
,

)pie
. E S S

Apple, AppleScript, AppleTalk, Color LaserWriter, ColorSync, FireWire, LocalTalk, Macintosh,
Mac, MacTCP, OpenDoc, Performa, PowerBook, PowerTalk, QuickTime, TrueType, and World­
Script are trademarks of Apple Compu~r, Inc., registered in the United States and other countries.

Apple Press, the Apple Press Signature, AOCE, Balloon Help, Cyberdog, Finder, Power Mac, and
QuickDraw are trademarks of Apple Computer, Inc.

Adobe™, Acrobatn.1, and PostScriptTM are trademarks of Adobe Systems Incorporated or its sub­
sidiaries and may be registered in certain jurisdictions.

AIX® is a registered trademark of IBM Corp. and is being used under license.

NuBusTM is a trademark of Texas Instruments.

Power PC™ is a trademark of International Business Machines Corporation, used under license
therefrom.

SOM, SOMobjects, and System Object Model are licensed trademarks of IBM Corporation.

UNIX® is a registered trademark of Novell, Inc. in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial capital letters or all capital
letters.

The author and publisher have taken care in the preparation of this book, but make no express or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Library of Congress Cataloging-in-Publication Data
Francis, Tony, 1956-

Mac OS 8 revealed I Tony Francis.
p. em.

Includes index.
ISBN 0-201-47955-9
1. Mac OS 8. 2. Operating systems (Computers)

QA76.76.063F76 1996
005.4'469--dc20

Copyright © 1996 Apple Computer, Inc.

I. Title.

Developers Press is a division of Addison-Wesley Publishing Company, Inc.

96-25119
CIP

All rights reserved. No part of this publication may he reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or oth­
erwise, without the prior written permission of the publisher. Printed in the United States of Amer­
ica. Published simultaneously in Canada.

Sponsoring Editor: Keith Wollman
Project Manager: Sarah Weaver
Cover design: Suzanne Heiser
Text design: Kim Arney
Set in 10 point Sabon by Tony Francis and Vicki Hochstedler

1 2 3 4 5 6 7 8 9 - MA - 0099989796
First printing, August 1996

Addison-Wesley books are available for bulk purchases by corporations, institutions, and other or­
ganizations. For more information please contact the Corporate, Government, and Special Sales
Department at (800) 238-9682.

Find A-W Developers Press on the World-Wide Web at:
http://www.aw.com/devpress/

•

Mac OS 8 Revealed

Tony Francis

Addison-Wesley Developers Press
Reading, Massachusetts • Menlo Park, Califo rnia • New York

Don Mills, Ontario • H arlow, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San J uan

Seoul • Milan • Mexico City • Taipei

To Muzzy and Sharon, for teaching me kindness,
and to Jeri Ann, for teaching me the telemark turn.

•

Content

List of Figures xi

Preface XV

Who Might Find This Book Helpful XV

How to Navigate This Book XVI

How to Navigate the Book CD-ROM XVIII

Cautions About a Changing Environment XX

Acknowledgments xxi

1 A Scenic Tour of the User's Environment 1

Major Points of Interest 2
Flexibility in the Computer Environment 3
An Easier-to-Use Platform 11
Increased System Performance 18

v

vi

Higher-Performing Versions of Macintosh Technologies 20
Summary 23

2 Orientation to the Mac OS 8 Platform IS
Key Terms and Concepts 26
Major Points of Interest 27
The Hardware 30
The Operating System 30
Application-Level Software 36
Summary 39

3 Address Spaces and Memory Protection 41

Key Terms and Concepts 42
Major Points of Interest 42
The Cooperative Program Address Space 43
Protected Address Spaces for Server Programs 45
Address Space Switching by the Microkernel 46
System-Wide and Shared Memory Areas 48
Additional Forms of Memory Protection so
Summary 52
Planning a Product for Mac OS 8 53

4 The Architecture of the Multitasking Mac 55

Key Terms and Concepts 56
Major Points of Interest 57
Processes and Tasks 59
Task Scheduling 61
Summary 70
Planning a Product for Mac OS 8 70

5 Multithreaded Programs 71
Key Terms and Concepts 72
Major Points of Interest 73
Threading 73
Interprocess Communication and Data Synchronization 80
Summary 85
Planning a Product for Mac OS 8 85

CoNTENTS vii

6 The Virtual Memory System 87
Key Terms and Concepts 88
Major Points of Interest 88
The Organization of Virtual Memory 91
The Backing Provider 93
Memory-Mapped Files 94
Scratch Files 95
Summary 95
Planning a Product for Mac OS 8 96

7 Dynamic Storage Allocation 97
Key Terms and Concepts 98
Major Points of Interest 99
Dynamic Storage-Allocation Service 100
The Memory Manager for System 7 Applications 104
Summary 106
Planning a Product for Mac OS 8 106

8 The Run-nme Environment 109
Key Terms and Concepts 110
Major Points of Interest 111
Fragments 114
Shared Libraries 115
Static Data Instantiation 119
Run-Time-Environment Support for System 7 Applications 121
Summary 125
Planning a Product for Mac OS 8 125

9 Software Extensibility 117
Key Terms and Concepts 128
Major Points of Interest 128
Extending Software with OpenDoc 130
Extending Software Through Shared Libraries 131
Extending Software Through the System Object Model 133
Extending Software with Server Programs 137
Extending Software with the Patch Manager 138
Summary 139
Planning a Product for Mac OS 8 140

viii CONTENTS

10 Files and File System Navigation 143
Key Terms and Concepts 144
Major Points of Interest 145
The Organization of Information on Storage Devices 149
The Programming Interface to the File System 151
Volume Formats and Volume Format Plug-Ins 154
The File System and the Virtual Memory System 155
The Navigation Services 156
Summary 158
Planning a Product for Mac OS 8 158

11 Architecture of the 1/0 System 161
Key Terms and Concepts 162
Major Points of Interest 162
110 System Reliability Features 165
1/0 Families 166
System 7 Compatibility Issues 172
Summary 174
Planning a Product for Mac OS 8 174

12 Human Interface Toolbox 177
Key Terms and Concepts 178
Major Points of Interest 179
Themes 182
Workspaces 183
Human Interface Objects 184
Imaging Objects 200
Programming Characteristics of the Toolbox 201
Summary 207
Planning a Product for Mac OS 8 208

13 Assistance Services 211
Key Terms and Concepts 212
Major Points of Interest 213
Expert Assistance 215
The Architecture of the Expert Assistance Services 217
Help Information Services 221
Summary 227
Planning a Product for Mac OS 8 228

CoNTENTS ix

14 Events 229
Key Terms and Concepts 230
Major Points of Interest 230
Event Handling 232
Scriptability 237
Apple Events and the Human Interface Toolbox 237
Event Handling for One or More Tasks 238
Summary 242
Planning a Product for Mac OS 8 243

15 Landmark Imaging and Multimedia Technologies 245
Key Terms and Concepts 246
Major Points of Interest 246
Taking Advantage of Mac OS 8 Capabilities 247
Integrated Imaging Systems 250
QuickTime Multimedia 261
A History of Mac OS Imaging and Multimedia Features 265
Summary 266
Planning a Product for Mac OS 8 267

16 Landmark Networking Technologies 269
Key Terms and Concepts 270
Major Points of Interest 270
Cyberdog 272
QuickDraw 3D and QuickTime Multimedia on the Internet 274
Open Transport Network Architecture 275
A History of Mac OS Networking Features 277
Summary 278
Planning a Product for Mac OS 8 279

Glossary 281

Index 323

•

List of Fi

P.1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
2.1
2.2

2.3
2.4

A screen shot from Mac OS 8, with an accompanying
CD-ROM movie
A simple workspace for a novice user
A workspace for an intermediate user
A workspace for an advanced user
The default theme
A futuristic-looking theme
A theme for children
Common Hardware Reference Platform (CHRP) flexibility
A setup expert helping the user configure a computer
A tip for using an application more efficiently
Dragging a file onto a folder icon
Navigating folders by dragging a file to another icon
Saving the contents of a Find window
Document-related information for opening fi les
Pop-up window title bars
An opened pop-up window
Performing multiple operations concurrently
Major components of the Mac OS 8 platform
Reentrant and cooperative services on the modular
Mac OS 8 platform
The microkernel and other modularized reentrant services
Interactions involving a server program and a cooperative
program

XV Ill

4
4
5
7
7
8
9

12
13
14
14
15
16
17
17
19
28

29
32

39

xi

xii LIST OF FIGURES

3.1 Cooperative programs sharing an address space 44
3.i Server programs protected by separate address spaces 46
3.3 Switching between address spaces 47
3.4 System-wide memory areas 49
3.5 A memory area with guard pages 52
4.1 Multitasked operations in Mac OS 8 57
4.2 Memory areas for a Mac OS 8 process with one task 60
4.3 Memory areas for a Mac OS 8 process with two tasks 61
4.4 A task blocking on a synchronous UO operation 62
4.5 Preemptive task scheduling by the microkernel 64
4.6 Execution time divided by time slices for tasks with

equal priority 65
4.7 Making all calls to cooperative services from the main

task of a cooperative program 67
4.8 Cooperative scheduling of main tasks for cooperative

programs 68
4.9 Preemptively scheduled tasks for a cooperative

program and a server program 69
5.1 Tasks in two separate processes 74
5.2 Two tasks within a cooperative program 77
5.3 A task with cooperatively scheduled threads 78
6.1 The association of disk files, memory areas, and physical

memory 89
6.2 The organization of memory in an address space 91
6.3 The mapping between memory areas and backing store 92
8.1 The creation of a code fragment at generation time 112
8.2 Preparing an import library for use by a client code

fragment at launch time 116
8.3 Separate instantiations of the data section for an

import library 119
8.4 A single copy of the data section for an import library 120
8.5 Access to system services in System 7 122
8.6 Access to system services in Mac OS 8 123
8.7 Mac OS 8 support for A-trap-based software 124
10.1 Standard navigation browser and the general

information panel 146
10.2 Application programming interfaces for file management 147
10.3 Operating system components of the file system 148
10.4 The file system properties and objects 150
11.1 Interactions between an application saving a file and

several UO families 164
11.2 A client making a request for an UO service 169
12.1 Typical human interface elements in the default theme 180
12.2 Typical human interface objects displayed in an alternate

theme 181

LIST OF FIGURES Xiii

12.3 The top level of the inheritance hierarchy for the human
interface objects class library · 185

12.4 Panel subclasses 186
12.5 A standard document window 186
12.6 Layering of floating windows and document windows 188
12.7 A modal window in front of all other windows in an

application layer 190
12.8 A dialog box created from a window and multiple

embedded panels 191
12.9 Example of the containment hierarchy for a dialog box 192
12.10 A modeless dialog box 193
12.11 A movable modal dialog box 193
12.12 A movable alert box 194
12.13 A nonmovable alert box 194
12.14 Examples of controls derived from subclasses of the

controls class 19 5
12.15 Two menus created from the standard menu panel class 197
12.16 A tear-off menu 198
12.17 The inheritance hierarchy for the imaging objects class

library 201
13.1 The Help menu 214
13.2 An experts access panel 215
13.3 An interview panel from an interview sequence 216
13.4 The last interview panel in an interview sequence 217
13.5 A tip for applying text styles 222
13.6 An Apple Guide access window 223
13.7 An Apple Guide presentation panel 224
13.8 Creating guide files 225
13.9 A help balloon 227
14.1 An Apple event dispatcher calling a handler from a

cooperative program 234
14.2 One task, one dispatcher for a cooperative program 239
14.3 Multiple tasks, multiple dispatchers 240
14.4 Multiple tasks, one dispatcher 241
15.1 3D data saved in the Scrapbook for placement in standard

documents 252
15.2 Color matching across devices 255
15.3 An internationalized application displaying text in multiple

writing systems 260
15.4 Two views of the same panoramic scene 263
15.5 Colleagues collaborating on a document with QuickTime

Conferencing 264
16.1 Using a Cyberdog part to open a web page from within

a document 2 72
16.2 A QuickDraw 3D image manipulated from the Netscape

browser 274

Developers are indi­
viduals or organiza­
tions that create
software or hardvvare
products for commer­
cial, in-house, or per­
sonal use. In this
book, the term users
refers to the people
who use the prod­
ucts created by
developers.

•

Preface

You'll discover a new computing landscape when you encounter Mac OS 8,
the next major release of Apple Computer's operating system-formerly code
named Copland. This guide wi ll acquaint you with the technical geography of
Mac OS 8: its architecture, history, and special points of interest.

WHO MIGHT FIND THIS BOOK HELPFUL

This book offers a technical tour of Mac OS 8 for computer professionals,
such as programmers, product managers, engineering managers, systems inte­
grators, information system professionals, and instructional designers. Techni­
cally oriented computer enthusiasts might also enjoy this tour.

This book illustrates many Mac OS 8 user features and describes many of
the system's user benefits but does so from a developer's perspective-that is,
this book describes how these features and benefits might be implemented in
software and hardware products. If you' re a general computer user, you
should look elsewhere for information about Mac OS 8 that might be more
relevant to your needs; user-oriented books will become widely available
about the time Mac OS 8 begins shipping to customers.

Mac OS 8 Revealed provides an overview of the design and architecture of
Mac OS 8 and outlines how these affect the design and architecture of soft­
ware and hardware products. This book doesn't describe specific program-

XV

XVI

Page margins con­
tain definitions of
terms that aren't new
or unique to
MacOSS.

PREFACE

ming interfaces for software engineers or show schematic drawings for
hardware engineers. But by describing the technical breadth of Mac OS 8, this
book will familiarize you with Mac OS 8 so that you can begin exploring its
technical details more easily.

How TO NAVIGATE THIS BooK

This book is organized to assist readers with different needs and backgrounds.

The Whirlwind Tour
If you have time for only the briefest excursion into Mac OS 8, take a look at
the first two chapters. They present a very quick tour of the Mac OS 8 envi­
ronment and its capabilities.

~ Chapter 1 presents highlights of the Mac OS 8 platform from the user's
perspective.

~ Chapter 2 presents a high-level tour of the Mac OS 8 platform from the
developer's perspective.

The remaining chapters of this book elaborate on the material introduced in
these two chapters.

Terminology
You might encounter some unfamiliar terminology as you read about
Mac OS 8. This book uses several approaches to familiarize you with
Mac OS 8 terminology.

Look at the beginning of every chapter for the section "Key Terms and
Concepts" to find definitions of principal words and brief explanations of
major topics. Here and elsewhere, words appear in boldface when first
defined. Words appearing in boldface are also listed in the glossary at the end
of the book.

Many general computer science terms are left undefined in the main text
but are defined in the page margins. Thus, you can easily skip over the defini­
tions of terms with which you are already familiar. Occasionally, definitions
presented in earlier chapters are repeated in the margins to refresh your
memory.

How TO NAVIGATE THIS BooK XVII

Side Trips and Shortcuts

This book makes it easy for you to find the fastest route to the information
you want. Look for signposts labeled "Mac OS Heritage" and "Compatibility
Notes" in the left margins. These signposts mark excursions into information
useful to some readers, but not to others.

Look at "Mac OS Heritage" boxes like the one below for discussions of
earlier versions of Mac OS technologies.

~ Rl *s HERITAGE
~~~ 

"'> Look in These Sections for Historical Background Information 

If you have little experience with the Mac OS, you'll find sections like these useful. An under­
standing of Mac OS history illuminates many of the design decisions behind Mac OS 8. 
These sections also describe much of what hasn't changed in the Mac OS between 
System 7.5 and Mac OS 8. Experienced Mac developers, however, may want to skip over 
these historical discussions. Their titles can help you decide whether the information is rele­
vant to you. 

• If you've already developed a product for the Mac OS, look at "Compati­
bility Notes" sections like the one below to learn whether or how you need to 
revise your product to make it run compatibly in Mac OS 8. 

g~nwuwHom 
Look Here for Information About Mac OS 8 Support for System 7 Software 

Most applications written for System 7 of the Mac OS run compatibly in Mac OS 8 with little 
or no revision. If you've developed a System 7 product, you'll want to know how and to 
what degree Mac OS 8 supports software developed for System 7. Sections like these will 
inform you. 

These sections don't describe new Mac OS 8 features and capabilities that developers 
should consider adopting. So if you're planning to create a new product that takes full 
advantage of Mac OS 8 features, or if you haven't developed a System 7 product, you'll 
probably want to skip these sections. • If you're thinking about creating a product for Mac OS 8, examine the 
chapter-ending sections titled "Planning a Product for Mac OS 8" for devel­
opment approaches you should consider taking. 



XVIII 

FIGURE P.1 

PREFACE 

A screen shot from Mac OS 8, with an accompanying CD-ROM movie 

II 
P Theme 

Fll 
r Theme 

D Green • IIHrrflt to>rt 

~-~R~e~d····· 0Pink 
0Biue 
D Gray 

- Black & White 
D Other 

I Set Other Calor . .. J 

1 

:rt. 
, Truh 

~ ~~ ~S HERJTAGE 
~~ 

<?) 
Mac OS Release Hames 

The Macintosh operating system preceding Mac OS 8 is cal led System 7. Since the release of 
System 7, Apple Computer has embarked on an operating system licensing strategy that 
emphasizes the brand name "Mac OS" to distinguish the operating system from the com­
pany's line of Macintosh computers and the Mac 05-compatible computers available from 
other manufacturers. For example, Mac OS 8 is supported by Macintosh computers available 
from Apple Computer and by Common Hardware Reference Platfonn-compliant computers 
available from other computer manufacturers such as Motorola and IBM. 

How TO NAVIGATE THE BOOK CD-ROM 

This tour book is intended to introduce you to Mac OS 8's many features so 
that you can choose where and how to begin to explore them personally. To 
that end, this book includes dozens of screen shots that illustrate Mac OS 8 
capabilities. 

For example, the screen shot in the figure above illustrates one of multiple 
sets of coordinated designs that users can choose to help personalize the 



How TO NAVIGATE THE BooK CD-ROM XIX 

appearance of their systems. This figure shows elements from the operating 
system's default design. Screen shots like these give you picture-postcard 
glimpses of Mac OS 8 capabilities. 

The CD-ROM that accompanies this book provides movie versions of 
many of these screen shots, thereby offering movie travelogs as well as picture 
postcards of the Mac OS 8 environment. For example, the CD-ROM movie 
version of the figure on the preceding page lets you examine elements of sev­
eral human interface appearances under design at Apple. Both the CD-ROM 
movie and the screen shot appear onscreen in color if you have a color moni­
tor, giving you a more vivid tour than figures in the book provide. 

Movies of Mac OS 8 features are identified by a film strip in the left mar­
gins of figures, like that shown on the preceding page. It's easy to find and run 
these movies on the CD-ROM. You'll need a Mac OS-compatible computer 
running System 7.5 and the QuickTime system extension. If QuickTime's not 
currently running on your System 7.5 computer, open the Extensions Manager 
control panel, turn on the QuickTime extension, and restart your computer. 

Then, load the CD-ROM into your drive. If you don't already have Adobe 
Acrobat Reader 2.1 installed on your system, follow the instructions on the 
CD-ROM for installing Acrobat Reader 2.1, which is included on the disk. 
Then open the document titled "Mac OS 8 Revealed on CD." This file is an 
Acrobat version of the printed book. Every page from the printed book is rep­
resented onscreen in the electronic version of the book. To run an animated 
illustration, simply go to the page in the electronic book that contains a screen 
shot marked by the film strip and click the mouse button with the cursor any­
where on the figure. 

These movies are entirely self-running; you don't need to start up any other 
software. When a movie finishes, it disappears from your screen, returning 
you to the page in the book containing the screen shot. 

The electronic version of the book is intended to help you locate and start 
these movies. The text surrounding each movie provides an explanation of­
and a context for-the capabilities demonstrated in the CD-ROM movie. 
However, if you're too impatient to use the electronic book as a navigation 
tool, you'll also find the movies in the folder titled "Mac OS 8 Demos" on the 
CD-ROM, where filenames match the figure numbers from the book. You can 
double-dick any of these files to launch a movie. 

Also note that directly launching a movie by double-clicking its icon 
requires only 2 megabytes (MB) of available physical memory, whereas using 
the CD-ROM version of the book to locate and start movies requires about 
5MB. Directly launching movies doesn't require you to install Acrobat Reader 
2.1. So if your computer is low on physical memory, or if you don't install 
Acrobat Reader 2.1, you may still view the demos even without using the elec­
tronic version of the book as your navigation tool. 

Movie demonstrations of features introduced with Mac OS 8 appear in 
Chapter 1. For existing System 7 technologies that have been refined and 



XX PREFACE 

integrated into Mac OS 8 (for instance, QuickTime Conferencing, Quick­
Draw 3D, and Cyberdog), you'll find movie demonstrations in Chapters 15 
and 16. 

CAUTIONS ABOUT A CHANGING ENVIRONMENT 

Every effort-including close technical reviews by dozens of Apple Com­
puter's key engineers-has been made to ensure that this book accurately 
describes Mac OS 8 at the moment this book goes into production. However, 
Mac OS 8 is still under development. Much can and will change between the 
publication of this book and the release of Mac OS 8 to customers. 

At the time this book went to press, Apple Computer was preparing to send 
early versions of Mac OS 8 and its preliminary technical documentation to 
thousands of development partners. Apple Computer will almost certainly 
modify Mac OS 8 in response to feedback it receives from these developers. 
Even the look and feel of Mac OS 8 as illustrated in this book and CD-ROM 
is based on various prototype designs that are subject to change. 

In other words, you shouldn't depend on Mac OS 8 capabilities shipping 
exactly as described in this book or appearing exactly as illustrated. On the 
other hand, Apple Computer is eager to help developers create early Mac OS 8 
products that might, in turn, serve to refine the shipping release of the operating 
system. If you begin development of a Mac OS 8 product, your own efforts 
might help shape the operating system for the benefit of your customers. 

Apple is making prerelease versions of Mac OS 8 available to all members 
of the Macintosh Associates, Macintosh Associates Plus, and Macintosh Part­
ners developer programs. If you're interested in joining these programs, visit 
the World Wide Web page at http://dev.info.apple.com for information. The 
home page for Mac OS 8, located at http://www.macos.apple.com/macos8, 
contains additional information about the operating system that developers 
and users may find valuable. 



• • • • • • • • • • • • • • • • • • • • • • • 

Acknowl 

I'm grateful to a large number of people at Apple Computer for taking time 
from their tight schedules to assist me with this book. Enthusiastically 
explaining Mac OS 8 technology and carefully reviewing drafts of this book, 
the software engineers were a pleasure to work with. Alan Lillich, Holly 
Knight, Jeff Cobb, and Russell Williams in particular spent a great deal of 
time patiently explaining the intricacies of core operating system services. 
They each offered valuable feedback on drafts of various chapters, and Jeff 
Cobb graciously examined every chapter. Jeff's comments especially improved 
the presentation of information from chapter to chapter. 

A new operating system is a huge and complex software project, and I'm 
indebted to a host of other engineers working on portions of Mac OS 8. Bar­
ton House and David Harrison tutored me on the operating system's memory 
architecture. Deeje Cooley and Arno Gourdol teamed up to explain the Assis­
tance Services. Dave Heller helped me with the file system. Chris Linn 
explained the integration of OpenDoc and Mac OS 8. Tom Dowdy explained 
the integration of Mac OS 8, QuickDraw GX, and QuickDraw, while Pablo 
Fernicola helped me with QuickDraw 3D. In addition, these engineers took 
time to carefully review drafts of various chapters. 

I imposed myself on even more engineers, and they also responded kindly. 
Mark Day offered valuable comments on nearly every chapter. Brian McGhie, 
Winston Hendrickson, and John Iarocci reviewed various chapters and 
offered helpful feedback. As the deadline for this book approached, Richard 
Ford, Glenn Fisher, and Will Stein dropped what they were doing to help me 
with the last two chapters. 

As the technical lead for Mac OS 8, Wayne Meretsky had a tremendous 
influence on this book. Most saliently, Wayne's architectural design decisions 
became topics for much of the book. Moreover, Wayne enlisted engineering 
support for this endeavor since its inception, and he was instrumental in driv-

xxi 



XXII AckNOWLEDGMENTS 

ing the resolution of a host of nomenclature issues. Wayne also took valuable 
time out of his hectic schedule to explain topics ranging from operating sys­
tem concepts to Mac OS 8 implementation details. 

Very helpful, too, were the technology evangelists, who offered their 
insights into how developers might best use Mac OS 8 capabilities. Adam 
Samuels, Alan Samuel, Bob Selzler, Garry Hornbuckle, Peter Lowe, Rick Car­
michael, and Vito Salvaggio each had a hand in improving this book, and I'm 
grateful for their contributions. Adam and Alan also provided me with the 
demos that appear on the CD-ROM with this book. 

The technical publications staff responsible for producing the Inside Mac­
intosh book series shared their talents and gave generously of their time. 
Antonio Padial did an extraordinary job editing this book, and he has my 
deep gratitude. I also owe a great deal to Sean Cotter, who provided needed 
advice, encouragement, and editorial assistance throughout this entire 
endeavor. I based most of Chapter 12 and Chapter 14 on the excellent seed 
documentation that Sean has prepared for developers. 

In addition, Dee Eduardo wrote superb preliminary documentation that I 
relied upon in preparing Chapter 11. Her reviews of that chapter, as well her 
ongoing help with the glossary, were very helpful. Sanborn Hodgkins offered 
helpful ideas about presenting information in Chapter 10. Greg Williams, 
Jeanne Woodward, Judy Melanson, Laurel Rezeau, Patria Brown, and Paul 
Black also offered keen suggestions that dramatically improved the quality of 
this book. 

Lisa Hymel prepared the illustrations. I greatly appreciated her enthusiasm 
and flexibility as much as her superb work. As always, it was a pleasure to 
work with Anne Szabla, whose excellent research provided the basis for much 
of the information in Chapters 15 and 16. 

Lorraine Aochi, editor-in-chief of Apple Press, and Ken Bereskin, chief 
evangelist for Mac OS 8, were champions throughout. Not only did they pro­
vide valuable suggestions for improving the book, but Lorraine and Ken also 
ensured that I received the help necessary to write it. I'm indebted to Lorraine, 
Ken, and Keith Wollman, my editor at Addison-Wesley, for the support and 
encouragement that made this book possible. 

The largest share of my gratitude goes to Trish Eastman and Sharon Ever­
son, longtime, esteemed colleagues of mine at Apple. Trish, writing manager 
for Inside Macintosh, and Sharon, a lead writer for the series, were generous 
with assistance, rich with suggestions, tireless in support, and flowing with 
encouragement. I consider it my great fortune to have had their assistance and 
collaboration on this project. 



• • • • • • • • • • • • • • • • • • • • • • • 

A Scenic 
of the U 
Environ 

This chapter highlights the user experience of the Mac OS 8 platform. In par­
ticular, this brief tour offers an early look at Apple Computer's redesigned 
human interface and a quick peek at its flexible new operating system. Taking 
a tour from the user's perspective is a valuable way for computer professionals 
to become familiar with Mac OS 8, as the user experience is usually the start­
ing point for product design. 

Many of the advantages supplied by the Mac OS 8 platform-advantages 
such as its high-performance UO system, its efficient use of physical memory 
and CPU time, its system reliability features, and the tight integration of its 
operating system features-are difficult to represent merely by showing the 
system's human interface features. H owever, this chapter introduces many key 
user features and the key operating system capabilities that support these fea­
tures. 

The screen shots that appear in this chapter help to show Mac OS 8 capa­
bilities, but illustrative movies are supplied on the CD-ROM version of this 
chapter. If you haven't a lready done so, read "How to Navigate the Book CD­
ROM" in the preface for information about using the CD-ROM version of 
this book, then load the CD-ROM on your Mac OS-compatible computer 
and join the tour. 

1 



CHAPTER 1 ~ A SCEH1c ToUR OF THE UsER's ENviRONMENT 

MAJOR POINTS OF INTEREST 

Mac OS 8 offers a wealth of features and capabilities to users and developers. 
This chapter presents just a few of the operating system's most visible innova­
tions-in particular, this chapter shows how Mac OS 8 supplies users with a 
flexible, easy-to-use, and productive computer environment. 

As you'll see in this chapter, Mac OS 8 allows users to scale its features 
flexibly according to differing needs and experience levels, even when several 
users share the same computer. After choosing environments offering desired 
feature sets, users can further personalize the way their computers look. 

By adhering to the Common Hardware Reference Platform (CHRP) archi­
tecture, the operating system also gives users the flexibility of choosing the 
right computer for their needs from models produced by various computer 
manufacturers. 

Mac OS 8 provides new features that significantly improve a human inter­
face historically noted for its ease of use. For example, small programs known 
as experts perform as much automation as possible while assisting users in 
performing otherwise complex or difficult-to-remember tasks. The operating 
system even recognizes when users repeatedly perform operations inefficiently; 
the system then informs users of useful shortcuts. Mac OS 8 also makes it 
much easier for users to organize and find information on their own systems 
and on network systems through new capabilities for directly manipulating 
onscreen information and through relational searches of document contents. 

Mac OS 8 attains new levels of raw computing performance through its 
optimized use of the PowerPC microprocessor architecture, its preemptively 
multitasked scheduling of CPU use, its efficient use of physical memory, and 
its fully reentrant 110 system. These capabilities in turn increase the perfor­
mance of traditional Macintosh strengths in such areas as graphics, multime­
dia, and networking and communications. And so that users can continue 
using their favorite System 7 applications, Mac OS 8 provides backward 
application compatibility. 

There's another point you might discover by viewing the demonstration 
movies on the CD-ROM: Mac OS 8, like previous versions of the Mac OS, 
makes computers more fun to use, too. 



FLEXIBILITY IH THE COMPUTER EHYIROHMEHT 3 

FLEXIBILITY IN THE COMPUTER ENVIRONMENT 

To help accommodate the widely ranging and ever-changing demands that 
users make of their computers, Apple has built a significant degree of flexibil­
ity into Mac OS 8. For example, users can 

...,. scale Mac OS 8 features according to differing needs and experience 
levels 

.... personalize the Mac OS 8 human interface to better suit individual 
tastes 

.... run Mac OS 8 on a wide variety of industry-standard, Common Hard­
ware Reference Platform computers available from multiple manufac­
turers 

...,. rely on one operating system that supports their native writing systems 

...,. continue running their existing System 7 applications even as they begin 
adopting applications that incorporate new Mac OS 8 capabilities 

A Scalable User Interface 

New features alone don't make a computer more useful. Instead, by their 
sheer number and complexity, more features often overwhelm users. However, 
as users become more proficient with-and more demanding of-their com­
puters, they require a system that is as feature-rich as possible. 

Mac OS 8 accommodates a wide range of users, from novice to expert, by 
offering a scalable user interface that allows users to set its degree of complex­
ity. For example, a beginning computer user can choose a scaled-down work­
space consisting of a few simple features and a small number of applications, 
while an advanced user can choose a more complex workspace with all of the 
system's features and with many highly specialized applications. 

Users can set Mac OS 8 to present only basic commands, keeping the com­
puting workspace as simple as possible. Figure 1.1 illustrates a workspace 
appropriate for a beginning user. The user launches applications by using the 
mouse to click simple buttons onscreen. If the user is a child, an adult can 
limit access to important data. Notice that the Trash icon is missing from Fig­
ure 1.1-a novice user cannot inadvertently delete files from this system. 

Intermediate users can choose to add features to their workspaces, as in 
Figure 1.2. In this workspace, the user can open and remove folders and files 
that are inaccessible in the novice workspace pictured in Figure 1.1. More 
complex system configuration commands are available to the intermediate 
user as well. For example, the intermediate user can change various system 
settings. 



4 CHAPTER 1 .... A 5CEMIC TOUR OF THE USER'S EI'MROMMEMT 

FIGURE 1.1 A simple workspace for a novice user 

B) ~ 
Clvts'w'orks SimpltTtxt 

~ 
Ouiclc.., Oocurntnts 

FIGURE 1.2 A workspace for an intermediate user 



FIGURE 1.3 

FLEXIBIUTY IH THE COMPUTER EtMROHMEHT 5 

A workspace for an advanced user 

Figure 1.3 shows a workspace for an advanced user. An advanced user can 
enable all system commands and take advantage of the full range of power 
available with advanced Mac OS 8 features. 

The CD-ROM animated version of Figure 1.3 demonstrates how users can 
set up their Mac OS 8 workspace according to their needs and skill levels. The 
experienced user has access to all features of the system. Many of these fea­
tures are filtered out of the workspace for a novice user who shares that sys­
tem, thereby preventing the novice user from being distracted or overwhelmed 
by an undesired level of complexity. Software developers can add scalability to 
their own products, too. For example, a page-layout program might offer dif­
ferent sets of features appropriate to various skill levels-a novice user might 
see only a basic set of commands and page-layout templates for creating daily 
restaurant menus or simple school newsletters, whereas an advanced user 
might see a full range of commands appropriate for large-scale, professional 
publishing jobs. This flexibility is designed to help beginning users become 
competent at a basic skill level before learning intermediate features and then 
progressing comfortably to more advanced features. 

The CD-ROM movie version of Figure 1.3 also illustrates how several 
users can share a computer, with each user maintaining a distinct workspace 
on the computer. A large proportion of Mac 05-compatible computers are 
shared by multiple users. Adults might use a home computer to manage 
finances, catch up on work from the office, and send e-mail, whereas children 
might use the same computer for homework and play. In a business setting, 
one high-end Mac workstation might serve as a video production system for 



6 CHAPTER 1 .... A ScENIC TOUR OF THE USER'S ENVIRONMENT 

an entire work group. User workspaces allow several people sharing a com­
puter to configure it to suit individual tastes, needs, and skill levels. Users can 
change workspaces without restarting the computer. A workspace encom­
passes such preferences as 

...,. the user's desired level of complexity 

.... access by others to the user's files and folders 

...,. which programs automatically start up when the user begins using the 
system and which ones shut down when the user finishes 

...,. network settings, such as e-mail account names and bookmarks to 
World Wide Web sites 

...,. a password to protect access to the user's workspace 

...,. application preferences 

...,. the overall design and appearance of the Mac OS 8 environment, as 
personalized by the user 

Personalized Workspaces 
After choosing a workspace with the desired level of complexity, a user can 
personalize the way the system looks and sounds. Mac OS 8 supplies multiple 
sets of coordinated designs that affect the appearance of windows, menus, 
fonts, controls, and other onscreen elements. From among these design sets, 
called themes, a user can choose one that suits the person's mood and taste. 
Even after choosing a theme, the user can further personalize it by altering 
such details as the background pattern (also known as the desktop pattern), 
the screen saver and other desktop animations, the highlight color for selected 
text, and the system font appearing in menus, dialog boxes, window titles, 
and the like. 

Figure 1.4 illustrates the default theme permanently built into Mac OS 8. 
This theme is an update of the traditional Mac OS appearance. Users select 
settings in the Appearance control panel, shown in this figure, to choose 
themes and to customize the details within a theme. 

Mac OS 8 supplies as standard several additional themes as well. (For test­
ing, support, and documentation purposes, developers can rely on the default 
theme, illustrated in Figure 1.4, to be available on every system.) Figure 1.5 
shows how the Appearance control panel and the system look after the user 
chooses a different theme. Theme changes take effect immediately; the user 
doesn't have to restart the computer. 

Themes can reflect any number of moods. Figure 1.6 shows a whimsical 
design for children. Each particular theme incorporates matching textures, 
colors, sounds, and three-dimensional effects. In future releases of Mac OS 8, 
developers will be able to create additional themes for users to install, keeping 
the user's interaction with the system fresh and interesting. 



FLEXJBIUTY IN THE COMPUTER ENVIRONMENT 7 

FIGURE 1.4 The default theme 

FUe Edit VIew Spedol 

jU---- I 
Theme: 

set tings r~ I Highlight Color 

, 

D Green . 
l:l 

Mol Appllcot 

- R~d D Pink 
D Blue 

6l 
Alison 

0Gray 

- Black & Whit~ 
D Oth~r . II 

P Theme 

frl 
Bon 

r-
F Theme 

I set Other Color ... J 

lu.e0erau11s 

fl 
l u.,.Yr ittf' f Truh 

FIGURE 1.5 A futuristic-looking theme 



8 

FIGURE 1.6 

For information about 
how the operating 
system implements 
themes, see 
Chapter 12. 

CHAPTER 1 ~ A SCEt-IIC TOUR OF THE USER'S EHVIROHMEHT 

A theme for children 

~ 41tems 296.4 MB In disk 

II 
Putt-Putt 

The CD-ROM animated version of Figure 1.6 also illustrates how 
Mac OS 8 incorporates themes into the human interface elements of applica­
tions, thereby coordinating the appearance of all applications across the sys­
tem, no matter w hat theme the user has chosen. Developers don't need to 
bother with the details of these themes. Instead, developers need deal only 
with abstractions of the system appearance. At execution time, Mac OS 8 
draws the elements constituting a theme. 

Hardware Flexibility 

Mac OS 8 runs on the Common Hardwa re Reference Platform (CHRP, also 
known as the PowerPC Platform), an industry standard architecture that any 
manufacturer can use to build Mac OS-compatible computers. Until 1995, 
customers who wanted to run the Mac OS could purchase computers only 
from Apple Computer. Although several computer manufacturers have 
already begun producing computers compatible with the Mac OS, the CHRP 
makes it much easier for them and other manufacturers to produce Mac OS­
compatible computers. 

CHRP-compliant computers can also run 32-bit operating systems from 
vendors other than Apple Computer. Figure 1.7 illustrates some of the com­
puter manufacturers who intend to produce CHRP-compliant computers, and 
several of the operating systems being developed to run on this platform. This 
wide range of choice gives computer buyers the flexibility to purchase various 
systems according to thei r needs. Within a company, for example, the graphics 



FLEXIBILITY IN THE COMPUTER ENviRONMENT 9 

FIGURE 1.7 Common Hardware Reference Platform (CHRP) flexibility 

Operating 

8 8 8 8 8 systems 

T 

Hardware B G I Mororolal B I OfueB ... I 

A bus is a path along 
which information is 
transmitted electroni­
cally within a com­
puter. Buses connect 
computer devices, 
such as processors, 
expansion cards, 
memory, and periph­
eral devices. 

design department can use IBM computers to run applications written for 
Mac OS 8 while the human resources department can use Apple computers to 
run applications written for IBM's AIX operating system. 

Because various vendors make CHRP-compliant computers, users have a 
wide choice about the most appropriate computer for running Mac OS 8. For 
example, a computer from one manufacturer might have features well suited 
for a school environment, whereas a model from another manufacturer might 
have the features and device support suitable for a video production environ­
ment. By specifying standards for many common computer components, 
CHRP helps to reduce the cost to purchasers of either system. 

CHRP offers a hardware vendor the opportunity for a higher return on 
investment. By developing a single system that runs multiple operating sys­
tems and, hence, a greater number of applications, the vendor can reach a 
greater number of markets. CHRP provides specifications for input/output 
(1/0) interfaces, bus standards, and other system-level functional elements. 

The modular design of the Mac OS 8 110 system, in turn, simplifies the 
work necessary for vendors to extend Mac OS 8 and differentiate their own 
value-added hardware systems. For instance, vendors can incorporate into 
their products distinguishing peripheral devices such as laboratory equipment, 
multimedia appliances, or devices to assist users with disabilities. 

Worldwide Text Support 

Mac OS 8 supports the features of all of the world's modern writing systems, 
including those using vertical writing, such as Chinese, those reading from 
right to left, such as Arabic, and complex contextual languages, such as the 
writing systems of India. Mac OS 8 allows users who communicate in several 
languages to mix and print the different writing systems of these languages 
within a single document-for instance, a multilingual warranty or owner's 
guide. 



10 

Chapter 12 discusses 
the operating system's 
international text-han­
dling features. 

A system extension 
is code that's loaded 
into memory at sys­
tem startup time. A 
control panel lets 
users specify basic 
settings and prefer­
ences for a system­
wide feature, such as 
the speaker volume. A 
desk accessory is a 
utility available from 
the Apple menu. A 
device driver is code 
that controls a device, 
such as a disk drive. 

CHAPTER 1 ~ A ScENIC TouR oF THE Usm•s ENviRONMENT 

Apple Computer has localized the Mac OS for more than 30 geographic 
markets in over 140 countries, and international text support is further 
strengthened in Mac OS 8. For instance, Mac OS 8 supports Unicode-an 
international text-encoding system that provides a code for every character in 
every major writing system. This encoding standard improves cross-platform 
compatibility, making it easier for users to collaborate internationally with 
written documents. Because of the open font architecture of Mac OS 8, font 
formats for multiple languages can coexist easily on a user's system. Mac OS 8 
also enhances support for market-specific features-for instance, speech sup­
port for Asian-language text entry. 

From a developer's perspective, this worldwide text support simplifies the 
creation of software products for the global market. A developer can prepare 
a single code base for a product and then localize it for specific national mar­
kets. For example, the developer can translate the text displayed by the soft­
ware to the language and writing system of the target market, translate the 
user guides, and otherwise change the product to make it culturally acceptable 
to the target market. A program that allows users to create and manage pages 
on the World Wide Web, for example, could be prepared for release into doz­
ens of major world markets. By adopting a single, globalized product like this, 
a multinational organization with web sites originating in several countries 
lowers its support costs and reduces its internal development efforts. 

System 7 Application Compatibility 

Mac OS 8 also gives users the flexibility of running most of their existing System 
7 applications simultaneously with newer Mac OS 8 programs. This flexibility 
helps users preserve their existing software investments while incrementally 
adopting software that takes fuller advantage of the new features and capabili­
ties of the operating system. However, other types of System 7 software­
namely, system extensions, control panels, desk accessories, and hardware 
device drivers-are incompatible with Mac OS 8. Mac OS 8 provides the 
facilities for developers to create higher-performing and more reliable alterna­
tives to these types of software. 

Since the beginning of Mac OS 8 development, a major priority for Apple 
Computer has been compatibility with applications and OpenDoc part editors 
conforming to System 7 development guidelines. The vast majority of these 
can run without modification in Mac OS 8. However, another major priority 
for Mac OS 8 is system stability. To improve system stability, Mac OS 8 
doesn't support software products that alter or extend the behavior of System 
7 or System 7 applications. Developers know these software products as 
extensions, control panels, and desk accessories. Users find these products 
highly useful when they present no conflicts with other programs, but mad­
dening when conflicts lead to system unreliability. As alternatives to this type 



Chapter 9 describes 
the new software 
extensibility mecha­
nisms that M.ac OS 8 
provides to develop­
ers. Chapter 11 
describes the 110 
architecture. 

AN EAsiER-ro-UsE PLAn:ORM 11 

of software, Mac OS 8 supplies developers with far more reliable mechanisms 
for extending users' systems. 

Improved performance and flexibility are important design goals in the area 
of device 1/0. To accommodate these goals, Apple Computer has designed a 
higher-performing 1/0 system. Most System 7 drivers, such as those control­
ling hardware devices, are incompatible with this new 110 system. However, 
the design of the Mac OS 8 1/0 system makes it much simpler for hardware 
vendors to write or adapt device drivers for their products. 

AN EASIER-TO-USE PLATFORM 

Since the introduction of the Macintosh computer, ease of use has been its 
greatest strength. Even as computers have become more complex and applica­
tions more powerful and intricate, each new version of the Mac OS human 
interface has become easier to use. You've already seen how this interface in 
Mac OS 8 can be scaled to levels of complexity appropriate for its users. 
Users of all skill levels also benefit from the assistance and information navi­
gation features introduced with Mac OS 8. With the assistance features, 
applications can supply a simple interface allowing users to delegate opera­
tions to their computers, and programs can even undertake complex opera­
tions on behalf of users. Mac OS 8 also actively offers tips for using the 
computer more productively. 

The Computer as Assistant 
Developers can design small Mac OS 8 applications that automate as much of 
the user's work as possible. An application focused on automating computer 
operations to help the user is called an expert. An expert interviews users so 
that it can help them carry out complex or seldom-used operations. For exam­
ple, a setup expert provided by Apple Computer consults the user about con­
figuring a computer, as illustrated in Figure 1.8. The CD-ROM animated 
version of this figure demonstrates how the expert automatically determines 
important details on behalf of the user, such as whether the user's computer is 
connected to a network and, if so, what network services are available. The 
setup expert then gathers important information that the expert itself can't 
determine, such as which network printer to select for use. Even when pre­
senting the user with printer selection options, the expert makes various useful 
assumptions for the user. If the user's computer is connected to an AppleTalk 
network, for example, the expert displays printers located in the user's local 
network zone. 

Avoiding technical language, the setup expert asks general questions about 
the user's goals. For example, instead of asking whether the user wants to turn 



12 

FIGURE 1.8 

See Chapter 13 for 
information about 
how developers 
incorporate these 
assistance features 
into their programs. 

CHAPTER 1 .... A SCENIC TOUR OF THE USER'S EtMRONMEHT 

A setup expert helping the user configure a computer 

Setup Expert p 

Cho<J<Ing " printer 

Which printer do you plan to use on • reQ'.Aor basis? VOAJr 
c~torls connected to the folowing printers: 

Bit Bucket 
Which Printer? 
LaserWrite r llg 
Pen P« IJ 
To Town 
SPECt acular llg 
Phantom LaserWriter 
Licensed to Write: 
4900 

Cick the printer you want to use, then clck the right orrow to 
controe. 

lJ!I 

on file sharing or enable guest access, the setup expert asks, "Would you like 
to share files over the network ?" Then it begins to help the user configure file 
sharing accordingly. 

For operations that can be scheduled for later execution, Mac OS 8 sup­
ports delegation. Delegation means that the user needn't be at the computer to 
be productive. For example, a user might wish to have an e-mail application 
dial an online service and automatically check fo r mail every hour. While the 
user is away from the computer, the application still checks for mail. Such del­
egated operations can also be performed in the background. While a user is 
running a page-layout p rogram, for example, a program can concurrently dial 
the online service and alert the user whenever new mail a rr ives. O nly when 
new mail arrives and the user is ready to read it would the user need to open 
the e-mail application. 

Assistance is a lso offered to the user by way of tips, which are instructions 
for making more efficient use of application fea tures. In Mac OS 8, tips can 
appear automatically exactly when a user can benefit from learning them. Part 
of every workspace includes preferences fo r the invocation and display of user 
tips. For example, suppose a user who wants to learn about tips repeatedly 
applies the boldface character format to text by selecting a command from the 
Style menu. Mac OS 8 detects this as an inefficient technique and displays a 
suggestion for using a keyboard shortcut to apply the boldface style, as shown 
in Figure 1.9. 

Information t-4avigation 

Because of the wealth of information that computers and computer networks 
make available to users, the task of organizing and collecting information has 



FIGURE 1.9 

AN EAsiER· TO·USE PLATJORM 13 

A tip for using an application more efficiently 

become more complex. Mac OS 8 simplifies information access and manage­
ment for users in many ways, such as by offering methods for 

.... navigating folders 

.... searching for content 

.... accessing document information 

.... organizing information on the desktop 

Folder Navigation 

The Macintosh Operating System pioneered direct onscreen manipulation of 
information, and Mac OS 8 improves this capability. For example, Mac OS 8 
makes it easier to move files between disks and folders. In System 7, to move a 
document to a location nested in several levels of folders, the user typically 
opens one folder after another to get to the target folder. The user drags the 
document into the window for the target folder and then closes the windows 
for folders opened along the way. 

Folder navigation takes far fewer steps in Mac OS 8. As shown in Figure 
1.10, the user drags a document over a disk or folder icon and pauses. In 
response, a window opens for that disk or folder, as shown in Figure 1.11. By 
dragging and pausing over additional folder icons, the user navigates to the 
target folder. Once the user drops the document onto its destination, 
Mac OS 8 leaves the window for the target folder open but closes other win­
dows opened along the way. 

Content Searches 

Computer users face the task of organizing and finding information from a 
variety of sources. The Macintosh Operating System has long supported the 
hierarchical organization of files and folders, but Mac OS 8 now allows the 
user to organize information relationa lly- that is, by grouping items accord­
ing to user-specified criteria. 



14 CHAPTER 1 .... A ScENIC TOUR OF THE USER'S ENVIROHMEHT 

FIGURE 1.10 Dragging a file onto a folder icon 

FIGURE 1.11 Navigating folders by dragging a file to another icon 

fCl 
Mi o OS Foldfl" 

~ 
Simpt.Ttxt ' f ilu For 'Work 

l:l 
Kid Pr o)t'ct 
~•~t1n Sudi;Jtt 

o':"o:~ 
Soft Projt<:t 

.Jt.n'sConctpt 



FIGURE 1.12 

See Chapter 1 0 for a 
description of docu­
ment-navigation ser­
vices. 

AN EAsiER-TO-USE PlATFORM 15 

Saving the contents of a Find window 

r ~ - Edit View Spedal a) c 1 - • , .... -~ "1~):- " ~ "I' .a 
Open !CO ~ ~ Find ' 1:!11!3 j -;--
Print !CP 
OcKe Window !CW pleted (9ttems ~ 
Get Info •• form: l Anything J-·..j 
label • Name: I cuisine I ~ More:Tt!nru: 

~-- Sl>atlno ... 
Duplicate fleD Text: I seafood pana I t• 11-lal<e Ali!U 8!JM 

' Put Away av 
Where: I Local disks l "~') II I !Cf 

Start • . find ••• 
~ 

Fmd Original !CR Name Location Ki'ld Last rrw:dtled 

Page Setup ••• Cuisft and Art Cl Ooanlents doament MarS, 1995 ... 
Print Window ... Del!;lts of Greelc Cuisft ClGr~ doament Mar 13, 1995 ~ 

Gree<:e and Its cuisfts (l Travel Folder doament Feb 10,1995 
I• -< Cooldng Gteel< Cuisine II Oesl<top doament Mar21. 1995 . . .., Seeh.l Greet< Cuisine (l Travel Folder doament Mar 1, 1995 r 

, Tasth;l Greek cuisfts Cl Correspondence doament Feb27, 1995 . 
~ ... ,. ~:i~ __ .: .. . ... . ~ 

. . 

Mac OS 8 provides searching and organizing capabilities for any type of 
information located on any connected storage device containing Mac OS 
files- including fi les on network servers. Figure 1.12 illustrates the results of a 
search for documents whose titles include the word "cuisine" and whose con­
tents include the text "seafood pasta." Mac OS 8 performs the search in the 
background so that the user can continue working until the search is com­
pleted. Meanwhile, the results of the search are continually updated in a Find 
window. 

The user can directly act on the items listed in the Find window. After 
locating a document, for example, the user can rename the document or drag 
it to a different folder. The user can even save Find windows as special kinds 
of folders that appear as icons, and the user can store them anywhere on the 
system. The contents of these fo lders are kept up to date automatically in the 
background. For example, if the user logs into a fi le server that contains docu­
ments matching the search criteria saved with a Find window, this window or 
its folder is automatically updated to include the new documents. 

Access to Information About Documents and Folders 

Mac OS 8 improves the process of opening and saving documents by giving 
users better access to documents and to document-related information. Figure 
1.13 illustrates a dia log box for saving a file. A panel on the left side of the 
dialog box displays the contents of a folder. The names of parent folders are 
also visible, helping the user to navigate the hierarchy of nested folders. 



16 

FIGURE 1.13 

CHAPTER 1 ... A SCENIC TOUR OF THE USER'S EHVIRO~T 

Document-related information for opening files 

save document ~~.:.::e'-'Cw....;.m.;.;,o;,d=e=l ,::..2 _ _ ____ --'r 
• In: 

Cl, AUXArt 

~r Selections for "95 

4/7/95 

3/28/9S 
4/5/95 

3/16/95 
1/2 1/95 

4114/95 

New f'illlier 

General lnfonnatton 

Ki lid: Adobe Photos hop 3.0 document 

Size: 5833K on df•k 

tledifled: Mon, Apr. 12, 1994 4:45 PM 

Crnted: Fr1 ,Apr. 10, 19941:02PM 

tcon: llliE 
0 Loctn 

0StaUe•rv 

lr cancel I ~. si$1 

From multiple panels avai lable on the right side of this dialog box, the user 
can learn a great deal about the items in a folder. Fo r example, the user might 
see a small representation of the contents of a document, determine its fi le for­
mat, and see what comments might be saved with it. 

Organizing Information on the Desktop 

Mac OS 8 employs a new type of window called a pop-up window that lets 
users store and quickly access their often-used documents and software pro­
grams without adding clutter to their screens. When closed, pop-up windows 
are identified by title bars that appear on the bottom of the screen, as shown 
in Figure 1.14. When the user clicks a title bar, the pop-up window opens to 
display its contents, as illustrated in Figure 1.15. The user can, as with any 
window, move items in and out of a pop-up window. When a user clicks the 
title bar of an open pop-up window, the window collapses again and moves to 
the bottom of the screen. Alternatively, when the user drags an icon to a pop­
up window title, the window automatically opens. When the user drops the 
item in the window, it collapses again. 



AN EAsiER-TO-USE PLATFORM 17 

FIGURE 1.14 Pop-up window title bars 

FIGURE 1.15 An opened pop-up window 



18 

The CPU (central pro­
cessing unit) is the 
microprocessor that 
executes instructions 
and transfers informa­
tion to and from other 
high-speed devices 
(such as physical 
memory). RISC 
(reduced instruction 
set computing) is a 
CPU design featuring 
the rapid execution of 
simple machine 
instructions. 

See Chapter 8 for 
more information 
about how the run­
time environment 
takes advantage of the 
PowerPC CPU while 
supporting applica­
tions generated for 
the 68K CPU. 

See Chapter 4 for 
details about the mul­
titasking environment. 

CHAPTER 1 ..... A SCENIC TOUR OF THE USER'S EHVIROHMEHT 

Mac OS 8 helps users accomplish more in less time not only by making applica­
tions easier to use, but also by taking greater advantage of the Power PC micro­
processor's performance capabilities. Virtually all of the code for Mac OS 8 is 
optimized for the RISC architecture of the PowerPC CPU, and Mac OS 8 uses 
preemptive multitasking to keep the CPU as busy as possible. In this way, 
Mac OS 8 achieves higher levels of performance than System 7 attains even 
using the same PowerPC CPUs. 

By capitalizing on these advantages, the Mac OS 8 file system-indeed, the 
entire 110 system-also provides significant performance improvements over 
System 7. 

PowerPC Optimization 
Users of Power PC-based computers are already familiar with the high process­
ing performance supplied by their RISC-based CPUs. Mac OS 8 users will see 
additional performance increases over earlier versions of the Mac OS because 
Mac OS 8 operating system features are implemented in PowerPC native 
code-that is, code generated to take fuller advantage of the Power PC proces­
sor architecture. (The performance of many parts of System 7.5 is somewhat 
hampered because, even on PowerPC-based computers, these portions operate 
in a mode that emulates Motorola's older 68K CPUs.) For example, users will 
find that Mac OS 8 documents open faster, windows update more quickly, 
and network transactions finish sooner. 

Multitasked Operations 

In Mac OS 8, the operating system and multiple software programs are able 
to run concurrently, making the most efficient use of computer resources. For 
example, Mac OS 8 might temporarily suspend the execution of a program 
that is copying a file across a network in order to let a multimedia program 
prepare video data for immediate onscreen play. At the next opportune CPU 
cycle, Mac OS 8 resumes execution of the network file copy operation. 

Figure 1.16 illustrates multiple tasks operating concurrently. The user has 
begun copying one large file to a disk drive connected on a network and a sec­
ond large file to a directly connected drive. As the CD-ROM animated version 
of this figure demonstrates, before either copy operation is finished, the user 
can delete files and launch and interact with multiple applications. At the 
same time that all of this activity is occurring, the computer can also execute 
other operations that are invisible to the user-for instance, it can send and 
receive e-mail, serve World Wide Web pages to remote users, and compress or 
decompress large files. This interleaving of concurrent computer operations 
allows users to work more productively. A user can continue entering infor-



FIGURE 1.16 

Chapter 5 provides 
more information 
about multithreaded 
programs. 

See Chapter 6 for a 
discussion of the vir­
tual memory system 
and Chapter 8 for 
details about the use 
of shared libraries. 

!~CREASED SYSTEM Pw~cE 19 

Performing multiple operations concurrently 

Copy 

Item• r""'alnlng to be copied: 

Reading: The Marketing Report 

mation into a spreadsheet even while the computer executes spreadsheet cal­
culations and other tasks in the background, for example. 

The operating system interleaves the execution of multitasked operations 
so quickly that it looks as if they're happening simultaneously on a computer 
with one CPU. Mac OS 8 also supports multiprocessing so that multiple tasks 
actually do run simultaneously on a computer with more than one processor. 

A developer can increase program efficiency by dividing operations into 
separate, concurrent threads of execution. For example, one thread of execu­
tion in a program might handle user interactions, another might perform cal­
culations, and a third might perform T/0. The operating system manages these 
threads so that they take the greatest advantage of computer resources. For 
example, while the VO thread of a program waits for data to come in from a 
disk and the user in teraction thread waits for user input, the calculation 
thread can make use o f the CPU, which might otherwise be idle. 

Memory Efficiency and Protection 

Running multiple programs concurrently requires more memory than running 
only one program by itself. To support the concurrent operation of multiple 
programs, Mac OS 8 uses secondary storage, such as a hard disk, to efficiently 
extend physical memory, allowing the user to open many large applications at 
one time. Mac OS 8 also makes efficient use of memory by implementing 
operating system code in shared libraries so that no more than one copy of a 



20 

Chapter 3 describes 
the memory-protec­
tion facilities. 

look in Chapter 10 
for a discussion of the 
file system. 
Chapter 11 
describes the general 
architecture of the 
entire 1/0 system. 

For a more thorough 
description of these 
landmark Macintosh 
technologies and 
how they fit into 
Mac OS 8, see Chap­
ter 15 and Chapter 
16. The CD-ROM ver­
sions of these chap­
ters also offer 
animated demonstra­
tions of several of 
these technologies. 

CHAPTER 1 ...,. A ScENIC TouR oF THE UsER's ENVIRONMENT 

shared library is ever needed in memory for use by all programs opened by the 
user. 

For different programs to share the computer at the same time, the operat­
ing system must offer ways to protect the memory containing the code and 
data of each program. Otherwise, one program could corrupt the operations 
of another, potentially crashing the system. Mac OS 8 offers various forms of 
protection for the memory in which code and data reside; for example, all 
code and critical operating system data reside in protected areas of memory 
where applications can't corrupt them. 

High 1/0 Performance 
Mac OS 8 also provides an I/0 system that's fully optimized for the PowerPC 
CPU and takes advantage of the operating system's efficient multitasking 
capabilities. For example, multiple file I/0 operations can be concurrently 
processed in the background so that the CPU doesn't waste valuable cycles 
waiting for a file request to be executed. 

HIGHER-PERFORMING VERSIONS OF MACINTOSH TECHNOLOGIES 

System 7 offers technologies that have helped make Macintosh users the most 
loyal customers of any computing platform. Many of these technologies are 
popular because they allow users to express ideas through graphics, text, ani­
mation, video, sound, and network collaboration. In Mac OS 8, these techno­
logical strengths are refined and integrated more completely with each other 
and with the operating system. 

The use of shared libraries throughout the system helps decrease memory 
requirements for these technologies. In System 7 users have to install the code 
for various graphics, multimedia, and communications capabilities as optional 
system extensions. For example, code for the QuickDraw GX graphics sys­
tem, the ColorSync color matching system, and the QuickTime multimedia 
system are loaded when the computer starts up and occupy memory whether 
or not a user opens an application that uses them. In Mac OS 8, each of these 
technologies is placed into physical memory only when an application actually 
uses that technology. 

The multitasking capabilities of Mac OS 8 in combination with its I/0 sys­
tem offer more efficient data throughput to increase the performance of all 
products, but this benefit can be most easily seen in the performance of multi­
media products. A video-editing program can read data from a CD-ROM disk 
in one thread of execution, write data to a hard disk in another thread of exe­
cution, and yet remain highly responsive to the user in a third thread. Even 
when data is slow in coming from the CD-ROM or going to the hard disk, the 



Chapter 6 describes 
the virtual memory 
system. 

HIGHER-PERFORMING VERSIONS OF MACINTOSH TECHNOLOGIES 21 

program can keep the CPU busy executing other operations on behalf of the 
user. 

The efficient memory management of the operating system allows the user 
to work with many more large applications than can fit in the physical mem­
ory of a computer running Mac OS 8 or even the virtual memory of a com­
puter running System 7. This memory efficiency allows the user to work 
simultaneously with more applications that take advantage of these technolo­
gies, such as memory-hungry graphics and multimedia applications. 

Graphics and Multimedia 
The QuickDraw, QuickDraw GX, and QuickDraw 3D graphics systems are 
integrated into Mac OS 8. Wherever graphics code was redundant, it has been 
combined in Mac OS 8, decreasing code size and the attendant memory 
requirements for running more than one graphics system simultaneously. 

The built-in QuickDraw 3D capabilities provide an intuitive user interface 
for manipulating three-dimensional objects and allow applications to share 
three-dimensional data easily, even across the Internet. Mac OS 8 printing is 
based on the QuickDraw GX model familiar to many System 7.5 users-to 
print, users drag document icons to desktop printer icons. ColorSync technol­
ogy is also built in, so colors rendered by a printer match those displayed on 
the screen. The line-layout capabilities of QuickDraw GX are also integrated 
into the system. Mac OS 8 provides such formatting features as kerning, liga­
tures, and the multiple reading directions-such as vertical and right-to-left­
needed for such writing systems as Chinese, japanese, Arabic, and Hebrew. 

The multimedia capabilities of QuickTime, QuickTime VR, and Quick­
Time Conferencing are also incorporated into Mac OS 8. QuickTime supports 
the editing, storing, and playing of synchronized data such as video and audio. 
With QuickTime VR, users can take virtual reality tours of distant museums 
and landmarks, view ideas for a kitchen remodel, and visit imaginary places. 
Through QuickTime Conferencing, individuals can exchange voice and data 
simultaneously over telephone lines, local area networks, and the Internet. 

Open Doc 
Mac OS 8 incorporates OpenDoc, an industry standard technology based on 
the concept of component software-that is, self-contained, reusable software 
modules. OpenDoc environments are also under development for the Win­
dows, OS/2, and UNIX operating systems. With OpenDoc, users can add or 
remove a feature by dragging it into a document or workspace. A user can 
combine favorite features, such as tools for handling text, graphics, photogra­
phy, spreadsheets, and vide~ven live data links and Internet connections­
for use in a single, customized work environment. 



22 CHAPTER 1 .... A SCENIC TOUR OF THE USER'S ENVIRONMENT 

Through OpenDoc, Mac OS 8 allows individuals and organizations to 
choose the specific features they need without learning and supporting multi­
ple applications. At the same time, OpenDoc allows organizations to stan­
dardize their development efforts on a cross-platform architecture for both 
commercial and custom software. 

Communications and Networking 
With the AppleTalk software and hardware architecture, Apple Computer 
introduced plug-and-play networking capabilities for personal computers. To 
broaden the networking capabilities of personal computers, Mac OS 8 incor­
porates support for a wide array of communications standards through its 
Open Transport and Cyberdog architectures. 

Open Transport, available for all Mac OS-compatible computers since the 
release of System 7.5.3, supplies an architecture for implementing industry­
standard communications and networking protocols. To incorporate network­
ing and communications services in an application, regardless of the type of 
network to which the user's computer is connected, a developer uses the pro­
gramming interface defined by Open Transport. Open Transport then takes 
care of the communication details appropriate for the user's network. Open 
Transport includes implementations of the AppleTalk and TCPIIP protocols 
and support for common data links such as LocalTalk, Ethernet, and Token 
Ring. 

The Cyberdog architecture gives users a consistent, intuitive way to search 
and browse the Internet and gain access to Internet mail and newsgroups. This 
architecture supplies a collection of OpenDoc classes and extensions with 
which developers create OpenDoc parts that access and display Internet con­
tent. Cyberdog, in other words, is a toolbox for supplying Internet capabili­
ties, such as web browsers and e-mail facilities. Mac OS 8 includes several 
Cyberdog parts with which users and developers can instantly create Open­
Doc documents that have embedded Internet functionality. To support Inter­
net capabilities within their applications, developers need simply support 
OpenDoc, but the Cyberdog architecture also makes it easy for developers to 
create their own parts and to replace the Mac OS 8-supplied parts. 

Mac OS 8 supplies other user-level networking features. Personal file shar­
ing-which allows any Mac 05-compatible computer on a network to be a 
file server-and network printer sharing were introduced in previous versions 
of the Mac OS. These are incorporated into Mac OS 8, which introduces 
other user features designed with networking in mind. The workspaces fea­
ture, for example, allows several people to maintain separate networking pref­
erences, such as e-mail accounts and World Wide Web bookmarks, on the 
same computer. Or, one person can use several workspaces to maintain several 
personal accounts. With the Assistance Services, Mac OS 8 supplies a network 
configuration expert to help users connect to networks. And, as previously 



SUMMARY 23 

described, with Find windows users can locate information on networks and 
save the locations of found information. Other Mac OS 8 technologies-such 
as multitasking, memory protection, and system-level Unicode support-fur­
ther increase the performance of network and communications products avail­
able from developers. For instance, personal Internet server programs on 
Mac OS 8 computers benefit from the reliability of memory protection, the 
performance of preemptive multitasking, and the flexibility of international 
language support. 

SUMMARY 

By supporting computers from multiple manufacturers and allowing users to 
personalize their work environments according to their needs and tastes, 
Mac OS 8 delivers an extremely flexible computing platform. New ease-of-use 
features and state-of-the-art operating system services help users be more pro­
ductive in their professional, educational, and recreational pursuits. 

The capabilities of Mac OS 8 briefly presented in this chapter-and many 
additional capabilities-are explained in more detail in the rest of this book. 
Read on for more information about how developers can take advantage of 
the Mac OS 8 architecture in their products. 



• • • • • • • • • • • • • • • • • • • • • • • 

Orientati 
to the 
Platfor 

This chapter offers a high-level tour of the Mac OS 8 platform from the devel­
oper's perspective. Capable of supporting a wide variety of high-performance 
hardware, the Mac OS 8 operating system provides a platform for new soft­
ware products that increase user productivity. These new products can take 
advantage of such features as a flexible, consistent, and easy-to-use human 
interface, preemptive multitasking, concurrent UO processing, memory pro­
tection, software extensibility, automated user assistance, large amounts of 
addressable memory, and enhanced versions of such established Mac OS tech­
nologies as graphics, multimedia, networking, and collaboration. 

Mac OS 8 not only supports these innovations but also provides compati­
bility for most applications developed for System 7. This backward compati­
bili ty allows users to protect much of their investment in System 7 software 
even while moving forward to take advantage of the new capabilities avai lable 
in Mac OS 8. 

Read this chapter to become acquainted with the operating-system services 
of the Mac OS 8 platform. 

25 



26 CHAPTER 2 ...,. ORJENTAnoN ro THE MAc OS 8 PlATFORM 

KEY TERMS AND CONCEPTS 

..... The operating system is the software that controls and coordinates com­
puter hardware and supports the execution of application-level pro­
grams installed or controlled by users. 

..... A reentrant service is a Mac OS 8 operating system facility that can be 
used concurrently by several pieces of code. These services allow many 
concurrent operations to be preemptively scheduled for execution. The 
microkernel and the 110 system are examples of reentrant services . 

...,. The microkernel is a program that manages a small but critical subset of 
the operating services necessary to control the computer. In essence, the 
Mac OS 8 microkernel manages the computer resources (such as mem­
ory, synchronization, timing, and messaging) necessary for code to exe­
cute on the CPU. Other operating system services, such as the 110 
system and the Human Interface Toolbox, are implemented separately 
from the microkernel. 

...,. A cooperative service is used by programs that cooperate with each 
other to synchronize their access to the service. A program generally 
uses cooperative services to present a human interface. Cooperative ser­
vices also support compatibility with System 7 applications . 

...,. The human interface provides elements allowing the user to interact 
with programs running on a computer. Because most human interface 
elements (such as windows, menus, and icons) are visual in the Mac OS, 
the term human interface is generally synonymous with graphical user 
interface. However, user voice input, sounds that alert the user, and 
other nonvisual elements are part of the human interface as well. 

...,. A cooperative program typically presents a human interface and coop­
erates with other programs to share access to the cooperative services. 
Cooperative programs are usually implemented as interactive applica­
tions or compound documents containing OpenDoc parts . 

...,. A server program in Mac OS 8 is a program that has no direct interac­
tion with users but instead provides an offscreen service, usually to one 
or more other programs-for instance, by performing calculation-inten­
sive or I/O-intensive operations on behalf of cooperative programs . 

...,. Preemptive scheduling is a policy for allocating access to the CPU and 
other computer resources. This policy allows the operating system to 
preempt the execution of one operation and start-or resume-the exe­
cution of another. All server programs are preemptively scheduled for 
execution, and portions of cooperative programs unrelated to the 
human interface can be preemptively scheduled for execution. All coop-



A program is a series 
of statements instruct­
ing a computer to 
perform certain 
operations. 

MAJOR POINTS OF INTEREST 27 

erative programs are, by comparison, cooperatively scheduled for exe­
cution . 

...,. Cooperative scheduling is a policy for serializing cooperative program 
access to the cooperative services. Under this policy, every call to a 
cooperative service executes to completion without the possibility of 
interruption by another call to that same service. Cooperative programs 
participate in this policy by yielding execution eligibility to one another, 
ensuring that no more than one program at a time is able to call the 
cooperative services. Cooperative scheduling rotates eligibility among 
cooperative programs so that each can, in turn, be preemptively sched­
uled along with server programs . 

...,. An application is a program designed to help users accomplish goals; 
for example, a web browser helps users navigate the World Wide Web 
and a page-layout program helps users present information in print 
form. In Mac OS 8, an application is usually implemented as a coopera­
tive program that may be supported by server programs . 

...,. OpenDoc is a multiplatform technology for constructing and sharing 
compound documents. Compound documents consist of multiple, user­
selected software components (called parts), which are used for creat­
ing, containing, and displaying information. 

MAJOR POINTS OF INTEREST 

Users interact with the Mac OS 8 platform through its hardware and its appli­
cation programs. Using a mouse and keyboard, for example, a user manipu­
lates the information calculated and organized by an application and 
displayed onscreen. The application, however, doesn't directly manipulate the 
video screen, nor do the mouse and keyboard directly manipulate the applica­
tion. Instead, the operating system controls and coordinates all hardware on 
behalf of the application. 

In addition, the operating system supports the execution of applications by 
providing them with a wide array of services. Figure 2.1 illustrates some of 
these services. Developers, for example, use the Human Interface Toolbox to 
implement the interactive features of their applications; they invoke assistance 
services to provide users with automated help; they call event notification ser­
vices to determine when and how to respond to user actions and various sys­
tem activities; they use task scheduling services to take advantage of the 
system's multitasking and multithreading capabilities; they call file system ser­
vices to store and retrieve user data; and they employ networking services to 
help users collaborate and communicate via computers. 



28 

FIGURE 2.1 

Application-level 
software 

Operating system 
services 

Hardware 

CHAPTER 2 ~ ORIEHTATIOH ro THE MAc OS 8 PLATFORM 

Major components of the Mac OS 8 platform 

Human Interface 
Toolbox 

Event 
notification 

File system 

Multimedia Graphics 

Task scheduling 

Memory 
management 

D 

Assistance 

lnterappllcation 
communications 

Device 1/0 

Typography 

Sound 

Networking 

The Mac OS 8 platform is designed to be modular. Modularity allows the 
platform to be adapted in the present and enhanced in the future by Apple 
Computer and other developers. For example, the operating system is 
abstracted from the hardware; therefo re, computer manufacturers can more 
easily port Mac OS 8 to their various hardware architectures. Application­
level software is abstracted from the operating system; therefore Apple Com-



FIGURE 2.2 

Concurrent pro­
cessing allows sepa­
rate programs to share 
operating system ser­
vices in parallel. 

MAJoR POINTS OF INTEREST 

Reentrant and cooperative services on the modular Mac OS 8 platform 

._ __ c_oope __ ra_tl_v_e_p_ro_gr,_a_ms __ ... I--.J ... ___ se_rv_e_r_p_rogr,_ams_. ___ ... 

Key: c=J Application-level software 

I22Zj Operating system services 

---+ Direction of use 

l 
Hardware 

29 

puter can enhance operating system services without adversely affecting the 
programs that rely on them. 

Figure 2.2 diagrams the broadest elements of the Mac OS 8 platform's 
modular design. As this figure shows, the operating system comprises two 
major types of services: reentrant services and cooperative services. Generally 
speaking, developers use the reentrant services to take advantage of the 
increased efficiency afforded by concurrent processing and preemptive sched­
uling. Developers use cooperative services to present a human interface for 
their programs. 

Application-level software consists of cooperative programs and server pro­
grams. Cooperative programs, such as interactive applications and compound 
documents containing OpenDoc parts, present a human interface. Coopera­
tive programs can use both cooperative and reentrant services. Server pro­
grams can use the reentrant services but not the cooperative services. Server 
programs don't present a human interface; instead, they perform work off­
screen, often on behalf of cooperative programs. To interact indirectly with 
the user, however, a server program can use a reentrant service to send user 
notifications (such as sounds, icons that blink at the top of the screen, and 
short onscreen messages), and a server program can employ a cooperative 
program to perform user interactions on its behalf. 



30 

Physical memory, 
also known as RAM, 
holds program code 
and data temporarily 
needed by the CPU. 

A programming 
interface consists of 
functions and data 
structures defined by 
one piece of soft­
ware, such as an 
operating system ser­
vice, for use by client 
software, such as 
applications and 
device drivers. The 
Mac OS 8 program­
ming interface pro­
vides access to such 
services as window 
management and file 
management. 

CHAPTER t ..... ORIENTATION TO THE MAc 05 8 PLATFORM 

The rest of this chapter examines more closely the elements diagrammed in 
Figure 2.2. 

THE HARDWARE 

The Mac OS 8 platform supports 

..... computers, produced by a variety of computer manufacturers, that are 
compliant with the Common Hardware Reference Platform (CHRP) 

..... models of Apple Power Macintosh, Macintosh PowerBook, and Apple 
Performa computers with PowerPC-based logic boards 

..... PowerPC-based computers from Apple-licensed manufacturers 

All of these computers are shipped with at least 8MB of physical memory, the 
minimum targeted by Apple Computer for Mac OS 8. 

A Mac OS 8--compatible computer typically employs a keyboard and 
mouse for user input and a display screen for program output and usually 
includes stereo sound through built-in or separate speakers, a built-in net­
working device, and additional devices such as a modem, CD-ROM drive, 
and microphone. 

At its most fundamental level, the hardware layer of the Mac OS 8 plat­
form rests on the PowerPC family of CPUs. Above this level, the hardware 
layer is highly flexible. The modular design of Mac OS 8 allows developers to 
extend or differentiate the platform for different hardware products. Com­
puter manufacturers, for example, can incorporate such diverse bus architec­
tures as SCSI, PCI, and Fire Wire into the 110 system, and peripheral-device 
developers can easily integrate such products as video capture devices, scan­
ners, graphics tablets, laboratory equipment, and remote infrared devices into 
the system. 

THE OPERATING SYSTEM 

Application-level software makes use of operating system services, both reen­
trant and cooperative, through their programming interfaces. As you can see 
in Figure 2.2 on page 29, application-level software is insulated from the 
hardware by these services. Various reentrant services control the operation of 
hardware devices (including display screens, network devices, hard disks, and 
modems) to support the execution of application-level software. Not all reen­
trant services control hardware, but virtually all hardware is controlled by 



Preemptive schedul­
ing is described in 
greater detail in 
Chapter4. 

THE OPERAniiCG SYSTEM 31 

reentrant services. (The only exception is that Mac OS 8 allows applications 
with special needs to draw directly to the frame buffers for video devices.) 

In addition to the operating system services described next, Mac OS 8 usu­
ally includes a number of other applications that aren't strictly part of the 
operating system but nevertheless enhance user productivity-for example, a 
Mac OS 8 system may include such programs as the Finder, the SimpleText 
text processor, and the Personal FileShare file server program. Apple Com­
puter and other computer manufacturers often pre-install additional game and 
productivity programs on their computer systems as well. 

Concurrent Processing and the Reentrant Services 
Many Mac OS 8 operating system facilities are implemented as reentrant ser­
vices to support the concurrent processing of multiple programs. Reentrancy 
is the ability of code to process multiple interleaved requests for service nearly 
simultaneously. For example, a reentrant function can begin responding to 
one call, become interrupted by other calls, and complete them all with the 
same results as if the function had received and executed each call serially. (A 
function that isn't reentrant must complete one call before receiving another.) 

The code for each reentrant service is written so that it synchronizes all 
access to its data, thereby allowing programs to call the service at any time 
without the risk of corrupting the data used by that service. Multiple pro­
grams, then, can call a reentrant service concurrently, allowing the operating 
system to schedule these programs preemptively-that is, the operating system 
can suspend the execution of one program and allow another to execute, even 
if both programs make requests to the same service. 

Preemptive scheduling makes efficient use of the CPU by keeping it as busy 
as possible. For example, the CPU executes instructions faster than 1/0 devices 
transfer data. So when a program uses a reentrant service to read data from a 
disk drive, the operating system will suspend the program when its read oper­
ation is waiting for data to come off the disk. The operating system then 
schedules other operations for execution, keeping the CPU busy even while 
the program is waiting for the arrival of data from the disk. At the same time, 
other programs can concurrently perform 110 operations of their own, which 
are interleaved in this efficient, preemptively scheduled manner. 

Reentrant services include 

...,. the microkernel 

...,. the 1/0 system, including the Mac OS 8 file system, the Open Transport 
networking services, and real-time sound playback 

...,. the memory allocation services 

...,. the Apple events interprocess communication service 

...,. the QuickDraw GX graphics system 

These services are described at greater length in later chapters. 



32 

FIGURE 2.3 

CHAPTER 2 ..... ORIENTATION TO THE MAc 05 8 PLATFORM 

The mlcrokernel and other modularized reentrant services 

The microkernel lies at the core of the operating system. The microkernel, 
in essence, manages the computer resources necessary for code to execute on 
the CPU. 

Kernels in mainframe, minicomputer, and workstation platforms tradition­
ally encompass all or most operating system services. The current trend in 
operating system design is to implement a subset of essential operating system 
services in a smaller kernel, a so-called microkernel. By moving various oper­
ating services out of the kernel, a microkernel-based operating system 
becomes more modular and flexible than one that is kernel-based. 

In a UNIX-based operating system, for example, the kernel is a program 
that supervises task and file management, device input and output, and mem­
ory allocation, whereas the microkernel design of Mac OS 8 modularizes 
these services, as illustrated in Figure 2.3. This modularity makes it easier for 
Apple Computer and other developers to update and extend the operating sys­
tem. For example, Apple Computer can in future releases of Mac OS 8 easily 
add or replace memory allocators as the system's dynamic storage needs 
evolve. Because the 110 system is further modularized, computer manufactur­
ers can differentiate their products in a wide variety of ways, such as by sup­
plying test equipment for laboratories or devices optimized for video data. 
Such products are easily integrated with the 110 system and, because of the 
modular nature of the entire operating system, work without any modification 
to the microkernel itself. 



THE OPERAnHG SYSTEM 33 

~~ ~5 IIERirAGE 

~ 
Application Control of the Computer in Previous Mac Operating Systems 

In System 7 (and earlier versions of the Macintosh Operating System), all operating system 
services are provided by libraries of routines (called managers in Mac parlance) that appli­
cations call at points chosen by their developers. Before Mac OS 8, the Macintosh Operating 
System used neither a kernel nor a microkernel to control access to computer resources. 
Instead, applications largely had complete control of the computer. 

Serialized User Interactions and the Cooperative Services 

Mac OS 8 developers use the cooperative services to incorporate a human 
interface into their programs. From among these services, for example, devel­
opers use the Human Interface Toolbox to implement windows, menus, and 
other portions of the standard graphical user interface, and developers use the 
Assistance Services to provide interactive and automated help for users. In 
addition to supporting human interface features, the cooperative services 
maintain compatibility with applications written for System 7. Cooperative 
services include 

...,. the Human Interface Toolbox 

...,. the Assistance Services 

...,. the QuickDraw and QuickDraw 3D graphics systems 

...,. the QuickDraw GX printing service 

...,. multilingual text processing services 

...,. the QuickTime multimedia technologies, including virtual reality and 
conferencing capabilities 

...,. additional compatibility services to support System 7 applications, such 
as the System 7 File Manager and the System 7 Memory Manager 

These services are described at greater length in later chapters. 
Whereas the reentrant services can be called by several pieces of software 

concurrently, the cooperative services can't. To synchronize access to the coop­
erative services and provide compatibility for System 7 applications in a pre­
emptively scheduled environment, Mac OS 8 employs another scheduling 
policy, called cooperative scheduling. This policy is supervised by an operating 
system service called the Process Manager. Whereas a reentrant service syn­
chronizes multiple requests, a cooperative service relies on its clients to serial­
ize their requests so that the service can finish one request before receiving 
another. When programs cooperate by yielding execution eligibility to one 
another, the Process Manager serializes their calls to the cooperative services. 



34 

Application event 
handling is explained 
in Chapter 14. 

The use of multiple 
preemptively sched­
uled tasks within a 
program is described 
in Chapter 5, and 
the relationship 
between coopera­
tive scheduling and 
preemptive schedul­
ing is further delin­
eated in Chapter 4. 

CHAPTER 2 ...,. ORIENTAnoH TO THE MAc OS 8 PlATFORM 

By serializing calls to the cooperative services, the Process Manager allows 
each call to a cooperative service to execute to completion without being 
interrupted by another call to the same service. A Mac OS 8 application 
adheres to this cooperative policy by yielding execution eligibility whenever 
there are no events (such as keystrokes, menu selections, or operating system 
communications) for it to respond to. By following the System 7 event-han­
dling model, System 7 applications and OpenDoc parts are fully compatible 
with this policy. 

When an event arrives for a cooperative program, it becomes eligible for 
execution. That program is then preemptively scheduled with other eligible 
tasks. Other eligible tasks may include those for server programs and the 
operating system itself. In addition to one cooperatively scheduled task, a 
cooperative program can include additional, preemptively scheduled tasks to 
enhance user productivity, but these tasks can't use any cooperative services. 

Serializing Operations Involving User Interactions 

In program operations that involve interaction with the user through the 
screen, a cooperative approach involving serial access makes sense. From the 
user's perspective, one screen operation shouldn't be preempted by another 
screen operation while the first operation is still underway. If the user has two 
applications running, for example, it wouldn't be sensible for the background 
application to create a new window on top of the window in which the user is 
currently typing text. Similarly, when the user selects a menu command from 
one application, it would be confusing if another application were to interrupt 
the command and perform some onscreen action of its own. 

System 7 developers are familiar with a programming model where applica­
tions share processing time but only one application is the focus of user inter­
action. Mac OS 8 developers also follow this general model for programs 
involving user interaction. For example, the QuickDraw GX graphics system 
is implemented as a reentrant service. This implementation allows developers 
to perform image processing operations offscreen where, outside the coopera­
tive scheduling environment, they take maximum advantage of preemptive 
scheduling. However, when developers use QuickDraw GX to draw to the 
screen, they do so exclusively from their cooperative programs. Confining all 
screen drawing operations to the cooperative scheduling environment ensures 
that graphical operations involving user interaction are properly serialized. 

System 7 Application Compatibility 

Apple's goal is to make more of its operating services reentrant in future ver­
sions of Mac OS 8 so that preemptively scheduled operations, such as those 
involving server programs, might be able to use portions of the Human Inter­
face Toolbox and other such services that require cooperative scheduling 
today. In the meantime, Apple decided not to implement the cooperative ser-



THE OPERAnNG SYSTEM 35 

vices in reentrant form because, as you've read, human interface operations 
need to be serialized in some manner. Cooperative scheduling simplifies the 
programming required by developers to serialize these operations, and System 
7 developers are already familiar with this policy. Moreover, Apple wanted to 
maintain backward compatibility with System 7 applications, which are 
designed to rely on cooperative scheduling. 

With every Macintosh Operating System release, Apple has protected user 
investments in software and hardware by ensuring a high degree of backward 
compatibility. Many cooperative services are available in Mac OS 8 only to 
provide backward compatibility for System 7 applications. For example, 
Mac OS 8 supports the System 7 File Manager programming interface as a 
cooperative service even though Mac OS 8 supplies a new, fully reentrant file 
system. Developers can use either service for performing file management in 
their cooperative programs, but the reentrant service provides much better 
system performance. 

System 7 applications have additional compatibility dependencies that can­
not be solved simply by replacing the cooperative services with reentrant ver­
sions. In particular, System 7 applications rely on a single address space shared 
by all other user-interactive applications running in the system. (For now, suf­
fice it to say that an address space is the range of memory visible to a program 
that is executing.) As you will see in Chapter 3, Mac OS 8 supports multiple 
address spaces. When System 7 application compatibility becomes less critical 
to users and developers, Apple can move to an operating system where every 
application resides in its own protected address spaces. Programs written for 
Mac OS 8 will automatically take advantage of these features when they 
become available. 

Using Preemptively Scheduled Operations from a Cooperative Program 

In the cooperative scheduling environment of Mac OS 8, a program calling 
the cooperative services can't be preempted by any other program calling the 
cooperative services. However, a program calling the cooperative services can 
be preempted by a program calling only the reentrant services, which are 
implemented in areas-such as the file system and the rest of the 110 system­
where preemptive scheduling offers significant gains in system efficiency. A 
developer with an I/O-intensive or computation-intensive application can 
improve system efficiency and user productivity by dividing the application 
into one or more preemptively scheduled portions and a cooperatively sched­
uled portion that handles user interaction. As explained in Chapter 5, one 
portion of a scientific simulation application might perform preemptively 
scheduled statistical calculations in the background while another portion, 
cooperatively scheduled, allows the user to work with the program's human 
interface. 



36 

Chapter 14 explains 
how a developer 
structures a /lk.c OS 8 
program to handle 
events in a~ that 
supports cooperative 
scheduling. 

CHAPTER 2 ...,. ORIENTAnoN to THE MAc OS 8 PlATFORM 

APPLICAnoN-LEVEL SoFTWARE 

As you've seen in the previous discussions, the operating system exists largely 
to support application-level software-the programs that allow users to 
accomplish goals. These goals can be as diverse as managing a business, pro­
ducing a music video, and getting an up-to-the-minute ski report. 

Mac OS 8 supports two broad classes of application-level software: 

..... cooperative programs, with which users interact 

...,. server programs, which are invisible to users but nonetheless work very 
efficiently behind the scenes, often on behalf of cooperative programs 

Cooperative Programs 

Cooperative programs are those with which the user interacts-for instance, 
by using the mouse and keyboard to manipulate windows, menus, images, 
text, and other onscreen items. Examples of cooperative programs include 

..... document processors 

...,. digital video editors 

..... World Wide Web browsers 

...,. OpenDoc documents 

...,. games 

To present a human interface, a cooperative program uses the cooperative 
services. A cooperative program can also use the reentrant services, as illus­
trated in Figure 2.2 on page 29. Notice in this figure how cooperative pro­
grams are insulated from the hardware by the operating system services. This 
insulation from the hardware allows software developers to create programs 
without concerning themselves with the underlying hardware. 

A cooperative program must make all requests to the cooperative services 
from its main task-that is, its initial path of execution. Without any modifica­
tion, System 7 applications and OpenDoc parts already adhere to this design 
rule. When the developer of a new interactive program adheres to this rule 
while structuring the program to support cooperative scheduling, the Process 
Manager automatically synchronizes the program's access to the cooperative 
services. 

The OpenDoc environment also ensures that the Process Manager synchro­
nizes access to the cooperative services for all OpenDoc parts contained in an 
OpenDoc document. Because the part editors within an OpenDoc document 
handle user interaction, they use cooperative services. The main task for an 
OpenDoc document incorporates the document's constituent part editors, and 
this main task is cooperatively scheduled like the main task of any other coop­
erative program. Throughout the rest of this book, whenever the term cooper-



APPUCAnOH·lEvEL SoFtWARE 37 

ative program is used, you should read it to mean an application program 
with a user interface or a document containing various OpenDoc parts. 

~~HEmAGE 
~ 

In a client/server 
relationship, com­
puting operations are 
split between two 
entities: clients, which 
request services, and 
servers, which pro­
vide services. 

Open Doc 

OpenDoc technology became available on the Mac OS in November, 1995. OpenDoc 
development is also underway for the Windows, 0/S 2, and AIX platforms, and it has been 
tightly integrated into Mac OS 8. OpenDoc centers around user-extensible documents. Users 
buy or create compound documents, in which collections of software components, called 
part editors, replace monolithic applications. Each part editor is responsible for manipulat­
ing specific types of content within a portion, or part, of a compound document. 

The user doesn't launch part editors directly. Instead, the user works with the various parts 
of an OpenDoc document, which acts like a shell to hold the various parts. As the user works 
with a part, the code for that part editor runs and manipulates the data within the part. 

Users can add or remove a part just by dragging it in or out of a compound document. 
For example, a student preparing an online lab report might wish to include video images of 
a physics experiment. The student could use the mouse to drag a video part into the docu­
ment to incorporate an illustrative video. The student could likewise add a part that prepares 
three-dimensional graphs of laboratory data. As more ideas arise, the student could further 
extend the capabilities of the document by embedding additional parts. 

The modular nature of the N\ac OS 8 platform gives developers a great deal of flexibility in 
creating products that integrate easily with the operating system, and this modularity gives 
users a great deal of flexibility in choosing and using different configurations of this platform. 
In a similar way, the modular nature of OpenDoc gives developers a great deal of flexibility in 
creating products that integrate seamlessly with users' personally configured work environ­
ments. 

Server Programs 
In Mac OS 8, server programs provide background processing services, gener­
ally to client programs. Unlike cooperative programs, server programs in 
Mac OS 8 can have no direct interaction with users. A server program can 
have one program as a client or many, on the same computer or on remote 
computers connected to a network. 

Examples of server programs include 

...,_ World Wide Web servers 

...,_ file-compression utilities 

...,_ e-mail servers 

...,_ calculation engines for data-intensive statistical simulations 

...,_ database servers 



38 

Open Transport and 
related networking 
facilities are 
described in 
Chapter 16. 

CHAPTER 2 ..... ORIENTATION TO THE MAc 05 8 PLATFORM 

Unlike cooperative programs, which typically launch and quit under user 
control, server programs generally launch automatically when they're needed 
and run until they're no longer needed. When a developer wants to create a 
program that can start and quit automatically at any time and requires no user 
interaction, a server program is a logical implementation choice. For example, 
a file-compression utility that saves disk space by automatically compressing 
files that are a certain number of days or weeks old could be implemented as a 
server program. (As you will see in Chapter 13, a developer could use file 
modification dates as conditions that trigger the launching of this file-com­
pression utility.) 

Unlike cooperative programs, which share a single address space in a man­
ner that supports System 7 application compatibility, every server program 
operates on data in its own protected address space. (You'll learn more about 
Mac OS 8 address spaces in the next Chapter 3.) A program that greatly ben­
efits by having its data protected within its own address space is best imple­
mented as a server program. For example, a database server that supplies 
information important to the minute-to-minute operations of a company 
would be suitably implemented as a server program. 

A developer can design a single server program to satisfy the needs of mul­
tiple clients. For instance, a server that performs data-intensive statistical sim­
ulations could be used by a suite of cooperative programs-such as a scientific 
simulation program, an engineering design program, and a three-dimensional 
rendering program. And as this example suggests, server programs can use 
cooperative programs to present a user interface. As you'll see in Chapter 5, 
Mac OS 8 provides interprocess communication mechanisms that allow a 
server program and a cooperative program to exchange information and to 
direct each other in the manipulation of that information. 

Figure 2.4 illustrates how a cooperative program and a server program 
might interact. In this figure, a mail-editing program uses the Human Inter­
face Toolbox, a cooperative service, to present a human interface so that the 
user might create and read e-mail messages. The Human Interface Toolbox 
uses reentrant services of the 1/0 system to receive user input through the 
keyboard and mouse, and to determine various screen characteristics when 
displaying information onscreen. By manipulating the keyboard and mouse 
to interact with the mail-editing program, the user composes, addresses, and 
sends an e-mail message. 

When the user directs the mail-editing program to send a message, the pro­
gram uses a separate e-mail server program to deliver the message over a net­
work. The e-mail server program uses the reentrant Open Transport 
networking services to handle the network communications; Open Transport, 
in turn, manages the hardware networking device. 

The server program can also make use of the cooperative program to dis­
play incoming messages. In this scenario, the e-mail server program employs 
Open Transport to listen to network traffic for e-mail. When a message 



FIGURE 2.4 

SUMMARY 39 

Interactions involving a server program and a cooperative program 

Mail·editing program 

0 
~ 

Key: c=J Application·level software 

~ Operating system services 

--. Direction of use 

e 
t 

~// Open TrtnlspOrt ;/,/ 
/ networking services 

/ ~ / , / / / / ' / / 

e 
l 

Networking 
device 

arrives, the e-mail server program forwards the message to the mail-editing 
program. The mail-editing program then interacts with the user by employing 
the Human Interface Toolbox and other cooperative services to draw the text 
of the message inside a window, which is displayed on the user's screen. 

SUMMARY 

The modular nature of the Mac OS 8 platform offers these advantages to 
developers: 

...,. Because the operating system is abstracted from the hardware, Apple 
Computer and other developers can easily adapt Mac OS 8 to work 
with many different types of hardware, allowing hardware manufactur­
ers to develop well-differentiated products. 



40 CHAPTER ! ~ ORIEHTAnoH TO THE MAc OS 8 PlATFORM 

~ The microkernel and other operating system services are modularized, 
allowing Apple Computer and other developers to incorporate adapta­
tions and enhancements to the operation system with less effort. 

~ Because application-level software is abstracted from the operating sys­
tem, Apple Computer and other developers can easily adapt the operat­
ing system without disrupting programs that use its programming 
interface. 

The operating system offers reentrant services to programs in areas where 
the system can maximize efficiency through the concurrent processing of mul­
tiple, preemptively scheduled tasks. The operating system offers cooperative 
services to programs that present a human interface. Access to these services is 
cooperatively scheduled so that all calls to these services are serialized. In 
addition to human interface services, other cooperative services are supplied 
to maintain compatibility with applications written for System 7. 

Software products written to present a human interface are executed as 
cooperative programs. Software products written exclusively to provide off­
screen services are executed as server programs. A server program operates 
within its own address space, where its data is protected from inadvertent 
access by other programs. A server program presents no user interface but can 
use cooperative programs and operating system services to interact with the 
user. 

A developer can create an application that combines a cooperative program 
to perform user interaction onscreen with a server program that performs oper­
ations in the background. This combination allows the user to work produc­
tively with one part of the application even while another portion performs 
preemptively scheduled I/O-intensive and calculation-intensive operations. As 
you'll see in Chapter 5, a developer can also incorporate these same preemp­
tively scheduled operations in a cooperative program by creating additional 
tasks for that program. 



• • • • • • • • • • • • • • • • • • • • • • • 

Address 
and Me 
Protecti 

• • • • • • • • 

When a program is launched- for instance, when a user double-clicks its 
icon-the operating system prepares the program code for execution, creates 
memory areas for the code and its temporary data, and assigns locations for 
the code and data within these memory areas. In this way, the program 
becomes instantiated as a process o n the computer. The memory a reas created 
for a process lie within a 4-gigabyte (GB) range of logical addresses. This 
range o f addressable memory constitutes the address space for that process. 

Mac OS 8 mainta ins multiple simultaneous address spaces. A program 
can't reference any memory locations outside o f its address space. Therefore, 
if code in a given address space malfunctions, it can't corrupt the data in a dif­
ferent address space. Mac OS 8 provides other forms of memory protection, 
too. Mac OS 8 protects all code, for example, by mapping it into read-only 
memory a reas where it can't be corrupted by any errant code elsewhere in the 
system. Crucial system data is protected because it's stored in memory areas 
where operating system services- such as the microkernel, device drivers, and 
the fi le system-have read/write permission to the data, but application-level 
software has read-only permission. This greatly decreases the abi lity of appli­
cations to cause a system-wide crash. Yet another kind o f memory protection, 
ca lled guard pages, enhances system stability by limiting the amount of dam­
age that software can do if it attempts to read or write outside the memory 
area it's entitled to access. 

41 



42 CHAPTER 3 ..... ADDRESS SPACES AND MEMORY PRoTEcnOt-4 

KEY TERMS AND CONCEPTS 

..... A process is an instance of a program running at execution time. A pro­
cess is characterized by a set of one or more tasks and the operating sys­
tem resources necessary to support those tasks . 

..,.. A task is the basic unit of program execution in Mac OS 8. Every pro­
cess has at least one task. As you'll read in the next chapter, each task is 
assigned a priority and, when eligible for execution, is preemptively 
scheduled by the microkernel. 

..,.. A memory area is a range of logical addresses . 

..,.. Virtual memory is addressable memory beyond the limits of available 
physical memory. Mac OS 8 extends physical memory by storing on a 
secondary storage device, such as a hard disk, code and data not imme­
diately required by the CPU. 

..... A logical address is a memory address used by code when it's running. 
By comparison, a physical address is a memory address represented by 
bits on a physical address bus. Physical addresses are assigned to mem­
ory locations in RAM chips and to various hardware devices. When 
executing code, the CPU translates the logical addresses of an address 
space into physical addresses . 

..,.. An access permission stipulates whether other programs can read from 
or write to a memory area . 

..,.. A guard page is a 4-kilobyte (K) range of logical addresses that excludes 
all program access. Guard pages may appear at the beginnings and ends 
of memory areas to help prevent code from inadvertently accessing the 
wrong memory areas. If a programming error causes code to reference a 
guard page, the CPU generates an exception before the erring code can 
adversely affect a contiguous memory area. 

MAJOR POINTS OF INTEREST 

All code and data for a process exist within an address space. Because 
Mac OS 8 uses a 32-bit address space-which is the maximum size supported 
by the PowerPC CPU-an address space can contain up to 232 addresses. In 
every address space, in other words, addressable locations number up to 4GB. 

A 4-GB address space encompasses far more memory addresses than are 
available in physical memory on most computers. So Mac OS 8 uses a virtual 
memory system to extend the range of addressable memory beyond what is 
available in physical memory. The virtual memory system stores unused por­
tions of code and data on a secondary storage device, such as hard disk. The 
virtual memory system then transfers into physical memory only those por­
tions immediately needed by the CPU. (As you'll see in Chapter 6, the virtual 



THE (OOPERA11YE PROGRAM ADDRESS SPACE 43 

memory system also makes efficient use of secondary storage by using only 
enough disk space to support currently open programs.) 

When launching a program, the operating system creates memory areas that 
constitute only a small portion of an address space. The operating system cre­
ates a memory area for the program code, and it creates an initial memory area 
for program to store the data-such as its global variables and dynamic data 
structures-that it needs while it's running. Other portions of an address space 
are unavailable to the program because they're used to store code (including 
code for the microkernel and code for the libraries used by the program), or 
they're reserved for other uses by the operating system. From the 4GB of logi­
cal addresses in a single address space, at least 1GB is available to programs for 
data storage. 

As you'll see in Chapter 7, the operating system dynamically creates and 
releases memory areas as needed so that programs can store temporary data. 
The Dynamic Storage-Allocation Services provided by Mac OS 8 also allow 
developers to create their own memory areas suitable for special program 
needs. 

For overall system stability, Mac OS 8 employs multiple address spaces. The 
data referenced by a program in one address space is inaccessible to programs 
in other address spaces. Therefore, programming errors affecting one address 
space are isolated from all other address spaces. For example, suppose that a 
game program has a programming error that corrupts portions of its address 
space, causing the game to crash. Operating on data in its own address space, a 
World Wide Web server program continues serving web pages, immune to the 
game's error. 

Within an address space, areas of memory may be further protected by 
access permissions. For example, all executable code in Mac OS 8 is stored in 
read-only memory areas where code can't possibly be corrupted. And data 
used by critical portions of the operation system, such as the microkernel, is 
kept in areas protected by access permissions that prevent applications from 
corrupting it. 

For compatibility with System 7 applications, which rely on a single address 
space, all cooperative programs share a single address space. Every server pro­
gram, by comparison, is given its own address space. 

THE COOPERATIVE PROGRAM ADDRESS SPACE 

Whereas Mac OS 8 supports multiple address spaces, System 7 supports only 
one address space. To provide compatibility for System 7 applications, many 
of which are designed to read or manipulate each other's data structures, 
Mac OS 8 assigns all cooperative programs to a shared address space. Figure 
3.1 illustrates the cooperative-program address space for a system on which 



44 

FIGURE 3.1 

The figures in this 
book don't literally 
represent the layout 
of logical memory. For 
example, data for the 
Finder appears near 
the top of the address 
space in Figure 3.1; 
however, Finder data 
isn't necessarily 
mapped into mem­
ory areas at the top of 
the cooperative 
address space. 

CHAPTER 3 ~ ADDRESS SPACES AND MEMORY PRoTEcnON 

Cooperative programs sharing an address space 

Address space 
., 

~ 
~ 

Finder data 

E-mail editing 
program data 

Game 
program data 

y 

~ ~ 

the user has launched an e-mail editing program and a game program from 
the Finder program. All three cooperative programs store their temporary 
data in this address space. (These applications, by the way, are cooperative 
programs because they present a human interface.) 

Whereas the amount of memory that's available to applications in System 7 
is usually far less than 4GB, an entire 4-GB address space is available to them 
in Mac OS 8. This large amount of addressable memory, backed by the 
Mac OS 8 virtual memory system, allows the user to keep many more applica­
tions open simultaneously than is possible in System 7. 

Like Mac OS 8, System 7 uses a 32-bit address space, where any address 
between OxOOOO 0000 and OxFFFF FFFF is a valid logical address. In System 7, 
however, the range of logical addresses actually available from this address 
space is determined at system startup by the amount of virtual memory previ­
ously selected by the user. Mac OS 8, by comparison, dynamically allocates 
storage locations from this address range to satisfy program needs as they arise. 

For example, if a user in System 7 sets total memory to 12MB and launches 
an e-mail application and a game, they'd share 12MB of addressable memory 
even if they required only 5MB between them. If the user then tried to launch 
a photo-editing application requiring 8MB of addressable memory, the pro­
gram would fail to open because of insufficient memory. To launch the photo­
editing program, the user would need to quit the e-mail application or the 
game. 



PROTECTED ADDRESS SPACES FOR SERVER PROGRAMS 45 

When these same programs are launched in Mac OS 8, the operating sys­
tem supplies their memory needs dynamically. For example, the operating sys­
tem allocates from the 4-GB address space only the 5MB necessary to run the 
e-mail program and the game. When the user launches the photo-editing 
application, the operating system allocates another 8MB from this address 
space. As the user launches more applications, Mac OS 8 continues allocating 
more addressable memory from the address space. (As you'll see in Chapter 6, 
the number and size of applications that the user may launch are constrained 
only by the disk space available to the virtual memory system for storing tem­
porary data. To extend virtual memory without consuming any additional 
disk space, the operating system memory-maps the disk files of all code used 
at execution time.) 

The enormous range of addressable memory that Mac OS 8 supplies to 
cooperative programs nearly eliminates the memory fragmentation problems 
experienced by users of operating systems supplying smaller amounts of 
addressable memory. For example, a System 7 user might launch enough appli­
cations to fill all 12MB of available memory and then quit two applications to 
release 8MB of memory. If the two applications weren't contiguous in memory, 
the total available memory might be fragmented into two 4-MB areas, prevent­
ing the user from launching a 5-MB application. On a Mac OS 8 system, mem­
ory for this application would be allocated from some unused portion of the 
4-GB address space. 

PROTECTED ADDRESS SPACES FOR SERVER PROGRAMS 

When a server program is launched (usually this happens automatically when 
the user starts the computer), the operating system instantiates the process for 
that server program in its own address space. Because every server program 
exists in its own address space, where other programs can't address its data, 
server programs are protected from possible programming errors in coopera­
tive programs and other server programs. 

Figure 3.2 illustrates separate address spaces for two server programs: an 
e-mail server program and a World Wide Web server program. Each program 
operates on data stored exclusively in its own address space. 

To protect a program from being corrupted by other programs, a developer 
can implement portions of an application as a server program. Only the por­
tions of an application that incorporate a human interface need to be imple­
mented in a cooperative program. For example, after a user writes an 
electronic mail message with an e-mail editing program, that cooperative pro­
gram can call an e-mail server program and request the server program to 
deliver the message over a network. Likewise, the e-mail server program can 



46 

FIGURE 3.2 

CHAPTER 3 ... ADDRESS SPACES AND MEMORY PR01EcnOH 

Server programs protected by separate address spaces 

Address space 
--.,. 

~ ; 

E-mail server 
data 

'r 

~ 

:-t 
'· 

It 

~ 

Address space 

World Wide Web 
server data 

receive messages sent to the user from across the network and store them until 
the user is ready to read them with the e-mail editing program. 

To protect critical system data and increase system reliability, many non­
privileged Mac OS 8 services are implemented as server programs. For exam­
ple, the Process Manager and the Font Manager (which provides font­
rendering services to the system) are implemented as server programs, each in 
its own protected address space. As you'll see later in this chapter, privileged 
code-such as the microkernel-has protection mechanisms of its own. 

Another benefit to designing software as a server program is that it has an 
address space all to itself for storing its temporary data. Cooperative pro­
grams, by contrast, must share their address space with each other, reducing 
the amount of address space available to each cooperative program. 

ADDRESS SPACE SWITCHING BY THE MICROKERNEL 

The CPU can read from and write to the memory of only one address space at 
a time. The microkernel is responsible for keeping track of all the memory 
addresses for the code and data residing in these address spaces. The micro­
kernel manages these address spaces so that the CPU works with only one 
address space at a time. 

Figure 3.3 symbolizes how the microkernel manages multiple address 
spaces. In this figure, address spaces are represented as slides in a slide projec­
tor. The microkernel operates like the slide projector-while many address 



FIGURE 3.3 

CPU 

7 

7 

' 

ADDRESS SPACE 5WITCHIMG BY ntE MICROKERNEL 47 

Switching between address spaces 

Address space 

> 

Finder data 

E-mail editing 
program data 

Game 
program data 

A 

0 

Address space 

'; ., 

E-mail server data 

Address space 

World Wide Web 
server data 

> 

~ ~ 
~----------~ ~----------~ 

spaces are available, the microkernel projects only one at a time onto the CPU. 
In this figure, the microkernel is projecting the cooperative program address 
space onto the CPU, represented here as a projection screen. When the micro­
kernel determines that it's time for one of the server programs to execute on 
the CPU, the microkernel " projects" that program's address space onto the 
CPU. (Chapter 4 explains how the operating system determines which task of 
which program gets to execute on the CPU at any given moment.) 



48 CHAPTER 3 .... ADDRESS SPACES AND MEMORY PRoTEcnON 

SYSTEM-WIDE AND SHARED MEMORY AREAs 

A memory area is a range of logical addresses within an address space. In 
addition to supporting memory areas specific to individual address spaces, 
Mac OS 8 also maintains 

..,. system-wide memory areas, which can be referenced across all address 
spaces 

.... shared memory areas, which can be referenced within two or more 
address spaces 

A system-wide memory area appears at the same location in every address 
space. The contents of a system-wide area are potentially visible in all address 
spaces. For example, the microkernel employs system-wide memory areas for 
storing its own data, as shown in Figure 3.4. The microkernel is essentially a 
process that exists simultaneously in every address space. By storing its data in 
system-wide memory areas, the microkernel can efficiently manage system­
wide responsibilities. (To protect the stability of the entire system, only other 
essential operating system services-such as device drivers-have permission 
to change the data in the microkernel's system-wide memory areas. Access 
permissions are described in the next section.) 

The operating system also maps all executable code into system-wide mem­
ory areas. Thus, a single copy of the code from any library-such as any of the 
libraries implementing operating system services--can be efficiently shared by 
all of the programs using that library. As Figure 3.4 illustrates, the code for all 
programs on a system exists in identical locations across all address spaces in 
the system, even though the programs store their data in memory areas local 
to each address space. 

A program can create a system-wide memory area to share its data with 
programs in other address spaces. More likely, however, a program will use a 
shared memory area for this purpose. A shared memory area exists in two or 
more address spaces, but not necessarily all address spaces. A shared memory 
area can begin at the same address in various address spaces (which is useful if 
shared data is accessed by pointers, because pointers contain memory 
addresses), or it can begin at different addresses. A shared memory area can 
have different access permissions in different address spaces. For example, a 
program can write data into a shared memory area in its own address space 
but, as you'll see in the next section, make the data read-only to programs in 
other address spaces, thereby granting other programs access to a reliable 
copy of the data. 



FIGURE 3.4 

5YST£M·WIDE AND SHARED Mi.M.ORY AREAs 

System-wide memory areas 

Address space 

Finder data 

E-mail editing 
program data 

Game 
program data 

Address space 

E-mail server 

Key: ~ System-wide memory areas 

Address space 

World Wide Web 
server 

49 



50 

An exception is an 
error or other special 
condition that is 
detected by the CPU 
during code execu­
tion. An exception 
transfers control from 
the code generating 
the exception to 
another piece of 
code, usually an 
exception handler. 

A processor regis· 
ter is a named area of 
high-speed memory 
located on the CPU. 

CHAPTER 3 .... ADDRESS SPACES AND MEMORY PRoTEcnON 

ADDITIONAL FORMS OF MEMORY PROTECTION 

You've seen how Mac OS 8 separates server programs into their own address 
spaces, making them and the entire system more reliable. In addition to the 
protection afforded by separate address spaces, Mac OS 8 offers two more 
levels of memory protection that reduce the possibility of one program cor­
rupting the code or data used by another: 

...,. access permissions for memory areas 

.... guard pages for memory areas 

Access Permissions for Memory Areas 

Access permissions provide additional protection to memory areas, even to 
those within a single address space. A program can create a memory area and 
set one of these three permission levels: 

.... read/write, which allows tasks in the same address space to view and 
change the contents of the memory area 

...,. read-only, which allows tasks in the same address space to view but not 
change the contents of the memory area 

...,. excluded, which forbids all tasks from reading from and writing to the 
memory area 

When a program or the operating system assigns either read-only or 
excluded permission to a memory area, its contents are safe from corruption 
from other programs because no other program can write to that memory 
area. If a program or the operating system attempts to access a memory area 
to which it has insufficient access privileges, the processor generates an excep­
tion. 

As you've seen, the operating system maps all executable code into system­
wide memory areas. These areas are assigned read-only permission, thereby 
preventing any program from writing over and corrupting the code of any 
other program. 

If a program needs to share data with other programs, it can create a read­
only memory area for the data. The creator of a memory area can also specify 
separate access permissions for nonprivileged and privileged code. Nonprivi­
leged code is executed while the CPU is in user mode. User mode, in turn, is a 
state of operation for the PowerPC CPU that protects certain processor 
resources, such as various processor registers, from being modified. Nonprivi­
leged code is restricted from using various CPU instructions and hardware 
addresses and from changing data used by critical portions of the operating 
system. (To protect the stability of the user's system, most code in Mac OS 8 
runs while the processor is in user mode.) 



A page is the smallest 
unit, measured in 
bytes, of information 
that the virtual mem­
ory system can trans­
fer between physical 
memory and backing 
store. As you'll see in 
Chapter 6, a memory 
area is always a multi­
ple of some number 
of pages. 

A stack is a memory 
area where a task 
stores some of its 
temporary variables 
during execution. A 
stack frame is the 
area of the stack used 
by a routine for its 
parameters, return 
address, local vari­
ables, and temporary 
storage. 

ADDmONAL FORMS OF MEMORY PROTECTION 51 

Only the code for device drivers, the microkernel, and some other portions 
of the operating system is privileged. Privileged code is executed while the 
CPU is in supervisor mode. Supervisor mode, in turn, is a state of operation 
for the PowerPC CPU that allows full access to critical processor resources, 
such as all processor instructions and the tables that control memory protec­
tion. Privileged code can execute CPU instructions that are restricted from 
nonprivileged code and can access hardware addresses invisible to nonprivi­
leged code. 

The data used by privileged code can be excluded from nonprivileged code. 
A device driver, for example, may create a memory area that allows read/write 
access to privileged software but read-only access to nonprivileged software. 
Even privileged software can be denied write access to a memory area. For 
example, the system-wide memory areas containing code are always assigned 
read-only access for both privileged and nonprivileged software. Video RAM, 
which also resides in a system-wide memory area, is assigned read/write per­
mission for both nonprivileged and privileged code. 

(As a sidelight, it should be noted that to help protect system reliability, 
only privileged code can switch the CPU between supervisor mode and user 
mode. The microkernel always runs in supervisor mode; functions that call the 
microkernel cause the CPU to switch to supervisor mode. Before returning 
execution control back to nonprivileged code, the microkernel switches the 
CPU back to user mode.) 

Guard Pages 
Guard pages provide another level of protection, even to memory areas with 
read/write permission. When any program is launched in Mac OS 8, the oper­
ating system automatically places one or more guard pages at each end the 
program's stack and around the areas (sometimes known as heaps) created for 
its dynamic memory allocation needs. A program can specify its own number 
of guard pages to appear at the beginning and end of these areas and around 
any additional memory areas it creates. Mac OS 8 allows no access whatso­
ever to guard pages; neither privileged nor nonprivileged software can write to 
or read from them. 

Figure 3.5 illustrates a memory area with guard pages. If any code, even for 
the program using that memory area, attempts to access a guard page, the 
CPU generates an exception. For example, a program can surround its stack 
with a range of guard pages equal to the length of its maximum stack frame. 
These guard pages then prevent the program's stack from overflowing into the 
memory area of any other program. If the stack were to overflow and the 
stack attempted to access one of its guard pages, the CPU would send an 
exception to the program with the overflowing stack, resulting in the termina­
tion of that program before it could adversely affect any adjoining memory 
areas. 



52 

FIGURE 3.5 

CHAPTER 3 ~ ADDRESS SPACES AND MEMORY PROTEtnON 

A memory area with guard pages 

Guard page 

Memory area '7 

Guard page 

SUMMARY 

r-
4 

Accessible 
memory 

Mac OS 8 uses multiple address spaces. The microkernel manages the system's 
multiple address spaces so that the CPU always references the right address 
space at the proper time. 

By separating server programs into their own address spaces, Mac OS 8 
protects these programs, making them and the whole system more reliable. 
Cooperative programs share a single address space to support System 7 appli­
cation compatibility. Within this 4-GB address space, the large amount of 
addressable memory virtually eliminates memory fragmentation problems so 
that the user can open the greatest possible number of cooperative programs. 

Mac OS 8 provides other forms of memory protection, too. First, programs 
as well as the operating system can assign read-only or excluded privileges to 
memory areas, thereby limiting access to and possible corruption of these 
areas by other programs. The operating system, for example, loads all code in 
areas that permit read-only access. Second, a program can place guard pages 
around a memory area to help prevent the program from accidentally access­
ing adjacent memory areas. 

In order for code and data to be shared among address spaces, Mac OS 8 
provides system-wide memory areas, which are visible in every address space, 
and shared memory areas, which are visible only in the address spaces of the 
programs that need access to these areas. 



PLANNING A PRODUCT FOR MAc 05 8 53 

PLANNING A PRODUCT FOR MAc 05 8 

If you're a developer, you can begin preparing to take advantage of multiple 
address spaces by determining whether some portion of your product benefits 
from the extra protection afforded by a separate address space. If so, you 
should plan to implement this portion as a server program. 



• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

The Archi 
of the 
Multitas 1ng Mac 

A multitasking operating system allows multiple programs to execute in a 
simultaneous or nearly simultaneous manner. Mac OS 8, unlike previous ver­
sions of the Mac OS, performs preemptive multitasking-that is, Mac OS 8 
actively controls moment-to-moment program access to the CPU. Through 
the use of a cooperative scheduling policy for cooperative programs, 
Mac OS 8 also allows System 7 applications to run efficiently in this preemp­
tive multitasking environment. 

Preemptive multitasking makes efficient use of the computer. For example, the 
user can continue working even while background operations- such as e-mail 
transactions, automated file backups, and complex image-rendering calcula­
tions- are taking place. This type of system performance translates to improved 
user productivity. 

To the user, it appears that multitasked operations take place simulta­
neously. A CPU can execute only one operation at a time, but the microkernel 
interleaves the execution of these operations so quickly that it looks as if 
they're happening simultaneously. For example, between the time that a user 
selects a paragraph of text and chooses the Copy command, the microkernel 
may have instructed a single-CPU system to execute a network I/0 operation, 
perform part of a statistical calculation, or execute several system operations. 
On a Mac OS 8-compatible computer with more than one processor, multiple 
tasks like these actually do run simultaneously. 

55 



56 CHAPTER 4 .... THE ARCHITECTURE OF THE MuLnTASKING MAc 

KEY TERMS AND CONCEPTS 

...,. Preemptive multitasking is the ability of an operating system to allocate 
access to the CPU and other operating system services among multiple 
tasks, thereby allowing multiple programs to execute in a nearly simul­
taneous manner. The Mac OS 8 microkernel provides the mechanisms 
for preemptive multitasking . 

...,. A task is the basic unit of program execution in Mac OS 8. A task is 
always associated with a process, and several tasks can be associated 
with a single process. Whenever any task within a process is eligible for 
execution, the microkernel preemptively schedules the task for execu­
tion along with all other eligible tasks. Tasks that are temporarily ineli­
gible for execution are said to be blocked . 

...,. A process is an instance of a program at execution time. A process is 
characterized by a set of one or more tasks and the memory and other 
operating system resources allocated to those tasks. (Mac OS 8 uses 
processes for tracking and reclaiming these resources.) 

...,. Preemptive scheduling is the policy by which the microkernel allocates 
moment-to-moment access to the CPU among all eligible tasks. The 
microkernel uses a set of well-defined rules to schedule which task 
should execute at any given time. Following these rules, the microkernel 
can suspend the execution of one task and resume the execution of 
another. Preemptive scheduling is necessary for preemptive multitask­
ing. To synchronize access to the cooperative services and provide com­
patibility for System 7 applications in this preemptively scheduled 
environment, Mac OS 8 also employs a scheduling policy called cooper­
ative scheduling . 

...,. Cooperative scheduling is the Mac OS 8 policy for scheduling access to 
cooperative services. When programs cooperate by yielding execution 
eligibility to one another in their event-handling code (described in 
Chapter 14), the Process Manager serializes their calls to the coopera­
tive services. This serialization allows each call to execute to completion 
without being interrupted by another call to the same service. Coopera­
tive scheduling rotates eligibility among the main tasks of cooperative 
programs so that each can, in turn, be preemptively scheduled with all 
other tasks in the system . 

...,. A main task is the first task created by the microkernel for a process. 
The main tasks for cooperative programs can safely use Mac OS 8 
cooperative services, whereas all other tasks in Mac OS 8 must use only 
reentrant services. A developer can design a program so that after it 
becomes instantiated as a process, it may contain other tasks in addition 
to its main task. 



FIGURE 4.1 

MAJOR POI~S OF INTEREST 57 

Multitasked operations in Mac OS 8 

r .t file Etlt 

ms remaining to be co~: em 
Ju1W's..DOS 

MAJOR POINTS OF INTEREST 

To let the user make the most productive use of the computer, the microkernel 
will preempt the execution of one task and sta rt or resume the execution o f a 
mo re urgent task. For example, the microkernel might suspend the execution 
of a file compression program to let a multimedia program prepare video data 
fo r immediate onscreen play. At the next opportune moment, the microkernel 
resumes execution of the file compressio n operation. 

Preemptive multitasking also makes efficient use of the CPU by keeping it 
as busy as possible. For example, because the CPU executes instructions faster 
than UO devices transfer data, the microkernel will suspend the execution of a 
program that is waiting for data to come off a disk. The operating system then 
schedules other operations fo r execution, keeping the CPU busy even while 
the program is waiting for data from the disk. When that data becomes avai l­
able, the microkernel reschedules the program for execution. 

Even while the microkernel continually suspends and resumes task execution 
to keep the CPU busy, the operating system remains highly responsive to users. 
Figure 4.1 illustrates multiple tasks operating concurrently. The user has begun 
copying one large file to a computer connected on a network and then begun 
copying a second large file to another computer. As the CD-ROM animated 
version of this figure demonstrates, before either copy operation is finished, the 
user can delete files and launch and interact with multiple applications. At the 



58 

A hardware inter­
rupt is an exception 
signaled to the CPU 
by a hardware 
device, notifying the 
CPU of a change of 
condition in the 
device. In response, 
the CPU momentarily 
suspends application 
execution to execute 
a routine called an 
interrupt handler. 

CHAPTER 4 ~ THE ARc:HmCTURE oF THE MuLntASKING MAc 

same time that all of this activity takes place, the CPU can also execute other 
operations that are invisible to the user-Qperations such as receiving and stor­
ing e-mail, serving World Wide Web pages to remote users, and compressing or 
decompressing large files. 

Although previous versions of the Mac OS provide mechanisms by which 
applications can share the CPU, Mac OS 8 is the first Mac OS to offer a pre­
emptive multitasking environment-that is, one in which the operating system 
can preemptively suspend one task in order to allow others to execute. Previ­
ous versions of the Mac OS employ a type of multitasking called cooperative 
multitasking. In the cooperative multitasking environment of System 7, appli­
cations cooperate by yielding control of the CPU to one another. Except for 
hardware interrupts and a few other mechanisms that can momentarily sus­
pend the execution of an application, there are no mechanisms in that operat­
ing system for preemptively controlling application access to the CPU. 

In the cooperative multitasking environment, developers must program 
task scheduling into their software. It's impossible for developers to anticipate 
the scheduling priorities that will exist on any system when their programs are 
actually running. The Mac OS 8 microkernel, however, does know from 
moment to moment what demands are being made of the computer, and the 
microkernel preemptively schedules task execution according to the priority of 
these demands. 

As you read in Chapter 2, the cooperative services aren't reentrant. There­
fore, Mac OS 8 uses a policy called cooperative scheduling to serialize access 
to these services. System 7 applications and OpenDoc parts are automatically 
compatible with this cooperative scheduling policy. Cooperative scheduling 
allows only one task at a time to be eligible to call the cooperative services, 
thus preventing one program from preempting another program's call to such 
a service. The single eligible task in the cooperative scheduling environment is 
preemptively scheduled with all other eligible tasks across the system, such as 
tasks for server programs and for the operating system itself. 

As you'll learn in the next chapter, developers can design multiple threads 
of execution into their software products to increase system efficiency and 
user responsiveness. A multithreaded program is structured into parallel oper­
ations, each of which gets access to the CPU. This feature allows a user to con­
tinue working within an application without waiting for the application to 
complete lengthy operations. For example, a scientific simulation application 
could create one task that handles user interaction and another task that per­
forms intensive statistical calculations in the background. The user can con­
tinue to interact with the program even while it's performing statistical 
calculations. 

The microkernel interleaves the execution of multitasked operations so 
quickly that it looks as if they're happening simultaneously on computer with 
one CPU. On a Mac OS 8-compatible computer with more than one proces­
sor, however, multiple tasks actually do run simultaneously. Developers don't 



PROCESSES AND TASKS 59 

need to perform any special programming to take advantage of multiproces­
sor computers; instead, the microkernel automatically schedules tasks to run 
on all available processors. 

d~l ~ llauTAG£ 
~~ 
~ Cooperative Multitasking in System 7 and System 6 

Mac OS 8 processes 
are analogous to pro­
cesses in the UNIX, 
Windows NT, and 
Windows 95 operat­
ing systems. 
Mac OS 8 tasks are 
analogous to the 
threads in these sys­
tems. Apple uses the 
tenn task to avoid 
confusion with the 
threads created by 
System 7 developers 
using the Thread Man­
ager. See the next 
chapter for more 
information about 
threads in Mac OS 8. 

Unlike Mac OS 8, where the microkemel preemptively controls access to the CPU, System 7 
employs a cooperative multitasking environment, where the currently executing application 
exclusively decides when to relinquish access to the CPU. Typically, a System 7 application 
processes events relating to user and computer activity; when there are no events for the 
application to handle, the application yields and lets other applications execute. In this way, 
applications take turn handling events and sharing execution time on the CPU. 

In the first Macintosh Operating System, the computer was designed to be used with 
only one application at a time. In this environment, preemptive scheduling offered very little 
benefit, and so reentrancywasn't built into the operating system. As the Macintosh computer 
grew in capabilities, it became feasible for users to work with several programs simulta­
neously. To allow users to open multiple programs while continuing to run older applica­
tions, the System 6 MultiFinder introduced an environment where applications cooperated 
to share access to the nonreentrant services of the operating system. System 7, in turn, fully 
incorporated this environment, providing backward compatibility for applications devel­
oped for System 6. 

PROCESSES AND TASKS 

In Mac OS 8, a task is the basic unit of program execution; it performs a 
sequence of programmatically defined operations. When launched, every pro­
gram has at least one task, called its main task. The main task of a video­
effects editing program, for example, might present an interface that allows 
the user to select from or create a variety of transitional effects when sequenc­
ing video tracks. A process may incorporate other tasks as well; for a video­
effects editing program, a second task may be employed to write and read 
video data to and from a hard disk. 

In Mac OS 8 nomenclature, a process is a passive entity-that is, a process 
isn't executable. Instead, it is the tasks associated with a process that are exe­
cutable. In order to be executed, every task requires various operating system 
resources, such as a set of processor registers and memory areas for storing its 
temporary data. All of the resources allocated to a task are packaged by the 
microkernel into a process, which the operating system uses to track these 
resources. 



60 

FIGURE 4.1 

A stack is a memory 
area where a task stores 
some of its temporary 
variables during execu­
tion. The Dynamic Stor­
age-Allocation Service, 
described in Chapter 
7, supplies additional 
memory areas from 
which a program can 
dtnamically allocate 
and release memory 
storage for temporary 
data dlling execution. 

CHAPTER 4 ...,. THE ARc:HmCTURE OF THE MuLmASKI~"«G MAc 

Memory areas for a Mac OS 8 process with one task 

Address space 

'! ~ 
~ ~ 

Code 
(for main task) 

Stack 
(for main task) 

Per-process 
dynamic storage 

' 't 
~ ·~ 

When a program is launched-for instance, when a user double-clicks its 
icon-the operating system prepares the program code for execution, creates 
memory areas for the code and its temporary data, and assigns locations for 
the code and data within these memory areas. In this way, the program 
becomes instantiated as a process. Figure 4.2 illustrates some of the memory 
resources required by a process with a single task: 

...,. a memory area for the executable code of the task itself 

..... a stack for use by the task 

...,. one or more memory areas for dynamic storage allocation by the task 

Every task gets its own stack and set of CPU registers. However, as Figure 
4.3 shows, if a process contains more than one task, all tasks in the process 
initially share the same dynamic storage memory area, in which the tasks save 
such temporary data as data structures and global variables. Mac OS 8 auto­
matically supplies additional memory areas if they become needed by a pro­
gram during execution time, and programs can allocate additional memory 
areas for their dynamic storage. 

When a cooperative program is launched, the operating system instantiates 
a process for it within the address space shared by all cooperative programs. 
When a server program is launched (usually this happens automatically when 
the user starts the computer), the operating system creates a new address space 
and instantiates a process for the server program within that address space. 
When a process is terminated (as when a user quits an application), the oper-



FIGURE 4.3 

TASK 5CHEDUUNG 61 

Memory areas for a Mac OS 8 process with two tasks 

Address space 

)' ) 
j j 

Code 
(for main task) 

Code 
(for second task) 

Stack 
(for main task) 

Stack 
(for second task) 

Per-process 
dynamic storage 

., 
t 

' ~ 

ating system releases all of the resources related to that process-an improve­
ment over System 7, which leaves various system resources in memory if the 
application using them is abnormally terminated, such as when a program­
ming error within an application causes it to crash. 

TASK SCHEDULING 

After creating a process, the operating system schedules its tasks for execu­
tion. At any moment, the main task of only one cooperative program can be 
eligible for execution, thereby synchronizing access to the cooperative ser­
vices. This and all other eligible tasks are then scheduled preemptively by the 
microkernel according to its priority-based scheduling algorithms. 



62 

FIGURE 4.4 

A synchronous 110 
operation is one 
where the task 
requesting input to or 
output from a device 
cannot continue exe­
cuting until the opera­
tion is finished. 

CHAPTER 4 ..... THE ARCHITECTURE OF THE MULnTASKING MAc 

A task blocking on a synchronous VO operation 

File 1/0 
task 

Begin 
file 

read 

Blocked while 
waiting for 
more data 

Key: ~ Task is running 

~ Task is blocked 

Preemptive Scheduling 

Data available; 
continue reading 

Blocked while 
waiting for 
more data 

The microkernel preemptively schedules moment-to-moment access to the 
CPU among all eligible tasks. When it determines that an eligible task should 
execute, the microkernel gives it access to the CPU by suspending the cur­
rently executing task. This transition point, where the currently executing task 
is suspended and the execution of a different task is undertaken, is called a 
context switch. During a context switch, the microkernel saves the execution 
state of the suspended task and replaces it with the execution state of the task 
about to execute. 

Eligibility 

Not all tasks are eligible for execution. Tasks that aren't eligible for execution 
are said to be blocked on some condition, such as the completion of a synchro­
nous 110 operation. When a task is blocked on some event and that event occurs, 
the task becomes eligible for execution again. 

Figure 4.4 illustrates how a task performing a synchronous file read opera­
tion is blocked whenever the task is forced to wait for data from the disk 
drive. The task becomes eligible for execution as soon as the disk drive has 
sent more data. Whenever the task in this figure is blocked, the microkernel 
sends other tasks to the CPU for execution. 

Scheduling Policies 

Many tasks can be eligible for execution, but the CPU can execute only one 
task at a time. The microkernel determines which task gets to be executed. 
The first criterion for making this determination is priority: the task with the 
highest priority is given execution precedence. 



TASK SCHEDUUNG 63 

Developers assign prionttes to their program tasks. The following list 
shows the general priority levels for tasks and the types of programs to which 
these priorities are typically assigned . 

._ Real-time tasks, such as those for sound playback and video capture. 
These tasks are given the highest priority. Because of the time-critical 
nature of a real-time task, it executes until it's blocked, and it immedi­
ately resumes execution as soon as the task becomes eligible again. Very 
few programs employ tasks assigned this level of priority . 

._ Operating system tasks, such as those for the 1/0 system and the Process 
Manager. Only real-time tasks have higher priority. Because operating 
system tasks generally execute for such short durations, the CPU spends 
very little time executing the tasks at this priority level. 

._ Server program tasks. The CPU spends much of its time executing tasks 
at this priority level. 

._ The main tasks of cooperative programs. As you'll read in the next sec­
tion, no more than one is ever eligible for execution . 

._ Additional tasks created for cooperative programs. Developers gener­
ally assign these tasks a lower priority than they assign to their main 
tasks. However, a developer may assign a higher priority, such as the 
priority for a server program, to a cooperative program's additional 
tasks. For example, if a cooperative program uses an additional task to 
perform critical data 110, the additional task may be assigned a higher 
priority than the main task. Such a task would spend most of its time 
waiting for 1/0 operations to complete, so it wouldn't degrade the user 
responsiveness of the cooperative program's main task, yet the addi­
tional task's higher priority would ensure that it quickly gets the small 
amount of execution time needed to initiate the next 1/0 operation . 

._ Lowest priority tasks. These tasks generally get to execute only when 
there are no other eligible tasks. For example, a task with this priority 
might be used to perform automated file backups when the user is away 
from the computer. 

A task with one of the highest levels of priority-that is, a real-time task or a 
system task-always executes until it's blocked. If there are no tasks eligible at 
these priority levels, the task with the next highest priority on the system is 
given precedence to execute on the CPU. At the time this book went into pro­
duction, Apple Computer was tuning its scheduling algorithms so that the 
highest-priority task is given access to the CPU somewhat less than 100 per­
cent of the time (unless the task's a real-time or system task, both of which 
always get full access to the CPU). This scheduling approach prevents a task 
from starving lower-priority tasks from execution. Apple intends to refine 
these algorithms based on the performance of programs running on prerelease 
versions of Mac OS 8. 



64 

FIGURE 4.5 

CHAPTER 4 .... THE ARCHITECTURE OF THE MULTITASKING MAc 

Preemptive task scheduling by the microkernel 

Main task 
for a 

web browser 

All other 
tasks 

in system 

Preempted by 
microkemel 

Microkemel 
schedules 
other tasks 

Key: .... Running 

==::> Blocked 

Blocked while 
waiting for 

network data 

Microkemel 
schedules 
other tasks 

Microkemel 
resumes 

web browser 

+ Preempted by 

I 

Web browser 
receives 

network data, 
continues 
running 

Microkemel 
resumes 

web browser 

microkemel 

Microkemel 
schedules 
other tasks 

According to their priorities, then, the microkernel shuffles eligible tasks on 
and off the CPU. This is illustrated in Figure 4.5, where CPU time for the main 
task of a World Wide Web browser program is indicated by the shaded por­
tions of the time line at the top of the figure. The CPU time allotted to all 
other tasks in the system is illustrated by the shaded portions of the bottom 
time line. At the beginning of the time represented in this figure, the browser's 
main task has the highest priority and hence executes. As soon as a task with a 
higher priority becomes eligible, the microkernel preempts the browser's task 
and performs a context switch to allow the higher-priority task to run. When 
the main task of the browser has the highest priority again, the microkernel 
performs another context switch and resumes execution of the browser's main 
task. If this task becomes blocked waiting for the arrival of data from the net­
work, the microkernel performs another context switch and allows the task 
with the next highest priority to execute. When the network data becomes 
available to the browser's main task, the task becomes eligible, and the micro­
kernel schedules it once more for execution. 



FIGURE 4.6 

TASK 5CHEDUUNG 

Execution time divided by time slices for tasks with equal priority 

0 
Web 

Begin End 
time time 

server slice slice 
task 

I 

0 • 
I 

Database 
Begin 
time 

server slice 
task 

0 
File 

compression 
task 

Key: ... Task Is running 

c::!> Task Is blocked 

Time Slicing 

Begin End 
time time 
slice slice 
+ 

• 
I 

End Begin 
time time 
slice slice 

• 
I 

Begin End 
time time 
slice slice 

65 

> 
End 
time 
slice 

• 
I • Begin 

time 
slice 

A task with one of the highest levels of priority-that is, a real-time task or a 
system task-always executes until it's blocked, even if another task with 
equal priority becomes eligible. However, for tasks at most other priority lev­
els, the microkernel uses a type of scheduling called time slicing to allow tasks 
of equal priority to share CPU time. In this scheduling policy, when multiple 
tasks have the same priority, and that becomes the highest priority on the sys­
tem, the microkernel allows each task to execute for an internally specified 
time interval called a time slice. When a time slice expires, the microkernel 
switches to the next task with the same priority. 

Figure 4.6 illustrates tasks for three server programs. Because they're all eli­
gible and all share the same priority level, the microkernel divides execution 
time among them so that each task executes for a time slice before the micro­
kernel switches to another task. 



66 CHAPTER 4 ~ THE ARCHITECTURE OF THE MuLnTASKING MAC 

Cooperative Scheduling 

The Process Manager coordinates scheduling for the main tasks of all cooper­
ative programs. From among all such main tasks on the system, no more than 
one at any moment can be eligible for execution. The microkernel, in turn, 
preemptively schedules this task for execution. By rotating eligibility among 
the main tasks of all cooperative programs, the Process Manager gives each 
the opportunity to execute. 

Synchronizing Access to the Cooperative Services 

As described in Chapter 2, the cooperative services support the Mac OS 8 
human interface and maintain compatibility with applications written for Sys­
tem 7. Because they aren't reentrant, cooperative services must complete the 
request from one task before receiving another. Otherwise, data could be cor­
rupted were one task to preempt another. For example, suppose one program 
has called the Human Interface Toolbox to create a window. The Human 
Interface Toolbox must finish creating that window before receiving any more 
requests to create windows; otherwise, window-creation operations will fail. 

To synchronize calls to its cooperative services, Mac OS 8 defines an envi­
ronment for cooperative scheduling, so called because programs cooperate to 
safely schedule access to these services. The main thread of a cooperative pro­
gram 

~ yields eligibility whenever there are no events for it to respond to 
...,. contains all of the program's calls to the cooperative services 

When a cooperative program is launched-for instance, when a user double­
clicks its icon-the Process Manager instantiates a process for that program 
within the address space shared by all other cooperative programs, and the 
operating system creates a main task for the newly instantiated process. The 
main task then waits for the operating system to send it events-user actions 
or system occurrences to which it must respond. Events include keystrokes 
and mouse clicks from the user, requests from other programs (for example, to 
print files), or any other activities in the system (for example, the completion 
of 110 operations). . 

When there are no events for a main task to handle, it yields its eligibility to 
execute. It becomes eligible for execution as soon as an event for it arrives. 
When the microkernel gives that task access to the CPU, the task responds to 
the event and then yields its eligibility again, thereby allowing other tasks on 
the system to efficiently share the CPU. 

An OpenDoc part doesn't have a main task. Instead, OpenDoc creates a 
main task for every OpenDoc document when it's opened by the user. For 
every OpenDoc document, all part editors run within the main task of that 



TASK 5cHEDUUI'IG 67 

FIGURE 4.7 Making all calls to cooperative services from the main task of a cooperative program 

Cooperative program Cooperative services 

Main task 

Additional task 

Additional task 

Additional task 

Human Other 
Interface QuickOraw Assistance cooperative 
Toolbox services 

Reentrant services 

0 Sound Open Other 

Manager Transport reentrant m 
services 

document. The OpenDoc environment automatically ensures safe access to 
the cooperative services from OpenDoc parts. 

As you'll see in the next chapter, a developer can incorporate multiple 
threads of execution within a cooperative program by creating additional 
tasks. OpenDoc developers can also create additional tasks for their OpenDoc 
parts. As Figure 4. 7 shows, the cooperative services are called exclusively from 
a cooperative program's main task. The main task and all additional tasks can 
call the reentrant services. 

Whereas the microkernel preemptively schedules the execution of all eligi­
ble tasks, only one cooperative program can be eligible for execution at a 
time. For example, the moment the user interacts with an e-mail application, 
such as by moving the cursor to the application's menu bar and pressing the 
mouse button, the Process Manager makes the main task of the e-mail appli­
cation eligible for execution. The main tasks o f all other cooperative programs 
are blocked. With only one cooperative program eligible for execution at a 
time, the Process Manager serializes all calls to the cooperative services. 

The Blocking of Main Tasks 

Whenever there are no events for a cooperative program to respond to, the 
main task for that program yields its eligibility and becomes blocked. (Pro­
gram event handling is described in Chapter 14.) If no user or system events 
are pending for any cooperative programs, all of their main tasks may become 
blocked. 

Figure 4.8 illustrates three applications operating in the cooperative pro­
gram address space: a game, a source code editor, and the Finder. The process 
for each cooperative program has a main task, and of these three, only the 



68 

FIGURE 4.8 

CHAPTER 4 .... THE ARCHITECTURE Of THE MuLmASKJHG MAc 

Cooperative scheduling of main tasks for cooperative programs 

7 

' 

Address space for 
cooperative programs 

Game 

Source code editor 

Flnder 

Microkemel 

) 

( 

Key: • Blocked 

Q Made eligible by the Process Manager 

main task for the source code editor is eligible for execution. The other main 
tasks have yielded and are blocked. In this figure, the microkernel grants the 
main task for the source code editor access to the CPU for execution. 

Figure 4.9 shows a server program that compiles code created with the 
source code editor. Outside of the the cooperative scheduling environment, 
any number of tasks may be simultaneously eligible for execution. Although 
many tasks may be eligible on the system, a CPU can execute only one at a 



FIGURE 4.9 

TASK ScHEOUUNG 

Preemptively scheduled tasks for a cooperative program and a server program 

., 

~ 

Address space for 
cooperative programs 

Game 

Source code editor 

Finder 

> ., 

~ ~ 

Address space for 
compiler 

Compiler 

Microkemel 

Key: • Blocked 

Q Eligible for execution 

) 

~ 

69 

time. The microkernel uses its priority-based preemptive scheduling rules to 
decide which task that will be. 

In this example, the source code editor has been assigned a higher priority 
than the compiler, so the microkernel allows the source code editor to con­
tinue to execute. However, if the source code editor were to become blocked 
along with the other cooperative programs {as if, say, a ll were waiting for 



70 CHAPTER 4 ~ THE ARCHITECTURE OF THE MuLnTASKING MAc 

events), then the compiler would begin executing. Or if another task with a 
higher priority were to become eligible, the microkernel would preempt the 
source code editor and allow the higher-priority task to execute. 

g~nwuwHom 
The Process Manager 

The Mac OS 8 Process Manager subsumes the System 7 Process Manager. Mac OS 8 supports 
all of the functions and data structures of the Process Manager from System 7. 

SUMMARY 

For increased system efficiency, Mac OS 8 performs preemptive multitasking. 
This allows the CPU to remain as busy as possible. The microkernel uses pri­
ority-based scheduling algorithms to determine which task gets immediate 
access to the CPU: the more urgent the task, the sooner it gets execution time. 

Not all tasks are eligible for execution. For example, a task waiting for a 
file I/0 operation to complete will become blocked so that the CPU can imme­
diately begin executing some other task. When the file I/0 operation com­
pletes, the previously blocked I/0 task becomes eligible to execute again. 

Cooperative programs yield execution eligibility to one another in the 
event-handling code of their main tasks. This cooperative yielding of control 
allows the Process Manager to serialize all calls to the cooperative services. 
Every call to one of these services executes to completion without being inter­
rupted by another call to the same service. Through this arrangement, the 
main tasks of cooperative programs are able to safely call the cooperative ser­
vices. All other tasks must use only the reentrant services. 

PLANNING A PRODUCT FOR MAc OS 8 

If you're an application developer, you should consider whether any of your 
application code can be implemented in a task that's separate from your appli­
cation's human interface code. Such an implementation could take fuller 
advantage of preemptive multitasking and increase overall system efficiency. 



• • • • • • • • • • • • • • • • • • • • • • • 

Multithre 
Program 

M uch like the operating system makes the most efficient use of computer 
resources through its multitasking capabilities, a p rogram can make the most 
efficient use of computer resources by incorporating multithreading capabili­
ties. Whereas multitasking efficiently interleaves the execution of multiple pro­
grams on a single CPU, multithreading efficiently interleaves multiple paths o f 
execution within a single program or set of programs. For example, one 
thread of execution in a program might handle user interactions, another 
might perform calculations, and a third might perform fi le VO. 

Multithreading makes an application highly responsive to the user while 
increasing overall system performance. On multiprocessor computers, where 
tasks execute simultaneously on multiple processors, multithreading can offer 
significant performance gains to high-end types o f applications. 

Mac OS 8 developers can thread products using one or a combination of 
three different approaches. Developers can divide operations so that they're 
performed by 

~ more than one task in a single process; for example, by incorporating a 
main task and one or more additional tasks in a cooperative program 

~ tasks in more than one process; for example, by incorporating a user 
interface task in a cooperative program and background processmg 
tasks in a separate server program 

~ more than one cooperatively scheduled thread within a task 

71 



71 CHAPTER 5 ~ MULTITHREADED PROGRAMS 

KEY TERMS AND CONCEPTS 

~ A thread is path of execution for an application. To thread an applica­
tion is to give it more than one path of execution. 

~ A task is the basic unit of program execution. Preemptively scheduled and 
assigned a priority by the microkernel, every task has its own stack and set 
of registers. The microkernel uses processes to track the resources required 
by tasks so that every process is associated with at least one task, and sev­
eral tasks can be associated with a single process. 

~ A cooperatively scheduled thread is one of multiple paths of execution 
in a task. Within a task, these threads cooperate by yielding execution 
control to one another. Cooperatively scheduled threads can be sched­
uled for execution only when the task containing them is running. 
Although the microkernel preemptively schedules all eligible tasks for 
execution, programs have execution control over the cooperatively 
scheduled threads they create. From the main task of a cooperative pro­
gram, any cooperatively scheduled thread may call the cooperative ser­
vices. 

~ On a multiprocessor computer, a multithreaded program can send its 
tasks to separate processors for simultaneous execution. (Whereas a 
program with multiple tasks can send its tasks to different processors, 
the cooperatively scheduled threads within a single task all execute on 
the same processor.) 

~ Programs use interprocess communication to exchange information 
among tasks within processes or between tasks in different processes. 

Note here that Mac OS 8 uses the term task to mean the entity that some 
other operating systems, such as UNIX and Windows NT, refer to as a thread. 
Mac OS 8 usage of thread is more abstract because, as listed above, there are 
three ways to implement multiple paths of execution in Mac OS 8. 

Other multitasking operating systems typically allow developers to create 
multiple threads within a process in the way that Mac OS 8 developers can 
create multiple tasks within a process. Mac OS 8 also supports another level 
of threading-the creation of cooperatively scheduled threads within a task. 
This level of threading was introduced with the System 7.5 Thread Manager. 
To avoid confusion with the threads that developers create in System 7.5 using 
the Thread Manager, Apple has adopted the term task to refer to a preemp­
tively scheduled path of execution in Mac OS 8. This book uses Cooperative 
Thread Manager to refer to the Mac OS 8 version of the System 7.5 Thread 
Manager and uses cooperatively scheduled threads to refer to the Mac OS 8 
version of System 7.5 Thread Manager threads. 



MAJOR POINTS OF INTEREST 73 

MAJOR POINTS OF INTEREST 

Developers can thread their software products to increase system efficiency 
and user responsiveness. A multithreaded program is structured into parallel 
operations, each of which gets access to the CPU. This feature allows a user to 
continue working within an application without waiting for the application to 
complete lengthy operations. For example, a scientific simulation application 
could create one thread that handles user interaction and another thread that 
performs intensive statistical calculations in the background. The user can 
continue to interact with the program even while it's performing statistical cal­
culations. 

To the user, it appears that multithreaded operations take place simulta­
neously. However, the microkernel interleaves the execution of these opera­
tions on a single CPU so quickly that it looks as if they're happening 
simultaneously. On a Mac OS 8--compatible computer with more than one 
processor, however, multiple tasks actually do run simultaneously. Developers 
don't need to perform any special programming to take advantage of multi­
processor computers; instead, the microkernel automatically schedules pro­
gram tasks to run on all available processors. 

THREADING 

Mac OS 8 developers can thread products by using one or a combination of 
three different approaches. Developers can divide operations so that they're 
performed 

...,. by more than one task in a single process 

...,. by tasks in more than one process 

...,. by more than one cooperatively scheduled thread within a single task 

Not all programs benefit from being multithreaded. For instance, an appli­
cation that handles user interactions and little else wouldn't benefit greatly by 
having more than one task. However, if an application presents a user inter­
face while performing time-consuming 110 or processing-intensive operations 
in the background, its developer provides real user benefit by threading that 
application. 



74 CHAPTER 5 .... · MULTITHREADED PROGRAMS 

FIGURE 5.1 Tasks in two separate processes 

Address space Address space 

7 • ., 
~ 4 ~ 

Cooperative Server 

inte~::: --+-~rogram prosram~ 
~"' .~ 

task 

, 
~ 

l 

-

t 
~ 

Network 
vo 
task 

~ ~5 HfmAGE 

""'> Threads in System 7 .S 

The Thread Manager was introduced in System 7.5, where there is no microkernel to perform 
preemptive task scheduling. For System 7.5 applications compiled to run on PowerPC-based 
computers, the Thread Manager cooperatively schedules threads for execution. Mac OS 8 
likewise cooperatively schedules these types of threads. 

Tasks in Different Processes 
As you've read in previous chapters, an application may consist of a coopera­
tive program that presents a human interface and a server program that per­
forms 110 or calculation-intensive operations in the background. For example, 
a World Wide Web application may consist of a cooperative program (with 
which the user creates and maintains a local web site) and a server program 
(which makes web pages available to remote users). These two paths of execu­
tion make the application multithreaded. 

Figure 5.1 illustrates the process for a cooperative program in one address 
space and the process for a server program in another address space. The main 
task of the cooperative program manages the user interface for the web-site 
management portion of the application. The main task of the server program 
manages network UO for the web-page server portion of this application. 

It's often necessary for these two tasks to communicate information. For 
example, the server program's task may send network activity information to 
the cooperative program's task, allowing the cooperative program to display 
this information to the user. To share this data safely, these tasks must syn-



THREADING 75 

chronize their access to it. For example, the server program can place this data 
in a read-only area of shared memory, thereby allowing the cooperative pro­
gram to read but not change it. As you'll see later in this chapter, Mac OS 8 pro­
vides interprocess communication mechanisms for exchanging data between 
tasks and offers synchronization mechanisms for protecting the data exchanged 
between tasks. 

A developer might choose to thread an application by using separate coop­
erative and server programs whenever the developer needs one of several tasks 
to 

...,. be protected within its own address space 

...,. be available whenever the computer is on 

...,. extend its services to multiple client programs 

A developer can use a server program to create a task characterized by address 
space protection, availability, and client extensibility. A developer can then use a 
cooperative program to create a task that manages user interaction on behalf of 
the server program. 

Address Space Protection 

A developer might implement a thread of execution in a server program to 
protect the operations of that portion of the application. As you may recall 
from Chapter 3, the operating system builds a separate, protected address 
space for a server program; therefore, errors in other programs can't corrupt 
the data of that server program. For example, a database server that supplies 
information important to the minute-by-minute operations of a company can 
be implemented as a server program. Thus, even if other programs were to 
crash on the computer, the server program could continue serving data. 

The developer could then implement another thread of execution in a coop­
erative program, allowing the user to enter, change, and analyze data main­
tained by the server program. 

Availability 

A developer might implement a thread of execution in a server program when­
ever a task should run the entire time a computer is on. Whereas users typi­
cally launch and quit cooperative programs, server programs are usually 
launched automatically when the user starts a computer and run until the user 
shuts the computer off. For example, a task that receives e-mail messages 
whenever the computer is on should run as part of a server program. The 
developer could then implement another thread of execution in a cooperative 
program, allowing the user to read and respond to incoming messages. 



76 CHAPTER 5 ..... MULTITHREADED PROGRAMS 

Client Extensibility 

When a single thread can be used by multiple other programs, that thread can 
be implemented as a task in a server program. For instance, a server program 
that monitors network activity might be useful to a suite of network-manage­
ment applications, such as an e-mail gateway program, a web-site manage­
ment program, and a program that backs up remote disk drives. 

Other Indirect Interaction Between a Server Program and the User 

A task within a server program may also interact with the user indirectly by 
calling the Notification Manager, a reentrant service, to send a user notifica­
tion. A user notification is an audible or visible indication to the user that a 
program requires the user's attention. User notifications can take such forms 
as sounds, icons that flash at the top of the screen, and onscreen alert boxes 
containing short messages. For example, an e-mail server program can use the 
Notification Manager to play a sound and display a blinking icon in the menu 
bar to notify the user of incoming mail. This serves to alert the user of the 
need to open a cooperative program to read and respond to incoming mail. 

Multiple Tasks in the Same Process 

Although threading an application with separate cooperative and server pro­
grams has its advantages, the simplest and most straightforward way to 
thread an application is to create additional tasks in a cooperative program. 
From its main task, a cooperative program can start additional tasks to off­
load work that doesn't involve the user interface. By letting the main task 
manage the program's human interface and using other tasks to perform time­
consuming data processing or 1/0 operations in the background, an applica­
tion can perform more efficiently and offer greater productivity to the user; by 
placing multimedia operations in a separate real-time task, an application can 
perform time-critical multimedia operations without interruption. For exam­
ple, a multimedia authoring program can use the main task to interact with 
the user and another task to capture and save video data in real time or to per­
form real-time sound playback. Figure 5.2 illustrates a cooperative program 
that incorporates two tasks. 

Whereas the main task is cooperatively scheduled against the main tasks of 
all other cooperative programs in the system, all additional tasks created 
within a cooperative program are preemptively scheduled with all other eligi­
ble tasks in the system. For this reason, time-intensive I/0, computationally 
intensive data processing, and critical real-time operations make the best use 
of the CPU when they're placed in tasks other than the main task. 

Because the part editors within an OpenDoc document handle user interac­
tion, they use cooperative services. For an OpenDoc document, the main task 
incorporates the document's constituent part editors, and this main task is 



FIGURE 5.2 

THREADING 

Two tasks within a cooperative program 

User 
interface 

task 

'J 
~ 

., 
< 

Address space 

t .. 

Cooperative 

ifogram~ -~,·-n· 
-~ i---

~ 

Real-time 
sound-playback 
task 

77 

cooperatively scheduled like the main task for any other cooperative program. 
However, a developer can also create additional tasks from an OpenDoc part 
and, like any additional tasks created for a cooperative program, these tasks 
must use only the reentrant services. 

It's often necessary for tasks within the same process to share information. 
To ensure the integrity of this information, tasks should synchronize their 
access to it. Compared to data sharing between tasks in separate programs, 
data sharing between tasks in the same program requires less overhead. As 
you'll see later in this chapter, Mac OS 8 provides interprocess communica­
tion mechanisms for exchanging data between tasks, and Mac OS 8 offers 
synchronization mechanisms for protecting the data exchanged between tasks. 

Cooperatively Scheduled Threads in the Same Task 
When it's useful to have multiple paths of execution within a single task, 
developers use cooperatively scheduled threads. Cooperatively scheduled 
threads, created with the programming interface defined by the Cooperative 
Thread Manager, are invoked from tasks. Cooperatively scheduled threads 
can be scheduled for execution only when the task that created them is run­
ning. These types of threads are said to be cooperative because they yield con­
trol to one another at programmatically defined times. This prevents one 
cooperatively scheduled thread from being preempted by any other thread 
within the same task. 

The main task of a cooperative program may call the cooperative services 
from any of its cooperatively scheduled threads. As illustrated in Figure 5.3, a 
cooperative program such as a laboratory control application can use one 
cooperatively scheduled thread to present a window· for user input and 
another thread to present a window for program output. A user of this pro-



78 

FIGURE 5.3 

CHAPTER 5 ..... MULnTHR£ADED PROGRAMS 

A task with cooperatively scheduled threads 

User 
input 

thread 

User interface task 

Program 
output 
thread 

gram could then view data returned from laboratory instruments in one win­
dow while controlling the instruments from another window. 

Cooperatively scheduled threads can call cooperative services only from the 
main task of a cooperative program. Even when implemented in background 
tasks, cooperatively scheduled threads are useful for developers who 

..,.. want explicit control over when threads yield execution control to one 
another 

..,.. desire simplified synchronization to shared data 

..,.. want the switching efficiency of cooperatively scheduled threads 

Program Control Over Thread Execution 

Unlike preemptively scheduled tasks, which the microkernel can interrupt at 
any time and cause to execute in any order, cooperatively scheduled threads 
are executed under the control of the program using them. Within a program, 
in other words, one cooperatively scheduled thread cannot interrupt another 
thread. Instead, cooperatively scheduled threads explicitly yield control to 
each another at points defined by the developer. 

Simplified Synchronization 

Cooperatively scheduled threads simplify data synchronization. Whereas mul­
tiple tasks sharing data must use synchronization mechanisms to access that 
data safely, a developer doesn't need to employ these mechanisms when using 
cooperatively scheduled threads. Because a task's cooperatively scheduled 
threads cannot preempt one another, access to the data they share is automat­
ically seria lized. A developer simply needs to ensure that each cooperatively 
scheduled thread yields control only after making changes to data shared with 
another cooperatively scheduled thread. 



THREADING 79 

Efficient Switching 

Because cooperatively scheduled threads are called from a task, the microker­
nel doesn't perform a context switch whenever a task switches between them. 
A task is therefore slightly more efficient at switching between cooperatively 
scheduled threads than the microkernel is at switching between preemptively 
scheduled tasks. 

Multiprocessor Support 
On multiprocessor computers, Mac OS 8 executes multiple tasks simulta­
neously. A multiprocessor computer has more than one processor to execute 
instructions. For example, the Genesis MP computer from DayStar Digital is a 
Mac 05-compatible computer that includes four PowerPC processors for 
simultaneously running parallel threads of execution. The Genesis MP plat­
form is an example of an asymmetric multiprocessor (AMP) system. On an 
AMP system, one processor, the master processor, executes all operating sys­
tem-related operations, such as making scheduling decisions and performing 
I/0. All other processors, called slave processors, perform operations allo­
cated to them by the master processor. To take advantage of the Genesis MP 
platform, programs must explicitly call its programming interface to schedule 
threads for execution on its slave processors. For compatibility for applica­
tions designed to use the Genesis MP platform, Mac OS 8 provides asymmet­
ric multiprocessor support. 

The Mac OS 8 microkernel, however, provides full symmetric multiproces­
sor (SMP) support as well. On an SMP system like Mac OS 8, every processor 
on the computer executes its own copy of the operating system and communi­
cates with the other processors as needed. Developers don't need to perform 
any special programming to take advantage of SMP systems. Instead, the 
operating system automatically schedules multiple tasks to execute simulta­
neously on all available processors. As a result, the multitasking capabilities of 
Mac OS 8 offer significant performance gains on multiprocessor computers. 

A multithreaded application especially benefits from this performance gain. 
For example, a real-time task in a scientific application would get the use of 
one processor to handle data as it arrives from laboratory equipment, while 
another task might use a second processor to perform modeling operations 
based on that data. A third thread of execution might use yet another proces­
sor to make the results of the application's operations visible to researchers on 
networked computers. 

Even on a multiprocessor computer, the cooperatively scheduled threads 
within a single task all execute on the same processor. That is, a task can't 
send its cooperatively scheduled threads to different processors the way that 
an application can send its separate tasks to different processors. 



80 CHAPTER 5 ..... MULTITHREADED PROGRAMS 

g~nmUTYHom 
Genesis MP Platform Support 

For the Genesis MP platform, DayStar Digital and Apple Computer collaborated to define a 
System 7.5 programming interface allowing developers to thread their programs. This pro­
gramming interface is fully supported by /INJc OS 8. 

• 
INTERPROCESS COMMUNICATION AND DATA SYNCHRONIZATION 

In a multitasking environment, it's necessary for tasks to communicate. Tasks 
cannot move between processes. However, tasks using the interprocess com­
munication mechanisms provided by Mac OS 8 can pass information to each 
other, even across different address spaces. A calendar application, for exam­
ple, might consist of a cooperative program and a server program that share 
data. The cooperative program might allow the user to view and maintain a 
personal datebook. The server program might handle meeting proposals sub­
mitted by colleagues at network-connected computers. When it receives a 
meeting proposal, the server program passes this information to the coopera­
tive program for display in the user's datebook. 

Tasks sharing the same set of data must synchronize changes to the data. 
When the user of the networked calendar application schedules an appoint­
ment, for example, a task for the cooperative program must indicate that it's 
updating the user's calendar. If a colleague on the network simultaneously 
schedules an appointment with the user, a task for the server program must 
check for this indication. Finding that the calendar data's in use, the server 
program task must block its own execution. To resume execution, the blocked 
task needs to know when it's safe to update the user's calendar. The microker­
nel provides various services that allow tasks to synchronize their operations 
in this way. 

Apple Events 

Apple events are the most pervasive form of interprocess communication in 
Mac OS 8. An Apple event is a data structure used to direct the operation of, 
or communicate information to, a task. An Apple event contains a flexible 
hierarchy of additional data structures. This flexible hierarchy allows develop­
ers to share data between tasks at various levels of detail. For example, a 
meeting proposal can be sent across the network in an Apple event targeting a 
day, hour, and range of minutes within a user's calendar. 



A script is a series of 
statements, written in 
a scripting language, 
instructing a com­
puter to perform vari­
ous operations. 
Scripting lan­
guages are designed 
to automate and con­
trol programs and to 
be easier to leam and 
use than complex lan­
guages like C. 

INTERPROCESS (OMMUNICAnON AND DATA SYNCHRONIZAnON 81 

Apple events were introduced in System 7 so that applications could share 
services and information with each other. In System 7, only applications could 
use Apple events; other types of software, such as device drivers, could not. In 
Mac OS 8, all types of software can use Apple events. Communication can 
take place between tasks in the same process or in different processes, in the 
same address space or in different address spaces, on one computer or on con­
nected computers. An OpenDoc part can also use Apple events to communi­
cate with other parts and with tasks in any address space. An Apple event 
contains the identification of its destination, and the operating system delivers 
the Apple event to that destination. 

In subsequent chapters, you'll become more familiar with the wide use of 
Apple events across the Mac OS 8 platform. Some of these uses include 

...,. Event notification. Apple events are the chief means by which the oper­
ating system informs programs about user and system activity. For 
example, when the user chooses a command from the menu of an appli­
cation, the operating system sends an Apple event to the application; 
this Apple event contains information needed by the application to 
respond to the user action. 

..... Scriptable automation. Programs that respond to Apple events can be 
controlled and automated via scripts created with scripting languages 
such as AppleScript. Using the Assistance Services, for example, a 
scriptable program can automate complex or seldom used operations 
for the user. 

..... Data sharing between programs and within a program. For example, a 
home finance application might use an Apple event to request a commu­
nications program to obtain current stock market information from an 
online service provider. The communications program, in turn, could 
return this information to the home finance application in an Apple 
event. Different tasks for the same program can share information in 
this manner . 

...,. Synchronization between tasks. A task performing network 110, for 
example, might send an Apple event to another task informing it that a 
file has been successfully sent across a network. 

g 4t(nBRnY Noru 
Apple Events, High-Level Events, and PPC Toolbox Services 

N\ac OS 8 fully supports the programming interfaces defined by the System 7 Apple Event 
Manager. 

Mac OS 8 supports System 7 high-level events, but only the main tasks of cooperative 
programs can send high-level events other than Apple events. Main tasks for cooperative 
programs can also use the PPCBrowser mechanism and the PPC Toolbox functions, but all 
other tasks can use only the PPC Toolbox functions. 



82 CHAPTER 5 • MuLTITHREADED PROGRAMS 

Apple events are faster and more flexible than other high-level events or the PPC toolbox 
services, which Mac OS 8 supplies only for System 7 application compatibility. 

Low-Level lnterprocess Communications 
In addition to Apple events, developers can use shared data, shared memory 
areas, and the Microkernel Messaging Service for interprocess communica­
tion. Apple events are sort of the lingua franca of Mac OS 8, permitting the 
operating system, programs, and scripts to communicate with each other 
locally and across networks according to a well-established messaging proto­
col. By comparison, shared data, shared memory areas, and the Microkernel 
Messaging Service require developers to establish and follow their own con­
ventions for using these low-level forms of interprocess communication. 

Shared Data 

Shared data is available to multiple tasks in the same process. As explained in 
the previous chapter, different tasks for the same program share the same 
memory areas for dynamic storage allocation. Tasks can store shared data in 
these memory areas. Two tasks in the same process, for example, can share a 
single set of global variables for communication and synchronization pur­
poses. 

Shared Memory Areas 

A task can create a shared memory area to share its data with a task in 
another address space. If programs in different address spaces share a large 
amount of data, especially when that data is continually updated, a shared 
memory area is likely to be a more efficient mechanism than Apple events for 
distributing that data among tasks. A shared memory area can begin at the 
same address in various address spaces (which is useful if the tasks sharing the 
data refer to it by pointers), or it can reside at different addresses. A shared 
memory area can have different access permissions in different address spaces; 
for example, a program might write data into a shared memory area in its 
own address space but make the data read-only to programs in other address 
spaces, preventing other programs from corrupting the data. 

Microkernel Messaging Service 

If for some reason a developer cannot or prefers not to use Apple events, the 
Microkernel Messaging Service is available for transporting data from one 
task to another, typically between different processes. The messaging service 
allows bidirectional data transfer so that data may be part of a message, and 
additional data may be returned in the reply. It's up to developers to establish 



INTERPROCESS (OMMUHICAnON AND DATA 5YHCHRONIZAnOH 83 

their own conventions for interpreting the information exchanged with this 
service. 

Data Synchronization Among Tasks 

Two or more tasks sharing information must synchronize their access to that 
data. Otherwise, two tasks independently making changes to the same data 
might corrupt its integrity. Mac OS 8 offers synchronization mechanisms to 
protect the data shared among tasks. 

Remember that cooperatively scheduled threads don't need to use these 
synchronization mechanisms, because one cooperatively scheduled thread 
can't be preempted by another thread within the same task. A developer sim­
ply needs to ensure that each cooperatively scheduled thread yields control 
only after making changes to any data shared by other threads. 

For these synchronization mechanisms to protect program data, a program 
must observe synchronization conventions. For example, if one task holds a 
lock to particular data, another task must not modify the data until it has 
acquired the lock. Locks and other synchronization mechanisms are described 
in the next sections. 

Locks 

A lock is a data structure used to synchronize access to a shared resource such 
as the contents of memory locations. Only the task holding a lock is allowed 
to modify the data associated with the lock. A simple lock prevents other tasks 
from acquiring the lock until the task holding it has released it. A read/write 
lock allows one or more tasks to acquire the lock for the purpose of simulta­
neously reading data, but this type of lock allows no more than one task to 
modify the data at a time. 

Counting Semaphores 

A counting semaphore is a synchronization mechanism containing a count 
variable that may be equal to or greater than zero. Multiple tasks can incre­
ment and decrement a counting semaphore. Typically, a task will test whether 
the counting semaphore is greater than zero before performing some action 
involving a shared resource. 

Mlcrokemel Queues 

A microkemel queue can be used as a synchronization mechanism or a very 
simple interprocess communication mechanism. One or more tasks use a 
microkernel queue to notify another task of some occurrence, for instance, the 
completion of an asynchronous operation. The task being notified examines 
the microkernel queue for the notification; this task may, for example, block 



84 CHAPTER 5 .... MuLTITHREADED PROGRAMS 

until the notification appears. A microkernel queue can hold multiple notifica­
tions. 

Communication with this mechanism takes place in one direction only; that 
is, the tasks writing to a microkernel queue don't receive replies from the task 
reading the queue. 

System Notification Service 

The System Notification Service allows one task to broadcast information 
about a change in the state of the system. Any number of other tasks can sub­
scribe to its notifications. For example, the device driver for a display screen 
can use the System Notification Service to announce that the user has changed 
screen resolutions or bit depth. Programs relying on the resolution or color 
capabilities of the device can then take action based on the notification. 

Atomic Operations 

An atomic operation is a simple routine-such as one that increments or dec­
rements a value, tests and sets a value, or compares and swaps values-that 
executes to completion; it cannot be interrupted. In Mac OS 8, these opera­
tions are implemented using instructions provided by the CPU. 

Event Groups 

An event group consists of bits that can be set individually or in different com­
binations and used to signal client tasks. Developers can use atomic opera­
tions and event groups to implement their own sychronization mechanisms. 

g4tnmUNHom 
The Disabling of Interrupt Handlers in System 7 

Most applications don't deal with synchronization in System 7, where the current application 
can always assume that it controls the computer. When they need to synchronize with code 
running at interrupt level, some applications compiled for 68K-based Macintosh computers 
disable the execution of completion routines (such as for file 1/0 operations and vertical 
retrace interrupts) by disabling the execution of all hardware interrupt handlers across the 
system. When 68K applications attempt to synchronize data access in this way, Mac OS 8 
disables the execution of completion routines while allowing all hardware interrupt handlers 
to continue to execute. In Mac OS 8, only device drivers are able to disable hardware inter­
rupts. Although this method of synchronization is available to device driver writers, Apple 
Computer generally recommends against using it. 



SUMMARY 85 

SUMMARY 

In the same way that multitasking makes the system more efficient, multi­
threading makes an application more efficient, which helps the user be more 
productive. For example, by performing user interface operations in one 
thread of execution and time-consuming network I/0 operations in another 
thread of execution, a multithreaded application enables the user to continue 
working with the application without waiting for lengthy network operations 
to complete. 

Multithreaded applications use interprocess communication to share infor­
mation. For example, one task for a statistical simulation program could per­
form a time-consuming calculation in the background. When finished with 
this calculation, the task could send its result in an Apple event to the main 
task of the program. 

The multithreading capabilities of Mac OS 8 offer significant performance 
gains on multiprocessor computers. For example, while an application uses 
one processor to perform animation rendering calculations, it might use 
another processor to perform real-time video capture, and use yet a third pro­
cessor to simultaneously serve the results of its operations to users on the 
World Wide Web. 

PLANNING A PRODUCT FOR MAc OS 8 

If you're a developer, you can take the following steps now to prepare a prod­
uct that takes advantage of multithreading: 

1. Consider whether your program consumes very much processing time 
when it's not interacting with the user. If it does, separate your code into 
components that perform user interface tasks, computations, and I/0 
operations. You can then implement these components more easily as 
separate threads of execution in a multithreaded program. 

i. Make your existing application AppleScript scriptable. This will pre­
pare your application to use Apple events for interprocess communica­
tion. 



• • • • • • • • • • • • • • • • • • • • • • • 

The Virtu 
Memory 

Mac OS 8 supplies the addressable memory necessary for multiple large pro­
grams to be open simultaneously, and its multitasking architecture allows 
these programs to share the CPU efficiently. So that the user may open and run 
more programs than can fit in physical memory, the operating system provides 
a highly efficient form of virtual memory. 

The virtual memory system extends the amount of physical memory by 
using secondary storage, such as a hard disk, to store code and data not imme­
diately needed by the CPU. The virtual memory system thereby keeps portions 
of physical memory free at all times. When the CPU requires code or data 
that's not in physical memory, the virtual memory system transfers the needed 
portions from secondary storage into physical memory. 

The Mac OS 8 virtual memory system makes efficient use of secondary 
storage by using only enough disk space to support currently open programs. 
For example, the virtual memory system dynamically allocates only enough 
disk space to hold unneeded portions of temporary program data, and it allo­
cates no disk space at all for program code. For holding unneeded portions of 
program code, the virtual memory system simply uses the executable files 
already stored on disk. 

Users and the developers of application-level software needn't do anything 
special to take advantage of this virtual memory system. Always in operation, 
this system is an integrated, core feature of Mac OS 8. 

87 



88 CHAPTER 6 .... THE VIRTUAL MEMORY SYSTEM 

KEY TERMS AND CONCEPTS 

..,. Virtual memory is addressable memory beyond the limits of available 
physical memory. Mac OS 8 extends physical memory by storing on a 
secondary storage device, such as a hard disk, code and data not imme­
diately required by the CPU . 

..,. A page is the smallest unit, measured in bytes, of information that the 
virtual memory system can transfer between physical memory and 
backing store. Paging is the transfer of pages between physical memory 
and backing store . 

..,. Backing store is a repository-typically a file on a secondary device 
such as a hard disk-for pages of code or data that aren't currently in 
physical memory . 

..,. The backing provider is the operating system service responsible for 
managing pages of physical memory and transferring code and data 
between backing store and physical memory in response to page faults . 

..,. A page fault is an exception that causes a page of data or code needed 
by the CPU to be read from backing store into physical memory . 

..,. A scratch file is a temporary file used as backing store for a memory 
area, such as for a stack or dynamic storage allocation, containing data 
not associated with a permanent disk file. A scratch file grows and 
shrinks dynamically in response to system demands . 

..,. A memory-mapped file is a disk file whose contents are mapped into a 
memory area. The backing provider transfers portions of these contents 
from the file's permanent location on disk to physical memory as needed 
in response to page faults. Thus, the disk file (instead of a separate 
scratch file) serves as backing store for the code or data not immediately 
needed in physical memory. 

MAJOR POINTS OF INTEREST 

The virtual memory system allows the user to open and run more programs 
than can fit in physical memory. Although system performance is optimal 
when there is enough physical memory to hold all of the code and data needed 
by all open programs, it's impractical for most users to have enough physical 
memory to satisfy all possible demands. 

Figure 6.1 illustrates how the virtual memory system extends physical 
memory while making efficient use of the hard disk space used for backing 
store. Suppose that the user has installed a digital-video editing application 
containing 4MB of code onto the hard disk. When the user launches that 
application, the operating system creates a process for it within a 4-GB 
address space. The operating system maps all of the code for that application 



FIGURE 6.1 

MAJOR POINTS OF INTEREST 89 

The association of disk fi les, memory areas, and physical memory 

Code (4MB) 

Movie data 
(6MB) 

'! 

-

-

Address space 

Code (4MB) 

Movie data (6MB) 

) 

r---g__ Code 

(100K) 

Movie data 
(1MB) 

1OOMB hard disk 
8MB physical 

memory ~ 

4GB logical 
memory 

~ 

trom its disk tile into a system-wide memory area. However, the CPU doesn't 
need access to all of that code at once. So the virtual memory system transfers 
into physical memory only the code immediately needed by t he CPU. In this 
figure, that amounts to lOOK of code. When any portion of this code is no 
longer needed, the virtual memory system releases it from physical memory. 

Suppose then that the user begins editing video data with this application. 
The applica tion can use the virtual memory system to memory-map this data. 
If the data amounts to 6MB on disk, then the vi rtual memory system creates a 
6-MB memory a rea in the application's address space. The CPU, meanwhile, 
doesn't need all of that data to be available in physical memory. So again, the 
virtual memory system transfers into physical memory only the data immedi­
ately needed by the CPU. In this figure, that amounts to 1MB of data. 

W hen launching a program, the operating system automatically creates a 
memory area for the program's tasks to store temporary data, such as the glo­
bal variables and dynamic data structures used by the program at execution 
time. The virtual memory system dynamically a llocates space from a scratch 
file on disk to serve as backing store for this memory a rea. As these backing 
store needs grow, the virtual memory system allocates more disk space for the 
scratch file; as these backing store needs diminish, the virtual memory system 
releases disk space. 

The number and size of open programs are constrained only by the amount 
of disk space available for scratch files. The virtual memory system never a llo­
cates disk space to serve as backing store for code. Instead, the virtual memory 
system always memory-maps the disk files of code. Thus, the disk file (instead 
of a separate scratch file) serves as backing store for the code not immediately 



90 CHAPTER 6 ..... THE VtRTUAL MEMORY SYSTEM 

needed in physical memory. Programs can also use memory-mapped files to 
gain access to data stored on disk. 

Users and developers needn't do anything special to take advantage of this 
virtual memory system. If code or data isn't already in physical memory when 
the CPU needs it, the virtual memory system automatically pages the code or 
data from backing store into physical memory. The virtual memory system 
either releases unneeded pages from physical memory or, when necessary to 
save data that's been changed, writes these pages to backing store. 

Virtual memory always operates in Mac OS 8, and it works for applica­
tion-level software without any special programming effort by its developers. 
(Some device drivers and other types of privileged code can't tolerate page 
faults, so Mac OS 8 supplies a special programming interface allowing them 
to keep their code and data resident in physical memory.) A developer with 
special needs may nevertheless give "hints" in a program about memory use 
to optimize the performance of the virtual memory system. For example, an 
application needing a large amount of multimedia data for a future operation 
can ask the virtual memory system to asynchronously transfer pages of mem­
ory from backing store into physical memory. The application might also tell 
the system when data won't be referenced again, allowing Mac OS 8 to reuse 
those pages immediately. 

The major components of the Mac OS 8 virtual memory system are the 
microkernel and the backing provider. The microkernel creates memory areas 
for processes and recognizes page faults within those areas. The backing pro­
vider associates backing store with memory areas, and the backing provider 
resolves the page faults by transferring code and data between backing store 
and physical memory. 

&~ ~5 HmrrAGE 
-?) 

Virtual Memory in System 7 

In System 7, the user selects whether to use virtual memory, and how much to use, through 
the Memory control panel. These selections don't take effect until the user restarts the com­
puter, at which time System 7 allocates the user-specified amount of virtual memory and its 
corresponding disk space. When the user launches applications, the Process Manager in Sys­
tem 7 allocates fixed-size memory partitions from this single, logical address space. 

In Mac OS 8, by contrast, virtual memory is always on-the user doesn't select whether to 
use it-and it's dynamically allocated-the user doesn't need to specify a fixed amount for it. 

System 7 doesn't allow its system heap to be paged to disk; instead, the system heap remains 
in physical memory. (The system heap is an area of memory reserved for data structures used by 
the operating system in support of System 7 applications.) In Mac OS 8, however, almost all of 
the syste~cept for critical portions like the microkemel and the file syst~s pageable. This 
makes more physical memory available to application-level software. 

• 



FIGURE 6.2 

THE 0RGAHIZAnOt4 OF VIRTUAL MEMORY 91 

The organization of memory in an address space 

Address space 

7 J 
~ 

Page -~~ Memory area A 

Memory area A 

l±±llillJ }- Memory area B 

Memory area B ' / < 
Page 

THE 0RGANIL\nON OF VIRTUAL MEMORY 

The virtual memory system transfers code and data between the CPU and 
backing store in page-sized portions of information. A memory area consists 
of a set of pages. A set of memory areas, in turn, constitutes an address space, 
as illustrated in Figure 6.2. (The size of a page, measured in bytes, is set by the 
CPU architecture. For the current generation of PowerPC processors, that size 
is 4K.) 

From the perspective of the virtual memory system, there are three types of 
memory areas: 

..._ resident memory areas 

.... memory areas associated with scratch files 

.... memory areas associated with memory-mapped files 

The pages of resident memory areas are always kept in physical memory. The 
microkernel and other critical portions of the operating system are kept in res­
ident memory areas. 

Those memory areas associated with scratch files are generally used by pro­
grams for their dynamic storage-allocation needs. To make efficient use of the 
disk space needed as backing store for these types of memory areas, the virtual 
memory system dynamically allocates only enough disk space to satisfy the 



FIGURE 6.3 

7 

~ 

CHAPTER 6 ..... THE VIRT\JAL MEMORY SYSTEM 

The mapping between memory areas and backing store 

Address space 

> 

Memory area A : : :J Backing provider h .. 

Memory area B _·_·_._·:-·J Backing provider J----:--
-

~ 

Backing store 
(memory-mapped file) 

immediate needs of that program. For example, imagine that Memory area A 
in Figure 6.3 is used by a program for the storage of global variables, data 
structures, and other data that can't be determined until the program is run­
ning. The backing provider dynamically allocates space from a scratch file just 
large enough to serve as backing store for this memory area. 

Memory areas for memory-mapped files have no scratch fi les associated 
with them. Suppose then that the program in Figure 6.3 opens a file and 
requests that the virtual memory system open it as a memory-mapped file. In 
the act of memory-mapping this file, the virtual memory system creates Mem­
ory area B, and the backing provider maps the contents of the disk file into 
Memory area B. 

When the CPU tries to access a page of data or code not currently located 
in physical memory, the CPU generates a page fault. In response to this page 
fa ult, the backing provider reads the necessary page or range of pages from 
backing store into physical memory. 

To summarize, then, the operating system when instantiating a process cre­
ates memory areas that constitute only a small portion of an address space. 
The virtual memory system allocates disk space only for the storage of tempo­
rary data not immediately needed by the CPU. At any given time, the virtual 
memory system might load only a small amount of code and data from back­
ing store into physical memory. In this way, even with 4GB of addressable 



THE lACkiNG PROVIDER 93 

memory, a process can require very little additional backing store and only a 
small amount of total physical memory. 

The rest of this chapter describes these elements of the virtual memory sys­
tem in greater detail. 

i!o R"l ~5 HERITAGE 
'1:~ 

"":. The Preallocated Address Space in System 7 

In System 7, the entire size of its single address space is set at boot time when the user 
selects the amount of virtual memory with the Memory control panel. Mac OS 8 allocates 
and releases memory from multiple address spaces dynamically in response to the system's 
memory needs. 

THE BACKING PROVIDER 

The microkernel is responsible for recognizing page faults, which occur when 
information currently in backing store needs to be read into physical memory. 
It's up to the backing provider to resolve page faults. Whenever a program or 
the operating system creates a pageable memory area (that is, a memory area 
that needn't remain resident in physical memory), that area is associated with 
the backing provider. When a page fault occurs in any memory area, the 
microkernel alerts the backing provider. The backing provider then reads the 
necessary pages of data or code from backing store into physical memory. 

The backing provider dynamically allocates scratch files for memory areas 
containing temporary data. For code stored in files on disk, the backing pro­
vider uses the disk files themselves as backing store. The backing provider can 
also use memory-mapped data files as backing store at the request of pro­
grams. 

The multitasking capabilities of Mac OS 8 enhance the efficiency of the vir­
tual memory system. When a task is blocked on a page fault (for instance, 
when a task waits for data to be paged from a disk into physical memory), the 
microkernel switches to another task, allowing the system to perform other 
operations until the backing provider finishes processing the page fault. 

5 HERITAGE 

System 7 Swap Space 

Swap space, sometimes called scratch space, is a single, preallocated area of a hard disk 
used by some operating systems, such as System 7 and some variants of UNIX, for the tern-



94 CHAPTER 6 .... THE VIRTUAL MEMORY SYSTEM 

porary storage of code and data that have been paged out of physical memory. With System 
7 virtual memory, data files are, by default, paged to and from the swap space. For example, 
when a data file is opened by an application, the file is typically read from disk into physical 
memory. If the file is too large to fit into physical memory, unused portions of the file are 
paged to swap space on the disk. Thus two copies of the file exist: one copy, the original, is 
stored on disk in the file system; the other copy is held partially in physical memory and par­
tially on disk in swap space. 

By comparison, a memory-mapped file in Mac OS 8 exists in only one location on disk. 
Portions of that file are copied into physical memory when needed by the CPU. Unneeded 
portions can either be released from physical memory or saved back to the original disk file, 
but they're never paged to a separate swap space. 

• 
MEMORY-MAPPED FILES 

When the operating system or a program opens a file, the contents of that file 
can be mapped into a new memory area so that the disk file serves as backing 
store for its own representation in physical memory. This association of a disk 
file to a memory area is called memory mapping. Memory mapping conserves 
the amount of disk space needed for backing store. Memory mapping also 
allows multiple tasks to share one copy of a disk file in memory, and in this 
way, memory mapping conserves physical memory. For example, the code for 
all operating system services is memory mapped into system-wide memory 
areas so that a single copy of each of these services can be used by all pro­
grams running on the system. 

At the request of a program opening a data file located on disk, the virtual 
memory system can open a memory-mapped version of that file. After the 
operating system creates a memory area for that file, a backing provider maps 
the contents of the file into this memory area. After opening a memory­
mapped data file, such as a user document, a program can easily read the doc­
ument by accessing the logical addresses within its memory area instead of, 
say, streaming the file from disk through buffers. 

When multiple programs open the same data file, whether by memory map­
ping it or streaming it, the operating system gives them all access to the same 
data. For developers, this simplifies the task of designing programs that share 
data. 

The memory areas into which Mac OS 8 maps code are given read-only 
access privilege. Because code can't be changed in memory, the virtual mem­
ory system never writes it back to disk, allowing the 110 system to handle 
other demands. When a piece of code is no longer needed, the virtual memory 
system releases it from physical memory. If that code is needed again, the vir­
tual memory system simply reads it back from the disk file. 



ScRATCH FILES 95 

In the same way, memory-mapped data files in read-only memory areas are 
never written back to disk. Pages of a memory-mapped data file are written 
back to disk only when both of these conditions are met: 

... the pages have been changed 

... either the virtual memory system wants to make more physical memory 
available, or a program asks the virtual memory system to save those 
pages to disk 

~ Rl ~.. s HERITAGE 
'=1:~ ~ 
~ 

Memory-Mapped Files for System 7 on PowerPC-Based Computers 

System 7 .1.2 began using memory-mapped files for PowerPC code. As in Mac OS 8, code in 
these memory-mapped files are read-only. All data, however, is paged to and from swap 
space in System 7.1.2 and subsequent versions of System 7. 

SCRATCH FILES 

When a program is launched, Mac OS 8 acquires various operating system 
resources necessary for the program and bundles them into a process. These 
resources include memory areas for the program's temporary data. The back­
ing provider maps these memory areas to space dynamically allocated from a 
scratch file. When the operating system releases these memory areas, such as 
when a process terminates, the backing provider relinquishes the space allo­
cated from the scratch file. In this way, disk space for the scratch file is dynam­
ically reclaimed whenever it's no longer needed for backing store. 

If more than one disk is mounted to a system, the user can specify which 
disk should contain the scratch file. For example, if a disk contains video data 
being edited by the user, the user might select another disk to hold the scratch 
file in order to improve the 110 performance of the disk containing video data. 
The user can also divide temporary backing store into several scratch files 
located on different disks. 

SUMMARY 

Unlike System 7, where virtual memory is an option that the user chooses to 
use and configure, Mac OS 8 uses a virtual memory system that's dynamic, 
automatic, and always in operation. The virtual memory system always keeps 



96 CHAPTER 6 ..... THE VIRTUAL MEMORY SYSTEM 

portions of physical memory free by releasing or writing to disk pages not 
needed by the CPU. When the CPU does need code or data not currently in 
physical memory, the virtual memory system pages it from backing store into 
physical memory. Shuffling pages between physical memory and backing store 
as needed by the CPU, the virtual memory system provides execution support 
for the many programs that can exist at any time on a Mac OS 8 system. 

To make the most efficient use of the storage capabilities of a user's system, 
the virtual memory system creates scratch files for backing store only when 
needed, and the virtual memory system releases this backing store when it's no 
longer needed. The virtual memory system doesn't create any space as backing 
store for memory-mapped files. Instead, the virtual memory system uses the 
disk files themselves as their own backing store. All files containing code, for 
example, are memory mapped. 

g 4(nmUTY Horu 

System 7 Virtual Memory Manager 

System 7 developers should note that although virtual memory is always in effect in 
Mac OS 8, any call to the Gestalt function using the System 7 selector gestaltVMAttr indicates 
that virtual memory is off. This is to preclude System 7 applications from performing the spe­
cial actions necessary to take advantage of System 7 virtual memory. These actions are unnec­
essary-even undesirable-in Mac OS 8. Nevertheless, Mac OS 8 supports software that 
uses any of the functions defined by the System 7 Virtual Memory Manager-with the lone 
exception of the LockMemoryContiguous function, which isn't supported by Mac OS 8. 

PLANNING A PRODUCT FOR MAc OS 8 

If you are a developer, you can take the following steps to prepare products 
that take advantage of the Mac OS 8 virtual memory system: 

1. If you've already developed a System 7 application, ensure that it oper­
ates well in the System 7 virtual memory environment. 

2. Consider whether and how your application can take advantage of 
memory-mapped data files. 



• • • • • • • • • • • • • • • • • • • • • • • 

Dynamic 
Allocati 

Nearly all code uses memory areas to store data, such as global variables and 
various data structures, that can't be determined until the code is running. 
Mac OS 8 supplies a very fast Dynamic Storage-Allocation Service so that 
code can create, allocate storage from, expand, and delete memory areas for 
its temporary data. The memory-allocation services of System 7 and earlier 
versions of the Mac OS make efficient use of physical memory, but this mem­
ory efficiency comes at the expense of the speed of application performance. 
T he vi rtual memory system of Mac OS 8, as you saw in the previous chapter, 
makes very efficient use of physical memory, thereby allowing the Mac OS 8 
Dynamic Storage-Allocation Service to be optimized for speed instead of 
memory efficiency. 

The Dynamic Storage-Allocation Service in Mac OS 8 is reentrant and can 
be used by any type of code. Mac OS 8 also supports the System 7 Memory 
Manager, a cooperative service available for application-backward compati­
bility. By following guidelines relating to the use of a subset of Memory Man­
ager routines, developers can, with minimal revision, make their existing 
System 7 products perform faster by using the Dynamic Storage-Allocation 
Service supplied by Mac OS 8. 

97 



98 CHAPTER 7 ... DYNAMic STORAGE Au.ocAnON 

KEY TERMS AND CONCEPTS 

.,.,. The Dynamic Storage-Allocation Service defines a programming inter­
face by which code-such as an application or a device driver-man­
ages memory allocations for its data storage needs. The Dynamic 
Storage-Allocation Service supplies memory allocators that implement 
this programming interface, but developers can choose to create mem­
ory allocators of their own . 

.,.,. A memory allocation is a range of logical addresses used for storing a 
particular piece of data, such as a global variable or a data structure. A 
memory allocation can range in size from 1 byte to multiple pages . 

.,.,. A memory allocator is a shared library used by client code for creating, 
expanding, and deleting memory areas and for acquiring memory allo­
cations from these areas. (A shared library is a set of routines or static 
data that can be called by multiple programs. Shared libraries are dis­
cussed in the next chapter.) As memory areas become fully allocated, a 
memory allocator automatically creates new memory areas and thereby 
supplies additional storage to its client code. Mac OS 8 provides three 
memory allocators: a per-process memory allocator, a system-wide 
memory allocator, and a nonpageable-memory allocator. For any spe­
cial needs, Mac OS 8 developers can create their own memory alloca­
tors . 

.,.,. A per-process memory allocator is instantiated by Mac OS 8 for every 
process, and every process uses its instantiation of this allocator to sup­
ply most of its memory-allocation needs. For example, when a 
Mac OS 8 program requests the operating system to provide storage for 
data structures related to windows, a per-process memory allocator 
supplies the necessary memory allocation. Typically, all tasks in a pro­
cess use the per-process memory allocator instantiated for that process . 

.,.,. The system-wide memory allocator manages memory allocations in sys­
tem-wide memory areas. Any type of code, nonprivileged or privileged, 
can use this allocator . 

.,.,. The nonpageable-memory allocator is instantiated once upon system 
startup. Only privileged code can use this memory allocator, which 
keeps all of its memory allocations resident in physical memory for the 
benefit of privileged code-such as a hardware interrupt handler for a 
device driver-that can't tolerate page faults . 

.,.,. The Memory Manager is a cooperative service used by System 7 appli­
cations to dynamically acquire and release memory allocations . 

.,.,. The forward-compatible memory guidelines specify the use of a subset 
of Memory Manager functions; applications adhering to these guide­
lines cause the operating system to invoke the per-process memory allo­
cator instead of the System 7 Memory Manager. By following these 
guidelines, the developer of a System 7 application can, with minimal 



A pointer is a vari­
able containing the 
address of a byte in 
memory. A handle is 
a variable containing 
the address of a non­
relocatable pointer, 
which in tum refers to 
the address of a relo­
catable block of data. 

MAJOR POINTS OF INTEREST 99 

revision of the application, attain much better performance from the 
application. 

... A stack is a memory area where a task stores some of its temporary 
variables during execution. Every task has its own stack. For example, 
when a task calls routines, their parameters, local variables, and return 
addresses may be loaded onto a stack. Compilers typically generate the 
code that manages the stack for a task. As with a stack, register manip­
ulation is typically performed automatically for compiled code. How­
ever, for temporary data such as global variables and data structures not 
stored on a stack or in a processor register, storage isn't automatic. 
Instead, a task must acquire storage for such data. The storage of such 
data is the topic of this chapter. 

MAJOR POINTS OF INTEREST 

During execution time, nearly every type of code needs to store data tempo­
rarily in memory locations within its address space. Chapter 3 described how 
each address space in Mac OS 8 consists of 4GB of logical addresses, and 
Chapter 6 described how the virtual memory system uses backing store to 
support such a large amount of addressable memory. Within every address 
space, up to 3GB of address locations are either used to store code for pro­
grams, device drivers, and the operating system or are reserved for other uses 
by the operating system. Of all logical addresses within an address space, 
Mac OS 8 makes at least 1GB available to programs for temporary data stor­
age. 

In Mac OS 8, applications can use either the Dynamic Storage-Allocation 
Service or the Memory Manager to supply data storage. The Dynamic Stor­
age-Allocation Service supports preemptive scheduling and can be used by any 
type of code; the Memory Manager is a cooperative service that supports Sys­
tem 7 application compatibility. 

The Dynamic Storage-Allocation Service defines a programming interface 
by which code, such as an application or a device driver, can acquire, expand, 
and release memory allocations for data storage. This programming interface 
allows programmers to use pointers when referring to memory allocations. By 
comparison, System 7 applications using the Memory Manager programming 
interface refer to memory allocations through handles. Developers who have 
used the Memory Manager's handle-based routines-especially those designed 
to reduce heap fragmentation-will find that the Mac OS 8 pointer-based pro­
gramming interface offers an easier programming model as well as signifi­
cantly improved performance. 

Memory allocators implement the code that actually reserves and releases 
memory locations on behalf of clients of the Dynamic Storage-Allocation Ser-



100 CHAPTER 7 ...,. DYNAMic StoRAGE Au.OCAnoH 

vice. Memory allocators dynamically increase the storage available to their cli­
ents as allocation needs increase. Mac OS 8 supplies memory allocators that 
fit the needs of most developers. 

A memory allocator is implemented as a type of shared library known as a 
plug-in. Plug-ins, as described in the next chapter, can be prepared and 
released as needed through the programming interface defined by the Code 
Fragment Manager. This plug-in architecture adds flexibility to the Dynamic 
Storage-Allocation Service-developers with special needs can supply their 
own memory allocators and easily integrate them with the operating system. 

All Mac OS 8 memory allocators are reentrant, so they can be used by any 
type of code-including server programs, device drivers, and cooperative pro­
grams. By using the memory allocators, all code gains a significant perfor­
mance boost compared to code using the handle-based Memory Manager. 
With little revision of existing System 7 applications, however, developers fol­
lowing the forward-compatible memory guidelines can easily take advantage 
of the Mac OS 8 memory allocators even when using the routines of the 
Memory Manager. 

0~ ~ HERirAGE 

~ 
The Memory Manager 

The Memory Manager was initially designed to allow application software to run on com put­
ers with only 128K of physical memory. In this environment, efficient use of physical memory 
was essential. So the Memory Manager was designed to constantly load blocks of data into 
and out of physical memory, dynamically grouping these blocks together so that the applica­
tion heap wouldn't be broken into fragments of addressable memory too small to be of use. 

Blocks of data moved by the Memory Manager are referenced by handles. Whereas the 
Memory Manager may move a block, it won't move the location of the pointer to that block, 
always allowing both the Memory Manager and an application to refer to that block through 
its handle. 

The virtual memory system of Mac OS 8 makes very efficient use of physical memory, so 
the overhead associated with the creation and maintenance of handles and the shuffling of 
data within physical memory are no longer necessary. As a result, the Mac OS 8 pointer­
based memory allocators perform much faster than the handle-based System 7 Memory 
Manager. 

DYNAMIC STORAGE·AI.LOCATION SERVICE 

The Dynamic Storage-Allocation Service defines a pointer-based programming 
interface. Any type of code can use this programming interface to request 



Recall that only the 
microkemel portions 
of device drivers, 
and certain other por­
tions of the operating 
system contain privi­
leged code. To pro­
tect the stability of the 
base operation sys­
tem, most code is 
nonprivileged, 
meaning that it's 
restricted from criti­
cal CPU instructions, 
hardware addresses, 
and much of the data 
used by privileged 
code. 

DYNAMic STORAGE·AllOCAnoM SERVICE 101 

memory allocations for storing the code's temporary data. To assist developers 
in migrating their System 7 code while improving its performance under 
Mac OS 8, this programming interface allow developers to use handles as well 
as pointers when referencing memory allocations. 

The Dynamic Storage-Allocation Service also supplies a set of memory allo­
cators. On behalf of client code, a memory allocator creates memory areas for 
data storage, and it acquires memory allocations from these areas in response 
to requests from the client code. As soon as all the storage in one memory area 
is allocated, the memory allocator creates another memory area. The memory 
areas created by an allocator are usually discontiguous-that is, they are usu­
ally separated throughout an address space. 

Typically, a program uses the per-process memory allocator instantiated for 
it by the operating system. However, it can also use the system-wide memory 
allocator, and it can also use its own memory allocators. A program can 
thereby request the services of multiple memory allocators, each optimized for 
a special use. 

A piece of privileged code, such as a device driver, typically uses the micro­
kernel's instantiation of the per-process memory allocator. Non privileged code 
is denied any access to the data storage created by this instantiation of the per­
process memory allocator. Whenever it needs to grant nonprivileged code 
access to its data, privileged code can use the system-wide memory allocator. 
Whenever privileged code can't tolerate page faults, it can use the nonpage­
able-memory allocator. Privileged code can also use any custom memory allo­
cators that it might supply. 

These various memory allocators are described next. 

Per-Process Memory Allocators 
When instantiating a process, the operating system also instantiates a per-pro­
cess memory allocator for that process. Tasks within a process generally use 
this per-process memory allocator. For example, when a Mac OS 8 program 
asks the operating system to allocate storage for data structures related to files 
or windows, the per-process memory allocator for that program typically sup­
plies the necessary memory allocations. 

When the operating system instantiates a per-process memory allocator for 
nonprivileged code, the allocator creates a memory area from which it 
acquires storage at the request of that code's tasks. As you will see in the next 
chapter, the Code Fragment Manager places the global variables and other 
static data for a process into this memory area. This memory area resides 
exclusively in the address space of the process, and all of the process's tasks 
have read/write access permission to the contents of this area. The virtual 
memory system creates a scratch file for this memory area so that the virtual 
memory system can page its contents. If the memory area becomes fully allo­
cated, the memory allocator creates another memory area in the same address 



102 CHAPTER 7 .... DYNAMIC STORAGE AllOCAnON 

space. To fulfill memory-storage needs, the memory allocator continues creat­
ing additional memory areas-at least until the operating system determines 
that a programming error has led to excessive and potentially catastrophic 
requests for memory allocations. 

Any privileged code associated with the microkernel typically uses the per­
process memory allocator instantiated for the microkernel. All nonprivileged 
code is limited to read-only access to the memory areas created by this instan­
tiation of the allocator, and all of its memory areas are pageable. Because the 
microkernel operates in all address spaces, the memory areas used by this 
instantiation of the per-process memory allocator are also system-wide. 

A program can also create and use additional instances of the per-process 
memory allocator. For example, it might be useful for a cooperative program 
to use a second instantiation of this allocator for maintaining memory areas 
dedicated to a data cache-when the cached data becomes stale, for instance, 
the program can quickly and easily release its storage from all memory areas 
in a single operation. 

The per-process memory allocator is designed to take optimum advantage 
of the virtual memory system and to acquire storage in sizes optimal for most 
types of code. For nearly all developers' needs, the per-process memory alloca­
tor is well suited. However, developers can use additional memory allocators 
if necessary. 

The System-Wide Memory Allocator 

Any type of code, nonprivileged and privileged, can use the system-wide mem­
ory allocator to acquire, expand, and release data storage from pageable, sys­
tem-wide memory areas. The memory areas created and used by this allocator 
appear at the same locations in every address space. These areas also offer 
read/write permission to all code, making this allocator useful when code 
stores data that needs to be accessible at identical locations to all tasks in 
every address space. These areas actually have limited use for data sharing, 
however, because any task can potentially corrupt any portion of the contents 
of these areas. Instead, as explained in Chapter 5, a shared memory area is 
generally more useful for data sharing. 

The Nonpageable-Memory Allocator 
The Dynamic Storage-Allocation Service provides a third memory allocator. 
Like the system-wide memory allocator, the nonpageable-memory allocator 
manages memory allocations in system-wide memory areas. However, this 
memory allocator is available only to privileged code (its memory areas are 
read-only to nonprivileged code), and the microkernel holds the contents of its 
memory areas in physical memory at all times. When privileged code-such as 



DYNAMic STORAGE·AI.LOCATION SERVICE 103 

a hardware interrupt handler for a device driver-cannot tolerate a page fault, 
it uses this memory allocator. 

la4inmuTV Nom 

The Pool Manager 

The Pool Manager defines a programming interface used by privileged code in System 7 for 
making memory allocations. For example, developers of device drivers on occasion need to 
use the Pool Manager in System 7. The Mac OS 8 memory allocators make the Pool Manager 
unnecessary, and Apple Computer encourages developers of privileged code to adopt the 
Mac OS 8 Dynamic Storage-Allocation Service in lieu of the Pool Manager. However, for 
backward compatibility, the Dynamic Storage-Allocation Service supports the programming 
interface defined by the Pool Manager. • 
Custom Memory AI locators 
The memory allocators supplied by Mac OS 8-the per-process memory allo­
cator, the system-wide memory allocator, and the nonpageable-memory allo­
cator-meet most developer needs. However, developers with special needs 
can supply their own custom memory allocators. For example, it might be 
useful for a hardware vendor to write a device driver that allocates and 
releases storage from physical memory on a card instead of from system-wide 
memory areas maintained by the operating system. 

A developer can ascribe various attributes to a custom memory allocator, 
such as whether 

~ it's optimized to acquire memory allocations of a certain size-such as 1 
or 2 bytes or multiple numbers of pages 

~ its memory areas are private to an address space or system-wide and 
available to all address spaces 

~ its memory areas are pageable or must remain resident in physical mem­
ory 

~ the microkernel should allocate backing store space for pageable mem­
ory areas only as needed, or preallocate backing store space for entire 
memory areas as they're created 

~ its memory areas should have separate access permissions for privileged 
and nonprivileged code 



104 CHAPTER 7 ...,. DYNAMic STORAGE ALLOCAnON 

e Rl $s HERITAGE 

~~~ 
~ Dynamic Memory Allocation in System 7

In System 7, operating system software, device drivers, desk accessories, system extensions,
and applications can dynamically allocate only from memory areas known as the system
heap and application heaps. System 7 also offers a temporary memory scheme, but because
the amount of that memory continually changes during execution time, programs can never
rely on a fixed amount, making temporary memory mainly useful for preventing programs
from crashing by supplying emergency, short-term memory allocations.

THE MEMORY MANAGER FOR SYSTEM 7 APPLICATIONS

For compatibility with older applications, the operating system also supports
the System 7 Memory Manager-a cooperative service for dynamically
acquiring and releasing memory allocations from memory areas known as
application heaps. An application heap is a memory area assigned exclusively
to a System 7 application for the application's temporary data-storage needs.
Whereas the Mac OS 8 memory allocators dynamically create additional
memory areas to fulfill a program's storage needs, an application heap is fixed
in size at application launch time and can't be expanded.

When a System 7 application is launched in Mac OS 8, the operating sys­
tem creates an application heap for the program. The operating system also
instantiates a per-process memory allocator, which allocates storage for the
program's static data, such as the global variables used by the program code.
In addition to memory areas created for the application heap and the per-pro­
cess memory allocator, the operating system also maintains a memory area
within the cooperative program address space called the system heap. The sys­
tem heap is reserved for storing various data structures used by the Process
Manager and other portions of the operating system in support of System 7
applications. When System 7 applications in Mac OS 8 allocate memory for
windows, for example, the operating system stores various data structures in
the system heap.

Since the System 7 Memory Manager is a cooperative service, its pro­
gramming interface can be called only by the main tasks of cooperative pro­
grams. Because of the way that the Memory Manager moves and tracks
memory allocations, developers must implement memory-conservation mea­
sures in their own code. In addition to providing faster performance, use of
the Mac OS 8 memory allocators greatly reduces memory-management
overhead for developers.

THE MIN.ORY MANAGER FOR SYSTEM 7 APPuCAnoHs 105

To improve the performance of programs built on a System 7 code base,
Apple Computer has designed an interface between the Memory Manager and
the Dynamic Storage-Allocation Service. By following the forward-compatible
memory guidelines, a developer can easily adapt a System 7 application so
that the application uses a per-process memory allocator for its dynamic stor­
age needs.

g~nmUNHom
System 7 Memory Manager

OVer the years, many Macintosh developers have taken idiosyncratic approaches to using the
Memory Manager. Because of the number of changes in the addressing model introduced by
the Mac OS 8 virtual memory system, developers who haven't strictly followed Apple Com­
puter guidelines to the use of the System 7 Memory Manager may need to revise their
System 7 applications to run compatibly in M.ac OS 8.

Forward-Compatible Memory Guidelines
The forward-compatible memory guidelines provide a link from the System 7
Memory Manager programming interface to the per-process memory alloca­
tor available with Mac OS 8. These guidelines specify a subset of the routines
defined by the System 7 Memory Manager. If a System 7 application uses only
this subset of Memory Manager routines and programmatically makes this
known to the operating system, the operating system automatically invokes
the per-process memory allocator instead of the Memory Manager. This
allows System 7 applications to continue using System 7 calls that take mem­
ory handles as parameters and yet, with very little revision, perform signifi­
cantly faster than they do under System 7.

In Mac OS 8, dynamic storage needs for OpenDoc parts are handled by the
per-process memory allocator. System 7 OpenDoc part editors using the
OpenDoc memory management protocol instead of the System 7 Memory
Manager are already forward compatible with the per-process memory alloca­
tor available with Mac OS 8.

106 CHAPTER 7 ~ DYNAMIC STORAGE Au.OCAnON

g 4i(nmUTY Hom

AS Worlds

For A-trap-based System 7 applications compiled to run on 68K CPUs, Mac OS 8 emulates
the AS world-the area of memory containing information-such as the QuickDraw graphics
system global variables, application global variables, and application parameters-accessed
through the A5 register of a Motorola 68K processor. However, Mac OS 8 doesn't emulate
the A5 world for applications compiled to run on PowerPC CPUs. Therefore any PowerPC­
native code that makes assumptions about the organization of its A5 world won't work in
MacOS8.

SUMMARY

Most code developed for Mac OS 8 uses instanttattons of the per-process
memory allocator to dynamically supply storage for temporary data. When
code needs to share its temporary data, it can also use the system-wide mem­
ory allocator. Privileged code that can't tolerate page faults can also use the
nonpageable-memory allocator. In addition to using these system-supplied
memory allocators, developers with special needs can create and use custom
memory allocators. Memory allocators automatically increase the amount of
storage necessary to satisfy the needs of their clients, and these allocators sup­
port preemptive scheduling to make the system as a whole perform more effi­
ciently.

Mac OS 8 offers the Memory Manager as a compatibility service for Sys­
tem 7 applications. However, applications perform much faster when using a
Mac OS 8 memory allocator instead of the Memory Manager. Adherence to
the forward-compatible memory guidelines allows a System 7 application to
invoke the per-process memory allocator even when the application uses the
Memory Manager. Nevertheless, compared to the Memory Manager, the
Dynamic Storage-Allocation Service offers an easier-to-use, pointer-based pro­
gramming model.

PLANNING A PRODUCT FOR MAc OS 8

If you're a developer, you can take the following steps to prepare products
that take advantage of the Dynamic Memory-Allocation Service:

PLANNING A PRODUCT FOR MAc 05 8 107

1. Remove all assumptions in your code about the physical layout of mem­
ory, such as the relative positions of heaps, stacks, and other memory
areas used for storing data.

2. If you develop OpenDoc part editors for System 7, remove any calls to
the System 7 Memory Manager from your code and rely on the OpenDoc
memory management protocol exclusively. Your products will then be
forward compatible with the Mac OS 8 per-process memory allocator.

3. Consider whether your code has unusual storage-allocation needs that
might by optimized by supplying your own custom memory allocator.

4. If you want to migrate the code base for an existing System 7 application to
Mac OS 8, begin changing your code so that it adheres to these forward­
compatible memory guidelines from Apple Computer: (1) don't dispose of
pointers and handles allocated indirectly by the Toolbox; (2) don't access
handles, pointers, or heap zones outside the application heap or system
heap; (3) don't allow application plug-ins to call Memory Manager rou­
tines-instead, ensure that they call the application to perform their mem­
ory management; (4) don't allocate memory from the system heap or from
temporary memory; (5) remove all calls to the following Memory Manager
routines: InitApplZone, SetApplBase, InitZone, GetApplLimit, SetAppl­
Limit, MaxApplZone, MoreMasters, NewHandleSys, NewHandleSys­
Clear, NewEmptyHandleSys, HandleZone, RecoverHandle, NewPtrSys,
NewPtrSysClear, PtrZone, FreeMemo, MaxMem, CompactMem,
ReservMem, PurgeMem, TopMem, GrowZoneProcs, and PurgeProcs.

•

The Run­
Environ

Computer users want efficiency and flexibility in their systems, and the
Mac OS 8 run-time environment is designed to provide both: first, by effi­
ciently sharing code to reduce memory requirements and, second, by support­
ing flexible mechanisms for updating software. The run-time environment is
the set of conventions that arbitrate how software is generated into executable
code, how code is mapped into memory, and, at execution time, where data is
stored, how data is addressed, and how functions call one another. The run­
time environment isn't visible to users. However, users are generally aware of
system and application memory requirements and of the relative ease or diffi­
culty of upgrading applications and the operating system. The run-time envi­
ronment greatly influences memory use and the ease of upgrading.

In the Mac OS 8 run-time environment, shared libraries make efficient use
of memory. A shared library allows severa l programs to use code that's
mapped to a single location in memory. For example, because the Mac OS 8
File Manager is implemented in a shared library, all tasks that open and close
files share a single memory-mapped copy of File Manager code.

Shared libraries foster extensibility, which simplifies software upgrades and
enhancements. Because shared libraries are dynamically linked, Apple or
another developer can, for example, enhance a portion of the Mac OS 8
human interface by shipping an updated version of a shared library that's easy
to install and is reliably integrated with the rest of the system.

109

110 CHAPTER 8 THE RuN· TIME ENVIRONMENT

This chapter focuses on the architecture of the run-time environment. It
explains how the run-time environment makes efficient use of memory and
how it supports applications developed for System 7. Chapter 9 describes how
the run-time environment simplifies software extensibility.

KEY TERMS AND CONCEPTS

.,... A code fragment is a block of executable code and its static data. Code
fragments are created by programming tools at generation time. Execut­
able code generated specifically for Mac OS 8 is made up entirely of code
fragments. The generation-time creation of code fragments and their
execution-time preparation and use form the basis of the Mac OS 8 run­
time environment .

.,... Generation time is the time during which executable code is created
from source code using such program-development tools as a compiler
and linker. For example, a developer creates a program at generation
time .

.,... Link time is the point during generation time at which a linker binds
object code with imported libraries to create executable code .

.,... Execution time is the general span of time during which programs run
on a computer. During this time, code implemented in shared libraries is
prepared for use by the applications that call these libraries .

.,... A library is computer code stored in a file or set of files for use by other
code. A library provides building blocks of code for commonly needed
operations. In the Mac OS 8 run-time environment, all libraries are
implemented as shared libraries based on code fragments; the Mac OS 8
run-time environment doesn't allow the creation of libraries that aren't
shareable (or at least potentially shareable) by more than one program .

.,... A shared library is a code fragment exporting a set of routines and data,
or a data-only fragment exporting data, that can be used by other pro­
grams. Because they are prepared for use dynamically-that is, at code­
execution time instead of at generation time-shared libraries are also
called dynamically linked libraries. There are two types of shared librar­
ies: import libraries and plug-ins .

.,... An import library is a shared library automatically prepared by the
Code Fragment Manager for use by a program at launch time. (Launch
time is the period during which the operating system builds the process
for a program that is starting up.) The Code Fragment Manager pre­
pares an import library to resolve imported symbols in program code
that weren't resolved at link time.

MAJoR PoiNTS OF lt«EREST 111

...,. An imported symbol is a name used in a code fragment. The imported
symbol references a discrete element of code or data in an import
library .

...,. A plug-in is a shared library dynamically located and prepared for use
by another code fragment when the code fragment explicitly calls Code
Fragment Manager functions .

...,. Static data consists of variables and other data for which memory is
allocated once so that the data persists between calls to a particular
code fragment .

...,. A data-only fragment is a block of static data created by programming
tools. A data-only fragment is occasionally used to implement a shared
library.

..... The Code Fragment Manager is the operating system service that pre­
pares programs and import libraries for execution.

C~ ~5 HERrrAGI

~

A compiler is a tool
that converts source
code written in a
high-level language
like C into object files
containing instruc­
tions in machine lan­
guage. A linker is a
tool that creates exe­
cutable files by bind­
ing object files with
libraries.

The Term Fragment

When developing the run-time environment for its first PowerPC-based computers, Apple
Computer chose the term code fragment to avoid confusion with other terms (such as seg­
ment, object, component, and module) that Apple had already used to describe execut­
able code. The term code fragment isn't intended to suggest that a block of code is in any
way small, detached, or incomplete. Code fragments can be of virtually any size, and they
are complete, executable entities. Some fragments, called data-only fragments in this book,
contain no code; instead they contain data used by other code fragments . •
MAJOR POINTS OF INTEREST

Conventions established by the run-time environment arbitrate how software
is generated into executable code, how code is loaded into memory, where
data is stored and how it is addressed, and how functions call other functions.
For Mac OS 8, these conventions are implemented by software development
systems (such as the compilers and linkers that generate executable code), the
Code Fragment Manager (which manages the preparation of executable
code), the microkernel (which maps code and data into memory and schedules
code for execution), and the CPU (which executes code).

All code compiled specifically for Mac OS 8, whether for cooperative pro­
grams, server programs, device drivers, or the operating system itself, is linked
into packages known as code fragments. A developer creates a code fragment
at generation time by compiling source code into object code and linking this

112

FIGURE 8.1

CHAPTER 8 THE RuH-TIME EI'MROHMEHT

The creation of a code fragment at generation time

D
Object Definition version

file of import library

Lo_j
Linker

1

~
Code fragment

(for an application)

with other code fragments called import libraries. As Figure 8.1 shows, a
linker produces a code fragment from an object file and an import library. (An
import library can be considered to have rwo versions: a definition version used
at generation time and an implementation version used at execution time.)

Program source code typically ca lls routines defined in import libraries. For
example, a cooperative program usually includes calls that draw windows,
and these calls are defined in an import library. The code that implements
these calls, however, isn't in the code fragment for the cooperative program.
Instead of placing code or data from an import library directly into the pro­
gram's code fragment at link time, the linker places imported symbols into the
code fragment. An imported symbol references code or data contained in an
import library.

An import library is also a fragment. The code fragment for an import
library differs from the code fragment for a program in that the former isn't
an independently executable entity. Instead, it contains code that can be called
from other code fragments, such as those for programs and those for other
shared libraries.

When a program is launched, the Code Fragment Manager prepares the
program's code fragment for execution. Part of this preparation involves

MAJOR POINTS OF INTEREST 113

matching the fragment's imported symbols with code or data supplied by the
implementation versions of import libraries. For example, code supplied by
the Human Interface Toolbox to implement windows, controls, and menus
becomes available to an application only after the user launches the applica­
tion. Then when the application calls a function to draw a window, code for
the Human Interface Toolbox actually draws the window.

At any time a program is running, it can call the Code Fragment Manager
to prepare code fragments known as plug-ins. The program and its plug-ins
adhere to a programming interface allowing the program to call its plug-ins at
execution time. For example, the developer of a graphics application might
define a programming interface for use by plug-in developers. Developers of
graphics utilities could then provide plug-ins that add new capabilities to the
graphics application. One developer might create a plug-in that allows graphic
artists to alter light sources in illustrations, and another developer might sup­
ply a plug-in that allows artists to perform custom color blending. To use a
plug-in, a program or other code fragment must explicitly call the Code Frag­
ment Manager at execution time.

Both plug-ins and import libraries are shared libraries. Multiple code frag­
ments can simultaneously use a single copy of a shared library. For instance,
when two or more applications use the QuickDraw 3D graphics system
library, only one copy of its code is mapped into a system-wide memory area.
Software developers can take advantage of shared code to reduce memory
requirements for their own products.

Because they are prepared for use dynamically, that is, at execution time
instead of at generation time, shared libraries are also called dynamically
linked libraries. The dynamic, execution-time preparation of shared libraries
further reduces memory requirements. The operating system allocates memory
for a shared library only when it's referenced by another code fragment. In
particular, an import library is mapped into logical memory only at launch
time for a program that references that library, and a plug-in is mapped into
logical memory only when a program explicitly uses Code Fragment Manager
functions during execution time. The import library for QuickDraw 3D, for
example, is mapped into memory only when an application that references
this library is launched. All subsequently launched programs using Quick­
Draw 3D share the same memory-mapped copy of QuickDraw 3D code.
When the last application to use this library quits, the memory area allocated
to QuickDraw 3D code is released.

The virtual memory system (as you saw in Chapter 6) ensures that code
doesn't occupy any space in physical memory until the CPU needs that code.
Code for a shared library, therefore, is loaded into physical memory only
when called by another code fragment and then released from physical mem­
ory when no longer needed.

Dynamic linking separates program code from shared library code until
execution time. This separation makes it easier for developers to update soft-

114 CHAPTER 8 THE RuN· TIME EHviROHMEHT

ware because shared libraries can be distributed independently of the pro­
grams that use them. For example, Apple Computer can distribute an updated
version of the shared library containing routines for drawing and managing
onscreen controls. At launch time, every cooperative program would become
dynamically linked to the new code in the updated library. In this way, every
enhancement Apple makes to controls would be reflected in every program
that uses controls.

The run-time environment for Mac OS 8 is a continuing evolution of the run­
time environments for several previous versions of System 7. The Mac OS 8
run-time environment supports applications created for System 7, although
Mac OS 8 emphasizes the performance of fragment-based programs over Sys­
tem 7 applications compiled for the 68K family of Motorola processors.

~~~SHwrAGE 
-?) 

A variable is a named 
storage location for a 
modifiable value. A 
global variable is a 
named storage loca­
tion for a modifiable 
value that can be ref­
erenced outside the 
local scope of code 
statements using that 
variable. 

The PowerPC Run· nme Environment for System 7 .1.2 

The Mac OS 8 run-time environment is an evolution of the one introduced with System 7.1.2 
for PowerPC-based Mac 05-compatible computers. Fostering forward application compati­
bility, this run-time environment unifies mechanisms for loading and executing code so that 
developers' binary files automatically gain new capabilities as Apple Computer continues 
releasing new versions of the Mac OS. 

FRAGMENTS 

In Mac OS 8, as in System 7, fragments are created at generation time. Every 
program consists of one or more code fragments. A code fragment typically 
consists of 

...,. One or more code sections, which contain binary code-that is, com­
piled instructions for the CPU to execute. The Code Fragment Manager 
maps the code sections of all fragments into read-only areas of system­
wide memory. 

...,. A data section, which contains the static data-including pointers to 
functions and pointers to global variables-used by code in the code 
section of the fragment. The Code Fragment Manager typically uses a 
per-process memory allocator for storing the data section, but the devel­
oper of a fragment can also direct the Code Fragment Manager to use 
the system-wide memory allocator instead. 



A memory allocator 
is a plug-in used by 
client code for dyna­
mic storage alloca­
tion. Mac OS 8 instan­
tiates a per-process 
memory allocator 
for e:very process. The 
system-wide mem­
ory allocator allows 
any code to allocate 
storage from system­
wide memory areas. 

SHARED LIBRARIES 115 

Most shared libraries contain code. However, some shared libraries, called 
data-only fragments, contain no code. A data-only fragment contains a data 
section but no code section. The data in a data-only fragment can be used by 
the code in other code fragments. Data-only fragments, as you'll see later in 
this chapter, are occasionally used for sharing system-wide static data. 

Because all fragments are potentially shareable (although not all are actu­
ally shared), the terms fragments and shared libraries are often used inter­
changeably. While all shared libraries are fragments in Mac OS 8, however, 
not all fragments are shared libraries. In general, a shared library supplies 
code or data for use by other code fragments during execution time. 

SHARED LIBRARIES 

All code is potentially shareable as a library in Mac OS 8. A developer who 
wants to create a library of shareable routines generates a code fragment from 
source code for the routines, directing the linker to label that code fragment as 
a shared library. It is up to the developers of client code to import and use that 
shared library. One developer, for instance, can create a shared library consist­
ing of a spell-checking utility. By importing that shared library into their pro­
grams, other developers can include the spell-checking utility in their 
products, too. 

There are two types of shared libraries: 

...,. import libraries, which the Code Fragment Manager automatically pre­
pares for use by client code fragments when they are launched 

...,. plug-ins, which the Code Fragment Manager prepares for execution 
only when client code fragments explicitly call the Code Fragment Man­
ager 

Import Libraries 

An import library may be considered to have two versions: 

...,. its definition version, which is used by client code at generation time 

...,. its implementation version, which is used by client code at execution 
time 

The definition version defines the external programming interface and data 
format of the library. The implementation version contains the actual data and 
executable code supplied by the library. 

A code fragment, such as one for an application, references the definition 
version of an import library at generation time. A programmer begins by com-



116 CHAPTER 8 .... THE Rut-~-TIME EtMROHMEHT 

FIGUR£ 8.2 Preparing an import library for use by a client code fragment at launch time 

@)- ... 
Implementation 

version of 
import library 

Application 

., 

"'·"// code '~.-:;/; 

Code 

Per-process 
dynamic storage 

l:.:~~t~· ~e~ti?~.:-1 

I Data section I 

~ 

) 

Key: !?Z:] Code section for application 

Code section for implementation 
version of import library 

Data section for application 

Data section for Implementation 
version of import library 

piling source code into an object file. As shown in Figure 8.1 on page 112, the 
programmer then passes this object file, a long with the import library, to a 
linker. T he linker creates a code fragment, which conta ins imported symbols 
to the functions and va riables defined in the definition version of the import 
library. 

Figure 8.2 illustrates the launch-time preparation of the implementation 
version of an import library. W hen an appl ication is launched, the Code Frag­
ment Manager prepares for execution the application code fragment and the 
code fragments for all import libraries referenced by the application. As this 
figure illust rates, the code for an application code fragment is mapped into 
one memory a rea, and the code for the import library is mapped into another 
memory a rea. As for a ll code, these memory areas are shared system wide and 
have read-only access permissions. 



To instantiate some­
thing is to create an 
instance of it at exe­
cution time. 

SHARED LIBRARIES 117 

The Code Fragment Manager typically instantiates the data sections of the 
application's code fragment and the import library's code fragment by using 
the application's per-process memory allocator (described in Chapter 7). The 
Code Fragment Manager then resolves the imported symbols in the applica­
tion code fragment by converting their symbolic addresses to the actual mem­
ory addresses of routines and data supplied by the import library. 

All Mac OS 8 services are packaged as import libraries. For example, 
Human Interface Toolbox services are packaged as import libraries. At gener­
ation time, the developer of a cooperative program links the object code for 
that program with definitions versions of the Human Interface Toolbox librar­
ies. Later, when the user launches that program, the Code Fragment Manager 
automatically prepares the code within these libraries for use by the coopera­
tive program. 

This example further illustrates the two major benefits of a shared library: 
memory conservation and ease of software updates. Because code for the 
Human Interface Toolbox is mapped only once into logical memory for use by 
all programs, memory requirements across the system are reduced. Thus, all 
programs that are linked at their generation times with the Human Interface 
Toolbox-as well as any other Mac OS 8-supplied shared libraries-automat­
ically take advantage of code sharing. The dynamic preparation of shared 
libraries at execution time further reduces memory requirements by allocating 
dynamic storage for a shared library only when it's referenced by another code 
fragment. And because the shared library code becomes available to programs 
only at execution time, Apple Computer can distribute library updates to 
users and thereby automatically provide all applications with the most up-to­
date versions of human interface features. 

In addition to using Mac OS 8-supplied libraries, software developers typi­
cally provide their own import libraries. For example, the developer of a sci­
entific simulation application might define and use an import library of 
specialized math functions. If the developer revises these functions to provide 
better performance, enhanced capabilities, or greater reliability, the developer 
can easily upgrade users by distributing updated versions of this library, as 
you'll see in Chapter 9. 

Plug-Ins 

A developer can create shared libraries in the form of plug-ins. The Code Frag­
ment Manager doesn't automatically prepare plug-ins for use by a program 
when it's launched. Instead, at any point during execution time, a program 
calls the Code Fragment Manager to prepare a plug-in for the program's use. 

A plug-in is prepared for use during execution time only when requested 
by a client program. A plug-in adheres to a programming interface defined 
by the developer of a client program. For example, suppose a developer of a 
digital-video editing program defines a programming interface for plug-ins 



118 CHAPTER 8 .... THE RUN· TIME ENVIRONMENT 

that perform special editing effects. Other developers might then produce and 
market these plug-ins, and the user might purchase these plug-ins separately 
from the digital-video editing program. When executing, the program would 
display, perhaps in a menu, the special editing effects provided by all installed 
plug-ins. If the user chose a special editing effect, the program would call the 
Code Fragment Manager to prepare the plug-in so that the program could use 
the plug-in's code. 

Like an import library, the code for a plug-in is mapped once into a system­
wide memory area, allowing multiple programs to use that code. Also, a 
developer can update a program simply by distributing an enhanced version of 
a plug-in for the program. Because plug-ins aren't linked with a program dur­
ing generation time, plug-ins are in many ways more flexible than import 
libraries. 

For example, if a developer created a video-effects editor as an import 
library, that editor would be prepared for use by a program and mapped into 
memory when the program was launched, but if the video-effects editor were 
implemented as a plug-in, it would be prepared and mapped into memory 
only when the user chooses to use it. Further, if the video-effects editor were 
implemented as a plug-in, its developer could make an audio-effects editor 
and an animation-effects editor available as additional plug-ins. Because the 
Code Fragment Manager doesn't prepare plug-ins at application launch time, 
an application would require less memory and launch more quickly if its spe­
cial-effects editors were implemented as a family of plug-ins rather than as a 
single large import library. 

Perhaps the ultimate plug-in architecture is offered by OpenDoc. When a 
user creates a new part in an OpenDoc document, the Code Fragment Man­
ager dynamically prepares for execution the part editor associated with that 
part. For example, a user can add a text-editing part to a compound document 
any time the user works with that document. As with any plug-in, the code for 
that part editor is mapped only once into a system-wide memory area. If the 
user were to add that part to several documents, all instances of its part editor 
would use the same code, thereby reducing memory requirements across the 
system. 

g 4:tnBIUTY Nom 

The Apple Shared Library Manager 

The Apple Shared Library Manager (ASLM), a shared library technology available on some 
earlier versions of the Mac OS, isn't supported in Mac OS 8. Instead, it has been super­
seded by the Code Fragment Manager and SOMobjects for Mac OS which, as you'll read in 
Chapter 9, is implemented on top of the Code Fragment Manager. SOMobjects for Mac OS 
has the particular benefit of being an industry-standard solution that's both compiler-neutral 
and language-neutral. This solution allows object-oriented libraries to be called from code 
written in any development environment. Another important reason that Apple Computer 



FIGURE 8.3 

STATIC DATA h-4STANTIATION 119 

Separate instantiations of the data section for an import library 

Import library 1 

Code section 

Data section Data section Data section 
(per -process static data) (per-process static data) (per-process static data) 

I 

~ ~ . ~ 
Application 1 Application 2 Application 3 

has chosen the Code Fragment Manager and SOMobjects over ASLM is to ensure greater 
operating system synergy and consistency with OpenDoc, an important client of this shared 
library solution. 

STATIC DATA IMSTANTIATIOM 

The Code Fragment Manager always maps a single copy of the code of a 
shared library into a system-wide memory area. However, the Code Fragment 
Manager can instantiate the data section of a shared library using either a per­
process memory allocator, so that the tasks of that process have their own pri­
vate instance of the data, or the system-wide memory allocator, so that all 
tasks in the system have a common instance of the data. 

For an import library supplied as part of the operating system, the Code 
Fragment Manager typically instantiates a separate copy of the library's data 
section with the per-process memory allocator of every program using that 
library. Figure 8.3 illustrates three applications importing the same shared 
library. These applications all share the library's code section, but each appli­
cation gets its own copy of the library's data section. The Code Fragment 
Manager, for instance, instantiates a separate copy of the data section of the 



120 

FIGURE 8.4 

Code Fragment Man­
ager documentation 
from Apple Computer 
sometimes refers to 
per-process instantia­
tion as per-context 
instantiation. 

Documentation from 
Apple Computer 
sometimes refers to 
system-wide instanti­
ation as global 
instantiation. 

CHAPTER 8 ..... THE RUN-TIME ENVIRONMENT 

A single copy of the data section for an import library 

Import library 2 
Data section 

(system-wide static data) 

I I 
I I 

l l 

~ ~ 
. 

~ 
Application 1 Application 2 Application 3 

fi le system for every program using t hat libra ry. The fi le system uses separate 
data sections, one for each program, to track what fi les have been opened by 
which programs. 

This instantiation method is called per-process instantiation, and the data 
instantiated this way is called per-process static data. This data is available to 
all tasks in the process for that program, and this data is genera lly available 
only to the tasks for that program. 

Developers typically create shared libraries that use per-process instantia­
tion. For example, it's easier to convert a statically linked library into a shared 
library by implementing it as one using per-process static da ta . 

The Code Fragment Manager can also perform system-wide instantiation, 
in which case the Code Fragment Manager supp lies an instance of a shared 
library's data section using the system-wide memory allocator; the data instan­
tiated this way is called system-wide static data. System-wide instantiation 
a llows all tasks in the system to use the same instance of the static data. Figure 
8.4 illustrates severa l applications sharing the same instance of the data sec­
tion of a shared library. 

Only a small num ber of shared libraries supplied by the operating system 
are instantiated with system-wide static data. One such library is supplied for 
the Timing Services. All programs and shared libraries that use the Timing Ser­
vices share the same data so that they can rely on system-wide timing values. 

Developers can also create shared libraries that employ system-wide static 
data, but the compiler won't allow import libraries using system-wide static 
data to import libraries using per-p rocess static data. Otherwise, if a code 
fragment with system-wide static data were to inadvertently import another 
shared library-for instance, by calling one of its routines- the per-process 
data used by the imported library would have valid addresses for only one 



Private-copy instantia­
tion is sometimes 
called per-load 
Instantiation in doc­
umentation from 
Apple Computer. 

RuN-TIME-ENVIRONMENT SuPPORT FOR SYSTEM 7 APPuCAnoNs 121 

process. The fragment with system-wide data would then be reliable for only 
one process. Developers work around this situation by keeping system-wide 
static data in data-only fragments-fragments that contain no imported sym­
bols. A shared library containing no imported symbols can't inadvertently 
import routines or data contained in other shared libraries. 

It's also possible to instantiate a new copy of a plug-in's static data every 
time a program calls the Code Fragment Manager to prepare the plug-in for 
use. This type of instantiation, which uses a per-process memory allocator for 
allocating storage for the data, is called private-copy instantiation. All private­
copy instantiations of a plug-in continue to use the same copy of the plug-in 
code, but each instantiation has its own copy of plug-in data. A communica­
tions application might use a plug-in to implement a tool for connecting to a 
serial port, for example. After requesting the Code Fragment Manager to per­
form multiple instantiations of the tool, the application can use the tool to 
connect to two or more serial ports simultaneously by maintaining separate 
copies of the tool's static data. 

g~nmuwHom 
Static Data Instantiation in System 7 

The System 7 version of the Code Fragment Manager instantiates per-process static data in 
application heaps and all system-wide static data in the system heap. Whereas a shared 
library supplied by Mac OS 8 is typically instantiated with per-process static data, many 
shared libraries supplied by System 7 are instantiated with system-wide static data. The Sys­
tem 7 approach allows one program to easily change many of the operating system's global 
variables, which are often used by other programs. Many system extensions in System 7 do 
this in very clever and useful ways. However, the patching of system-supplied global vari­
ables occasionally leads to system instability for applications that rely on these variables 
remaining unaltered by other programs. The predominance of per-process instantiation in 
Mac OS 8 increases system reliability by preventing other code from changing global vari­
ables supplied by the operating system. For this and other reasons, System 7 extensions 
don't work in Mac OS 8. As you'll read in Chapter 9, Mac OS 8 provides a variety of other 
mechanisms that developers can use to reliably extend or modify the operating system. 

RUN· TIME-ENVIRONMENT SUPPORT FOR SYSTEM 7 APPLICATIONS 

The Mac OS 8 run-time environment supports code-fragment-based software 
generated for System 7. The Mac OS 8 run-time environment also supports 
System 7 software based on the use of the A-trap table-a central part of the 



122 

FIGURE 8.5 

CHAPTER 8 .... THE RuN· TIME ENVIRONMENT 

Access to system services in System 7 

I 
I 

_.. 
---

Fragment-based 
System 7 application 

F __. Interface 

~ 
r---ut>rari 

Dialog Manager II Control Manager I 
~~ • • 

f--

... ···---~~~~ap_j 1-
table ! 

original Macintosh run-time environment-by running this software under 
emulation. 

c~ ~ lfalrAGE 

~ 
The A· Trap Table and A· Traps 

An A-trap table contains a list of A-traps-that is, entry points to Mac OS routines called by 
code generated to execute on the 68K CPUs. An A-trap is a compiled instruction that is 
unimplemented by the Motorola 68K family of microprocessors. The first 4 bits of such an 
instruction have a hexadecimal value of A. For applications compiled to run on 68K-based 
computers, these instructions invoke routines implemented by the Mac OS. For example, the 
call to create a window has a hexadecimal value of A913, which causes the CPU to generate 
an exception. The exception invokes an exception handler provided by the Mac OS, allow­
ing the operating system to "trap" the routine and respond by creating a window . • 
System 7 and the A· Trap Table 

The code-fragment-based run-time environment of the Mac OS began with 
the introduction of System 7.1.2 for PowerPC-based computers. In this and all 
versions of the Mac OS before Mac OS 8, every program accesses operating 
system services through the A-trap table. In System 7, A-trap-based software 
uses the trap table directly; code-fragment-based software calls an interface 
library, which in turn uses the trap table. (All native PowerPC software devel­
oped for System 7 is code-fragment based.) Figure 8.5 shows calls from a 
code-fragment-based application in System 7 to two shared libraries, one for 
the Dialog Manager and one for the Control Manager, going through the 
interface library and trap table. It shows the same process for the Dialog Man­
ager using the shared library of the Control Manager. 



FIGURE 8.6 

RuN-TIME-ENviRONMENT SUPPORT FOR SYSTEM 7 APPUCAnONS 

Access to system services in Mac OS 8 

Dialog Manager --. Control Manager 

Fragment-based 
System 7 application 

113 

The System 7 run-time environment for PowerPC computers uses the A­
trap table to maximize the compatibility and performance of A-trap-based 
programs, which predominated at the introduction of PowerPC-based Macin­
tosh computers. Since then, Apple Computer has been quickly shifting its 
product line to PowerPC-based Macintosh computers, and other manufactur­
ers have begun licensing the Mac OS to run on their own PowerPC-based 
computers; development of A-trap-based programs has subsequently 
decreased. Instead, developers have focused on delivering code-fragment­
based programs that take advantage of Power PC performance. Even for devel­
opers continuing to create products for computers using the Motorola 68K 
family of microprocessors, Apple Computer has provided a code-fragment­
based run-time environment for the Motorola 68K platform. 

As users over the last several years have migrated to PowerPC-based com­
puters and code-fragment-based software, the performance of A-trap-based 
software has decreased in importance. With the introduction of Mac OS 8, 
Apple Computer optimizes the performance of code-fragment-based software 
over the performance of A-trap-based software. 

Code-Fragment-Based Software in Mac OS 8 

Whereas all code-fragment-based calling conventions in Mac OS 8 remain 
consistent with those of System 7, all code-fragment-based software gains 
direct access to the shared libraries supplied by Mac OS 8. Because there is no 
longer a circuitous route through an interface library and a trap table, the per­
formance of code-fragment-based software is increased, even for code-frag­
ment-based software written for System 7. Shared libraries supplied by the 
operating system also access each other directly, one to another. Figure 8.6 
shows a code-fragment-based System 7 application gaining direct access in 



124 

FIGURE 8.7 

CHAPTER 8 ~ THE RUN· TIME ENviRONMENT 

Mac OS 8 support for A-trap-based software 

A-trap-based 
System 7 application 

Dialog Manager 

Control Manager 

Mac OS 8 to the shared libraries of the Dialog Manager and the Control 
Manager, which are supplied for System 7 application compatibility. The fig­
ure also shows the shared library for the Dialog Manager gaining direct access 
to the shared library for the Control Manager. 

g~nmUTYHom 
Code Fragments for PowerPC-Based and 68K-Based Computers 

Code fragments generated for 68K-based computers won't run on PowerPC computers, nor 
will code fragments generated to run on PowerPC-based computers run on 68K-based com­
puters. For code fragments to run on both types of computers, developers must compile 
them twice-once for each type of computer. 

Mac OS 8 Support for A· Trap-Based Software 

The Mac OS 8 run-time environment continues to support A-trap-based soft­
ware, although this software is no longer the focus of the run-time environ­
ment as in System 7. As illustrated in Figure 8.7, this environment supplies a 
trap table that references the shared libraries supplied by Mac OS 8. For every 
process that the operating system creates for A-trap-based software, the oper­
ating system creates a separate trap table. In other words, every A-trap-based 
application gets its own copy of the trap table. 



SUMMARY 125 

SUMMARY 

The Mac OS 8 run-time environment is based on the generation-time and exe­
cution-time preparation of code fragments. Code generated specifically for 
Mac OS 8 consists entirely of code fragments. 

Code fragments can be packaged in shared libraries. A shared library allows 
multiple other code fragments to use a single copy of its memory-mapped code, 
thus reducing memory requirements. Moreover, shared libraries are dynami­
cally mapped into memory at execution time. This feature also makes it easier 
to update users with enhanced software, as you'll see in Chapter 9. 

Mac OS 8 services are made available to developers through shared librar­
ies. Software developers can implement features for their own products in 
shared libraries. There are two types of shared libraries: import libraries and 
plug-ins. Import libraries are automatically prepared for execution by the 
Code Fragment Manager to resolve imported symbols in the code fragments 
of programs being launched. Plug-ins are prepared for execution by the Code 
Fragment Manager only at the request of client programs. 

The Mac OS 8 run-time environment is optimized for code-fragment-based 
software, although Mac OS 8 continues to support System 7 applications gen­
erated to run on 68K-based computers. 

PLANNING A PRODUCT FOR MAc OS 8 

If you're a developer, you can take the following steps to prepare products 
that take advantage of the Mac OS 8 run-time environment. 

1. Generate your existing System 7 products as code fragments-in partic­
ular, if you haven't already done so, update your products by making 
them PowerPC-native for System 7. 

2. If your existing System 7 product uses the Code Fragment Manager to 
create system-wide static data, place this data in an import library 
implemented as a data-only fragment, and reference no other shared 
libraries from this data-only fragment. 

3. Make no assumptions in your code about the layout of memory, such as 
the locations of your application global variables. 



• • • • • • • • • • • • • • • • • • • • • • • 

Software 
Extensib. 

• • • • • • • • 

To support technological advances and the customization needs of developers, 
Mac OS 8 incorporates product extensibility. From its lowest hardware­
related services to its most abstract human interface features, Mac OS 8 pro­
vides mechanisms for enhancing the entire operating system. This extensibility 
allows Apple Computer and Mac OS 8 developers to ta ilor the operating sys­
tem to fit present needs and expand it in the future to incorporate technologi­
cal innovations. These operating system mechanisms also make it easier for 
developers to build extensibility into their own products. Users, in turn, bene­
fit by gaining rapidly developed product enhancements. 

Extensibility is the ability of software to be enhanced with new capabilities 
without breaking those it already supports. Mac OS 8 incorporates several 
mechanisms by which developers can extend the operating system as well as 
their own products. OpenDoc offers the most flexible mechanism for deliver­
ing extensible application-level software. Shared libraries, from which Open­
Doc parr editors are built, provide a lower-level mechanism for Apple and 
developers to update and enhance any type of software. SOMobjects for Mac 
OS provides an object-oriented approach for using shared libraries to extend 
software. 

Server programs are yet another mechanism for software extensibility, 
allowing developers to extend the capabilities of the operating system and 
their own products. And developers who have a pressing need to modify indi­
vidual routines in shared libraries can use the Patch Manager to do so reliably. 

127 



128 CHAPTER 9 .... SOFTWARE ExTENSIBILITY 

KEY TERMS AND CONCEPTS 

.... OpenDoc is a multiplatform technology, implemented as a set of shared 
libraries, that facilitates the construction and sharing of compound doc­
uments. Each compound document can consist of multiple user-selected 
parts, which create, contain, and display information . 

.,... A shared library is a code fragment exporting a set of routines or static 
data that can be called by multiple programs. Shared libraries are pre­
pared dynamically for program use. An import library is a shared 
library automatically prepared by the Code Fragment Manager at pro­
gram launch time. The Code Fragment Manager prepares an import 
library to resolve imported symbols in program code that weren't 
resolved at link time. By comparison, a plug-in is a shared library 
dynamically located and prepared for use by another code fragment 
when the code fragment explicitly calls Code Fragment Manager func­
tions at any point during execution time . 

.,... SOMobjects for the Mac OS is the Apple Computer implementation of 
the System Object Model (SOM), an industry standard architecture 
licensed by IBM for the development and packaging of object-oriented 
software. Developers who desire to build object-oriented extensibility 
into their programs can use SOMobjects for the Mac OS in their own 
products. Apple uses SOMobjects for the Mac OS to implement Open­
Doc shared libraries and to provide object-oriented extensibility in 
Mac OS 8. The human interface elements in Mac OS 8 and several 
other key operating system features, for example, are implemented with 
SOMobjects for the Mac OS, allowing Apple and other developers to 
modify these features easily while maintaining future compatibility 
between applications and the operating system . 

.,... A server program operates on data within its own protected address 
space. Server programs typically provide services to other programs 
along a client/server model. 

.,... The Patch Manager is service that helps developers modify routines sup­
plied in import libraries. 

MAJOR POINTS OF INTEREST 

Extensibility mechanisms allow Apple and other developers to enhance 
Mac OS 8. These mechanisms also allow developers to quickly adopt new 
advances in their own applications. 

For users and developers alike, OpenDoc provides the greatest degree of 
flexibility in creating application-level software that integrates seamlessly with 
users' personally configured work environments. A user can buy or create a 



MAJOR POINTS OF INTEREST 129 

compound document containing various part editors; part editors, in tum, are 
responsible for manipulating specific types of content within the parts of the 
document. A compound document in the OpenDoc environment acts like a 
shell to hold various parts. The user can add or remove a part just by dragging 
it in or out of a compound document. As the user works with a part, the code 
for that part editor runs and manipulates the data within the part. Every part 
editor is implemented as a shared library, which is mapped into a system-wide 
memory area for use by all compound documents containing that part editor. 

The prevalence of shared libraries and server programs throughout the sys­
tem simplifies the future improvement of the Mac OS 8 platform. For exam­
ple, if Apple chooses to enhance the appearance of onscreen controls in a later 
release of the Mac OS, Apple needs only replace a shared library instead of 
releasing a new version of the entire operating system. Software developers 
can take advantage of this extensibility in their own products, too. For exam­
ple, a developer could add new features to a spelling checker implemented as a 
shared library and ship a revised version of this library to customers without 
requiring them to update the word processors, e-mail editors, and page-layout 
programs that use the spelling checker. Such extensibility makes it very easy 
for users to keep their software up to date. 

Mac OS 8 also supports extensibility through object-oriented programming 
techniques. The Mac OS 8 adoption of SOMobjects for Mac OS helps devel­
opers to extend their own software-as when they add new capabilities to 
existing products-or to extend Mac OS 8 in new ways-as when developers 
customize standard Mac OS 8 menus or controls for unique requirements. 
SOMobjects for Mac OS is built on top of the Code Fragment Manager, and 
thus class libraries are implemented as shared libraries. 

A developer needs to use the object-oriented features of the SOM classes 
provided by Mac OS 8 only to modify human interface features or other 
SCM-implemented features of the operating system. For most developers, 
such modifications are unnecessary. Instead, using their preferred program­
ming languages, most developers simply call Mac OS 8-supplied functions, 
which in turn manipulate objects instantiated from unmodified SOM classes. 
Because of the language-neutral nature of the System Object Model, develop­
ers can use procedural as well as object-oriented languages. Only a minority 
of developers will wish to alter the default behavior or appearance of operat­
ing-system elements derived from SOM classes. For these developers, SOMob­
jects for the Mac OS provides a reliable way to modify portions of the 
operating system while maintaining forward compatibility with future ver­
sions of Mac OS 8. 

To extend the capabilities of their own products or the operating system, 
developers can create server programs. For example, to satisfy the needs of a 
suite of cooperative programs-such as a scientific simulation program, an 
engineering design program, and a three-dimensional rendering program-a 
developer can supply a single server program that performs data-intensive sta-



130 CHAPTER 9 ..... SOFTWARE ExrEHSIBIUTY 

tistical simulations. To incorporate future improvements to the statistical sim­
ulation capabilities of these cooperative programs, the developer needs only 
supply customers with a revised version of the server program. 

Finally, to extend individual routines supplied in import libraries-such as 
those implementing Mac OS 8 programming interfaces-developers can use 
the Patch Manager. 

This chapter describes the software extensibility mechanisms provided by 
Mac OS 8. The modular design of Mac OS 8 also makes it easier for develop­
ers to extend and differentiate the operating system for different hardware 
platforms. For example, a developer might integrate a specialized video cap­
ture device into the 1/0 system while implementing a volume format opti­
mized for video data. Chapter 11 describes the modular nature of the 110 
system, and Chapter 10 describes the volume format extensibility supplied by 
the file system. 

g 4tna1~ NOTH 

Mac OS 8 Incompatibility with System 7 Extensions 

Parts are the por­
tions of an OpenDoc 
document that con­
tain content for view 
or manipulation by 
users. At execution 
time, part editors 
display part content, 
facilitate manipula­
tion of the content, 
and provide a user 
interface for modify­
ing that content. 

To effect system-wide changes for all applications in System 7, developers often modify 
operating system features by creating system extensions (that is, files of type 'INIT') and 
patching the system-wide A-trap table. To improve system stability, howeve~ Mac OS 8 
doesn't support 'I NIT' files. Moreover, the A-trap table mechanism is supported in Mac OS 8 
only for backward compatibility with System 7 applications generated for 68K-based CPUs. 

As explained in the rest of this chapter, however, Mac OS 8 provides other, more reliable 
mechanisms for developers to modify and extend operating system features. 

ExTENDING SOFTWARE WITH OPENDOC 

The most flexible Mac OS 8 mechanism for extending application-level soft­
ware is OpenDoc, because OpenDoc allows users to decide for themselves 
how to extend their work environments. OpenDoc technology centers around 
user-extensible documents. Users buy or create compound documents that 
incorporate multiple OpenDoc parts; these, in turn, supply users with the soft­
ware capabilities they desire. 

By supplying part editors based on their special areas of expertise, develop­
ers can help users extend the capabilities of their compound documents. For 
example, a developer of typesetting products can package an equation editor, 
a chart editor, and a typographical effects editor as OpenDoc part editors that 
users can purchase or that other developers might license. 



ExTENDING SonwARE THROUGH SHARED LIBRARIES 131 

A developer with a large and complex software product can separate prod­
uct features into separate OpenDoc part editors. In this way, not only can the 
developer easily extend the product by offering new or improved part editors, 
but also the user can extend any compound document with this developer's 
part editors. 

A developer of a large, standard application can make the application more 
extensible by allowing users to embed OpenDoc parts in the documents cre­
ated with this application. The developer can also allow information to be 
linked between part editors and the application. Suppose, for example, that a 
personal finance application supports embedded OpenDoc parts in its docu­
ments. A user might then be able to extend a document created by that appli­
cation with a part that periodically calls an online stock price quotation 
service. The application could then use that part to track the performance of 
the user's investments on an up-to-the-minute basis. 

OpenDoc part editors are implemented as shared libraries prepared for use 
only when called from OpenDoc documents or applications that support the 
embedding of part editors. The use of shared libraries as a general extensibil­
ity mechanism is described next. 

EXTENDING SOFTWARE THROUGH SHARED LIBRARIES 

Because shared libraries are dynamically prepared at execution time, they 
allow users to update software without breaking other programs that rely on 
these libraries. As a result, Apple can supply updated shared libraries that 
extend Mac OS 8 features without requiring users to purchase new versions of 
their other software products. Similarly, shared libraries help developers 
update features in their own products. As you read in Chapter 8, there are two 
main categories of shared libraries, import libraries and plug-ins. Both can 
help developers extend software. 

Using Import Libraries to Extend Software 

When developers link the definition version of an import library into their 
code at generation time, they import symbols to the routines for that library. 
Library routines aren't available to programs until launch time, at which point 
the Code Fragment Manager associates imported symbols with the actual rou­
tines supplied in the implementation version of the import library. For this 
reason, developers or Apple Computer can replace the implementation version 
of an import library without changing the code that uses that library. 

Because the vast majority of Mac OS 8 services are packaged as import 
libraries, Apple can easily extend these services in the future. If Apple wants to 
extend QuickDraw 3D in a later release of the Mac OS, for example, Apple 



132 CHAPTER 9 .... SOFTWARE ExTENSIBILITY 

can simply distribute the import library for QuickDraw 3D instead of releas­
ing a new version of the entire operating system. Mac OS 8 developers 
wouldn't need to enhance their own products to incorporate a new version of 
QuickDraw 3D, because the operating system dynamically prepares the new 
version for use by these applications at the moment they're launched. 

Similarly, other developers can divide their software products into pieces 
that lend themselves to periodic revisions and package these pieces as import 
libraries. For example, the developer of an animation application might define 
and use an import library of specialized image-rendering functions. If the 
developer revises these functions to provide better performance, enhanced 
capabilities, or greater reliability, the developer can easily provide upgrades by 
distributing updated versions of this library to users. 

Using Plug-Ins to Extend Software 
Developers can build extensibility into their software by creating shared 
libraries in the form of plug-ins. Unlike import libraries, which the Code 
Fragment Manager prepares automatically for programs at launch time, 
plug-ins are prepared for execution only at the request of client programs. 
Client applications define programming interfaces for their plug-ins. This 
approach gives developers a flexible mechanism for enhancing each other's 
products. For example, the developer of an e-mail application might define a 
programming interface to that application. Then other developers could pro­
vide plug-ins that add new capabilities to the application. One developer 
might create a plug-in allowing users to annotate e-mail messages with voice 
messages, and another developer might supply a plug-in that sends video 
clips along with e-mail messages. 

Object-Oriented Programming 

Whereas procedural programming involves the creation and organization of routines that 
pass control to one another, object-oriented programming focuses on building blocks of 
code called objects. An object is an execution-time structure that contains data and func­
tions that operate on that data. An object is almost like its own small program in that it stores 
data and performs calculations on that data. 

An object is always a particular instance of a more generic structure called a class, which 
can be used to create additional instances that constitute separate objects. A class is a tem­
plate from which particular objects are created at execution time. For example, Mac OS 8 
defines all controls-such as buttons, sliders, and checkboxes-in a class. Individual con­
trols are instantiated as objects derived from this class. 

Three key characteristics of object-oriented programming are encapsulation, inheritance, 
and polymorphism. Encapsulation is the packaging of an object's data and the functions 
that can act on it in order to protect the data from inappropriate changes. This protection is 



The Code Fragment 
Manager, described 
in Chapter 8, instanti­
ates blocks of execut­
able code and 
prepares them for 
execution. 

ExTENDING SOFTWARE THROUGH THE SYSTEM OBJECT MODEL 133 

possible because only the object itself can change its data. To gain access to an object's 
data, a client must call that object's programming interface. 

Inheritance is the transmission of the properties and behaviors from one class to another. 
Inheritance allows programmers to derive properties and behaviors of one object class from 
another. Inheritance makes it possible for programmers to extend software through sub­
classing. For example, a programmer can create a new subclass that inherits the behaviors of 
an existing superclass. The programmer can then add new behaviors and change inherited 
ones to supply more or different capabilities to the software. 

Polymorphism is the ability to call objects of different classes with the same method. For 
example, a program might use the same method to draw objects defined by different 
classes. • 
ExTENDING SOFTWARE THROUGH THE SYSTEM OBJECT MODEL 

In the opinion of many developers, object-oriented programming offers the 
most useful techniques for extending software. Shared libraries, as you have 
seen, provide a useful mechanism for developers to deliver software enhance­
ments to users. However, C++ and various other object-oriented programming 
languages are often implemented in ways that make it difficult for developers 
to produce shareable libraries. To make object-oriented programming a viable 
approach to enhancing software through shared libraries, Mac OS 8 supports 
the System Object Model in its run-time environment. 

The Apple implementation of the System Object Model, called SOMobjects 
for Mac OS, simplifies the work of developers who want to use object-ori­
ented techniques to create software that's easily extended. SOMobjects for 
Mac OS was first released as the object-oriented underpinning for OpenDoc 
on System 7.5. SOMobjects for Mac OS allows Apple and other developers to 
design and package class libraries that support object-oriented approaches 
without facing many of the pitfalls associated with object-oriented program­
ming languages-in particular, the inability to reuse binary code and various 
language incompatibilities between class libraries and the applications that use 
them. 

The System Object Model in Mac OS 8 

SOMobjects for Mac OS is based on the Code Fragment Manager so that 
SOM classes are implemented as shared libraries. SOMobjects for Mac OS is 
used for 

...,. standard user interface elements, such as windows, menus, controls, 
lists, and icons 



134 CHAPTER 9 ~ SonwARE ExTENsiBILITY 

~ all Text Service Manager services, including interactive text services 
(like spelling checkers) and text input methods (like user keyboard 
activity) 

...,. OpenDoc part editors 

SOMobjects for Mac OS provides users with up-to-date features across 
applications, operating system releases, and application revisions. SOMob­
jects for Mac OS benefits developers and their users in these main areas: 

...,. When Apple adds new features to subsequent versions of the Mac OS, 
users won't need to purchase revised applications to gain these features: 
applications will automatically inherit them. For example, if Apple refines 
a Text Service Manager service in a future version of the Mac OS, all 
Mac OS 8 applications using this service would automatically inherit the 
new refinements. With SOMobjects for Mac OS, Apple provides an easier 
way for users to keep their systems completely up to date . 

...,. Developers can use SOMobjects for Mac OS to extend portions of 
Mac OS 8 for the benefit of their applications while retaining compati­
bility with future versions of the Mac OS. For example, an application 
can alter the default appearance of a control provided by Mac OS 8 in 
one release, and this modified behavior will continue to work in subse­
quent releases of the operating system. 

~ SOMobjects for Mac OS provides developers with an object-oriented 
approach to extensibility in their own code. For example, a developer 
can use SOM to implement product code for easier alteration and 
enhancement in subsequent releases. 

The Object-Oriented Approach to Software Extensibility 

As developers using object-oriented programming techniques know, classes facilitate the 
addition of features and capabilities to existing source code. For example, without changing 
any other code in a drawing program, a developer can override functions in the class for an 
object that draws itself as a two-dimensional black-and-white square so that the object 
instead draws itself as a three-dimensional color cube. 

However, commercial object-oriented languages such as C++ suffer because they don't 
support the reuse of binary code-they support the reuse of source code only. For example, 
to make use of the object that can draw itself as a three-dimensional cube, a developer with­
out the support of SOMobjects for the Mac OS might need to recompile the entire applica­
tion. SOMobjects for the Mac OS allows this developer to provide users with this new three­
dimensional drawing feature by simply distributing an updated import library instead of a 
completely recompiled application. 



ExTENDING SOFIW.ARE THROUGH THE SYSTEM OBJECT MODEL 135 

The Benefits of the System Object Model 
The System Object Model provides developers with several key benefits. In 
particular, the System Object Model 

...., supports the key characteristics of object-oriented programming 

...., supports the release-to-release binary compatibility of class libraries 

...., provides compiler and language independence for the development and 
enhancement of code 

The System Object Model supports encapsulation, inheritance, and poly­
morphism-the key characteristics of object-oriented programming. However, 
unlike libraries for other class types (such as C++ classes), SOM class libraries 
provide release-to-release binary compatibility. That is, a developer can 
replace individual class libraries in a software product without recompiling 
any of its other class libraries. In the future, for example, Apple might add 
new capabilities to the SOM class implementing windows. Apple can easily 
enhance Mac OS 8 windows by replacing a shared library, and-without 
being recompiled or relinked-applications will automatically inherit the win­
dow enhancements. Release-to-release binary compatibility also allows a sub­
class to be compatible with a new superclass. For example, if a developer 
creates an enhancement to Mac OS 8 windows, this enhancement will be 
compatible with future releases of Mac OS 8 even if Apple replaces the super­
class for windows. 

Whereas many compilers for object-oriented languages produce class 
libraries that are incompatible with different languages, the SOM approach to 
object-oriented programming provides compiler and language independence. 
Binary class libraries can be created in multiple languages-including proce­
dural languages like C as well as object-oriented languages like C++. These 
libraries, in turn, can be used-and even subclassed-in different languages. 
For example, an Apple engineer can use one language to write a SOM class 
for Mac OS 8, and a developer can use another language to create a modified 
subclass of the Mac OS 8-supplied class. Better yet, an application written in 
another language can be linked with the shared library for the newly derived 
subclass-or with the original Mac OS 8-supplied class. Without the System 
Object Model, it's difficult for a programmer using one object-oriented lan­
guage to produce class libraries for use by other object-oriented languages 
while also maintaining binary compatibility from one release of a product to 
the next. 



136 CHAPTER 9 .... SOFTWARE ExtENSIBILITY 

The System Object Model isn't a complete implementation language or 
programming system. Instead, it complements existing languages that devel­
opers already use. 

Using the SOM Classes Provided by Mac OS 8 
The SOM classes provided by Mac OS 8 incorporate most of the features that 
developers have created for themselves in the past. For example, the Human 
Interface Toolbox provides such common (but previously nonstandard) fea­
tures as floating windows, keyboard equivalents in menus, and tear-off menus. 
Therefore, the majority of developers have little need to subclass or recreate 
the SOM classes provided by the Human Interface Toolbox. 

To use the standard appearance and behavior of windows in applications, 
developers at generation time call the programming interface provided by the 
Human Interface Toolbox with their preferred languages. Then developers can 
link their object files with the definition versions of Human Interface Toolbox 
libraries. At program launch time, the Code Fragment Manager automatically 
prepares, for application use, the implementation version of the import library 
responsible for drawing and managing windows. 

6~ 4i!s HEmTAGE 

-?') Extensibility of Human Interface Elements in Macintosh System Software 

All previous versions of the Macintosh operating system provide useful programming inter­
faces to help developers create and manage human interface elements. Despite the richness 
of these programming interfaces, many developers found the need to implement features 
that Apple didn't anticipate or supply. Examples include tear-off menus and tool palettes. 

Many developer-supplied extensions to the human interface offered innovative new 
ease-of-use features. At the same time, this ad hoc reengineering of the operating system's 
human interface caused problems, including human interface inconsistencies among appli­
cations, additional programming and testing burdens for developers, system instability, and 
revision constraints for the operating system itself. By implementing many of its services in 
more easily extensible SOM classes, Mac OS 8 makes it much easier for developers to 
extend these services consistently and reliably. 

Creating SOM Subclasses of Mac OS 8 Features 
It's likely that only a small percentage of developers will wish to alter the 
default behavior or appearance of human interface elements or other operat­
ing system features implemented as SOM classes. For those who do, SOMob­
jects for Mac OS simplifies the job. For example, to create an entirely new 



ExTENDING SOFtWARE WITH SERVER PROGRAMS 137 

control-say, a throw switch-a developer subclasses a Mac OS 8-supplied 
class for controls and then overrides its drawing functions. 

The programming interface to an object class is described in the Interface 
Definition Language (IDL), a language resembling C++. The IDL files for all 
SOM classes in Mac OS 8 are available to developers who need to subclass 
these libraries. To subclass an existing class, a developer can use an IDL com­
piler to generate an implementation template file in any one of several sup­
ported programming languages, such as C and C++. The developer modifies 
this implementation template file and then uses a SOM compiler to create an 
updated object file, which the developer links with application code. 

Using SOM Classes for Application Features 
By packaging application features in SOM classes of their own, developers can 
use object-oriented techniques to extend these features in subsequent product 
revisions of their own code, too. For example, a developer might use SOMob­
jects for Mac OS to implement a plug-in to a graphics program. At its first 
release, this plug-in might allow users to alter the direction of a light source in 
illustrations. In subsequent releases, the developer can extend the product to 
support increasingly sophisticated effects-for instance, allowing users to alter 
the color and brightness of the light source. 

Another benefit for developers is that the System Object Model is an emerg­
ing industry standard being implemented on other major operating systems. 
This simplifies cross-platform development, because SOM library source code 
is easily ported across operating systems. For example, the developer of a 
graphics program plug-in could package the code that performs the product's 
mathematical calculations as a SOM class library in Mac OS 8. The developer 
could then reuse the source code for this library when creating products that 
run on other SCM-supportive operating systems. 

IDL compilers are quickly being supplanted by direct-to-SOM compilers. 
These compilers allow developers to create their own SOM object files with­
out first using the IDL compiler and creating IDL files. Direct-to-SOM compil­
ers are likely to be available to Mac OS 8 developers soon. 

ExTENDING SOFTWARE WITH SERVER PROGRAMS 

Developers can also extend Mac OS 8 by creating server programs. For exam­
ple, a developer can create a server program that watches for e-mail. Clients of 
this program could provide users with tools to read and reply to e-mail. 

Similarly, developers can make their products more extensible by separat­
ing them into cooperative programs that interact with users and server pro­
grams that process data and perform time-consuming 1/0 operations. Then, a 



138 CHAPTER 9 ..... SOFTWARE ExTENSIBIUTY 

developer who wants to enhance a product's user interface capabilities could 
release a new version of the cooperative program, leaving the server program 
untouched. Likewise, the developer could extend the server portion of the 
product and leave the user interface portion alone. 

Some System 7 developers have created system extensions that use 'INIT' 
files to poll the system for particular events and system states. When these 
conditions occur, the 'INIT' files respond accordingly. For example, an 'INIT' 
file might be used in System 7 to compress files as soon as they are a certain 
number of days old. Mac OS 8, as you'll read in Chapter 13, supplies a Trig­
ger Manager that efficiently tracks these types of conditions and informs pro­
grams of their occurrence. Thus, the developer of this System 7 file 
compression 'INIT' can implement the product more reliably and efficiently in 
Mac OS 8 as a server program that uses the Trigger Manager. 

Several Mac OS 8 services are implemented as server programs. For exam­
ple, the Process Manager is a server program. To preemptively schedule the 
main tasks of all cooperative programs in a future version of the operating 
system, Apple could conceivably revise the Process Manager without requiring 
changes to Mac OS 8 cooperative programs or to other parts of the operating 
system. 

EXTENDING SOFTWARE WITH THE PATCH MANAGER 

In previous versions of the Mac OS, developers often modified the behavior of 
a particular system software manager by patching its routines in an A-trap 
table. In Mac OS 8, however, such patching is heavily constrained. 

First, PowerPC CPUs don't use trap tables. Therefore, when software 
patches A-traps, Mac OS 8 must emulate an 68K CPU. The emulation neces­
sary to support System 7 patching slows software performance considerably. 
Second, the Code Fragment Manager creates separate copies of per-process 
static data for most shared libraries supplied by Mac OS 8. Thus, it's very dif­
ficult for any software to gain access to system-wide state information with a 
patch. Furthermore, patches in Mac OS 8 work reliably only if their effect is 
local-that is, on a per-process basis. 

For these reasons, Apple discourages developers from patching routines 
supplied by Mac OS 8. However, it's clear from experience that patching is 
sometimes necessary. Therefore, Mac OS 8 supplies a Patch Manager that 
defines a programming interface for patching any import library, allowing a 
developer to patch Mac OS 8 routines or routines in the developer's own 
product. When patching is necessary, the Patch Manager simplifies the job for 
developers, and the Patch Manager ensures that patches operate reliably. 



SUMMARY 139 

Using the Patch Manager, developers can patch operating system routines 
for one process at a time. A developer can package a patch in a shared library, 
making it available to all programs on the system. The patch can then be 
instantiated in every process that calls the library. Even with the help of the 
Patch Manager, however, it's very difficult for a patch to gain access to system­
wide state information. 

g~nm~Hom 
Support for System 7 Patching 

Mac OS 8 doesn't support the System 7 mechanism for patching routines system wide-that 
is, across all programs. However, Mac OS 8 does support the System 7 mechanism for 
patching routines on a per-process basis. Note that many system services have been revised 
in Mac OS 8, and a patch developed for System 7 isn't guaranteed to produce its intended 
results. • 
SUMMARY 

Mac OS 8 provides several mechanisms for enhancing and updating software. 
In particular, Apple can easily update portions of Mac OS 8 by supplying 
users with revised versions of discrete shared libraries or server programs, 
while developers can modify various parts of Mac OS 8 by 

...,. subclassing the SOM class libraries provided by the operating system 

...,. creating server programs 

..,.. calling Patch Manager functions 

Developers, in turn, can design extensibility into their products by 

...,. supporting OpenDoc within their applications 

.... designing and packaging product features as OpenDoc part editors 

.... dividing their products into pieces that lend themselves to periodic revi­
sions and packaging these pieces as import libraries or plug-ins 

.... designing programming interfaces that allow their applications to sup­
port plug-ins 

.... incorporating SOM class libraries into their products 

...,. separating their products into cooperative programs and server pro­
grams 

...,. using the Patch Manager to modify routines in existing versions of their 
products 



140 CHAPTER 9 ~ SonwARE EXTENSIBILITY 

OpenDoc allows users to mix and match part editors and thereby extend 
software capabilities according to their own needs and tastes. To allow users 
to extend their work environments with OpenDoc, developers can supply 
product features in part editors, and developers of large, standard applications 
can allow the embedding of OpenDoc parts within documents created by their 
applications. 

The routines in a shared library are dynamically linked at execution time to 
the fragments that use them. Apple can thus revise operating system features 
packaged as shared libraries without requiring users to update the programs 
that use these features. By packaging various program features in separate 
shared libraries, developers can more easily enhance and update their own 
software products, too. For example, a developer can extend a digital-video 
editing program with plug-in versions of shared libraries that provide various 
editing effects. 

Sometimes developers want to extend features supplied by Mac OS 8. In 
the past, for example, some developers have found it useful to modify the con­
trols, windows, or menus provided by the Mac OS. To help these developers, 
Apple has used object-oriented designs for many of its services. The class 
libraries supporting these designs are based on the System Object Model 
(SOM). Developers who use object-oriented extensibility for their own prod­
ucts can use SOM as well. 

Because the SOM classes in Mac OS 8 are implemented as shared libraries, 
Apple can use them to extend elements of the operating system without forc­
ing users to reinstall it. Software products using those elements automatically 
inherit the new features without being recompiled. 

Developers can also use server programs to extend and easily update their 
products and the entire operating system while taking advantage of efficient 
preemptive scheduling of server program tasks. 

If developers need to modify individual routines defined in an import 
library, they can use the Patch Manager to make these modifications on a per­
process basis. 

PLANNING A PRODUCT FOR MAc 05 8 

If you're a developer, you can take the following steps to take advantage of 
extensibility in your software products: 

1. Add OpenDoc support to your existing product. 
i. Reimplement your system extension (that is, INIT) as a shared library, a 

server program, or an OpenDoc part editor. 



PLANNING A PRODUCT FOR MAc 05 8 141 

3. Plan how to separate product capabilities into shared libraries, server 
programs, or OpenDoc part editors to simplify the job of extending and 
enhancing your product. 



• • • • • • • • • • • • • • • • • • • • • • • 

Files and 
File Syst 
Navigati 

• • • • • • • • 

The Mac OS 8 file system manages the organization, reading, and writing o f 
data located on hard disks, CD-ROMs, removable media drives, and other 
storage devices. These devices can be available on a network or directly con­
nected to the user's computer. For developers, the operating system offers sev­
eral convenient programm ing interfaces for using the fi le system, including 
File Manager routines, the 1/0 functions of the ANSI C-library fi le, and-for 
compatibi lity with System 7 applications-the System 7 File Ma nager rou­
tines. Developers with unique needs can also use a programming interface to 
the Low-Level File System Services. 

T he Navigation Services introduced with Mac OS 8 provide a standard 
way for users to locate and manage data on storage devices. When a user 
saves or opens files, these services guide the user through the file system hierar­
chy of volumes, fo lders, and fi les. These services also help the user learn about 
the data contained in files. For example, the user might preview a small repre­
sentation of the contents of a document before o pening it, determine its fi le 
format, and see what comments might be saved with it. 

Because the file system is a reentrant service, it takes advantage of the o per­
ating system's efficient multitasking capabilities. The CPU doesn't waste va lu­
able cycles waiting for a fi le system request to finish. 

143 



144 CHAPTER 1 0 .... FILES AND FILE SYSTEM NAVIGATION 

KEY TERMS AND CONCEPTS 

..,. The file system is the part of the operating system that manages the 
reading and writing of information located on all storage devices avail­
able to the user's computer system. At the most abstract programming 
level, the file system offers several types of programming interfaces 
allowing applications to read, write, and otherwise manage information 
stored on these devices. The file system organizes information hierarchi­
cally into volumes, folders, and files . 

..,. A volume is a portion of a storage device formatted to contain folders 
and files. A hard disk, for example, may be divided into several vol­
umes . 

..,. A folder is a subdivision of a volume. A folder can contain files and 
other folders. Folders are also known as directories . 

..,. A file is any collection of related information stored as a single entity on 
a volume. On a volume, a file is the smallest entity discernible by the 
user. The volume format determines precisely how that information is 
organized on a storage device . 

..,. A volume format is the structure of file and folder information on a 
disk. Mac OS 8 supports several volume formats, including the hierar­
chical file system (HFS) and other industry standard formats, such as 
the file allocation table (FAT) file system used by DOS and Windows . 

..,. A volume format plug-in is a shared library that organizes information 
on a storage device. To support different storage devices, a system may 
include several volume format plug-ins. The file system dispatches and 
routes information between volume format plug-ins and programs that 
manipulate files and folders . 

..,. HFS (hierarchical file system) is Apple Computer's standard volume for­
mat. HFS organizes files and folders in a hierarchical-that is, tree­
like-structure . 

..,. The File Manager defines the programming interface that most 
Mac OS 8 developers use to organize, read, and write data stored on 
volumes. Because the File Manager is reentrant, any task can call its 
programming interface . 

..,. The System 7 File Manager is a cooperative service provided for back­
ward compatibility with System 7 applications. Its programming inter­
face can be called only by the main tasks of cooperative programs. 
(System 7 documentation from Apple Computer calls the System 7 File 
Manager simply the File Manager. In this book, however, File Manager 
refers to the newer, simpler programming interface that can be called by 
any task in Mac OS 8.) 

..,. The Low-Level File System Services consist of a shared library that 
manages volume format plug-ins and provides a programming interface 
for application access to the storage devices connected to the user's sys-



Dialog boxes are 
windows used for 
special or limited pur­
poses, such as solicit­
ing information from 
the user before an 
application carries 
out the user's com­
mand. 

MAJOR POINTS OF INTEREST 145 

tern. The Low-Level File System Services define a complex but powerful 
programming interface from which the File Manager, the System 7 File 
Manager, and standard C file-I/O routines are abstracted. Developers 
can directly use the Low-Level File System Services programming inter­
face to build custom facilities for performing file 1/0 operations . 

...,. Applications use the Navigation Services to present a standard human 
interface for opening and saving files . 

...,. In Mac OS 8, a panel is a human interface object, such as a group of 
controls, a string of text, or a scrolling list, that can be placed inside a 
window. Inside a browser window for navigating the file system, the 
Navigation Services use panels to display document-related informa­
tion . 

...,. The Alias Manager helps developers create and use data structures for 
establishing and resolving permanent references to files, folders, and 
volumes . 

...,. Programs can use the Folder Manager to determine or define the loca­
tion of specially used folders. An example is the Fonts folder, where the 
operating system stores fonts for the user. 

MAJOR POINTS OF INTEREST 

The Mac OS 8 file system is the portion of the 110 system that manages the 
reading and writing of information on storage devices. The file system orga­
nizes information into a hierarchical structure consisting of volumes (which 
may contain folders and files), folders (which may contain other folders and 
files), and files. The structure of this information on any particular storage 
device is determined by the volume format of that device. 

An application uses a programming interface defined by the Navigation 
Services to manage the human interface for naming and identifying files. 
When invoked by an application, the Navigation Services display a dialog box 
that lets the user specify names and locations of files to be opened or saved. 
The Navigation Services provide a navigation browser by which the user 
moves between folders. The Navigation Services also display panels allowing 
the user to determine various kinds of information about files located with the 
navigation browser. These panels can contain such items as text, pictures, and 
controls. Figure 10.1 shows the navigation browser and the general informa­
tion panel, one of several document-information panels that may appear in 
the Save dialog box. 

When a user selects a file to open or chooses a name and location for saving 
a file, the Navigation Services report the user's choices to the application. To 
retrieve or store a file, an application then uses a programming interface 
defined by several services supported by the file system. These services include 



146 CHAPTER 10 .... FILES AND FILE SYSTEM HAvtGATIOt-1 

FIGURE 10.1 Standard navigation browser and the general information panel 

Save 

Save document I~..:..N:::.ew.:.:....:;m:.:..:o:..:d:.::e.:...;l 2=.,_ _____ __J 

Navigation 
browser 

vi 

r 

Plug-ins, as 
explained in Chapter 
8, are shared libraries 
dynamically pre­
pared for use at exe­
cution time when the 
code fragments that 
need them call Code 
Fragment Manager 
routines. 

n: 
I •J-

<=il "' tfec L 
~ r-1 General Information 

l:i, Fn .. Fer Wert 

Cl Project 

!!lmt 
Cl AUX 1\rt 
Cl Cer Seloc1ions for "95 

;liliirciiit 

~ Seles Demo 
Cl Old Stuff 
C1 StuffTo File 

L ICI Dd: Adobe Photoohop 3.0 document 

Size: 5833K on disk 
Dote Modified: Mon, Apr. 12, 1994 4:45PM 
417/95 . - Created: Fri,Apr. IO, 1994 1:02PM 
3/28/95 
4/5/95 
3/16/95 Icon:~ 
1/21/95 ' EJ 
4/14/95 

0 Locked 

0 Statlooerg 

r;-

New Folder [ Open Folder J Cancel I n Save I 

Document 
Information 
panel 

the File Manager, the System 7 File Manager, and standard C file-I/O func­
tions. For example, an application can open a file using a routine defined by 
the File Manager or the standard 1/0 library for the C programming language. 
To provide additional programming flex ibility, the file system also supports a 
Low-Level File System Services programming interface with which developers 
can build custom facilities for performing file UO operations. This low-level 
interface is useful to developers of data-compression tools, disk-repair utili­
ties, and other file system-intensive programs. Figure 10.2 illustrates the pro­
gramming interfaces available to an application for managing files. 

The File Manager, the System 7 File Manager, and the standard C file-I/O 
functions are a ll abstractions of the Low-Level File System Services program­
ming interface. The shared library for the Low-Level File System Services, in 
turn, manages the volume format plug-ins for all storage devices connected to 
the user's system. The relationship between the Low-Level File System Services 
and the rest of the file system is illustrated in Figure 10.3. 

The fil e system supports several industry-standa rd volume formats, and the 
extensib le nature of the volume format plug-in architecture allows Apple to 
add support for other formats as they evolve. Depending on the particular 
storage device to which the program saves the file, the Low-Level File System 
Services invoke a volume format plug-in, which writes the data to the device. 
Figure 10.3 illustrates three possible types of storage devices: a directly con-



FIGURE 10.2 

MAJoR Pon·tts OF INTEREST 

Application programming interfaces for file management 

User 

l 
Navigation 

Services 

Application 

147 

nected hard disk formatted as an HFS volume, a removable disk formatted as 
a DOS FAT disk, and a disk connected on a network using the Apple File Pro­
tocol (AFP). 

Because it performs multiple operations concurrently, the file system makes 
effici ent use of the Mac OS 8 multitasking capabilities. While a program waits 
for the file system to finish reading or writing a file, the microkernel schedules 
some other task to execute. The microkernel, as you read in Chapter 4, can 
also preempt one task accessing the fi le system and a llow another task with a 
higher priority to execute. The newly executing task can access the fi le system 
even before the former task has finished its file VO operations. All preemp­
tively scheduled tasks are thereby granted concurrent access to the file system. 
As you read in Chapter 5, a developer can improve system efficiency by 



148 

FIGURE 10.3 

CHAPTER 10 .... FILES AND FILE SYSTEM t-fAVIGATIOt-1 

Operating system components of the file system 

~ 
tit 

~ 

HFS DOS FAT AFP 
volume-format volume-format volume-format 

plug-in plug-in plug-in 

... 
~ ! i ... 

EJ 1i 
~ 

... 
I 

l 

threading an application so that one task, unrelated to the human interface, 
handles file access and other VO-intensive operations. 

When the main task of a cooperative program accesses the file system, it 
must genera lly finish reading or writing a fi le before another cooperative pro­
gram main task can become eligible for execution. By comparison, when 
developers move file VO operations from main tasks into additional tasks or 



THE 0RGANJZAnON OF INFORMAnON ON STORAGE DEVICES 149 

into server programs, all cooperative programs can share system resources 
more efficiently. 

Mac OS 8 supports the System 7 File Manager programming interface as a 
cooperative service even though the operating system supplies a newer, fully 
reentrant File Manager. Developers can use either programming interface to 
manage files, but the new File Manager provides much better system perfor­
mance. 

The virtual memory system, as you saw in Chapter 6, also uses the file sys­
tem to efficiently supplement physical memory, allowing the user to open 
many large applications at one time. 

~ R"l *· 5 HERITAGE t:t:~ ~ 
"> 

Data Forks and Resource Forks 

A file stored on a volume formatted according to the Hierarchical File System consists of two 
parts: a data fork and a resource fork. 

The data fork for a document file contains data entered by the user; the application cre­
ating a document file can store and interpret the data in the data fork in whatever way's 
appropriate for that application. For an application file compiled to run on PowerPC-based 
computers, the data fork contains the application's code. 

The resource fork contains data stored in resources. The data in a resource is inter­
preted according to its resource type. This data usually corresponds to data created by the 
developer for use by the program, but it may also include data created by the user while the 
application is running. 

THE ORGANIZATION OF INFORMATION ON STORAGE DEVICES 

The file system stores code and data so that programs can gain efficient access 
to this information. For efficiency, the file system uses a hierarchical model for 
information storage in which every element of the file system is potentially a 
container for information, as illustrated in Figure 1 0.4. 

The most discrete element of the file system is called a property. All code 
and data is stored in properties. A property is a piece of information or a set 
of related information stored by the file system. Properties can be simple data 
items, such as dates, file types, and icon definitions; or they can be expandable 
sets of information, such as user-entered data. Each property takes up a cer­
tain amount of space allocated on a volume. 

Related properties are grouped into an entity called a file system object. 
Files, folders, and volumes are examples of file system objects, and these may 
contain other file system objects as well as properties. For example, a folder 



150 

... ... ... ... ... 

FIGURE 10.4 

Key: 

CHAPTER 10 .... FILES AND FILE SYSTEM NAVIGAnOH 

The file system properties and objects 

:'''''''J'-: 
Universe of information CJ Folder -, ,-

,,,.,\' 

D 0 Property Volume 

D File 

loo~ ooo 

... ... ... ... 



THE PROGRAMMING INTERFACE TO THE FILE SYSTEM 151 

can contain files, and a volume can contain folders and files. The Mac OS 8 
File Manager defines data structures and constants that allow developers to 
determine and set such properties in a file system object as 

...,.. the object's creation date 

...,.. its modification date 

...,.. its name 

...,.. its size 

...,.. information about its forks 

The file system defines a file simply as a collection of properties of any size 
or content. It is up to each specific volume format running under the file sys­
tem to determine the meaning and content of each property. This generalized 
definition of a file allows the file system to support such diverse volume for­
mats as HFS and DOS FAT. 

THE PROGRAMMING INTERFACE TO THE FILE SYSTEM 

Developers gain access to the file system with any of these related services: 

...,.. the File Manager for performing most file-related operations 

...,.. standard C functions for performing file 110 

...,.. the System 7 File Manager, the programming interface supplied to sup­
port System 7 applications 

...,.. the Low-Level File System Services, allowing developers to create their 
own file access facilities for any special program needs 

In addition, developers can use two services related to file system manipula­
tion: the Folder Manager for determining or defining the location of folders­
typically, special folders used by the operating system-and the Alias Manager 
for creating and using data structures that establish and resolve permanent 
references to files, folders, and volumes. 

The File Manager 
The File Manager defines the programming interface that nearly all Mac OS 8 
programs use to access the file system. Because the File Manager is a reentrant 
service, any kind of task can use it. The File Manager can perform multiple file 
110 operations concurrently, making the system perform as efficiently as possi­
ble. The operations that programs perform with the File Manager include 

...,.. creating, moving, and renaming files and folders 

...,.. opening and closing files 



152 

ANSI is an acronym 
for the American 
National Standards 
Institute, an organiza­
tion devoted to 
defining commercial 
standards, such as for 
programming lan­
guages like C. POSIX 
stands for Portable 
Operating System 
Interface, a set of 
standard operating­
system services 
defined by the Insti­
tute of Electrical and 
Electronics Engineers 
(IEEE). 

CHAPTER 10 .... FILES AND FIL£ SYSTEM NAVIGATION 

.,.. getting and setting the properties of file system objects 

.... using stream or memory-mapped methods to access fork properties 

.,.. establishing a position in an opened file 

.... allocating and deallocating storage from a volume 

.,.. obtaining information about a specific file, folder, or volume 

.,.. iterating over file system objects to get information about them or to 
perform operations on them 

.,.. resolving path names and resolving object references for a given volume 

To support developers creating products for international markets, the File 
Manager manipulates volume, folder, and filenames internally as text objects 
rather than as Pascal or C text strings. The Mac OS 8 File Manager can use 
text objects to handle file, folder, and volume names in any language. 
Described in Chapter 12, text objects can use any system of character codes, 
including Unicode. In addition to the character codes themselves, text objects 
incorporate information about the language system and the text-encoding sys­
tem used for the names of file system objects. Because developers don't need to 
code the File Manager to use any particular language, they can adapt their 
applications for different language markets more easily. 

Standard C File-I/O Functions 

Programmers creating cross-platform products can conveniently gain access to 
the file system by calling standard C functions from the stdio.h library. The file 
system supports all file 110 functions defined for ANSI C. To extend ANSI C, 
the file system also supports additional file 110 functions defined by POSIX. 
These standard C programming language functions are also supported in Sys­
tem 7, but in Mac OS 8 they use the reentrant file system introduced with 
Mac OS 8. 

The System 7 File Manager 

Mac OS 8 supports the programming interface defined by the System 7 File 
Manager. The routines in this programming interface are built on top of the 
Low-Level File System Services. Because access to the data structures main­
tained by the System 7 File Manager must be serialized, its programming 
interface can be called only from the main tasks of cooperative programs. 

To be compatible with the Mac OS 8 file system, an application must use 
System 7 File Manager routines (and their associated data structures) strictly 
as documented in Inside Macintosh: Files. (In particular, the application 
should not directly manipulate the data structures or low-memory global vari­
ables used by the System 7 File Manager.) However, programs using the Sys­
tem 7 File Manager might not have access to any volumes except HFS-



THE PROGRAMMING INTERFACE TO THE FILE SYSTEM 153 

formatted volumes. (The new File Manager, by comparison, gives programs 
access to any volumes mounted on the user's system.) 

Compared to the System 7 File Manager, the new File Manager contains 
about half as many routines, providing a simpler yet more powerful program­
ming interface. The new File Manager is also much faster because it's opti­
mized for execution on the PowerPC CPU and because better algorithms 
improve its performance. 

g~nwTYNom 
Internal Data Structures of the System 7 File Manager 

Many low-level data structures internal to the System 7 File Manager are changed in its reim­
plementation on top of the Low-Level File System Services. System 7 programs that modify 
these internal data structures won't work in Mac OS 8. Developers with special needs to alter 
System 7 File Manager characteristics should consider using the Low-Level File System Ser­
vices or the Patch Manager, described in Chapter 9. 

The Low-Level File System Services 

The File Manager, the standard C file-I/O functions, and the System 7 File 
Manager provide simplified abstractions of the more complex programming 
interface defined by the Low-Level File System Services. Developers can also 
use this low-level programming interface to access the file system in their own 
products. Although the low-level programming interface gives more precise 
control over file system operations than, for example, the File Manager, it gen­
erally requires more calls. Most developers don't need to use the Low-Level 
File System Services. However, developers of some types of products-for 
instance, file-backup programs, disk-repair utilities, and network file-manage­
ment tools--can take advantage of its very precise control over file system 
operations. 

Some seldom-used file system operations are available only through the 
Low-Level File System Services. For example, only the Low-Level File System 
Services allow programs to mount and unmount volumes and to perform file 
operations on groups of files with a single call. Also, the Low-Level File Sys­
tem Services allow programs to make asynchronous as well as synchronous 
file 1/0 calls, whereas the File Manager routines are strictly synchronous. The 
multitasking capabilities of Mac OS 8 provide exceptional efficiency for pre­
emptively scheduled tasks that perform synchronous file 110, and the File 
Manager allows developers to make synchronous calls with minimal program­
ming effort. But if a developer has a pressing need to perform asynchronous 
file 1/0 (for instance, to make a single asynchronous call from the main task of 



154 CHAPTER 10 ...,. FILES AND FILE SYSTEM NAVIGAnoN 

a cooperative program), the developer can still use the Low-Level File System 
Services. 

The Folder Manager 
Developers use the programming interface defined by the Folder Manager for 
determining and defining the location of folders-typically, those within the 
System Folder, which contains files and folders tracked by the operating sys­
tem. (Because it doesn't perform file UO, the Folder Manager isn't strictly part 
of the file system.) The Folder Manager allows programs to specify routing 
rules to be followed by the Finder and other client programs. For instance, a 
rule might specify that whenever the user drags a font to the System Folder, 
the Finder should place the font in the special Fonts folder. A program that 
needs access to the Fonts folder can also use the Folder Manager to quickly 
determine that folder's location. Developers who need to maintain their own 
folders in specific locations can also extend the Folder Manager for their own 
purposes. 

The Alias Manager 

The Alias Manager, available since System 7, establishes and resolves data 
structures, called alias records, that describe files, folders, and volumes. 
Aliases help users organize files for easier access. When the user chooses the 
Make Alias command from the File menu in the Finder, for instance, the Alias 
Manager creates an alias record to identify a file system object that the user 
might need to locate again. The Alias Manager has algorithms for using alias 
records to find files that have been moved, renamed, copied, or restored from 
backup. (Like the Folder Manager, the Alias Manager doesn't perform file UO 
and therefore isn't strictly part of the file system.) 

Programs, too, can create aliases. For example, a spelling checker applica­
tion might create an alias record for a file containing a user-customized dictio­
nary and store this alias with a word-processing document. When the user 
later runs the spelling checker on the document, the Alias Manager finds the 
customized dictionary, even if the user has moved it. 

VOLUME FORMATS AND VOLUME FORMAT PLUG-INS 

The File Manager doesn't include any code, or any routines in its program­
ming interface, specific to a particular volume format. Instead, the file system 
specifies a message protocol for volume-format plug-ins that handle the 110 
for specific volume formats. The file system supplies volume format plug-ins 
supporting a variety of industry standard volume formats, including 



THE FILE SYSTEM AND THE VIRTUAL MEMORY SYSTEM 155 

..... HFS 

...,. AppleTalk Filing Protocol (AFP), which allows access to AppleShare 
and Personal FileShare volumes over a network 

...,. DOS FAT, the volume format used by the DOS and Windows operating 
systems 

...,. These common CD-ROM formats: High Sierra, ISO 9660, Photo CD, 
and Audio CD 

...,. Other third-party formats, such as Novell's Netware 

Apple Computer has made the volume format architecture extensible. If the 
need arises, Apple can provide additional volume format plug-ins in the 
future. 

Most developers don't need to think about what volume formats might be 
available. Instead, developers simply use the programming interface to the file 
system, and the Low-Level File System Services dispatch file 110 operations to 
the volume format plug-ins supporting the user's storage devices. For develop­
ers of products requiring information about a volume's particular format, 
such as disk-repair utilities, the File Manager provides routines for determin­
ing properties specific to various volume formats. 

To take advantage of contemporary storage technology, the file system sup­
ports volumes and forks up to 263 bytes in size. Up to this limit, the sizes of 
the volumes and forks that the file system can support are limited only by the 
capabilities of a specific volume format. For example, HFS in Mac OS 8 sup­
ports 248-byte-that is, 2-terabyte (TB)-volumes and 2-gigabyte (GB) forks. 

~~ ~5 lfmlrAGE 

-?) 
The HFS Volume Format 

The HFS volume format initially became available with System version 3.2, which was intro­
duced with the Macintosh Plus computer. The maximum supported size for volumes and 
forks in HFS has grown considerably since its introduction. By System 7.5.3, HFS reached its 
current maximum volume size of 2TB and maximum fork size of 2GB. By comparison, the 
maximum volume and fork sizes in System 7.1 are 2GB each. In System 7.5, the maximum vol­
ume size is 4GB, and the maximum fork size is 2GB. 

THE FILE SYSTEM AND THE VIRTUAL MEMORY SYSTEM 

The file system and the virtual memory system interact to make efficient use of 
physical memory and secondary storage. When the operating system launches 
an application, as you may recall from Chapter 6, the virtual memory system 



156 

Disk cache is a por­
tion of physical mem­
ory set aside to 
temporarily store fre­
quently used informa­
tion that's perma­
nently stored on disk. 
Because it's faster for 
the CPU to read infor­
mation from physical 
memory than from a 
disk, disk cache 
helps programs run 
faster. 

A document is any 
piece of work that the 
user saves as a sepa­
rate file. The user cre­
ates documents 
using cooperative 
programs. 

CHAPTER 10 ..... FILES AND FILE SYSlEM NAVIGATION 

maps all files containing code needed by the application into logical memory. 
The virtual memory system then transfers portions of these files from disk into 
physical memory when the CPU needs them, and it purges from physical 
memory any code that the CPU doesn't need. The disk files of programs are 
thus used as backing store for code not immediately needed in physical mem­
ory. By memory-mapping executable files in this way, the virtual memory sys­
tem supplements physical memory without allocating additional disk space. 
The virtual memory system also uses the file system to manage scratch files 
containing temporary data not associated with a permanent disk file. To mini­
mize the amount of disk space needed for this type of backing store, the vir­
tual memory system dynamically expands and shrinks scratch files according 
to the immediate needs of programs running on the system. 

The operating system maintains a minimum amount of physical memory 
for use as disk cache. The operating system also uses any additional physical 
memory that may be available to dynamically supplement this disk cache. The 
file system and the virtual memory system share the disk cache. When multiple 
programs open the same data file, whether by memory mapping it or stream­
ing it, the file system gives them all access to the same data through this cache. 
Programs don't need to test how a data file has been opened, because memory­
mapped and streamed data are accessed in the same way. (For this reason, 
writing code to share data between programs is far simpler than in System 7.) 

THE NAVIGAnON SERVICES 

The Navigation Services ease users through the task of navigating the universe 
of information saved on connected storage devices. Using the programming 
interface defined by the Navigation Services, applications can customize the 
system's browsing interface to give users access to document-specific informa­
tion. When the user chooses a file to open or a location and name for saving a 
file, the Navigation Services report the choice to the application. The applica­
tion then uses a file system routine to open or save the file specified by the user. 

Programs can use both the File Manager and the System 7 File Manager in 
conjunction with the Navigation Services. The Navigation Services accept the 
data structures defined by either programming interface. Even unmodified Sys­
tem 7 applications automatically make use of the Navigation Services when 
soliciting user choices for opening and saving files. 

To gain access to documents and document-specific information, a user typ­
ically opens the File menu for an application and chooses a command such as 

...,. the New command to create a new document 

...,. the Save command to save a new document 

...,. the Open command to open a previously saved document 



The search-and-save 
capabilities of Find 
windows are demon­
strated in the CD-ROM 
version of Figure 1.12 
on page 15. 

THE NAYJGAnoN SERVICES 157 

.... the Save A Copy command to create a copy of an open document (this 
command is the same as the System 7 Save As command) 

.... the Find Documents command to open a Find window for performing 
relational searches of document names and contents across the entire 
file system 

When a user chooses New from an application's File menu, the application 
creates a new, untitled document and immediately saves it to disk. The user 
controls the default location for such newly created documents. When the user 
chooses Save from the File menu to save an untitled document, the application 
gives the user an opportunity to change the name and location of the saved 
document. 

When the user chooses the Save or Save A Copy command, an application 
uses the Navigation Services to display the Save dialog box. When the user 
chooses the Open command, the application calls on the Navigation Services 
to display the Open dialog box. Both dialog boxes contain the navigation 
browser, from which the user chooses a file or file location. The navigation 
browser also makes it easy for the user to locate favorite items quickly, create 
new folders, and perform other common tasks. The navigation browser 
appears on the left side of either dialog box, and document information panels 
appear on the right. (See Figure 10.1 on page 146.) 

The browser allows the user to navigate the hierarchy of nested folders. 
Developers can filter the types of files displayed in the browser and let the user 
choose which types of files to filter. 

The general information panel, shown on the right side of Figure 10.1 on 
page 146, is similar to the Get Info window in System 7. This panel allows the 
user to manipulate selected document-specific information. (This panel also 
appears when a user chooses the Document Info command from the Edit 
menu in Mac OS 8.) The pop-up menu at the top of the panel allows the user 
to select which document-information panel to display in the dialog box. 

The Open and Save dialog boxes offer a consistent human interface, allow­
ing all applications to present the same navigation browser and system-sup­
plied document-information panels. Both of these dialog boxes are extensible, 
and developers can supply custom panels. For instance, an application might 
supply a custom panel that displays the author, keywords, colors, or dimen­
sions of a document selected in the browser. Developers can even embed 
OpenDoc parts into the panels displayed in the Open and Save dialog boxes. 

g~nmuTYNom 
Standard File Package 

System 7 and earlier versions of the Macintosh Operating System offer the Standard File Pack­
age as a service by which developers present standard dialog boxes for saving and opening 



158 CHAPTER 10 ..... FILES AND FILE SYSTEM NAVIGAnOH 

files. The Navigation SeNices provide a more consistent yet more versatile human interface 
for opening and saving documents than the System 7 dialog boxes do. In Mac OS 8, all pro­
gram calls to the Standard File Package are fully supported so that they automatically display 
the Navigation SeNices browser in lieu of the older System 7 dialog boxes. 

SUMMARY 

The file system provides concurrent program access to storage devices such as 
hard disks and removable media. Any application can use the File Manager 
programming interface for opening, saving, and otherwise manipulating infor­
mation on storage devices. For the benefit of programs that need additional 
control over file-system access, Mac OS 8 also supplies the Low-Level File 
System Services. 

The System 7 File Manager programming interface is also provided as a 
compatibility service for System 7 applications. Only the main tasks of coop­
erative programs can use the programming interface of the System 7 File Man­
ager, which performs more slowly than the new File Manager. To assist in 
cross-platform development, the Mac OS 8 file system also supports standard 
C file-I/O functions. 

Applications use the Navigation Services to help users decide which files to 
open, where to save files, and what to name files. The Navigation Services sup­
ply all programs with a consistent browser, giving users an easy way to navi­
gate the volumes and folders of all connected storage devices. These services 
also supply panels that display information about the files located with the 
navigation browser. These panels can contain text, pictures, controls, and 
OpenDoc parts, and developers can create their own panels for use with the 
navigation browser. 

PLANNING A PRODUCT FOR MAc 05 8 

If you are a developer, you can take the following steps to prepare products 
that take advantage of the Mac OS 8 file system: 

1. If you've developed a System 7 application, make it native for PowerPC­
based computers. Your application's file and other 110 operations will 
execute much faster in Mac OS 8. 

2. Consider whether your application consumes very much time process­
ing file 110 operations. If it does, separate your file 110 code from the 



PLANNING A PRODUCT FOR MAc 05 8 159 

rest of your application. You can then implement this code more easily 
as a separate thread of execution in a multithreaded program. 

3. Don't assume a maximum filename length in your code. For example, 
whereas HFS allows 31-character filenames, other volume formats 
impose different length limits. 

4. Depending on the amount of memory you have and the speed of the 
device you are using, consider reading and writing file data in multiples 
of at least 16K. Reading an entire file into a buffer with one call requires 
less overhead than reading with multiple calls. 

5. If you've already created a System 7 application, remove from your 
code any assumptions about the precise locations of any human inter­
face elements in the Save and Open dialog boxes. You'll be able to use 
the relative position of the standard System 7 elements to determine the 
locations of Mac OS 8 elements. 



• • • • • • • • • • • • • • • • • • • • • • • 

Architect 
of the 
1/0 Syst 

• • • • • • • • 

The I/0 system is the portion of the operating system that transfers data to 
and from peripheral devices, such as hard disks, modems, speakers, key­
boards, and pointing devices. Chapter 10 described the features of the fi le sys­
tem portion of the 1/0 system. This chapter provides an overview of the entire 
I/0 system. 

In Mac OS 8, programs gain access to hardware only through a program­
ming interface that insulates the I/0 system from application-level software. 
This insulation protects hardware devices and the low-level code that controls 
them from errors in application-level software. To enhance system stabiliry 
further, memory protections prohibit application-level software from chang­
ing and possibly corrupting the data used by the I/0 system. 

The use of a programming interface to insulate applications from the I/0 
system is one facet of the modular design of the I/0 system. All portions of the 
1/0 system are modularized by well-defined programming interfaces, making 
it easier for developers to extend and differentiate the platform for different 
hardware products. 

All portions of the I/0 system, including the device drivers controlling indi­
vidual hardware devices, a re compiled to run on the PowerPC CPU-there is 
no 68K CPU emulation to impede the performance of code that controls phys­
ical devices. Further optimizing system performance, the 1/0 system is com­
pletely concurrent, taking full advantage of the operating system's efficient 
multitasking capabilities. 

161 



16! CHAPTER 11 ..... ARCHITECTURE OF THE 1/0 SYSTEM 

KEY TERMS AND CONCEPTS 

..... An 1/0 family is a collection of software that provides a distinct 110 ser­
vice to software clients. An 110 family typically consists of a privileged 
server program supported by a collection of shared libraries. The file 
system and the Open Transport networking services are examples of 110 
families. Often, a family is associated with a set of devices with similar 
characteristics, such as storage devices or networking devices. Apple 
Computer supplies most families; developers of peripheral devices sup­
ply 110 plug-ins that integrate their devices within 110 families . 

...,.. As described in previous chapters, a server program has no direct inter­
action with users and, typically, provides services to other programs 
along the client/server model. A privileged server program, such as one 
used by an 1/0 family, differs from a nonprivileged server program in 
two major ways. First, a privileged server program runs when the CPU 
is in supervisor mode (giving the program greater access to computer 
resources), whereas a nonprivileged server program runs when the CPU 
is in user mode (protecting the system from errors in the program's 
code). Second, a privileged server program operates on data in a pro­
tected system-wide memory area reserved for use by privileged code, 
whereas a nonprivileged server program operates on data only within 
its own protected address space . 

..... An 1/0 plug-in is a plug-in (that is, a dynamically loaded shared library) 
that provides a particular implementation of the service offered by an 
110 family. Within the file system 110 family, for example, a volume-for­
mat plug-in implements file system services for a specific volume format . 

...,.. A device driver is a type of 110 plug-in that directly controls a hardware 
device, such as a disk drive. 

MAJOR POINTS OF INTEREST 

Previous chapters have described the concurrent nature of the 110 system, par­
ticularly the interleaving of multiple 110 requests-such as file system opera­
tions and network transactions-so that the CPU doesn't waste valuable 
cycles waiting for any single 110 request to be completed. In conjunction with 
the multitasking capabilities of Mac OS 8, the 110 system efficiently transfers 
data to and from peripheral devices, increasing overall system performance. 
Multithreading a cooperative program to perform I/O-intensive operations 
outside of its main task increases the program's efficiency and user responsive­
ness. For example, a multimedia authoring program can read data from a CD­
ROM disk in one thread of execution, write data to a hard disk in another 
thread of execution, and yet provide highly responsive user interaction in a 



Block storage 
devices read or 
write blocks of bytes 
as a group. Disk 
drives, for instance, 
typically read and 
write blocks of 512 
bytes or more. 

SCSI (Small Computer 
System Interface) is a 
data bus for connect­
ing peripheral 
devices with comput­
ers. PCI (Peripheral 
Component Intercon­
nect) is a bus archi­
tecture available on 
recent models of 
M.ac Oxompatible 
PowerPC-based com­
puters. FlreWire is a 
new bus design near­
ing completion when 
this book went to 
press. 

MAJOR Poltns OF INTEREST 163 

third thread of execution. Even when data is slow in coming from the CD­
ROM or going to the hard disk, the program can remain busy executing other 
operations on behalf of the user. 

Because the 110 system is modular in design, modifications to one portion 
don't necessitate changes to other portions. The 1/0 system is divided into dif­
ferent I/0 families tailored for particular types of hardware devices. As you'll 
soon see, two layers of programming interfaces within each family further 
modularize the 110 system. 

An 1/0 family provides a distinct 110 service to other software clients. The 
file system, for example, provides applications with file 110 capabilities. An 
110 plug-in is a particular implementation of the service offered by a family. 
For example, the HFS volume format plug-in allows the file system to use stor­
age devices formatted with HFS. 

110 plug-ins are a superset of device drivers. In Mac OS 8, a device driver is 
a shared library that communicates with and controls a hardware device. For 
instance, a device driver may cause a head on a disk drive to read data from 
the disk. Although all device drivers are I/0 plug-ins, not all 1/0 plug-ins are 
drivers. For example, the HFS volume format plug-in is not a device driver, 
because it doesn't control a hardware device. By contrast, a block storage 
plug-in writing to and reading from an HFS-formatted block-storage device is 
a device driver. 

Figure 11.1 illustrates three 110 families that work together to complete a 
file 110 request from an application. An application uses the File Manager 
programming interface to read or write a file on a hard disk, which happens to 
be a SCSI device. The application request moves through the file system, 
which invokes a volume-format plug-in. The volume-format plug-in calls the 
block storage family, which in turn uses a disk-driver plug-in to call the SCSI 
family. A SCSI interface module plug-in moves the data over the SCSI bus 
connecting the storage device to the computer. 

A client of an 110 family can be any code requesting the service offered by 
that family. A family's clients can include cooperative programs, other 110 
families and their plug-ins, server programs, and the operating system. Figure 
11.1 shows an application as a client of the file system family and the HFS vol­
ume format plug-in as a client of the block storage family. Each family pro­
vides two programming interfaces: one for its clients and one for its plug-ins. 
For example, the File Manager supplies a programming interface allowing cli­
ent applications to gain access to the file system, but the file system defines a 
separate programming interface for its volume-format plug-ins. 

Developers capitalize on this modular design to extend and differentiate the 
Mac OS 8 platform for different hardware products. Apple, for example, sup­
plies 110 families for such diverse bus architectures as SCSI, PCI, and 
FireWire. Peripheral-device developers create plug-ins that integrate such 
products as video capture devices, scanners, graphics tablets, and laboratory 
equipment into these 110 families. 



164 

FIGURE 11.1 

CHAPTER 11 .... ARCHiltCTUR£ OF THE 1/0 SYSTEM 

Interactions between an application saving a file and several 110 families 

Application 

! 

Nonprivi~e~~~ _c??~ _______ I 
Privileged code 

+ + 
File system Block storage SCSI 

family family family 

HFS 
Disk-

SCSI 
volume-

driver 
interface 

format 
plug-In 

module 
....__ plug-in ..-- - ,___ - plug-In ,___ 

t t 1 SCSI bus 

SCSI hard disk -
Supplying a modular, concurrent I/0 system for Mac OS 8 required Apple 

Computer to implement an I/0 system very different from that of System 7. 
This change has little impact on the compatibility of the vast majority of Sys­
tem 7 applications. System 7 applications that don't access hardware or hard­
ware device drivers directly are compatible with the I/0 system in Mac OS 8. 
However, with the exception of PCI drivers that closely follow Apple program­
ming guidelines, System 7 device drivers that access hardware won't run in 
Mac OS 8. The section "System 7 Compatibility Issues" on page 172 describes 
how the new I/0 system affects software products written for System 7. 



1/0 SYSTEM REUABIUTY FEATURES 165 

6 ~I ~HERITAGE 
~~ 
~ 

Privileged code is 
executed while the 
CPU is in supervisor 
mode. Supervisor 
mode is a state of 
operation for the 
PowerPC CPU that 
allows access to 
critical processor 
resources. Nonprlvl· 
leged code, such as 
application-level soft­
ware, executes while 
the CPU is in user 
mode-a state that 
protects certain criti­
cal resources, such as 
various processor reg­
isters, from being 
modified. 

The Macintosh 1/0 System 

Before the introduction of System 7-compatible computers based on the PCI bus, the 1/0 
architecture for Macintosh computers was based on resources of type 'DRVR' and their sup­
port routines. In this architecture, hardware developers write device drivers, usually in 
assembly language, and store their code in 'DRVR' resources. The Device Manager is the part 
of System 7 that controls the exchange of information between applications and device driv­
ers. Applications generally gain access to devices through calls to the Device Manager or 
through calls to other managers, such as the File Manager, which in tum call the Device Man­
ager. In System 7, applications can also directly manipulate devices. For example, some 
applications making extensive use of sound capabilities directly control the computer's 
sound chip instead of using the Sound Manager or the Device Manager. 

1/0 SYSTEM RELIABIUTY FEATURES 

To increase system reliability, Mac OS 8 protects the 110 system from applica­
tion errors in three major ways: 

~ Memory-access permissions protect I/0 system data from application­
level software. 

~ 110 families are insulated from direct access by application-level soft­
ware. 

~ All code in the I/0 system resides (as does all code in Mac OS 8) in 
read-only memory areas where it's protected from possible corruption. 

All I/0 families and their constituent plug-ins are privileged, as indicated in 
Figure 11.1 on page 164. Because it's privileged, such code can deny applica­
tion-level software any access to its data. This protection is available because, 
as you read in Chapter 3, Mac OS 8 allows a memory area to have one type of 
access permission for privileged code and another access permission for non­
privileged code. For example, a device driver might allow other privileged 
software, such as the microkernel, to write into a memory area where the 
device driver stores its data, but the driver might allow this data to be read­
only for applications, thereby preventing applications from writing to and 
possibly corrupting this data. 

Application-level software makes use of hardware only through the appli­
cation programming interfaces defined by I/0 families. For example, the 
application in Figure 11.1 can gain access to the file system only by using a cli­
ent programming interface such as the File Manager. Hardware devices and 



166 CHAPTER 11 .... ARCHITECTURE OF THE 1/0 SYSTEM 

their device drivers are thereby insulated from application-level software, pro­
tecting the 110 system from errors in application code. For example, a server 
program can continue using the 110 system to performing network operations 
even if another program using the 110 system were to crash. 

o r:JI 4s HERitAGE 
~~~ 

-?) Supervisor Mode in System 7

TABLE 11.1

Mac OS 8 distinguishes between code that runs when the CPU is either in user mode or
supervisor mode, but System 7 makes no such distinction unless the user turns virtual mem­
ory on. Even with virtual memory on, many supervisor mode instructions are emulated in Sys­
tem 7 for application-level software.

1/0 FAMILIES

An 110 family is tailored to the needs of clients using a class of similar devices.
For example, the Display Manager defines a programming interface tailored
for display devices. When an application uses the Display Manager program­
ming interface to change the number of colors displayed by video devices, the
application indirectly invokes plug-ins that control those devices.

In its first release of Mac OS 8, Apple is providing the 110 families listed in
Table 11.1, and potentially more. Peripheral-device developers can create 110
plug-ins that integrate their devices into these families.

Several 110 families supplied by Apple Computer

file system family

PCI-bus family

ATA-bus family

Open Transport family

Apple Desktop Bus
family

SCSI family

display family

NuBus-bus family

PC-card bus family

NVRAM family (for
physical memory)

block storage family

real-time clock family

sound family

Device Manager family

user-input family (for
keyboards, pointing de­
vices, and other input
devices)

1/0 FAMILIES 167

Because the 1/0 system is modular and separated from the microkernel,
computer manufacturers can add 1/0 families for newly developed peripheral­
connectivity technologies. For example, Apple intends to supply an 110 family
for the new Fire Wire bus architecture when it becomes finalized.

An 110 family typically consists of

~ a shared library, called a client library, supplying a client programming
interface

~ a family server-that is, a privileged server program that receives, pro­
cesses, and responds to service requests from clients of an 110 family
and, usually, calls a plug-in to process these requests

~ a set of plug-ins
~ a family expert-that is, code that maintains information about the set

of family-controllable services or devices and the family 110 plug-ins
available on a given computer; this code can be part of the family server
or be its own process

~ ~I 4·· .. s HERITAGE ~~~
"> Programming Interfaces for Applications and Device Drivers

In System 7, there is only one kind of programming interface: the application programming
interface (API). This makes all Mac OS services available to all varieties of Macintosh software.
With the introduction of the PCI-based generation of Power Macintosh computers, System 7
began distinguishing between programming interfaces available to applications and those
available to device drivers. In Mac OS 8, programming contexts have become increasingly
specialized. For example, there are completely distinct programming interfaces for 1/0 cli­
ents and 1/0 plug-ins. •
Client Programming Interfaces

Each 110 family provides a programming interface for its clients. This inter­
face offers client access to services specific to that particular family. For the file
system family, for example, the File Manager supplies a programming inter­
face for client programs to access files; for the display family, the Display
Manager supplies a programming interface for client programs to manipulate
video devices. A shared library called the client library implements the client
programming interface and forwards client requests for service to the family
server.

A family may provide two versions of its client library, one for nonprivi­
leged clients and one for privileged clients. For example, the nonprivileged
version of the library may need to copy data between address spaces, but the
privileged version, which has access to protected, system-wide areas of mem-

168 CHAPTER 11 ARCHITECTURE OF THE 1/0 SYSTEM

ory, may not. Both versions of a library present the same programming inter­
face to all clients.

c!- Rl 4s HERITAGE
<;:~~

_,., Direct Access to Device Drivers in System 7

like Mac OS 8, System 7 provides a programming interface that insulates applications from
hardware devices. Unlike Mac OS 8, however, System 7 doesn't restrict developers to using
this programming interface. In System 7, application developers can access hardware
devices directly in their programs.

Family Servers
A family server is a privileged server program that receives, processes, and
responds to requests from an 110 family's clients. A client initiates a request by
making a call to the client programming interface, and the client library for­
wards the request to the family server. The server then calls a plug-in to fulfill
the request.

Plug-In Programming Interfaces
Whereas clients communicate with an 110 family through the family's client
programming interface, plug-ins to an 110 family communicate with that fam­
ily through a plug-in programming interface. Figure 11.2 illustrates the rela­
tionship of the constituents of an 110 family. In this example, an application
uses the client programming interface of an 110 family-for example, the Dis­
play Manager. The client library then sends a message to the family server,
which calls the plug-in to carry out the operation requested by the application,
such as changing the number of colors displayed on a particular screen.

1/0 Plug-Ins
Whereas most 110 families are supplied by Apple, developers of peripheral
devices supply the 110 plug-ins that integrate their devices within 110 families.
Device driver writers find that the specially designed set of services for a given
family and its specially tailored programming interface simplify the creation
of plug-ins. Developing plug-ins is further simplified because they can be writ­
ten in a high-level language such as C.

A family server calls a plug-in in response to a request made by a client. An
110 plug-in usually consists of a main code section and a hardware interrupt

FIGURE 11.2

1/0 FAMILIES

A client making a request for an 110 service

Nonprlvlleged code
. - -- -- - - ---
Privileged code

Application

l
~GESiiD:t--- Client

programming
Client interface
library

-- -- -- 1-- ----- -

Family
server

~

8AA

169

handler. The main code section contains the code that does most of the work
of responding to client requests. All 1/0 plug-ins have a main code section.

A hardware interrupt handler is code registered with the operating system
to service hardware interrupts. An 110 plug-in needs a hardware interrupt
handler only if the plug-in responds to a physical device.

A hardware interrupt is an exception generated by a hardware device, noti­
fying the CPU of a change of condition in the device. For example, a sound
device may generate a hardware interrupt after fulfilling a sound output
request. A hardware interrupt causes the microkernd to suspend the currently
executing task while the CPU executes a hardware interrupt handler. The par­
ticular handler that's executed must have been previously installed by a plug­
in to respond to the interrupts generated by that device. After an interrupt
handler completes its operation, the microkernel resumes its preemptive
scheduling of eligible tasks.

The plug-in programming interface specifies how interrupts are managed
within a family. The I/0 system architecture keeps the amount of code that
can be executed at interrupt time to a minimum, thereby reducing interrupt

170 CHAPTER 11 ARCHITECTURE OF THE 1/0 SYSTEM

latency, the interval between the generation of an interrupt and the execution
of its interrupt handler. Minimizing interrupt latency improves overall system
performance.

There are three main ways that the 110 system reduces interrupt latency:

...,. First, it prohibits application-level software from disabling interrupts,
allowing interrupt handlers to respond to interrupts as quickly as
they're generated. (System 7, by comparison, allows applications to dis­
able interrupts.)

...,. Second, the 110 system limits the types of code that can run at interrupt
time. Only privileged code can run at interrupt time. Applications and
other types of nonprivileged code aren't allowed to run during a hard­
ware interrupt. Whereas System 7 110 completion routines, vertical
blanking tasks, and Time Manager tasks run at either hardware inter­
rupt level or as deferred tasks, Mac OS 8 runs these as nonprivileged
tasks. (The historical box at the end of this section describes these Sys­
tem 7 mechanisms.)

...,. Third, and most importantly, the 110 system reduces the amount of
work that a hardware interrupt handler performs. In response to an
interrupt, a hardware interrupt handler performs only essential opera­
tions and defers as much work as possible to the plug-in's main code
section.

Suppose, for instance, that a sound device generates an interrupt to signal that
it's finished playing all of the sound data it's received and is ready for more
data. The interrupt handler for that device might simply verify the interrupt,
call the sound family with information about the device's status, and then
clear the interrupt. The sound family could then use an 110 plug-in to send
additional sound data to the device. As part of the task for the sound family
server, the plug-in's main code section is preemptively scheduled for execution
by the microkernel, keeping the system running as efficiently as possible.

~~ 4is lforrAGE

"'> Task Scheduling Outside of the System 7 Cooperative Multitasking Environment

Developers use various approaches to schedule their code for execution outside of
System 7's cooperative multitasking environment. A common approach is to use a comple­
tion routine, which is executed as soon as an asynchronous call to some other routine is
completed. Another approach is to use the Vertical Retrace Manager to schedule vertical
blanking tasks (VBLs), which can be executed any time a display screen is refreshed. A
third approach is to use nme Manager tasks to schedule code execution independent of
CPU clock speed or the occurrence of hardware interrupts. System 7 developers also use the

110 FAMIUES 171

Deferred Task Manager to postpone the execution of lengthy operations at interrupt time by
placing these operations in defened tasks. • g4tnBiutY Hom

Vertical Retrace Manager, nme Manager, and Defened Task Manager

Mac OS 8 provides compatibility support for System 7 applications that use the Vertical
Retrace Manager, Time Manager, and Deferred Task Manager. However, Mac OS 8 doesn't
support these services for device drivers. In lieu of these, the operating system provides
nming Services for scheduling the execution of device driver code at particular times .

•
Family Experts

Every 110 family includes code, called a family expert, that manages the infor­
mation relating to the set of family-controllable services or devices and the set
of associated plug-ins available on a given computer. A family expert uses var­
ious operating system services to collect and maintain this information; these
services include

~ the Name Registry, which stores information about hardware available
on the user's system as well as the names, characteristics, and relations
of various pieces of software on that system

~ the Driver and Family Matching Service, which matches hardware-spe­
cific software with the 110 devices available on a computer

~ the Device Notification Service, which alerts other parts of the 110 system
of dynamic changes in device connectivity-for instance, the replacement
of a laptop computer's disk drive card with a modem card

110 families can be characterized as high level or low level. The character­
ization refers to the role the family expert plays at system startup when the
connected hardware is being recognized and, after the system is up and run­
ning, when a device is added or removed.

A high-level family uses an expert that registers itself with the operating
system to receive information about the availability of devices that can be con­
trolled by the family. Based on this information, the family expert manages the
availability of family plug-ins. The file system and Open Transport are exam­
ples of high-level families.

A low-level family uses an expert that has information about a specific
piece of hardware, such as a bus or a main logic board. The expert knows
how physical devices are connected to that piece of hardware and when a

172 CHAPTER 11 ARCHITECTURE OF THE 1/0 SYSTEM

device is added to or removed from it. 1/0 families controlling buses-for
instance, the PCI family and the NuBus family-are examples of low-level
families.

The cooperation between the experts of low-level and high-level families
permits Mac OS 8 to respond gracefully to changes in system configuration.
As a result, the set of plug-ins known to and available through an 110 family
always reflects the hardware currently available on a system.

SYSTEM 7 COMPATIBILITY ISSUES

Improved performance, reliability, and extensibility have been major design
goals for Mac OS 8. To reach these goals, Apple Computer had to implement
an 1/0 system very different from that of most System ?-compatible computers.
The large majority of System 7 applications are compatible with the Mac OS 8
110 system and benefit from its increased performance and reliability. System 7
device drivers written according to Apple guidelines for PCI-based Mac OS­
compatible computers are also compatible with the new 110 system. However,
all other System 7 drivers that access hardware will not run on Mac OS 8.

Application Compatibility
System 7 applications that don't access hardware or device drivers directly, but
instead use programming interfaces for performing 1/0 operations, are insu­
lated from the underlying changes in the 1/0 system. Mac OS 8 also provides
compatibility support for System 7 applications that use the Vertical Retrace
Manager, Time Manager, and Deferred Task Manager. {However, Mac OS 8
doesn't support these services for device drivers.)

System 7 developers need to revise their System 7 applications to run com­
patibly with the Mac OS 8 110 system if they've ignored programming inter­
faces-such as those provided by the Device Manager, the Display Manager,
the File Manager, and Open Transport-and have instead used nonstandard
approaches to accessing hardware devices. In Mac OS 8, applications don't
have direct access to hardware devices and device drivers. The only way for an
application to use a hardware device or its driver is through an 1/0 family's
client programming interface or through an interface maintained for compati­
bility.

As a compatibility service for System 7 applications, Mac OS 8 supports all
of the functions described in the chapter "Device Manager" of Inside Macin­
tosh: Devices. However, applications calling the Device Manager incur a per­
formance penalty because they must go through a layer of compatibility code.
For better performance and for access to services best suited to a given class of
devices, System 7 developers should update their applications. Instead of using

SYSTEM 7 COMPATIBILITY ISSUES 173

the Device Manager to access a device, developers should use the program­
ming interface provided by the family to which the device belongs. Using the
Display Manager, for example, an application benefits from using a set of rou­
tines tailored for display devices.

PCI Driver and Card Compatibility
A subset of the Mac OS 8 1/0 system is implemented in versions of System 7
that support PCI devices on Mac OS-compatible computers. A System 7
device driver device written according to the guidelines offered in Designing
PCI Cards and Drivers for Power Macintosh Computers is compatible with
the PCI-based hardware platforms running Mac OS 8. (This book is available
from Apple Computer at http://devcatalog.apple.com.) PCI cards with ROM­
based versions of these device drivers are also compatible with PCI-based
hardware platforms running Mac OS 8.

•DRVR• Compatibility

Mac OS 8 supports, through the Device Manager, emulated drivers of type
'DRVR' that do not touch hardware. An emulated driver, such as a print
driver, is not an 110 plug-in. An emulated driver runs as nonprivileged code in
the cooperative scheduling environment. System 7 device driver writers should
note that in this new 1/0 architecture, a device driver is a PowerPC-native
shared library that controls a physical device. Resources of type 'DRVR', pro­
tocol modules, application code, and system extensions of type 'CDEV' and
'INIT' are not part of the Mac OS 8 device driver model.

Device Manager Migration Path for System 7 Device Drivers
Mac OS 8 developers can create device drivers that make their services avail­
able through the Device Manager client programming interface. Such device
drivers belong to the Device Manager family and are called generic drivers.
The Device Manager family isn't tailored to the needs of any particular type of
device.

Although the client programming interface defined by the Device Manager
is more limiting than those defined by other families, the Device Manager
family offers a migration path to driver developers who implement the basic
changes required by Mac OS 8 without totally converting to the 1/0 architec­
ture in Mac OS 8.

In addition to offering a migration path for System 7 device drivers, the
Device Manager family allows developers to integrate a device into Mac OS 8
if no family exists for that type of device. Suppose, for example, that a PCI
card receives, encrypts, and then returns data. An encryption family doesn't

174 CHAPTER 11 ARCHITECTURE OF THE 1/0 SYSTEM

currently exist for Mac OS 8. By writing a generic driver for the card, a devel­
oper can incorporate the card into the Device Manager family.

SUMMARY

Optimized to take advantage of the PowerPC CPU's processing speed and cap­
italizing on the microkernel's multitasking capabilities, the 110 system quickly
and efficiently transfers data to and from peripheral devices. Memory protec­
tion of 1/0 system data and insulation from application-level software
through client programming interfaces make the 110 highly reliable. The mod­
ular design of the Mac OS 8 110 system simplifies the work necessary for ven­
dors to extend Mac OS 8 and differentiate their own value-added hardware
systems.

The 1/0 architecture is built around families, which define 1/0 services suit­
ably designed for similar types of devices. Programs request an 110 service by
calling a client programming interface. The client library implementing that
interface sends the request to a family server program, which processes the
request and calls an 1/0 plug-in to carry out the request.

Device drivers are implemented as 110 plug-ins. A device driver that han­
dles hardware interrupts spends very little time processing them at interrupt
time. Instead, the driver performs only essential operations and defers all
other operations to one or more preemptively scheduled tasks. Minimizing the
amount of processing that occurs at interrupt time reduces interrupt latency
and allows the system to run most efficiently.

Family experts track changes in system configuration so that the set of
plug-ins known to and available through a family always reflects the hardware
currently available on a system.

The 110 system is compatible with any System 7 application that doesn't
access hardware devices or their device drivers directly. A System 7 application
that directly manipulates hardware devices or their drivers must be modified to
run in Mac OS 8. System 7 device drivers designed according to Apple guide­
lines for PCI devices are compatible with the Mac OS 8 110 system. All other
System 7 hardware device drivers must be rewritten for Mac OS 8.

PLANNING A PRODUCT FOR MAc OS 8

1. Consider whether your program consumes very much 1/0 processing
time when it's not interacting with the user. If it does, separate your
code into portions that perform user interface tasks and 110 operations.
You can then implement these portions more easily as separate threads

PLANNING A PRODUCT FOR MAc 05 8 175

of execution in a multithreaded program, allowing the operating system
to perform concurrent 110 operations more efficiently.

2. If you've developed a System 7 application, make it native for PowerPC­
based computers. This allows your application's file and other 110 opera­
tions to execute much faster in Mac OS 8.

3. Create device drivers for the PCI-based versions of System ?-compati­
ble computers. If you follow the guidelines offered in Designing PCI
Cards and Drivers for Power Macintosh Computers, these device driv­
ers will be compatible with PCI-based versions of Mac OS 8-compati­
ble computers. The work will also introduce you to the 110 architecture
used in Mac OS 8.

•

Human In
Toolbox

The Human Interface Toolbox underlies the Mac OS 8 user experience. The
Toolbox is a collection of services that developers use ro implement the stan­
dard portions of the Mac OS 8 human interface- for instance, windows, con­
trols, and menus. Because programs use the Toolbox to display a consistent
human interface, users can easily apply the skills they learn with one program
to other programs.

The Human Interface Toolbox supports multiple sets of designs that coor­
dinate the appearance of windows, menus, fonts, controls, and other onscreen
objects. Choosing among these design sets, users can personalize the
Mac OS 8 human interface to suit their moods and tastes. When several peo­
ple share the same Mac OS 8-compatible computer, each user can set up a
personal workspace characterized by its appearance, its level of difficulty, and
other individual preferences.

All human interface objects are derived from a class library implemented
with SOMobjects for Mac OS, a llowing Apple and other developers to modify
human interface objects while maintaining future compatibility between
applications and the operating system. Although developers needn't use
object-oriented programming techniques to implement standard Mac OS 8
human interface features, SOMobjects for Mac OS provides an object-ori­
ented approach for developers who want to the customize and enhance these
features.

For compatibility with older applications, Mac OS 8 fully supports the
operating system services that implement the human interface in System 7.

177

178 CHAPTER 12 HUMAN INTERFACE TOOLBOX

System 7 applications that use standard menus, controls, and windows inherit
the system-coordinated, user-selectable appearances of Mac OS 8. A System 7
application retains any custom human interface elements that it defines, but
custom elements don't inherit the Mac OS 8 appearance.

KEY TERMS AND CONCEPTS

.... The human interface comprises all of the facilities by which a user inter­
acts with programs running on a computer. Because most human inter­
face objects (such as windows, menus, and icons) are visual in the Mac
OS, the term human interface is generally synonymous with graphical
user interface. However, user voice input, sounds that alert the user, and
other nonvisual elements are part of the human interface as well. The
Human Interface Toolbox deals mostly with the graphical portions of
the Mac OS 8 human interface .

.... A theme comprises a coordinated set of human interface designs that
determine the appearance of human interface objects on a system-wide
basis.

.... A workspace is one of several separate custom user environments for a
single computer. A workspace is characterized by such user-specified
attributes as theme, level of complexity, and application preferences.

.... SOMobjects for Mac OS is the Apple Computer implementation of the
System Object Model (SOM), an industry-standard architecture for the
development and packaging of object-oriented software. SOMobjects
for Mac OS provides the underlying technology for windows and pan­
els, which are instantiated as objects derived from an easily extensible
class library .

.... A class is a generic structure used as a template for creating objects.
Classes are defined in class libraries .

.... An object is an execution-time structure that contains data and routines
that operate on that data. An object is an instance of a class, which can
be used to create additional instances that constitute separate objects .

.... A human interface object is an object that encapsulates one or more
human interface elements .

.... A window is a human interface object that presents information such as
a document or a message. A window usually contains other kinds of
human interface objects called panels.

.... A panel is any standard Mac OS 8 human interface object-for
instance, a button, scroll bar, or editable text field-that can be placed
in a window.

A control is an
onscreen object that
the user can manipu­
late to take an imme­
diate action or to
change a setting to
modify a future
action.

A saoll bar is a con­
trol that an applica­
tion embeds in a
window to allow a
user to change the
portion of a docu­
ment displayed in
that window.

MAJOR POINTS OF INTEREST 179

MAJOR POINTS OF INTEREST

Using the Human Interface Toolbox, developers create applications that present
a consistent appearance and share predictable behaviors. For example, common
controls such as pop-up buttons and progress indicators work and look the
same in different applications. This human interface consistency helps users to
learn new applications quickly and to be more comfortable-and therefore
more productive-with a larger number of different applications.

As you've read in previous chapters, only the main tasks of cooperative
programs can use the Human Interface Toolbox. When cooperative programs
follow the Mac OS 8 event model (as described in Chapter 14), the Process
Manager serializes their access to the Human Interface Toolbox. With all
access to the Toolbox serialized, a program that begins a Toolbox-related
operation, such as opening a new window, is allowed to finish that operation
before another cooperative program can undertake a Toolbox-related opera­
tion. Thus, only one application at a time interacts with the user through the
Human Interface Toolbox, keeping graphical interactions focused and predict­
able for the user.

The Human Interface Toolbox supplies applications with a variety of
human interface objects, including

~ windows that allow the user to enter and edit information
~ controls, such as scroll bars and buttons, that allow the user to change

application settings or invoke application actions
~ dialog boxes that solicit information or decisions from the user
~ menus allowing the user to choose commands

Figure 12.1 illustrates examples of all these objects as an application might
present them.

All portions of the operating system that display a human interface use the
Human Interface Toolbox, too. For example, the access and interview panels
implemented with the Assistance Services (described in Chapter 13) and the
navigation browser and information panels displayed by the Navigation Ser­
vices (described in Chapter 10) are implemented with window and panel
objects from the Human Interface Toolbox.

The Human Interface Toolbox supports customizing by each user in ways
that maintain the overall look and feel of the human interface. For example,
Mac OS 8 supplies multiple sets of design themes that affect the appearance
and behavior of human interface objects. By switching themes, a user can
change the appearance of all windows, controls, menus, and other objects dis­
played on a single computer. Figure 12.1 illustrates portions of the default
theme, which is built into the Human Interface Toolbox of every system. Users
can install or remove additional themes as they wish. Figure 12.2, for exam-

180

FIGURE 12.1

CHAPTER 12 ~ HUMAN IHTERFACE TOOLBOX

Typical human interface elements in the default theme

Active window

Scroll bar Dialog box

C 0 E F 0 H
Produ:t

Desktop

pie, shows human interface objects as they might appear in an alternate
theme.

M ac OS 8 not only makes the human interface more flexible from a user's
point of view but also makes it easier for developers to implement the human
interface in their applications. For example, the Human Interface Toolbox
simplifies the creation of software for the global market by allowing an appli­
cation to display text within menus and window titles in any font and in any
language.

To create an application's menus, windows, dialog boxes, and controls, a
developer uses human interface objects. Implemented with SOMobjects for
M ac OS, each human interface object knows how to draw itself appropriately
depending on its state; for example, checkboxes mark and unmark themselves
in response to user clicks in the boxes, sliders change their appearance in
response to the user manipulating them, menus highlight correctly when the
user selects them, and so on. Such built-in behavior simplifies software devel­
opment efforts.

MAJOR POit•ITS OF INTEREST 181

FIGURE 12.2 Typical human interface objects displayed in an alternate theme

Active window

Menu -(
bar

Scroll bar Dialog box Desktop

If necessary to support specialized application needs, a developer can also
re liably extend standard human interface objects or define new ones. As you
may recall from Chapter 9, SOMobjects for Mac OS supports release-to­
release binary compatibility. If a developer creates an enhancement to
Mac OS 8 windows, for example, this enhancement wi ll be compatible with
future releases of Mac OS 8. Release-to-release binary compatibility a lso
allows Apple to enhance Human Interface Toolbox features in subsequent
releases of Mac OS 8, and these enhancements wi ll be inherited automatically
by a ll applications using the Toolbox.

Although the human interface objects are implemented using SOMobjects
for Mac OS, it isn't necessary for developers to employ object-oriented pro­
gramming techniques to display the Mac OS 8 human interface. Because of
the language-neutral nature of SOMobjects for Mac OS, developers can write
their programs in procedural languages, object-oriented languages, or mix­
tures of both and still use the Human Interface Toolbox.

182 CHAPTER 12 HUMAN INTERFACE TOOLBOX

g~nmnYHom
System 7 Applications and the Macintosh Toolbox

System 7 developers use a group of libraries known as the Macintosh Toolbox to imple­
ment the Mac OS human interface. These libraries, including the Window Manager, Dialog
Manager, Control Manager, and List Manager, are fully supported in Mac OS 8. Applications
that use the standard System 7 definition procedures (also known as defprocs) for such
human interface elements as windoVvS, menus, and controls inherit the Mac OS 8 human
interface appearance. Applications that use custom definition procedures work correctly on
Mac OS 8. However, because custom definition procedures invoke their own drawing rou­
tines, Mac OS 8 can't draw these applications with the Mac OS 8 appearance.

For a System 7 application with its own window definition function, for example,
Mac OS 8 displays that application's windoVvS exactly as System 7 displays them. By com­
parison, a System 7 application using the standard window definition function inherits the
appearance of Mac OS 8 windovvs. Even as the user switches themes, that application's win­
dows match the look of windows used by the operating system and by other Mac OS 8
applications. •
THEMES

As shown in Figure 12.1 and Figure 12.2, users can select different themes,
which coordinate human interface designs across the entire system. Regardless
of the theme, the core user experience remains the same. Users switch themes
without having to learn new human interface metaphors. A theme determines
the appearance of all human interface objects. Users can choose among the
themes available to the system with a utility called the Appearance control
panel, which also allows users to modify other aspects of appearance, such as
the desktop pattern, highlight color, screen saver, and system font.

In addition to supporting user customization, themes insulate an applica­
tion from future changes to the human interface. Because Mac OS 8 allows
developers to deal with appearance abstractions rather than specific details,
applications can support not only the new human interface designs in
Mac OS 8 but also future design enhancements.

The Appearance Manager is the operating system service that provides the
underlying support for themes. The Appearance Manager manages all aspects
of themes and theme switching, including the Appearance control panel, sup­
port for a variety of color data, and support for animation and sound.

The Appearance Manager provides drawing routines that render the build­
ing blocks of human interface objects. If it's necessary to customize the look of
any standard human interface objects, a developer can use Appearance Man-

WORKSPACES 183

ager drawing routines to automatically coordinate the new appearance with
user-selected themes.

In addition to these drawing routines, the Appearance Manager provides
routines that allow an application to determine how the current theme draws
various aspects of the human interface, such as the color of the menu bar. For
example, an application can call the Appearance Manager to determine the
current menu-bar color. The application can then coordinate the color of its
window contents with that of the menu bar.

Users can also customize their systems by using desktop animations. A
desktop animation can draw to a screen-saving window or to the desktop
(that is, the area behind all windows, menus, and icons, as shown in Figure
12.1 on page 180). A desktop animation can be utilitarian (for instance, a
ticking clock that periodically displays appointment reminders), informative
(scrolling stock quotes or sports scores that have been downloaded from an
online news service), or simply fun (a cartoon character performing pratfalls).

The Desktop Animation Manager cooperates with the Appearance Man­
ager to establish and maintain user preferences for animations. When a user
changes any desktop animation preference via the Appearance control panel,
the preference takes effect immediately.

The user can install multiple desktop animations and select individual ones
for different purposes-for example, one to use as a background when work­
ing at the computer and another to use as a screen saver when away from the
computer. The Desktop Animation Manager allows a user with multiple mon­
itors to select a different animation for each monitor or a single animation for
all of them.

WORKSPACES

Because Mac OS-compatible computers are often shared by multiple users,
Mac OS 8 allows users to set up several different workspaces for a single com­
puter. A workspace maintains a user-customized environment that includes

~ application and system preferences
~ icons on the desktop
~ desktop animations
~ open Finder windows
~ startup and shutdown items
~ user's name and password
~ the complexity of available menus and features; Chapter 1 describes the

scalability of system complexity

184 CHAPTER 12 ~ HUMAN INTERFACE TOOLBOX

If a system is configured for more than one workspace, the user is asked to
choose a workspace either at startup or when switching workspaces. Each
workspace is associated with a specific user name. If the workspace has a pass­
word, the user is prompted for it after choosing a name. A similar dialog box
allows a user to switch workspaces after startup. Switching workspaces
doesn't require restarting the computer, but it does cause all currently running
applications to quit.

Mac OS 8 supplies developers with a Preferences Manager. Many applica­
tions allow users to set various preferences, such as the default font, pen
width, menu content, file-backup behavior, and so on. The Preferences Man­
ager gives developers a standard mechanism for controlling their applications'
preferences. Using the Preferences Manager shields the details of preference
management from developers and enhances their programs' capabilities in a
multiple-workspace environment.

~~ ~5 HERITAGE

"> Single System Customizing in System 7

Although a single user can customize a single computer in many ways-including the
arrangement of files and folders on the desktop, system preferences, and application prefer­
ences-System 7 can keep track of only one set of customizations. •
HUMAN INTERFACE OBJECTS

The Toolbox supplies developers with a class library defining a variety of stan­
dard windows, menus, lists, controls, editable text boxes, and other human
interface objects. These objects automatically share the appearance of what­
ever theme the user selects. The class library for these objects is implemented
as a shared library, using SOMobjects for the Mac OS.

To incorporate human interface objects into their applications, developers
use their preferred programming languages to call functions exported by the
Toolbox-supplied class library. Because of the language-neutral nature of the
System Object Model, developers can use procedural as well as object-ori­
ented languages to implement the Mac OS 8 human interface in their applica­
tions. A developer must use object-oriented programming techniques in order
to modify any human interface objects. Since the Toolbox supplies so many
types of objects, such modifications are unnecessary for most developers.

Even though it doesn't require a developer to write program code in an
object-oriented programming language, the Toolbox-supplied class library

FIGURE 11.3

In object-oriented
programming, a
method is a function
defined by a particu­
lar class.

HuMAN INTERFACE OBJECTS: 185

The top level of the inheritance hierarchy for the human Interface objects class library

Human interface
objects

supports object-oriented techniques such as inheritance and subclassing.
Inheritance is the transmission of properties and behaviors from one class to
another. For example, all human interface objects inherit the same drawing
methods. These methods cause all objects to be rendered onscreen in the cur­
rently selected theme. Closely related to inheritance is the technique of sub­
classing-the derivation of a new class from an existing class by adding to or
overriding selected methods and data structures inherited from the original
class. For example, a class for controls defines the behavior shared by all con­
trols. Separate subclasses for scroll bars and push buttons add unique capabil­
ities for each of these particular control types.

In addition to inheritance and subclassing, the Toolbox-supplied class
library also supports the object-oriented features of polymorphism and encap­
sulation. Polymorphism is the ability of client code to use the same method to
call objects of different classes. For example, a program uses the same method
to draw the text displayed by different classes of controls. Encapsulation is the
packaging of an object's data and the routines that can act on it to protect the
data from inappropriate changes. To gain access to an object's data, a client
must call that object's programming interface.

A single superclass exists for all human interface objects. The methods
defined in this superclass perform such operations as drawing the object, han­
dling events involving that object, manipulating its location, and setting its
visibility. Subclassed from this superclass are two more classes: one for win­
dows and another for panels, as shown in Figure 12.3. These two subclasses
inherit the data structures and methods of the superclass while defining meth­
ods and data structures of their own.

A hierarchical arrangement of additional subclasses further defines patterns
of inheritance for the Human Interface Toolbox. For example, Figure 12.4
shows how additional subclasses are derived from the panels class. Additional
subclasses are, in turn, derived from these. For example, subclasses of con­
trols-such as scroll bars, push buttons, and sliders-inherit their common
characteristics from the controls class.

186

FIGURE 1 !1.4

FIGURE 1 !1.5

CHAPTER 1!1 HUMAN IHTERFACE TOOLBOX

Panel subclasses

Editable
text

A standard document w indow

Panels

Embedding
panels

Static

Title bar Icon Zoom box

Scrolling
panels

A particular execution-time instance of a class is an object. A window, for
example, may contain two scroll bars, one vertical and one horizontal. Each
scroll bar is an object derived from the same scroll bars class, and the window
is an object derived from the windows class.

Windows
Windows are objects that programs use to present information, such as docu­
ments created by a user o r messages directed to the user. When an application
calls the Toolbox to create and display a window, the Toolbox instantiates an
object from the windows class. The windows class includes methods that per­
form operations on windows-for instance, drawing, event handling, high­
lighting, ordering, positioning, sizing, and so on-automatically.

Figure 12.5 shows the elements of a standard document window object:

To drag means to
position the cursor
on an interface ele­
ment (such as a title
bar icon), press the
mouse button, and
move the cursor to a
new position. Drag­
ging can have differ­
ent effects, depend­
ing on what's under
the cursor. These
effects include select­
ing text, choosing a
menu item, shrinking
or expanding an
object, or moving an
icon.

HUMAN INTERFACE OBJECTS 187

...,_ A close box that, when clicked, dismisses the window .

...,_ A title bar icon for use in drag-and-drop operations. For example, a
user can drag a document's title bar icon to a folder on the desktop,
then drop it to save the document in that location.

...,_ A collapse box in the upper-right corner that the user can click once to
hide all of the window (except the title bar) and then click again to
redisplay the entire window.

...,_ A zoom box next to the collapse box. When the user clicks the zoom
box once, the window automatically expands to its optimal size on
whichever screen is displaying most of the window. Clicking the zoom
box a second time restores the window to its previous size and location.

..... A size box in the lower-right corner that a user drags to resize the win­
dow.

To simplify localization, the Toolbox also supports resizing of windows in
directions other than down and to the right, the use of multilingual text in
window titles, and other features. (In Mac OS parlance, localization is the
process of preparing a software product for a specific national or regional
market.)

0~4tSHEmTAGE
~ · Application-Supplied Code for Handling Events in Windows

Much of the automatic behavior behind Mac OS 8 windows had to be programmed by Sys­
tem 7 developers. For example, when a user clicks the zoom box of a System 7 application,
it must provide code that recognizes the event, determines which monitor should display
the window, and then resizes the window accordingly. Mac OS 8 applications, by compari­
son, don't include this code, because windows created with the Human Interface Toolbox
automatically resize themselves correctly in response to clicks in the zoom box . •
Window Layers

Every application has a layer within which it displays its windows. Various
system services, such as Apple Guide (described Chapter 13), control addi­
tional layers that may appear in front of or behind an application's layer.
Developers can make use of these additional layers, too, when appropriate.

Every window in an application's layer belongs to one of three sublayers: a
sublayer for modal windows, a sublayer for floating windows, or a sublayer
for document windows. Each sublayer determines how a window appears in
relation to other windows for that application.

188

FIGURE 12.6

Document
windows

CHAPTER 12 HUMAN IHTERFACE TOOLBOX

Layering of floating windows and document windows

Floating
windows

..,.. Modal windows appear in front of all other kinds of windows in an
application's layer. They're used for modal dialog boxes and alert
boxes, both of which require immediate attention from the user. A
modal dialog box or an alert box puts the user in the state or "mode" of
being able to work only inside that modal window. The user can dismiss
a modal window only by clicking its buttons.

..... Floating windows appear in front of document windows and behind
modal windows in an application's layer. They're used for tool palettes,
catalogs, and other elements that let the user act on data in document
windows .

..,.. Document windows appear behind floating windows and modal win­
dows in an application's layer. They' re generally used for document
data such as graphics and text and for modeless dialog boxes.

Windows always maintain this sublayering within a single application's layer.
For example, the floating windows for the application shown in Figure 12.6
always appear in front of its document windows.

HUMAN INTERFACE OBJECTS 189

Window Uses

Various window types have specific uses. An application places the panel for
an alert box inside a modal window to warn the user or to report an error. An
alert box typically consists of text describing the situation and buttons that
require the user to acknowledge or rectify the problem. The panel for a modal
dialog box is also placed inside a modal window. A modal dialog box requires
an immediate response from the user, such as providing information necessary
for an application to carry out a command. By comparison, a user needn't
respond immediately to the panel for a modeless dialog box, which an appli­
cation places inside a document window. A user can move this type of win­
dow, make it inactive and active again, and close it. A standard document
window is one in which the user enters text, draws graphics, or otherwise
enters or manipulates data. An application may employ one or more floating
windows that typically provide tools that let the user operate on data dis­
played in a standard document window.

Window Activation

A user typically has one or more windows open, often from several different
applications. However, only one window can be the active window. An appli­
cation's active window is the frontmost modal or document window in the
application's layer. (Floating windows can't be active windows.) It is the active
window whose content is affected by user actions. The active window is iden­
tified by distinctive details that aren't visible for inactive windows; for exam­
ple, the default theme displays title bars for active windows with characteristic
"racing stripes." In Figure 12.6, the document window "untitled" is the active
window. The other document window, titled "Sales Report," is inactive. If the
user manipulates the floating windows, the corresponding actions affect con­
tents of the active window.

When the user attempts to close the window "untitled" in Figure 12.6 with­
out saving its contents, the application displays a movable modal dialog box,
as shown in Figure 12. 7. This modal window appears in front of all other win­
dows in the application's layer, and it becomes the active window. Decisions
made by the user with the aid of the dialog box apply to the document "unti­
tled." The user can't manipulate the floating windows in this situation.

Windows automatically respond to any user action that can make them
active or inactive. When the user clicks a window to make it active, for exam­
ple, that window automatically activates its scroll bars without any special
programming effort on the part of the developer. Similarly, an application's
floating windows automatically disappear when the user switches to a differ­
ent application.

190 CHAPTER 1!2 ~ HUMAN IHTERFACE TOOLBOX

FIGURE 1 !2. 7 A modal window in front of all other windows in an application layer

Movable - -r--H"'-..IIIiill
modal

dialog box

Window Groups

A window group is a useful abstraction that developers use to organize an
appl ication's windows and to automate many aspects of window manage­
ment. A developer can add any application windows to a window group,
regardless of the sublayers to which they belong. A developer can a lso add
groups to groups.

A developer typically uses a window group to associate a window with one
or more additional windows so that clicking the original window brings a ll of
irs associa ted windows to the front. For example, an application can use a
window group to ensure that tool palettes associated with a document win­
dow also come forward whenever the user activates that window.

Panels

Panels a re human interface objects that applications display in windows to

help present and manipulate information. A panel manages all aspects of its
own appearance and behavior as its state changes in response to user activi­
ties. For example, a scroll bar automatically redraws itself every time the user

FIGURE 12.8

HUMAN IHTERFACE OBJECTS

A dialog box created from a window and multiple embedded panels

Field Format

Name: ! I
~--------------~

, Fleldtype:- 0Show8order
f) Text
0 Number Iii Shnnk to Fit

.__0 _PI_rtu_ re _ _, (Cancel l II Ok I

191

manipulates it. A developer supplies code that determines how changes in a
panel's state affect an application-for instance, how to change the portion of
a document displayed in a window in response to a click in a scroll bar.

Embedding panels and root panels play an important role in every applica­
tion's human interface. As its name implies, an embedding panel contains
other panels. Developers use embedding panels to assemble compound panels
from the standard Toolbox panels.

A root panel is an embedding panel that fills a window's content area. The
window passes all events that affect its content to the root panel. The root
panel in turn passes events to other panels that it contains. For example, a
modal dialog panel is a root panel that tracks user interaction with the panels
it contains and takes care of all event handling required to enforce its modal
state.

A containment hierarchy describes which human interface objects are
embedded in which others. Figure 12.8 shows a dialog box created from a
window and multiple panels. Figure 12.9 illustrates the containment hierarchy
for this window. To begin, the window contains a dialog panel- the root
panel for the window. Embedded in the dialog panel are several other panels,
including an editable text panel, a radio button group panel, checkbox panels,
and push button panels.

Dialog Boxes and Alert Boxes

All dialog boxes and alert boxes are created from specialized root panels,
which an application displays inside windows that interact with the user. A
dialog or alert panel controls all user interaction with its subpanels; for exam­
ple, it tracks user input and maintains its own modal state, if any. A dialog or
alert panel has a distinctive bevel just inside the frame of the window in which
it is displayed.

Dialog Boxes An application displays a dialog box to solicit specific kinds of
information from the user by means of the panels it contains, such as button
panels, text panels, and list panels. Figure 12.10 shows an example of a mode-

192

FIGURE 12.9

CHAPTER 12 HUMAN ltmRFACE TOOLBOX

Example of the containment hierarchy for a dialog box

- t- Window

+

- '-- Dialog panel

+
Caption panel

I
Nllme: -- Editable

=--===-----===' text panel

i
FJeld type:

f) Text
Radio button 0 Number
group panel 0 Picture

I

0 Show Bo e --- Checkbox panel

---===-l:!---,
L Horizontal visual

separator panel

(Cancel) I, OIC I
y

Rectangular
visual separator

Push button
panels

less dialog box. This type of dialog box uses a document window with no size
box or scroll bars. The user can move a modeless dialog box, move between a
modeless dialog box and other windows, and close a modeless dialog box.

By comparison, a movable modal dialog box consists of a dialog panel
inside a modal window. It requires the user to work in a single mode within an
application-that is, only inside the dialog box-until the user finishes inter­
acting with that dialog box. Figure 12.11 shows an example.

A movable modal dialog box has a title bar that allows the user to move
the dialog box around the screen-for example, to examine the part of the
screen that it covers. The user can dismiss the dialog box only by clicking its
buttons; however, the user can generally switch layers by clicking in another

FIGURE 12.1 0

FIGURE 12.11

H uMAN INTERFACE OBJECTS 193

A modeless dialog box

0 Global Changes

Find What: I blueberries

ChangeTo:~lc_h_er_r_ie_s __________ -"

t Stop) I! Change I

A movable modal dialog box

-- Document

r Marglns _ footnotes

Top: l11n I Position : I End of Page I •)
Bottom: l11n I [!I Auto Number Footnotes

left: I• in I 0 Restart Each Page

Right: I• in I starting Number: I• I
I Apply J I Cancel I ~ OK I

application's window or by choosing another application from the Apple or
Application menu. (A developer can prevent the user from switching layers if
layer switching poses the risk o f immediate damage to the user's data.)

For compatibility with System 7 applications, Mac OS 8 a lso supports non­
movable modal dia log boxes. A nonmovable modal dialog box resembles a
movable modal dia log box except that it has no title ba r. (Because a nonmov­
able modal dialog box restricts the user's ability to see portions of the screen,
Mac OS 8 appl ications use movable modal dialog boxes instead.)

Alert Boxes An application displays an alert box to warn the user or to report
an error. An alert box typically consists of an icon, text describing the situa­
tion, and buttons for the user to acknowledge or rectify the problem. An alert
box contains an icon that helps communicate the seriousness of the informa­
tion conveyed by its text. For example, the a lert box in Figure 12.12 displays
an icon indicating that the user must stop entering text because the address is
too long to fit on an envelope.

194

FIGURE 12.12

FIGURE 12.13

CHAPTER 12 ~ HUMAN I~ACE TOOLBOX

A movable alert box

lhe street address must be less than 50
characters long to rrt: on the envelope.
Try ebbrevlet1119 common words.

" OK I

A nonmovable alert box

SurfPalnt Is running out of memory. Please
save your document nowl

I!OKj

A movable alert box, like a movable modal dialog box, has a title bar that
allows the user to move it. However, a movable alert box can contain only
text, an icon, and button panels, whereas a movable modal dialog box can
contain any combination of panels. The user can dismiss a movable alert box
only by clicking its buttons. As with a movable modal dialog box, a user can
generally switch layers by clicking in another application's window or by
choosing another application from the Apple or Application menu.

A nonmovable alert box resembles a movable alert box except that it has
no title bar. As the example in Figure 12.13 shows, a modal alert box is dis­
played only when it's essential for the user to make an urgent decision or per­
form an immediate action.

Controls

Most windows- and certainly a ll dialog boxes and alert boxes-contain con­
trols. Controls are panels that the user can manipulate to perform actions in
an application or to change settings that modify future actions. Developers use
a programming interface to get values from a control. For example, an appli­
cation can get control values from a scroll bar in order to redraw the win­
dow's contents at the same time that a user is manipulating the scroll bar.

Figure 12.14 shows examples of panels created with standard subclasses of
the controls class, which is itself a subclass of the panels class. The appearance

FIGURE 12.14

I Cancel I

D Checkbox text

HUMAN INTERFACE OBJECTS

Examples of controls derived from subclasses of the controls class

D Checkbox text
Little arrows
; panels

Scroll bar panels

Checkbox panels

Bevel button panels

Progress indicator
panels

Cance~)
Push button panels

Slider panels

195

of each control is defined by its class and by the current theme. The examples
in the figure and those in the margins a re drawn in the default theme.

Push buttons A push button is a control that displays information (such as
text, icons, or pictures) indicating its purpose. The Cancel button in the mar­
gin is an example. When the user clicks a push button, it performs an action
instantaneously, such as canceling the operations defined by a dialog box. A
developer can specify a push button as the default button, in which case it
draws itself with the standard default appearance for the current theme (for
example, with a ring around it). Then, when the user presses the Return or
Enter key, the system responds as if the user had clicked the default button.

Bevel buttons Developers use bevel buttons for controls that, like push but­
tons, display information indicating their purpose. Developers commonly
embed bevel buttons in tool bars and palettes. A bevel button can behave like
a push button that lets the user press it once to perform an action instanta­
neously, or it can toggle between up and down-that is, unselected and
selected-states.

Checkboxes Developers use a checkbox to display a small square with a label
consisting of text, an icon, a picture, or any other image. The label indicates

196

0 Rodlo button text

CHAPTER 12 ... HUMAN lt-~TERFACE TOOLBOX

what kind of setting the checkbox controls. A checkbox can display off, on, or
mixed-state settings. The square is checked when the setting associated with
the box is in effect, is empty when the setting is not in effect, and contains a
short horizontal line when the setting is mixed. A mixed state indicates that a
setting is in effect for some elements in a selection and not fo r others. For
example, a checkbox that determines whether a character string is boldface
appears in a mixed state if some characters in the string a re bold and others
aren't. The user can change a mixed-state checkbox to either the checked or
unchecked state but can't directly change a checked or unchecked box tO a
mixed-state checkbox.

Radio buttons Developers use a radio button to display a circle with an
accompanying label, which may consist of text, an icon, or a picture. Like
checkboxes, radio buttons can draw themselves in three different states: on,
off, or mixed. However, whereas several adjacent checkboxes may be selected
at the same time, only one radio button in a group of radio buttons can be
selected at any one time. In the default theme, the circle is fi lled when the set­
ting associated with the button is in effect, is empty when the setting is not,
and contains a short horizontal line when the setting is mixed.

Pop-up buttons Developers use the pop-up button panel to display a men u
associated with a button. W hen the user presses the mouse with the cursor
over a pop-up button, additional menu items appear. Developers often use a
pop-up button as an a lternative to a radio button group or a list.

Disclosure triangles A disclosure triangle governs the display of items in a list,
such as an outline containing subtopics. When the a rrow of this control points
right, only one item is visible beside it. When the a rrow points down, both the
original item and its subitems are visible in the list. To toggle between the two
states, the user clicks the disclosure triangle.

Little anows This control displays a pair of arrows and typically accompanies
a text box containing a numerica l value, such as the date or time. Clicking the
up arrow increases the value in the text box, and clicking the down arrow
decreases it.

Progress indicators A progress indicator shows that a lengthy operation is
taking place. The tOp example in the margin shows an indeterminate progress
indicator. The revolving stripes on this indicator communicate that an opera­
tion is taking place, but this type of indicator doesn't show how long the oper­
ation might continue. To create a determinate progress indicator, such as the
bottom example, a developer supplies values to the panel indicating how
much of an operation has been completed. In response, the progress indicator

FIGURE 12.15

HUMAN IHTtRFACE OBJECTS 197

Two menus created from the standard menu panel class

"'Plain Text 88T
"'Genevc Bill Ill 888

Palatino lt4/lc 88 1
If)l~OA ®:ImkiG
nmes mmcoow

!.!ollel:llog 88 U

Superscript 88+

fills itself from one end to the other, indicating what percentage of the opera­
tion has been completed.

Sliders This control displays a range of values, magnitudes, or positions. A
movable indicator shows the current setting. Sliders, which can be vertical or
horizontal, allow users to a lter a value by moving the indicator up and down
or back and forth.

Scroll bars Windows, lists, editable text panels, and the like can have a hori­
zontal scroll bar, a vertical scro ll bar, or both. In the default theme, a scroll bar
is a narrow rectangle with an arrow in a box at each end and a scroll box that
moves between them. Users click the arrows or drag the scroll box to display
more of the document by scrolling it into view. Generally, contents scroll at
the same time that the user drags the scroll box.

Menus

A menu is a panel that lets the user view or choose an item from a list of
choices or commands, as shown in Figure 12.15 and Figure 12.16. A devel­
oper designs an application's menus according to the tasks or actions that the
application performs. Developers instantiate menus that can

.... contain images in columns and rows

..,.. display menu items in any font in any language using any script

..,.. contain submenus

.... display keyboard equivalents for any menu item using multiple modifier
keys

.... can be torn away from the menu bar by the user and placed anywhere
onscreen

198

FIGURE 12.16

Aastrelia
AIIStr18
Belgium
Canada
Den marl<
Fin lend

CHAPTER 12 ~ HUMAN INTERFACE TOOLBOX

A tear-off menu

~ support a "sticky menu" mode that allows users to leave a menu or sub­
menu open and choose menu items by clicking them or by typing on the
keyboard

~ respond automatically to user actions, such as by highlighting menu
items when the user navigates through them

Like all panels, menus are displayed in windows. Unlike other panels, how­
ever, developers don't write code to instantiate these windows. Instead, when
an application instantiates a menu, the Toolbox automatically creates a win­
dow for it, displays it in that window, and performs all window management
on behalf of the menu.

Lists

A list is a panel containing a series of items displayed in a rectangle. The
example in the margin shows a list containing names of countries embedded
in a scrolling panel (described in the next section). A list embedded in scrolling
panel is called a scrolling list.

Each item in a list is in a rectangular cell. All cells in a list are the same size
but may contain different types of data and multiple columns of data. The
user clicks cells to select them. Developers can instantiate lists with cells that

~ display text in any font and in any language
~ contain icons, pictures, patterns, or other static images
~ respond automatically to user actions, such as highlighting when the

user navigates through them

Australia
AUStr18
Belgium
Ctneda
Denmark
Finland

I S1115.ool

_ Field t_ype:

f) Text'~
Q·Number
QPh;ture

kUMAN INTERFACE OBJECTS 199

A developer uses Toolbox-supplied functions to store and update the data
in a list, display the list in a window, and respond appropriately to user inter­
action with a list.

Scrolling Panels

A scrolling panel contains a vertical scroll bar, horizontal scroll bar, or both
and is designed to contain another panel (such as an editable text panel or the
list panel shown to the left) that's larger than the area allocated for the scroll­
ing panel. Scrolling panels supply functions that allow a developer to set and
get vertical and horizontal scroll values, vertical and horizontal scroll incre­
ments, and scroll bar visibility.

Editable Text Panels

An editable text panel lets the user edit the text it displays. An editable text
panel displays the contents of a text object (described later in this chapter)
using the services of a text engine, a shared library that manages the format­
ting, drawing, and editing of the text in response to user actions and applica­
tion calls to the panel. When instantiating an editable text panel, a developer
specifies a text engine to use. Mac OS 8 provides a default text engine based
on the TextEdit service familiar to System 7 developers, and a developer can
provide or use other text engines according to the needs of the application.

The editable text panel itself is independent of the text engine associated
with it. Although it can perform text-specific operations such as inserting,
deleting, and replacing text, an editable text panel can also use its associated
text engine to respond automatically to user input from the mouse, keyboard,
voice-recognition software, and the like. An editable text panel also supports
copy, paste, and drag-and-drop data sharing without any special program­
ming effort on the part of developers.

Radio Button Groups

A radio button group encapsulates several radio button panels, such as those
shown on the left. Unlike the individual radio button panels illustrated on
page 196, a radio button group panel can handle mouse and keyboard inter­
action, including highlighting and the tracking of user interactions.

Visual Separators

Visual separator panels display horizontal, vertical, or rectangular visual sepa­
rators. The figure on the left shows examples of horizontal and visual separa­
tors. A rectangular visual separator can optionally include a title. For an
example of a rectangular visual separator panel, see Figure 12.9 on page 192.

2.00

Find what:

Change to:

CHAPTER 12. HUMAN IHTERFACE TOOLBOX

Static Image Panels

Embedding panels such as dialog boxes and palettes often include icons, pic­
tures, patterns, and simple unstyled caption text. Although users don't interact
with these elements, it is often convenient for developers to implement them as
panels. (Alternatively, a developer can implement simple visual elements with­
out the aid of the human interface objects class library by using imaging
objects-described in the next section-or other lower-level operating ser­
vices, such as the Icon Utilities or the QuickDraw graphics system familiar to
System 7 developers.)

Icons An icon is a graphic representation of some human interface element,
such as a document, disk, folder, or application. The icon in the margin shows
the talking-face icon commonly used to identify alert boxes. A developer can
display an icon as a panel. An icon panel encapsulates an image and draws
itself within an embedding panel.

QuickDraw pictures A QuickDraw picture is an image described by a sequence
of QuickDraw drawing commands that have been saved to a file. A developer
can conveniently display a QuickDraw picture, such as the image of the dog in
the margin, as a panel.

Caption text Static text that can't be changed by the user can be displayed in
a static text panel, such as that shown in the margin. Developers use editable
text panels (described on page 199) to create text panels that can be edited.

IMAGING OBJECTS

An imaging object is an object, derived from the imaging objects class, that
can draw a specific kind of image data, such as text, icons, or QuickDraw pic­
tures. The imaging objects class is an abstract superclass unrelated to the
superclass for all human interface objects. The methods defined by the imag­
ing objects class perform operations common to all imaging objects, such as
creating, initializing, measuring, and drawing a new image. Derived from this
class are separate imaging object classes for several commonly used types of
image data. These subclasses are shown in Figure 12.17.

Human interface objects use imaging objects to draw

..,.. the titles of windows, push buttons, checkboxes, icons, rectangular
visual separators, and a ll other human interface objects that can have a
title

..,.. list items

..,.. menu items

FIGURE 11.17

PROGRAMMING (HARACTERISnCS OF THE TOOLBOX

The inheritance hierarchy for the imaging objects class library

Imaging objects

Pattern imaging
objects

Icon Imaging
objects

Composite imaging
objects

101

With an imaging object, a developer can also measure or draw an image with­
out using the human interface objects class library at all.

Using the composite imaging objects class, a developer can bundle two or
more images of potentially different types into a composite imaging object.
For example, a composite imaging object could draw a file icon accompanied
by a text filename.

PROGRAMMING CHARACTERISTICS OF THE TOOLBOX

All Human Interface Toolbox services support similar capabilities in similar
ways, thus ensuring a consistent programming interface as well as a consistent
user experience. The following sections describe the most important principles
that underlie the Human Interface Toolbox from the developer's perspective.

Data Opacity

Developers don't have direct access to the underlying data structures of the
Toolbox. Instead, developers use functions that manipulate these structures.
The opacity of Toolbox data structures ensures that an application doesn't
have to depend on Toolbox implementation details. In this way, Apple can
refine the Toolbox in the future without requiring Mac OS 8 developers to
rewrite their applications.

2ot CHAPTER 12 • HUMAN INTERFACE TOOLBOX

Data Extensibility
The Toolbox allows developers to add arbitrary data to Toolbox data struc­
tures without manipulating the structures directly. The Human Interface Tool­
box supports this data extensibility through the Collection Manager, an
operating system service introduced in System 7.5 with QuickDraw GX. Col­
lection items can be used for a variety of purposes. For example, suppose a
preferences dialog box allows the user to switch among several pages of pref­
erence settings, where each page displays multiple panels. A developer can use
collection items to associate a page ID with the panels that appear in a partic­
ular page. This association makes it easy to hide or show the appropriate pan­
els when the user switches pages.

Object Life Cycle Management
The Toolbox keeps track of multiple references to a single human interface
object on an application's behalf, releasing operating system resources allo­
cated to the original object only after all references to it have been released.
Thus, an application doesn't need for the sake of system efficiency to track its
own object references.

Integrated Support for International Text
At the time of this book's production, nearly half of Apple's revenues from
Macintosh computers come from outside the United States. To help developers
create applications for this international market and to help users collaborate
with documents written in different languages, Mac OS 8 provides operating
system support for international text management.

Designing Applications for International Markets

The process of designing and creating applications with various languages and
cultures in mind is called internationalization. Building an internationalized
application allows a developer to create and maintain a single code base for
that application. In regional or national markets, developers known as localiz­
ers adapt the application for their particular languages and cultures. A local­
izer usually changes the data or text of an application's human interface, but
the source code for the application remains unchanged.

Text Objects

For text displayed in the human interface, the Toolbox supports all modern
languages and many ancient ones through a system-wide data type called a
text object. A text object is the fundamental unit of text interchange in
Mac OS 8. For example, when specifying a filename to the File Manager, an

PROGRAMMING CHARACitRISnCS OF THE TOOLBOX 203

application passes the filename in a text object; and when an application
receives text input from the user, the operating system delivers the input in the
form of text objects. (In Mac OS 8, text input can come from sources other
than the keyboard, such as from a microphone via speech-recognition soft­
ware or from a graphics tablet via handwriting-recognition software.)

A developer uses text objects for, among other purposes, specifying text dis­
played as part of an application's human interface. Examples include menu
items, window titles, caption text, and control titles. A developer stores these
text objects in resource files. Resource files can be edited by localizers without
requiring changes to the application's executable code.

Text objects allow developers to manipulate text without dealing with the
details of various text-encoding systems. A text object consists of

...- a text-encoding specification

.... a locale identifier

...- the text itself

...- optional annotations that may apply to ranges of the text

A text-encoding specification identifies the text-encoding system used to
express the text. A text-encoding system is a computer representation for one
or more character sets used by one or more languages and regions. For
instance, Unicode is a 16-bit text-encoding system that provides a code for
every character in every major writing system. A locale identifier encapsulates
an International Standards Organization (ISO) language code (which specifies
the language in which the text is to be represented) and an ISO region code
(which specifies the geographical region for languages that vary by region).
For example, a locale identifier may specify English as the language used in a
text object, and Great Britain as the geographical region for the language.
This regional identification allows different text services and utilities, such as
spell checkers and hyphenation dictionaries, to associate British language vari­
ations with the text in the object.

A text object is opaque-that is, developers can't see or directly access its
contents from their programs. Instead, developers must use a programming
interface to gain access to this data. (By supporting data opacity, text objects
borrow from object-oriented programming design. However, text objects
aren't fully object-oriented because they don't support inheritance, subclass­
ing, or polymorphism.) The programming interfaces provided by Mac OS 8
allow developers to prepare and handle text objects in multiple languages
without worrying about the low-level details of the encoding systems used for
the text.

Because they enclose a text-encoding specification and language and region
information along with the text, text objects make it possible for software that
did not create text to process it correctly in any environment that uses multi­
ple writing systems. For example, the user interface elements of an application

204 CHAPTER 12 HUMAN INTERFACE TOOLBOX

localized for Hebrew will be depicted in the Hebrew language on a U.S.
Mac OS Roman-language system if the Hebrew character set and correspond­
ing glyphs used to represent the text are available on that system.

Text objects also provide a way for developers to associate arbitrary anno­
tations with text. For example, text objects might be annotated with specifica­
tions about what color to use when displaying the text, pronunciation hints
for text-to-speech conversion, and phonetic information that allows file sort­
ing in languages, such as Japanese, that don't use phonetic alphabets.

C~ ~5 HERirAGE

"> •
WorldScr1pt

WorldScript is a N\ac OS programming model for developing international applications.
Encompassing technologies that became available in System 7.1, WorldScript defines an
approach to programming and software design that includes the use of human interface
design strategies and specific programming interfaces supplied by the operating system.

For System 7 developers, the WorldScript I and II system extensions are part of the World­
Script programming model. The WorldScript I extension controls the display, manipulation,
and printing of 1-byte complex text-encoding systems for such languages as Hebrew and
Arabic. (Support for the simpler 1-byte Roman text-encoding system is built into System 7.)
The WorldScript II extension supplies this type of support for 2-byte text-encoding sys­
tems-like Chinese and Japanese.

WorldScript doesn't handle all the issues connected with multiple text-encoding sys­
tems. For example, a text string contains the data that represents the intended text in a certain
language, but a text string does not specify which text-encoding system is being used.
Encoding data has to be maintained outside of the text string, a solution that increases the
software's complexity and necessitates changing the source code if a developer wants to
support a different text-encoding system. By storing the details of text encoding with the text
itself, a text object simplifies a developer's efforts.

•
International Text Input and Display

An internationalized application allows a user to enter and edit text in any
language. A single document might contain text in more than one language, so
internationalized applications support a mix of languages within the same
document. A user might type text in German, then switch to Japanese.
Mac OS 8 text-handling services help developers implement these capabilities.
Examples of these services include

...,. Support for speech and handwriting input methods of text entry. It's
usually much quicker for a user to enter Asian-language characters by
speaking them than by using the keyboard. Multiple input methods may
even be used simultaneously.

See Chapter 15 for
more information
about the N\ac OS 8
Open Font Architec­
ture and the benefits
of using QuickDraw
GX to create interna­
tionalized applica­
tions.

PROGRAMMING CHARACTERISTICS OF THE TOOLBOX 205

.... A font architecture that allows font formats for multiple languages to
coexist easily on a user's system. For example, one font scaler can be
used to render characters in Roman languages and another to render
characters in Asian languages.

.... The internationalized QuickDraw GX graphics system for formatting
and displaying text. QuickDraw GX has built-in Unicode support and
works with nearly every language-even multiple languages on the
same line of text.

Other International Development Technologies

In addition to text objects, the Human Interface Toolbox supports left-grow­
ing windows, dialog boxes that automatically resize themselves around text
(which tends to shrink or grow in translation) and other features that address
specific international market needs. Mac OS 8 also offers other services for
creating applications for international markets. Programs can, for example,

.... store and retrieve international preferences and data for a user's work­
space

.... call various string-comparison functions to compare, order, and search
text strings in all languages

.... convert text between different text-encoding systems

.... use number-formatting and conversion services for any language

.... employ date-and-time services that support different calendars (such as
the Japanese Imperial Calendar and the Gregorian calendar) and differ­
ent date and time formats

g~nsanyHom
WorldScript

System 7 application use of WorldScript technologies, including WorldScript I, WorldScript II,
the Script Manager, and the Text Services Manager, is fully supported by Mac OS 8. In
Mac OS 8, WorldScript I and WorldScript II are implemented as a shared library that's available
on e:very user's system. •
Design Extensibility
Developers can use windows, menus, controls, and other human interface
objects without modification, or developers can extend these features to sup­
port specialized application needs. It's likely that only a small percentage of
developers will wish to alter the default behavior or appearance of human
interface objects. Nearly all custom user interface features supplied by devel-

206 CHAPTER 12 HUMAN INTERFACE TOOLBOX

opers in System 7 applications are implemented as standard features in
Mac OS 8. These features include slider controls, tear-off menus, and modifier
keys in menus. However, a developer who wants to extend or customize the
standard human interface objects has three choices:

...,. Add standard panels to a standard embedding panel.

...,. Subclass human interface objects .

...,. Subclass imaging objects.

Embedding Standard Panels

The easiest way for a developer to create custom human interface objects is to
add standard human interface objects to a standard embedding panel. For
example, a developer might need to implement an editable text panel that
allows the user to change the text only when a certain checkbox is checked. A
developer can take these steps to create this arrangement:

1. Instantiate an embedding panel, a checkbox panel, and an editable text
panel.

2. Add the checkbox panel and editable text panel to the embedding panel
as subpanels.

3. Set a state-change function for the checkbox panel that enables the edit­
able text panel whenever the user selects the checkbox. When the user
deselects the checkbox, the state-change function disables the editable
text panel.

A developer can store such an arrangement in a resource for the embedding
panel.

Subclassing Human Interface Objects

A developer can use System Object Model techniques to subclass custom
human interface classes from any standard human interface classes. For exam­
ple, a developer can create a custom editable text panel that accepts numbers
but not letters by subclassing the standard editable text panel class and over­
riding two of its methods.

To change the appearance of objects defined by a standard human interface
class, a developer can subclass it and use Appearance Manager drawing rou­
tines to create a new theme-compatible appearance. A developer can use this
approach for a wide range of customizing, from making minor adjustments to
the appearance of a push button to creating a completely new human interface
object.

To create an entirely new human interface object, a developer must subclass
the human interface object superclass and build an entirely new object with
Appearance Manager drawing routines.

SUMMARY 207

Subclassing Imaging Objects

Using standard System Object Model techniques, a developer can subclass the
imaging objects class. Such a subclass can support custom image types for
control titles, window titles, menu items, list items, and so on. For example, if
an application uses a proprietary graphics format, a developer can subclass
the imaging object superclass to implement an imaging object that draws
images in the developer's proprietary format. This custom imaging object can
then be used with any human interface objects that draw images.

SUMMARY

The Human Interface Toolbox provides a complete programming model for
creating an application's human interface. From the user's point of view, a typ­
ical Mac OS 8 application displays such human interface objects as

._ windows, alert boxes, and dialog boxes that present data and various
choices about manipulating data

._ controls that let the user perform actions or manipulate application set­
tings with a variety of input devices

._ menus that let the user choose from lists of choices or commands

The Human Interface Toolbox supports customizing by individual users.
For example, multiple users of one computer can set up their own computing
environments-including the details of system-wide appearance, application
preferences, the organization of the desktop, and level of complexity-and let
the computer handle the details of switching between one environment and
the other.

Human interface objects are derived from a single abstract superclass. Two
subclasses, one for windows and another for panels, inherit from this abstract
superclass. All human interface objects that can be embedded inside windows are
derived from the panels class. Without any special programming effort on the
part of developers, windows and panels track user input and, according to user
and system activity, activate and deactivate themselves, draw themselves using
the designs of the current theme, and perform other behaviors automatically.

A developer doesn't need to use an object-oriented language such as C++ to
use human interface objects. SOMobjects for Mac OS lets developers code in
a variety of object-oriented and procedural languages when using the Human
Interface Toolbox. With only minimal knowledge of object-oriented program­
ming techniques, a developer can use the standard human interface objects to
create a feature-rich human interface for an application. For example, a C lan­
guage programmer can use standard human interface objects and create new
types of objects by combining standard panels within embedding panels.

208 CHAPTER 12 HUMAN INTERFACE TOOLBOX

Developers who need to customize the human interface further can use object­
oriented programming techniques that reliably extend the Toolbox while
simultaneously maintaining compatibility with future versions of Mac OS 8.
Because the Toolbox implementation is based on SOMobjects for Mac OS,
Apple can make future enhancements to human interface features, and these
enhancements will be inherited automatically by all applications using the
Toolbox.

PLANNING A PRODUCT FOR MAc OS 8

If you're a developer, you can take the following steps to prepare products
that take advantage of the Human Interface Toolbox:

1. If you've already created a program for any platform, or if you're cur­
rently creating one, separate those portions of your code that handle user
interaction from the rest of your application. This will make it easier to
incorporate new Human Interface Toolbox features, make your applica­
tion scriptable, and give your application multiple threads of execution
that take advantage of the Mac OS 8 multitasking capabilities.

2. If you're currently designing a new application, keep in mind the needs
of the various cultures to which you might wish to market your product
one day. To familiarize yourself with this kind of cultural sensitivity,
you can read Apple's Guide to Software Localization and the sections in
the Macintosh Human Interface Guidelines that pertain to international
software, especially Chapter 2, "General Design Considerations."

3. Don't assume that the alert box or dialog box backgrounds will be
white. The Mac OS 8 human interface supports a variety of back­
ground colors.

If you've already created a System 7 application, you can take the following
measures to make it compatible with Mac OS 8 and make it easier to modify
to take advantage of new Mac OS 8 features:

1. Make the portion of your code that handles human interface activity
scriptable. This will make it easier to revise your application to use the
Human Interface Toolbox programming interface, to support the new
event model for Mac OS 8, and to separate your application into differ­
ent threads of execution.

2. For floating windows, use the standard floating-window definition
introduced in System 7.5. This window definition works correctly on
Mac OS 8 and inherits the Mac OS 8 appearance.

PLANNit-CG A PRODUCT FOR MAc OS 8 209

3. Remove from your code any assumptions about the precise locations of
human interface elements such as close boxes, zoom boxes, and win­
dow titles within the noncontent areas of windows or dialog boxes.

4. Use routines defined by the operating system to manipulate interface
elements instead of directly modifying their data structures.

•

Assistanc
Services

The Assistance Services provide developers with comprehensive and flexible
facilities for delivering help appropriate to users' various goals and skill levels.
This help can range from the automation of complex operations on the user's
behalf to the display of useful descriptions of onscreen human interface fea­
tures.

Developers can use the Assistance Services to automate as much of the
user 's work as possible. A program can interview the user to gather informa­
tion relevant to a user's work goals and then carry out the actions necessary to
accomplish those goals. These actions can be deferred until user-specified
times, whether or not the user is actually at the computer.

The Assistance Services learn how the user performs computer operations.
When a more efficient way to perform an operation is available, the operating
system tells the user so. This type of assistance takes the burden of searching
for productivity-enhancing tips away from users, allowing them to learn these
tips under the very circumstances in which they can be applied.

To be most useful, onscreen assistance must be comprehensive and flexible
in its approaches to delivering help appropriate to users' goals and skill levels.
So, for users who need only quick access to information about performing
tasks and using application features, the Assistance Services also supply facili­
ties for presenting interactive tutorial and reference information.

211

212 CHAPTER 13 AsSISTANCE SERVICES

KEY TERMS AND CONCEPTS

...,.. An expert is a small program that interviews the user to gather informa­
tion a bout goals and preferences. The program uses this information to
help the user carry out a complex or seldom used operation, such as set­
ting up a computer or initially connecting to the Internet .

...,.. The Interview Manager is a service used by a program, such as an
expert, to obtain information from the user so that the program can
automate or delegate operations .

...,.. The Trigger Manager tracks events or states-such as specific times,
time intervals, or other programmatically determined conditions-that
invoke delegated tasks .

...,.. A delegated task is a user-scheduled operation performed automatically
when a programmatically determined set of circumstances occurs .

...,.. The Notification Manager is used by a program, such as an expert, to
inform users about the status of program operations, including dele­
gated tasks .

...,.. Applications use the Tip Manager to offer user suggestions about mak­
ing more efficient use of program features .

...,.. Apple Guide is an onscreen help system that explains concepts or guides
users through the steps of an operation.

.... A help balloon is small window containing explanatory information
about the onscreen item to which the cursor points. Help balloons look
like the dialog bubbles in comic strips. Developers use the Help Man­
ager to provide help balloons to users.

~ ~I ~.·. s HERITAGE
~~~ 
~ Balloon Help and Apple Guide 

Users of System 7.5 are already familiar with Balloon Help and Apple Guide. Balloon Help 
first appeared in System 7.0, and System 7.5 introduced Apple Guide. These initial facilities 
helped users learn to manipulate applications. In addition to Balloon Help and Apple Guide, 
Mac OS 8 supports more active forms of user assistance, where the goal is to make the com­
puter a collaborating partner that actively helps users take greater advantage of their applica­
tion capabilities. 



MAIOR POINTS OF IHTEREST 213 

MAJOR POINTS OF INTEREST 

To help users take the fullest possible advantage of their applications, develop­
ers provide users with various forms of assistance. One form is usually a 
printed guide that explains a program's uses and capabilities. But many people 
don't read manuals-at least not in their entirety. And even after they do read 
a manual, users often forget instructions that are very complex or are seldom 
employed. Programs that provide user assistance directly onscreen-when and 
where users need it-help people use their computers more capably and pro­
ductively. Well-designed user assistance also lowers customer support costs for 
developers. 

Developers use the Assistance Services to provide onscreen instructional 
information such as tutorials and reference materials. The services include 
Apple Guide, the Help Manager, the Interview Manager, the Trigger Manager, 
the Notification Manager, and the Tip Manager. 

With Apple Guide, developers provide users with an interactive way to 
learn product features and to automate the use of many features. The Help 
Manager allows developers to display quick-reference descriptions of their 
onscreen features. 

The most direct way for developers to assist users is to supply them with 
experts-small programs that interview users and consult with them about per­
forming complex, seldom used, or difficult-to-remember operations. Mac OS 8 
provides a variety of ready-made experts. Developers can create their own 
experts for a variety of purposes. For example, an application might include an 
expert that helps the user create a digital video. 

For developers, experts provide a way for their products to perform com­
plex operations without first requiring the user to learn complex details about 
its human interface. For consultants and instructional designers, experts pro­
vide a way to automate specialized tasks involving multiple off-the-shelf appli­
cations. When implementing an expert, a developer typically uses the 
Interview Manager to collect information about the user's goals. To schedule 
the execution of actions that fulfill users' goals, the developer uses the Trigger 
Manager. The Trigger Manager allows experts to assist the user even when the 
user isn't present at the computer. Although the user might be away, for exam­
ple, an e-mail expert can automatically dial an online service and check for 
mail every day, twice every day, or every hour as scheduled by the user and 
administered by the Trigger Manager. 

To inform users about the status of delegated tasks, a developer uses the 
Notification Manager. User notifications can take such forms as sounds, icons 
that blink at the top of the screen, reports in a log file, and onscreen alert 
boxes containing short messages. For example, an e-mail server might display 
a small dialog box informing the user that new mail has arrived or that no 
connection was made to an online mail service. 



114 

FIGURE 13.1 

CHAPTER 13 ~ AsSISTANCE SERVICES 

The Help menu 

Show Balloons 
Mac OS Tutorial 

Madntosh Guide X? 

Tips 
Experts 

These managers-the Interview Manager, Trigger Manager, and Notifica­
tion Manager-are also available for use within any application. That is, 
developers don't need to create stand-alone experts to perform user inter­
views, undertake work at user-scheduled times, or offer user notifications. 
Instead, developers can use any combination of Interview Manager, Trigger 
Manager, and Notification Manager services in any type of application. 

Assistance is also offered to the user by way of tips, which are instructions 
for making more efficient use of application and Mac OS features. Part of 
every workspace includes preferences for the invocation and display of user 
tips, which the Tip Manager displays under the very circumstances where 
users ought to employ these tips. For example, the Tip Manager tracks user 
activities related to closing a window: choosing the Close command from the 
File menu, clicking the close box of a window, and using the Command-W 
keyboard equivalent. When the Tip Manager detects that the user has repeat­
edly used the least efficient technique-namely, choosing the Close command 
from the File menu-the Tip Manager can alert the user to the availability of a 
shortcut-namely, use of the Command-W keyboard equivalent. 

Users can find assistance by looking at the Help menu, shown in Figure 
13.1. The Help menu appears in the menu bar of all applications. (The Help 
menu replaces the menu represented by the help icon in System 7.) Assistance 
is also available to users through contextual menus. Developers use the 
Human Interface Toolbox to supply their applications with contextual menus. 
The user invokes a contextual menu by moving the cursor to an item on the 
screen, then holding down a modifier key while pressing the mouse button. A 
menu of commands relevant for the current context appears onscreen. For 
example, a user might select text and then open a contextual menu containing 
commands to cut, copy, and clear the selected text, and to apply various char­
acter styles to the text. The menu might also contain commands to invoke 
help balloons, Apple Guide sequences, or experts. 



FIGURE 13.2 

ExPERT AsSISTANCE 

An experts access panel 

Click an expert, then click OK. 

Internet Configuration Expert • 
MacOS Maintenance: Expert 
MacOS SetiJP Expt!t't 

EXPERT AsSISTANCE 

MacOSSetup 
E)( pert 

This: expert will allow you to 
easily set the time, the date and 
other system configuration 
information. 

~--------~------~ 

215 

A developer can create experts in the form of small programs that consult 
w ith users about accomplishing goals--for instance, editing a digital video, 
backing up a disk, or setting up a computer on a network. An expert inter­
views the user to gather detailed information necessary for accompl ishing a 
particular goal. T he expert then automates as much of the work as possible on 
behalf of the user. The expert can perform the work immediately or a llow the 
user to schedule the work to be performed later. The expert can also notify the 
user of the status of this work. 

An expert a llows the user to focus on accomplishing specific goals instead 
of learning to use an application. By posing questions to solicit information 
from the user, an expert interacts with the user through a more natural inter­
face than that provided through the standard windows and menus of an appli­
cation. For example, the developer of a disk backup appl ication can create a n 
expert that helps users regularly archive their fi les. Such an expert would ask a 
user when and how often to back up files. The expert would then call the 
application to perform the backups automatically, according to a user's 
w ishes- say, every Friday at 6:00PM-and the expert would inform the user 
about the outcome of each weekly backup. 

Experts become availa ble to users in several ways. An application can list 
experts in its Help menu and contextual menus, and experts can be invoked 
automatically during an application 's installation or every time an application 
is launched. 

When the user selects the Experts command from the Help menu or a con­
textual menu, Mac OS 8 presents an experts access panel similar to the one 
shown in Figure 13.2. For M ac OS 8 to display an expert in this panel under 



216 

FIGURE 13.3 

A compiled pro­
gram is created in 
source code, then 
transformed by a 
compiler and linker 
into executable code. 
An interpreted pro­
gram is translated for 
execution by a sepa­
rate program called 
an interpreter. 

CHAPTER 13 .... AsSIST~CE SERVICES 

An interview panel from an interview sequence 

O>ooslng • printtf' 

WIOch pmter do you plan to ....., on a reo<W basis? V<>Jr 
conwter Is c~ed to the folowrog printers: 

Bit Bucket 
Which Printer? 
LaserWrlter llg 
Pen Pals 
To Town 
SPECtacular Dg 
Phantom LaserWrtter 
licensed to Write 
4900 

Cick the print.,. you want to ""'· then click the rkjlt anow to 
contn..e. 

the appropriate circumstances, the expert registers itself with the operating 
system. When the user selects an expert from the scrolling list on the left side 
of the panel, a description of the expert appears on the right side of the panel. 
To initiate the selected expert, the user clicks a button in the lower-right cor­
ner of the panel. 

After the user clicks this button, the selected expert initiates an interview 
sequence-an interactive conversation between the user and the expert. Inter­
view panels contain questions for the user. Figure 13.3 shows one of the inter­
view panels for the Setup Expert supplied with Mac OS 8. Responding to 
interview panels such as this, the user makes choices concerning the opera­
tions that the expert is designed to perform. An expert can also use interview 
panels to ask the user whether to defer the operation for later execution, and 
if so, when or under what circumstances the operation should be performed. 
The last panel presented by an expert includes a Go Ahead button. A user 
clicking Go Ahead initiates or schedules the actions that the expert is designed 
to perform. Figure 13.4 illustrates the last interview panel presented by the 
Setup Expert. 

A developer can create an expert as a compiled program or as an inter­
preted program, such as an AppleScript script. To present interview panels 
consistent with other Mac OS 8 programs, an expert uses the programming 
interface provided by the Interview Manager. To delegate operations for auto­
matic execution under user-specified circumstances, an expert uses the pro­
gramming interface provided by the Trigger Manager. To inform the user 
about the status of delegated tasks, an expert uses the programming interface 
supplied by the Notification Manager. 



FIGURE 13.4 

THE ARCHITECTURE OF THE ExPERT AsSISTANCE SERVICES 

The last interview panel in an interview sequence 

I Setllp Expert !$ ~ 

Conduflon 

Based on the ilformation yCMlve ptovidt!dJ tlis Expert is now 
ready to do its wor·k. 

Clkk Go Ahead to flllish set mo up your CO~l"ll<'ter. 

Go Ahead 

!217 

6 ~~ ~s HERITAGE 

~~~ 
~ I . App e:Scr1pt

Scripting languages are designed to be easier to leam and use than complex programming
languages like Pascal or C. A script is a series of statements-written in a scripting lan­
guage-instructing a computer system to perform various operations. Scripts are translated
for execution by interpreter programs.

AppleScript is the scripting language bui lt into the Mac OS since System 7.1 .1. It allows
developers and technically adept users to automate routine or highly complex tasks and to
integrate off-the-shelf applications. AppleScript is based on the Open Scripting Architecture
(OSA), which defines a standard mechanism for coordinating and automating multiple pro­
grams with scripts written in a variety of scripting languages. An OSA-compliant script coor­
dinates and automates programs by sending them commands packaged as Apple events. At
the request of an expert written as an AppleScript script, for example, an interpreter program
sends Apple events directing the operations of scriptable programs. To be considered
"scriptable,· a program must understand and respond to the Apple events sent by scripts.

THE ARCHITECTURE OF THE EXPERT AsSISTANCE SERVICES

The services offered by the Interview Manager, Trigger Manager, and Notifica­
tion Manager are available to any type of program-that is, they aren't
reserved for exclusive use by experts. A program other than an expert can

218 CHAPTER 13 AsSISTANCE SERVICES

incorporate some or all of these services. For example, a word-processing
application might use the Interview Manager to present the user with a short
list of questions relevant to creating a resume-for instance, questions related
to choosing between 4 or 5 templates and to supplying personal information
appropriate for the chosen template. Under this scenario, the application
wouldn't use the Trigger Manager to delegate any future operation. A file­
compression program, by comparison, may have a user interface that doesn't
require an interview sequence, but the program might use the Trigger Man­
ager for scheduling automated file-compression operations. A source code
compiler, as a final comparison, might not need to perform interviews or nec­
essarily delegate operations but might use the Notification Manager to alert
the user about the conclusion of a code compilation or about any program­
ming errors that halted a compilation.

User Interviews
To gather information from a user, any type of software-an expert, an Open­
Doc part editor, or a full-featured application-can use the programming
interface provided by the Interview Manager. The Interview Manager supplies
programs with a standard set of human interface elements for performing
interviews. This interface consistency allows users to quickly gain skills that
can be transferred among different programs.

After receiving interview responses from the user, a program immediately
performs the appropriate operations or schedules them for later execution.
For instance, when using an interview sequence to help the user prepare a
resume, a word-processing application might immediately supply a resume
template based on the choices and preferences supplied by the user during the
interview. An expert designed to help the user manage e-mail, by comparison,
might delegate several e-mail programs to dial their respective online services
and download mail at user-specified times. This expert might direct a file­
decompression program to expand any compressed files that had been down­
loaded. The expert might also notify the user of the arrival of new mail. These
delegation and notification capabilities are discussed in the next two sections.

Delegation

The Assistance Services support delegation-the automation of user tasks to
be performed at later times. With delegation, the user needn't be at the com­
puter to be productive. For example, a disk-backup program can back up a
user's files when the user isn't at the computer.

Any type of program can use the Trigger Manager to incorporate delega­
tion. Experts usually invoke the Interview Manager to ask the user when to
schedule operations, but delegation doesn't require use of the Interview Man­
ager, nor is delegation restricted to experts. A file-compression program, for

THE ARcHmCtURE oF THE ExPERT AssiSTANCE SERVICES 219

example, might employ a simple dialog box instead of an interview to gather
user preferences, and the program might then use the Trigger Manager to
automate the compression of data files that have aged a user-specified number
of days, weeks, or months.

Such a delegated task can be performed in the background. A delegated
task is scheduled by the user to be performed automatically upon the occur­
rence of a programmatically determined set of circumstances. There are three
major aspects of a delegated task:

1. The trigger condition. This is the particular state of the computer that
should cause the execution of a delegated task. For example, the condi­
tion could be one minute after every hour, whenever a disk volume is
mounted, or whenever a file has been modified within a particular
folder.

2. The operations necessary to perform the delegated task. For example, a
delegated task could involve dialing an online service, downloading new
mail, and expanding any compressed files that accompany the mail.

3. The user notification. This is the way that the user learns of the out­
come of the delegated task. For example, a program might display a
dialog box informing the user that new mail has arrived or that no con­
nection was made because the number for the online service was busy.

Trigger Conditions

While waiting to perform delegated tasks, a program doesn't need to be run­
ning; trigger conditions automatically cause the program to start up and per­
form its operations. Trigger conditions can be based on specific moments in
time, time intervals, or a variety of other events or states that can be deter­
mined programmatically. A program registers trigger conditions with a trigger
module. A trigger module is a shared library containing information about
trigger conditions. Whenever circumstances match those specified in a trigger
condition, the trigger module sends an Apple event to the registered program.
The program then undertakes the delegated task associated with that trigger
condition.

The Trigger Manager supplies developers with several standard trigger
modules, including

...,. a time trigger module for conditions based on the time of day, the date,
the day of the week, elapsed time, and any combination of these

...,. a volume-mounted trigger module for conditions based on the moment
volumes are mounted, such as when a CD-ROM or other removable
medium is inserted into an attached disk drive or when a remote volume
is mounted across a network

...,. a folder-changed trigger module for detecting additions, removals, and
edits to files in specified folders

iiO CHAPTER 13 AsSISTANCE SERVICES

Trigger modules are SOM objects, which were described in Chapter 9. Using
SOMobjects for the Mac OS, developers can create their own trigger modules
and market them to users and other developers.

So that users can select trigger conditions through a consistent human
interface, the Trigger Manager supplies a standard trigger-picking panel for
choosing trigger modules. Developers include this panel in interview panels or
embed them in their application windows or dialog boxes.

An expert or any other type of program can register a user-selected trigger
condition. For example, a disk-backup program could register 7:00P.M. every
Friday as a trigger condition. At that moment every week, the time trigger
module informs the disk-backup program that the trigger condition has been
met; the disk-backup program, in turn, performs its automated file backups
then.

Delegated Tasks

A program has to provide code that actually performs the action delegated by
the user-for instance, dialing an e-mail service every other hour, backing up
disks every weekend, or compressing files when they reach a certain age. As
you've read, this code can be implemented in a program that registers trigger
conditions with the Trigger Manager. The program then receives Apple events
informing it of occurrences matching those specified in these trigger condi­
tions, and the program responds by performing its delegated operations.

Or this code can be implemented, at least partly, in an AppleScript script,
which the operating system starts when the script's trigger conditions are met.
Anyone who writes AppleScript scripts can associate a trigger condition with
a script stored in a special folder on the system. When a circumstance defined
as a trigger condition occurs, the operating system runs the appropriate script.
These scripts generally send Apple events directing other programs to perform
the operations delegated by the user. For example, an expert might use the
Interview Manager and the standard trigger-picker panel to determine that the
user would like an e-mail program to call an online service at 8:00A.M. every
morning. Every day at this time, the operating system could automatically run
a script that would use Apple events to start the e-mail program and to
instruct it to dial the online service and check for mail. This scripting ability is
not restricted to use by experts or other compiled programs; anyone familiar
with the AppleScript language can create delegated tasks that launch and
automate scriptable applications.

Notification

Because delegated tasks may be performed while a user is working with
another application or even while a user is away from the computer, it is
important that programs report the outcome of these actions-that is,
whether the actions were successful or why they failed. Programs can also

HELP INFORMA'nOH SERVICES 221

send user notifications about the outcome of any type of action, because user
notifications aren't reserved exclusively for delegated tasks.

To assist programs in notifying users of the status of any type of operation, the
Notification Manager supplies several standard notifier modules. Like trigger
modules, notifier modules are implemented as SOM objects. Notifier modules are
shared libraries containing information about what types of notifications users
want to receive. Developers incorporate a notifier-picker panel into interview pan­
els or into their application dialog boxes or windows. This panel lets users select
among several choices:

.... to see a dialog box containing a notification

...,.. to hear an alert sound

.... to see a program icon blinking in alternation with the Application menu
icon (thereby alerting the user to bring the program to the foreground)

.... to receive a report in a log file

Developers can also create their own notifier modules. For example, a devel­
oper might choose to supply a notifier module that pages the user.

A program saves notification preference data solicited through the notifier­
picker panel. After performing an operation, the program (which may also be
an AppleScript script) passes this data back to the Notification Manager along
with information about the outcome of the operation. The Notification Man­
ager then prepares and sends the appropriate type of notification informing
the user of the outcome of that operation.

HELP INFORMAnON SERVICES

Onscreen assistance must be comprehensive and flexible in its approaches to
delivering assistance appropriate to users' goals and skill levels. Experts and
other programs performing automation and delegation fulfill many user help
needs, but not all of them. Often users simply want quick access to informa­
tion about performing application tasks and using application features.
Mac OS 8 provides several services through which applications supply helpful
information to their users.

Reference information is appropriate in some situations, and tutorial infor­
mation is more appropriate in others. A user might simply need to know what
an onscreen element is and what it does; for example, a user might wish to
know "What happens if I click the Eject button in this dialog box?" That user
simply needs a brief description of the Eject button. The features of the Help
Manager allow developers to easily provide such descriptions.

Later, the user might wish to know how to perform a task that involves
multiple controls and menu commands-for example, a user might wish to

222

FIGURE 13.5

CHAPTER 13 AsSISTANCE SERVICES

A tip for applying text styles

Shortcut for Bold text style
You can use Comman<I·B to apply the Bold. style to the

I

Tips ShOw list

know " How do I switch my display between color and grayscale?" That user
needs onscreen instruction. Developers use Apple Guide to provide instruc­
tional information to users. Developers can even automate operations for the
user through Apple Guide.

Other times, the user might benefit from instruction related to using an
application more efficiently. The Tip Manager a llows the application to dis­
play helpful suggestions at appropriate times.

The sections that fo llow explain how developers provide users with tips
through the Tip M anager, instruction and reference through Apple Guide, and
descriptive help balloons through the Help Manager.

nps
As you wi ll see, both Apple Guide and Balloon Help require users to seek out
information. H owever, with the Mac OS 8 tips feature, instructions for mak­
ing more efficient use of application features present themselves to users who
can benefit from the information. Even experienced users find themselves sur­
prised from time to time to lea rn new shortcuts. By watching their colleagues
(or their children), users continue to learn operations that save time. Applica­
tions that support the Tip Manager display helpful suggestions to users who
can benefit from them.

On behalf of applications, the Tip Manager maintains a database of user
actions. When a user repeatedly performs an action fo r which there is a more
efficient alternative, the Tip Manager a lerts the user. For example, suppose a
user who wants to learn about tips repeatedly applies the boldface character
forma t to text by selecting a command from the Style menu. Mac OS 8 detects
this as an inefficient technique and displays a suggestion for using a keyboard
shortcut to apply the bold face style, as shown in Figure 13.5.

Users decide whether tips are displayed and how the Tip Manager signa ls
their presence. To avoid overwhelming the user with information, the Tip

FIGURE 13.6

HELP INFORMAnON SERVICES

An Apple Guide access window

Malbla

Guide
2. Click a hrue. then choose a button:

~~=:;::,.:,;.,~~----..--, v How do I

print?

print whle doing other work?
manooe printlnc,l jobs?
hstol or remove printer software?
crooto • dosktop prlntor?
use moro than ono printor?
cNnQo printinQ options?
crooto • portoblo cigltol cloo.mont?
proviow how my cloo.mont wil print?
share a Inter with other users?

Guide me

223

Manager waits until the user repeats an action a certain number of times
before informing the user that a mo re efficient action exists. (Applications can
control what that threshold number sho uld be.) The user can then read a
description of the recommended tip o r shortcut.

To offer tips with an application, a developer designs the application to add
information to the Tip Manager database. Using the programming interface
defined by the Tip Manager, the application supplies two tables of information:

.... The first table specifies the types of actions the Tip Manager should
track and, for each action, the threshold at which the Tip Manager
should alert the user. For example, the application may want the Tip
Manager to track the number of times the user opens a dialog box to
invoke a command that's more accessible from a menu.

.... The second table specifies the messages that the Tip Manager should
display when each user action listed in the fi rst table reaches its thresh­
old. For example, after the user invokes a command from a dialog box
ten times, the Tip Manager could prepare a message suggesting that the
user choose the command from its menu instead.

Apple Guide

Apple Guide first became available in System 7.5 as an instructional tool, and
it remains a valuable assistance feature in Mac OS 8. The user opens Apple
Guide from the Help menu, contextual menus, or from a keyboard shortcut
assigned by the active application. An access window for the relevant help
information then appears. An Apple Guide access window, such as that shown
in Figure 13.6, presents a list of questions, problems, and tasks determined by

224

FIGURE 13.7

CHAPTER 13 AsSISTANCE SERVICES

An Apple Guide presentation panel

;~fflffi§~ZG'.a.·· "iff'litfll!l!!~tu!!21

How do I switch printers?

When your computer 1s connected to more than one
printer (usually over a network), you can create desktop
printer icons for each printer you want to use. To
<Witch amone: desktop prlnten, you dro.1o. documen t to
the printer you want to use. You ea.n also open a
document. choose Print from the file menu, and select
a desktop printer In the dlaloe: box that appears.

To begin, cld< the rlcl>t l!lfow.

!WQID -
"' ~ l~[fJ

the designer of the guide file. A user clicks the Topics, Index, and Look For
buttons to view potential topics and select the one of interest.

Once the user selects a topic and clicks the Guide Me button at the bottom
of the access window, Apple Guide closes the access window and displays a
presentation panel like the one in Figure 13.7. When the user clicks the right
and left arrows in the lower-right corners of the panels, Apple Guide leads the
user through explanations of the selected topic. Because Apple Guide panels
are movable and float on top of other application windows, the user can carry
out the instructions in the panels while working with applications.

When appropriate in the context of a particular panel, a coachmark can
direct the user to areas where input is required. Coachmarks are graphical ele­
ments that point to, circle, or otherwise indicate items on the screen. For
example, suppose a presentation panel instructs the user to open the File
menu. To indicate what the user needs to do, Mac OS 8 draws a circle around
the File menu. In addition to the circle, an underline, an arrow, and an "X"
character are available as coachmarks. Developers can use coachmarks any­
where in their applications. In Mac OS 8, the use of coachmarks isn't
restricted to Apple Guide, as it is in System 7.

Apple Guide is instructive and answers the question "How do I accomplish
this task?" Developers can use Apple Guide to provide

..,.. orientation to an application's entire help system

..,.. task-oriented instructions for using application features

..,.. tutorials that guide users through focused learning paths

..,.. instructions for using advanced or specialized features

..,.. reference material commonly found on quick reference cards

Apple Guide onscreen help information is stored in guide files. To create
guide files, a developers first creates source files using a scripting language
called Guide Script. The developer then uses a utility called Guide Maker,

FIGURE 13.8

HELP INFORMAnON SERVICES

Creating guide files

Guide Maker

!

Orientation Tutorial
guide file guide file

Task-oriented Advanced
guide file features

guide file

Reference
guide file

Short cuts
guide file

215

available from Apple Computer, to build and test the guide files. Figure 13.8
illustrates the steps developers take to create guide files.

Guide file development isn't limited to commercial application developers.
In-house programmers, corporate trainers, and computer consultants also cre­
ate guide files that help users. For example, a trainer can create a guide file
that teaches employees how to enter information into a company's databases.

A developer can add guide files to an application without changing its
source code. The user opens these guide files by selecting them from the Help
menu. A programmer can also call the Apple Guide programming interface
from within the application to start Apple Guide and to open, close, and con­
trol guide files. In an application dialog box, for example, a developer might
place a button that allows the user to open a relevant guide file.

In Mac OS 8, guide files can send Apple events to applications; these Apple
events, in turn, can describe actions that applications should perform. By
using Apple Guide in conjunction with a scriptable application, developers
can provide a level of assistance that goes beyond mere instructional help.

!!6 CHAPTER 13 AsSISTANCE SERVICES

This level of help allows users to automate many operations. Automated
Apple Guide assistance is a good way to help users perform a task that's hard
to learn, easy to forget, or too time-consuming to undertake manually. To help
the user complete such a task, a guide file can streamline the steps, taking the
user directly to key interface elements when user input is required and direct­
ing applications to automatically perform as many of the steps as possible.

For example, suppose a user wants assistance preparing and sending e-mail.
A guide file could send Apple Events to an e-mail application instructing it to
launch itself and to open a mail-editing window for the user. The guide file
could then use a presentation panel and a coachmark prompting the user to
type the text of the message into the application's mail-editing window. After
another panel prompts the user to type the subject of the message, the guide
file, using Apple events to interact with the e-mail application, could automat­
ically display the possible recipients and prompt the user to choose one.
Finally, the guide file could direct the application to send the e-mail after the
user clicks a Send button in a final Apple Guide presentation panel.

g~nWTYHom
Guide Files

Mac OS 8 fully supports the guide files created for Apple Guide in System 7.5. Apple Guide
presentation panels in System 7.5 can contain text, pictures, buttons and other controls,
recorded sounds, pictures, and QuickTime movies. Presentation panels in Mac OS 8 add
support for text input areas as well.

•
Help Balloons

Help balloons provide brief online descriptions of human interface elements,
allowing users to learn the actions, behaviors, and properties of onscreen fea­
tures. In a very concise manner, help balloons answer one of these questions
for the user:

..,... What is this?

..,... What does this do?

..,... What happens if I click this?

The user turns on Balloon Help from the Help menu or contextual menus.
For example, a new user might not understand the purpose of the close box in
a window. When the user turns on Balloon Help and moves the cursor to the
close box, as shown in Figure 13.9, the screen displays a help balloon describ­
ing this element. All normally available application features remain active.

FIGURE 13.9

SUMMARY 227

A help balloon

·~~
t'~ 1!118'

C.,st box .
To clos• this
\rilndow, c1'1ck htrt .

. I

~

That is, help balloons simply display information; they don't interfere with
typing or use of the mouse.

Help balloons were introduced in System 7 and remain fully supported in
Mac OS 8. When a user turns on Balloon Help, the Help Manager tracks the
cursor and automatically displays help balloons for menus, window frames,
the contents of static windows (like dialog boxes), and non-document Finder
icons. Applications simply provide the text or pictures that appear in these
balloons. To provide help balloons for the contents of dynamically changing
windows (such as those with scroll bars), applications must track the cursor
and use the Help Manager programming interface to display help balloons.

c.•••~ Hom
The Help Manager

Mac OS 8 fully supports the help balloons implemented by software that incorporates the
help resources and programming interface of the System 7 Help Manager.

SUMMARY

With the Assistance Services, developers can provide several kinds of user
assistance, including

.... help balloons, which display information that briefly describes and
explains the use of human interface elements

.... Apple Guide, which presents interactive instruction about application
features and helps automate the use of application features

CHAPTER 13 ... AsSISTANCE SERVICES

..,. tips, which a user can elect to see whenever Mac OS 8 detects that they
could benefit the user

... experts, which interview users about work goals and then perform
much of the work necessary to achieve those goals

The architecture supporting experts also allows developers to directly incor­
porate facilities for interviewing users, deferring execution of operations, and
notifying users of the status of program operations.

PLANNING A PRODUCT FOR MAc OS 8

If you are a developer, you can take the following steps to prepare products
that take advantage of the Mac OS 8 Assistance Services:

1. Provide one or more guide files for your existing product. If you have a
Windows product, the Guide Maker tool can help you convert your
Windows help to Apple Guide files.

2. Make your existing application AppleScript scriptable. This will help
you to incorporate delegation and automated Apple Guide assistance
into the application.

3. Consider which operations your users might like to delegate for later
execution, and think about the trigger conditions you might use and the
types of notification you might give. These considerations will help you
design delegation into your product.

4. Design your next product or revision with an eye toward what activities
your users need to perform rather than what features you can present.
This approach can help you create experts for your product.

5. Consult your technical support staff to find out which questions your
users ask most frequently. Then determine whether tips might address
some of the difficulties your users report.

6. Determine whether you should create a stand-alone expert or integrate
Mac OS 8 assistance features, such as interviews and notifications,
within your application.

7. If you've created a System 7 extension product that automatically per­
forms background actions under particular circumstances, plan how
you can reimplement that product as a server program that uses the
Trigger Manager.

•

Events

An event is a user action or system occurrence requiring a response from a
program. Events include keystrokes and mouse clicks from the user, requests
from other programs (for example, to print files), or any other activities in the
system (for example, the completion of 110 operations).

Events drive task execution in Mac OS 8. Tasks spend little time actually
being executed on the CPU. Instead, they' re normally blocked, waiting for
events to which they can respond. The main task of a cooperative program, for
example, stops executing when there are no events for it. It becomes eligible for
execution as soon as an event for it arrives. When the microkernel gives that
task access to the CPU, the task responds to the even. The task then stops exe­
cuting, allowing other tasks on the system to efficiently share the CPU.

Mac OS 8 informs programs about events chiefly by sending Apple events.
For example, when the user chooses a command from an application menu,
the operating system sends the application an Apple event containing the
information that the application needs to begin responding. For compatibility
with older applications, Mac OS 8 also supportS events based on the Event
Manager model from System 7.

229

!30

Chapter 4 discusses
how the Process Man­
ager serializes coop­
erative program
access to the cooper­
ative services.

Apple events, first
introduced in
System 7, are the pri­
mary mechanism for
interprocess commu­
nication in Mac OS 8.
See Chapter 5 for
more information
about interprocess
communication.

CHAPTER 14 ~ EvEHTS

KEY TERMS AND CONCEPTS

~ An Apple event is a data structure used to direct the operation of or
communicate information to a program. An Apple event identifies itself
and its purpose, names its destination, and contains additional data
structures that vary according to the kind of event.

~ An Apple event handler is a function that extracts pertinent data from
an Apple event, performs the action requested by the Apple event, and
returns a result.

~ A handler table contains a group of Apple event handlers ..
~ The Apple Event Manager is an operating system service that allows

programs to send and receive Apple events.

MAJOR POINTS OF INTEREST

Mac OS 8 provides a unified model, based on Apple events, for implementing
all forms of event handling. Developers can use this model to implement event
handling for both cooperative programs (including OpenDoc parts) and server
programs. The essence of the Mac OS 8 event model is simple. When a task
runs, it expresses an interest in receiving certain Apple events. It then informs
the Apple Event Manager that it's ready to receive. The Apple Event Manager
blocks the task until one of these events arrives. This approach maximizes the
efficiency of priority-based preemptive scheduling, allowing other tasks to
receive processing time when a program doesn't need it.

Apple events are the standard means Mac OS 8 uses to inform programs
about the events to which they must respond. OpenDoc parts also receive
events in the form of Apple events. When cooperative programs use Apple
events with the Mac OS 8 event model, the Process Manager automatically
synchronizes their access to the Human Interface Toolbox and other coopera­
tive services.

Server programs can use both Apple events and other interprocess commu­
nication mechanisms, such as the Microkernel Message Service and the Sys­
tem Notification Service, to handle communications in a fully reentrant
manner. Compared to Apple events, these low-level mechanisms can poten­
tially provide slightly better performance, but they entail significantly more
development effort to implement.

Every Apple event identifies its destination, and the operating system deliv­
ers the Apple event to that destination. For example, when the user clicks an
inactive window, the operating system sends an Apple event to the main task of
the cooperative program that created the window. This Apple event directs the
program to make the contents of that particular window active-for example,
by allowing the user to manipulate the text or graphics in the window.

MAJOR POINTS OF lt-4TEREST 231

Every Apple event contains attributes, called the event class and the event
ID, that identify the Apple event and denote its purpose. An event class identi­
fies a group of related Apple events. An event ID identifies a particular Apple
event within a group of related Apple events. For example, an event's class
might identify it as one of a group of text-related events, and its ID would
identify it as a particular type of text event.

When an Apple event is sent to a program, the Apple Event Manager
invokes an Apple event handler provided by the program. The handler is
designed to respond to that particular type of Apple event. The handler
extracts pertinent data from the Apple event, performs the action requested by
the Apple event, and returns a result.

When launched, a program uses the Apple Event Manager to create han­
dler tables that map Apple events to program-defined handlers. When a task is
ready to receive Apple events, it calls the Apple Event Manager function
AEReceive. This function doesn't return a result unless a handler generates an
error or the handler intentionally terminates the call to AEReceive.

The AEReceive function blocks the task that called it until the Apple Event
Manager sends an Apple event to that task. The Apple Event Manager deliv­
ers only those Apple events for which handlers are available. When an Apple
event arrives, the task becomes eligible for execution. The microkernel allo­
cates execution time for the task, and the Apple Event Manager dispatches the
Apple event to the appropriate handler. After the task executes its handler, it
becomes blocked again by the AEReceive function. This cycle of blocking then
executing a task continues until the task terminates or the program quits.

An OpenDoc part editor doesn't call AEReceive. Instead, it calls the Open­
Doc method HandleEvent-the same method used in System 7. OpenDoc
then delivers Apple events directly to the part editor. By using handlers that
respond to Apple events, a part editor adheres to the Mac OS 8 event model.

~ Rl 4s HERITAGE
~~~ 

-?) Event Handling in System 7 

In System 7, an application uses a section of code called the event loop to processes 
events. The event loop repetitively requests events from a service called the Event Man­
ager. When the Event Manager returns events, they're dispatched to application-supplied 
event-handler routines. When there are no events for the event loop to handle, the applica­
tion yields. If there's an event for another application, it gets to execute; otherwise, the 
yielding application gives other applications a very short period of time to execute back­
ground operations. At the end of this period, the application resumes execution, and its 
event loop calls the Event Manager again to request new events. The application dissipates 
valuable CPU cycles polling the Event Manager even when there are no events to report. 



232 CHAPTER 14 .... EVENTS 

By comparison, a Mac OS 8 application performs relatively little event processing. 
Instead, an application-blocked from execution-relies on the Apple Event Manager to 
dispatch events directly to event-handler routines supplied by the application. The applica­
tion gets access to the CPU only when the Apple Event Manager calls the application's event­
handler routines. In the multitasking environment of Mac OS 8, where multiple programs 
share access to the CPU, this model makes much more efficient use of the CPU than does the 
polling approach used in System 7. 

EVENT HANDLING 

Developers can use the Mac OS 8 event model to direct the operation of all 
tasks for any type of program. When instantiated as a process, every program 
has a main task that may spawn additional tasks. To receive events, any task 
can call the Apple Event Manager function AEReceive. The Apple Event Man­
ager blocks the calling task until an appropriate event arrives. The task then 
gets an opportunity to execute, and the Apple Event Manager dispatches the 
event to a handler associated with that task. After the handler responds as 
part of the task, the Apple Event Manager blocks the task again until the next 
event arrives. 

Any kind of program can use Apple events to communicate among its tasks 
or with other programs. For example, a statistics application might implement 
its user interface as a cooperative program, which could send Apple events as 
necessary to a separate server program that performs statistical calculations. 
After calling AEReceive, the server program's main task would become 
blocked until an Apple event requesting a calculation arrived. At that point 
the server program's handler for performing the calculation would be 
invoked, and the CPU could perform the calculation preemptively without 
disturbing the user's interaction with the cooperative program. When it has 
finished with the calculation, the handler could send another Apple event back 
to the cooperative program to inform it of the results. The server program 
could even spawn additional tasks to start handling requests from other pro­
grams before the first calculation is complete. 

In the cooperative scheduling environment of Mac OS 8, the main tasks of 
cooperative programs yield execution eligibility whenever there are no events 
for them. When tasks have no events, AEReceive causes them to yield by 
blocking them. (System 7 applications yield by periodically calling an appro­
priate Event Manager function.) 

Tasks can also receive messages through alternate interprocess communica­
tion mechanisms. For example, the main task of a cooperative program can 
use the Microkernel Messaging Service to direct the operation of additional 
tasks spawned by the program. However, Apple events are handy for a devel-



EVENT HAHDUNG 233 

oper because they permit the operating system, programs, and scripts to com­
municate with each other locally and across networks according to a well­
established messaging protocol. To use other interprocess communication 
mechanisms, developers must establish and follow their own conventions for 
sharing information between tasks. The use of AEReceive greatly simplifies 
the amount of coding necessary for a program to handle events. AEReceive is 
the basis of the Mac OS 8 event model, and the rest of this chapter focuses on 
its use. 

g"nmuwHom 
The Event Manager and the Event Record 

Mac OS 8 supports WaitNextEvent, the event record, and other Event Manager functions and 
data structures for compatibility with System 7 applications. Applications that use Event 
Manager functions run as cooperative programs in Mac OS 8, but they can't take full advan­
tage of the improved performance and flexibility that the Mac OS 8 event model makes pos­
sible. Developers of new applications should adopt the Mac OS 8 event model instead of 
using the Event Manager. 

The OpenDoc environment in Mac OS 8 continues to use the event handling program­
ming interface defined for part editors in System 7. However, developers of new OpenDoc 
parts should use the Apple event data structure instead of the event record for their event 
data format. Part editors can then partake of the improved performance and flexibility of the 
Mac OS 8 event model. 

Dispatchers and Handler Tables 

To dispatch Apple events within a process, the Apple Event Manager uses one 
or more Apple event dispatchers. An Apple event dispatcher consists of a 
queue of incoming events and a stack of handler tables. The Apple Event 
Manager looks through a dispatcher's handler tables to find handlers for 
events arriving in the queue. Mac OS 8 provides a default Apple event dis­
patcher for every cooperative program, and any program may create addi­
tional dispatchers as necessary. 

A handler table stack consists of one or more handler tables. A handler 
table stack for a cooperative program always contains a default handler table 
and, usually, one or more application handler tables installed by a program. A 
default handler table contains default handlers installed by the operating sys­
tem. The default handlers interpret standard events (such as Mouse Down 
when the user presses the mouse button) and, if necessary, route them to the 
appropriate panels in a window. 

A developer uses the Apple Event Manager to install Apple event handlers 
in one or more application handler tables, which a program can add to or 



234 

FIGURE 14.1 

CHAPTER 14 .... EVENTS 

An Apple event dispatcher calling a handler from a cooperative program 

Incoming event 

Application 
handler tables ~--------~--.~~-----H_a_n_dl-er----~ 

-I 
Default { 1-1 

handler table L....------------1. 

Handler table 
stack 

remove from the handler table stack at any time. Most developers add their 
own handler tables to implement the unique behaviors of their applications. 
For example, when a user double-clicks a document icon in the Finder, the 
Finder sends the Open Document event to the application that created the 
document. The application responds by performing its own operations for 
opening the document, such as loading it or mapping it into memory. There­
fore, every Mac OS 8 application that opens documents provides its own han­
dler for the Open Document event. 

When the Apple Event Manager searches for an event's handler, it starts 
from the top of the stack and looks down the stack of handler tables until it 
finds a match. The default handler table for a cooperative program always 
resides at the bottom of a handler table stack. By stacking one handler table 
on top of another, a developer can augment or override the behavior defined 
by the lower table with the behavior defined by the higher table. 

Figure 14.1 illustrates how the Apple Event Manager uses an Apple event 
dispatcher to dispatch an event. When an event arrives, the Apple Event Man­
ager wakes up the task that called AEReceive and searches the stack of han­
dler tables for a matching handler. 

A developer can create two kinds of Apple event handler tables: 



EvENT HANDLING 235 

., Unfiltered handler table. When an unfiltered handler table contains no 
handler for a particular event, the Apple Event Manager passes the 
event to the next handler table in the stack . 

., Filtered handler table. If a filtered handler table contains no handler for 
a particular event, the Apple Event Manager immediately suspends the 
event, which remains in the event queue. When the filtered table is 
removed from the handler table stack, the Apple Event Manager passes 
any suspended events to the next handler table, in the order in which 
they were received. 

Unfiltered tables are appropriate for most situations. Filtered handler tables 
are useful when an application is in a modal state. For example, an applica­
tion presents an alert box to warn the user or to report an error. An alert box 
panel places the application in a modal state requiring the user to click a but­
ton to acknowledge or rectify the problem. To suspend all events directed at 
the application except button clicks, an alert box panel automatically installs 
a filtered handler table in the handler table stack for the application's default 
dispatcher. After the user clicks a button to dismiss the alert box, the alert box 
panel removes the filtered handler table. Any events suspended during the dis­
play of the alert box (for example, a disk-inserted event) are then dispatched 
to the appropriate handlers in the order in which they were received. Develop­
ers can also install filtered handler tables directly to control modal states. 

In the OpenDoc environment for Mac OS 8, every part editor has its own 
Apple event dispatcher, which supplies the part with the default handler table 
used by cooperative programs. A part editor can add handler tables to its han­
dler table stack or remove them at any time. When OpenDoc sends an Apple 
event to a part editor, the part editor sends the event on to its Apple event dis­
patcher. The Apple Event Manager then searches the part editor's handler 
table stack and invokes the appropriate handler. 

g~n-.Hom 
Standard System 7 Apple Events 

Standard Apple events previously defined by Apple-for example, the required suite of 
Apple events discussed in Inside Macintosh: /nterapp/ication Communication-are still sup­
ported in Mac OS 8 and play the same roles as they do in System 7. 

Handlers 
If an application doesn't need to handle a particular event, a developer doesn't 
need to install a handler for it. For example, a developer who uses the default 



236 CHAPTER 14 .... EvENTs 

text-handling supplied by editable text panels may not need to install handlers 
for text events. 

If an application needs more information about an event before deciding 
whether to handle it, the application must install a handler for that event. For 
example, an application that supports the Get Data event to return certain 
kinds of data must install a handler that receives all Get Data events, including 
some the application may not be able to handle. 

When the Apple Event Manager finds an entry for an event in a handler 
table, it passes the event to that handler. In most cases the handler simply 
responds to the event and returns a result code indicating it did so successfully. 
All processing of the event then ceases. If the handler can't handle the event 
for any reason or handles only part of it, the handler returns a result code that 
instructs the Apple Event Manager what to do with the event. For example, 
the handler can return a result code instructing the Apple Event Manager to 
continue its search through the handler table stack for a handler. Passing on 
the event in this way can also be useful if the handler performs preliminary 
handling only and a developer wants to take advantage of additional handling 
provided by handlers in lower tables. 

If a handler understands the event but the event is impossible to handle­
for example, a Get Data event directs a program to return the fifth paragraph 
of a document that only has four paragraphs-the handler should return an 
appropriate result to prevent the Apple Event Manager from continuing to 
search the handler table stack. 

g~nmUTYHom 
System 7 Apple Event Manager 

Mac OS 8 supports all functions and data types defined by the Apple Event Manager in Sys­
tem 7. However, the Mac OS 8 Apple Event Manager replaces System 7 functions used to 
dispatch, receive, and send events with entirely new functions. For example, the AEReceive 
function in Mac OS 8 replaces the WaitNextEvent and AEProcessAppleEvent functions from 
System 7. To fully adopt the Mac OS 8 event model, developers must use the Mac OS 8 
replacement functions. 

Apple Event Manager functions used in System 7 to add data to or get data from Apple 
events are fully supported in Mac OS 8 and, in general, the use of these functions remains 
unchanged. The developer of a Mac OS 8 program can use most of these as described in 
Inside Macintosh: lnterapplication Communication. However, Mac OS 8 applications must 
use new Apple Event Manager accessor functions for obtaining and clearing the data in 
descriptor records. 

• 



A script is a series of 
statements, written in 
a scripting language, 
instructing a com­
puter to perform vari­
ous operations. A 
Scripting language 
is designed to auto­
mate and control pro­
grams and to be 
easier to learn and use 
than complex lan­
guages like C. 

5CRIPTABILI1Y 237 

SCRIPT ABILITY 

Once a developer has adopted the Mac OS 8 event model in an application, 
it's very simple to make that application scriptable. The same Apple events 
that communicate user and system events can be used to automate scriptable 
applications. A scriptable application could allow scripts or other applications 
to send Apple events identical to those sent by the operating system. The oper­
ating system, for example, sends Apple events informing an application of 
commands that the user chose from its menus. The application's Apple event 
handlers respond to these Apple events by performing the commands. A 
sequence of command selections could be automated in a script that sends 
these same Apple events to the application. 

Suppose, for example, that a communications program and a separate 
page-layout program are both scriptable. A systems integrator or a technically 
adept user could write a script that instructs the communication program to 
dial an online information service at the same time every morning and down­
load news articles relating to an important topic. Using the delegation capabil­
ities of the Assistance Services described in Chapter 13, the script could then 
direct the page-layout program to launch, copy this information into a report 
template, and print the report. A user would then have an automatically pre­
pared briefing first thing in the morning. 

APPLE EVENTS AND THE HUMAN INTERFACE TOOLBOX 

As you read in Chapter 12, human interface objects automatically perform 
much of their own event handling. For example, a push button become high­
lighted automatically as the user presses the mouse button and moves the cur­
sor over the button. The Human Interface Toolbox supports this automatic 
behavior by providing the default Apple event dispatcher with default han­
dlers for many standard events, including those involving the mouse, win­
dows, and text input (whether entered by keystroke, voice, or other method). 
The Toolbox-supplied handlers automatically route most of these events to 
the targeted human interface objects, which provide methods that handle the 
specific events. 

For example, Toolbox-supplied handlers typically determine the target win­
dow for an event and forward it to that window. Every window, in turn, is 
associated with an Apple event dispatcher that initially processes all events 
directed to the window. For further event processing, the handlers associated 
with the window dispatcher typically call the methods of one or more human 
interface objects displayed in the window. 

By default, the target objects respond automatically to certain user actions 
that change an object's state-for instance, by zooming a window to the 



!38 CHAPTER 14 ..... EVENTS 

appropriate monitor, highlighting menu items as the user drags the cursor 
through them, changing the highlighting of radio buttons, and so on. 

An application can associate application-specific behavior with a particular 
object in three principal ways: 

..,... After an application instantiates an object, the application can install an 
application-defined function that the Toolbox calls whenever there's a 
state change. The application-defined function then performs applica­
tion-specific behavior . 

..,... An application can install its own handler tables with the default Apple 
event dispatcher. The handlers in these tables are called before those in 
the default handler table . 

..,... An application can subclass the human interface objects classes and 
override selected methods. The overridden methods perform applica­
tion-specific behavior. 

The ability of the standard human interface objects to respond to user 
interaction appropriately is not limited to low-level events such as mouse 
events and keyboard events. Mac OS 8 supports higher-level events that corre­
spond to interface abstractions such as "select object." The default Toolbox 
event handlers translate mouse events, keyboard events, speech events, and 
other events generated by input devices into higher-level events that an appli­
cation handles the same way regardless of the type of input device. 

EVENT HANDLING FOR ONE OR MORE TASKS 

When any task calls AEReceive, the task specifies the Apple event dispatcher 
in which it's interested. Only the main task of a cooperative program can spec­
ify the default Apple event dispatcher. Other tasks using AEReceive specify 
developer-supplied Apple event dispatchers. A developer can associate tasks 
with Apple event dispatchers as follows: 

..,... one task with one dispatcher 

..,... multiple tasks with multiple dispatchers 

..,... multiple tasks with one dispatcher 

Identifying the particular arrangement of tasks and dispatchers appropriate 
for a program is a design decision. The first two models are appropriate for 
both cooperative programs and server programs. The third model, which 
associates multiple tasks with a single dispatcher, is intended for use by server 
programs only. All three models may be combined in various ways to support 



EVENT HANDLING FOR ONE OR MoRE TASKS 239 

FIGURE 14.! One task, one dispatcher for a cooperative program 

~ Main~~~ 
l---A-ER_e_c_el-ve ___ l- .__o_e~-a-ul_t A_p_p_l_e _ev_e_n_t _ --+ I._ ___ H_a_nd-le_r_s __ _. _ • dispatcher . 

more complex relationships among tasks and dispatchers and to assign opera­
tions to server programs. 

One Task with One Dispatcher 

Figure 14.2 shows the simplest case: a main task associated with the default 
Apple event dispatcher associated with a cooperative program. In this arrange­
ment, a single task is responsible for all event handling. The AEReceive func­
tion blocks the main task until an event arrives for the task. The Apple Event 
Manager then invokes the main task and calls the Apple event handler 
designed to respond to the event. 

Multiple Tasks with Multiple Dispatchers 

A developer must associate the main task of a cooperative program with a sin­
gle Apple event dispatcher-the default Apple event dispatcher, as in Figure 
14.2. A developer can create additional dispatchers for tasks that use reen­
trant services only. Figure 14.3 illustrates this arrangement. Another alterna­
tive, described in the following section, is to associate additional tasks with a 
single dispatcher. 

A developer can implement the model shown in Figure 14.3 in several 
ways. It's possible, for example, to route events to a particular dispatcher. All 
human interface-related events must be routed through the default Apple 
event dispatcher, but a developer can design a program to route other events 
to other dispatchers. For example, suppose a graphics program has a menu 
command that transforms an image in some way by performing a series of cal­
culations. The handler invoked by that command can, in turn, send an Apple 
event to a different dispatcher associated with a separate task. This separate 
task then performs the calculations. The main task is then free to continue 
responding to the user while the second task, which doesn't involve the human 
interface, executes in the background. 



240 CHAPTER 14 • EvENTs 

FIGURE 14.3 Multiple tasks, multiple dispatchers 

~~ 
Main task t 

I I De&ault Apple event Handlers for default 
._ ___ A_ER_e_c_elv_e __ __. ._.._. .__'_'d-lspa_t_ch_e_r __ _. ____. .__ __ d_lspa_tc_h_e_r __ .. 

~ Addltlona~ 
task1 

1 t 
AEReceive .....---------- ----. 

... 
_______ ....,.,....___________ .__A_d_dJ-·ti-on_a_I_Ap-pl_e_e_ve_n_t... Handlers for additional 

dispatcher 1 dispatcher 1 

~~ Additional 
task 2 

I ~---A-ER_e_c_e_ive---~~.__. Additional Apple event ____. Handlers for additional 
dispatcher 2 dispatcher 2 

When the second task needs to inform the user of its progress, the handler 
that's performing the calculation can direct the default Apple event dispatcher 
to update a progress indicator. When the handler has completed its calcula­
tions, it can direct the default dispatcher to invoke the handler that actually 
draws the transformed image. 

Because Mac OS 8 permits a program to use multiple tasks in addition to 
its main task, the graphics application in this example could actually perform 
transformation calculations on several different images, starting each calcula­
tion at a different time and performing them all concurrently. Thus, the main 
task could be drawing the results of one calculation to the screen while 
another task is in the middle of calculating a transformation for a second 
image. At the same time, another task can begin calculating a transformation 
for a third image. In effect, this kind of arrangement allows a developer to cre­
ate a "server within the application," even though the additional tasks don't 
necessarily have to be implemented as independent server programs. 



EVENT HANDUNG FOR ONE OR MORE TASKS 141 

FIGURE 14.4 Multiple tasks, one dispatcher 

~~ 
Task 1 ~ 

I AERecelve 

!j 
I AERecelve Handlers Apple event dispatcher -I 

----------------~ 

~ 
Task3 ~ 

I AERecelve 

Multiple Tasks with One Dispatcher 

Figure 14.4 shows multiple tasks calling AEReceive and specifying the same 
Apple event dispatcher. Each task has its own entry point and begins execut­
ing at a different time. The tasks don't necessarily have to be identical, but 
they must use the same handler table stack and must be equally capable of 
dealing with incoming events. Because tasks are preemptively scheduled for 
execution, their access to data must be synchronized. Therefore, a developer 
must make all handlers fully reentrant in this arrangement. 

Because only one task in a cooperative program may use handlers that 
access the cooperative services, no additional tasks for that program can share 
the main task's Apple event dispatcher. Therefore, this arrangement is useful 
only for server programs. For example, a database program that receives 
requests continuously from several sources can spawn a series of identical 
tasks associated with the same Apple event dispatcher. All of these tasks share 
the same handler table stack. The Apple event dispatcher pairs each task with 
each incoming request and looks up the corresponding handler in the handler 
table stack. Thus, the database can handle a series of requests concurrently. 



CHAPTER 14 ~ EVENTS 

SUMMARY 

The Mac OS 8 event model is based on Apple events. Events involving the 
human interface-for instance, user actions with the mouse and keyboard­
are automatically packaged by the operating system as Apple events. Tasks 
that need to communicate with one another can also package their messages 
as Apple events. 

When the main task of a cooperative program uses AEReceive, it yields 
execution eligibility whenever there are no events for it to respond to. This 
allows the Process Manager to synchronize access to the cooperative services, 
and in this way, the program participates in the operating system's cooperative 
scheduling policy. (Backward compatibility support also allows older applica­
tions using the Event Manager from System 7 to participate in cooperative 
scheduling.) Tasks created for server programs and additional tasks spawned 
by cooperative programs can also use AEReceive. These tasks are preemp­
tively scheduled by the operating system. 

When there are no events for a task, AEReceive blocks it. When there is an 
event, the task becomes eligible for execution. As the task begins to execute, 
AEReceive dispatches the event to an Apple event handler designed to respond 
to that event. After its handler executes a response to the event, AEReceive 
blocks the task again until another Apple event arrives. 

Apple event handlers for a task are maintained in a stack of handler tables. 
For every cooperative program, a default handler table contains handlers that 
respond to many standard events, particularly those involving the human 
interface. The default handler table always resides at the bottom of a handler 
table stack. To override the handlers in the default handler table and to supply 
handlers for program-specific behavior, a program can dynamically add appli­
cation handler tables to its handler table stack and dynamically remove them. 

A handler table stack and a queue of incoming events constitute an Apple 
event dispatcher. A program with one task uses a single dispatcher to route 
events to the appropriate handlers within the program's handler table stack. A 
program with multiple tasks can support the Mac OS 8 event model by fol­
lowing one of these event-handling approaches: 

~ Assign a different Apple event dispatcher to each task. 
~ Use a single Apple event dispatcher to respond concurrently to all events 

directed at any of the program's tasks. 

The first approach is especially useful for a cooperative program that uses the 
main task to handle human interface events and other tasks to perform back­
ground processing. The second approach requires all of a program's handlers 
to be fully reentrant. This approach is appropriate only for server programs, 
which use only reentrant operating system services. 



PLANNING A PRODUCT FOR MAC 05 8 243 

PLANNING A PRODUCT FOR MAc OS 8 

If you're a developer, the best way to begin preparing a product that takes 
advantage of the Mac OS 8 event model is to separate the code that controls 
an application's user interface from the code that responds to the user's 
manipulation of the interface. This is called factoring an application. A fully 
factored application, as described in Inside Macintosh: Interapplication Com­
munications, translates user actions into Apple events that the application 
sends to itself. Factoring not only supports the Mac OS 8 event model but also 
allows applications to be controlled by any scripting language, such as Apple­
Script, that's based on the Open Scripting Architecture (OSA). 



• • • • • • • • • • • • • • • • • • • • • • • 

Landmark 
and Mul 
Techno I 

Since its inception, the Macintosh Operating System has featured innovative 
technologies that have drawn users and developers to its platform. Bit­
mapped graphics, desktop publishing, and built-in networking were early fea­
tures of the operating system. System 7.5 incorporated support for multimedia 
publishing and playback, video conferencing, Internet connectivity, and three­
dimensional graphics. Using these landmark technologies, developers have 
created astonishing applications for the Mac OS. 

Mac OS 8 inherits these technologies, refines them, and integrates them 
into the operating system. This chapter describes the imaging and multimedia 
technologies carried forward from System 7.5 and explains how they take 
advantage of Mac OS 8 capabilities. Chapter 16 describes the networking fea­
tures inherited from System 7.5. 

Mac OS 8 implements the imaging and multimedia services from System 7.5 
as memory-efficient shared libraries. Compared with System 7 applications, 
applications using these technologies in Mac OS 8 share the CPU more effi­
ciently because of the operating system's priority-based multitasking capabili­
ties. Also, the virtual memory system automatically helps these applications 
make more efficient use of physical memory. The concurrent 1/0 system intro­
duced in Mac OS 8 further improves the performance of imaging and multime­
dia-based applications. For example, video data can be read from disk faster in 
Mac OS 8 than in System 7.5, and picto rial images can be shared across a net­
work faster. 

2.45 



246 CHAPTER 15 ..... LANDMARK IMAGING AND MULTIMEDIA TECHNOLOGIES 

KEY TERMS AND CONCEPTS 

..... Multimedia refers to combining multiple forms of communication to 
facilitate the transmission of ideas and information. Multimedia applica­
tions supported by Mac OS 8 allow a user to combine text, pictures, 
video, sounds, music, and other types of data into multimedia documents . 

...,. Imaging refers to the construction and display of graphical information. 
Graphical information can consist of shapes, pictures, and text and can 
be rendered on devices such as screens and printers. All graphical por­
tions of a multimedia document, for example, are processed and dis­
played in Mac OS 8 through the use of imaging services available as 
part of the operating system . 

...,. QuickDraw 3D is a cross-platform, interactive 30 graphics technology . 

..... ColorSync is an industry-standard architecture underlying the operating 
system's color-matching services. These services allow users to move 
color images reliably from one device to another (such as from a scan­
ner to a video display and then to a printer) and from one operating sys­
tem to another . 

...,. QuickDraw GX is a collection of graphics, typography, and printing 
services that provide applications with sophisticated color publishing 
capabilities . 

...,. Introduced with the first version of the Macintosh Operating System, 
QuickDraw performs onscreen graphics operations on behalf of appli­
cations and the operating system. A precursor to the more sophisticated 
capabilities of QuickDraw GX, QuickDraw remains a fully supported 
graphics system in Mac OS 8 . 

...,. QuickTime is a collection of cross-platform operating system services 
that allow applications to control time-based data, such as video and 
music . 

...,. QuickTime VR is a cross-platform service offering two kinds of virtual 
reality experiences: a panoramic experience enabling users to explore 
360-degree scenes and an interaction experience allowing users to "pick 
up" and interact with objects . 

...,. QuickTime Conferencing is a cross-platform collaboration and commu­
nications technology that allows users to broadcast and view real-time 
digital audio, text, images, and video. 

MAJOR POINTS OF INTEREST 

When the Macintosh computer was introduced in 1984, its most striking 
characteristic was its well-designed graphical user interface. The interface fea­
tured onscreen objects-such as icons, menus, and text displayed in multiple 



A system extension 
is a file in System 7 
containing code 
that's loaded into 
memory at system 
startup time. 

TAKING ADVANTAGE OF MAc OS 8 CAPABILinEs 247 

fonts, sizes, and typestyles-that users could manipulate directly. Users could 
control the computer by thinking visually and interacting with it visually. This 
visual interaction helped make the computer easier and more fun to use. 

With the advent of the PostScript page description language and the Laser­
Writer printer, the imaging strengths of the Macintosh computer were quickly 
applied to a new use: desktop publishing. With a Macintosh computer and a 
LaserWriter printer, casual users could prepare visually appealing printed 
material without resorting to costly professional publishing services. 

Apple has continued to advance the human interface of its operating system 
by supporting other types of media in addition to graphics and text. System 7 
users can manipulate video, animation, three-dimensional objects, voice and 
sound, MIDI music, and interactive panoramic scenes as easily as text and two­
dimensional shapes. Whereas System 7.5 supports these forms of data with 
optionally installed system extensions, Mac OS 8 fully incorporates the tech­
nologies that allow users to create and communicate with these forms of data. 

QuickDraw for black-and-white screens and the Printing Manager for dot­
matrix printers constituted the first imaging systems available on the Macintosh 
computer. When the color version of QuickDraw was introduced for Macintosh 
computers with color displays, users could work with photo-realistic images on 
screen. Since then, the imaging capabilities of the operating system have been 
greatly enhanced by ColorSync, QuickDraw GX, and QuickDraw 3D. 

Introducing operating-system support for video, music, and other time­
based data in System 7, QuickTime laid the foundation for multimedia capa­
bilities in the Mac OS. QuickTime VR, QuickTime Conferencing, QuickTime 
Music Architecture, and other QuickTime-based technologies have further 
extended the multimedia capabilities of the Mac OS. 

If you haven't already done so, read "How to Navigate the Book CD­
ROM" in the preface for information about using the CD-ROM version of 
this book. In the CD-ROM version of the book, the screen shots presented in 
this chapter are animated. 

TAKING ADVANTAGE OF MAc 05 8 CAPABILITIES 

Users fond of the System 7.5 imaging and multimedia technologies will appre­
ciate the extra performance and stability that the Mac OS 8 platform affords. 
The next several sections describe why these technologies perform better in 
Mac OS 8 than in System 7.5. 



!48 

Shared libraries are 
discussed in 
Chapter 8, and the 
virtual memory system 
in Chapter 6. 

The Dynamic Storage­
Allocation Service 
is described in 
Chapter 7. 

CHAPTER 15 .... lANDMARK IMAGING AND MULTIMEDIA TECHNOLOGIES 

Full-Time Availability 
Most of the advanced services are available in System 7.5 only after the user 
installs them as system extensions. System extensions take up memory from 
the time the user turns on the computer until the user turns the computer 
off-whether or not any application uses them. Because of these memory 
demands, very few System 7.5 users have all of the imaging and multimedia 
services running simultaneously on their computers. To use one service, such 
as QuickDraw GX, a user might have to turn off another service, such as 
QuickTime, and restart the computer-a noticeable inconvenience. 

The lack of full-time availability of these services in System 7.5 also causes 
extra work for developers. System 7 developers often need to write multiple 
code paths based on the availability of these services. For example, a System 7 
developer might need to write several code paths for drawing images in an 
application: one path for systems using QuickDraw GX and another path for 
systems that aren't; one path for systems using QuickDraw 3D and another 
path for systems that aren't; and perhaps additional paths based on the avail­
ability of ColorSync. 

By contrast, Mac OS 8 makes its imaging and multimedia services available 
at all times on every system. Users and developers can rely on the presence of 
these technologies on every Mac OS 8 system. These technologies can be 
made available full-time because they take advantage of Mac OS 8 memory 
efficiency features. 

Making Efficient Use of Memory in Mac OS 8 
In Mac OS 8, all imaging and multimedia services are implemented as shared 
libraries. Recall that the dynamic, execution-time preparation of these shared 
libraries reduces memory requirements by allocating memory for a shared 
library only when it's referenced by a program or another library. The shared 
library for QuickTime, for example, is mapped into memory only when an 
application references it at launch time. All subsequently launched programs 
using QuickTime share the same memory-mapped copy of QuickTime code. 
When the last application to use this library quits, the operating system 
releases the memory areas allocated to QuickTime code. 

Imaging and multimedia-based applications tend to require large amounts 
of memory for their own code and for the documents they create. However, 
the efficient virtual memory system of Mac OS 8 allows the user to work with 
many more large applications and documents than can fit in the physical 
memory of a computer running Mac OS 8-or even in the virtual memory of 
a computer running System 7.5. 

With the exception of QuickDraw, the imaging and multimedia services in 
Mac OS 8 use the reentrant, pointer-based Dynamic Storage-Allocation Ser­
vice to allocate and release temporary data storage. For this reason, imaging 
and multimedia services perform much better than their System 7.5 ancestors. 



The multitasking capa­
bilities of Mac OS 8 
are described in 
Chapter 4, and the 
Wf!YS multithreaded 
programs take addi­
tional advantage of 
these capabilities 
are described in 
Chapter 5. 

The 1/0 system is dis­
cussed in Chapter 11. 

TAKING ADVANTAGE oF MAc OS 8 CAPABILmES 249 

In System 7.5, some of these services use the nonreentrant, handle-based 
Memory Manager, while others implement their own private memory models, 
adding to the code overhead. For several reasons, including its reliance on glo­
bal data shared simultaneously by cooperative programs, QuickDraw in 
Mac OS 8 continues to use the Memory Manager-a cooperative service sup­
plied for System 7 application compatibility. 

Taking Advantage of Mac OS 8 Multitasking Capabilities 

The multitasking capabilities of Mac OS 8, in combination with its concurrent 
YO system, offer more efficient data processing to increase the performance of 
all products, but especially multimedia products. For instance, a video-editing 
program can read data from a CD-ROM disk in one thread of execution, 
write data to a hard disk in another thread of execution, and yet remain 
highly responsive to the user in a third thread. Even while data is coming from 
the CD-ROM or going to the hard disk, the program can keep the CPU busy 
executing other operations. 

Through its priority-based scheduling rules, the Mac OS 8 microkernel 
supports the real-time processing needs of multimedia-based applications. By 
placing multimedia operations in a separate real-time task, a multithreaded 
application can perform time-critical multimedia operations without interrup­
tion. For example, a multimedia authoring application can use a task outside 
of its main task to capture and process video data in real time or to play unin­
terrupted sound. 

Most graphics and multimedia operations that involve drawing to the 
screen are implemented as cooperative services in Mac OS 8. However, Quick­
Draw GX is implemented as a reentrant service. Multithreaded programs can 
take advantage of preemptive scheduling by placing image-processing opera­
tions in background tasks. A multithreaded graphics program, for example, 
can use its main task to call QuickDraw GX to perform screen drawing oper­
ations. The program can also use QuickDraw GX in an additional back­
ground task to preprocesses data that the program's preparing to draw 
onscreen. Such background processing might, for instance, entail measuring 
the text and calculating the line breaks of a large document. When developers 
use QuickDraw GX to draw to the screen, they do so exclusively from the 
main tasks of their cooperative programs. Confining all screen-drawing opera­
tions to the cooperative scheduling environment ensures that graphical opera­
tions involving user interaction are properly serialized. 

Using the Concurrent 1/0 System 
The concurrent 1/0 system introduced in Mac OS 8 further improves the per­
formance of imaging and multimedia-based applications. Compared with Sys-



250 CHAPTER 15 .... lANDMARK IMAGING AND MuLTIMEDIA TECHNOLOGIES 

tern 7.5, for example, more 3D images can be shared across a network in a 
given amount of time. 

Taking Advantage of System Stability 
As you've read in previous chapters, Mac OS 8 provides a highly stable plat­
form. Server programs, such as the font scalers used by the operating system, 
operate on data in memory areas that are protected from errors in application 
code. Data used by all critical portions of the operating system, such as the 
110 system and the microkernel, are fully protected from corruption by appli­
cation-level software. And because all code is mapped into read-only memory 
areas, code can never be corrupted while being executed. 

Although Mac OS 8 offers these safeguards for system stability, one coop­
erative program can potentially corrupt the data of another cooperative pro­
gram in their shared address space. However, developers can design their 
applications to further lessen any vulnerability to errors in cooperative pro­
grams. For instance, a multimedia application can use a server program to 
reliably perform long video-processing operations or to dependably transmit 
music to remote users across the World Wide Web. 

INTEGRATED IMAGING SYSTEMS 

In System 7.5, a developer can choose from among several graphics models 
when writing an application: 

.... QuickDraw for drawing onscreen graphics and text 

.... the Printing Manager for printing documents 

.... QuickDraw GX for printing documents and drawing onscreen graphics 
and text 

.... QuickDraw 3D for drawing three-dimensional shapes 

.... WorldScript I and II for managing text and fonts for international 
markets 

.... ColorSync for ensuring accurate color matching among devices, such as 
scanners, video displays, and printers. 

In System 7.5, QuickDraw GX, QuickDraw 3D, WorldScript I and II, and 
ColorSync are available to users as optionally installed system extensions. Sys­
tem 7 developers can always depend on the built-in support of QuickDraw, 
but they can't rely on the presence of these other imaging systems on users' 
computers. 

Developers can, however, rely on the presence of these technologies on 
every Mac OS 8 system. This integration of imaging services offers developers 



INTEGRATED IMAGING SYSTEMS 251 

a single, ever-available set of programming interfaces. The full-time availabil­
ity of imaging services eliminates the need for redundant code paths in an 
application and allows developers to take full advantage of these services. The 
powerful QuickDraw GX line layout technology, for example, is always avail­
able to every Mac OS 8 application. 

g~nwUTYHom 

Distributed with the 
operating system, the 
Scrapbook is a pro­
gram that lets users 
store text, graphics, 
sounds, movies, 30 
objects, and other 
frequently used 
information. 

The System 7.5 Imaging Managers 

The Mac OS 8 imaging architecture supports all of the programming interfaces defined by 
QuickDraw, QuickDraw GX, QuickDraw 3D, ColorSync, and WorldScript I and II. Apple 
intends to support these graphics models beyond Mac OS 8 so that developers' code 
based on these technologies will continue to run in the future. 

Mac OS 8 also supports System 7 applications using the Printing Manager programming 
interface. In Mac OS 8, this programming interface translates Printing Manager function calls 
to QuickDraw GX function calls. In Mac OS 8, therefore, all printing is based on the Quick­
Draw GX print model. To get the best performance on Mac OS 8 and to ensure that their 
print-handling code continues to work on future versions of the Mac OS, developers should 
use the QuickDraw GX programming interface for printing instead of the Printing Manager. 

QuickDraw 3D 

QuickDraw 3D supplies a graphics library that allows Mac OS 8 developers 
to define three-dimensional (3D) models, apply colors and other attributes to 
parts of the models, and create images of those models. Developers have 
already used this library to incorporate interactive 3D modeling, simulation 
and animation, data visualization, and computer-aided drafting and design 
(CAD/CAM) into their System 7.5 applications. 

QuickDraw 3D serves a wide range of users. By eliminating many of the 
obstacles of previous 3D graphics technologies, QuickDraw 3D moves 3D 
graphics from the domain of highly specialized artists and equipment to that 
of typical users and personal computers. Users can create shapes in 3D using a 
variety of input devices, such as 3D track balls, pressure-sensitive tablets, and 
3D scanners. 

Using an application developed with QuickDraw 3D, users can work with 
the actual 3D graphics objects rather than the less detailed wire-frame repre­
sentations commonly associated with 3D graphics applications. Whether past­
ing editable 3D graphics into documents and presentations or directly creating 
and modifying 3D art, users work with these 3D objects as easily as with stan­
dard two-dimensional graphics. For example, Figure 15.1 shows a Quick­
Draw 3D object saved in the Scrapbook. As with any data saved in the 
Scrapbook, the user can drag-and-drop this object into open documents. 



FIGURE 15.1 

CHAPTER 15 ~ lANDMARK IMAGING AND MULTIMEDIA TECHNOLOGIES 

3D data saved in the Scrapbook for placement in standard documents 

&:L __ ·_-:--__________ o 
~lt-:4of11 T,,. , 3DMF 

Stz• : 102K 

Within the Scrapbook, the user can move this object around three axes of 
rotation, as the CD-ROM animated version of this figure demonstrates. The 
user can also zoom in to take a closer view of the object or zoom away. 

The QuickDraw 3D human interface, by which users access and control the 
tools in a QuickDraw 3D-based application, applies consistent behavior to the 
application tools, making these elements an extension of the overall Mac OS 
human interface. Using the QuickDraw 3D Human Interface Toolkit, develop­
ers avoid reinventing common interface elements, and users can apply their 
2D interface knowledge to 3D applications. 

Incorporating QuickDraw 3D into Applications 

QuickDraw 3D is designed to be useful to a wide range of developers, from 
those with little knowledge of 3D modeling concepts and rendering techniques 
to those with extensive experience in these areas. Developers can use Quick­
Draw 3D's capabilities as much or as little as they need to. 

~ Developers can use QuickDraw 3D's industry-standard file format and 
fi le-access functions simply to read and display 3D graphics created by 
other applications. For example, a word-processing application might 
allow users to import pictures created by 3D modeling applications. 

~ A developer who chooses not to learn the core QuickDraw 3D applica­
tion programming interface can use the 3D Viewer mechanism to dis­
play 3D objects in a window and allow users limited interaction w ith 
those o bjects. 



INTEGRATED IMAGING SYSTEMS 253 

...,. Using QuickDraw 3D's full capabilities, developers can create applica­
tions that perform interactive 3D modeling and rendering, animation, 
data visualization, or any kind of sophisticated 3D-data interpretation 
and display. 

QuickDraw 3D includes a complete library of predefined 3D cbjects. A 
QuickDraw 3D object is a shape that contains or references specifications 
about how and where the object should be drawn, and this information trav­
els with the object. Developers can create multiple instances of any type of 3D 
object and assign them individual characteristics. Users can change an object's 
appearance by rotating it, scaling it, or otherwise transforming it. Although 
QuickDraw 3D provides a large set of 3D objects and operations, it's also 
designed for easy extensibility so that developers can add custom capabilities 
to their objects. 

QuickDraw 3D also supports standard lighting types and illumination 
algorithms. Several types of lights may be cast on an object, and these lights 
can illuminate objects and scenes in different ways, according to various levels 
of quality and computational complexity. 

3D Metafile Format 

One of the barriers to the widespread use of 3D has been the inability to use 
3D images outside the program that created them. QuickDraw 3D solves this 
problem by reading and writing data in its cross-platform 3DMF (3D Meta­
file) format. This format allows 3D objects created by one application to be 
used by other applications. The 3DMF format specifies objects, their proper­
ties, and properties of the scene that contains them (including orientation, 
lighting, camera, and shading). The file format preserves all object properties 
in either text or binary formats. 

3DMF also allows applications to save and exchange unique attributes. For 
example, if a program uses a custom effect to create a 3D object, it would nor­
mally be impossible to view that object in any other program without losing 
that effect. Saved as a 3DMF file, however, the object retains its unique, appli­
cation-specific attributes in other programs-such as web browsers-even if 
those programs don't support this feature directly. Because 3DMF technology 
provides consistent capabilities and performance across the Mac OS, Win­
dows, and UNIX operating systems, 3DMF provides a standard and conve­
nient way for users to exchange 3D graphics across the Internet. 

The 3D Viewer 

The 3D Viewer provides a simple mechanism for users to view and interact 
with 3D objects. A control strip at the bottom of the 3D Viewer window con­
tains tools-a camera angle button, a distance button, a rotate button, and a 
zoom button-that let users manipulate the location and orientation of their 



254 

The components of 
the RGB color 
space are the red, 
green, and blue inten­
sities that make up a 
given color. RGB 
color spaces are 
used mainly for dis­
plays and scanners. 
Based on the colors 
cyan, magenta, yel­
low, and black, the 
CMYK color space 
models the applica­
tion of inks and dyes 
to paper. 

CHAPTER 15 .... lANDMARK IMAGING AND MULTIMEDIA TECHNOLOGIES 

point of view. Even if they don't want to learn the core QuickDraw 3D appli­
cation programming interface, developers can easily incorporate the 3D 
Viewer into their applications, giving them the ability to display 3D data. 

Added Acceleration Capabilities 

Acceleration capabilities built into QuickDraw 3D provide superior perfor­
mance for computers that contain accelerator cards. For example, Apple 
Computer's QuickDraw 3D Accelerator Card makes QuickDraw 3D run up 
to 12 times faster. With this increased performance, QuickDraw 3D can offer 
additional capabilities, such as Gouraud shading (by which users improve an 
object's color), texture mapping (by which users apply a picture to a surface), 
and anti-aliasing (which smooths the edges of 3D objects to prevent jagged 
images). With these accelerator cards, QuickDraw 3D can produce more visu­
ally complex 3D objects without increasing the complexity of the object itself. 

By supporting Constructive Solid Geometry (CSG), QuickDraw 3D acceler­
ation also lets applications control the interaction of two or more objects. For 
example, an application might punch holes in objects or fuse several objects 
together. 

Developers of games or other 3D-intensive software can use QuickDraw 
3D RAVE (Rendering Acceleration Virtual Engine), the foundation technology 
used in QuickDraw 3D. RAVE is an optimized hardware abstraction layer 
that allows programmers to code directly to 3D graphics accelerator cards for 
maximum performance. 

ColorSync 

ColorSync is the color-matching architecture for the Mac OS. It allows users 
to get more predictable and accurate color from their applications, scanners, 
digital cameras, displays, and printers. For example, ColorSync ensures that 
the colors appearing in a scanned photograph of a daisy, as in Figure 15.2, 
match the colors of that image when it's displayed on a video screen and 
printed on a printer. 

Before ColorSync was available, computer users, especially publishing pro­
fessionals, faced the problem of how to display the same image on more than 
one device without changing the colors perceptibly. Different imaging devices 
such as scanners, displays, and printers work in different color spaces. Color 
spaces are models, such as RGB and CMYK, that specify how color informa­
tion is represented. Even using the same color space, different devices can have 
different ranges of color, called gamuts. A gamut measures the range of the 
lightness, darkness, and density of colors in a given color space. For example, 
color video displays from different manufacturers all use the RGB color space, 
but they have different RGB gamuts. Printers that work in CMYK space vary 
drastically in their gamuts, especially if they use different printing technolo­
gies. Even a single printer's gamut can vary significantly with the ink or the 



FIGURE 15.2 

INTEGRATED IMAGING SYSTEMS 255 

Color matching across devices 

type of paper it uses. It's easy to see that conversion from RGB colors on an 
individual video display to CMYK colors on an individual printer can lead to 

unpredictable results. 
To address these problems, ColorSync provides color-matching services. 

ColorSync can automatically convert colors from one color space to another 
and adjust (or "match") these converted colors from the gamut of one color 
space to that of the other. For even finer color control, an application using 
ColorSync can allow the user to perform quick and inexpensive color proof­
ing, see in advance what colors cannot be printed on a printer, and adjust the 
colors so that images rendered on different devices match exactly. 

To provide its color-matching services, the ColorSync Manager uses one or 
more color management modules (CMMs) and profiles. A CMM implements 
color-matching and gamut-checking services. A profile provides a means of 
defining the color characteristics of a given imaging device. The ColorSync 
Manager programming interface allow applications and device drivers to pro­
vide ColorSync support, create and manage profiles, and create CMMs that 
respond to requests from applications and device drivers. 

When an application uses ColorSync directly to match colors between 
devices, it must specify the profile for each device when calling a ColorSync 
color-matching function. As experienced QuickDraw GX developers are 
aware, however, an application using QuickDraw GX doesn't need to use the 
ColorSync programming interface directly. On behalf of applications, Quick­
Draw GX automatically uses ColorSync to perform color matching across 
devices. 



256 

A printer driver is a 
plug-in that controls 
how the contents of 
a document are 
spooled, rendered, 
and sent to a specific 
output device. 

CHAPTER 15 ..... lANDMARK IMAGING AND MULTIMEDIA TECHNOLOGIES 

QuickDraw GX 
QuickDraw GX is an imaging architecture that supports powerful graphics, 
typography, and printing capabilities in the Mac OS. These capabilities are 
especially suited to typographical and color publishing needs, from main­
stream business communications to high-end commercial publishing. 

QuickDraw GX has built-in support for multiple types of graphic and 
typographic images called shapes. Examples of shapes include lines, points, 
rectangles, polygons, curves, multiple-curve paths, simple text, text with mul­
tiple styles, sophisticated line layouts, and pictures. Developers define shapes 
using measurements that are independent of the resolution of any imaging 
device, and developers have great control over the stylistic variations of these 
shapes. 

A shape encapsulates specifications about how and where it should be 
drawn. All of a shape's attributes-for instance, size, color, fill, perspective, 
and line thickness-are stored with that shape. Developers don't have direct 
access to the internal data structures of a shape, but instead make function 
calls to examine or modify the values of a shape's properties. This object-ori­
ented approach to encapsulating data within shapes greatly simplifies the 
developer's tasks. 

QuickDraw GX allows developers to perform sophisticated geometric 
operations on geometric shapes. These operations include, editing, measuring, 
simplifying, and converting from one type of shape to another. Developers can 
transform shapes by relocating, scaling, skewing, adding perspective to, and 
otherwise distorting them. 

QuickDraw GX uses device-independent colors and offers built-in support 
for ColorSync so that colors in a document created by an application using 
QuickDraw GX translate reliably to different video displays and printers. 
QuickDraw GX also provides built-in support for multiple color spaces 
including luminance (for grayscale), RGB (for display screens), YIQ (for color 
video broadcast), CMYK (for printing), HSV and HLS (for user selection of 
colors in an application), and CIE (for colorimetries). 

In addition to these and other advanced graphics features, QuickDraw GX 
provides applications with sophisticated printing and typographic capabilities. 

QuickDraw GX Printing 

Mac OS 8 fully adopts the QuickDraw GX printing architecture. This architec­
ture supplies an intuitive and flexible human interface for users. For develop­
ers, QuickDraw GX provides an easy way to offer application-specific printing 
capabilities, and it defines a simplified model for creating printer drivers. 

In QuickDraw GX, printers are represented by icons on the computer desk­
top. A user can print a document by dragging the document icon to a printer 
icon. The user can have multiple printer icons on the desktop and can print to 
them simultaneously. The user can redirect a print job from one printer to 



INTEGRATED IMAGING SYSTEMS 257 

another. The user can also specify a separate page format for each page of a 
document. For example, suppose a document consists of three pages-a page 
of addresses, a business letter, and a spreadsheet. The printed version of the 
document can have three formats: an envelope format for the addresses, a 
portrait format for the business letter, and a landscape format for the spread­
sheet. When closing this document, the user can save this printing setup infor­
mation with the document. 

Developers can provide additional print options to their applications, giv­
ing users additional flexibility over printing jobs. For example, an application 
might supply a printing extension allowing the user to print, in light gray, the 
word Confidential on every page of a document. 

For printer driver developers, the QuickDraw GX print architecture stream­
lines driver development. Compared to the Printing Manager architecture, for 
example, QuickDraw GX substantially reduces the code required for printer 
drivers, sometimes by as much as 95 percent. 

g~nm~Hom 
Printing Manager Printer Drivers 

The QuickDraw GX printer driver model completely replaces the model used by the Printing 
Manager. Therefore, Printing Manager printer drivers do not work in M.ac OS 8 . • 
QuickDraw 
Experienced Mac OS developers are very familiar with QuickDraw, the graph­
ics architecture used to draw human interface elements on all previous ver­
sions of the Macintosh Operating System. The images that QuickDraw 
manipulates can consist of shapes, pictures, and text and can be displayed on 
such devices as screens and printers. Over the years, QuickDraw has evolved 
to accommodate the growing graphics capabilities of the Mac OS. Each new 
generation of QuickDraw has maintained compatibility with those that pre­
ceded it, while adding new capabilities and expanding the range of possible 
display devices. This evolutionary approach has helped to ensure that applica­
tions written for earlier Macintosh models continue to work as more powerful 
computers are developed. 

The development of QuickDraw has progressed along these three main 
stages: 

~ Basic QuickDraw was designed for the earliest Macintosh models with 
their built-in black-and-white screens. System 7 added new capabilities 
to basic QuickDraw, including support of the offscreen graphics 



258 

A bitmap is a data 
structure that repre­
sents the positions 
and states of a corre­
sponding set of pix­
els-that is, dots on 
the screen. 

CHAPTER 15 ..... lANDMARK IMAGING AND MuLTIMEDIA TECHNOLOGIES 

world-an environment for preparing complex images before display­
ing them on the screen. A subset of basic QuickDraw capabilities also 
supplies the basis for imaging on the Newton operating system for 
hand-held computers . 

...,. The original version of Color QuickDraw was introduced with the first 
Macintosh II systems. This first generation of Color QuickDraw could 
support up to 256 colors . 

...,. An updated version of Color QuickDraw (originally introduced as 32-
Bit Color QuickDraw) was shipped as pan of System 7. This version 
was expanded to support up to millions of colors. 

QuickDraw is designed to create images on 72-dpi devices, such as video dis­
plays and older dot-matrix printers. Compared to QuickDraw, QuickDraw 
GX offers far more sophisticated graphics features, such as device-resolution 
independence, data encapsulation, automatic support for ColorSync, and 
advanced typographic capabilities. However, QuickDraw is used extensively 
by a great number of developers, and Apple intends to continue supporting it 
in future versions of the Mac OS. 

'1\fpography 

Typography is the arrangement and appearance of printed characters. Desk­
top publishing has brought sophisticated typography into wider user than ever 
before. Mac OS 8 inherits the full legacy of Mac OS typographic features­
including those previously available only with the optionally installed Quick­
Draw GX graphics system. 

Fonts 

A font is a complete set of glyphs in one typeface and style. A glyph, in turn, 
forms the graphical representation of a particular character. Since System 7, 
the Mac OS has used two types of fonts: bitmapped fonts and True Type fonts. 
Bitmapped fonts were the only ones available on Macintosh computers until 
the introduction of System 7. In a bitmapped font, a glyph is an individual bit­
map designed at a fixed point size and style for a panicular display device. If 
the user requests a font that is not available in a particular size, QuickDraw 
can scale a bitmapped font to a different size to create the required glyphs. 
However, a scaled bitmap usually appears slightly jagged. 

With the TrueType fonts introduced in System 7, the Font Manager uses 
equations instead of bitmaps to define the appearance of glyphs. After using 
the equation to define the outline of a specific glyph in a particular font, the 
Font Manager translates the outline to a bitmap for display on the screen. The 
advantage of a TrueType font is that it can be used to generate smoothly ren­
dered glyphs at any size; the instructions included in the font fine-tune the 
image of the font at different sizes. For example, from one TrueType Courier 



A typestyle is a vari­
ant affecting all glyphs 
in the same font. Typi­
cal typestyles include 
bold, italic, underline, 
and soon. 

INTEGRATED IMAGING SYSTEMS 259 

font, the Font Manager can generate Courier 10-point, Courier 12-point, and 
Courier 200-point. TrueType fonts are also resolution independent; the same 
True Type font can generate glyphs on a 72-dpi device or a 300-dpi device. 

Mac OS 8 uses a new font-drawing architecture that's invisible to users and 
applications. The benefit to application developers is that this architecture­
called the Open Font Architecture (OFA)-is capable of supporting any type 
of font format-such as TrueType, PostScript Type 1, and the complex font 
formats for Asian languages. To bring new fonts to the Mac OS 8 platform, 
any font developer can provide a font sealer-a server program that calculates 
and renders glyphs at the request of the operating system's imaging services. 
Because they're implemented as server programs, font scalers are protected 
from errors in application code. Because operating system services and not 
applications are the clients for font scalers, an application developer doesn't 
need to write any additional code to use them. 

QuickDraw GX Typography 

QuickDraw GX uses the Open Font Architecture, and in addition, provides 
applications with sophisticated typographic features that extend far beyond 
the use of multiple font formats. QuickDraw GX allows developers to use 
typographic shapes that contain multiple fonts and typestyles. The Quick­
Draw GX line layout facility supports ligatures, kerning, extensive control 
over line breaks, text alignment and justification, number styles, fractions, 
subscripts and superscripts, effects such as curved and wavy lines of text, and 
text containing two or more languages (see Figure 15.3). 

Using QuickDraw GX's layout shapes, a developer can build ligatures into 
a font. (For example, the ligature "fi" results from the combination of the let­
ters "f" and "i" .) The QuickDraw GX programming interface simplifies the 
handling of cursor display, text insertion, and spell checking for words con­
taining ligatures. Another traditional typographic feature that QuickDraw 
GX takes care of automatically is kerning-the process of adjusting the spac­
ing between characters so that text has a more aesthetic and natural appear­
ance to the eye. 

Using QuickDraw GX, developers can also enhance typestyles by defining 
variation axes. Variation axes are variables whose values consistently change 
the appearance of a font in terms of weight, width, slant, and the optimal 
shape for a specific point size. 

International Font Handling Support in QuickDraw and QuickDraw GX 

The typographic advances of QuickDraw GX don't just serve aesthetics; 
they're very helpful for internationalizing the text capabilities of Mac OS 8 
applications. Chapter 12 discussed how the Human Interface Toolbox helps 
developers internationalize their human interfaces so that, for example, a 



260 

FIGURE 15.3 

CHAPTER 15 .... lANDMARK IMAGIHG AND MULTIMEDIA TECHHOLOGIES 

An internationalized application displaying text in multiple writing systems 

WATER BUPPALO HAT 

Don't 1M this hat to ~-.e your horw water 
un1tss there's no bud<et il<oo.tld n·s better le< 
swanon' ifflay low-hanging branches"' famm· 
your camp! It e. Genuine cowhide, walerprool, 
cattleman aease. spring steel wire In the bnm. 
elastic sweat band. 
SIZES 6 S/1- 7 S/8 
COlQII.! ... "1\lftt (llt•!}, lu<ltlloln (Ht<6), 

DaR ltown (H1 47) 
I'IIICf SAUIO 

HOT SAUCE 
Caution! Not fe< \he mid mannered. Blend of 
\he wOOd's hoi test chile, tomatoes, and sptCOS, 
n·s a doM'nght l~e hazard. No wonder ol's wen 
mo<t i!Wa<ds \han i1<Yf Olher rtope on \he M1ory 
of ct'oh cool< -oils. 
51zt5 12.S or. (5238! 
POICI 57.95 

. c}UI ..,. _,..4J) ~ 
.;. • ..,.,,....<J..)Y!~.j--J'-;il.l.~'Y 

) ._,:.u.u:i~l~"ro~~W;t~lo--1=.1 
,rl.><;;\lt. .. ut...:.....,U~.ll,. . ..,oJIJ;<tJoll 
~ '-< •.,.J}..,.I-.JII...)<-~oj.,1al•.,lol,:,._,;,u 

...IJoiiJI..I>J,:,.~ 

v .,. - ' .,. ~'11 
(l111l).J.)l.J .>!.,. , (HII•) .,..i (}~ 

(1111 •) ;;o.;. 
.)'iJ' 1\,•. .,.... 

iii~A.:J3-7'0}:f;':fi-'J--" 
~IHIAIO:IaR,IHIII:I!S..Il>l::;:n.al 1!1"-~ 
~· ~- ~?~ . ~"~~~7~~ ~ ~e~~~-~ 

" · t<;t:~JI()>:: ., . ' 'J · ?~?'X., (' 'J "Ir 
K8l l::~~·§fta ~~~~0~~~.,DII:"· 

'1 .( X 1 2 . s'f:,~ (5 23&) 
•• 7,05 t' lloo 

developer can easily convert an application menu or dialog box from one lan­
guage to another. 

A fully internationalized application a lso a llows a user to enter and edit 
text in documents using any language. An internationalized program that 
allows users to create and manage pages on the World Wide Web, for exam­
ple, could create web pages that display any mix of languages, as shown in 
Figure 15.3. 

However, the text encoding involved in displaying languages within docu­
ment content can be complicated for a program to handle. For example, fonts 
for Asian languages may have 8,000 or more glyphs, and several glyphs may 
be necessary represent a single character. To help developers, QuickDraw GX 
handles the deta ils of mapping characters to their correct glyphs. 

For virtually any writing system in use today, QuickDraw GX handles 
many text-display, text-editing, cursor-handling, character-highlighting, and 
character-set concerns, including 

..,. line direction (that is, the direction in which glyphs are read) 

..,. the size of the character set used to represent a writing system 

..,. contextual variation (that is, whether a glyph changes according to its 
position relative to other glyphs) 

QuickDraw GX can a lso handle right-to-left, left-to-right, and top-to-bottom 
writing systems, multiple writing systems on the same line, and even writing 
systems in which adjacent characters sometimes change position. 

In Mac OS 8, QuickDraw incorporates support for WorldScript I and 
WorldScript II. WorldScript I supports the display, manipulation, and printing 
of 1-byte complex text-encoding systems for such languages as Hebrew and 



MIDI (Musical Instru­
ment Digital Inter­
face) is a standard 
protocol for sending 
audio data and com­
mands to digital 
devices. JPEG (Joint 
Photographic Experts 
Group) refers to an 
international standard 
for compressing still 
images. MPEG 
(Motion Picture 
Experts Group) refers 
to an international 
standard for com­
pressing streams of 
video images. 

QUICKliME MuLTIMEDIA 261 

Arabic. (Support for the simpler 1-byte Roman text-encoding system has 
always been built into the Mac OS.) WorldScript II supplies this type of sup­
port for 2-byte text-encoding systems, such as Chinese and Japanese. System 7 
developers who use WorldScript I or II to create internationalized applications 
can rely on its availability in Mac OS 8. Whereas text objects (described in 
Chapter 12) and QuickDraw GX provide the most extensive and the most 
flexible support for international text in Mac OS 8, many developers are 
already very familiar with using QuickDraw's text-handling capabilities in 
conjunction with the multilingual capabilities of WorldScript I and II. There­
fore, Mac OS 8 fully supports these technologies for future development as 
well as backward compatibility. 

Anti-Aiiased Text Support 

In Mac OS 8, both QuickDraw and QuickDraw GX perform anti-aliasing of 
onscreen text. Anti-aliasing, unavailable through the operating system in Sys­
tem 7, is the smoothing of jagged edges on a shape by modifying the shades of 
individual pixels along the shape's edges. By changing a setting in the Appear­
ance Control panel, Mac OS 8 users turn anti-aliasing on or off. A developer 
can programmatically turn anti-aliasing on or off within an application; a 
developer can even turn it on for some portions of a document and off for 
other portions. 

QUICKliME MULTIMEDIA 

Since its inception, the Mac OS has helped users express themselves more 
effectively by mixing multiple types of media-such as drawings, photo­
graphs, and text-into their documents. System 7.5 lets users communicate 
with documents that incorporate video, music, and interactive, panoramic vir­
tual reality scenes. These System 7.5 features support what's usually referred 
to as multimedia software-applications that allow users to experience or cre­
ate information presented in an interactive mixture of video, sound, pictures, 
and text. 

The underlying architecture for multimedia on the Mac OS is QuickTime. 
It's a multiplatform standard for viewing, integrating, storing, editing, and 
playing time-based data, including 

....,. synchronized graphics 

.... CO-quality sound 

.... video 

.... text 

.... animations 

.... MIDI sequences 



262 CHAPTER 15 ..... lANDMARK IMAGING AND MULTIMEDIA TECHNOLOGIES 

...,. motion JPEG 

..... MPEG 

...,. virtual reality scenes 

...,. still images 

The QuickTime architecture allows users and developers to work with all of 
these diverse types of multimedia content as Quick Time movies. A QuickTime 
movie may contain any of these types of time-based data. This flexibility in 
data handling allows users and developers to focus on creating content rather 
than on integrating different technologies. 

In addition to serving as a playback engine for time-based data, QuickTime 
includes extensive authoring and editing capabilities, including the ability to 
manipulate text and capture sound and video. With Apple's MoviePlayer 
application, for example, users can edit QuickTime movies by cutting and 
pasting text and video tracks and by editing music clips. Numerous applica­
tions from other developers offer highly sophisticated tools for creating and 
editing QuickTime movies. 

QuickTime isn't just for creating and editing video movies. As you'll see in 
the following sections, other powerful multimedia services are built on top of 
QuickTime capabilities. Whereas these services are available in System 7.5 as 
optionally installed system extensions, they're available full-time in Mac OS 8 
as shared libraries. 

g~nmUNNom 
The Component Manager 

The Component Manager is a shared library technology introduced in System 7. In 
Mac OS 8, this technology is used only by Quicklime as its cross-platform mechanism for 
loading and unloading libraries of multimedia code. No other portions of the operating sys­
tem use the Component Manager. Nevertheless, Mac OS 8 supports the Component Man­
ager programming interface as a System 7 application-compatibility service. 

QuicknmeVR 

To let a user move through a panoramic scene or inspect objects from multiple 
perspectives, a Mac OS 8 application can use QuickTime VR-short for vir­
tual reality. The user can zoom in or out of a scene, navigate from one scene to 
another, and use the cursor to pick up and examine objects. As a user changes 
the view of a scene, QuickTime VR maintains the correct perspective, creating 
for the user the effect of being at a location and looking around. 

QuickTime VR is built on QuickTime and extends its capabilities. Quick­
Time VR supplies a panoramic technology that lets users explore 360-degree 



fiGURE 15.4 

Q UICKliME MULTIMEDIA 263 

Two views of the same panoramic scene 

scenes and an interaction technology that lets them move and closely inspect 
individual objects. Figure 15.4 illustrates the panoramic technology. These 
two views are part of a single 360-degree panoramic scene. The user can pan 
between these views and look up and down. The CD-ROM version of Figure 
15.4 lets you further explore the interactive capabilities of QuickTime YR. 

QuickTime YR supports the effects of camera rotation, object rotation, 
camera movement, and camera zooming. Using the mouse, a user can click on 
hot spots to interact wi th a scene, navigate to another location, or activate 
some action, such as causing an object to rotate. 

Rather than rendering animations on expensive, high-end workstations, a 
developer captures a scene with a standard camera and converts it to a Quick­
Time VR file. Essentially, this is a process of connecting a series of photos in 
rea listic ways. First, a developer captures images with a 35-mm, video, or dig­
ital camera and then places the images into the computer in digital form (gen­
erally, by using a scanner). The developer then authors, or composes, the 
panoramic scene, using such techniques as "stitching" (eliminating overlap 
and smoothing borders between individual images to create a continuous pan­
orama) or "warping" (correcting distortions in perspective from a panoramic 
camera) and creating interactivity by building in hot spots that link to audio 
recordings, text, or other panoramic scenes. 

Although developers ca n use a panoramic camera to capture images, one of 
QuickTime VR's advantages is that it doesn't require such expensive equip­
ment-in fact, 35-mm photos can provide higher resolution and better image 
depth, and they're easier to digitize. The 35-mm photos also give greater detail 
than rendered images and allow for more interesting lighting and effects. 

Developers can author QuickTime YR scenes once on the Mac OS 8 plat­
form and deliver this content to run on both Macintosh and Windows-based 
computers. The result is access to a vast market of personal computer users. 

The growing use of virtual reality on the Internet is supported by the versa­
tility and realism of QuickTime YR. Because QuickTime YR files are excep­
tionally small , they're fast to download and don't require much computer disk 



264 

fiGURE 15.5 

CHAPTER 1 5 ~ I.AHDMARK IMAGING AND MULTIMEDIA TECHNOLOGIES 

Colleagues collaborating on a document with Quicklime Conferencing 

Tho fbcal,.... o..tq Ocbbtr 31 vu our 1110>t 

successfUl. As shovn In Tobie I aboVe, the 
en4 of yeare ($16.4 m1111on), 
Gross Profi .6 m1111on) Net lncomo 

(S1.8 m1111on).... 1tCOnU. COMOia). 

space. In fact, a typical panoramic scene can be as small as 200K; thousands 
of panora mas can fit on a single CD-ROM. 

Quicknme Music Architecture 

The QuickTime Music Architecture helps users work with MIDI music by 
providing a software synthesizer and a library of musical instruments. Music 
and synthesizer developers can deliver their own custom software synthesizers 
and instruments through QuickTime. Mac OS 8 application developers, in 
turn, can use this architecture to embellish their content with music and create 
a distinctive aural experience. 

Quicknme Conferencing 

QuickTime Conferenci ng is a cross-platform collaboration and communica­
tions technology that allows users to broadcast and view real-time digital 
audio, text, images, and video. Conference participants using an application 
based on QuickTime Conferencing can share and annotate text, images, 
screen captures, sound, video, and QuickTime VR scenes. Conference partici­
pants can also record their proceedings and transform them into QuickTime 
movies. Figure 15.5 shows two colleagues with video ca meras connected to 
their computers collaborating over the Internet with QuickTime Conferenc­
ing. T hese two can view live video images of one another and simultaneously 
work on a shared document. 



A HISTORY oF MAc OS IMAGING AND MuLTIMEDIA FEATURES !65 

This conferencing can take place on a variety of networks such as an Inte­
grated Services Digital Network (ISDN), the Internet, local area and wide area 
networks, and Asynchronous Transfer Mode (ATM) networks. The number 
of conference participants is limited only by the available network bandwidth. 

Although the QuickTime Conferencing technology is Mac OS based, it's 
designed to fit open standards for interoperability. It's compatible with a wide 
range of industry-standard video formats and video compression and decom­
pression schemes. QuickTime Conferencing also supports a variety of connec­
tion models, including point-to-point video telephony, multiparty video 
conferencing, broadcast audio and video on an existing LAN, and audio-only 
or video-only for special applications. 

This independence from transport modes, compression schemes, and media 
devices permits cross-platform video conferencing between Mac OS-compati­
ble computers, other personal computers, UNIX systems, and room-based 
conferencing systems. Users don't have to worry about whether their hard­
ware equipment, networking equipment, or applications are compatible with 
the solutions being used on the other end of the conference line. 

Mac OS 8 developers can use QuickTime Conferencing as a foundation 
technology for their video conferencing applications. For example, Apple's 
own QuickTime Conferencing application, Apple Media Conference, allows 
users to call other video conference participants over their local area networks 
(LANS). Those who have a direct connection to the Internet can use these 
capabilities with remote users as well. The Apple Media Conference applica­
tion also allows two or more participants to edit the same document. While 
one participant has the document stored on his or her system, others partici­
pants can view it and mark it up in a shared window, as shown in Figure 15.5. 

A HisTORY oF MAc OS IMAGING AND MuLTIMEDIA FEATURES 

The following chronology shows the evolution of imaging and multimedia 
capabilities inherited by Mac OS 8 from earlier versions of the Macintosh 
platform. 

1984 
..... The Macintosh computer is introduced, featuring the QuickDraw 

graphics system and a bitmapped video display. 

1985 
..... Apple introduces the LaserWriter printer. 



266 CHAPTER 15 ~ lANDMARK IMAGIHG AND MuLTIMEDIA TECHNOLOGIES 

1988 
~ Macintosh computers become the first personal computers to offer 

plug-and-play support for CD-ROM drives. 

1989 
~ Color QuickDraw is introduced, making the Macintosh the first per­

sonal computer to display photo-realistic images. 

1990 
~ Macintosh computer models begin including microphones for sound 

input. 

1991 
~ With the introduction of System 7, True Type fonts become available. 
~ QuickTime multimedia software is introduced. 

1992 
~ WorldScript becomes available. 
~ Many Macintosh computer models include built-in CD-ROM drives, 

spurring the growth of multimedia technologies. 
~ ColorSync is introduced, making it the first operating system-level 

implementation of an industry-standard color-matching system. 
~ Apple introduces QuickTime for Windows, making QuickTime the first 

industry standard for developing and using cross-platform multimedia 
software. 

1994 
~ The QuickDraw GX imaging system is introduced. 
~ Quick Time 2.0 becomes available. 

1995 
~ QuickTime VR, QuickTime 3D, and QuickTime Conferencing 

are introduced. 

SUMMARY 

Mac OS 8 inherits from System 7.5 the imaging technologies of QuickDraw, 
QuickDraw GX, QuickDraw 3D, and ColorSync. Mac OS 8 also inherits the 
multimedia technologies of QuickTime, QuickTime VR, QuickTime Confer­
encing, and the QuickTime Music Architecture. These technologies are fully 
integrated into Mac OS 8 as memory-efficient shared libraries. 



PLANNING A PRooua FOR MAc OS 8 167 

Mac OS 8 adds extra capabilities to the imaging and multimedia technolo­
gies inherited from System 7.5. For example, QuickDraw GX is implemented 
as a reentrant service; QuickDraw and QuickDraw GX perform anti-aliasing 
of text; QuickDraw incorporates support for WorldScript I and WorldScript II 
text and font-handling capabilities; and a new architecture for font scalers 
allows Mac OS 8 applications to display text in potentially any font format. 
And core operating system features-such as preemptive multitasking, virtual 
memory, concurrent 110, faster dynamic storage allocation, and PowerPC 
optimization-significantly improve the performance of these landmark tech­
nologies in Mac OS 8. 

PLANNING A PRODUCT FOR MAc OS 8 

If you're an application developer, the best way to begin preparing Mac OS 8 
products that take advantage of these imaging and multimedia technologies is 
to adopt these technologies in your System 7 applications. Because the pro­
gramming interfaces for these technologies remain unchanged in Mac OS 8, 
any development you undertake with them will run without modification on 
Mac OS 8. 

If you're a developer of printers, you should prepare your products to work 
in Mac OS 8 by creating QuickDraw GX printer drivers for them. 



Personal file sharing 
alloiNS any Mile 05-
compatible com­
puter on a network to 
be a file server. 
AppleTalk Remote 
Access allo\NS 
Mac 05-compatible 
computers to com­
municate with net­
work servers over 
standard telephone 
lines. 

• • • • • • • • • • • • • • • • • • • • • • • 

Landmark 
Network 
Techno I 

In 1985, the Macintosh computer became the first persona l computer to offer 
built-in networking capabilities. Today, users have come to rely on vastly 
more powerful Mac OS networking capabilities to collaborate and communi­
cate through such media as shared electronic documents, e-mail, interactive 
World Wide Web sites, and live video conferencing. Mac OS 8 inherits and 
improves upon this networking legacy. From System 7.5, Mac OS 8 inherits 
support for a wide array of networking standards through its Open Transport 
architecture. M ac OS 8 also inherits popular user-oriented networking facili­
ties from System 7.5, including personal file sha ring, QuickTime Conferenc­
ing, AppleTalk Remote Access, and Cyberdog. 

To improve upon its networking legacy, Mac OS 8 offers networking appli­
cations the benefits of preemptive multitasking, concurrent network 110, inter­
national language support, and memory protection for server programs. 
Previous chapters of this book have shown how Mac OS 8 networking appli­
cations can take advantage of these core features of the operating system. This 
chapter describes the specific networking techno logies that Mac OS 8 brings 
forward from System 7.5 and explains how users and developers can take best 
advantage of them. 

If you haven't already done so, read "How to Navigate the Book CD­
R OM " in the preface for information about using the CD-ROM version of 
this book. In the CD-ROM version of the book, the screen shots presented in 
this chapter are animated. 

269 



270 CHAPTER 16 ..... lANDMARK NETWORKING TECHNOLOGIES 

KEY TERMS AND CoNCEPTS 

..... Networking is the sharing of information and services via connected 
computers. Using communication protocols such as AppleTalk and 
TCPIIP, networked computers can be linked by various media-for 
instance, phone lines, LocalTalk cables, Ethernet cables, and radio. 

..... Network protocols are the rules that govern how and in what format 
data is transmitted between connected computers. 

..... The Internet is a loosely administered worldwide computer network. 
The Internet is a descendent of the Arpanet, which was created to allow 
U.S. universities and research institutions to share information easily. 
The TCPIIP protocols and many of the tools used today on the Internet 
were first developed for the Arpanet. 

..... An intranet refers to any private network based on Internet protocols 
and tools. For example, a company might use an intranet to share files 
and e-mail internally among its employees . 

..... The World Wide Web consists of computers on the Internet that use 
multimedia to present information and services. These computers also 
use electronic links within their media to help users quickly find related 
information and services across the web . 

..... Cyberdog is an OpenDoc-based architecture integrating network ser­
vices into the Mac OS. Cyberdog allows users to incorporate remotely 
located information into their software and documents . 

..... QuickTime Live! is a cross-platform venue for live, interactive, online 
entertainment on personal computers. 

..... Open Transport is the portion of the UO system that implements indus­
try-standard networking protocols. 

MAJOR POINTS OF INTEREST 

With the phenomenal growth of the World Wide Web and with users' growing 
reliance on the Internet, computer networking capabilities are more important 
today than ever. Mac OS 8 provides powerful networking facilities and, in the 
tradition of the Mac OS, Mac OS 8 delivers these features in ways that make 
networking easier than it's ever been-easier for users, easier for application 
developers, and easier for network content providers. 

Mac OS 8 makes networking easier for users in several ways. First, 
Mac OS 8 provides experts and other types of interactive, online assistance 
that help users take advantage of the platform's networking capabilities. For 
example, personal file sharing and network printer sharing were introduced in 
previous versions of the Mac OS, but a setup expert supplied by Mac OS 8 
simplifies the tasks of configuring these features. The setup expert automati-



AppleTalk refers to a 
suite of network pro­
tocols that have been 
adopted by many 
vendors of computers 
and networking prod­
ucts. Apple Talk net­
workscan be 
integrated with other 
network systems, 
such as the Internet. 

As discussed previ­
ously in this book, 
OpenDoc is a multi­
platform technology 
for constructing and 
sharing compound 
documents, which 
consist of multiple, 
user-selected soft­
ware components, 
called parts. 

MAJOR POINTS OF INTEREST !71 

cally determines important details on behalf of the user, such as whether the 
user's computer is connected to an AppleTalk network and, if so, what net­
work services are available. The setup expert then asks general questions 
about the user's goals-for instance, "Would you like to share files over the 
network?" In response to the user's answers, the setup expert configures these 
networking features automatically. As described in Chapter 13, any developer 
can similarly use Mac OS 8 Assistance Services to help users take full advan­
tage of an application's networking features. 

Because of the wealth of information that computer networks make avail­
able to users, the task of organizing and collecting information has become 
more complex. As you saw in Chapter 10, the Mac OS 8 Navigation Services 
make it easier for users to search for any type of information within Mac OS 
files located on network servers. With Find windows, for example, users can 
locate and organize network-hosted information relationally, grouping docu­
ments with similar content according to user-specified criteria. 

With its workspace feature, described in Chapter 12, Mac OS 8 also 
makes it easier for a user to manage networking preferences, such as e-mail 
accounts and World Wide Web bookmarks. Several users sharing the same 
computer can maintain individual networking preferences in their own per­
sonal workspaces. 

Open Transport makes it easier for developers to incorporate networking 
services in their applications. By using the programming interface defined by 
Open Transport, a developer gains access to any type of network to which the 
user's computer is connected. Open Transport automatically takes care of the 
communication details appropriate for the user's network. 

Cyberdog makes networking easier for users and developers both. For 
users, Cyberdog provides a consistent, intuitive way to search and browse the 
Internet and gain access to Internet mail and newsgroups. A user can drop a 
Cyberdog part into any OpenDoc document to instantly add Internet capabil­
ities to that document. For developers, Cyberdog makes it very easy to pro­
vide Internet capabilities within their applications: they need only to support 
OpenDoc. Then users can extend Internet capabilities to these applications 
simply by adding Cyberdog parts. Apple supplies users with a set of useful 
Cyberdog parts, and network application developers can create Cyberdog 
parts of their own. The Cyberdog classes that developers use to create parts 
include built-in protocol support and connection support, greatly simplifying 
the creation of networking products. 

Mac OS 8 also makes it easier to write multimedia content for distribution 
across the Internet. Because QuickDraw 3D and the QuickTime multimedia 
services described in Chapter 15 are cross-platform, content providers can use 
these services to create 3D images and various forms of time-based data-such 
as video, MIDI music, CO-quality sound, and virtual reality scenes-for pre­
sentation in web pages that can be shared by Mac OS, Windows, and UNIX 
users. 



272 

FIGURE 16.1 

CHAPTER 16 ~ lANDMARK NETWORKING TECHNOLOGIES 

Using a Cyberdog part to open a web page from within a document 

CYBERDOG 

Iii ali lnttf"l<lttvt 

Loootlon(IJ!I.) : http://CM.eom/ 

I= 
ftMII¥ 

cJNfiL-
_..AIIIBIZ 

.Aiillfl 

..,..1011& llilll 
o;;;o,;; .. 

..,..llltiNtlfl 

i -:.:;sram 
.t.ft:J.~ 

.Attmtm 
,AflLE 

... 

Cyberdog is one of Apple Computer's latest developments. To users, Cyberdog 
consists of a suite of ready-built OpenDoc parts for accessing and displaying 
Internet-borne content. To developers, Cyberdog consists of a collection of 
OpenDoc classes used to create Internet-capable OpenDoc parts. 

Cyberdog parts give users a flexible way to manage their access to the Inter­
net. For example, a user can drag and drop icons representing Internet loca­
tions into OpenDoc documents. Clicking one of these icons connects the user 
to an Internet site. The user can also keep a notebook of icons representing 
regularly visited Internet locations, newsgroups, mail trays, web sites, and 
other items and services available on the Internet. Clicking these icons con­
nects the user to their associated Internet locations. By dragging and dropping 
these items into other documents, the user can seamlessly integrate Internet 
content with other content. And the user can share documents containing this 
type of content with other users. 

Figure 16.1 shows the user opening a Cyberdog part from w ithin a docu­
ment that contains standard text and graphics. This Cyberdog part contains a 
browser to a particular web site. The CD-ROM animated version of this fig­
ure demonstrates how the user drags an icon representing the web site from 
the desktop and drops it onto the document. This document becomes a web 
browser. Every time it's opened, the document creates a network connection 
and displays the current web page. 



Parts are the por­
tions of an OpenDoc 
document that con­
tain content for view 
or manipulation by 
users. At program 
execution time, part 
editors display part 
content, facilitate 
manipulation of the 
content, and provide 
a user interface for 
modifying that 
content. 

CYBERDOG 273 

Apple Computer supplies users with a suite of useful Cyberdog parts, 
including 

~ a World Wide Web browser 
~ an e-mail reader 
~ a newsgroup reader 
~ a Gopher browser 
~ FTP, the Internet file transfer facility 
~ Telnet, the Internet remote log-in facility 
~ utilities for storing and organizing Internet information 
~ security facilities 

With Cyberdog, developers can add Internet connectivity to any existing 
OpenDoc part (for example, to support e-mail or network file transfers), cre­
ate new OpenDoc parts with network capabilities, create enhanced replace­
ments for Apple-supplied Cyberdog parts, and even add new network 
protocols and services to the OpenDoc architecture. 

Support for accessing the Internet is built into the Cyberdog classes, simpli­
fying the effort necessary to develop Internet-capable products. For example, 
a developer can create a Cyberdog part for displaying JPEG data located on 
the Internet and not worry about network protocols or connections, because 
Cyberdog handles these details automatically. 

Cyberdog offers all of the extensibility features of OpenDoc, which are 
described in Chapter 9. From the developer's perspective, a Cyberdog part edi­
tor, like an OpenDoc part editor, is a small shared library offering specialized 
features. Part editors can be created and revised much more quickly than 
large, stand-alone applications. Cyberdog permits users to dynamically mix 
and match parts in order to extend networking capabilities according to their 
own needs and tastes. This extensibility allows developers to quickly create 
and revise Internet solutions that users can seamlessly integrate into their 
work environments. 

g~nmuwNom 
PowerTalk and AOCE 

PowerTalk and AOCE (Apple Open Collaboration Environment) from System 7 are not sup­
ported in Mac OS 8. Instead, these communications and collaboration services are replaced 
by industry-standard Internet protocols and OpenDoc, the open standard for creating com­
ponent software like Cyberdog. 



274 

FIGURE 16.2 

CHAPTER 16 .... lANDMARK NETWORKING TECHNOLOGIES 

A QuickDraw 3D image manipulated from the Netscape browser 

QUICKDRAW 3D AND QUICKliME MuLnMEDIA 0~ THE I~TERNET 

Chapter 16 discussed how Apple Computer's cross-platform 3D and multime­
dia technologies take advantage of Mac OS 8 capabilities. For content cre­
ators, these technologies offer innovative solutions for authoring web pages 
and publishing information on the Internet. For users, these technologies offer 
engaging ways to interact with information on the Internet. For example, 
users can rotate and examine QuickDraw 3D objects displayed on web pages, 
like the one shown in Figure 16.2. 

Central to QuickDraw 3D is the 3DMF (3D Metafile) format. This format 
a llows 3D objects created by one application to be used by other applications, 
even on different operating systems. This makes 3DMF a convenient mecha­
nism for exchanging 3D graphics across the Internet. To accelerate the imple­
mentation of 3DMF across the World Wide Web, Apple Computer licenses 
3DMF to developers at no charge for use in their applications. Apple has also 
proposed 3DMF as a file extension to Moving Worlds VRML 2.0, a new 
cross-platform standard for dynamic 3D environments on the Internet pro­
posed in March 1996 by Apple, Netscape Communications, and Silicon 
Graphics. 

QuickTime Conferencing, as discussed in Chapter 15, allows users to 
broadcast and view real-rime digital audio, music, text, images, and video on 
the Internet. Although QuickTime Conferencing technology is Mac OS based, 



OPEN TRANSPORT NEIWORK ARCHITECTURE 275 

it adheres to open standards for interoperability and permits cross-platform 
video conferencing between Mac OS, Windows, and UNIX computers and 
room-based conferencing systems. QuickTime Conferencing users don't have 
to worry about whether their hardware or applications are compatible with 
the solutions being used on the other end of a conference line. 

As you recall from Chapter 15, QuickTime VR is the virtual reality soft­
ware that lets a user move through a panoramic scene or inspect an object 
from multiple perspectives. Content providers use QuickTime VR to create 
highly interactive web sites. Using this technology, for example, a business can 
develop a web site that transports consumers into its store and allows them to 
see a product, zoom in to it, pick it up, turn it around, and navigate to another 
area of the store. 

Integrating all of Apple Computer's interactive multimedia technologies, 
QuickTime Live! is a showcase of World Wide Web technology. QuickTime 
Live! presents multimedia webcasts of live entertainment, including images, 
videos, sound, and QuickTime VR scenes. A QuickTime Live! event is interac­
tive: at custom kiosks, attendees at the event can post pictures of themselves 
on the Internet and chat with online fans, and online fans are able to see the 
live entertainment as it's happening. Webcasts can also be archived for people 
who want to view the event after it takes place. 

The February 1996 coverage of the 38th Annual Grammy Awards inaugu­
rated the first QuickTime Live! event to include high-quality, color broadcasts 
of both live and prerecorded video over the Internet. Creative content for a 
webcast like the Grammy Awards is produced as follows: 

1. Camera crews videotape a story or event. 
2. The content is edited with archival footage, titles, and special effects to 

produce a broadcast-ready show. 
3. The show is sent to a Mac OS-compatible computer for digitizing. 
4. The digital video stream is webcast over the Internet to geographically 

disbursed web servers. 
5. These servers send the video signal to Mac OS and Windows users who 

have tuned in using webcast viewer software available from the web site 
itself. 

OPEN TRANSPORT ._.ETWORK ARCHITECTURE 

Open Transport is the 110 family that implements the operating system's net­
working capabilities. Like the rest of the 1/0 system in Mac OS 8, Open 
Transport is completely concurrent. Therefore, multiple network transactions 
are interleaved so that the CPU doesn't waste valuable cycles waiting for any 
single transaction to be completed. This concurrency, in conjunction with the 



276 

TCPnP (Transmission 
Control Protocol/Inter­
net Protocol) is the 
major transport proto­
col and the network 
layer protocol used 
in communicating 
over the Internet. 

CHAPTER 16 .... lANDMARK HE1WORKING TECHNOLOGIES 

multitasking capabilities of Mac OS 8, allows Open Transport to transfer net­
work data efficiently and to increase overall system performance. 

To make networking easier for users, Open Transport 

...,. Supplies a consistent human interface for configuring AppleTalk, 
TCPIIP, and other networks. 

...,. Gives users the ability to reconfigure and restart network services with­
out restarting their computers. 

.... Allows a computer to be connected to multiple networks simulta­
neously. For example, suppose a user in an office environment connects 
a LaserWriter printer to his or her computer using LocalTalk. For file 
access and e-mail, the user's computer may also be connected to the 
company-wide network via Ethernet. Open Transport maintains both 
connections without creating a bridge between the networks. (Before 
Open Transport, a System 7 user would have to open the Network con­
trol panel and change the AppleTalk connection back and forth 
between LocalTalk and Ethernet.) 

To make networking easier for application developers, Open Transport defines 
a programming interface that provides access to any type of network to which 
the user's computer is connected. The calls that an application makes to Open 
Transport depend solely on the nature of the communication, not on the trans­
port mechanism. For example, a developer can use one set of functions for any 
connection-oriented, transactionless protocol, such as ADSP or TCP, and a dif­
ferent set of functions for any connectionless, transactionless protocol, such as 
UDP or DDP. In other words, after determining the type of protocol that is 
appropriate for an application, a developer can write networking code without 
worrying about which protocol family will be used. (By comparison, the 
Cyberdog architecture, as you've seen, shields developers from having to deal 
with any network protocol or connection details whatsoever.) 

Open Transport supports industry standards at both the hardware and the 
software levels. In particular, Open Transport is based on these key standards: 
from the X/Open Group, the X/Open Transport Interface (XTI) and the Data 
Link Provider Interface (DLPI); and from UNIX System V, STREAMS. Open 
Transport includes implementations of the AppleTalk and TCP/IP protocols 
and support for common data links, such as LocalTalk, Ethernet, and Token 
Ring. Open Transport for Mac OS 8 also includes support for serial communi­
cations of Apple Talk and TCP/IP network data with an implementation of the 
Point-to-Point Protocol (PPP). 



A HISTORY oF MAc OS NEtWORKING FEATUREs 277 

g4tnw~Hons 
AppleTalk Manager and MacTCP Programming Interfaces 

For compatibility with applications and networking products from System 7, M.ac OS 8 sup­
ports the AppleTalk Manager and MacTCP programming interfaces as cooperative services. 
(MacTCP allows System 7 applications to communicate on the Internet and on other net­
works based on TCP/IP protocols.) These programming interfaces can be called only from the 
main tasks of cooperative programs. Because Open Transport is a reentrant service, and 
because it's optimized for the PowerPC CPU, developers wishing to create new products 
based on the Apple Talk or TCP/IP protocols should adopt the Open Transport programming 
interface. 

A HistoRY oF MAc OS NETWORKING FEAtuREs 

The following chronology shows the evolution of networking capabilities 
inherited by Mac OS 8 from earlier versions of the Macintosh platform. 

1984 
~ The Macintosh computer is introduced. 

1985 
~ The Macintosh computer becomes the first personal computer with 

plug-and-play networking using AppleTalk software and LocalTalk 
cables and connectors. 

1989 
~ The first release of MacTCP provides the foundation for Internet appli­

cations on the Mac OS. 

1991 
~ Personal file sharing is built into System 7. 
~ AppleTalk Remote Access software becomes available, allowing remote 

computers to connect to AppleTalk networks by telephone. 
~ Macintosh computers feature plug-and-play Ethernet networking capa­

bilities. 

1993 
~ SNMP, the Internet standard for network management, is available for 

the Mac OS. 



278 CHAPTER 16 .... l.ANDMARK NETWORKING TECHNOLOGIES 

1994 
.... System 7.5 incorporates 32-bit TCPIIP Internet support in a new ver­

sion of MacTCP. 

1995 
.... Open Transport becomes available for PowerPC-based Mac OS--com­

patible computers . 
.... QuickTime VR, QuickTime 30, and QuickTime Conferencing operate 

on the Internet. 

1996 
.... Open Transport is included with every copy of System 7.5.3. 

SUMMARY 

Mac OS 8 continues the legacy of Macintosh networking capabilities. Fea­
tures such as personal file sharing, network printer sharing, and dial-in net­
work access-all of which were introduced in previous versions of the Mac 
OS-remain integral to Mac OS 8. Workspaces, experts, the Navigation Ser­
vices, and other facilities introduced with Mac OS 8 make these networking· 
capabilities easier for people to use. 

The Cyberdog architecture is one of the more recent-and potentially one 
of the most revolutionary-networking technologies to be introduced on the 
Mac OS. By simply dragging and dropping a Cyberdog part onto OpenOoc 
documents, a user gives them instant Internet capabilities. Cyberdog supplies 
developers with an extensible architecture for creating small, well-integrated 
networking products. By handling protocol and network-connection details, 
Cyberdog simplifies these developers' programming efforts. 

QuickOraw 30, QuickTime, QuickTime VR, QuickTime Conferencing, 
and other QuickTime technologies help content creators produce cross-plat­
form, interactive forms of multimedia presentations for display and distribu­
tion on the World Wide Web. 

The operating system provides network 110 support through Open Trans­
port. Developers who want access to network services from within their appli­
cations use the programming interface of Open Transport. This programming 
interface provides a layer of abstraction so that developers don't need to write 
code specific to any type of networking hardware or transport mechanism. 

Concurrent 1/0 processing, priority-based preemptive multitasking, and 
memory protection are capabilities newly offered by Mac OS 8 that improve 
overall performance and system stability for the products using these land­
mark networking technologies. 



PLANNING A PRoDuCT FOR MAc OS 8 279 

PLANNING A PRODUCT FOR MAc OS 8 

If you're a developer, you can take the following steps now to take advantage 
of Mac OS 8 networking capabilities in your software product: 

1. Add OpenDoc support to your existing product. In this way, your prod­
uct becomes Internet capable whenever a user adds a Cyberdog part to 
one of its documents. 

2. Adopt QuickDraw 3D, QuickTime, and QuickTime VR capabilities 
into your existing application so that content creators can use it for 
their web authoring and Internet publishing needs. 

3. If you're currently developing any new networking applications that 
require you to deal directly with networking protocols, use Open Trans­
port rather than the AppleTalk Manager or MacTCP programming 
interfaces. 

4. Consider whether your application consumes very much time process­
ing network I/0 operations. If so, factor your network 1/0 code into 
portions separate from the rest of your application. You can then imple­
ment this code more easily as a separate thread of execution in a multi­
threaded program. 

5. Determine whether some portion of your network product would benefit 
from the extra protection afforded by a separate address space. If so, you 
should plan to implement this portion as a server program. For example, 
a program that makes World Wide Web pages available to remote users 
can be implemented as a server program, thereby preventing program­
ming errors in other applications from disrupting its operations. 



• • • • • • • • • • • • • • • • • • • • • • • 

30MF (30 Metafile) format A cross-platform format allowing 3D objects cre­
ated by one application to be used by other applications. The 3DMF format 
specifies objects, their properties, and properties of the scene that contains 
them. The file format preserves all object properties in either text or binary 
formats. 

30 object In QuickDraw 3D, a shape that contains or references specifica­
tions about how and where the object should be drawn. Developers can create 
multiple instances of any type of 3D object and assign them individual charac­
teristics. Users can change an object's appearance by rotating it, scaling it, or 
otherwise transforming it. 

30 Viewer A simple mechanism that developers can incorporate into their 
applications to allow users to view and interact with 3D objects. 

access window A window from which the user views and selects help topics 
described in an Apple Guide guide file. 

active window The frontmost modal or document window. Only the contents 
of the active window are affected by user actions. The active window is identi­
fied by distinctive details that aren't visible for inactive windows. 

address See logical address, physical address. 

281 



182 GLOSSARY 

address space The entire range of memory locations potentially available to a 
process. Mac OS 8 supports multiple address spaces. 

alert box A modal window containing an alert panel used to warn the user or 
to report an error. An alert box typically consists of text describing the situa­
tion and buttons that require the user to acknowledge or rectify the problem. 
See also dialog box, modal alert box, movable alert box. 

alert panel A root panel placed inside a modal window to create an alert box. 
An alert panel contains additional panels, such as for text and buttons. 

Alias Manager An operating system service for creating and using data struc­
tures for establishing and resolving permanent references to files, folders, and 
volumes. 

alias record A data structure identifying a file, folder, or volume that the user 
might need to locate again. Alias records assist users and programs in organiz­
ing files for easier access. The Alias Manager has algorithms for using alias 
records to find files that have been moved, renamed, copied, or restored from 
backup. 

A-line instruction See A-trap. 

AMP See asymmetric multiprocessor. 

ANSI (American National Standards Institute) An organization devoted to defin­
ing commercial standards, such as for programming languages like C. 

anti-aliasing The smoothing of jagged edges on a shape by modifying the 
shades of individual pixels along the shape's edges. 

API See programming interface. 

Appearance control panel A utility allowing the user to choose among the 
themes available on the system and to modify other aspects of appearance, 
such as the desktop pattern, highlight color, screen saver, and system font. 

Appearance Manager The operating system service that provides the underly­
ing support for themes. The Appearance Manager manages all aspects of 
themes and theme switching, including the Appearance control panel, support 
for a variety of color data, and support for animation and sound. 

Apple event A data structure used to direct the operation of or communicate 
information to a program. An Apple event identifies itself and its purpose, 



GLOSSARY 183 

names its destination, and contains additional data structures that vary 
according to the kind of event. Apple events constitute the primary form of 
interprocess communication in Mac OS 8. 

Apple event dispatcher A queue of incoming events and a stack of handler 
tables containing functions that respond to those events. Mac OS 8 provides a 
default Apple event dispatcher for every process, and any program may create 
additional dispatchers as necessary. 

Apple event handler A function that extracts pertinent data from an Apple 
event, performs the action requested by the Apple event, and returns a result. 

Apple Event Manager An operating system service that allows programs to 
send and receive Apple events. 

Apple Guide An onscreen help system that explains concepts or guides users 
through the steps of an operation. 

AppleScript A text-based scripting language that lets users control and auto­
mate off-the-shelf scriptable programs. 

AppleTalk A suite of network protocols that have been adopted by many 
vendors of computers and networking products. AppleTalk networks can be 
integrated with other network systems, such as the Internet. 

AppleTalk Remote Access A program that allows Mac OS-compatible com­
puters to communicate with network servers over standard telephone lines. 

application A program designed to help users accomplish goals; for example, 
a web browser helps users navigate the Internet, a page-layout program helps 
users present information in print form, and a flight simulation game offers 
recreational challenges to users. In Mac OS 8, an application is usually imple­
mented as a cooperative program that may be supported by server programs. 

application handler table A table of program-specific Apple event handlers, 
which a program can add to or remove from its handler table stack at any 
time. Compare default handler table. 

application heap A memory area assigned exclusively to a System 7 applica­
tion for the application's temporary data storage needs. Whereas the 
Mac OS 8 memory allocators dynamically create additional memory areas to 
fulfill a program's storage needs, an application heap is fixed in size at applica­
tion launch time and can't be expanded. 



284 GLOSSARY 

application program See application. 

application programming interface See programming interface. 

area See memory area. 

Assistance Services A group of comprehensive and flexible facilities for deliv­
ering help appropriate to users' various goals and skill levels. The Assistance 
Services include Apple Guide, the Help Manager, the Interview Manager, the 
Notification Manager, the Tip Manager, and the Trigger Manager. 

asymmetric multiprocessor (AMP) Having more than one processor execute 
instructions so that one processor, the master processor, executes all operating 
system-related operations. Other processors, called slave processors, perform 
operations allocated to them by the master processor. Compare symmetric 
multiprocessor. 

asynchronous 110 operation An operation that performs data input or output 
while the task requesting the operation remains eligible for execution. Com­
pare synchronous 110 operation. 

atomic operation A simple routine-such as one that increments or decre­
ments a value, tests and sets a value, or compares and swaps values-that exe­
cutes to completion; it cannot be interrupted. In Mac OS 8, these operations 
are implemented using instructions provided by the CPU. Tasks can use 
atomic operations to help synchronize access to shared data. 

A-trap A compiled instruction that is unimplemented by the Motorola 68K 
family of microprocessors. The first 4 bits of such an instruction have a hexa­
decimal value of A. For applications compiled to run on 68K-based comput­
ers, these instructions invoke routines implemented by the Mac OS. 

A-trap table A table containing entry points to Mac OS routines called by 
code generated to execute on the 68K family of Motorola processors. See also 
A-trap. 

automated assistance Onscreen help that leads a user through an operation 
and performs as much of the work for the user as possible. 

backing provider Code responsible for managing pages of physical memory 
and transferring data (typically between backing store and physical memory) 
in response to page faults. 



GLOSSARY us 

backing store A repository-typically a file on a paging device such as a hard 
disk-for pages of code or data that aren't currently in physical memory. 

backing volume A portion of a storage device used for backing store. 

Balloon Help A form of user help that displays, in small windows called help 
balloons, information about the items to which the cursor points. 

bevel button A control that displays information (such as text, icons, or pic­
tures) indicating its purpose. A bevel button can behave like a push button 
that lets the user press it once to perform an action instantaneously, or it can 
toggle between selected and unselected states. 

bitmap A data structure that represents the positions and states of a corre­
sponding set of pixels. 

block copy A mechanism for copying the contents of one memory area to 
another. See also interspace block copy. 

blocked task A task that is not eligible for execution until a certain event 
occurs, such as the completion of a synchronous 1/0 operation. 

block storage device A hardware device that reads or writes blocks of bytes 
as a group. Disk drives, for instance, can read and write blocks of 512 bytes or 
more. 

bus A path along which information is transmitted electronically within a 
computer. Buses connect computer devices, such as processors, expansion 
cards, memory, and peripheral devices. 

caption text Text displayed in a static text panel. Caption text can't be 
changed by the user. 

central processing unit (CPU) The microprocessor that executes instructions 
and transfers information to and from other devices (such as physical mem­
ory) over the computer's main bus. 

checkbox A control consisting of a small square and its label. The label­
which may be text, an icon, a picture, or any other image-indicates what 
kind of setting the checkbox controls. A checkbox can display off, on, or 
mixed state settings. The square is checked when the setting associated with 
the box is in effect, is empty when the setting is not in effect, and contains a 
short horizontal line when the setting is mixed. A mixed state indicates that a 
setting is in effect for some elements in a selection and not for others. 



286 GLOSSARY 

class In object-oriented programming, a description of a structure, including 
both data and methods, used as a template for creating objects. 

client library A shared library supplying a client programming interface to an 
110 family. A client library typically sends a client request for an 110 service to 
a family server. 

client programming interface A set of routines and data structures defined by 
an 110 family to allow access to services specific to that particular family. For 
the file system family, for example, the File Manager supplies a client pro­
gramming interface allowing program access to files. See also client library, 
plug-in programming interface. 

client/server software model A paradigm for designing software that splits 
computing operations between two entities: clients, which request services, 
and servers, which provide services. The implementation of client and server 
entities can take many forms, including processes, tasks, shared libraries, and 
class objects, which might reside in the same program or in separate pro­
grams, on the same computer, or on remote computers connected to a net­
work. 

close box A small square on the left side of the title bar of an active window. 
Clicking it dismisses the window. 

CMM See color management module. 

CMYK color space A color space that models the application of inks and dyes 
to paper. This color space is based on the colors cyan, magenta, yellow, and 
black. 

coachmark An onscreen graphic that indicates, such as by pointing to or cir­
cling, an item on the screen. Coachmarks can be programmatically invoked 
from Apple Guide guide files as well as from the code for cooperative pro­
grams. 

code fragment A block of executable code and its static data. Code fragments 
are created by programming tools at program-generation time. Executable 
code generated specifically for Mac OS 8 is made up entirely of code frag­
ments. Compare data-only fragment. 

Code Fragment Manager The operating system service that prepares programs 
and import libraries for execution. 



GLOSSARY 287 

code section The portion of a code fragment that contains executable code. 
The Code Fragment Manager maps the code sections of all fragments into 
read-only areas of system-wide memory. Compare data section. 

collapse box Appearing in the upper-right corner of a window title bar, an 
object used for hiding and displaying the contents of the window. The user 
can click the collapse box once to hide all of the window except the title bar 
and then click it again to redisplay the entire window. 

color management module (CMM) A library that implements color-matching 
and gamut-checking services. 

color space A model, such as RGB and CMYK, for specifying how color 
information is represented. 

ColorSync An industry-standard architecture for moving color images reli­
ably from one device to another (such as from a scanner to a video display and 
then to a printer) and from one operating system to another. 

compiler A tool that converts source code written in a high-level language 
like C into an object file containing instructions in machine language. See also 
linker. 

compile time During program generation, the point at which a software com­
piler creates object code from source code. 

completion routine A routine that's executed as soon as an asynchronous call 
to some other routine is completed. 

Component Manager A shared library technology introduced in System 7. In 
Mac OS 8, this technology is used only by QuickTime; no other portions of 
the operating system use the Component Manager. As a System 7--compatibil­
ity service, Mac OS 8 fully supports the Component Manager programming 
interface. 

component software See OpenDoc component. 

composite imaging object An object that combines two or more images of 
potentially different types. 

compound document A single document containing multiple heterogeneous 
data types, each presented and edited by its own code. A compound document 
is made up of parts. 



288 GLOSSARY 

concurrent processing The parallel operation of separate pieces of code so 
that they can share operating system services in a simultaneous or nearly 
simultaneous manner. 

containment hierarchy An arrangement describing which human interface 
objects are contained by other human interface objects. 

context switch The suspension of a currently executing task and resumption 
of a different task from the point at which it was previously preempted. Dur­
ing a context switch, the microkernel saves the CPU state of the suspended 
task and restores the CPU state of the task about to resume execution. 

contextual menu A pop-up menu containing useful commands and assistance 
services specific to the item pointed at by the cursor. 

control A human interface object that the user can manipulate to take an 
immediate action or to change a setting to modify a future action. 

control panel A System 7 dialog box containing controls that let users specify 
basic settings and preferences for a systemwide feature, such as the speaker 
volume. Control panels aren't supported in Mac OS 8. 

cooperatively scheduled thread One of multiple paths of execution in a task. 
Within a task, these threads cooperate by yielding execution control to one 
another. Cooperatively scheduled threads can be scheduled for execution only 
when the task containing them is running. Whereas the Mac OS 8 microker­
nel preemptively schedules all eligible tasks for execution, programs have exe­
cution control over the cooperatively scheduled threads they create. A task 
containing cooperatively scheduled threads may call cooperative services if the 
task is the main task of a cooperative program. See also thread. 

cooperative multitasking A policy for sharing the CPU and other system 
resources among multiple applications. In a cooperative multitasking environ­
ment such as System 7, applications cooperate by yielding control of the CPU 
to one another. Compare cooperative scheduling, preemptive multitasking. 

cooperative program A program that yields its execution eligibility whenever 
there are no events pending to which it must respond. When the main tasks of 
programs cooperate in this manner, the Process Manager synchronizes their 
access to the Mac OS 8 cooperative services. Usually, a cooperative program is 
implemented as a standard interactive application or as an OpenDoc docu­
ment containing various OpenDoc parts, and it presents a human interface. 
Compare server program. 



GLOSSARY 289 

cooperative program address space The address space shared by the processes 
of all cooperative programs in the system. 

cooperative scheduling A policy for scheduling access to the Mac OS 8 coop­
erative services. When programs cooperate by yielding execution eligibility to 
one another in their event-handling code, the Process Manager serializes their 
calls to the cooperative services, thereby allowing each call to execute to com­
pletion without being interrupted by another call to the same service. Cooper­
ative scheduling rotates eligibility among the main tasks of cooperative 
programs so that each can, in turn, be preemptively scheduled with all other 
tasks in the system. See also cooperative program, main task. 

cooperative service A shared library supplied by Mac OS 8 for use by pro­
grams that cooperate to synchronize access to the library. Programs cooperate 
by yielding execution eligibility to one another in their event-handling code, 
allowing the Process Manager to serialize their calls to the cooperative ser­
vices. Cooperative services support the Mac OS 8 human interface while 
maintaining compatibility with applications written for System 7. Examples 
are shared libraries for the Human Interface Toolbox and the QuickDraw 
graphics system. Compare reentrant service. 

Cooperative Thread Manager A programming interface used by developers to 
incorporate cooperatively scheduled threads in their programs. 

counting semaphore A synchronization mechanism containing a count vari­
able that may be equal to or greater than zero. Multiple tasks can increment 
and decrement a counting semaphore. Typically, a task will test whether the 
counting semaphore is greater than 0 before performing some action involving 
a shared resource. 

CPU See central processing unit. 

Cyberdog An OpenDoc-based architecture integrating network services into 
the Mac OS. Cyberdog allows users to incorporate remotely located informa­
tion into their software and documents. 

data fork For a document file, the part of the containing data accessed by 
programs using a programming interface to the file system, such as the File 
Manager. This data usually corresponds to data entered by the user; the appli­
cation creating a file can store and interpret the data in the data fork in what­
ever way is appropriate. For an application file compiled to run on PowerPC­
based computers, the data fork contains the application's code. Compare 
resource fork. 



290 GLOSSARY 

data-only fragment A block of static data created by programming tools at 
program-generation time. Containing no imported symbols, a data-only frag­
ment is occasionally used to implement a shared library. Compare code frag­
ment. 

data section The portion of a code fragment or data-only fragment contain­
ing static data, including pointers to functions and pointers to global vari­
ables, used by code in the code section of this or another fragment. The Code 
Fragment Manager typically uses a per-process memory allocator for storing 
the data section, but the developer of a fragment can also direct the Code 
Fragment Manager to use the system-wide memory allocator instead. Com­
pare code section. 

data structure An organization of data arranged in a well-defined manner so 
that the data can be interpreted and manipulated. 

default handler table A handler table containing default handlers installed by 
the operating system. For example, the default handlers for a cooperative pro­
gram interpret standard events (such as Mouse Down when the user presses 
the mouse button) and, if necessary, route them to the appropriate panels 
within a window. Compare application handler table. 

deferred task System 7 code that runs during an interrupt and can be post­
poned for later execution. In lieu of using the Deferred Task Manager to cre­
ate deferred tasks, Mac OS 8 device drivers use the Timing Services to 
schedule execution time. 

definition version The version of a shared library that defines its external pro­
gramming interface and data format. Client programs are linked to this ver­
sion at generation time. Compare implementation version. 

delegated task A user-scheduled operation that is performed automatically 
when a programmatically determined set of circumstances occurs. For exam­
ple, a delegated task could dial an online service and check for mail at 8:00 
every morning. 

delegation The automatic execution of related operations at user-scheduled 
times. 

descriptive assistance Onscreen help, such as a help balloon, that describes 
application features. 



GLOSSARY 291 

desk accessory A utility similar to a small application that's always available 
to users from the System 7 Apple menu. Desk accessories aren't supported in 
Mac OS 8. 

desktop animation A shared library that draws to a screen-saving window or 
to the desktop. 

determinate progress indicator See progress indicator. 

developer An individual or organization that creates software or hardware 
products for commercial, in-house, or personal use. 

device driver Code that directly controls a hardware device, such as a disk 
drive. In Mac OS 8, device drivers are implemented as 1/0 plug-ins-dynami­
cally loaded shared libraries that work within 110 families. 

Device Manager A client programming interface that supports device drivers 
through an 110 family that isn't tailored for any particular type of device. 

Device Notification Service An operating system service that alerts portions of 
the 110 system of dynamic changes in device connectivity-as, for instance, 
when the user removes a disk drive card from a laptop computer and inserts a 
modem card in its place. 

dialog box A window containing a modal dialog panel or modeless dialog 
panel. Developers use dialog boxes for special or limited purposes, such as 
soliciting information from the user before the application carries out the 
user's command. Compare alert box, standard document window. 

dialog panel A root panel placed inside window to create a dialog box. A dia­
log panel contains additional panels, such as for editable text and controls. 

disclosure triangle A control that governs the display of items in a list, such as 
an outline containing subtopics. When the arrow of a disclosure triangle 
points right, only one item is visible beside it. When the arrow points down, 
both the original item and its subitems are visible in the list. To toggle between 
the two states, the user clicks the disclosure triangle. 

disk cache A portion of physical memory set aside to temporarily store fre­
quently used information that's permanently stored on disk. Because it's faster 
for the CPU to read information from physical memory than from a disk, disk 
cache helps programs run faster. 

DLL See shared library. 



292 GLOSSARY 

document Any piece of work that the user saves as a separate file. The user 
creates documents using cooperative programs. 

document window A window used for displaying and editing document data 
(such as graphics and text) or for a modeless dialog box. Document windows 
appear behind floating windows and modal windows in an application's layer. 
See also standard document window. 

drag To position the cursor on a visual interface element (such as the title bar 
or a window), press and hold the mouse button, and move the cursor to a new 
position. In general, dragging can have different effects, depending on what's 
under the cursor when the user presses the mouse button. These can include 
selecting blocks of text, choosing a menu item, selecting a range of objects, 
shrinking or expanding an object, or moving an icon or other visual element 
from one place to another. 

Drag Manager An operating system service that supports moving visual ele­
ments and their associated data from one place to another. 

driver See device driver. 

Driver and Family Matching Service An operating system service that matches 
hardware-specific software with the I/0 devices available on a computer. 

Dynamic Storage-Allocation Service A reentrant Mac OS 8 service that defines 
a programming interface by which code-such as an application or a device 
driver-manages memory allocations for its data storage needs. While the 
Dynamic Storage-Allocation Service supplies memory allocators that imple­
ment this programming interface, developers can create memory allocators of 
their own. Compare Memory Manager. 

dynamic linking The preparation and use of shared libraries at program-exe­
cution time. 

dynamically linked library (DLL) See shared library. 

editable text panel A human interface object that lets the user edit the text it 
displays. Compare static text panel. 

embedding panel A human interface object that contains other human inter­
face objects. Developers use embedding panels to assemble compound panels 
from the standard Human Interface Toolbox panels. Compare root panel. 



GLOSSARY 293 

encapsulation In object-oriented programming, the packaging of an object's 
data and the routines that can act on it in order to protect the data from inap­
propriate changes. This protection is possible because only the object itself can 
change its data. To gain access to an object's data, a client must call that 
object's programming interface. 

event A user action or system occurrence requiring a response from a pro­
gram. Events include keystrokes and mouse clicks from the user, requests from 
other programs (such requests to print files), or any other activities in the sys­
tem (such as the completion of IJO operations). 

event class The attribute of an Apple event that specifies which group of 
related Apple events the Apple event belongs to. The event class, in conjunc­
tion with the event ID, identifies an Apple event and denotes its purpose. 

event group A set of bits used as a primitive synchronization mechanism. For 
example, Mac OS 8 uses event groups to implement locks. Tasks can set each 
bit individually or in different combinations to synchronize operations and 
access to shared data. 

event ID The attribute of an Apple event that identifies a particular Apple 
event within a group of related Apple events. The event ID, in conjunction 
with the event class, identifies an Apple event and denotes its purpose. 

event loop A section of code that processes events in a System 7 application. 
The event loop repetitively requests events from the Event Manager. When the 
Event Manager returns events, they're dispatched to application-supplied 
event-handler routines. 

Event Manager An operating system service that System 7 applications use to 
receive information about actions performed by the user, to receive notice of 
changes in the processing status of the application, and to communicate with 
other applications. 

exception An error-such as a memory access error-or other special condi­
tion that is detected by the CPU during code execution. An exception transfers 
control from the code generating the exception to another piece of code, usu­
ally an exception handler. 

exception handler A routine that is invoked in response to an exception. 

excluded For a memory area, a permission level prohibiting all read and 
write access to the area. Compare read-only, read/write. 



!94 GLOSSARY 

execution time The general span of time during which programs run on a 
computer. Compare generation time, launch time. 

expert A small program that interviews the user to gather information about 
goals and preferences. The program uses this information to help the user 
carry out a complex or seldom used operation. Compare family expert. 

expert assistance Onscreen help that interacts with the user to perform an 
operation. The expert solicits information only the user can provide and then 
uses the computer to automate as much of the operation as possible. 

experts window A window from which the user views and selects experts. 

extensibility The ability of software to be enhanced with new capabilities 
without breaking those it already supports. Mac OS 8 offers several extensi­
bility mechanisms for developers to enhance the operating system as well as 
their own products; these mechanisms include the OpenDoc component soft­
ware architecture, import libraries, plug-ins, SOMobjects for Mac OS, server 
programs, and the Patch Manager. 

extension See system extension. 

factoring Using Apple event handlers to separate the code that presents an 
application's human interface to the user from the code that responds to the 
user's manipulation of the interface. In a fully factored application, any signif­
icant user actions generate Apple events that any scripting component based 
on the Open Scripting Architecture (OSA) can record as statements in a com­
piled script. 

family expert For an I/0 family, code that maintains information about the 
set of family-controllable services or devices and the set of associated I/0 
plug-ins available on a given computer; this code can be part of the family 
server or be its own process. Compare expert. 

family server A privileged server program that receives, processes, and 
responds to service requests from clients of an I/0 family and, usually, calls an 
I/0 plug-in to process these requests. 

family services library A shared library allowing an I/0 family's plug-ins to 
call the I/0 family for services. Compare client library. 

floating window A window that appears in front of document windows and 
behind modal windows in an application's layer. Developers use floating win-



GLOSSARY 195 

dow for tool palettes, catalogs, and other elements with which the user acts on 
data in document windows. 

Folder Manager An operating system service used by programs to determine 
or define the location of specially used folders. An example is the Fonts folder, 
where the operating system stores fonts for the user. 

font A complete set of glyphs in one typeface and style. 

font scaler A server program that calculates and renders glyphs at the 
request. 

forward-compatible memory guidelines A specification for using a subset of 
System 7 Memory Manager functions to automatically invoke the higher per­
formance, pointer-based memory allocators available with Mac OS 8. 

fragment See code fragment, data-only fragment. 

File Manager The programming interface used by most Mac OS 8 applica­
tions to organize, read, and write data stored on volumes. Because the File 
Manager is reentrant, any task can call its programming interface. Compare 
Low-Level File System Services, System 7 File Manager. 

file mapping The association of a disk file with a memory area so that the 
file's data is paged between physical memory and the file's permanent location 
on disk. Thus, the disk version of the file (instead of a separate scratch file) 
serves as backing store for the file's representation in physical memory. See 
also memory-mapped file. 

file system The part of the operating system that manages the reading and 
writing of information located on all storage devices available to the user's 
computer system. At the most abstract programming level, the file system 
offers several types of programming interfaces allowing applications to read, 
write, and otherwise manage information stored on these devices. The file sys­
tem organizes information hierarchically into volumes, folders, and files. See 
also File Manager, Low-Level File System Services, volume format plug-in. 

file system object An item containing information or sets of related informa­
tion on a storage device. Files, folders, and volumes are examples of file sys­
tem objects. 

filtered handler table An application handler table that causes events for 
which it contains no handlers to be suspended in an event queue. After the fil­
tered table has been removed from the handler table stack, the Apple Event 



296 GLOSSARY 

Manager passes any suspended events on to the next handler table in the order 
in which they were originally received. Compare unfiltered handler table. 

Finder An application that displays the Mac OS 8 desktop, allows users to 
browse data, and launch applications. 

function A named piece of executable code that carries out some action and 
returns information about the result of that action. 

gamut A measure of the range of the lightness, darkness, and density of col­
ors in a given color space. 

generation time The time during which executable code is created from 
source code using such program development tools as a compiler and linker. 
Compare execution time. 

generic driver A hardware device driver that makes its service available 
through the Device Manager client programming interface rather than through 
a more specific programming interface from another I/0 family. 

global instantiation See system-wide instantiation. 

global variable A named storage location for a modifiable value that can be 
referenced outside the local scope of statements using that variable. 

glyph A component of the graphical representation of a particular character. 

graphical user interface See human interface. 

guard page A memory page given excluded permission, so that no tasks can 
read from or write to that page. Ranges of guard pages at the beginning and 
end of memory areas help prevent tasks from inadvertently accessing the 
wrong memory areas. If a programming error causes a task to reference a 
guard page, the CPU generates an exception before the erring task can 
adversely affect the wrong memory area. 

guide file A file containing onscreen descriptions and instructions used in 
conjunction with the Apple Guide help system. 

Guide Maker A tool available from Apple Computer for building and testing 
guide files. 

handle A variable containing the address of a nonrelocatable pointer, which 
in turn refers to the address of a relocatable block of data. 



GLOSSARY 297 

handler table A mechanism that matches Apple events with Apple event han­
dlers. 

handler table stack An area of memory contammg one or more handler 
tables. A handler table stack always contains a default handler table and, usu­
ally, one or more handler tables installed by a program. 

hardware inte"upt An exception signaled to the CPU by a hardware device, 
notifying the CPU of a change of condition in the device. A hardware inter­
rupt causes the microkernel to suspend the currently executing task while the 
CPU executes the hardware interrupt handler that's indicated by the device 
generating the interrupt. 

hardware interrupt handler Code registered with the operating system to ser­
vice hardware interrupts. I/0 plug-ins that respond to hardware devices sup­
ply hardware interrupt handlers. See also main code section, secondary 
interrupt handler. 

help balloon A small window containing explanatory information about the 
onscreen item to which the cursor points. Help balloons look like the dialog 
bubbles in comic strips. 

Help Manager A cooperative service that developers use to provide Balloon 
Help assistance to users. 

HFS (hierarchical file system) Apple Computer's standard volume format. HFS 
organizes files and folders in a hierarchical-that is, tree-like-structure. 

hierarchical file system See HFS. 

high-level family An I/0 family whose family expert registers itself with the 
operating system to receive information about the availability of devices that 
can be controlled by the family. Based on this information, the family expert 
manages the availability of I/0 plug-ins for the family. Compare low-level 
family. 

human interface The facilities by which a user interacts with programs run­
ning on a computer. Because most human interface elements (such as win­
dows, menus, and icons) are visual in the Mac OS, the term human interface is 
generally synonymous with graphical user interface. However, user voice 
input, sounds that alert the user, and other nonvisual elements are part of the 
human interface as well. 



298 GLOSSARY 

human interface object An execution-time structure that encapsulates one or 
more human interface elements, such as a window, a dialog box, a control, or 
a menu. Human interface objects support such object-oriented programming 
features as inheritance, subclassing, and polymorphism, and such SOM fea­
tures as language-independence and release-to-release binary compatibility. 

Human Interface Toolbox A collection of services that developers use to imple­
ment the standard portions of the Mac OS 8 human interface-for instance, 
windows, controls, and menus. The use of these services allows programs to 
present a consistent and standard interface to users. 

icon A graphic representation of some human interface element, such as a 
document, disk, folder, or application. 

imaging The construction and display of graphical information. Graphical 
information can consist of shapes, pictures, and text and can be rendered on 
devices such as screens and printers. All graphical portions of a multimedia 
document, for example, are processed and displayed in Mac OS 8 through the 
use of imaging services available as part of the operating system. 

imaging object An object, derived from the imaging objects class, that can 
draw a specific kind of image data, such as text, icons, or QuickDraw pictures. 

implementation version The version of an import library providing data and 
executable code to code fragments using the library. The Code Fragment Man­
ager prepares this version for use by client code at execution time. Compare 
definition version. 

imported symbol A name used in a code fragment. The imported symbol ref­
erences a discrete element of code or data in an import library. 

import library A shared library automatically prepared by the Code Fragment 
Manager for use by a program at launch time. The Code Fragment Manager 
prepares an import library to resolve imported symbols in program code that 
were not resolved at link time. Compare plug-in. 

indeterminate progress indicator See progress indicator. 

inheritance In object-oriented programming, the transmission of properties 
and behaviors from one class to another. Compare subclassing. 

instantiate To create an instance of something, such as a process or an object, 
at execution time. 



GLOSSARY 199 

intemationali.zation The process of designing and creating applications with 
various languages and cultures in mind. Building an internationalized applica­
tion allows a developer to create and maintain a single code base for that 
application. A localizer usually changes the data or text of the application's 
human interface for a particular market, but the source code for the applica­
tion remains unchanged. 

lntemet A loosely administered worldwide computer network. 

interprocess communication The exchange of information among tasks within 
processes or between tasks in different processes. 

interrupt An exception signaled to the CPU to invoke an interrupt handler. 

interrupt handler A routine invoked in response to an interrupt. See also 
hardware interrupt handler, secondary interrupt handler. 

interrupt latency The interval between the generation of an interrupt and the 
execution of its interrupt handler. See also hardware interrupt, hardware 
interrupt handler. 

instructional assistance Onscreen help, such as a guide file, that explains a 
concept or the steps necessary to perform an operation. 

interspace block copy A mechanism for copying the contents of a memory 
area in one address space to a memory area in a different address space. 

Interview Manager A cooperative service used by a program to obtain infor­
mation from users so that the program can automate or delegate operations. 

interview panel A window containing a question for the user. For example, an 
interview panel might ask a user to pick the days and times for performing file 
backups. Compare presentation panel. 

interview sequence An onscreen interactive dialog between the user and a 
program. Programs use interview sequences to solicit information for auto­
mating or delegating operations on behalf of the user. 

intranet Any private network based on Internet protocols and tools. For 
example, a company might use an intranet to share files and e-mail internally 
among its employees. 

1/0 family A collection of software that provides a distinct 1/0 service to soft­
ware clients. An 1/0 family typically consists of a privileged server program, 



300 GLOSSARY 

supported by a collection of shared libraries. The file system and the Open 
Transport networking services are examples of 110 families. See also client 
library, family expert, family server, family services library, high-level family, 
YO plug-in, low-level family. 

1/0 plug-in A plug-in (that is, a dynamically loaded shared library) that pro­
vides a particular implementation of the service offered by an 110 family. 
Within the file system 110 family, for example, a volume-format plug-in imple­
ments file system services for a specific volume format. See also device driver. 

1/0 system The portion of the operating system that transfers data to and 
from peripheral devices, such as hard disks, modems, speakers, keyboards, 
and pointing devices. 

JPEG (Joint Photographic Experts Group) An international standard for com­
pressing still images. 

kemel A program that manages all or most of the operating system services 
necessary to control a computer. In a UNIX-based operating system, for 
example, the kernel is a program that supervises task and file management, 
device input and output, and memory allocation. Compare microkemel. 

keming The process of adjusting the spacing between characters so that text 
has a more aesthetic and natural appearance to the eye. 

launch time The period during which the Process Manager builds the process 
for a program that is starting up. Compare execution time, generation time. 

layer A mechanism for ordering window display across the operating system. 
Every application has its own layer for windows display. The layer of the 
active application overlays the window layer of all other applications so that 
the active application's windows are visible to the user. See also sublayer. 

library Computer code stored in a file or set of files for use by a variety of 
software. A library provides building blocks of code for commonly needed 
operations. In the Mac OS 8 run-time environment, all libraries are imple­
mented as shared libraries based on code fragments; the Mac OS 8 run-time 
environment doesn't allow the creation of libraries that aren't sharable (or at 
least potentially sharable) by more than one program. 

ligature The combination of more than one letter into a single typographical 
shape. For example, the ligature "fi" results from the combination of the let­
ters "f" and "i". 



GLOSSARY 301 

linker A tool that creates executable files by linking object files with libraries. 
See also compiler. 

link time At generation time, the point at which a linker binds object code 
with imported libraries to create executable code. 

list A panel containing a series of items displayed in a rectangle. The user 
selects the items from a list. 

little arrows A control that displays a pair of arrows and typically accompa­
nies a text box containing a numerical value, such as the date or time. Click­
ing the up arrow increases the value in the text box, and clicking the down 
arrow decreases it. 

locale identifier Information within a text object that encapsulates an Inter­
national Standards Organization (ISO) language code (which specifies the lan­
guage in which the text is to be represented) and an ISO region code (which 
specifies the geographical region for languages that vary by region). 

localization The process of preparing a software product for a specific 
national or regional market. 

localizer A developer who adapts applications for particular languages and 
cultures. 

lock A data structure used to synchronize access to a shared resource such as 
the contents of memory locations. Only the task holding a lock is allowed to 
modify the data associated with the lock. A simple lock prevents other tasks 
from acquiring the lock until the task holding it has released it. A read/write 
lock allows one or more tasks to acquire the lock for the purpose of simulta­
neously reading data, but this type of lock allows no more than one task to 
modify the data at a time. For a lock to protect data, clients of the data must 
observe the conventions established for the lock. See also event group. 

logical address A memory address used by code at execution time. The logi­
cal address might, in turn, be translated into a physical address by the CPU. 

low-level family An 1/0 family whose family expert has information about a 
specific piece of hardware, such as a bus or a main logic board. The expert 
knows how physical devices are connected to the system and can detect when 
a device that can be controlled by the family is added or removed. 

Low-Level File System Services A shared library that manages volume format 
plug-ins and provides a programming interface for application access to the 



302 GLOSSARY 

storage devices connected to the user's system. The Low-Level File System Ser­
vices define a complex but powerful programming interface from which the 
File Manager, the System 7 File Manager, and standard C file-I/O routines are 
abstracted. Developers can directly use the Low-Level File System Services 
programming interface to build custom facilities for performing file 110 opera­
tions. 

MacTCP A cooperative service allowing System 7 applications to communi­
cate on the Internet and on other networks based on TCPIIP protocols. 

main code section The code within an 110 plug-in that does most of the work 
of responding to client requests. All 110 plug-ins have a main code section. See 
also hardware interrupt handler. 

main task The first task created by the operating system for a process. The 
main tasks for cooperative programs can safely use Mac OS 8 cooperative ser­
vices, whereas all other tasks in Mac OS 8 must use only reentrant services. 

manager A library or set of related libraries that defines a programming inter­
face to the Mac OS. For example, the Memory Manager is a library of rou­
tines that helps developers allocate and release memory for programs running 
in the System 7 version of the Mac OS. 

memory address See logical address, physical address. 

memory allocation A range of logical addresses used for storing a particular 
piece of data, such as a global variable or a data structure. A memory alloca­
tion can range in size from 1 byte to multiple pages. 

memory allocator A plug-in used by client code, such as an application or a 
device driver, for creating, expanding, and deleting memory areas and for 
acquiring memory allocations from these areas. As memory areas become 
fully allocated, a memory allocator automatically creates new memory areas 
and thereby supplies additional storage to its client code. Mac OS 8 provides 
three memory allocators: a per-process memory allocator, a system-wide mem­
ory allocator, and a nonpageable-memory allocator. For any special needs, 
Mac OS 8 developers can create their own memory allocators. 

memory area A range of logical addresses within an address space. To provide 
the memory resources required by tasks, Mac OS 8 automatically creates 
memory areas during program-execution time. Developers can also create 
memory areas and specify attributes suitable for the needs of their software. 



GLOSSARY 303 

Memory Manager A cooperative service used by System 7 applications to 
dynamically acquire and release memory allocations. See also Dynamic Stor­
age-Allocation Service, forward-compatible memory guidelines. 

memory-mapped file A disk file whose contents are mapped into a memory 
area. The virtual memory system transfers portions of these contents from the 
file's permanent location on disk to physical memory as needed in response to 
page faults. Thus, the disk file (instead of a separate scratch file) serves as back­
ing store for the code or data not immediately needed in physical memory. 

menu A panel that lets the user view or choose an item from a list of choices 
or commands. Like all panels, menus are displayed in windows. Unlike other 
panels, however, developers don't write code to instantiate these windows. 
Instead, when an application instantiates a menu, the Human Interface Tool­
box automatically creates a window for it, displays it in that window, and per­
forms all window management on behalf of the menu. 

message A unit of structured data used for communication. In Mac OS 8, for 
example, tasks in separate processes usually use the Microkernel Messaging 
Service to communicate information by sending and receiving messages. 

message service See Microkemel Messaging Service. 

method A function defined by a particular class in an object-oriented pro­
gramming environment. 

microkemel A program that manages a small but critical subset of the operat­
ing services necessary to control a computer. The Mac OS 8 microkernel, for 
instance, manages processes, their attendant tasks, and other operating system 
resources associated with tasks, such as memory, synchronization, timing, and 
messaging. Other operating system services, such as the 1/0 system and the 
Human Interface Toolbox, are implemented separately from the microkernel. 
Compare kernel. 

Microkemel Messaging Service An interprocess communication mechanism 
provided by the Mac OS 8 microkernel for transporting data from one task to 
another. Typically, these tasks are in different processes. The Microkernel 
Messaging Service allows bidirectional data transfer so that data may be part 
of a message, and data may be returned in the reply. It is u;> to developers to 
establish their own conventions for interpreting the information exchanged 
with this service. The Apple events messaging service is built on top of the 
microkernel messaging service. 



304 GLOSSARY 

microkemel queue A mechanism by which one or more tasks notify another 
task of some occurrence, for instance, the completion of an asynchronous 
operation. The task being notified examines the microkernel queue for the 
notification; this task may block until the notification appears. This communi­
cation takes place in one direction only; that is, the tasks writing to a micro­
kernel queue don't receive replies from the task reading the microkernel 
queue. 

MIDI (Musical Instrument Digital Interface) A standard protocol for sending 
audio data and commands to digital devices. 

modal dialog box A modal window containing a dialog panel used to elicit an 
immediate response from the user. See also alert box, modeless dialog box, 
standard document window. 

modal window A window that appears in front of all other kinds of windows 
in an application's layer. Developers use modal windows for modal dialog 
boxes and alert boxes, both of which require immediate attention from the 
user. The user can dismiss a modal window only by clicking its buttons. Com­
pare document window, floating window. 

modeless dialog box A document window containing a dialog panel. A user 
can move this type of dialog box, make it inactive and active again, and close 
it. See also alert box, modal dialog box, standard document window. 

movable alert box An alert box containing a title bar that allows the user to 
move it. The user can dismiss a movable alert box only by clicking its buttons. 
A user can generally switch layers while a movable alert box is active by click­
ing in another application's window or by choosing another application from 
the Apple or Application menu. Compare nonmovable alert box. 

movable modal dialog box A modal window containing a dialog panel used to 
elicit an immediate response from the user. A movable modal dialog box has a 
title bar that allows the user to move the dialog box around the screen-for 
example, to examine the part of the screen that it covers. The user can dismiss 
the dialog box only by clicking its buttons; however, the user can generally 
switch layers by clicking in another application's window or by choosing 
another application from the Apple or Application menu. Compare nonmov­
able modal dialog box. 

movie See QuickTime movie. 

MPEG (Motion Picture Experts Group) An international standard for compress­
ing streams of video images. 



GLOSSARY 305 

multimedia Combining multiple forms of communication to facilitate the 
transmission of ideas and information. These forms include text, pictures, 
video, sounds, music, and other types of data. 

multiprocessor computer A single computer having more than one processor 
to execute instructions. See also symmetric multiprocessor, asymmetric multi­
processor. 

multitask To manage concurrent execution of more than one task. For exam­
ple, Mac OS 8 multitasks multiple programs to give them efficient access to 
computer resources. See also multithreaded. 

multithreaded Having more than one path of execution. For instance, one 
thread in a multithreaded program might handle user interactions, another 
thread might perform calculations, and yet a third might perform UO. See also 
thread. 

Name Registry An operating system service that stores the names, characteris­
tics, and relationships of various software (such as plug-ins and server pro­
grams), and information about hardware available on the user's system. 

Navigation Services A cooperative service used by applications to present a 
standard human interface for opening and saving files. 

networking The sharing of information and services via connected comput­
ers. Using communication protocols such as AppleTalk and TCPIIP, net­
worked computers can be linked by various media-for instance, phone lines, 
LocalTalk cables, Ethernet cables, and radio. 

nonmovable alert box An alert box that can't be moved around on the screen by 
the user. The user can dismiss a movable alert box only by clicking its buttons. 

nonmovable modal dialog box A modal window containing a dialog panel 
used to elicit an immediate response from the user. The user can't move a dia­
log box of this sort. Compare movable modal dialog box. 

nonpageable-memory allocator A plug-in instantiated used by privileged code 
to manage dynamic storage allocations from system-wide memory areas. This 
memory allocator keeps all of its memory allocations resident in physical 
memory for the benefit of privileged code, such as a hardware interrupt han­
dler for a device driver, that can't tolerate page faults. Compare per-process 
memory allocator, system-wide memory allocator. 



306 GLOSSARY 

nonprivileged code Code that is executed while the CPU is in user mode. 
Nonprivileged code is restricted from using various CPU instructions and 
hardware addresses and from changing data used by critical portions of the 
operating system. To protect the stability of the operating system, most code 
that runs in Mac OS 8 is nonprivileged. Compare privileged code. 

Notification Manager A reentrant service used to inform the user about the 
status of a program's operations or to inform the user that a program requires 
attention. See also user notification, System Notification Service. 

notifier module A shared library containing information about user notifica­
tions for program status. Developers incorporate a notifier-picker panel into 
interview panels or into their application dialog boxes or windows. See also 
Notification Manager. 

object In object-oriented programming, an execution-time structure that 
contains data and routines that operate on that data. An object is an instance 
of a class, which can be used to create additional instances that constitute sep­
arate objects. 

object class See class. 

OFA See Open Font Architecture. 

OpenDoc A multiplatform technology, implemented as a set of shared librar­
ies, that facilitates the construction and sharing of compound documents. See 
also part. 

OpenDoc component A software module that functions in the OpenDoc envi­
ronment. Part editors and part viewers are examples of OpenDoc compo­
nents. 

Open Font Architecture (OFA) The font-drawing architecture used in Mac OS 8. 
OFA is capable of supporting any type of font format, such as TrueType, Post­
Script Type 1, and the complex font formats for Asian languages. 

Open Transport The portion of the 110 system that implements industry-stan­
dard communications and networking protocols. 

operating system The software that controls and coordinates computer hard­
ware so that programs installed or controlled by users can run efficiently and 
conveniently. See also cooperative service, microkemel, reentrant service. 



GLOSSARY 307 

page ( 1) The smallest unit, measured in bytes, of information that the virtual 
memory system can transfer between physical memory and backing store. (2) 
To transfer pages between physical memory and backing store. 

page fault An exception that causes a page of data or code needed by the 
CPU to be read from backing store into physical memory. 

paging device A secondary storage device, such as a hard disk, used for back­
ing store. 

panel Any standard Mac OS 8 human interface object-for instance, a but­
ton, scroll bar, or editable text field-that can be placed in a window. Panels 
are implemented with SOMobjects for Mac OS. 

part A portion of an OpenDoc compound document. A part consists of doc­
ument content, plus-at execution time-a part editor that manipulates that 
content. The document content is data of a given structure or type, such as 
text, graphics, or video. To a user, a part is a single set of information dis­
played and manipulated in one or more frames or windows. 

part editor An OpenDoc component that can display and change the data of 
a part. It is the executable code that provides the behavior for the part. Com­
pare part viewer. 

part viewer A part editor that can display and print, but not change, the data 
of a part. Compare part editor. 

Patch Manager A cooperative service that assists developers in modifying rou­
tines supplied in import libraries. 

PCI (Peripheral Component Interconnect) An industry-standard data bus avail­
able on recent models of Mac 05-compatible PowerPC-based computers. 

per-context instantiation See per-process instantiation. 

per-load instantiation See private-copy instantiation. 

permissions Authorization to gain access to an entity, such as a file, folder, or 
memory area, for such purposes as reading, writing, or executing that entity. 

per-process Exclusively local to, related to, or identified with a single process. 
Compare system-wide. 



308 GLOSSARY 

per-process instantiation The creation of an instance of a shared library's data 
section for use by a single process. Compare per-load instantiation, system­
wide instantiation. 

per-process memory allocator A plug-in instantiated by Mac OS 8 for every 
process to supply every process with dynamic memory allocation. For exam­
ple, when a Mac OS 8 program requests the operating system to provide stor­
age for data structures related to windows, a per-process memory allocator 
supplies the necessary memory allocation. Typically, all tasks in a process use 
the per-process memory allocator instantiated for that process. Compare non­
pageable-memory allocator, system-wide memory allocator. 

personal file sharing A facility built into the Mac OS that allows any Mac 
OS-compatible computer on a network to be a file server. 

physical address A memory address represented by bits on a physical address 
bus. The physical address may be different from the logical address, in which 
case the CPU translates the logical address into a physical address. 

physical memory Electronic circuitry contained in random-access memory 
(RAM) chips, used to temporarily hold information at execution time. See 
also virtual memory. 

picture See QuickDraw picture. 

plug-in In Mac OS 8, a shared library dynamically located and prepared for 
use by another code fragment when the code fragment explicitly calls Code 
Fragment Manager functions. Compare import library. 

plug-in programming interface A set of routines and data structures defined by 
an 110 family to allow communication between a family server and the 1/0 
plug-ins belonging to that family. See also client programming interface, fam­
ily services library. 

pointer A variable containing the address of a byte in memory. See also handle. 

polymorphism In object-oriented programming, the ability to call objects of 
different classes with the same method. For example, a program might use the 
same method to draw objects defined by different classes. 

Pool Manager A programming interface used by privileged code in System 7 
for allocating memory. Compare Dynamic Storage-Allocation Service. 



GLOSSARY 309 

pop-up button A control associated with a menu. When the user presses the 
mouse with the cursor over a pop-up button, additional menu items appear. 

pop-up window An onscreen container for storing regularly accessed pro­
grams, documents, and folders. When closed, pop-up windows are identified 
by title bars that appear on the bottom of the screen. When the user clicks a 
title bar, the pop-up window opens to display its contents. When a user clicks 
the title bar of an open pop-up window, the window collapses again and 
moves to the bottom of the screen. Alternatively, when the user drags an icon 
to a pop-up window title, the window automatically opens. When the user 
drops the item in the window, it collapses again. 

POSIX (Portable Operating System Interface) A set of standard operating-sys­
tem services defined by the Institute of Electrical and Electronics Engineers 
(IEEE). 

preemptive multitasking The ability of an operating system to allocate access 
to the CPU and other operating system services among multiple tasks, thereby 
allowing multiple programs to execute in a simultaneous or nearly simulta­
neous manner. The microkernel uses a set of well-defined rules to schedule 
tasks for execution. Following these rules, the microkernel can suspend the 
execution of a task at any time and resume the execution of another. Compare 
cooperative multitasking. 

preemptive scheduling A policy by which the microkernel allocates moment­
to-moment access to the CPU among all eligible tasks. The microkernel uses a 
set of well-defined rules to schedule which task should execute at any time. 
Following these rules, the microkernel can suspend the execution of a task and 
resume the execution of another. Preemptive scheduling is necessary for pre­
emptive multitasking. Compare cooperative scheduling. 

presentation panel An Apple Guide help window that describes a concept or 
step. 

printer driver A plug-in that controls how the contents of a document are 
spooled, rendered, and sent to a specific output device. 

Printing Manager A programming interface allowing System 7 applications to 
print. 

private-copy instantiation The creation of a new instance of a plug-in's data 
section each time a program calls the Code Fragment Manager to prepare that 
plug-in for program use. Also called per-load instantiation. Compare per-pro­
cess instantiation, system-wide instantiation. 



310 GLOSSARY 

privileged code Code that is executed while the CPU is in supervisor mode. 
Privileged code can execute CPU instructions that are restricted from nonpriv­
ileged code and can access hardware addresses invisible to nonprivileged code. 
Furthermore, the data used by privileged code can be excluded from nonprivi­
leged code. In Mac OS 8, only the microkernel, portions of device drivers, and 
certain other portions of the operating system are privileged, thereby protect­
ing the stability of the core operating system from possible programming 
errors in applications and other types of programs. 

privileged server program A server program that runs when the CPU's in 
supervisor mode (giving the program greater access to computer resources) 
and that operates on data in a protected system-wide memory area reserved 
for use by privileged code. 

process An instance of a program at execution time. A process is character­
ized by a set of one or more tasks and the memory and other operating system 
resources allocated to those tasks. Mac OS 8 uses processes for tracking and 
reclaiming these resources. 

Process Manager A Mac OS 8 service that launches, manages, and terminates 
processes. On behalf of programs using the cooperative services, the Process 
Manager also synchronizes use of these services. 

processor register A named area of high-speed memory located on the CPU. 

profile A means of defining the color characteristics of a given imaging device 
in a particular state. 

program A series of statements instructing a computer to perform various 
operations. A program is either compiled or interpreted. A compiled program 
is first created in source code, then transformed by a compiler and linker into 
executable code. An interpreted program, such as an AppleScript script, is not 
compiled but instead translated for execution by a separate program called an 
interpreter. At launch time, the operating system instantiates a process for a 
program so that it can be executed by the CPU. See also application, coopera­
tive program, server program, device driver. 

program-execution time See execution time. 

program-generation time See generation time. 

programming interface The functions and data structures defined by one piece 
of software, such as an operating system service, for use by client software, 



GLOSSARY 311 

such as applications and device drivers. The Mac OS 8 programming interface 
provides access to such services as window management and file management. 

progress indicator A control that shows a lengthy operation is taking place. 
An indeterminate progress indicator communicates that an operation is taking 
place, but this type of indicator doesn't show how long the operation might 
continue. A determinate progress indicator, by comparison, shows how much 
of an operation has been completed. 

property On a storage device, any piece of information or a set of related 
information stored by the file system. Properties can be simple data items, 
such as dates, file types, and icon definitions; or they can be expandable sets of 
information, such as user-entered data. Each property takes up a certain 
amount of space allocated on a volume. 

protocol A rule or set of rules governing how and in what format data is 
transmitted between networked computers. 

push button A control that displays information (such as text, icons, or pic­
tures) indicating its purpose. When the user clicks a push button, it performs 
an action instantaneously. 

QuickDraw A Mac OS 8 and System 7 service that performs onscreen graph­
ics operations. A precursor to the more sophisticated capabilities of Quick­
Draw GX, QuickDraw remains a fully supported graphics system in the 
Mac OS. 

QuickDraw 3D A cross-platform, interactive 3D graphics technology. 

QuickDraw 3D RAVE (Rendering Acceleration Virtual Engine) An optimized hard­
ware abstraction layer that allows programmers to code directly to 3D graph­
ics accelerator cards for maximum performance. 

QuickDraw GX A collection of graphics, typography, and printing services in 
Mac OS 8 and System 7, providing applications with sophisticated color pub­
lishing capabilities. 

QuickDraw picture An image described by a sequence of QuickDraw drawing 
commands that have been saved to a file. 

Quicknme A collection of cross-platform operating system services that allow 
applications to control time-based data, such as video and music. 



312 GLOSSARY 

QuickTime Conferencing A cross-platform collaboration and communications 
technology that allows users to broadcast and view real-time digital audio, 
text, images, and video. 

Quicknme Live! A cross-platform venue for live, interactive, online entertain­
ment on personal computers. 

QuickTime movie A set of time-based data that include sound, video, anima­
tion, laboratory results, financial data, or a combination of any of these. 

Quicknme Music Architecture A design for creating and playing MIDI music 
in applications. 

Quicknme VR A cross-platform service offering two kinds of virtual reality 
experiences: a panoramic experience enabling users to explore 360-degree 
scenes, and an interaction experience allowing users to "pick up" and interact 
with objects. 

radio button A control consisting of a circle with an accompanying label, 
which may be text, an icon, or a picture. A radio button can draw itself in 
three different states: on, off, or mixed. (A mixed state indicates that a setting 
is in effect for some elements in a selection and not for others.) Only one radio 
button in a group of radio buttons can be on at any one time. 

radio button group A panel that encapsulates several radio button panels. 
Unlike the individual radio buttons, a radio button group panel can handle 
mouse and keyboard interaction, including highlighting and the tracking of 
user interactions. 

RAM See physical memory. 

RAVE See QuickDraw 3D RAVE. 

read-only A permission level granting access to view but not change informa­
tion. Compare excluded, read/write. 

read/write A permission level granting access to view and change informa­
tion. Compare excluded, read-only. 

reduced instruction set computing See RISC. 

reentrancy The ability of code to process multiple interleaved requests for 
service nearly simultaneously. For example, a reentrant function can begin 
responding to one call, become interrupted by other calls, and complete them 



GLOSSARY 313 

all with the same results as if the function had received and executed each call 
serially. 

reentrant service A Mac OS 8 operating system facility that can be used con­
currently by several pieces of code. For example, the microkernel is a reen­
trant service that provides concurrent access to the CPU, and the input-and­
output (I/O) system is a reentrant service that provides concurrent access to 
devices like hard disks. Some reentrant services are implemented as shared 
libraries and others as server programs. Compare cooperative service. 

resource Any data stored according to a defined structure in a resource fork 
of a file. The data in a resource is interpreted according to its resource type. 
This data usually corresponds to data created by the developer for use by the 
program, but it may also include data created by the user while the applica­
tion is running. 

resource fork The portion of a file that contains the file's resources. Compare 
data fork. 

RGB color space A color space based on the red, green, and blue intensities 
that make up a given color. RGB color spaces are used mainly for displays and 
scanners. 

RISC (reduced instruction set computing) A microprocessor design featuring the 
rapid execution of simple machine instructions. 

root panel An embedding panel that fills a window's content area and to 
which the window passes all events that affect the window's content. The root 
panel in turn passes events to other panels that it contains. For example, a 
modal dialog panel is a root panel that tracks user interaction with the panels 
it contains and takes care of all event handling required to enforce its modal 
state. 

routine A named piece of executable code that carries out some action. A 
routine that returns information about the result of that action is called a 
function. 

run-time environment The set of conventions that arbitrate how software is 
generated into executable code, how code is mapped into memory and, at exe­
cution time, where data is stored, how data is addressed, and how functions 
call one another. For Mac OS 8, these conventions are implemented by soft­
ware development systems (such as the compilers and linkers that generate 
executable code), the Code Fragment Manager (which manages the prepara-



314 GLOSSARY 

tion of executable code), the microkernel (which schedules code for execu­
tion), and the CPU (which executes code). 

Scrapbook A program that lets users store text, graphics, sound, movies, 3D 
objects, and other frequently used information. 

SCSI (Small Computer System Interface) An industry standard parallel data bus 
for connecting computers with peripheral devices. 

scratch file Backing store for temporary data not associated with a perma­
nent disk file. A scratch file expands and shrinks dynamically in response to 
system demands. Compare memory-mapped file. 

scratch space See swap space. 

script A series of statements, written in a scripting language such as Apple­
Script, instructing a computer to perform various operations. Scripts are 
translated for execution by interpreter programs. 

scriptable In the Mac OS, the ability of programs to be controlled by scripts. 
The operations of multiple scriptable programs can be coordinated and auto­
mated by users of scripting languages such as AppleScript. 

scripting language A programming language, such as AppleScript, designed to 
automate and control programs and to be easier to learn and use than com­
plex programming languages like Pascal or C. The scripts written in scripting 
languages are translated for execution by interpreter programs. 

scroll bar A control that an application embeds in a window to allow a user 
to change the portion of a document displayed within that window. 

scrolling list A list embedded in scrolling panel. 

scrolling panel A human interface object containing a vertical scroll bar, hor­
izontal scroll bar, or both. A scrolling panel is designed to contain another 
panel (such as an editable text panel or the list panel) that's larger than the 
area allocated for the scrolling panel. Scrolling panels supply functions that 
allow a developer to set and get vertical and horizontal scroll values, vertical 
and horizontal scroll increments, and scroll bar visibility. 

secondary interrupt handler A routine that runs as a result of an interrupt sent 
to the microkernel by a hardware interrupt handler or by some other privi­
leged code. A secondary interrupt handler always runs in supervisor mode. A 



GLOSSARY 315 

secondary interrupt handler can be preempted only by hardware interrupt 
handlers, and it always runs as privileged code. 

semaphore See counting semaphore. 

server program In Mac OS 8, a program that has no direct interaction with 
users and, typically, provides services to other programs along the client/server 
model. A nonprivileged server program operates on data within its own pro­
tected address space, whereas a privileged server program operates on data in 
a protected system-wide memory area reserved for use by privileged code. 
Compare cooperative program. 

shape In QuickDraw GX, an encapsulated data structure capable of defining 
multiple types of graphic and typographic images-such as lines, points, rect­
angles, polygons, curves, multiple-curve paths, text, line layouts, and pictures. 

shared library A code fragment exporting a set of routines or static data that 
can be called by multiple programs. Because they are prepared for use dynam­
ically-that is, at program-execution time instead of at program-generation 
time-shared libraries are also called dynamically linked libraries. See also 
definition version, import library, implementation version, plug-in. 

shared memory area A memory area addressable within two or more address 
spaces. Shared memory is useful for sharing data across a limited number of 
address spaces. Shared memory can reside at the same address in various 
address spaces, or it can reside at different addresses. Also, shared memory 
can have different permissions in different address spaces. Compare system­
wide memory area. 

size box Appearing in the lower-right corner of a window, an object that a 
user drags to resize the window. 

slider A control that displays a range of values, magnitudes, or positions. A 
movable indicator shows the current setting. Sliders, which can be vertical or 
horizontal, allow users to alter a value by moving the indicator up and down 
or back and forth. 

Small Computer System Interface See SCSI. 

SMP See symmetric multiprocessor. 

SOM See System Object Model. 



316 GLOSSARY 

SOMobjects for Mac OS The Apple Computer implementation of the System 
Object Model (SOM), an industry-standard architecture for the development 
and packaging of object-oriented software. SOMobjects for Mac OS provides 
the underlying technology for many parts of the operating system. For 
instance, windows and panels in the human interface are instantiated as 
objects derived from a class library based on SOMobjects for Mac OS. 

stack A memory area where a task stores some of its temporary variables 
during execution. For code generated to run in Mac OS 8, most routines 
receive parameters and return results in PowerPC microprocessor registers 
instead of on a stack. (Compilers automatically handle stack and register con­
ventions when generating executable code.) For example, when a task calls 
routines, their parameters, local variables, and return addresses may be loaded 
into a stack. Stacks automatically grow and shrink dynamically as needed. 

standard document window A window in which the user enters text, draws 
graphics, or otherwise enters or manipulates data. 

static data Variables and other data for which memory is allocated once so 
that such data persists between calls to a code fragment. 

static image panel A panel that may contain icons, pictures, patterns, and 
caption text. A static image panel doesn't respond to direct user interaction. 

static text panel A panel containing caption text, which can't be changed by 
the user. Compare editable text panel. 

subclassing In object-oriented programming, the derivation of a new class 
from any existing class by adding to or overriding selected data structures and 
methods defined by the original class. Compare inheritance. 

sublayer A mechanism for ordering window display for an application. Every 
layer for an application may contain three sublayers: a sublayer for modal 
windows, a sublayer for floating windows, and a sublayer for document win­
dows. Each sublayer determines how a window appears in relation to other 
windows for that application. 

supervisor mode A state of operation for the PowerPC processor that allows 
access to critical processor resources, for instance, all processor instructions 
and tables that control memory protection. Only the Mac OS 8 microkernel, 
other portions of the operating system, and portions of device drivers execute 
while the processor is in supervisor mode. See also privileged code, user mode. 



GLOSSARY 317 

swap space In System 7, a single, preallocated area of backing store used for 
the temporary storage of all data paged out of physical memory. Compare 
scratch file, memory-mapped file. 

synchronous UO operation An operation where a task, after requesting data 
input or output, is blocked from execution until the data has been fully read in 
or written out. Compare asynchronous 1/0 operation. 

symmetric multiprocessor (SMP) Having several processors in an environment 
where each processor executes its own tasks and its own copy of the operating 
system and communicates with the other processors as needed. Compare 
asymmetric multiprocessor. 

System 7 The major Mac OS release preceding Mac OS 8. 

System 7 File Manager A cooperative service provided for backward compati­
bility with System 7 applications. Its programming interface can be called only 
by the main tasks of cooperative programs. Compare File Manager, Low­
Level File System Services. 

system extension A file in System 7 containing code that's loaded into mem­
ory at system startup time. System extensions aren't supported in Mac OS 8. 

system heap A memory area in the cooperative program address space 
reserved for various data structures used by the Process Manager and other 
portions of the operating system in support of System 7 applications. 

System Notification Service A set of reentrant services that allows one task to 
broadcast information about a change in the state of the system. Any number 
of other tasks can subscribe to its notifications. For example, the device driver 
for a display screen can use the System Notification Service to announce that 
the user has changed screen resolutions or bit depth. Code relying on the reso­
lution or color capabilities of the device can then take action based on the 
notification. 

System Object Model (SOM) An industry-standard architecture licensed by 
IBM for the development and packaging of object-oriented software. See also 
SOMobjects for Mac OS. 

system-wide Pertaining to all processes in all address spaces. Compare per­
process. 

system-wide instantiation The creation of an instance of a shared library's 
data section in a system-wide memory area so that all tasks in the system can 



318 GLOSSARY 

potentially use the same instance of the data. Compare per-process instantia­
tion, private-copy instantiation. 

system-wide memory allocator A plug-in that can be used by any type of code 
to acquire memory allocations from system-wide memory areas. Compare 
per-process memory allocator, nonpageable-memory allocator. 

system-wide memory area A range of addresses that appear at the same loca­
tion of every address space, making the contents of that area visible in all 
address spaces. Compare shared memory area. 

task ( 1) The basic unit of program execution in Mac OS 8. Preemptively 
scheduled and assigned a priority by the microkernel, every task has its own 
stack and set of registers. The microkernel uses processes to track the 
resources required by tasks so that every process is associated with at least one 
task and several tasks can be associated with a single process. See also main 
task. (2) A sequence of actions that can be triggered programmatically on 
behalf of the user. Usually called a delegated task. 

TCP/IP (Transmission Control Protocol/Internet Protocol) The major transport 
protocol and the network layer protocol used in communicating over the 
Internet. 

text-encoding specification Information within a text object that identifies the 
text-encoding system used for text within the object. 

text-encoding system A computer representation for one or more character 
sets used by one or more languages and regions. For instance, Unicode is a 16-
bit text-encoding system that provides a code for every character in every 
major writing system. 

text engine A shared library that manages the formatting, drawing, and edit­
ing of the text in response to user actions and application calls to an editable 
text panel. 

text object A system-wide data type used as the fundamental unit of text 
interchange in Mac OS 8. A text object consists of text, a text-encoding speci­
fication, and a locale identifier. Text objects allow developers to manipulate 
text without dealing with the details of various text-encoding systems. 

theme A coordinated set of human interface designs that determine the 
appearance of human interface objects on a system-wide basis. 



GLOSSARY 319 

thread ( 1) A path of execution. For example, one thread in a program might 
handle user interactions, another might perform calculations, and a third 
might perform 1/0. (2) To design software with more than one path of execu­
tion. Mac OS 8 developers can thread products using one or a combination of 
three different approaches. That is, developers can divide operations so that 
they are performed by more than one process, by more than one task in a sin­
gle process, or by more than one cooperatively scheduled thread within a sin­
gle task. 

Thread Manager See Cooperative Thread Manager. 

three-dimensional object See 3D object. 

Time Manager task System 7 code scheduled for execution independent of 
CPU clock speed or the occurrence of hardware interrupts. In lieu of using 
Time Manager tasks, Mac OS 8 device drivers use the Timing Services to 
schedule execution time. 

time slice An interval of time during which a task is given access to the CPU. 
In general, Mac OS 8 uses priority-based scheduling. However, when multiple 
tasks have the same priority and that becomes the highest priority on a sys­
tem, Mac OS 8 allows each task to execute for its time slice. When a time slice 
expires, the microkernel switches to the next task with the same priority. 

Timing Services Operating system facilities used to schedule the execution of 
device driver code at particular times. 

tip A suggestion for making more efficient use of application features. Users 
decide whether tips are displayed and how the Tip Manager signals their pres­
ence. For a user who elects to see tips, the Tip Manager prepares them for dis­
play whenever Mac OS 8 detects that the tips could benefit the user. 

Tip Manager A Mac OS 8 service for providing users with suggestions about 
making more efficient use of program features. 

title bar icon A small icon used for drag-and-drop operations involving the 
document displayed in a window. For example, a user can drag a document's 
title bar icon to a folder on the desktop, then drop it to save the document in 
that location. 

Toolbox See Human Interface Toolbox. 

Transmission Control Protocol/lntemet Protocol See TCP liP. 



320 GLOSSARY 

trigger condition The event or state-such as a specific time, time interval, or 
other programmatically determined condition-that invokes a delegated task. 
See also trigger module. 

Trigger Manager A Mac OS 8 service that tracks trigger conditions and 
invokes delegated tasks. 

trigger module A shared library containing information about trigger condi­
tions (that is, events and states necessary to invoke delegated tasks). A pro­
gram can register a user-selected trigger condition with a trigger module. 
Whenever circumstances match those specified in a trigger condition, the trig­
ger module sends an Apple event to the registered program, which then per­
forms a delegated task. 

typestyle A variant affecting all glyphs in the same font. Typical typestyles 
include bold, italic, underline, and so on. 

typography The arrangement and appearance of printed characters. 

unfiltered handler table An application handler table that allows events for 
which it contains no handlers to be passed to the next handler table in the 
stack. Compare filtered handler table. 

user mode A state of operation for the Power PC processor that protects cer­
tain processor resources, such as various processor registers, from being mod­
ified. To protect the stability of the user's system, most code in Mac OS 8 runs 
while the processor is in user mode. See also nonprivileged code, supervisor 
mode. 

user notification An audible or visible indication that a program requires the 
user's attention, or a communication informing the user about the status of a 
program's operations. User notifications can take such forms as sounds, icons 
that blink at the top of the screen, reports in a log file, and onscreen alert 
boxes containing short messages. For example, an e-mail server might display 
a small dialog box informing the user that new mail has arrived or that no 
connection was made to an online mail service. See also Notification Manager, 
System Notification Service. 

variable A named storage location for a modifiable value. 

variation axes Variables whose values consistently change the appearance of a 
font in terms of weight, width, slant, and the optimal shape for a specific point 
size. 



GLOSSARY 311 

vertical blanking task (VBL) System 7 code that can be executed during the time 
a display screen is refreshed. 

Vertical Retrace Manager The part of System 7 that schedules and executes 
code during a vertical retrace interrupt (VBL). In Mac OS 8, vertical blanking 
interrupt facilities are provided by the video display expert that's responsible 
for the display family. Code outside the display family may not make VBL 
calls. 

virtual memory Addressable memory beyond the limits of available physical 
memory. Mac OS 8 extends physical memory by storing on a secondary stor­
age device, such as a hard disk, code and data not immediately required by the 
CPU. 

visual separator A panel that displays horizontal, vertical, or rectangular ele­
ments that are used to visually separate other panels in a window. A rectangu­
lar visual separator can optionally include a title. 

volume A portion of a storage device formatted to contain folders and files. A 
hard disk, for example, may be divided into several volumes. See also volume 
format, volume format plug-in. 

volume format The structure of file and folder information on a disk. 
Mac OS 8 supports several volume formats, including the hierarchical file sys­
tem (HFS) and other industry-standard formats, such as the file allocation 
table (FAT) file system used by DOS and Windows. 

volume format plug-in A shared library that organizes information on a stor­
age device. To support different storage devices, several volume format plug­
ins may be in use on the user's system. The file system dispatches and routes 
information between volume format plug-ins and programs that manipulate 
files and folders. 

window A human interface object that presents information such as a docu­
ment or a message. Windows are implemented with SOMobjects for Mac OS. 
See also panel. 

window group A collection of related windows. Whenever the user activates a 
window that has an associated window group, all the windows in the group 
also come as far forward as they can while maintaining their current ordering. 

workspace One of several separate custom user environments for a single 
computer. A workspace is characterized by such user-specified attributes as 
theme, level of complexity, and application preferences. 



322 GLOSSARY 

WorldScript A Mac OS programming model for developing international 
applications. Encompassing technologies that became available in System 7.1, 
WorldScript defines an approach to programming and software design that 
includes the use of human interface design strategies and specific program­
ming interfaces supplied by the operating system. 

WorldScript I An operating system service in Mac OS 8 and System 7 that 
supports the display, manipulation, and printing of 1-byte complex text­
encoding systems for such languages as Hebrew and Arabic. 

WorldScript II An operating system service in Mac OS 8 and System 7 that 
supports the display, manipulation, and printing of 2-byte text-encoding sys­
tems, such as Chinese and japanese. 

World Wide Web A growing group of computers on the Internet that use mul­
timedia to present information and services. These computers also use elec­
tronic links within their media to help users quickly find related information 
and services across the web. 

zoom box An object in a window title bar used for sizing the window. When 
the user clicks the zoom box once, the window automatically expands to its 
optimal size on whichever screen is displaying most of the window. Clicking the 
zoom box a second time restores the window to its previous size and location. 



• • • • • • • • • • • • • • • • • • • • • • • 

Index 

Numbers followed by the letter f indicate 
figures; numbers followed by the letter t 
indicate tables. 

AS world, 106 
A-line instruction, 282 
A-trap, 284 

defined, 122 
A-trap table, 122-123, 130, 284 
Accelerator cards, 254 
Access permission, 50-51 

defined, 42 
levels of, 50 

Access window, 281 
Active window, 180f, 181f, 189, 281 
Address, 281 

logical vs. physical, 42 
Address space(s), 282 

for cooperative program, 43-45, 44f 
Mac OS 8 treatment of, 43 
organization of, 91 f 
protection of, 75 
range of, 41, 42-43, 99 
server program use of, 38, 45-46, 46f 

switching of, 4646-47, 47f 
System 7 treatment of, 35, 93 

Adobe Acrobat, xvii 
ADSP protocol, 276 
AEReceive function, 231, 232, 238 
AFP (Apple File Protocol), 147, 155 
Alert box, 189, 193-194, 282 
Alert panel, 282 
Alias Manager, 282 

defined, 145 
described, 154 

Alias records, 154, 282 
American National Standards Institute 

(ANSI), 282 
AMP (asymmetric multiprocessing), 79, 

282 
Animations, desktop, 183 
ANSI (American National Standards 

Institute), 282 
ANSI C, 152 
Anti-aliasing, 261, 282 
AOCE (Apple Open Collaboration 

Environment), in System 7, 273 

323 



324 INDEX 

API (application programming 
interface), 167 

Appearance control panel, 182, 282 
Appearance Manager, 182-183,282 
Apple event(s), 80-81, 82, 230-231 

attributes of, 231 
defined, 282-283 
and Human Interface Toolbox, 237-

238 
in System 7, 235 

Apple event dispatcher, 233, 234f, 283 
Apple event handler, 230, 283 
Apple Event Manager, 230,231,232, 

234,236,283 
in System 7, 236 

Apple File Protocol (AFP), 147, 155 
Apple Guide, 212,213,283 

access window for, 223f 
described, 223-226, 224f 
functions of, 224 

Apple Open Collaboration Environment 
(AOCE), in System 7, 273 

Apple Shared Library Manager (ASLM), 
118-119 

AppleScript, 81, 217, 283 
AppleTalk Manager, in System 7, 277 
AppleTalk protocols, 271, 283 

implementation of, 22 
AppleTalk Remote Access, 269, 283 
Application, defined, 27, 283 
Application handler tables, 233-234, 

283 
Application heap, 104,283 
Application program. See Application 
Application programming interface 

(API), 167 
Area, 284 
ASLM (Apple Shared Library Manager), 

118-119 
Assistance Services, 22, 33, 211-214, 

284 
experts, 215-221 
help utilities, 221-227 

Asymmetric multiprocessing (AMP), 79, 
284 

Asynchronous 110, 284 
ATM (Asynchronous Transfer Mode) 

networks, 265 

Atomic operation, defined, 84, 284 
Audio CD format, 155 
Automated assistance, 284 
Automation, scriptable, 81 
Availability, importance of, 75-76 

Backing provider 
defined,88,284 
described, 93 

Backing store, 92f 
defined, 88, 285 

Backing volume, 285 
Backward compatibility of Mac OS 8, 2, 

10-11 
A-trap support, 124f 
address space treatment, 35, 43 
application compatibility, 172-173 
device driver code execution, 171, 

173-174 
human interface and, 208-209 
network services, 2 77 
PCI compatibility, 173 
programming interfaces, 81 
of run-time support, 121-124 
System 7 File Manager and, 152-153 

Balloon help, 212, 226-227, 285 
Bevel buttons, 195, 195f, 285 
Bitmap, defined, 258, 285 
Block copy, 285 
Block storage devices, 163, 285 
Blocking 

defined, 56, 62 
of main task, 67-68, 285 

Bus, defined, 9, 285 

Cache, 156 
Caption panel, of dialog box, 192£ 
Caption text, 200, 285 
CD-ROM 

formats of, 155 
using, xvi-xviii 

Checkboxes, 195-196, 195f, 285 
of dialog box, 192f 

Children, setting environment for, 6, 8 
CHRP (Common Hardware Reference 

Platform), 2, 9f 
flexibility of, 8-9 
Mac OS 8 and, 30 



INDEX 

CIE color space, 25 6 
Class 

defined,178,286 
in object-oriented programming, 132 

Client extensibility, 7 6 
Client library, 167-168, 286 
Client programming interface, 286 
Client/server software model, 286 
Close box, of document window, 186f, 

187,286 
CMM (color management module), 255, 

286 
CMYK color space, 254, 256, 286 
Coachmarks, 224,286 
Code fragment(s) 

creation of, 111-112 
defined, 110, 286 
platform specificity of, 124 
software based on, 122, 123-124 

Code Fragment Manager, 100, 101 
data instantiation by, 119-121 
defined, 111,286 
function of, 111, 112-113, 13 3 
memory allocation by, 114 
and plug-ins, 118 
software extension and, 131, 132 

Code section, defined, 114, 287 
Collapse box, of document window, 

186f, 187, 287 
Color management module (CMM), 

255,287 
Color matching, 255 
Color space, 254, 256, 287 
ColorSync, 20, 21, 247, 250 

defined,246,287 
described, 254 
using, 254-255 

Common Hardware Reference Platform 
(CHRP), 2, 9f 

flexibility of, 8-9 
Mac OS 8 and, 30 

Communications, 22 
Compile time, 287 
Compiled program, defined, 216 
Compiler, defined, 111, 287 
Completion routine, 170, 287 
Component Manager, 262, 287 
Component software, 287 
Composite imaging object, 287 

Compound document, 287 
Concurrent processing, 29 

defined,288 
and reentrant services, 31-33 

Containment hierarchy, 191, 288 
Content, searching for, 13, 15 
Context switch, defined, 62, 288 
Contextual menu, 214, 288 
Control, 179 

defined, 179,288 
types of, 194-197 

Control panel, defined, 10, 288 
Cooperative multitasking 

defined, 288 
disadvantages of, 58 
in System 6, 59 
in System 7, 59 

Cooperative program(s), 29 
address space for, 43-45, 44f, 288 
defined,26,36-37,288 
listed, 36 
memory allocation for, 60-61 
relation to server program, 39f 

Cooperative program tasks, priority of, 
63 

Cooperative scheduling, 33-34 
defined,27,56,289 
policies of, 67-70 
synchronization of, 66-67 

Cooperative service(s), 29, 29f 
defined,26,289 
listed, 33 
making calls to, 67f 
user interactions and, 33-35 

Cooperative Thread Manager, 72, 77-
79,289 

Cooperatively scheduled thread, 77-79 
defined, 72 

Counting semaphore, defined, 83, 289 
CPU (central processing unit), defined, 

18,289 
Custom memory allocator, 103 
Customization, in System 7, 184 
Cyberdog, 22 

advantages of, 271 
defined,270,289 
described, 2 72 
using, 272-273, 272f 



326 INDEX 

Data 
content searches, 13, 15 
about documents and folders, 15-16 
extensibility of, 202 
instantiation of, 119-121 
opacity of, 201 
organizing, 16, 1 7f 
sharing of, 81, 82 
static, 111 
storage of, 149, 150f, 151 
synchronization of, 78, 83-84 

Data fork, 149, 289 
Data Link Provider Interface (DLPI), 276 
Data-only fragment, defined, 111, 290 
Data section, defined, 114, 290 
Data structure, 290 
DayStar Digital, 79 
DDP protocol, 276 
Default handler table, 233, 290 
Deferred Task Manager, in System 7, 

171, 172 
Deferred tasks, 171, 290 
Definition version, of import library, 

115,290 
Delegated task, 212, 218-220,290 
Delegation, 12, 218-220,290 
Descriptive assistance, 290 
Design extensibility, 205-206 
Designing PCI Cards and Drivers for 

Power Macintosh Computers, 173 
Desk accessory, defined, 10, 291 
Desktop, 180£, 181 f 

animation on, 291 
organization of, 16, 1 7f 

Desktop Animation Manager, 183 
Determinate progress indicator, 196-

197, 311 
Developers, defined, xiii, 291 
Developing applications for Mac OS 8 

adding networking, 279 
event handling, 243 
memory guidelines for, 107 
using Assistance Manager, 228 
using file system, 158-159 
using multimedia, 267 
using multitasking, 70 
using multithreading, 85 
using OpenDoc, 140-141, 2 79 

using run-time environment, 125 
using virtual memory, 96 

Device driver 
defined, 10,162,291 
generic, 173-17 4 
UO plug-in as, 163 
in System 7, 164, 165, 173 

Device Manager, 291 
Device Notification Service, 171, 291 
Dialog box, 145, 179, 180f, 181f, 191f, 

291 
types of, 189 
uses of, 191-193 

Dialog panel, of dialog box, 192f, 291 
Directory, defined, 144 
Disclosure triangle, 196, 291 
Disk cache, 156, 291 
Disk drives, 163 
DLL, 291 
DLPI (Data Link Provider Interface), 276 
Document(s), defined, 156, 292 

information about, 15-16, 16f 
Document window, 186-187, 186f, 292 

layering of, 188, 188£ 
standard, 189 

Drag, defined, 187,292 
Drag Manager, 292 
Driver and Family Matching Service, 

171,292 
'DRVR' filetype, in System 7, 164, 173 
Dynamic Storage-Allocation Service, 60 

defined, 98,292 
described, 99-100 
using, 100-104, 248 

Dynamically linked libraries, 113-114. 
See also Shared libraries 

defined, 110, 292 

E-mail, 271 
reading with Cyberdog, 2 73 

Editable text panel, 199, 292 
of dialog box, 192£ 

Embedding panel, 191,292 
Encapsulation 

defined, 185,293 
in object-oriented programming, 132 

Ethernet, support for, 22, 276 



INDEX 

Event 
defined,66,229,293 
described, 230-232 
handling. See Event handling 
and Human Interface Toolbox, 237-

238 
Event class, 231,293 
Event groups, 293 
Event handling, 232-237 

for multiple tasks, 238-241, 239f, 
240£ 

in new applications, 243 
for one task, 239, 239f 
in OpenDoc, 231 
in System 7, 231-232 

Event ID, 231, 293 
Event loop, in System 7, 231, 293 
Event Manager, in System 7, 231,233, 

293 
Event motivation, 81 
Event record, 233 
Events group, defined, 84 
Exception error, defined, 50, 293 
Exception handler, 293 
Excluded access, 50, 293 
Execution time, defined, 110, 294 
Expert(s) 

access to, 215f, 216 
defined,2,212,294 
function of, 11-12, 215-217 
technical details of, 217-221 

Expert assistance, 294 
Experts window, 294 
Extensibility 

client, 76 
data, 202 
defined, 127,294 
design, 205-206 
OpenDoc and, 128-130 

Extension, 294 

Factoring, defined, 243, 294 
Family expert, 167, 171-172, 294 
Family server, 167, 168, 294 
Family services library, 294 
FAT system (DOS), 144, 155 
File 

defined, 144 
mapping of, 295 

File Manager, 109, 155 
defined,295 
described, 151-152 

File sharing, 22 
File system 

defined, 144, 295 
described, 146-148, 150f 
interaction with virtual memory 

system, 155-156 

327 

programming interface to, 151-154 
properties of, 149, 151 

File system object, 295 
Filtered handler table, 235, 295-296 
Find window, 15, 15 f 
Finder, 296 
FireWire, 163 
Floating windows, 187, 294-295 

displaying of, 189 
layering of, 188, 188f 

Folder(s) 
defined, 144 
information about, 15-16 
navigating, 13, 14f 

Folder Manager 
defined, 145,295 
described, 154 

Font(s), 258-259 
defined,295 
scaling of, 259 

Font architecture, for international 
compatibility, 205 

Font Manager, 46 
Font scaler, 29 5 
Forward-compatible memory guidelines 

defined,98,295 
described, 105 

Fragment, defined, 111, 29 5 
Function, defined, 296 

Gamuts, defined, 254, 296 
Generation time, defined, 110, 296 
Generic drivers, 173-174, 296 
Genesis MP, 79 

support for, 80 
Global instantiation, 120, 296 
Global variable, defined, 114, 296 
Glossary, 281-322 
Glyph, defined, 258, 296 
Gopher, using with Cyberdog, 2 73 



318 INDEX 

Graphical user interface, 246-247, 297 
defined, 26, 296 

Graphics, 21. See also Multimedia 
Guard page, 51, 52f 

defined,42,296 
Guide files, 224, 296 

creating, 225, 225f 
in System 7, 226 

Guide Maker, 224,296 
Guide Script, 224 

Handle, defined, 99, 296 
Handler table(s), 230, 233-235, 297 
Handler table stack, 233, 234f, 297 
Handlers, 235-23 7 
Handwriting input, 204 
Hardware, flexibility of, 8-9 
Hardware interrupt, 169, 297 

defined, 58 
Hardware interrupt handler, 169,297 
Heap 

application, 104 
defined, 51 
system, 104 

Help 
balloon, 212, 226-227, 227f, 285, 

297 
expert. See Experts 
menu, 214 
types of, 221-227 
in workspace, 12, 13f 

Help Manager, 221,227,297 
HFS (hierarchical file system) 

capacity of, 155 
defined, 144,297 
described, 149 
history of, 15 5 

High Sierra CD format, 155 
High-level family, 171,297 
HLS color space, 25 6 
Horizontal visual separator panel, of 

dialog box, 192f 
HSV color space, 25 6 
Human interface 

defined,26, 178,297 
multimedia and, 24 7 

Human interface objects, 178, 179 
customizing, 206 

defined, 298 
importance of, 184-186 
subclassing, 206 
types of, 186-200 

Human Interface Toolbox, 27, 33, 117 
and Apple Events, 237-238 
defined, 298 
described, 177,179-181 
extensibility of, 136 
inheritance in, 185-186, 185f 
programming characteristics of, 201-

207 

110 family 
defined, 162,299-300 
components of, 167 
listed, 166t 

110 operations 
asynchronous, 284 
file system and, 152 
synchronous, 62, 316 

110 plug-ins, 162, 163, 168-171 
110 system, 9, 11, 20 

defined, 161, 300 
described, 162-165 
efficiency features of, 170, 249-250 
modularity of, 164£, 165 
reliability features of, 165-166 

Icons, 200, 298 
Imaging 

defined,246,298 
integrated systems for, 250-251 
in System 7, 251 

Imaging objects, 200, 298 
function of, 200-201 
subclassing, 207 

Implementation version, of import 
library, 115, 116-117, 298 

Import library, 111 
defined, 110,298 
described, 115-116 
preparation of, 116-117, 116£ 
software extension through, 131-132 

Imported symbol, 131 
defined, 111,298 

Indeterminate progress indicator, 196, 
310 

Information. See Data 



INDEX 

Inheritance 
defined, 133,298 
in Human Interface Toolbox, 185-

186, 185f 
'INIT' filetype, incompatibility with Mac 

OS 8, 130, 138 
Input-output. See 110 
Inside Macintosh, 172, 235, 236, 243 
Instantiation 

defined, 117, 29 8 
of static data, 119-121, 119f 
in System 7, 121 

Instructional assistance, 299 
Integrated Services Digital Network 

(ISDN), 265 
Interface, client programming, 167, 168 
Interface Definition Language (IDL), 137 
International issues, 205 

applications, 202 
text input and display, 204-205 
textsupport,202-204,259-261 

Internationalization, 202, 299 
Internet 

defined, 270, 298 
using Cyberdog on, 273 
using QuickDraw and QuickTime on, 

274-275 
Interpreted program, defined, 216 
Interprocess communication, 80-85 

defined, 72, 299 
Interrupt 

defined,299 
handling of, 84 
hardware, 58, 169 

Interrupt handler, 84, 299 
Interrupt latency, 299 
Interspace block copy, 299 
Interview Manager, 212, 213, 218, 299 
Interview panels, 216, 216f, 217f, 299 
Interview sequence, 299 
Interviews, user, 218 
Intranet, defined, 2 70, 299 
ISDN (Integrated Services Digital 

Network), 265 
ISO language codes, 203 
ISO 9660 CD format, 155 
ISO region codes, 203 

JPEG,defined,261,300 

Kernel, 32, 300 
Kerning, 259, 300 

LAN (local area network), 
teleconferencing through, 265 

Language codes, 203 
Laser Writer printer, 24 7 
Launch time, defined, 110, 300 
Layers, of window, 187, 300 
Library, defined, 110, 300 
Ligatures, 259, 300 
Link time, defined, 110, 301 
Linker, defined, 111, 301 
Lists, 198, 301 

features of, 198-199 
scrolling, 198 

Little arrows, 195f, 196, 301 
Local area network (LAN), 

teleconferencing through, 265 
Locale identifier, 203, 301 
Localization, 301 
Localizer, 301 
LocalTalk, support for, 22, 276 
Lock,defined,83,301 

319 

Logical address, defined, 42, 301 
Low-level family, 171-172, 301 
Low-Level File System Services, 146, 155 

defined, 144-145,301-302 
described, 153-154 

Luminance color space, 25 6 

Mac OS 8 
A-trap support in, 124, 124f 
backward compatibility of, 2, 10-11, 

35,43,81,121-124,152-153,171, 
208-209,277 

components of, 28f 
features of, 2 
hardware support in, 30 
home page of, xviii 
international versions of, 9-10 
modularity of, 28-29 
multimedia implementation in, 248-

250 
open font architecture of, 10 
scalability of, 3-6 



330 INDEX 

smart help function of, 12, 13f 
software support of, 36 
stability of, 250 
system services in, 123-124, 123f 

Macintosh Toolbox, in System 7 
development, 182 

MacTCP, in System 7, 277, 302 
Main code section, 302 
Main task 

blocking of, 67-68 
defined,56,302 
priority of, 63 
scheduling of, 68f 

Managers, in System 7 and earlier, 33, 
302 

Mapping, to memory, 88, 89, 91, 94-95, 
155-156 

Master processor, defined, 79 
Memory 

dynamic allocation of, 44-45 
efficient use of, 248-249 
optimization of, 19-20 
organization of, 91-93 
physical, 30 
protection of, 20, 50-51 
sharing of, 82 
virtual. See Virtual memory 

Memory address, 302 
Memory allocation, 60-61, 60f, 61f 

defined,98, 115,302 
in System 7, 104 

Memory allocator 
custom, 103 
defined,98, 115,302 

Memory area 
defined, 42, 302 
shared, 48 
system-wide, 48, 49f 

Memory Manager, 99 
defined,98,303 
history of, 100 
in System 7, 105 
using, 104-105 

Memory-mapped file, 89, 155-156 
defined,88,303 
described, 94-95 
memory associated with, 91 
in System 7, 95 

Menu, 179, 180f, 18lf, 197f 
contextual, 214 
defined,303 
features of, 197-198 
tear-off, 198f 

Menu bar, 180f, 181£, 181£ 
Message, defined, 303 
Message service, 303 
Method, in object-oriented 

programming, 185, 303 
Micro kernel 

allocation of address spaces by, 46-4 7 
defined, 26 
relation to other services, 32-33, 32f 
scheduling by, 57-59, 64-65 

Microkernel Messaging Service, 82-83, 
303 

Microkernel queue, defined, 83-84, 304 
Microsoft Windows, processes and 

threads in, 59, 72 
MIDI,defined,261,304 
Migrating applications to Mac OS 8 

HFS and, 159 
memory guidelines for, 107 
using Human Interface Toolbox, 208 
using multitasking, 70 
using multithreading, 85, 174-175 
using OpenDoc, 2 79 
using run-time environment, 125 
using virtual memory, 96 

Modal dialog box, 189, 304 
Modal windows, 187, 304 

layering of, 188, 190f 
Modeless dialog box, 189, 191-192, 

193f, 304 
Movable alert box, 194, 194f, 304 
Movable modal dialog box, 192-193, 

193f, 304 
Movies, 304 
Moving Worlds VRML 2.0, 274 
MPEG, defined, 261, 304 
Multimedia 

defined,246,305 
history of, 265-266 
Mac OS 8 and, 20-21,247-250 
QuickTime, 261-265 

Multiprocessing, 19, 79 



INDEX 

Multiprocessor computer 
defined, 72,305 
support for, 79-80 

Multitasking, 18-19, 305 
cooperative vs. preemptive, 58 
and multimedia, 20-21, 249 
preemptive, 56 
virtual memory and, 9 3 

Multithreading, 58, 305 

Name Registry, 171, 305 
Native code, defined~ 18 
Navigation Services, 143 

defined,145,305 
described, 145-149, 146f, 156-157 
and networking, 271 

Netware (Novell), 155 
Network printer sharing, 22 
Network protocols, defined, 2 70 
Networking, 22-23 

defined,270,305 
history of, 277-278 
Mac OS 8 and, 270-272 

Newsgroups, reading with Cyberdog, 
273 

Nonmovable alert box, 194, 194f, 305 
Nonmovable modal dialog box, 193, 

305 
Nonpageable-memory allocator 

defined,98,305 
described, 102-103 

Nonprivileged code, 50, 101, 165, 306 
Notification, 219, 220-221 
Notification Manager, 212, 213, 218, 

306 
Notifier module, 306 

Object 
defined, 178,306 
imaging, 200-201, 207 
in object-oriented programming, 132 

Object class, 306 
Object life cycle management, 202 
Object-oriented programming, 129, 

132-133 
and software extensibility, 134-135 

Open Font Architecture (OFA), 259, 306 

Open Transport, 22 
advantages of, 271 
defined,270,306 
features of, 275-276 

OpenDoc 
components of, 306 
defined,27, 128,306 
event handling in, 231 
history of, 3 7 
Mac OS 8 and, 21-22 
and networking, 271 
as plug-in, 118 
scheduling in, 66-67 
software extension using, 130-131 

Operating system, 30-35 
defined, 26, 306 

331 

Operating system task, priority of, 63 
OS 8. See Mac OS 8 

Page 
defined,51,88,307 
size of, 91 

Page fault, defined, 88, 307 
Paging, defined, 8 8 
Panel 

defined, 145,178,307 
described, 190-191 
editable text, 199 
embedding, 206 
scrolling, 199 
subclasses of, 185, 186f 
types of, 191 

Part 
defined, 130,307 
of OpenDoc document, 2 73 

Part editors, 37, 130, 273, 307 
use of cooperative services by, 76 

Part viewer, 307 
Patch Manager, 128, 307 

software extension using, 138-139 
Patching, in System 7, 139 
PCI (Peripheral Component 

Interconnect), 163, 164, 307 
compatibility with, 173 

Per-context instantiation, 120, 307 
Per-load instantiation, 121, 307, 309 
Per-process, 307 



331 INDEX 

Per-process instantiation, 120, 308 
Per-process memory allocator 

defined,98, 115,308 
described, 101-102 
use of, 105 

Per-process static data, 120 
Permissions, 307 
Personal file sharing, 22, 269, 308 
Photo CD format, 155 
Physical address, defined, 42, 308 
Physical memory, 30, 308 

data in, 89f 
Picture, 308 
Plug-in, 113 

defined, 100,111,146,308 
described, 117-118 
YO, 162,163, 168-171 
OpenDoc and, 118 
programming interfaces, 168 
software extension through, 132-133 
volume format, 144 

Plug-in programming interface, 308 
Point-to-Point Protocol (PPP), 276 
Pointer(s), 48 

defined, 99, 308 
Polymorphism, defined, 133, 185, 308 
Pool Manager, in System 7, 103, 308 
Pop-up button, 196, 309 
Pop-up windows, 16, 17f, 309 
POSIX, 152, 309 
PostScript, 24 7 
PowerPC architecture, 2 

Mac OS 8 and, 30 
optimization for, 18 

PowerTalk, in System 7, 273 
PPP (Point-to-Point Protocol), 276 
Preemptive multitasking, 18 

defined, 56, 309 
efficiency of, 57 

Preemptive scheduling, 35, 64f, 65f, 69f 
advantages of, 31 
defined,26-27,56,309 
eligibility for, 62 

Preferences Manager, 184 
Presentation panel, 309 
Printer driver, 257 

defined,256,309 
Printer sharing, 22 

Printing, from QuickDraw GX, 256-257 
Printing Manager, 250,257, 309 
Private-copy instantiation, 121, 309 
Privileged code, 51, 101, 165, 310 
Privileged server program, defined, 162, 

310 
Process(es) 

communication between, 80-85 
defined,42,56,310 
in Mac OS 8, 59 
in UNIX and Windows, 59 

Process Manager, 33-34, 46, 56, 66, 67, 
310 

integration of, 70 
Processor register, defined, 50, 310 
Profile, color, 25 5, 310 
Program, defined, 2 7, 310 
Program-execution time, 310 
Program-generation time, 310 
Programming interface 

API, 167 
defined,30,310-311 
plug-in, 168 

Progress indicators, 195f, 196,311 
Properties, 149, 151, 311 
Protocols, 311 
Push buttons, 195, 195£, 311 

in dialog box, 192f 

Queue, microkernel, 83-84 
QuickDraw, 247, 250 

color, 258 
defined,246,311 
development of, 257-258 
international font handling in, 259-

260 
pictures in, 200, 311 

QuickDraw 3D, 247, 250 
accelerator card for, 254 
defined,246,311 
described, 251-252 
using, 252-254 
using on Internet, 274 

QuickDraw 3D RAVE, 254,311 
QuickDraw GX, 20, 21, 247, 250 

defined,246,311 
described, 256 
internationalized, 205, 259-260 



INDEX 

printing with, 256-257 
typographyin,259-260 

QuickTime, 20, 21, 247 
defined,246,311 
movies in, 262, 312 

QuickTime Conferencing, 247, 264f 
defined,246,311 
described, 264-265 
using, 274-275 

QuickTime Live! 
defined,270, 311 
using, 275 

QuickTime Music Architecture, 247, 
264,312 

QuickTime VR, 247 
defined,246,312 
described, 262-264, 263£ 
using, 275 

Radio button, 196, 312 
Radio button group panel, 199, 312 

of dialog box, 192£ 
RAM (random access memory), 30,312 
RAVE, 312 
Read/write access, 50, 312 
Read/write lock, defined, 83 
Read-only access, 50, 312 
Real-time task, priority of, 63 
Reduced Instruction Set Computing 

(RISC), 18, 313 
Reentrancy, 312-313 
Reentrant service(s), 29, 29f 

concurrent processing and, 31-33 
defined,26,313 
listed, 31-32 

Region codes, 203 
Release-to-release binary compatibility, 

181 
Resident memory areas, 91 
Resource fork, 149, 313 
Resources, 149, 313 
RGB color space, 254, 256, 313 
RISC (Reduced Instruction Set 

Computing), 18, 313 
Root panel, 191, 313 
Routine, 313 
Run-time environments, 109-114 

defined,313-314 
fragments in, 114 

333 

shared libraries in, 115-119 
static data instantiation in, 119-121 
in System 7, 114 
System 7 vs. Mac OS 8, 121-124 

Scaling, of fonts, 259 
Scheduling, 58, 61 

cooperative, 27, 33-34, 56, 66-70 
outside cooperative multitasking 

environment, 170 
policies of, 62-65, 64f, 65f 
preemptive, 26-27, 31, 35, 56, 62-66, 

69f 
Scrapbook,251,252f 
Scratch file, 89, 95 

defined, 88, 314 
memory associated with, 91 

Scratch space, 93-94, 314 
Script, defined, 81,237, 314 
Scriptability, 237, 314 
Scripting languages, 81, 217, 23 7, 314 
Scroll bars, 180f, 195f, 197 

defined, 179,314 
Scrolling list, 198, 314 
Scrolling panel, 199, 314 
SCSI (Small Computer System Interface), 

163,314 
Searching, for content, 13, 15 
Secondary interrupt handler, 314-315 
Secondary storage, 42 
Semaphore, counting, 83, 289 
Server program(s) 

address spaces for, 45-46, 46f 
defined,26, 128,162,315 
distinguished from cooperative 

program, 38-39 
listed, 38 
privileged, 162 
relation to cooperative program, 39£ 
and software extension, 137-138 

Server program task, priority of, 63 
Setup expert, 12, 12f 
Shape, 315 
Shared library, 19-20, 109 

defined,98, 110,128,315 
import libraries, 115-117 
plug-ins as, 117-119 
software extension through, 131-132 



334 INDEX 

Shared memory areas, 48, 315 
Simple lock, defined, 83 
Size box, of document window, 186£, 

187,315 
Slave processor, defined, 79 
Sliders, 195f, 197, 315 
Small Computer System Interface (SCSI), 

163,313 
SMP (symmetric multiprocessing), 79, 

315 
SOM (system object model), 128 

benefits of, 135-136 
classes, 129, 136, 137 
in Mac OS 8, 133-134 
software extension through, 133-137 
subclasses, 136-137 

SOMobjects for the Mac OS, 128, 134, 
178, 180, 181,316 

Speech input, 204 
Stack, defined, 51, 60, 99, 316 
Stack frame, defined, 51 
Standard document window, 189, 316 
Standard File Package, of System 7, 157-

158 
Static data 

defined, 111, 316 
instantiation of, 119-121 

Static image panels, 200, 316 
Static text panels, 316 
stdio.h library, 152 
Sticky menu mode, 198 
Storage, organization of, 149, 150f, 151 
STREAMS, 276 
Subclassing 

defined, 133, 316 
importance of, 185 

Sublayers, of window, 187, 316 
Supervisor mode, 51, 165, 316 

in System 7, 166 
Swap space, 93-94, 317 
Symmetric multiprocessing (SMP), 79, 

317 
Synchronization 

of data, 78, 83-84 
of tasks, 81 

Synchronous 110 operations, 62, 317 
System extension 

defined, 10, 317 
in System 7, 248 

System heap, 90, 104,317 
System Notification Service, 84, 317 
System object model (SOM), 128, 317 

benefits of, 135-136 
classes, 129, 136, 137 
in Mac OS 8, 133-134 
software extension through, 133-137 
subclasses, 136-137 

System 7, 317 
compatibility of Mac OS 8 with, 10-

11,34-35 
drawbacks of, 18, 20 
interrupt handling in, 84 
Mac OS 8 incompatibilities with, 130, 

138, 164, 173 
multitasking in, 59 
PowerPC run-time environment in, 

114 
Process Manager of, 70 
system services in, 122-123, 122f 

System 7 File Manager of Mac OS 8, 149 
defined, 144, 317 
described, 152-153 
internal data structures of, 153 

System 6, multitasking in, 59 
System-wide, defined, 317 
System-wide instantiation, 120, 317-318 
System-wide memory allocator 

defined, 98, 318 
described, 102 

System-wide memory areas, 48, 49f, 318 

Task(s) 
with cooperatively scheduled threads, 

78f 
defined,42,56, 72,318 
delegated, 212,218-220 
hierarchy of, 63 
in Mac OS 8, 60 
main, 56, 63, 67-68 
synchronization of, 81 
threading in separate processes, 74-

76, 74f 
threading within one process, 7 6-77, 

77f 
Task switching, 79 
TCP/IP protocols 

defined,276,318 
implementation of, 22 



INDEX 

Tear-off menu, 198f 
Telnet, accessing with Cyberdog, 273 
Text-encoding specification, 202, 318 
Text-encoding system, 202, 318 
Text engine, defined, 199, 318 
Text objects, 202-203, 318 

opacity of, 203-204 
Text Service Manager, 134 
Text support, 9-10 

anti-aliased, 261 
input and display, 204-205 
international, 202-204, 259-261 

Theme(s) 
defined, 6, 178,318 
described, 182-183 
types of, 6, 7f, 8, Sf 

Thread(s) 
cooperatively scheduled, 72, 77-79 
defined, 72, 319 
program control over, 78 
in System 7.5, 72, 74 
in UNIX and Windows, 59 

Thread Managet; 72, 74 
3D object, defined, 281 
3D viewer, 253-254, 281 
3DMF (3D Metafile), 253,274,281 
Time Manager, in System 7, 170, 171, 

172,319 
Time slicing, 65, 65f, 319 
Timing Services, 120, 171, 319 
Tip Manager, 212, 214, 222-223, 319 
Tips, 222, 319 
Title bar icon, of document window, 

186f, 187, 319 
Token Ring, support for, 22, 276 
Toolbox. See Human Interface Toolbox 
Transmission Control Protocol/Internet 

Protocol. See TCPIIP 
Trap tables, 122-123, 130, 138 
Trigger condition, 219-220, 320 
Trigger Manager, 138, 212, 213, 218, 

219-220,320 

Trigger module, 219, 320 
TrueType fonts, 258-259 
Typestyle, defined, 259, 320 

Typography 
defined,258,320 
fonts, 258-259 
in QuickDraw GX, 259-260 

UDP protocol, 276 
Unfiltered handler table, 235, 320 
Unicode, 10 
UNIX, 32 

processes and threads in, 59 
User interactions 

335 

cooperative services and, 33-35 
serializing of operations involving, 34 

User interface, scalability of, 3-6 
User interviews, 218 
User mode, 50, 165, 320 
User notification, 219, 220-221 

defined, 76, 320 
Users, defined, xiii 

Variable, defined, 114, 320 
Variation axes, 259, 320 
Vertical blanking tasks (VBLs), 170, 321 
Vertical Retrace Manager, in System 7, 

170,171,172,321 
Virtual memory 

defined,42,88,321 
described, 88-90, 149 
function of, 113 
interaction with file system, 155-156 
multitasking and, 93 
organization of, 91-93 
in System 7, 90-91, 96 

Virtual reality, 262 
Visual separator, 199, 321 

of dialog box, 192f 
Volume, defined, 144, 321 
Volume format, defined, 144, 154-155, 

321 
Volume format plug-in, defined, 144, 

155,321 

Window(s), 179 
activation of, 189 
behavior in System 7, 187 
defined, 178,321 



336 INDEX 

Window(s) (continued) 
of dialog box, 192£ 
layers of, 187-188 
uses of, 189 

Window group, 190, 321 
Workspace, 4f, Sf 

components of, 183-184 
defined, 178,321 
individualizing, 5-8 
scalability of, 3-6 
setting up, 5 

World Wide Web (WWW), 271 
browsing with Cyberdog, 273 
defined,270,322 

Worldscript, 204, 205, 250, 260-261, 
322 

XTI (X/Open Transport Interface), 276 

YIQ color space, 256 

Zoom box, of document window, 186f, 
187,322 



Addison-Wesley warrants the enclosed disc to be free of defects in materials and faulty workmanship under 
normal use for a period of ninety days after purchase. If a defect is discovered in the disc during this warranty 
period, a replacement disc can be obtained at no charge by sending the defective disc, postage prepaid, with 
proof of purchase to: 

Addison-Wesley Publishing Company, Inc. 
Editorial Department 

Developers Press 
One Jacob Way 

Reading, MA 01867 

After the 90-day period, a replacement will be sent upon receipt of the defective disc and a check or money order 
for $10.00, payable to Addison-Wesley Publishing Company. 

Addison-Wesley makes no warranty or representation, either express or implied, with respect to this software, 
its quality, performance, merchantability, or fitness for a particular purpose. In no event will Addison-Wesley, its 
distributors, or dealers be liable for direct, indirect, special, incidental, or consequential damages arising out of 
the use or inability to use the software. The exclusion of implied warranties is not permitted in some states. 
Therefore, the above exclusion may not apply to you. This warranty provides you with specific legal rights. 
There may be other rights that you may have that vary from state to state. 



' I 

Apple 
PRESt 

9 780201 479553 
ISBN 0-20 1-47955-9 

$34.95 us 
$48.00 CA ADA 


