the Web and to the development of dynamic, 
distributed applications that can make tl1e Web come alive. 



52 JavaScript for Macintosh 

Java is a powerful and feature-rich specification that attempts to 
overcome the many hurdles in the way of distributed, object­
oriented computing. Java has attained the portability, security, and 
robustness necessary, while at the same time keeping the language 
easy to use and at a high performance level. Java, from its begin­
ning more than four years ago in consumer electronics, has become 
a powerful tool that encompasses many of the advancements of 
computing in recent years. Object-oriented, dynamically extensible, 
multithreading, and robust-Java fits in well with the emerging 
realities of the Internet and personal computing systems. 

J avaScript supports the object-oriented features of Java and other 
Netscape plug-ins and provides the means for you to stitch together 
diverse components to create a rich online presence. In addition, 
J avaScript is capable of quite powerful behavior and can bring 
HTML documents to life by incorporating event-driven scripts. 
The ease of use of the language also means that anyone who can 
already write HTML can migrate to J avaScript easily, and then 
move on to Java itself. 

It is the aim of this book to enable the competent HTML author 
to learn the complete capacity of J avaScript and to briefly introduce 
the next logical steps that lead to Java development from Java­
Script. In the next chapter, the fundamentals of the J avaScript 
language are presented. This introduction takes you through the 
syntax of the language and prepares you to place J avaScript into 
your own HTML documents. In later chapters, you will use this 
information to bring in more J avaScript functionality. Many exam­
ples are provided along the way, but, in the spirit ofWeb develop­
ment everywhere, you need to get out on the Web and read other 
JavaScript developers' source code! You can learn a lot by seeing 
how other, everyday citizens of Gotham are wiring up their own 
sites with cool scripts. 



CHAPTER 

JavaS.cript Fundamentals 
Chapter 2 of this book introduces the reader to both the Java and 
JavaScript languages, their development, purpose, and design. It is 
important to understand these issues when picking up a new pro­
gran1rning language, because using new programming language 
families effectively begins with knowing when to speak which dia­
lect. Of course, JavaScript is a derivative (or a simpler dialect) of 
Java, so many of the lessons you learn here are applicable ifyou 
decide to move on to Java in your future work. Also, a little history 
never hurts, does it? From here on out, though, we will zero in on 
JavaScript and t!1e elements tl1at make up the scripting language as 
found in Netscape. Now would be a good time to power up 
Netscape 2.0 on your Macintosh, especially if you' re the curious 
type who cannot wait to try some test scripts and see what 
Netscape does with tl1em. 

This chapter provides fundamental programming lessons for learn­
ing JavaScript. To program in JavaScript, you must know how to 
get JavaScript programs to run by doing the following: 

0 Learning how to integrate J avaScript into your HTML code 

0 Learning the syntax and general structure of the JavaScript 
language 



54 JavaScript for Macintosh 

After you become familiar with what a J avaScript program looks 
like and have learned how to properly place one into an HTML 
document, you are ready for this chapter, which covers the follow­
ing elements: 

0 Creating variables 

0 Using variables in different expressions 

0 Using operators with variables 

Knowing how to create variables, form expressions, and use opera­
tors, as well as understanding the basic elements of style, provides 
you with all of the building blocks you need to begin coding useful 
J avaScript statements that can be incorporated into more compli­
cated scripts discussed in later chapters. (Isn't it great how books 
like this one always save the really juicy stuff for "later. chapters"?) 

NOTE In many of this book's sections, you will run across places where 
elements of style in programming are discussed. Elements of style 
are not imperative to programming a JavaScript or Java program, 
but they become increasingly· important as you look toward code 
reusability and maintenance, or not having fellow Web program­
mers scoff at your scorn for readability. Although higfrlevel lan~ 
guages such as Java and JavaScript are designed to be easily read 
and understood by programmers(at least in comparison to older 
low-level languages, such as assembler), creating easy-to-read code 
is more the result of a programmer's good habits than of any lan­
guage's features. Hopefully you will find the style advice useful 
and portable to any language to. which you may move in the f~ 
ture. Don't forget: On the Web, anyone can read your HTML and 
JavaScript code by simply choosing View Source or a similar com­
mand in his or her browser. So.be on your best behavior! 



Chapter 3 J avaScript Fundamentals 55 

JavaScript and HTML 
J avaScript is interpreted from HTML files that are loaded into the 
Netscape 2.0 browser. This means that to use JavaScript in your 
Web documents, you must be able to integrate your JavaScript 
code with the rest of the HTML code. You can include JavaScript 
code in a document the following two ways: 

D Embed the code within the document 

D Load the code from a separate file 

In addition, you need to learn how to use HTML to hide 
J avaScript code from older Web browsers that cannot properly 
process it. You also need to understand the order in which 
JavaScript code is executed. 

Embedding a Script within an HTML 
Document 
To embed a J avaScript program into your HTML file, use the 
<SCRIPT></SCRIPT> tags and place all your code between 
the beginning (<SCRIPT>) and end (</SCRIPT>) tags. Although 
the <SCRIPT></SCRIPT> tags will gain several options in future 
J avaScript releases, for now you only need to specify what scripting 
language is being used. In this case it is, of course, J avaScript: 

<SCRIPT LANGUAGE="JavaScript"> 
</SCRIPT> 

After you have created the tags, any code that is inside is inter­
preted by the JavaScript interpreter. For example, the following 
HTML file uses J avaScript for all of the text output to the screen. 



56 J avaScript for Macintosh 

<HTML> 
<HEAD> 
<SCRIPT LANGUAGE="JavaScript"> 
<1--

document.write("<HR>") 
document.write("This is a line written to the browser window by 
'-JavaScript. •) 
document.write("<HR>") 
II --> 

</SCRIPT> 
</HEAD> 
<BODY> 
</BODY> 
</HTML> 

In this example, the JavaScript source is placed in the <HEAD> 
</HEAD> tags of the HTML document. This is not necessary; 
placing the <SCRIPT></SCRIPT> tags in the body would work 
just as well. However, unless you are trying to mix JavaScript out­
put with HTML that's between the <BODY></BODY> tags, your 
code will be more robust if you define the functions in the head of 
the HTML document. When you begin creating JavaScript func­
tions and calling them with event handlers, the functions will be 
read in before any HTML code that might attempt to access them. 
If you are using the J avaScript code to format the page, you might 
need to place it in the body; otherwise, try to keep JavaScript ele­
ments in the head portion of an HTML file. 

Loading Script Source Files 

NOTE Although this feature is documented in the JavaScript guides, it is 
not currently implemented in the Netscape 2.0 browser for 

Macintosh or Windows 95. It's worth keeping in mind, however, 
for future releases. 



Chapter 3 J avaScript Fundamentals 57 

Another useful way to load J avaScript source code into a page is to 
load a text source file that holds the JavaScript source code. To load 
the source file, instead of writing J avaScript source code directly 
into the HTML file, you can provide the URL to the file that holds 
the source code: 

<SCRIPT LANAGUAGE="JavaScript• SRC="JavaScriptCode.js"></SCRIPT> 

You should remember the following two things when importing 
JavaScript code: 

D The extension to the source code file should be .js 

D The LANGUAGE attribute is not necessary if you indicate 
the source type in the extension 

Therefore, the following code is equivalent to the previous state­
ment: 

<SCRIPT SRC="JavaScriptCode.js"></SCRIPT> 

The advantage to using source files instead of embedding the code 
inside your HTML files is that you can update the source code 
without changing the HTML file at all. You simply replace the old 
.js file with the replacement copy. Of course, you must make sure 
that the new copy works with the original HTML file. 

Commenting out JavaScript Source Code 
You might have noticed two codes that were inside the 
<SCRIPT></SCRIPT> tags, but outside the actual scripting code: 

<I-­

ll --> 



58 JavaScript for Macintosh 

These two lines are HTML comments that hide the J avaScript 
source code from browsers that are not able to interpret the 
<SCRIPT></SCRIPT> tags. Everything between the comment 
tags will be ignored by older browsers. You should note the two 
forward slashes (II) before the end comment tag ( - ->). These are 
actually J avaScript comments that hide the end HTML comment 
tag from the JavaScript interpreter. It is useful to mark these lines 
with explanatory comments. 

<SCRIPT LANGUAGE="JavaScript"> 
<1-- this line hides the JavaScript source from older browsers 
document.write("Hello, World! - try this on older browsers with and 
~without HTML comments") 
II this is the end of the HTML comment tag--> 
</SCRIPT> 

Additional HTML Considerations 

There are additional considerations when dealing with the Netscape 
Navigator 2.0 edition ofJavaScript and HTML files. While these 
are not features of the language, they arise from the interaction of 
J avaScript in the Navigator environment and mean that typical 
HTML code might require some special attention. 

First, <IMG> tags in HTML files can cause problems if they do not 
have their WIDTH and HEIGHT attributes set. For this reason, it 
is always preferable to set the width and height values for images 
you use in your program. If you include a <SCRIPT> tag after the 
last image tag, this also fixes the problem. 

Second, nested tables and forms can cause problems with 
J avaScript, so if you use tables to organize your forms, you might 
want to rethink the layout of your tables if you have created a 
nested hierarchy. In Chapter 8, "The Forms, Window, History, and 
Location Objects," forms are covered in more detail, but because 
you most likely already have HTML files you want to incorporate 
JavaScript into, you might need to think of how the HTML will fit 
in with the JavaScript structure. 



Chapter 3 J avaScript Fundamentals 59 

Third, there are several functions in J avaScript that enable you to 
send text output to the screen, including returns, tabs, and spaces. 
Traditionally, HTML browsers ignore any formatting information 
of this kind unless they are surrounded by the <PRE></PRE> or 
<XMP></XMP> tags. Be sure to use these wherever you have 
J avaScript output. 

Processing Order 
JavaScript code is interpreted within the HTML page after the en­
tire page loads, but before the page is actually displayed. When 
you use source files, and call them in as SRC attributes in the 
<SCRIPT></SCRIPT> tags, this code is evaluated as if it were 
script container content. This evaluation occurs, however, before 
any embedded scripts are executed. 

Later on, when the use of functions is discussed, this book presents 
a more in -depth look at when scripts are evaluated. For example, 
functions within scripts are stored but not executed until they are 
called by an event handler. This can create interesting behavior that 
can either work for or against you. Be sure to check out the section 
on processing order and event handlers in Chapter 4, "Control 
Flow and Functions in J avaScript." 

JavaScript Architecture and Writing Code 
The J avaScript architecture is based on tokens that the interpreter 
extracts from the source file and executes. A token, as used in most 
programming languages, is any indivisible unit that occurs in a pro­
gram and is distinguishable from other objects. Examples include 
reserved words (if, for, next, while), operators(+,-, 1, *),and 
identifiers (the name "counter" assigned to an integer variable). 
The following list contains J avaScript's basic tokens: 

0 Comments 

0 Literals 



60 J avaScript for Macintosh 

0 Identifiers 

0 Separators 

0 Operators 

These elements of the JavaScript language provide the basic build­
ing blocks of all code you will ever write. You can imagine all of 
these tokens as different bricks, beams, shingles, nails, glues, and 
board that can be combined into an almost infinite combination of 
buildings. Knowledge of how each of these elements works with 
the others enables you to write successful programs. How solid, yet 
elegant, your building-your program-is depends upon your skill 
as an architect. 

NOTE This chapter contains the type of syntax you will use when typing 
JavaScript code for things such as :numbers~ variables, -function 

. 11ames, comments, and. so forth~. Many er.ror.s YPl.l wilr run into 
later when creating your own progr~s wifl come from typos and 
forgetfulness. The problem is that most of the information pro­
vided is relatively simple, and you might be tempted to gloss over 
it. You should still take time to read and understand everything. 
The programming exercises in later ·chapters of this book will be 
much more enjoyable if you have retained the material presented 
in the earlier chapters, and you won't have to keep flipping back 
and forth in the book to remind yourselfofsomething. Practice, 
practice, young Grasshopper. 

Comments 

When writing code in any language, it is important to remember to 
include written comments about what each line or group of state­
ments is doing. To keep the J avaScript interpreter from trying to 
execute this text, you must hide it between comment characters. 
Comments in JavaScript come in two styles. Table 3.1 presents the 
two types of comments available in J avaScript. 



Chapter 3 J avaScript Fundamentals 61 

Table 3.1 The Different Comments in Java and JavaScript 

Comment Type Description 

II comment 

I* comment *I 

All characters after the II to the end of 
the line are ignored. 

All characters between 1 * and *I are 
ignored. These comments can extend 
onto multiple lines. 

The older ( 1 * * 1) style was originally used in the ANSI -C standard 
and is carried on (rather nostalgically) in Java and J avaScript. The 
text that comes between the front comment marker ( 1 *) and back 
comment marker ( * 1) is hidden from the interpreter during execu­
tion. The 1 * * 1 comment is useful for multiple-line comments 
found, for example, at the beginning of a code fragment, such as 
the one that follows: 

I* The following JavaScript function converts 
from Fahrenheit to Celsius. 
created 11-Jan-95 by MGJ */ 

function fahrToCel(fahrTemp) { 
celsTemp = (fahrTemp-32)*5/9 
return celsTemp 

If you need to comment out only a single line, there is a more use­
ful syntax. The II comment method was added to C++ as an easier 
way than the older C style comment (I* * 1) to comment out indi­
vidual lines, and it is retained in JavaScript and Java. You can either 
use this to comment out an entire line ... 

II this line returns the Celsius temperature 
return celsTemp 

... or just the last portion of a line: 

return celsTemp // return the Celsius temperature 



62 J avaScript for Macintosh 

NOTE If a line of code does·something important, it is useful. to call at­
tention to it with a short comment. "It is always considered "good 
programming" to prqv~~e. comments for al! your code to he,lp 

· future· programmers (in~ludihg yourself) understand what's 
happening. 

The type of comment you use and for what purpose you use it is 
entirely up to you, the programmer. 

Two styles of commenting programs are the Sun and Microsoft 
styles. Most of the Sun documentation uses the following style for 
multiple lines, because it is useful with the automatic document 
generator that comes with the Java Development Kit: 

/** 
* this is a multi-lined comment 
* for the following function 
*I 

The 1 * * tag on the first line tells the document generator to use the 
comments as text in the resulting HTML file that it creates auto­
matically from source code. This type of comment is not used in 
J avaScript, but if you are moving on to Java, it is nice to get into 
the habit of using it. It doesn't affect the comment, but when you 
begin coding Java applets and want to comment a line, the auto­
matic document generator will use your comments to generate the 
text of the resulting HTML file. As with the standard comment, * 1 

closes the comment block. 

Microsoft program documentation uses the II comment in code, 
especially the code that is associated with the Visual C++ environ­
ment. The following code is an example of a multi-lined comment 
in Microsoft documentation. 

llllllllllllllllllll/11111111111111 
II this is a multi-lined comment 
II for the following function 



Chapter 3 J avaScript Fundamentals 63 

Again, the choice to use either style is up to you. If you are plan­
ning to use Java extensively in the future and are using J avaScript as 
a stepping-stone to learning Java, you should probably use the Sun 
form for comments, because it will be helpful when you later make 
the transition to Java. If you are intending to use only J avaScript, 
the II comment is easier to use because it simply comments out the 
rest of the line, and you don't have to keep track of the beginning 
(/*)and end(* I) tags. 

Including comments in code is an important habit to develop. Even 
though it seems as though everything is perfectly clear when you 
are writing your code, someone else who wants to use the code 
might have great difficulties in determining exactly what certain 
lines of your code are supposed to accomplish. Using comments 
also saves you many headaches later when you decide to update a 
J avaScript function that you spent weeks creating, only to find that 
you can't figure out how to work in new code without disrupting 
what you've done. 

Literals 

Literals, which are used when entering explicit values into your 
code, such as the number 5 or the word "Chicago," refer to the 
basic representation of these two types of data in the J avaScript 
language: 

0 Numbers 

0 Strings 

Number literals can be categorized into two subtypes: integers 
(numbers without a decimal point) and floating points (numbers 
with decimal values). In addition, there is a special literal known as 
the boolean. A boolean variable can be either true or false. The 
boolean literal is included under numbers because inC there was no 
true boolean literal; instead, the integers 1 and 0 were used for true 



64 J avaScript for Macintosh 

and false respectively. Therefore, although boolean is being catego­
rized as a number here, it really should be considered its own fun­
damental type. The string literal is any character sequence that is 
placed between single ( ') or double ( ") quotes. So, segments like 
"hello," "testing, one, two, three," and 'a' are all string literals. 

NOTE Literals are closely linked with types, which are discussed in the 
section on declaring variables. The difference between types and 
literals is that literals are explicit values entered into the code of 
your program, whereas types refer to the type of internal represen­
tation and storage that the JavaScript interpreter assigns to certain 
types of data. 

Think of the child's toy that has different pegs to put into the 
properly shaped holes. It has round, square, triangular, and star­
shaped pegs, and a set of holes to match. The holes that can ac­
cept the different pegs are the equivalent of types-they are the 
variables that hold the data. Literals are the. equivalent of the 
pegs, or data, actually placed in those holes, or variables. 

Integer Literals 

The first literal is the integer. This literal, the most common of 
literals, comes in three guises: decimal, hexadecimal, and octal. The 
decimal, or base 10, integer is the most familiar, and appears as you 
would expect. The important thing to note about the decimal inte­
ger is that it does not have a leading zero. The hexadecimal, or base 
16, integer is typically used as a binary shorthand, each digit group­
ing four binary ones and zeros. Hexadecimal integers are repre­
sented by the digits 0-9 and the upper- or lowercase letters A-F, 
which represent the numbers 10-15. These integers are preceded 
by Ox or OX. Octal, or base 8, integers are represented by the pres­
ence of a zero (0) in front ofthe digits. Table 3.2 gives examples of 
several numbers in the different formats. 



Chapter 3 J avaScript Fundamentals 

Table 3.2 Decimal, Octal; and Hexadecimal Representations of 
Integers 

Decimal Octal Hexadecimal 

0 0 OxO 

2 02 Ox2 

63 077 Ox3f 

83 0123 Ox 53 

631 0771 Ox3F1 

The numbers used earlier in the equation for the fahrToCels func­
tion (found in the previous "Comments" section) are examples of 
using integer literals in a script. In this case, the integer literals are 
used to convert a Fahrenheit temperature to Celsius. 

CelsTemp = (fahrTemp-32}*5/9 

Floating-Point Literals 

Floating-point literals represent decimal numbers with fractional 
parts such as 1.5 or 43.7. They can be in either standard or scien­
tific notation. Here are some examples: 

3.1415, 0.1, .3, 6.022e23, 2.997E8, 1.602e·19 

If, in the temperature conversion, you didn't want to first multiply 
by five and then divide by nine, you could use a floating-point 
number and just multiply by a single number: 

celsTemp = (fahrTemp · 32)*0.5555556 

Although carrying out only one operation instead of two appears to 
be more efficient, try typing the following code and replacing the 
line that does the calculation with the two previous examples. 

65 



66 J avaScript for Macintosh 

<HTML> 
<HEAD> 
<TITLE>Say Hello:</TITLE> 
<SCRIPT LANGUAGE="JavaScript"> 
<!-- this line hides the script from old browsers 

/** 
* function to convert a Fahrenheit 
* temperature to Celsius 
*I 

function fahrToCels(fahrTemp) 
celsTemp = (fahrTemp-32)*5/9 
return celsTemp 

•number 

II this does the conversion 
II this returns the Celsius 

document.write("The boiling point of water in Celsius is: ") 
document.write(fahrToCels(212)) 

II this is the end of the script and comment structure--> 
</SCRIPT> 
</HEAD> 
<BODY> 
<HR> 
</BODY> 
</HTML> 

When you run both of these, what do you notice? The resulting 
value for the equation using the floating-point number should not 
be exactly l 00. In this case, there is less precision because we had 
to round off the floating-point number instead of using an infinite 
number of fives. On many computers, the storage and calculation 
of integers is much more efficient than with floating-point num­
bers. It is often better general practice to represent expressions 
using integers instead of floating-point numbers. 

Boolean Literals 

The boolean literal has two states-true and false~which are ap­
propriately represented by the keywords true and false. The bool­
ean literal, therefore, represents the state of something that can 
have only one of two values. The values are typically used as check­
points for determining whether to take a certain action. The bool­
ean value is a true literal, and not a representation of the integers 
zero or one as inC or C++. The following code shows how you use 
boolean literals. 



flag = true 
if(flag) { 

Chapter 3 J avaScript Fundamentals 67 

document.write("This line will print") 
flag = false 

} 
if(flag) { 

document.write("This line will not print") 
} 

The if statement is covered in greater depth in the next chapter. 
For now, all you need to know is that the if statement checks to see 
whether the statement in the parentheses is true or false. If the state­
ment is true, it executes the statements between the curly braces. 

String Literals 
The term string literal refers to any number of characters enclosed 
in double ( ") or single ( 1) quotation marks. Table 3.3 gives exam­
ples of some strings and their printed output. 

Table 3.3 Examples of Valid Strings 

The Declaration The Result 

D \ I D 

•vour Ad Here" 

"Multiple\nlines" 

Your Ad Here 

Multiple Lines 

If you would like to see what some personalized strings look like 
on-screen, you can take our Hello, World! script and change the 
string in the document. write command. 

document.write("place your String here") 

Reload the HTML page from the Hello, World! example after you 
have changed the string, and see how the result has changed. 



68 J avaScript for Macintosh 

The backslash (\) is used to represent nonprinting or conflicting 
characters. Table 3.4lists the various nonprinting control character 
combinations J avaScript accepts. These characters provide format­
ting of characters that are not provided on a standard keyboard, 
and so must be implemented with a control code. They can be used 
in both string literals and variables. 

Table 3.4 Special Character Representations 

Standard 
Description Designation Sequence 

Continuation <newline> \ 
New line NL(LF) \n 
Horizontal tab HT \t 
Backspace BS \b 

Carriage return CR \r 

Form feed FF \f 
Backslash \ \\ 
Single quotation mark \' 
Double quotation mark \II 

Identifiers 

Identifiers are the names given to variables and functions to identify 
them to the interpreter. Identifiers used in previous examples of 
JavaScript code include hello\Vorld, text, and number. What, then, 
makes a valid identifier? In J avaScript, all identifiers must begin 
with a letter or the underscore character(_). All subsequent charac­
ters also can include digits (0-9). Letters are considered the upper­
and lowercase alphabet from A to Z. 

Also, the words designated as keywords in the following section are 
unusable as identifiers. Table 3.5 gives examples of valid and invalid 
identifiers in Java. 



Chapter 3 J avaScript Fundamentals 69 

Table 3.5 Valid Identifiers 

Valid, but Not 
Valid Invalid Recommended 

watts wattage # WATTS 

lightOn light-on light on 

monthsWith_31_days 5dogs -number 

X abstract $_243_fubar 

In the case of the invalid identifiers above, the following rules 
apply: 

0 wattage #. There can be no white spaces within an identifier. 

0 light -on. The hyphen (-)is an invalid character. 

0 Sdogs. Cannot use a number to start an identifier. 

0 abstract. Abstract is a keyword. 

Of course, unless you have a non-American standard keyboard, 
using anything other than the _, and A-Z letters would merely 
create difficulties in editing, so you shouldn't have any problems 
following those standards. Unless you have good reason, it is 
advisable to only use the_ in the middle of identifiers (between 
words) to improve readability. This practice is most useful to Java 
programmers, but getting into the right habit now will help you 
make the transition later. Using descriptive names should provide 
you with all the flexibility you need. As a rule of thumb, when you 
create identifiers, make all the letters lowercase except for the be­
ginning of words that appear in the middle of an identifier (such as 
in lightOn). 

NOTE InC and C++, the standard is to, name #define identifiers with all 
uppercase letters. JavaScript does not implement a #define, so for 
ease of transition, all-uppercase identifiers should not be used. This 
is not a requirement; however, this rule will come in handy later 
when you are using Java, and it is good to avoid the habit of using 
all uppercase. 



70 JavaScript for Macintosh 

Keywords 
Keywords are identifiers used by the JavaScript language, and can­
not be used in any other way than that defined by the J avaScript 
language. You probably won't be able to remember every single 
keyword, so if you are having a problem with an identifier that is 
a single lowercase word, be sure to refer to the keyword list in 
Table 3.6. 

Table 3.6 List of Reserved ]avaScript l(eywords 

abstract double int super 

boolean else interface switch 

break extends long synchronized 

byte false native this 

final new 

case finally null throw 

throws 

catch float package transient 

char for private true 

function 

class go to protected try 

var* 

canst* if public void 

continue implements return while 

default import short with 

in 

do instanceof static 

• Reserved keywords, but currently unused by JavaScript 



Chapter 3 J avaScript Fundamentals 71 

Separators 
In J avaScript, the spaces, tabs, and new lines between characters are 
known as separators. These are essentially removed by the inter­
preter; therefore, how you use them is primarily a matter for your 
own aesthetic sense. For example, the following code fragments are 
all spaced differently, but they are all equally valid expressions. 

celsTemp = (fahrTemp - 32) * 5 I 9 

celsTemp=(fahrTemp-32)*5/9 

celsTemp (fahrTemp-32)*5/9 

How you choose to format your code is up to you. It is easier to 
read the first example with spaces between everything, but some­
times, as in the second version, you will want to make sure every­
thing fits on one line. If you are listing items, it is sometimes useful 
to line up statements over several lines, so inserting spaces helps. 

name = "Hal Hanford" 
address = "401 Rainier Way• 
city = "Black Diamond" 
state = "Washington• 
zip = 98504 

Whatever the situation, remember that separators help to make 
code easier to read, not to run. Strive for a visually pleasing layout 
that will make sense to other programmers. 

Declaring Variables 
Variables are used to store data values in named containers that can 
then be referenced later. For example, in the fahrToCels function 
used in previous examples, the fahrTemp and celsTemp were variables 
that held the Fahrenheit and Celsius ten1peratures, respectively. 
One of the first things you do in most programming languages is 
declare variables based upon what type of data you want them to 
hold. This is typically done for more efficient code compilation and 
also in languages that enforce strong type checking. Strong type 



72 J avaScript for Macintosh 

checking means the compiler or interpreter checks to make sure 
that each variable declares what type of data (for example, integer 
or string) it can contain and then makes that variable continue to 
contain only data of that type. Because JavaScript uses a loose type­
checking architecture, there is no need to declare what type of 
value each variable will hold. Loose type checking means that a 
variable can hold any type of data without the need to declare a 
specific type. If you move on to Java, which is a strongly typed lan­
guage, you will be required to properly declare variables to avoid all 
sorts of unpleasantness at compile time. 

There are two main reasons for implementing a strongly typed Ian­
guage: storage optimization and robustness. (There's that "robust" 
word again.) If the compiler knows beforehand what type of data a 
variable can hold, then it can set aside enough memory and not 
worry about it anymore. If it doesn't know and has to constantly 
adjust the amount of memory a variable has, extra processing cycles 
are used to make adjustments, which causes the program to run 
more slowly. To maintain run-titne speed, the compiler must be 
able to detect when the programmer is trying to fit data into a vari­
able that isn't allocated sufficient memory to accept the data. 
Otherwise, the program could lose valuable information. In 
J avaScript, a variable can be adjusted automatically to make room 
for the larger data size. In Java, data that doesn't fit is clipped to fit, 
and, thus, rendered inaccurate. 

For now, all you need to do is the following: 

1. Use a valid name, as defined by the section on identifiers in 
the previous section. 

2. Be sure not to use a JavaScript keyword as an identifier. 

If you are familiar with programming and of declaring variables 
before you use them, keep this notion in mind because you will 
find it useful later. For now, however, you can create variables with­
out any type declaration. The act of assigning them a value is what 
declares them in JavaScript. You use the equal ( =) sign to assign a 
value to a variable, just as you have done in previous examples. 



NOTE 

Chapter 3 J avaScript Fundamentals 73 

number = 10 

name = "Steve" 

cost = 10.99 

islightOn = false 

One good piece of advice: try to declare all variables and assign 
them a value at the beginning of code blocks where they are used. 
This makes the function ~asier to read, because right away you 
can see all the variables the function will be using. 

It also is a good habit to make sure that all your variables exist in a 
known state before program execution enters a complex section of 
code. This means that if you have to locate a bug, you at least know 
all of the values when entering the troublesome section. When you 
move on to a stricter, object-oriented programming language like 
Java, this advice becomes even more useful. 

Using var for Variables 

Of course, now that you have been told to go create variables wher­
ever it pleases you, it's time to bring some order back to things; 
snatching control from the jaws of anarchy is a recurring theme in 
this book. One problem with the dynamic interpretive nature of 
J avaScript is that it is difficult to catch errors in code, especially in 
duplicate variable names. For example, you may bring in a 
J avaScript source file using the SRC attribute that uses the same 
variable name as a function you are embedding directly in the 
HTML page. Which one takes precedence? The answer is clear cut: 
ifyou use the keyword var inside the block of code where the vari­
able is created. With a var preceding a variables first use in a block, 
this variable will be used in all expressions inside this block instead 
of any other global variables that have the same name. 



7 4 J avaScript for Macintosh 

The following code shows how the var statement can affect the 
execution of a script. Run this, and see what happens: 

<HTML> 
<HEAD> 
<SCRIPT LANGUAGE="JavaScript• > 
<1-- hide script from old browsers 

function test() { 
flag = true 

} 

document.write(flag + • ") 
test1() 
document.write(flag + • ") 
test2() 
document.write(flag + " ") 

function test1() { 
var flag = false 
document.write(flag + • ") 

function test2 () 
flag = false 
document.write(flag + n ") 

II end script hiding--> 
</SCRIPT> 
<BODY> 
<SCRIPT LANGUAGE="JavaScript" > 
<1-- hide script from old browsers 
test() 
II end script hiding--> 
</SCRIPT> 
</BODY> 
</HTML> 

If you run this in Netscape 2.0, you will notice that the output 
comes out as 

true false true false false 



Chapter 3 JavaScript Fundamentals 75 

when what you might expect is either this: 

true false false false false 

... or this: 

true false true false true 

The two functions that are used by the first function happen to use 
the same name for flag. The function test1 is a friendly function 
and uses the var statement to ensure that it doesn't affect any glo­
bal variable of the same name in existing code. Function test2, on 
the other hand, declares the variable flag without regard to any 
other code that might be trying to use the same name and over­
rides the calling function's value for flag. Although this is a simple 
example, you don't always know where faulty code comes from, 
especially if there are several programmers sharing a project. Know­
ing about variable precedence can help you isolate problems like 
this. 

A similar situation could happen if some functions you needed were 
loaded using the SRC attribute, to which you then added your own 
code. You might know how to call the functions you imported, but 
you might not know what the guts of the scripts were. If the pro­
grammer didn't use var, and there was a variable that matched, you 
could have a function alter variables in ways that could be difficult 
to track down. 

For this reason, whenever you create a variable, be sure to use var 
in front of it when you want to ensure it doesn't replace values in 
any global variables that might have the same name. 

Creating Expressions and Using Operators 
After you have created your variables, you must be able to assign 
them values, make changes to them, and perform calculations. 
These are the roles of the operators. Table 3.7 lists the operator 
precedence from highest to lowest. 



76 JavaScript for Macintosh 

Table 3.7 Operator Precedence from Highest to Lowest 

[ J () 

++ 

* % 

+ 

<< >> >>> 

< > <= >= 

& 

&& 

II 
II 

?: 

I= 

+= *= /= %= <<= >>=>>>= &= A-

Precedence refers to the order in which multiple operations are com­
puted. Operators on the same level have equal precedence. For 
example, the following calculation 

... proceeds by working from left to right on all binary operations 
(those involving two variables), computing those operations at the 
top of the list and working downward. In this case, because the () 
has higher precedence than anything else, the cAd is computed first. 
Next, the c*d would be computed and that result divided by the 
result of the first operation. Finally, everything is added to b and 
the result placed in a. Remind you of high school algebra at all? 



Chapter 3 J avaScript Fundamentals 77 

NOTE Whenever you are in doubt about the order in wh,ch something is 
calculated, be sure to .Lise the parentheses 0 to tell the compiler 
which terms in·the expression to compute first. 

The first operator you need to know is the assignment operator ( =). 
The assignment operator takes the values on the right side of the 
equal sign and places them into the variable on the left side of the 
equal sign. Even though this is the easiest operator, it can get you 
into lots of trouble. Later, you will look at the == operator, which 
compares two values, but does not change either one. Instead, it re­
turns whether they were equal at the time of the operation. It does 
not alter the left-hand operant to equal the right-hand operand, as 
the = operator does. 

Casting Variables 
J avaScript attempts to convert data from one type to another type 
when needed, but sometimes it is unable to do this. This is a prob­
lem unique to a dynamic language like J avaScript. Because there is 
no compiler to check whether assignments are correct before they 
run, the programmer must be careful when writing scripts. 

One example for which JavaScript might not convert is when trying 
to make a string into a number. As long as the string represents a 
number already, the conversion works. If the string represents a 
series of letters, however, the conversion will fail with an error. The 
following table ( 3.8) lists the results of almost all conversions. 

Table 3. 8 Conversions Between Types 

Data Type Tat;get Data Type 

function object number boolean string 

function function error error decompile 

object error error true to String 

Null object funobj OK 0 false "null" 

continnes 



78 J avaScript for Macintosh 

Table 3.8 Continued 

Data Type Tat;get Data Type 

function object number boolean string 

nur.nber(nonzenJ) error number true to String 

number (0) error null false "0" 

Error (NaN) error number false "NaN" 

+infinity error number true II+ Infinity" 

-infinity error number true II -Infinity" 

false error boolean 0 "false" 

true error boolean 1 "true" 

string (nonnull) funstr OK string numstr OK true 

null string error string error false 

Some of these results might not make sense to you now; that's 
okay. As you learn more of the language and begin to use objects 
and functions, come back to this list and compare how different 
objects convert among types to make sure you understand what is 
going on in examples where conversions take place. 

Arithmetic Expressions 

Now that you have learned how to create variables, it's time to 
learn how to use them. JavaScript has several operators that can be 
used on variables-some of which are specific to certain types of 
variables and return specific kinds of values. Some of these values 
we saw in Table 3.8. There are three types of operators: arithmetic, 
logical, and string. The last three sections of this chapter present 
these different operators and discuss their common usage. 



Chapter 3 J avaScript Fundamentals 79 

Additionally, arithmetic operators come in two flavors: binary and 
unary. Binary operators require two variables to work on, while 
unary operate on a single variable. Table 3.9 lists the unary 
operators. 

Table 3.9 Unary Integer Operators 

Operator Operation 

++ 

Unary negation 

Bitwise complement 

Increment 

Decrement 

The unary negation changes the sign of a number. Bitwise comple­
ment changes each bit of the variable to I if it is a 0, and to 0 if it is 
a I. This operator is useful if you want to twiddle with the underly­
ing binary representation of a variable and is a practice most 
common in advanced languages like C and C++. For example, the 
character "A" is represented by the ASCII code 65, which is 
I 00000 I in binary notation. A bitwise complement operator could 
be used to alter the binary value of "A" and make it "Z." Incre­
ment increases the value of the variable by one, and decrement de­
creases the value of the variable by one. Here is an example: 

i = 0 
j = 10 
for(i = 0; i<10; i++) { 

j-­
document.write(i+"\t"+j) 
document.write("<p>") 

This script prints increasing numbers in one column and decreasing 
numbers in the other. Note the use of++ and--. Each time these 
occur, the system either raises or lowers the value of the operand by 
one. This is the way unary operators work-they change the value 



80 J avaScript for Macintosh 

of the variable they are used on. For the negation and bitwise com­
plement, the variable is not changed; for the increment and decre­
ment, the variable is changed. The following code gives an example 
of the way this works: 

i = 10, j = 10, k = 10, 1 = 10 
document.write(i+"\t"+j + "\t" + k + "\t" + 1) 
document.write("<p>") 

j++ 
i--
-k 
·1 
document.write(i+"\t"+j+"\t"+k+"\t"+1) 
document.write("<p>") 

Notice that j and i have been changed and print out their new 
values, but k and 1 have reverted to their original values. When you 
use the unary negation and bitwise complement in a compound 
operation, you actually use a temporary variable that holds the new 
value of the operand. The increment and decrement operators are 
both prefix and postfix-that is, they can be placed before ( ++x) or 
after (x++) the operand. If they are used in compound statements 
such as 

i=x++ 

or 

i=++x 

then the first line increments x after assigning its value to i, and the 
second line increments x and then passes the new value on to i. 

The second type of integer operator is the binary operator. These 
operations do not change the values of the operands. They return a 
value that must be assigned to a variable. Table 3.10 lists the binary 
integer operators. 



Chapter 3 J avaScript Fundamentals 81 

Table 3.10 Binary Integer Operators 

Operator Operation 

+ Addition 

* 

& 

<< 

>> 

>>> 

Subtraction 

Multiplication 

Division 

Modulus 

Bitwise AND 

Bitwise OR 

Bitwise XOR 

Left shift 

Right shift 

Zero-fill right shift 

The following program prints the values of some operations: 

i = 5 
j = 10 
document.write(i+"\t"+j) 
document.write("<p>") 
j = j + i 
document.write(i+"\t"+j) 
document.write("<p>") 
j = j * i 
document.write(i+"\t"+j) 
document.write("<p>") 
j -= i 
document.write(i+"\t"+j) 

Notice the last operation. It is a combination of the binary operator 
and the assignment operator. This is equivalent to writing j=j -i. 

This can be done with all the binary operators, and is a common 
shorthand to get used to. If the operator is 

x [op]= y 

then the expression is equivalent to 

X = X [Op] y 



82 J avaScript for Macintosh 

Take the time to place your own equations into the code. Add vari­
ables and try different combinations. 

NOTE Here are some further notes on the integer operations. First, divi­
sion of integers rounds toward zero. Second, if you divide or mod­
ulo by zero, you will have an exception error at run time. If your 
operation exceeds the lower limit, or underflows, the result will be 
a zero. If it exceeds the upper limit, or overflows, it will lead to 
wrap-around. Moving past the upper limit will place you at the 
very bottom value-approximately -2.1 billion. 

There also are additional relational operators that produce boolean 
results. These operators are shown in Table 3.11. 

Table 3.11 Relational Integer Operators that Produce Boolean 
Results 

Operator Operation 

< Less than 

> Greater than 

<= Less than or equal to 

>= Greater than or equal to 

Equal to 

!= Not equal to 

The equal-to operator ( ==) can cause you endless suffering. I still 
sometimes replace the double equal sign with just a single equal 
sign when I mean to compare two values instead of assigning the 
value of the right operand to the left. Make sure that you use the 
double equal sign for comparison. Try this application: 

i = 0 
j = 10 
while(i<j) 

document.write(i) 
i++ 



Chapter 3 J avaScript Fundamentals 83 

Here, the control statement while checks the values of i and j. 
While the statement i<j is true, it runs the code fragment that 
prints i and then increases it by one. As soon as i<j is false, the 
program drops out of the while loop and finishes. We will cover 
while loops in Chapter 4. 

Logical Operators on Boolean Types 

The boolean type adds several new operators for logical computa­
tion. These operators are listed in Table 3.12. 

Table 3.12 Boolean Operators 

Operator Operation 

Boolean negation 

& Logical AND 

Logical OR 

Logical XOR 

&& Evaluation AND 

II Evaluation 0 R II 

Equal to 

I= Not equal to 

&= AND assignment 

1:::: OR assignment I 

"= XOR assignment 

?: Ternary 

If you consider the boolean value to be the equivalent of either 1 
for true or 0 for false, the operators act the same as those for the 
integer operators if they are working on a single bit. Negation ( 1) is 
the equivalent of the integer bitwise complement (-) and is a unary 
operation. Table 3.13 lists the results of the operations. 



84 J avaScript for Macintosh 

NOTE 

Table 3.13 Results of Boolean Operations 

AND OR XOR 

Op1 Op2 Result Op1 Op2 Result Op1 Op2 Result 

true true true true true true true true false 

true false false true false true true false true 

false true false false true true false true true 

false false false false false false false false false 

The &, : , and " operators evaluate both sides of the argument before 
deciding on the result. The && and : : operators can be used to avoid 
evaluation of right-hand operands if the evaluation is not needed. 

The ? :, or ternary, operator works as shown here: 

Operand1 ? Statement1 : Statement2 

Operand1 is evaluated for its truth or falsity. If it is true, Statement1 is 
completed; if it is false, Statement2 is completed. The following code 
provides an example of this operation: 

i = 10 
j = 10 
test = false 
test ? ( i = 0) : ( j = 0) 
document.write(i+"\t"+j) 
test = true 
test ? ( i = 0) : ( j = 0) 
document.write(i+"\t"+j) 

Note the parentheses. They are not needed in this example, but if 
you use more complicated statements, you might want to include 
them. 

ln:additiort.tothese_op~fC\tQrs, the·'&:::i .:,=,and A::. ·work as assign• 
m~nt ope_ta,tqts 6rt b.Qgle.~~ ,y~lu¢sjqit:~$xfh~y<qp -fot'hUOl'eri~al -
values.· 



NOTE 

Chapter 3 JavaScript Fundamentals 85 

Operators on Floating-Point Numbers 

The traditional binary operations work on floating-point values (-, 
+,*,and/) as well as the assignment operators(+=, -=,*=,and/=). 
Modulus(%) and the modulus assignment operator(%=) are the 
floating-point equivalent of an integer divide. Also, the increment 
and decrement ( ++, --) increase or decrease the value of the variable 
by 1.0. 

Operators on Strings 

Strings can be concatenated using the + operator. If any of the op­
erands are not strings, they are converted to strings before being 
concatenated. In addition, the += operator works by placing the 
concatenation of two strings into the left-hand operand. You used 
the + operator in the previous examples when you wanted to print 
several items on one line. Try using the document. write () function 
and the + operator to make different combinations of output with 
the interpreter. 

The left-hand operand in a += string operation must already have a 
value in order to work in Netscape 2.0. For example: 

string2 = •Hell0 1 

string1 += string2 

does not work because string1 is not defined. However: 

string1 = •• 
string2 = •Hello• 
string1 += string2 

does work. 

As far as using J avaScript for computation goes, you have now cov­
ered all the basic operations that can be performed on variables. 
You should spend time with the information presented and experi­
ment with your own programs. Of course, even in the examples 
here, you used several control flow statements to make the pro­
grams really do something. Control flow provides logic within your 
programs and the basic. engine that makes your calculations work. 



86 J avaScript for Macintosh 

In the next chapter, you learn the control flows available in 
J avaScript. 

Summary 
This chapter covered the basic architectural components, or tokens, 
of the J avaScript language. These components included correct 
J avaScript code placement in HTML pages, keywords, variable 
declaration, and issues of general syntax. This chapter also discussed 
the operators that can be used to build up the computational as­
pects of a JavaScript program. As I hinted earlier, the material in 
this chapter provides building blocks for J avaScript applications 
along with the set of parts that is available when you create addi­
tional complexity later on. There were also several tips for good 
code formatting and commenting. 

In the next chapter, you will delve into the organizational and con­
trol flow aspects of the language where you can really begin creat­
ing some full-blown JavaScripts. The importance of these methods 
has already been shown in some of these early examples. It is diffi­
cult, for example, to do anything beyond saying "hello world" 
without control flow (such as while and if _else), and I assume you 
have grander ambitions for J avaScript. 

After you have mastered the concept of control flow, it will be time 
to get into functions and event handlers, where lies much of 
J avaScript's exciting functionality. You will handle events from user 
input controls on HTML forms and create functions that react to 
this input without resorting to CGI scripts. 



CHAPTER 

Control Flow and Functions in 
JavaScript 

So far, the JavaScript language fundamentals have been covered, 
but there is not much more you can do with these elements except 
somewhat trivial applications. In order to really add functionality to 
your program, you need to begin using control flow statements and 
functions. These enable you to create complex actions that respond 
to computational results in the script or input from the system or 
user. Control flow statements enable programs to pick execution 
paths depending on certain conditions you define. 

Control flow statements are the basic organizational tools used in 
programming languages. JavaScript provides several control flow 
statements that can be used to do the following: 

0 Repeat processing blocks of code for specified intervals 

0 Make branch decisions 

0 Return control to the main script body from function calls 

0 Enable the path of execution to be altered in a dynamic fashion 

Functions in JavaScript can be declared as standalone routines that 
can be called from additional embedded scripts or from event han­
dlers in the HTML code, such as form buttons. In this respect, 
JavaScript differs from Java in that functions are not required to be 
a part of an object, although they can be , as we will see in Chapter 
6, "JavaScript and Built-In Objects." 



88 J avaScript for Macintosh 

Functions in J avaScript enable you to do the following: 

D Encapsulate often-used code in a single routine that can be 
called at different points in the entire program 

D Allow the usc of event handlers in HTML pages that can cre­
ate certain behavior based on user input 

After you have finished this chapter, you will have all the basic tools 
necessary for creating useful JavaScript scripts to extend your capa­
bilities well beyond "Hello, World!". In the next chapter, "Using 
and Creating Objects in JavaScript," you will look at the areas in 
which J avaScript really excels-the use of objects provided by the 
Netscape environment and created from scratch in JavaScript code. 
It is this object-based capability that enables JavaScript to access 
exposed methods and properties of objects, such as document, 
window, location, and history, along with built-in JavaScript objects 
for utilities such as date and math functions. This same capability is 
used to access plug-ins and Java applets in order to script together 
diverse components that help you create truly object-oriented Web 
pages. 

Control Flow in JavaScript 
Control flow is a set of methods used to make program execution 
move through the code in an order you specify. J avaScript provides 
several control flow expressions, as shown in Table 4.1. Control 
flow is the heart of a JavaScript program, providing it with capability 
you specify to make decisions. Rarely does a program go through 
a single, linear series of steps to produce its output. To 
enable interaction, programs must be able to react to input and 
calculations and make decisions about what code to execute next. 
In addition, if you need to repeat a code fragment several times in a 
row, it is a waste of effort to type the same code block in each place 
the program will need it-instead, you can tell the J avaScript inter­
preter to repeat the code block. J avaScript provides control flow 
methods for these and other situations. 



112 JavaScript for Macintosh 

the more complex objects created in languages such as Java into a 
unified structure. JavaScript does this by providing an HTML­
based language that can n1ore easily be implemented by Web page 
developers than Java or even CGI scripts. 

Although Java's object-based language architecture does not pro­
vide many of the most common features of 00 P languages such as 
inheritance, encapsulation, and abstraction (again it's all just post­
modern art criticism, unless you really want to learn OOP par­
lance), it does provide a means for creating objects that can have 
properties and methods, n1uch like those found in the Java class 
structure. The benefit of using objects in a JavaScript program is 
that after you create the object, you can reuse it in much the same 
way as you are able to reuse the functions created in the previous 
chapter. Besides creating objects, you can also use the object struc­
ture to create the J avaScript equivalent of an array. In addition to 
objects that you can create yourself, JavaScript and the Netscape 
environment provide several objects that can be used in your Java­
Script programs. Chapters 6 and 7 cover these objects in more 
detail. For now, this chapter covers objects in two respects: 

D Using objects that already exist 

0 Creating your own objects 

After you have learned how to interact with existing objects and 
create your own, you have learned JavaScript's object-based funda­
mentals. The next chapters merely provide you with information 
about built-in functionality that you can use in your JavaScript 
programs. 

Using Objects in JavaScript 
To use objects in JavaScript, you must understand their basic struc­
ture as well as the elements with which you need to interact to "uti­
lize" the functionality of the objects. In essence, there are two types 
of elements that make up a J avaScript object: 

D Prope1·ties. A J avaScript object property is the same thing as a 
JavaScript variable. It is a holder for inforn1ation that the ob­
ject needs in order to perform its required behavior. 



CHAPTER 

Using and Creating Objects 
in JavaScript 

One of the most important features of the JavaScript language is its 
capability to create and use objects. These objects enable you to 

implement powerful models for application development. Use of 
these models not only eases design and implementation details of 
complex programs, but also enables you to bring together previ­
ously created objects for use in current projects. 

JavaScript's implementation of objects is not considered fully 
object-oriented, because it does not provide the basic properties of 
object-oriented languages, such as abstraction, inheritance, and 
encapsulation. If these sound like terms best used to describe post­
modern artistic criticism, don't worry; you won't need to under­
stand them to use JavaScript. Simply bear in mind that whatever 
your background in object-oriented programming, JavaScript is not 
strictly object-oriented, and so many of the conceptual headaches 
that go along with objects won't be your burden to bear. JavaScript 
is no t able to provide the means to create o bjects like those avail­
able in tl1e Java language. Its capability, however, to use objects that 
have been created in otl1er more traditional object-oriented pro­
gramming (OOP ) languages such as Java has led JavaScript design­
ers to call JavaScript an object-based language. For JavaScript to 
have implemented the full object-oriented paradigm would have 
been considered overkill and would have missed tl1e main point of 
the language: to script simple programs for execution in HTML 
pages tl1at can tie togetl1er objects tl1at exist in the browser envi­
ronment, such as Java applets. A fully object-oriented programming 
language already exists in Java. It is JavaScript's job to pull together 



11 0 J avaScript for Macintosh 

available in the Netscape for Macintosh environment. Of all the 
chapters in the book, the next one is the most important. Be sure 
that you understand all of the basic points before continuing, 
because this basic information is required in order to develop 
powerful, object-based scripts for your HTML pages. 



Chapter 4 Control Flow and Functions in J avaScript 1 09 

<FORM> 
<INPUT TYPE="button" VALUE="Test" onClick="i++; buttonPressed = 
•'Test' "> 
</FORM> 

The use of a single function, however, makes this code much more 
modular by enabling changes in the code to be made in one place, 
not to mention the fact that a single function call makes the event 
handler easier to read. 

The next chapter provides a more in -depth discussion of event han­
dlers, and presents form objects and example~ of the events they 
handle. For now, it is important to see how functions can be used 
in relation to the event handler, and to get a feel for the overall 
usability of the function declaration. 

NOTE Later, as you begin to look at the objects that are programmable 
by the JavaScript language, such as form elements, you will access 
the event handler of these elements directly! Also, HTML enables 
you to set the event handler by calling onCLick, ONCLICK, or 
onclick- it's case insensitive. Because of the way the JavaScript 
symbols are'stored, if you want to refer to an event handler by 
name, you must use all lowercase letters, such as onclick. 

Summary 
The control flow and function statements are simple yet powerful 
means for creating smooth-flowing, modular, easy-to-maintain 
scripts for HTML pages. These features of the language are used 
time and again in the first half of this book, and many of them are 
used in Java. In fact, almost all of the programming examples in-

· elude one of these items to enable complex behavior that is worth 
exploring. 

In the next chapter, the Java~cript basics will be moved aside for 
more complicated matters. It is time to look at objects: ho": to 
create them in JavaScript, how to use th~m, and what objects are 



1 08 J avaScript for Macintosh 

Table 4.2 Continued 

Event Event Description 

Change Occurs when data is 
changed or script action 

Click Occurs when the user clicks 
the mouse button while the 
mouse pointer is over one 
of these objects 

Select Occurs when the user 
selects a block of text 
within an object 

MouseOver Occurs when the user 
moves the mouse pointer 
directly over a link object 

Object 

Text fields, text 
areas, selections 

Buttons, radio 
buttons, checkboxes, 
submit buttons, 
reset buttons, links 

Text fields, text areas 

Links 

In order to process an event for a field, an event handler attribute 
must be added to the tag for the field. For example, you can cause 
a button to invoke a dialog box using the following tag: 

<FORM> 
<INPUT TYPE="button• VALUE="Test" onClick="alert('This is a test')"> 
</FORM> 

The onClick attribute tells the interpreter what J avaScript code to 
run when the designated event occurs. In this example, the alert 
function is built into the J avaScript language, but you can also sub­
stitute new functions. One item to note is the use of single quotes 
in order to demarcate HTML tag attributes from function argu­
ments. The limitations of text in HTML dictate that quotations 
being sent to J avaScript functions or variables are of a different 
quote style than that used to indicate what is to be executed for the 
event handler. For this reason, if you use onClick=" . . . ", you 
must use single quotes inside, as in the following code fragment. If 
you use onClick=' . . . ',you must use double quotes for any state­
ments inside. Of course, you don't have to call a function. You can 
also place plain J avaScript code in this attribute tag, separating 
statements using a semicolon (; ): 



Chapter 4 Control Flow and Functions in JavaScript 107 

];! Netscape: 03DZ.html 

ru.s!~ $l'imlu>al8l~X~I .::J II 
OoT0 1 t • 
..,.,.,.,..,! .,...,.,..,,! ._ t ,.., .. .,. ,,......,!!tl ""'~"' I 

r ... - ~, ... 
•• u .. .. .. .. •• .. ... .. •• .. 
~ ~· · •• : g:: 

, ........ ,~. 
02 
41 •• , .. ., .. .. . .. ... 
112 ... .. . 
• •• ... .. , ,.,. . .. ... 
20 

Figure 4.2 The tempConvert {) method in action. 

Triggering Functions Using Event Handlers 
Of course, there is another way in which functions can be used, and 
that is as an event handler for objects. The use of forms and han ­
dling events will be discussed in more detail in Chapter 8, but be­
cause you have already used event handlers before in the example 
code that used form buttons, it is worthwhile mentioning them 
here . 

Table 4.2 Events That ]avaScript Can Handle 

Event Event Description Object 

Focus 

Blur 

Occurs when an object is 
set for data entry by a user 
or by a script 

Occurs when an object 
loses focus, that is, the user 
presses the tab key to move 
to the next text field from 
the current one 

Mouse clicks, tab, 
text fields, keypresses, 
text areas, selections 

Text fields, text areas, 
selections 

co11timtes 



1 06 J avaScript for Macintosh 

else { 

} 

alert("Error - arguments incorrect") 
return fromTemp 

return toTemp 
} 
II end script hiding --> 
</SCRIPT> 
</HEAD> 
<BODY> 
<PRE> 
<SCRIPT LANGUAGE="JavaScript"> 
<!--begin hiding of script 
document.write("Celsius\t\tKelvin\t\t\t\tFahrenheit\n") 
for(i=0;i<100; i+=S) 

document.write(i + "\t" + "\t" + tempConvert(i,"CK") + "\t"+ "\t" 
•+ tempConvert ( i, "CF") + "<br>") 
II end script hiding --> 
</SCRIPT> 
</PRE> 
</BODY> 
</HTML> 

Figure 4.2 shows the resulting output of the JavaScript code in an 
HTML page. You should notice the use of the <PRE></PRE> tags 
before and after the <SCRIPT></SCRIPT> tag. This enables you to 
use text formatting characters such as tabs, spaces, and newlines in 
order to format the display of text on-screen without resorting to 
HTML tags. This is important because some non-Netscape browsers 
do not interpret HTML comments correctly-especially comments 
that contain other HTML tags. Therefore, having a > character any­
where between the <SCRIPT></SCRIPT> tags could disrupt the 
display of your Web page for some of these browsers. By using 
<PRE></PRE> tags, you can format text using standard tabs, 
carriage returns, and spaces without worrying about how various 
browsers might interpret your code. 



Chapter 4 Control Flow and Functions in J avaScript 1 05 

number would necessarily be given, it can check to make sure that 
it has information to deal with each type of number, be it local, 
long distance, international, or to a local exchange. 

NOTE . arguments is actually an array. Although most languages have 
built-in array types for holding variables, JavaScript does not, ex­
ceP,t for those provided by the language environment such as 
arguments and elements you will see later. For more information 
on arrays, see Chapter 5, "Using and Creating Objects in Java­
Script." 

Using Functions and Events 
In order to use functions, you must call them in either a script or 
an event handler. Calling functions in scripts is a rather simple af­
fair, and requires only that you call the function by using the name 
and including the required arguments. The tempconvert () function, 
for example, can be used to create a table of values for a tempera­
ture conversion table, as follows: 

<HTML> 
<HEAD> 
<SCRIPT LANGUAGE="JavaScript"> 
<!··begin hiding of script 
function ternpConvert(fromTemp, cType) { 

var toTemp = 0 
cType.toUpperCase() 
if(cType =="CK") 

toTemp = fromTemp + 273.15 
else if(cType == "CF") 

toTemp = fromTemp * 9 I 5 + 32 
else if(cType == "FK") 

toTemp = ((fromTemp · 32)* 5 I 9) + 273.15 
else if(cType == "FC") 

toTemp = (fromTemp · 32) * 5 I 9 
else if(cType == "KC") 

toTemp = fromTemp · 273.15 
else if(cType == "KF") 

toTemp = ((fromTemp · 273.15) * 9 1 5) + 32 



1 04 J avaScript for Macintosh 

global variables intentionally. Whatever variables you need you 
should either create as local vars or require that they be sent as 
arguments that can then be used by the function. This way, you are 
assured that your functions will be portable to other HTML pages, 
and that they can be mixed in with scripts without requiring that 
you know the implementation details or have to worry about how 
the variables might conflict. 

Allowing for Variable Argument Lengths 
You might want to have a function that can take several numbers of 
arguments. In this case, how do you know how many arguments 
have been passed to your function? In this case, you can use the 
arguments variable, which is an array that holds the values of all the 
arguments passed to the function. You might, for example, have a 
function that takes four arguments, but requires only one: 

function setNumber(number, areaCode, countryCode, extension) 

The number of arguments passed is stored in the variable 
arguments .length. By checking the number stored in 
arguments .length, you will know how many have been passed 
to the function. 

function setNumber(number, areaCode, countryCode, extension) { 
this.number = number; 
if(setNumber.arguments.length > 1) 

this.areaCode = areaCode; 
if(setNumber.arguments.length > 2) 

this.countryCode = countryCode; 
if(setNumber.arguments.length > 3) 

this.extension = extension; 

II then do something with the number 

In this case, the function could store the values of the phone 
number depending on which were given. Because only the first 



Chapter 4 Control Flow and Functions in J avaScript 1 03 

In this case, newTemp would now be equal to 212. Notice that in­
stead of requiring you to write the equation for the conversion 
every time, you need only to provide the necessary information, 
and the function returns the correct value. In addition to sending 
back the correct answer, if the conversion type is unknown, then an 
alert dialog box opens up and the original temperature is returned 
to the calling statement. 

Using var in Functions 
Recall from our earlier discussion on the declaration of variables 
that the act of assigning a variable a value is what declares it in Java­
Script. That's it. No DIM statement or other arcane syntax is neces­
sary to tell JavaScript what to do with a variable. You then use the 
equal ( =) sign to assign a value to a variable, just as you have seen in 
previous examples. For example, 

wattage=100 

simultaneously declares the variable wattage and sets its value to 
100. 

In the temperature conversion function, you may have noticed 
the use of the var statement in front of the variable declaration for 
toTemp. You can use var statement when you want to make sure that 
the variable is completely local. In the case of the to Temp variable, 
you don't know if that variable has already been used somewhere 
else. Because you don't want to inadvertently change data in a glo­
bal variable, you should make sure that all variables declared and 
used in a function are declared var to ensure protection of possible 
variables sharing the same name. 

NOTE Using var- is a good habit to get into and increases the safety 
and reliability of your code. 

One related issue: In addition to ensuring that you don't inadvert­
ently alter global variables by using the var statement, it is also 
important from a design standpoint that you refrain from altering 



1 02 J avaScript for Macintosh 

NOTE 

else if(cType == "CF") 
toTemp = fromTemp * 9 I 5 + 32 

else if(cType == "FK") 
toTemp = ((fromTemp- 32)* 5 I 9) + 273.15 

else if(cType == "FC") 
toTemp = (fromTemp - 32) * 5 1 9 

else if(cType == "KC") 
toTemp = fromTemp - 273.15 

else if(cType == "KF") 
toTemp = ((fromTemp - 273.15) * 9 I 5) + 32 

else { 
alert("Error - arguments incorrect") 
return fromTemp 

return toTemp 

In this version of the conversion function, it takes a temperature, 
which can either be an integer or a floating-point number, and a 
two-character string, which indicates what scales to convert from 
and to, respectively. For example, "CK" indicates the function 
should convert the fromTemp argument from Celsius to Kelvin. 
Then, using this information, the conversion is made and returned 
to the calling statement. 

A note of advice. It is optimal if you can place all your function 
declarations inside the <HEAD></HEAD> tag, because this is read 
and interpreted before the rest of the Web page. This makes sure 
that any functions that might be called in the main HTML docu­
ment will have been loaded into memory. 

Using the return Statement in a Function 
You might have noticed two statements that use the return key­
word. These statements send values back to the statement that 
called the function. For example, say you wanted to convert the 
temperature of l 00 degrees Celsius to its equivalent in Fahrenheit. 
You might call the function in a JavaScript later in the page by in­
voking the function as follows: 

newTemp = tempConvert(100,"CF") 



Chapter 4 Control Flow and Functions in J avaScript 1 01 

function as it pertains to the extension ofHTML capabilities. You 
have already seen examples of functions used as arguments for 
event handlers (the "game show buttons" example in Figure 4.1 ), 
so you should be familiar with this idea. In the next section, howev­
er, you go through a step-by-step process of creating functions and 
using them as event handlers. 

In order to create a function in J avaScript, you must declare it by 
using the function statement: 

function functionName(arguments) 

This statement creates a function that can be called using the fol­
lowing statement: 

functionName(arguments) 

For example, say you want a function that will convert between 
Fahrenheit, Celsius, and Kelvin. The first thing you need to ask 
yourself is what this function needs in order to perform this calcula­
tion. In this case, it needs to know what the temperature to convert 
is, what scale that temperature is in, and what scale to convert to. 
Therefore, your function needs to take three arguments: temp, 
fromscale, and toScale. The function statement would look like the 
following code: 

function tempconvert(temp, cType) { 

This defines the function. After it has been established what the 
function needs to do and what arguments it takes, the body of the 
function can be created as follows: 

function tempConvert(fromTemp, cType) 
var toTemp = 0 
cType.toUpperCase() 
if(cType =="CK") 

toTemp = fromTemp + 273.15 



1 00 J avaScript for Macintosh 

WARNING 

result[i] ; numerator/denominator 
II update numbers 

Both of these statements can be used with the for and while loops 
to either break out of the loop completely when it might otherwise 
fail, or skip the remaining code in the loop block and continue with 
the rest of the loop. 

Make sure you attempt to catch all problems (such as divide by 
zero) before they appear for your site's users. Because these pro­
grams will be running on remote systems, it is important that they 
be as robust as possible. In Java, a more complex system for catch­
ing exceptions is used, but this system is not available in JavaScript. 
Getting into the habit of looking for such problems now can get 
you in a good position for handling exceptions later. 

Creating Functions in JavaScript 
The use of functions in JavaScript serves several purposes. Java­
Script functions can be used to organize blocks of code that recur 
several times in a JavaScript program. By placing this code in a 
function, the programmer can encapsulate behavior and use a single 
command to invoke complex actions without the repetition of typ­
ing in long code every time it is needed. In addition to the greater 
readability and ease in programming that functions create, they also 
help in the actual programming of the code inside d1e functions­
the programmer can concentrate on the actions required by the 
function code in isolation from the rest of the program. This mod­
ular programming idiom is the basis for much of the increased 
functionality of object-oriented programming. 

J avaScript functions also are the basis for creating event handlers, 
which enable a JavaScript-enhanced Web page to react to user 
events without relying on server-side scripting and network calls. 
This is one of the most important requirements of the JavaScript 



Chapter 4 Control Flow and Functions in JavaScript 99 

Typically, you will need to check for some external change in the 
state of a variable, such as intruderinHouse, in order to reevaluate 
each conditional variable that would need to change. The impor­
tant thing with while statements is ensuring that you can actually 
get out of their loops, meaning that the code you execute in the 
while block must eventually change the state of the while expres­
sion itself. 

Using break and continue to Control 
Loops 
The break statement is used to exit a looping statement, such as 
while ( ) or for ( ) , immediately. The break statement continues exe­
cution at the firstz statement past the closing brace. You might want 
to use a break statement to test for a possible error condition before 
a computation. The following code checks to make sure the de­
nominator in a division operation is not zero before proceeding: 

for(i=0;i<20;i++) { 

} 

if(denominator == 0) break 
result[i] = numerator/denominator 
II update numbers 

In this case, the for loop runs until either i is 19 or the denomina­
tor equals zero. Because you don't want to divide by zero, you 
have the loop break so that it doesn't cause an error. 

The continue statement is used when you don't want to execute 
any of the statements from that point to the end of the block, but 
want the loop to carry on with the next iteration. In the case of the 
previous example, if a denominator is zero, then the loop would 
break and the rest of the array would not be filled. Instead, you can 
use continue, which not only skips the actual process of updating 
the array, but skips past the calculation that would generate an er­
ror. The following code allows the for loop to continue, but skips 
any divisions where the denominator is zero: 

for(i=0;i<20;i++) { 
if(denominator == 0) continue 



98 J avaScript for Macintosh 

WARNING Be careful if you use the variable that is being used as the counter 
in the for loop (such as eels in the previous example) within the 
actual block of code. If you change the number somewhere within 
the for statement block, it could alter the number of times the 
loop· executes. Also, this might not occur in the most obvious 
manner, so tracking down the bug could be difficult. 

You can use for loops in many places-for accessing array elements 
by index, anywhere a series of numbers is needed, or anytime some­
thing has to execute a specific number of times, such as a time de­
lay. You will understand more about why arrays are useful when you 
learn about them in the next chapter. 

Using Conditional while Loops 
while(condition) statement 

The statement is identical in format to the for and if-else loops in 
that either single statements or multiple statements surrounded in a 
block can be used. You can mimic the behavior of a for loop using 
while as can be seen in the following code. 

i = 0 
while(i < 10) 

i++ 
document.write("loop a + i) 

The for loop is more compact, however, and makes for easier read­
ing when dealing with a series of numbers. The while loop is better 
equipped for establishing the condition of more complicated state­
ments, such as the following: 

while(intruderinHouse && lpolicePresent) 
soundAlarm () 
intruderinHouse = checkForintruder() 
policePresent = checkForPolice() 



Chapter 4 Control Flow and Functions in JavaScript 97 

D The last expression tells the loop what to do to the counter 
each time, and is known as the update expression. In this exam­
ple, the i ++ tells the J avaScript interpreter to increase the val­
ue of i by I each time the loop is run. This causes i to go 
from 0 to 9 through all of the intervening integers. If you've 
programmed in BASIC before, then update should seem fa­
miliar because it does what the step statement does for 
BASIC for-next loops. 

You could use a statement like the following to address the mem­
bers of an array in order. (Arrays are covered in the next chapter.): 

for( i = 0 ; i < 10 ; i++) a(i] = 0 

The preceding code would fill the array with integers of zero. 

The last expression in the for statement ( i ++) can be omitted, but 
be sure to do something with the counter variable in your state­
ment-if the conditional expression was true the first time, you will 
be in an endless loop because nothing will change that status. The 
following code changes the state of the i variable not in the for 
statement itself, but in the code block: 

for(i = 10; i >= 0 ; ) i·· 

An example using the for loop to print a conversion from Celsius 
to Fahrenheit in five-degree increments follows: 

<HTML> 
<HEAD> 
<SCRIPT LANGUAGE="JavaScript"> 
<l·· hide script from old browsers 
for(cels = 0; eels <= 100; eels += 5) { 

} 

fahr = eels * 9 I 5 + 32 
document.write(cels + • • + fahr + "<br>") 

II end script hiding ··> 
</SCRIPT> 
</HEAD> 
<BODY> 
</BODY> 
</HTML> 



96 J avaScript for Macintosh 

"ttU(.~,..-.I),OI.!IIm 

~.1EJ.£l)j Ol'illll;iiSI~~<~I _j II 
"""""" [fi~ //,........tnOT-Ntwltllttlt·t..~•WtrlfTP'•IJ•••,_..~~A 
...,.,_ ,, ............ , _ , .. ,.._,~ -~ 1 

I c .... .,, II c.n...il II c ...... -.J I 

& Jauo1;trlpt Al~rt: 
You win 11 Carl 

ow 

.. ~·0.. . 
Figure 4.1 Ihe if -els e control in action. 

The for Loop for Repeating Code 
The for loop is a powerful tool for looping through a series of in­
structions unti l some limit has been reached . The format of the fo r 

statement uses a variable, often called a loop counter in this case, to 
compare with a certain limit. When the limit is reached, the loop is 
broken, as follows: 

for( i =0 ; i <10 ; i++) 

The format of the argument (ext ; ex2 ; ex3 ) is explained next. 

0 The first expression, i =0, tells the for loop where to start the 
counter variable and is known as the initial expression. In this 
case, i is set to 0. 

0 The second expression, i <10, tells the for loop when it should 
stop and is called the conditional expression. In this case, the 
statement is true ( d1at is, d1e loop should continue) for all 
counter values 0-9. 



Chapter 4 Control Flow and Functions in J avaScript 95 

if(x > .0) { 
if(x =:::: z) a = z 

} 
else a = x 

You now have enough pieces together to write a program that does 
something beyond just sending text to the screen. The following is 
an example of a function that, depending upon the button pressed, 
outputs a different message: 

<HTML> 
<HEAD> 
<SCRIPT LANGUAGE="JavaScript"> 
<!·· hide script from old browsers 
function pickAWinner(number) { 

if(number == 1) 
alert("You win a Car!") 

else if(number :::::::: 2) 
alert("You picked the goat") 

else if(number ::::= 3) 
alert("You get to keep your 100") 

else alert("incorrect entry") 

II end script hiding ··> 
</SCRIPT> 
</HEAD> 
<BODY> 
<FORM> 
<INPUT TYPE:::"button• VALUE:::"Curtain #1" onClick:::"pickAWinner(1)"> 
<INPUT TYPE="button• VALUE="Curtain #2" onClick="pickAWinner(2)"> 
<INPUT TYPE="button• VALUE="Curtain #3" onClick="pickAWinner(3)"> 
</FORM> 
</BODY> 
</HTML> 

Obviously, the program doesn't do that much-unless you are on a 
game show-but you can see the way in which you can use the if. 
else statement to control the flow of the program depending on 
the condition of certain variables. Figure 4.1 shows the result of the 
J avaScript code. 



94 J avaScript for Macintosh 

If you don't want to do anything if the statement is not true, you 
can simply leave off the else. If you want to have your program do 
more than one thing for each statement, surround the statements 
with curly braces{}, as follows: 

if ( !lightOn) { 
wattage = 0 
roomDark = true 

} 

else { 

} 

wattage = 60 
roomDark = false 

In addition, if you want to string together a series of tests, you can 
do so as shown here: 

if(boolean) statement 
else if(boolean) statement 
else if(boolean) statement 

else statement 

In this case, the boolean expressions at each stage are evaluated. If 
one is found to be true, it is executed and the rest skipped; other­
wise, the final else is executed. 

Be sure to use the curly braces tor your statements if it is unclear in 
which order statements should be executed. Here's an example: 

if(x > 0) 
if(x == z) a = z 

else a= x //this else would be associated with the inner if. 

The preceding example produces an incorrect result if you want a 
to equal x only if x <= 0. Instead, block notation should be used to 
make it explicit: 



Chapter 4 Control Flow and Functions in JavaScript 93 

Another block statement concern is that of where and how fre­
quently to place explanatory comments in tl1e code. Programmers 
who place comments in code in order to document it often wonder 
how much documentation is necessary. For example, should each 
line be commented? Probably not, because this most likely makes 
the source files difficult to read. In programming, as in life, less can 
be more. 

Start by placing your comments before all control blocks. Typically, 
all the information you need to provide someone is best presented 
in a block-by-block fashion; therefore placing comments before 
blocks is a good rule of thumb to follow. Knowing what each block 
is supposed to do makes it easier for someone to check the code. 
More comments are not usually worth the added effort, unless a 
line does something particularly unusual or important. 

Using if -else Statements to Make 
Decisions 

The if ·else branch is the basic control flow expression in the Java­
Script language. Simply put, if something is true, you execute the 
first statement; else, do the other statement. For example: 

if(a < b) a = b 
else b = a 

NOTE Note that the expression evaluated is a boolean, not a number­
unlike C, in which 0 = false and any other number is true. You 
must make some relational statement in order for JavaScript to 
evaluate the if statement. Because JavaScript automatically 
changes types to match the variable target, however, the zero and 
nonzero numbers are changed to false and true, respectively. This 
is not the case in Java, so keep that in mind if you plan to start 
learning and programming Java~ 



92 J avaScript for Macintosh 

statement1 { 
statement2 { 

statement3 
statement4 

statementS { 
statementS 
statement7 

The preceding code is much easier to keep track of than the follow­
ing, in which there is no indentation: 

statement1 { 
statement2 { 
statement3 
statement4 
} 
statements { 
statementS 
statement7 
} 

} 

In this last case, you would be searching for braces, trying to match 
them up with each other, and wondering why this code's author 
was so deliberately cruel. 

NOTE There are many good editors for HTML out on the Web that 
support all the tags available and help keep track of additional 
medi~ such as in-line pictures and sounds. A special text editor for 
writing your JavaScript code is useful, however-one that does 
automatic indentation, and also picks out matching braces so you 
can find the beginning and end of code blocks, as well as make 
sense out of expressions that use several layers of parentheses. A 
good program for Macintosh is a freeware text editor known as 
BBEdit Lite, which can be upgraded to the fully supported BBEdit 
version. BBEdit Lite is available at many shareware sites and directly 
from Bare Bones Software at http:/ /www.barebones.com. 



Chapter 4 Control Flow and Functions in JavaScript 91 

Instead of printing "second line of for loop i" after the first line in 
the loop, this line only appears once at the end of the output text. 
This problem occurs because the interpreter is not able to tell how 
many more statements it should run in the loop beyond the first 
one, so it just runs one. Otherwise, where would it stop? Two 
lines? Four? Ten? The way to guarantee that the interpreter knows 
how many lines to execute with the for statement is to use the 
braces. 

<HTML> 
<HEAD> 
</HEAD> 
<BODY> 
<SCRIPT LANGUAGE="JavaScript• > 
<!··hide script from old browsers 
for(i=0;i<10;i++) { 

document.write("for loop • + i + "<br>") 
document.write("second line of for loop • + i + "<br>") 

II end script hiding ··> 
</SCRIPT> 
</BODY> 
</HTML> 

You will run across blocks of code similar to the preceding one in 
all sorts of statements, especially in organizing objects and func­
tions, along with control flow statements. If you imagine them as 
setting off a series of statements that act as a single unit, you should 
be able to understand the program structure. 

Using Indentation for Clarity 
One thing you might have noticed is the use of indentation in the 
code examples. Indentation enables the reader to view statements in 
a block as related without searching for beginning and end braces. 
Because spaces and tabs are ignored by the interpreter anyway, they 
are simply there for the program reader's convenience. Indentation 
is, however, one of the most common elements of style used in 
programming, and you should definitely use it. 

The standard for indentation and block usage is to indent the code 
within a block, but to leave the braces at the indentation level of 
the previous code, as follows: 



90 J avaScript for Macintosh 

It is not important to understand the exact nature of the function 
statement right now. It is important, however, to look at the use of 
the braces to tell where the function's statements begin and end. 
The use of braces enables the interpreter to organize and execute 
the different lines, and to associate them with the proper control 
flow statements and function declarations. You will also run into 
these code blocks when you have more than one statement after a 
control statement. The following example shows how a single state­
ment works with the for loop. Don't worry yet about the exact 
syntax of the for loop; it is enough to understand that the com­
mand tells the interpreter to repeat the statements that follow 10 
times. 

<HTML> 
<HEAD> 
</HEAD> 
<BODY> 
<SCRIPT LANGUAGE="JavaScript" > 
<1-- hide script from old browsers 
for(i=0;i<10;i++) 

document.write("for loop " + i + "<br>") 
II end script hiding --> 
</SCRIPT> 
</BODY> 
</HTML> 

Run the preceding code and view the output. You should see a 
column of statements saying for loop 0, for loop 1 , ... for loop 9. 
Now, what if you wanted to add a statement to be executed in the 
loop? Your first impression might be to add the new line that you 
wanted right inside the loop. Try it: 

<HTML> 
<HEAD> 
</HEAD> 
<BODY> 
<SCRIPT LANGUAGE="JavaScript• > 
<!··hide script from old browsers 
for(i=0;i<10;i++) 

document.write("for loop • + i + "<br>") 
document.write("second line of for loop • + i + "<br>") 

II end script hiding -·> 
</SCRIPT> 
</BODY> 
</HTML> 



Chapter 4 Control Flow and Functions in J avaScript 89 

Table 4.1 Control Flow Expressions 

Type Expression 

if-else if(boolean)statement 

break 

continue 

return 

for 

for-in 

while 

else statement 

break [label] 

continue [label] 

return expression 

for(expression1 expression2 expression3) 

statement 

for(expression1 in expression2) 

statement 

while(boolean) statement 

In the next few sections, the if- else, break, continue, for, and 
while control flow structures are discussed. The return and for- in 
control flow statements, which are particular to objects and func­
tions, are covered in their respective sections in the last half of this 
chapter, and in the next chapter. For now, a short statement about 
blocks and comments will help make your reading and writing of 
code much easier. Incorporating comments into your code early 
helps you get used to the idea of documenting your work and gets 
you accustomed to reading comments along with the code frag­
ments to which they belong. 

Using Blocks and Comments to Organize 
Code 
The basic organizational method for grouping code uses the curly 
braces to define the beginning ({)and end(}) of code blocks. You 
might have noticed these braces in the function definitions from 
the previous chapter's examples. The following is an excerpt of that 
code: 

Function functionName( arguments ) { 



Chapter 5 Using and Creating Objects in JavaScript 113 

0 Methods. A J avaScript object method is essentially a J avaScript 
function that is associated with a particular object. These 
methods are the ways in which the objects are manipulated 
and caused to carry out desired behaviors. 

To use objects, you must create instances of the objects. Except tor 
static objects, which are discussed later, the definition of an object 
is just that-a definition. The definition is a mold for the final ob­
ject. To actually use an object, you create an object from a defini­
tion you have already written for it; this definition is similar to a 
J avaScript function. To create a copy of an object that has already 
been defined, you use the new operator: 

birthday = new Date("August 24, 1972") 

Notice that the Date () function takes a single argument-the date 
itself. The function that has the same name as the object is consid­
ered the constructor (described later in this chapter), and its argu­
ments generally set the properties of the object. This concept goes 
for all of the objects that are built into the J avaScript language and 
the Netscape environment. After you create a new copy of the ob­
ject, you can then use the methods and properties that are defined 
for it by using the name you have created for it. For example, any­
where you want to use the Date object birthday, you would simply 
use the new name. 

yearBorn = birthday.getYear() 

The advantage of this model is that you can create several instances 
of an object, and, although they each have different names and 
different properties, each has the same methods and behaves identi­
cally. 

Christmas = new Date("December 25, 1995") 
idesOfMarch = new Date( "March 15, 1995") 
month1 = Christmas.getMonth() 
month1 = idesOfMarch.getMonth() 



114 J avaScript for Macintosh 

NOTE If you test these data functions, keep in mind that the getMonth() 
function returns a calendar number using a zero-based index. This 
means that January starts at 0 and December ends at 11. Blame 
computer science as a field if you want to hold someone account­
able for this kind of counter-intuitive thought. 

After you have created these objects, you'll want to gain access to 
their properties and methods. 

Object Properties 

Object properties are the variables in which objects hold infor­
mation that either is being held for use in the program or is neces­
sary for the execution of that particular object's methods. One of 
the most common uses tor objects is the storage of often-used data 
and the particular methods that act on this data. Let's say you have 
an object that holds URLs and creates a hierarchical arrangement 
based upon information you provide to create a graphical interface 
for browsing a Web site. To create the hierarchical list, however, 
you must first be able to store information about each URL. For 
example, if the URL object includes information such as name, 
size, type, and modification date, in addition to the URL itself, the 
object, then, consists of the following properties: 

Object: URLEntry 

Properties: name 

size 

type 

mod Date 

URL 

Of course, the first method used to assign values to object proper­
ties is typically in the constructor itself, as shown in the following 
line: 

homePage =new URLEntry("Hayden Books",2234,"folder•,•January 16, 
1996 12:00:00", "http: //www.mcp.com/hayden•) 



Chapter 5 Using and Creating Objects in JavaScript 115 

This particular constructor (URLEntry( ... ) ) takes all the function 
arguments and creates the object with all of the properties set to 
the given argument values. Later on, when the creation of objects is 
covered, how constructors take their arguments and make objects is 
covered in more detail. 

Assuming that the object already exists and is named homePage, you 
can access each of its properties in three ways. 

First, you can use the dot operator ( . ) to access the properties, 
exactly as you would do in Java. The following code can be used to 
assign values to each of the member properties: 

homePage.name = "Hayden Books" 
homePage.size = 22345 
homePage.type = "folder• 
homePage.modDate = new Date("January 16, 1996 12:00:00") 
homePage.URL = "http://www.mcp.com/hayden• 

This format enables you to access each of the properties, set them, 
and use them later. This is the standard method for accessing 
properties in Java, and using it gets you used to the syntax of Java 
objects as well. However, there are two more ways of accessing 
JavaScript properties that may be more flexible in a dynamic envi­
ronment. These methods involve accessing the member properties 
as array indices, and can be used when the exact name of the prop­
erty needed is not known until runtime. 

Second, you can access each property based upon its index: 

homePage[0] = "Hayden Booksa 
homePage[1] = 22345 
homePage[2] = "folder• 
homePage[3] = new Date("January 16, 1996 12:00:00") 
homePage[4] = "http://www.mcp.com/hayden• 

Accessing the property based upon its index enables you to use 
control flow statements, such as for () loops, to cycle through all of 
the properties of an object. For example, you can use the following 
code to list all of the properties of an object: 

function showProps(object) { 
for(var i = 0; i <5; i++) 



116 J avaScript for Macintosh 

document.write(object[i]) 
} 

In this case, however, you must know exactly how many property 
elements there are in an object to use such a function. Fortunately, 
J avaScript provides a control flow statement that cycles through all 
of the properties in an object by name. It is the for-in statement. 
We can redo the previous example using this method: 

function showProps(object, name) { 
for(var prop in object) 

document .write(name+". "+prop+" "+object [prop)+" \n") 
} 

Currently no JavaScript function exists to retrieve the name of an 
object, so we must pass an object's name property to any function 
or method that will refer to a specific object. In the case of our 
homePage object, we would call the showProps function with the state­
ment: 

showProps (hornePage, "hornePage") 

The output from this call to showProps is 

homePage.narne = Hayden Books 
hornePage.size = 22345 
hornePage.type =folder 
homePage.modDate = January 16, 1996 12:00:00 
homePage.URL = http://www.mcp.com/hayden 

The advantage of using the for· in control flow statement is that 
you do not need to know the number and names of the methods 
beforehand. 

For the third method of accessing properties, notice the reference 
to the object property in the document.write statement. The array 
index uses the prop variable, which when used by itself is a string 
providing the property name for output. In the same way that the 
variable prop is a string, you can use strings to access and assign 
object properties. 



Chapter 5 Using and Creating Objects in JavaScript 117 

homePage("name"] = "Hayden Books" 
homePage("size"] = 22345 
hoemPage("type"] = "folder• 
homePage("modDate"] =new Date("January 16, 1996 12:00:00") 
homePage("URL"] = "http://VNNI.mcp.com/hayden" 

This way, you can access properties at runtime without knowing 
their names. This enables you to address object properties dynami­
cally in a script without knowing what the property names might 
be. You could, for example, use information from a text field to 
determine the properties a user wants to see. 

Object Methods 
In addition to being able to store properties, objects can also have 
methods associated with them. These methods arc essentially Java­
Script functions that are associated with an object and are used to 
carry out behaviors that the object encapsulates. To use a method 
that an object has built in, you must call it using the method refer­
ence. For example, to call the sin() method of the Math object 
which is built into JavaScript, you would call it: 

Math.sin(3.14) 

The method is sin(), which requires a number and is a member of 
the object Math. Many of the JavaScript and Netscape objects have 
methods associated with them, and the next three chapters are es­
sentially presentations of these different objects, including the 
properties and the methods that they contain. 

From the example of the URLEntry (discussed in the previous section 
about object properties), the showProps function shown here: 

function showProps(object, name) { 
for(var prop in object) 

document.write(name+"."+prop+" "+object[prop]+"\n") 

... might be a method ofURLEntry, renamed to toString. The only 
difference would be that instead of printing out the object property 
itself, the method might return a string that can then be used by 
the programmer to be printed to the screen or whatever else was 
needed. 



j ,. 

118 J avaScript for Macintosh 

for(var prop in this) 
document.write(prop+" "+ob ject[prop]+' \n') 

If the object name is newURL, you can get it to output the text by 

using the following call: 

document.write(newURL.toString()) 

Some sample output from such a call is shown in Figure 5.1. No­
tice that the function definition for the tostring method is also 
listed. Moreover, if you used the call: 

document .write(newURL) 

... you would get the exact same o utput. A call to document.write 
using any object invokes its tostring function if it exists. This means 

that if any object you are using has a toString () method, you can 
send the object itself to document. write() for output. If it is an object 
of your own creation, you need to create your own toString () 
method, which is covered in the next section on creating objects. 

~ Netscape: toString gje 

_;j~j;J Forward Horm _:j~~~~ lmagts Open Prfnt Find ~· 'What's Nn r? j 'What's Cool? I Handbook I NttStarch I Net Dir.otor11 j Softvvt 

toStriDg = 
£unction toStrinq() { 

:for ( var prop in this) { 
d~nt. write(pr~p + " = " + tbis[prop) + "\n") ; 

} 
} 

URL = http : //~.mop . co~lhayden 
modDate = Sun Eeb 11 12: 00 :00 1996 
type = .folder 
size= 2234 a 
nan~e = Hayden 

lin~ !ii<ii()IH.J 

Figure 5.1 The toString method for the URLEntry object. 



Chapter 5 Using and Creating 0 bjects in J avaScript 119 

Accessing Properties of Static Objects 

There are several objects for which you do not need to create an 
instance of the object to use the methods and properties they con­
tain. Such objects are considered static, and you can access their 
properties by using the object name itself and the property or 
method required. A perfect example of a static object is Math. When 
using the Math object, you do not need to create a new Math object 
with a new name. Instead, you can simply use the Math name, ap­
pended with the property or method you need. 

area = Math.PI*Math.pow(r,2) 

NOTE Throughout this book,· every attempt has been made to·indicate 
whether an object is a static object or whether an instance of the 
object needs to be created~ 

Using the with Statement to Refer to Objects 
In addition to the standard use of methods, there is an important 
way to tell J avaScript which object you are referring to when calling 
methods and accessing properties. The statement to use is 

with object { 

} 

All of the statements inside the with brackets act as if object was 
appended to the front. For example, you could use several method 
properties and methods without explicitly saying Math .member each 
time. 

with Math { 

} 

positive = (b+sqrt(4*a*c+pow(b,2)))/(2*a) 
negative = (b·sqrt(4*a*c+pow(b,2)))/(2*a) 

If you did not use the with statement, you would be required to 
place Math in front of all of the method calls such as sqrt () and 
pow(). 



120 JavaScript for Macintosh 

Using this 

In J avaScript and Java there is a keyword that refers to the current 
object-this. The current object is the object that contains the 
function, or in the case of a form, it is the form element object. An 
example of using this in JavaScript can be observed in the toString 
method for the URLEntry object. 

function toString() { 
for(var prop in this) 

document.write(prop+" "+object[prop]+"\n") 

Notice in the for-in statement that the object whose properties are 
being traversed is this. In the case of the toString method, the for 
loop needs to know which object's properties to traverse; therefore, 
the this variable is used. You will see the use of this in many places 
as you move further into the use of objects. 

Creating Objects 
Although the use of objects that exist in the language and browser 
environment is a very powerful, time-saving practice, much of Java­
Script's power comes from its capability to create new objects that 
carry out the jobs required for your Web pages. JavaScript's object 
model is somewhat different from Java's, as mentioned before; 
therefore, creating objects in J avaScript uses a much different 
methodology. Don't let this bother you if you don't plan on learn­
ing Java soon; the knowledge of objects you gain in this book is 
perfectly suitable to all your JavaScript needs. If you do choose to 
learn Java, you'll still have an important background in basic OOP 
concepts already built. 

The J avaScript object is based around a constructor function that 
holds all of the properties and links to method functions. The Java­
Script object does not provide any means for encapsulation in rela­
tion to property or method hiding, nor does it support abstraction 
or inheritance as in Java. While this is a limiting factor in terms of 
an object-oriented paradigm, the purpose ofJavaScript is to simp­
lifY the Java view of objects. If the JavaScript developers had 



Chapter 5 Using and Creating Objects in JavaScript 121 

attempted to build in all of that functionality, then you'd basically 
be stuck with learning, well, all of Java. 

The Constructor Function 

To create a JavaScript object, you create a function that has the 
same name as the object you want to create. In the case of our 
URLEntry object, the constructor function is 

function URLEntry(name, size, type, modDate, URL) 

} 

This function definition can then be used to create instances of the 
object: 

homePage = new URLEntry( "Hayden Books'' ,512, "folder", "January 16, 1996 
•12: 00: 00", "http: //www.mcp. com/hayden") 
homePage = new URLEntry( "Netscape" ,512, "folder", "January 16, 1996 
•12:00:00", "http: //home.netscape.com") 

Adding Properties to Objects 
Of course, to do anything with the arguments that the constructor 
function takes, you must create properties that can store data for 
the object. To add the variables that the arguments of the construc­
tor function provides, you must assign the variables to member 
properties. 

function URLEntry(name, size, type, modDate, URL) { 
this.name = name 

this.size = size 

this.type = type 

this.modDate = new Date(modDate) 

this.URL = URL 

} 



122 J avaScript for Macintosh 

Notice the use of the Date object to hold the modification date of 
the URLEntry object. In addition to the standard variables, you can 
also have other objects as properties. The this variable name is used 
to indicate that the object to which the property being assigned is 
the object to which the constructor function belongs. Now, when 
the new URLEntry() constructor is called, the arguments passed to it 
by the program will be assigned to the properties of the object. 

Adding Methods to Objects 
In addition to adding properties to objects in the constructor, you 
need to add methods for the object so that it can actually do some­
thing. This is also carried out in the constructor function for an 
object. The URLEntry object, for instance, needs to be able to return 
a string representing the properties of the object. The function we 
need to add, therefore, is 

function toString{) { 
for(var prop in this) 

document.write(prop+" = "+object[prop]+"\n") 

To add this function as a method ofURLEntry, you can employ a 
similar statement as that used for properties. 

this.toString = toString 

Now, you can use the toString {) function as a method of the 
URLEntry object. When you call an object ofURLEntry type with the 
toString {) method, it returns a string that holds all of the properties 
of the object instance. 

There is now enough code to present an object that holds informa­
tion and provides a string representation of itself when needed. 

<HTML> 
<HEAD> 
<PRE> 
<SCRIPT LANGUAGE="JavaScript"> 
<!--begin hiding 
function URLEntry(name, size, type, modDate, URL) { 

this.name = name 
this.size = size 



NOTE 

Chapter 5 Using and Creating Objects in JavaScript 123 

this.type = type 
this.modDate = new Date(modDate) 
this.URL = URL 
this.toString = toString 

function toString() 
for(var prop in this) 

document.write(prop + " " + this[prop] + "\n") 

newURL = new URLEntry( "Hayden" 1 2234 1 "folder• 1 "February 10 1 1996 
•12: 00: 00" 1 • http: //VMW. mcp. com/ hayden •) 
document.write(newURL) 

II end hiding ··> 
</SCRIPT> 
</PRE> 
</HEAD> 
<BODY> 
</BODY> 
</HTML> 

Sometimes in lines of code you find that each of the statements 
ends with a semicolon. The semicolon is not a requirement of the 
JavaScript language, but is a requirement of Java. It doesn't matter 
whether you leave them off in JavaScript; however, if you plan to 
learn Java, realize that these are required and make a habit of 
including them in your code. 

Creating Arrays 
Most programming languages include a variable type known as an 
array. Arrays are collections of data under a single variable that are 
accessed using some kind of index. An array in most languages is a 
special data type; when you declare an array, you typically give it a 
variable name and specify how many indexes, or slots, the array will 
hold. For example, the following code would create an array with 
ten index slots in Microsoft Visual Basic: 

dim basicArray(10) as Integer 



124 JavaScript for Macintosh 

This statement creates an array variable that has 10 slots, indexed 
from 0 to 9. Each slot can then hold a value that is an integer; no­
tice that this language is more strongly typed than J avaScript and 
requires a type declaration for its variables, including arrays. 

Although J avaScript has no explicit array data type as is found in 
Visual Basic or Java, you can create an array structure by defining 
an object makeArray. By doing so, you can create properties for your 
object to hold the data you need. The function declaration is 

function makeArray(n) { 
this.length = n 

} 

for(var i = 1; i <= n; i++) 
this[i] = 0 

return this 

... makeArray actually creates a J avaScript object that acts, for all 
intents and purposes, like an array variable. In this case, the 
makeArray object has a length property which tells J avaScript how 
many slots it has. You call the makeArray function with the number 
of elements you want the array to hold. You can then assign values 
and access the individual slots of the makeArray object using the 
identifier[ n] statement. The following code creates an array of 
three items and then prints them out on the display: 

<HTML> 
<HEAD> 
<SCRIPT LANGUAGE="JavaScript"> 
<!--

function makeArray(n) { 
this.length = n; 
for(var i = 1; i <= n; i++) 

this[i] = 0 

return this 

testArray = new makeArray(3) 

testArray[1] "hello\n" 
testArray[2] "this\n" 
testArray[3] "is\n" 



Chapter 5 Using and Creating Objects in JavaScript 125 

document.write("<PRE>") 

for(i=1;i<=3;i++) 
document.write(testArray(i]) 

document.write("length = • + testArray.length) 
document.write("</PRE>") 
II --> 

</SCRIPT> 
</HEAD> 
<BODY> 
</BODY> 
</HTML> 

In addition to the standard variable types, you can also hold objects 
in arrays. As with all JavaScript staten1ents, there is no need to ex­
plicitly declare the type of data you want the variable to hold, so 
the array can store all types. 

One problem with the declaration of arrays as defined in the Java­
Script beta documentation is that it sets a standard whereby arrays 
are indexed from 1 ton, where n is the number of elements in the 
array. Unfortunately, Java, C/C++, and most languages start index­

ing arrays at 0 and run to n-1. Because JavaScript objects store all 
properties in the array structure so that they can be indexed (as 
mentioned in the previous section on objects), the property length 
takes up this first ( 0) position; therefore, the data in the array must 

be placed in I ton. 

You can, in fact, reverse the order in the makeArray fi..1nction between 
the for statement and the creation of the length property to make 
sure that the data indices fall from 0 to n-1, so that it conforms 

with the other language standards. You do this by moving the 
length property from the beginning of the constructor function to 
the end. This is how it looks: 

<HTML> 
<HEAD> 
<SCRIPT LANGUAGE="JavaScript"> 
<!--
function makeArray(n) { 

for(var i = 1; i <= n; i++) 
this[i] = 0 

this.length = n 



126 J avaScript for Macintosh 

NOTE 

return this 

testArray = new makeArray(3) 

testArray[0] "hello" 
testArray[1] "this" 
testArray[2] "is" 
for(i=0;i<3;i++) 

document.write(testArray[i]) 

document.write("length = " + testArray.length) 

II --> 

</SCRIPT> 
</HEAD> 
<BODY> 
</BODY> 
</HTML> 

In all of the examples, this book uses a method of indexing arrays 
that runs from 1 ton. }\lthough you might have to relearn 0 to 
n-1 indexing for Java and for all of the arrays provided with built­
in objects, using 1 to n in JavaScript reduces the opportunity for 
errors to appear in your own JavaScript code that creates arrays. 
(Just who was it that first taught computer scientists to count up 
from 0 anyway?) 

Creating a Directory for a Web Page 
There is now enough material to show how to bring all of the ob­
ject elements together into a full-blown JavaScript program. In this 
example, the purpose of the script is to provide a Finder-like direc­
tory structure that can be used to organize a home page or even an 
entire Web site. The example shows some of the potential available 
with J avaScript, and ways in which it can be used to automate and 
enhance Web pages. Figure 5.2 shows what the final script pro­
vides. 



Chapter 5 Using and Creating Objects in JavaScript 127 

6JRt>ol 
JUiouy 16. 1996 opnfokkr 120000 

6JC. .. _. J~IWY 16, 1996 optnfokier 12.00.00 

~ Ho)-don Boots 22436 Juoouy 16. 1996 
120000 hllp 

DN•I=P' foiier 

~Mxoooon 43243 JIAu.uy 16, 1996 
12.0000 hllp 

Figure 5.2 The directory ]avaScript program. 

To make this ] avaScript work, you need to access three HTML files 
that are on your CD-ROM: 

0 directory.html. This file contains the all of the J avaScript code 
outlined below. 

0 clear document.html. This blank file is in the same folder as 
the directory.html file . It contains tl1e following code: 

<HTML> 
<HEAD> 
</HEAD> 
</BODY> 
</ HTML> 

0 clear directory.html. This ftle is in the folder as directory.html 
and contains the following HTML code: 

<HTML> 
<HEAD> 
</HEAD> 
<BODY BGCOLOR= ' #FFFFFF ' > 
<SCRIPT LANGUAGE= ' JavaScript '> 



128 JavaScript for Macintosh 

<1-­
parent.displayRoot() 
II --> 
</SCRIPT> 
</BODY> 
</HTML> 

In addition, a number of .GIF image files are located in this same 

folder and are used by the J avaScript to create the icons you see in 
Figure 5.2. 

The first function in the code is the makeArray ( ) function, which is 
used to create arrays in JavaScript, as described in the previous 
section. 

/** 
* this is used to create arrays in JavaScript 
*I 

function makeArray(n) 
this.length = n 

for(var i = 1; i <= n; i++) 
this[i] = 0 

return this 

As you can see, the 1 ton indexing is used because it presents a 

more robust object to deal with, even though it takes some getting 
used to if you are an experienced programmer. 

The next function is the constructor function for the URLEntry ob­
ject. This object is the basic clement in the directory structure. 
Besides a few additional helper functions, all of the necessary be­
havior is coded into this object. 

/** 
* this is the constructor function for the URLEntry object 
*I 

function URLEntry(name, size, type, modDate, URL, objectName) { 
this.name = name 

this.size = size 

this.type = type 



Chapter 5 Using and Creating Objects in JavaScript 129 

this.modDate = modDate 

this.URL = URL 

this.objectName = objectName 

this.URLEntry = new makeArray(0) 

this.display = displayURLEntry 

this.addURLEntry = addURLEntry 

this.toggle =toggle 

} 

When an object is created, it takes several parameters. The follow­
ing list indicates the uses for these parameters. 

0 name. This is the name displayed for the URLEntry in the 
directory. 

0 size. This is the size of the file the link points to. This param­
eter can be used to indicate to users how long it might take to 
download the file. Of course, with some kinds ofURL entries, 
like FTP and Mailto, there is no file size. 

0 type. This parameter indicates the type of entry, such as 
whether it is an HTML document, FTP site, folder, and so 
on. This string is used to indicate which GIF file should be 
loaded as the icon for the entry. The property also is displayed 
as text at the end of the entry. This value is used to hold the 
state of folder URLEntries. Also, if the type is "folder," then it 
can be toggled to "open folder" with the onCLick event han­
dler. 

0 modDate. This is the last modification date of the link, and is 
displayed on the URLEntry line in the directory. 

0 URL. This is the actual URL that the link points to, and is used 
as the target of an HREF tag when the URLEntry is selected. 

0 objectName. This is used to hold the actual name of the object 
when it is created. J avaScript doesn't have a built-in method 
for exposing an object's name, so in order to refer to it by 



130 J avaScript for Macintosh 

name, you must direct it to store its name, and then you can 
reference it. It is necessary to have an object's name in order 
to call the object's method from an event handler, such as 
onClick or onMouseOver. 

D URLEntry. This is an array, initially set for zero elements, that 
will hold the children URLEntries of this URLEntry. When it 
comes time for a URLEntry to display itself, after doing so, it 
will instruct its children to display themselves. This displaying 
of children occurs only with folder URLEntries that are cur­
rently set as open folders. 

In addition to the standard properties, the URLEntry object also has 
three methods that are assigned to it. 

D The first method is display ( ) , which in the case of the previous 
constructor function code is assigned to the function 
displayURLEntry (). This method tells the object to display itself. 

D The second method, addURLEntry(), adds children to folder 
URLEntries. Of course, you can always add children to nonfold­
ers, but they will never be displayed. 

D The final method of the URLEntry object is toggle (), and is the 
event handler method called when an item is clicked. If the 
URLEntry object is a folder, toggle() either opens or closes the 
folder based upon its current state. 

Each of these methods will now be covered in more detail. The 
following function displays the URLEntry object in the directory 
structure window. 

/** 
* this is the display function for the URLEntry object 
*I 

function displayURLEntry() { 

frames[0].document.write("<TR>") 

frames[0].document.write("<TD WIDTH=200>") 

for(var i = 0; i<this.level; i++) 
frames[0].document.write("<IMG ALIGN=LEFT 



Chapter 5 Using and Creating 0 bjects in J avaScript 131 

SRC=\"blank.gif\">") 

frames[0].document.write("<A HREF=\"" + this.URL + "\" ") 

if(this.type == "folder" :: this.type == "open folder") 
frames[0].document.write("TARGET=\"DIRECTORY_WINDOW\"") 

else 
frames[0].document.write("TARGET=\"DOCUMENT_WINDOW\"") 

frames[0].document.write("onClick=\"parent."+this.objectName+".toggle()\">") 

frames[0].document.write("<IMG ALIGN=LEFT BORDER=0 SAC=\""+ 
-.this.type + •.gif\">") 

frames[0].document.write(this.name + "</A>") 

frames[0].document.write("</TD><TD WIDTH= 50>") 

frames[0].document.write(this.size) 

frames[0].document.write("</TD><TD WIDTH= 200>") 

frames[0].document.write(this.modDate) 

frames[0].document.write("</TD><TD WIDTH= 100>") 

frames[0].document.write(this.type) 

frames[0].document.write("</TD></TR>") 

if(this.type == •open folder") { 
for(var i = 1; i <= this.URLEntry.length; i++) 

this.URLEntry[i].display() 

The first thing you should notice is all of the frames [ 01 objects to 
which the document.write() method refers. This script is in the over­
all HTML file that creates the directory structure frame and display 
frame, and later in the code you will see where these frames are 
created. Because there are now essentially two subdocuments in the 
main window, it is necessary to indicate which document receives 
the text. The text sent to the document is HTML code for the 
creation of a row in a table. Later in this chapter, you will see the 
code that creates the beginning and end tags tor the table. 



132 JavaScript for Macintosh 

NOTE Frames are a new specification for Netscape 2.0 and are not in­
cluded in the HTML 3.0 standard. Check out Netscape's Web site 
for more information on how to implement frames in a document: 
http:/ /www.netscape.com/navigatejunderstanding_frames.html. 

The first column in the table row is set at 200 pixels wide, and is 
used to hold the icon and name of the URLEntry object. Before the 
icon and entry name are displayed, it is necessary to indent them 
depending upon the level of the hierarchy in which they occur. The 
first for loop creates a blank.gif image tag for every level of index. 
Next, if the URLEntry object is a folder, then the URL to which it 
points needs to update the frame holding the directory structure 
and not the document window. If the URLEntry object points to any­
thing else, then the target of the URL to which it points will need 
to be updated in the lower document window. 

NOTE The TARGET HTML argument is a new feature of Netscape 2.0. 

For more information on how to implement targeting in an HTML 
document, refer to Netscape's Web site: http://www. 
netscape.com/eng/mozilla/2.0/relnotes/demo/target.html. 

The next lines create the HTML HREF tag so that you can create a 
link out of the URLEntry name. The tag is then used to update the 
directory structure whenever any of the URLEntry objects receive a 
mouse click. Notice the use of the double quote backslash control 
character ( \") used to send a double quote to the HTML docu­
ment page. 

In addition to the normal HTML tag accoutrements, the HREF 
tag has an extra argument: onClick. This argument tells what Java­
Script statements are executed when the Click event occurs for this 
link object. The URLEntry object passes its own name to the HTML 
document, appending the method toggle () to the end-a proce­
dure that causes the event handler to call the toggle statement from 
the correct instance of the object. This process is an important ele­
ment of the program and one you should understand and experi­
ment with. 



Chapter 5 Using and Creating Objects in JavaScript 133 

It is important that the objects you want to call in a statement such 
as onClick are available to the event handler from the point of view 
of the document. If the onClick method had been this. toggle (), 
how does the event handler know what this is, and how do you put 
this into a string for an HTML document? By allowing the object 
to have a copy of its own name, it can pass the name on to the 
HTML document easily. 

Following the construction of the HREF link, which controls the 
behavior of the directory structure, the next several lines create the 
rest of the table row. This row includes information about size, 
type, and modification date. The last three lines of the display func­
tion check to see whether the URLEntry is an open folder. If it is, 
then all (if any) of its children are told to display themselves. 

/** 
* this function is used to add an entry to the folder type of 

•URLEntry 
*I 

function addURLEntry(newURLEntry) { 
newURLEntry.level = this.level + 1 

} 

var tempArray = this.URLEntry 

this.URLEntry =new makeArray(this.URLEntry.length+1) 

for(var i = 1; i <= this.URLEntry.length; i++) 
this.URLEntry[i] = tempArray[i] 

this.URLEntry[this.URLEntry.length] = newURLEntry 

The addURLEntry function is used to add entries to the URLEntry ob­
ject and is specifically meant to be used with a folder object type. 
The function takes a URLEntry object as its argument. First, it sets 
the level to one higher than that of the previous URLEntry object 
level. If, for example, the folder to which you were adding was on 
level 2 of the directory hierarchy, then anything placed in it would 
be on level 3. This technique was used in the previous display 
method to provide indentation as a visual clue. Second, the next 
four lines take the original URLEntry array in the object, place it in a 
temporary array, enlarge the original array by one, and then move 



134 J avaScript for Macintosh 

each entry back into place. Finally, the last line adds the new 
URLEntry to the newly created end of the list. 

The following method is the method caJled by the onClick event 
handler in order to change the state of a folder. 

/** 
* this function toggles the folder from open to closed and vice 

•versa 
*I 

function toggle() 

} 

if(this.type == "folder") 
this.type = "open folder• 

else if(this.type == •open folder") 
this.type = "folder• 

The function simply checks the state of the URLEntry object. If the 
object is in a folder state (that is, closed), then it sets it to open. If 
it is open, then it resets it to a closed state. If the object is not a 
folder, it simple falls through the method. After the toggle method 
is called, the link for the HREF tag is called. If the object is a 
folder, then the target becomes the directory window itself. The 
link is a document caJled clear directory.html. This file is an HTML 
file with only the necessary headers and a single function, which is 
to displayRoot (). This essentially blanks the window and calls the 
displayRoot ( ) function to redraw the screen, allowing the directory 
with the updated folder structure to be seen. The clear 
directory.html file is as follows: 

<HTML> 
<HEAD> 
</HEAD> 
<BODY BGCOLOR="#FFFFFF"> 
<SCRIPT LANGUAGE="JavaScript"> 
<I--
parent.displayRoot() 

II --> 

</SCRIPT> 
</BODY> 
</HTML> 



Chapter 5 Using and Creating Objects in JavaScript 135 

Notice that the displayRoot () method call is directed at the parent 
object. In this case, the parent is the entire window that holds the 
two frames. It is the parent of these frames that is holding all of the 
J avaScript code, and where objects in this case need to be refer­
enced. 

/** 
* This is the declaration for the root URLEntry which starts it all 
*I 

root= new URLEntry("Root", 0, "folder","January 16, 1996 
•12:00:00","clear directory.html","root") 

I** 
* this is the function called to create the table, and direct each of 
* the URLEntries to display themselves and their children 
*I 

function displayRoot() { 
frames[0].document.write("<HTML><BODY BGCOLOR=\"#FFFFFF\">") 

frames[0].document.write("<TABLE BORDER=0>") 

root.display() 

frames[0] .document .write( "</TABLE>") 

frames[0] .document .write( "</BODY></HTML>") 

The previous two sections of code create the root object that holds 
all of the URLEntry object (and is a URLEntry object itself) and begin 
displaying the entire tree. The construction of the root entry is like 
any other object constructor, and provides all of the arguments the 
entry needs to create the object. There is one piece of code that is 
essential, however, and that is the URL itself. It is important that 
this URL point to the clear directory.html file that is used to clear 
the screen and trigger a redraw. 

The displayRoot() function is necessary in order to get the URLEntry 
hierarchy going. It is necessary to create the beginning and end 
tags for the table that the display () method provides the rows for. 
Note that the displayRoot function is not attached to any object, 



136 JavaScript for Macintosh 

and is invoked as a method for setting up the table and triggering 
the display of the hierarchy-which, once started, traverses the tree 
ofURLEntries and displays them as directed. 

The following function, as noted in the reminder code, is used to 
create the two frames that hold the directory and document win­
dows. 

I** 
* this function creates the directory and document frames in which 
* everything is displayed 
*I 

function createFrames() { 
document.write("<FRAMESET ROWS=\"150,*\">") 

document.write("<FRAME SRC=\"clear directory.html\" 
NAME=\"OIRECTORY_WINDOW\~>") 

document.write("<FRAME SRC=\"clear document.html\" 
NAME=\"DOCUMENT_WINDOW\">") 

document.write("</FRAMESET>") 

} 

The frames are created and two source files are used in order to 
provide clear windows on loading. Of course, the clear directory 
file also calls the function displayAoot ( ) that causes the window to 
be updated. 

This is essentially all of the code you need to create and control the 
directory. Now, all that is necessary are some URLs to provide to 
the URLEntry object. The following code includes the constructors 
used in building up the directory shown in Figures 5.2 through 
5.4. 

/** 
* this is the beginning of the creation of the directory structure 
* note: all of these entries are dummies, and you can change them to 
* your own. 
*I 

//add companies Folder to root 
compFolder =new URLEntry("Companies·,·--","folder","January 16, 1996 
~12:00:00","clear directory.html","compFolder") 



Chapter 5 Using and Creating Objects in JavaScript 137 

root.addURLEntry(compFolder) 

//add Hayden Books url to companies folder 
haydenURL = new URLEntry(~Hayden Books",22436,"http","January 16, 
•1996 12:00:00", "http://WWW. mcp. com/hayden/" 1 "haydenURL") 

compFolder.addURLEntry(haydenURL) 

//add Netscape folder to companies 
netscapeFolder =new URLEntry(~Netscape•,•--•,•folder·,·--•,•clear 
•directory.html","netscapeFolder") 
compFolder.addURLEntry(netscapeFolder) 

//add Netscape WWW to Netscape folder 
netscapeURL =new URLEntry("Netscape WNN",34067,"http","January 17, 
•1996 12:00:00", "http://home.netscape.com/","netscapeURL") 
netscapeFolder.addURLEntry(netscapeURL) 

//add Netscape ftp to Netscape folder 
netscapeFtpURL =new URLEntry("Netscape FTP","--","ftp","January 17, 
•1996 12:00:00", "http://ftp.netscape.com/","netscapeFtpURL") 
netscapeFolder.addURLEntry(netscapeFtpURL) 

//add Netscape ftp2 to Netscape folder 
netscapeFtp2URL =new URLEntry("Netscape FTP2","--","ftp","January 
•17, 1996 12:00:00", "http://ftp2.netscape.com/","netscapeFtp2URL") 
netscapeFolder.addURLEntry(netscapeFtp2URL) 

//add Netscape ftp3 to Netscape folder 
netscapeFtp3URL =new URLEntry("Netscape FTP3","--","ftp","January 
•17, 1996 12:00:00", "http://ftp3.netscape.com/","netscapeFtp3URL") 
netscapeFolder.addURLEntry(netscapeFtp3URL) 

//add Microsoft url to companies folder 
microsoftURL =new URLEntry("Microsoft",48243,"http","January 16, 
•1996 12:00:00", "http://www.microsoft.com/","microsoftURL") 
compFolder.addURLEntry(microsoftURL) 

//add Sun url to companies folder 
javaURL =new URLEntry("Sun's Java Page",24925,"http","January 16, 
•1996 12:00:00", "http://java.sun.com/","javaURL") 
compFolder.addURLEntry(javaURL) 

//add mailto: url to root folder 
mailURL =new URLEntry("Send Mail", " "mailto","--
•" , • mail to: mshobe@u. washington. edu • , • mailURL •) 
root.addURLEntry(mailURL); 



138 JavaScript for Macintosh 

The final bit of code invokes the createFrames () function to start the 
whole thing in motion. When createFrames() is called, it creates 
the two frames in the window. The document frame sits idle, while 
the directory frame issues a call to the displayRoot () function. This 
function creates a table tag and calls on the root object to display 
itself, which in turn tells all of its children to display themselves, and 
so on, until all URLEntries that should be drawn are drawn. After the 
display is finished, the displayRoot () method ends the table tag, and 
the whole document is displayed. When one of the folder entries is 
hit, it triggers the toggle () method, which switches the state of the 
folder. At the same time, the URL of the pointer reloads the clear 
directory.htrnl file that issues the call to displayRoot () again to update 
the display. If an entry besides a folder is selected then the URL is 
sent to the document window for display. 

Figure 5.3 The directory script with a collapsed folder. 



Chapter 5 Using and Creating Objects in J avaScript 139 

e colnr..w.'.s Januuy 16, 1996 
open.fo~r 12.0000 

;g}H•]tlonBoot• 22436 Jan""}' 16. 1996 
http 120000 

ElJ Ht~~ ope:nfoii!t 

~lltt!ape-WWW 3()61 J ... "")' 17.1996 
120000 hltp 

~ Hcts.r-\~..._FTf Jati.'JIUY 17,1996 h!tp 120000 

~lletS(oq_'111;fT?2 } IU!.UA.'Y 17, 19915 
120000 b!tp 

~ Ne!SCAJ'<' FTP3 J&.'l.a.uy 11, 1996 http 120000 

i!ll: M•rosoO 48243 J"'""Y 16. 1996 
1200.00 http 

[gj Su:i• J"" Pov 24125 J&nu.uy 16, 1996 http ll.OO.OO 
a~.tlldM~ mUlto 

Figure 5.4 The directory script with an expanded folder. 

The entire fi le, when it is placed in the HTML tags, looks like the 
following: 

<!--

--> 

File: Directory.html 
Description: This script creates a directory structure for a Web 

page that can be automatically expanded and collapsed 
Author: Tim Ritchey 
Date: 16 January, 1996 
Note: This Script is freely available for download and use. 
Please indicate where you got i t from, and I would be grateful. 

<HTML> 
<HEAD> 
<SCRIPT LANGUAGE= "JavaScript "> 
<1-- begin hiding 

t• • 
• this is used to create arrays in JavaScript 
*I 

funct i on makeArray(n) 
t his . length = n 
for(var i = 1; i <= n; i ++) 



140 J avaScript for Macintosh 

I** 

this[i] = 0 
return this 

* this is the constructor function for the URLEntry object 
*I 

function URLEntry(name, size, type, modDate, URL, objectName) 
this.name = name 

I** 

this.size = size 
this.type =type 
this.modDate = modDate 
this.URL = URL 
this.objectName = objectName 
this.level = 0 
this.URLEntry = new makeArray(0) 
this.display = displayURLEntry 
this.addURLEntry = addURLEntry 
this.toggle = toggle 

* this is the display function for the URLEntry object 
*I 

function displayURLEntry() { 

frames[0]. document. write ( • <TR>") 
frames [ 0] . document. write ( • <TO WIDTH=200>") 
for(var i = 0; i<this.level; i++) 

frames[0].document.write("<IMG ALIGN=LEFT 
SRC=\"blank.gif\">") 

frames[0).document.write("<A HREF=\"" + this.URL + "\" ") 
if(this.type =="folder" :: this.type =="open folder") 

frames [0] .document .write( ''TARGET=\ "DIRECTORY_WINDOW\" •) 
else 

frames[0].document.write("TARGET=\"DOCUMENT_WINDOW\"") 
frames[0].document.write("onClick=\"parent."+this.objectName+".toggle()\">") 

frames[0].document.write("<IMG ALIGN=LEFT BORDER= 0 SRC=\"" + 
•this.type + ".gif\">") 
frames[0].document.write(this.name +"</A>") 
frames [ 0] . document. write ( "</TD><TD WIDTH = 50> •) 
frames[0].document.write(this.size) 
frames[0).document.write("</TD><TD WIDTH= 200>") 
frames[0].document.write(this.modDate) 
frames[0].document.write("<ITD><TD WIDTH= 100>") 
frames[0].document.write(this.type) 
frames[0].document.write("</TD><ITR>") 
if(this.type == •open folder") { 



I** 

Chapter 5 Using and Creating Objects in JavaScript 141 

for(var i = 1; i <= this.URLEntry.length; i++) 
this.URLEntry[i].display() 

* this function is used to add an entry to the folder type of 
•URLEntry 

*I 
function addURLEntry(newURLEntry) 

newURLEntry.level = this.level + 
var tempArray = this.URLEntry 

I** 

this.URLEntry =new makeArray(this.URLEntry.length+1) 
for(var i = 1; i <= this.URLEntry.length; i++) 

this.URLEntry[i] = tempArray[i] 
this.URLEntry[this.URLEntry.length] = newURLEntry 

* this function toggles the folder from open to closed and vice 
•versa 

*I 
function toggle() 

I** 

if(this.type == "folder") 
this.type = "open folder" 

else if(this.type == "open folder") 
this.type = "folder" 

* This is the declaration for the root URLEntry which starts it all 
*I 

root= new URLEntry("Root", 0, "folder","January 16, 1996 
•12:00:00","clear directory.html","root") 

I** 
* this is the function called to create the table, and direct each of 
* the URLEntries to display themselves and their children 
*I 

function displayRoot() { 
frames[0] .document.write("<HTML><BODY BGCOLOR=\"#FFFFFF\">") 
frames [ 0] . document. write ("<TABLE BORDER=0>") 
root.display() 
frames[0] .document.write("</TABLE>") 
frames[0].document.write("</BODY><IHTML>") 



142 J avaScript for Macintosh 

/** 
* this function creates the directory and document frames in which 
* everything is displayed 
*I 

function createFrames() { 
document .write( "<FRAMESET ROWS=\" 150, *\ ">") 
document.write("<FRAME SRC=\"clear directory.html\" 

NAME=\"DIRECTORY_WINDOW\">"} 
document.write("<FRAME SRC=\"clear document.html\" 

NAME=\"DOCUMENT_WINDOW\">") 
document .write( "</FRAMESET>") 

I** 
* this is the beginning of the creation of the directory structure 
* note: all of these entries are dummies, and you can change them to 
* your own. 
*I 

//add companies Folder to root 
compFolder =new URLEntry("Companies","--","folder•,•January 16, 1996 
~12:00:00","clear directory.html","compFolder") 
root.addURLEntry(compFolder) 

//add Hayden Books url to companies folder 
haydenURL =new URLEntry("Hayden Books",22436,"http","January 16, 
~1996 12:00: 00", "http: //www.mcp. com/hayden/", "haydenURL") 
compFolder.addURLEntry(haydenURL) 

//add Netscape folder to companies 
netscapeFolder =new URLEntry("Netscape•,•--•,•folder•,•--•,•clear 
~directory.html","netscapeFolder") 

compFolder.addURLEntry(netscapeFolder) 

//add Netscape WWW to Netscape folder 
netscapeURL =new URLEntry("Netscape WWW",34067,"http","January 17, 
~1996 12:00:00", "http://home.netscape.com/","netscapeURL") 
netscapeFolder.addURLEntry(netscapeURL) 

//add Netscape ftp to Netscape folder 
netscapeFtpURL =new URLEntry("Netscape FTP","--","ftp","January 17, 
~1996 12:00:00", "http://ftp.netscape.com/","netscapeFtpURL") 
netscapeFolder.addURLEntry(netscapeFtpURL) 

//add Netscape ftp2 to Netscape folder 
~netscapeFtp2URL =new URLEntry("Netscape FTP2","--","ftp","January 



Chapter 5 Using and Creating Objects in JavaScript 143 

-.17, 1996 12:00:00~, "http://ftp2.netscape.com/","netscapeftp2URL") 
netscapeFolder.addURLEntry(netscapeFtp2URL) 

//add Netscape ftp3 to Netscape folder 
netscapeFtp3URL = new URLEntry( "Netscape FTP3", "--", "ftp•, "January 
-.17, 1996 12:00:00", "http://ftp3.netscape.com/","netscapeFtp3URL") 
netscapeFolder.addURLEntry(netscapeFtp3URL) 

//add Microsoft url to companies folder 
microsoftURL =new URLEntry("Apple",48243,"http","January 16, 1996 
-.12:00:00", "http: //www.apple.com/", "appleURL •) 
compFolder.addURLEntry(microsoftURL) 

//add Sun url to companies folder 
javaURL =new URLEntry("Sun's Java Page",24925,"http","January 16, 
-.1996 12:00:00", "http://java.sun.com/","javaURL") 
compFolder.addURLEntry(javaURL) 

//add mailto: url to root folder 
mailURL =new URLEntry("Send Mail", ·--", "mailto","-­
-.•,•mailto:tdr20@cus.cam.ac.uk","mailURL") 
root.addURLEntry(mailURL) 

createFrames() 
II end hiding--> 
</SCRIPT> 
</HEAD> 
<BODY> 
</BODY> 
</HTML> 

Summary 
This chapter covered the basics of creating your own objects in 
J avaScript and showed you how to use built-in objects as well. The 
sample script used to create the directory frame in a Web page is a 
fairly complex ·script that depends upon many features and objects 
built into the scripting language, and provides a good example of 
what can be done using JavaScript to enhance your own pages be­
yond the standard HTML standard. The next two chapters will 
cover the functions and objects that are built into the JavaScript 
language and the Netscape environment. Because JavaScript ex­
poses many of the low-level features of displaying Web pages, you 
can wring the most out of plain HTML without requiring CGI 
scripts or plug-ins like Macromedia Shockwave to get great results. 



CHAPTER 

JavaScript and Built-In Objects 
The previous chapters presented the groundwork for developing 
powerful Web-based documents that can dynamically adjust to 

environment and user events. Chapter 2, "Introduction to the Java 
Family," presented an introduction to the language features ofJava 
and JavaScript and discussed the different ways in which each lan­
guage provides support for client-side execution of code in Web 
documents. Chapter 3, "JavaScript Fundamentals," provided the 
fundamental look and feel of the JavaScript language and focused 
upon the overall architecture ofwriting JavaScript programs. Chap­
ter 4, "Control Flow and Functions in JavaScript," presented more 
advanced features of the language, including control t1ow and the 
use of functions. Chapter 5, "Using and Creating Objects in 
JavaScript," discussed the most powerful feature of the JavaScript 
language-its object-based approach to script design and creation. 
The directory script shown at the end of that chapter is an excellent 
example of how an object such as URLEntry can provide functional 
interfaces for Web documents. 

The real power in object-oriented computing is, of course, the ca­
pability to use already existing objects to extend the functionality of 
your programs without the need to code everything from scratch. 
Even with the basics of the J avaScript language behind us, it was 
necessary in previous chapters to use objects and methods we 
hadn't discussed before in great detail, because to do anything in a 
complex environment, such as the Netscape browser, it would be 
difficult to program every feature you needed from scratch. This 
chapter and the next two focus on those and other objects that the 
JavaScript language and Netscape browser provide. One of the best 
examples is the document object used to control the actual HTML 
content being displayed with its write() method. 



146 J avaScript for Macintosh 

The objects available for use in Web page scripts can be divided 
into two types: 

D Objects built into JavaScript 

D Objects provided by the Netscape environment 

Objects that are built into the JavaScript language include String, 

Math, and Date. In addition, JavaScript provides three standalone 
functions: eva!, parseint, and parseFloat. This chapter focuses on 
these built-in objects and functions. Chapters 7 and 8 deal with 
objects provided by the Netscape environment that can be used in 
J avaScript programs. These objects include the window objects, 
such as parent and frames, and document and form objects, as well 
as the history and location objects. 

Built-In Objects and Functions 
J avaScript provides several objects that are considered a part of the 
standard language and are available in all run-time environments. 
These include the String, Math, and Date objects. In addition to full 
objects, JavaScript also provides several built-in, standalone func­
tions such as eva!, parseint, and parseFloat. The String, Math, and 
Date objects are used in J avaScript to provide extended data type 
functionality for common formats of information not provided by 
the basic types such as characters, numbers, and booleans. In addi­
tion, the Math object provides methods for arithmetic functions 
not provided by the standard operators. The eva!, parseint, and 
parseFloat functions all return the numerical values for strings repre­
senting numerical values. These can be important when using val­
ues returned from form items, for example, text areas. 

Unlike the Netscape Navigator objects that are discussed in Chap­
ters 7 and 8, the objects provided by the JavaScript language are 
available automatically and can be expected to be available in every 
document. The Netscape Navigator objects are document­
dependent and might change depending on the HTML 
environment. 



Chapter 6 JavaScript and Built-In Objects 147 

Besides the standard objects related to HTML pages, a Netscape 
environment might run different plug-ins or applets, which provide 
even more objects with which J avaScript will in the future be able 
to interact. These plug-in- or applet-associated objects are currently 
unavailable in the JavaScript version embedded in Netscape 2.0, 
but they are promised to be available for future releases. 

In addition, if support for J avaScript is provided by other Web 
browsers, it is possible that these browsers may expose objects for 
the Web document author to control using JavaScript. As object­
oriented technology becomes more pervasive in application devel­
opment and Web site creation, JavaScript's functionality can expand 
to incorporate these new objects into its realm of control. This 
means that your time investment in learning J avaScript's object­
based environment can be applied to emerging Web technologies 
and will be of lasting value. 

The String Object 
The most commonly used object in J avaScript is the String object. 
This is because the String object does not need new statements to 
create an instance of the object. Any time you place text between 
two quotation marks and assign it to a variable or property, you 
create a String object. Each of the following lines, for example, 
create new String objects: 

employeeName = "John Doe" 
URLEntry.type = "folder• 

Additionally, the use of a string literal creates an instance of the 
String object. 

To use a string property or method, you append the dot and 
method or property name as in all objects. 

stringlength = employeeName.length 

tempString = URLEntry.type.toUpperCase() 

One item to notice is that the dot property is cumulative and works 
from left to right, evaluating each statement and acting as if the 



148 J avaScript for Macintosh 

NOTE 

next operation were appended to the result. The preceding state­
ment, for example, also could be written: 

tempString = URLEntry.type 
temp2String = tempString.toUpperCase() 

The evaluation works from left to right so that the method or prop­
erty in question refers to a valid argument. In the preceding case, 
the URLEntry object property type is assigned to the variable 
tempString, which is then converted to all uppercase letters using the 
toUpperCase () method of the String object. This is essentially what 
happens with the statement that strings all the dot operations 
together. 

You do not need to use a variable name for invoking methods or 
properties of strings. You simply can append the method or pro­
perty name to the end of the string. 

tempNumber ="Hello, World!".length 
tempString = II Hello, World! 11

• toUpperCase () 

Of course, the previous code is an example to show you how 

literal strings can be used rather than to show you a procedure of 

practical importance. Normally, you would never want to perform 

a function on a string literal when you could figure out the result 

in advance and not avoid a function call at run time. Where possi­

ble, figure out what the result should be at design time and use 

that. Invoking unnecessary methods at run time is a waste of com­

puting cycles, particularly when working in an interpreted environ­

ment like JavaScript where it is important to optimize scripts. 

String Object Properties 

The String object has a single property, length. This property holds 
the number of characters in the string, including all white spaces 
and special characters. The following code uses the length property 
of the String object to line up different columns of text: 

<HTML> 
<HEAD> 



Chapter 6 JavaScript and Built-In Objects 149 

<PRE> 
<SCRIPT LANGUAGE="JavaScript"> 
<!--begin hiding 
function spacer(string,n,type) 

space = "" 
for(var i = 0; i < (n · string.length); i++) 

space += • • 
if(type == "L") 

return string + space 
else return space + string 

document.write(spacer("Hayden Books", 25, "L")) 
document. write (spacer ( "vmN Home Page • , 15, "L • ) ) 
document.writeln(spacer(•http://www.mcp.com/hayden", 30, "R")) 

document.write(spacer("Netscape", 25, "L")) 
document.write(spacer("FTP site•, 15, "L")) 
document.writeln(spacer("ftp://ftp.netscape.com", 30, "R")) 

II end hiding --> 
</SCRIPT> 
</PRE> 
</HEAD> 
<BODY> 
</BODY> 
</HTML> 

Notice the use of the <PRE></PRE> tags to allow formatting of 
the text. Notice also the use of the writeln() method at the end of 
each row to include a carriage return (which may bring back un­
pleasant memories for former ANSI Pascal users). The spacer func­
tion uses the length property of the string to compute how many 
spaces to add to the beginning or end of the string to make sure 
they line up. 

String Methods 
In addition to the length property, the String object has several 
methods associated with it. We have seen a couple of the methods, 
such as toUpperCase() and tolowerCase, but what follows is an exhaus­
tive list of all the String methods: 

D anchor ( nameA ttr ibute) . The anchor method creates an anchor 
out of the string using nameAttribute as the anchor NAME tag. 



150 J avaScript for Macintosh 

The following two lines of code produce the same HTML 
output; the first line uses standard HTML, while the second 
uses the anchor method: 

document.write("<A NAME=\"anchor_point\">Hello, World!</A>") 
document.write("Hello, Worldl".anchor("anchor_point")) 

0 big ( ) . The big method returns the string surrounded by the 
<BIG></BIG> tags that display the text in a bigger font rela­
tive to the base font size. 

0 blink (). The blink method returns the string surrounded by 
the <BLINK></BLINK> tags. This causes the string text to 
blink in the resulting HTML document. 

0 bold ( ) . The bold method returns the string surrounded by the 
<B></B> tags, which causes the string to display in bold in 
the resulting HTML document. 

D charAt(index). The charAt method returns the character in the 
string at the specified index. 

0 fixed(). The fixed method returns the string surrounded by 
the <TT></TT> tags that display the string in a fixed-pitch 
font in the browser window. 

D fontcolor(color). The fontcolor method surrounds the string 
with the color tag and causes the browser to display the string 
in the specified color. You can specify the red, green, and blue 
colors with the hexadecimal "rrggbb" color declaration or use 
one of the predefined colors. The resulting tag is <FONT 
COLOR="color"></FONT>. 

D fontsize(size). The fontsize method surrounds the string with 
the <FONTSIZE=size></FONTSIZE> tag. You can use an 
absolute value between 1 and 7 or use a + /- in front of the 
number to indicate a relative font to the base font size de­
clared in the BASEFONT tag. The default base font size is 3. 

D indexOf(character, [fromindex]). The indexOf method searches 
the String object for the first occurrence of the character and 
returns that index. The fromlndex argument is optional and 



Chapter 6 JavaScript and Built-In Objects 151 

indicates where to begin the search. You could find the index 
values for all of the same characters, for example, by starting 
after the previous index. 

while(index < text.lastindexOf("a")) 
index= text.indexOf("a", index+ 1) 
document.writeln(index + "\t") 

D italics ( ) . This method surrounds the string with the <1></l> 
tags that cause the text to display in italic font. 

D lastindexOf(character, [fromindex]). The lastindexOf method is 
identical to the indexOf method except that it searches through 
the string backward for the character starting at fromindex. 

D link ( URL) • The link method is similar to the anchor method 
except it creates an HREF tag that points to the URL pro­
vided. The resulting tag is <A HREF= URL>text</ A>. 

D small ( ) . This method is similar to the big method, except that 
it causes the string to be surrounded by the <SMALL> 
</SMALL> tags that display the text in a smaller font relative 
to the base font. 

D strike (). The strike method causes the string to display with a 
strikeout through the middle and surrounds it with the 
<STRIKE></STRIKE> tags. 

D sub (). The sub method causes the string to display in subscript 
by appending the <SUB></SUB> tags to the beginning and 
end of the string. 

D substring (start Index, end Index). The substring method returns 
the string that runs from startindex to the character right be­
fore end Index. If startindex is larger than endindex, the method 
acts as if the two are in each other's positions. Ifthe two in­
dexes are equal, it returns an empty string. 

D sup ( ) . The sup method returns the string with the <SUP> 
</SUP> tags appended to the beginning and end of the 
string. This causes the string to display in superscript. 



152 JavaScript for Macintosh 

0 toLowercase (). The toLowerCase method returns the string with 
all characters changed to lowercase. 

0 toUpperCase (). The toUpperCase method returns the string with 
al l characters changed to uppercase. 

Figure 6.1 shows what these methods each produce in the H ello, 
World! text. 

lif Net1cepe: JauaStrlptT.20orro1.1'420eHample l .h Iii 

~..:J~ ~j@j.!!]~~ _j II 
.,..,., ... ·1 .. ,,•, CMit l ~ I ,..,...,.. 1.,,.,.,.....,1 s.nv ... I 

t.4>St i"::..Q9 • 
twc"o"' toJ\.ruq() ( 

J.rK (n.r fC'OJ ia U.S..) I • - u. ..-sw(,ro, • · • · • tW..Iprcrpl • ~\a·). 
l 

I 

m. • tJtt' , ,..,.,., • • ooaJMrha 
MLku • -luw.t7 t6. t tM tt ;oe-oa 
.. , .. . 101Att - ..... 
MM • •1·~ 

~ 

Figure 6.1 R esults of the String methods on H ello, Wodd! 

T he script that follows produces the document. 

<HTML> 
<HEAD> 
</ HEAD> 
<BODY BGCOLOR=' #FFFFFF' > 
<PRE> 
<SCR IPT LANGUAGE= ' JavaScript '> 
<I- . 
text= ' Hello , World! ' 

document .writeln(text.anchor( ' text ' )) 
document.writeln(text.big()) 
document. writeln(text.blink()) 
document .writeln( text.bold()) 
document .writeln(text.charAt(S)) 
document.writeln(text.fixed()) 
document.writeln(text.fontcolor( "red')) 
document.writel n(text.fontsize(S)) 
document .writeln(text.fontsize(-2)) 
index = 0 
while (index < text . lasti ndexOf( ' l ' )) { 

index= text.indexOf( ' l ' ,index + 1) 
document.write(index +'\ t ' ) 

} 



NOTE 

Chapter 6 JavaScript and Built-In Objects 153 

document.write("\n") 
document.writeln(text.italics()) 
document.writeln(text.link("http://www.mcp.com/hayden")) 
document.writeln(text.small()) 
document.writeln(text.strike()) 
document.writeln("SUB" + text.sub()) 
document.writeln(text.substring(7,12)) 
document.writeln("SUP" + text.sup()) 
document.writeln(text.toLowerCase()) 
document.writeln(text.toUpperCase()) 

II - -> 
</SCRIPT> 
</PRE> 
</BODY> 
</HTML> 

The Math Object 

The Math object provides standard mathematical constants and func­
tions beyond what is provided by the standard operators for addi­
tion, subtraction, division, multiplication, and so on, where a single 
character represents the function to be carried out. The Math object 
is considered static; that is, there does not need to be an instance of 
the object in order to use the Math object's properties and methods. 
There is no need to use the new statement to create a copy of the 
Math object; instead, refer to the Math object directly. 

area = Math.PI*Math.pow(radius,2) 

The Math object is a perfect example of when to use the with ( ) 
{ . . . } statement. If you are using several Math functions and 
constants together, it would be more convenient to declare a 
block as being with(Math} so that you can refer to the properties 
and methods of Math without prefixing the Math object name to 
every call. The following two code blocks are equivalent to each 
other. 

With{Math){ 
area = PI*pow(radius,2) 
} 

area = Math.PI*Math.pow(radius,2} 



154 J avaScript for Macintosh 

Math Properties ' 
The Math object provides six properties. These properties hold fun­
damental constants-constants that are often used in mathematical 
functions. These properties follow: 

0 E. This property holds the value for Euler's constant, which is 
approximately 2.718. 

0 LN10. This property holds the natural logarithm of 10, which is 
approximately 2.302. 

0 LN2. This property holds the natural logarithm of 2, which is 
approximately 0.693. 

0 PI. The property PI is the constant that holds the ratio of~ 
circle's circumference to its diameter. The value is approxi­
mately 3.1415. 

0 SQRT1_2. This property holds the square root of one half ( 1/2 ), 
approximately 0. 707. 

0 SQRT2. This property holds the square root of2, which is ap­
proximately 1.414. 

Figure 6.2 shows all the values displayed using the following script: 

<HTML> 
<HEAD> 
</HEAD> 
<BODY BGCOLOR="#FFFFFFa> 
<PRE> 
<SCRIPT LANGUAGE="JavaScript"> 
<I·. 
with(Math) { 
document.writeln(E) 
document.writeln(LN10) 
document.writeln(LN2) 
document.writeln(PI) 
document.writeln(SQRT1_2) 
document.writeln(SQRT2) 
} 

II - -> 
</SCRIPT> 
</PRE> 
</BODY> 
</HTML> 



Chapter 6 JavaScript and Built-In Objects 155 

L-..~; m. ://i?ovtf'W20T~twlt>.lkt:V112Cr•Utr/rTPs/.Jiov.Scf'•t'ii2CX:NptH'JI 

.,...,.,_-;r~·.c •• uJ ~~ ..., .. """ , ... ;;;;;;;:;r-.....,-;; I 

2 718'28 18'284.5,~091 
2 Jma5~045101 
0, 6931471BOSS9'M5Z862 
3 . 141:1~~116 
0 70'71067811U5475727 
t . 414213S£2373ma 5 

·~t:Oottt 

Figure 6.2 The Math properties. 

Math Methods 

l!i 

In addition to the properties built into the Math object, several 
methods perform calculations. These include the following: 

0 abs(number). This method returns the absolute value of the 
number provided. If the number is zero (0) or positive, the 
method returns the number unchanged. If the number is neg­
ative, however, the method returns the number without the 
negative sign. 

0 acos (number). This method returns the arc cosine of number. 

number should be from -1 to 1, and a cos () returns the value in 
radians, which run from 0 to Pi radians. If number is outside the 
-1 to 1 range, the method returns 0. 

0 as in (number). This method returns the arc sine of number. number 

should be from -1 to l, and asin() returns the value in radi­
ans, which run from -Pi/2 to Pi/2 radians. If number is outside 
the -l to 1 range then the method returns 0. 

0 atan(number). This method returns the arc tangent of number. 

number should be the tangent of an angle, and a tan() returns 
the value in radians, which run from - Pi/2 to Pi/2 radians. If 
number is outside the -1 to 1 range, the method returns 0 . 

0 ceil(). This method returns the integer that is the next inte­
ger further away from zero than number. ceil(32.5), for exam­
ple, would become 33, and ceil( ·24.8) would become 24. 



156 J avaScript for Macintosh 

D cos(number). This method returns the cosine of an angle 
(number), which is represented in radians. The result will run 
from -1 to l. 

0 exp (number) . This method returns e to the power of number. 

0 floor(number). This method returns the integer closest to 
number toward 0. For example, 32.5 would become 32, and 
-24.8 would become -24. 

D log(number). This method returns the natural logarithm of the 
value number. 

0 max(number1, number2). This method returns the greater of two 
numbers. 

0 min (number 1 , number2) . This method returns the lesser of two 
numbers. For example, min(45, 23) would return 23. 

0 pow(base,exponent). This method returns the value ofbase to 
the power of exponent. For example, pow(2,3) would return 8. 

0 random(). This method is only available on X-platforms, which 
are essentially any UNIX operating systems. It returns a pseu­
do random number between 0 and l. 

0 round(number). This method rounds the value of number to the 
nearest integer. If the decimal portion of the number is .5, the 
number rounds up. 

0 sin(number). This method returns the sine of an angle (number), 

which is represented in radians. The result will run from -1 
to l. 

0 sqrt (number). This method returns the square root of the value 
of number. The value of number must be nonnegative; otherwise 
the function always returns 0. If you wish to deal with com­
plex numbers, you have to use the a + bi notation where the 
real and imaginary components are separated. 



Chapter 6 JavaScript and Built-In Objects 157 

0 tan(number). This method takes an angle in radians as its argu­
ment and returns the tangent to the angle. 

The following script shows an example of each of these functions in 
use. The results provided are shown in Figure 6.3. 

<HTML> 
<HEAD> 
</HEAD> 
<BODY BGCOLOR="#FFFFFF"> 
<PRE> 
<SCRIPT LANGUAGE="JavaScript"> 
<1--
with(Math) { 
document.writeln("abs(-9): • + abs(-9)) 
document.writeln("acos(0): • + acos(0)) 
document.writeln("asin(-1): • + asin(-1)) 
document.writeln("atan(-2): n + atan(-2)) 
document.writeln("ceil(32.5): • + ceil(32.5)) 
document.writeln("cos(2): • + cos(2)) 
document.writeln("exp(1): • + exp(1)) 
document.writeln("floor(32.5): • + floor(32.5)) 
document.writeln("log(10): • + log(10)) 
document.writeln("max(10,20): • + max(10,20)) 
document.writeln("min(10,20): • + min(10,20)) 
document.writeln("pow(2,3): " + pow(2,3)) 
//document.writeln("random(): • +random()) 
document.writeln("round(23.4): • + round(23.4)) 
document.writeln("sin(1.624): • + sin(1.624)) 
document.writeln("sqrt(3): • + sqrt(3)) 
document.writeln("tan(2.5): • + tan(2.5)) 
} 
II - -> 
</SCRIPT> 
</PRE> 
</BODY> 
</HTML> 



158 J avaScript for Macintosh 

Nelscape: OSOI.hlml 

~~~ ~»ii~ ~ II 
lM•t~et~:fr•t.·//!Pw 20Ttf'mtMtDI"/Dm:t09.20f'Oldtt'ITTPsi.UnSonpt'JI20Chtpttn/

'w114t~t litw'1T "ttui'•Cwlt I Htrwl.loo* I fltt "'.,"' I Nnet~torvl - S.fht.,. r

U.a(- 9) : 9
• cosCC). 1 570"7963'267'14~
ui.nt-1): -t .570'7'96J267'He'K~
• t&l\(·2) : -1 . 10?1487177940'7040'9
o.tl (32.,): 33
oos(2) -o. 41&! 4&8¥34714':4624
•wp(1): 2 .718291828459045091
1loor(32.!1) 3'2
1()9(10) : 2.J~I)929CH045701

:*t!H&J:~ ; ~g
pw(2,3) : 8
ro\1!14(23. 4) 1 23
sin(l 62'4) ~ 0 99838:SOIIH00'2003083
sqrt(3): t . 7J20S0807'5688'TJI 9'l
t..n('l ,, -c ""'~o~

Figure 6.3 Results of the Math methods.

l!l

A simple example of one of the Math methods in action is shown in
Figure 6.4. In this case, an array of rows is looped, each represent­
ing a value from l at the top to -1 at the bottom. As the script
moves along the colum11s, it progressively moves through the radi­
an measurements in 0 .l radian increments. If the value of sin at
that point is less than the row value, a pound sign (#) is printed.
The code that carries out this wave is as follows:

<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR=' #FFFFFF '>
<PRE>
<SCRIPT LANGUAGE= ' JavaScript '>
<1 ..
with(Math) {
for(var i = 0; i < 20; i ++) {

for(var j = 0; j < 7; j += 0.1)
if((10 + sin(j)*10) > (20 i)) {

document.write("#")

else
document .write(' ')

document.write('\n')

NOTE

Chapter 6 J avaScript and Built-In Objects 159

}
II -->

</SCRIPT>
</ PRE>
</BODY>
</HTML>

i Netsrepe: .html

.........
HltiNIIttU "'''"''"'

........................... Mttl
ttltt tlltHH H .. I ftMII HIIIHtiMII ...

. ..
'" '

Figure 6.4 A sine wave using JavaScript.

The Math functions in JavaScript, when dealing with double­

precision floating-point numbers, are subject to platform­

dependent accuracy bugs when numbers get close to boundary

conditions such as +/- lnf, and NaN (Not a Number, a condition
found in Unix systems). What does this probably mean for you,

the HTMLer who just wants a few numbers crunched? Stay away

from JavaScript when completing your quantum mechanics home­

work. Otherwise, you should be fine.

Be aware of these problems when using the Math methods.

The Date Object

As with the Stri ng object, JavaScript does not have a native Date

type, so it provides the programmer with an object that encapsu­
lates information about a date and time and provides methods for
handling this information. The Dat e object is similar to the Java Date

object in that it stores the date as the number of milliseconds since
January 1, 1970, 00:00:00. Because of this format, there is no way
to store dates prior to January l , 1970.

160 J avaScript for Macintosh

Date Constructors
To use Date methods, you must first create an instance of a date
with the value you want. You can construct a Date object three dit:
ferent ways.

tempDate = new Date()

This constructor method creates a new date and stores the current
date and time as the value for the object.

tempDate =new Date("month day, year hours:minutes:seconds")

This constructor takes a string such as "January 22, 1996
06:32:00" and creates a date. Omit any of the time values, and they
will be set to zero automatically.

tempDate = new Date(year, month, day, hours, minutes, seconds)

This constructor uses comma-separated numbers instead of a string
and sets the Date object accordingly. Again, you can omit any of the
time values and zero will be substituted.

Date Methods
The Date object does not have any properties that can be set or
accessed directly. Instead, it provides several methods that affect
Date values.

The first group of methods enables you to set information about
the date.

Table 6.1

Method

setDate(dayOfMonth)

setHours(hours)

setMinutes(minutes)

setMonth(month)

setseconds(seconds)

setTime(milliseconds)

setYear(year)

Range of Valid Values

1-31

0-23

0-59

0-11

0-59

0 and up

1970 and up

Chapter 6 JavaScript and Built-In Objects 161

The Date set methods enable you to control the value of Date objects
after they are created. Each method takes an integer in the range
specified in the preceding table. Most of the methods are straight­
forward, except for the setTime method. This method takes the time
as the number of milliseconds after January I, 1970, 00:00:00.
Obviously, this is not a convenient notation to use. This method is
intended for use in conjunction with the getTime method to set the
time from an already established Date object.

In addition to the Date set methods, there are also several Date get
methods for returning the values of different elements of a Date.

For all of the set functions, there exist identical get functions.
These get functions return the integers that represent the values
specified in the preceding table.

Table 6.2

Method

getDate()

getDay()

getHours()

getMinutes()

getMonth()

getSeconds()

getTime()

getTimezoneOffset

getYear()

Return Value

Returns the day of the month

Returns the day of the week

Returns the hour of the day

Returns the minutes in the hour

Returns the month

Returns the seconds in the minute

Returns milliseconds since 1.1.1970

Returns the offset from GMT

Returns the year-post 1970

There are two methods-getDay and getTimezoneOffset-that return
values that cannot be set directly through the Date object. The
getDay method returns the day of the week. Because this is deter­
mined by the other Date values, there is no need to set this number
explicitly. The getTimezoneOffset method returns the offset from
Greenwich Mean Time in minutes of the client's computer locale.
This is information set by the operating system, not the program­
mer.

162 J avaScript for Macintosh

In addition to the set and get methods, the Date object has five
other methods. Two of these methods-parse () and UTC ()-are
static and are implemented using the Date .method() syntax rather
than being appended to an actual instance of an object.

0 parse(dateString). This method parses the string representation
of Date and returns the number of milliseconds from January 1,
1970, 00:00:00. The date is expected to be in local time. The
Time zone offset of the computer will be used unless a GMT
stamp is placed on the end of the string, for example, "GMT·
0330." Notice that the GMT offset is in hours and minutes
(hhmm), not total minutes.

0 UTC (year, month, day [, hours] [, minutes] [, seconds]) • This
method returns the number of milliseconds since January 1,
1970, 00:00:00, based upon Greenwich Mean Time (GMT)
or Universal Coordinate Time (UCT). Use this method if you
have a date based upon GMT instead of local time.

There are also three methods for producing a string output of the
date. These are

0 toGMTString(). This method returns the date in GMT using
Internet conventions.

0 toLocaleString (). This method returns the date in local time,
using the mm/ dd/yy hh:mm:ss format.

0 toString(). This method returns the date in local time, using
the Internet standard of Month, day year hh:mm:ss.

Figure 6.5 shows the get methods and toString methods for the
Date object produced by the following source code.

<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="#FFFFFF•>
<PRE>
<SCRIPT LANGUAGE= .. JavaScript">
<1-.
today =new Date()
today.setTime(Date.parse("January 26, 1996"))

Chapter 6 JavaScript and Built-In Objects 163

document.writeln(today)
document.wri teln(today.toString())
document.writeln(today . toLocaleString())
document.writeln(today.toGMTString())
document.writeln(' Date: '+today.getDate())
document.writeln(' Day: '+today.getDay())
document.writeln(' Hours: ' +today .getHours())
document.writel n('Minutes : ' +today.getMinutes())
document.writeln(' Month: ' +today .getMonth())
document.writeln('Seconds: ' +today .getSeconds())
document. writeln(' Time: ' +today.getTime())
document.writeln(' Offset: ' +today.getTimezoneOffset())
document.writeln(' Year: '+today.getYear())
II . ->

</SCRIPT>
</PRE>
</BODY>
</HTML>

f"r!!ets:cope: OS01 .html

~ ~j@~SIIXll .;_]
LAutloft_~lftlt :///PovM'S20Ttf'mWittOf'l'r>trltto¢JI20f'o'kHf'"IF"TPI/Jna.Scr"ll''91S~

-.....·,,~~wtf ..,.,., ... ,tl - I ,..,,I ,..,...,, ... 1

S...l J&n 27 00 00 00
Sat J•n Z1 OG: oo· oo
J&n 27 00 :60, 00 19'No
5\ln, 28 Ju. 1996 06 00 :00 littt 27
D•r ; 6
Hours; 0
fU.uut.•• : 0
Uont.h: 0
S.ConU: 0
n - 8Zl783600000
O.Unl: -480 ,,

I

11

'il.illl &1~ 111

Figure 6. 5 Output from several of the Date methods.

The eval, parseint, parseFloat, escape,
unEscape, and isNaN Functions
The final units ofbuj(t-in functionali ty in JavaScript are the eva!,

parselnt, parsefloat, escape, unEscape, and isNaN functions. Unlike the
objects djscussed previously, these functions are standalone meth­
ods that are not attached to any object. Therefore, they can be
called without reference to any one particular instance or static
reference to an object, for example, Date or Math.

164 J avaScript for Macintosh

0 eval (statement) . The eval function takes a string and returns
the numerical equivalent of any operations represented by the
string. For example, the following line

result= eval("2+6/2");

would return the number 5. This function is important in
form elements such as user-entered text fields, where you are
provided with a string representing the function you need to
evaluate. You might, for example, have a spreadsheet script in
which you need to evaluate arithmetic expressions in a cell
represented by a text input field. You could then take the
string from the text field and return the numerical equivalent.

0 parseint(numberString, radix). This function returns the numeri­
cal equivalent of the integer string based upon the integer radix

provided. radix represents the base of the number to convert to
such as 10 for decimal, 8 for octal, and 16 for hexadecimal.
Because parseint expects an integer, it truncates any decimal
portion of a number without rounding. If the method cannot
parse the string, it truncates the number wherever it ended. If it
cannot parse even the first character, it returns 0.

0 parseFloat (floatString). This function returns the floating­
point equivalent of the number represented by floatString.

The parseint function can handle floating-point numbers in
both decimal and scientific notation.

0 escape (character) . This function returns the ASCII encoding
of the argument in the ISO Latin-I character set. For exam­
ple, escape (• & •) returns "%26 •.

0 unescape(string). This function returns the ASCII character for
the encoded string argument. For example, unEscape ("%26 •)
returns " & •. Both escape and unEscape can be used to encode
characters that would not normally be understood by a
file type. In Chapter 8, these functions are used for the
document. cookie property.

0 isNaN(number). This function is only available on Unix plat­
forms and tells you whether a number is of type NaN, or Not
a Number.

Chapter 6 JavaScript and Built-In Objects 165

Summary
The built-in functions of the J avaScript language provide a useful
set of features that programmers can use to develop powerful
scripts quickly. Most programmers who work with today's pro­
gramming languages have become accustomed to the kind of built­
in support that these objects provide to J avaScript. The next two
chapters cover the objects that are built into the client-side browser
environment ofNetscape. These include the document, window,
history, and location objects, as well as the assorted member objects
for each of these object classes. You need to understand the hierar­
chical relationship among all of these elements in order to fully
realize fire-breathing, JavaScript-powered Web pages.

CHAPTER

Netscape Navigator Objects:
The Document Object

Mter you get beyond the objects built into the J avaScript language,
the Netscape Navigator program provides several objects that en­
able the scripter to interact with HTML documents . The main
objects that fall into this category are the document and form ob­
jects. These objects enable the user to control and respond to
events in the Navigator environment. In fact, the document and
form objects are at the bottom of the Navigator object hierarchy,
which is why they are the first and easiest objects that can be used
in a JavaScript program without extensive knowledge of the Navi­
gator hierarchy. You encountered the document object in the first
chapter of this book, when its write () method was used to send text
to display in the Navigator window.

Introducing the Navigator Object Hierarchy
The complete Netscape Navigator object hierarchy is shown in
Figure 7.1, and depicts the relationship among objects provided·by
the Navigator environment. Many of these objects are dependent
upon what the HTML source actually generates. For example, if
your HTML file does not include any forms, then no form objects
are present. If no links are created, then no link objects are present.
In this way, the object hierarchy is very dependent upon the current
environment.

168 J avaScript for Macintosh

I parent, fra_me_s. s~lf. t~p li
!location .1.

~istory J'

I docum~nt _ _ [

1 ~s I ____ _
l_ I I ts I; includes text field. teXtaru, chedcbox.

e e.men .· password. radio. select. b11tt0n, submit. reset

L
links

~-:an-c-h-ors--._,

Figure 7.1 The Netscape Navigator object hierarchy.

At the top of the hierarchy is the window object. This object is the
encapsulation of the Netscape Navigator window in which a docu­
tnent is being displayed. In addition to its own window properties,
this object also holds several other objects that can be considered
members of the window. These objects include the following:

0 Any frames that have been created

D The location and history objects that hold information about
the current URL and URLs forward and backward in the link
history

0 The document or documents (if there is more than one
frame) contained in the window /frames

The window object, along with the location and history objects,
are covered in more detail in Chapter 8, "The Forms, Window,
History, and Location Objects."

Chapter 7 Netscape Navigator Objects: The Document Object 169

Introducing Window Object Properties
The window object's first property in the hierarchy includes several
similar objects that all refer to windows or frames within windows
that are being displayed by the Netscape Navigator program. The
parent object is used when calling functions or object methods that
reside in the window object, and are being called from a frame that
exists as a child of the window. There are also two more named
objects, which are used to refer to windows: Self objects refer to the
current window, and top objects refer to the original window that
was accessed when Netscape was first loaded. Finally, the window
object includes each frame that occupies screen space. Therefore, if
there are two frames, there will be two frame objects. All these ob­
jects are dependent on the HTML code that is passed to the Navi­
gator program from the source file, whether it is code generated
on-the-fly or static HTML tags.

Two objects that do not depend on the HTML code are the loca­
tion and history objects. Although the content of these objects .
changes as the Web-browsing user moves through sites during a
surfing session, their existence is static. The location object refers to
the current URL of the source file creating the HTML source
code. Because the Navigator 2.0 JavaScript specification does not
implement the SRC= attribute tor the <SCRIPT></SCRIPT> tag,
the file URL for the script and the HTML document are the same.
In the future, when the SRC= attribute is included in the
<SCRIPT></SCRIPT> tag, this URL specified by this attribute
will be the parent HTML document to which this object will refer.
The history object holds information about the links a user has
visited; these are the same links shown in Netscape's Go menu.

The document object is the final and most important object in the
Navigator hierarchy. Its importance is seen in its immediate use in
even the most rudimentary] avaScript examples, such as Hello,
World!. You will undoubtedly need to use the document object if
you want the end user to see the results of most things you do in
your scripts. The document object has several objects as properties.
The three most important of these are the following:

170 J avaScript for Macintosh

0 Link object

0 Anchor object

0 Form object

The link and anchor objects are dependent on the existence of links
or anchors in the document's HTML code. Otherwise, they are not
created. The form object is also dependent on the existence of
<FORM></FORM>tags in your HTML code.

The link object refers to </ A> tags that link an ele­
ment, such as text or an image, to a specific URL. The link object is
not useful on its own, but exists as a property of the document
object itself. When links exist, they can be referenced as an array
property of the document object. The anchor object refers to any
</ A> tag that exists in the HTML code. Like the link
object, the anchor object exists as an array property that holds all
the anchors in a document. Both of these objects are covered in
more detail later in this chapter.

The form object is also included as a property of the document
object, and like the link and anchor objects, exists as an array that
holds each of the forms as a single element. For example, the first
form on the page would be document. forms [01, document. forms [1 1, and
so on. In addition, each of the form areas in a document has prop­
erties for each of the interface elements in the form, such as but­
tons and text entry fields. These elements can then be accessed
through the document object. The forms property can be used to
control the validation of forms before they are sent to a server-side
CGI program or other protocol to be handled, thus saving much of
the networking overhead that is presently a persistent element of
much HTML interaction.

The Netscape Navigator object hierarchy is quite extensive, and the
number of levels the programmer is expected to work through to
use a specific object can be quite tedious. To ensure that the correct
objects are being used, however, and to create as flexible a tool
as possible, the object hierarchy becomes a useful device for

Chapter 7 Netscape Navigator Objects: The Document Object 171

implementing complicated scripts that rely on several frames or
windows to carry out their tasks. Also, by using the hierarchical
structure, JavaScript stays closer to the object-oriented design prin­
ciples upon which it is based, and keeps the programmer thinking
along these lines as well.

The Document Object
The document object as it was just presented exists in the middle of
the Navigator object hierarchy, between the higher-level windows
and frames, which are used to partition screen real estate, and the
lower-level elements (that is, links and form elements) that together
comprise the entire document presented to the end user. The docu­
ment object's job is to bring all these elements together in one
logical place and expose them to the programmers for use in their
JavaScript code. This object-oriented approach to the encapsulation
of HTML elements is central to J avaScript, and many of the objects
are designed to allow interaction with different elements of the
HTML language.

The HTML Equivalent of the
Document Object
The document object actually refers to the body of the HTML
document that is defined by the <BODY></BODY> tag. The body
of an HTML document takes several optional attribute tags. The
following code defines all these options:

<BODY
BACKGROUND="background image•
BGCOLOR="background color•
FGCOLOR="foreground color•
LINK="unfollowed link color"
ALINK="activated link color"
VLINK="followed link color"
onload="event handler code"
onUnLoad="event handler code">

</BODY>

172 J avaScript for Macintosh

All these options, except the background image, are included as
properties of the document object and can be referenced by the
document.property naming convention. In addition to the standard
attributes, the <BODY> tag can also include the onLoad and
on UnLoad event handlers that execute the specified code the same
as all event handlers do when the action of loading or unloading
the document occurs.

When creating HTML documents, it is important to take into ac­
count the browsers that do not support the JavaScript standard, or
older versions of browsers that do. If you are looking for a specific
color scheme, be sure to use the standard HTML <BODY> tag to
define these preferences. Then, if you want to enhance the page,
you can use the document object's properties to override these
settings.

Understanding the order in which document attributes are assigned
when using both the object properties and the HTML tags is im­
portant. In the following code, both the J avaScript code and the
HTML tag set the background color. The document object pro­
perty, however, is used when the page is actually displayed.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<I·-
document.bgColor = "blue•
function change() {

document.bgColor = •red"
}

II - ->
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<FORM>
<INPUT TYPE="button" NAME=" red" VALUE="RED" onClick="change() ">
</FORM>
</BODY>
</HTML>

Chapter 7 Netscape Navigator Objects: The Document Object 173

Two things are important to note. First, the document property
setting overrides any HTML tag settings in the body statement. It
does not matter that the assignment of the color blue to the
document. bgColor property occurs in the <HEAD></HEAD> before
the body statement. It carries through in this case. Second, the
background color can be updated dynamically. Even though the
screen display has been completed, the change in the bgColor prop­
erty that occurs as a result of the change () function call in the red
button's onClick event handler causes the screen's bgColor property
to update immediately. (bgColor is the only property that does up­
date right away; the various link color properties are updated inter­
nally, but until the link is activated, the changes do not take effect.)
Try the following code that changes several of the document prop­
erties to see how changing the document property values changes
the colors of the links:

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--

document.bgColor = "blue•
document.vlinkColor = "white•
document.linkColor = •yellow•
document.alinkColor = •red"
function change() {

}

document.bgColor = •red"
document.vlinkColor = "blue"
document.linkColor = "green•
document.alinkColor = "blue•

II - ->
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
Purdue University
Andersen Consulting
<FORM>
<INPUT TYPE="button• NAME="red" VALUE="red" onClick="change()">
</FORM>
</BODY>
</HTML>

17 4 J avaScript for Macintosh

NOTE Be sure to note that the default behavior of mixing JavaScript and

HTML source code is not at all obvious or straightforward. This is

due mainly to the order in which items are evaluated and which

elements of the display are updated at what time. Be sure to con­

firm the behavior of a particular script; don't automatically assume
that it wi ll act as you intend. Because JavaScript and HTML can be

intertwined quite freely, it is difficult to define exactly how the

two will behave in each instance. The Netscape 2 .0 implementa­

tion of JavaScript still has a few quirks that should be fixed in the

next release, slated as Version 2.1.

The next t\vo sections detail the properties, methods, and event
handlers that are part of the document object as defined in the
Netscape Navigator 2.0 specification.

The Document Object Properties

The properties of the document object include the following:

0 alinkColor

0 anchors

0 bgColor

0 cookie

0 fgColor

0 forms

0 lastModified

0 linkColor

0 links

Chapter 7 Netscape Navigator Objects: The Document Object 175

0 location

0 referrer

0 title

0 vlinkColor

This list of properties can be divided into two groups, with proper­
ties such as alinkColor and bgColor falling in an Attributes group,
and properties such as forms and links falling in an Elements group.
The properties in the first group exist regardless of what is con­
tained in the actual <BODY> tag or created by document.write()

methods. These properties hold information about attributes that
always exist, such as the background color (bgColor) or the color of
a visited link (vlinkColor). These properties are nearly equivalent to
the attributes that can be set in the standard HTML body tag, and
therefore are considered the document object's attribute proper­
ties. The properties that fall into the second group are dependent
on the existence of their respective elements in the document's
<BODY> tag. These include arrays such as links and forms and the
cookie string, which is used to hold data on the client machine
between browser sessions. (Cookies are discussed in detail in the
"Document Element Properites" section.) Because these properties
are created by the elements that make up the body of the docu­
ment, they will be referred to as the document object element
properties.

The Document Attribute Properties
The document attribute properties include the following variables:

0 alinkColor

0 bgColor

0 fgColor

0 lastModified

0 linkColor

0 location

176 JavaScript for Macintosh

0 title

0 vlinkColor

Of all these properties, only the location and lastModified variables
are not definable in the <BODY></BODY> HTML tag. Each of
the other properties directly relates to one of the attribute tags
shown in the previous section.

The Color Properties

The color properties include the alinkColor, bgColor, fgColor,

linkColor, and vlinkColor properties. These properties control the
color formatting of the page in reference to the condition of the
HREF links, if any in the document, and the background and fore­
ground colors. The color value provided is a string that is of the
form

alinkColor = "#RRGGBB"

The RR, GG, and BB represent the red, green, and blue channels
that make up the color spectrum and run in value from 0 to 255,
represented in hexadecimal values. For example, the basic
colors are

red= "#FFOOOO"

blue = "#OOOOFF"

green = "#OOFFOO"

white = "#FFFFFF"

black = "#000000,,

By mixing different values for the red, green, and blue channels,
you can control the exact color. Of course, counting in hex is not at
all intuitive, so JavaScript and the HTML code can accept names

Chapter 7 Netscape Navigator Objects: The Document Object 177

for colors. These names are listed in Appendix A and provide al­
most any combination you could reasonably expect. If you are try­
ing to match an exact RGB value, it might be easier to use the exact
hexadecimal numbers.

NOTE Adobe Photoshop can "samplert the colors in an image or on a
color palette and translate those colors into decimal RGB values.
And if you don't feel like converting decimal values to their hexa­
decimal equivalents, a number of Web sites are available that can
do the conversion for you. One straightforward site that previews
the RGB color you submit for translation is the BgColor Server
(http://www. webedge.com/bgServer.fcgi).

D alinkColor. This property controls the color of an active link.
This is the color that a link temporarily changes to as the user
presses the mouse button while the cursor is over the link.
Notice that when selecting buttons or links, it is not the lone
act of pressing the mouse down that selects the item. Rather,
it is the combination of pressing and releasing the mouse but­
ton over the object that selects it. If you move the mouse
away from the object before releasing the mouse button, it
will not be selected.

D linkColor. This property controls the color of the standard
HTML link created in an text tag.
This color attribute is not automatically updated if it is
changed after the document has been displayed. As soon as a
link in the document is selected, however, all the link colors
are updated to show any new, dynamically updated linkColor

setting.

D vlinkColor. This property is similar to the linkColor property,
except this color is used for links that the Navigator has stored
as being previously visited. Like the linkColor property, and

178 J avaScript for Macintosh

unlike the bgColor property, this property is not reflected in
the displayed document until after a link has been selected.

0 bgColor. This property holds the value for the background
color of the document. When changed, this property is imme­
diately updated in the display.

0 fgColor. This property holds the value for the foreground text
color in the display. It does not appear to be changeable after
the color is set and the document has been read by the
browser.

The title, location, and lastModi tied Properties
Strictly speaking, these two properties are not members of the
<BODY></BODY> tag, but are considered attributes of the docu­
ment in general.

0 title. This property holds the value of the title of the docu­
ment as created in the <TITLE>docttment title</TITLE> tag.
This title is displayed in the title bar of the browser window,
and is the name given to the URL in the Bookmarks menu if
the user adds it as a bookmark. This value cannot be changed
after the document has been created.

0 location. This property holds the full URL of the file holding
the document source code. Because the Netscape 2.0 Java­
Script specification has not implemented the capability to
import J avaScript files by using the SRC= attribute in the
<SCRIPT></SCRIPT> tag, the URL provided is the file
from which the document source code comes.

0 lastModi f ied. This property holds the date the file was last
modified. In conjunction with the document cookie, this
could be used to inform users that modifications have been
made since they last visited the site. The cookie property will
be discussed in more detail in the next section.

Chapter 7 Netscape Navigator Objects: The Document Object 179

The Document Element Properties

The document properties that reflect the elements present in the
HTML document are the following:

0 anchors

D cookie

0 forms

0 links

The anchors, forms, and links properties are arrays that have an entry
for every clement of each type existing in the <BODY></BODY>
portion of the HT~1L code. The J avaScript programmer can then
use these arrays to refer to the individual element objects by using
index values in the array. The cookie property is a string represent­
ing the file MagicCookie. This file holds what are known as cook­
ies, which enable HTML pages to store a limited amount of infor­
mation specific to themselves on the client machine. For example, a
Web site could use a cookie file on your Mac to personalize the
greeting its home page gives you each time you log in: "Welcome,
Dave Thomas. It's been 7 days since your last visit to MurkyWeb,"
or some such thing. Fox Mulder believes the "Truth is out there,"
and we concur-it's probably in the cookie files.

The anchors Document Property
The anchors document property contains all the anchors in a docu­
ment in an array structure. The order of the items in the anchors
array is dependent on the order in which the anchors appear in the
document. Unlike the standard array structure created with the
makeArray() function created in Chapter 5, "Using and Creating
Objects in JavaScript," the anchors, and all the element properties of
the document object, begin indexing at zero (0) and continue

180 JavaScript for Macintosh

through one less than the total number of objects (n-1). Therefore,
the first anchor in the document is at document. anchors [0 J, the sec­
ond at document. anchors [1 1, and so on. Like the standard array, the
total number of elements in the array is held in the length property
of the array, and the total number of anchors in a document would
be document.anchors.length. The following code prints out the num­
ber of anchors in the document.

<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="white">
This is a test:<P>
Purdue University
•<P>
CompuServe<P>
<PRE>
<SCRIPT LANGUAGE="JavaScript">
<I·.
document.writeln("This document has " + document.anchors.length + •
•anchors. ")
II -->

</SCRIPT>
</PRE>
</BODY>
</HTML>

Notice that anchors also refer to HREF links. The anchors pro­
perty refers to the existence of the NAME= attribute in the <A>
 tag that provides a hypertext target for a URL to move with­
in the page.

The links Document Property
The links document property is quite similar to the anchors proper­
ty, except that instead of looking at all the instances of the NAME=
attribute in <A></ A> tags, the links property lists all the <A></ A>
tags with HREF= attributes. The links array begins indexing at
zero (0) and goes through one less than the total number of ob­
jects link elements (n-1). Therefore, the first link in the document
is at document .links [01, the second at document .links [1 1, and so on.
The total number of anchors in a document would be
document .links .length. The following code is identical to the

Chapter 7 Netscape Navigator Objects: The Document Object 181

preceding example, except this time it counts only the links in the
document.

<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="white">
This is a test:<P>
Purdue University
•<P>
CompuServe<P>
<PRE>
<SCRIPT LANGUAGE="JavaScript">
<I·.
document.writeln("This document has • + document.links.length +
• links. •)
II . ->

</SCRIPT>
</PRE>
</BODY>
</HTML>

The forms Document Property

The forms document property is an array of objects that corre­
sponds to all the named forms in a document. These forms are
indicated by using the <FORM></FORM> tag, and can have sev­
eral additional elements, depending on which form input elements
are included with them. The following code, like the two previous
examples, counts the number of forms in a document.

<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="white">
This is a test:<P>
<FORM NAME="FORM 1">
<INPUT TYPE="text• NAME="form1Text• VALUE="hello" SIZE=10>
<INPUT TYPE="button• NAME="form1Button" VALUE="test">
</FORM>
This is the second form:
<FORM>
<SELECT NAME="form2Select• SIZE=3 MULTIPLE>
<OPTION>Apple Computer
<OPTION>Netscape
<OPTION>Sun Microsystems

182 J avaScript for Macintosh

</SELECT>
</FORM>
<PRE>
<SCRIPT LANGUAGE="JavaScripe>
<I·.
document.writeln("document has n + document.forms.length + II forms")
II . ·>
</SCRIPT>
</PRE>
</BODY>
</HTML>

Chapter 8 details the form object and how it can be used in Java­
Script programs.

The cookie Document Property

The cookie property is perhaps one of the most interesting, yet
complicated, features of the Netscape environment. A cookie is an
entry in a text file called MagicCookie that resides in the Netscape
preferences folder. This file typically has been used by server-side
CGI scripts to keep information on the client machine for when­
ever they might visit again. J avaScript enables the programmer ac­
cess to this file to store recurring information. It is important to
recognize two things about cookies. First, the Netscape environ­
ment can create only 300 cookies in total, thus limiting the capabil­
ity of a site to swamp users' hard disks with information they do
not necessarily want. In addition, each of these cookies is limited to
4 KB in size. This effectively limits the file to about 1.2MB. More­
over, a single site may have only 20 cookie entries, and sites are
limited to accessing cookie entries to diose that match the same
domain. The full cookie entry appears as the following:

NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure

The name is the name given to the cookie as an identifier, and the
value is the value of the cookie itself. The expires date indicates
how long the cookie should remain on the client. If this is not pro­
vided, it will only remain for the current session. The entry format
for the expires entry is

Chapter 7 Netscape Navigator Objects: The Document Object 183

Wdy, DD-Mon-YY HH:MM:SS GMT

The path and domain entries are there for specifying which URLs
can access the cookie entry. If the URL of the document attempt­
ing to access the cookie does not match the domain name and
path, it is not allowed to view the cookie. If two sites are in
the same domain (for example catal.arch.cam.ac.uk and
juno.arch.cam.ac.uk) and a common domain is given in the cookie
(arch.cam.ac.uk), both will have access to the cookie. Typically, at
least three entries separated by two periods are needed to qualify
the domain name. If the site is one of the major types of "com,"
"edu," "net," "org," "gov," "mil," or "int," then the domain
needs only two periods; any others need three. A site can specify a
domain entry only if it is in that domain. If the path or domain is
not provided, they default to the exact URL values of the docu­
ment creating the cookie. The secure keyword is used when you
only want the cookie sent if there is a secure connection. If this is
not specified, the cookie will be transferable over nonsecure links.

The cookie property of the document object is a string that holds
values for the cookie entry of the document. This value is altered
by adding string expressions to the cookie. For example, you could
have a function that places a string and an expiration date in that
document's cookie:

function sookie(name, value, expires) {
document.cookie =name+ value+ ";" + •expires=" +expires+ •;•

Several functions have been developed and are in the public domain
for working with cookies. The following, written by Bill Dortch,
enable the user to set and examine cookies in a very flexible fash­
ion. The following functions could be placed at the beginning of a
file and used throughout your code to work with cookies. The
cookie set does not use any white space, semicolon, or comma
characters, so these must be encoded. The following cookie func­
tions use the escape() and unEscape() functions built into JavaScript
to convert standard characters to their ISO Latin-I equivalents
such as %26 for &.

184 J avaScript for Macintosh

This first function is used by the others as an internal method for
accessing the items in the cookie.

function gookieVal (offset) {
var endstr = document.cookie.indexOf (";", offset)
if (endstr == -1)

endstr = document.cookie.length
return unescape(document.cookie.substring(offset, endstr))

This function returns the value of the cookie clement specified by
the string name. If there is no entry by that name, then it returns
null.

function Gookie (name) {
var arg = name + ·=·
var alen = arg.length
var clen = document.cookie.length
var i = 0
while (i < clen) {

var j = i + alen
if (document.cookie.substring(i, j) == arg)

return gookieVal (j)
i = document.cookie.indexOf(" " i) + 1
if (i == 0) break

return null

The following function can be used to create cookie entries. Only
the first two arguments are required; any additional arguments are
optional. If you decide not to usc a cookie argument, such as
expires, and provide an argument that occurs later in the list, such
as secure, you must use null as a placeholder for the skipped
argument(s). If the arguments being skipped come at the end of
the argument list with none provided after, then you do not need
to use null anywhere in the argument.

II Function to create or update a cookie.
II name -String object object containing the cookie name.
II value - String object containing the cookie value. May contain
II any valid string characters.

Chapter 7 Netscape Navigator Objects: The Document Object 185

II [expires] - Date object containing the expiration data of the
•cookie. If
II omitted or null, expires the cookie at the end of the current
•session.
II [path] - String object indicating the path for which the cookie
•is valid.
II If omitted or null, uses the path of the calling document.
II [domain] - String object indicating the domain for which the
•cookie is
II valid. If omitted or null, uses the domain of the calling
•document.
11 [secure] - Boolean (true/false) value indicating whether cookie
•t ransmission
II requires a secure channel (HTTPS).
II
11 The first two parameters are required. The others, if supplied,
•must
II be passed in the order listed above. To omit an unused optional
•field,
II use null as a placeholder. For example, to call SetCookie using
•name,
II value and path, you would code:
II
II SetCookie ("myCookieName•, "myCookieValue•, null, "/")
II
II Note that trailing omitted parameters do not require a
•placeholder.
II
II To set a secure cookie for path "/myPath", that expires after the
II current session, you might code:
II
II SetCookie (myCookieVar, cookieValueVar, null, "/myPath",
•null, true)
II
function Sookie (name, value) {

var argv = Sookie.arguments
var argc = Sookie.arguments.length
var expires = (argc > 2) ? argv[2] : null
var path = (argc > 3) ? argv[3] : null
var domain = (argc > 4) ? argv[4] : null
var secure = (argc > 5) ? argv[S] : false
document.cookie = name + "=" + escape (value) +

((expires == null) ? "" : (•; expires= 11 + expires. toGMTString ()))

((path== null) ? •• ("; path=" +path)) +
((domain== null) ? : ("; domain=" +domain)) +
((secure== true) ? "; secure" : "")

186 J avaScript for Macintosh

The following function enables the user to delete a cookie by name.

function DeleteCookie (name) {
var exp = new Date()
exp.setTime (exp.getTime() · 1); // This cookie is history
var eva! = Gookie (name)
document.cookie =name+ ·=· +eva!+ •; expires=· +

-.exp.toGMTString()
}

A possible scenario for using the cookie is as follows. When a page
is first loaded, it first checks to see whether its cookie exists. If it
does, it then uses the information stored in the cookie to set up the
page to the same state it was in when the user left it. If the cookie
function returns null, then the page knows that the user is there for
the first time or the cookie has expired. In this case, it could pro­
vide a default or novice page. When the page is completed, for ex­
ample on an unLoad call, the cookie could be updated with the last
state of the page before exit. As you can see, the cookie provides a
powerful means for creating dynamic, personalized documents for
the Web.

The Document Object Methods
Five document methods exist that the programmer can use to
control certain aspects of document objects. The methods are as
follows:

D clear()

D close()

0 open()

0 write()

D writeln()

The last two methods, write () and wri teln (), should already be
somewhat familiar to you, because they have already been used
extensively to create the output of many example HTML pages.
The clear () , close () , and open () methods, however, probably are
new to you, and provide a powerful means for creating documents
from scratch.

Chapter 7 Netscape Navigator Objects: The Document Object 187

The document. write {) and document. wri teln {)
Methods
The only difference between document. write() and document. writeln ()

is that the writeln() method inserts a newline character at the end
of the line being displayed.

In most cases, the write() and writeln() methods are being sent to a
document that is being interpreted as HTML text. Of course, in
HTML, newline characters are ignored, and it is the line break tags
such as <P> that designate when a new line should be created. Two
tags exist that indicate to the browser that the text has been prefor­
matted and that spaces and new lines should be kept intact. These
are the <PRE></PRE> tags and the <XMP></XMP> tags. Using
these tags enables the output from the write() and writeln() meth­
ods to be displayed correctly on-screen. Of course, the document
to which the write () and wr i teln () methods are sending their values
does not have to be of the text/html MIME type. Instead, docu­
ment objects of the following type can be written to:

0 text/html

0 text/plain

0 image/gif

D image/jpeg

D image/xbm

D x-world/ plug-in

If you know the specification for a file type of GIF or JPEG format,
you can use the write () method to dynamically create your own
image document. The plug-in type is any plug-in that Netscape
supports. You could, for example, create a VRML world on-the-fly
that depends on user input for its construction.

188 J avaScript for Macintosh

NOTE

The open {) , close {), and clear {)
Document Methods
These three methods, open() , close(), and clear(), enable the pro­
grammer to create new documents, close documents, and clear
documents from windows and frames. When document.write() is
called, its default behavior is to write to the current document. If
there is no document for the current window, then the write ()

method opens a new document of type text/html and writes to this
document. Of course, in the default window of the Netscape
browser, there is already a document open-the file in which the
JavaScript is embedded. For this reason, there is no need to open a
new document for output. As you will see in the next chapter, how­
ever, it is possible to open a window without a document. In this
case, document. open () is required to begin the text stream that the
browser interprets as the HTML file. After you have finished writ­
ing to the document, use the document . close () method to close the
stream and display the file.

JavaScript and Netscape can become unstable if you call
document. close () in the middle of a document's loading process.
Thus, using document. close () is not recommended for use in the
main window before all the HTML code has been displayed, be­
cause scripts typically appear between. surrounding <HTML>
</HTML> tags. However, you can call document.close{) safely from
an event.handler because these are not evaluated until after the
main document stream has closed anyway.

The following code opens a new browser window without a docu­
ment. It then proceeds to send several documents to the window
that create a flashing sign effect. Notice that each time the for loop
is entered, it opens a new document in the msgWindow and closes it
before it leaves.

<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="white">

Chapter 7 Netscape Navigator Objects: The Document Object 189

<SCRIPT LANGUAGE= ' JavaSc ript ' >
<I--

/**
* this is used to create arrays in JavaScript
* I

function makeArray(n) {
this .length = n
for(var i = 1; i <= n; i++)

this[i] = 0
return this

text = new makeArray(S)
text[1) ' Hello, World! '
text[2) •welcome•
text[3) ' To'
text[4) ' My '
text[SJ ' Page! '

If This creates the new window with no toolbars and sets the width
• and height
msgWindow = window.open('' ,'Hello' ,
• •toolbar=no,width=200,height=100')

// this loop sends the different documents based upon the text array
•to the msgWindow

:.11 Notscepe: (untltlodl U

Page!

II

Figure 7.2 Creating nCJP documents in a windom

for(var j = 1; j <= text.length; j++) {
msgWindow.document .open()
msgWindow.document.write('<H1 >' + text[j) + ' <H1 >')
msgWindow.document.close()
for(i=0;i<10000; i++){}
}

I I - ->
</SCRIPT>
</BODY>
</HTML>

190 J avaScript for Macintosh

Here is a breakdown of each of these methods:

0 open("mime Type"). This method is used to open a new docu­
ment stream. You can optionally specify what MIME type the
document should be by providing the mimeType argument. The
browser will then assume that the data being sent to it from
the write () or wri teln () methods are of that format. The list of
valid MIME types are:

0 text/html

0 text/plain

0 image/gif

0 image/jpeg

0 image/xbm

0 x-world/ plug-in

0 You can use the write() method to create any of the listed­
types that Netscape can interpret itself or through one of its
plug-ins. The plug-in type is any plug-in that Netscape sup­
ports. You could, for example, create a VRML world on-the­
fly. If no MIME type is given, then the default, text/html, is
chosen.

0 close () . This is the method used to close the document stream
created with the open () method. If you want to create more
than one document object, as in the flashing sign example,
you will need to call close () before opening another
document.

0 clear(). This method clears the contents of the open docu­
ment and empties the contents of the document window. This
functions similarly to closing and then opening a new docu­
ment in a window, as in the flashing sign example from the
open () method definition.

Chapter 7 Netscape Navigator Objects: The Document Object 191

The Document Object Event Handlers

The document object has two event handlers:

Summary

D onLoad=statement. This event handler executes the statement
when the page is loaded. A useful action for an onLoad event
handler is checking the value of a cookie when the page is first
loaded and assigning it to a JavaScript variable that can then
be used throughout the JavaScript code.

D onUnLoad=statement. This event handler causes the statement or
statements to be executed when the document is unloaded.
This event could be used to cause the page to update the per­
sistent cookie before it is unloaded.

This chapter has provided the basis for using the document object
in your JavaScript code. The document object is the central object
in the Navigator object hierarchy, and provides many built-in func­
tions for creating dynamic Web pages. Instead of depending on
static HTML tags, you can generate documents on-the-fly. The
next chapter includes the final sections of the J avaScript language
we will cover. These are the form object, the window object, the
location object, and the history object. They can be used both to
control the hypertext links in your document and enable you to
respond to user input through form elements.

CHAPTER

The Forms, Window, History,
and Location Objects

By now you have been presented -with the core of JavaScript pro­
gramming. You have covered the foundations of the language, and
learned about all the individual syntactical elements and how to usc
them in concert to create a functioning JavaScript program. In
addition, the basic objects provided with the language have been
covered, including the String, Math , and Date objects. Finally,
the object central to JavaScript's impact on Netscape's dynamic
behavior-the document-was presented in the last chapter.

Of course, with all these tools at your disposal , there are still several
more topics to discuss before wrapping up the JavaScript language.

In the discussion of the document object, one property was given
only cursory treatment: forms. Forms enable the client user to pro­
vide input to JavaScript programs, which can then be used to dy­
namically alter the behavior of a document, calculate a total, or
even open a window to a new URL. In addition to forms, there are
three other Navigator objects that exist at the same level as or
above the document object:

0 The location object

0 The history object

0 T he window object (above the document object)

The window object enables you to control the size and location of
a document and provides access to dialog boxes and frames in

194 J avaScript for Macintosh

addition to the standard Navigator window. The location and histo­
ry objects encapsulate link information that provides J avaScript
programs with the capability to react to information about the us­
er's journey to his page, and about the user's Internet origins. By
using these objects, the JavaScript programmer can enhance the
basic document object with a diverse and dynamic range of interac­
tion with the end user.

Using the Forms Object
Perhaps the most immediately useful aspect of the document object
is its capability to access forms contained in HTML documents.
The forms object enables J avaScript programs to interact with the
different form elements manipulated by the user. In addition, it is
also possible to access forms in a page by name.

The forms object is an encapsulation of the HTML codes that are
used to create forms for HTML documents. The structure of the
FORM tag is

<FORM
NAME="form name•
TARGET="target window•
ACTION="form handling URL"
METHOD=GET : POST
ENCTYPE="encoding type•
[onSubmit="JavaScript code"]>

</FORM>

The FORM tag is used to declare several attributes of the individual
form:

D NAME is used to store the name of the form itself. It can be
used to access the forms object in JavaScript code.

D TARGET is used to specify which window the response of
form submission should go to. You can also designate a
named frame within a<FRAMESET> tag as the target of the
form response. In addition to these standard targets, you can
specify special frames named _top, _parent, _self, and _blank.
The targets enable you to specify targets that correspond to
the JavaScript Navigator window hierarchy.

Chapter 8 The Forms, Window, History, and Location Objects 195

D ACTION is used to specify the URL of the program that will
accept the data sent by the form. This is typically some type of
CGI script on the server machine in the cgi-bin directory.

D METHOD has two possible values: GET or POST. By speci­
fying GET, the form information is appended to the end of
the URL, which is normally passed to a CGI (Common Gate­
way Interface) application in the 'srch' Apple Event parame­
ter, better known as the "search args') parameter. The POST
method places the form data in the body of the HITP re­
quest from the browser, rather than appending it to the URL.
The CGI application receives POST-tnethod form data in the
"post args" Apple Event parameter. Forms using the POST
method can pass much more data than forms using the GET
method.

D ENCTYPE indicates how the form is encoded. The two possi­
ble values are "application/x-www-form-urlencoded" or
"multipart/form-data." A form's encoding indicates how
user-entered form data is to be formatted in the HTML docu­
ment returned if the POST method is used.

Properties
As with many J avaScript objects that reflect HTML tags, the list of
attributes that follows are stored in the form object's property list.
The form object properties include

0 action

0 elements

D encoding

D method

D target

All these properties, except elements, reflect the state of the FORM
tag's corresponding attributes. For example, the action property
stores the value of the ACTION attribute.

196 JavaScript for Macintosh

The encoding property is unlike the other form properties in that it
does not store the individual attributes of the form HTML tag.
Instead, it is an array that stores the values of the individual form
elements inside the FORM declaration. These elements can include
buttons, text areas, check boxes and other features. Form elements
are created in a FORM tag as follows:

<HTML>
<HEAD>
</HEAD>
<BODY>
<PRE>
<SCRIPT LANGUAGE= 11JavaScript 11 >
<!--
// -->

</SCRIPT>
</PRE>
<FORM NAME=IItest">
Username:
<INPUT TYPE="text" NAME="text1" VALUE="" SIZE=20>

Password:
<INPUT TYPE="password" NAME="password1" VALUE="" SIZE=10>

<HR>
Choose all that apply:<P>
<INPUT TYPE=" checkbox • NAME= II checkbox1 11 VALUE= II internet 1' >
Use the Internet

<INPUT TYPE= 11 checkbox• NAME= 11 checkbox2 11 VALUE="music">
Listen to music

<INPUT TYPE="checkbox• NAME="checkbox3" VALUE="games">
Play video games

<HR>
<INPUT TYPE="radio" NAME="Sex• VALUE= 11 Male">Male
<INPUT TYPE=IIradio" NAME="Sex• VALUE="Female">Female

What kind of computer do you own:

<SELECT NAME="select1" MULTIPLE>
<OPTION> PC
<OPTION>UNIX
<OPTION>MAC
<OPTION>OTHER
</SELECT>

<TEXTAREA NAME="textarea1" ROWS=10 COLS=20>comments
</TEXTAREA><P>
<INPUT TYPE="submit" NAME="submit1 1

' VALUE="submie>
<INPUT TYPE="reset• NAME="reset1 1

' VALUE="reset">
</FORM>
</BODY>
</HTML>

Chapter 8 The Forms, Window, History, and Location Objects 197

These form elements then reside at test. elements (0] , test. elements (1],

and so on. If you access the form through the document object
as the first form in the HTML code, then you can also access the
individual elements by using document. forms [0] . elements [0],

document. forms (0] . elements [1], and so on. Figure 8 .l shows the
resulting form.

Cl>oaoo oll that epply­

l!!)u .. u..lobmtl
®l.istaltoualri:
01'1lyvao-

®Ma!t0F...U.
Wbotl:iodolCX1111j1111Udo,...-

PC
11m

• ~\0....

Figure 8.1 The example form page.

In the next section, the properties, methods, and event handlers for
each of the form elements wiU be discussed.

Forms Object Methods
The only method available for the forms object is the submit()

method. Invoking this method is exactly like the user pressing the
submit button on the form. T his can be used to automatically send
the form information after some action has occurred in a JavaScript
program. Ifybu want to cause the test form shown above to be
submitted,ryou can either caU

document . t_est . submit ()

198 J avaScript for Macintosh

NOTE

or

document.forms[0].submit()

The submit () method has parentheses following it. It is a common
mistake to.forget the parentheses when calling a method. This call
is in fact a reference to a property, which in the case of the forms
object does not exist, and causes an error.

To say that the submit () method is the only forms object method
does not take into account all the different methods that each ele­
ment will have. The next section discusses each of the types of ele­
ments in the test form and their respective methods, properties,
and event handlers.

Accessing Form Information

As mentioned before, there arc several ways to access the forms
objects created by HTML code in a document page. Because the
document's HTML form tags are what create the forms in the first
place, it is only fitting that forms be a property of the document
object itself. In a similar manner to other document properties such
as links and anchors, you can access the forms objects through the
forms array. You can access the test form presented in the previous
example with the following command:

document.forms[0]

If there are multiple forms in a document, you can access them in
the order in which they occur by increasing the index of the array:

document.forms[1]
document.forms[2]

Chapter 8 The Forms, Window, History, and Location Objects 199

NOTE Remember that the array indexing of objects provided by the
Netscape and JavaScript environments goes from zero to the num­
ber of objects minus one (0 to n-1). This is unlike the arrays that
have been created with the makeArray () function in JavaScript you
were shown in Chapter 4, which indexes from one to the number
of objects in the array (1 to n).

In addition to accessing the forms objects that reside in the HTML
document through the document forms array, it is also possible to
refer to the forms objects by name if the name is provided in the
FORM tag attributes. For example, a reference to the test form
above by name appears as follows:

document.test

Notice that the test form must be accessed as a member property of
the document object. What the document object essentially pro­
vides is two ways of accessing a forms object: through either its
name or its array index.

NOTE To refer to a form, the form must already have been created in the
document. The following code, which refers to the form below it
in the document, causes a runtime error to be called:

<HTML>
<HEAD>
<SCRIPT LANGUAGE=mJavaScript•>
<l--
document.test.elements[0].value = •Hello, World!•
II -->
</SCRIPT>
</HEAD>
<BODY>
<PRE>
</PRE>
<FORM NAME=•test•>
Username:
<INPUT TYPE=•text• NAME=•text1• VALUE=•• SIZE=20>

<INPUT TYPE=•reset• NAME=•reset1• VALUE='reset•>

continr~es

200 JavaScript for Macintosh

</FORM>
</BODY>
</HTML>

The following code accesses the form successfully:

<HTML>
<HEAD>
</HEAD>
<BODY>
<PRE>
</PRE>
<FORM NAME='test ' >
Username:
<INPUT TYPE=' text • NAME='text1' VALUE=" ' SIZE=20>

<INPUT TYPE=' reset' NAME="reset1 ' VALUE=' reset ' >
</ FORM>
<SCRIPT LANGUAGE= ' JavaScript ' >
<!--
document . test.elements[0].value = ' Hello, Wo rld! '
II -->
</SCRIPT>
</BODY>
</HTML>

The only change is that the reference to the form occurs after the

form has been created in the document. Because event handlers

are called only after the entire document has been loaded, you

can place the call to the form in the <HEAD></HEAD> of the

document in a function, which is called later by an event handler.

In addition to the placement of the references to forms, there are
two additional important items to mention: changing the value of
form items and form persistence. Form persistence means that
when the users or programmer places data into a form element,
Netscape retains that information, and if the page is reloaded dur­
ing the same session (that is, without Netscape being closed), then
the form elements will retain their same values.

Perhaps you noticed in the above example d1at the JavaScript state­
ment accesses the value statement of the form's text element. When
this value changes, it appears in the text box itself. This enables you
to change the data in these boxes dynamically. For example, you

Chapter 8 The Forms, Window, History, and Location Objects 201

can create a marquee to display a scrolling line of text. One way to
do this is to create an array that holds all the characters (including
blank spaces) for the text, and cycle through a portion of the char­
acters you want to show at the same time on the screen. The fol­
lowing code creates such a marquee:

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<I--

var buffer = "
var text= "Welcome to my Web Page, I hope you enjoy yourself!•
var marqueeString = buffer + text + buffer
var marqueeRunning= false
var timeoutiD = null
var position = 0
var slength = marqueeString.length

function stopMarquee() {
if(marqueeRunning)

clearTimeout(timeoutiD)
marqueeRunning = false

function startMarquee()
stopMarquee()
updateMarquee()

}

function updateMarquee() {
document.marquee.elements[0].value =

•marqueeString.substring(position++%slength,position+39%slength)
timeoutiD = setTimeout("updateMarquee()", 50)
marqueeRunning = true

}

II -->

</SCRIPT>
</HEAD>
<BODY onload="startMarquee()" onUnload="stopMarquee()">
<PRE>
</PRE>
<FORM NAME="marquee">
<INPUT TYPE="text" NAME="textBox" VALUE="" SIZE=40>

</FORM>
</BODY>
</HTML>

202 J avaScript for Macintosh

Notice the use of the timeout () method that causes the window to
be updated every t\ventieth of a second. This method is part of the
window object, which is presented later in the chapter. The most
important line is

document .marquee.elements[0).value =
•marqueeString .substring(posit ion++%slength,position+39%slength)

This line updates the value of the form element. The substring()

method grabs a portion of the string in order to place it in the text
input box. The substring() method also has two arguments: a be­
ginning index and an end index. The beginning index is given as

position++%slength

This statement indicates that after the index position is used, it
should be updated by one (position++). The rest ofthe statement
indicates that the actual index used is the modulus of the index
with the string length. Using the modulus operator guarantees that
position is always between zero and the length of the string. Figure
8.2 shows the marquee after it has begun scrolling out of the box.

Ne1stope: "

~~·~l~l~l~!~.d 1.11
I~"""""'""'"'-""""''""'• : I ~ .- (looth- .Ji~ ,;;,v.7.-J

h lOOIW t.o •:r 9•\ F•Vt, I~

~;0.. • 1!1

Figure 8.2 The ma1'quee text form.

The marquee form represents the diversity that can be achieved
with the use of HTML forms. The idea that HTML forms should
be used only for sending information from the user to the server
ignores the potential of these objects. It is better to think of the
form object as an interface between the user and your J avaScript
programs that works in both directions.

Chapter 8 The Forms, Window, History, and Location Objects 203

In addition to J avaScript's capacity to take advantage of the update­
ability of the forms object, there is an additional feature that should
be mentioned. Form elements retain their values in the Netscape
browser between document loadings. If you have ever filled out a
form, received a confirmation after submission, and then gone back
to the form, you will notice that all your old entries are still there.
This is called persistence and can be used to store information in a
document when it might be left tetnporarily. There may occur a
situation in which a form needs to be reloaded, or it might be left
alone for a while, and you might want it to retain its final configu­
ration when the user returns to it within the same session. If this is
the case, you can create a text element or hidden form element and
use it to store information. Whenever the page is loaded, you can
check the contents of this field and rebuild the page according to
the information in the form text or hidden element. Of course, if
you want to retain information between sessions, when Netscape
might be closed or your pages are removed from the cache, you
will need to store this data in a "cookie," which is discussed in
Chapter 7.

Elements of a Form
The test form given as an example at the beginning of the chapter
has examples of all the form elements tor which J avaScript has pro­
vided objects. These objects include the following:

D buttons

D checkboxes

D passwords

D radios

D reset

D select

D submit

D text

D textarea

204 JavaScript for Macintosh

The next few sections present the properties, methods, and at­
tributes of these objects, as well as the form of their HTML tags.

To reference these elements in your JavaScript code, you must
provide the array index for the specific element of the specific form
in the document where the element exists, or use the element's
name:

elementName.propertyName
elementName.methodName()
formName.elements[index].propertyName
formName.elements[index].methodName

If you know the element name beforehand, it is much easier and
clearer to use the name itself instead of an index. At present, you
cannot import JavaScript code using the SRC= attribute in the
<SCRIPT> tag, so all your JavaScript code must necessarily exist on
the same page as your HTML document. This means that using the
actual names of form and form elements isn't a problem. However,
when SRC attributes are allowed, the code you bring in could be­
long to a generic script, which can figure out the overall structure
at runtime via the array indexing and length properties of arrays,
without being hardwired for any particular HTML document.
These types of J avaScript modules-which Web page developers
merely call into their code to work--depend upon less intuitive
array indexing.

The button Element
The button element provides a single event trigger that can be used
for anything from submitting forms to calling up dialog boxes or
changing the background color of the document. The HTML code
for a button element is

<INPUT
TYPE="button•
NAME="button name•
VALUE="button text•
[onClick="JavaScript code"]>

Chapter 8 The Forms, Window, History, and Location Objects 205

The button object has the following members:

D name. The name property is equivalent to the NAME attribute in
the button HTML tag.

D value. The value property is equivalent to VALUE attribute in
the button HTML tag. The value property's text appears on
the button when it is generated in the form.

D click (). The click () method simulates the button being
clicked; however, this does not call the onClick event handler.
If you are trying to invoke the onClick action, you should call
the J avaScript code in the handler directly. For example, if the
onClick event handler were to call the stop () function instead
of simulating the event by using buttonName. click (), you could
simply place the stop () function in the handler.

D onClick. The onClick event handler is called when the button is
pressed by the user. The J avaScript code indicated in the
string is executed by the interpreter.

The checkbox Element
The checkbox element provides a single box that can be either
selected or unselected. You can think of this as being either true or
false. If you have several check boxes, they can all be independently
selected or deselected without affecting each other. This is different
from the radio element, which ensures that only one element in the
group is selected at a time. The HTML code for the check box is

<INPUT
TYPE="checkbox"
NAME="checkbox name"
VALUE="checkbox value"
[CHECKED]
[onClick="JavaScript code"]>

text displayed next to checkbox

The checkbox object has the following members:

D checked. This property reflects the present state of the box at
runtime, indicating whether it is checked (true) or unchecked
(false).

206 JavaScript for Macintosh

D defaultChecked. This property determines what the default or
initial state of the check box is true for checked and false for
unchecked.

D name. The name property is equivalent to the NAME attribute in
the check box HTML tag.

D value. The value property is equivalent to the VALUE at­
tribute in the check box HTML tag.

D click(). The click() method simulates the check box being
selected, which toggles its state to the opposite of what it was
before the click; however, this does not call the onClick event
handler. If you are trying to invoke the onClick action, you
should call the J avaScript code in the handler directly.

D onClick. The onClick event handler is called when the check
box is selected by the user. The J avaScript code indicated in
the string is executed by the interpreter.

The hidden Element
The hidden element is a text field that is not displayed in the on­
screen document. This provides the J avaScript programmer with a
persistent storage area in a document without resorting to the
cookie property of a JavaScript document object. If you recall from
the discussion earlier in the chapter, form elements retain their val­
ues between loading in a Navigator session. If you fill out a form
document, leave the page and then return, the information in the
form is retained. In addition to storing information that might be
needed later when the user returns to the page in the same session,
you might also want to submit information to the server that the
user would not need to see in an ordinary form element (such as a
regular text field). By using the hidden element, you can store the
information and submit it just like any other form information. The
hidden HTML tag is

<INPUT
TYPE="hidden"
NAME="hidden name•
[VALUE="hidden text"]>

Chapter 8 The Forms, Window, History, and Location Objects 207

The hidden element does not have any methods or event handlers.
However, it does have three properties:

0 defaultValue. This property holds the default value that the
hidden element stores if no other data is provided.

0 name. This property is the NAME attribute of the hidden
HTMLtag.

0 value. This property holds the value of the hidden text field
and is equivalent to the VALUE attribute of the hidden
HTMLtag.

The password Element
The password element is similar to the text element, except it hides
the actual text entered by replacing all the letters with an asterisk
(*). This is the typical behavior for fields that accept passwords
users would not want anyone looking over their shoulder to be able
to see. The HTML tag for a password object is

<INPUT
TYPE="password"
NAME="password name•
[VALUE="password text"]
SIZE= integer

The password element has three properties, three methods, and no
event handlers:

0 defaultValue. The default value is similar to the defaultValue in
the hidden object in that it provides the default string that the
password object takes if none is provided.

0 name. This property is the NAME attribute of the password
HTMLtag.

0 value. This property holds the value of the password text field
and is equivalent to the VALUE attribute of the password
HTMLtag.

0 focus. This method causes the focus to shift to the password

object so that it can accept user input.

208 JavaScript for Macintosh

D blur. This method removes the input focus from the object.
Input focus is required in order for the field to accept charac­
ters entered at the keyboard.

D select. This method will cause the text in the password field
to be highlighted.

The radio Element
The radio element is a radio button object that enables the user to
select one button out of a group of objects at a time. This can be
used for mutually exclusive items. To define a radio group, you
provide them all with the same radio name:

<INPUT
TYPE="radio"
NAME="group name•
VALUE="button value"
[CHECKED]
[onClick="JavaScript code"]>
radio button text

Each individual radio object can be indexed in the elements array
like any other form element; however, in addition to these meth­
ods, the radio group can be referenced by the group's name as an
array.

groupName[index].property

The radio element has six properties, one method, and one event
handler:

D checked. This property holds the boolean value for the state of
the radio button; true for checked, false for unchecked.

D defaul tChecked. This property indicates whether this is the de­
fault button to be checked out of the radio button group.

D index. This property indicates which element this radio button
is in the current group.

D length. This property indicates the number of radio buttons in
the group.

Chapter 8 The Forms, Window, History, and Location Objects 209

D name. This property holds the name of the radio element and is
equivalent to the NAME attribute of the radio HTML tag.

D value. This property holds the value of the radio element and
is equivalent to the VALUE attribute of the radio HTML tag.

D click(). The click() method simulates the radio button being
selected, which will toggle its state to the opposite of what it
was before the click; however, this does not call the one lick

event handler. If you are trying to invoke the onClick action,
you should call the J avaScript code in the handler directly.

D onClick. The onClick event handler is called when the radio
button is selected by the user. The J avaScript code indicated
in the string is executed by the interpreter.

The reset Element
The reset element provides a single trigger event that causes the
form to clear all user entries, which represents it in its original state.
Otherwise, it is much like the regular button element. The HTML
code for a reset element is

<INPUT
TYPE="reset"
NAME="reset name•
VALUE="reset text•
[onClick="Javascript code"]>

The reset object has the following members:

D name. The name property is equivalent to the NAME attribute in
the reset HTML tag.

D value. The value property is equivalent to the VALUE at­
tribute in the reset HTML tag.

D click () . The click () method simulates the button being
clicked; however, this does not call the onClick event handler.
If you are trying to invoke the onClick action, you should call
the J avaScript code in the handler directly.

D onClick. The onClick event handler is called when the button is
pressed by the user. The J avaScript code indicated in the
string is executed by the interpreter.

21 0 J avaScript for Macintosh

The select Object
The select object is perhaps the most complex forms object you
will have to deal with. It provides a means for creating a list of se­
lections available to the user. These selections can appear in either
scrolling or static windows, and the user can be restricted to the
number of items that can be picked from the list. Because of this
complexity, the HTML code is more involved. Additionally, the
properties, methods, and event handlers are more complex as well.
The HTML code for the selector is

<SELECT
NAME="selector name•
[SIZE=" integer•]
[MULTIPLE]
[onBlur="JavaScript code"]
[onChange="JavaScript code"]
[onFocus="JavaScript code"]>
<OPTION [SELECTED]> selection option
[<OPTION> additional selections]

</SELECT>

The test form at the beginning of the chapter had a select form in it
for choosing which computers the user owned:

<SELECT NAME="select1" MULTIPLE>
<OPTION> PC
<OPTION>UNIX
<OPTION>MAC
<OPTION>OTHER
</SELECT>

The MULTIPLE attribute controls the number of options available
at one time. The SIZE attribute indicates how many options are
visible at one time. The select object has nine properties, no meth­
ods, and three event handlers:

0 length. This property is equivalent to the SIZE attribute in the
select HTML tag.

0 name. This property is equivalent to the NAME attribute in the
select HTML tag.

Chapter 8 The Forms, Window, History, and Location Objects 211

0 options. This is an array of the different options available to
choose from. The array runs from options [01 for the first op­
tion to options [n -1 1 for the last option.

0 selectlndex. This property indicates which item is selected in
the select list. If the MULTIPLE attribute is set, then chang­
ing the selectedlndex value will clear all other selections since
the index only refers to a single option.

Of course, the options array is actually an array of objects,
which have their own properties. Each of the individual op­
tions in a select element has the following properties:

0 defaultSelected. This is a boolean value indicating
whether the option is automatically selected or un­
selected when it comes up.

0 index. This indicates where in the options list the current
option is located.

0 selected. This indicates whether the option is currently
selected and is equivalent to the HTML SELECTED
'tag.

0 text. This holds the text shown for each option.

0 value. This property holds the data sent to a CGI server
from the select list if a submit button in the same form is
pressed.

To access the individual option elements in a select element, you
can either use the select object's name:

selectName.options[index1.property

... or use the form name:

formName.elements[index11.options[index21.property

Notice that the select object has its own array in the document
object, and can be accessed in a similar manner to forms.

212 J avaScript for Macintosh

The select object has three event handlers that enable the form to
react to user input:

0 onBlur. This event handler is called when the select element
loses the focus. This typically occurs after the user has selected
items in the list and then clicked another form element.

0 onChange. This event handler is called when one of the options
changes states in the select list. This can be from the user se­
lecting or deselecting an item.

0 onFocus. This event handler is called when the user clicks the
select object and begins choosing items from the list.

The submit Element
The submit element provides a single trigger event that causes the
form data to be sent to the URL specified in the HTML tag. Oth­
erwise, it is much like the regular button element. The HTML code
for a submit element is

<INPUT
TYPE=" submit"
NAME="submit name"
VALUE="submit text"
[onClick="JavaScript code"]>

The submit object has the following members:

0 name. The name property is equivalent to the NAME attribute in
the submit HTML tag.

0 value. The value property is equivalent to the VALUE at­
tribute in the submit HTML tag.

0 click (). The click () method simulates the button being
clicked; however, this does not call the onClick event handler.

D onClick. The onClick event handler is called when the button is
pressed by the user. The J avaScript code indicated in the
string is executed by the interpreter.

Chapter 8 The Forms, Window, History, and Location Objects 213

The text Element
The text element enables the user to input short character sequences
such as numbers, words, or a sentence. The text field was used in the
marquee example to create a scrolling field in which the programmer
provided the input to the field. The text object is defined in the
HTML document as follows:

<INPUT
TYPE="text"
NAME="text name"
VALUE="text value•
SIZE= integer
[onBlur="Javascript code"]
[onChange="JavaScript code"]
[onFocus="JavaScript code"]
[onSelect="Javascript code"]>

In a~dition to the standard TYPE, NAME, and VALUE attributes,
the SIZE attribute indicates how many characters the field can
hold. The text element has three properties, three methods, and
four event handlers.

D defaultValue. This property holds the default value string for
the text element.

D name. This property is equivalent to the NAME attribute in the
text HTML tag.

D value. This property is equivalent to the VALUE attribute in
the text HTML tag.

D focus (). This method is used to move the input focus to this
text element, causing the user's keyboard input to be directed
to the text element.

D blur () . This method is used to cause the input focus to move
away from the text element, causing the user's keyboard input
to no longer be directed to the text element.

D select (). This method highlights the text in the text element.

214 J avaScript for Macintosh

D on Blur. This event handler is called when the text element loses
the focus. This typically occurs after the user has typed text in
the text element, and then clicked another element or pressed
the Tab key.

D onChange. This event handler is called when the value of the
text element changes. This is typically called when a user alters
the entry in a text field. The event is called when the user
leaves the field.

D onFocus. This event handler is called when the user clicks on
the text object.

D onSelect. This event handler is called when the text in the text
element is highlighted.

The textarea Element
The textarea element enables the user to input longer entries and is
typically used for messages and comments that may span more than
one line of text. The textarea object is defined in the HTML docu­
ment as follows:

<TEXT AREA>
NAME="textarea name"
ROWS= integer
COLS=integer
[onBlur="JavaScript code"]
[onChange="JavaScript code")
[onFocus="JavaScript code"]
[onSelect="JavaScript code"]>
Text displayed

</TEXTAREA>

Notice that instead of being a normal <INPUT> element, the
textarea (like the select element) has its own name. In addition to
the standard attributes, textarea also has ROWS and COLS. These
attributes indicate how many lines deep, and how many characters
wide the textarea should be, respectively.

D defaul tValue. This property holds the default value string for
the textarea element.

0 name. This property is equivalent to the NAME attribute in the
textarea HTML tag.

Chapter 8 The Forms, Window, History, and Location Objects 215

D value. This property is equivalent to the VALUE attribute in
the textarea HTML tag.

D focus (). This method is used to move the input focus to the
textarea element, causing the user's keyboard input to be di­
rected to the textarea element.

D blur () . This method is used to cause the input focus to move
away from the textarea element, causing the user's keyboard
input to no longer be directed to the textarea element.

0 select (). This method highlights the text in the textarea ele­
ment.

0 onBlur. This event handler is called when the textarea element
loses the focus. This typically occurs after the user has selected
items in the list, and then clicked another element.

D onChange. This event handler is called when the value of the
textarea element changes states. This is typically called when a
user alters the entry in a textarea field. The event is called
when the user leaves the field.

D onFocus. This event handler is called when the user clicks on
the textarea object.

D onSelect. This event handler is called when the text in the
textarea element is highlighted.

Event Handlers in Forms Object Elements

Use of the event handlers in the forms object elements is perhaps
the most utilitarian capability JavaScript maintains. You have al­
ready seen the event handlers for forms used in many of the exam­
ples, in addition to event handlers for other objects. However, as a
final example of the forms object in action, it is important that you
see how a J avaScript program might verify user input before it is
sent to the server.

216 J avaScript for Macintosh

Using JavaScript to Verify Forms

In order to verify entries in a form, it is necessary to check to see
what the user has entered before it is sent to the server. To do this
with text elements, anytime the user changes the text in the field,
you can check to see whether it satisfies the requirements for the
entry. Take the form in Figure 8.3, for example:

II

Figure 8.3 A sample credit card form.

Ifyou wanted to make sure that everyone filled in the credit card
number using the correct four-digit sequences with dashes in be­
tween, you could create the following form and script:

<HTML>
<HEAD>
<SCRIPT LANGUAGE= ' JavaScript ' >
<!--
function checkNumber(number) {

if(number . indexOf(' · ') != 4 :: number.indexOf(' · ' ,S) != 9 ::
•number.indexOf(' -' ,10) != 14) {

alert('This is not a valid card number format. Please re ­
•enter your card number. ')

return false

}

II -->

</SCRIPT>
</ HEAD>
<BODY>
<PRE>
</PRE>
<FORM NAME= ' data ' >
Please enter your credit -card details:

<INPUT TYPE= ' text ' NAME= ' Name' VALUE= ' First M. Last ' SIZE=40>

Chapter 8 The Forms, Window, Histo ry, and Location Objects 217

<INPUT TYPE= ' text ' NAME=' cardNumber ' VALUE=' xxxx-xxxx -xxxx -xxxx '
w.SIZE=19 onChange=' checkNumber(this.value) ' >

<INPUT TYPE=' text ' NAME="expi res ' VALUE=' mmm- yy• SIZE=6>

<INPUT TYPE=' radio' NAME=' cardType' VALUE=' MC ' >MC
<INPUT TYPE=' radio ' NAME=' cardType" VALUE=' VA' >VISA
<INPUT TYPE= ' radio' NAME=' cardType' VALUE=' DR ' >Discover
</ FORM>
</BODY>
</HTML>

The onChange event handler for the cardNumber element causes the
checkNumber function to be called. This results in the number being
checked for the correct dashes. If a user attempts to leave the field
with an incorrect entry, he or she receives the warning shown in
Figure 8.4.

ltro t h•ISQ.P Q/ih,tUml

~ @1~;il8IIXII ..J m
Uutbo:j~.///h"'"":ol~•trtr>.•~•'X6ol0ft'"'"•'.h"~t~20Ch'Clttrl/

F ~ JouoScrtp t Ale rt: ,--
Th is is not a ualld card number format. Please

I~
re· ente r your (Df d number.

z c::E:J
I b~~ OV!SA oo;,.,w

Figure 8.4 The Alert dialog box f or form verification.

The possibilities for what you can do with the form elements in a
document are almost unlimited. This is one ofJavaScripr's strong
points. Be sure to take the time to try our several of the event han­
dlers and form element properties.

Controlling Window Objects
At the top of the Navigator object hierarchy is the window object .
This o bject represents the browser window that exists on the client
machine, and can be used to contro l the screen real estate for your
documents. The window object consists of several properties,
methods, and event handlers that can be used to control various
aspects of how the browser window is displayed. The window ob­
ject also controls dialog boxes, frames, and timeouts. You have
already seen or used many of these in example programs before.

218 J avaScript for Macintosh

There are two HTML tags that correspond to elements of the
Netscape window object. These are the <BODY></BODY> and
<FRAMESET></FRAMESET> tags. In particular, in the HTML
body tag, the onload and onUnload event handlers are properties of the
window object. The frameset tag is reflected in the frames property
array that holds an element for every frame in the window. The
onload event handler was used for the marquee example in the begin­
ning of the chapter, and the frames property was used in the directory
example from Chapter 6, "JavaScript and Built-In Objects."

The window object does not need to be directly referenced in a
J avaScript call, so using window in

window.alert(udon't do that!•)

would be redundant; as shown in previous examples, only

alert("don't do that!")

is necessary.

The following three sections list the properties, methods, and event
handlers for the window object, and provide reference to examples
that have used them.

Properties of the Window Object
With Netscape Navigator 2.0, the possibility exists to have multiple
targets for an HTML document's links or function calls that can
either be additional windows or frames within windows. For the
most part, the properties of the window object hold references to
these additional windows and frames that may be created in the
Navigator environment.

0 defaultStatus. This property is a string that holds the default
message displayed in the status bar of the window being refer­
enced. In many cases you will want to change the message in
the status bar during an onMouseOver event, where it changes
depending upon what object the mouse is over at the time. In
order to do this, you must make sure the event handler re­
turns true in order for the status to be updated.

Chapter 8 The Forms, Window, History, and Location Objects 219

D frames. The frames property is an array that holds all of the
frames of the window. These are indexed from 0 to the number
of frames. The frames property refers to the frames in the order
they are declared in a <FRAMESET> HTML tag. You can then
direct your method calls to the particular frame you need. The
frame object itself is a kind of window, inheriting all the proper­
ties and methods that the window object has, so referencing
window. frames [0] . defaul tStatus refers to the default status text
displayed when the mouse is in the first frame of the window.

0 parent. This refers to the window in which the frame(s) being
referenced reside. If you recall from the directory example at
the end of Chapter 5, in order to have a document in a frame
refer to a function in the overall window, it has to be prefixed
with a parent. The following portion of the code from that
example calls the overall window's function displayRoot () from
within a frame. This code will not work by itself because it's
part of the larger example in Chapter 5:

<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<SCRIPT LANGUAGE="JavaScript">
<1--
parent.displayRoot()
II -->
</SCRIPT>
</BODY>
</HTML>

0 self. This refers to the current window. This is not normally
needed; however, sometimes it makes code easier to read if
you refer to the current window as self.

0 status. This property holds the current text in the status frame
of the document window. You can set this status text to
prompt the user when they move the mouse over a link or
object that uses the onMouseOver event handler. Remember, you
must return true from the onMouseover event handler to set the
status text correctly:

<A HREF="http://home.netscape.com/" onMouseOver="self.status='Home
of JavaScript!'; return true">

220 JavaScript for Macintosh

0 top. This property holds the window used to create all subwin­
dows. If you notice in the File menu item in Netscape, you
can open a new browser window. You can do the same thing
using the window. open () method, which will be covered in the
next section. This was the function used to create the flashing
billboard from Chapter 7. When you create new windows like
this and open documents in them, the documents can refer to
the topmost window used to create any child windows such as
the one the flashing billboard was displayed in.

0 window. Tllis property refers to the current window and is iden­
tical in use to the self property.

Methods of the Window Object
0 al ert(). The alert() method creates a dialog box with a single

OK button. In the dialog itself, the programmer can specifY
what he or she wants the alert to say.

alert(' Don't go there! ')

This method has been used several times in previous code.

~~1tUI)f" ~lUi tUrN

~!ru ~'lffil~lal~l _J II
~:(tne.I/IP'ww!IUOT.,.,._.lv/Dn:t~...,...tn'Ps/.At1..5tf'~\H"11'
...... ,_,,.,... .• c •• ul ...,_ I .,....,... I""..,.""'!,.,. I

fl•--1!!!.-a....tdot.lo. g:·urt -=:.
OMC OVJSA Qlliooowt

~ JauaScrtpt Alert:
Don't go there l

lC!D

1-

... o-.-.tlO... •

Figure 8.5 The Alert dialog box.

Chapter 8 The Forms, Window, History, and Location Objects 221

D close () . The close () method is used to close the window and
should not be confused with the document. close () method,
which closes the document stream from the host server.

D confirm(). The confirm() method is similar to the alert() in that
it creates a dialog box with the text that the user provides.
However, this dialog box has two buttons: OK and Cancel. If
the user selects OK, then the method returns true; if the user
selects Cancel, then the method returns false .

.JouoScrlpt Confirm:
Do you really wont to go thoro?

No l l Yos

Figure 8.6 The confirm dialog box.

D open () . The open () method, not to be confused with the
document. open () method, is used to open a new window. The
default arguments that the method takes are

window.open("URL", "window name", ["window features"])

The URL and window name provide the document and name
of the new window to be opened. The window features argu­
ment is a string that holds the number of arguments separated
by commas with no spaces about how the window is to be
opened. In the case of the document example from Chapter
6, the method call was

msgWindow = window.open("","Hello",
"toolbar=no,width=200,height=100")

Notice the use of the • toolbar=no, width=200, height=100 • string
to set the parameters of the window. These parameters can
only be set for new windows being opened, and will not affect
the parent or top window. The full list of valid property argu­
ments are

toolbar=yes:no
location=yes:no
directories=yes:no
status=yes:no

222 JavaScript for Macintosh

menubar=yes:no (Windows only)
scrollbars=yes:no
resizable=yes:no (Windows only)
width=pixels
height=pixels

D prompt () . The prompt () method provides an alternative to the
confirm dialog box by enabling the user to input a replace­
ment value in the case of an erroneous or invalid entry. In
order to call the prompt dialog box, you must provide the
message and an optional default value for the input field:

prompt("That year is invalid; please enter a year later than
1970 : II J 1996)

JauaScrlpt Prompt:
111111 !IBIIr Is lnualld; please enter 11 !IBBr later then
1970:

I•RP'

Figure 8.7 The prompt dialog box.

D setTimeout ().

D clearTimeout (). These two methods provide a means for calling
a J avaScript statement after a certain time period has elapsed.
If you recall the marquee example from the beginning of the
chapter, the timeout methods were used to control the updat­
ing of the text element.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript•>
<!--

var buffer = •
var text= "Welcome to my Web Page, I hope you enjoy yourself!"
var rnarqueeString = buffer + text + buffer
var marqueeRunning= false
var timeoutiD = null
var position = 0
var sLength = rnarqueeString.length

Chapter 8 The Forms, Window, History, and Location Objects 223

function stopMarquee() {
if(marqueeRunning)

clearTimeout(timeoutiD)
marqueeRunning = false

}

function startMarquee() {
stopMarquee()
updateMarquee()

}

function updateMarquee() {
document.marquee.elements[0].value =

~marqueeString.substring(position++%slength,position+39%sLength)

timeoutiD = setTimeout("updateMarquee()", 50)
marqueeRunning = true

}

II -->

</SCRIPT>
</HEAD>
<BODY onload="startMarquee()" onUnload="stopMarquee()">
<PRE>
</PRE>
<FORM NAME="marquee">
<INPUT TYPE="text• NAME="textBox• VALUE="" SIZE=40>

</FORM>
</BODY>
</HTML>

Event Handlers in the Window Object
The window object contains two event handlers:

0 onload

0 onUnload

These event handlers were used in the marquee example to start
and stop the updating of the text element when the document was
loaded and unloaded, respectively.

224 JavaScript for Macintosh

Using the History and Location Objects
The history and location objects provide a means for accessing
URL links that the user has recently been to or is currently viewing.
This gives the J avaScript programmer the ability to make his or her
script "environmentally aware." This means the scripts can tell
where their users are (that is, the location object) and where their
users have been (that is, the history object). By using these objects
you can create a powerful tool for navigating through your site
based upon where a user is and where he or she has been.

The History Object
The history object provides the J avaScript programmer with the
ability to select and load URLs from the Go menu. This ability can
provide you with your own forward and back controls for docu­
ments in your site, based upon where the user has actually been.

Of course, the ability to access the link history should be used care­
fully, especially when you begin to look at where people have been
besides your own server. Because it is possible to load information
from the history list into hidden text forms and send them to a
server, it is possible to mine information from a user's browser
about how he or she reached your site. However, if you secretly
download information about places that the user wouldn't neces­
sarily want people to know he or she had been, then you might
start to raise a few ethical flags in the minds of your site's users. If
you decide to use the history information for anything more than
allowing them to skip back and forth easily within your own site, be
sure to get permission first. Have an introduction document or
"cover page" for your site that tells people that their link history will
be viewed. This admonition also goes for downloading any type of
information from a client machine that JavaScript may expose.

Properties in the History Object
The only property in the history object is length. This provides the
number of links in the history object. Remember, the history list
goes both backward and forward.

Chapter 8 The Forms, Window, History, and Location Objects 225

Methods in the History Object
There are three methods in the history object:

D back(). The result of calling the history. back() method is iden­
tical to the user selecting the back arrow on the toolbar in
Netscape.

D forward (). The result of calling the history. forward () method is
identical to the user selecting the forward arrow on the tool­
bar in N etscape.

0 go(int). The go() method takes an integer (positive or nega­
tive) and loads the link that is that number of places forward
or backward in the history list. For example, history.go(-3)

moves the user to the link he or she was at three clicks ago.

The Location Object
The location object is used to store information about the current
URL. You can use the property names to get to the relevant infor­
mation in the URL that you need such as the host, protocol, or
pathname. The location object is a static object. It stores the rele­
vant information from the current URL. If you want to change the
location information, you must use this object; do not confuse the
location object with the document.location property. While the
document.location property is often the same as the location
object's URL, it can be changed by code. Remember, the
document.location property is read-only.

URLs can be divided into several sections. For example, take the
following URL:

http://www.mcp.com:80/hayden/index.html#start

The URL can be parsed as follows. The http section of the URL is
called to protocol. Other protocols include mailto and ftp. The
www.mcp.com represents the hostname. This can also be a series of
numbers indicating the IP address of the server. 80 is the port
number that the server is listening to. /hayden/index.html is the
pathname, while #start is the hash. In addition to the hash, which

226 JavaScript for Macintosh

refers to an anchor in a document, you can also have ?query=no,
which would be a search for a server-side CGI program.

All these different values are stored in the location properties.

0 hash.

0 host. This is a combination ofhostname:port.

0 hostname.

0 href. This represents the entire URL.

0 pathname.

0 port.

0 protocol.

0 search.

Moving on to Java
Up to now, this book has covered the use of the JavaScript lan­
guage to create dynamic Web sites and control the display of
Web documents. While JavaScript provides a powerful set of tools
for Internet development, there is still a key limitation to its
approach-you are still using the same basic elements that all Web
pages can have, except now yo.u can provide them with the capa­
bility to respond to user-generated events. Java, on the other hand,
provides a completely new framework upon which you can build
innovative and powerful content that is not available in the stan­
dard HTML toolkit. In fact, Java enables you to create your own
tools and incorporate new tools that others have created.

If you plan to learn Java in conjunction with or after mastering
JavaScript, here are some of the key concepts you'll want to keep in
mind as you make the transition to this considerably more complex,
yet feature-rich, programming environment.

0 Java is truly object-oriented. Remember those terms we chose
not to worry about for J avaScript, like class inheritance and

Chapter 8 The Forms, Window, History, and Location Objects 227

encapsulation? Well, they're back with a vengeance in Java.
Everything you do in Java will require you to think of your
programs, functions, interfaces, and even numbers and charac­
ters as objects. For example, objects of one kind cannot access
the methods of other objects or mess with their settings and
properties; they're all self-contained. If you already have a
mindset in which your programs are composed of a number of
functions and some global variables that get changed by these
functions as the program runs step-by-step, you'll need to
rearrange your brain a bit. Objects don't work like conven­
tional programming languages' procedures and subroutines
do, so a lot of your BASIC or PASCAL knowledge will not
readily transfer to an object-oriented language such as Java.
We'd like to suggest Teach Yourself Java for Macintosh in 21
Days (Hayden Books) as a reference to take you from where
you are now to proficiency with objects and Java.

0 Java can create stand-alone applications and Web-accessible
"applets." Because you now know that Java is a complete
programming environment, you should understand exactly
what you can create with it. Because your interest in the
World Wide Web has led you to learn Java, you have probably
heard of Java "applets" becoming the Next Big Thing. Java
programmers can create applications that are meant to be run
within a Web page and interact with their end user through a
Web browser's window. These applications are applets, and as
a Macintosh enthusiast you'll be plea.sed to know that the
latest Netscape Navigator versions support applet-running on
Macs.

What you might not know is that Java can create stand -alone
applications, or programs that do not run with Netscape
or any other browser environment. These stand-alone applica­
tions run autonomously in much the same way as the Cal­
culator desk accessory works all by itself as soon as you choose
its icon in the Apple menu. As of this writing, the Macintosh
Java Developer's Kit, available from Sun at http://
www.javasoft.com, does not support stand-alone application
development for the Macintosh. (However, Natural Intelli­
gence's Roaster, among others, are products that enable you
to develop both stand -alone programs and applets.) While

228 JavaScript for Macintosh

you may plan to create Java programs exclusively for Web use
as applets, understanding Java from both the applet and
stand -alone perspectives improves your ability to understand
potential bugs in your own code and reduces some of the
mystery of why Java works the way it does.

0 Java is not coded like JavaScript. Recall the original "spirit"
and purpose of J avaScript: to enable nonprogrammers to be
able to improve the interactivity of their own Web sites. Thus,
JavaScript is coded right into the HTML tags of your existing
Web pages and uses a greatly simplified programming syntax
when compared to Java. Java applets and stand-alone pro­
grams must be developed in their own separate development
environment and use a richer, stricter syntax. Programmers
who have experience with C or C++ will be much more com­
fortable than those with experience in BASIC or other less
rigorous languages.

Don't let all this gloom and doom about "complexity" and "rigor"
bother you. What you've already learned about JavaScript objects
and syntax should help you learn Java much more quickly than if
you started Java cold. (There's a coffee pun in there somewhere.) If
you're ready to accept the challenge, dive in head-first. The beauty
of software experimentation is that you can't break or use up any
physical resources while learning (unless you let your temper get
the better of you). It's not like you end up having to buy a pricey
replacement block of mahogany because you got a little lathe­
happy as the carpenter's apprentice.

Summary
This chapter provided you with a look at almost all the remaining
JavaScript objects you can use in your HTML documents. You
started out in this book by learning the fundamentals of the Java­
Script language and how to place scripts within HTML documents.
The chapters then moved on to cover the basic foundations of the
language, and on to more complicated topics such as functions and
objects. Once past that stage, the last few chapters have given you a
guided tour of the different JavaScript objects you can employ in

Chapter 8 The Forms, Window, History, and Location Objects 229

your Web documents, with examples to show you what is possible.
At this point, you are ready to dive into JavaScript on your own
(assuming you've shown super-human willpower and haven't hacked
around on your own already). Take the examples and try altering
them, and certainly try creating your own, based on the ideas that
motivated you to read this book in the first place. Practice, creativity,
and knowledge of syntax help make efficient, effective programmers.
A word of caution: JavaScript still has a few minor bugs that did not
work themselves out in the first release, and it is far from a complete
package. Several of the advertised features, such as the capability to
interact with Java applets and the navigator plug-ins, have not mate­
rialized in the 2.0 release, so don't be surprised if something doesn't
work like you expect (or hope). ·

Now that you have completed this book, you should consider it a
complete reference for J avaScript instead of primarily a how-to
guide. You will no doubt forget syntax from time to time, especially
since JavaScript uses a number of unintuitive characters like : and I

as logical or mathematical operators, for example. As you build
your cool new J avaScript pages, remember to keep your users in
mind. Show your page prototype to a friend or someone you know
on the Net. Ask them for feedback, especially if your page is highly
interactive or requests complex information from its users to work
its magic. Make changes based on their feedback. Many of the
"worst" programs start as fantastic functional ideas that unfortu­
nately reflect no one's way of thinking about the problem except
the designer's. And fool ourselves as we may, we are not our own
Web sites) users.

APPENDIX

Object Reference
This appendix lists all ofJavaScript's objects and each object's ap­
plicable methods, properties, and event handlers. Additionally, each
object includes a syntax definition.

Objects with the (Client) notation are implemented by Web brows­
ers that support JavaScript, such as Netscape Navigator 2.0J. Ob­
jects with the (Common) notation are static objects, which are not
dependent upon a particular browser for correct implementation in
J avaScript code.

Anchor (Client)
HTML anchors enable you to create hyperlink reference points
within a document. An anchor tag names a specific index point
within a document for reference via links.

J avaScript can access and take advantage of the various anchors
within a document.

HTML Syntax:

anchor text </ A>

232 JavaScript for Macintosh

Button (Client)
Executes an action or a JavaScript script.

HTML Syntax:

<INPUT TYPE="Button" NAME="objectName" VALUE="buttonText"
~[onClick="handlerText"]>

INPUT TYPE: The type of button or the generic "button"

NAME: A name for the button object

VALUE: Any text that is to appear on the button

onClick option: A JavaScript function

Properties:

D name

D value

Methods:

D click

Event Handlers:

D onClick

Checkbox (Client)
Creates and identifies a checkbox object on any HTML form.

HTML Syntax:

<INPUT TYPE="Checkbox• NAME="checkboxName• VALUE="Checked"
~ronclick="handler"]> Checkbox text

Appendix A Object Reference 233

Properties:

D checked

D defaultChecked

D name

D value

Methods:

D click

Event Handlers:

D onClick

Date (Common)
The date object enables the manipulation of dates and times within
HTML documents.

Syntax:

objectname = new Date(Parameters)

Where Parameters=

D A string of form "Month Day, Year Hours:Minutes:Seconds"

D An Integer of Form Year, Month, Day, Hours, Minutes,
Seconds

Methods:

D getDate

D get Day

D getHours

D getMinutes

2 34 J avaScript for Macintosh

D getMonth

D get seconds

D get Time

D getTimeZoneoffset

D getYear

D parse

D setDate

D setHours

D setMinutes

D setMonth

D set Seconds

D setYear

D toString

D toGMTString

D tolocaleString

D UTC

Document (Client)
Text information in the current HTML document.

HTML Syntax: The document object encloses the text within the
<BODY> </BODY> HTML tags.

Properties:

D alinkColor

D anchors

Appendix A Object Reference 235

0 bgColor

0 cookie

0 fgColor

0 forms

0 lastModified

0 linkColor

0 links

0 location

0 referrer

0 title

0 vlinkColor

Methods:

0 clear

0 close

0 open

0 write

0 writeln

Form (Client)
Forms enable client data retrieval and user data entry and act as a
document's interface to a remote server for CGI scripts, or for
J avaScript user input.

HTML Syntax:

<FORM NAME="name• Target="windowName" ACTION="Relative Path or URL"
METHOD=GET "Post1" [onSubmit="handler"]></Form>

236 JavaScript for Macintosh

Properties:

D action

0 elements

0 encoding

0 method

0 target

Methods:

0 submit

Event Handlers:

0 onSubmit

Frame (Client)
A standard HTML frame (a Netscape proprietary tag as of this
writing), commonly defined as a separate region in an HTML doc­
ument.

HTML Syntax:

<FRAMESET> ... </FRAMESET>

Properties:

0 defaultStatus

0 frames

0 parent

0 self

Appendix A Object Reference 237

D status

D top

D window

Methods:

D alert

D close

D confirm

D open

D prompt

D set Timeout

D clearTimeout

Hidden (Client)
HTML text that is hidden from the client's view. Used with forms
to store information.

HTML Syntax:

<INPUT TYPE= "hidden• NAME="textname" VALUE="textvalue">

Properties:

D defaul tValue

D name

D value

238 JavaScript for Macintosh

History (Client)
Browser's current list of sites its user has visited during the current
usage session.

Syntax: history. property or history. method

Properties:

0 length

Methods:

0 back

0 forward

0 go

Link (Client)
HTML text identified as a hypertext link to another HTML docu­
ment location.

Properties:

0 target

Event Handlers:

0 onClick

0 onMouseOver

Appendix A Object Reference 239

Location (Client)
Syntax: location. property or location. method

Properties:

0 hash

0 host

0 host name

0 href

0 path name

0 port

0 protocol

0 search

Math (Common)
Built-in mathematical functions for use within HTML documents.

Syntax: Math. property or Math. method

Properties:

0 E

0 LN10

0 LN2

0 PI

0 SQRT1_2

0 SQRT2

240 J avaScript for Macintosh

Methods:

D abs

D a cos

D a sin

D a tan

D ceil

D cos

D exp

D floor

D log

D max

D min

D pow

D random

D round

D sin

D sqrt

D tan

Navigator (Client)
Identifies the Netscape Navigator client being used to view the
current HTML document.

Syntax: navigator.property

Appendix A Object Reference 241

Properties:

0 appName

0 appVersion

0 appCodeName

0 userAgent

Password (Client)
A form object with special hidden text properties that replace stan­
dard keystroke characters with asterisks.

HTML Syntax:

<INPUT TYPE = "password" NAME="passwordname" VALUE="textvalue~
•SIZE:::integer>

Properties:

0 password

0 defaul tValue

0 name

0 value

Methods:

0 focus

0 blur

0 select

242 JavaScript for Macintosh

Radio (Client)
Radio buttons within an HTML form.

Properties:

0 checked

0 defaultChecked

0 index

0 length

0 name

0 value

Methods:

0 click

Event Handlers:

0 onClick

Reset (Client)
Identifies the RESET button on an HTML form.

HTML Syntax:

<INPUT TYPE=nreset• NAME="resetbuttonname• VALUE="buttontext•
~onClick=•handler">

Properties:

0 name

0 value

Appendix A Object Reference 243

Methods:

0 click

Event Handlers:

0 onClick

Select (Client)
A scrolling or standard selection list within an HTML form.

Properties (select):

0 length

0 name

0 options

0 selectedlndex

Properties (options):

0 defaultSelected

0 index

0 selected

0 text

0 value

Event Handlers:

0 onBlur

0 onChange

0 onFocus

244 JavaScript for Macintosh

String (Common)
A standard string of characters. A string can be manipulated using
any of the following listed methods.

Syntax: stringname. property or stringname. method

Properties:

0 length

Methods:

0 anchor

0 big

0 blink

0 bold

0 charAT

0 fixed

0 fontcolor

0 font size

0 indexOf

D italics

0 lastindexOf

0 link

D small

D strike

0 sub

0 substring

Appendix A Object Reference 245

0 sup

0 toLowerCase

0 toUpperCase

Submit (Client)
SUBMIT button on an HTML form that sends form data to a
remote server (CGI) or to JavaScript functions for processing.

Properties:

0 value

Methods:

0 click

Event Handlers:

0 onClick

Text (Client)
Any forms-based HTML entry field on the current HTML form.

Properties:

0 defaul tValue

0 name

0 value

Methods:

0 focus

0 blur

0 select

246 JavaScript for Macintosh

Event Handlers:

0 onBlur

0 onChange

0 onFocus

0 onSelect

Textarea {Client)
Similar to the text object, this object identifies any multiline text
entry field within the current HTML form.

Properties:

0 defaul tValue

0 name

0 value

Methods:

0 focus

0 blur

0 select

Event Handlers:

0 on Blur

0 onChange

0 onFocus

0 onSelect

Appendix A Object Reference 247

Window (Client)
The highest object level within the Netscape Navigator client. Con­
tains document and other subobjects.

Properties:

0 default Status

0 frames

0 parent

0 self

0 status

0 top

Methods:

0 alert

0 close

0 confirm

0 open

0 prompt

0 set Timeout

0 clearTimeout

Event Handlers:

0 on load

0 onUnload

APPENDIX

JavaScripts from Around
the Web

NOTE

We find that one of the best ways to truly learn J avaScript is to see
it in action , then see the code that makes it work. T hat's what this
appendix is all about. We've sought out some cool things that peo­
ple are currently doing with J avaScript, and they've generously
allowed us to include their code here, so you can dig through it
and see just how they work their magic.

We've also included the code on the CD-ROM, so you can play

with it a bit. Keep in mind, however, that the code is the property

of its creators; make sure to contact them before using it or alter­

ing it in any way. Also note that we've put just the code on the

CD, not all the graphics- all we care about is the functionality

anyway, right?

For each example, we've included the URL of the page, info about
its creator, any special uses ofJavaScript to watch for, a screenshot,
and of course the complete code for the page. And now, on with
tl1e show! Let's see what types of things the J avaScript pioneers are
up to.

And remember: The Web is populated with a large number of in­
novative individuals (like yourself) who want to test the limits of
JavaScript and their own creativity. Check your favorite search en­
gines often for new Web sites that explore interesting JavaScript
implementations. In case you don't already have a favorite search
engine to visit, try Excite http:/ /www.excite.com, Yahoo http://
www.yahoo.com, or InfoSeek http:/ jwww.infoseek.com.

250 JavaScript for Macintosh

Craig's JavaScript Page
http:/ jwww.craigel.com/ java.htm

Craig Slagel, craigel@nando.net

All sorts of goodies: scrolling text with controls, some rollover, and even buttons to ·
change the background color.

Please elliAir your Dame here First aDd 1beo clict outside the edit box:

111att

Careful, Doot get to closeFto~this:;:::·=.;c=oD===============jj

lfftJ Ia\ JauaScrlpt Alert: I!.IJ Lh HI, Matt! Welcome t o my Jauascrlpt Page

I l!ls1>1y81110JDS

~~r;:(:;=Oo::::;Po:::.....,s=d)

Just a Stupid Li.Dt, loot at status bar. Wit

<HTML>
<head>

<FRAMESET COLS=' 100%' >

<FRAMESET ROWS=' 15%, 85%' >
<FRAME SRC=' banner.htm' SCROLLING=NO>
<FRAME SRC=' javatest .htm" NAME= ' main ">

</FRAMESET>

~ OK ~

Appendix B JavaScripts from Around the Web 251

</FRAMESET>

<NOFRAMES>

<P> You do not have a browser that can view frames. To view this page first go to and get Netscape 2.0 beta <IMG SAC=" now8. gi f" VSPACE=1
WIDTH=88 HEIGHT=31 BORDER=1 Alt="Netscape now">

</head>
</HTML>

banner.htm

<html>
<head>

<script language="javascript">

tid = 0;
pause = 0;
var to;
var bcount;
var tcount;

function bannerArray()

this.length = 54;

this[1]
this[2]
this[3]
this[4]
this[S]
this[6]
this[7]
this[S]
this[9]
this[10]
this[11]
this[12]
this[13]
this[14]
this[15]
this[16]
this[17]
this[18]
this[19]

w·;
we·;

Wel";
Welc";

Welco•;
Welcom•;

Welcome•;
Welcome •;

Welcome t";
Welcome to•;

Welcome to •;
Welcome to C";

Welcome to Cr";
Welcome to Cra";

Welcome to Crai";
Welcome to Craig";

Welcome to Craig'";
Welcome to Craig's";

Welcome to Craig's •;

252 J avaScript for Macintosh

this[20] Welcome to Craig's P";
this[21] Welcome to Craig's Pa";
this[22] Welcome to Craig's Pag•;
this[23] Welcome to Craig's Page•;
this[24] Welcome to Craig's Page ..

'
this[25] . Welcome to Craig's Page ..

' this[26] . . .
' this[27] . Welcome to Craig's Page ..

' this[28] . . .
' this[29] . Welcome to Craig's Page ..

'
this[30] • Welcome to Craig's Page ..

' this[31] "Welcome to Craig's Page ..
' this[32] "elcome to Craig's Page ..
' this[33] "!come to Craig's Page ..
' this[34] "come to Craig's Page ..
' this[35] "ome to Craig's Page ..
' this[36] •me to Craig's Page ..
' this[37] •e to Craig's Page ..
'

this[38] • to Craig's Page ..
' this[39] •to Craig's Page ..
' this[40] •o Craig's Page ..
' this[41] • Craig's Page ..
' this[42] "Craig's Page .. ,

this[43] •raig's Page ..
'

this[44] "aig's Page ..
'

this[45] "ig's Page ..
' this[46] "g's Page ..
' this[47] "'s Page ..
' this[48] •s Page ..
' this[49] • Page ..
' this[50] "Page ..
' this[51] •age ..
'

this[52] •ge ..
' this[53] •e ..
' this[54] ..
'

return this
}

function MakeArray(n)
this.length = n;
return this
}

banner= new bannerArray();
bannerstep = 1;

Appendix B JavaScripts from Around the Web 253

function banner1(n) {
tid=window.setTirneout("banner1(bannerstep)",to);
f.result.value = banner[bannerstep];

window.status = banner[bannerstep];
bannerstep = bannerstep + 1;
if (bannerstep == 55) {

}

bannerstep = 1;

}

window.clearTirneout(tid);
tid=window.setTimeout("banner1()",to);

function start(x)
f=x;

to=60;
banner1 (x);
}

function pausing(x) {
if (pause == 0)

}
else {

}

pause= 1;
f.P.value = "P";
window.clearTirneout(tid);

pause = 0;
f. P. value = • • ;
banner1 (x);

function speedup() {
if (to I= 0) {

to = to-30;
}

function slowdown() {
to = to+30;

}

function refr() {

}

to = 90;
bannerstep = 1;

254 JavaScript for Macintosh

function cleartids() {
window.clearTimeout(tid);

</script>

<TITLE>Banner</TITLE>

</head>

<body bgcolor=="#000000" text=="#ff00ff" onload="start(document.forms[0])" onunload=•cleartids()" >

<center>
<form name=="banner">
<input type="button" name="+" value=" + • onClick="speedup()">
<input type="button" name="-'' value=" · · " onClick="slowdown() ">
<input type="button" name="pause• value=" :: "onclick="pausing(this.form)">
<input type="text" name="P" size==1>
<input type="text" name="result" size=28>
<input type="reset" name=="restart" value="Reset" onclick="refr()">
</center>
</form>

<1-- Code was developed thanks to the code at http://www-ece.rice.edu/-vijaypai/chant.html
Code Modified by Craig Slagel http://www.boots.com/-craigel/craig.htm
-->

</html>

javatest.htm

<html>
<head>

<script language="LiveScript">

<I-- Hiding

function hello() {
alert("Hellol Did I make you Jump");

}

function WinOpen() {
msg=open("","DisplayWindow•,"toolbar==yes,directories=no,menubar=no");
msg.document.write("<HEAD><TITLE>Yoi</TITLE></HEAD>");
msg. document. write ("<CENTER><h1 >A new window thanks to j avascript! </h1 ></CENTER>'');

Appendix B JavaScripts from Around the Web 255

function getname(str) {
alert(.Hi, •+ str+•t Welcome to my JavaScript Page");

function changeBackground(hexNumber)
{

document.bgColor=hexNumber
}

prefix="#"
rnum1=0
bnum1=0
gnum1=0
rnum2=0
bnum2=0
gnum2=0
hexNumber2="#000000";
rcount=0;
bcount=0;
gcount=0;

function num2hex(num) {

if (num==15) return •f• j
else if (num==14) return
else if (num==13) return
else if (num==12) return
else if (num==11) return
else if (num==10) return
else if (num==9) return
else if (num==8) return
else if (num==7) return
else if (num==6) return
else if (num==5) return
else if (num==4) return
else if (num==3) return
else if (num==2) return
else if (num==1) return
else return "0";

•e•;
"da j
•c•;
"b";
"a";

ng••;
nan j
e17e1 j

"6" j

·s·;
"411 j

"3" j

"2" j

"1 a j

function changeBackground2(number)
{
if(number == 1)
{
rnum1=rcount%16;
if (rcount <15){
rcount=rcount+1;
}
}

256 JavaScript for Macintosh

if(number == 2){
gnum1=gcount%16;
if (gcount <15){
gcount=gcount+1;
}
}

if(number == 3){
bnum1=bcount%16;
if (bcount <15){
bcount=bcount+1;
}

}

if(number == 4)
{rnum1=rcount%16;
if (rcount > 0){
rcount=rcount-1;
}

}

if(number == 5){
gnum1=gcount%16;
if (gcount > 0){
gcount=gcount-1;
}
}

if(number == 6){
bnum1=bcount%16;
if (bcount > 0){
bcount=bcount-1;
}
}

hexNumber2 = prefix+num2hex(rnum1)+num2hex(rnum2)+num2hex(gnum1)+num2hex(gnum2)+
-.num2hex(bnum1)+num2hex(bnum2);document.bgColor=hexNumber2

function GoBack() {
if (confirm("Are you sure you want to go to the previous page?")) {

history.back()

function GoForward()

}

Appendix B JavaScripts from Around the Web 257

if (confirm("Are you sure you want to go to the next page?")) {
history.forward()

function GoHome()
if (confirm("Are you sure you want to go to the Home page?")) {

history.go('boots.com/-craigel/craig.htm')
}

today = new Date()
if(today.getMinutes() < 10){

pad = "0"}
else
pad= ••;

document.write("<center>Welcome to My JavaScript Page</center>")
if((today.getHours() < 12) && (today.getHours() >= 6)){

document.write("<center>Good Morning</center>")
}

if((today.getHours() >= 12) && (today.getHours() < 18)){
document.write("<center>Good Afternoon<Icenter>")
}

if((today.getHours() >= 18) && (today.getHours() <= 23)){
document.write("<center>Good Evening<IFONT></center>")
}

if((today.getHours() >= 0) && (today.getHours() < 4)){
document.write("<center>You are up late, you should be in Bed<I
•center>")
}

if((today.getHours() >= 4) && (today.getHours() <= 6)){
document.write("<center>Wow1 You are up early, you should be in Bed</
•FONT><Icenter>")
}

document.write("The time now is:",today.getHours(),":",pad,today.getMinutes())
document.write("
The date is: •,

today.getMonth()+1,"1",today.getDate(),"/",today.getYear(),"
");

II end hiding contents -->

</script>

</head>

<body>

258 JavaScript for Macintosh

<hr>
<P>This document should only be viewed with Netscape 2.0 beta 5 and above.</P>
Page is under construction

<h3> Other JavaScript Pages <h3>
<h4>
See JavaScript Clock

See JavaScript scrolling Banner
•

See New JavaScript status line
•Banner and clock
</h4>

<p>
Please enter your name here First and then click outside the edit box:
</p>
<form>

<input type="text• name="name• onBlur="getname(this.value)" value="">
</form>

Careful, Dont get to close to this icon

<form>
<input type="button• name="Button1" value="Push me• onclick="WinOpen()">
</form>

<FORM>
<TABLE BORDER="3" CELLPADDING="3">
<tr><td Align=center colspan=2>History Buttons</td></tr>
<tr>
<td><INPUT TYPE="button• VALUE="Back Out• ONCLICK="GoBack()"></td>
<td><INPUT TYPE="button• VALUE="Go Forward" ONCLICK="GoForward()"></td>
</tr>
</table>
</form>

<p>Just a Stupid Link, look at status bar.
<a href="slink.htm• onMouseOver="window.status='Just another stupid link ... '; return
•true">link
</P>

Appendix B JavaScripts from Around the Web 259

<FORM METHOO="POST" NAME="background'>
<TABLE BOROER="3" CELLPADOING="3">
<TR>
<TO Align=center colspan=6>Background Color Changer</td></tr>
<tr>
<TO Align=center><INPUT TYPE="button• VALUE="red" ONCLICK="changeBackground
•(I #FF0000 1

) "></TO>
<TO Align=center><INPUT TYPE="button• VALUE="green• ONCLICK='changeBackground
•(I #00FF00 1

) "></TO>
<TO Align=center><INPUT TYPE="button• VALUE="blue• ONCLICK="changeBackground
.. (I #0000FF I) • ></TO>
<TO Align=center><INPUT TYPE="button• VALUE="white• ONCLICK="changeBackground
•(

1 #FFFFFF 1)"></TO>
<TO Align=center><INPUT TYPE="button• VALUE="black" ONCLICK="changeBackground
•(

1 #000000 1)"></TO>
<TO Align=center><INPUT TYPE="button• VALUE="grey• ONCLICK="changeBackground
•(

1 #C0C0C0 1)"></TO>
</tr>
</TABLE>

<TABLE BOROER="3" CELLPAOOING="3">
<TR>
<TO Align=center colspan=3>Variable Background Color Changer</td></tr>
<TR>
<TO Align=center><INPUT TYPE="button" VALUE="Increase Red" ONCLICK="
•changeBackground2(1)"></TO>
<TO Align=center><INPUT TYPE="button" VALUE=''Increase Green" ONCLICK="
•changeBackground2(2)"></TO>
<TO Align=center><INPUT TYPE="button" VALUE="Increase Blue" ONCLICK="
•changeBackground2 (3) "><I TO>
</tr>
<TR Align=center><TD><INPUT TYPE="button• VALUE="Oecrease Red" ONCLICK="
•changeBackground2(4)"></TO>
<TO Align=center><INPUT TYPE="button• VALUE="Decrease Green" ONCLICK="
•changeBackground2(5)"></TD>
<TO Align=center><INPUT TYPE="button• VALUE="Oecrease Blue" ONCLICK="
•changeBackground2(6)"></TD>
</tr>
<TR>
<TO Align=center colspan=3>Keep pressing buttons increase color

The color will start as black</td></tr>
<TR></TABLE>
</FORM>

<P>

260 JavaScript for Macintosh

Much of the information that helped me produce this page came from the following sites:

~avascript by Voodoo

<a
href="http://home.netscape.com/comprod/products/navigator/version_2.0/script/script_info/
~index.html" TARGET="_top">Netscape JavaScript Authoring Guide

JavaScript Index
</P>

Page Last Upadated:

<script language="LiveScript">
<!-- hide script from old browsers

document.write(document.lastModified)
II end hiding contents -->
</script>

<hr>

<center>
<IMG SRC="icnhome1.gif" ALT="Home Page• WIDTH=39 HEIGHT=39 HSPACE=1
~BORDER=0 UNITS=pixels>
<IMG SRC="action.gif" ALT="Animations• WIDTH=39 HEIGHT=39 HSPACE=1
~BORDER=0 UNITS=pixels>
<IMG SRC="icnpall1.gif" ALT="Images• WIDTH=39 HEIGHT=39 HSPACE=1
~BORDER=0 UNITS=pixels>
<IMG SRC="resume.gif" ALT="Resume• WIDTH=39 HEIGHT=39 HSPACE=1
~BORDER=0 UNITS=pixels>
<IMG SRC="icnlink1.gif" ALT="Links" WIDTH=39 HEIGHT=39 HSPACE=1
~BORDER=0 UNITS=pixels>
<IMG SRC="jnote.gif" ALT="Links" WIDTH=39 HEIGHT=39 HSPACE=1
~BORDER=0 UNITS=pixels>
<IMG SRC="vrml.gif" ALT="vrml" WIDTH=39 HEIGHT=39 HSPACE=1
~BORDER=0 UNITS=pixels>
</center>

</body>
</html>

Appendix B JavaScripts from Around the Web 261

UC Berkeley GPA Calculator
http:/ jwww.aad. berkeley.edu/ gpacalc.html

Tom O'Brien, tomo@uclink.berkeley.edu

Nice calculating spreadsheet for figuring grade point averages.

m

<HTML>
<HEAD>

UC Berkeley Academic Achievement Division
GP A Calculating Spreadsheet

A stmplo Jrlllczlptl'miiOm bJJ'om,Q'BrlrA ITo!ll))- oda;tld fmma-11 colcuiU>r .lmioc:riptawlmm Ne-.
TOUCIA- Goo .loft!ctipt\y ostoc Vfnr SOan:o - do 0011)OilrO'VIlJOdll

1bo Aet!ltJ!llq Ml!lm!grmD!YplppiDI HcHt!r!l!:llpllp ~IIUC Bablo)'utfoolltllb'tlmdod U.S. De­
of 1!4-nuo p!OIDID:04eslll>ld., p!IOIIID1I Goo .,.,.e;; ~dbodnA11Cf4IIUIIutt. AA.D is
~ WIUIJA.VAas ponot""' lllliWIIc 1l!o lnt!!l!!!l!!gp 8l!Pe!!JlrJm!clm IDIOilrPIOIIOOI'I ~
~

Zi

<TITLE>GPA Calculating Spreadsheet</TITLE>

..

<center><h1 >UC Berkeley Academic
~Achievement Division GPA Calculating Spreadsheet< /h1></center>
<SCRIPT LANGUAGE= ' LiveScript '>
<1-- hide this script tag ' s contents from old browsers
function checkNumber(input, min, max, msg)

262 JavaScript for Macintosh

msg = msg + • field has invalid data: " + input.value;
var str = input.value;
for (var i = 0; i < str.length; i++)

var ch = str.substring(i, i + 1)
if ((ch < Q 0 Q : : a 9 Q < ch) && ch ! : I o I) {

alert(msg);
return false;

}

var num = 0 + str
if (num <min ::max< num) {

alert(msg + " not in range [" +min+ • • +max+ "]");
return false;

input.value = str;
return true;

function computeGradenum2(input)

var gradenum=0;
var thegrade=input;

if (thegrade=="A+" :: thegrade=="a+") gradenum=4;
if (thegrade=="A" :: thegrade=="a") gradenum=4;

if (thegrade=="A-" :: thegrade=="a-") gradenum=3.7;
if (thegrade=="B+" :: thegrade=="b+") gradenum=3.3;
if (thegrade=="B" :: thegrade=="b") gradenum=3;
if (thegrade=="B-" :: thegrade=="b-") gradenum=2.7;
if (thegrade=="C+" :: thegrade=="c+") gradenum=2.3;
if (thegrade=="C" :: thegrade=="c") gradenum=2;
if (thegrade=="C·" :: thegrade==ac-") gradenum=1.7;
if (thegrade=="D+" :: thegrade=="d+") gradenum=1.3;
if (thegrade=="D" :: thegrade=="d") gradenum=1;
if (thegrade=="D·" :: thegrade=="d-") gradenum=.7;
if (thegrade=="F+" :: thegrade=="f+") gradenum=.3;
if (thegrade=="F" :: thegrade=="f") gradenum=0;
if (thegrade=="F·" :: thegrade=="f-") gradenum=0;

return gradenum;
}

function computeField(input)
{

if (input.value 1= null && input.value.length I= 0)
input.value = "" + eval(input.value);
computeForm(input.form);

Appendix B JavaScripts from Around the Web 263

function computeForm(form)
{

if ((form.units.value ==null :: form.units.value.length == 0)) {
return;

if (lcheckNumber(form.units, .5, 10, ~units"))

form.gradepoints.value = ~Invalid~;
return;

if ((form.grade.value ==null :: form.grade.value.length == 0)) {
return;

form.gradepoints.value = ((computeGradenum2(form.grade.value)) *
form.units.value);
}

function computesumForm(form)
{

document.forms[6].gradepoints.value=0;
document.forms[6].units.value=0;
document.forms[6].grade.value=0;

for(var i=0; i<6; i++) {
if (l(document.forms[i].units.value ==null:: document.forms[i].units.
-.value.length == 0)) {

if (!(document.forms[i].units.value ==null :: document.forms[i].units.
-.value.length == 0)) {

var temp=computeField(document.forms[i].gradepoints);
var temp=computeField(document.forms[i].units);
var temp=computeForm(document.forms[i]);

if (l(document.forms[i].gradepoints.value == 0))
document.forms[S].gradepoints.value =

eval(document.forms[S].gradepoints.value)+(eval(document.forms[i].gradepoints.value));

if (!(document.forms[i].units.value == 0))
document.forms[S].units.value =

eval(document.forms[S].units.value)+(eval(document.forms[i].units.value));
}

}
if (!(document.forms[S].units.value == 0))
document.forms[6].grade.value=(eval(document.forms[6].gradepoints.value)/
-.(eval(document.forms[S].units.value)));

264 JavaScript for Macintosh

function clearForm(form)
{

}

form.units.value; ••;
form.grade.value; ••;
form.gradepoints.value; ••;

<!·-done hiding from old browsers ··>
</SCRIPT>
</HEAD>

<CENTER>

<TABLE border=4>
<FORM method=POST>
<TR>
<TD><DIV ALIGN=CENTER> # of
Units</DIV></TO>
<TO><OIV ALIGN=CENTER>letter
Grade</OIV></TO>
<TO> </TO>
<TO><OIV ALIGN=CENTER> Grade Points</OIV></TD>
</TR>
<TR>
<TO><INPUT TYPE;TEXT NAME;units SIZE=5 onChange=computeField(this)> </TO>
<TO><INPUT TYPE=TEXT NAME=grade SIZE;6 onChange;computeForm(this.form)> </TO>
<TO> </TO>
<TO><INPUT TYPE;TEXT NAME;gradepoints
</TO>
<TD><INPUT TYPE;"button" VALUE;"Compute"
<TD><INPUT TYPE="reset• VALUE="Reset"
</TR>
</FORM>
<FORM method=POST>
<TR>

SIZE=9 onChange=computeField(this)>

onClick=computeForm(this.form)> </TO>
onClick=clearForm(this.form)> </TO>

<TO><INPUT TYPE;TEXT NAME;units SIZE=5 onChange=computeField(this)> </TO>
<TO><INPUT TYPE;TEXT NAME;grade SIZE=6 onChange=computeForm(this.form)> </TO>
<TO> </TO>
<TO><INPUT TYPE=TEXT NAME;gradepoints
</TO>
<TD><INPUT TYPE="button" VALUE="Compute"
<TO><INPUT TYPE;"reset" VALUE;"Reset•
</TR>
</FORM>
<FORM method=POST>
<TR>

SIZE=9 onChange=computeField(this)>

onClick=computeForm(this.form)> </TO>
onClick=clearForm(this.form)> </TO>

<TO><INPUT TYPE=TEXT NAME=units SIZE=5 onChange=computeField(this)> </TO>
<TO><INPUT TYPE=TEXT NAME=grade SIZE=6 onChange=computeForm(this.form)> </TO>
<TO> </TO>
<TO><INPUT TYPE=TEXT NAME=gradepoints
</TO>
<TO><INPUT TYPE="button" VALUE="Compute"
<TD><INPUT TYPE;"reset" VALUE="Reset"
</TR></FORM>

SIZE=9 onChange;computeField(this)>

onClick=computeForm(this.form)> </TO>
onClick=clearForm(this.form)> </TO>

Appendix B JavaScripts from Around the Web 265

<FORM method=POST>
<TR>
<TD><INPUT TYPE=TEXT NAME=units SIZE=S onChange=computeField(this)> </TO>
<TD><INPUT TYPE=TEXT NAME=grade SIZE=6 onChange=computeForm(this.form)> </TD>
<TD> </TO>
<TO><INPUT TYPE=TEXT NAME=gradepoints
</TO>
<TO><INPUT TYPE= 1'button" VALUE=uCompute 11

<TO>< INPUT TYPE= • reset II VALUE= II Reset 1
'

</TR>
</FORM>
<FORM method=POST>
<TR>

SIZE=9 onChange=computeField(this)>

onClick=computeForm(this.form)> </TO>
onClick=clearForm(this.form)> </TO>

<TD><INPUT TYPE=TEXT NAME=units SIZE=S onChange=computeField(this)> </TO>
<TO><INPUT TYPE=TEXT NAME=grade SIZE=6 onChange=computeForm(this.form)> </TO>
<TO> </TO>
<TO><INPUT TYPE=TEXT NAME=gradepoints
</TO>
<TO><INPUT TYPE=ubutton" VALUE="Compute"
<TO><INPUT TYPE=ureset• VALUE="Reset"
</TR>
</FORM>
<FORM method=POST>
<TR>

SIZE=9 onChange=computeField(this)>

onClick=computeForm(this.form)> </TO>
onClick=clearForm(this.form)> </TO>

<TO><INPUT TYPE=TEXT NAME=units SIZE=S onChange=computeField(this)> </TO>
<TO><INPUT TYPE=TEXT NAME=grade SIZE=6 onChange=computeForm(this.form)> </TO>
<TO> </TD>
<TO><INPUT TYPE=TEXT NAME=gradepoints
</TD>
<TD><INPUT TYPE=ubutton• VALUE="Compute"
<TD><INPUT TYPE="reset" VALUE="Reset"
</TR>
</FORM>
<TR>

SIZE=9 onChange=computeField(this)>

onClick=computeForm(this.form}> </TO>
onClick=clearForm(this.form)> </TD>

<TD><OIV ALIGN=CENTER> Total # of
Units</OIV></TO>
<TD><DIV ALIGN=CENTER>Grade Point
Average</OIV></TO>
<TD> </TD>
<TD><DIV ALIGN=CENTER>Total Grade
Points</DIV></TD>
</TR>
<FORM method=POST>
<TR>
<TD><INPUT TYPE=TEXT NAME=units SIZE=S> </TO>
<TD><INPUT TYPE=TEXT NAME=grade SIZE=6> </TO>
<TO> </TO>
<TO><INPUT TYPE=TEXT NAME=gradepoints SIZE=S></TO>
<TD><INPUT TYPE="button• VALUE="Compute• onClick=computesumForm(this.form)> </TO>
<TO><INPUT TYPE="reset• VALUE="Reset• onClick=clearForm(this.form)> </TO>
</TR>
</form>
</table>

266 JavaScript for Macintosh

</CENTER>
<p>
For more information about grade computation, please consult the <a href=http://
.. www .urel.berkeley.edu /UREL_1 /Catalog95/CatChapSix/6·3. html>General Catalog .
<pre>

</ pre>
A simple JavaScript Program by Tom O'Brien
(Tomo) ··adapted from a sample calculator JavaScript app from Netscape. You can
see the JavaScript by using View Source · ·do so at your own perill </ b><p>The Academic Achievement Division< /a> and McNair Scholars Program at UC
Berkeley are federally funded U.S. Department of Education TR IO programs designed to
promote the success of socio·economically disadvantaged students. AAD is experiment·
ing with JAVA as part of our <a href=http: //www. aad.berkeley .edu/UGA/OSL/AAD/AADClass /
computer2.html>Building the Information Superhighway class and our proposed InquirySpace Project. </ a>
</BODY>
</HTML>

Julian Day
http :/ /sc.tamu.edu/ -astro/javascript/julianday.htmJ

Dan Bruton, astro@tamu.edu

Astronomy calculations.

l:i Netscape: Jauascrlpt - Julian Day l
~r ~ -..1 Ro ,.._.,~...,tl Find ~~ II ~tioft: jMtp://so.bl'f'MJ.IIOJru~o/ jlvas.cript/)ltitndt~J .htm1

- ~
JuHan Day

D4D :t"nm .lw.tSio1pr

oro. UUlD.SAL DM.£ AIUI naz

tlonU.: , ..

o.r: 129 {
fMr: •1996 r
How: I••

lliAuU: , ..
I

Juliml)o,y : 1••>0143. 0312:) (Co1cu16~

PorOIIl!llllo,l0/091199512;00 UTIMS JUilii>DidoZ450000.0
U,.1be "viey..,..,.• opllohM""" bmwor., Yiov 1be -~- ., pn!ODII11teso-

See~fotmomln!ollnalloll.

~
'~"t/1.11. ~

IG.r.H!ll _liil' l!l

<HTML>
<HEAD>

Appendix B JavaScripts from Around the Web 267

<title>JavaScript - Julian Day</title>

<SCRIPT LANGUAGE="JavaScript">
<1-- hide this script tag's contents from old browsers
function compute(form) {

}

MM=eval(form.nmonth.value)
DD=eval(form.nday.value)
YY=eval(form.nyear.value)
HR=eval(form.nhour.value)
MN=eval(form.nminute.value)
with (Math) {

}

HR = HR + (MN I 60);
GGG"' 1;
if (YY <::: 1585) GGG "' 0;
JD = -1 * floor(7 * (floor((MM + 9) I 12) + YY) I 4);
s:;;: 1;
if ((MM - 9)<0) S=-1;
A = abs (MM - 9) ;
J1 = floor(YY + S * floor(A I 7));
J1 = -1 * floor((floor(J1 I 100) + 1) * 3 I 4);
JD = JD + floor(275 * MM I 9) + DD + (GGG * J1);
JD = JD + 1721027 + 2 * GGG + 367 * YY - 0.5;
JD = JD + (HR I 24);

form.result.value = JD;

II done hiding from old browsers -->
</SCRIPT>
</HEAD>

<BODY>
<center>
<hr size=5>
<h1>Julian Day</h1>
<i>Dan's First JavaScript</i>
<hr size=5>
</center>
<FORM>
<pre>

ENTER UNIVERSAL DATE AND TIME

268 JavaScript for Macintosh

Month: <INPUT TYPE="text• NAME="nmonth" SIZE=15>
Day: <INPUT TYPE="text" NAME="nday" SIZE=15>

Year: <INPUT TYPE="text• NAME="nyear• SIZE=15>
Hour: <INPUT TYPE="text• NAME="nhour" SIZE=15>

Minute: <INPUT TYPE="text" NAME="nminute" SIZE=15>
</pre>

Julian Day
<INPUT TYPE="text• NAME="result" SIZE=20>
<INPUT TYPE="button• VALUE="Calculate• ONCLICK="compute(this.form)">

</FORM>
<hr>
<center>
For example, 10/09/1995 12:00 UT gives Julian Date 2450000.0.

Use the "view source• option on your browser to view the script used to
perform these calculations.
See <a href="http://home.netscape.com/comprod/
-.products/navigator/version_2.0/script/script_info/index.html">Javascript for more
-.information.
</center>
<hr>
<address>
Dan Bruton

astro@tamu.edu
</address>
</BODY>
</HTML>

Arto's String Calculator
http:/ /www.cs.Helsinki.FI/ -wikla/wwwscalc.html

Arto Wilda, Arto.Wikla@cs.Helsinki.FI

A calculator for (musical instrument} string calculations: diameter-> tension and
tension-> diameter.

Appendix B JavaScripts from Around the Web 269

<HEAD>
<TITLE>Arto ' s String Calculator, v1.0a</TITLE>

<! ·- Copyright 1996 by Arto Wikla, University of Helsinki, Finland· ·>
<!--Free permission is given t o re-use this code, if and only if ··>
<!·· this copyright notice is kept in. - ->

<SCRIPT LANGUAGE= ' JavaScript '>
<! ·- COPYRIGHT Arto Wikla, 1996 , Arto . Wikla~cs.helsinki.fi

function MakeArray(n) {
t his.length = n;
for (var i = 1; i <= n; i ++) {

this[i) = 0 }
return this

270 JavaScript for Macintosh

var F = new MakeArray(13)
F[0] = 246.94
F [1] = 261. 63
F[2] = 277.18
F[3] = 293.66
F[4] = 311.13
F[5] = 329.63
F[6] = 349.23
F[7] = 369.99
F[B] = 392
F[9] = 415.3
F[10] = 440
F[11] = 466.16
F[12] = 493.88

var OktAla = new MakeArray(9)
OktAla[0] = 0.0625
OktAla[1] = 0.125
OktAla[2] = 0.25
OktAla[3] = 0.5
OktAla[4] = 1
O.ktAla[5] = 2
OktAla[6] = 4
OktAla[7] = 8
OktAla[B] = 16

function Herziluku(form)
{return F[form.Note.selectedlndex+form.a415.selectedlndex]

* OktAla[form.Octave.selectedindex]

function Veto(F,L,D,P)
{return (F*L*D)*(F*L*0)*(3.14159265*P/(9.81*1000000*1000000))

function Paksuus(T,F,L,P)
{return Math.sqrt((1000000/F)*(1000000/F)* 1*9.81/L/L/3.14159265/P)

function LaskeVeto(form)
{var F = form.herzit.value // Herziluku(form)
var L = form.Stlen.value
var P = form.StDen.value
var D = form.StThiln.value
form.StTenOut.value = Math.round(1000*Veto(F,L,D,P))/1000

}

Appendix B JavaScripts from Around the Web 271

function LaskePaksuus(form)
{var F = form.herzit.value
var L = form.Stlen.value
var P = form.StDen.value
var T = form.StTenln.value

II Herziluku(form)

form.StThiOut.value = Math.round(1000*Paksuus(T,F,L,P))/1000
}

function SiivoaTul(form)
{form.StTenOut.value =
form.StThiOut.value = }

function Tarkista(input, min, max, msg)
{ msg = msg + • field has invalid data: • + input.value;

var str = input.value;

}

if (str.length == 0)
{ alert(msg);

return false; }
for (var i = 0; i < str.length; i++)
{ var ch = str.substring(i, i + 1)

}

if ((ch < "0" :: •g• < ch) && ch != '.') {
alert(msg);
return false; }

var num = parseFloat(str)
if (num <min:: max< num)
{ alert(msg + • not in range ["+min+ • • +max+ "]");

return false; }
input.value = str;
return true;

function Tarkistalomake(form)
{return Tarkista(form.Stlen,10 , 4000, 'Length') &&

<!.. . ·>

</SCRIPT>

</HEAD>

Tarkista(form.StDen,500, 10000, 'Density')

<BODY BACKGROUND="puu.gif" LINK="#800000" VLINK="#000080" ALINK="#3FFF3F">

<FORM>

272 JavaScript for Macintosh

<A NAME::"TOP">
<H1>Arto 1 S String Calculator,

version 1.0a (for Netscape 2.0)</H1>

The Note Properties:

<TABLE border>

<TR>
<TD>Name</TD>
<TD>Octave</TD>
<TD>Tuning</TD>
</TR>

<TR>

<TO>
<SELECT NAME="Note"

onChange="SiivoaTul(this.form); herzit.value=Herziluku(this.form)">
<OPTION> c
<OPTION> c sharp
<OPTION> d
<OPTION> e flat
<OPTION> e
<OPTION> f
<OPTION> f sharp
<OPTION> g
<OPTION> g sharp
<OPTION SELECTED> a
<OPTION> b flat
<OPTION> b
</SELECT>
</TO>

<TO>
<SELECT NAME="Octave"

onChange="SiivoaTul(this.form); herzit.value=Herziluku(this.form)">
<OPTION> C1

I - 81
I

<OPTION> C1
- B1

<OPTION> C - B
<OPTION> c - b
<OPTION SELECTED> C 1

- b1

<OPTION> C 11
- b1

I

<OPTION> C11
I - b1

I I

<OPTION> C 11
I I - b1

I I I

<OPTION> ell I I I - bl I I I I

</SELECT>
</TO>

<TO>
a• =
<SELECT NAME="a415"

Appendix B JavaScripts from Around the Web 273

onChange="SiivoaTul(this.form); herzit.value=Herziluku(this.form)">
<OPTION> 415,3 Hz
<OPTION SELECTED> 440 Hz
</SELECT>
</TO>

</TR>

</TABLE>

This produces the frequency:

<INPUT SIZE=6 NAME="herzit" VALUE="440"
onChange="SiivoaTul(this.form);

<HR>

alert('Do not edit the frequency!');
herzit.value=Herziluku(this.form)"> Hz

The String Properties:

Length:
<INPUT SIZE=6 NAME="StLen• VALUE=""
onChange="SiivoaTul(this.form);

if (! Tarkista(StLen,10 1 4000 1 'Length'))
StLen.select()"> mm

Density of the material:
<INPUT SIZE=6 NAME="StDen• VALUE=""
onChange="SiivoaTul(this.form);

if (!Tarkista(StDen 1 500 1 10000 1 'Density'))
StDen.select()"> Kg/m"

<HR>
Calculations:

<TABLE border>
<TR>
<TD>Give this</TD>
<TD>Calculate</TD>
<TD>The Result</TD>
</TR>
<TR>
<TD><CENTER>
Diameter:

2 7 4 J avaScript for Macintosh

<INPUT SIZE=6 NAME="StThiin" VALUE=""
onChange="StTenOut.value=' 'i

if (I Tarkista(StThiin,0.01, 5.0, 'Diameter'))
StThiin.select()"> mm</CENTER></TD>

<TD><CENTER>
<INPUT TYPE="button• NMAE="result1" VALUE="Tension•

OnClick=" if (TarkistaLomake(this.form) &&
Tarkista(form.StThiin,0.01, 5.0, 'Diameter')
LaskeVeto(this.form)"></CENTER></TD>

<TO>
<INPUT SIZE=5 NAME="StTenOut• VALUE=""

onChange="StTenOut.value=' ';

</TR>

<TR>
<TD><CENTER>
Tension:

alert('Do not edit the result!')"> Kg</TD>

<INPUT SIZE=6 NAME="StTenin" VALUE=""
onChange="StThiOut.value=' ';

if (I Tarkista(StTenin,0.01, 100, 'Tension'))
StTenin.select()"> Kg</CENTER></TD>

<TD><CENTER>
<INPUT TYPE="button• NAME="result2" VALUE="Diameter•

OnClick=" if (TarkistaLomake(this.form) &&
Tarkista(StTenin,0.01, 100, 'Tension')
LaskePaksuus(this.form)"></CENTER></TD>

<TD><INPUT SIZE=5 NAME="StThiOut" VALUE=""
onChange="StThiOut.value=' ';

</TR>
</TABLE>

<P>

alert('Do not edit the result!')"> mm</TD>

<INPUT TYPE="button"

<hr>

VALUE="Clear Results"
OnClick="SiivoaTul(this.form)">

We have not included the rest of the straight HTML here, because the J avaScript
portion is what we care about.

Appendix B JavaScripts from Around the Web 275

Car Cost Calculator
http:/ /members.aol.com/imcomputnt/

Matthew J Graci, imcomputnt@aol.com

A calculator for calculating monthly payments for cars you can't afford.

<HTML>

IavaScript
Development

~
~

For Sale

~vy..Jllw.I

Bact to
lntro

l.n!m

<HEAD><TITLE>Car Cost Calculator</TITLE>

<SCRIPT>
<!··hide this script tag ' s contents from old browsers

//Car Cost Calculator
//Written by Matthew J Graci

function checkNumber(input,form1,form2)
{
if(input.value== ' ')

{input. value=input.defaultValue
input.focus()
input. select()

}

276 JavaScript for Macintosh

status=''
msg ="This field requires numeric data: • + input.value;

var str = input.value;
for (var i = 0; i < str.length; i++)

{var ch = str.substring(i, i + 1)
if ((ch < "0" :: "9" < ch) && ch I= '. ') {

input.value=input.defaultValue
input.focus()
input. select()
status=msg}

add_input(form1,form2)

function add_input(form1,form2)
{ var total1,total2,total3,total4,total5,total6

total1=(form1.cost1.value*1+form1.cost2.value*1+form1.cost3.value*1+form1.cost4.
•value*1+form1.cost5.value*1)

total2=(total1*1+form1.cost6.value*1+form1.cost7.value*1+form1.costB.value*1+form1.
•cost9.value*1+form1.cost10.value*1)

}

total3=(total2-form2.incentives.value*1)
total4=(total3*1 + (('.01' * form2.above_invoice.value)* total3))
total5=(total4*1+form2.destination.value*1)
total6=(total5*1 + (('.01' * form2.state_tax.value)* totalS))
form2.total_cost.value=(total6*1 -form2.down_payment.value)
compute_payments(form2)

function compute_payments(form2)
{

var i = form2.interest_rate.value;
if (i > 1.0) {

i = i I 100.0;
}

i /= 12;

var pow= 1;
for (var j = 0; j < form2.no_of_payments.value; j++)

pow= pow* (1 + i);
form2.monthly_payments.value = (form2.total_cost.value * pow * i) I (pow - 1)

function selectField(field)
{

field. select()

function clearForm(form1,form2)
{

Appendix B JavaScripts from Around the Web 277

form1.desc1.value
form1.cost1.value "0"
form1.desc2.value
form1.cost2.value = "0"
form1.desc3.value =
form1.cost3.value = "0"
form1.desc4.value =
form1.cost4.value = "0"
form1.desc5.value =
form1.cost5.value = "0"
form1.desc6.value =
form1.cost6.value = 11011

form1.desc7.value =
form1.cost7.value = 11011

form1.desc8.value =
form1.cost8.value = 11011
form1.desc9.value =
form1.cost9.value = "0"
form1.desc10.value = ••
form1.cost10.value = "0"
form2.incentives.value = "0"
form2.above_invoice.value="3"
form2.destination.value="0"
form2.down_payment.value = "0"
form2.total_cost.value="0"
form2.interest_rate.value="8"
form2.no_of_payments.value="60"
form2.monthly_payments. value="0 11

<I·· done hiding from old browsers··>
</SCRIPT>
</HEAD>

<BODY BACKGROUND= II newback. j pg II >
<TABLE Border=5>
<TR><TH Colspan=2>Car Cost Calculator v1.01</TH></TR>
<TR><TD>
<FORM NAME="form1">

<TABLE>
<TR>
<TH>Part Description</TH><TH>Invoice Cost</TH>
</TR>
<TR>
<TO>< INPUT TYPE=TEXT NAME=desc1 SIZE=20 on Focus= II selectField (this) 11 ></TD>
<TO>$< INPUT TYPE=TEXT NAME=cost1 VALUE=0 SIZE=9 onFocus=" select Field (this) 11

onChange="checkNumber(this,form1,form2)"> </TD>
</TR>
<TR>
<TD><INPUT TYPE=TEXT NAME=desc2 SIZE=20 onFocus="selectField(this)"></TD>

278 JavaScript for Macintosh

<TO>$<INPUT TYPE=TEXT NAME=cost2 VALUE=0 SIZE=9 onFocus=aselectField(this)"
onChange="checkNumber(this,form1,form2)"> </TO>

</TR>
<TR>
<TO><INPUT TYPE=TEXT NAME=desc3 SIZE=20 onFocus="selectField(this)"></TO>
<TO>$<INPUT TYPE=TEXT NAME=cost3 VALUE=0 SIZE=9 onFocus="selectField(this)"

onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO><INPUT TYPE=TEXT NAME=desc4 SIZE=20 onFocus="selectField(this)"></TO>
<T0>$<1NPUT TYPE=TEXT NAME=cost4 VALUE=0 SIZE=9 onFocus="selectField(this)"

onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO><INPUT TYPE=TEXT NAME=desc5 SIZE=20 onFocus="selectField(this)"></TO>
<TO>$<INPUT TYPE=TEXT NAME=cost5 VALUE=0 SIZE=9 onFocus=•lselectfield(this)"

onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO><INPUT TYPE=TEXT NAME=desc6 SIZE=20 onFocus=•1selectField (this) "></TO>
<TO>$< INPUT TYPE=TEXT NAME=cost6 VALUE=0 SIZE=9 onFocus= II select Field (this) "

onChange=ucheckNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO><INPUT TYPE=TEXT NAME=desc7 SIZE=20 onFocus="selectField(this)"></TO>
<TO>$<INPUT TYPE=TEXT NAME=cost7 VALUE=0 SIZE=9 onFocus="selectField(this)"

onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO><INPUT TYPE=TEXT NAME=desc8 SIZE=20 onFocus="selectField(this)"></TO>
<TO>$<INPUT TYPE=TEXT NAME=cost8 VALUE=0 SIZE=9 onFocus="selectField(this)"

onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO><INPUT TYPE=TEXT NAME=desc9 SIZE=20 onFocus="selectField(this)"></TO>
<T0>$<1NPUT TYPE=TEXT NAME=cost9 VALUE=0 SIZE=9 onFocus="selectField(this)"

onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO><INPUT TYPE=TEXT NAME=desc10 SIZE=20 onFocus="selectField(this)"></TO>
<TO>$<INPUT TYPE=TEXT NAME=cost10 VALUE=0 SIZE=9 onFocus="selectField(this)"

onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
</TABLE>

</FORM>
</TO>
<TO>

Appendix B JavaScripts from Around the Web 279

<FORM NAME="form2">
<TABLE>
<TR>
<TH>Other Costs</TH>
</TR>
<TR>
<TO> Incentives/Rebates</TD>
<TO align=right>·$</TD>
<TD><INPUT TYPE=TEXT NAME=incentives VALUE=0 SIZE=9

•onFocus="selectField(this)" onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO> % Above Invoice</TD>
<TD></TD>
<TD><INPUT TYPE=TEXT NAME=above_invoice VALUE=3 SIZE=9

•onFocus="selectField(this)" onChange="checkNumber(this,form1,form2)">% </TO>
</TR>
<TR>
<TO> Destination Charge</TD>
<TO align=right>$</TD>
<TD><INPUT TYPE=TEXT NAME=destination VALUE=0 SIZE=9

•onFocus="selectField(this)" onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO> State Tax %</TO>
<TD></TD>
<TD><INPUT TYPE=TEXT NAME=state_tax VALUE=6 SIZE=9 onFocus="selectField(this)"

•onChange="checkNumber (this, form1, form2) ">% </TD>
</TR>
<TR>
<TO> Down Payment</TD>
<TO align=right>·$</TD>
<TD><INPUT TYPE=TEXT NAME=down_payment VALUE=0 SIZE=9

•onFocus="selectField(this)" onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO> Finance Amount</TD>
<TO align=right>$</TD>
<TD><INPUT TYPE=TEXT NAME=total_cost VALUE=0 SIZE=9

•onChange="checkNumber(this,form1,form2)"> </TO>

280 J avaScript for Macintosh

</TR>
<TR>
<TO> Finance Rate % </TO>
<TD></TD>
<TD><INPUT TYPE=TEXT NAME=interest_rate VALUE=B SIZE=9

~onFocus="selectField(this)• onChange="checkNumber(this,form1,form2)">% </TO>
</TR>
<TR>
<TO> No. of Payments</TD>
<TD></TD>
<TD><INPUT TYPE=TEXT NAME=no_of_payments VALUE=60 SIZE=9

~onFocus="selectField(this)" onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TO> Monthly Payment</TD>
<TO align=right>$</TO>
<TD><INPUT TYPE=TEXT NAME=monthly_payments VALUE=0 SIZE=9

onChange="checkNumber(this,form1,form2)"> </TO>
</TR>
<TR>
<TD><INPUT TYPE=Button Value=Clear Name=Clear

~onClick="clearForm(form1,form2)"> </TO>

</TO>
</TABLE>
</FORM>
</TABLE>
</BODY>
</HTML>

<TD></TD>
</TR>

MUD
http:/ /www.wolfenet.com/ -mud

Gordon Mueller, mud@gonzo.wolfenet.com

Floating control panel in its own window, scrolling text in status bar.

<HTML><HEAD>
<TITLE>index.html</TITLE>
<SCRIPT language='LiveScript '>
function windowOpener(){

Appendix B J avaScripts from Around the Web 281

controlWindow=window.open(' .. /controlmap /controlmap.html ' , ' Control ' , ' toolbar=no ,
wolocation=no,directories=no, status=no,menubar=no,scrollbars=no,resizable=no,
wowidth=110,height=385') ;

controlWindow=window.open(' .. /controlmap /controlmap.html ','Control ' , ' toolbar=no,
wolocation=no,directories=no,status=no ,menubar=no, scrollbars=no,resizabl e=no,
wowidth=110,height=385');

}
</SCRIPT>
</HEAD>

<BODY BGCOLOR= ' #000000' TEXT='#BDBDBD' LINK="#1916A6 " ALINK='#3531 36 ' VLINK=' #353136'
onLoad= ' windowOpener() ' >
<MAP NAME=' control.map '>
<AREA SHAPE=RECT HREF=' .. /mainpage/mainpage .html" COORDS= ' 11,3, 70,64' TARGET='main" >
<AREA SHAPE=RECT HREF=' . . /starpage/starpage .html " COORDS= ' 4,82, 79,142 ' TARGET="main">

282 JavaScript for Macintosh

<AREA SHAPE=RECT HREF=" .. /blimp/blimp.html" COORDS="2,153,73,201" TARGET="rnain">
<AREA SHAPE=RECT HREF=" .. /swamp/swamp.html" COORDS="6,215,78,274" TARGET="main">
<AREA SHAPE=RECT HREF=" .. /forest/forest.html" COORDS="12,286,72,346" TARGET="main">
</MAP>
<P>
<P>

</P><CENTER><TABLE CELLPADDING="4"><TR><TD><CENTER>

</CENTER>
<H1><P ALIGN=Center>

</H1></TD><TD><H1 ALIGN=Center><I>Welcome to Mud</!>

</H1><P ALIGN=Center>
Here are some hints for this site; Its set up for the

standard width that Netscape opens at. If you need

more height, get rid of some of those buttons on top

of the screen. Well, have fun. If you like this site or

would like me to help build your own, drop me an
e-maill If your colors
are screwy, its probably
because you are using 8-bit color.

</TD></TR></TABLE></CENTER><P>
</P><CENTER><TABLE CELLPADDING="4"><TR VALIGN="Top">
<TO COLSPAN=4>
<CENTER>You can
navigate to the main sections of this site by using the Control Strip

window. Double click on an area and it will take you there.

Click here to re-open the Control Panel window if you

accidentally closed it, You will need it ...

<FORM>
<INPUT type="button• value="Open Control Panel" onClick="windoWOpener()"
>

<INPUT type="button• value="Close Control Panel" onClick="controlWindow.close()"
>

</FORM><P>

You can read my Resume by clicking here.

The Control Panel and a couple of other things use JavaScript

which is still in the beta stages, and since I'm still learning, I hope

it doesn't bomb you. I've tried to test it.
<P>If you have Shockwave installed, click on the Blimps on either

side of my header graphic. You can get Shockwave from

Macromedia (in my hot list section).

</CENTER>
</TD></TR><TR><TD>
</TD><TD>

Appendix B JavaScripts from Around the Web 283

</TD><TD>
</TD></TR><TR><TD ROWSPAN=5>
</TD><TD ROWSPAN=5 VALIGN= 11 MiddleA><P ALIGN=Center>
<IMG ALIGN=Middle SRC= 11

•• /controlmap/maptall.gif 11 USEMAP="#control.map" BORDER=0
•WIDTH="85" HEIGHT= 11 348 11 >
</TD><TD><P>

<P ALIGN=Left><H2><I>Main</l></H2>
<p>This is where you are now.

</TD></TR><TR><TD><P>

<P>
<H2><I>Inner and Outer Space</I></H2>
<p>Look, up in the sky its ... an alien?

</TD></TR><TR><TD><P>

<P>
<H2><I>Zeppelin</I></H2>
<p>What do you know about Zeppelins?

</TD></TR><TR><TD><P>

<P>
<H2><l>What is that?</l></H2>
<p>Lots of things, most of them interesting.

</TD></TR><TR><TD><P>

<P>
<H2><I>Jumping Electronsi</I><IH2>
<p>Getting from one place to another ... my hotlists.

<P>
</TD></TR><TR>

<TD COLSPAN=4><P ALIGN=Center>
<P ALIGN=Center>
Send me
mail:mud@gonzo.wolfenet.com
</TD></TR></TABLE></CENTER><P>
<P ALIGN=Center>

<P>
</BODY></HTML>

Test Your Response Time
http:/ /www.stack.urc.tue.nl/ -jasperz/js/

Jasper van Zandbeek, jasperz@stack.urc.tue.nl

Changes background color after a random period of time.

284 J avaScript for Macintosh

Test your Response time!
Tut)'OW' Re3pom. time! Plus sen tl s1Dt11be ~t P"" st>p when tbe bs:trroUb! color cban&e;, . You can selec1 tbe color tn vhich lbe back(round.
c~ ... TlyftiTe:!tl""""'po""' dlnei PmsolOltaDII tho becl:(rc>U!ld villc~eVilhin211oecon4o!

~· bal:kitoU!ld c:oloriD: ._1 ...;crlmoo=;;;;n:;.._ ___ __.) (i§t~ (~

l.ast DD1iticadonofthb pace; Mon Feb 26 09:55:36 1996

ConnectXln ,-catistics art JMin1ained by

JC

<html>
<!· ·author: Jasper van Zandbeek · ·>

<I·· Created: 25 ·2·1996· ·>

<I·· This document has been created by pub2html ··>
<head><title>Test your Response time! <l title>
<script l anguage= ' JavaScript ' >
<I ·· hiding for old browsers

II response time test, created by Jasper van Zandbeek
II e-mail: jasperz@stack.urc.tue.nl

var startTime=new Date();
var endTime=new Date();
var startPressed=false;
var bgChangeStarted=false;
var maxWait=20;
var timeriD;

f unction startTest()

document.bgColor=document.response.bgColorChange.options[document.response .
•bgColorChange.selectedindex].text;

bgChangeStarted=true;
startTime=new Date();

Appendix B J avaScripts from Around the Web 285

function remark(responseTime)
{

var responseString="";
if (responseTime < 0.10)

responseString="Well done!";
if (responseTime >= 0.10 && responseTime < 0.20)

responseString="Nicel";
if (responseTime >=0.20 && responseTime < 0.30)

responseString="Could be better ... •;
if (responseTime >=0.30 && responseTime < 0.60)

responseString="Keep practicing!";
if (responseTime >=0.60 && responseTime < 1)

responseString="Have you been drinking?";
if (responseTime >=1)

responseString="Did you fall asleep?";

return responseString;

function stopTest()

if(bgChangeStarted)
{

endTime=new Date();
var responseTime=(endTime.getTime()-startTime.getTime())/1000;

document.bgColor= 11 white 11
;

alert(11 Your response time is: • + responseTime + 11 seconds II + 11 \n"
-.+remark(responseTime));

else
{

startPressed=false;
bgChangeStarted=false;

if (lstartPressed)
{

else
{

alert("press start first to start test");

clearTimeout(timeriD);
startPressed=false;
alert("cheaterl you pressed too early!");

286 JavaScript for Macintosh

var randMULTIPLIER=0x015a4e35;
var randiNCREMENT=1;
var today=new Date();
var randSeed=today.getSeconds();
function randNumber()
{

randSeed = (randMULTIPLIER * randSeed + randiNCREMENT) & 0xffffffff;
return((randSeed >> 16) & 0x7fff) I 32767;

function start ()
{

if(startPressed)
{

else
{

}
II - ->
</script>

alert ("Already started. Press stop to stop •) ;
return;

startPressed=true;
timeriD=setTimeout('startTest()', 20000*randNumber());

</head><body bgcolor=#ffffff text=#000000 link=#0000ff vlink=#0000ff><center>
<table border=0>

<tr>
<td><img src="/-jasperz/misc/b_home.gif"

•alt="[home]" border=0 width=97 height=43></td>
<td><img src="/-jasperz/misc/b_js.gif"

•alt="[javascript)" border=0 width=97 height=43></td>
<td><img src="/-jasperz/misc/

•r_resp.gif" alt="[response]" border=0 width=97 height=43></td>
<td><img src="/-jasperz/misc/

•r_mem.gif" alt="[memory]" border=0 width=97 height=43></td>
<td><img src="/-jasperz/misc/

•r_puz.gif" alt="[puzzle]" border=0 width=97 height=43></td>
<td><img src="/-jasperz/misc/

•r _hanoi.gif" alt= 11 [hanoi] II border=0 width=97 height=43></td>
<td><a href= 11 mailto:jasperz@stack.urc.tue.nl"~<img src="/-jasperz/misc/

•b_mail.gif" alt=" [mail me] 11 border=0 width=97 height=43></td>
</tr>

</table>
</center>
<p><center><h1>Test your Response timel</h1></center>

Test your Response time! Press start to start the test.
Press stop when the background color changes.

Appendix B] avaScripts from Around the Web 287

You can select the color in which the background changes. Try it! Test your response
•time!
Press start and the background will change within 20 secondsl<p>

<form name="response">
Change background color in:
<select name="bgColorChange">
<option selected>deeppink
<option>aliceblue
<option>crimson
<option>darkkhaki
<option>cadetblue
<option>darkorchid
<option>coral
<option>chocolate
<option>mediumslateblue
<option>tomato
<option>darkslategray
<option>limegreen
<option>cornflowerblue
<option>darkolivegreen
</select>
<input type="button• value="start• onClick="start()">
<input type="button• value="stop• onClick="stopTest()">
</form>

<center><p>Last modification of this page: Mon Feb 26 09:55:36 1996</center><p>
<center>Connection statistics are maintained by
<a href="http://
•www.stack.urc.tue.nl:81/-jasperz/cgi-bin/jc/jstat.cgi?name=js.response"><img
src="http://www.stack.urc.tue.nl:81/-jasperz/cgi-bin/jc/jc.cgi?name=js.response•
•alt="JC" border=0>
</center><p>
</body></html>

The Amazing JavaScript Maze
http://www. tisny.com/js_maze.html

Steven J. Weinberger, weinberg@yul.yu.edu

J avaScript is used to hold the data for every position in the maze, dynamically up­
date the data based on user input, and fill the <TEXTAREA> with the actual maze.

288 JavaScript for Macintosh

<html>
<head>

Netscope: The Rmazln Jauascrtpt Maze

s~ f!F?J:-¥1 ~-~- 1 M~t! r ... J ~ Jl
l..ooltton:Jh.,.://wv.--./js.n>~<•.hOnl

The INCREDIBLE JavaScript Maze
Game!

<title>The Amazing JavaScript Maze< /titl e>

<1·- begin Script here

Copyright 1996 by Steven Weinberger of Transaction Information
Systems . All rights reserved.

I can be reached at: steve~garcia.tisny.com, weinberg~yu1.yu.edu ,

vidkid~inch.com for comments, suggestions, etc.

Free permission is given to re-use or modify this code,
if and only if this copyright notice i s kept in.

This program/ page i llustrates the abilit y to create a grid on-screen,
and plot and animate in it. The main parts can be used to build a
variet y of useful programs (mostly games). -->

<script>
var line
var x = 0;
var y = 0;

.. .
I

var fu ll=' *' ;
var blank = • . • ;
var wall ' # ' ;
var goal = ' $ ' ;

Appendix B JavaScripts from Around the Web 289

var fill= ••;

II Functions to create the board

function makeboard() {
for (var i=1; i<= 10; i++)

this[i] =new makeRow();
return this;

function makeRow()
for (var i=1; i<= 10; i++)

this[i]=blank;
return this;

II Functions to fill & clear the board.

function clearBoard (form) {
II Clears & resets the board

X = 0;
y = 0;
form.xval.value = 1;
form.yval.value = 1;
for (var i=1; i<= 10; i++)

for (var j=1; j<= 10; j++)
theBoard[i][j]=blank;

drawMaze();
fillBoard(form);
return;

function fillBoard (form) {
II Clear board buffer
line= ••;
form.grid.value = ••;
II Fill board buffer
for (var i=1; i<= 10; i++)

for (var j=1; j<= 10; j++)
line+= theBoard[i][jJ;

II Move buffer contents to board
form.grid.value=line;

function plot (v, h) {
theBoard[v][h] =fill;

290 J avaScript for Macintosh

function drawMaze() {
II Plots the walls of the maze
II
II Ideally, a function should do this automatically,
II or maybe I should write a maze generating function in JS!
II Note: This program operates in Y,X co-ordinates (not standard X,Y).

theBoard[10][10] =goal;
theBoard[1][2] =wall;
theBoard[2][2] =wall;
theBoard[4][1] =wall;
theBoard[4][2] =wall;
theBoard[4][3] =wall;
theBoard[2][3] =wall;
theBoard[5][2] =wall;
theBoard[6][2] =wall;
theBoard[2][5] =wall;
theBoard[4][5] =wall;
theBoard[5][5] =wall;
theBoard[2][6] =wall;
theBoard[2][7] =wall;
theBoard[9][10] =wall;
theBoard[9][9] =wall;
theBoard[8][9] =wall;
theBoard[7][9] =wall;
theBoard[10][7] =wall;
theBoard[9][7] =wall;
theBoard[8][7] =wall;
theBoard[6][7] =wall;
theBoard[9][2] =wall;
theBoard[9][3] =wall;
theBoard[9][4] =wall;
theBoard[8][2] =wall;
theBoard[7][4] =wall;
the8oard[7][5] =wall;
theBoard[6][5] =wall;
theBoard[5][7] =wall;
theBoard[5][8] =wall;
theBoard[5][9] =wall;
the8oard[4][9] =wall;

function update(form)
var horiz = eval(form.xval.value);
var vert= eval(form.yval.value);
plot(vert,horiz);
fillBoard(form);
return;

Appendix B JavaScripts from Around the Web 291

function initBoard() {
theBoard =new makeboard();
fill = full;
clearBoard(document.board);
update(document.board);

II Functions to handle the player piece
II
II I suppose I could have written one function to handle this,
II but it was getting too complex. Feel free to try. :)
II

function decx(form)
fill = blank;
update(form);

}

checkx = eval(form.xval.value - 1);
cheeky = form.yval.value;
if (form.xval.value > 1) {

}

if (theBoard[checky][checkx] !=wall) {
form.xval.value=eval(form.xval.value- 1);

else {
alert("THUD!\nYou hit a wall.");

if (theBoard[checky][checkx] ==goal) {

}

alert("YOU WIN!");
location.href="http:llwww.tisny.comljs_demo.html";

fill = full;
update(form);

function incx(form) {
fill = blank;
update (form) ;
checkx = eval(1 * form.xval.value + 1);
cheeky = form.yval.value;
if (form.xval.value < 10) {

if (theBoard[checky][checkx] I= wall) {
form.xval.value=eval(1 * form.xval.value + 1);

}

else
alert("THUD! \nYou hit a wall.");

292 J avaScript for Macintosh

}

if (theBoard[checky][checkx] ==goal) {

fill = full;
update(form);

alert("YOU WIN!");
location.href="http://www.tisny.com/js_demo.html";

function decy(form)
fill = blank;
update(form);
checkx = form.xval.value;
cheeky= eval(form.yval.value · 1);
if (form.yval.value > 1) {

if (theBoard[checky][checkx] !=wall) {
form.yval.value=eval(form.yval.value - 1);

else {
alert("THUDl\nYou hit a wall.");

if (theBoard[checky][checkx] ==goal) {

fill = full;
update(form);

function incy(form)
fill = blank;
update(form);

alert("YOU WIN!•);
location.href=•http://www.tisny.com/js_demo.html";

checkx = form.xval.value;
cheeky= eval(1 * form.yval.value + 1);
if (form.yval.value < 10) {

}

if (theBoard[checky][checkx] I= wall)
form.yval.value=eval(1 * form.yval.value + 1);

else {
alert("THUDl\nYou hit a wall.");

if (theBoard[checky][checkx] == goal) {
alert("YOU WIN!•);
location.href="http://www.mcp.com/hayden/";

fill = full;
update(form);

Appendix B JavaScripts from Around the Web 293

II Various Functions

function cheater (form)
II Refuse to change values manually, and start over. CHEATER!

alert("You can't change this value manually.\nPlease use the buttons.");
clearBoard(form);
update(form);

II Scrolling Status Bar
II This scrolling status bar was taken from public domain
II I make no claims on it, and placed it here as an enhancement to my page
II My apologies to the author, for forgetting to keep his disclaimer.

function scrollit_r2l(seed)
{

var m1
var m2
var m3
var m4

"Welcome to the Amazing JavaScript Maze.
"Try to make your way through the Maze.
aoon't hit any walls. •;
~Good Luck •;

var msg=m1+m2+m3+m4;
var out = " •;
var c = 1;

if (seed > 100)
seed··;

}

var cmd="scrollit_r21(" +seed+ ")";
timerTwo=window.setTimeout(cmd,100);

else if (seed <= 100 && seed > 0) {
for (c=0 ; c < seed ; c++) {

out+=" ";

}

out+=msg;
seed-·;
var cmd="scrollit_r21(" +seed+ ")";

window.status=out;
timerTwo=window.setTimeout(cmd,100);

else if (seed <= 0) {
if (-seed< msg.length) {

out+=msg.substring(-seed,msg.length);
seed··
var cmd="scrollit_r21(" + seed + ")";

window.status=out;
timerTwo=window.setTimeout(cmd,100);

"· J

"· J

294 J avaScript for Macintosh

}
else

}

II End of functions
</script>

window.status=• •;
tirnerTwo=window.setTirneout("scrollit_r21(100)",75);

<body on load= n timerONE=window. setTimeout (I scrolli t_r21 (100) I '500) ; ini tBoard () ; II>
<center>
<h1>The INCREDIBLE Javascript Maze Gamel</h1>
</center>
<dd>Your player is represented by the "*" in the upper-left corner.
Use the buttons to move it around the maze. The boxes will show your
coordinates. Be careful not to hit any walls. You can't edit the coordinates
in the textboxes .. that would be cheating. Reach the "$" in the lower-right
to win.
Press "Reset• to start over.

<center>
Good luckl
<p>
<form met hod= • post" name=" board II>
<input type='button• value='Reset•
onClick='clearBoard(this.form);update(docurnent.board);'>

<textarea name="grid" rows="9" cols="10" wrap=virtual></textarea>

<I·· virtual-wrap is the key! Now one text line becomes a grid! ··>
<table>
<tr>

<td><input type='buttonl value= 1 UP 1 onClick='decy(this.form) 1 ></td>
<td><input type=ltextl value= 1 1' size=S name='yval 1 onChange='cheater(this.form);

'-
1 ></td>
<td><input type= 1 button 1 value= 1 DOWN 1 onClick='incy(this.form)'></td>

<tr>
<td><input type= 1 buttonl value= 1 LEFT 1 onClick= 1 decx(this.forrn) 1 ></td>
<td><input type='text 1 value= 1 1' size=S narne='xval'

onChange='cheater(this.form); '></td>
<td><input type='buttonl value='RIGHT' onClick='incx(this.form) 1 ></td>

</table>
</form>
<p>
Copyright 1996, Steven J. Weinberger
</center>
</body>
</html>

Appendix B JavaScripts from Around the Web 295

JavaScript Noughts & Crosses
http:/ jwww.geocities.comjTokyo/ 1204/game.hrml

Stephen Wassell , swassell@sv.span.com

Tic-Tac-Toe on the Web! JavaScript works out the next move, generates the board,
and creates links for each blank to reload the page with new data.

<html>
<head>

lt'a a clraw!
Want~?

<title>: Stephen's Home Page: Game :</title>
</head>

<body bgcolor =' #E0FFC0 ' background='base.gif ' >

<script language= ' LiveScript ' > <I··

//Written by Stephen Wassell
//swassell@sv .span. com
//http: //www .geocities .com/Tokyo/1024
//A JavaScript version of Noughts and Crosses

296 J avaScript for Macintosh

//Tested on Netscape 2.0b4

//location.search holds the board in the format '?111111111'
//each number is a square on the board:
//0 =nought (computer), 1 =blank, 2 =cross (human)
//the program uses the sum of these to work out where to go
//it doesn't bother checking for human wins as it can't lose
III bet Eric won't believe me, though :)

//can this language really have no arrays?
//I've had to use substrings instead- not good:-)

function Get (Str, Off) { //equiv. to return Str[Off]
//'- -'turns a string into a number

return · -Str.substring (Off, Off+1)

function Set (Str, Off, Val) { //equiv. to Str[Off] =Val; return Str
return Str.substring (0, Off) +Val+ Str.substring (Off+1, 10)

}

function Sum (Str, a, b, c) { //adds the contents of a, band c
return (Get (Str, a) +Get (Str, b) +Get (Str, c))

function MyMove (Oat) { //do computer's move
var Poslines, Order= '2613', PosCorns = '124326748968'
var j, i, a, b, c

if (Get (Oat, 5) == 1) //if computer's in centre
Poslines = '132798174396546528519537'

else
Poslines = '519537132798174396546528'

Result = ResWin

for (j = 0; j < 4; j++) {
for (i = 0; i < 24; i += 3)

a = Get (Poslines, i)
b = Get (Poslines, i + 1)
c = Get (Poslines, i + 2)
if (Sum (Oat, a, b, c) ==Get (Order, j)) {

if (Get (Oat, a) == 0) return Set
if (Get (Oat, b) == 0) return Set
if (Get (Oat, c) == 0) return Set

Result = ResNorm

(Oat,
(Oat,
(Oat,

a, 1)
b, 1)
c, 1)

Appendix B JavaScripts from Around the Web 297

if (j == 1) { //only between 2nd and 3rd passes
for (i = 0; i < 12; i += 3) {

a = Get (PosCorns, i)
b =Get (PosCorns, i + 1)
c = Get (PosCorns, i + 2)
if (Sum (Oat, a, b, c) == 6)
if (Get (Oat, a) == 0) return Set (Oat, a, 1)

Result= Resoraw //no places to go
return Oat

function OrawTable (Oat) { //plots the grid
var i, Sqr

for (i = 1; i <= 9; i++)
Sqr = Get (Oat, i)

if (Sqr == 0) { //it's a blank
if (Result== ResWin) //no more links if it's been won

document.write ('')
else {

document.write ('<A HREF="game.html') //a link for human moves
document.write (Set (Oat, i, '3'))
document.write ('">')

else if (Sqr == 3) //it's an X
document.write ('')

else //must be an 0
document.write ('')

if (i == 9) //finished
document.write ('<P>')

else if (i == 3 :: i == 6) //long horizontal line
document.write ('

')

else //vertical line
document.write ('')

document.write ('<H2>') //make comments

if (Result == ResOraw)
document.write ("It's" + ' a drawi
Want another game
•? I)

298 J avaScript for Macintosh

else if (Result == ResStart)
document.write ("Your go first ... ")

else if (Result == ResWin)
document.write ('I woni
Like to play again?')

document.write ('
</H2>')
}

var ResNorm = 0, ResWin = 1, ResDraw = 2, ResStart = 3
var Result = ResStart

if (location.search.length == 10) //during game
DrawTable (MyMove (location.search))

else //just started
DrawTable ('?000000000') //draw a load of blanks

11 ··> <H2>Sorryl You need a <A HREF="http://home.netscape.com/comprod/products/
-.navigator/version_2.0/">JavaScript-capable browser to run this.</H2>

</script>

<P>
<HR>
<P>
 Go back to the contents
<P>
<I>By Stephen Wassell, swassell@sv.span.com
-.. Space provided by Geopages. 11/1/96</I>

</body>
</html>

The Connecting Point: WWW Codebreaker
http:/ jwww.mscd.edu/ -anguiano/third/third.htm

Jason Anguiano, jangui@csn.net

Receiving input from users, displaying different graphics files in different frames,
scrolling text.

(i .DJ..mw hiFh• d!t Jl!1pl
onxecw

<iwwwCoo!•mo»t :nrm:
<iwwi!!)IJI!YRt«uo[
~

Sttv-·' _...liPii4lt:zillr
~~~~-

~ 

<HTML> 
<HEAD> 

j) 

Appendix B JavaScripts from Around the Web 299 

<TITLE>The Connecting Point · WWW Codebreaker</TITLE> 
</HEAD> 
<FRAMESET ROWS= ' 75%,25%' > 
<FRAME SRC= "code.htm" NAME= "Main_Code" NORESIZE> 
<FRAMESET COLS= ' 20%,20%,20%,20%,20%"> 
<FRAME SRC=' square3d.htm' NAME= ' Guess1 ' NORESIZE SCROLLING=" no" MARGINWIDTH= ' 5' 
•MARGINHEIGHT= '5' > 
<FRAME SRC= "cir3d.htm' NAME= ' Guess2' NORESIZE SCROLLING="no" MARGINWIDTH="5" 
•MARGINHEIGHT='5"> 
<FRAME SRC= ' arrow3d .htm' NAME= ' Guess3 ' NORESIZE SCROLLING= "no ' MARGINWIDTH='5 ' 
•MARGINHEIGHT='5"> 
<FRAME SRC= ' octgn3d.htm" NAME='Guess4" NORESIZE SCROLLING=" no' MARGINWIDTH=' 5' 
•MARGINHEIGHT=' 5' > 

<FRAMESET COLS=35%,65%'> 
<FRAMESET ROWS=60%,40%' > 

<FRAME SRC= ' slotempt .htm' NAME= ' Answer1' NORESIZE SCROLLING= ' no " 
•MARGINWIDTH= ' 1' MARGINHEIGHT= ' 1"> 

<FRAME SRC= ' slot empt .htm' NAME= ' Answer2 ' NORESIZE SCROLLING='no ' 
•MARGINWIDTH= ' 1' MARGINHEIGHT= ' 1'> 

</FRAMESET> 
<FRAMESET ROWS=60%,40%' > 

<FRAME SRC= ' slotempt.htm ' NAME= ' Answer3 ' NORESIZE SCROLLING=' no ' 
•MARGINWIDTH= ' 1' MARGINHEIGHT=' 1'> 

<FRAME SRC='slotempt .htm• NAME= ' Answer4 ' NORESIZE SCROLLING= ' no • 
•MARGINWIDTH= ' 1' MARGINHE IGHT=' l ' > 



300 J avaScript for Macintosh 

</FRAMESET> 
</FRAMESET> 
</FRAMESET> 
</FRAMESET> 

</HTML> 

code.htm 

<HTML> 
<HEAD> 
<BODY BACKGROUND= 11 WOOd.gif 11 TEXT= .. #000000 11 LINK= 11 #0000F6 11 VLINK= 11 #006803" 
•ALI NK= II #EE0000 II> 
<TITLE>The Connecting Point - WWW Codebreaker</TITLE> 

<SCRIPT LANGUAGE= • Li veSc r ipt II> 
<!--
//Author: Jason Anguiano 
//Date: February 25, 1996 
//Email: jangui@csn.net 
//Program: Codebreaker for the World Wide Web. Written in JavaScript 

I* This Javascript can be re-used or modified, if credit is given in 
the source code. Thank you. 

*I 

I cannot be held responsible for any unwanted effects due to the 
usage of this JavaScript or any derivative. No warrantees for usability 
for any specific application are given or implied. 

Sorry about that, ... now where were we? 

II 
//Declarations 
//======================================================================= 

var play= 1; 
var win = 0; 
var view = 2; 
var lose = 3; 
var game_state =win; //Initially so that the player cannot play until 

//a new game is started 
II- - - - - - - -

var empty = 6; 
var black = 7; 
var white = 8; 

II- - - • • - - -
var guess_num; 

II- - · · - - · · · 
//Keeps track of the current guess 



Appendix B J avaScripts from Around the Web 301 

//guess is the base for a two dimensional array. 
//Each item in the guess array is actually another array of four items. 
//The number 10 is used because the player gets only 10 guesses. 
guess= new MakeArray(10); 
answer= new MakeArray(4); 

//======================================================================= 

//Create a random number between 0 and 
function RandomNumber0_1() { 

today= new Date(); //Seed 
myseed = today.getTime() % 1000; //cut the number down in size 

return Math.abs(Math.sin(myseed)); 

//======================================================================== 
//Create a random number 
function RandomNumber() { 

today= new Date(); //Seed 
return today.getTime()% 1000; //cut the number down in size 

} 

//======================================================================== 
//This function will create an array of size n 
function MakeArray(n) { 

} 

this.length = n; 
for (var i = 1; i <= n; i++) { 

this[i] = 0 } 
return this 

//======================================================================== 
//display_item displays an image file in a certain frame based on two 
//variables. loc is the location of the frame, and x is the image to 
//display 
function display_item(loc, x){ 

if (X == 0) 
parent.frames[loc].location.href="square3d.htm"; 

else if (x == 1) 
parent.frames[loc].location.href="cir3d.htm"; 

else if (x == 2) 
parent.frames[loc].location.href="arrow3d.htm"; 

else if (x == 3) 
parent.frames[loc].location.href="pent3d.htm"; 

else if (x == 4) 
parent.frames[loc].location.href="hex3d.htm•; 

else if (x == 5) 
parent.frames[loc].location.href="octgn3d.htm•; 



302 J avaScript for Macintosh 

else if (x == empty) 
parent.frames[loc].location.href="slotempt.htm"; 

else if (x == black) 
parent.frames[loc].location.href="blckpeg.htm"; 

else if (x == white) 
parent.frames[loc].location.href="whtpeg.htm"; 

return true; 

//======================================================================== 
//calculate_pegs evaluates the guess against the actual answer and 
//determines the number of black, white, or no pegs to be displayed. 
function calculate_pegs(mynum){ 

black_num = 0; 
white_num = 0; 

//A temporary array is created to hold the anwser. This allows the 
//answer to be modified during calculation without destroying the 
//actual answer. 
temp_answer =new MakeArray(4); 
for(var i=1; i<=4; i++) 

temp_answer[i] = answer[i]; 

//How many white pegs? 
for(i=1; i<=4; i++){ 

for(var j=1; j<=4; j++){ 
if (guess[mynum][i) == temp_answer[j]){ 

white_num++; 
temp_answer[j] = -1; 
break; 

//How many black pegs? 
for(i=1; i<=4; i++){ 

if (guess[mynum][i] == answer[i]){ 
white_num--; 
black_num++; 

//Display the black and white answer pegs 
var temp_black = black_num; 
var temp_white = white_num; 
for(i=5; i<=B; i++){ 



} 

Appendix B J avaScripts from Around the Web 303 

if (temp_black>0){ 
display_item(i, black); 
temp_black--; 

else if (temp_white>0){ 
display_item(i, white); 
temp_white--; 

else 
display_item(i, empty); 

//Change the state of the game to win if there are 4 black pegs. 
if (black_num == 4){ 

game_state = win; 

return true; 

//======================================================================== 
//Show the appropriate four graphic files according to the entire guess 
//by the player. mynum represents which guess is to be displayed. 
function display_guess(mynum){ 

//display the current guess 
for(var i = 1; i <=4; i++){ 

display_item(i, guess[mynurn][i]); 
} 
//Recalculate the pegs 
if (mynum != guess_num){ 

calculate_pegs(mynurn); 
} 
else{ 

calculate_pegs(mynum - 1); 
alert(~These answer pegs represent the previous guess"); 

return true; 

//======================================================================== 
//Using drop-down boxes is probably not the best way to select a guess to 
//view. I did it this way as an example of how to use drop-down boxes and 
//the selectedindex property. 
function change_view(form){ 
form.Shape.select 
if ((game_state ==play): :<garne_state ==view)){ 

//Cant select beyond the current guess ... 
if((form.MyGuess.selectedindex) < (guess_num-1)){ 



304 J avaScript for Macintosh 

} 

var guess_view = form.MyGuess.selectedindex; 
guess_view++; 
display_guess(guess_view); 
game_state = view; 

// ... If they do, then set the view back to the current guess 
else{ 

form.MyGuess.options[guess_num-1].selected =true; 
display_guess(guess_num); 
game_state = play; 

} 
} 

} 

//======================================================================== 
//Randomly select an answer 
function make_answer(my_array){ 

} 

var i; 
for(i=1; i<=4; i++){ 

my_array[i] = parseint(RandomNumber()%7); //seven possible choices 

//now timeout for a random period of time before selecting 
//another answer 
var mycount = parseint(RandomNumber0_1()*1000); 
for(var j = 0; j < mycount; j++); 

return true; 

//======================================================================== 
//The player has guessed a shape for a certain location. Display that shape 
//in location i. 
function guess_shape(form,i){ 
if (game_state == play){ 

guess[guess_num][i] = form.Shape.selectedindex; 
display_item(i, guess[guess_num][i]); 
return true; 

return false; 
} 

//======================================================================== 
//The player submitted a four code combination guess. Now, analyze the 
//guess and give the player feedback. 
function guess_answer(form){ 
if (game_state == play){ 



Appendix B J avaScripts from Around the Web 305 

//Calculate the black and white pegs 
calculate_pegs(guess_num); 

//Did the player win? 
if (game_state == win){ 

alert("You win!"); 
return true; 

//The player did not win ... 
else{ 

//Increment the guess number 
guess_num++; 

//Did the player exceed the maximum number of guesses? 
if (guess_num > 10){ 

alert("Sorry, Game Over .. Try Again! Here is the .correct combination:"); 
game_state = lose; 
//Show the winning combination 
for(var i =1; i <=4; i++){ 

display_item(i, answer[i]); 

return true; 

//The game continues ... 
//copy contents of previous guess into next guess 
for(i=1; i<=4; i++){ 

guess[guess_num][i] = guess[guess_num · 1][i]; 

form.MyGuess.options[guess_num-1].selected =true; 
return true; 

return false; 
} 

//======================================================================== 
function new_game(form){ 

game_state = play; 
guess_num = 1; 

//Select the first guess from the drop down box 
form.MyGuess.options[guess_num-1].selected =true; 



306 J avaScript for Macintosh 

//Create the two-dimensional guess array 
for{var i =1; i <=10; i++){ 

guess[i} =new MakeArray{4); 
for{var j =1; j<=4; j++){ 

guess[i}[j] =empty; 

//Initialize the answer array 
for{i=1; i<=4; i++){ 

answer[i} = empty; 

//Clean the board 
for{i=1; i<=8; i++){ 

display_item{i, empty); 

//randomly pick an answer 
make_answer{answer); 

return true; 

//======================================================================== 
//Display the help file 
function showhelp(form){ 

parent.frames[0}.location.href="codehelp.htm• 
} 

//======================================================================== 
II··> 
</SCRIPT> 

</HEAD> 
<80DY> 
<CENTER><IMG SRC="code.gif" WIDTH=201 HEIGHT=30></CENTER> 

<FORM NAME = "WWWCB"> 
<CENTER> 

<INPUT TYPE="button• name="NewGame• value="New Game• onclick="new_game{this.form)"> 
<INPUT TYPE="button• name="Help1" value="How to play• 
-.onclick="showhelp{this.form)"><BR> 
<B>View a previous guess: </B><SELECT NAME="MyGuess"> 
<OPTION> 1 
<OPTION> 2 
<OPTION> 3 



<OPTION> 4 
<OPTION> 5 
<OPTION> 6 
<OPTION> 7 
<OPTION> 8 
<OPTION> 9 
<OPTION> 10 
</SELECT> 

Appendix B JavaScripts from Around the Web 307 

<INPUT TYPE="button" name="MyView" value="View• onclick="change_view(this.form) 11 > 
<BR> 
<SELECT NAME="Shape 11 > 
<OPTION> Square 
<OPTION> Circle 
<OPTION> Arrow 
<OPTION> Pentagon 
<OPTION> Hexagon 
<OPTION> Octagon 
<OPTION> Empty 
</SELECT> 
<BR> 
<PRE> 
<INPUT TYPE="buttonll name="Guess1 11 value=IIGuess 1" onclick="guess_shape(this.form,1)"> 
•<INPUT TYPE="button" name="Guess2" value="Guess 211 onclick="guess_shape(this.form,2)"> 
•<INPUT TYPE= • button 11 name=" Guess3 II value=" Guess 311 onclick= 1' guess_ shape (this. form, 3) • > 
•<INPUT TYPE="button" name="Guess4" value="Guess 4" onclick="guess_shape(this.form,4)"> 
</PRE> 
<INPUT TYPE="button" name="Guess• value="Try it" onclick="guess_answer(this.form)"> 
</CENTER> 
</FORM> 

</BODY> 
</HTML> 

Rain bow Text 
http:/ /www.c2.org/-andreww/javascript/lib/srcjcolortext.html (small example) 

http:/ jwww.tfh-berlin.de/-maze/index.html (part of larger Web page) 

Mathias Hoeschen, maze@tfh-berlin.de 

The FadeText() function makes the text look rainbow-colored. This is done by fad­
ing the R, G, and B parts of the text color in and out with some math functions. 

<HTML> 



308 J avaScript for Macintosh 

<HEAD> 
<TITLE>Untitled<ITITLE> 

<SCRIPT LANGUAGE= ' JavaScript ' ><!--

II Feel free to modify or copy this Script for non-commercial use, but please leave 
•this comment in the code. 
II To use the Fade()-function in HTML-code, always include the HTML-comment-tags to 
•the output-string!!! 
II This is not necessary for Browsers understanding Java, but to display t he text in 
•other browsers too, t hey are needed! 
II Nice trick, eh? 
II 
II written and by (c) Mathias Hoeschen, Tel. IFAX: +49 30 6283675, maze@tfh · berlin.de, 
Home: http : llwww.tfh -berlin.de l-maze l 
II on 20.Feb. 1996 

function MakeArray(n){ 
this.length=n; 
for(var i=1; i <=n; i++) this[i)=i-1; 
return this 

hex=new MakeArray(16); 
hex[ 11) ='A' ; hex[12) =' B' ; hex[13)= ' C' ; hex[14) ='D' ; hex[15) =' E' ; hex[16) =' F' ; 

f unction ToHex(x){ 
var high=x116; 
var s=high+ '' ; 
s=s.substring(0,2); 

II Converts a int to hex (in the range 0 . .. 255) 

// 1. 
112. These three lines do the same as a 'trunc ' -

function (because there is no trunc, unfortunately!) 
high=parseint(s,10); 113. 
var left=hex[high+1); II left part of the hex-value 
var low=x-high*16; II calculate the rest 
s=low+'' ; 11 1. 
s=s.substring(0,2); 112. see above 

//3. l ow=parselnt(s,10); 
var right=hex[low+1); II right part of the hex-value 



var string=left+""+right; 
return string; 

function Fade(text){ 

Appendix B JavaScripts from Around the Web 309 

II put the high and low together 

text=text.substring(3,text.length·4); II removes the HTML-comment-tags 
color_d1=255; II can be any value in 'begin' ... 255 
mul=color_d11text.length; 
for(i=0;i<text.length;i++){ 

color_d1=255*Math.sin(i/(text.length/3)); II "=255-mul*i" to fade out, 
~·=mul*i" to fade in, or try "255*Math.sin(i/(text.lengthl3))" 

color_h1=ToHex(color_d1); 
color_d2=mul*i; 
color_h2=ToHex(color_d2); 
document.write("<FONT 

~COLOR=' #FF"+color _h1+color _h2+" '>"+text. substring(i, i +1 )+'</FONT>'); 
} 

} 

//··></SCRIPT></HEAD> 
<body bgcolor=black> 
<SCRIPT LANGUAGE="JavaScript"><!·· 

Fade("··>Now is the time for all good men to come to the aid of their country 
~ ........ <I··"); 

//··></SCRIPT><BR> 

</BODY> 
</HTML> 



INDEX 

Symbols 
""(double quotes) string literals, 64 
"(single quotes) string literals, 64 
! (exclamation point} 

boolean negation operator, 83 
HTML comment tag, 58 

!= not equal to operator, 82-83 
%(percent sign) modulus operator, 81 
& (ampersand) 

bitwise AND operator, 81 
logical AND operator, 83 

&& evaluation AND operator, 83 
&=AND assignment operator, 83 
<< left shift operator, 81 
== equal to operator, 83 
>> right shift operator, 81 
>>> zero-fill right shift operator, 81 
?: ternary operator, 83 
I= OR assignment operator, 83 
II evaluation OR operator, 83 
11 (caret symbol} 

bitwise XOR operator, 81 
logical XOR operator, 83 

11= XOR assignment operator, 83 
* (asterisk) multiplication operator, 81 
*I JavaScript comment delineator, 61 
+ (plus sign) addition operator, 81 
++(double plus sign} increment 
operator, 79-80 

- (minus sign) 

subtraction operator, 81 
unary negation operator, 79-80 

--(double minus sign) decrement 
operator, 79-80 
I (forward slash) division operator, 81 
I I (forward slashes) 

HTML comment tag, 58 
JavaScript comment delineator, 61 

< (left angle bracket} less than opera­
tor, 82 
<= less than or equal to operator, 82 
=(equal sign) 

assignment operator, 77 
declaring variables, 72 

== equal to operator, 82 
> (right angle bracket) greater than 
operator, 82 
>=greater than or equal to operator, 
82 

\ (backslash) string literals, 
nonprinting characters, 68 

_(underscore character) identifiers, 68 
{} (curly braces) code blocks, 89 
I (vertical bar) 

bitwise OR operator, 81 
logical OR operator, 83 

- (tilde) bitwise complement operator, 
79-80 
1040EZ Income Tax Return Web site, 
10 



312 J avaScript for Macintosh 

A 
<A> HTML tag, 180 
<AHREF> HTMLtag, 151 
abs() method, 155 
abstract keyword, 70 
acos() method, 155 
ACTION attribute (<FORM> HTML 
tag), 194-195 

action property, 195 
addition ( +) operator, 81 
addURLEntry() method, 130, 133 
Advanced Research Projects Agency 
(ARPA), 19 

Alert dialog box, forms verification, 
217 

alert() method, 220 
ALINK attribute (<BODY> HTML 
tag), 171 

alinkColor property, 174-175, 177 
The Amazing J avaScript Maze, code 
listing, 287 

ampersand ( & ) 
bitwise AND operator, 81 
logical AND operator, 83 

anchor objects, 170, 231 
anchor() method, 150 
anchors (Web pages), hypertext links, 
179-180 

anchors property, 174, 179-180 
AND assignment(&=) operator, 83 
Andreessen, Marc, 23 
applets 

accessing, 46 
Java 

declaring as objects, 41 
Hello, World!, 37-42 

applications 
JavaScript 

1 040EZ ltzcome Tax Retunt, 10 
ColorCenter, 6-7 
HTMLjive, 8-9 
Mortgage Scmario Analyzer, 11 
Q]tarterback Passing Rater, 12 
SuperSearch, 7-8 
Web pages, 6, 9, 13 

JavaScript editors, BBEdit, 92 

Web browsers 
Internet Explorer, 43 
Mosaic, 21 
Netscape Navigator, 42, 58 

architecture, tokens, 59-60 
arguments variable, 104-105 
arithmetic expressions, 78-83 
ARPA (Advanced Research Projects 
Agency), 19 

ARPAnet, 19 
arrays 

arguments variable, l 05 
creating, 123-126 
defined,123 
functions, declaring, 124 
identifier statement, 124 
indices, compared to C++ array indices, 
125 

objects, indexing, 199 
options, select objects, 211 

Arto's String Calculator, code listing, 
268-274 

asin() method, 155 
atan() method, 155 
Attributes group (properties), 
Netscape Navigator document object, 
175 

B 
<B> HTML tag, 150 
back() method, 225 
BACKGROUND attribute (<BODY> 
HTML tag), 171 

backgrounds (Web pages), color, 17 6 
backslash (\) string literals, 
nonprinting characters, 68 

<BASEFONT> HTML tag, 150 
BBEdit Web site, 92 
Berners-Lee, Tim, 21 
BGCOLOR attribute (<BODY> 
HTML tag), 171 

bgColor property, 173-175, 178 
BgColor Server Web site, 177 
<BIG> HTML tag, 150 
big() method, 150 
binary integer operators, 80 



bitwise 
AND ( & ) operator, 81 
complement (-) operator, 79 
OR (I) operator, 81 
XOR (")operator, 81 

<BLINK> HTMLtag, 150 
blink() method, 150 
Blur event, 107 
blur property, 208 
blur() method, 213, 215 
<BODY> HTML tag, 171, 218 
bold() method, 150 
boolean 

control flow statements 
if, 89 
while, 89 

if-else statements, 93 
keyword, 70 
literals, 63, 66 
logical operators, 83-84 
negation (!) operator, 83 

break 
keyword, 70 
statement, control flow, 89 

loops, 99-100 
browsers, see Web browsers 
button objects, 204-205, 232 
byte keyword, 70 
bytecodes, 32, 37 

c 
Car Cost Calculator, code listing, 
275-280 

caret(") 
bitwise XOR operator, 81 
logical XOR operator, 83 

case keyword, 70 
casting variables, 77-78 
catch keyword, 70 
ceil() method, 156 
CERN (European Laboratory for 
Particle Physics), 21 

CGI, (Common Gateway Interface), 
42 

Change event, 108 
char keyword, 70 

characters 
nonprinting, 68 
separators, 71 
string literals, 67-68 

charAt() method, 150 

Index 313 

checkbox objects, 205-206, 232 
checked property, 205, 208 
Clark, Jim, 23 
class keyword, 70 
classes, 34 

dynamically loading, 36 
Java, OOP, 35 

clear directory.html ftle, 127 
clear document.html rue, 127 
clear() method, 188, 190 
clearTimeout() method, 222 
Click event, 108 
click() method, 205-206, 209 
close() method, 188, 190, 221 
code 

comments, 57 
embedding, 55 
JavaScript 

interactions 1vith HTML, 174 
loading in HTML files, 57 
programming organization, code 
blocks, 89-93 

see also scripts 
color (Web pages), formatting, 
176-178 

color properties, Netscape Navigator 
document object, 176-178 

ColorCenter Web site, 6-7 
COLS attribute ( <TEXTAREA> 
HTML tag), 214 

columns, aligning, 148 
comments 

J avaScript source code, HTML files, 
57-58 

Microsoft commenting style, 62 
programming 

01:!Janization, 89-93 
style, 60-63 

Sun Microsystems commenting style, 
62 

Common Gateway Interface (CGI), 42 
concatenation (strings), operators, 85 
confirm dialog box, forms, 221 



314 J avaScript for Macintosh 

confirm() method, 221 
The Connecting Point: WWW 
Codebreaker, code listing, 298 

const keyword, 70 
constructors 

Date object, 160 
functions, 121-123 
objects, properties, 114 

continue keyword, 70 
continue statement, control flow, 89 

loops, 99-100 
control flow, defined, 88 
control flow statements, 87-89 

object properties, accessing, 115 
cookie property, 174, 182-186 
cookies, 182-186 
cos() method, 156 
counter variables, loops, 97 

debuggi·ng, 98 
Craig's JavaScript Page, code listing, 
250-260 

createFrames() function, 138 
curly braces ( { } ) code blocks, 89 

D 
Date object, 160 

constructors, 160 
methods, 160-164 

date objects, 233 
Dave's Tekno Dive Web site, 15 
debugging loops, counter variables, 98 
decimal integer literals, 64 
decrement ( --) operator, 79 
default keyword, 70 
defaultChecked property, 206, 208 
defaultSelected property, 211 
defaultStatus property, 219 

. defaultValue property, 207, 
213-214 

dialog boxes 
Alert, 217 
confirm, 221 

directories (Web pages), creating, 
126-143 

directory.html file, 127 
display() method, 130, 136 
displayRoot() function, 134, 219 

division(/) operator, 81 
do keyword, 70 
document object, 169, 234 

attributes, 171-172 
methods, 186-191 

document.write() method, 131, 187 
document.writeln() method, 187 
documents,Frr~,171 

domain names (cookies), 
accessing, 183 

dot operator, object properties, 115 
dot property, 148 
double keyword, 70 
double-precision floating-point num-
hers (Math object methods), prob­
lems, 159 

E 

E property, 154 
e-mail, 21, 27 
Ethernet, 19 
Elements group (properties), Netscape 
Navigator document object, 175 

elements property, 195 
else keyword, 70 
else statement, control flow, 89 
encoding property, 195 
ENCTYPE attribute (<FORM> 
HT~ tag), 194-195 

equal sign ( =) 
assignment operator, 77 
declaring variables, 72 

equal to operator ( == ), 82-83 
errors (variables), duplicate names, 
73-75 

escape() method, 165, 183 
eval() method, 164 
evaluation AND (&&) operator, 83 
evaluation OR <II> operator, 83 
event handlers 

functions, 100, 107-109 
HTML attributes, 108 
onBlur, 212, 214-215 
onChange, 212,214-215 
onCiick, 205-206,209-210 
onFocus,212,214-215 
onLoad, 191 



onSelect, 214-215 
onUnLoad, 191 
windows objects, 223 

events 
Blur, 107 
Change, 108 
Click, 108 
Focus, 107 
handling,45 
MouseOver, 108 
Select, 108 

example1.html file, 40 
exceptions (handling), loops, 100 
exp() method, 156 
expressions, arithmetic, 78-83 
extends keyword, 70 

F 
false keyword, 70 
FGCOLOR attribute (<BODY> 
HTML tag), I7I 

fgColor property, I7 4-I75, I78 
files 

Hello, World!, 38 
loading from local disks, Netscape 
Navigator, 38 

MagicCookie, 179 
source code, loading in HTML files, 
57 

fmal keyword, 70 
finally keyword, 70 
FirstPerson, Inc., 29 
fiXed() method, ISO 
float keyword, 70 
floating-point 

integers, 65-66 
literals, 63 
numbers (double-precision), problems 
with Math object methods, 159 

operators, 85 
floor() method, I 56 
Focus event, I 07 
focus property, 208 
focus() method, 2I3, 2IS 
<FONT> HTML tag, I 50 
fontcolor() method, 1SO 
<FONTSIZE> HTML tag, I50 

fontsize() method, ISO 
for keyword, 70 
for loops, 96-98 
for statement, 89, 96-98 
for-in statement, 116 

Index 315 

foregrounds (Web pages), color, I76 
<FORM> HTML tag, I70, I8I, I94 
form object, 170, 235 
formatting 

color, 176-178 
text, 106 

forms 
accessing information, 198-203 
elements, creating, 196 
marquees, creating, 201 
nested, problems, 58 
objects, 203-204 

referencing by name, 199-200 
persistence, 200, 203 
selection lists, creating, 210-212 
verifying entries, 216-217 
Web pages, counting, 181-182 

forms object, I94-I9S 
methods, 197-198 

forms property, I7 4, I79, 
181-182 

forward() method, 225 
frame objects, I69, 236 
frames, 132, 136 
frames property, 2I9 
<FRAMESET> HTML tag, 218 
fromlndex argument, 15I 
function keyword, 70 
function statements, declaring func­
tions, 101 

functions, 4S, 87 
addURLEntry, 133 
arguments, variable length, 
104-105 

compared to methods, 117 
constructors, creating objects, 121 
cookie entries, creating, 184-185 
cookies, 183 
createFrames( ), 138 
creating, 100-102, 121 
declaring,101 

creating arrays, 124 
placement, 102 



316 J avaScript for Macintosh 

defined, 100 
defining, 56 
displayRoot(), 134, 219 
escape(), 183 
event handlers, 100, 107-109 
execution, 59 
Gookie, 184 
gookie Val, 184 
Hello, World!, 47-48 
identifiers, 68-69 
JavaScript, built in, 146-147 
makeArray(), 128, 179 
relationship to OOP, 100 
return keyword, 102 
scripts, calling, 105-107 
spacer, 149 
toString(), ll8, 122 
unEscape(), 183 
var keyword, variable 
precedence, 75 

G 
garbage collection, 34 
getDate() method, 161 
getDay() method, 161 
getHours() method, 161 
getMinutes() method, 161 
getMonth() method, 161 
getSeconds() method, 161 
getTime() method, 161 
getTimezoneOffset() method, 161 
getYear() method, 162 
go() method, 225 
Gookie function, 184 
gookie Val function, 184 
goto keyword, 70 
Graphical User Interfaces (GUis), 23 
greater than(>) operator, 82 
greater than or equal to(>=) operator, 
82 

GUis (Graphical User Interfaces), 23 

H 
<HEAD> HTML tag, 56, 173 

declaring functions, 102 
head sections (HTML files), embed­
ding J avaScript code, 56 

HEIGHT attribute ( <lMG> HTML 
tag), 58 

Hello, World!, 37-42 
J avaScript function, 4 7-48 

Hello, World! Web page, 24-28 
Hello, World!.html file, 24 
hexadecimal integer literals, 64 
hidden objects, 206-207, 237 
history objects, 169, 224-225, 238 
<HREF> HTML tag, 132 
.html files 

clear directory.html, 127 
clear document.html, 127 
directory.html, 127 
examplel.html, 40 
Hello, World!.html, 24 

HTML (HyperText Markup Lan­
guage), 19 

attributes, document object, 171 
code 
b~ttton objects, 204 
checkbox objects, 205 
hidden objects, 206 
passJVord objects, 207 
radio button objects, 208 
reset objects, 209 
select objects, 210 
submit objects, 212 
text objects, 213 
textarea objects, 214 

comment tags, 58 
compared to Java, 39 
declaring functions, placement in files, 
102 

documents, 171 
docummt object properties, 179 

e-mail, 27 
editors, 92 
event handler attributes, 108 
files 

Hello, World!, 38 
]avaScript ftmctiom, 47 

forms, creating, 196 
GUis, 23 
Hello, World! Web page, 24-28 
hypertext links, 22, 27 
images, displaying, 26 
JavaScript, 55-56 

compared to ]m,a, 49 



source code, commenting 
out, 57-58 

multimedia, 23 
Netscape Navigator 

dependent objects, 169 
]avascript, 58 

platform independence, 22 
portability, 25 
protocol implementation, 23 
tags, see tags, HTML 
Web browsers, JavaScript suppon, 172 
Web pages, 22-23 

creating directories, 126-143 
]avaScript enhanced, 13 

HTMLjive Web site, 8-9 
hypertext links 

anchor objects, 170 
anchors, Web pages, 179-180 
HTML, 22,27 
objects, Netscape Navigator, 170 
Web pages, 180-181 

HyperText Markup Language 
(HTML), 19 

I 

<I> HTML tag, 151 
identifier statement, arrays, 124 
identifiers 

functions, 68-69 
keywords, 70 
programming style, 69 
variables, 68-69 

ifkeyword, 70 
if statement, 67 

control flow, 89 
if-else statement, 93 
images (displaying), Web pages, 26 
<IMG> HTML tag, 58 
implements keyword, 70 
import keyword, 70 
in keyword, 70 
increment ( ++) operator, 79 
indentation, programming style, 
91-93 

index property, 209, 211 
indexOf() method, 151 
indices 

Index 317 

arrays 
compared to C++ array indices, 125 
objects, 199 

properties, accessing, 115 
<INPUT> HTML tag, 204-205 
instanceof keyword, 70 
instances, objects, 113-120 
int keyword, 70 
integer literals, 63-65 
interface keyword, 70 
Internet, 18 

ARPA, 19 
ARPAnet, 19 
backbones, NSFnet, 20 
e-mail, 21 
history, 19-20 
hosts, growth, 20 
newsgroups, 21 
protocols, 18 

TCP/IP, 19 
security, java safeguards, 35 
WWW, protocol development, 21 

Internet Explorer Web browser, 43 
interpreters (Java), security, 34 
isNaN() method, 165 
italics() method, 151 

J 
Java, 17, 31-32 

applets, declaring as objects, 41 
bytecodes, 37 
capabilities, 226-228 
classes 

dynamically loading, 36 
security, 34 

compared to C++, 37 
compared to HTML, 39 
compared to JavaScript, 48-50 
Hello, World!, 37-42 
history, 28-30 

*7 (star seven), 28 
images, displaying in Web pages, 26 
interpreter, security, 34 
J avaScript, relationship, 43 
memory 
garbage collection, 34 
management, 33-34 



318 J avaScript for Macintosh 

multithreading, 36 
OOP, 35-36 
performance, 36-37 
portability, 32-33 
programming, 33-34 
security, 34-35 
tags, 27 
variables, declaring, 72 
Virtual Machine, 32 

Java Development Kit (JDK), 62 
J avaScript, 17, 42-44 

applets, accessing, 46 
applications 

1040EZ Income Tax Return, 10 
ColorCenter, 6-7 
HTMLjive, 8-9 
Mortgage Scenario Analyzer, 11 
Quarterback Passing Rater, 12 
SuperSearch, 7-8 

architecture, tokens, 59-60 
beta release, 43 
code, embedding in HTML 
files, 55-56 

compared to Java, 48-50 
compared to OOP, 112 
control flow statements, 87 
editors, BBEdit, 92 
event handling, 45, 107-109 
forms, problems with nested, 58 
functions, 45, 87 

built in, 146-147 
defining, 56 
Hello, World!, 47-48 

images, displaying in Web pages, 26 
Java, relationship, 43 
Netscape Navigator, HTML, 58 
objects 

built in, 145-147 
creating, 120-121 

programming, 44-45 
interactions 1vith HTML code, 174 
object-based, 46-47 
objects, 111-112 
style, 54 

tables, problems with nested, 58 
tags, 27 
text output, Web browsers, 59 

variables, declaring, 45 
Web browsers, 43 

support, 50, 172 
Web pages, applications, 6, 9, 13 

JavaScript Noughts & Crosses, code 
listing, 295-298 

JDK (Java Development Kit), 62 
Julian Day, code listing, 266-268 

K-L 
keywords (listing), 70 

lastlndexOf() method, 151 
lastModified property, 174-175, 178 
left shift operator ( <<), 81 
length property, 209, 211, 225 

String objects, 148-149 
less than ( <) operator, 82 
less than or equal to ( <=) operator, 82 
LINK attribute (<BODY> HTML 
tag), 171 

link objects, 170, 238 
link() method, 151 
linkColor property, 174-175, 177 
links, see hypertext links 
links property, 174, 179-181 
literals 

boolean, 63, 66 
compared to types, 64 
floating point, 63, 65-66 
integer, 63-65 
numbers, 63 
string, 64,67-68, 147 

LiveScript (J avaScript beta release), 43 
LN10 property, 154 
LN2 property, 154 
location objects, 169, 225-226, 239 
location property, 175, 178 
log() method, 156 
logical AND(&) operator, 83 
logical operators, boolean types, 83-84 
logical OR (I) operator, 83 
logical XOR (") operator, 83 
long keyword, 70 
loops 

break statements, 99-100 
continue statements, 99-100 



counter variables, 97 
debu.!J!Jing, 98 

endless, 97 
exiting, 99-100 
for, 96-98 
Math object, methods, 158-159 
statement blocks, 90-93 
while, 98-99 

M 
MagicCookie file, 179 
makeArray() function, 128, 179 
marquees (forms), creating, 201 
Math object, 153-159, 239 

methods, 155-159 
properties, 154-15 5 

max() method, 156 
memory, 33-35 
METHOD attribute (<FORM> 
HTML tag), 194-195 

method property, 195 
methods 

abs(), 155 
acos(), 155 
addURLEntry( ), 130 
alert(), 220 
anchor(), 150 
asin(), 155 
atan(), 155 
back(), 225 
big(), 150 
blink(), 150 
blur(), 213, 215 
bold(), 150 
calling, 117-118 
ceil(), 156 
char At(), 150 
clear(), 188, 190 
clear Timeout(), 222 
click(), 205-206,209 
close(), 188, 190, 221 
compared to functions, 117 
confirm(), 221 
cos(), 156 
Date object, 160-164 
defined,42 
display(), 130, 136 
document objects, 186-191 

documcnt.write(), 131, 187 
documcnt.writeln(), 187 
escape(), 164 
cval(), 164 
cxp(), 156 
fixed(), 150 
floor(), 156 
focus(), 213,215 
fontcolor( ), 150 
fontsize(), 150 
forms object, 197-198 
forward(), 225 
gctDatc(), 161 
getDay( ), 161 
getHours(), 161 
getMinutes(), 161 
getMonth(), 161 
getScconds(), 161 
getTime(), 161 
getTimezoneOffset( ), 161 
getYear(), 162 
go(), 225 
index Of(), 151 
invoking, 148 
isNaN(), 164 
italics(), 151 
lastlndexOf( ), 151 
link(), 151 
log(), 156 
Math object, 155-159 

loops, 158-159 
max(), 156 
min(), 156 
objects, 117-118 

adding, 122-123 
history, 225 
windows, 220-224 

open(), 188, 190, 221 
parse(), 162 
parscFloat(), 164 
parselnt(), 164 
pow(), 156 
prompt(), 222 
random(), 156 
round(), 156 
select(), 214-215 
setDate(), 161 
setHours(), 161 
sctMinutes(), 161 

Index 319 



320 JavaScript for Macintosh 

setMonth(), 161 
setSeconds(), 161 
set Time(), 161 
set Timeout(), 222 
setYear(), 161 
sin(), 156 
small(), 151 
sqrt(), 157 
strike(), 151 
String objects, 149-153 
sub(), 151 
submit(), 197 
substring(), 151, 202 
sup(), 151 
tan(), 157 
timeout(), 202 
toggle(), 130 
toGMTString(), 162 
toLocaleString( ), 162 
toLowerCase(), 152 
toString(), 162 
toUpperCase(), 148, 152 
unescape( ), 164 
UTC(), 162 
write(), 190 
writeln( ), 149 

Microsoft commenting style, 62 
min() method, 156 
minus sign (-) 

subtraction operator, 81 
unary negation operator, 79-80 

mod.Date parameter, 129 
modulus(%) operator, 81 
Mortgage Scenario Analyzer Web site, 
11 

Mosaic Web browser, 21 
MouseOver event, 108 
Mr. Rodgers' World of World Geogra­
phy Web site, 13-14 

MUD, code listing, 280-283 
multimedia 

HTML,23 
images, displaying in Web pages, 26 

MULTIPLE attribute (<SELECT> 
HTML tag), 210 

multiplication ( *) operator, 81 
multithreading, 36 

N 
NAME attribute 

<FORM> HTML tag, 194 
<INPUT> HTML tag, 204-205 
<SELECT> HTML tag, 210 
<TEXTAREA> HTML tag, 214 

name parameter, 129 
name property, 205-207, 209, 211, 
213,215 

National Center for Supercomputing 
Applications (NCSA), 21 

National Science Foundation (NSF), 
20 

native keyword, 70 
Navigator objects, 240 
NCSA (National Center for 
Supercomputing Applications), 21 

Netscape Navigator, 18 
cookie, 182-186 
files, loading from local disks, 38 
frames, 132 
J avaScript, 42 

HTML files, 58 
objects, 167-169 
TARGET HTML argument, 132 

Netscape Web site, 132 
networks 

routing, Ethernet, 19 
security, Java safeguards, 35 

new keyword, 70 
newsgroups, 21 
not equal to (!=) operator, 82-83 
NSF (National Science Foundation), 
20 

NSFnet, 20 
null keyword, 70 
numbers 

calculations, floating point compared 
to integers, 66 

floating-point operators, 85 
literals, 63-68 

0 
Object Oriented Programming, see 
OOP 

objectName parameter, 129 



objects 
anchor, 170, 231 
array indexing, 199 
button, 204-205, 232 
checkbox, 205-206, 232 
creating, 120-121 
current, referencing with this state-
ment, 120 

Date, 160 
date, 233 
defined, 112 
document, 169, 171, 234 
dot property, 148 
form, 170, 235 
forms, 194-195,203-204 

referencing by name, 199-200 
frame, 169,236 
hidden, 206-207,237 
history, 169, 224-225,238 
instances, 113-120 
Java, declaring applets, 41 
JavaScript 

built in, 145-147 
programming, 111-112 

link, 170, 238 
location,169,225-226,239 
Math, 153-159, 239 
methodology, J avaScript compared to 
Java, 49 

methods, 117-118 
adding, 122-123 

Navigator, 240 
Netscape Navigator, 167-168 
object-based programming, 46-47 
password, 207-208, 241 
properties, 114-117 

adding, 121-122 
window object, 169 

radio, 208-209, 242 
references, J avaScript compared to 
Java, 50 

referencing, with statement, 119 
reset, 209-210, 242 
select, 210-212, 243 
self, 169 
static, accessing properties, 119 
String, 147-153,244 
submit, 212-213, 245 
text, 213-214, 245 

textarea, 214, 246 
top, 169 
URLEntry, 128 
window, 218, 247 

Netscape Navigator, 168 
windows, 218, 220-224 

octal integer literals, 64 
onBlur event handler, 212, 
214-215 

Index 321 

onChange event handler, 212, 
214-215 

onClick event handler, 205-206, 
209-210 

onFocus event handler, 212, 214-215 
onLoad event handler, 191 
onSelect event handler, 214-215 
on UnLoad event handler, 191 
OOP (Object Oriented Programming), 
35-36 

compared to J avaScript, 112 
Java, 35-36 
J avaScript functions, 100 

open() method, 188, 190, 221 
operators 

binary integer, 80 
dot, 115 
floating-point numbers, 85 
logical, boolean types, 83-84 
order of precedence, 75-77 
relational integer, 82 
strings, 85-86 
unary integer, 79 

<OPTION> HTML tag, 210 
options array, select objects, 211 
OR assignment (I=) operator, 83 
output (text), <PRE> HTML tag, 59 

p 

package keyword, 70 
parent property, 219 
parse() method, 162 
parseFloat() method, 164 
parselnt() method, 164 
parsing URLs, location objects, 225 
password objects, 207-208, 241 
PI property, 154 
platform independence, 22, 32 
pow() method, 156 



322 JavaScript for Macintosh 

<PRE> HTML tag, 59, 106, 149, 187 
printing (anchors), number in Web 
page, 180 

private keyword, 70 
programming 

arrays, creating, 123-126 
bytecodes, 32 
comments 

Microsoft comme1zting style, 62 
Stm Microsystems commenting style, 62 

control flow, 88-89 
documents, creating, 188 
event handling, 107-109 
exception handling, loops, 100 
functions 

creati1zg, 100-102 
execution, 59 

global variables, altering, 104 
Java, 33-34 
J avaScript, 44-45 

code, interactions Jvith HTML, 174 
literals, 63-64 
loops, 90-9 3 
object-based, 46-47 
objects 

creating, 120-121 
]avaScript, 111-112 

organization, 89-93 
script evaluation, processing order, 59 
source code, J avaScript compared to 
Java, 49 

style, 54 
comments, 60-63 
declaring variables, 73 
identifiers, 69 
i11dentation, 91-93 
syntax, 60 

tokens, 59-60 
variables, strongly typed compared to 
loosely typed, 71 

prompt() method, 222' 
properties 

action, 195 
alinkColor, 174-175, 177 
anchors, 174, 179-180 
bgColor, 173-175, 178 
blur, 208 
checked, 205, 208 

coo~e, 174,182-186 
defaultChecked, 206, 208 
defaultSelected, 211 
defaultStatus, 219 
defaultValue, 207, 213-214 
dot property, 148 
E, 154 
elements, 195 
encoding, 195 
fgColor, 174-175, 178 
focus, 208 
form object, 195 
forms, 174, 179, 181-182 
frames, 219 
index, 209, 211 
invoking, 148 
lastModified, 174-175, 178 
length, 209, 211, 225 
linkColor, 174-175, 177 
links, 174, 179-181 
LN10, 154 
LN2, 154 
location, 175, 178 
Math object, 154-155 
method, 195 
name,205-207,209,211,213,215 
Netscape Navigator document object 

Attributes group, 175 
color, 176-178 
Elementsgroup, 175 

objects, 114-117 
accessing, 115-117 
adding, 121-122 
constructors, 114 
dot operator, 115 
history, 225 
URLs, 114 
windows, 218 

parent, 219 
PI, 154 
referrer, 175 
select, 208 
selected, 211 
selectlndex, 211 
self, 219 
SQRT1_2, 154 
SQRT2, 154 
static objects, accessing, 119 



status, 219 
String objects, 148-149 
target, 195 
text, 211 
title, 175-176, 178 
top, 220 
v~ue,205-207,209,211,213,215 

vlinkColor, 175-177 
window, 220 
window object, 169-171 

protected keyword, 70 
protocols, 18 

development, WWW, 21 
e-mail, HTML, 27 
implementation, HTML, 23 
TCP/IP, 19 

public keyword, 70 

Q-R 
Quarterback Passing Rater Web site, 
12 

radio objects, 208-209, 242 
Rainbow Text, code listing, 309 
random() method, 156 
referrer property, 175 
relational integer operators, 82 
reset objects, 209-210, 242 
return keyword, 70, 102 
return statement, 89 
RGB (red, green, blue) color values, 
formatting Web pages, 177 

right shift operator(>>), 81 
round() method, 156 
routing, Ethernet, 19 
ROWS attribute ( <TEXTAREA> 
HTML tag), 214 

s 
<SCRIPT> HTML tag, 55, 106 
scripting 

CGI, 42 
J avaScript, 42 

scripts 
ev~uation, processing order, 59 
functions, c~ling, 105-107 
Java, 27 

JavaScript, 27 
server-side, 42 
see also code 

security 
Java, 34-35 
memory, classes, 35 

<SELECT> HTML tag, 210 
Select event, 108 
select objects, 210-212, 243 
select property, 208 

Index 323 

select() method, 214-215 
selected property, 211 
selectlndex property, 211 
selection lists, creating, 210-212 
self objects, 169 
self property, 219 
separators, 71 
servers, server-side scripts, 42 
setDate() method, 161 
setHours() method, 161 
setMinutes() method, 161 
setMonth() method, 161 
setSeconds() method, 161 
setTime() method, 161 
setTimeout() method, 222 
setYear() method, 161 
short keyword, 70 
sin() method, 156 
sites, see Web sites 
SIZE attribute (<SELECT> HTML 
tag), 210 

size parameter, 129 
<SMALL> HTML tag, 151 
small() method, 151 
spacer function, 149 
sqrt() method, 157 
SQRT1_2 property, 154 
SQRT2 property, 154 
String object, methods, 149-153 
statements 

blocks, indentation, 91 
break, controlling loops, 99-100 
continue, controlling loops, 99-100 
control flow 

break, 89 
contintte, 89 
else, 89 
for, 89 
if, 89 



324 JavaScript for Macintosh 

return, 89 
while, 89 

for-in, 116 
function, 101 
identifier, arrays, 124 
if, 67 
if-else, 93 
programming organization, 89-93 
this, 120 
while, 98-99 
with, 119, 153 

static keyword, 70 
status property, 219 
<STRIKE> HTML tag, 151 
strike() method, 151 
string literals, 64, 67-68 
String objects, 147-149, 244 
strings, operators, 85-86 
<SUB> HTML tag, 151 
sub() method, 151 
submit objects, 212-213, 245 
submit() method, 197 
substring() method, 151, 202 
subtraction (-)operator, 81 
Sun Microsystems, commenting style, 
62 

<SUP> HTML tag, 151 
sup() method, 151 
super keyword, 70 
SuperSearch Web site, 7-8 
switch keyword, 70 
synchronized keyword, 70 
syntax, programming style, 60 

T 
tables, problems with nested, 58 
tags 

HTML,23 
<A>, 180 
<A HREF>, 151 
<B>, 150 
<BASEFONT>, 150 
<BIG>, 150 
<BLINK>, 150 
<BODY>, 171, 218 
<FONT>, 150 
<FONTSIZE>, 150 
<FORM>, 170, 181, 194 

<FRAMESET>, 218 
<HEAD>, 56, 102, 173 
<HREF>, 132 
<I>, 151 
<IMG>, 58 
<INPUT>, 204-205 
<OPTION>, 210 
<PRE>, 59, 106, 149, 187 
<SCRIPT>, 55, 106 
<SELECT>, 210 
<SMALL>, 151 
<STRIKE>, 151 
<SUB>, 151 
<SUP>, 151 
<TEXTAREA>, 214 
<TITLE>, 178 
<TT>, 150 
<XMP>, 59, 187 

Java, 27 
JavaScript, 27 
Web browsers, 25 

tan() method, 15 7 
TARGET attribute (<FORM> HTML 
tag), 194 

TARGET HTML argument, 132 
target property, 195 
TCP /IP (Transmission Control Pro­
tocol/Internet Protocol), 
19-20 

tempString variable, 148 
ternary(?:) operator, 83 
Test Your Response Time, code listing, 
283-287 

text 
columns, aligning, 148 
tormatting, Web pages, 106 
nonprinting characters, 68 
separators, 71 
string literals, 67-68 

text objects, 213-214, 245 
text property, 211 
<TBXTAREA> HTML tag, 214 
textarea objects, 214, 246 
this keyword, 70 
this statement, 120 
threads, multithreading, 36 
throw keyword, 70 
throws keyword, 70 



tilde (-) bitwise complement operator, 
79-80 

timeout() method, 202 
<TITLE> HTML tag, 178 
title property, 175-176, 178 
toggle() method, 130 
toGMTString() method, 162 
tokens 

defined, 59 
JavaScript, architecture, 59-60 

toLocaleString() method, 162 
toLowerCase() method, 152 
top objects, 169 
top property, 220 
toString() function, 118, 122 
toString() method, 162 
toUpperCase() method, 148, 152 
transient keyword, 70 
Transmission Control Protocol/ 
Internet Protocol (TCP /IP), 
19-20 

true keyword, 70 
try keyword, 70 
<TT> HTML tag, 150 
TYPE attribute (<INPUT> HTML 
tag), 204-205 

type parameter, 129 
types, compared to literals, 64 

u 
UC Berkeley GPA Calculator, code 
listing, 261-266 

unary integer operators, 79 
unEscape() function, 183 
unescape() method, 165 
Uniform Resource Locators, see URLs 
University of California at Berkeley, 
TCP /IP UNIX implementation, 20 

UNIX, TCP/IP, 20 
URL parameter, 129 
URLEntry object, 128 
URLEntry parameter, 130 
URLs (Uniform Resource Locators), 
27 

cookies, accessing entries, 183 
hypertext links, 27, 170 
loading history objects, 224 
objects, properties, 114 

Index 325 

parsing, location objects, 225 
source code, loading files, 57 

UTC() method, 162 

v 
VALUE attribute (<INPUT> HTML 
tag), 204-205 

value property, 205-207,209, 211, 
213,215 

var keyword, 70 
declaring variables, 73-75 

variables 
arguments, 104-105 
casting, 77-78 
counter, loops, 97 
declaring, 45, 71-73 

]avaScript compared to java, 49 
programmi-ng style, 73 

errors, duplicate names, 73-75 
global, altering, 104 
identifiers, 68-69 
objects, properties, 114-117 
operators, 75-77 
strongly typed programming, 72 
tempString, 148 

Virtual Machine (Java), 32 
VLINK attribute (<BODY> HTML 
tag), 171 

vlinkColor property, 175-177 
void keyword, 70 

W-Z 
Web browsers, 21-22 

HTML tags, 23, 25 
images, displaying, 26 
Internet Explorer, 43 
JavaScript, 43 

support, 50, 172 
text otttpttt, 59 

Mosaic, 21 
Netscape Navigator, 42, 58 
text output <PRE> HTML tag, 59 
windows, opening, 188 

Web pages 
applications, JavaScript, 6, 9, 13 
creating, 19, 188 
directories, creating, 126-143 



326 JavaScript for Macintosh 

document object, Netscape Navigator, 
171-174 

eventhandling,fiUnctions, 100 
formatting, color, 176-178 
forms, 194-195 

accessing information, 198-203 
counting, 181-182 
creating, 196 
persistence, 200, 203 
verifying entries, 216-217 

frames, 132 
Hello, World!, 24-28 
HTML,22-23 
hypertext links, 22, 27, 180-181 

anchors, 179-180 
images, displaying, 26 
marquees, creating, 201 
selection lists, creating, 210-212 
text, formatting, 106 

Web sites 
1040EZ Income Tax Return, 10 
The Amazing JavaScript Maze, 287 
Arto's String Calculator, 268 
BBEdit, 92 
BgColor Server, 177 
Car Cost Calculator, 275 
ColorCenter, 6-7 
The Connecting Point: WWW 
Codebreaker, 298 

Craig's favaScript Page, 250 
Dave's Tekno Dive, 15 
HTMLjive, 8-9 
TavaScript Noughts & Crosses, 295 
Julian Day, 266 
Mortgage Scenario Analyzer, 11 
Mr. Rodgers' World ofWorld Geogra-
phy, 13-14 

MUD,280 
Netscape, 132 
Quarterback Passing Rater, 12 
Rainbow Text, 309 
SuperSearch, 7-8 
Test Your Response Time, 283 
UC Berkeley GPA Calculator, 261 
The WWW Speedtrap Registry, 
14-15 

while keyword, 70 
while loops, 98-99 
while statement, 89, 98-99 
WIDTH attribute ( <IMG> HTML 
tag), 58 

window objects, 168-171, 218, 247 
event handlers, 223 
methods, 220-224 
properties, 218 

window property, 220 
with keyword, 70 
with statement, 119, 153 
World Wide Web, see WWW 
write() method, 190 
writeln() method, 149 
The WWW Speedtrap Registry Web 
site, 14-15 

WWW (World Wide Web), 17-18 
development, 21-22 
growth, 17 
HTML,22-23 
platform independence, 22 
protocol development, 21 

<XMP> HTML tag, 59, 187 
XORassignment ("=)operator, 83 

zero-fill right shift(>>>) 
operator, 81 



~ 
Hayden 
Books 

WANT MORE 
INFORMATION? 

CHECK OUT THESE RELATED TOPICS OR SEE YOUR LOCAL BOOKSTORE 

Adobe Press 

Design and 
Desktop 

Publishing 

Published by Hayden Books, the Adobe Press Library reveals the arr and technology of 
communication. Designed and wrinen by designers for designers, best-selling titles 
include the Classroom in a Book (CIAB) series for both Macintosh and Windows 
(Adob~ Photoshop CIAB, Advanctd Adob~ Photoshop CIAB, Adobe Pag~Maker CIAB, 
Advanctd Adob~ PageMaker C/AB, Adob~ !/lustra tor CIAB, and Adobe Pr~mitrt C/AR), 
the Professional Studio Techniques series (Production Essentials, Imaging Essentials, and 
Design Essentials, 2£), and Interactivity by Design. 

Hayden Books is expanding its reach to the design market by publishing its own mix 
of cutting-edge tides for designers, artists, and desktop publishers. With many more to 
come, these must-have books include Duig~zer's Guitk to th~ Intemet, Photoshop Type 
Magic, Adob~ Illustrator Cr~ativ~ T~chniques, Digital Type Design Guitk, and Th~ Compktt 
Guide to Trapping, 2£. 

Internet and 
Communications 

By answering the questions of what the Internet is, how you get connected, and how you 
can use it, lmmzet Starter Kit for Macintosh (now in 3rd ed.) and Intm ztt Starter Kit for 
Windows (now in 2nd ed.) have proven to be Hayden's most successful tides ever, with 
over 500,000 Staster Kits in print. Hayden continues to be in the forefront by meeting 
your ever-popular demand for more Internet information with additional tides, including 
Simply Amazing Imemet for Macintosh, Creatt Your Own Home Page for Macintosh, 
Publishing on the World Witk Web, World Wide Web Design Guitk, World Wide Web 
Starter Kit, nn.speak: The Intemet Dictionary, and Gtt on th~ Intemet in 5 Minutes for 
Windows and Macintosh. 

Multimedia 

High-Tech 

As you embrace the new technologies shaping of multimedia, Hayden Books will be 
publishing titles that help you understand and create your own multimedia projects. 
Books wrinen fo r a wide range of audience levels include Multimedia Starter Kit for 
Macintosh, 3-D Starter Kit for Macintosh. Quick Time: The Official Guitk for Macimosh 
Usen, Virtual Playhouse, Macromedia Director Design Guitk, and Macromedia Director 
Lingo Workshop. 

Hayden Books addresses your need for advanced technology tutorials and references by 
publishing the most comprehensive and dynamic tides possible, including Programming 
Starter Kit for Macintosh, Tricks of th~ Mac Game Programming Gurus, Power Macimosh 
Programming Starter Kit, FoxPro Machm: Hacking FoxPro for Macintosh, 2E. and 

Th~ Tao of AppkScript: BMUG's Guitk to Macintosh Scripting, 2£. 

Orders/Customer Service 800-763-7438 Source Code -

Hayden Books 201 West 1 03rd Street • Indianapolis, Indiana 46290 USA 
Visit our Web page of http: //wwvt.mcp.com/hayden/ 



About the CD-ROM 
The ]avaScript for Macintosh CD-ROM contains everything you 
need to begin your journey with J avaScript: 

0 All the JavaScripts used in the book so that you can play 
around with them yourself 

0 The complete code for the scripts shown in Appendix B, 
"JavaScripts from Around the Web" 

0 BBEdit Lite-the premier freeware text editor 

0 BBEdit 3.5.2 Demo 

0 Giffiuilder-freeware utility for creating GIF animations 



]avaScript-
the next step for Web publishers 

Thi i your premier guide to Java cript, the hor new Web 
programming language that enable you to create interactive 
Web page without the complication of Java or CGI. Thi 
tutorial takes you tep-by·step through programming cro · 
platform Java cripts ro make your Web page more dynamic, 
flexible, and interactive than ever before. 

Detailed information on every aspect of the Java cript 
language-from declaration and operation to document and 
history objects-will soon have you exploiting the ea e and 
power of thi dynamic, object-ba ed language. 

THE COMPANION CD-ROM INCLUDES: 

• COOL JAVASCRIPT SCRIPTS 

• TUTORIALS FROM THE BOOK 

• BBEDIT LITE AND BBEDIT 3 .5 .2 DEMO 

• GIFBUILDER • 
• JAVASCRIPT ExAMPLES FROM AROUND THE WEB 

$40.00 USA I $54·95 CAN I £37·50 NET UK (INC OF VAT) 

ISBN 11 111111111111111111 11 111111111 

~ 
Warehouse - BKI6585847 

Jauscripl fo r f,laclnlosh 
Used, Good tmt 

(uG) S lliU 

9 78 1~68113()2782 11 llllllllllllllll o 11 11S20591102789 7 

Detailed coverage of ... 
• Declarations 

and operations 
I• • Functions and methods 

• Flow control 
• Document, hi tory, 

window, and frame 
objects 

Matt Shobe is a Macinro h~ 
expert and has done Web 
ire de ign, u ability re ring, 

and documentation work 
for SPRY Compu erve ' , 
Microsoft , and Ander en 
Con ulting LLP. 

Tun Ritchey ha worked 
on artificial intelligence, 
high-performance parallel 
architecture , and computer 
vi ion. His pre enr interests 
include di tributed 
computing, VRML, and 
of course Java. 

Category: Macintosh 
Communications Online-Internet 
Lser Lc1cl: lntcrmcdiate-Ad1-anccd 


