
ti iAIDICI
Apple Developer Connection

Recommended Title

Learning

8.99 . 19.95

II II Ill II IIIII Ill IIIII Ill
-·~' 040027-00 l!A [11:~ STffi(11054 MAC

1>54 (t~2B J.L·'.ciiD ~19'13

O'REILLY®

Learning Unix for Mac OS X

Related Mac OS X Titles from O'Reilly

Essentials
AppleScript in a Nutshell
Building Cocoa Applications:

A Step-by-Step Guide
Learning Carbon
Learning Cocoa
Mac OS X Pocket Reference
REALbasic: The Definitive Guide

Missing Manuals
AppleWorks 6: The Missing

Manual
iMovie 2: The Missing Manual
Mac OS 9: The Missing Manual
Mac OS X: The Missing Manual
Office 2001 for Macintosh:

The Missing Manual
Office X for Macintosh:

The Missing Manual

Unix Essentials
Using csh & tcsh
Unix in a Nutshell
Unix Power Tools
Learning GNU Emacs
Learning the vi Editor

Related Programming
Developing Java Beansr"'
Java TM Cookbook
JavaTM I/0
JavaTM Network Programming
Java TV in a Nutshell
Learning Java TV

Learning Perl
Perl in a Nutshell
Practical C Programming
Programming with Qt

Mac OS X Administration
Apache: The Definitive Guide
Essential System Administration
sendmail

Learning Unix for Mac OS X

Dave Taylor and jerry Peek
with Grace Todino and john Strang

O'REILLY®
Beijing • Cambridge • Farnham • Koln • Paris • Sebastopol • Taipei • Tokyo

Learning Unix for Mac OS X
by Dave Taylor and Jerry Peek

Copyright© 2002 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales pro­
motional use. Online editions are also available for most titles (safari.oreilly.com). For
more information, contact our corporate/institutional sales department: (800) 998-9938
or corporate@oreilly.com.

Editor:

Production Editor:

Cover Designer:

Interior Designer:

Printing History:

May2002:

Laurie Petrycki

Linley Dolby

Emma Colby

David Futato

First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware
of a trademark claim, the designations have been printed in caps or initial caps. The
association between the image of an Alaskan malamute and the topic of Mac OS X is a
trademark of O'Reilly & Associates, Inc.

Apple Computer, Inc. boldly combined open source technologies with its own
programming efforts to create Mac OS X, one of the most versatile and stable operating
systems now available. In the same spirit, Apple has joined forces with O'Reilly &
Associates, Inc. to bring you an indispensable collection of technical publications. The
ADC logo indicates that the book has been technically reviewed by Apple engineers and
is recommended by the Apple Developer Connection.

Apple, the Apple logo, AppleScript, Apple Talk, Apple Works, Cocoa, Finder, Mac,
Macintosh, MPW, QuickDraw, QuickTime, and Sherlock are trademarks of Apple
Computer, Inc., registered in the United States and other countries. Aqua, Carbon, and
Quartz are trademarks of Apple Computer, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
the authors assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 0-596-00342-0

[M] [11/02]

Table of Contents

Preface . vii

1. Getting Started . 1
Working in the Unix Environment 1
Syntax of Unix Command Lines 7
Types of Commands 10
The Unresponsive Terminal 11

2. Using Unix ... 13
The Unix Filesystem 13
Looking Inside Files with less 24
Protecting and Sharing Files 26
Graphical Filesystem Browsers 31
Completing File and Directory Names 32

3. File Management .. 33
File and Directory Names 33
File and Directory Wildcards 34
Creating and Editing Files 36
Managing Your Files 4 2

4. Customizing Your Session . SO
Launching Terminal 50
Customizing Your Shell Environment 55
Further Customization 60

v

S. Printing ... 61
Formatting and Print Commands 61

Configuring Your LPR Printer 67

6. Redirecting 1/0 . 72
Standard Input and Standard Output 72

Pipes and Filters 7 6

7. Accessing the Internet 81
Remote Logins 81

Transferring Files 84

8. Unix-Based Internet Tools . 91
Lynx, a Text-Based Web Browser

Electronic Mail

UsenetNews

Interactive Chat

91
93

103

107

9. Multitasking .. 114
Running a Command in the Background 114

Checking on a Process 116

Canceling a Process 118

10. Where to Go from Here 120
Documentation

Shell Aliases and Functions

Programming

120

123

123

Appendix: Configuring Sendmail 125

Glossary ... 127

Index .. 131

vi I Table of Contents

Preface

Mac OS X (pronounced "Mac OS Ten"), the latest incarnation of the Macin­
tosh operating system, is a radical departure from previous versions. Not
only is there a whole new look and feel (dubbed "Aqua"), there are huge dif­
ferences under the hood. All the old, familiar Macintosh system software has
been replaced with another operating system, called Unix. Unix is a mul­
tiuser, multitasking operating system. Being multiuser means Mac OS X
allows multiple users to share the same system, each having the ability to
customize the desktop, create files that can be kept private from other users,
and to make settings that will automatically be restored whenever that per­
son uses the computer. Being multitasking means the computer can easily
run many different applications at the same time, and that if one applica­
tion crashes or hangs, the entire system doesn't need to be rebooted.

The fact that Mac OS X is Unix under the hood doesn't matter to users who
simply want to use its slick graphical interface to run their applications or
manage their files. But it opens up worlds of possibilities for users who want
to dig a little deeper. The Unix command-line interface, which is accessible
through a Mac application called the Terminal, provides an enormous
amount of power for advanced users. What's more, once you've learned to
use Unix in OS X, you'll also be able to use the command line in other ver­
sions of Unix such as Linux.

This book is designed to teach the basics of Unix to Macintosh users. We
tell you how to use the command line (which Unix users refer to as "the
shell") and the filesystem, as well as some of the most useful commands.
Unix is a complex and powerful system, so we only scratch the surface, but
we also tell you how to deepen your Unix knowledge once you're ready for
more.

vii

Mac OS X and the Unix Family of
Operating Systems
The Macintosh staned out with a single-tasking operating system that
allowed simple switching between applications through an application
called the Finder. More recent versions of Mac OS have supported multiple
applications running simultaneously, but it wasn't until the landmark
release of Mac OS X that true multitasking arrived in the Macintosh world.
With OS X, Macintosh applications run in separate memory areas. A true
multiuser system that includes proper file-level security is also finally part of
the Mac.

To accomplish these improvements, Mac OS X made the jump from a pro­
prietary underlying operating environment to Unix. Mac OS X is built on
top of Darwin, a version of Unix based on BSD 4.4, FreeBSD, and the Mach
micro kernel.

Unix itself was invented more than 30 years ago for scientific and profes­
sional users who wanted a very powerful and flexible OS. It has evolved.
since then through a remarkably circuitous path, with stops at Bell Tele­
phone Labs, UC Berkeley, research centers in Australia and Europe, and the
U.S. Department of Defense Advanced Research Projects Agency (for fund­
ing). Because Unix was designed for experts, it can be a bit overwhelming at
first. But after you get the basics (from this book!) you'll start to appreciate
some of the reasons to use Unix:

• It comes with a huge number of powerful application programs. You
can get many others for free on the Internet. (The GNU utilities, avail­
able from the Free Software Foundation (ht~:llwww.fsf.org/), are very
popular.) You can thus do much more at a much lower cost.

• Not only are the applications often free, but some Unix versions are also
free. Linux is a good example. Like the free applications, most free Unix
versions are of excellent quality. They're maintained by volunteer pro­
grammers who want a powerful OS and are frustrated by the slow, bug­
ridden OS development at some big software companies. With Mac OS
X, Unix is also "free" as part of the operating system, and many people
use Mac OS X daily without ever knowing about all the power lurking
under the hood.

• Unix runs on almost any kind of computer, from tiny embedded sys­
tems to giant supercomputers. After you read this book, you'll not only
know all about Darwin, but you '11 also be ready to use many other kinds
of Unix-based computers without learning a new OS for each one.

viii I Preface

• In general, Unix (especially without a windowing system) is less
resource intensive than other major operating systems. For instance,
Linux will run happily on an old system with a x386 microprocessor
and let multiple users share the same computer. (Don't bother trying to
use the latest versions of Microsoft Windows on a system that's more
than a few years old!) If you need a windowing system, Unix lets you
choose from modern feature-rich interfaces as well as from simple ones
that need much less system power. Anyone with limited resources­
educational institutions, organizations in developing countries, and so
on-can use Unix to do more with less.

• Much of the Internet's development was done on Unix systems. Many
Internet web sites and Internet service providers use Unix because it's so
flexible and inexpensive. With powerful hardware, Unix really shines.

Versions of Unix
There are several versions of Unix. Some past and present commercial ver­
sions include Solaris, AIX, and HP/UX. Freely available versions include
Linux, NetBSD, and FreeBSD. Darwin, the Unix underneath Mac OS X, was
built by grafting an advanced version called Mach onto FreeBSD, with a
light sprinkling of Apple magic for the windowing system.

Although graphical user interfaces (GUis) and advanced features differ
among Unix systems, you should be able to use much of what you learn
from this introductory handbook on any system. Don't worry too much
about what's from what version of Unix. just as English borrows words
from French, German, japanese, Italian, and even Hebrew, Mac OS X Unix
borrows commands from many different versions of Unix, but you can just
use them all ~ithout paying attention to their origins.

We do from time to time explain features of Unix on other systems. Know­
ing the differences can help you if you ever want to use another type of Unix
system. When we write "Unix" in this book, we mean "Unix and its ver­
sions" unless we specifically mention a particular version.

Interfaces to Unix
Unix can be used as it was originally designed: on typewriter-like terminals,
from a prompt on a command line. Most versions of Unix also work with
window systems (or GUis). These allow each user to have a single screen
with multiple windows-including "terminal" windows that act like the
original Unix interface.

Preface I ix

Mac OS X includes a simple terminal application for accessing the com­
mand-line level of the system. That application, reasonably enough, is called
Terminal and can be found in the Applications-+ Utilities folder. The Termi­
nal application will be examined more closely in Chapters 1 and 2.

Although you can certainly use your Mac quite efficiently without typing
text at a shell prompt, we'll spend all our time in this book on that tradi­
tional command-line interface to Unix. Why?

• Every Unix system has a command-line interface. If you know how to
use the command line, you'll always be able to use the system.

• If you become a more advanced Unix user, you'll find that the com­
mand line is actually much more flexible than a windowing interface.
Unix programs are designed to be used together from the command
line-as "building blocks"-in an almost infinite number of combina­
tions, to do an infinite number of tasks. No windowing system we've
seen (yet!) has this tremendous power.

• You can launch and close windowing programs from the command line,
but windowing programs don't generally affect those programs.

• Once you learn to use the command line, you can use those same tech­
niques to write scripts. These little (or big!) programs automate jobs
you'd have to do manually and repetitively with a window system
(unless you understand how to program a window system, which is usu­
ally a much harder job). See the section "Programming" in Chapter 10
for a brief introduction to scripting.

• In general, text-based interfaces are much easier than GUis for sight-
impaired users.

We aren't saying that the command-line interface is right for every situa­
tion. For instance, using the Web-with its graphics and liqks-is usually
easier with a GUI web browser within Mac OS X. But the command line is
the fundamental way to use Unix. Understanding it will let you work on any
Unix system, with or without windows. A great resource for general OS X
information (the GUI you're probably used to) can be found in Mac OS X:
The Missing Manual by David Pogue (Pogue Press/O'Reilly).

What This Handbook Covers
This book teaches basic system utility commands to get you started with
Unix, specifically Darwin. Instead of overwhelming you with lots of details,
we want you to be comfortable in the Unix environment as soon as possi­
ble. So we cover a command's most useful features instead of describing all
its options in detail.

x I Preface

We also assume that your computer works properly; you have started it,
knows the procedure for turning the power off, and knows how to perform
system maintenance. In other words, we don't cover Unix system adminis­
tration or Mac system administration from the command line.

Without making substantial changes to Mac OS X, Darwin users are con­
strained to using Aqua (the standard Mac system) as the graphical interface
to the system. On a non-Mac Unix system, users can choose between many
different user interfaces-shells and window systems. If you do advanced
work or set up Unix systems for other users, we recommend learning about
a variety of shells and window systems and choosing the best ones for your
needs. The principles explained in this book should help you use any Unix
configuration.

Format
The following sections describe conventions used in this handbook.

Graphical User Interface Features
While this book spends most of its time on the Unix command line, we do
sometimes need to tell you how to run programs from the GUI. We may do
this with a compact syntax such as:

Finder- Applications- Utilities- Terminal

This shorthand should be read as: open the Finder, then choose Applica­
tions, then Utilities, then Terminal. We use the same syntax whether the
user interface feature to be selected is a window, a menu item, or an icon.
The meaning should be obvious from the context. If you don't see a win­
dow or icon with the name we give, look at the menu bar. (For example,
Terminal- Preferences means to select the Preferences item from the Termi­
nal's menu bar.)

Unix Commands
We introduce each main concept first, then break it down into task-ori­
ented sections. Each section shows the best command to use for a task,
explains what it does, and shows the syntax (how to put the command line
together). The syntax is given like this:

rm filename

Commands appear in constant width type (in this example, rm). You should
type the command exactly as it appears in the example. The variable pans

Preface I xi

(here, filename) will appear in constant width italic type; you must supply
your own value. To enter this command, you would type rm followed by a
space and the name of the file that you want to remove, then press the
Return key. (Your keyboard may have a key labeled Enter or an arrow with a
right-angle shaft instead of a Return key.) Throughout this book, the term
enter means to type a command and press Return to run it.

Example,s
Examples show what should happen as you enter a command. Some exam­
ples assume that you've created certain files. If you haven't, you may not get
the results shown.

We use typewriter-style characters for examples. In code samples, items you
type to try the example are boldface. System messages and responses are
constant width.

Here's an example:

% date
Mon Feb 4 16:17:25 PST 2002
%

The character% is the shell (system) prompt. To do this example, you would
type date and then press Return. The date command responds "Mon Feb 4
16:17:25 PST 2002" and then returns you to the prompt.

Text you see in examples may not be exacdy what you see on your screen.
Different Unix versions have commands with different outputs. Sometimes
we edit screen samples to eliminate distracting text or make them fit the page.

Problem Checklist
We've included problem checklists in some sections. You may skip these
pans and go back to them if you have a problem.

Exercises
Some sections have exercises to reinforce the text you've read. Follow the
exercises, but don't be afraid to experiment on your own.

Exercises have two columns. The lefthand column tells you what to do and
the righthand column tells you how to do it. For example, a line in the sec­
tion "Exercise: Entering a Few Commands" near the end of Chapter 1 shows
the following:

Get today's date. Enter date

xli I Preface

To follow the exercise, type the word date on your keyboard and press the
Return key. The lefthand column tells you what will happen.

After you try the commands, you'll have a better idea of the ones you want
to learn more about. You can then get more information from the section
"Documentation" in Chapter 10.

Comments and Questions
Please address any comments and questions concerning this book to the
publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book where examples, errata, and any plans for
future editions are listed. You can access this site at:

http://www.oreilly. com/catalogllunixmacosx/

For more information about books, conferences, Resource Centers, and the
O'Reilly Network, see the O'Reilly web site at:

http://www.oreilly. com

If you write to us, please include information about your Unix environment
and the computer you use. You'll have our thanks, along with thanks from
future readers of this handbook.

The Evolution of This Book
This book is based on the popular O'Reilly title Learning the Unix Operat­
ing System, by Jerry Peek, Grace Todino, and John Strang (currently in its
fifth edition). There are many differences in this book to meet the needs of
Mac OS X users, but the fundamental layout and explanations are the same.

Preface I xili

Acknowledgments
r d like to acknowledge the great work of Laurie Petrycki, the editor at
0 'Reilly, and the valuable information and review of the manuscript by
Apple Computer, Inc. In addition, Justin Walker, Eugene Lee, David Mack­
ler, and Adriaan Tijsseling offered helpful insight on the printer and send­
mail configuration puzzles. I would also like to express my gratitude to
Chuck Toporek and Chris Stone for their valuable comments on the draft
manuscript. Thanks also to Christian Crumlish for his back-room assis­
tance, and Tim O'Reilly for the opportunity to help revise the popular
Learning the Unix Operating System book for the exciting new Mac OS X
world. Oh, and a big grin to Linda, Ashley, and Gareth for letting me type,
type, and type some more, ultimately getting this book out the door in a
remarkably speedy manner.

xiv I Preface

CHAPTER 1

Getting Started

With a typical Unix system, a staff person has to set up a Unix account for
you before you can use it. With Mac OS X, however, every install automati­
cally creates a default user account. The account is identified by your user­
name, which is usually a single word or an abbreviation. Think of this
account as your office-it's your personal place in the Unix environment.

When you log in to your OS X system, you're automatically logged into your
Unix account as well. In fact, your Desktop and other customized features
of your OS X environment have corresponding features in the Unix environ­
ment. Your files and programs can be accessed either through the Mac
Finder or through a variety of Unix command-line utilities that you can
reach from within OS X's Terminal window.

Working in the Unix Environment
To get into the Unix environment, launch the Terminal application. (That's
Finder--. Applications--. Utilities--. Terminal. If you expect to use the Ter­
minal a lot, drag the Terminal icon from the Finder window onto the Dock.
You can then launch Terminal with a single click.) Once Terminal is run­
ning, you'll see a window like the one in Figure 1-1.

We I come to Dan~ t n I
(clhcp-245-15 :-] laurie¢' I

Figure 1-1. The Terminal window

Once you have a window open and you're typing commands, it's helpful to
know that regular Mac OS X cut and paste commands work, so it's simple

to send an email message to a colleague showing your latest Unix interac­
tion, or to paste some text from a web page into a file you're editing with a
Unix text editor such as vi.

You can also have a number of different Terminal windows open if that
helps your workflow. Simply use ~N to open each one, and ~- to cycle
between them without removing your hands from the keyboard.

If you have material in your scroll buffer you want to find, use ~F (select
Find Panel from the Edit menu) and enter the specific text. ~G (Find Next)
lets you search down the scroll buffer for the next occurrence, and ~D
(Find Previous) lets you search up the scroll buffer for the previous occur­
rence. You can also accomplish this by highlighting a passage, entering ~E
(Enter Selection) and jumping to the selected material with ~J Qump to
Selection). You can also save an entire Terminal session as a text file with
File __. Save, and you can print the entire session with File __. Print. It's a
good idea to study the key sequences shown in the Control menu, as illus­
trated in Figure 1-2.

Page. Up
Page Do'wn

Line Up Xt
Line Down X!

Next Terminal x~

Previous Terminal X,._

Clear Scroll back XK
Send Break (Ctrl- c) X.

Figure 1-2. Command sequences accessible from the Control menu

Inside the Terminal window, you' re working with a program called a shell.
The shell interprets command lines you enter, runs programs you ask for,
and generally coordinates what happens between you and the Unix operat­
ing system. The default shell on OS X is called tcsh. Other available shells
include the Bourne shell (sh), the C shell (csh), and the Z Shell (zsh). Popu­
lar shells on other versions of Unix (not available by default on OS X)

include the Korn shell (ksh) and the Bourne-again shell (bash).

2 I Chapter 1: Getting Started

For a beginner, differences between shells are slight. If you plan to work
with Unix a lot, though, you should learn more about your shell and its spe­
cial commands.·

The Shell Prompt
When the system is ready to run a command, the shell outputs a prompt to
tell you that you can enter a command.

The default prompt in tcsh is the computer name (which might be some­
thing automatically generated, such as dhcp-254-108, or a name you've given
your system), the current directory (which might be represented by"', Unix's
shorthand for your home directory), your login name, and a percent sign.
For example, the complete prompt might look like this: [limbo:"'] taylor%.
The prompt can be customized, though, so your own shell prompt may be
different. We'll show you how to customize your prompt in Chapter 4.

A prompt that ends with a hash mark(#) usually means you're logged in as
the superuser. The superuser doesn't have the protections for standard users
that are built into the Unix system. If you don't know Unix well, you can
inadvertently damage your system software when you are logged in as the
superuser. In this case, we recommend that you stop work until you've
found out how to access your personal Unix account.t

Entering a Command Line
Entering a command line at the shell prompt tells the computer what to do.
Each command line includes the name of a Unix program. When you press
Return, the shell interprets your command line and executes the program.

The first word that you type at a shell prompt is always a Unix command (or
program name). Like most things in Unix, program names are case sensi­
tive; if the program name is lowercase (and most are), you must type it in
lowercase. Some simple command lines have just one word, which is the
program name. For more information, see the section "Syntax of Unix Com­
mand Lines," later in this chapter.

• To find out which shell you're using, run the command echo $SHELL or ps $$. (See the section
"Entering a Command Line," later in this chapter.) The answer, which could be something like
!binltcsh, is your shell's name or pathname. You can also look at Terminal_. Preferences.

t This can happen if you're using a window system that was started by the superuser when the system
was rebooted, or if your prompt has been customized to end with# when you aren't the superuser.

Working in the Unix Environment I 3

date
An example single-word command is date. Entering the command date dis­
plays the current date and time:

% date
Mon Feb 4 19:16:01 PST 2002
%

As you type a command line, the system simply collects your keyboard
input. Pressing the Return key tells the shell that you've finished entering
text, and it can run the program.

who
Another simple command is who. It displays a list of each logged-on user's
usemame, terminal number, and login time. Try it now, if you'd like.

The who program can also tell you which account is currently using the Ter­
minal application, in case you have multiple user accounts for yourself on
your Mac. The command line for this is who am i. This command line con­
sists of the command (who, the program's name) and arguments (am i).
(Arguments are explained in the section "Syntax of Unix Command Lines"
later in this chapter.) For example:

% who am i
taylor ttyp1 Feb 4 16:16

The response shown in this example says that:

• "I am" Taylor (actually, my username is taylor). The username is the
same as the Short Name you're asked to define when you create a new
user with System Preferences -+ Users -+ New User. It can contain up to
eight characters, and will always be shown in lowercase.

• I'm using terminal pl. (This cryptic syntax, ttypl, is a holdover from the
early days of Unix. All you need to know as a Unix beginner is that each
time you open a new terminal window, the number at the end of the
name gets incremented. The first one by ttyp 1, the second ttyp2, and so
on. The terminal ID also appears in the titlebar of the Terminal window.)

• I logged in (opened my Terminal window) at 4:16 in the afternoon of
February4.

Recalling Previous Commands
Modern Unix shells remember command lines you've typed previously.
They can even remember commands from previous login sessions. This
handy feature can save you a lot of retyping of common commands. As with

4 I Chapter 1: Getting Started

many things in Unix, though, there are several different ways to do this; we
don't have room to show and explain them all. You can get more informa­
tion from sources listed in Chapter 10.

After you've typed and executed several command lines, try pressing the up­
arrow key on your keyboard. You will see the previous command line after
your shell prompt, just as you typed it before. Pressing the up arrow again
recalls the previous command line, and so on. Also, as you'd expect, the
down-arrow key will recall more recent command lines.

To execute one of these remembered commands, just press the Return key.
(Your cursor doesn't have to be at the end of the command line.)

Once you've recalled a command line, you can edit it. If you don't want to
execute any remembered commands, cancel the command line with Con­
trol-C or 88-•. The next section explains both of these.

Correcting a Command Line
What if you make a mistake in a command line? Suppose you typed dare
instead of date and pressed the Return key before you realized your mis­
take. Most shells will give you an error message:

% dare
dare: command not found
%

The default shell in Mac OS X will try to guess what you meant in the same
situation (note that you need to type y when it asks if date is the correct
command to run):

% dare

OK? date? yes
Mon Feb 4 19:26:20 PST 2002
%

Don't be too concerned about getting error messages. Sometimes you'll get
an error even if it appears that you typed the command correctly. This can
be caused by typing control characters that are invisible on the screen. Once
the prompt returns, reenter your command.

As we said earlier (in the section "Recalling Previous Commands"), most
modem shells let you recall previous commands and edit command lines. If
you plan to do a lot of work at the shell prompt, it's worth learning these
handy techniques. They take more time to learn than we can spend here,
though-except to mention that, on those shells, the left-arrow and right­
arrow keys may move your cursor along the command line to the point

Working In the Unix Environment I S

where you want to make a change. Here, let's concentrate on simple meth­
ods that work with all shells.

If you see a mistake before you press Return, you can use the erase charac­
ter to erase and correct the mistake.

The erase character differs between systems and accounts, and can be cus­
tomized. The most common erase characters are:

• Delete or Del

• Control-H

Control-H is called a control character. To type a control character (for
example, Control-H), hold down the Control key, then press the letter H. In
the text, we write control characters as Control-H, but in the examples, we
will use the standard Un~ notation: /\H. This is not the same as pressing
the/\ (caret) key, letting go, and then typing an H!

The Delete key may be used as the interrupt character instead of the erase
character. This key is used to interrupt or cancel a command and can be
used in many (but not all) cases when you want to quit what you're doing.
Another character often programmed to do the same thing is Control-C, or
K ..

Other common control characters are:

Control-U
Erases the whole input line; you can stan over.

Control-S
Pauses output from a program that's writing to the screen. This can be
confusing; we don't recommend using Control-S, but want you to be
aware of it.

Control-Q
Restarts output after a Control-S pause.

Control-D
Signals the end of input for some programs (such as cat and mail,
explained in the sections "Putting Text in a File" in Chapter 6 and
"Electronic Mail" in Chapter 8, respectively) and returns you to a shell
prompt. If you type Control-D at a shell prompt, it may close your cur­
rent Terminal window.

Logging Out
To end a Unix session, you must log out. You should not end a session by
just quitting the Terminal application or closing the terminal window. It's
possible that you might have started a process running in the background

6 I Chapter 1: Getting Started

(see Chapter 9), and closing the window will interrupt the process so it
won't complete. Instead, type exit at a shell prompt. The window will either
close or display Process Complete; then you can then safely quit the applica­
tion. If you've started a background process, you'll instead get one of the
messages in the Problem Checklist below.

Problem checklist

The first few times you use Unix, you aren't likely to have the following
problems. But you may encounter these problems later, as you do more
advanced work.

You get another shell prompt, or the shell says "logout: not login shell."
You've been using a subshell (a shell created by your original login
shell). To end each subshell, type exit (or just type Control-D) until
you're logged out.

The shell says "There are stopped jobs" or "There are running jobs."
Mac OS X and many other Unix systems have a feature called job control
that lets you suspend a program temporarily while it's running or keep it
running separately in the "background." One or more programs you ran
during your session has not ended but is stopped (paused) or in the back­
ground. Enter fg to bring each stopped job into the foreground, then quit
the program normally. (See Chapter 9 for more information.)

The Terminal application refuses to quit, saying "Quit: There are active
windows."

Terminal tries to help by not quitting when you're in the middle of run­
ning a command. Cancel the dialog box and make sure you don't have
any commands running that you forgot about.

Syntax of Unix Command Lines
Unix command lines can be simple, one-word entries such as the date com­
mand. They can also be more complex; you may need to type more than the
command or program name.·

A Unix command can have arguments. An argument can be an option or a
filename. The general format for a Unix command line is:

command option(s) filename(s)

• The command can be the name of a Unix program (such as date), or it can be a command that's
built into the shell (such as exit). You probably don't need to worry about this! You can read
more precise definitions of these terms and others in the Glossary.

Syntax of Unix Command Lines I 7

I

\

There isn't a single set of rules for writing Unix commands and arguments,
but these general rules work in most cases:

• Enter commands in lowercase.

• Options modify the way in which a command works. Options are often
single letters prefixed with a dash (-,also called "hyphen" or "minus")
and set off by any number of spaces or tabs. Multiple options in one
command line can be set off individually (such as -a -b). In some cases,
you can combine them after a single dash (such as -ab), but most com­
mands' documentation doesn't tell you whether this will work; you'll
have to try it.

Some commands also have options made from complete words or
phrases and starting with two dashes, such as --delete or --confirm­
delete. When you enter a command line, you can use this option style,
the single-letter options (which each start with a single dash), or both.

• The argument filename is the name of a file you want to use. Most Unix
programs also accept multiple filenames, separated by spaces or speci­
fied with wildcards (see Chapter 3). If you don't enter a filename cor­
rectly, you may get a response such as "filename: no such file or
directory" or "filename: cannot open.''

Some commands, such as telnet and who (shown earlier in this chap­
ter), have arguments that aren't filenames.

• You must type spaces between commands, options, and filenames.
You'll need to "quote" filenames that contain spaces. For more informa­
tion, see the section "File and Directory Names" in Chapter 3.

• Options come before filenames.

• In a few cases, an option has another argument associated with it; type
this special argument just after its option. Most options don't work this
way, but you should know about them. The sort command is an exam­
ple of this feature: you Cf:ln tell sort to write the sorted text to a file­
name given after its -o option. In the following example, sort reads the
file sortme (given as an argument), and writes to the file sorted (given
after the -o option):

% sort -o sorted -n sortme

We also used the -n option in that example. But -n is a more standard
option; it has nothing to do with the final argument sortme on that com­
mand line. So, we also could have written the command line this way:

% sort -n -o sorted sortme

8 I Chapter 1: Getting Started

Another example is the mail -s option, shown in the section "Sending
Mail from a Shell Prompt" in Chapter 8. Don't be too concerned about
these special cases, though. If a command needs an option like this, its
documentation will say so.

• Command lines can have other special characters, some of which we see
later in this book. They can also have several separate commands. For
instance, you can write two or more commands on the same command
line, each separated by a semicolon(;). Commands entered this way are
executed one after another by the shell.

Unix has a lot of commands! Don't try to memorize all of them. In fact,
you'll probably need to know just a few commands and their options. As
time goes on, you'll learn these commands and the best way to use them for
your job. We cover some useful Unix commands in later chapters. This
book's quick reference card has quick reminders.

Let's look at a sample Unix command. The ls program displays a list of
files. You can use it with or without options and arguments. If you enter:

% 1s

you'll see a list of filenames. But if you enter:

% 1s -1

there'll be an entire line of information for each file. The -1 option (a dash
and a lowercase letter "L") changes the normalls output to a long format.
You can also get information about a particular file by using its name as the
second argument. For example, to find out about a file called chapl, enter:

% 1s -1 chapl

Many Unix commands have more than one option. For instance, ls has the
-a (all) option for listing hidden files. You can use multiple options in either
of these ways:

% 1s -a -1
% 1s -a1

You must type one space between the command name and the dash that
introduces the options. If you enter ls-al, the shell will say "ls-al: com­
mand not found.,

Exercise: Entering a Few Commands
The best way to get used to Unix is to enter some commands. To run a com­
mand, type the command and then press the Return key. Remember that
almost all Unix commands are typed in lowercase.

Syntax of Unix Command Lines I 9

J

\

Here are a few to try:

Gettoday's date.
Ust logged-In users.
Obtain more Information about users.
Find out who is at your terminal.
Enter two commands in the same line.
Mistype a command.

Enter date

Enter who
Enter who -u, finger, orw
Enter who am i

Enter who am i; date

Enterwoh

In this session, you've tried several simple commands and seen the results
on the screen.

Types of Commands
When you use a program, you'll want to know how to control it. How can
you tell it what job you want done? Do you give instructions before the pro­
gram starts, or after it's started? There are several general ways to give com­
mands on a Unix system. It's good to be aware of them.

1. Some programs work only within the graphical window environment
(on Mac OS X, this is called Aqua). On Mac OS X, you can run these
programs using the open command. For instance, when you type open
I Applications/Chess. app at a shell prompt, the chess game starts. It
opens one or more windows on your screen. The program has its own
way to receive your commands-through menus and buttons on its
windows, for instance.

2. You've also seen in the section "Syntax of Unix Command Lines," that
you can enter many Unix commands at a shell prompt. These programs
work in a window system (from a terminal window) or from any termi­
nal. You control those programs from the Unix command line-that is,
by typing options and arguments from a shell prompt before you start
the program. After you start the program, wait for it to finish; you gen­
erally don't interact with it.

3. Some Unix programs that work in the terminal window have com­
mands of their own. (If you'd like some examples, see Chapters 2 and 3.)
These programs may accept options and arguments on their command
lines. But, once you start a program, it prints its own prompt and/or
menus, and it understands its own commands; it takes instructions from
your keyboard that weren't given on its command line.

For instance, if you enter ftp at a shell prompt, you'll see a new prompt
from the ftp program. Enter FTP commands to transfer files to and
from remote systems. When you enter the special command quit to quit

10 I Chapter 1: Getting Started

the ftp program, ftp will stop prompting you. Then you'll get another
shell prompt, where you can enter other Unix commands.

The Unresponsive Terminal
During your Unix session, your terminal may not respond when you type a
command, or the display on your screen may stop at an unusual place.
That's called a "hung" or "frozen" terminal or session. Note that most of the
techniques in this section apply to a terminal window, but not to non-termi­
nal windows such as a web browser.

A session can hang for several reasons. For instance, your computer can get
too busy; the Terminal application has to wait its turn. In that case, your
session starts by itself after a few moments. You should not try to "un-hang"
the session by entering extra commands, because those commands will all
take effect after Terminal comes back to life.

If the system doesn't respond for quite a while (how long that is depends. on
your individual situation; ask other users about their experiences), the fol­
lowing solutions usually work. Try the following steps in the order shown
until the system responds:

1. Press the Return key once.
You may have typed text at a prompt (for example, a command line at a
shell prompt) but haven't yet pressed Return to say that you're done
typing and your text should be interpreted.

2. Try job control (see Chapter 9); type Control-Z.

This' control key sequence suspends a program that may be running and
gives you a shell prompt. Now you can enter the jobs command to find
the program's name, then restart the program with fg or terminate it
with kill.

3. Use your interrupt key (found earlier in this chapter in "Correcting a
Command Line"; typically Control-C).

This interrupts a program that may be running. (Unless the program is
run in the background, as described in the section, "Running a Com­
mand in the Background" in Chapter 9, the shell waits for it to finish
before giving a new prompt. A long-running program may thus appear
to hang the terminal.) If this doesn't work the first time, try it once
more; doing it more than twice usually won't help.

TheUnresponsiveTermlnal I 11

4. Type Control-Q.

If output has been stopped with Control-S, this will restart it. (Note that
some systems will automatically issue Control-S if they need to pause
output; this character may not have been typed from the keyboard.)

5. Type Control-D once at the beginning of a new line.

Some programs (such as mail) expect text from the user. A program may
be waiting for an end-of-input character from you to tell it that you've
finished entering text. Typing Control-D may cause you to log out, so
you should try this only as a last resort.

6. Otherwise, quit your Terminal application and start it up again.

12 I Chapter 1: Getting Started

CHAPTER2

Using Unix

Once you launch Terminal, you can use the many facilities that Unix pro­
vides. As an authorized system user, you have an account that gives you:

• A place in the Unix filesystem where you can store your files.

• A usemame that identifies you, lets you control access to your files, and
is an address for your email (although it may not be your main address).

• An environment you can customize.

The Unix Filesystem
A file is the unit of storage in Unix, as it is in the Mac environment. A file
can hold apything: text .(a report you're writing, a to-do list), a program, dig­
itally encoded pictures or sound, and so on. All of those are just sequences
of raw data until they're interpreted by the right program.

In Unix, files are organized into directories. A directory is actually a special
kind of file where the system stores information about other files. (A Unix
directory is identical to a Mac folder.) You can think of a directory as a
place, so that files are said to be contained in directories, and you work
inside a directory.

This section introduces the Unix filesystem. Later sections show how you
can look in files and protect them. Chapter 3 has more information.

Your Home Directory
When you launch Terminal, you're placed in a directory called your home
directory. This directory, a unique place in the Mac OS X filesystem, con­
tains the files you use almost every time you log in. In your home directory,
you can create your own files. As you '11 see, you can also store your own

13

directories within your home directory. Like folders in a file cabinet, this is a
good way to organize your files.

Your Working Directory
Your working directory (also called your current directory) is the directory in
which you're currently working. Every time you launch Terminal, your
home directory is your working directory. When you change to another
directory, the directory you move to becomes your working directory.

Unless you tell Unix otherwise, all commands that you enter apply to the
files in your working directory. In the same way, when you create files,
they're created in your working directory unless you specify another direc­
tory. For instance, if you type the command vi report, the vi editor is
started, and a file named report is created in your working directory. But if
you type a command such as vi /Users/john/report, a report file is edited in
a different directory-without changing your working directory. You'll learn
more about this when we cover pathnames later in this chapter.

If you have more than one Terminal window open, each session has its own
working directory. Changing the working directory in one session doesn't
affect other Terminal Windows.

The Directory Tree
All directories on a Unix system are organized into a hierarchical structure
that you can imagine as a family tree. The parent directory of the tree (the
directory that contains all other directories) is known as the root directory
and is written as a forward slash (/).

The root contains several directories. Figure 2-1 shows a visual representa­
tion of the top of a Unix filesystem tree: the root directory and some directo­
ries under the root.

bin, etc, users, tmp, and usr are some of the subdirectories (child directories)
of the root directory. These subdirectories are fairly standard; they usually
contain specific XML (Extensible Markup Language) option (spelling)kinds
of system files. For instance, bin contains many Unix programs.

In our example, the parent directory of Users (one level above) is the root
directory. It has two subdirectories (one level below), john and carol. On a
Mac OS X system, each directory has only one parent directory, but it may
have one or more subdirectories.·

• On most Unix systems, including Mac OS X, the root directory at the top of the tree is its own
parent.

14 I Chapter 2: Using Unix

Figure 2-1. Example of a directory tree

A subdirectory (such as carol) can have its own subdirectories (such as work
and play). The number of subdirectories is limited, though users will proba­
bly never reach that limit.

To specify a file or directory location, write its pathname. A pathname is like
the address of the directory or file in the Unix filesystem. We look at path­
names in the next section.

On a basic Unix system, all files in the filesystem are stored on disks con­
nected to your computer. It isn't always easy to use the files on someone
else's computer or for someone on another computer to use your files. Your
system may have an easier way: a networked filesystem. Networked filesys­
tems make a remote computer's files appear as if they're part of your com­
puter's directory tree. Fhr instance, a computer in Los Angeles might have a
directory named boston with some of the directory tree from a company's
computer in Boston. Or individual users' home directories may come from
various computers, but all be available on your computer as if they were
local flles. Your Mac admin can help you understand and configure your
computer's filesystems to make your work easier.

Absolute Pathnames
As you saw earlier, the Unix filesystem organizes its files and directories in
an inverted tree structure with the root directory at the top. An absolute
pathname tells you the path of directories through which you must travel to

The Unix Fllesystem I 15

get from the root to the directory or file you want. In a pathname, put
slashes (/) between the directory names.

For example, /Users/john is an absolute pathname. It locates one (only one!)
directory. Here's how:

• The root is the first slash (/).

• The directory Users (a subdirectory of root) is second.

• The directory john (a subdirectory of Users) is last.

Be sure that you do not type spaces anywhere in the pathname. If there are
spaces in one or more of the directories, you need to either quote the entire
directory pathname, or preface each space with a backslash to ensure that
the shell understands that the spaces are part of the pathname itself.
Figure 2-2 shows this structure.

Roor Directory

/Users/john

Figure 2-2. Absolute path of directory john

In Figure 2-2, you'll see that the directory john has a subdirectory named
work. Its absolute pathname is /Users/john/work.

The root is always indicated by the slash (/) at the start of the pathname. In
other words, an absolute pathname always starts with a slash.

Relative Path names
You can also locate a file or directory with a relative pathname. A relative
pathname gives the location relative to your working directory.

Unless you use an absolute pathname (starting with a slash), Unix assumes
that you' re using a relative pathname. Like absolute pathnames, relative
pathnames can go through more than one directory level by naming the
directories along the path.

16 I Chapter 2: Using Unix

For example, if you're currently in the Users directory (see Figure 2-2), the
relative pathname to the carol directory below is simply carol. The relative
pathname to the play directory below that is carol/play.

Notice that neither pathname in the previous paragraph starts with a slash.
That's what makes them relative pathnamesl Relative pathnames start at the
working directory, not the root directory. In other words, a relative path­
name never starts with a slash.

Pathname puzzle

Here's a short but important question. The previous example explains the
relative pathname caroUplay. What do you think Unix would say about the
pathname /carol/play? (Look again at Figure 2-2.)

Unix would say "No such file or directory." Why? (Please think about that
before you read more. It's very important and it's one of the most common
beginner's mistakes.) Here's the answer. Because it starts with a slash, the
pathname /caroUplay is an absolute pathname that starts from the root. It says
to look in the root directory for a subdirectory named carol. But there is no
subdirectory named carol one level directly below the root, so the pathname is
wrong. The only absolute pathname to the play directory is /UserslcaroUplay.

Relative pathnames up

You can go up the tree with the shorthand .. (dot dot) for the parent direc­
tory. As you saw earlier, you can also go down the tree by using subdirec­
tory names. In either case (up or down), separate each level by a I (slash).

Figure 2-3 shows part of Figure 2-1. If your working directory in the figure is
work, then there are two pathnames for the play subdirectory of carol. You
already know how to write the absolute pathname, /Users/carol/play. You
can also go up one level (with ..) to carol, then go down the tree to play.
Figure 2-3 illustrates this.

The relative pathname would be . .!play. It would be wrong to give the rela­
tive address as carol/play. Using carol/play would say that carol is a subdi­
rectory of your working directory instead of what it is in this case: the parent
directory.

Absolute and relative pathnames are interchangeable. Unix programs sim­
ply follow whichever path you specify to wherever it leads. If you use an
absolute pathname, the path starts from the root. If you use a relative path­
name, the path starts from your working directory. Choose whichever is eas­
ier at the moment.

The Unix Filesystem I 17

I

Figure 2-3. Relative path name from work to play

Changing Your Working Directory
Once you know the absolute or relative pathname of a directory where
you'd like to work, you can move up and down the Unix directory tree to
reach it. The following sections explain some helpful commands for navigat­
ing through a directory tree.

pwd

To find which directory you're currently in, use pwd (print working direc­
tory), which prints the absolute pathname of your working directory. The
pwd command takes no arguments.

cd

% pwd
/Users/john
%

You can change your working directory to any directory (including another
user's directory, if you have permission) with the cd (change directory)
command, which has the form:

cd pathname

The argument is an absolute or a relative pathname (whichever is easier) for
the directory you want to change to:

% cd /Users/carol
% pwd
/Users/ carol
% cd work
% pwd
/Users/carol/work
%

18 I Chapter 2: Using Unix

The command cd, with no arguments, takes you to your
II:. home directory from wherever you are in the filesystem.
. •'

........ "•
'----~~·

Note that you can only change to another directory. You cannot cd to a file­
name. If you try, your shell (in this example, tcsh) gives you an error message:

% cd /etc/man.conf
/etc/man.conf: Not a directory.
%

/etc/man.conf is a file with information about the configuration of the man
command.

One neat trick worth mentioning is that you can always have Terminal enter
the path directly by dragging a file or folder icon from the Finder onto the
active Terminal window.

Two Ways to Explore Your Filesystem
Every file and folder that you view from the Finder is also accessible from the
Unix shell. Changes made in one environment are reflected (almost) immedi­
ately in the other. For example, the Desktop folder is also the Unix directory
/Userslyourname/Desktop.

just for fun, open a Finder window, move to your Desktop folder, and keep it
visible while you type these commands at the shell prompt:

% cd
% cd Desktop
% touch mac-rocks

Watch a file called mac-rocks appear magically on the Desktop. (The touch
command creates an empty file with the name you specify.)

Now type:
% rm mac-rocks

and watch the file disappear. The rm command removes the file.

Files in the Directory Tree
A directory can hold subdirectories. And, of course, a directory can hold
files. Figure 2-4 is a close-up of the filesystem aroundjohn's home directory.
The four files are shown along with the work subdirectory.

Pathnames to files are made the same way as pathnames to directories. As
with directories, files' pathnames can be absolute (starting from the root

The Unix Fllesystem I 19

I :::iJ -Directory

c~~r-; -Fik

Figure 2-4. Files in the directory tree

directory) or relative (starting from the working directory). For example, if
your working directory is Users, the relative pathname to the work directory
below would be john/work. The relative pathname to the chl file would be
johnlchl.

Unix filesystems can hold things that aren't directories or files, such as sym­
bolic links, FIFOs, and sockets (they have pathnames, too). You may see
some of them as you explore the filesystem. We don't cover those advanced
topics in this little book.

Listing Files with Is
To use the cd command, you must know which entries in a directory are
subdirectories and which are files. The ls command lists entries in the direc­
tory tree and can also show you which is which.

When you enter the ls command, you get a list of the files and subdirecto­
ries contained in your working directory. The syntax is:

ls option(s) directory-and-filename(s)

If you've just moved into an empty directory, entering ls without any argu­
ments may seem to do nothing. This isn't surprising, because you haven't
made any files in your working directory. If you have no files, nothing is dis­
played; you'll simply get a new shell prompt:

% ls
%

But if you're in your home directory, ls displays the names of the files and
directories in that directory. The output depends on what's in your direc­
tory. The screen should look something like this:

20 I Chapter 2: Using Unix

% ls
Desktop Documents Library Movies Music Pictures Public
%

Sometimes ls might display filenames in a single column. If yours does, you
can make a multicolumn display with the -C (uppercase "C") option or the -x
option. ls has a lot of options that change the information and display format.

The -a option (for all) is guaranteed to show you some more files, as in the
following example, which shows a directory like the one in Figure 2-4:

% ls -a

.tcsh_history Desktop
Music Pictures
%

.Trash
Documents
Public

.bash_history .bashrc
Library Movies

When you use ls -a, you'll always see at least two entries with the names .
(dot) and .. (dot dot). As mentioned earlier, .. is always the relative path­
name to the parent directory. A single . always stands for its working direc­
tory; this is useful with commands such as cp (see the section "Copying
Files" in Chapter 3). There may also be other files, such as .tcshr or .exrc.
Any entry whose name begins with a dot is hidden-it's listed only if you
use ls -a.

To get more information about each item that ls lists, add the -1 option.
(That's a lowercase "L" for "long.") This option can be used alone, or in
combination with -a, as shown in Figure 2-5.

$ ls -al
total 94
d rwxr-xr-x 2 john doc 512 Jul 10 22:25
d rwxr-xr-x 4 bin bin 1024 Jul 8 11:48
- rw-r--r-- 1 john doc 136 Jul 8 14:46 .exrc
- rw-r--r-- 1 john doc 833 Jul 8 14:51 .profile
- rw-rw-rw- 1 john doc 31273 Jul 10 22:25 ch1
- rw-rw-rw- 1 john doc 0 Jul 10 21:57 ch2

~XT!,T T.T Modification T Links Date and Time

Access Owner Size Name
Modes (in bytes)

Figure 2-5. Output from Is -a/

The Unix Filesystem I 21

The long format provides the following information about each item:

Total n
n is the amount of storage used by everything in this directory. (This is
measured in blocks.) On Mac OS X, blocks are 1,024 bytes in size.

Type
Tells whether the item is a directory (d) or a plain file (-). (There are
other less common types that we don't explain here.)

Access modes
Specifies three types of users (yourself, your group, all others) who are
allowed to read (r), write (w), or execute (x) your files or directories.
We'll talk more about access modes later.

Links
The number of files or directories linked to this one. (This isn't the same
as a web page link. We don't discuss filesystem links in this little book.)

Owner
The user who created or owns this file or directory.

Group
The group that owns the file or directory.

Size (in bytes)
The size of the file or directory. (A directory is actually a special type of
file. Here, the "size" of a directory is of the directory file itself, not the
total of all the files in that directory.)

Modification date
The date when the file was last modified, or when the directory con­
tents last changed (when something in the directory was added,
renamed, or removed). If an entry was modified more than six months
ago, ls shows the year instead of the time.

Name
The name of the file or directory.

Notice especially the columns that list the owner and group of the files, and
the access modes (also called permissions). The person who creates a file is
its owner; if you've created any files, this column should show your user­
name. You also belong to a group. Files you create are marked either with
the name of your group or, in some cases, the group that owns the directory.

The permissions show who can read, write, or execute the file or directory.
The permissions have 10 characters. The first character shows the file type (d
for directory or - for a plain file). The other characters come in groups of
three. The first group, characters 2-4, shows the permissions for the file's
owner, which is you if you created the file. The second group, characters 5-7,

22 I Chapter 2: Using Unix

shows permissions for other members of the file's group. The third group,
characters 8-10, shows permissions for all other users.

For example, the permissions for .profile in Figure 2-5 are -rw-r--r--, so it's
a plain file. The owner, john, has both read and write permissions. Other
users who belong to the file's group doc, as well as all other users of the sys­
tem, can only read the file; they don't have write permission, so they can't
change what's in the file. No one has execute (x) permission, which should
be used only for executable files (programs).

In the case of directories, x means the permission to access the directory­
for example, to run a command that reads a file there or to use a subdirec­
tory. Notice that the two directories shown in Figure 2-5 are executable
(accessible) by john, by users in the doc group, and by everyone else on the
system. A directory with write (w) permission allows deleting, renaming, or
adding files within the directory. Read (r) permission allows listing the
directory with ls.

You can use the chmod command to change the permissions of your files and
directories. (See the section "Protecting and Sharing Files" later in this chap­
ter.) If you need to know only which files are directories and which are exe­
cutable files, you can use the -F option with ls.

If you give the pathname to a directory, ls lists the directory but does not
change your working directory. The pwd command here shows this:

% ls -F /Users/andy
calendar goals
ch2 guide/
% pwd
/Applications
%

ideas/
testpgm*

ls -F puts a I (slash) at the end of each directory name. (The directory name
doesn't really have a slash in it; that's just the shorthand ls -Fuses to identify
a directory.) In our example, guide and ideas are directories. You can verify
this by using ls -1 and noting the d in the first field of the output. Files with
an execute status (x), such as programs, are marked with an* (asterisk). The
file testpgm is an executable file. Files that aren't marked are not executable.

ls -R (recursive) lists a directory and all its subdirectories. This can make a
very long list-especially when you list a directory near the root! (Piping the
output of ls to a pager program solves this problem. There's an example in
the section "Piping to a Pager.") You can combine other options with -R; for
instance, ls -RF marks each directory and file type, while recursively listing
files and directories.

On Mac OS X systems that include the GNU version of ls (perhaps from
http://www.gnu.org), you may be able to see names in color. For instance,

The Unix Fllesystem I 23

directories could be green and program files could be yellow. Like almost
everything on Unix, of course, this is configurable. The details are more than
we can cover in an introductory book. Try typing ls --color and see what
happens. {It's time for our familiar mantra: check your documentation. See
the section "Where to Go from Here." The man command is especially use­
ful for reading a command's online manual page.)

Exercise: Exploring the Filesystem
You're now equipped to explore the filesystem with cd, ls, and pwd. Take a
tour of the directory system, hopping one or many levels at a time, with a
mixture of cd and pwd commands.

Go to your home directory.
Find your working directory.
Change to new working directory with its absolute pathname.
list files in new working directory.
Change directory to root and list it in one step. (Use the com­
mand separator: a semicolon.)
Find your working directory.
Change to a subdirectory; use its relative pathname.
Find your working directory.
Change to a subdirectory.
Find your working directory.
Give a wrong pathname.
list files in another directory.
Find your working directory (notice that Is didn't change it).
Return to your home directory.

Looking Inside Files with less

Entered
Enterpwd
Entered /bin
Enterls
Entered I; ls

Enterpwd
Entered usr
Enterpwd
Entered lib
Enterpwd
Entered xqk
Enter ls /bin
Enterpwd
Entered

By now, you're probably tired of looking at files from the outside. It's akin
to visiting a bookstore and looking at the covers, but never getting to read a
word. Let's look at a program for reading text files.

If you want to "read" a long file on the screen, you can use the less com­
mand to display one "page" (a Terminal window filled from top to bottom)
of text at a time.

If you don't like less, you can try a very similar program named more. (In
fact, the name less is a play on the name of more, which came first.) The
syntax for less is:

less option(s) file(s)

24 I Chapter 2: Using Unix ·

less lets you move forward or backward in the files by any number of pages
or lines; you can also move back and forth between two or more files speci­
fied on the command line. When you invoke less, the first "page" of the file
appears. A prompt appears at the bottom of the Terminal window, as in the
following example:

% less ch03
A file is the unit of storage in Unix, as in most other systems.
A file can hold anything: text (a report you're writing,

The basic less prompt is a colon (:); although, for the first screenful, less
displays the file's name as a prompt. The cursor sits to the right of this
prompt as a signal for you to enter a less command to tell less what to do.
To quit, type q.

Like almost everything about less, the prompt can be customized. For
example, using the -M starting flag on the less command line makes the
prompt show the filename and your position in the file (as a percentage). If
you want this to happen every time you use less, you can set the LESS envi­
ronment variable to M (without a dash) in your shell setup file. See the sec­
tion "Customizing Your Shell Environment, in Chapter 4.

You can set or unset most options temporarily from the less prompt. For
instance, if you have the short less prompt (a colon), you can enter -M while
less is running. less responds "Long prompt (press Return)," and for the
rest of the session, less prompts with the filename, line number, and per­
centage of the file viewed.

To display the less commands and options available on your system, press h
(for "help") while less is running. Table 2-llists some simple (but still quite
useful) commands.

Table 2-1. Useful less commands

Command .. Desafption · (ommand Desalptio~.

SPACE Display next page. v starts the vi editor

Return Display next line. Control-l Redisplay current page.

nf Move forward n lines. h Help.

b Move backward one page. :n Go to next file on command line.

nb Move backward n lines. :p Go back to previous file on

/word Search forward for word. command line.

?word Search backward for word. q Quit less.

Looking Inside Rles with less I 25

Protecting and Sharing Files
Unix makes it easy for users on the same system to share files and directo­
ries. For instance, everyone in a group can read documents stored in one of
their manager's directories without needing to make their own copies, if the
manager has allowed access. There might be no need to fill peoples' email
inboxes with file attachments if everyone can access those files directly
through the Unix filesystem.

Here's a brief introduction to file security and sharing. If you have critical
security needs, or you just want more information, talk to your system staff
or see an up-to-date book on Unix security such as Practical Unix and Inter­
net Security (O'Reilly).

Note that the system's superuser (the system administrator
and possibly other users) can do anything to any file at any
time, no matter what its permissions are. So, access permis­
sions won't keep your private information safe from every-
one-although let's hope that you can trust your system
administrator!

Your system administrator should also keep backup copies
of users' files. These backup copies may be readable by any­
one who has physical access to them. That is, anyone who
can take the backup out of a cabinet (or wherever) and
mount it on a computer system may be able to read the file
copies. The same is true for files stored on floppy disks and
any other removable media. (Once you take a file off a Unix
system, that system can't control access to it anymore.)

Directory Access Permissions
A directory's access permissions help to control access to the files and subdi­
rectories in that directory:

• If a directory has read permission, a user can run ls to see what's in the
directory and use wildcards to match files in it.

• A directory that has write permission allows users to add, rename, and
delete files in the directory.

• To access a directory (that is, to read or write the files in the directory or
to run the files if they're programs) a user needs execute permission on
that directory. Note that to access a directory, a user must also have exe­
cute permission to all its parent directories, all the way up to the root.

26 I Chapter 2: Using Unix

File Access Permissions
The access permissions on a file control what can be done to the file's con­
tents. The access permissions on the directory where the file is kept control
whether the file can be renamed or removed. (If this seems confusing, think
of it this way: th~ directory is actually a list of files. Adding, renaming, or
removing a file changes the contents of the directory. If the directory isn't
writable, you can't change that list.)

Read permission controls whether you can read a file's contents. Write per­
mission lets you change a file's contents. A file shouldn't have execute per­
mission unless it's a program.

Setting Permissions with chmod
Once you know what permissions a file or directory needs-and if you're
the owner (listed in the third column of ls -1 output)-you can change the
permissions with the chmod program.

There are two ways to change permissions: by specifying the permissions to
add or delete, or by specifying the exact permissions. For instance, if a direc­
tory's permissions are almost correct, but you also need to make it writable
by its group, tell chmod to add group-write permission. But if you need to
make more than one change to the permissions-for instance, if you want to
add read and execute permission but delete write permission-it's easier to
set all permissions explicitly instead of changing them one-by-one. The syn­
tax is:

chmod permissions file(s)

Let's start with the rules; we see examples next. The permissions argument
has three parts, which you must give in order with no space between.

1. The category of permission you want to change. There are three: the
owner's permission (which chmod calls "user," abbreviated u), the
group's permission (g), or others' permission (o). To change more than
one category, string the letters together, such as go for "group and oth­
ers," or simply use a to mean "all" (same as ugo).

2. Whether you want to add(+) the permission, delete {-) it, or specify it
exactly (=).

3. What permissions you want to affect: read (r), write (w), or execute (x).
To change more than one permission, string the letters together-for
example, rw for "read and write."

Protecting and Sharing Files I 27

Some examples should make this clearer! In the following command lines,
you can replace dirname or filename with the pathname (absolute or rela­
tive) of the directory or file. An easy way to change permissions on the work­
ing directory is by using its relative pathname, . (dot), as in chmod a-w •. You
can combine two permission changes in the same chmod command by sepa­
rating them with a comma (,), as shown in the final example.

• To protect a file from accidental editing, delete everyone's write permis­
sion with the command chmod a -w filename. On the other hand, if you
own an unwritable file that you want to edit, but you don't want to
change other peoples' write permissions, you can add "user" (owner)
write permission with chmod u+w filename.

• To keep yourself from accidentally removing files (or adding or renam­
ing files) in an important directory of yours, delete your own write per­
mission with the command chmod u-w dirname. If other users have that
permission too, you could delete everyone's write permission with chmod
a-w dirname.

• If you want you and your group· to be able to read and write all the files
in your working directory-but those files have various permissions
now, so adding and deleting the permissions individually would be a
pain-this is a good place to use the = operator to set the exact permis­
sions you want. Use the filename wildcard*, which means "everything
in this directory" (explained in the section "File and Directory Wild­
cards") and type: chmod ug=rw *.

• If your working directory had any subdirectories, though, that com­
mand would be wrong because it takes away execute permission from
the subdirectories, so the subdirectories couldn't be accessed anymore.
In that case, you could try a more specific wildcard. Or, instead of a
wildcard, you can simply list the filenames you want to change, sepa­
rated by spaces, as in chmod ug=rw afile bfile cfile.

• To protect the files in a directory and all its subdirectories from every­
one else on your system, but still keep the access permissions you have
there, you could use chmod go-rwx dirname to delete all "group" and
"others" permission to read, write, and execute. A simpler way is to use
the command chmod go= dirname to set "group" and "others" permis­
sion to exactly nothing.

• You want full access to a directory. Other people on the system should
be able to see what's in the directory (and read or edit the files if the file
permissions allow it) but not rename, remove, or add files. To do that,
give yourself all permissions, but give "group" and "others" only read
and execute permission. Use the command chmod u=rwx,go=rx dirname.

28 I Chapter 2: Using Unix

After you change permissions, it's a good idea to check your work with 1s -1
filename or 1s -1d dirname.

Problem checklist

I get the message "chmod: Not owner."
Only the owner of a file or directory (or the superuser) can set its per­
missions. Use 1s -1 to find the owner or ask a system administrator to
change the permissions.

A file is writable, but my program says it can't be written.
First, check the file permissions with 1s -1 and be sure you're in the cat­
egory (user, group, or others) that has write permission.

The problem may also be in the permissions of the file's directory. Some
programs need permission to write more files into the same directory (for
example, temporary files), or to rename files (for instance, making a file
into a backup) while editing. If it's safe to add write permission to the
directory (if other files in the directory don't need protection from
removal or renaming) try that. Otherwise, copy the file to a writable direc­
tory (with cp), edit it there, then copy it back to the original directory.

Changing Group and Owner
Group ownership lets a cenain group of users have access to a file or direc­
tory. You might need to let a different group have access. The chgrp pro­
gram sets the group owner of a file or directory. You can set the group to
any of the groups to which you belong. Because you're likely going to be
administering your system, you can control the list of groups you're in. (In
some situations, the system administrator controls the list of groups you're
in.) The groups program lists your groups.

For example, if you're a designer creating a directory named images for sev­
eral illustrators, the directory's original group owner might be managers.
You'd like the illustrators, all of whom are in the group named staff, to
access the directory; members of other groups should have no access. Use
commands such as:·

% groups
managers staff freelancers research
% mkdir images
% ls -ld images

• Many Unix systems also let you set a directory's group ownership so that any files you later create
in that directory will be owned by the same group as the directory. Try the command chmod g+s
dirname. The permissions listing from ls -ld will now show an sin place of the second x, such as
drwxr-s---.

Protecting and Sharing Files I 29

drwxr-xr-x 2 roberts managers 4096 Aug 25 13:35 images
% chgrp staff images
% chmod o= images
% ls -ld images
drwxr-x--- 2 roberts staff 4096 Aug 25 13:35 images

The chown program changes the owner of a file or directory. Mac OS X lets
you reassign file and directory owners to your heart's content. On some
other Unix systems, only the superuser can use chown. • You do have to be the
original owner, however, so there are still some limitations.

Changing Your Password
The ownership and permissions system described in this chapter depends on
the security of your username and password. If others get your usemame
and password, they can log into your account and do anything you can.
They can read private information, corrupt or delete important files, send
email messages as if they came from you, and more. If your computer is con­
nected to a network, whether it be the Internet or a local network inside
your organization, intruders may also be able to log in without sitting at
your keyboard! See the section "Remote Logins" in Chapter 7 for one way
this can be done.

Anyone may be able to get your usemame-it' s usually part of your email
address, for instance, or shows up as a file's owner in a long directory listing.
Your password is what keeps others from logging in as you. Don't leave your
password anywhere around your computer. Don't give your password to any­
one who asks you for it unless you're sure he'll preserve your account secu­
rity. Also don't send your password by email; it can be stored, unprotected,
on other systems and on backup tapes, where other people may find it and
then break into your account.

If you think that someone knows your password, you should probably
change it right away-although if you suspect that a computer "cracker" (or
"hacker") is using your account to break into your system, you should ask
your system administrator for advice first, if possible. You should also
change your password periodically. Every few months is recommended.

A password should be easy for you to remember but hard for other people
(or password-guessing programs) to guess. Here are some guidelines. A
password should be between six and eight characters long. It should not be
a word in any language, a proper name, your phone number, your address,

• If you have permission to read another user's file, you can make a copy of it (with cp; see the sec­
tion "Copying Files" in Chapter 3). You'll own the copy.

30 I Chapter 2: Using Unix

or anything anyone else might know or guess that you'd use as a password.
It's best to mix upper- and lowercase letters, punctuation, and numbers. A
good way to come up with a unique but memorable password is to think of
a phrase that only you might know, and use the first letters of each word
(and punctuation) to create the password. For example, consider the pass­
word mlwsiF! ("My laptop was stolen in Florence!").

To change your password, you can use System Preferences -+ Users, but you
can also change it from the command line using the passwd command. Mter
you enter the command, it prompts you to enter your old password. If the
password is correct, it asks you to enter the new password-twice, to be
sure there is no typing mistake. For security, neither the old nor the new
passwords appear as you type them.

Graphical Filesystem Browsers
Because you've the luxury of running Unix within the Mac OS X environ­
ment, there's also a terrific graphical way to do some of the things you can
do with files from the command line. A filesystem browser, such as the
Finder, lets you see a graphical representation of the filesystem and do a lim­
ited number of operations on it. Figure 2-6 shows the Finder in its default
icon view. Other views that are helpful are listing and directory views, each
offering more information about the directories above and below the cur­
rent directory.

Back VIew Canputer Home

) ~
chl.doc ch2.doc

(g;J " Documents Library

Dt rJ

Favorites -Applications

Ill
Desktop

~
Movies

rJi ...

r
I
f
r:

r
I
! Music Netlnfo Pictures

--------~-- ----------·--......--,..-... --··--- .. ---- __ ,_j_ .. :u.

Figure 2-6. Mac OS X Finder, icon view

Graphical Fllesystem Browsers I 31

The Finder can be handy for seeing what's in the filesystem. Unfortunately,
because the Finder takes you away from the shell you're using for other
work, it can limit what you're able to do with Unix. C'l ou'll see additional
information about why this is true when we cover more advanced features
such as input/output redirection in Chapter 6.) We recommend learning
more about the Finder, but also learning what you can do at the more pow­
erful Unix command line.

Completing File and Directory Names
Most Unix shells can complete a partly typed file or directory name for you.
Different shells have different methods. If you're using the default shell in
Mac OS X, tcsh, just type the first few letters of the name, then press Tab. If
the shell can find just one way to finish the name, it will; your cursor will
move to the end of the new name, where you can type more or press Return
to run the command. Ct ou can also edit or erase the completed name.)

What happens if more than one file or directory name matches what you've
typed so far? You will get a list of all possible completions; try pressing Tab
and you may see a list of all names starting with the characters you've typed
so far. Here's an example from the tcsh shell:

% maTab
mach_init
machine
mail
% rna

mailq
mails tat
mails tats

make
makedbm
makedepend

makemap man
makepsres
malloc_history

At this point, you could type another character or two-an i, for example­
and then press Tab once more to list only the mail-related commands.

32 I Chapter 2: Using Unix

CHAPTER3

File Management

Chapter 2 introduced the Unix filesystem. This chapter explains how to
name, edit, copy, move, and find files.

File and Directory Names
As Chapter 2 explains, both files and directories are identified by their
names. A directory is really just a special kind of file, so the rules for naming
directories are the same as the rules for naming files.

Filenames may contain any character except I, which is reserved as the sepa­
rator between files and directories in a pathname. Filenames are usually made
of upper- and lowercase letters, numbers, "." (dots), and"_" (underscores).
Other characters (including spaces) are legal in a filename, but they can be
hard to use because the shell gives them special meanings. However, spaces
are a standard pan of Macintosh file and folder names, so while we recom­
mend using only letters, numbers, dots, and underscore characters for filena­
mes, the reality is that you will have to figure out how to work with the spaces
in file and directory names. The Finder, by contrast, dislikes colons (which it
uses as a directory separator, just as Unix uses the slash). If you display a file
called test:me in the Finder, the name is shown as test/me instead.

If you have a file with spaces in its name, the shell will be confused if you
type its name on the command line. That's because the shell breaks com­
mand lines into separate arguments at the spaces. To tell the shell not to
break an argument at spaces, either put quotation marks C') around the
argument or preface each space with a backslash (\).

For example, the rm program, covered later in this chapter, removes Unix
files. To remove a file named a confusing name, the first rm command in the
following snippet doesn't work, but the second one does. Also note that you

33

can escape spaces (that is, avoid having the shell interpret them inappropri­
ately) by using a backslash character, as shown in the third example:

% ls -1
total 2
-rw-r--r-- 1 taylor staff 324 Feb 4 23:07 a confusing name
-rw-r--r-- 1 taylor staff 64 Feb 4 23:07 another odd name
% rm a confusing name
rm: a: no such file or directory
rm: confusing: no such file or directory
rm: name: no such file or directory
% rm "a confusing name"
% rm another\ odd\ name
%

Unix doesn't require a dot(.) in a filename; in fact, you can use as many as
you want. For instance, the filenames pizza and this.is.a.mess are both legal.
One interesting quirk of Mac OS X is that the colon is used in the graphical
interface (Aqua) to separate folders and filenames, so it can't be used as part
of a filename in the Finder. However, Unix doesn't care and is perfectly fine
creating a file named test:file. When viewed in the Finder, however, it's dis­
played as test/file and vice versa.

A filename must be unique inside its directory, but other directories may
have files with the same names. For example, you may have the files called
chapl and chap2 in the directory /Users/carol/work and also have files with
the same names in /Users/carol/play.

File and Directory Wildcards
When you have a number of files named in series (for example, chapl to
chap12) or filenames with common characters (such as aegis, aeon, and
aerie), you can use wildcards to specify many files at once. These special
characters are * (asterisk), ? (question mark), and [] (square brackets).
When used in a file or directory name given as an argument on a command
line, the following is true:

* An asterisk stands for any number of characters in a filename. For
example, ae* would match aegis, aerie, aeon, etc. if those files were in
the same directory. You can use this to save typing for a single filename
(for example, al * for alphabet. txt) or to choose many files at once (as in
ae*). A* by itself matches all file and subdirectory names in a directory,
with the exception of any starting with a period. To match all your dot
files, try . ? ?*.

? A question mark stands for any single character (so h?p matches hop and
hip, but not help).

34 I Chapter 3: File Management

[] Square brackets can surround a choice of single characters (i.e., one
digit or one letter) you'd like to match. For example, [Cc]hapter would
match either Chapter or chapter, but chap[12] would match chapl or
chap2. Use a hyphen (-)to separate a range of consecutive characters.
For example, chap[l-3] would match chapl, chap2, or chap3.

The following examples show the use of wildcards. The first command lists
all the entries in a directory, and the rest use wildcards to list just some of
the entries. The last one is a little tricky; it matches files whose names con­
tain two (or more) a's.

% ls
chaplO chap2 chaps
chapla.old chap3.old chap6
chaplb chap4 chap7
% ls chap?
chap2 chapS chap7
chap4 chap6
% ls chap[S-7]
chaps chap6 chap7
% ls chap[S-9]
chapS chap6 chap7
% ls chap??
chaplO chaplb
% ls *old
chapla.old chap3.old cold
% ls *a*a*
chapla.old haha

cold
haha
oldjunk

Wildcards are useful for more than listing files. Most Unix programs accept
more than one filename, and you can use wildcards to name multiple files
on the command line. For example, both the cat and less programs display
files on the screen. cat streams a file's contents until end of file, while less
shows the file one screenful at a time. Let's say you want to display files
chap3.old and chapla.old. Instead of specifying these files individually, you
could enter the command as:

% less *.old

This is equivalent to less chapta.old chap3.old.

Wildcards match directory names, too. You can use them anywhere in a
pathname-absolute or relative-though you still need to separate directory
levels with slashes(/). For example, let's say you have subdirectories named
jan, Feb, Mar, and so on. Each has a file named summary. You could read all
the summary files by typing less */summary. That's almost equivalent to less
Jan/summary Feb/summary ... but there's one important difference: the names
will be alphabetized, so Apr/summary would be first in the list.

File and Directory Wildcards 35

Creating and Editing Files
One easy way to create a file is with a Unix feature called input/output redi­
rection, as Chapter 5 explains. This sends the output of a program directly
to a file, to make a new file or add to an existing one.

You'll usually create and edit a plain-text file with a text editor program.
Text editors are somewhat different than word processors.

Text Editors and Word Processors
A text editor lets you add, change, and rearrange text easily. Three popular
Unix editors included with Mac OS X are vi (pronounced "vee-eye"), Pico
("pea-co"), and Emacs ("e-max").

Since there are several editor programs, you can choose one you're comfort­
able with. vi is probably the best choice because almost all Unix systems
have it, but Emacs is also widely available. If you'll be doing simple editing
only, Pico is a great choice. Although Pico is much less powerful than Emacs
or vi, it's also a lot easier to learn. For this book, however, we'll focus on the
rudiments of vi as it's the most widely available Unix editor, and there's a
version of vi included with Mac OS X.

None of those editors has the same features as popular word-processing
software within the graphical face of Mac OS X, but vi and Emacs are
sophisticated, extremely flexible editors for all kinds of plain-text files: pro­
grams, email messages, and so on. Of course, you can opt to use an Aqua­
based editor such as BBEdit or TextEdit with good results too, if you'd
rather just sidestep editing while within the Terminal application. If you do,
try using the open command within the Terminal to launch the editor with
the proper file already loaded. For example: open -e myfile. txt.

By "plain text," we mean a file with only letters, numbers, and punctuation
characters in it. Unix systems use plain-text files in many places: redirected
input and output of Unix programs (Chapter 5), as shell setup files (see the
section "Customizing Your Shell Environment" in Chapter 4), for shell
scripts (shown in the section "Programming" in Chapter 10), for system con­
figuration, and more. Text editors edit these files. When you use a word pro­
cessor, though, although the screen may look as if the file is only plain text,
the file probably also has hidden codes (nontext characters) in it. That's
often true even if you tell the word processor to "Save as plain text." One
easy way to check for nontext characters in a file is by reading the file with
less; look for characters in reversed colors, codes such as <36>, and so on.

36 I Chapter 3: File Management

Fixing Those Pesky Carriage Returns
The only caveat regarding switching between Aqua applications and Unix
applications for editing is that you might end up having to translate file for­
mats along the way. Fortunately, this is easy with Unix.

One of the more awkward things about Apple putting a Mac graphical envi­
ronment on top of a Unix core is that the two systems use different end-of­
line character sequences. If you ever open up a file in an Aqua application and
see lots of little boxes at the end of each line, or if you try to edit a file within
Unix and find that it's littered with "M sequences, you've hit the end-of-line
problem.

To fix it, type in the following two commands at the shell (carefully):

%echo alias m2u tr '\015' '\012' >> ~/.cshrc
% echo alias u2m tr '\015' '\012' >> ~/.cshrc

Then type:

%source ~/.cshrc

Now, whenever you're working with Unix editing tools and you need to fix a
Mac-format file, simply use m2u (Mac to Unix), as in:

% m2u < mac-format-file > unix-friendly-file

And if you find yourself in the opposite situation, where you're editing a Unix
file in a Mac tool and it has some carriage-return weirdness, use the reverse
(Unix to Mac) within Terminal before editing:

% u2m < unix-friendly-file > mac-format-file

Worthy of note is the helpful tr command, which makes it easy to translate
all occurrences of one character to another. Use man tr to learn more about
this powerful utility.

If you need to do word processing-making documents, envelopes, and so
on-your best bet is to work with a program designed for that purpose such
as Microsoft Office X or even TextEdit.

The vi Text Editor
The vi editor, originally written by Bill Joy at the University of California,
Berkeley, is easy to use once you master the fundamental concept of a modal
editor.

Modes can be best explained by thinking about your car stereo. When you
have a tape in (or a CD), the "1" button does one task, but if you are listen­
ing to the radio, the very same button does something else (perhaps jump to
pre-programmed station #1). The vi editor is exactly the same: in command

Creating and Editing Files I 37

mode, i jumps you into insert mode, but in insert mode it actually inserts an
"i" into the text itself. The handiest key on your keyboard while you're
learning vi is unquestionably ESC: if you're in insert mode, ESC will move
you back into command mode, and if you're in command mode, it'll beep to

let you know that all is well. Use ESC often, until you're completely com­
fortable keeping track of what mode you're in.

Start vi by typing its name; the argument is the filename you want to create
or edit. For instance, to edit your .cshrc setup file, you would cd to your
home directory and enter:

% vi .cshrc

The terminal fills with a copy of the file (and, because the file is short, some
blank lines too, as denoted by the - at the beginning of the line), as shown in
Figure 3-1.

Figure 3-1. vi display while editing

The bottom row of the window is the status line, which indicates what file
you're editing: .cshrc: unmodified: line 1. Quit the program by typing :q and
pressing Return while in command mode.

38 I Chapter 3: File Management

vi tour
Let's take a tour through vi. In this example, you'll make a new file. You can
call the file anything you want, but it's best to use only letters and numbers
in the filename. For instance, to make a file named sample, enter the com­
mand vi sample. Let's start our tour now.

1. Your screen should look something like Figure 3-1, but the cursor
should be on the top line and the rest of the lines should have the "'
blank line delimiter. Press i to move out of command mode and into
insert mode, and you're ready to enter text.

2. Enter some lines of text. Make some lines too short (press Return before
the line gets to the right margin). Make others too long; watch how vi
wraps long lines. If you have another terminal window open with some
text in it or an Aqua application, you can also use your mouse to copy
text from another window and paste it into the vi window (always make
sure you're in insert mode before you do this, however, or you could
irrevocably mess up your file). To get a lot of text quickly, paste the
same text more than once.

3. Let's practice moving around the file. To do this, we'll need to leave
insert mode by pressing ESC once. Press it again and you'll hear a beep,
reminding you that you are already in command mode. You can use
your arrow keys to move around the file, but vi also lets you keep your
fingers on the keyboard by using h j k 1 as the four motion keys (left,
down, up, and right, respectively). vi works on all terminals, with or
without a mouse, so it will probably ignore your mouse if you try to use
it to move the cursor. If you've entered a lot of text, you can experiment
with various movement commands use: H to jump to the first line on the
screen, G to jump to the bottom of the file. You should also try the w and
b commands, to move forward and backward by words. Also, o (zero)
jumps to the beginning of the line, while $ jumps to the end.

vi's search or "where is" command, /pattern, can help you find a word
quickly. It's handy even on a short file, where it can be quicker to type I
and a word than to use the cursor-moving commands. The search com­
mand is also a good example of the way that vi can move your cursor to
the status line so you can enter more information. Let's try it by typing/.
You should see a display like Figure 3-2.

4. Notice that the cursor has jumped to the bottom of the display has
changed since you started vi and is sitting next to a /. You can type a
word or characters to search for, then press Return to do the search.
After a search finishes, you can type n to repeat the search.

Creating and Editing Flies I 39

• i I. :.
Tht; ~~ o te:t rt te
It ·.:(oiJ're u:.tng 11 • . ..'tncko•.o~ ,.,_.ct,:-rn . nn(1 -...·oq h•1'·.:r:·

onoth-:·r terrntnol •:.~tn•Jo• ... • opr::-n •.•tt:t·, :or,,r:· t•> :t tr, tt, \1(11_l 0:•1n ol :.:•
u>::- '·/•)Ur rn•)u::e to cop-.:' l_t:. t _ f r •.'h' tlr t.:,ther •}trnio• ... • nnd !J•.l t_.: t t:

tnt.o th~ '·..'1 •:.•ind•:o• ... •.

It ··.:(••_r're u:tr•oJ ,J ':.'tn•:1•)' .. ' -..,.·::~d·• · .:1n.:1
·-.:ou ho·-.:.:- o:lr,.:,tt·,.;-r t.;-nulf"Pll • .. •tf'•fl•:···.' (•p.:·r• •,_•tttl :(r~t:•::- to:· t tr• tt.

\'1)1_1 ((ln •1l:o u:e ···(ll.ll fll(ill ·:· t.-, ,-,-~,--: t.-.. t tr•:>fn oi.!"Jt)th.:·r '.'tn·i·:··-·
Gno:l t,:n1~t.;- 1t tnt(• t_t,~ \'1 ':.'\!od·~··· ·'•

Figure 3-2. vi display while searching

5. If your text isn't in paragraphs separated by blank lines, break some of it
into paragraphs. Put your cursor at the place you want to break the text
and press ito move back into insert mode, then Return twice (once to
break the line, another to make a blank line).

6. Now justify one paragraph. Put the cursor at the beginning of the para­
graph and type ! }fmt. Now the paragraph's lines should flow and fit
neatly between the margins.

7. Text can be deleted by using x to delete the character that's under the
. cursor, or the powerful d command: dd deletes lines, dw deletes individ­

ual words, d$ deletes to the end of the line, do deletes to the beginning of
the line, and dG deletes to the end of the file (if you're seeing a pattern
and thinking that it's d +motion specifier you're absolutely correct). To
undo the deletion, press u. You can also paste the deleted text with the p
command.

8. The first step to copying text is to position your cursor. The copy com­
mand or "yank" works similar to the delete command. The yw com­
mand copies one word, yy yanks the line, yl a single character, and ynw
yanks n number words. Move the cursor to the line you want to copy
and press yy. After repositioning your cursor to where you'd like the
text copied, press p to paste the text.

9. As with any text editor, it's a good idea to save your work from vi every
5 or 10 minutes. That way, if something goes wrong on the computer or
network, you'll be able to recover the edited buffer since the last time
you saved it. When launching vi again, use the -r option with a filename
to recover the edited buffer where the filename is the name of the file
you were editing.

10. Try writing out your work with :w followed by Return. The bottom of
the display will show the filename saved and the number of lines and
characters in the file.

40 I Chapter 3: File Management

11. This part confuses some vi beginners. If you want to save the file with
the same name it had when you started, just press :wand Return; that's
all! You can also choose a different filename: type :w followed by the
new filename. Press Return and it's saved.

12. Make one or two more small edits. Then, exit with : q. vi warns you that
the file has not been saved. If you want to override the warning type : q!.
You can also use a shortcut: :wq writes out your changes and quits vi.

That's it. There's a lot more you can learn about vi, and there's a consider­
ably more sophisticated version of vi called vim that you can download for
your Mac (http://www.vim.org/), if you want something even more power­
ful. In Table 3-1, you'll find a handy listing of some of the most common vi
commands and their descriptions. O'Reilly has two very helpful books if you
want to become a power user: Learning the vi Editor and vi Editor Pocket
Reference.

Table 3-1. Common vi editing commands

Coirunand
/pattern

:q

:q!

:w

:wqorZZ

a

b

w

dlG

dd

dG

dw

ESC

h

1

i

j

k

Meaning
Search forward for specified pattern. Repeat search with n.

Quit the edit session.

Quit, discarding any changes.

Write (save) any changes out to the file.

Write out any changes, then quit (shorcut).

Move into append mode (like insert mode, but you enter Information after the cursor, not
before).

Move backward one word.

Move forward one word.

Delete from the current point back to the beginning of the file.

Delete the current line.

Delete through end of file.

Delete the following word.

Move into command mode.

Move backward one character.

Move forward one character.

Move into insert mode (ESC moves you back to command mode).

Move down one line.

Move up one line.

o Open up a line above the current line and move into insert mode.

o Open up a line below the current line and move into insert mode.
--·-----·-····--· ·--··-------·····-··--···------

Creating and Editing Flies I 41

Managing Your Files
The tree structure of the Unix filesystem makes it easy to organize your files.
After you make and edit some files, you may want to copy or move files
from one directory to another, or rename files to distinguish different ver­
sions of a file. You may want to create new directories each time you start a
different project. If you copy a file, it's worth learning about the subtle
sophistication of the cp and CpMac commands: if you copy a file to a direc­
tory, it automatically reuses the filename in the new location. This can save
lots of typing!

A directory tree can get cluttered with old files you don't need. If you don't
need a file or a directory, delete it to free storage space on the disk. The fol­
lowing sections explain how to make and remove directories and files.

Creating Directories with mkdir
It's handy to group related files in the same directory. If you were writing a
spy novel, you probably wouldn't want your intriguing files mixed with res­
taurant listings. You could create two directories: one for all the chapters in
your novel (spy, for example), and another for restaurants (boston.dine).

To create a new directory, use the mkdir program. The syntax is:

mkdir dirname(s)

dirname is the name of the new directory. To make several directories, put a
space between each directory name. To continue our example, you would
enter:

% mkdir spy boston.dine

Copying Files
If you're about to edit a file, you may want to save a copy first. That makes
it easy to get back the original version. You should use the cp program when
copying plain files and directories. All other Macintosh files (that is, those
with resource forks) should be copied with CpMac (available only if you have
installed Apple's Mac OS X developer CD).

cp
The cp program can put a copy of a file into the same directory or into
another directory. cp doesn't affect the original file, so it's a good way to
keep an identical backup of a file.

To copy a file, use the command:

cp old new

42 I Chapter 3: Ale Management

where old is a pathname to the original file and new is the pathname you
want for the copy. For example, to copy the /etc/passwd file into a file called
password in your working directory, you would enter:

% cp /etc/passwd password
%

You can also use the form:

cp old olddir

This puts a copy of the original file old into an existing directory olddir. The
copy will have the same filename as the original.

If there's already a file with ·the same name as the copy, cp replaces the old
file with your new copy. This is handy when you want to replace an old
copy with a newer version, but it can cause trouble if you accidentally over­
write a copy you wanted to keep. To be safe, use ls to list the directory
before you make a copy there. Also, the Mac OS X version of cp has an - i
(interactive) option that asks you before overwriting an existing file.

You can copy more than one file at a time to a single directory by listing the
pathname of each file you want copied, with the destination directory at the
end of the command line. You can tise relative or absolute pathnames (see
the section "The Unix Filesystem" in Chapter 2) as well as simple filenames.
For example, let's say your working directory is /Users/carol (from the file­
system diagram in Figure 2-1). To copy three files called chl, ch2, and ch3
from !Users/john to a subdirectory called work (thaes /Users/carol/work),
enter:

% cp •• /john/ch1 •• /john/ch2 •• /john/ch3 work

Or, you could use wildcards and let the shell find all the appropriate files.
This time, let's add the -i option for safety:

% cp -i •• /john/ch[1-3] work
cp: overwrite work/ch2? n

There is already a file named ch2 in the work directory. When cp asks,
answer n to prevent copying ch2. Answering y would overwrite the old ch2.

As you saw in the section "Relative pathnames up" in Chapter 2, the short­
hand form . puts the copy in the working directory, and . . puts it in the
parent directory. For example, the following puts the copies into the work­
ing directory:

% cp •• /john/ch[1-3] •

cp can also copy entire directory trees. Use the option -R, for "recursive."
There are two arguments after the option: the pathname of the top-level
directory you want to copy from and the pathname of the place where you
want the top level of the copy to be. As an example, let's say that a new

Managing Your Files I 43

employee, Asha, has joined John and Carol. She needs a copy of John's work
directory in her own home directory. See the filesystem diagram in
Figure 2-1. Her home directory is /Userslasha. If Asha's own work directory
doesn't exist yet (important!), she could type the following commands:

% cd /Users
% cp -R john/work asha/work

Or, from her home directory, she could have typed cp -R •• /john/work work.
Either way, she'd now have a new subdirectory /Users/ashalwork with a
copy of all files and subdirectories from /Users/john/work.

If you give cp -R the wrong pathnaines, it can copy a direc­
tory tree into itself-running forever until your filesystem
fills up!

If the copy seems to be taking a long time, stop cp with Con­
trol-Z, then explore the filesystem (ls -RF is handy for this). If
all's okay, you can resume the copying by putting the cp job in
the background (with bg) so it can finish its slow work. Other­
wise, kill cp and do some cleanup-probably with rm -r,
which we mention in the section "rmdir" later in this chapter.
(Also, see the sections, "Running a Command in the Back­
ground" and "Canceling a Process" in Chapter 9.)

Problem checklist

The system says something like "cp: cannot copy file to itself."
If the copy is in the same directory as the original, the filenames must be
different.

The system says something like "cp: filename: no such file or directory."
The system can't find the file you want to copy. ·check for a typing mis­
take. If a file isn't in the working directory, be sure to use its pathname.

The system says something like "cp: permission denied."
You may not have permission to copy a file created by someone else or
copy it into a directory that does not belong to you. Use ls -1 to find
the owner and the permissions for the file, or ls -ld to check the direc­
tory. If you feel that you should be able to copy a file, ask the file's
owner or a system staff person to change its access modes.

Copying Mac files with resources

The cp program works on plain files and directories, but the Macintosh sys­
tem stores applications with resource information. These attributes used to
be known as "resource forks," but in Mac OS X, file structures are more
complex. For example, you'll recall the earlier invocation of the chess game:

% open /Applications/chess.app

44 I Chapter 3: File Management

A quick listing of the named folder chess.app is quite interesting. It's a direc­
tory with a folder Contents, and listing that reveals:

% ls /Applications/chess.app/Contents
Info.plist MacOS/ Pkginfo Resources/ version.plist

Because of the extra information required for each file, a special version of
cp is used to copy Mac-format files. The program, CpMac, is included on the
Developer CD-ROM that was included with your Mac OS X distribution. If
you haven't installed the contents of this disk, you should. You can also
download the disk image from the developer section of http://developer.
apple.com.

CpMac is found in /Developer!Tools. To copy the Chess application and its
resources to your home directory invoke the following:

% /Developer/Tools/CpMac -r /Applications/chess.app N

Of course, if you find yourself using MvMac or CpMac a lot, it'd save you lots of
typing to either alias CpMac to /Developer!T ools/CpMac or add /Developer/
Tools to your PATH. PATH is one of a set of environment variables that help the
shell keep track of your particular session. Another variable you can see: ,...
always expands to your home directory on the system (the directory you
stan out within when you launch a Terminal window). Information on cus­
tomizing your path is found in the section, "Customizing Your Shell Envi­
ronment" in Chapter 4.

Here's an example of how the resources are even hidden from ls:

% ls -al
-rw-r--r-- 1 taylor staff
-rw-r--r-- 1 taylor staff
-rw-r--r-- 1 taylor staff
-rw-r--r-- 1 taylor staff
-rw-r--r-- 1 taylor staff
-rw-r--r-- 1 taylor staff
% ls -al */rsrc

408 Feb
324 Feb
64 Feb
o Feb
o Feb
3 Feb

4 23:41 Sample
4 23:07 a confusing name
4 23:07 another odd name
4 21:44 chl.doc
4 21:44 ch2.doc
4 23:08 test:file

-rw-r--r-- 1 taylor staff o Feb 4 23:41 Sample/rsrc
-rw-r--r-- 1 taylor staff o Feb 4 23:07 a confusing name/rsrc
-rw-r--r-- 1 taylor staff o Feb 4 23:07 another odd name/rsrc
-rw-r--r-- 1 taylor staff o Feb 4 21:44 ch1.doc/rsrc
-rw-r--r-- 1 taylor staff o Feb 4 21:44 ch2.doc/rsrc
-rw-r--r-- 1 taylor staff o Feb 4 23:08 test:file/rsrc

The resource files rsrc are there, but you can't see them with a regular ls
command, which means that the regular cp command won't see them either.

As a simple rule of thumb, if using a regular cp command doesn't work, try
CpMac instead. A good strategy is to try listing the /rscr information too. If it's
there, you'll want to pick it up on your copy for best results:

% ls Sample
Sample

Managing Your Files I 45

% ls Sample/rsrc
Sample/rscr
% /Developer/Tools/CpMac Sample /Applications
%

Renaming and Moving Files with mv
To rename a file, use mv (move). The mv program can also move a file from
one directory to another.

The mv command has the same syntax as the cp command:

mv old new

old is the old name of the file and new is the new name. mv will write over
existing files, which is handy for updating old versions of a file. If you don't
want to overwrite an old file, be sure that the new name is unique. The Mac
OS X version of mv has an -i option for safety.

% mv chap1 intro
%

The previous example changed the file named chapl to intro. If you list your
files with ls, you will see that the filename chapl has disappeared.

The mv command can also move a file from one directory to another. As with
the cp command, if you want to keep the same filename, you only need to
give mv the name of the destination directory.

There's also a MvMac command, analogous to the CpMac command explained
earlier. Again, check by looking for a /rscr resource file before copying (or
after copying if you get unusual results when you view the file from the
Finder) and use MvMac as needed.

Finding Files
If your account has lots of files, organizing them into subdirectories can help
you find the files later. Sometimes you may not remember which subdirec­
tory has a file. The find program can search for files in many ways; we'll
look at two.

Change to your home directory so find will start its search there. Then care­
fully enter one of the following two find commands. (The syntax is strange
and ugly-but find does the job!)

% cd
% find • -type f -name "chap*" -print
./chap2
./old/chaplOb
% find • -type f -mtime -2 -print
./work/to_do

46 I Chapter 3: Rle Management

The first command looks in your working directory (.) and all its subdirecto­
ries for files (-type f) whose names start with chap. (find understands wild­
cards in filenames. Be sure to put quotes around any filename pattern with a
wildcard in it, as we did in the example.) The second command looks for all
files that have been created or modified in the last two days (-mtime -2). The
relative pathnames that find finds start with a dot (./), the name of the
working directory, which you can ignore. Worth noting is that -print dis­
plays the results on the screen, not on your printer.

Mac OS X has the 4.4 BSD Unix locate program. If it's been set up and
maintained on your system, you can use locate to search part or all of a file­
system for a file with a certain name: For instance, if you're looking for a file
named alpha-test, alphatest, or something like that, try this:

% locate alpha
/Users/alan/alpha3
/usr/local/projects/mega/alphatest

You '11 get the absolute pathnames of files and directories with alpha in their
names. (If you get a lot of output, add a pipe to less. See the section "Piping
to a Pager" in Chapter 6.) locate may or may not list protected, private files;
its listings usually also aren't completely up to date.The fundamental differ­
ence between the two is that find lets you search by file type, contents, and
much more, while locate is a simple list of all filenames on the system. To
learn much more about find and locate, read your online documentation (see
Chapter 10) or read the chapter about them in Unix Power Tools (O'Reilly).

Removing Files and Directories
You may have finished work on a file or directory and see no need to keep it,
or the contents may be obsolete. Periodically removing unwanted files and
directories frees storage space.

rm
The rm program removes files. Unlike moving an item to the trash, no
opportunity exists to recover the item before you "empty the trash" when
using rm.

The syntax is simple:

rm filename(s)

• By default, Mac OS X does support locate, but the script that updates the locate database is run
only once a week, and your computer must be on and running for that to occur. If you want to
update the database by hand, you can use sudo /usr/libexec/locate.updatedb if you have enabled
sudo access administrative password.

Managing Your Flies I 47

rm removes the named files, as the following example shows:

% ls
chaplO chap2 chaps

chap6
chap7

cold
haha
oldjunk

chapla.old chap3.old
chaplb chap4
% rm •.old chapto·
% ls
chaplb
chap2
% rm c•
% ls

chap4
chaps

chap6
chap7

cold
haha

oldjunk

haha oldjunk
%

When you use wildcards with rm, be sure you're deleting the right files! If
you accidentally remove a file you need, you can't recover it unless you have
a copy in another directory or in the system backups.

rmdir

Do not enter rm * carelessly. It deletes all the files in your
working directory.

Here's another easy mistake to make: you want to enter a
command such as rm c* (remove all filenames starting with
"c") but instead enter rm c * (remove the file named c and
all files!).

It's good practice to list the files with ls before you remove
them. Or, if you use rm's -i (interactive) option, rm asks you
whether you want to remove each file.

just as you can create new directories, you can remove them with the rmdir
program. As a precaution, rmdir won't let you delete directories that con­
tain any files or subdirectories; the directory must first be empty. (The rm -r
command removes a directory and everything in it. It can be dangerous for
beginners, though.)

The syntax is:

rmdir dirname(s)

If a directory you try to remove does contain files, you get a message like
"rmdir: dirname not empty."

To delete a directory that contains some files:

1. Enter cd dirname to get into the directory you want to delete.

2. Enter rm *to remove all files in that directory.

3. Enter cd •• to go to the parent directory.

4. Enter rmdir dirname to remove the unwanted directory.

48 I Chapter 3: File Management

Problem checklist

I still get the message "dirname not empty" even after I've deleted all the files.
Use ls -a to check that there are no hidden files (names that start with a
period) other than . and .. (the working directory and its parent). The
following command is good for cleaning up hidden files (which aren't
matched by a simple wildcard such as *):

% rm .[a-zA-Z]* .??*

Files on Other Operating Systems
Chapter 7 includes the section, "Transferring Files," which explains ways to
transfer files across a network-possibly to non-Unix operating systems.
Mac OS X has the capability of connecting to a variety of different filesys­
tems remotely, including Microsoft Windows, other Unix systems, and even
Web-based filesystems.

If the Windows-format filesystem is mounted with your other filesystems,
you'll be able to use its files by typing a Unix-like pathname. For instance,
from our Mac, we can access the Windows file C:\WORD\R.EPORT.DOC
through the pathname Nolumeslwinc/word!report.doc. Indeed, most exter­
nal volumes are automatically mounted within the Nolumes directory.

Managing Your Files I 49

CHAPTER4

Customizing Your Session

One of the great pleasures of using Unix with Mac OS X surrounding it is
that you get the benefit of a truly wonderful graphical application environ­
ment and the underlying power of the raw Unix interface. A match made in
heaven!

This chapter discusses how to customize your Terminal environment both
from the graphical user interface using Terminal- Preferences and from the
Unix shell by using shell configuration files.

Launching Terminal
Launch Terminal and you have a dull, uninspiring white window with black
text that says 'Welcome to Darwin!" and a shell prompt. But that's okay.
We can fix it.

Changing Terminal Preferences
To change the display preferences in the Terminal application, go to the
Terminal menu and choose Preferences You see a display similar to
Figure 4-1.

Along the window's top, notice that a number of different preferences are
configurable: Startup, Shell, Window, Text & Colors, Buffer, Emulation,
and Activity. The icons suggest what each does, but let's have a closer look
anyway, particularly since some of these settings definitely should be
changed in our view. It's worth pointing out that these changes affect new
windows not the current window.

Startup Preferences

When you first open Terminal Preferences, the Startup Preferences are dis­
played, as shown in Figure 4-1. The default behavior is to launch a new

so

Stutup Sholl Window nxt & Colors

When Tenninal starts:

E)Do nothing -
8 Create a new shell window
0 Open<his .term file:

Figure 4-1. Startup Preferences

Buff<r Emulation Activity

blank shell window each time the program is started, so you're ready to start
typing commands immediately. Unless you're an advanced user, don't
change this behavior. Instead, let's look at what's on the other preference
screens, which you can view by clicking on each icon at the top of the Prefer­
ences window.

Shell Preferences

As Figure 4-2 reveals, there are a number of behavioral choices you can
make on this panel, including whether you want each window to have its
own login shell associated with your account, or whether all Terminal win­
dows should run a specified shell (in this case, lbin/tcsh). In Mac OS X
you're probably the only person who uses your computer, so if your login
shell is acceptable to you, leaving the shell setting to reference the login shell
is your best bet. ·

Also on this panel you can specify that when a login shell exits, the Termi­
nal application can close the window, close the window only if the shell
exited cleanly (that is, returned a nonzero status code, which means that all
the applications gracefully shut down), or never close the window. If you
like to study what you've done and want to be forced to explicitly close the
Terminal window, the last choice is for you. Otherwise, either of the first
two will work fine.

Finally, you can specify a nonstandard string encoding if you're working
with an unusual language or font. By default, the UTF-8 (Unicode 8-bit)
encoding is quite acceptable and will also keep you out of trouble with more
complex character sets that Unix might not understand correctly.

Launching Terminal I 51

T.erminal Preferences

Startup Shell Window Text & Colors Buffer Emulation Activity

-· ·..::....-~-- .D

Shell:

8 Use default login shell for this user
0 Use this shell:

jJbi n/tcsh

When the shell exits:

@Always close the window
0 Close the window if the shell exited cleanly-
0 Never close the window

String Encoding: ('-UTF __ -s _____ f!i'-"c

These settings will not take effect untll a. new Terminal window Is created.

Figure 4-2. Shell Preferences

Window Preferences

If you have a large display, or are running at a higher resolution than
800x600, you'll find it quite helpful to enlarge the Terminal window to offer
a bigger space within which to work. Our default is 80 characters wide by 40
lines tall, as shown in Figure 4-3.

The title of each Terminal window can be fine tuned too: you might find the
device name (what you'd get if you typed tty at the shell prompt) and the
window size particularly helpful.

....
If you want to change the Terminal window title at any
point, you can use the Set Title option by either choosing it

:_. from the Shell menu or typing 3&-Shift-T. The resulting Ter­
. minal Inspector window, as shown in Figure 4-4, lets you

fine tune the appearance of an existing window (by contrast,
the preferences only affect future windows, not those that
are already open).

Text & Colors Preferences

The area that you' ll probably fine tune more than any other is Text & Col­
ors. Here you can specify a different (or larger) font, and change the fore­
ground, background, bold, cursor, and selection colors, as well as define the
shape of your cursor within the Terminal window. The default is black text

52 I Chapter 4: Customizing Your Session

Startup nxt& Colors Emulation Activity

a.~--~ .a
Window Dimension~­

fBOl Columns

Title Displays:

OShell Path

f401 Riiws

@lo~ceName ~--------~~~~----~~~~~~~--~~'
@Custom Title: t~o,;T..;;e;.;.rm;;.;i;.;.na;;;.l __________________ ...,..._.....,......,__,

[800 Terminal (ttypl) 80x24

These settings will not take effect until a new Tennlnal window Is cre_ated.

Figure 4-3. Window Preferences

{ Window

Window Dimensions:

~Columns
401 Rows

Title Displays:

"@shell Path
!f Device Name
0Filename
!fWindow Size
I!! Custom Title:

f oarwin

Figure 4-4. Terminal Inspector window

on a white background, but we find that light text on a dark background is
easier to read for extended periods. One suggested preference is where the
background is a very dark blue, the cursor is yellow, normal text is light yel­
low, bold text is light green, and the selection is a dark green.

Launching Tennlnal I 53

While you can choose any font available on your system, you'll find that
your display is much more comprehensible if you stick to monospace or
fixed-width type. Monaco is a very good choice, and is the default typeface
for the Terminal application.

Buffer Preferences

The settings in this area probably don't need changing. The scrollback buffer
allows you to scroll back and review earlier commands and command out­
put. The default value of 10,000 lines should be more than enough for most
people. If you want to use less memory, you can put in a smaller number or
completely disable the scroll back buffer, rather than specifying a size.

You can also choose whether the Terminal should wrap long lines (not all
Unix programs will wrap long lines, and so they might disappear off the
edge of the window if this option isn't set), or whether you should automati­
cally jump to the bottom of the scroll buffer upon input, if you've scrolled
back to examine something that transpired earlier in your session. These
options are set by default, and you should probably leave them that way.

Emulation Preferences

These preferences don't need to be altered by most users. If you're using the
Emacs text editor, however, you will want to select "Option (alt) key acts as
meta key" to allow meta-key sequences. What's a meta-key sequence?
Emacs uses lots of Control, Alt, Control-Alt, and similar key sequences for
complex commands, and one modifier it uses is a new-to-Mac-users "meta"
key. If you use Emacs, you'll see when the meta key is necessary.

11-,,
• ·' Some Titanium Power Book G4s have an inordinate delay
•:. before emitting audio, and if vou've got one of these and
\~,' • I

....._____,~"·' you've noticed it as a problem, select "Mute terminal bell" to
.. neatly sidestep the problem. This also has the nice side effect

of preventing people around you knowing when you've
made a mistake too, of course.

Otherwise, it's best to leave "translate newlines to carriage returns" so that
you can ignore the difference in end-of-line sequences in Mac files versus
Unix files, and to avoid strict "vt100" emulation, because it can get in the
way of some of the newer Mac OS X Unix utilities. Whether or not you
enable Option-Click for positioning the cursor might depend on whether
you're a Unix purist (for whom the "good old keyboard" works fine) or
whether you're trying to simplify things. Beware that if you do enable

54 I Chapter 4: Customizing Your Session

Option-Click positioning, it won't work in all cases, only when you're in a
full-screen application such as Emacs.

Activity monitor
One of the more subtle capabilities of the Terminal application is that it can
keep track of what applications you're running so it can be smart about con­
firming window close requests: if there's something still running in the win­
dow, it'll pop up a dialog box asking if you're sure you want to quit. This
feature is very helpful if you are prone to accidentally click the wrong win­
dow element or push the wrong key sequence. We recommend you enable
the activity monitor to help avoid accidentally closing windows (and auto­
matically killing all the processes running within those windows).

Customizing Your Shell Environment
The Unix shell reads a number of configuration files when it starts up. These
configuration files are really shell programs, so they are extraordinarily pow­
erful. Shell programming is beyond the scope of this book. For more detail,
see Paul DuBois' book, Using csh and tcsh (O'Reilly). Because Unix is a mul­
tiuser system, there are two possible locations for the configuration files: one
applies to all users of the system and another to each individual user.

The system-wide setup files that are read by tcsh, the default shell for Mac
OS X, are found in /usrlsharelinit/tcsh. You only have permission to change
these system-wide files if you are logged in as root. However, you can create
an additional file called .tcshrc in your home directory that will add addi­
tional commands to be executed whenever you start a new Terminal win­
dow. (If you configure Terminal to use another shell, such as the Bourne
shell, the C shell, or the Z shell, you'll need to set up different configuration
files, which we don't discuss.) The system-wide setup files are read first,
then the user-specific ones, so commands in your .tcshrc file may override
those in the system-wide files.

The .tcshrc file can contain any shell command that you want to run auto­
matically whenever you create a new Terminal. Some typical examples
include changing the shell prompt, setting environment variables (values that
control the operation of other Unix utilities), setting aliases, or adding to the
search path (where the shell searches for programs to be run). A .tcshrc file
could look like this:

set prompt:::"%/ %h% "
setenv LESS 'eMq'
alias desktop "cd /Users/taylor/Desktop"
date

Customizing Your Shell Environment I 55

This sample .tcshrc file issues the following commands:

• The line with set prompt tells the shell to use a different prompt than the
standard one. We'll explain the details of prompt setting in the section
"Changing Your Prompt" later in this chapter.

• The line with setenv LESS tells the less program which options you
want to set every time you use it. Not all commands recognize environ­
ment variables, but for those that do, this saves you the trouble of typ­
ing the options on every less command line. Environment variables
have many uses within Unix. A good place to learn more about them is
the book Unix Power Tools, by Jerry Peek, Tim O'Reilly, and Mike
Loukides (O'Reilly).

• The line that begins with alias defines a new, custom command that
your shell will recognize just as if it were a built-in Unix command.
Aliases are a great way to save shorthand names for long, complicated
Unix command lines, or even to fix common mistakes you might make
when typing command lines. This particular alias creates a command
for going right to the Desktop directory. We give a brief tutorial on cre­
ating aliases later in this chapter.

• The date line simply runs the date command to print the time and date
when you open a new Terminal window. You probably don't want to
do this, but we want you to understand that you can put in any com­
mand that you could type at the shell prompt, and have it automatically
executed whenever a new shell starts up.

By default, the .tcshrc file doesn't exist in your home directory. Only the sys­
tem-wide configuration files are read. But if you create the file, it will be read
and its contents executed the next time you start a shell. (You can also cre­
ate a file called .logout to contain commands to be executed when you end a
shell.) You can create or change these files with a text editor, such as vi (see
"The vi Text Editor" in Chapter 3). Don't use a word processor that breaks
long lines or puts special nontext codes into the file. Any changes you make
to these files will take effect the next time you log in (or, in some cases,
when you start a new shell-such as opening a new Terminal window).
Unfortunately, it's not always easy to know which shell setup file you
should change.· And an editing mistake in your shell setup file can keep you
from logging in to your account! We suggest that beginners get help from

• In addition to .tcshrc, the shell will also read and execute files called .login, .cshrc, and .logout.
Some files are read by login shells and others by non-login shells. Some are read by subshells, oth­
ers aren't. Some terminal windows open login shells, others don't. And if you're using the Bourne
shell, still other files, such as .profile, are read instead. We focus only on .tcshrc here, but a more
advanced Unix book can provide more information once you need it.

56 I Chapter 4: Customizing Your Session

experienced users, and don't make changes to these files at all if you're
about to do some critical work with your account, unless there's some rea­
son you have to make the changes immediately.

You can execute any customization command we show you here from the
command line as well. In this case, the changes are in effect only until you
close that window or quit Terminal.

For example, to change the default options for less so it will clear the Ter­
minal window before it shows each new page of text, you could add the -c
option to the LESS environment variable. The command would look some­
thing like this:

% setenv LESS 'eMqc'

(If you don't want some of the less options we've shown, you could leave
those letters out.) Unix has many other configuration commands to learn
about; the sources listed in Chapter 10 can help.

just as you can execute the setup commands from the command line, the
converse is true: any command that you can execute from the command line
can be executed automatically when you log in by placing it in your setup
file. (Running interactive commands such as vi or ftp from your setup file
isn't a good idea, though.)

Changing Your Prompt
The easiest customization you can perform is to change your prompt. By
default, tcsh on Darwin has a shell prompt made up of your computer host­
name, your account name, and a percent sign (for example: [dsl-132:"']
taylor%). H you'd rather have something else, ies time to edit your own .tcshrc
file. Use the vi editor (you might need to flip back to "The vi Text Editor" in
Chapter 3) to create a file called .tcshrc in your home directory (!Users/
yourname) and add the following to the end of the file: set prompt="%". You
can also change the prompt for a single session by invoking the command as
follows:

[dsl-132:-]taylor% set prompt="% "
%

This command will give you a simple, spare % prompt with nothing else.
(The % is traditional for shells derived from the Berkeley Unix C Shell, while
$ is traditional for shells derived from the original Bell Labs Bourne Shell.)
It's not necessary-you could use a colon, a greater than sign, or any other
prompt character-but it is a nice convention, because it will immediately
tell an advanced user what kind of shell you are using.

Customizing Your Shell Environment I 57

If thaes all you could do to set your prompt, it wouldn•t be very interesting,
though. There are a number of special character sequences that, when used
to define the prompt, cause the shell to print out various bits of useful data.
Table 4-1 shows a paniallist of these special character sequences for fine
tuning your prompt.

Table 4-1. Favorite percent escape sequences for tcsh prompts

·Value
%/

%-

%c

%h

%M

%m

%B/%b

%t

%T

%n

Meaning
The current working directory

The current working directory, with your home represented as .. and other users homes repre­
sented as -user

The trailing element of the current working directory, with .. substitution

The current command history number

The full hostname

The hostname up to the first dot

Start/Stop bold mode (matches the bold color in the Terminal color preferences)

Time of day in 12-hour (a.m./p.m.) format

Time of day in 24-hour format

Theusemame

Experiment and see what you can create that will meet your needs and be
fun too. For many years, a popular Unix prompt was:

% set prompt="Yes, Master? "

It might be a bit obsequious, but on the other hand, how many people in
your life call you "Master"?

One prompt sequence that we like is:

% set prompt="%/ %h% n

This prompt sequence shows the current working directory, followed by a
space, and the current history number, and then a percent sign to remind
the user that this is csh or tcsh. For example, the prompt might read:

/Users/taylor 55%

This tells me immediately that /Users/taylor is my current directory, and that
I'm on the 55th command I've executed. (Because you can use the arrow
keys to scroll back to previous commands, as described in the section,
"Recalling Previous Commands" in Chapter 1, this is no longer as impor­
tant, but there is a very powerful command history syntax built into tcsh
that allows you to recall a previous command by number. If you're familiar
with this syntax, making the command history number part of the prompt

58 I Chapter 4: Customizing Your Session

can be handy.) On multiuser systems, it's not a bad idea to put the user­
name into the prompt as well, so you always know who the system thinks
you are.

Creating Aliases
The flexibility of Unix is simultaneously its greatest strength and downfall;
the operating system can do just about anything you can imagine (the com­
mand-line interface is certainly far more flexible than Aqua, the graphical
interface!) but it's very difficult to remember every single flag to every com­
mand. That's where shell aliases can be a real boon. A shell alias is a simple
mechanism that lets you create your own command names that act exactly
as you desire.

For example, we really like the -a flag to be included every time we list a
directory with ls, so we created an alias:

% alias ls "/bin/ls -a"

This indicates that each time we type ls in the shell, the /bin/ls command
is going to be run, and it's going to automatically have the -a flag specified.
To have this available in your next session, make sure you remember to add
the alias to your .cshrc file too.

You can also have aliases that let you jump quickly to common locations, a
particularly helpful trick when in Mac OS X:

% alias desktop "cd /Users/taylor/Desktop"

There are many aliases predefined in the tcsh shell. You can list active aliases
all by typing alias without any arguments:

% alias
pwd
cd ••

cd.. cd •.
cdwd cd • pwd'
cwd echo $cwd
desktop cd /Users/taylor/Desktop
ff find. -name 1:1 -print
files find !:1 -type f -print
1 ls -lg
line sed -n '1:1 p' 1:2
list_all_hostnames grep -v ""#" /etc/hosts
11 ls -lag !* I more
ls /bin/ls -F
pp winname prosperpoint;ssh -1 taylor prosperpoint.com;winname Darwin
staging winname staging;ssh -1 taylor staging.intuitive.com;winname Darwin
term /Applications/Utilities/Terminal.app/Contents/MacOS/Terminal
winname echo -n '"(]o;I""G'
word grep !* /usr/share/dict/web2

Customizing Your Shell Environment I 59

Have an alias you really want to omit? You can use unalias for that. For
example, unalias ls would remove the -a flag addition. Drop the unalias
command into your .cshrc file and it'll ensure that the system alias won't
bother you ever again.

Further Customization
There's not much more you can do with the Terminal application than
what's shown in this chapter, but there's an infinite amount of customiza­
tion possible with the tcsh shell (or any other shell you might have picked).
To learn more about how to customize your shell, read the manpage. Be
warned, though, the tcsh manpage is over 5,800 lines long!

Oh, and in case you're wondering, manpages are the Unix version of online
help documentation. Just about every command-line (Unix) command has a
corresponding manpage with lots of information on starting flags, behav­
iors, and much more. You can access any manpage by simply typing man cmd.
Start with man man to learn more about the man system.

For more information on customizing tcsh, see Paul DuBois' book, Using csh
and tcsh, or Unix Power Tools, Second Edition, by Jerry Peek, Tim O'Reilly,
and Mike Loukides, both available from O'Reilly.

60 I Chapter 4: Customizing Your Session

CHAPTERS

Printing

Working in the Macintosh environment, you're used to a simple and ele­
gant printer interface, particularly in OS X, where Print Center makes it a
breeze to add new printers and configure your existing printers. The Unix
environment has never had a printing interface that even comes close in
usability, and while the standard print command in Unix is lpr, getting it to
work on OS X involves reconfiguring your system and a number of tricky
system administration tasks best avoided if you're not a Unix expert.

If you do want to try, see Configuring Your Printer at the end
~~· •. of this chapter for some suggestions on how to proceed.

'----~·

',•

Formatting and Print Commands
The good news is that Apple has included a couple of alternative command­
line interfaces to printers, notably atprint for AppleTalk-based printers,
and Print, a program that's supposed to inject your print jobs into the regu­
lar Aqua print queue.

Regardless of what program you're going to use for printing, before you
print a file on a Unix system, you may want to reformat it to adjust the mar­
gins, highlight some words, and so on. Most files can also be printed with­
out reformatting, but the raw printout might not look quite as nice. Further,
some printers accept only PostScript, which means you'll need to use a text­
to-PostScript filter such as enscript for good results. Before we cover print­
ing itself, let's look at both pr and enscript to see how they work.

61

pr
The pr program does minor formatting of files on the terminal screen or for
a printer. For example, if you have a long list of names in a file, you can for­
mat it onscreen into two or more columns.

The syntax is:

pr option(s) filename(s)

pr changes the format of the file only on the screen or on the printed copy; it
doesn't modify the original file. Table 5-llists some pr options.

Table 5-1. Some pr options

Opdon DeKripdon
-k Produces k columns of output

-d Double-spaces the output (may not work on all versions of pr}

-h header Takes the next item as a report header

-t Eliminates printing of header and top/bottom margins
•••·-•-•-•••••••••--•--•-••-·-----.,•--•-------•·•--•-•·•--·-•-•••••--•--•••••••••-•••-.,•-----•-••W._,_..__,_, ___ , ___ ,..,.., .. -,_....,,,_, __ , .. , .. ._ .. , .. _, .. , • ., .. ,.,, .. , .. ,,,..,,,,.,PO•..,,, .. , .. ,., .. .,,.,_._,..,, .. ,.,.._,,

Other options allow you to specify the width of columns, set the page
length, etc. For a complete list of options, see the manpage, man pr.

Before using pr, here are the contents of a sample file named food:

% cat food
Sweet Tooth
Bangkok Wok
Mandalay
Afghani Cuisine
Isle of Java
Big Apple Deli
Sushi and Sashimi
Tio Pepe's Peppers
%

Let's use pr options to make a two-column report with the header
Restaurants:

% pr -2 -h "Restaurants" food

Feb 4 9:58 2002 Restaurants Page 1

Sweet Tooth
Bangkok Wok
Mandalay
Afghani Cuisine

62 I Chapter 5: Printing

Isle of Java
Big Apple Deli
Sushi and Sashimi
Tio Pepe's Peppers

The text is output in two-column pages. The top of each page has the date
and time, header (or name of the file, if header is not supplied), and page
number. To send this output to the printer instead of the terminal screen,
create a pipe to the printer program-usually at print or lpr. See the section
"Pipes and Filters" in Chapter 6 for more information.

en script
One reason for the success of the Macintosh has been its integrated support
of PostScript for printing. Allowing sophisticated imaging and high-quality
text, PostScript printers are quite the norm in the Mac world. However, this
proves a bit of a problem from the Unix perspective, because Unix com­
mands are used to working with regular text without any special PostScript
formatting included.

Translating plain text into PostScript is the job of enscript. The enscript
program has a remarkable number of different command flags, allowing you
access to all the layout and configuration options you're familiar with from
the Page Setup and Print dialog boxes in Aqua.

The most helpful command flags are summarized in Table 5-2 (you can learn
about all the many options to en script by reading the en script man page). A
typical usage is enscript -p- Sample. txt I atprint to send the file to a printer
or enscript -psample. ps sample. txt to output to the file sample.ps.

Table 5-2. Useful enscript options

Option

-B
-f font

-j

-p file

-r

-Wlang

atprint

Destrlption ·
Do not print page headers.

Print body text using font (the default is Courierl 0).

Print borders around columns (you can tum on multicolumn output with -1 or -2).

Send output to file. Use -to stream output to standard out (for pipes).

Rotate printout 90 degrees, printing in landscape mode instead of portrait (the default).

Output in the specified language. Default is PostScript, but en script also supports HTML,
overstrike, and RTF.

The standard way to print within the Unix environment is to use either lp or
lpr (Mac OS X has lpr) but it's quite difficult to configure properly on Mac
OS X. Instead, if you have an Apple Talk printer, you'll be relieved to know
that there are a set of easy-to-use AppleTalk-aware Unix commands
included with Mac OS X. The most important of the commands is atprint,
which lets you easily stream any Unix output to a printer.

Formatting and Print Commands I 63

To start working with the AppleTalk tools, run atlookup, which lists all the
AppleTalk devices recognized on the network (and that can be quite a few):

% atlookup
Found 4 entries in zone *
ff1d.ao.so Dave Taylor's Computer:Darwin
ff01.04.08 PET:SNMP Agent
ff01.04.9d PET:laserWriter
ff01.04.9e PET:laserJet 2100

You can see that the PET printer (an HP Laserjet2100) appears with two dif­
ferent AppleTalk addresses. Fortunately, that can safely be ignored as well
as the other AppleTalk devices that show up in the list. The important thing
is that the atlookup command confirmed that there is indeed an AppleTalk
printer online.

To select a specific AppleTalk printer as the default printer for the atprint
command, run the oddly named at_cho_prn command. The trick is that you
need to run this command as root or administrator. If you enabled sudo you
can use it to easily run the program as root:

% sudo at_cho_prn
Password:

1: ffo1.04.9dtPET:laserWriter

ITEM number (o to make no selection)?1
Default printer is:PET:laserWriter@*
status: idle

Now, finally, the PET printer is selected as the default AppleTalk printer,
and all subsequent invocations of atprint will be sent to that printer with­
out having to remember its exact name.

What if you don't know your administrative password? Be careful when
resetting your administrative password. If you forgot your password, read the
Mac OS Help to direct you. You might need to reboot your computer off
your original OS X install CD-ROM, then when you get to the installer, select
the Set Administrative Password ... option from the File menu. The program
will then prompt you for a new password and set it for your machine. Reboot
again (without the CD-ROM), and you should be set forever.

Because most of the printers available through AppleTalk on a Macintosh
network are PostScript printers, it's essential to use the enscript program to
ensure the output is in proper PostScript format. As an example, the follow­
ing prints the intro manpage (an introduction to the manpage system) on
the PET printer, properly translated into PostScript:

% man intro I enscript -p- I atprint
man: Formatting manual page •••
looking for PET:laserWriter@*.

64 I Chapter 5: Printing

Trying to connect to PET:laserWriter@*.
[1 pages * 1 copy] left in -
atprint: printing on PET:laserWriter@*.

Pipes (command sequences with I between the commands) are covered in
more detail in Chapter 6.

lpr
The other possibility for printing is the standard Unix command lpr for
sending files to a printer. The syntax is:

lpr option(s) filename(s)

After you enter the command to print a file, the shell prompt returns to the
screen and you can enter another command. However, seeing the prompt
doesn't mean your file has been printed. Your file has been added to the
printer queue to be printed in turn.

Your system administrator has hopefully set up a default printer on your sys­
tem. If not, you might want to use atprint if you have an Apple Talk printer,
or simply open your files in an Aqua application such as TextEdit and print
from there. If you really want to use lpr and it isn't configured, see the sec­
tion "Configuring Your LPR Printer" later in this chapter for some sugges­
tions on getting it to work on your Macintosh.

To print a file named bills on the default printer, use the lpr command, as in
this example:

% lpr -Plj bills
%

lpr has no output if everything was accepted and queued properly. If you
need ID numbers for lpr jobs, use the lpq program to view the print queue
(see the section "lpq" later in this chapter). The file bills will be sent to a
printer called lj. lpr has several options. Table 5-3 lists three of them.

Table 5-3. Some lpr options

Command

-Pprinter

-#

-m

Qesalptfon

Use given printer name if there is more than one printer at your site. The printer
names are assigned by the system administrator.

Print# copies of the file.

Notify sender by email when printing Is done.

Windowing applications such as Microsoft Office use a completely different
print queuing system that's part of the Aqua environment. Those jobs won't
show up in the Darwin print queue, even if they're going to the same
printer.

Fonnatting and Print Commands I 65

Problem checklist
lpr returns "jobs queued, but cannot start daemon.,,

Your system is probably not configured properly for an lpr printer. If you
have a named lpr printer that works, try the command again with the
Pprintername option. If not, you might want to try using atprint or open­
ing up your files in TextEdit and printing from the Aqua eqvironment.

My printout hasn't come out.
See whether the printer is printing now. If it is, other users may have
made requests to the same printer ahead of you, and your file should be
printed in tum. The following section explains how to check the print
requests.

If no file is printing, check the printer's paper supply, physical connec­
tions, and power switch. The printer may also be hung (stalled). If it is,
ask other users or system staff people for advice.

My printout is garbled or doesn't look anything like the file did on my terminal.
The printer may not be configured to handle the kind of file you're print­
ing. For instance, a file in plain-text format will look fine when pre­
viewed in your Terminal window, but look like gibberish when you try
to print it. If the printer understands only PostScript, make sure that you
use enscript to translate the plain-text format into acceptable PostScript.

Viewing the Printer Queue
If you want to find out how many files or "requests" for output are ahead of
yours in the printer queue, use the program named lpq. The lprm command
lets you cancel print jobs from the lpr queue.

Remember that if you want to check on the status of a print job from an
Aqua application such as Internet Explorer or even Terminal, you'll want to
go into Applications -+ Utilities -+ Print Center. Then double-click on the
printer to see the state of the queue.

lpq

The lpq command shows what's currently printing and what's in the queue:

% lpq -Plj
waiting for 198.76.82.151 to come up
Rank Owner Job Files
1st root 8 (standard input)
2nd taylor 9 (standard input)
%

Total Size
12244 bytes
13018 bytes

The first line displays the printer status. If the printer is disabled or out of
paper, you may see different messages on this first line. Here you can see

66 I Chapter 5: Printing

that the queue system is waiting for the printer to "come up, (it's turned
off). Jobs are printed in the order indicated in the lpq output. The Job num­
ber is important, because you can remove print jobs from the queue (if
you're the owner) with lprm.

lprm

lprm terminates lpr requests. You can specify either the ID of the request
(displayed by lpq) or the name of the printer.

If you don't have the request ID, get it from lpq, then use lprm. Specifying
the request ID cancels the request, even if it is currently printing:

% lprm -Plj 8
dfA008dsl-132.dsldesigns.com dequeued
cfA008dsl-132.dsldesigns.com dequeued

To cancel whatever request is currently printing, regardless of its ID, simply
enter lprm and the printer name:

% lprm -Plj
dfAoogdsl-132.dsldesigns.com dequeued
cfA009dsl-132.dsldesigns.com dequeued

lprm tells you the actual filenames removed from the printer queue (which
you probably don't need).

Configuring Your LPR Printer
While there are a great many areas of Mac OS X that are enhanced by the
addition of Unix as the low-level operating system, one area has become
more complex: printing. If you only live in the world of Aqua, it's not too
bad because Print Center manages all your needs, but if you want to print
from the Unix command line and you don't have an AppleTalk printer,
you've got a bit of a tinkering job ahead of you.

If you do have a printer accessible through Apple Talk, flip back a few pages
and read the section about the atprint command, or use man atprint to
learn how to simplify your life considerably.

Otherwise, configuring your printer requires four steps: adding an entry to
/etc/printcap for the printer, creating a spool directory and log file skele­
ton, importing the printcap entry into Netlnfo, and adding the printer to
Print Center.

To do this, you '11 need both your Unix root password and your system
administrator password. If you're unsure about your Unix root password,
you can go into Netlnfo and search the help system.

Configuring Your LPR Printer I 67

Editing /etc/printcap
The first step is to edit the printer capabilities database /etdprintcap. You
need to be root to do this, so it's easiest to use the sudo command to simply
run the edit command as root:

% sudo vi /etc/printcap

This file contains lots of cryptic information that is attempting to define
the capabilities and interface for each known printer accessible from Unix.
The default entry in the file is for a local printer that's accessible through
the ldevllp device:

lpllocal line printer:\
:lp=/dev/lp:sd;/var/spool/output/lpd:lf=/var/log/lpd-errs:

Odds are that this printer configuration is not going to work for you, how­
ever, so comment it out and add a new one for the new printer. In this
example, 198.76.82.151 is the IP address of an HP Laserjet 2100TN Ether­
net printer, which we'll call lj for the Unix system. H your printer has a
unique hostname, that's better to use than the IP address, but either way,
carefully duplicate the following:

lj:\
:lp=:rm=198.76.82.151:rp=lp:sd=/var/spool/lpd/lj:lf=/var/log/lj-errs.log:

The only lines in the file that should be uncommented (that is, that don't
have # as their first character) are those two above. Save the file and exit.

Creating the Spool Directory and Log File
The spool directory and log file specified in the new printcap entry must now
be created and have their permissions set appropriately. Again, you'll need to
be root or you can use the sudo shortcut for each line. For simplicity, switch
to root (notice the command prompt changes to a#) for these commands:

% su root
Password:

The spool directory /usrlspoolllpd should already exist on your system, so we
need to create the specific subdirectory that matches the spool directory
name listed in the printcap entry:

cd /var/spool/lpd
mkdir lj ; chown root.daemon lj

Then a .seq file should be created so the system can keep track of print job
sequence numbers:

cd lj
touch .seq ; chown root.daemon .seq

68 I Chapter 5: Printing

Finally, create the empty log file and set the appropriate permissions:

cd /var/log
touch lj-errs ; chown root.daemon lj-errs ; chmod 644 lj-errs

Loading the printcap Entry into Netlnfo
One innovation that Apple has added to Unix as part of Mac OS X is the
centralized Netlnfo database. We've bumped into it when looking at /etd
passwd (since user accounts are stored in Netlnfo now, not /etdpasswd as on
other Unix systems). Netlnfo also manages printers on the Unix system, and
so it's necessary to inform it about the new printer that's just been added.

Fortunately, the command-line utility niload knows how to read the
printcap file, so it's a single step:

niload printcap I < /etc/printcap

Enter that command carefully: note that there's a space after printcap and
before/.

Now you can launch Netlnfo and ensure that the printer was configured
properly. Go into Applications -+ Utilities -+ Netlnfo Manager. Upon
launch, it shows a multi-pane window, much of which is beyond the scope
of this book.

To verify that your new printer was added, click on "printers" in the middle
column, then your new printer should be in the right pane. Click on that and
you should see the bottom pane display information very similar to Figure 5-1.

If all looks similar, you can quit Netlnfo and proceed to the next step. If
things are different, or there's no printer shown, go back and ensure that
you entered the niload command exactly as shown earlier.

Adding the Printer to Print Center
The final step in this process is to launch Print Center (Applications-+ Utili­
ties) and click on the Add Printer ... button. Ensure that you're selecting
from the Directory Services printers, and you should see the new printer
appear, just as in Figure 5-2.

Select the printer, click Add, and you should be good to go.

To try printing, go back to the Terminal application and feed a PostScript
file to the new printer:

lpr -Plj MySample.ps
lpq

Make sure you exit as root.

Configuring Your LPR Printer I 69

local fP local host - I

afpuser _alias • 4
aliases •
config ~

groups "'
localconfi g •
machines •
mounts

Click the lock to make changes.

Figure 5-l. Verifying an LPR printer in Netlnfo Manager

(Directory Services

(Cancel) { Add

Figure 5-2. Adding the Netlnfo printer to Print Center

70 I Chapter 5: Printing

Important Caveat
Configuring LPR printers in Unix is more of a voodoo art than a science, so if
you can't get this to work, your best bet is to explore some of the Mac OS X
Unix suppon and discussion groups and also to check in with the Apple
Knowledge Base. See Chapter 10 for the web addresses.

Configuring Your LPR Printer I 71

CHAPTER6

Redirecting 1/0

Many Unix programs read input (such as a file) and write output. In this
chapter, we discuss Unix programs that handle their input and output in a
standard way. This lets them work with each other.

This chapter generally doesn't apply to full-screen programs, such as the Pico
editor, that take control of your whole Terminal window. (The pager pro­
grams, less, and more do work together in this way.) It also doesn't apply to
graphical programs, such as the Finder or Internet Explorer, that open their
own windows on your screen.

Standard Input and Standard Output
What happens if you don't give a filename argument on a command line?
Most programs will take their input from your keyboard instead (after you
press Return to start the program running, that is). Your Terminal keyboard
is the program's standard input.

As a program runs, the results are usually displayed on your Terminal
screen. The Terminal screen is the program's standard output. So, by default,
each of these programs takes its information from the standard input and
sends the results to the standard output. These two default cases of input/
output (1/0) can be varied. This is called I/0 redirection.

If a program doesn't normally read from files, but reads from its standard
input, you can give a filename by using the < (less-than symbol) operator.
For example, the mail program (see the section "Sending Mail from a Shell
Prompt" in Chapter 8) normally reads the message to send from your key­
board. Here's how to use the input redirection operator to count the num­
ber of lines in the file to_do :

72

% we -1 < to_do
%

If a program writes to its standard output, which is normally the screen, you
can make it write to a file instead by using the greater-than symbol (>) oper­
ator. The pipe operator (I) sends the standard output of one program to the
standard input of another program. Input/output redirection is one of the
most powerful and flexible Unix features.

Putting Text in a File
Instead of always letting a program's output come to the screen, you can
redirect output to a file. This is useful when you'd like to save program out­
put, or when you put files together to make a bigger file.

cat
cat, which is short for "concatenate," reads files and outputs their contents
one after another, without stopping.

To display files on the standard output (your screen), use:

cat file(s)

For example, let's display the contents of the file /etc/passwd. This system
file describes users' accounts. (Mac OS X has a more complete list in the
Netlnfo database.) ·

% cat /etc/passwd
nobody:*:-2:-2:Unprivileged User:/dev/null:/dev/null
root:*:O:O:System Administrator:/var/root:/bin/tcsh
daemon:*:l:l:System Services:/var/root:/dev/null
unknown:*:99:99:Unknown User:/dev/null:/dev/null
www:*:70:70:World Wide Web Server:/Library/WebServer:/dev/null
%

You cannot go back to view the previous screens, as you can when you use a
pager program such as less (unless you're using a Terminal window with a
sufficient scrollback buffer, that is). cat is mainly used with redirection, as
we'll see in a moment.

By the way, if you enter cat without a filename, it tries to read from the key­
board (as we mention earlier). You can get out by pressing Control-D.

When you add> filename to the end of a command line, the program's out­
put is diverted from the standard output to the named file. The> symbol is
called the output redirection operator.

Standard Input and Standard Output I 73

When you use the > operator, be careful not to accidentally
overwrite a file's contents. Your system may let you redirect
output to an ~· ting file. If so, the old file will be deleted
(or, in Unix ling , "clobbered"). Be careful not to overwrite a
much needed fil !

Many shells can protect you from this risk. In the tcsh shell
(the default shell for OS X), use the command set noclobber.
The Kom and bash shell command is set -o noclobber. Enter
the command at a shell prompt or put it in your shell's star­
tup file. After that, the shell won't allow you to redirect onto
an existing file and overwrite its contents.

This doesn't protect against overwriting by Unix programs
such as cp; it works only with the> redirection operator. For
more protection, you can set Unix file access permissions.

For example, let's use cat with this operator. The file contents that you'd
normally see on the screen (from the standard output) are diverted into
another file, which we'll then read using cat (without any redirection!):

% cat /etc/passwd > mypassword
% cat mypassword
nobody:*:-2:-2:Unprivileged User:/dev/null:/dev/null
root:*:o:o:System Administrator:/var/root:/bin/tcsh
daemon:*:l:l:System Services:/var/root:/dev/null
unknown:*:99:99:Unknown User:/dev/null:/dev/null
www:*:70:70:World Wide Web Server:/Library/WebServer:/dev/null
%

An earlier example showed how cat /etc/passwd displays the file /etc/passwd
on the screen. The example here adds the > operator; so the o~tput of cat
goes to a file called mypassword in the working directory. Displaying the file
mypassword shows that its contents are the same as the file /etclpasswd (the
effect is the same as the copy command cp /etc/passwd mypassword).

You can use the > redirection operator with any program that sends text to
its standard output-not just with cat. For example:

% who > users
% date > today
% ls
password today users

We've sent the output of who to a file called users and the output of date to
the file named today. Listing the directory shows the two new files. Let's
look at the output from the who and date programs by reading these two files
with cat:

% cat users
taylor console Feb 5 08:21
taylor ttypl Feb 5 08:47

74 I Chapter6: Redirecting VO

% cat today
Tue Feb 5 10:29:00 PST 2002
%

You can also use the cat program and the > operator to make a small text
file. We told you earlier to type Control-D if you accidentally enter cat with­
out a filename. This is because the cat program alone takes whatever you
type on the keyboard as input. Thus, the command:

cat > filename

takes input from the keyboard and redirects it to a file. Try the following
example:

% cat > to_do
Finish report by noon
Lunch with Xian
Swim at 5:30
AD
%

cat takes the text that you typed as input (in this example, the three lines
that begin with Finish, Lunch, and Swim), and the> operator redirects it to a
file called to_do. Type Control-D once, on a new line by itself, to signal the
end of the text. You should get a shell prompt.

You can also create a bigger file from smaller files with the cat command
and the > operator. The form:

cat filel file2 > newfile

creates a file newfile, consisting offilel followed by file2.

% cat today to_do > diary
% cat diary
Tue Feb 5 10:29:00 PST 2002
Finish report by noon
Lunch with Xian
Swim at 5:30
%

·~
You can't use redirection to add a file to itself, along with
other files. For example, you might hope that the following
command would merge today's to-do list with tomorrow's.
This won't work!

% cat to_do to_do.tomorrow > to_do.tomorrow
cat: to_do.tomorrow: input file is output file

cat warns you, but it's actually already too late. When you
redirect a program's output to a file, Unix empties (clob­
bers) the file before the program starts running. The right
way to do this is by using a temporary file (as you'll see in a
later example) or simply by using a text editor program.

Standard Input and Standard Output I 75

You can add more text to the end of an existing file, instead of replacing its
contents, by using the>> (append redirection) operator. Use it as you would
the > (output redirection) operator. So:

cat file2 >> file1

appends the contents of file2 to the end of filel. For an example, let's
append the contents of the file users and the current date and time to the file
diary. Here's what it looks like:

% cat users >> diary
% date » diary
% cat diary
Tue Feb 5 10:29:00 PST 2002
Finish report by noon
Lunch with Xian
Swim at 5:30
taylor console Feb 5 08:21
taylor ttyp1 Feb 5 08:47
Tue Feb 5 10:30:58 PST 2002
%

Unix doesn't have a redirection operator that adds text to the beginning of a
file. You can do this by storing the new text in a temporary file, then by
using a text editor program to read the temporary file into the start of the file
you want to edit. You also can do the job with a temporary file and redirec­
tion. Maybe you'd like each day's entry to go at the beginning of your diary
file. Simply rename diary to something like temp. Make a new diary file with
today's entries, then append temp (with its old contents) to the new diary.
For example:·

% mv diary temp
% date > diary
% cat users >> diary
% cat temp >> diary
% rm temp

Pipes and Filters
We've seen how to redirect input from a file and output to a file. You can
also connect two programs together so that the output from one program
becomes the input of the next program. Two or more programs connected
in this way form a pipe. To make a pipe, put a vertical bar (I) on the com­
mand line between two commands. When a pipe is set up between two

• This exam pie could be shortened by combining the two cat commands into one, giving both file­
names as arguments to a single cat command. That wouldn't work, though, if you were making
a real diary with a command other than cat users.

76 I Chapter 6: Redirecting 1/0

commands, the standard output of the command to the left of the pipe sym­
bol becomes the standard input of the command to the right of the pipe
symbol. Any two commands can form a pipe as long as the first program
writes to standard output and the second program reads from standard
input.

When a program takes its input from another program, performs some oper­
ation on that input, and writes the result to the standard output (which may
be piped to yet another program), it is referred to as a filter. A common use
of filters is to modify output. just as a common filter culls unwanted items,
Unix filters can restructure output.

Most Unix programs can be used to form pipes. Some programs that are
commonly used as filters are described in the next sections. Note that these
programs aren't used only as filters or parts of pipes. They're also useful on
their own.

grep
The grep program searches a file or files for lines that have a certain pattern.
The syntax is:

grep "pattern" file(s)

The name "grep, is derived from the ed (a Unix line editor) command g/re/p,
which means "globally search for a regular expression and print all matching
lines containing it." A regular expression is either some plain text (a word, for
example) and/or special characters used for pattern matching. When you
learn more about regular expressions, you can use them to specify complex
patterns of text.

The simplest use of grep is to look for a pattern consisting of a single word. It
can be used in a pipe so only those lines of the input files containing a given
string are sent to the standard output. But let's start with an example reading
from files: searching all files in the working directory for a word-say, Unix.
We'll use the wildcard* to quickly give grep all filenames in the directory.

% grep "Unix" *
ch01:Unix is a flexible and powerful operating system
ch01:When the Unix designers started work, little did
chos:What can we do with Unix?
%

When grep searches multiple files, it shows the filename where it finds each
matching line of text. Alternatively, if you don't give grep a filename to read,
it reads its standard input; that's the way all filter programs work:

% Is -1 I grep "Jan"
drwx------ 4 taylor staff 264 Jan 29 22:33 Movies/
drwx------ 2 taylor staff 264 Jan 13 10:02 Music/

Pipes and Filters I 77

drwxr-xr-x 12 root staff 364 Jan 9 20:24 Netinfo/
drwx------ 95 taylor staff 3186 Jan 29 22:44 Pictures/
drwxr-xr-x 3 taylor staff 264 Jan 24 21:24 Public/
%

First, the example runs 1s -1 to list your directory. The standard output of
1s -1 is piped to grep, which only outputs lines that contain the string Jan
(that is, files or directories that were last modified in January and any other
lines that have the pattern "Jan" within). Because the standard output of
grep isn't redirected, those lines go to the Terminal screen.

grep options let you modify the search. Table 6-llists some of the options.

Table 6-1. Some grep options

·.option
-v

.D~pt!~,~·.
Print all lines that do not match pattern.

-n

-1

-c

-i

Print the matched line and its line number.

Print only the names of files with matching lines (lowercase letter •t1.
Print only the count of matching lines.

Match either upper- or lowercase.

Next, let's use a regular expression that tells grep to find lines with root, fol­
lowed by zero or more other characters (abbreviated in a regular expression
as . *),then followed by Jan:·

% ls ·1 I grep "root.*Jan"
drwxr-xr-x 12 root staff 364 Jan 9 20:24 Netinfo/
%

For more about regular expressions, see the references in the section "Docu­
mentation" in Chapter 10.

sort
The sort program arranges lines of text alphabetically or numerically. The
following example sorts the lines in the food file (from the section "Printing
Files" in Chapter 5) alphabetically. sort doesn't modify the file itself; it
reads the file and writes the sorted text to the standard output.

% sort food
Afghani Cuisine

• Note that the regular expression for "zero or more characters," . *, is different than the corre­
sponding filename wildcard*. See the section "File and Directory Wildcards" in Chapter 4. We
can't cover regular expressions in enough depth here to explain the difference, though more­
detailed books do. As a rule of thumb, remember that the first argument to grep is a regular
expression; other arguments, if any, are filenames that can use wildcards.

78 I Chapter 6: Redirecting 1/0

Bangkok Wok
Big Apple Deli
Isle of Java
Mandalay
Sushi and Sashimi
Sweet Tooth
Tio Pepe's Peppers

By default, sort arranges lines of text alphabetically. Many options control
the sorting, and Table 6-2lists some of them.

Table 6-2. Some sort options

Option DeKription

-n Sort numerically (example: 10 sorts after 2), ignore blanks and tabs.

-r Reverse the sorting order.

-f Sort upper- and lowercase together.

+x Ignore first x fields when sorting.
----------·-~--~----·---·-··---~*-·---·-·--·--·---·---~·-·--.···-·-·· .. -.-... -·-·-·-···-······-····-·-·-··-------·

More thap two commands may be linked up into a pipe. Taking a previous
pipe example using grep, we can further sort the files modified in January by
order of size. The following pipe uses the commands ls, grep, and sort:

% ls -1 I grep "Jan" I
drwx------ 2 taylor
drwx------ 4 taylor
drwxr-xr-x 3 taylor
drwxr-xr-x 12 root
drwx------ 95 taylor
%

sort +4n
staff 264 Jan 13 10:02 Music/
staff 264 Jan 29 22:33 Movies/
staff 264 Jan 24 21:24 Public/
staff 364 Jan 9 20:24 Netinfo/
staff 3186 Jan 29 22:44 Pictures/

This pipe sorts all files in your directory modified in January by order of
size, and prints them to the Terminal screen. The sort option +4n skips four
fields (fields are separated by blanks), then sorts the lines in numeric order.
So, the output of ls, filtered by grep, is sorted by the file size (this is the fifth
column, starting with 1605). Both grep and sort are used here as filters to
modify the output of the ls -1 command. If you wanted to email this listing
to someone, you could add a final pipe to the mail program. Or you could
print the listing by piping the sort output to your printer command (either
lp, lpr, or atprint).

Piping to a Pager
The less program, which you saw in the section "Looking Inside Files with
less" in Chapter 2, can also be used as a filter. A long output normally zips
by you on the screen, but if you run text through less, the display stops
after each screenful of text.

Pipes and Filters I 79

Let's assume that you have a long directory listing. (If you want to try this
example and need a directory with lots of files, use cd first to change to a
system directory such as !bin or /usrlbin.) To make it easier to read the
sorted listing, pipe the output through less:

% ls -1 I grep "Jan•• I sort +4n I less
drwx------ 2 taylor staff 264 Jan 13 10:02 Music/
drwx------ 4 taylor staff 264 Jan 29 22:33 Movies/
drwxr-xr-x 3 taylor staff 264 Jan 24 21:24 Public/
drwxr-xr-x 12 root staff 364 Jan 9 20:24 Netlnfo/

drwx------ 95 taylor staff 3186 Jan 29 22:44 Pictures/

less reads a screenful of text from the pipe (consisting of lines sorted by
order of file size), then prints a colon (:) prompt. At the prompt, you can
type a less command to move through the sorted text. less reads more text
from the pipe and shows it to you and saves a copy of what it has read, so
you can go backward to reread previous text if you want. (The simpler pager
programs more and pg generally can't back up while reading from a pipe.)
When you're done seeing the sorted text, the q command quits less.

Exercise: Redirecting Input/Output
In the following exercises you redirect output, create a simple pipe, and use
filters to modify output.

Redirect output to a file.
Count the number of lines In that file.
Sort the output of a program.
Append sorted output to a file.
Display output to the screen.
Display long output to the screen.
Format and print a file with pr.

80 I Chapter 6: Redirecting 1/0

Enterwho > users
Enter we -1 < users
Enter who I sort
Enterwho I sort » users
Enter less users (or more users or pg users)
Enter ls -1 /bin I less (or more or pg)
Enter pr users I lp or pr users I lpr

CHAPTER 7

Accessing the Internet

A network lets computers communicate with each other, sharing files,
email, and much more. Unix systems have been networked for more than 25
years, and Macintosh systems have always had networking as an integral
part of the system design from the very first system released in 1984.

This chapter introduces Unix networking: running programs on other com­
puters, copying files between computers, browsing the World Wide Web,
sending and receiving email messages, reading and posting messages to
Usenet "Net news" groups, and "chatting" interactively with other users on
your local computer or worldwide.

Remote Logins
The computer you log in to may not be the computer you need to use. For
instance, you might have a nifty iMac running Mac OS X on your desk but
need to do some work on the main computer in another building. Or you
might be a professor doing research with a computer at another university.
Your Mac can connect to another Unix computer to let you work as if you
were sitting at that computer. You can actually connect to another Mac run­
ning Mac OS X (if enabled) too, but you can't run Aqua applications, just
the command line. This section describes how to connect to another com­
puter from within the Terminal.

11 .. ,

• ·' If you'd like to set up your computer to allow remote logins,
•:. your best bet is to choose System Preferences from the Mac
\to,• Cll

._______,.,' OS X Apple menu in the top left corner of your screen.
• Within the Sharing pane, select the Application tab, and

you'll find an option "Allow remote login." With that
checked, you can log in from home or anywhere else if you
know the account and password information.

81

To log in to a remote computer using Terminal, first log in to your local
computer by launching the Terminal application. Then start a program that
connects to the remote computer. Some typical programs for connecting
over a computer network are telnet, ssh (secure shell), rsh (remote shell), or
rlogin (remote login). All of these are supported and included with Mac OS
X. In any case, when you log off the remote computer, .the remote login pro­
gram quits and you get another shell prompt from your local computer.

Figure 7-1 shows how remote login programs such as tel net work. In a local
login, you interact directly with the shell program running on your local sys­
tem. In a remote login, you run a remote-access program on your local sys­
tem; that program lets you interact with a shell program on the remote
system.

Local login

Remote login

1. Do a loco/login.
Z. Make connection to remote computer, log in there.

Figure 7-1. Local login, remote login

The syntax for most remote login programs is:

program-name remote-hostname

For example, when Dr. Nelson wants to connect to the remote computer
named biolab.medu.edu, she'd first make a local login to her Mac named

82 I Chapter 7: Accessing the Internet

fuzzy by launching Terminal. Next, she'd use the telnet program to reach
the remote computer. Her session would look something like this:

Welcome to Darwin!
fuzzy% telnet biolab.medu.edu

Medical University Biology Laboratory

biolab.medu.edu login: jdnelson
Password:

biolab$

biolab$ exit
Connection closed by foreign host.
fuzzy%

Her accounts have shell prompts that include the hostname. This reminds
her when she's logged in remotely. If you use more than one system but
don't have the hostname in your prompt, see the sections "Customizing
Your Session" or "Documentation" to find out how to add it.

. •' When you're logged on to a remote system, keep in mind
~~· that the commands you type will take effect on the remote

......._-~~.· system, not your local one! For instance, if you use lpr to
.. prim a file, the printer it comes out of may be very far away.

The programs rsh (also called rlogin) and ssh generally don't give you a
login: prompt. These programs assume that your remote username is the
same as your local username. If they're different, give your remote user­
name on the command line of the remote login program, as shown in the
next example.

You may be able to log in without typing your remote password or pass­
phrase.· Otherwise, you'll be prompted after entering the command line.

Following are four sample ssh and rsh command lines. The first pair shows
how to log in to the remote system, biolab.medu.edu, when your usemame is
the same on both the local and remote systems. The second pair shows how
to log in if your remote username is different (in this case, jdnelson); note

• In ssh, you can run an agent program, such as ssh-agent, that asks for your passphrase once, then
handles authentication every time you run ssh or scp afterward. For rsh and rep, the remote sys­
tem needs to list your local computer in a file named hosts.equiv that's set up by the system admin­
istrator.

Remote Loglns I 83

that the Mac OS X versions of ssh and rsh may support both syntaxes
shown depending on how the remote host is configured:

% ssh biolab.medu.edu
% rsh biolab.medu.edu
% ssh jdnelson@biolab.medu.edu
% rsh -1 jdnelson biolab.medu.edu

About Security
Today's Internet and other public networks have users who try to break into
computers and snoop on other network users. While the popular media
calls these people hackers, most hackers are self-respecting programmers
who enjoy pushing the envelope of technology. These evildoers are better
known as crackers. Most remote login programs (and file transfer programs,
which we cover later in this chapter) were designed 20 years ago or more,
when networks were friendly places with cooperative users. Those pro­
grams (many versions of telnet and rsh, for instance) make a cracker's job
easy. They transmit your data across the network in a way that allows crack­
ers to read it, and they either send your password along, visible to the crack­
ers or expect computers to allow access without passwords.

SSH is different; it was designed with security in mind. If anything you do
over a network (such as the Internet) is at all confidential, you really should
find SSH programs and learn how to use them. SSH isn't just for Unix sys­
tems! There are SSH programs that let you log in and transfer files between
Microsoft Windows machines, between Windows and Unix, Mac OS 9, and
more. Better, your Mac OS X machine already has SSH installed and ready
to run. A good place to get all the details and recommendations for pro­
grams is the book SSH: The Secure Shell, by Daniel J. Barrett and Richard
Silverman (O'Reilly).

Transferring Files
You may need to copy files between computers. For instance, you can put a
backup copy of an important file you're editing onto an account at a com­
puter in another building or another city. Dr. Nelson could put a copy of a
datafile from her local computer onto a central computer, where her col­
leagues can access it. Or you might want to download 20 files from an FTP
server, but not want to go through the tedious process of clicking on them
one by one in a web browser window. If you need to do this sort of thing
often, your system administrator may be able to set up a networked filesys­
tem connection; then you'll be able to use local programs such as cp and mv.
But Unix systems also have command-line tools for transferring files

84 I Chapter 7: Accessing the Internet

between computers. These often work more quickly than graphical tools.
We explore them later in this section.

scp and rep
Mac OS X includes both sep (secure copy) and rep (remote copy) programs
for copying files between two computers. In general, you must have
accounts on both computers to use these. The syntax of sep and rep are sim­
ilar to ep, but also let you add the remote hostname to the start of a file or
directory pathname. The syntax of each argument is:

hostname:pathname

host name: is needed only for remote files. You can copy from a remote com­
puter to the local computer, from the local computer to a remote computer,
or between two remote computers.

The sep program is much more secure than rep, so we suggest using sep to
transfer private files over insecure networks such as the Internet. For pri­
vacy, sep encrypts the file and your passphrase.

For example, let's copy the files report.may and report.june from your home
directory on the computer named giraffe.intuitive.com and put the copies
into your working directory (.) on the machine you're presently logged in
to. If you haven't set up the SSH agent that lets you use sep without typing
your passphrase, sep will ask you:

% scp giraffe.intuitive.com:report.may giraffe.intuitive.com:report.june •
Enter passphrase for RSA key 'taylor@mac':

To use wildcards in the remote filenames, put quotation marks ("name")
around each remote name.· You can use absolute or relative pathnames; if
you use relative pathnames, they start from your home directory on the
remote system. For example, to copy all files from your food/lunch subdirec­
tory on your giraffe account into your working directory (.) on the local
account, enter:

% scp "giraffe.intuitive.com:food/lunch/*" •

Unlike ep, the Mac OS X versions of sep and rep don't have an -i safety
option. If the files you're copying already exist on the destination system (in
the previous example, that's your local machine), those files are overwritten.

• Quotes tell the local shell not to interpret special characters, such as wildcards, in the filename.
The wildcards are passed, unquoted, to the remote shell, which interprets them there.

Transferring Files I 85

If your system has rep, your system administrator may not want you to use it
for system security reasons. Another program, ftp, is more flexible and
secure than rep (but much less secure than scp).

FTP
FTP, file transfer protocol, is a standard way to transfer files between two
computers. The Unix ftp program does FTP transfers from the command
line. Mac OS X also includes a friendlier version of ftp named ncftp, which
we'll use later in this chapter. There are also a number of easy-to-use graphi­
cal FTP tools available from the Apple web site (go to Get Mac OS X Soft­
ware ... from the Apple menu and click on Internet Tools). But we cover the
standard ftp program here. The computers on either end of the FTP connec­
tion must be connected by a network (such as the Internet), but they don't
need to run Unix.

To start FTP, identify yourself to the remote computer by giving the user­
name and password for your account on that remote system. Unfortunately,
sending your usemame and password over a public network means that
snoopers might see them-and use them to log into your account on that
system.

A special kind of FTP, anonymous FTP, happens if you log in to the remote
server with the username anonymous. The password is your email address,
such as alex@foo.co.uk. (The password isn't usually required; it's a courtesy
to the remote server.) Anonymous FTP lets anyone log in to a remote sys­
tem and download publicly accessible files to their local systems.

Command-line ftp

To start the standard Unix ftp program, provide the remote computer's
hostname:

ftp hostname

ftp prompts for your username and password on the remote computer. This
is something like a remote login (see the section "Remote Logins," earlier in
this chapter), but ftp doesn't start your usual shell. Instead, ftp prints its
own prompt and uses a special set of commands for transferring files.
Table 7 -!lists the most important ftp commands.

Table 7-1. Some ftp commands

Command
put filename

Description
Copies the file filename from your local computer to the remote computer.lfyou give a
second argument, the remote copy will have that name.

86 I Chapter 7: Accessing the Internet

Table 7-1. Some ftp commands (continued)

Command Desafptf~n -- _ ·-

mput filenames Copies the named files (you can use wildcards) from the local computer to the remote
computer.

get filename Copies the file filename from the remote computer to your local computer. If you give a
second argument, the local copy will have that name.

mget filenames Copies the named files (you can use wildcards) from the remote computer to the local
computer.

prompt A 'toggle" command that turns prompting on or off during transfers with the mget and
mput commands. By default, mget and mput will prompt you "mget filename?" or
"mput filename?" before transferring each file; you answer y or n each time. Typing
prompt once, from an ftp> prompt, stops the prompting; all files will be transferred
without question until the end of the ftp session. Or, if prompting is off, typing prompt
at an ftp> prompt resumes prompting.

cd pathname Changes the working directory on the remote machine to pathname (ftp typically
starts at your home directory on the remote machine).

led pathname Changes ftp~ working directory on the local machine to pathname. (ftp's first local
working directory is the same working directory from which you started the program.)
Note that the ftp led command changes only ftp~ working directory. After you quit
ftp, your shell's working directory will not have changed.

dir Lists the remote directory (like ls -1).

binary Tells ftp to copy the file(s) that follow it without translation. This preserves pictures,
sound, or other data.

ascii Transfers plain-text files, translating data if needed. For instance, during transfers
between a Microsoft Windows system (which adds Controi-M to the end of each line of
text) and a Unix system (which doesn't), an ascii -mode transfer removes or adds those
characters as needed.

quit Ends the ftp session and takes you back to a shell prompt.

Here's an example. Carol uses ftp to copy the file todo from her work subdi­
rectory on her account on the remote computer rhino:

% ls
afile ch2 somefile
% ftp rhino.zoo.edu
Connected to rhino.zoo.edu.
Name (rhino:carol): csmith
Password:
ftp> cd work
ftp> dir
total 3
-rw-r--r-- 1 csmith mgmt
-rw-r--r-- 1 csmith mgmt
-rw-r--r-- 1 csmith mgmt
ftp> get todo
ftp> quit
% ls

47 Feb 5 2001 for.ed
264 Oct 11 12:18 messa~e
724 Nov 20 14:53 todo

afile ch2 somefile todo

Transferring Files I 87

We've explored the most basic ftp commands here. Entering help at an ftp>
prompt gives a list of all commands; entering help followed by an ftp com­
mand name gives a one-line summary of that command.

NcFTP
While the ftp program is powerful, it's not the most friendly application in
the world, even within the Unix space. Indeed, we've long joked that it's the
only program in Unix that never turned off "debugging mode." Fortunately,
Mac OS X offers a sophisticated and easier alternative from the command
line: ncftp. A quick example:

% ncftp intuitive.com
NcFTP 2.4.3 (March 19, 1998), by Mike Gleason.
Tip: The "get" command can now fetch whole directories. Try "get -R"
sometime.

Trying to connect to intuitive.com •••
Guest login ok, access restrictions apply.
intuitive:/>help get
get: fetches files from the remote host.
Usage: get [-flags] file1 [file2 •••]
Flags:

-C : Force continuation (reget).
-f : Force overwrite.
-G : Don't use wildcard matching.
-R : Recursive. Useful for fetching whole directories.
-n X : Get selected files only if X days old or newer.
-z : Get the remote file X, and name it to Y.

Examples:
get README
get README.*
get -G **Name.with.stars.in.it**
get -R new-files-directory
get -z WIN.INI ~/junk/windows-init-file

intuitive:/> ls -1
total 20
-rw-r--r-- 1 root root 10000 Jul 21 2000 10k.html
dr-xrwxr-x 2 root root
dr-xrwxr-x 2 root root
dr-xrwxr-x 2 root root
d--------- 2 root root
dr-xr-xr-x 2 root root
dr-xr-xr-x 2 root root
dr-xrwxr-x 10 root root
intuitive:/> get tok.html
Receiving file: 10k.html

20 Jan 16 2001 bin/
9 Aug 9 1999 dev/

38 Jan 15 14:42 etc/
9 Aug 9 1999 incoming/

39 Aug 9 1999 lib/
39 Jan 9 2001 lib32/

123 Aug 9 1999 pub/

100% o =====================================> 10000 bytes. ETA: o:oo
10k.html: 10000 bytes received in 1.02 seconds, 9.57 kB/s.
intuitive:/> quit

88 I Chapter 7: Accessing the Internet

Though the face of ncftp isn't much more attractive than ftp, you can see
from the options to the get command that there's a lot more sophistication
under the hood. If you expect to use ftp a lot, you'd do well to learn more
about ncftp (which you can do by reading the manpage, or reading the
online documentation for this great utility at http://www.ncftp.com/ncftp/).

SFTP: FTP to secure sites

If you can only use ssh to connect to a remote site, chances are it won't sup­
port regular FTP transactions either, probably due to higher security. Mac
OS X also includes a version of ftp that works with the standard SSH server
programs and works identically to regular FTP. just type sftp at the com­
mand line.

FTP with a web browser

If you need a file from a remote site, and you don't need all the control that
you get with the ftp program, you can use a web browser to download files
using anonymous FTP. To do that, make a URL (location) with this syntax:

ftp://hostnamelpathname

For instance, ftp://somecorp.za/pub!reports/200 l.pdf specifies the file 200 l.pdf
from the directory !pub/reports on the host somecorp.za. In most cases, you
can also start with just the first part of the URL-such as ftp://somecorp.za­
and browse your way through the FTP directory tree to find what you want.
If your web browser doesn't prompt you to save a file, use its Save menu
command.

An even faster way to download a file is with the curl (copy from URL)
command. For example, to save a copy of the report in the current direc­
tory, simply enter:

% curl ftp://somecorp.za/pub/reports/2001.pdf

Other FTP solutions

One of the pleasures of working with Unix within the Mac OS X environ­
ment is that there are a wealth of great Aqua applications. In the world of
FTP-based file transfer, the choices are all uniformly excellent, starting with
Fetch, NetFinder, rbrowser, and Anarchie, and encompassing many other
possibilities. Again, either go to the Apple web site "Get Mac OS X Soft­
ware ... " or try the shareware archive site Download. com (http://www.
macosxaps.com/ or http://www.download.com/).

Transferring Files I 89

Practice
You can practice your ftp and ncftp skills by connection to the public FTP
archive ftp.apple.com. Log in as ftp with your email address as the pass­
word, then look around. Try downloading a research paper or document. If
you have an account on a remote system, try using ncp and scp to copy files
back and forth.

90 I Chapter 7: Accessing the Internet

CHAPTERS

Unix-Based Internet Tools

If you're going to be interacting with the Internet extensively, odds are good
that you'll opt for attractive and easy-to-use Aqua applications. Bear with
us, though; there's a lot of power in the Unix command-line alternatives,
and they're well worth learning.

Lynx, a Text-Based Web Browser
There are a number of excellent web browsers available within Aqua,
including Microsoft Internet Explorer, Mozilla, Omniweb, and Opera.
While attractive, graphically based web browsers can be slow-especially
with flashy, graphics-laden web pages on a slow network.

The Lynx web browser (originally from the University of Kansas, and avail­
able on many Unix systems) is different because it's a text-based web
browser that works within the Terminal application. Being text-only causes
it to have some tradeoffs you should know about. Lynx indicates where
graphics occur in a page layout; you won't see the graphics, but the bits of
text that Lynx uses in their place can clutter the screen. Still, because it
doesn't have to download or display those graphics, Lynx is fast, especially
over a dialup modem or busy network connection. Sites with complex mul­
ticolumn layouts can be hard to follow with Lynx; a good rule is to page
through the screens, looking for the link you want and ignore the rest.
Forms and drop-down lists are a challenge at first, but Lynx always gives
you helpful hints for forms and lists, as well as other web page elements, in
the third line from the bottom of the screen. With those warts (and others),
though, once you get a feel for Lynx you may find yourself choosing to use
it-even on a graphical system.

Most importantly, Lynx isn't included with the default Mac OS X distribu­
tion, even on the Developer CD-ROM. You'll need to go to the "Get Mac

91

OS X Software ... " link off the Apple menu, which opens a web browser and
takes you to the Apple web site. From there, find and click on the "Unix
Apps &: Utilities" link, which then offers a list of useful Unix applications.
For now, just download Lynx and run the installer.

With Lynx installed, let's now take a quick tour.

The Lynx command line syntax is:

lynx "location"

For example, to visit the O'Reilly home page, enter lynx "http://www.
oreilly. com" or simply lynx "www. ore illy. com" . (It's safest to put quotes
around the location, because many URLs have special characters that the
shell might interpret otherwise.) Figure 8-1 shows part of the home page.

To move around the Web, Lynx uses your keyboard's arrow keys, spacebar,
and a set of single-letter commands. The third line from the bottom of a
Lynx screen gives you a hint of what you might want to do at the moment.
In Figure 8-1, for instance, "press space for next page" means you can see
the next screenful of this web page by pressing the spacebar (at the bottom
edge of your keyboard). Lynx doesn't use a scrollbar; instead, use the space­
bar to go forward in a page, and use the b command to move back to the
previous screenful of the same web page. The bottom two lines of the screen
remind you of common commands, and the help system (which you get by
typing h) lists the rest.

806 J_usr/bln/Jo,gln (ttyp3)

www .orellty.com --Welcome to O'Reilly & Associates-- computer b (p8 of 28)

WINMMQUWIIMQN@i!MIM~If you want to bui td
s1110 II- to medium-seale Web database app II cat ions that can run on
madest hardware and proCJ:ess r.10re than a ml Ilion hits a day , this book
will show yau how. Using PHP, and HySQL, t wo open source technologies
that are often combined to develop Web appl ications, this book offers
detailed Information on designing relational databases and on Web
application architecture. The baok also Introduces Hugh and Dave's
Online Wine Store, a complete (but fiction. online retail site
Implemented with PHP and HySQL. MMi& IN, is
aval lab le on l i ne.

f f·llll•itl l'l ln-•1 Fltt• lf•l t ,. A~·plt • qt t"rt "•dllru•· I: Atdllt.-,·t•n··

oll!\dllt•l l tltl fllt••li•ll ,. ,~-~,l •~•lt••ltt••lt ' ' •• \ tHow 1: ..._t,·lttt~,tlltP lume I
of this advanced, 3-volume guide explores the Infrastructure issues so
Important to good apt:llcatlon design . It isn't just a book about

au 1 aaa;zn;aw •
Arrow keys: Up and Down to move. Right to follow a link; Left to go back.

H)elp O)ptlons P)rlnt G)o H)aln screen Q)ult /=search (delete]=hlstory l 1st ' ..f.

Figure 8-1. Lynx display

92 I Chapter 8: Unix-Based lntemetTools

The links (which you would click on if you were using a graphical web
browser) are highlighted. One of those links is the currently selected link,
which you can think of as the link where your cursor sits. Depending on
how you've configured Terminal, links are either boldfaced or presented in a
different color, and the selected link (in Figure 8-1, that's the first: "Web
Database Applications with PHP & MySQL") is in reverse video.

When you first view a screen, the link nearest the top is selected. Figure 8-2
shows what you can do at a selected link. To select a later link (farther down
the page), press the down-arrow key. The up-arrow key selects the previous
link (farther up the page). Once you've selected a link you want to visit,
press the right-arrow key to follow that link; the new page appears. Go back
to the previous page by pressing the left-arrow key (from any selected link; it
doesn't matter which one).

Follow this link
·oockword· to

the previous poge

Jump to previous
link on current

webpoge

Jump to next
link on current

webpoge

Figure 8-2. Lynx link navigation with the arrow keys

Follow this link
"for word• too

newpage

Although Lynx can't display graphics in the Terminal (no program can!), it
will let you download links that point to graphical files. Then you can use
Aqua programs-such as Preview - to view or print those files.

There's much more to Lynx; type H for an overview. Lynx command-line
options let you configure almost everything. For a list of options, type man
lynx (see the section "Documentation" in Chapter 10) or use:

% lynx -help J less

Electronic Mail
You may see a notice that says "You have mail" when you first log in to
your system, or later, before a shell prompt. Someone has sent you a mes­
sage or document by electronic mail (email). With email, you can compose a

Electronic Mail I 93

message at your terminal and send it to another user or list of users. You
also can read any messages that others may have sent to you.

There are a lot of email programs for Unix. If you use email often, we recom­
mend that you start with whatever program other people in your group use.

We start with a brief section on addressing email. Next, you'll see how to
send mail from a shell prompt with Berkeley mail. Then we introduce send­
ing and reading mail with Pine, a popular menu-driven program that works
without a window system. If you'd like to try a graphical program (which we
won't discuss here), there are four standout choices: Mail, included with
Mac OS X and written by Apple Computer; Entourage, a part of the
Microsoft Office X suite; Power Mail, a fast and efficient option; and Eudora,
another popular alternative. All programs' basic principles are the same
though, and they all can send and receive messages from each other.

Before we dive into email

Some versions of Mac OS X are misconfigured for command-line email, and
if your system behaves similar to this:

% mail -s testing taylor@intuitive.com

lust a test message.

EOT
% /etc/mail/sendmail.cf: line 81: fileclass: cannot

open /etc/mail/local-host-names: Group writable directory

You need to flip to the Appendix to learn how to make the few changes nec­
essary to fix things. Otherwise, you're ready to continue.

Addressing an Email Message
Most addresses have this syntax:

username@hostname

username is the person's username, such as jerry, and hostname is either the
name of his computer or a central domain name for his entire organization,
such as oreilly.com. On many Unix systems, if the recipient reads email on
the same computer you do, you may omit the @hostname. (An easy way to
get a copy of a message you send is to add your username to the list of
addressees.)

Sending Mail from a Shell Prompt
Mac OS X has a fairly simple program from Berkeley Unix called mail. If you
enter the program name at a shell prompt, you can read your email, but its

94 I ChapterS: Unix-Based Internet Tools

terse interface isn't very friendly. If you enter the program name, followed
by an email address or two as arguments, you can send an email message.
This is handy for sending a quick message from your keyboard. But it's best
used with redirection (explained in Chapter 5) to email the output of a pro­
gram or the contents of a file.

To send mail, give the address of each person to whom you want to send a
message:

mail address1 address2 •••

It's best to use simple addresses such as username@host­
name on the command line. More complex addresses-with
peoples' names or special characters such as < and >-ean
cause trouble unless you know how to deal with them.

After you enter mail and the addresses, if you're sending a message from the
keyboard, in most cases the program (depending on how it's set up)
prompts you for the subject of the message. The Mac OS X version of the
program also accepts a subject as a command-line argument after the -s
option; be sure to put quote marks around the subject! Here are two exam­
ples of redirection: first, sending the restaurant list you made in an earlier
example, then, sorting the list before you send it:

% mail -s "My favorite restaurants" taylor@intuitive.com < food
% sort food I mail -s "My favorite restaurants" taylor@intuitive.com

If you've redirected the standard input from a pipe or file, as in these two
examples, your message will be delivered. Otherwise, mail will wait for you
to enter the message body. Type in your message, line by line, pressing
Return after every line. When you've fmished entering text, type a period fol­
lowed by a Return or Control-D Gust once!) at the start of a new line. You
should get the shell prompt at this point, though it might take a few seconds.

% mail alicja@moxco.chi.il.us
Subject: My Chicago trip
Alicja, I will be able to attend your meeting.
Please send me the updated agenda. Thanks.

Dave

%

If you change your mind before you type the end-of-message dot, you can
cancel a message (while you're still entering text) with your interrupt charac­
ter (see the section "Correcting a Command Line" in Chapter 1). The can­
celed message may be placed in a file called dead.letter in your home
directory. To see other commands you can use while sending mail, enter""?

Electronic Mall I 95

(tilde, question mark) at the start of a line of your message, then press
Return. To redisplay your message after using "'?, enter "'p at the start of a
line.

You can't cancel a message after you type dot (unless you're a system
administrator and you're lucky to catch the message in time). So, if you
change your mind about Alicja's meeting, you'll need to send her another
message.

Reading Email with Pine
If you're really set on using a Terminal-based email program, a good choice
for upgrading from the stark interface of mail is Pine. Pine is available for
download from Apple too: just like Lynx, you'll want to select "Get Mac OS
X Software ... " from the Apple menu, then click on "Unix Apps & Utilities."
Then download Pine and install it.

Pine, from the University of Washington, is a popular program for reading
and sending email from a terminal. It works completely from your key­
board; you don't need a mouse.

Start Pine by entering its name at a shell prompt. It also accepts options and
arguments on its command line; to find out more, enter pine -h (help). If
new email is waiting for you, but you want to experiment with Pine without
taking chances, the -o (lowercase letter "0") option makes your inbox
folder read-only; you won't be able to change the messages in it until you
quit Pine and restart without the -o. Figure 8-3 shows the starting display,
the main menu.

The highlighted line, which is the default command, gives a list of your
email folders.· You can choose the highlighted command by pressing
Return, pressing the greater-than sign>, or typing the letter next to it. (Here,
this is 1-a lowercase L. You don't need to type the commands in upper­
case.) But because you probably haven't used Pine before, the only interest­
ing folder is the inbox, which is the folder where your new messages wait for
you to read them.

The display in Figure 8-3 shows that there are four messages waiting. Let's
go directly to the inbox by pressing I (or by highlighting that line in the
menu and pressing Return) to read the new mail. Figure 8-4 has the message
index for our inbox.

• Recent versions of Pine also let you read Usenet newsgroups. The L command takes you to
another display where you choose the source of the folders, then you see the list of folders from
that source. See the section "Usenet News."

96 I ChapterS: Unix-Based lntemetlools

Figure 8-3. Pine main menu

Figure 8-4. Pine message index

The main part of the window is a list of the messages in the folder, one mes­
sage per line. If a line starts with N, as the second message does, it's a new
message that hasn't been read. (The first message has been sitting in the
inbox for some time now.) Next on each line is the message number; mes­
sages in a folder are numbered 1, 2, and so on. That's followed by the date
the message was sent, who sent it, the number of characters in the message
(size), and, finally, the message subject.

At the bottom of the display is Pine's reminder list of commands. When you
aren't sure what to do, this is a good place to look. If you don't see what you
want here, pressing 0 (the letter "o"; lowercase is fine) shows you more
choices. For more information, ? gives detailed help.

Electronic Mail I 97

Let's skip this first message and read the next one, number 2. The down­
arrow key or the N key moves the highlight bar over that message. As usual,
you can get the default action-the one shown in brackets at the bottom of
the display (here, [ViewMsg])-by pressing Return or>. The message from
Mary Lea will appear.

just as > took us forward in Pine, the < key generally takes you back to
where you came from-in this case, the message index. You can type R to
reply to this message, F to forward it (send it on to someone else), D to mark
it for deletion, and the Tab key to go to the next message without deleting
this one.

When you mark a message for deletion, it stays in the folder message index,
marked with a D at the left side of its line, until you quit Pine. Type Q to quit.
Pine asks if you really want to quit. If you've marked messages for deletion,
Pine asks if you want to expunge ("really delete") them. Answering Y here
deletes the message.

There's much more to Pine than we can cover here. For instance, it lets you
organize mail in multiple folders, print, pipe (output) messages to Unix pro­
grams, search for messages, and more. The Mac OS X version of Pine can
access mail folders on other computers using IMAP; this lets you use Pine
(and other email programs) on many computers, but keep one main set of
mail folders on a central computer.

Sending Email with Pine
If you're sending a quick message from a shell prompt, you may want to use
the method shown in the section "Sending Mail from a Shell Prompt" ear­
lier in this chapter. For a more interactive way to send email, q;y Pine. We'll
take a quick tour.

If you've already started Pine, you can compose a message from many of its
displays by typing C. (Though, as always, not every Pine command is avail­
able at every display.) You can also start from the main menu. Or, at a shell
prompt, you can go straight into message composition by typing pine addr1
addr2, where each addr is an email address such as jerry@oreilly.com. In that
case, after you've sent the mail message, Pine quits and leaves you at another
shell prompt.

When you compose a message, Pine puts you in a window called the com­
poser. (You'll also go into the composer if you use the Reply or Forward
commands while you're reading another mail message.) The composer is a
lot like the Pico editor, but the first few lines are special because they're the
message header-the "To:," "Cc:" (courtesy copy), "Attchmnt:" (attached
file), and "Subject:" lines. Figure 8-5 shows an example, already filled in.

98 I Chapter 8: Unix-Based Internet Tools

Figure 8-5. Pine composer

As you fill in the header, the composer works differently than when you're
in the message text (body of the message). The list of commands at the bot­
torn of the window is a bit different in those cases, too. For instance, while
you edit the header, you can attach a file to the end of the message with the
"Attach" command, which is Control-]. However, when you edit the body,
you can read a file into the place you're currently editing (as opposed to
attaching it) with the Comrol-R "Read File" command. But the main differ­
ence between editing the body and the header is the way you enter
addresses.

If you have more than one address on the same line, separate them with
commas (,). Pine will rearrange the addresses so there's just one on each
line.

There are several ways to give the composer the addresses where the mes­
sage should be sent:

• Type the full email address, for example, taylor@intuitive.com.

• If you're sending email to someone who uses the same computer you
do, type their usernarne. Pine will fi ll in @hostname as soon as you
move the cursor to the next line.

• Type a nickname from the address book. (See the section "Pine address
book" later in this chapter.)

Move up and down between the header lines with Control-Nand Control-P,
or with the up-arrow and down-arrow keys. When you move into the mes­
sage body (under the "Message Text" line), type any text you want. Para­
graphs are usually separated with single blank lines.

Electronic Mail I 99

.. ' If you put a file in your home directory named .signature (the
II• name starts with a dot, .) , the composer automatically adds ... ~.. ,.

'----~"·' its contents to the end of every message you compose. (Some
.. other Unix email programs work the same way.) You can

make this file with a text editor such as Pico, or from the
Pine setup menu (see the section "Configuring Pine" later in
this chapter). It's good Internet etiquette to keep this file
short-no more than four or five lines, if possible.

You can use Pico commands such as Control-J to justify a paragraph and
Control-T to check your spelling. When you're done, Control-X (exit) leaves
the composer, asking first if you want to send the message you just wrote.
Or Control-C cancels the message, though you'll be asked if you're sure. If
you need to quit but don't want to send or cancel, the Control-0 command
postpones your message; then, the next time you try to stan the composer,
Pine asks whether you want to continue the postponed composition.

Pine address book

The Pine address book can hold peoples' names and addresses, as well as a
nickname for each person. When you compose a message, enter a nickname
in the message header, Pine replaces that with the full name and address:

You can enter information by hand from the main menu by choosing A
(address book), then adding new entries and editing old ones. Also, as you
read email messages that you've received, the T (take address) command
makes new address book entries for that message's addressees.

Figure 8-6 shows the address book entry form. Edit each line as you would
in the composer, then use Control-X to save the entry. The "Fcc" line gives
the name of an optional Pine folder; when you send a message to this
address book entry, Pine puts a copy in this folder. (If you leave "Fcc" blank,
Pine uses the sent-mail folder.) All lines except nickname and address are
optional.

Once you've saved that address book entry, if you go into the composer and
type the nickname Jerry, here's the header you get automatically:

To Jerry Peek <jpeek@jpeek.com>
Cc
Fcc authors
Attchmnt:
Subject :

• The Mac OS X version of Pine also let you store your address book on a central server, in order
for you to access it from whatever other computer you're using at the moment, via IMAP.

100 I ChapterS: Unix-Based Internet Tools

Figure 8-6. Pine address book entry

Configuring Pine
The Pine main menu has a Setup entry for configuring Pine. We assume that
your system staff has configured important options, such as your printer
command, and we look at a few other settings you might want to change.

After you enter S (the "Setup" command), you can choose what kind of
setup you want. From the setup screen, you can get to the option configura­
tion area with C (the "Config" command).

The configuration screen has page after page of options. You can look
through them with the spacebar (to move forward one page), the- key (back
one page), theN key (to move forward to the next entry), and the P key (back
to the previous entry). If you know the name of an option you want to

change, you can search for it with W (the "Whereis" command).

When you highlight an option, the menu of commands at the bottom of the
screen will show you what can do with that particular option. A good
choice, while you're exploring, is the ? (help) command, to find out about
the option you've highlighted. There are several kinds of options:

• Options with variable values: names of files, hostnames of computers,
and so on. For example, the personal-name option sets the name used in
the "From:" header field of mail messages you send. The setup entry
looks like this:

personal-name = <No Value Set: using "Robert L. Stevenson">

"No Value Set" can mean that Pine is using the default from the system­
wide settings, as it is here. If this user wants his email to come from

Electronic Mail I 101

"Bob Stevenson," he could use the C (Change Val) command to set that
name.

• Options that set preferences for various parts of Pine. For instance, the
enable-sigdashes option in the "Composer Preferences" section puts
two dashes and a space on the line before your default signature. The
option line looks like this:

[X] enable-sigdashes

The X means that this preference is set, or "on.'' If you want to tum this
option off, use the X (Set/Unset) command to toggle the setting.

• Options for which you can choose one of many possible settings. The
option appears as a series of lines. For instance, the first few lines of the
saved-msg-name-rule option look like this:

saved-msg-name-rule
Set Rule Values

(*) by-from
() by-nick-of-from
() by-nick-of-from-then-from
() by-fcc-of-from
() by-fcc-of-from-then-from

• The* means that the saved-msg-name-rule option is currently set to by­
from. (Messages will be saved to a folder named for the person who sent
the message.) If you wanted to choose a different setting-for instance,
by-fcc-of-from-you'd move the highlight to that line and use the *
(Select) command to choose that setting.

These settings are trickier than the others, but the built-in help com­
mand ? explains each choice in detail. Start by highlighting the option
name (here, saved-msg-name-rule) and reading its help info. Then look
through the settings' names, highlight one you might want, and read its
help info to see if it's right for you.

When you exit the setup screen with the E command, Pine asks you to con­
firm whether you want to save any option changes you made. Answer N if
you were just experimenting or aren't sure.

Exercise: Sending and Reading Mail
You can practice sending and reading mail in this exercise:

List logged-in users.
Choose a user you know (or choose yourself) send a
short message to that person using rna il or your
favorite email program.
Read the message or messages you got.

102 I ChapterS: Unix-Based Internet Tools

Enter who
Enter mail username or pine username or ...

Enter pine or start your favorite email program;
use its "read messagen commands.

Reply to one of the messages. (It's okay to reply to a
message from yourself.)
Forward one of the messages. (It's okay to forward
a message to yourself.)

UsenetNews

Press R in pine or use your email program's
•reply" command. Send the completed reply.
Press F In pine or use your email program's "for­
ward" command. Add a sentence or two of expla­
nation above the forwarded message. Send the
completed message.

Usenet, also called "Net News," has thousands of worldwide discussion
groups. Each discussion is carried on as a series of messages in its own news­
group. A newsgroup is named for the kind of discussion that happens there.
Each message is a lot like an email message. But, instead of being sent to a
list of email addresses, a newsgroup message is sent to all the computers that
subscribe to that particular newsgroup--and any user with access to that
computer can read and reply to the message.

"'· • •' Because Usenet is a public forum, you'll find a variety of
~~· people with a variety of opinions-some impolite, rude, or

..__~:.· worse. Although most users are friendly and helpful, a few
' people seem to cause most of the problems. Until you're

accustomed to Usenet, be aware that you may be offended
by some contributors and attacked ("flamed") by others.

To read Usenet groups, you'll need a newsreader program, also called a news
client. Many email programs can read news, too. You can use any news­
reader; the principles of all are about the same. Some of the more popular
Unix newsreaders are slrn, nn, and trn. We show how to read news with
Pine Version 4.33. If you haven't used Pine before, please read the section
"Reading Email with Pine" earlier in this chapter.

If your system's copy of Pine has been set up to read Usenet messages,
when you choose the L key ("folder list") from the main menu, you '11 get a
Collection List screen, as shown in Figure 8-7. A collection is a group of
folders. A collection can be email folders from your local computer, email
folders from other computers, or Usenet newsgroup folders. Figure 8-7
shows two collections: Mail and news on news/nntp. The news collection is
selected (highlighted).

If your copy of Pine is recent enough to read Usenet, but doesn't seem to do
it, check the configuration settings, as described in the section "Configuring
Pine" earlier in this chapter. The collection list settings can set up a collec­
tion of folders for news. You may also need to set the nntp-server hostname
to the computer that serves news articles; your system administrator or ISP
should be able to tell you the right hostname.

Usenet News I 103

Figure 8-7. Pine Collection List screen

When you press Return or > to view that collection, you'll get a list of news­
group folders that's probably huge. Usenet has something for everyone! The
PineD command will delete a newsgroup from your list; it won't appear any­
more unless you use the A command to add it back. (Pine also has some
advanced features, such as "zooming" to a list of folders that you've defined.
See the Pine help system for details.) Figure 8-8 shows a list of newsgroups.

Figure 8-8. Pine newsgroup collection list screen

104 I ChapterS: Unix-Based Internet Tools

Newsgroup names are in a hierarchy, with the levels separated by dots(.):

• The main hierarchies include comp (for discussions about computers);
organization, city, regional, and national groups (such as ne for New
England, uk for the United Kingdom, and so on); mise (miscellaneous);
and so on. The alt (alternative) hierarchy is for almost anything that
doesn't fit in the others.

• All the top levels have subcategories, or second-level categories. For
instance, the alt category has subcategories alt.angels, alt.angers , alt.ani­
mals, and so on, as you can see in Figure 8-8.

• A second-level category may have third-level categories. For instance,
the category alt.animals is divided into alt.animals.dogs, alt.animals.dol­
phins, and so on.

II ' •
When you first start to read Usenet, it's a good idea to spend
a couple of hours exploring what's available and what you're

~· interested in, and deleting unwanted newsgroups from your
' list. The time you spend at first will pay you back later, by

letting you go straight to the newsgroups in which you're
interested.

People all over the world frequent panicular newsgroups. Just as mail fold­
ers have email messages, newsgroups have news articles (individual mes­
sages posted by someone). These messages expire after a period of time.
(That's one reason why a lot of newsgroups appear empty.) Let's look into a
newsgroup. Go to the newsgroup news.announce.newusers; scroll through
the folder list by pressing the spacebar, or if in a hurry, use theW (Whereis)
command and enter the newsgroup name. Once you've selected the name
from the collection list, press Return or > to view it. You'll see a list of mes­
sages in the group, as in Figure 8-9.

Figure 8-9. Pine newsgroup message index screen

Usenet News I 105

Read Usenet messages just as you read email messages; for example, select a
message from the message index and press Return or > to view it. It stays in
the index until it's deleted or expires. Deleting messages you've read or
don't want to see makes it easier to find new messages that come in later. To
keep a message, save a copy to a Pine mail folder with the S (save) com­
mand, email a copy to other users with the F (forward) command, or save a
copy to a file with the E (export) command.

Remember that people worldwide will see your message and
have your email address. If your message is insulting, long
and rambling, includes a lot of the original message unneces­
sarily, or just makes people unhappy, you're likely to get a
lot of email about it. Many newsgroups have periodic FAQ
(frequently asked questions) postings that give more infor­
mation about the group and answer common questions. We
suggest that you not post messages to newsgroups until
you've read Usenet for a while, have learned what style is
acceptable, and have seen enough of the discussion in a par­
ticular group to know whether your question or comment
has been discussed recently.

If there's a message you want to reply to, the PineR command starts a reply.
After asking whether to include a copy of the original message in your reply,
Pine asks you: "Follow-up to news group(s), Reply via email to author or
Both?" If you want all who read this newsgroup to see your reply, choose F
to follow up; your reply, including your name and email address, is posted
for everyone to see. If your message is just for the author-for instance, a
question or a comment-replying by email with R is the better choice.

Remember that spammers (people who send "junk email"
with advertising and worse) will be able to see the email
address on your Usenet posting. For that reason, many peo­
ple set a different email address in the "From:'' field when
posting Usenet messages. If your Internet provider gives you
multiple email addresses, you could choose one just for your
Usenet postings. (Readers may want to reply to your mes­
sage by email, though, so consider using an email address
that you do read occasionally. You also can include your
"real" address in the body of the article, possibly disguised to
fool spammers who search Usenet articles for email
addresses.)

You can post a new message to a newsgroup with the C (compose) com­
mand. If you're viewing a news folder, Pine asks if you want to compose a
message to that newsgroup. (If you answer N (no), Pine creates a regular
email message.)

106 I ChapterS: Unix-Based Internet Tools

Here's one more tip: to read expired messages or search through years of
archives, web sites such as Google Groups (http://groups.google.com/) allow
this.

Interactive Chat
Need a quick answer from another user without sending an email message
and waiting for his reply? Want to have a conversation with your Internet-con­
nected friend in Chile but don't have money for an international phone call?
An interactive chat program lets you type text to another user and see her
reply moments later. Chatting, or "instant messaging," has become popular.
Widely known chat programs are available for Unix; as of this writing, those
include Jabber and AOL Instant Messenger. Other programs have been avail­
able on Unix systems for years and are included with Mac OS X. We look at
two of these: talk and IRC.

talk
The talk program is simple to use. Give the username (and, optionally, the
hostname) of the person with whom you want to chat. Then talk will try to
notify that person as well as show how to use talk to complete the connec­
tion with you. Both of your terminal windows will be split into two sec­
tions, one for the text you type and the other for the text you get from the
other person. You can type messages back and forth until one of you uses
Control-C to break the session.

One advantage of talk is its simplicity; if each of you has a terminal win­
dow open, either of you can run the program at any time; if the other per­
son is logged in, he is notified that you want to chat and told how to
complete the connection. If both people want to use talk on the same com­
puter-even if one of them is logged in remotely (see the section, "Remote
Logins")-it should work well. Unfortunately, there are several talk ver­
sions that don't work with each other. So, the first time you try to chat with
someone on another host, which might have another talk version (or other
problems), it can take planning. Use an email message or phone call to alert
them that you'll try talking soon, then experiment to be sure that both of
you have compatible talk systems. After that, you're all set.

Here's the syntax:

talk username@hostname

If the other user is logged onto the same computer as you, omit the @host­
name. After you run that command, your screen clears with a line of dashes

Interactive Chat I 107

across the middle. The top half shows text you type and informational mes­
sages about the connection. The bottom half shows what _the other user
types.

For example, if your usemame is juan, you're logged onto the computer
sandya.unm.edu, and you want to talk to the user ana at the computer delo.cl,
you would type talk ana@cielo. cl. If the connection works, your screen
clears and you '11 see something like:

[No connection yet]
[Waiting for your party to respond]
[Waiting for your party to respond]
[Connection established]
Hi, Anal Need any help with your exam?

The message [Waiting for your party to respond] means that your talk pro­
gram has found ana's system and is waiting for her to respond. Ana's termi­
nal bell should ring and she should see a message like this in one of her
terminal windows:

Message from Talk_Daemon@sandya.unm.edu at 18:57 •.•
talk: connection requested by juan@sandya.unm.edu.
talk: respond with: talk juan@sandya.unm.edu

If she answers by typing talk juan@sandya.unm.edu, the connection should be
completed, and her screen should clear and look like Juan's. What she types
appears on the top half of her screen and the bottom half of Juan's, and vice
versa. It's not always easy to know when the other person has finished typ­
ing; one convention is to type o (for "over") when you want a response; type
oo (for "over and out") when you're finished. The conversation goes on until
one person types Control-C to actually break the connection.

Unfortunately, because there are several versions of talk, and because other
things can go wrong, you may see other messages from the talk program.
One common message is [Checking for invitation on caller's machine],
which usually means that you won't be able to connect. If this happens, it's
possible that one system has other versions of the talk program that will
work with the particular system to which you're trying to connect-try the
ntalk program, for instance. It might also be easier to use a more flexible
chat system, such as IRC.

IRC
Internet Relay Chat (IRC) is a long-established system for chatting with
other users worldwide. IRC is fairly complex, with some rules you need to
understand before using it. We give a brief introduction here; for more
details, see http://www.irchelp.org. Mac OS X, by default, doesn't include an

108 I ChapterS: Unix-Based Internet Tools

IRC client, so you'll need to download one. For a good place to start, down­
load the Fink package management system (from http://fink.sourceforge.net/),
install it, then at the Terminal command line type fink install ircii to
install ircll.

Introducing IRC

Unlike the talk program, IRC programs let you talk with multiple users on
multiple channels. Channels have names, usually starting with #, such as
#football. rr ou might hope that a channel name would tell you what son of
discussions happen there, but you'd often be wrong!) Many channels are
shared between multiple servers on an IRC net, or network; you connect
your IRC program to a nearby server, which spreads your channel to other
servers around the Net. Some channel names start with&; these channels are
local to their server, and not shared around the Net. Finally, you can meet a
user from a channel and have a private conversation, a "DCC chat," that
doesn't go through servers.

Each user on a channel has a nick, or nickname, which is up to nine charac­
ters long. It's a good idea to choose a unique nick. Even when you do, if
someone else with the same nick joins a channel before you do, you must
choose another nick.

Two kinds of users are in control of each channel. Ops, or channel opera­
tors, choose which other users can join a channel (by "banning" some users
from joining) and which users have to leave (by "kicking off" those users). If
a channel is empty, the first user to join it is automatically the channel op.
(As you can imagine, this system means that some ops can be arbitrary or
unhelpful. If an op treats you badly, though, you can just go join another of
the thousands of IRC channels.) IRC ops, on the other hand, are technical
people in charge of the servers themselves; they don't get involved with
"people issues."

IRC not only lets you chat; it lets you share files with other users. This can
be helpful, but it also can be dangerous; see the warning later in this section.

There are many IRC programs, or "clients," for different operating systems.
They all work with each other, though some have more features. The best
known Unix program is ircll, which you run by typing ire. Another well­
liked program, based on ircll, is bitchx; get it from http://www.bitchx.org.
Many programs can be modified by using scripts or hots; there are thou­
sands of these floating around IRC. But we advise you to use only well­
known programs, and to avoid scripts and hots, unless you know that
they're safe.

Interactive Chat I 109

IRC started long before graphical programs were popular. IRC programs use
commands that start with a slash (/), such as /join #football or /whois
StevieNix. Some IRC programs have buttons and menus that run com­
mands without typing, but you'll probably find that learning the most com­
mon commands is easy-and makes chatting faster, overall, than using a
mouse.

IRC can be a wide-open security hole if you don't use it care­
fully. If you type the wrong command or use an insecure
program or script, any user can take over your account,
delete all your files, and more. Be careful!

IRC programs can be corrupted; scripts and hots can easily
do damage. Even if you think that one is widely known and
safe, it can contain a few lines of dangerous "trojan horse"
code added by an unscrupulous user. Also, never type a
command that another IRC user suggests unless you're sure
you know what it does; /load and /dec get can be especially
dangerous.

Finally, you should know that IRC users can get information about you with
the /whois nick command, where nick is your current nick. They'll see your
real name unless you set the IRCNAME environment variable to another name
(and log in to your system again to make the change take effect). This is
explained in the section "Customizing Your Account" in Chapter 2. (By the
way, use /whois with your nick to find out what other people can see about
you.)

A sample IRC session

When you type ire, your terminal screen splits into two parts. The top part
shows what's happening on the server and the channel; the bottom part (a
single line) is where you type commands and text. In between the two parts
is a status line with the time of day, your nick, and other information. Some
terminals can't do what ire wants them to; if you get an error message
about this, try the command ire -d to use "dumb mode" instead.

A good ircll command to start with is /help, which provides a list of other
commands. The commands /help intro and /help newuser give introduc­
tions. For help with a particular command, give its name-such as /help
server for help with the /server command. When you're done with help,
you'll get a Help? prompt; you can type another help topic name, or simply
press Return to leave the help system. Another common command is /motd,
the "message of the day," which often explains the server's policies.

110 I ChapterS: Unix-Based Internet Tools

You can type your nick on the ire command line. Your IRC program should
have a default server. You can change servers with the /server command;
you'd do this if your server is full (you get the message "connection timed
out," "connection refused," etc.). If your default IRC server is down or busy,
you can also give a server hostname on the ire command line, after your
nick.

In the following examples, we show the text you type (from the bottom line
of the screen) in boldface, followed by the responses you might see (from
the top of the screen) in unbolded text.

We used these commands:

% setenv IRCNAME "Steve St. John"
% ire sstjohn us.undernet.org
*** Connecting to port 6667 of server us.undernet.org

***Closing Link: sstjohn by austin.tx.us.undernet.org (Sorry, your
+connection class is full - try again later or try another server)
*** Connecting to port 6667 of server us.undernet.org

*** Welcome to the Internet Relay Network sstjohn (from
+Arlington.VA.US.Undernet.Org)

*** on 1 ca 1(4) ft 10(10)

/motd
*** The message of the day was last changed: 22/12/2001
*** on 1 ca 1(4) ft 10(10)
*** - Arlington.VA.US.Undernet.Org Message of the Day -
*** - 27/7/2001 20:39 '

*** - SERVER POLICIES:

/help newuser
*** Help on newuser

*** Hit any key for more, 'q' to quit ***

Help? Return

/whois sstjohn
*** sstjohn is -jpeek@kumquat.jpeek.com (Steve St. John)
*** on ire via server *.undernet.org (The Undernet Underworld)
*** sstjohn has been idle 1 minutes

Messages from the server start with ***. Long lines are broken and con­
tinue on following lines that start with+. Mter connecting to the server, we
used /;hois with our nick to find what information other users could see

Interactive Chat I 111

about us. The Undemet servers have thousands of channels open, so we
started by searching for channels with "help" in their names; you can use
wildcards, such as *help*, to do this:

/list *help*
*** Channel Users Topic
*** #helpmania 2 A yellow light, an open door, hello neighbor,
+there's room for more. English
*** #underneth 14 -; UndernetHelp ;- Ask your color free questions
+& wait for it to be answered. (undernethelp@fivemile.org)
*** #miRCHelp 14 Welcome to Undernet's miRC Help Channel! Beginners
+welcome :-)
*** #irc_help 48 Welcome to #irc_help. We do not assist in
+questions/channels regarding warez, mp3, porn, fserve, etc .
.•. list goes on and on •.•

/list *mp3*
••• list of groups discussing/sharing MP3 files •••

We want to see what's happening, so we join the biggest help channel: #ire_
help, which has 48 users now:

/join #irc_help
*** sstjohn (jpeek@kumquat.jpeek.com) has joined channel #irc_help
*** Topic for #irc_help: Welcome to #irc_help. We do not assist in
+questions/channels regarding warez, mp3, porn, fserve, etc.
*** Users on #irc_help: sstjohn ChuckieCheese Oodgerl GooberZ
+Kinger MotorMouth @theORJoker MrBean SweetPea LavaBoy GrandapaJoe

Some names in the list of users, such as @Darkmind, start with @; these
users are ops. Let's watch some more of the action. After a couple of users
leave the channel, a new user MsTiger joins and asks for help. Each time a
user types a line of text that isn't a command, it's sent to everyone else on
the channel, preceded by that user's nick, such as <MsTiger>:

*** ChuckieCheese has left channel #irc_help
*** GooberZ has left channel #irc_help
*** HelloWorld (~hw@foo.edu) has joined channel #irc_help
*** MsTiger (~tiger@zz.ro) has joined channel #irc_help
<MsTiger> help me
<MsTiger> please
<Kinger> MsTiger what can we help you with
<MsTiger> my channel is not op
<Kinger> LavaBoy tell MsTiger about no opers
<LavaBoy> MsTiger, *shrug*
<GrandapaJoe> MsTiger Sorry, but there are currently NO IRC Operators
+available to help you with your channels. Please be patient and wait
+for an Operator to join.
*** MsTiger has left channel #irc_help

112 I ChapterS: Unix-Based Internet Tools

The channel has gotten quiet, so we jump in with a question:

Hello all. When I joined, I had a problem

Any suggestions??
*** Thor (dfdddd@194.999.231.00) has joined channel #irc_help
<[Wizard]> Can you help me plz
<lavaBoy> Try typing !help in the channel, [MORTAL].
/leave
*** sstjohn has left channel #irc_help
/quit
%

No one had an answer, so we left the channel after a few minutes of wait­
ing. Other channels might be a lot livelier and might have had someone will­
ing to chat about my question, but we left the ire program by typing /quit.
Then we got another shell prompt.

Interactive Chat I 113

CHAPTER9

Multitasking

Unix can do many jobs at once, dividing the processor's time between the
tasks so quickly that it looks as if everything is running at the same time.
This is called multitasking.

With a window system, you can have many applications running at the
same time, with many windows open. But Mac OS X, like most Unix sys­
tems, also lets you run more than one program inside the same terminal.
This is called job control. It gives some of the benefits of window systems to
users who don't have windows. But, even if you're using a window system,
you may want to use job control to do several things inside the same termi­
nal window. For instance, you may prefer to do most of your work from one
terminal window, instead of covering your desktop with multiple windows.

Why else would you want job control? Suppose you're running a program
that will take a long time to process. On a single-task operating system such
as MS-DOS, you would enter the command and wait for the system prompt
to return, telling you that you could enter a new command. In Unix, how­
ever, you can enter new commands in the "foreground" while one or more
programs are still running in the "background."

When you enter a command as a background process, the shell prompt reap­
pears immediately so that you can enter a new command. The original pro­
gram will still run in the background, but you can use the system to do other
things during that time. Depending on your system and your shell, you may
even be able to log off and let the background process run to completion.

Running a Command
in the Background
Running a program as a background process is most often done to free a ter­
minal when you know the program will take a long time to run. It's also

114

used whenever you want to launch a new window program from an existing
terminal window-so that you can keep working in the existing terminal, as
well as in the new window.

To run a program in the background, add .the & character at the end of the
command line before you press the Return key. The shell then assigns and
displays a process ID number for the program:

% sort bigfile > bigfile.sort &
[1] 29890
%

(Sorting is a good example because it can take a while to sort huge files, so
users often do it in the background.)

The process ID (PID) for this program is 29890. The PID is useful when you
want to check the status of a background process, or if you need to cancel it.
You don't need to remember the PID, because there are Unix commands
(explained in the next section) to check on the processes you have running.
Some shells write a status line to your screen when the background process
finishes.

Here's another example. Mac OS X has a command called open that lets
you launch Aqua applications from the Unix command line. You can also
feed specific files or directories to the open program, in which case it will
launch the appropriate Aqua application that can view or display the file
(similarly to double-clicking on the file icon in the Finder). For example, to
view the /Library directory in the Finder, you can use open /Library, but
since you want to have it immediately move into the background you need
to append the & suffix:

% open /Library &
[1] 505

A new Finder window will open up, showing the contents of /Library.

In the C shell, you can put an entire sequence of commands separated by
semicolons (;) into the background by putting an ampersand at the end of the
entire command line. In other shells, enclose the command sequence in paren­
theses before adding the ampersand. For instance, you might want to sort a
file, then print it after sort fmishes. The syntax that works on all shells is:

(command1; command2) &

The examples above work on all shells. Mac OS X Unix shells also have a
feature we mentioned earlier called job control. You can use the suspend
character (usually Control-Z) to suspend a program running in the fore­
ground. The program pauses, and you get a new shell prompt. You can then
do anything else you like, including putting the suspended program into the

Running a Command in the Background I 115

background using the bg command. The fg command brings a suspended or
background process to the foreground.

For example, you might start sort running on a big file, and, after a minute,
want to send email. Stop sort, then put it in the background. The shell
prints a message, then another shell prompt. Send mail while sort runs.

% sort hugefilet hugefile2 > sorted
... time goes by •••
CTRL-Z Stopped
%bg
[1] sort hugefile1 hugefile2 > sorted &
% mail taylor@intuitive.com

Checking on a Process
If a background process takes too long, or you change your mind and want
to stop a process, you can check the status of the process and even cancel it.

ps
When you enter the command ps, you can see how long a process has been
running, the process ID of the background process, and the ten:ninal from
which it was run. The tty program shows the name of the Terminal where
it's running; this is especially helpful when you're using a window system or
you're logged into multiple terminals, as the following code shows:

% ps
PID TT STAT
310 std S
510 std R+
459 p2 S+

%tty
/dev/ttyp1

TIME COMMAND
0:00.37 -tcsh (tcsh}
o:oo.oo ps
0:00.25 -tcsh (tcsh}

In its basic form, ps lists the following:

Process ID (PID)
A unique number assigned by Unix to the process.

Terminal name (TT)
The Unix name for the terminal from which the process was started.

Run Time State (STAT)
The current state of each job. "S" is sleeping, "R'' is runnable, "T" is
stopped, and "I" is idle (sleeping for more than 2Q-30 seconds). Addi­
tionally, state can include "+" to indicate it's part of the foreground

116 I Chapter9: Multitasking

group process, "E" indicates the process is exiting, and "W" means it's
swapped out.·

Run time (TIME)
The amount of computer time (in minutes and seconds) that the pro­
cess has used.

Command (CMD)
The name of the process.

Each terminal window has its own terminal name. The previous code shows
processes running on two windows: std and p2. The Mac OS X version of ps
lists only the processes on the same terminal where you run ps; other ver­
sions list processes on all terminals where you're logged in. If you have more
than one terminal window open, but all the entries in the TT column show
the same terminal name, try typing ps -u username, where username is your
usemame. If you need to find out the name of a particular terminal, run the
tty program from a shell prompt in that window.

If you have ps show you all the processes running, you will see quite a few
processes you don't recognize; they're helping Aqua do its job. You may also
see the names of any other programs running in the background and the
name of your shell's process (sh, csh, and so on)-although the Mac OS X
version of ps shows all processes by default. ps may or may not list its own
process.

You can also specify process ID values to ps to find out about specific jobs.
Consider the following:

% sort verybigfile > big-sorted-output
[1] 522
% ps 522

PID TT STAT TIME COMMAND
522 std R 0:00.32 sort verybigfile

% ps $$
PID TT STAT TIME COMMAND
310 std S 0:00.41 -tcsh (tcsh)

As the last command shows, you can easily ascertain what command shell
you're running at any time by using the$$ shortcut for the process ID of the
current shell. Feed that tops, and it'll tell you about the shell process you're
running.

You should be aware that there are two types of programs on Unix systems:
directly executable programs and interpreted programs. Directly executable
programs are written in a programming language such as C and stored in a

• The ps manpage has details on all possible states for a process. It's quite interesting reading.

Checking on a Process I 117

file that the system can read directly. Interpreted programs, such as shell
scripts and Perl scripts, are sequences of commands that are read by an
interpreter program. If you execute an interpreted program, you will see an
additional command (such as perl, sh, or csh) in the ps listing, as well as any
Unix commands that the interpreter is executing currently.

Shells with job control have a command called jobs that lists background
processes started from that shell. As mentioned earlier, there are commands
to change the foreground/background status of jobs. There are other job
control commands as well. See the references in the section "Documenta­
tion" in Chapter 10.

Canceling a Process
You may decide that you shouldn't have put a process in the background or
the process is taking too long to execute. You can cancel a background pro­
cess if you know its process ID.

kill
The kill command terminates a process. The command's format is:

kill PID(s)

kill terminates the designated process IDs (shown under the PID heading in
the ps listing). If you do not know the process ID, do a ps first to display the
status of your processes.

In the following example, the sleep n command simply causes a process to
"go to sleep" for n seconds. We enter two commands, sleep and who, on the
same line, as a background process.

% (sleep 60; who)&
[1] 543
% ps

PID TI STAT
310 std S
543 std S
544 std S
545 std R+
459 p2 5+

% kill 544
Terminated

TIME COMMAND
0:00.52 -tcsh (tcsh)
o:oo.oo -tcsh (tcsh)
0:00.01 sleep 60
o:oo.oo ps
0:00.25 -tcsh (tcsh)

taylor console Feb 6 08:02
taylor ttyp1 Feb 6 08:30
taylor ttyp2 Feb 6 08:32

[1] Done (sleep 60; who)

118 I Otapter 9: Multitasking

We decided that 60 seconds was too long to wait for the output of who. The
ps listing showed that sleep had the process ID number 544, so we use this
PID to kill the sleep process. You should see a message like "terminated" or
"killed"; if you don't, use another ps command to be sure the process has
been killed.

The who program is executed immediately, as it is no longer waiting on
sleep; it lists the users logged into the system.

Problem checklist
The process didn't die when I told it to.

Some processes can be hard to kill. If a normal kill of these processes is
not working, enter kill -9 PID. This is a sure kill and can destroy almost
anything, including the shell that is interpreting it.

In addition, if you've run an interpreted program (such as a shell script),
you may not be able to kill all dependent processes by killing the inter­
preter process that got it all started; you may need to kill them individu­
ally. However, killing a process that is feeding data into a pipe generally
kills any processes receiving that data.

Canceling a Process I 119

CHAPTER 10

Where to Go from Here

Now that you're almost to the end of this guide, let's look at some ways to
continue learning about Unix. Documentation is an obvious choice, but it
isn't always in obvious places. You can save time by taking advantage of
other shell features-aliases, functions, and scripts-that let you shorten a
repetitive job and "let the computer do the dirty work."

We'll close by seeing how you can use Unix commands on non-Unix systems.

Documentation
You might want to know the options to the programs we've introduced and
get more information about them and the many other Unix programs.
You're now ready to consult your system's documentation and other
resources.

The man Command
Different versions of Unix have adapted Unix documentation in different
ways. Almost all Unix systems have documentation derived from a manual
originally called the Unix Programmer's Manual. The manual has numbered
sections; each section is a collection of manual pages, often called
manpages; each program has its own manpage. Section 1 has manpages for
general Unix programs such as who and ls.

Mac OS X has individual manual pages stored on the computer; users can
read them online. If your system has online manpages, and you want to
know the correct syntax for entering a command or the particular features of
a program, enter the command man and the name of the command. The syn­
tax is:

man command

120

For example, if you want to find information about the program mail, which
allows you to send messages to other users, enter:

% man mail

%

The output of man is filtered through a pager in Mac OS X like less automati­
cally. If it isn't, just pipe the output of man to less (or more or pg).

After you enter the command, the screen fills with text. Press the spacebar
or Return to read more, and q to quit.

Mac OS X also includes a command called apropos or man -k to help you
locate a command if you have an idea of what it does but are not sure of its
correct name. Enter apropos followed by a descriptive word; you'll get a list
of commands that might help. To get this working, however, you need to
first build the apropos database. This can be done with the following com­
mand (you'll need sudo enabled for this to work):

% sudo /usr/libexec/makewhatis
Password:
%

Now you can use apropos to find all commands related to PostScript, for
example, with:

% man -k postscript
enscript(l)
grops(1)
pfbtops(l)
ASCII
psbb(1)

Problem checklist

- convert text files to PostScript
- PostScript driver for groff
- translate a PostScript font in .pfb format to

- extract bounding box from PostScript document

man says there is no manual entry for the command.
Some commands-cd and jobs, for example-aren't separate Unix pro­
grams; they're part of the shell. On some Unix systems, you'll find doc­
umentation for those commands in the manual page for the shell. (To
find the shell's name, see the section "The Unix Shell" in Chapter 1.)

If the program isn't a standard part of your Unix system-that is, your
system staff added the program to your system-there may not be a
manual page, or you may have to configure the man program to find the
local manpage files. The third possibility for this is that you don't have
all the manpage directories in your MANPATH variable. If so, add the fol­
lowing to your .cshrc, then quit and restart Terminal.

setenv MANPATH "/usr/share/man:/usr/local/share/rnan:/usr/X11R6/man:/sw/
share/man"

Documentatfon I 121

Documentation via the Internet
The Internet changes so quickly that any list of online Unix documentation
we'd give you would soon be out of date. Still, the Internet is a great place to
find out about Unix systems. Remember that there are many different ver­
sions of Unix, so some documentation you find may not be completely right
for you. Also, some information you'll find may be far too technical for your
needs (many computer professionals use and discuss Unix). But don't be
discouraged! Once you've found a site with the general kind of information
you need, you can probably come back later for more.

The premier place to start your exploration of online documentation for
Mac OS X Unix is the Apple web site. But don't start on their home page.
Start either on their Mac OS X page (http://www.apple.com/macosx/) or their
Darwin project home page (http://www.opensource.apple.com/). Another
excellent place to get information about software downloads and add-ons to
your Unix world is the Fink project (http://fink.sourceforge.net/).

Many Unix command names are plain English words, which can make
searching hard. If you're looking for collections of Unix information, try
searching for the Unix program named grep. As this book went to press, one
especially Unix-friendly search engine was Google, at http://www.google.com.

Here are some other places to try:

Magazines
Both print and online magazines have Unix tutorials and links to more
information. Many are written for beginners.

Publishers
Those such as O'Reilly&: Associates, Inc. (http://www.oreilly.com), have
areas of their web sites that feature Unix and have articles written by
their books' authors. They may also have books online (such as the
O'Reilly Safari service) available for a small monthly fee-which is a
good way to learn a lot quickly without needing to buy a paper copy of
a huge book, most of which you might not need.

Universities
Many schools use Unix-like systems and will have online documenta­
tion. You'll probably have better luck at the Computer Services division
(which services the whole campus) than at the Computer Science
department (which may be more technical).

OS X-related web sites
Many are worthy of note, though they're run by third parties and may
change by the time you read this. Mac OS X Apps (http://www.
macosxapps.com) offers a wide variety of Aqua applications,

122 I Chapter 10: Where to Go from Here

Information on Darwin can be found at Darwinfo (http://www.darwinfo.
org), and Mac OS X Hints (http://www.macosxhints.com) all offer valu­
able information and hints. One more site well worth a bookmark is
O'Reilly's MacDevCenter (http://www.oreilly .com/mad).

Books
Bookstores, both traditional and online, are full of computer books. The
books are written for a wide variety of needs and backgrounds. Unfortu­
nately, many books are rushed to press, written by authors with minimal
Unix experience, full of errors. Before you buy a book, read through parts of
it. Does the style (brief or lots of detail, chatty and friendly or organized as a
reference) fit your needs? Search the Internet for reviews; online bookstores
may have readers' comments on file.

Shell Aliases and Functions
If you type command names that are hard for you to remember, or com­
mand lines that seem too long, you'll want to learn about shell aliases and
shell functions. These shell features let you abbreviate commands, command
lines, and long series of commands. In most cases, you can replace them with
a single word or a word and a few arguments. For example, one of the long
pipelines (see the section "Pipes and Filters" in Chapter 6) could be replaced
by an alias or function named (for instance, aug). When you type aug at a
shell prompt, the shell would list files modified in August, sorted by size.

Making an alias or function is almost as simple as typing in the command
line or lines that you want to run. References in the section "Documenta­
tion" earlier in this chapter, have more information. Shell aliases and func­
tions are actually a simple case of shell programming.

Programming
We mention earlier that the shell is the system's command interpreter. It
reads each command line you enter at your terminal and performs the oper­
ation that you call for. Your shell is chosen when your account is set up.

The shell is just an ordinary program that can be called by a Unix com­
mand. However, it contains some features (such as variables, control struc­
tures, and so on) that make it similar to a programming language. You can
save a series of shell commands in a file, called a shell script, to accomplish
specialized functions.

Programming I 123

Programming the shell should be attempted only when you are reasonably
confident in your ability to use Unix commands. Unix is quite a powerful
tool and its capabilities become more apparent when you try your hand at

. shell programming.

Take time to learn the basics. Then, when you're faced with a new task, take
time to browse through references to find programs or options that will help
you get the job done more easily. Once you've done that, learn how to build
shell scripts so that you never have to type a complicated command
sequence more than once.

You might also want to learn Perl. Like the shell, Perl interprets script files
full of commands. But Perl has a steeper learning curve than the shell. Also,
because you've already learned a fair amount about the shell and Unix com­
mands by reading this book, you're almost ready to start writing shell scripts
now; on the other hand, Perl will take longer to learn. But if you have
sophisticated needs, learning Perl is another way to use even more of the
power of your Unix system.

124 I Chapter10: WheretoGofromHere

APPENDIX

Configuring Send mail

In the voodoo land of Unix, nothing is more weird and confusing than the
low-level mechanism used for sending mail. Mac OS X Unix includes send­
mail, a powerful but incredibly complex application that manages commu­
nication between command-line mail user agents (such as Pine) and the
Internet itself.

Unfortunately, Mac OS X has default settings that make it impossible for
you to send mail directly from the command line. If you do, you'll probably
see an error similar to:

% mail -s practice taylor@intuitive.com < /dev/null
sendmail: cannot open /etc/mail/local-host-names: Group writable directory
%

The fix is straightforward, and involves a single tweak!

All you need to do is change the permission of the root directory with chmod
(and enter your password when prompted):

% sudo chmod 755 I
password:
%

and sendmail should work fine. If you want to also configure your system to
receive mail (that is, run as a mail server), you'll need to make one addi­
tional change.

To configure your server for receiving email, you need to change the config­
uration of your system so that it knows you want to run a mail server. Make
the following two changes to the file /etc!hostconfig:

Change MAILSERVER~-NO- to MAILSERVER~-YES-
Change HOSTNAME=-AUTOMATIC- to HOSTNAME=host.your.domain

\

125

Here's how my /etdhostconfig looks after these modifications (we've high­
lighted the two changed lines in bold to have them stand out a bit more):

cat /etc/hostconfig

/etc/hostconfig

This file is maintained by the system control panels

Network configuration
HOSTNAME=dsl-13B.dsldesigns.net
ROUTER=-AUTOMATIC-

Services
AFPSERVER=-NO-
APPLETALK=enO
AUTHSERVER .. -NQ-
AUTOMOUNT .. -YES-
CONFIGSERVER=-NO-
IPFORWARDING"'-NO-
MAILSERVER=-YES­
MANAGEMENTSERVER=-NO­
NETINFOSERVER=-AUTOMATIC­
RPCSERVER=-AUTOMATIC­
NETBOOTSERVER=-NO-
NISDOMAIN=-NO-
TIMESYNC=-YES-
QTSSERVER=-NO-
SSHSERVER=-NO-
WEBSERVER=-NO­
APPLETALK_HOSTNAME="Big G4 Computer"

To edit this file, use the command sudo vi /etc/hostconfig so that you can
write the revised version back to your disk without permission problems
cropping up.

That should do it. Reboot your system and you should be able to send and
receive email from the Terminal.

126 I : Configuring Sendmail

alphanumeric
Characters: letters (alpha) and num­
bers (numeric), including punctua­
tion characters (such as_ and?).

Apple Talk
A suite of transport protocols first
introduced in Mac OS 7 and included
in all systems since that release. One
advantage of AppleTalk is that it's
very easy to add and modify devices
on an Apple Talk network.

Aqua

BSD

The graphical appearance and work­
space of Mac OS X. In the world of
the X Window System, Aqua would
be called a window manager.

The Berkeley Software Distribution
version of Unix, BSD was the aca­
demic Unix, compared to System V,
from AT&T Bell Telephone Labs,
which had more of a commercial
bent.

click
Depress and quickly release a mouse
button; double- and triple-dick imply
depressing and releasing a mouse
button two or three times, respec­
tively, within a short period. See also
point.

clipboard
A temporary storage area for Mac OS
X programs, used for transferring text

Glossary

("copying" and "pasting" text)
between programs.

command
An instruction that you can give to a
program running on the Unix sys­
tem. For instance, you can type a
program's name and arguments on a
command line, at a shell prompt; this
command asks the shell to run that
program. (The shell is a program
itself; see shell.) Once a program
starts running, it' may accept com­
mands of its own. For example, a text
editor has commands for deleting
and adding text to the file it's editing.

The terms command and program are
used almost interchangeably, proba­
bly because the program name is
typed first on a command line (at a
shell prompt). Shells have some
built-in commands that don't start a
separate program running; one of
these is cd, which changes the shell's
working directory.

cracker
A malicious person who tries to
break into computer systems (usu­
ally via a network), disrupt comput­
ers and networks, steal secrets (such
as passwords and credit card num­
bers), and exhibit other antisocial
behavior.

Popular media often call these peo­
ple hackers. But, to most computer

127

Darwin

people, a hacker is someone who
enjoys computing and programming,
and may be an expert at some area of
it. {For instance, a Perl hacker is
someone who's good at program­
ming in the Perl language.)

Darwin
A version of BSD Unix that serves as
the underpinnings of Mac OS X (with
the addition of Aqua).

Desktop
The part of a display that's "behind"
(not enclosed within) the windows,
icons, and other items on the display.

directory
A list of files and/or other directo­
ries. A directory is actually a special
kind of file that has names and loca­
tions of other files and directories.
See also working directory.

drag
As in drag an object, i.e., a window or
an icon, means to point to the object
and then depress and hold down
(usually) the mouse button while
moving the pointer to a new loca­
tion, where the mouse button is
released.

Mac OS X supports "drag and drop,"
which means dragging one object and
dropping it over another object. For
example, to print a file, you could
drag the file's icon and drop it onto a
printer icon.

Finder
A graphical filesystem browser for
your Macintosh. Prior to Mac OS X,
the only way you could interact with
your system was through the Finder,
but now you can also opt to use the
Terminal.

Free Software Foundation (FSF)
An organization formed in 1985 that
works for the rights of computer
users to study, copy, modify, and
redistribute computer programs. The

128 I Glossary

FSF also distributes free software. See
http://www.fsf.org/; see also GNU.

GNU
A project, started in 1984, to develop
a completely free Unix-like operating
system: the GNU system. GNU
stands for "GNU's Not Unix;" it is
pronounced "guh-NEW." See also
Free Software Foundation.

mouse pointer
The graphic symbol that appears on
the output display and moves under
the control of the mouse, trackball, or
keyboard input to the window system.

multitasking
An operating system that can run
more than one program at a time is
said to be a multitasking OS. The pro­
grams don't actually all run simulta­
neously; the OS can divide the
computer's time between the differ­
ent programs very rapidly, so that
they all appear to run at the same
time. The system can still be over­
loaded and run slowly, if too many
programs are trying to run at once.

Unix has always been multitasking,
and Macintosh systems have been
multitasking for many years too.

path name
The location of a file or directory in a
Unix filesystem: a series of names
separated by slash (/) characters.
Pathnames can be absolute (starting
with a slash character, which means
they begin at the filesystem's root
directory) or relative (not starting
with a slash, which means the path­
name starts from the current work­
ing directory). See also the section
"The Unix Filesystem" in Chapter 2.

point
As in "point a mouse," means to
position the mouse pointer at a speci­
fied place or location within a win­
dow or other part of a window
system display. See also click, drag.

program
A set of instructions to the computer,
written by a programmer, and stored
in a file. The program is executed
when you type its name as the first
word on a command line, at a shell
prompt (or when you choose the pro­
gram from a menu or icon in a win­
dow system). Unix runs a program as
a process, which you can suspend or
terminate using job control, an inter­
rupt key, or the kill command.

root (user and directory}
Unix systems have an account named
root, also called the "superuser," that
has no protections or restrictions.
System administrators and staff use
this account to make changes to the
system's configuration and operation.

A Unix filesystem is like an
upside-down tree with a branching
structure of directories inside directo­
ries. The first directory, where the
filesystem starts, is called the root
directory. Figure 2-1 is a filesystem
diagram showing the root directory
and a small part of a filesystem.

screen
The area of a terminal (usually glass
or plastic) that shows computer out­
put. See also terminal.

session
When two programs, or two users
running programs, communicate
across a network, they typically start
the communication by doing a cer­
tain thing-for instance, by logging
in. The communication continues
until it's completed (or, possibly,
aborted before it completes)-for
instance, by logging out. The entire
process, from start to completion, is
called a session.

shell
A program that runs other programs.
There are several different kinds of

working directory

shells, each with its own com­
mand-line syntax; some of the most
common are bash, tcsh, and ksh. All
shells do the same basic job: reading
commands that you type interac­
tively at a shell prompt or reading
commands noninteractively from a
program file called a shell script.

When you start using Terminal, a
shell program begins to run and
prints a shell prompt. When you ter­
minate that shell (by typing exit or
Control-D at a prompt), you're
logged out from that Terminal.

syntax
The rules for, or the format of, the
characters you use to make a com­
mand or other computer input. For
example, the syntax of a Unix com­
mand line is explained in the section
"Syntax of Unix Command Lines" of
Chapter 1.

window
An area of an output display often
smaller in size than the maximum
size of the display screen.

If a window manager program is run­
ning, a window will usually have a
well-defined border, a title, and other
characteristics. The Aqua window
manager lets you move and resize a
window as well.

working directory
When you give Unix a relative path­
name to a file or subdirectory, the
working directory is the starting
point-the directory where that rela­
tive pathname starts. For example, if
your working directory is
/Users/joe/food and you type the com­
mand less recipes/fish, Unix opens
the file /Users/joe/food/recipes/fish.
(Your working directory is still
/Users/joe/food.)

If you type the command from any
working directory, you get a listing of

Glossary I 129

working directory

the files in your parent directory.
That command uses the relative path­
name to the parent directory (..). So
if your working directory is
!Users/joe/food, that command would
list the parent directory !Users/joe.
Or, if your working directory is
!Users/joe, that same command
would list the parent directory /Users.

130 I Glossary

Each process running on a Unix sys­
tem has its own working directory,
which the program can change at any
time. For instance, you can give the
shell the command cd to change its
working directory.

[] (bracket), using for wildcards, 35
88--, cycling between windows, 2
""(quotes)

filenames, using with, 8, 33
Lynx, entering URLs, 92

+ (add), setting permissions, 27
& (ampersand)

background processes and, 115
>and>> (output) redirection

operator), 73
88-, as a control key, 6
• (asterisk)

executable files and, 23
wildcards, 28, 34,48

\ (backslash), using with rm
program, 33

:(colon) as a less prompt, 25
, (comma)

combining permissions, 28
Pine, sending more than one email

address, 99
. (dot)

changing permissions and, 28
copying files, 85
directory shoncuts, 43
filenames, 33
newsgroups and, 105

.. (dot dot) shoncuts, 21
copying files, 43
directories, 43

:::(equal sign), setting permissions, 27
(hash mark)

as shell prompt, 3

Index

using IRC, 109
? (help) command, configuring

Pine, 101
-(hyphen)

plain file, 22
setting permissions (delete), 27
using with options, 8

< (input) redirection operator, 72
I (pipe) for 1/0 redirection, 73, 76
; (semicolon)

background commands,
running, 115

writing multiple commands, 9
$$ shoncut for ps program, 117
I (slash)

A

absolute pathname and, 16
finding patterns (vi), 39
IRC, using, 110
Is command and, 23
root directories and, 14
wildcards and, 35

-a (all) option, 9
ls command and, 21

a command (vi), 41
absolute pathnames, 15
access permissions, 22, 27
accounts, 1
activity monitor, 55
add(+), setting permissions, 27
address book (Pine), 100

We'd like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

131

aliases, 56, 123
creating, 59

all (-a) option, 9
Is command and, 21

alt category in newsgroups, 105
ampersand(&)

background processes and, 115
appending text to files, 76
AppleTalk-based printers, 61

Unix commands for, 63-65
apropos program, 121
Aqua, xi, 34

FTP applications and, 89
printing and, 65
Unix applications, fixing carriage

returns, 37
arguments for command lines, 7
ascii (ftp command), 87
asterisk (•)

executable files and, 23
wildcards, 28, 34, 48

at_cho_prn command, 64
atlookup program, 64
atprint program, 61, 63-65

B
bcommand

less, 25
vi, 41

background processes, 114, 116
backslash (\), using with rm

program, 33
Barrett, Daniel]., 84
bash (Bourne-again) shell, 2
Bell Telephone Labs, viii
bg program, 116
bin directory, 14
binary (ftp command), 87
bitchx program, 109
blocks, checking amount of storage in

directories, 22
hots, 109
Bourne shell (sh), 2
Bourne-again shell (bash), 2
bracket ([]),using for wildcards, 35
browsers

filesystem, 31
web

FTP with, 89

132 I Index

Lynx, 91-93
BSD 4.4, viii
buffer preferences, 54

(

C (Config) command, 101
-c grep option, 78
C shell (csh), 2
cancelling

foreground processes, 114
carriage returns, switching between Unix

and Aqua applications, 37
cat program, 73-76
cd (change directory) command, 18

FTP, using for, 87
Is command, using with, 20

change directory command, 1S
channel operators (Ops), 109
chat (interactive), 107
child directories (subdirectories), 14
chmod program, 23

sendmail and, 125
setting permissions with, 27

chown program, 30
clobbering files, 7 4
CMD (Command), 117
collections (Pine), 103
colon (:) as a less prompt, 25
colors, changing preferences, 52
comma(,)

combining permissions, 28
Pine, sending more than one email

address, 99
Command (CMD), 117
command modes (vi), 37
command-line FTP, 86
commands, xi

background, running in, 114-116
entering, 3
FTP (File Transfer Protocol), 86
printing, 61-67
programs (see programs)
recalling, 4
recalling previous, 5
shell aliases for, 123
syntaxof, 7
types of, 10

composer window (Pine), 98
concatenate program (see cat program)

Config (C) command, 101
control characters, 5

88key and, 6
Controi-D, 75
CfRL-C, 11
CfRL-D, 6, 12
CfRL-H, 6
CfRL-Q, 6, 12
CfRL-S, 6, 12
CTRL-U, 6
CTRL-Z, 11
Pine

CfRL-C, cancelling
messages, 100

CfRL-J, justifying
paragraphs, 100

CfRL-N, moving between header
lines, 99

CfRL-P, moving between header
lines, 99

CfRL-T, check spelling, 100
CfRL-X, exit, 100

cp program, 30, 42-45
CpMac program, 45
crackers, 84
csh (C) shell, 2
CfRL-L command (less), 25
current directories, 14
currently selected link (Lynx), 93
cut and paste commands, in the terminal

window, 1

D
a&-D

Find Previous, 2
d (directory) type, 22
d1G command (vi), 41
Darwin, viii

print queue, 65
dash (-) for command options, 8
date program, 4, 74
K-D

ending input in shell, 6
dd command (vi), 41
dead.letter file, 95
default shell, 2
DEL, DELETE keys, 6
Desktop folder, corresponding to Unix

directories, 19

dG command (vi), 41
dir (ftp command), 87
directories, 13-24

changing, 18
creating, 42
current, 14
files

completing, 32
trees and, 19

hierarchy of trees, 14, 19
home, 13
listing, 20
names of, 33
pathnames, 15
permissions, 22, 26
removing, 4 7
shortcuts, 17,21

copying files, 43, 85
wildcards, 34
working, 14

documentation, 120-123
Internet, finding on, 122

documentation on Unix, 120
dot(.)

changing permissions and, 28
copying files, 85
directory shortcuts, 43
filenames, 33
newsgroups and, 105

dot dot(..) shortcuts, 21
copying files, 43
directories, 43

dw command (vi), 41

E
88-E (Enter Selection), 2
echo program, 3
Emacs text editor, 36
email (electronic mail), 93-103

command output, sending, 79
Pine, 96-98
shell prompt, sending from, 94-96

emulation preferences, 54
enscript program, 63
environment (Unix), 1-7
equal sign (::::)

setting permissions and, 27
erase character, 6
errors on command line, 5

Index I 133

ESC command (vi), 41
etc directory, 14
executable files, 23
execute (x) permission, 22, 27

F
88-F (select Find Panel from Edit

menu), 2
fg program, 11, 116

bringing stopped jobs into
foreground, 7

FIFOs, 20
File Transfer Protocol (FTP), 86
filenames, 33

changing, 46
option commands and, 8
replacing with pathnames, 28
starting with dot(.), 33

files, 13-24
access permissions, 27
appending text to, 76
directory names and, 32
directory trees and, 19
finding/searching for, 46
hidden, 21
inserting text, 73
listing, 20
long format of, 21
management, 33-49

copying, 42
creating/editing, 36-41
remote, 49
removing, 4 7
wildcards, 34

moving, 46
overwriting by mistake, 7 4
pathnames, 15
permissions, 22
printing, 61-71
reading, 79

with less command, 24
renaming, 46
sharing, 26
sorting lines in, 78
transferring, 84-90

filesystem browsers, 31
filesystems, 13-24

absolute pathnames, 15
networked, 15

134 I Index

filters, 76
find program, 46
Finder, viii, 32
finger program, 10
Free Software Foundation, viii
FreeBSD, viii
frozen terminals, 11
FTP (File Transfer Protocol), 86
ftp program, 10
functions for shell aliases, 123

G
88-G (Find Next), 2
g (group) permission, 27
get (ftp command), 87
glossary, 127, 128
GNU utilities, viii
graphical filesystem browsers, 31
graphical user interfaces (GUls), ix
greater-than (>) symbol, 73
grep program, 77
group (g) permission, 22, 27
groups program, 29
GUis (graphical user interfaces), ix

H
h command (vi), 41
h (help) command, (less), 25
hash mark(#)

as shell prompt, 3
using IRC, 109

headers (Pine), 98
help and resources

Unix documentation, 120
help (h) command, 25
hidden files, 21
hierarchies (directory trees), 14, 19
home directories, 13
hostnames, mailing to, 94
hung terminals, 11
hyphen(-)

plain file, 22
setting permissions (delete), 27
using with options, 8

i command (vi), 41
-i grep option, 78

index (message) screens for
newsgroups, 106

input redirection operator(<), 72
input/output redirection (see 1/0)
Internet, 81-90

remote logins, 81-84
transferring files, 84-90
Unix-based tools, 91-113

electronic mail, 93-103
Lynx, 91-93

Internet Relay Chat (IRC), 108-113
interpreted programs, 117
interrupt characters, 6, 11
1/0 (input/output) redirection, 72

creating files, 36-41
IRC (Internet Relay Chat), 108-113

J
j command (vi), 41
88-j Uump to Selection), 2
job control, 7, 114, 115

stopped jobs, 7
suspending jobs, 11

jobs command, 118
joy, Bill, 37

K
k command (vi), 41
kill command, 11, 118
Kom shell (ksh), 2
ksh (Korn) shell, 2

L
l command (vi), 41
-1 option (ls), 9, 78
led (ftp command), 87
LESS environment variable, 25
less program, 56, 79

using, 24
wildcards and, 35

less-than symbol(<), 72
links

in long formats, 22
in text-based browsers, 93

Linux, viii
locate program, 47
log files (printing), creating, 68
logging out, 6

_logins (remote), 81-84
' logout command, 6

long format of files, using -1 option, 21
lpq program, 65
LPR printer, configuring, 67-71
lpr program, 65
lprm program, 67
Is program, 9, 20-29

chmod, setting permissions with, 27
rm command and, 48

Lynx web browser, 91-93

M
Mac OS X: The Missing Manual, x
Mac-format files, copying, 45
Mach microkernel, viii
mail (electronic), 93-103
mail program, 9, 72, 94
man program, 120
MANPATH variable, 121
message headers (Pine), 98
message index screens for

newsgroups, 106
mget (ftp command), 87
microkernel (Mach), viii
Microsoft Windows

accessing with Unix, 49
mkdir program, 42
modification date, 22
more program, 24
mput (ftp command), 87
multitasking, 114-119
multi-user operating system, vii
mv program, 46
MvMac program, 46

N
:n command (less), 25
-n grep option, 78
88-N, opening windows, 2
-n option command, 8
name in long formats, 22
ncftp program, 86, 88
Net News, 103
Netlnfo database, 69
networked filesystems, 15
networks, copying files across, 84-90
news articles (newsgroups), 105
newsgroups, 103

Index I 135

newsreader program, 103
nf command (less), 25
nicknames (Pine), 100
nicks (nicknames) using IRC, 109
noclobber variable, 7 4

0
0 command (vi), 41
o command (vi), 41
-o option command, 8
o (other) permission, 27
open command, 10

launching applications with, 115
Ops (channel operators), 109
options for command lines, 8
other (o) permission, 27
output(> and>>) redirection

operator, 73
output (110), 72
overwriting files, 7 4
owners in long formats (Is), 22, 29

p
:p command (less), 25
parent directories, 14

using .. shortcuts, 17, 21, 43
passwords, 30
pathnames, 15

absolute, 15
relative, 16

/pattern command (vi), 41
permissions

chmod command, setting with, 27
directory, 26
file access, 2 7
passwords, changing, 30

PET printers, 64
pg program, 24
Pico text editor, 36
PID (process ID) numbers, 115
Pine program, 94

address book, 100
configuring, 101, 103
reading email with, 96-98
sending email, 98-100

pipe (I) forl/0 redirection, 73, 76
pipes

printer commands, using with, 65
Pogue, David, x

136 I Index

pr program, 62
Practical Unix and Internet Security, 26
preferences (terminal), changing, 5D-55
printcap

editing, 68
loading into Netlnfo, 69

printers, 61-71
adding to Print Center, 69
Apple Talk-based, 61

Unix commands for, 63-65
commands for, 61-67
LPR, configuring, 67-71

process ID (PID) numbers, 115
processes

background, 114, 116
canceling, 118
checking, 116-118

programming the shell, 123
programs

cancelling execution of, 6
directly executable vs.

interpreted, 117
redirecting output of, 72, 76
running in background, 114

programs (commands)
apropos, 121
atlookup, 64
atprint, 61, 63-65
bitchx, 109
cat, 73-76
chmod (see chmod program)
chown, 30
cp (copy), 30, 42-45
CpMac, 45
date, 4, 74
echo, 3
enscript, 63
fg (see fg program)
find, 46
finger, 10
ftp, 10
grep, 77
groups, 29
interpreted, 117
less (see less program)
locate, 47
lpq, 65
lpr, 65
lprm, 67
Is (see Is program)

mail, 9, 72,94
man, 120
mkdir, 42
more, 24
mv, 46
MvMac, 46
ncftp, 86, 88
newsreader, 103
pg, 24
Pine (see Pine program)
pr, 62
ps, 116
pwd, 18,23
rep, 85
rlogin, 82
rm, 33,47
rmdir, 48
rsh, 82
scp, 85
sftp, 89
son, 116
ssh, 82
talk, 107
telnet, 82
touch, 19
tty, 116
vi (see vi text editor)
w, 10
whoami, 4
who (see who program)

prompt (ftp command), 87
prompt (shell), 3

changing, 57
customizing, 56

ps $$ command, getting shell name, 3
ps program, 116
put (ftp command), 86
pwd (print working directory)

command, 23
pwd (print working directory)

program, 18

Q
q command (less), 25
:q command (vi), 41
:q! command (vi), 41
88-Q, 6
question mark (?)

as a help Pine command, 101

as a wildcard, 34
queue (printers), 65, 66
quit command, 10

FTP (File Transfer Protocol), 87
quotes("")

filenames, using with, 8, 33
Lynx, entering URLs, 92

R
R command (Pine), 106
r (read) permission, 22, 27
-R (recursive) option, 23
rep (remote copy) program, 85
read (r) permission, 22, 27
recursive (-R) option, 23
redirection (110), 72
regular expressions, 77
relative pathnames, 16
remote files, 49

transferring, 84-90
remote logins, 81-84
Return command, (less), 25
rlogin (remote login) program, 82
rm program, 33, 47
rmdir program, 48
root directory, 14
rsh (remote shell) program, 82
RUBOUT key, 6
Run Time State (STAT), 116
Run time (TIME), 117

s
88-S, 6
S (Setup) command, 101
scp (secure copy) program, 85
scripts, x

shell, 123
security, 84
semicolon (;)

background commands, 115
writing multiple commands, 9

sendmail, 125
sent-mail folder, 100
Set/Unset (X) command, 102
Setup (S) command, 101
sftp program, 89
sh (Bourne) shell, 2
sharing files, 26

Index I 137

$SHELL command, getting shell
name, 3

Shell preferences, 51
shell programs, for configuring

environment, 55
shells, 2

aliases, 123
environment, customizing, 55-60
programming shell scripts, 123
prompt, 3
sending mail from, 94

Silverman, Richard, 84
sizes (bytes) in long formats, 22
slash(/)

absolute pathnames and, 16
finding patterns (vi), 39
IRC, using, 110
Is command and, 23
root directories and, 14
wildcards and, 35

sockets, 20
sort command, 78

-o option, 8
sort program, 116
spool directories, creating, 68
ssh (secure shell) program, 82
SSH: The Secure Shell, 84
standard input/output, 72
Startup Preferences, 50
STAT (Run Time State), 116
subdirectories, 14
superusers, logging in as, 3
suspend characters, 115
suspending jobs, 11
symbolic links, 20
syntax of command lines, 7

T
T (take address) Pine command, 100
Tab key, completing file and directory

names, 32
talk program, 107
tcsh shell, 2
telnet program, 82
Terminal name (TT), 116
terminal windows, 1

customizing sessions, 50-60
launching, 50-55

frozen, 11

138 I Index

multitasking in, 114
text

appending to files, 76
changing preferences, 52
inserting into files, 73
Lynx web browser, 91-93
searching files for, n
sorting lines of, 78

text editors, 36
time, 4
TIME (Run rime), 117
tmp directory, 14
total blocks in long formats (Is), 22
touch program, 19
tr command, translating carriage

return, 37
trees (directories), 14, 19
troubleshooting

command line, 5
logging out, 7
overwriting files by mistake, 7 4

TT (Terminal name), 116
tty program, 116
type in long formats (Is), 22

u
~U, erasing lines of input, 6
u (user) permission, 27
U C Berkeley, viii
Unix, viii

accessing other platforms, 49
Aqua carriage returns and, 37
commands, xi
customizing sessions, 50-60
documentation on, 120
environment, 1-7
Internet tools for, 91-113
using, 13-32
versions of, ix

Unix Power Tools, 56,60
Unix Programmer's Manual, 120
up-arrow key, recalling previous

commands, 5
U.S. Depanment of Defense Advanced

Research Projects Agency, viii
Usenet news, 103
user (u) permission, 27
usemames, 1

mailing to, 94

users
access modes for, 22
who program for, 74

users directory, 14, 17
Using csh and tcsh, 55, 60
usr directory, 14

v
v command (less), 25
vertical bar (I) for 1/0 redirection, 73,

76
vi text editor, 25, 36-41
vim text editor, 41

w
:w command (vi), 41
w program, 10
W (Whereis) Pine command, 101
w (write) permission, 22, 27
web browsers

FTP (File Transfer Protocol) and, 89
Lynx, 91, 91-93

where is (vi command), 39
Whereis (W) Pine command, 101

who am i program, 4
who program, 4, 7 4

options and, 8
wildcards, 28, 34

copying files, 43
less program and, 35
removing files and, 48

window preferences, 52
/word command (less), 25
?word command (less), 25
word processors, 36
working directories, 14, 18
:wq command (vi), 41
write (w) permission, 22, 27

X
x (execute) permission, 22, 27
X (Set/Unset) command, 102

z
Z Shell (zsh), 2
zsh (Z) shell, 2
ZZ command (vi), 41

Index I 139

About the Author
Dave Taylor is a popular writer, teacher, and speaker focused on business
and technology issues. He is the founder of The Internet Mall and
iTrack.com and has been involved with Unix and the Internet since 1980,
having created the popular Elm mail system. He's also been a Mac fan since
their original release, when he started out with a dirty beige Mac Plus.
Previous positions include being a research scientist at HP Laboratories and
senior reviews editor of Sun World magazine. He has contributed software to
the official 4.4 release of Berkeley Unix (BSD), and his programs are found
in all versions of Linux and other popular Unix variants.

jerry Peek is a longtime user of the Unix operating system. He has acted as
a Unix consultant, courseware developer, and instructor. Coupling his
knowledge of Unix with his technical writing skills makes Jerry the perfect
author to provide the beginning Unix user with a solid introduction to the
operating system.

Colophon
Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of Learning Unix for Mac OS X is an Alaskan mala­
mute. The Alaskan malamute is one of the oldest Arctic sled dogs. These
powerful dogs have muscular bodies, structured for strength and endur­
ance. They have broad heads with bulky muzzles and triangular ears, which
stand erect to signify alertness. Their thick coats are coarse and dark on the
outside, with soft, wooly undercoats.

Alaskan malamutes make excellent companions, as they are affectionate,
friendly, and loyal. They can be playful, but tend to become more reserved
as they mature. They are very intelligent, with eyes that reveal their curi­
osity and interest.

Linley Dolby was the production editor and copyeditor for Learning Unix
for Mac OS X. Emily Quill, Darren Kelly, and Claire Cloutier provided
quality control. Joe Wizda wrote the index.

Emma Colby designed the cover of this book, based on a series design by
Edie Freedman. The cover image is an illustration from the Illustrated
Natural History: Mammalia. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's lTC Garamond font.

David Futato designed the interior layout. This book was converted to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, jason
Mcintosh, Neil Walls, and Mike Sierra that uses Perl and XML technolo­
gies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed.
The illustrations that appear in the book were produced by Robert Romano
and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing. This colophon
was written by Linley Dolby.

Want To Know More
About Mac OS X?
The Apple Developer Connection offers convenient and
timely support for all your Mac OS X development needs.

Developer Programs
The Apple Developer Connection (ADC)
helps developers build, test, and distribute
software products for Mac OS X. ADC Pro­
grams provide direct, affordable access to
Mac OS X software, along with many other
products and services, including:

• Pre-release software seeds
• Apple hardware discounts
• Code-level technical support

Programs range in price from $0 (free) to
US$3500 and are available worldwide.

Developer Tools
All ADC Program members receive
free Mac OS X Developer Tools such as
Project Builder, Interface Builder, and
AppleScript Studio.

Getting Started Is Easy
The ADC web site offers a variety of
reference materials including in-depth
articles, tutorials, sample code, and
FAQs. You'll also find student developer
resources, open source projects, mailing
lists, and more. Our elec- tronic newslet­
ter keeps members notified with up-to­
the-minute information on new releases
and documentation.

Join today!

Visit http://developer.apple.com/
membership/

ti iAIDICI
Apple Developer Connection

Other Titles Available from O'Reilly
Macintosh Power Users

Mac OSX

..
Mac OS X: The Missing Manual
By David Pogue
1st Edition December 2001
596 pages, ISBN 0-596-00082-0

The fact that the Mac OS X
comes without a printed manual
is a real problem, since Mac OS
X is so different from the operat­

ing system that came before it. Now David Pogue,
the number one best-selling Macintosh author,
fills the gap with the definitive guide to Mac OS X.
His trademark wit and clarity brings to this new
software world the same sense of reassurance, sur­
prise, and delight that made bestsellers of his Mac
OS 9: The Missing Manual and iMovie 2:
The Missing Manual.

Mac OS X Pocket Reference
By Chuck Toporek
1st Edition May 2002
128 pages, ISBN 0-596-00346-3

This is your guide to unleashing
the power of Mac OS X. A per­
fect pocket-sized book that's easy
to take anywhere, the Mac OS X
Pocket Reference shows you how
to usc tools such the Finder and

the Dock, and includes an overview of the System
Preferences, the Terminal application, and the
Developer Tools. Also contained in this handy
book are quick references for creating special char­
acters, a listing of basic keyboard commands, and
many tips and tricks for working with Mac OS X.

REAlbasic: The Definitive Guide,
2nd Edition
By Matt Neuburg
2nd Edition September 2001
752 pages, ISBN 0-596-00177-0

Design astonishingly fast , fu ll­
fledged Mac applications with
REALbasic! Even if you're a

beginning programmer, this book will teach you
the essential concepts for programming every
aspect of REALbasic. Its a vital reference fo r the
expanding legion of developers who are discover­
ing the power and flexibility of REALbasic. Now
covers REALbasic 3, so you can generate your pro­
ject for Mac OS 8/9, Mac OS X, and Wtndows.

AppleScript in a Nutshell
By Bruce \.v. Perry
1st Edition june 2001
528 pages, ISBN 1-56592-841-5

AppleScript in a Nutshell is the
first complete reference to Apple­
Script, the popular programming
language that gives both power
users and sophisticated enter­

prise customers the important ability to automate
repetitive tasks and customize applications. Apple­
Script in a Nutshell is a high-end handbook at a
low-end price--an essential desktop reference that
puts the fu ll power of this user-friendly program­
ming language into every AppleScript user's hands.

Office X for Madntosh:
The Missing Manual
By Nan Barber, Tonya Engst &
David Reynolds
1st Edition]r1ly 2002
728 pages, ISBN 0-596-00332-3

This book applies the urbane and
readable Missing Manuals touch

to a winning topic: Microsoft Office X for Apples
stunning new operating system, Mac OS X. In typ­
ical Missing Manual style, targeted sidebars ensure
that the book's three sections impart business-level
details on Word, Excel, and the Palm-syncable
Entourage, without leaving beginners behind .
Indispensable reference for a growing user base.

O'REILLY*
To order : 800-998-9938 • order@oreilly.com • www.oreilly.com

Online editions of most O'Reilly titles are available by subscription at safari.oreilly.com
Also available at most retail and online bookstores.

Macintosh Developers

Learning Cocoa with Objective.(
By james Duncan Davidson &
Apple Computer, Inc.
2nd Edition September 2002 (est.)
384 pages (est.), ISBN 0-596-00301-3

Based on the Jaguar release of
Mac OS X 10.2, this new edition
of Learning Cocoa covers the lat­

est updates to the Cocoa frameworks, including
examples that use the Address Book and Universal
Access AP!s. Also included with this edition is a
handy quick reference card, charring Cocoa's Foun­
dation and AppKit frameworks, along with an
Appendix that includes a listing of resources essential
to any Cocoa developer-beginning or advanced.

Learning Carbon
By Apple Computer, Inc.
1st Edition May 2001
368 pages, ISBN 0-596-00161-4

Get up to speed quickly on creat­
ing Mac OS X applications with
Carbon. You'll learn the funda­
mentals and key concepts of Car­

bon programming as you design and build a
complete application under the book's guidance.
Written by insiders at Apple Computer, Learning
Carbon provides information you can't get any­
where else, giving you a head start in the Mac OS X
application development marker.

Learning Unix for the Mac OS X
By Dave Taylor & jerry Peek
1st Edition May 2002
160 pages, ISBN 0-596-00342-0

This concise introduction offers
just what readers need to know
for getting started with Unix
functions on Mac OS X. Mac
users have long been comfortable

with the easy-ro-use elegance of the Mac GUI, and
are loathe to change. With Mac OS X, they can con­
tinue using their preferred platform and explore the
powerful capabilities of Unix at the same rime.
Leami11g Unix for the Mac OS X tells readers how
to use the Terminal application, become functional
with the command interface, explore many Unix
applications, and-most important-how to take
advantage of the strengths of both interfaces.

Building Cocoa Applications:
A Step-by-Step Guide
By Simson Garfinkel &
Mike Mahoney
1st Edition May 2002
648 pages, ISBN 0-596-00235-1

Building Cocoa Applications is a
step-by-step guide to developing

applications for Apple's Mac OS X. It describes, in
an engaging tutorial fashion, how to build substan­
tial, object-oriented applications using Cocoa. The
primary audience for this book is C programmers
who want to learn quickly how to use Cocoa to
build significant Mac OS X applications. The book
takes the reader from basic Cocoa functions
through the most advanced and powerful facilities.

O'REILLY®
To order: 800-998-9938 • order@oreilly.com • www.oreilly.com

Online editions of most O'Reilly ti tles are available by subscription at safari.oreilly.com
Also available at most retail and online bookstores.

How to stay in touch with O'Reilly
1. Visit our award-winning web site

http://www. oreilly. com/

* "Top 100 Sites on the Web" -PC Magazine * CIO Magazine's Web Business 50 Awards

Our web site contains a library of comprehen­
sive product information (including book
excerpts and tables of contents), downloadable
software, background articles, interviews with
technology leaders, links to relevant sites, book
cover art, and more. File us in your bookmarks
or favorites!

2. Join our email mailing lists
Sign up to get email announcements of new
books and conferences, special offers, and
O'Reilly Network technology newsletters at:

http://www.elists.oreilly.com

Its easy to customize your free elists subscription
so you'll get exacdy the O'Reilly news you want.

3. Get examples from our books
To find example files for a book, go to:

http://www.oreilly.com/catalog

select the book, and follow the "Examples" link.

4. Work with us
Check out our web site for current employ­
ment opportunites:

http://jobs.oreilly.coml

S. Register your book
Register your book at:

http://register.oreilly.com

6. Contact us
O'Reilly & Associates, Inc.
1005 Gravenstein Hwy North
Sebastopol, CA 95472 USA
TEL: 707-827-7000 or 800-998-9938

(6am to 5pm PST)
FAX: 707-829-0104

order@oreilly.com
For answers to problems regarding your order
or our products. To place a book order online
visit:

http://www.oreilly.com/order _new/

catalog@oreilly.com
To request a copy of our latest catalog.

booktech@oreilly.com
For book content technical questions or cor­
rections.

corporate@oreilly.com
For educational, library, and corporate sales. ~

proposals@oreilly.com
To submit new book proposals to our editors
and product managers.

intemational@oreilly.com
For information about our international dis­
tributors or translation queries. For a list of
our distributors outside of North America
check out:

http:llinternational.oreilly.com!distributors.html

O'REILLY~
To order: 800-998-9938 • order@oreilly.com • www.oreilly.com

Online editions of most O'Reilly tides are available by subscription at safari.oreilly.com
Also available at most retail and online bookstores.

cintosh

O'REILLY®
earning Unix for Mac OS X

Now that your favorite operating system, Mac OS X, has Unix under
the hood, it's the perfect time for you to uncover its capabilities.
Learning Unix f or Mac OS X is designed to teach Unix basics to tradi­
tional Macintosh users. This book te lls you what to do when you're

ced with that empry conunand line.

:arn how to:

Launch and configure the Te rminal application

Cus[Omize your shell environment

Manage fi les and directories

Successfully print from the Unix conunand line

Edit and create fi les with the vi edito r

Perform remote logins

Access Internet functions

Understand pipes and filters

Use background processing

Send and receive mail

\s you're learning these concepts, you'll find
tll the common commands simply explained
with accompanying examples, exercises, and
)pportunities for experimentation. You might
ust find yourself turning to the Terminal
tpplication fo r greater efficiency on a partic­
Jiar task, the n immediately switching to the
sraphical interface when you need to utilize
its advantages. And with Mac OS X, you can
have the best of both worlds.

ti iAIDICI
Apple Developer Connection

Recommended Title

Apple Computer, Inc. boldly combined
open source technologies with its own
programming efforts to create Mac OS X,
one of the most versatile and stable oper­
ating systems now available. In the same
spirit, Apple has joined forces with O'Reilly &
Associates, Inc. to bring you an indispen­
sable collection of technical publications.
The ADC logo indicates that the book has
been technically reviewed by Apple engi­
neers and is recommended by the Apple
Developer Connection.

httpJ/www.apple.com/developer SCAN FRONT
OF BOOK

1~1111~ 6 36920 00342 7

Visit O'Reilly
on the Web at

www.oreilly.com

