

The PowerPC™ Macintosh® Book

The Inside Story on the
New RISC-Based Macintosh

Stephan Somogyi

Foreword by Donald A. Norman

Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam

Bonn • Sydney • Singapore • Tokyo • Madrid • San juan

Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial capital letters or all
capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

Library of Congress Cataloging-In-Publication Data
Somogyi, Stephan.

The PowerPC Macintosh book I Stephan Somogyi
p. em.

Includes index.
ISBN 0-201-62650-0
1. Macintosh (Computer) 2. RISC microprocessors.

II. Title.
QA76.8.M3S665 1994
004.165- -dc20

Copyright © 1994 by Stephan Somogyi

93-38276
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada.

Sponsoring Editor: David Clark
Project Manager: joanne Clapp Fullagar
Production Coordinator: Gail McDonald jordan
Cover design: Barbara T. Atkinson
Text design: joyce C. Weston
Set in 11 point Stone Sans by Shepherd, Inc.

1 2 3 4 5 6 7 8 9 -CRW- 9897969594
First printing, August 1994

Addison-Wesley books are available for bulk purchases by corporations, institutions, and other
organizations. For more information please contact the Corporate, Government, and Special
Sales Department at (800) 238-9682.

" ... we sha II never surrender. "

-Sir Winston Churchill

Contents

Foreword xiii

Introduction xix

Chapter 1 How We Got Here From There 1

RISC at Apple 3
RISC for the Mainstream 10
Deal of the Century 12
RISC System Software 21
Diversification 23
How We Got Here From There 28

Chapter 2 Power Macintosh Hardware Overview 31

The Big Picture 32
The PowerPC 601 33
Direct Memory Access 36
Memory 37
Video 41
Storage and SCSI 46
NuB us 51
GeoPort 52
Ports 52
Sound 53
The Power Macintosh Upgrade Card 53
ABS Hardware 55
Performance 56

Chapter 3 Power Macintosh Software Overview 57

Power Macintosh System Software 57
Emulation 60

vi The PowerPC Macintosh

Native PowerPC System Software 61
Mixed Mode 62
Native QuickDraw 66
Native QuickTime 68
Memory: Modern and Virtual Both 69
1/0 71
!NITs and Patches 73
Software on the Power Macintosh 82

Chapter 4 An Introduction to Microprocessors 85

Fundamental Microprocessor Concepts 85
Architecture 94
Implementation 97
Caches 97

Chapter 5 The PowerPC Family 103

Now We're Playing with POWER 103
What Makes a PowerPC a PowerPC? 107
The Abstract PowerPC 109
The PowerPC 601 112
The PowerPC 603 120
The PowerPC 604 127
The PowerPC 403GA 132
The PowerPC 620 134

Chapter 6 Emulators on the Power Macintosh 137

Emulation Works 138
The 68LC040 Emulator 138
Soft Windows 148
Wabi 153
The Bottom Line 157

Chapter 7 Power Macintosh Hardware in Depth 159

System Hardware 160
Upgrade Card 178

Contents vii

AV Card 179
VRAM Expansion Card 182

Chapter 8 Power Macintosh Software In Depth 185

Mixed Mode 185
Call Chains 188
Extensions and Fat Patches 189
The Code Fragment Manager 192
Traps 195

Chapter 9 Looking Ahead 199

Hardware 200
The PowerPC Reference Platform 206
Graphing Calculator 209
System Software 210
The Future 214

Appendix A Resources 217

Thanks
It is impossible for me to imagine what this book would

be like without the extraordinary help of the following peo­
ple. To claim that they have my heartfelt gratitude would be
an understatement.

jack McHenry, for helping in more ways than I can enu­
merate and for trusting me enough to let me camp out.

Tim Olson, for pitching in unhesitatingly when things
were looking bleak and for providing the core content for
Chapter 4.

Jim Gable, for taking the time to read the whole manu­
script despite having more than enough other things to do,
for the Sunday-night-at-10 phone conversations, and
for being a staunch supporter throughout this endeavor.

Maggie Canon, MacUser's Editor-in-Chief, for giving me
the freedom to get this book done.

Richard Zulch, co-conspirator, for being a high-fidelity
sounding board.

Rik Myslewski, fellow raw fish addict of eastern European
descent, for deconstruction services and reality checks.

Pam Pfiffner, my fearless leader at MacUser, for being quite
the understanding boss.

Frank Casanova, for offering help when I needed it.
Richard Clark, for helping out despite maximum entropy

in his own world.

lx

More Thanks
In the past, when I've read books that started with "Many

people contributed to this book, without whom it wouldn't
be nearly as good as it is," or something along those lines,
I've dismissed such descriptions, as well as the number of
people listed, as exaggerated.

Having finished this, my first book, I can say with some
authori ty that they weren't kidding after all.

The people listed below contributed to this book in one
way or another, but not by just "doing their job." They went
out of their way to provide information, access, time out of
their busy schedules, and other valuable resources when I
needed them.

First of all, thanks to those who, among other things,
took the time to read parts of this book, often in rather
rough form, and provided much-needed feedback despite
deadlines of their own: Keith Cox, Michael Dhuey, Bob
Hollyer, Gary Kacmarcik, Alan Lillich, Zenon Kuc, Phil
Koch, Paul Nixon, and Eric Traut. Any remaining errors are
my fault, not theirs.

Thanks also to: joseph Aseo, Ron Avitzur, Sam Barone,
Sheila Brady, Pierre Cesarini, Gary Davidian, Ross Ely, jon
Fitch, Don Fotsch, Bill Goins, Carl Hewitt, Ray jaafari,
Annette Machado, Bob Mansfield, Hugh Martin, jordan
Mattson, Brian Mellea, John Mitchell, Dean Mosley, john
Nelson, Rolly Reed, Pete Richardson, Greg Robbins, John
Sell, Betty Taylor, George Towner, Keri Walker, Gayle Ryan
Westbrook, Jim Venable, Paul Wolf, and Mike Yamamura.

Special thanks go to John Hennessey and Dave Patterson,
as well as the kind folks at Morgan Kaufman Publishers,
who graciously a llowed me to use the figure on page 99
from their book, Computer Architecture: A Quantitive
Approach, which is listed in Appendix A.

My thanks go to Don Norman for agreeing to write the

xl

xll The PowerPC Macintosh

foreword. His perspective is one that I wish more people in
the high-technology industries would adopt.

Thanks also go to my friends in close proximity, who kept
me reasonably sane while this thing took over my life for far
too long: Nico Kamp & Katy McNamara, Mark Frost, Linda
Pitcher, Levi Thomas & Larry Yaeger, and Mitch Ratcliffe.

I'd also like to thank the following people who had no
direct input on the content of this book but provided
greatly appreciated moral support by checking for life signs
and making sure I hadn't imploded: David Biedny, Trudy
Edelson, Devon Hubbard, Tom Nielsen, Leonard Rosenthol,
and Rich Siegel.

Last but not least, thanks to Carole McClendon for han­
dling the dickering early on, and to David Clark, Joanne
Clapp Fullagar, Keith Wollman, and Steve Stansel at
Addison-Wesley who thought this was a worthwhile under­
taking, and to Gail McDonald Jordan for making it all come
together in the end.

Foreword
At first glance, I might seem to be a strange person to be
writing the foreword to a book about the PowerPC
Macintosh. Until 1993, I was a professor of cognitive science
at the University of California, San Diego, a scientist who
studied the human mind. Now that I'm at Apple, I serve
several roles. As an Apple Fellow, I wander across company
divisions as champion of the user. In AppleSoft, our soft­
ware division, I operate under the title User Experience
Architect. Neither of these roles would appear to have any­
thing to do with a new piece of hardware, especially a CPU
chip. What has this got to do with either human interface
or user experience?

The exciting way to view the new chip is as an enabler
for entirely new things that simply could not be imagined
before. The PowerPC represents a completely new philoso­
phy and style of CPU for personal computers, which pro­
vides entry to a whole new level of affordable performance.
This powerful chip will allow users to discover totally new
ways of working with machines.

Look, I don't believe the average citizen cares about the
technical aspects of computing, such as:

• The operating system;

• The kind of chip used for their CPU;

• How much memory they have;

• CPU speed.

There are several ways to view the power of a CPU based
on a reduced instruction set computer (RISC) architecture.
One way is simply to look at the speed of the chip: It is
incredibly fast. In that sense, the PowerPC is a supercharger.
It makes the things we are already doing with computers go
faster. That's neat, but it isn't the sort of thing that makes

xlll

xiv The PowerPC Macintosh

most people's hearts beat faster. Will the average person
appreciate that a word processor or spreadsheet is faster? I
doubt it.

Many people are led to believe they should care about
the technology, but that is only because of the way comput­
ers are currently marketed. Computer journalists, especially
those who write for the trade magazines, tend to be champi­
ons of technology. They, and the salespeople in computer
stores, emphasize the technology. But the average person
doesn't really care about the details of technology. What we,
the everyday users, really care about is getting on with our
lives-enjoying our lives. Even the focus on making com­
puters friendly is wrong because it still emphasizes the com­
puter itself.

I care about getting something done: reading the latest
news story; seeing the demo my colleague in Tokyo just
filmed; learning how sales are doing with our new catalog
services; making a reservation at that new restaurant (speci­
fying no smoking, and maybe even peeking at the menu). I
care about doing these things and preparing my material so
that others can use it, but not about using a computer.

Until now, we have designed machines from the
machine's point of view. Computers use information.
Invisible. Arbitrary. Difficult. To work, they require precise
syntax, details, logic- just the sort of things we are bad at.
But there is a mismatch: People are perceptual devices,
machines are symbolic.

If we want machines that are easy to use and comfort­
able for people, we have to make them match people's capa­
bilities. We have to provide perceptual information and
minimize the requirements for precise, numerical, or syntac­
tically correct inputs. A graphical user interface such as the
Macintosh desktop takes the first steps toward the solution
by making heavy use of graphics and menus. But these are
primitive steps. The desktop isn't really a desktop, and this
graphical user interface isn't really very graphical. The vjsual

Foreword xv

appearance is rather flat, more like line drawings and illus­
trations than rich, visual representations. Up to now, we
have lacked the computer power necessary to do more. If we
want machines to match people, we need to match the
computing power of the brain, or at least of the eyes and
ears. Then we can use more natural modes of interaction
than keyboard and mouse and arbitrary commands. We can
use speech, handwriting, gestures, and whatever else our
creativity offers.

The brain is an incredibly powerful device, but it works
very differently from our computers. Each element in the
brain- the individual neuron-is fairly slow, noisy, and
unreliable. It is a semidigital, semianalog device, capable of
doing complex signal processing. But there are some 1012

neurons, each making an average of 104 connections, so
interconnected that the apparent slowness and lack of relia­
bility of the individual neuron yields a fast, powerful, robust
system. Each of the 1016 connections transmits 10 to 100
impulses per second, for a total bandwidth of 1017 to 1018

impulses per second. The eyes alone generate about 200
megabits of data per second. The brain is a vast, parallel,
neural computer that has very different properties from our
serial, digital machines.

Computers are good at the stuff we find hard, and bad at
the stuff we find easy, such as seeing and walking and talk­
ing and-well, all the stuff we all do so well that we take it
for granted.

What are people good at? Creativity, humor, emotions,
enjoyment. Sports, music, art. What are we bad at?
Remembering details, systematic logic, arithmetic, spelling.
What are computers good at? Details, systematic logic, arith­
metic.

Now that we are moving to much more powerful CPUs,
we can begin to make computers that interact with people
on human terms. There are several ways in which this new
power might be used. Let me point out some that might not

xvl The PowerPC Macintosh

be obvious. Consider the conceptual model of a typical
application. People are very good at understanding sensible,
coherent structures and not so good at understanding or
remembering arbitrary commands and actions. This is one
of the powers of the graphical user interface over the com­
mand-line interface. The real trick in making computers
understandable is to provide a coherent, intelligible concep­
tualization to the users, making sure that all operations and
results conform. Today's graphical interfaces do not present
a coherent conceptual model. The user may have no under­
standing of how or why operations get performed. In a
spreadsheet, it is difficult to tell the ranges of the func­
tions-just which cells are included in the operation. As a
result, when you are using someone else's spreadsheet, it is
often difficult to tell just what computations are being per­
formed, and what values are relevant. In a database, it isn't
always clear which individual records have been linked, or
which operations any query might have to use. Relational
databases are often difficult for people to set up and query,
in part because they lack an intelligible conceptual model of
the operations.

Now that we have the appropriate computer power, we
could provide powerful clues to the underlying conceptual
model through graphics. Imagine a database query that
showed a pictorial rendition of the records and illustrated
how a query traversed them, putting together the informa­
tion for its response. A proper illustration would dramati­
cally improve the user's understanding and make the
debugging of failed queries or improperly constructed
records much simpler.

Consider educational packages tha t can make much
heavier use of simulation, showing in detail the underlying
operations. Today, we have many simulation packages, but
they mostly concentrate upon the outcome, not upon
showing the underlying processes. Suppose we could illus­
trate the process as well as the outcome?

Foreword xvll

What about new methods of interaction, more effective
modes? Say gesture, or speech, or handwriting? Or what
about using three-dimensional graphics, sound, or speech
output? For all of these, we require a lot more computing
power. We require the PowerPC.

Today, the user does all the work. Do you want to send
a file to a colleague over the network? You must know lots
of technical details, including the network path and the
name of your colleague's machine. You have to make sure
the file and computer protections are appropriate. You have
to know if your colleague has the correct applications and
fonts. Suppose you could delegate all of this: "Send this
OpenDoc document and viewer to Helen." Let the machine
worry about the details, bothering you only if it isn't sure
which Helen you had in mind or if a serious problem arises.
This form of interaction-delegation rather than direct
manipulation-requires some inference and general-purpose
knowledge by the computer agent that is to do the task­
more reason why we need the capability of the PowerPC.

The Power Macintosh provides a new hardware plat­
form, but I think of it as a mere beginning, as an enabler.
The truth is, I don't know what the future will bring;
nobody ever does. The secret is to be able to take advantage
of new potentials, to help us move to another, higher level
of capability. This is where we stand today. This book sets
the stage by giving you the details you need to take that
step. The world of computing has had a prodigious set of
advances in the previous ten years. We are now beginning
an equally marvelous set of changes during the next decade.

Donald A. Norman
Apple Fellow
Apple Computer, Inc.
Cupertino, California

Introduction
A little more than 10 years ago, a group of stubborn people
at Apple Computer shipped the Macintosh and introduced
the personal-computing world to a slew of neat new stuff
that few users at the time knew what to do with. Those few
who "got it" were quickly branded zealots, dismissed as a
fringe group, and deemed not part of the Serious Business
Computing World.

During the intervening 10 years, the Macintosh has
become a computer to be reckoned with in the business
world, despite still owning less than 15 percent of the per­
sonal computer market. Imitation-litigation notwithstand­
ing-is the sincerest form of flattery, and Windows is doing
its best to catch up to the Mac operating system. One of the
Mac's great hallmarks has been its integration of system soft­
ware with hardware. The suggestion that Macintosh hard­
ware is a copy-protection device for the Macintosh operating
system has a kernel of truth to it: Apple's strategy has limited
the Macintosh environment to its own hardware and, by
doing so, limited the proliferation of the Mac but also kept a
degree of consistency and compatibility between product
generations that is unparalleled elsewhere.

The first generation of Power Macs is a bridge between the
past and the upcoming decades. This first gen eration of
Macs using the Power PC 601 chip are real Macs; no compro­
mises were made to provide extra performance at the
expense of compatibility. The ongoing survival of the
Macintosh, both hardware and software, depends on the
success of these first Power Macs.

The first step in the migration allows Power Mac owners
to run their existing Macintosh software, based on the
Motorola 68000 (68k) chips on the new machines. Given
the investment that current Mac users have in their soft­
ware, without this compatibility, the Power Macs would be

xlx

xx The PowerPC Macintosh

non-starters. Fortunately, 68k compatibility isn't an issue,
as the Power Macs' 68k emulator has already proven reli­
able, compatible, and adequately fast for most tasks.

The second part of the switchover from 68k to Power PC is
centered around native software that takes fu ll advantage of
the performance that the PowerPC-based systems are capa­
ble of.

What's In This Book

This book is structured to be read sequentially, but it can be
used as a reference as well. Those reading it from start to fin­
ish will find it increases in technical depth as it progresses.
It's designed to provide useful information to anyone inter­
ested in acquiring more than a superficial understanding of
the first generation of Power Macs and the issues that sur­
round them.

Chapter 1 sets the stage for the Power Macs by going over
the history and development of the PowerPC alliance, a pre­
viously inconceivable coalition of former competitors.
Chapters 2 and 3 provide an overview of the Power
Macintosh hardware and software, to get you acquainted
with the new machines from a big-picture perspective.

Chapter 4 is an introduction to microprocessors.
Differentiation of personal computers today has become
increasingly complex and subtle. The ability to distinguish
disinformation from useful detail requires more than a cur­
sory knowledge of how the chips work. This chapter offers a
painless introduction to the key characteristics and differen­
tiators of different microprocessors.

Chapter 5 introduces the known members of the
PowerPC family of microprocessors. Even though the 601 is
the only one shipping in systems as this book goes to press,
much is already known about its siblings' capabilities.

Chapter 6 is first of the three Power Mac in-depth chap­
ters; it explains the different emulators for the Power Mac

Introduction xxl

and how they work. Chapter 7 offers an in-depth look at the
Power Mac hardware, and Chapter 8 does the same for
Power Mac software.

Finally, Chapter 9 looks into the future at technologies
that are relevant to the Power Macs or PowerPC-based per­
sonal computers in general. These first machines from Apple
are only the beginning, and some of the future is already
visible.

Who This Book Is For

This book is not a step-by-step guide to specific migration
strategies. Its goal is to provide the necessary information to
allow individuals(or organizations) to make educated deci­
sions about when and how to migrate.

Those who wonder whether to switch to PowerPC now or
wait for an even faster Power Mac are doomed to indecision.
There will always be a newer, better, whizzier Power Mac
just around the corner. The best method for deciding when
to switch to the Power Macs is straightforward. Determine
the amount of productivity gain you can get from a Power
Mac now, and base your decision on that. Most computa­
tionally intensive software, especially graphics and desktop­
publishing packages, are available now in native versions,
optimized specifically for the Power Mac. If you spend most
of your time waiting for your Macintosh to catch up, a
Power Mac will almost certainly alleviate the problem.
Those with compute-intensive software that requires a 68k­
based Mac but that isn't yet available in a native version
may want to hold off for a while. Bear in mind, though, that
the future of Macintosh is PowerPC, the 68k-based Macs'
days are numbered.

Users of x86-based PCs may also find this book useful in
explaining the features of the new Macs. With the Power
Macs, the price/performance ratio is in favor of the

xxll The PowerPC Macintosh

Now What

Macintosh for the first time. Existing Windows users can
even run most of their Windows applications on their
Power Macs with the help of Insignia's SoftWindows.

I hope this book will get you started on your way into the
world of Power Macintosh. The PowerPC alliance and the
resultant microprocessors are pitted in head-to-head compe­
tition with Intel and its high est-end x86 processors. The
Power PC offers the first viable alternative to the x86
because of the performance it offers at a comparatively low
price. Although x86 PCs have always been able to offer
greater performance for equal or less money, this is no
longer the case.

In the long run, adoption of the PowerPC by systems ven­
dors also heralds the beginning of operating system (OS)
agnosticism. OSs will no longer be tied to the microproces­
sor families they run on. The Mac OS runs on 68k- and
PowerPC-based systems, and Windows NT will be available
for PowerPC machines, as will be some incarnations of
IBM's OS/2 and AIX. Non-NT Windows is also available,
with the help of SoftWindows, on non-x86 platforms.

The notion of functioning industry alliances is also
becoming more accepted. The success of the PowerPC troika
is a ma jor counterbalance to the cynicism that developed
after the vast number of failed collaborative in past years.
The fac t that three companies as different as Apple, IBM,
and Motorola can work together speaks for the adage that
where there is a will, there is a way.

So fa r, 1994 has seen great changes in the computer
industry, and they show no sign of abating. Intel's domi­
nance is being contested not only by PowerPC, but also on
the x86 side by companies such as AMD and Cyrix, which
are gaining influential allies among systems vendors.

Introduction xxlll

The Power Macs are at the forefront of all this change,
and Apple for the first time stands a good chance of gaining
significant ground against the installed base of Intel-based
Windows PCs.

Soon Macintosh systems will be developed that bring the
PowerPC's performance across the entire Macintosh product
line. With all these PowerPC-based Macs will come new soft­
ware that takes full advantage of the available horsepower.
Sometimes thereafter, we will no doubt wonder how we ever
got along without Power Macs.

Stephan Somogyi
San Francisco, California
May 1994
Somogyi@ZIFF.COM

-:y

CHAPTER ONE

How We Got
Here from
There

he Power Macintosh is a major leap forward in the evolu­
tion of the Macintosh.

In hindsight, the change in the Macintosh since its intro­
duction in 1984 has been a gradual one. Memory capacity
has grown from 128 kilobytes to hundreds of megabytes,
storage capacity has gone from a 400-kilobyte floppy to
multigigabyte hard drives, and increasingly powerful mem­
bers of Motorola's 68000 (68k) processor family have
become the engines driving an ever-increasing number of
Macintosh computers. However, the performance of later
68k chips-the 68020, 68030, and 68040-didn't increase
n early as much as the capabilities of either memory or mass­
storage technology.

Putting a completely different processor, a PowerPC chip,
at the core of a Macintosh appears at first to be a profound
change, one that makes a Mac not quite a Mac anymore. Far
from it.

A Power Macintosh is a Macintosh-an extraordinarily
fast one. A Power Macintosh can run all your existing Mac
applications-with very few exceptions, thanks to sophisti­
cated software technology-and with the System 7 user
interface you're accustomed to. Almost any hardware that
you can connect to a 68k-based Macin tosh works with a

1

2 The PowerPC Macintosh

Jargon 101

RISC stands for reduced instruction-set
computer. This term describes microproces­
sors that were developed with a specific
design philosophy in mind. The basic idea is
that a chip can perform many simple func­
tions in the same time that a CISC chip can
perform a single complex function.

RISC's conventional counterpart is C/SC:
complex instruction-set computer. CISC
chips distinguish themselves by perform­
ing more complex functions, but with a
comparatively steep performance penalty
compared to RISC. CISC chips generally
perform more slowly, are more compli­
cated to design and manufacture, and are
consequently more expensive. The latest
CISC chips, such as Intel 's Pentium, have
many RISC-Iike features but aren't really
RISC chips; they must still perform com­
plex functions like their predecessors for
compatibility reasons.

The term architecture is used to
describe the basic design features that
different chips of a processor family have
in common, such as number of registers,
floating-point capabilities, memory man­
agement, and the like. PowerPC is an
architecture whose family initially con­
tains the 601, 603, 604, and 620 chips.

POWER, the name of IBM's RISC archi­
tecture that was the basis for PowerPC, is
another one of those great computer
acronyms that itself contains an acronym:
performance optimized with enhanced
RISC.

If you want more details about micro­
processor basics, the chips and features of
the PowerPC family, and other chips that
are competing with PowerPC, see
Chapters Four and Five.

Power Mac. But that's not all: New programs written
specifically for the Power Macs run many times faster than
on the highest-end Quadra.

Fortunately for Mac users, the speed offered by the
Power Macs doesn't come at the price of incompatibility.
Thanks to Apple's emulator, existing Mac software thinks
it's running on a 68k processor.

These new Macs are based on a PowerPC chip, a prod­
uct of the Apple/IBM/Motorola alliance formed in 1991.
But the history of the RISC Mac started about three years
earlier, when a group of Apple engineers began building a
computer system.

RISC at Apple

How We Got Here from There 3

Apple has been using RlSC chips since the late 1980s and
shipped its first RISC-based product, the Macintosh Display
Card 8•24 GC, in March 1990. This graphics card used an
AMD 29000 (29k) processor running at 30 MHz to accelerate
graphics operations on the Macintosh. This acceleration was
achieved by replacing code that would normally run on the
Mac's own 68k processor with code that ran on the much
faster 29000. Since only a specific part of the Macintosh
operating system-the QuickDraw graphics software-was
replaced by faster RISC code and not the entire operating
system, the term toolbox acceleration was coined. Toolbox
acceleration makes only the most computationally intensive
parts of the Mac OS (operating system) run faster. Speeding up
select parts of the operating system produces a performance
increase perceivable throughout the system. The amount of
engineering effort involved in converting only certain parts of
the OS was also far smaller than the work required to make
the whole thing native. Native software is developed specifi­
cally with RISC in mind and takes full advantage of the new
processor's performance.

The 8•24 GC card was plagued with incompatibilities,
even with Apple's own hardware and software, and it was
ultimately abandoned. However, the 8•24 GC was a valu­
able proving ground for some of the technology found in
the Power Macs. The idea of selectively converting the most
performance-critical parts of the operating system carried
forward to the Power Macs' system software. Power Macs use
a hybrid of PowerPC code for QuickDraw, parts of QuickTime,
and other compute-intensive parts of the OS, and emulated
68k code for those parts of the OS that wouldn't benefit as
greatly from being run on the PowerPC chip.

Entire computer systems based on RISC date back to two
distinctly separate RISC projects at Apple that started in the
late 1980s.

4 The PowerPC Macintosh

-------------Jaguar

The Jaguar project officially got under way in summer 1989,
although it had been in various stages of planning since
mid-1988. The goal of the Jaguar project was to create a
microcomputer that had more raw compute-horsepower
than any other personal computer on the market and that
had a truly human interface that, for example, accepted spo­
ken commands.

Jaguar was to take advantage of RISC's horsepower not only
to perform more raw computation in less time, but also to
redefine the features of a basic personal computer. To this end,
the Jaguar group had its own hardware and software teams.
The project was independent of any existing Macintosh pro­
jects, much the same way the original Macintosh project was
separate from any Apple 11- related projects.

Apple's fixation on differentiation from the Macintosh
came from Jean-Louis Gassee, at the time the president of

Jaguar Spln-Offs

Parts of Jaguar have accompanied
recent Macintosh releases, even though
Jaguar itself never made it to fruition. The
following designs originated in the Jaguar
project:

• The industrial design introduced
with the Centris 610 as well as the
Quadra 800

• The Apple Adjustable Keyboard,
which can be split down the middle
to angle the two halves so that your
hands are held at an ergonomically
correct angle

The following were all released with
the 68040-based Quadra 660Av and
Quadra 840Av and were all results of
development work for the original Jaguar
system:

• Apple's AudioVision monitor, with
its integrated high-quality stereo
sound and built-in microphone
tuned specifically for speech input

• The GeoPort high-speed telecom­
munications hardware and software
modem technology

• PlainTalk speech recognition, also
known internally at Apple as Casper

How We Got Here from There 5

Apple Products. He insisted that the new machine be com­
pletely different from any other computer system. One of
the original plans was to use Pink, the code name for a new
operating system developed internally at Apple, as the stan­
dard operating system for this new machine. Pink ulti­
mately became part of the Apple/IBM negotiations, and the
project was spun off from Apple and turned into the joint
venture Taligent, which is dedicated to developing and mar­
keting the Pink operating system and related technology as
stand-alone products.

Jaguar wasn't initially intended to be a high-volume
mainstream system. Instead, mass-market RISC systems
would follow sometime later. Shortly after Gassee left in early
1990, however, Apple refocused the endeavor to be a main­
stream system: The new computer would be a Macintosh.

In late 1989, the Jaguar engineers started to search for a
RISC processor. They visited virtually every RISC chip ven­
dor to determine which chip would suit their needs best.

------ RLC

While work on the Jaguar was already under way, the early
work on the machine that would evolve into the Power
Macs began. The core engineering team that designed the
Power Macs had previously designed the Macintosh Ilfx. As
the Ilfx's development was nearing an end in late 1989, a
pivotal get-together happened during a ski trip in Kirkwood,
California. During this trip, the Cognac project was born.

The Cognac project was named obliquely after John
Hennessy, a Stanford University professor who is a big RISC
proponent and a cofounder of MIPS, the maker of the
R4000 family of RISC microprocessors. When the Ilfx was
introduced in March 1990, the 8•24 GC card, Apple's first
product built around toolbox acceleration, was introduced
simultaneously. Cognac was an idea for a 68020- or 68030-

6 The PowerPC Macintosh

based Mac that also contained a 29k RISC chip to accelerate
time-critical parts of the OS-more than just the QuickDraw
acceleration found on the 8•24 GC.

Another part of the Cognac investigation resulted in a
68020 emulator running on a 29k in software. At the time,
the emulator was in the proof-of-concept stages, to deter­
mine whether it was feasible to emulate a 68020 in software
and whether the resulting emulator would provide good
enough performance to be acceptable to users.

Ultimately, the Cognac investigation concluded that it
wasn't a financially feasible product. There simply wasn't a
way to produce a mass-market version of such a hybrid sys­
tem with two main processors at a sufficiently low price.

In mid-1990, the 88100-based RLC project got under
way. RLC was short for RISC LC, referring to the Macintosh
LC, in whose flat box the new machine resided, and whose
system software the new RISC-based system was to run.

RLC was designed to be inexpensive to implement,
quick to market and exclusively RISC-based. Its goal from
the beginning was to support the 68k via emulation. RLC
was designed to be as compatible as possible with existing
Mac hardware-no changes without good reason.
Essentially, RLC took a Mac LC and replaced the 68020
processor with an 88100-based CPU and a 68020 emulator.

RLC and its 68020 emulator were up and running in
January 1991. It was able to boot with unmodified 68k-based
Mac LC ROMs and run System 7. Early versions of the Mixed
Mode Manager- the system software that determines whether
code is 68k or for the RJSC processor and routes it appropri­
ately-were also put into RLC to allow toolbox acceleration.

Mixed mode is a necessity for native and emulated soft­
ware to work together seamlessly. The Mixed Mode Manager
knows which code is 68k-based and needs to be run by the
emulator, and which code is native RISC code that can exe­
cute directly on the built-in RISC microprocessor. When

How We Got Here from There 7

mixed mode was first conceived, little thought was given to
native apps. These machines were expected to run 68k soft­
ware in emulation, with an accelerated operating system.
The emulator was assumed to run fast enough for this to
be a realistic way of running 68k software. Another
performance-critical part of the Macintosh OS, the Standard
Apple Numerics Environment (SANE) was also converted to
run on the 88100. SANE, available in the Mac since the
beginning, enables applications to perform floating-point
calculations even if no floating-point hardware is present.
SANE running native on the 88100-based system drastically
sped up floating-point performance for those apps that used
it for floating-point calculations.

------ Searching Out RISC

Using a ruse chip for a personal-computer system that wasn't
a workstation was considered daring at the time. Analysts
vigorously decried RISe as a fad, since it hadn't caught on in
the mainstream personal-computer market. It was evident
to the Apple engineers, however, that ruse processors had a
brighter future than their else counterparts, since RISe had
much greater potential for performance improvement over
time. The workstation market, with Sun Microsystems in
the lead, had already discovered that RISe provided much
higher computational performance than the more conven­
tional else chip designs.

The Jaguar team eventually picked the Motorola 88110
RISe chip. That decision was not exclusively a result of the
existing relationship between Apple and Motorola, but
largely a technical one. The 88110 is a single-chip imple­
mentation of the 88000 RISe architecture that Motorola
first showed the world in mid-1988. At the time, the only
implementation of the 88000 (88k) architecture consisted of
a three-chip set: an 88100 and two 88200s.

8 The PowerPC Macintosh

Following Sun's Lead

Sun migrated from 68k-based worksta­
tions when it introduced systems based on

its own SPARC chip, soon to become the
most widespread RISC chip in the worksta­
tion world. In some ways, Apple is now fol­
lowing that lead. Although Sun made the

transition to RISC with an installed base of

far fewer 68k-based workstations than the
existing number of 68k Macs, it was

nonetheless a radical departure at the time.
And history supports its decision-Sun's
SPARCstations are successful products.

The Other Contenders

The jaguar team's initial round of inves­
tigation into high-performance processor
architectures was comprehensive. The
team looked at MIPS' R4000, Sun
Microsystems' SPARC, Digital's Alpha,
AMD's 29000, Advanced RISC Machines'
ARM (used in Newtons), AT&T's Hobbit,
Hewlett-Packard's PA-RISC, and even Intel's
Nl 0, which was later named the i860. At
the time, Apple disregarded IBM's POWER
architecture, PowerPC's immediate ances­
tor, because IBM did not appear inclined
to make it available to third parties.

The reasons why each of these architec­
tures fell by the wayside were many and
varied. Above all, Apple's executives wanted
a partnership with a company that had a
solid future and sufficient chip manufactur­
ing capability, and whose chip architecture
fulfilled Apple's needs for mainstream com­
puter systems. This also meant that, ideally,
Apple would get access to a whole proces­
sor family whose members could span the

range needed to make low-end, high-end,
and portable systems rather than just a sin­
gle class of computer.

Negotiations between Sun ancl Apple
went quite far: Sun was to use the
Macintosh interface as the standard user
interface for its UNIX, and in return Apple
would use chips based on Sun's SPARC
architecture at the heart of its RISC sys­
tems. Despite strong proponents of this
plan within Apple, the negotiations didn't
succeed because Apple felt the manufac­
turing capabilities for SPARC were insuffi­
cient for its needs. At the time, Sun had
not yet cut its deal with Texas Instruments
to manufacture SPARC chips. Additionally,
Apple engineers had reseiVations about
some of SPARC's technical features and the
limited breadth of the SPARC family.

The MIPS R4000 family was also a
strong contender. In this scenario, the
Macintosh user interface would be the
alternate user interface for ACE, the

How We Got Here from There 9

The Other Contenders (continued)

Advanced Computing Environment. Apple turing volume was insufficient from Apple's
would then use the R4000 fam ily of chips perspective. The ACE consortium later col-
for its computer systems. ACE, the censor- lapsed primarily because of power struggles
tium that included MIPS, Compaq, and among its members but also because of
Microsoft, intended to define a standard Intel's successful lobbying to dissuade sys-
RISC-based hardware and software environ- tems vendors from using RISC instead of
ment that would become the equivalent of Intel's x86 architecture.
the x86 standard in the DOS and Windows Apple eliminated Intel's i860 mainly
world. Despite the R4000's technical merits, because it's fiendishly difficult to write soft-
however, Apple and MIPS didn't come to ware for. The i860 wasn't designed for the
an agreement largely because Microsoft, mainstream, and Intel wasn't w illing to make
Apple's primary competitor on the operat- the necessary modifications to turn it into a
ing-systems side, was a driving force in the usable chip for an Apple computer. This
ACE alliance. In addition, MIPS' manufac- inflexibility doomed further negotiations.

Motorola's 88000 family was interesting to Apple for sev­
eral reasons. At the time, Compaq was also investigating
ruse chips and its engineers liked the 88110. Both Motorola
and Apple were trying to convince Compaq th at the 88110
was a good choice. Motorola wanted more high-volume
customers, and Apple didn't want to be the only one using
the chip.

Apple made the 88110 decision in mid-1990 because
Apple engineers considered the architecture sound, and
Motorola's intentions for further development meshed well
with Apple's plans.

The 88110 chip's feature set, in addition to being a single­
chip implementation, was driven largely by Apple's require­
ments for a mass-market RISC chip. Apple's opinion carried a
great deal of weight because Apple's purchasing volume
would probably eclipse the combined sales volume of several
other ruse chip vendors. Although the projected number of

10 The PowerPC Macintosh

Power Macs sold is small compared to the projected sales fig­
ures for i486- and Pentium-based systems, it is huge com­
pared to the sales generated by the primary RISC market until
now: workstations.

After picking the 88000 architecture, the Apple engi­
neers built prototype devices. One of the first was the so­
called Cub card, an 88100-based NuBus card. The 88110
single-chip implementation of the 88k was not ready yet;
the 88100/88200 multichip solution used on the Cub was
close enough to the 88110 so that Apple's engineers could
begin work on the emulator and other system-related pro­
jects. They also had software development tools that worked
with the Cub card, so development could begin quickly. The
first version of the 88k-based 68k emulator was developed
on the Cub card. The Cub card soon led to the RLC.

RISC for the Mainstream

In early 1991, the jaguar project was disbanded and folded
into the existing Macintosh group. At this stage, Apple's
RISC efforts were focused on the mainstream; they were not
to be high-end, high-performance, high-price computers
anymore. The 88110-based successor to Jaguar was built as a
Macintosh and code-named Hurricane.

One of the pivotal points in the 88k-based Mac develop­
ment came at a sales conference in mid-1991, where RLC
was demonstrated to a large audience for the first time. Not
only did it run with unmodified LC ROMs and LC system
software, but one engineer successfully ran an Apple II emu­
lator for the Macintosh, much to the amusement of all pre­
sent: an emulator running on an emulator.

RLC's immediate successor was born on another ski trip,
this time to Banff, Canada, in March 1991. This machine,
housed in a Ilsi case rather than the LC case, was the first
RISC Mac based on the 88110 rather than the 88100/88200

How We Got Here from There 11

combination, and it was used to continue work on the parts
necessary to make the RISC Mac a viable product.

Even after Apple was well into 88110-based develop­
ment, some people within Apple expressed market-related
reservations about the long-term viability of the 88k family.
Despite Ford Motor Company's commitment to using an
88k chip in its next-generation engine computer, no major
computer manufacturer had chosen the 88k. The sales vol­
ume for the 88k family looked too weak, and Apple didn't
want to be the only computer maker using the 88k. So
Apple went looking for a RISC chip for the second time.

The first time around, Apple hadn't considered IBM's
POWER architecture because it thought IBM was unwilling
to let other companies use it. This misconception was
cleared up during some of the early high-level talks between
upper management at Apple and IBM that ultimately set the
stage for the alliance. Even once it became an option,
POWER still wasn't Apple's favorite, though: The only
implementation of POWER at the time was a seven-chip set.
Such a conglomeration was far too expensive and unwieldy
for Apple's purposes, and it didn 't look as if IBM would be
able to design a more suitable version of a POWER processor
within Apple's time frame.

While the upper corporate echelons at the two compa­
nies were talking about collaboration opportunities, the
Apple and IBM engineers met for the first time. This meet­
ing happen ed to be on a Friday, which was dress-down day
at the Austin-based IBM Advanced Workstation s and
Systems Division, home of the POWER architecture; all the
IBMers were in jeans. The Apple engineers, anticipating a
meeting with a stereotypical bunch of Big Blue people, were
all dressed up in suits. Needless to say, this was an unex­
pected situation for both sides.

A follow-up meeting, which included Motorola represen­
tatives, was held the next week. Apple invited Motorola
because of the two companies' long relationship, a result of

12 The PowerPC Macintosh

Clothing Cult

While the talks were still between engi­
neers and the actual agreements were
still off in the future, the IBM contingent,
having studied Apple's project-clothing
cult, presented the second meeting's
attendees with sweatshirts. The sweat­
shirts bore an IBM logo rendered in
Apple's six corporate colors, whose I had
an apple stem and whose M was

Motorola's logotype. Having blatantly vio­
lated all and sundry trademarks and thrown
proper IBM decorum out the window, the
head of the IBM delegation was anxiety-rid
den about the possibility of the box con­
taining the shirts bursting open on the
luggage turntable upon their arrival at the
San jose airport.

Apple using chips from the 68k family in Macs. This rela­
tionship continued with the collaboration on PowerPC
because Apple felt uneasy about committing the company's
future to IBM, one of whose divisions was still a direct com­
petitor to Apple's Macintosh business. Apple involved
Motorola not only to have a second source for PowerPC
chips, but also because Motorola is one of the few chip man­
ufacturers in the world accustomed to producing quantities
of chips in the millions.

Deal of the Century

Apple and IBM have traditionally been archenemies, so the
world was surprised to hear about the Apple/IBM/Motorola
alliance, whose memorandum of intent was publicly
announced in July 1991 and whose details were announced
later that year. The alliance consisted of five specific parts.

• Apple, IBM, and Motorola would collaboratively design
and build a family of RISC chips, known as PowerPC,
derived from IBM's POWER RISC architecture.

• The Apple/IBM joint venture Taligent would be formed to
develop, market, and sell a new multiplatform object­
oriented operating system that was already under devel­
opment at Apple.

How We Got Here from There 13

• Kaleida, another joint venture, would create cross­
platform multimedia standards and authoring tools.

• PowerOpen, the specification for a hybrid UNIX system
much like Apple's A/UX but that runs on PowerPC sys­
tems, would be codeveloped at IBM and at Apple- no
specific company was created.

Based on IBM's AIX version of UNIX, the initial imple­
m entation of PowerOpen will provide the ability to run
Macintosh software on UNIX-based PowerPC machines
much like A/UX does today on 68k-based Macs.

• Apple and IBM would cooperate to integrate Macs into
IBM's enterprise networking systems.

Although neither Taligent nor Kaleida has shipped a
product and a PowerOpen OS isn't available yet on Power
Macintosh either, the PowerPC alliance has already pro­
duced its first results: The 601 chip was announced in
September 1992, and the 603 chip was announced approxi­
mately a year later. The 604 was announced in early 1994,
and the 620 should be announced before the end of the
1994.

IBM's POWER seven-chip set, known as RIOS-which is
the Spanish word for "rivers" and doesn't have any particu­
lar code-name significance-was completely unsuitable for
high-volume, low-cost products. These days, RIOS is often
referred to as Powerl to distinguish it from Power2, a more
recent multichip implementation of the POWER architecture.
A project known as RSC, for RIOS single-chip, was already in
development at IBM when the Apple/IBM/Motorola negotia­
tions began. The RSC's design goal, however, was to create a
straightforward implementation of RIOS without significant
modifications.

When IBM's and Apple's engineers got together before
the alliance was finalized to discuss how to implement
POWER in a way that made sense for Apple, they soon real­
ized that they could use POWER as a foundation, reworking

14 The PowerPC Macintosh

its design and improving the architecture. IBM's willingness
to turn POWER into PowerPC greatly contributed to the
success of the alliance.

In their meetings, engineers from Apple and IBM recog­
nized several shortcomings of the POWER architecture that
prevented its low-cost, high-yield implementation for per­
sonal computers. Powerl was, after all, originally designed
for workstations with less stringent cost constraints. The
IBM engineers took the suggested design changes that
resulted from these meetings and convinced IBM manage­
ment that modifications to POWER were required. Man~ge­
ment buy-in at IBM was necessary to override dissen ting
opinions and instances of "not invented here" syndrome in
some divisions.

Similar problems were apparent on the Motorola side.
Motorola's contribution to the alliance wasn't only in man­
ufacturing and sales. Part of the PowerPC chips' hardware is
based on designs that originated in Motorola's 88110 project.
Although it was initially reluctant to share its technology,
Motorola's technical contribution to the effort significantly
enhanced the PowerPC's value to Apple by minimizing the
reengineering of its 88k-based systems.

The successful evolution from POWER to the PowerPC
architecture, which made high-speed yet inexpensive single­
chip PowerPC implementations possible, is a testament to
the willingness of the three companies to overcome signifi­
cant hurdles in the interest of a mutually beneficial goal.

The first PowerPC chip, the 601, is an amalgam of RSC
with enhancements, plus some features of the Motorola
88110. The PowerPC architecture was designed to be more
suitable for typical personal-computer tasks, as well as to
make evolution and expansion easier. The strengths of
PowerPC's ancestors complemented the new architecture:
POWER was originally designed for high-performance work­
stations, and the 88110 had a well-designed interface

How We Got Here from There 15

between the chip and the rest of the computer system. The
latter helped conserve the investment that Apple already
had in its 88110-based designs. Only minimal hardware
modifications had to be made to existing prototype systems
at Apple to accommodate the differences between the 601
and the 88110.

------- Meetings, Phone Calls, Meetings

IBM entered negotiations with Apple because it was inter­
ested in having Apple adopt its RISC architecture; IBM also
wanted access to the Pink operating system to run on its
own hardware platforms. IBM's AIX group in Austin, how­
ever, wasn't particularly gung ho about putting the Mac user
interface and application services on top of its UNIX.
Hammering out the agreements between Apple, IBM, and
Motorola took more than six months of frequent confer­
ence calls and face-to-face meetings held under the utmost
secrecy and often in hastily furnished and otherwise unused
IBM and Apple office space. Conference calls twice weekly
between Apple and IBM kept everyone up-to-date. These
calls were also intended to identify issues that could hinder
the deal's completion.

Aside from those negotiating at the executive level, most
IBM representatives at the meetings were from the Ad­
vanced Workstations and Systems Division, today known as
the RS/6000 Division. No one from IBM's Personal
Computer division, based in Boca Raton, Florida, was
involved at any point. The PC division didn't originally
commit to using PowerPC chips and even reserved the right
to build MIPS-based systems in case the MIPS architecture
turned out to be the RISC standard for Windows. IBM h as
since created a separate business unit as part of the Personal
Systems Division that will build PowerPC-based, nonwork­
station computers.

16 The PowerPC Macintosh

Several landmark meetings with Apple and IBM execu­
tives got the entire process under way. One such meeting
made RSC+, the initial version of the 601, possible by IBM's
agreement to change POWER into PowerPC. Another meet­
ing paved the way for IBM's manufacturing specialists to
agree on an aggressive delivery schedule for the 601's chip­
production process. The 601 went from design to produc­
tion in less than two years-a considerable feat .

One of the first weeklong meetings was held in june
1991 in an otherwise abandoned building on IBM's Austin,
Texas, campus. The day before this meeting began, IBM
installed a network, computers, phones, copiers, furniture,
and all the other necessary accoutrements of a well­
equipped meeting place. The meeting focused on PowerPC,
Pink, and PowerOpen; Kaleida didn't enter the equation
until later.

The same group of people reconvened one week later in
the opulent Management Development Center training
facility at IBM's corporate headquarters in Armonk, New
York. Two further weeklong meetings were held here,
focused on the same three issues. The final alliance agree­
ment was made at meetings held in Apple's River Park facil­
ity in San jose, California-office space that Apple had
recently vacated but whose rent was still paid. Similarly to
the first weeklong meeting in Austin, this venue was trans­
formed from an abandoned space to a functional conference
facility in a day. This final get-together, during which most
everyone lived at River Park, resulted in the full set of
Apple/IBM/Motorola agreements, including the birth of
Kaleida, that formed what many people within the three
companies call the deal of the century.

During the meeting at the River Park facility, each com­
pany had areas that were further subdivided by project:
multimedia, PowerPC, Pink, PowerOpen, and Networking &

How We Got Here from There 17

Communication. Because of the large number of attendees,
everyone wore stickers, color-coded by company. Apple was
red, IBM wore blue, and Motorola green. One of the Apple
group's running jokes was that the meeting resembled Star
Trek: Apple was the Federation; IBM was the Klingon empire
with whom they were making peace; and Motorola was the
Romulan empire-not because they were the badguys, but
simply because they were the makers of the ROMs. Once
again, pop culture and high technology collided.

------- Somerset

The PowerPC part of the Apple/IBM/Motorola alliance came
together at Somerset, the PowerPC design facility opened in
May 1992 in Austin, Texas. Initially dubbed the Customer
Design Center, it was aptly renamed Somerset after the
English legend of warring factions in the time of King
Arthur laying down their arms and joining forces.

The first PowcrPC chip, the 601, was designed primarily
at an IBM facility in Austin, with the help of Apple and
Motorola engineers, and completed at Somerset. The other
members of the PowerPC family-the 603, the 604, and the
620-originated at Somerset. The Somerset facility is singu­
lar not just because of its joint-venture nature, but also
because of its large staff and because it has the funding to
allow the parallel development of multiple chips. The 603,
604, and 620 development went on simultaneously. (Many
chip families are still designed in sequence, but even Intel is
working on two generations of its x86 processor, the P6 and
P7, simultaneously.) As a result of the parallel work at
Somerset, all of the initially announced PowerPC chips
should have reached first silicon by the end of 1994.

The 601 was produced in record time: a total of 21 months
from concept to high-volume production. Development

18 The PowerPC Macintosh

started in October 1991, first silicon happened in September
1992, and volume production started in July 1993. As if this
weren't challenge enough, the PowerPC architecture specifi­
cation was being designed simultaneously with the 601
design, a process that took a total of six months, making life
interesting for the chip designers by requiring changes in
the chip's design at several steps during development
because of changes in the architecture design. The complete
PowerPC specification was finished well after work was
under way on the 601. Considering that the members of the
development team began as strangers, the successful com­
pletion of the 601 in that short period of time was no mean
feat.

Of all the engineers at Somerset, the Apple contingent
numbers fewer than 10. In addition to being vastly outnum­
bered, they all have dual roles to fulfill: They are chip-design
engineers as well as customer representatives to Somerset.
Since Apple will almost certainly be the largest single cus­
tomer of PowerPC chips in the near term, Apple's needs
carry significant weight in making design decisions.

The composition of all design teams at Somerset is
strictly half IBM and half Motorola, except, of course, if an
Apple engineer is part of a team. In the spirit of "trust but
verify," this 1:1 ratio ensures that no one company's interest
is better represented than that of another. Consequently, no
features particularly beneficial to one of the companies
make it in to a design. Since the distribution of the compa­
nies' employees has been a constant from the outset, much
potential disagreement has been avoided outright. Many
believe that this is a major factor in Somerset's success.
Certainly, no one would have forecast that the 601 would
be completed slightly ahead of schedule, especially since the
outside world was waiting to hear stories about infighting
between the factions.

How We Got Here from There 19

Mixing Corporate Cultures

just because the majority of the
Somerset engineers are from two compa­
nies not known for their casual corporate
atmosphere doesn't mean that Somerset is
a stuffy place to work. Overall, the
Somerset environment is most similar to
Apple's. When IBM was interviewing for
positions at Somerset, dress-down day on
Friday was touted as a perk. This notion is
lud icrous to Apple people, and it was soon
explained to the interviewers that they
were more likely to scare away potential
employees than lure them by offering
casual Fridays.

Another example of culture clash is the
question of drug testing: Apple doesn't,
Motorola tests employees randomly with
advance notice, and IBM makes testing
compulsory. The policy adopted at
Somerset was that employees are subject

to the personnel policies of their employ­
ers; no grand unif ied policy was set for
Somerset as a whole. Another issue was
alcohol. No alcoholic beverage is allowed
in any IBM building; this is in stark con­
trast to Apple's traditional Friday-afternoon
beer bashes in Cupertino. At Somerset, no
alcohol is the norm, since both IBM and
Motorola have similar policies.

Even if the predominant mode of oper­
ation at Somerset is casual, there are also
extremes. In the early days, one member
of the Apple contingent always arrived at
meetings with a bag of rubber toys. At
the start of every meeting, the bag's con­
tents were dumped onto the meeting­
room table, and anyone who needed to
use a rubber fish to accentuate a point
during the meeting could do so.

------ 601 Is Greater Than 88110

After all the political hubbub had died down and the engi­
neers got to work, several things needed to happen. The
most important task was to get the first PowerPC chip, the
601, specified, designed, and into production. While meet­
ings between Apple, IBM, and Motorola people were going
on, the Apple engineers wh o'd been working on 88110-
based systems needed to shift into gear for PowerPC devel­
opment. But since a real PowerPC chip was still quite a ways
off, they initially used IBM's RSC processor, which was simi­
lar enough to allow productive work. The first system-on-a­
card similar to the Cub card was the RSC-based Smurf card,

20 The PowerPC Macintosh

named after a little blue thing (as opposed to a Big Blue
one). Later versions of the Smurf card were 601-based. The
68k emulator was moved over to it, as were Apple's other
RISC software projects.

Because of their active involvement with the 601 design,
Apple's engineers were prepared when the first 601s
appeared in September 1992. It took only a few days to get
the 601 working on a Smurf card, and another two days
until the emulator was running well enough to bring up the
Finder. This impressive achievement was by far the fastest
that Apple had managed to get Macintosh up and running
on a new CPU. As one might imagine, it's rather more work
to go from 68k to PowerPC than from 68020 to 68030 or
from 68030 to 68040. Typically, getting a machine based on
a new chip to boot all the way to the Finder takes weeks,
rather than days.

After the deal of the century, many engineers both
within Apple and within Motorola who had spent consider­
able time on 88110-based projects weren't too thrilled about
switching over to the 601. Nonetheless, Apple's 88110 pro­
jects moved over to PowerPC. The Hurricane project
switched over to the 601 and soon was renamed Tesseract,
and RLC and its Ilsi-boxed successor changed names to
PDM, short for Piltdown Man. The engineers picked this
name because of its symbolism: Piltdown Man was the sup­
posed evolutionary missing link between the ape and Homo
sapiens. In this analogy, the 68k world was the past, and the
future was Jaguar's original spec, a non-Macintosh computer
with a vast set of sophisticated but easy-to-use features.
PDM, with a ruse core but still a Macintosh, was the miss­
ing link.

Since the PowerPC 601 has a virtually identical bus to
the 88110, the hardware modifications needed to make the
switch from RLC were minimal. The PDM's feature set was
chosen deliberately to be less ambitious than that of Jaguar.

How We Got Here from There 21

The goal, as with RLC, was to minimize the risk involved in
introducing RISC into the Macintosh world and to support
68k software via an emulator (by now in its third iteration),
but with a high-end Mac feature set. At the time, the
Cyclone project was under way, which would result in the
Quadra 840Av and Quadra 660Av. PDM's design is deliber­
ately similar to Cyclone's, since it was to offer a high-end,
high-performance Macintosh feature set at an affordable
price.

RISC System Software

The development of RISC system software at Apple went
through many iterations, much like the hardware. Work on
many of the fundamentally new parts of System 7.1.2, the
version of system software that shipped with the new Power
Macs, began with the Cognac project, where the first 68k
emulator running on a RlSC chip was developed. The Mixed
Mode Manager is another addition to the system, and it has
also existed in various forms for several years. However, run­
ning System 7 on the Power Macs hasn't always been the
clear choice, no matter how obvious it seems today.

Jaguar initially was slated to run Pink, Taligent's new
object-oriented operating system, but the migration of the
early RISC projects into the Macintosh realm changed the
plan back to the Macintosh OS, albeit in a different form.
Som e within Apple wanted the RISC Macs to take on the
workstation market as well, and as a result, they wanted a
version of UNIX to be the standard operating system for the
RISC Macs. For a month in early 1991, the upper echelons
at Apple h ad to be convinced that the Mac OS, and not
A/UX, should be the default operating system.

When the decision to go with PowerPC was made and
PDM was in its early stages of development, an ambitious
plan for system software was formulated. As attendees of the
Apple Worldwide Developers' Conference in 1992 were to

22 The PowerPC M acint osh

learn, the p lanned evolution of the Mac OS was toward
using a microkernel operating system. This new OS would
provide features such as preemptive mult itasking and hard­
ware memory protection in addition to all the standard
Macintosh operating-system services.

The amount of work required to make the Mac OS
native and to integrate it with the microkernel was ambi­
tious, to say the least. Although it made sense conceptually
to have the next major Mac system-software transition hap­
pen simultaneously with the introduction of the new
PowerPC-based Macs, the decision was made in July 1992 to
scale back the initial RISC system -software effort. For this
reason, the more conservative system-software specification,
which included the emulator, the Mixed Mode Manager, the
Code Fragment Manager, and substantial toolbox accelera­
tion, was dubbed VO, since this version was a step before the
original goal of a full microkernel OS. The decision to go
with VO had a major benefit : Since compatibility with exist­
ing Macintosh hardware and software is a primary goal for
the Power Macs, keeping the changes to the operating sys­
tem to a min imum greatly reduced the potential for incom­
patibilities.

When VO was se ttled upon as the target, a large effort
got under way to determine exactly which parts of the oper­
ating system should be made native, to maximize the effect
of the PowerPC microprocessor. Many months of investiga­
tion and data-gathering resulted in a list of most frequently
used parts of the operating system. The more often a partic­
ular part of the OS was used, the higher priority it received
to be made native. In general, the 90/ 10 rule is in effect
here: 10 percent of the code is used 90 percent of the time.
So, to maximize the impact of the PowerPC for system soft­
ware, finding that 10 or so percent was the key.

In the end, all of QuickDraw, the part of the Mac OS that
produces graphics, was made native, as well as many other
often-used and performance-critica l parts of the OS. Because

Diversification

How We Got Here from There 23

of the Mixed Mode Manager's ability to switch back and
forth between native PowerPC code and emulated code,
emulated applications get the full advantage of the native
parts of the OS.

A big milestone for the PDM project happened in October
1992, at the Apple Pacific sales meeting held in Hawaii. The
PDM team was flown out to demonstrate the new PowerPC­
based system to a large audience for the first time. The hard­
ware and software for the demo were prepared at Apple, but
armed with PowerBooks, the engineers zealously continued
software development in Hawaii. Unfortunately, by continu­
ing their work, they wound up breaking the system software.

Panic reigned until the hardware and software were on
speaking terms and the demo was stable again-just in time,
since it was the night before the demo. Unfortunately, the
demo system was left on the stage overnight (the demo was
to be a part of the next morning's talks) rather than being
locked up and, when the members of the PDM team came
to check the machine for the last time in the morning, it
was dead. Completely. Perhaps a stagehand had bumped the
PDM or inadvertently done something else to cause the
machine's untimely demise.

Finally, after taking the system apart completely, reseat­
ing all the chips on the motherboard, and putting it back
together, it worked again. No one understood why, but they
weren't about to question it, since the demo was set to
begin within 30 minutes. The machine was gingerly snuck
onstage behind a curtain, and when the time came, the
demo came off perfectly and the audience of Apple sales­
people and executives was none the wiser.

This demo wowed the audience, among whom were
Michael Spindler and Ian Diery. It reinforced to all present
that the PowerPC-based Mac was a viable product.

24 The PowerPC Macintosh

Code Names for the 7100

In late 1993, Carl Sagan (the astronomer,
not the Mac) became upset upon learning
that his name was being used to refer to
the midrange of the Power Mac line. He
(and his lawyers) sent letters of complaint
to Apple Computer as well as to the trade
journal MacWEEK. From the letter, it was
clear he believed Apple was planning to
use his name as the product name. As a
result of the brouhaha, the engineers
changed the name to BHA. BHA is pur­
ported to stand for butt-head astronomer.

But it didn't stop there. As a result of Dr.
Sagan's actions, the code-name change
made it into the national print and radio
news and became well publicized. In the
first week of 1994, MTV called Apple to
check out what was going on. It isn't clear
whether it was just calling to check facts or
whether it was claiming that "Butthead"
was its intellectual property; regardless, the
machine's code name was changed once
and for all. The Power Macintosh 71 00
was finally code-named LAW.

Soon after the demo at the sales conference, it became
clear that a single RISC-based Mac wasn't going to be able to
fill everyone's needs and that a broader product line was
needed. In March 1993, the high-performance variant of
PDM, code-named Cold Fusion and later known as the
Power Macintosh 8100, was started. Three months later, the
midrange machine controversially code-named Carl Sagan,
and officially named the Power Macintosh 7100, was started
as well, rounding out the product line.

In May 1993, the Apple Worldwide Developers'
Conference contained a lot of PowerPC-related technical
information and.whetted developers' appetites for soon-to­
be-available high performance at reasonable prices.
However, Apple realized that not all developers would be
able to have PowerPC-native products ready in time for the
machines' release, so they had to rely on its 68k emulation
capabilities. In a successful attempt to assuage developers'
fears about the emulator's compatibility, Apple set up a
room with prototype PowerPC machines and let developers
test their software. The success rate was over 90 percent.

How We Got Here from There 25

To top it all off, at MacHack in June 1993, the annual
Macintosh technical conference and impromptu software­
writing event, Apple engineers surreptitiously used a proto­
type PowerPC machine for people to demo their hacks on,
without bothering to tell anyone. The assembled group
wasn't told until it was all over that all these often nonstan­
dard and otherwise borderline pieces of software ran on the
emulator without a hitch. This was the audience to con­
vince about the emulator's stability and compatibility.
Running the hacks on a PDM proved the solidity of the
emulator to even the most hardened cynics.

In July 1993, a separate PowerPC upgrade project was
started with the intent of providing the most inexpensive
PowerPC upgrade possible. The Power Macintosh Upgrade
Card, code-named STP, took the minimalist approach and
provided only the hardware absolutely necessary for an
existing 68040-based Mac to become a Power Mac. The STP
solution was also ideal for owners of the Quadra 700, 900,
and 950, who would not have the opportunity to get a
logic-board upgrade like owners of the Macs that share the
same boxes with the three Power Macs.

Apple's PowerPC evangelism efforts began to bear fruit
in 1993. Approximately two years before the introduction of
the Power Macs, the PowerPC evangelists at Apple began
canvassing developers to bring their software native as soon
as possible. It was clear that key applications needed to be
running native on the Pmver Mac on, or close to, the date of
announcement.

Developers were divided into two camps, InsideTrack and
FastTrack, to help them bring theii apps native quicker. The
small number of InsideTrack developers were those who had
apps that Apple considered absolutely crucial to a successful
launch of the new machines. The InsideTrack developers
started work on their software the earliest and fought
through numerous changes in the operating system and in

26 The PowerPC Macintosh

the development tools. The bleeding edge best described
where they found themselves. Many of these developers
used IBM RS/6000 workstations for development, since the
Mac-based development tools weren't available early on.
The larger group of FastTrack developers, those with key
applications that ideally would be done when the Power
Macs were introduced as well, got started later using the
Mac-based development tools. Many of them managed to
get their products ready in time for the Power Mac
announcement, despite the later start.

Many milestones were reached during 1993. System soft­
ware went alpha in June, and into beta in October. As the
shipping date for the Power Macs drew nearer, logistical
issues about announcement and availability of systems and
upgrades became relevant. The original plan was to announce
and ship PDM on January 24, 1994, the tenth anniversary of
the Mac, and announce the later availability of the other
two machines. This idea was soon nixed by Ian Diery,
because he wanted to have not only a full product line avail­
able at launch, but sufficient inventory to be able to sell
machines to people in volume. Some trade magazines
reported this schedule change as a slip-far from it, since at
the time the engineering schedules didn't change. The only
difference was that there was more time to produce more
inventory. The Power Macintosh announcement was also
the only Macintosh roll-out where upgrades for previous
Mac models were to be ava ilable the same day as the new
systems. This was also a marked departure from previous
announcements, where upgrades were available only many
months after the systems' introductions.

One of the final decisions to be made about the
PowerPC-based Macs was their names. Speculation about
their names ran rampant in the trade press and on online
services. There was uncertainty whether they would even be
called Macs. Within Apple, this question had an obvious

How We Got Here from There 27

answer: Since one of the primary goals for these machines
was total Macintosh compatibility, they were definitely
going to be called Macs. But what kind of Macs was the big
question within Apple. One faction insisted that they be
named Quadras, since buyers were familiar with Quadras
and this name connoted the high end of the Macintosh
line. It was pointed out, however, that the Quadras were
named for their 68040 processor, and that no permutation
of 601 resulted jn the number 4. Additionally, since the
601's main competitor is Intel's Pentium, it wouldn't look
good to have a system name that refers to a lesser digit than
the Pentium's 5. The name Power Macintosh seems like the
obvious choice now.

Time Lines

Summer 1989: Official start of jaguar
project

Winter 1989/1990: The Kirkwood ski
trip and the birth of the Cognac
project

March 1990: Release of the Mac llfx
and Macintosh 8•24 GC accelerated
graphics card

june 1990: Birth of the RLC project
March 1991: The Banff ski trip and the

transition of the RLC project to
8811 0-based system

june 1991 to September 1991 : PDM is
born from 881 1 0-based Mac

july 1991: The PowerPC Alliance is
announced

May 1992: Somerset opens
September 1992: First si licon of 601

October 1992: Pacific sales meeting in
Hawaii

March 1993: Cold Fusion project
started

june 1993: Carl Sagan project started
July 1993: STP project started
Late Summer 1993: Decision to pro­

vide AV functionality in PowerPC
systems at introduction made

january 24, 1994: Original planned
date for PDM shipment and
announcement of LAW and Cold
Fusion

March 14, 1994: Introduction of the
Power Macintosh line and its first
three members: the 6100/60, the
7100/66, and the 81 00/80

28 The PowerPC Macintosh

How We Got Here from There

To the buying public, new computer systems often seem to
appear out of thin air. The evolution of the Power
Macintosh line was a long and colorful process. When the
first RISC projects started, no one had any idea that the
result would be the Power Macintosh. An alliance between
Apple and IBM was previously unthinkable, yet this coali­
tion is the basis for Apple's long-term Macintosh plans.

A vast number of people were involved in making these
Macs happen-many more than for any other Macintosh,
when you count all the IBM and Motorola people involved
in the PowerPC effort. What's also amazing about the intro­
duction of the Power Macs is that it happened when Apple
originally said it would, in the first half of 1994-even
though the prediction was made in October 1991, which, in
the computer indusb·y, is a huge time gap.

These Macs are also h arbingers of new things to come.
PowerPC is the first microprocessor architecture that has
any chance of competing with the dominance of x86
machines in the personal-computer world. At the time of
writing, the available PowerPC chips provided a vastly better
price/performance ratio than competing x86 chips. However,
Intel's engineers are good, and the competition for the desk­
top market will be fierce. It's unlikely that PowerPC will
unseat the x86 from its position of dominance anytime
soon, but it will almost certainly put a serious dent in the
overwhelmingly larger sales volume of x86-based personal
computers.

The Power Macs are the first PowerPC-based personal
computers to ship, and the future of the Macintosh looks
bright. More powerful PowerPC processors are on their way,
and improved Macs are already in the works. Many people
saw the Macintosh as a doomed system because of poor
performance, but rather than achieving parity with the

How We Got Here from There 29

competition, Power Macintosh has allowed the Mac to
leapfrog over the high end of the x86 world by providing
equal or better performance at lower prices. All these years,
Macintosh users have clamored for cheaper yet faster Macs.
Here they are.

CHAPTER TWO

Power
Macintosh
Hardware
Overview

he new PowerPC-based Macs don't look all that different T from the Quadras. But appearances can be deceiving. The
--- familiar Quadra cases now contain powerful new hardware.

But despite their standard Mac features, the Power Macs
have the hardware to take advantage of the PowerPC 60l's
high performance without forgoing compatibility.

This chapter provides an overview of the features of
Apple's new PowerPC-based Macs and their differences from
and similarities to previous Macs. As you will see, the Power
Macs are a combination of old and new. They provide high
performance-from 13.5 to over 34 times the performance
of a Mac IIci, depending on the task-but are nonetheless
priced low. This combination of more compute-horsepower
for less money is a result of the Power Macs' hardware
design, which has been kept as straightforward as possible
by taking advantage of recent Macs' hardware innovations.
This design provides most of the features familiar to users of
the Quadra 660Av and 840Av, Apple's high-end 68040-based
Macs.

The Power Macintosh 6100, Power Macintosh 7100, and
Power Macintosh 8100 are the first Macintosh systems
based on the PowerPC 601 chip. They are the first stage of
Apple's plans to migrate the entire Macintosh product line

31

32 The PowerPC Macintosh

from Macs based on Motorola's 680x0 (68k) family of micro­
processors to PowerPC-based machines. Another part of
Apple's migration strategy from 68k to PowerPC is the
Power Macintosh Upgrade Card, a deceptively simple card
fo r most 68040-based Macs that turns them into Power
Macs without needing to swap out the existing mother­
board.

When running native software, which takes maximum
advantage of the PowerPC chip's high performance, users
can expect to see a 66MHz Power Macintosh 7100/66 per­
form between two and five times faster, depending on the
application, compared to 68k-based software running on a
2SMHz 68040-based Quadra 700. Most existing software
was developed for the 68k Macs, though; average perfor­
mance for these applications running on a PowerPC-based
Macintosh will be roughly that of the Quadra 700.

But predicting performance of software running on the
Power Macs is tricky at best. To get a better idea of how the
software side of the Power Macs looks and how to gauge
software performance on these new machines, Chapter 3
provides an overview of both system and third-party soft­
ware for the Power Macs, and Chapter 8 provides an even
closer look at how software works on the Power Macs.

The Big Picture

Some of the basic hardware features of the new Power Macs
will be familiar to those who have looked at the Quadra
660Av and Quadra 840Av. Although the Power Macs don't
have a built-in DSP (d igital signal processor) chip, they do
use direct memory access (DMA) hardware to move data in
the system without burdening the central processor. The
Power Macs also sport a 64-bit-wide bus for access to the
CPU, RAM, and ROM which allows more data to be moved
around at higher speeds than in any previous Macintosh.

Power Macintosh Hardware Overview JJ

They have the same high-speed GeoPort serial ports as well
as all the audio features found in the AV Quadras. Users who
also want to have the video features offered by an AV Quadra
can buy any of the three new Power Macs in a configuration
that contains a preinstalled card with all the necessary video­
related hardware. Peripherals and NuBus cards that are com­
patible with AV Quadras and other 68k-based Macs should
work unchanged with the three new Macs.

The Power Macs have a standard set of input/output
(l/0) ports to connect them to the outside world: ADB, two
GeoPorts, audio in and out, SCSI, Ethernet, and the new
AudioVision connector for video are available on every
Power Mac. The Power Macs' internals also provide a stan­
dard Macintosh set of features, but implemented with a
clear focus on performance. The hardware in the AV
Quadras, the most advanced 68k-based Macs, was the foun­
dation for the Power Macs. But the Power Macs are not engi­
neering works La lions. They are designed to be the fastest
Macs by far and to provide the highest possible degree of
compatibility with their predecessors so that existing invest­
ments in hardware and software don't become worthless.

The PowerPC 601

At the heart of each Power Macintosh 6100, 7100, and 8100
is a PowerPC 601 RISC chip, codesigned by Apple, IBM, and
Motorola and manufactured by IBM. The 601 chip runs at
60MHz in the Power Macintosh 6100/60, at 66MHz in the
7100/66, and at 80MHz in the 8100/80.

The 601 is the first member of the PowerPC family of
RISC chips. Its primary design goals were short time to mar­
ket and high performance. A 601, which is at the low end of
the performance curve for the PowerPC family, performs
roughly on par with Intel's Pentium chip-it runs at the
same speed-at approximately half Pentium's cost. The

34 The PowerPC Macintosh

Speed-Bumping

Apple included the clock speed of the
601 in the Power Macs' names so they
can perform speed-bumping. As with the
Quadra 610, which started as a 20M Hz
68040 Centris 61 0 but was revised to use
a 25MHz 68040, speed-bumping
increases the frequency of the CPU chip
and therefore increases performance.

With these new names, Apple can speed­
bump a Power Mac without having to
come up with a new name while calling
attention to the different speed. It's likely
that we will see newer, faster revisions of
the 6100, 7100, and 8100 that contain
601 s running at higher speeds.

100 MHz PowerPC 601, announced in April 1994, is a faster
version of the 601. Running at identical speeds, the 601
bests Intel's second-generation Pentiums, running at 90 and
100MHz, in floating-point performance, and it equals their
performance when executing typical integer-based code.

One of the 601's particular strengths is exceptionally fast
floating-point performance. Floating-point math is used
heavily by rendering and animation software. These appli­
cations wil l benefit greatly from going native-that is,
adapting 68k-based software to run directly on the PowerPC
chip. Floating-point-intensive software has been the excep­
tion rather than the rule on the Mac until now. Most appli­
cations haven't used floating-point math because it didn't
provide enough of a performance boost considering the
effort required to integrate it into software. The floating­
point performance of the PowerPC family is so great that
even developers who wouldn't normally consider using
floating-point math are redesigning their software because
of the potential speed gain.

System software itself hasn't used floating-point opera­
tions for much the same reason as other software. The
native version of QuickDraw GX uses some floating-point
calculations, however, and therefore benefits a from
PowerPC's floating-point capabilities.

Power Macintosh Hardware Overview 35

Another way of looking at PowerPC's floating-point per­
formance is by comparing the capabilities of the Power
Macs with those of the Quadra 660Av and 840Av. Both of
these AV Macs have a dedicated floating-point digital signal
processor (DSP)-AT&T's DSP3210 chip-built in. The DSP
chip handles specific vrocessor-intensive tasks such as soft­
ware modems. The PowerPC 601 can act as the central
processor for the Power Macs and at the same time provide
the necessary horsepower to run a software modem without
needing a dedicated DSP.

In addition to fast floating-point and fast integer perfor­
mance, the 601 has other features that make it go fast. The
601 has 32 kilobytes of high-speed cache on the chip itself,
so it can store the most frequently used data and code on
the chip for the fastest possible access. This reduces the need
to fetch code and data from memory, speeding up processing
a great deal. Another crucial feature of the 601 is that it has a
64-bit data bus that allows it to move 64 bits, or 8 bytes, of
data between itself and the outside world-for example,
DRAM, ROM, and an external cache in one fell swoop.
Internally, the 601 is a 32-bit chip, though; this means that it
commonly operates on 32 bits of data during an operation. It
can access 4 gigabytes of memory directly. Four gigabytes is
not an arbitrary limit. All memory has an address that lets the
CPU chip find exactly the data it's looking for. These addresses
usable by the 601 are at most 32 bits large, and the largest 32-
bit number is 4,294,967,296, or 4 gigabytes. The 601's 64-bit­
wide bus works together with the 601's 32 kilobytes of
on-board cache to make it easy for the core of the 601 chip to
get at the data it needs, and to send data it's done with back to
memory with a minimum of hassle.

The 601 has three other immediate relatives: the low­
power 603, the 601-successor 604, and the 64-bit 620, each

36 The PowerPC Macintosh

with different strengths and features. If you're interested in
more details about the PowerPC architecture and family of
chips, see Chapter 5.

Direct Memory Access

One of the hardware features of the new Power Macs that
contributes to their high performance is direct memory
access, or DMA. DMA is so critical because it provides help to
almost all of the different sections of the Power Macintosh
hardware. Its influence isn't limited to just one or two parts
of the motherboard.

One of the traditional problems with the Macintosh
hardware architecture has been that the 68k CPU chip spent
much of its time moving data around rather than devoting
itself to running users' software. This was a waste of a CPU
chip's processing power.

DMA frees the CPU from having to deal with moving
data between peripherals and memory. This means that the
601 in a Power Mac can continue doing whatever it's busy
with, without interruption, while data is being read in from
the SCSI port or data is sent out over Ethernet. Keeping the
CPU out of the nitty-gritty data moving leads to a measur­
able performance improvement for the user as well as
higher-speed data transfer between the Power Mac and its
peripherals. The Quadra 660Av and 840Av were the first 68k
Macs to take advantage of DMA. The Macintosh Ilfx sup­
ported DMA for SCSI, serial, and floppy 1/0 but only if you
were running A/UX, Apple's version of UNIX. The Power
Macs' DMA is different from that of the 660Av and 840Av,
but it fulfills the same purpose.

The Power Macs use DMA for SCSI, Ethernet, both serial
ports, sound, on-board video, the floppy drive, and NuBus.
Delegating the management of these ports to the DMA
hardware lets the PowerPC CPU be used for computation-

Memory

Power Macintosh Hardware Overview 37

ally intensive tasks-such as running a software modem,
speech recognition, or full-motion video decompression­
without causing the machine to grind to a halt.

The other benefit of DMA is that it allows the 64-bit data
bus that the 601 is connected to and the 16-bit-wide 1/0 bus
for the various Power Mac ports to be isolated from each
other. This means that the 601 is not only freed from mov­
ing data back and forth between memory and the ports, but
the 601's bus is kept free of this additional data. This leaves
the full bandwidth available to the 601 so it can access
important resources such as the Power Macs' ROM without
being subject to frequent interruptions, as data from the
ports needs to travel over the same bus.

Access to memory, and the speed at which memory is
accessed, is crucial to the performance of any computer sys­
tem. A high-performance CPU like the PowerPC 601 that
can process large amounts of data quickly is especially sensi­
tive to the speed at which memory is accessed. As a result,
the Power Macs' designers made the path between the 601
and memory as fast as possible.

Memory in the Power Macs can be one of several kinds.

• Dynamic RAM, or DRAM, is the memory commonly
referred to when talking about a system's RAM capacity.
DRAM is used to store software while it's running as well
as the software's data.

• Level 2 cache RAM can be installed in Power Macs. A sys­
tem's CPU chip-for the Power Macs, the 601-can get at
information stored in the cache much faster than data in
regular memory.

• Virtual memory (VM) isn't really memory, it just acts like
it: VM reserves space on a hard disk to simulate the avail­
ability of more RAM. In reality, the Macintosh operating

38 The PowerPC Macintosh

system's virtual-memory system swaps data between the
hard disk and real RAM to create the illusion of more
RAM than is available. On the Power Macs, VM has addi­
tional benefits, which are discussed in Chapter 3.

• ROM stands for read-only memory. The 4MB of ROM in
the Power Mac contain a large part of the system soft­
ware, including the 68k emulator. This software in the
ROM makes the Power Mac hardware a Macintosh rather
than just a PowerPC 601-based computer.

• VRAM, or Video RAM, is used specifically to store video
data on a video card. None of the Power Macs have
VRAM installed on the motherboard, nor can it be added
at a later date. The only VRAM expansion possible with
the Power Macs is on the optional VRAM video cards that
come preinstalled in 7100 or 8100 models.

------ Dynamic RAM

Each PowerPC-based Macintosh has 8MB of SO-nanosecond
(SOns) Dynamic RAM (DRAM) soldered onto the mother­
board. Part of this memory, up to 600 kilobytes, is used up
by the video subsystem on the motherboard if a display is
connected to the motherboard's video connector at startup.

To expand a Power Mac's memory capacity, each Power
Mac has SIMM (single inline memory module) sockets. The
SIMMs used to increase DRAM in the 6100, 7100, and 8100
are identical to the SIMMs required for Quadra models such
as the 610, 650, 660Av, 800, and 840Av. All three Power
Macs, however, have a different number of SIMM slots.

The 6100 has two SIMM sockets that can hold up to
64MB when using 32MB SIMMs, making for a maximum
capacity of 72MB RAM. The 7100 has four SIMM sockets
and can therefore support up to 136MB. Finally, the 8100
has eight sockets; if filled, they can upgrade this Mac to
264MB.

SIMMs must be added a pair at a time because each of

Power Macintosh Hardware Overview 39

the standard SIMMs used by the Power Macs provides only
32-bit-wide access to its RAM. Since the Power Macs' data
bus is 64 bits wide, RAM must always be added in 64-bit­
wide increments.

From a user's perspective, RAM in a Power Macintosh is
like RAM in any other Mac. There is no need for special
high-speed RAM, as with many RISC-based workstations.
Normal 80ns RAM is all that's required to keep the Power
Macs running quickly. This ability to use standard RAM
makes it much easier to inexpensively upgrade the Power
Macs' RAM than would be the case for workstations with
comparable performance, and it also lowers the cost of a
basic Power Mac.

Intuitively, you might think that using faster RAM might
improve the Power Macs' performance. You can install faster
RAM-for example, 60ns or 70ns RAM-but your Power
Mac's performance will not increase as a result of the faster
RAM since it is designed with 80ns RAM in mind. Using
80ns RAM isn't a hindrance for the 601, because it doesn't
need to read from or write to RAM nearly as often, thanks to
the 60l's large 32-kilobyte on-chip cache. In addition, since
the 601 can read or write up to 64 bytes of memory during
one transaction it can still move a large amount of data in a
short period of time. To get any significant boost in perfor­
mance would require significantly faster, and significantly
more expensive, DRAM.

------- Level 2 Cache

The Power Macs all have a built-in socket that is designed to
be home to a Level 2 (L2) cache SIMM. Level 1 cache refers to
any very fast cache memory that is closest to a microproces­
sor, such as the 32 kilobytes of cache on the PowerPC 601. A
Level 2 cache, which is one step further away from the CPU,
consists of very high-speed SRAM (Static RAM), which is

40 The PowerPC Macintosh

much faster than traditional DRAM. This SRAM is physically
separate from the CPU chip, but it is connected directly to it
via the Power Macs' 64-bit bus. The 8100 ships with an L2
cache SIMM preinstalled that has 256 kilobytes of h igh­
speed 14ns RAM. This cache SIMM is available as an option
for the other two Power Macs.

The idea behind the L2 cache is to provide a buffer
between the processor and comparatively slower DRAM. To
the microprocessor, an L2 cache looks like a part of normal
RAM: It keeps most recently used data (and code-the L2
cache makes no distinction between the two) around in case
the CPU needs it again soon. The larger the L2 cache, the
more data can be kept handy and the less often the system
needs to read from or write to DRAM. However, th e 256
kilobytes of L2 cache provide the best performance boost for
the price. Although larger L2 caches would improve a Power
Mac's performance further, adding larger L2 caches
approaches the point of diminishing returns, since the per­
formance improvement doesn't increase by the same
amount as the L2 cache increases.

Anytime the CPU needs data that isn't in its own Ll
cache, it looks elsewhere, and if an L2 cache is present and
has the requested data, the CPU can get it much faster than
if it had to go all the way to the system's DRAM to get it.

------- Virtual Memory

Virtual memory (VM), originally introduced with System 7
for 68030- and 68040-based Macs, is also supported on the
Power Macs. VM is a feature of system software, but it needs
hardware to support it. The 601 chip has the necessary
MMU (memory-management unit) built in, just like the
68030 and 68040. But VM in the Power Macs isn't just a
port from the 68k version; it's been completely revamped
and greatly improved for the PowerPC to be faster and to
provide additional memory savings for native applications.

Power Macintosh Hardware Overview 41

Chapter 3 explains the new Power Macs' virtual-memory
software in detail.

------ ROM

Video

Each Power Mac has 4MB of ROM built in. This is twice as
large as the previously largest ROM, the 2MB of ROM in the
660Av and 840Av machines. The Power Macs' ROM contains
much of the system software for the PowerPC Macs, includ­
ing the 68k emulator that allows Power Macs to run 68k
software as if they also h ad a 68k chip built-in. One side
effect of this large ROM is that the size of the 7.1.2 System
fi le on disk is significantly smaller than that of, say, a 7.1
System file on a Quadra 700. The other benefit is that the
OS itself takes up less space in RAM as well, since code can
be run directly in ROM, without the need to copy it to RAM
first.

All three PowerPC Macs come with built-in video support
on the motherboard. The video options available on the
new Power Macs h ave something for everyon e:

• The basic built-in video on the 6100 suffices for most
standard applications.

• The AV Card provides the video side of Apple's AV tech­
nology.

• Th e VRAM cards for the 7100 and 8100 provide the main­
stream yet high-performance video solution.

Unlike the Quadras' built-in video support, which uses
separate RAM dedicated to video, the 6100, 7100, and 8100
allocate part of the system 's RAM when using motherboard
video. If you look in the About This Macintosh window in the
Finder, any DRAM allocated to video is part of the memory
shown as used by the System and isn't separately identifiable.

42 The PowerPC Macintosh

------ Built-In VIdeo

The built-in video hardware in the Power Macs has no more
than a passing resemblance to motherboard video on previ­
ous Macs. A side effect of this video architecture that uses sys­
tem RAM rather than dedicated Video RAM is that, depending
on the size of the monitor and the desired bit depth, it can
use significant amounts of system resources. A Power
Macintosh running internal video will slow down perceptibly
as bit depth increases. Although the slowdown isn't debilitat­
ing, it's noticeable at higher bit depths. If you regularly need
to use thousands of colors, you should consider avoiding
internal video. A VRAM-based alternative is available for the
7100 and 8100; it is discussed later in this chapter.

The connector for the on-board video on the rear of the
machines is Apple's HDI-45 AudioVision connector. Since
the only display that directly supports this connector is
Apple's own Audio Vision display, an adapter cable that con­
verts the AudioVision connector into the standard DB-15
video connector used by most monitors comes with every
Power Macintosh 6100. Since the other Power Macs come
with additional video interfaces, they are not shipped with
this adapter.

If no display is connected to the motherboard's display
connector-for example, on a headless server or when you
are using another video card-no memory is allocated for
on-board video. All the memory is available for the operat­
ing system and applications. With a display connected, the
built-in video supports the displays at the bit depths shown
in Table 2.1.

The worst case is the 13-inch display in 16-bit mode; 600
kilobytes of RAM are needed to support this display mode.
However, even if a video mode that uses fewer than 600
kilobytes is used, the Power Macs allocate the full 600; this
is necessary if the user ever wants to increase the bit depth;

Power Macintosh Hardware Overview 43

Cycle-Stealing VIdeo

The Power Macs' on-board video sub­
system shares the RAM on the mother­
board with the rest of the system. There
is no separate Video RAM, as on the
Quadras. This has the benefit of being
less expensive, since there is no need for
specialized RAM, and also less compli­
cated from a systems design perspective.
The drawback to cycle-stealing video,
though, is performance.

On most personal-computer systems,
there's only one path into and out of the
system's RAM. If the CPU chip wants
access to information in RAM, it must use
that path. Most interaction with RAM is
relatively short, since moving large quan­
tities of information in and out is rare.
Video on the Power Macs is an exception
to the rule, since a single screen refresh
might need to move up to 600 kilobytes
of data. Since a refresh happens roughly
60 to 75 times per second, depending on
the monitor being used, in the worst case
a little less than 35 percent of the entire
system's bus bandwidth is used to trans­
port video data.

Although this may seem like an unrea­
sonable performance penalty to pay, in
reality it isn't that bad. The Power Macs'
Data Path chips, which are explained in
Chapter 7, shield the 601 and all the
parts of the system connected directly

with the 601 from the constant video
data flowing by. This allows the 601 to
get on with its business, while the main
effect of all the video data traveling
across the bus is to limit the amount of
available bandwidth. In addition, 98 per­
cent of the 601 's memory accesses stay
on the chip; only 2 percent actually make
it out onto the CPU bus. The only time
that on-board video gives the 601 any
pause is if it is trying to read from mem­
ory while a video refresh is going on. This
situation is known as bus contention; in
such instances, parts of the Power Mac
hardware have different priorities that
determine their access to the bus. The
higher the priority, the less other subsys­
tems in the Power Mac can hog any part
of the bus. The video subsystem has the
second highest priority, since its refresh
must happen without fail at exactly timed
intervals.

Users who need higher video perfor­
mance will have either an AV or a VRAM
card. And most users of on-board video
will not be using the worst case: 1 6-bit
color on a 1 3-inch monitor. The most
common case will probably be 8-bit color
on a 1 3-inch monitor, which uses around
15 percent of the system's bandwidth­
not inconsequential, but by no means
debilitating, either.

44 The PowerPC Macintosh

Table 2.1 Displays Supported by Built-in Video

Display Resolution Bit Depths RAM Used at Max Bit Depth

12" RGB 512 X 384 1, 2, 4, 8, 16 393216 bytes

13" RGB 640 X 480 1, 2, 4, 8, 16 614400 bytes

15" Portrait 640 X 870 1, 2, 4, 8 556800 bytes

16" RGB 832 X 624 1, 2, 4, 8 519168 bytes

VGA 640 X 480 1, 2, 4, 8 307200 bytes

for example, to look a t a color photograph. If the whole
amount weren't already reserved, the user would either have
to restart the machine or be faced with having to look at the
image in an undesirable bit depth.

However, internal video isn't the only option for the
Power Macs. Apple ships higher-performance video cards
with some of them. Both the Power Macintosh 7100 and
8100 come with one of two video cards installed in their
processor direct slot (PDS).

------ Processor Direct Slot

The processor direct slot (PDS) is a direct connection to the
motherboard's 64-bit system bus. Any card in this slot has
the same access to system resources as if it were directly on
the motherboard. This is in contrast to expansion buses
such as NuBus, which have significantly lower throughput.
NuBus is a 32-bit bus that generally runs at lOMHz; a
6100/60's 64-bit bus runs at 30MHz, half of its 60MHz CPU's
speed, but still provides six times the bandwidth of NuBus.
An 80MHz 8100/80's bus runs at 40MHz, eight times the
throughput of NuBus.

All three Power Macs have one PDS. The 6100's is
unused by default but can contain either an AV Card or the
Power Macintosh NuBus Adapter Card. The 7100's and

Power Macintosh Hardware Overview 45

8100's PDSs are always used for one of t-vvo video cards: the
AV Card or the Power Macintosh VRAM card. The VRAM
card is not available as an option for the 6100.

------ AV Card

The AV (audio/video) versions of all three PowerPC Macs
have the AV Card installed, adding another video-output
option. The AV Card, which plugs into the processor direct
slot (PDS), contains a less expensive but equally capable ver­
sion of the AV subsystem introduced in the Macintosh
Quadra 660Av and 840Av and provides the same AV features
as these Macs. The AV Card supports composite video and
S-video in and out and has a standard DB-15 video connec­
tor. For more details about the AV Card's capabilities, see
Chapter 7.

The digital audio video (DAV) connector in the Quadra
660Av and 840Av has changed for the Power Macs, since the
AV hardware no longer resides on the system's mother­
board. The DAV connector allows direct access to the digital
audio and video data coming from the AV hardware. This
degree of access is necessary for cards that directly process
the audio and video data and need the highest possible per­
formance. NuBus simply doesn't have the bandwipth to
support continuous streams of audio and video data.

The DAV connector on the AV Card has the same electri­
cal connections as the original DAV, but it is redesigned for
use with a ribbon cable rather than as a plug-in slot for a
card. With the new scheme, NuBus cards that have DAV
support connect to the AV Card via a ribbon cable. Older
cards that use the inline DAV slot on the 840Av (the 660Av
doesn't have a DAV slot) are not easily usable in the AV con­
figurations of the new Power Macs, since the location of
their DAV connector is on the underside of the card, rather
than in a location more accessible to the DAV ribbon
connector.

46 The PowerPC Macintosh

The AV Card comes with 2MB of VRAM installed on the
card, and the VRAM capacity of this card can't be expanded.

------ VRAM Cards

Those 7100s and 8100s that don't come with the AV Card
have a Power Macintosh VRAM card installed in the processor
direct slot (PDS). As a result, every 7100 and 8100 ships with
dual-display support as a standard feature. Out of the box, you
can connect your Power Mac to two monitors without any
additional video hardware. The VRAM frame-buffer card
comes in two variants: one for the 7100 with 1MB of VRAM,
expandable to 2MB, and one for the 8100 that comes with
2MB, upgradable to 4MB. The VRAM frame-buffer card can
support the displays and bit depths shown in Table 2.2.

QuickDraw runs native on PowerPC Macs. Since
QuickDraw isn't emulated, a VRAM card in a Power
Macintosh will perform very well, rivaling and often exceed­
ing the performance of many NuBus video cards.

Storage and SCSI

As with all Macs since the Mac Plus, the Power Macs use a
SCSI bus to connect to mass-storage devices such as hard
drives, CD-ROM drives, OAT drives, removable media, and
other devices such as scanners and printers. The SCSI

Table 2.2 Displays Supported by the VRAM Cards

Power Mac Model MBVRAM Display Size Resolution Maximum Bit Depth

7100/66 1 12" 512 X 384 16

1 13"- 14" 640 X 480 16

1 15" 640 X 870 8

7100/66 or 8100/80 2 16" 832 X 624 24

2 21" 1152 X 870 16

8100/80 4 21" 1152 X 870 24

Power Macintosh Hardware Overview 47

connector on the back of a Power Macintosh is the same 25-
pin connector that Mac users have been accustomed to since
the introduction of SCSI with the Mac Plus. Any SCSI
peripheral that is compatible with the Quadra 660Av or
840Av should work with the new Power Macs.

Like the Quadra 660Av and 840Av, the standard SCSI bus of
each Power Mac supports throughput up to SMB per second.
The Power Macintosh 8100 has a second, independent SCSI
bus that supports Fast SCSI throughput up to a theoretical

Upgrading SCSI

If you're upgrading from a 68k-based
Macintosh to a Power Macintosh, you
should be aware of a few problems that
you may encounter on the path of migra­
t ion. Owners of the 660AV and 840AV Macs
have experienced SCSI-related problems
that manifest themselves most commonly
as random but frequent crashes, none of
which are ultimately the fault of the new
Macs. Since the SCSI implementation­
both hardware and software-of the
Power Macs is so similar to that of the 68k­
based AV Macs, users upgrading may
experience similar challenges and be
tempted to blame them on the new Macs.

The main sources of problems with
SCSI on the Mac are traceable to either
SCSI cabling or termination. Make sure
you have high-quality cables and proper
termination. Most SCSI problems that
appear to be the fault of new Macs are
cabling or termination problems.
Recently, vendors have begun offering

digital active termination schemes. Such
terminators generally improve the signa l
quality on SCSI chains. Many SCSI prob­
lems on the 660Av and 840Av, as well as
on the Power Macs, have cleared up as a
result of installing this kind of terminator.

The SCSI driver software installed on
drives is another facet of SCSI devices
that you shouldn't ignore. Apple intro­
duced the new SCSI Manager 4.3 with
the Quadra 660Av and 840Av, and this
new SCSI system software is also part of
the Power Macs. If you want to get the
best possible performance from your
SCSI peripherals, make sure your drivers
all take advantage of SCSI Manager 4.3's
features. (Old drivers work fine, but do
not offer peak performance.)

If you want more information about
things to watch out for when upgrading
from your 68k Macs to a Power
Macintosh, see Chapter 7.

48 The PowerPC Macintosh

maximum of lOMB per second, similar to the second inter­
nal SCSI bus in the Quadra 900 and 950.

Each of the three new Macs is available with a double­
speed internal CD-ROM drive. These are the first drives from
Apple that don't require a caddy to use discs. Previously, to
use a CD-ROM disc in a drive, you had to place it in a
holder called a caddy, and then the caddy went into the
drive. The drives in the Power Macs behave just like audio
CD players: They have a small button on the front that you
press to make the CD drawer scoot out. Place the CD in the
drawer, press the button, and the drawer scoots back in and
brings the CD up on your Mac's desktop.

Double-speed refers to the capability of the drive to spin
the CD-ROM at twice the normal rotational speed. Despite
their moniker, double-speed drives rarely perform at twice
the speed of a conventional CD-ROM drive. The maximum
amount of data that a double-speed drive can feed a Mac is
around 300 kilobytes per second, quite pokey when com­
pared to hard disks. Higher-end hard drives typically allow
transfer rates of around 3.5 to 4MB per second. At this writ­
ing, CD-ROM drive manufacturers were introducing triple­
and quad-speed CD-ROM drives-great for CD-ROM users,
but still slower than a hard disk. To take fullest advantage of
a quad-speed drive's ability to transfer data quickly to the
Mac, the data on the disc must be arranged just right.
Unfortunately, this arrangement can make for much slower
reading on non-quad-speed drives.

You can use the internal CD-ROM drive in a Power
Macintosh for audio-playback and, with QuickTime's built­
in support for the audio-extraction features of these drives,
you can also use it to convert audio tracks on an audio CD
into QuickTime movies. All AV versions of the three Power
Macs come with internal CD-ROM drives preinstalled. Some
non-AV versions also come with CD-ROM drives.

Power Macintosh Hardware Overview 49

Other SCSI devices can be installed inside the new Power
Macs. Like the Quadra 610 and 660Av, the Power Macintosh
6100 has two internal bays for SCSI devices. One is a 5.25-
inch half-height bay suitable for a CD-ROM drive; the other
is a 3.5-inch one-third-height bay for a hard disk. Since all
Power Macs come with hard drives, the hard-drive bays all
contain a drive. The Power Macintosh 7100 has the same
two internal bays as the Quadra 650. And like the Quadra
800 and 840Av, the minitower 8100 has both the internal
bays that the other two Power Macs' cases provide, plus a
3.5-inch full-height internal bay for a large-capacity hard
drive. The large bay in the 8100 box is intended for high­
performance drives, which should be connected to the
8100's internal-only Fast SCSI bus. See Figure 2.1.

The 8100 has a second independent Fast SCSI bus that is
accessible only via an internal connector, identical to the
internal SCSI ribbon connector used for all Macs. This bus is
internal-only for several reasons. To achieve the highest pos­
sible throughput, this bus must remain as free as possible
from electrical noise. With the wide variety of SCSI devices
and cables available, an external bus is rarely clean enough
to support such high throughput.

Although active termination and high-grade cables min­
imize the problems, there are other good reasons to keep the
Fast SCSI bus internal. Even most hard drives would have a
hard time maxing out the 5MB per second bandwidth of the
external bus. Minimizing the number of devices on the
internal bus reduces the possibility of multiple devices hav­
ing to contend for available bandwidth on the Fast SCSI bus.
If the Fast SCSI bus had an external connector, everyone
would connect their existing SCSI chains to it since, after
all, faster is better. All the slow devices would have to share
the bandwidth of the Fast SCSI bus, severely reducing its
utility for real fast drives. Today's double-speed CD-ROM
drives deliver no more than 300 kilobytes per second

50 The PowerPC Macintosh

FIGURE 2.1
The Power Mac

6100, 7100, and

8100
3.5-inch h ard d isk

3.5-inch hard disk

Floppy disk drive -+HII!oro~

5.25-inch device bay

5.25-inch device

Floppy disk drive

3.5-inch device

-~~1-- Boy for 3.5-lnch
double-high device

NuBus

Power Macintosh Hardware Overview 51

throughput; Apple connects any internal CD-ROM drive in
the Power Macintosh 8100 to the standard SCSI bus, leaving
the high-speed bus free for devices that can take advantage
of its bandwidth.

The 7100 and 8100 both have three NuBus slots for expan­
sion, and the 6100 can be outfitted with a NuBus adapter
card that plugs into its processor direct slot (PDS). Once
installed, this adapter supports one 7-inch NuBus card. Most
NuBus cards that work in the 660Av and 840Av should func­
tion without problems in the Power Macs.

The Power Macs support NuBus 90, which is a more
recent version of the original NuBus 87 specification that
has been used in all NuBus-endowed Macs prior to the
Quadra 700. NuBus 90 can provide higher performance
than NuBus 87 in its burst mode, when transferring data
from one NuBus card to another.

NuBus, however, may not be as crucial for the new
Power Macs as it has been in previous 68k-based machines.
Traditional inhabitants of NuBus slots have been video
cards, Ethernet cards, and, more recently, audio/video cap­
ture cards. Since Ethernet comes on the motherboard of
every Power Macintosh and the 7100 and 8100 have either
a VRAM card or an AV Card preinstalled, much of the need
for NuBus expansion has been eliminated. Nonetheless,
these two Macs sport three available slots each.

The NuBus adapter for the 6100 can't be used in the AV
versions, since the 6100 motherboard has only one proces­
sor direct slot (PDS) that can be occupied either by the AV
Card or by a NuBus adapter. Other NuBus adapters, such as
the ones for the Ilsi and for the Centris/Quadra 610 or
660Av, cannot be used in the 6100. The only specific
requirement for a NuBus card to work with 6100's NuBus

52 The PowerPC Macintosh

GeoPort

Ports

adapter is that it must conform to the short 7-inch NuBus
card-size specification; this requirement is the same for the
610 and 660Av adapters. Cards that work in these machines
should work in a 6100.

The GeoPort software for Power Macs runs on the PowerPC
chip. No digital signal processor is needed. The GeoPort fea­
tures aren't tied with the video capabilities of the AV Card,
either. Consequently, every Power Macintosh, including those
without AV Cards, can run a GeoPort modem.

The GeoPort hardware and software, introduced with the
Quadra 660Av and 840Av, used the DSP3210 digital signal
processor built into those machines to provide a software
modem. All the work that dedicated modem hardware
would normally perform was done in software running on
the DSP chip in the AV Quadras.

Both setial ports on the Power Macs can be used as GeoPort
ports. With the addition of a GeoPort Telecom Adapter con­
nected to a Power Mac's modem port, and with the necessary
software installed, even the 601 in the Power Macintosh 6100
has the oomph to also act as a 14400bps V.32bis modem, but it
must have the hardware support of DMA to move all the data
back and forth in the Power Mac system. Without DMA, a soft­
ware modem would not be possible.

The slowdown caused by the compute-intensive task of
running the modem is perceptible by the user, especially on
the slower Power Macintosh configurations. The slowdown
is by no means debilitating, however; the Power Mac is still
responsive when the GeoPort modem is in use.

Except for the HDI-45 AudioVision connector, none of the
ports on the back of the new Power Macs are unfamiliar to
users of earlier Macintosh models. They all have a DB-25

Sound

Power Macintosh Hardware Overview 53

SCSI connector, an AAUI Ethernet port, two GeoPort serial
connectors (modem and printer), ADB (for the keyboard and
mouse), an audio-in jack, and a speaker jack, just like the
660Av and 840Av. As with these two 68k-based Macs, the
sound subsystem in the Power Macs supports high-quality
16-bit stereo sound.

These ports work with the same devices as 68k-based
Macs, so buying a Power Macintosh means that you can still
use your old peripherals. For 6100 owners, the bundled
HDI-45 to DB-15 adapter allows existing monitors to be con­
nected without hassle. The additional microphone necessary
for PlainTalk is supplied separately and plugs right into the
sound-in jack in the Power Macs.

All three Power Macs have high-quality sound input and
output capabilities built in. None of these features require an
AV Card, nor will an AV Card improve a Power Mac's sound
features.

Each Power Macintosh has a sound-in and a sound-out
jack on its back panel. These stereo jacks are the same size
used on portable stereos. The sound hardware inside the
Power Macs supports 16-bit digital audio, in and out, at a
sample rate of 44.1kHz. This sample rate is the standard rate
for audio compact discs.

With these high-quality sound capabilities, the Power
Macs support Apple's PlainTalk speech-recognition and
speech-synthesis software. This software is available from
Apple, together with a microphone designed specifically for
speech recognition, as an added-cost option.

The Power Macintosh Upgrade Card

The Power Macintosh Upgrade Card is the most inexpensive
way of upgrading a 68040-based Macintosh to a Power

54 The PowerPC Macintosh

Macintosh, but it doesn't offer the same performance as a
Power Macintosh. The Upgrade Card is deceptively simple.
It plugs into the 68040 processor direct slot (PDS) in a
Quadra 700, 900, 950, 650, o r 610 and contains a PowerPC
601 chip, 1MB of 15ns Level 2 cache, and 4MB of ROM. The
ROM on the Power Macintosh Upgrade Card is almost iden­
tical to that in the 6100/60, 7100/66, and 8100/80, except
for minor differences necessary for the card to run in the
Quadras. The ROM contains the 68k emulator as well as
many other new PowerPC-related system-software features
such as Native QuickDraw.

The Upgrade Card is designed so that its 601 always runs
twice as fast as the 68040 in the host Mac. The 601 runs at
40MHz in an original Centris 610 whose 68040 runs at
20MHz. In a Quadra 700, whose 68040 runs at 25MHz, the
601 runs at 50MHz. In a 33MHz Quadra 950, the 601 on an
Upgrade Card runs at 66MHz. There aren't different ver­
sions of the Upgrade Card-one size fits all.

A Quadra with an installed Upgrade Card can boot up in
one of two modes:

• The 68040 is active, in which case the user can run 68k
software native.

• The card boots up in PowerPC mode to allow native
PowerPC apps to run.

When the Upgrade Card is active and the Mac is run­
ning in PowerPC mode, it cannot use the 68040 on the
Quadra's motherboard to run 68k software. If the 601 is the
active CPU, the 68k emulator is used to run 68k software.

This ability to run in either mode is an excellent feature
for those who want to make the most painless transition to
PowerPC. Only a restart separates users from running native
PowerPC apps and running 68k apps at full speed on a
68040.

ABS Hardware

Power Macintosh Hardware Overview 55

The performance of an Upgrade Card is less than that of
a Power Mac, since Power Mac hardware features such as
DMA and a 64-bit bus aren't available on the Macs that
accept Upgrade Cards. The 601 alone provides a great deal
of performance, and the large 1MB Level 2 cache on the
Upgrade Card compensates for this problem. But having to
go through the 32-bit 68040 PDS, which requires translation
from the 601 bus to and from the 68040 bus, creates a bot­
tleneck. The 68040 bus acts like a funnel and limits the
amount of data that can move between the card and the
motherboard.

Apple Business Systems (ABS) is also moving toward the
PowerPC with its servers. The two lower-end offerings are
identical to two of the Power Macs, and the high-end
PowerPC-based Workgroup Server is a new development
with a few significant changes. For more information about
the software running on these servers, see Chapter 3.

------ Apple Workgroup Server 6150

The Apple Workgroup Server (AWS) 6150 is identical to the
Power Macintosh 6100 except that it has a 512-kilobyte
Level 2 cache preinstalled. The AWS 6150 runs at 60MHz
and, except for the different front panel and the L2 cache, it
is exactly the same machine.

Apple Business Systems offers upgrades from the AWS 60
to the 6150.

------ Apple Workgroup Server 8150

The AWS 8150 is identical to the 8100, except for its prein­
stalled 512-kilobyte Level 2 cache. There are no other differ­
ences other than the front panel.

Upgrades are also available to help users migrate from
the Apple Workgroup Server 80 to the AWS 8150.

56 The PowerPC Macintosh

------ Apple Workgroup Server 9150

Performance

The Apple Workgroup Server 9150 has no counterpart in the
Power Macintosh line. The 9150 is a further development of
the Power Mac 8100 hardware design and includes all of its
featu res, including the two SCSI buses. The 9150 has two
differences: It has a fomt h NuBus expansion slot as opposed
to the 8100's three, and the 9150's motherboard is designed
to fit into a Quadra 900/950 box.

This case is the same one used by the Apple Workgroup
Server 95; the 9150 is the upgrade for the 68k-based
AWS 95. However, the AWS 9150 does not run A/UX and
AppleShare Pro like the 95; it runs AppleShare 4.0.2 or later.
This means that th e 9150's performance as a fileserver will
lag behind the AWS 95 until improved server software
becomes available.

Determining performance on the Power Macs is not particu­
larly straightforward. Emulated software receives the benefit
of toolbox accelera tion, introduced in Chapter 1 and dis­
cu ssed further in Chapter 3. Native software can be slowed
down by the parts of the opera ting system that are still emu­
lated. In the meantime, Apple's engineers are working on
making more of the operating system na tive. As a result,
th ese are the fi rst Macs that will gain significant perfor­
mance over time just by installing new software.

With n ative software, there is little question that the
Power Macs best the 68k-based Macs in price versus per­
formance.

If you're interested in a greater degree of detail than this
chapter provides, see Chapter 7.

~y

CHAPTER THREE

Power
Macintosh
Software
Overview

he Power Macintosh hardware is impressive, but the success
of the Power Macs rests squarely on how well software per­
forms-both native and emulated software. Without blaz­
ingly fast native applications, a Power Mac is just another
Mac and certainly not competitive with offerings from the
80x86 world. With native apps, however, even the first-gen­
era tion Power Macs offer performance rivaling that of some
workstations, but with the familiar and easy-to-use
Macintosh user interface-no UNIX required.

Power Macintosh System Software

The Power Macs run System 7 by default-System 7.1.2 and
later, to be precise. They are real Macs, not disguised UNIX
workstations, nor do they use the Taligent operating system,
which won't ship until 1995.

The same System 7 environment that existing Mac users
are familiar with is the default operating system for these
new Macs. Although the new version of System 7 contains
enhancements to run faster on Power Macs, there are no vis­
ible changes to the Macintosh interface as a result of
installing the new version of the Mac OS.

57

58 The PowerPC Macintosh

------ Installing System 7.1 .2

There are two ways to install System 7 .1.2: either as a fresh
installation or as an update to an existing system for 68k
Macs. The latter option is easier for users of existing Macs
who want to move to the Power Macs with a minimum of
hassle, but a fresh installation reduces the possibility of
mishap during installation.

If at all possible, you should perform a fresh installation
of a new version of the Mac OS and copy all the third-party
software and preferences in your System Folder and its sub­
folders into the freshly installed System Folder.

The only instance where an update might be of greater
convenience is when installing on a Mac with a Power
Macintosh Upgrade Card. However, since the full installation
from the Upgrade Card's system-software disks will also run
in 68k mode Macs that accept Upgrade Cards, the benefit is
negligible when compared to the security afforded by a freshly
installed system. Furthermore, you're assured that with a fresh
installation, your system software contains all the latest ver­
sions of network drivers and similar software that sometimes
get missed when installing over an existing system.

------- Basic Power Macintosh OS Features

System 7 .1.2 has the same basic features as System 7 .1, with
additional enhancements for the Power Macs. The version
number may be somewhat misleading: System 7.1.2 doesn't
contain all the features that came with System 7 .1.1, which
was the system-software release included in System 7 Pro.
PowerTalk and AppleScript, the main additions to System
7.1 for the Pro version, are still separate parts of system soft­
ware and aren't automatically installed with 7.1.2.

Anyone upgrading a System 7 Pro system to run on a
Power Mac must also install an update to PowerTalk, version
1.0.3 or later, to run on the Power Macs. The 1.0 version of

Power Macintosh Software Overview 59

PowerTalk that comes with System 7 Pro will not run on the
Power Macs.

However, the standard installation of 7 .1.2 automatically
installs QuickTime 1.6.2 and its accompanying QuickTime
PowerPlug file, Apple's CD-ROM driver 4.5, AppleTalk 58.1,
and EtherTalk 2.5.5.

------- Toolbox Acceleration

Apple's system-software engineers have understood the con­
cept of toolbox acceleration since the release of the 8•24 GC
card in 1989. This video card came with an AMD 29000
(29k) RISC processor installed, and it was running a version
of QuickDraw on the 29k. Anytime the host Macintosh used
QuickDraw, the code on the GC card would be executed,
much faster than the 68k code on the host Macintosh. Thus
was born toolbox acceleration, the selective replacement of
performance-critical parts of the Macintosh operating sys­
tem with faster software versions running on faster hard­
ware. Following the 90/10 rule, where approximately 10
percent of the code is executed 90 percent of the time, the
acceleration of QuickDraw provided a disproportionately
large performance improvement, since all Macintosh soft­
ware uses QuickOraw in one way or another. Making
QuickOraw run faster made all software run faster.

When Apple set out to develop the system software for
the PowerPC-based Macs, some engineers wanted to make
the entire system-software release for the new machines
native. That laudable goal was soon proven to be overly
optimistic. A second strategy-toolbox acceleration-was
adopted. Typical applications were profiled to determine in
which parts of the operating system the most time was
spent. The more time spent in a routine, the more impor­
tant it was to make it native.

60 The PowerPC Macintosh

Emulation

Using the data gathered by the profiling, Apple's engi­
neers made decisions about which parts of the operating
system to make native, and which parts of the operating
system wouldn't gain from being native. QuickDraw was
found to be important for all Mac software, so it was made
native in its entirety. Other frequently used parts of the
operating system, such as parts of the Resource and Memory
Managers, were also found to provide a benefit to almost all
software, so they were made native as well. Throughout the
development of the first version of system software for the
Power Macs, a clear performance benefit was necessary
before the engineers decided to make a particular part of the
OS native. Since time and resources were limited at Apple's
end, every bit of native code had to count.

The emulator in the Power Macs' ROM, which is discussed
in greater detail in Chapter 6, is the cornerstone in the
Power Macs' system software. Without the emulator, exist­
ing 68k Macintosh software couldn't run on the new
PowerPC-based machines. But equally important is the fact
that much of the Power Macs' operating system is still 68k
code. It isn't all native yet, so the emulator is necessary for
the Mac OS to run on these machines.

Consequently, the Power Macs' 68k emulator must be
extremely reliable and compatible to be able to run all of
Apple's 68k system software as well as all the third-party 68k
software that users already have.

The 68k emulator in the Power Macs acts like a 68LC040
running in user mode. The 68LC040 is a variant of the 68040
that lacks a floating-point unit on the chip. The user-mode
distinction is an important one, because the emulator doesn't
support any of the 68040 instructions that control the mem­
ory-management unit. These instructions are supervisor-mode
instructions on any 68k processor, as well as on any PowerPC

Power Macintosh Software Overview 61

processor. Since only the system software should be using
memory-management-unit instructions to begin with, this is
not a real limitation for the emulator. Also, the 60l's memory­
management model is different from that of the 68k family,
so emulation wouldn't make much sense anyway.

The Macintosh Centris 610 uses a 68LC040, as do the
PowerBook 500 series machines, the 520, 520c, 540, and 540c;
they also lack floating-point hardware support, and the few
pieces of software that depend on floating-point hardware will
not run on these 68k-based Macs either. However, any soft­
ware that uses SANE (Standard Apple Numerics Environment)
will continue to run on the Power Macs, since SANE is sup­
ported, but only for emulated software. Native software
should use the PowerPC's native floating-point support
directly to take full advantage of the performance available.

Native PowerPC System Software

Most of the system software for the Power Macs still con­
sists of 68k code, which runs under emulation on the Power
Macs. However, several parts of the operating system that
are executed most frequently are native on the Power Macs.
Some of these pieces of system software are in the ROM,
some in the System file, some in the system enabler for the
PowerPC Macs, and some in separate files.

Regardless of their location, these bits of native code
benefit both native and emulated software. Emulated soft­
ware gains particularly since, by definition, an emulator
runs slower than hardware. When emulated applications
call the operating system and the part of the OS that is
being called is native on a Power Mac, the emulated applica­
tion gets the full advantage of the native system software
without needing any specific knowledge of it. For that rea­
son, emulated software should never need to know whether

62 The PowerPC Macintosh

Mixed Mode

a particular part of the OS is emulated. Some native software
needs to know such details for performance reasons, but as a
rule, most software shouldn't care whether parts of the oper­
ating system are native, since access to them from the soft­
ware's perspective is identical.

At first glance, mixing emulated 68k code and native code
seems to be a tricky endeavor. It is. However, this complica­
tion is completely shielded from emulated 68k software
thanks to a new piece of system software called the Mixed
Mode Manager. Since emulated software has to be able to
run on the Power Macs unchanged, the combination of the
emulator and the Mixed Mode Manager lets emulated 68k
software run the same way as on a 68k-based Mac. See
Figure 3.1.

The Mixed Mode Manager keeps track of the type of code
being executed at the moment. It knows when native code is
running, and it knows when code is running under emula­
tion. The important task for the Mixed Mode Manager to
perform is the orderly transition between the two. Since
much of the Power Macs' operating system is still emulated,
native apps need to be able to call emulated code. The con­
verse is true as well: Emulated apps automatically benefit
from native QuickDraw, so emulated code must be able to
call native code. The most amazing part about this is that the
two types of code don't even need to know about each other.

Despite the magic of mixed mode, there is a downside to
being able to execute two different types of code without a
hiccup. The transitions between the two modes are slow. In
fact, frequent transitions between 68k and native PowerPC
code can negate the performance benefits offered by native
code. Such transitions are referred to as mixed-mode switches.

FIGURE 3.1

Mixed Mode
Manager

Power Macintosh Software Overview 63

68k Environment PowerPC Environment -,
,.. 68k rl r Native ...

Software Software

Mixed Mode Manager

I
~I' ~I'

,lr ,lr

f -
i

-68k System Native System
Software 1 Software l

~ I'

~lr

i -
68LC040 Emulator

~

~lr lr
7

N anokernel

~~ ,,. ,

In some cases, native software can cause a slowdown because
of the mixed-mode switches involved. See Figure 3.2.

The speed improvement of native PowerPC code on the
Power Macs is not necessarily a given: When emulated soft­
ware calls on native software to perform some work, the
operating system has to do some housekeeping during each
mixed-mode switch, before and after the switch from

64 The PowerPC Macintosh

FIGURE 3.2

Mixed-mode

Switches

68k Sotlwa r o

MIKod M o d o M o n ogor

N o. tlvo Sohworo

running emulated to running native and back. Sometimes,
these housekeeping chores can take longer than the time
gained by running native, particularly if the operation to be
performed by the native software is very short. So it might
seem productive to switch from 68k code to PowerPC code
wherever possible, because native software executes as much
as 10 times faster. But staying in emulated 68k code can
sometimes be faster than switching if the time saved is more
than the time lost due to two mixed-mode switches.

Understanding mixed-mode switches is important to
further understand the decisions of developers at Apple and
elsewhere regarding which parts of code they chose to make
native. In many cases, native code isn't faster and would
simply cause mixed-mode switches; in such cases, executing
emulated code winds up being faster. If the entire Mac OS
were native from top to bottom, and all third-party prod­
ucts, including INITs, drivers, and other low-level pieces of
software, were as well, then there wouldn't be a problem.
However, making the entire operating system for the Power
Macs native would have delayed the release of the Power
Macs and would also have caused significant compatibility
hassles, especially with third-party extensions.

Since many parts of the Mac OS aren't native, it doesn't
make sense to make certain kinds of software-SCSI drivers,

Power Macintosh Software Overview 65

SCSI Manager 4.3

Chapter 2 provided an overview
describing the new SCSI hardware and
the DMA supporting it. However, this
new hardware wouldn't be able to run at
its highest speed without the appropriate
software. The Centris 660Av and the
Quadra 840Av were the first Macs with
DMA SCSI that was usable from the Mac
OS. (The Macintosh llfx has the dubious
distinction of being the first Macintosh
with SCSI DMA, but only users of A/UX,
Apple's version of UNIX for Macs, were
able to benefit from it.) To be able to
take advantage of this new SCSI hard­
ware, the new SCSI Manager 4.3 is
required. It, too, was first introduced with
the 660AV and 840AV.

The new SCSI Manager provides sev­
eral benefits over the old SCSI Manager:
It has support for DMA, it supports asyn­
chronous l/0 as well as SCSI features
such as disconnect, and it has support for
multiple SCSI buses.

However, support for DMA does not
mean that DMA is required for the new
SCSI Manager to be active. A Quadra
with an installed and active Power Mac

Upgrade Card also has SCSI Manager 4.3
installed, but no DMA. The DMA hard­
ware in the Power Macs allows the new
SCSI Manager to take fullest advantage
of the available performance in the SCSI
hardware. Because of the way SCSI
Manager 4.3 is designed, it can set up a
SCSI transaction and let the DMA hard­
ware do all the work. The SCSI Manager
gets out of the way once the transaction
is started.

Asynchronous 1/0, a term that's
applicable to the Macintosh operating
system, shouldn't be confused with asyn­
chronous and synchronous SCSI transac­
tions. Async 1/0 in the Mac OS sense
means that software-either application
software or any other kind of software
that's likely to cause a SCSI transaction­
can call the OS to do its bidding, for
example to write data to a hard disk, and
while the SCSI Manager is off doing that,
the software can go on and perform
other work while the SCSI 1/0 is taking
place. Before SCSI Manager 4.3, the OS
wasn't able to support such simultaneous
SCSI activity.

for example-native, since such software would cause many
mixed-mode switches and not enhance performance at all.
On the contrary, a native SCSI driver would slow down per­
formance. Such a driver isn't beneficial until a native SCSI
Manager as well as a native version of the Mac's hierarchical
file system is available.

66 The PowerPC Macintosh

One way that some low-level software can avoid unneces­
sary mixed-mode switching is by being fat, a term used to
describe software that contains 68k and PowerPC code. In
the case of low-level software that needs to hook into parts
of the operating system, installing so-called fat patches
reduces the number of mixed-mode switches. The reason for
this is that the Mixed Mode Manager always tries to stay in
the mode it's currently in. So if emulated software is execut­
ing and it calls a piece of the operating system that has been
augmented by a fat patch from third-party software, the
Mixed Mode Manager executes the 68k version of the patch
software to avoid a mixed-mode switch. As with the preced­
ing driver example, the only time when it makes sense to
provide native software is if the native version, including
mixed-mode switches, is always faster. In such cases, any
software that installs patches can install only a native patch
on a Power Mac, since all software will profit from the
greater speed.

If you'd like to learn more about the Mixed Mode
Manager, it is discussed in greater depth in Chapter 8.

Native QuickDraw

QuickDraw on the Power Macs is entirely native-no emula­
tion anywhere. The reason for this is straightforward: In all
cases, even when calling it from emulated apps and causing
a minimum of two mixed-mode switches, Native
QuickDraw (NQD) runs faster than emulated QuickDraw.

As part of the investigations into the parts of the
Macintosh operating system where the most time was spent,
QuickDraw came out as one of the clear leaders. Since the
Macintosh is a graphics-oriented system, this is no great sur­
prise.

Native QuickDraw is an evolution of the version of
QuickDraw present in the Quadras, version 1.3.0. This ver­
sion of the Mac's imaging system software is still largely

Power Macintosh Software Overview 67

written in 68k assembly language for performance reasons.
NQD, whose version number is 1.3.5, is based upon version
1.3.0 but rewritten completely in C and compiled for
Power PC.

Intuitively, one might think that a C-based version of
QuickDraw would be significantly slower than a hand-tuned
one written in assembly language. This may be so on a CISC
processor, but it isn't necessarily the case with a RISC
processor. Many of the performance benefits of RISC proces­
sors require sometimes fiendishly clever machine-language
constructions; a compiler can take human-legible and
-maintainable C code and translate it into highly optimized
RISC machine language that runs extremely fast. In the
CISC days, a good assembly-language programmer could
almost always write better code than a compiler. With
today's complex RISC chips, however, the compilers often
generate faster code than handwritten assembly. For this
reason, one of the translations of the RISC acronym is "rele­
gate the interesting stuff to the compilers". If you'd like to
learn more about how RISC chips and the PowerPC family
in general work, see Chapters 4 and 5.

Native QuickDraw runs many times faster than
QuickDraw 1.3.0. It not only benefits from running on a
faster microprocessor, but NQD also takes advantage of spe­
cific features of the PowerPC family to boost performance
even further. Some of the most processor-intensive parts of
NQD take advantage of the PowerPC's 64-bit-wide data bus
to write graphics data out to memory as quickly as possible.

Both emulated and native apps benefit from Native
QuickDraw's speed. Those emulated apps that use QuickDraw
frequently show especially large speedups when running on a
Power Mac. Much like Apple's 8•24 GC card, which contained
its own RISC processor and a RISC version of QuickDraw, the
Power Mac's NQD acts like a QuickDraw accelerator. Unlike
many hardware accelerators that accelerate only the most

68 The PowerPC Macintosh

time-critical parts of QuickDraw, such as those that move
large blocks of a screen around, all of NQD is accelerated.

Since all of QuickDraw is native on the Power Macs and
since it's used so frequently, NQD's performance is particu­
larly susceptible to slowdown from excessive mixed-mode
switches. Extensions that install patches into QuickDraw,
either to enhance features or to accelerate it in a 68k environ­
ment, can cause NQD to be throttled down to significantly
lower performance. The section on third-party software later
in this chapter discusses this issue in greater depth.

Native QulckTime

The Power Macs come with QuickTime 1.6.2, which by itself
consists exclusively of 68k code. When you install
QuickTime on a Power Macintosh, however, you also install
the QuickTime PowerPlug, which contains native versions
of the most processor-intensive parts of QuickTime. Much
of QuickTime is dependent on the speed with which it can
get data to and from where it needs to be. The frame rate of
QuickTime playback is determined largely by the speed of
the hard disk or CD-ROM drive that the QuickTime data is
on, but also by the speed of the video hardware and soft­
ware. Since the Power Macs' I/0 features are emulated, and
the hardware's SCSI and Ethernet DMA do the work of get­
ting the data from mass storage to memory, the emulated
parts of QuickTime are less critical than one might think.
The same logic that was used for toolbox acceleration is
used in QuickTime: Only the parts where the most time is
spent, or those parts that would benefit the most, are made
native.

CPU-intensive parts of QuickTime such as the Cinepak
compressor/decompressor (codec), as well as other codecs,
are native and come in the QuickTime PowerPlug.

Power Macintosh Software Overview 69

QuickTime version 2.0 follows the same philosophy as
1.6.2 with its native support. QuickTime 2.0 has inherent per­
formance improvements as a result of changes made to some
of its internal operations-for example, the new data-pipe 1/0
architecture within QuickTime 2.0 provides a big perfor­
mance boost by itself, even though it is not native. This new
version of QuickTime also comes with its own QuickTime
PowerPlug that, like 1.6.2's, contains the most performance­
critical parts, the compressor/decompressors (codecs).

Memory: Modern and Virtual Both

Another critical part of the revised operating system for the
Power Macs is the Modern Memory Manager, which is in
charge of allocating and deallocating parts of memory. The
Modern Memory Manager is a complete rewrite of a venera­
ble part of system software that's been with the Macintosh
since 1984. Despite being a complete rewrite, the Modern
Memory Manager behaves just like the old ones; typical
software need not change to use it and take advantage of it.

The Modern Memory Manager makes itself known to
users only by snappier Macintosh performance. That and
the additional items in the Memory control panel that allow
the Modern Memory Manager to be turned on and off are
the only outward manifestations of this new system soft­
ware. Internally, the Modern Memory Manager does the
same job as the old Memory Manager, only more efficiently
and quickly. Since all software on the Mac uses the Memory
Manager, a faster one benefits the entire system.

The Modern Memory Manager is fat: It exists both as
68k and as PowerPC code. Since mixed-mode switches can
cause such a slowdown, it's beneficial to avoid them where
possible. A fat memory manager means that native software
calls a native memory manager and causes no mixed-mode
switch, and emulated software calls an emulated memory
manager, likewise without a mixed-mode switch.

70 The PowerPC Macintosh

In addition to the modern memory manager's greater
basic efficiency, it coexists with virtual memory (VM) much
better. When either of the memory managers receives a
request from software that wants to have access to another
block of memory, the memory manager must first find a
block of RAM to allocate to the software. The previous
memory manager would go looking around in RAM to see
where it could find a block of unused RAM; this hunt for
RAM happened without regard for whether a part of RAM
was swapped to djsk or whether it was really in RAM. This
behavior caused frequent page swaps, and performance dete­
riorated as a result. The Modern Memory Manager is aware
of which parts of RAM are real RAM and which have been
temporarily stored to disk. By keeping track of this informa­
tion, the Modern Memory Manager doesn't cause any
unnecessary swapping and thus keeps performance high.

But why use virtual memory in the first place? On the
68k Macs, this is a reasonable question. VM is much slower
than real RAM, real RAM is relatively cheap, and those
applications that really need lots of RAM-such as Adobe
Photoshop-don't operate well with VM enabled. But on
the Power Macs, VM has a memory-saving benefit that
makes the use of existing RAM more efficient, even if the
Power Macintosh has plenty of RAM installed.

A large drawback of virtual memory on the Macintosh,
even on the Power Macs, is that it must create a VM swap
file on a local hard drive that is equal in size to the total
amount of memory available with VM enabled. For exam­
ple, let's say your Mac has 16MB of real RAM, and VM is
configured for the smallest size-1MB in addition to avail­
able RAM. When you turn on your Mac, the VM system
software creates a 17MB file on the volume that you specify
in the Memory control panel. There is no way around this.
The more real RAM you have, the larger the swap file
becomes if you enable virtual memory.

1/0

Power Macintosh Software Overview 71

On the Power Macs, there is a good reason to enable VM,
especially if you use many native apps. The executable code
for native apps is stored in one contiguous piece in the data
fork of an application file. Previously, the data fork of appli­
cations has been unused by the operating system. When vir­
tual memory is enabled on the Power Macs, it treats the area
on disk where a native app's executable code resides as a type
of VM swap file. Only the application code that's really
needed is loaded into RAM, and code that's needed later on
is transparently loaded into RAM by the VM system soft­
ware. Another side effect of all this is that with VM enabled,
native code is protected by the PowerPC chip's built-in
memory-management hardware. Native code is marked as
read-only in RAM, so anything that tries to write to a part of
RAM that contains code will be thwarted. This is a small,
early step toward a Macintosh operating system with mem­
ory protection. Read-only code has another benefit as well:
Since this code can never be modified, there's never any
need to write it back to disk if the memory it was occupying
is needed. So, instead of writing the code to disk before read­
ing in other code, the VM system software need only read in
the new code, saving a time-consuming write to disk.

All of the operating-system code that handles input and
output, from and to the various ports inside and outside the
Power Macs, is emulated in this version of the operating sys­
tem. Although this may seem silly at first, it turns out that
making the I/0 code native wouldn't have provided that
much of a benefit. The main reason that I/0 still runs in
emulation on the Power Macs is compatibility. The Mac sys­
tem software's methods of handling I/0 rely on behaviors of
the 68k ·microprocessor family. The emulator and the

72 The PowerPC Macintosh

nanokernel, the lowest-level part of system software on the
Power Macs, collude to make it appear as if the Power Macs
had the same I/0 behavior as previous 68k Macs.

The SCSI Manager 4.3, discussed earlier in this chapter, is
emulated. SCSI performance gains much more from the DMA
hardware than from the system software. The drivers for the
serial and Ethernet ports are the same way: Once a transac­
tion is under way, the hardware handles most of the work.

Some I/O-related system software would, however, benefit
from going native, since it's fairly computationally intense.

• The AppleTalk protocol stack, as well as MacTCP, which is
the TCP/IP protocol stack for Macs, handles the process­
ing of network traffic to and from the Ethernet and
LocalTalk ports of a Mac. They spend a lot of their time
decoding and encoding packets and would almost cer­
tainly benefit from going native.

• Apple Remote Access, which performs error correction,
compression, and protocol processing, would also benefit
from being native, since today's high-speed modems can
move data back and forth very quickly, and an emulated
ARA has a great deal of work to do.

• All of the GeoPort software except the software modem,
also known as the data pump, runs in emulation, includ­
ing the error-correction and compression code. Since this
is time-critical software that does a lot of processing, it
would benefit from being native. However, because this
software relies upon the behavior of the 1/0 in 68k Macs,
it would be difficult to make the switch without better
support within system software for native drivers and
other I/O-related software.

All of these examples run well under emulation today,
albeit not as fast as they could. Some of this system software
is already slated to be native by the end of 1994; others have
no announced plans to go native. The AppleTalk and

Power Macintosh Software Overview 73

TCP/IP protocol stacks, for example, will be native by the
end of 1994 as part of the new OpenTransport network sys­
tem software. This will allow high-performance networking
for both Power Mac servers and clients.

But to bring all 1/0 software native would have required
making the Device Manager and many other parts of the OS
native. Since the Device Manager is also tied to the 68k
hardware design, and since a native Device Manager with
support for the PowerPC would have to behave differently
and would require native drivers as well, this scenario was
dropped. Full native 1/0 support is expected when the
microkernel version of the Macintosh operating system is
introduced.

INITs and Patches

Users can customize their systems to their heart's content by
dropping extensions and control panels into their System
Folder. A great deal of nonfrivolous software also requires
the installation of an extension or a control panel. In the
past, a slowdown has always been associated with using
many extensions and control panels, but this slowdown was
rarely severe enough to worry about. With the advent of the
Power Mac and its emulator, extensions and control panels
still work. However, some of these extensions and control
panels install code into your system that can drastically
decelerate your Power Mac.

Mixed-mode switches are again the problem here. Many
of the extensions and control panels install patches, which
replace or reroute existing system code. Such patches can
cause performance degradation by themselves, but coupled
with a mixed-mode switch, the performance loss can be great.

On the Power Macs, you can install a 68k patch, a
PowerPC patch, or a fat patch that contains both 68k and

74 The PowerPC Macintosh

PowerPC code. The best type of patch for a given situation
depends on the part of system software that's being patched
and how much computation it performs. However, system
software consisting of PowerPC code should never be
patched with 68k code, since in all cases, this will cause a
performance hit and slow down the system. The severity of
performance loss in this situation depends on how often the
patched code is executed. If it's called frequently, the perfor­
mance loss will be great. Adobe Type Manager (ATM), for
example, was not available in a native version when the
Power Macs were introduced. Apple's profiling had, however,
identified text-drawing as the single most time-critical part of
the operating system; for this reason, the text-drawing code
in system software was PowerPC code. Since ATM installed a
68k patch into a frequently called PowerPC routine and
caused many mixed-mode switches, overall system perfor­
mance decreased measurably. In one test performed with
a word processor, the presence of ATM caused as much as
a 30 percent performance degradation when scrolling.
Unfortunately, since so many people are dependent on ATM
to provide high-resolution Type 1 fonts, most Power Mac
users were stt~_ck with a decelerating ATM until Adobe
released a native version with native patches.

Fat patches are discussed further in Chapter 8.

------- GeoPort for Power Macintosh

Although GeoPort is a hardware feature of the Power Macs
and uses an external adapter to connect to phone lines, it
requires software to work as a modem. The GeoPort software
for Power Macintosh is native code that performs all the
work of a traditional hardware-based modem exclusively on
the PowerPC processor.

A GeoPort modem is made up of several software parts.
At the lowest level is the driver that allows the Power Mac to

Power Macintosh Software Overview 75

communicate with the external GeoPort Telecom Adapter at
2 megabits per second. This high data rate is necessary to
transmit and receive the audio data between the phone line
and the software modem in the Power Mac. The GeoPort
Telecom Adapter is a straightforward piece of hardware that
converts the analog audio data from the phone line to digi­
tal data for transfer to the Power Mac.

The next part is the native software that performs all the
signal processing and is the actual modem. The PowerPC
processor family supports a particular instruction that is the
core operation performed by dedicated digital signal proces­
sor (DSP) chips. The PowerPC 601 in the Power Macs can
therefore do much of the same work that a dedicated DSP
chip can, but the Power Macs need not incur the additional
cost of adding dedicated DSP hardware to the system. At
this writing, the native software modem supports data con­
nections at up to 14400bps (bits per second) using the
V.32bis modem standard, and fax connections of up to
9600bps via the V.29 standard.

Layered on top of the driver and the software modem is
Apple's Express Modem software, which is the part that
application software interacts with. The Express Modem
software contains an AT command interpreter. AT com­
mands are the standard method of configuring a modem,
and most communications software relies on being able to
send a modem AT commands, so a good software modem
must support them as well. The Express Modem software
also contains code that provides standard error-correction
protocols such as V.42 as well as standard data-compression
protocols such as V.42bis.

The GeoPort software simulation of a hardware modem
is well-rounded and has no fundamental omissions; com­
munications software has no idea that it's not dealing with
a piece of hardware. Compared with a hardware modem

76 The PowerPC Macintosh

Compatibility

Compatibility means different things
to different people, but it's clear that
compatibility is a good thing in every­
one's book. In the past, moving from an
older Mac to a newer one, or upgrading
to the latest version of the OS, generally
brought problems, and users had to
upgrade some of their third-party soft­
ware to work with the new stuff. This
time around, things are different. Most
everyone is so intent on seeing how com­
patible the new Power Macs are, and
expectations are higher than they would
be for any other Mac.

Hardware and software compatibility
issues cropped up with the introduction
of the Quadra 660Av and Quadra 840Av,
but since these machines were consid­
ered high-end, fewer people than usual
encountered these problems. Many of
the same issues that proved to be com-

patibility problems with the AV Quadras
can also be problematic with the Power
Macs. On the hardware side, Chapter 2
illustrates how the increased SCSI perfor­
mance of the 660Av, the 840Av, and the
Power Macs also results in a more finicky
SCSI bus. Similar issues face users of exist­
ing Mac software.

The emulator itself is remarkably solid,
but if you have software that's a bit older,
especially extensions and control panels,
you should make sure you have the latest
versions before making the switch from
68k to PowerPC. This goes not only for
third-party software, but also for Apple
software that isn't part of the operating
system-Apple Remote Access, for exam­
ple. ARA 1.0 will not work on the Power
Macs, but the ARA 2.0 client software,
which was released well before the intro­
duction of the Power Macs, works fine.

with a similar feature set, the GeoPort modem for Power
Macintosh is inexpensive. The software is free, and the
GeoPort Telecom Adapter to connect the Power Mac to
phone lines is cheaper than a V.32bis modem.

Networking Software

Since the networking hardware in the Power Macs is identi­
cal to that in the Quadra 660Av and Quadra 840Av, and the
AppleTalk and EtherTalk software is emulated, existing net­
work software can be used on the Power Macs. In addition,

Power Macintosh Software Overview 77

as Apple comes out with newer versions of AppleTalk as well
as newer LocalTalk and Ethernet drivers, these new versions
can also be used on the Power Macs. Some of Apple's own
installers don't mention the Power Macs by name in the
Installer options yet, but network software intended for the
660Av and 840Av is suitable for the Power Macs as well.
Other networking software, such as the AppleShare client
and most third-party network software, runs without
mishap on the Power Macs.

Some networking apps, such as the protocol analyzers
from Neon Software and the AG Group, benefit from going
native despite the Ethernet drivers being emulated. This
software is used to analyze large amounts of network traffic,
usually to track down a problem with the network. The
faster the software can crunch through the captured packets
and figure out what's going on, the faster the user can get
on with fixing the problem. Although this isn't a typical
Power Mac application, it does illustrate how the PowerPC's
raw performance can boost the productivity of users whose
software is limited by low-level parts of the OS that are still
emulated.

------- Apple Business Systems Software

Apple Business Systems' software runs on the Power Macs,
but none of the major products from ABS will be native
before the end of 1994. The AppleShare server software was
upgraded to version 4.0.2 to add support for the Power
Macs, desktop models as well as the Apple Workgroup
Servers 6150, 8150, and 9150. This new version of AppleShare
contains changes made for compatibility reasons as well as
some performance enhancements. The server software is
still emulated, so these changes bring the performance of
Power Mac AppleShare servers up to and, in some cases,
beyond the performance of AppleShare servers running

78 The PowerPC Macintosh

under the Mac OS on 68k hardware. In the future, as more
of the server software available for Macs goes native, and as
the OpenTransport native protocol stacks also become avail­
able, the PowerPC-based Mac servers will get major perfor­
mance boosts just from software upgrades.

For the fastest possible server performance, Net Ware run­
ning on a Power Mac and AppleShare Pro, which runs under
A/UX, will remain the kings of the hill. Apple's AppleShare
servers are designed primarily to serve workgroups, and
these high-performance server packages are designed with
large workgroups and multiple departments in mind. They
also cost accordingly.

------ Floating Point-Who Needs It Anyway?

Much ado has been made about the Power Macs' floating­
point capabilities, but a big question remains: Who, other
than 30 renderers, cares? Without software that takes
advantage of the screamingly fast hardware, it doesn't pro­
vide the user with any tangible benefit.

Until the introduction of the Power Macs, the only soft­
ware that used floating-point hardware was relatively spe­
cialized: 30 software, scientific and engineering software,
and Fortran compilers all took advantage of the 68k
floating-point hardware if it was available. Many such appli­
cations even required it, since without hardware support,
the software would be unusably slow. However, the perfor­
mance boost provided by taking advantage of the 68k
floating-point hardware wasn't enough for mainstream devel­
opers to make the effort to change their code to use it. In
addition, floating-point hardware wasn't available in all 68k
Macs, so the work required to use the floating-point hard­
ware would benefit only a subset of the buying populace.

In contrast, floating-point hardware support is part of the
PowerPC architecture specification. Any PowerPC processor
must be able to handle floating-point instructions. This

Power Macintosh Software Overview 79

NetWare on Power Macintosh

Apple and Novell announced in April
1994 that they are collaborating on the
development of a NetWare 4.1 port for
the Power Macintosh hardware. As with
NetWare implementations on x86 proces­
sors, NetWare is the OS for such a
machine; it does not run with another
operating system the way AppleShare runs
on top of the Macintosh operating system.

NetWare on the Power Macintosh will
look and feel just like any NetWare 4
server. Its management user interface will
be identical to other implementations of
NetWare 4-no Macintosh front end. You
also won't be able to run any Macintosh
software on a Power Mac NetWare
server, since NetWare takes over the
machine completely. The Power Mac ver­
sion of NetWare comes with the NetWare
for Macintosh server software prein­
stalled. This NetWare Loadable Module is
required to allow Macs using the
AppleShare client software to connect to
a NetWare server.

In the future, Novell plans to offer a
NetWare client that uses Novell's de facto
standard IPX/SPX protocols. Novell has
already shipped MaciPX, a 68k
Macintosh implementation of the
IPX/SPX protocol stack, but it has not yet
provided a NetWare client that uses
MaciPX. There are also plans to deliver a
native IPX/SPX protocol stack for the
Open Transport architecture that Apple
will introduce in late 1994. Native IPX
will allow the highest performance for
Power Macintosh clients connecting to
NetWare servers.

The Power Mac version of NetWare
will not replace AppleShare; where
AppleShare is focused on workgroups
with tens of people, NetWare 4 is
designed with hundreds of users in mind.
NetWare on Power Macintosh will conse­
quently cost much more than
AppleShare.

means that every Power Mac will always have hardware
floating-point support. However, Power Macs do not include
emulated support for 68k floating-point hardware: 68k apps
that require 68k floating-point hardware will not run on the
Power Macs. The only high-performance floating-point sup­
port on the Power Macs is for native apps.

This doesn't mean that emulated apps can't perform
floating-point operations: SANE is supported on the Power
Macs. SANE has been in the ROM of every Macintosh since

80 The PowerPC Macintosh

the original 128k Mac. Its purpose was to offer highly accu­
rate and consistent floating-point results on all Macs. At the
time, the 68020 and its floating-point sidekick the 68881,
didn't exist yet. SANE made these floating-point features
available by performing the calculations with integer opera­
tions, a slower but equally effective way of going about this.
In fact, SANE later turned out to be more accurate in some
calculations than Motorola's own floating-point chips.

SANE on the Power Macs is also implemented exclu­
sively using integer code. One reason for this is that SANE's
main floating-point number format, the 80-bit large
extended-precision format, is different from the 64-bit double­
precision format used by the PowerPC family. If SANE were
to use the floating-point hardware in the PowerPC, a great
deal of time would be spent converting between the 64- and
80-bit formats. This frequent conversion would have a big
impact on performance. More important, though, the calcu­
lations performed by a PowerPC hardware-assisted SANE
would be less accurate, since it would be using only the 64-
bit numbers rather than 80-bit numbers. For this reason,
SANE is native on the Power Macs, but it performs all calcu­
lations with 80-bit precision using integer code. As a result,
SANE is still considerably faster than SANE on any 68k­
based Mac, but it's nowhere near as fast as the somewhat
less accurate native PowerPC floating-point hardware.

SANE is an Apple-defined standard that wasn't adopted
by any other computer vendor, since, in many ways, it was
well ahead of its time. Comparable floating-point standards
exist today, and the native PowerPC Numerics environment
on the Mac supports them. IEEE 754 is the name of the
standards definition put forth by the IEEE and NCEG.

------ UNIX and the Power Macintosh

Even though UNIX isn't important for most personal­
computer users, some users need to run UNIX on occasion.

Power Macintosh Software Overview 81

Apple has traditionally made UNIX available for the
Macintosh in the form of A/UX, which evolved through
three major revisions to be a working hybrid of the
Macintosh operating system and UNIX. However, A/UX runs
only on 68k-based Macs. At the introduction of the Power
Macs, no mention was made of UNIX support for the new
PowerPC-based machines. Since then, the UNIX picture has
cleared up somewhat. The Power Macs will ultimately be
able to run two versions of UNIX.

Tenon Intersystems' MachTen is a version of UNIX based
on the Mach microkernel. MachTen is a novel approach
because it runs as an application under the Macintosh oper­
ating system rather than taking over the entire Mac for itself.
Within its own environment, MachTen provides preemptive
multitasking, virtual memory, and other standard UNIX fea­
tures. But it also behaves like a Macintosh application. This
allows Mac apps and UNIX apps to be running on the same
machine at the same time, with neither aware of the other.

MachTen runs emulated on the Power Macs, except that
it doesn't provide virtual-memory capability, since the emu­
lator doesn't emulate a 68k MMU. Otherwise, MachTen
behaves like it normally does. Tenon intends to ship a cross­
development kit in the third quarter of 1994 that allows the
creation of PowerPC native MachTen binaries. In the fourth
quarter of this year, Tenon plans to ship a native version of
MachTen that still behaves like a Macintosh application, but
performs much better and has support for native MachTen
apps.

The other version of UNIX available for Power Macintosh
will be based on IBM's AIX 4.1. This version of UNIX is com­
pliant with the PowerOpen specification, which defines a
standard operating environment for UNIX software running
on PowerPC-based systems. The idea behind PowerOpen is
to allow PowerOpen-compliant applications to run on any
PowerOpen-compliant operating system. If Apple and IBM

82 The PowerPC Macintosh

ship different versions of UNIX, but both are PowerOpen­
compliant, software that runs on one should run on the
other as well.

PowerOpen also includes software known as Macintosh
Application Services. MAS allows the user to run 68k
Macintosh applications on a PowerOpen-compliant system,
just like A/UX did. MAS includes a 68k emulator, albeit a
different one than in the Power Mac's ROM, as well as an
implementation of the Macintosh operating system that
translates many of the Mac OS calls into UNIX calls, com­
pletely transparently to the Macintosh software.

At this writing, it was unclear when a PowerOpen OS
would be available for the Power Macs, or when IBM's AIX
4.1 would ship.

Software on the Power Macintosh

The combination of PowerPC-native and emulated 68k soft­
ware on the Power Macs makes the software environment
on these new machines significantly more complex than on
previous Macs. In many instances-I/O software being a
prime example- the intuitive conclusion that native soft­
ware is automatically better is a false one. Emulated system
software still has good reasons for existing.

The Power Macs' selectively native system software
accelerates performance for the most commonly used rou­
tines in the OS. Many parts of the operating system and
toolbox still aren't native and have no need to remain emu­
lated the way 1/0 software does. These parts are likely to go
native over time and be provided by Apple as incremental
performance enhancements. The Power Macs will get faster
over time simply by adding new software.

Users are also finding certain bottlenecks in system soft­
ware that aren't necessarily easy to predict, no matter how
much profiling is done. Any task that uses Copy and Paste
frequently from within native software will find it slow

Power Macintosh Software Overview 83

going; the freq uent mixed-mode switches going between
the native application and the emulated clipboard code can
act as decelerators. This type of issue will be dealt with over
time as more of the Power Macintosh system software goes
native.

At this point, it looks like Apple's decision to favor com­
patibility over performance has served it well. The uproar
over compatibility issues would h ave been far worse than
the discovery of limited performance problems such as the
emulated clipboard. Thanks to the high compatibility
afforded by the first generation of PowerPC-based Macs, it
appears that the migration from 68k to PowerPC is well
under way. The next step in the process is to concentrate on
allowing native software to reach its fullest performance
potential, but this will require significant amounts of native
system software, which will take time. Until then, the Power
Macs work, and those computationally intensive apps that
run native get the majority of the performance boost today,
with the promise of even more to come later.

Macintosh Application Environment (MAE)

UNIX users with SPARC or HP PA-RISC to their UNIX counterparts, and it also-
hardware can also run 68k Mac apps with translates the Macintosh QuickDraw
the help of the Macintosh Application graphics calls into X Windows commands.
Environment for these two platforms. MAE MAE runs in a window on the host
is a product developed by Apple; the core workstations, just like any other UNIX
technology is the same as for MAS for application. It has a Finder and supports
PowerOpen. printing. AppleTalk-based networking is

MAE is available for SPARC-based work- not part of the first release, though; t radi-
stations running Solaris 2.3 or later, and for tional methods must be used to move
Hewlett-Packard PA-RISC-based worksta- files back and forth between Macs and a
tions running HP/UX 9.0 or later. MAE is a
separate UNIX process that mimics a 68k
Mac. It translates many Macintosh OS calls

workstation running MAE over the net­
work.

CHAPTER FOUR

An Introduction
to Microprocessors

he term microprocessor refers to a type of integrated circuit,
or chip, that is designed and used to perform processing of
some kind, primarily calculation. RAM chips, for example,
aren 't microprocessors because they don't transform any
input values into different output values; they are simply
storage devices. As the need for faster processors grows,
microprocessors are becoming increasingly complex, with a
vast array of different features, many of them increasingly
subtle or esoteric. Understanding each processor's intricate
design details these days is beyond the scope of even the
most interested individual. However, current microproces­
sors share traits that allow an adequate understanding of the
processors' function and that also allow a reasonably accu­
rate comparison of their different abilities.

The design of a microprocessor can be deconstructed
into different levels: higher ones, such as a processor's archi­
tecture, and lower levels, such as implementation details
that are specific to a single microprocessor.

Fundamental Microprocessor Concepts

To understand the higher-level issues and features of micro­
processors, knowledge of some basic microprocessor con­
cepts is required.

85

86 The PowerPC Macintosh

------ Cycle

A cycle is the smallest measurement of time for a micro­
processor or in a computer system. All computer systems use
signals generated by clocks to synchronize the different
parts of the system and keep them running together. One
full period of a clock signal is called a cycle.

Cycles are measured in hertz. The PowerPC 601 proces­
sor in a Power Mac 6100/60 runs at 60 megahertz (60MHz),
which means that it performs 60 million cycles of work per
second.

------- Address

To access information in memory requires knowledge of
where in memory that data resides. An address is a numeric
value, much like an address in the real world, that describes
a location in memory. Each byte in memory has its own
address.

A pointer is an address that points to specific information
in memory. Pointers commonly have specific types, depend­
ing on the data that's being pointed at.

- ----- Register

A register is the fastest and smallest type of memory in a
computer system. It resides directly on the microprocessor
and is used to store data or addresses. Most operations per­
formed on a RISC processor are performed on data and
addresses in registers. In contrast, CISC processors perform
many of their operations directly on values stored in mem­
ory outside of the microprocessor. Such operations take sig­
nificantly more time, since accessing memory is much
slower than accessing a register.

A group of registers on a microprocessor, such as the 32
general-purpose registers (GPRs) on PowerPC chips, is referred
to as a register file. The PowerPC 601 processor has two main

An Introduction to Microprocessors 87

register files: one is made up of the GPRs; the other consists of
the 32 64-bit floating-point registers.

------- Instruction

An instruction constitutes the smallest amount of work that
a microprocessor can perform.

Each instruction has a unique numeric value and is
stored in memory where it can be fetched by the micro­
processor. The microprocessor decodes an instruction and
determines the operation to be performed. In a RISC micro­
processor, all instructions are the same size; in the case of
the PowerPC family, all instructions are 32 bits long.

A microprocessor instruction is much like a sentence in
a human language.

When an instruction is about to be executed, it is first
fetched from memory, decoded, then dispatched (or issued)
to the appropriate execution unit. An instruction is com­
pleted (or retired) when its result has been calculated and
written back to a register.

------- Branch

A branch is a type of instruction that changes the flow of a
program.

When a program is executing, individual instructions
are retrieved from memory that is pointed to by a special
register known as the program counter, which contains the
address of the current instruction being executed. As each
instruction is processed, the address in the program counter
is incremented to point at the next instruction to be
fetched. A program consists of sequentially executed
instructions.

There are times when program flow must change, often
because a particular condition is met. A branch instruction
changes the value of the program counter to point to the

88 The PowerPC Macintosh

next instruction it should fetch, which is not the next
instruction after the branch instruction itself.

When a branch is referred to as taken, it means that pro­
gram flow was changed as a result of the branch instruction.
A branch not taken had no effect on the program flow.

------Bus

A bus is a shared connection among multiple units that
wish to transfer data back and forth. The most efficient way
of transferring data is a direct connection between two
points. But if every separate unit in a microprocessor had a
dedicated connection to every other one, the overall design
would be so complex that it would not be feasible to build­
too complicated and consequently too expensive.

Since only a single transaction can go over a bus at a
time, any device wishing access to the bus must first check
whether it's free before starting a transaction; this process is
known as bus arbitration.

Bus contention occurs when a transaction is already going
on and another device connected to the bus wishes to per­
form a transaction as well. Since the bus is already in use,
the second device must wait its turn, causing a lag.

Bus traffic describes the transactions going across the
bus-both the amount of data and the time taken. The
larger the amount of bus traffic, the greater is the likelihood
of bus contention.

Buses exist both within microprocessors and within
computer systems. A microprocessor's connection to the rest
of the computer commonly consists of two buses: the data
bus and the address bus. The address bus is used to commu­
nicate the address of the desired data to the rest of the sys­
tem. The data bus is the pathway along which the data
travels to and from the address specified by the address bus.

When data is moved across a bus, it is usually done one
bus width worth of data at a time. For example, a 64-bit-wide

An Introduction to Microprocessors 89

bus can move 64 bits of data per transaction. The amount of
data that is transferred during a single bus cycle is known as a
beat.

A burst transaction on a bus allows a microprocessor to
move a larger amount of data than usual, commonly a single
cache block's worth, to or from the processor. Typical non­
burst bus transactions are only as large as the bus itself-64
bits on a PowerPC 601. When moving data to or from the
Ll cache, speed is of the utmost importance, so an entire
cache block is moved during a burst transaction.

The speed of a burst is described in a notation that is
dependent on the type of burst and the bus size; the time
unit is bus cycles. For example, a 3-1-1-1 burst describes a
transaction that moves four beats' worth of data; each of the
numbers describes how many cycles it took to get each beat
of data. The first beat takes 3 cycles because it takes time to
address and access the desired location in memory. This
overhead happens only once; the subsequent beats of data in
the burst are moved across in a single cycle in this example.

----- - - Transistor

Transistors are the building blocks of microprocessors. They
are used to construct the different functional units within a
microprocessor. Transistor count is commonly used as a
measurement of the complexity of a microprocessor- the
more transistors used in a chip's design, the more complex
that chip is. Added complexity doesn't necessarily translate
into added performance, though.

Not all transistor counts are created equal, either. When
comparing two microprocessors, it's worthwhile to subtract
the number of transistors used in the processors' on-board
cache(s), leaving only those transistors that make up the
core of the processor. This is a much better indicator of a
processor's complexity.

90 The PowerPC Macintosh

------ Die

Chips come into being on large circular pieces of silicon
known as wafers. When fabrication is complete, each indi­
vidual rectangular chip, known as a die, is cut from the
wafer. The number of dice per wafer affects the price of the
individual chip, since the cost of manufacturing a wafer is
roughly constant. The smaller the individual die, the more
dice can fit onto a wafer, and the cheaper the dice become.

------- Dependencies

There are two kinds of data dependencies: true dependen­
cies and antidependencies. A true dependency exists when an
instruction generates a new value and the subsequent
instructions use that value. This is also known as a read-after­
write dependency.

An antidependency exists if an instruction uses a value as
an operand and the subsequent instruction creates a new
value in the previous one's location. Antidependencies are
also known as write-after-read dependencies. There is also a
write-after-write, or output dependency, which is also an anti­
dependency. This occurs when two instructions write their
results to the same location, either a register or memory.

------ Pipelines

High-performance microprocessors achieve much of their
performance through a technique called pipelining, in which
the operations in a microprocessor's functional units are fur­
ther subdivided into smaller steps, and different instructions
can occur in each of the pipeline's stages. Each instruction
goes through each step of the pipeline in sequence. The ben­
efit of pipelines is that when an instruction moves from one
stage in the pipeline to the next, the following instruction
moves into the freshly vacated pipeline stage. See Figure 4.1.

Pipelines traditionally have four stages: fetch, decode,
execute, and writeback. The first stage retrieves an instruction

An Introduction to Microprocessors 91

FIGURE 4.1

The ideal pipeline Fetch 1 2 3 4 5
Decode 1 2 3 4
Execute 1 2 3

Writeback 1 2

Time

from memory or cache. The second stage decodes an
instruction and fetches its operands. The third pipeline
stage executes the instruction in its appropriate execution
unit. The final stage writes the result of the execution stage
back into the register fi le.

Even though each individual instruction takes multiple
cycles in total, once a pipeline is full, an execution unit is
able to complete an instruction every cycle. In contrast, a
processor that doesn't support pipelining can issue an
instruction only if the previous instruction has been com­
pleted. See Figure 4.2.

Superpipelining is a variation of pipelining where a proces­
sor's internal steps are subdivided into even more granular
steps than the standard four to six pipeline stages.

Pipelines can stall. See Figure 4.3. When something hin­
ders the pipeline from continuing at its constant pace, a
stall occurs. Pipeline hazards-the factors that cause
pipeline stalls-are many and varied. The most common

92 The PowerPC Macintosh

FIGURE 4.2
No pipeline

FIGURE 4.3

Pipeline stall

Fetch

Decode

Execute

Writeback

Fetch

Decode

Execute

Writeback

1

1

1

2

1

2

1
1

Time

3 X 4

2 X 3

1 2 3
1 2

-

Time (clocks)

An Introduction to Microprocessors 93

pipeline hazard is when two instructions are trying to access
the same memory or register or if a particular stage in the
pipeline takes more than a cycle to complete. When this
happens, instructions following the stalled instruction must
wait until it's finished, after which execution of the
pipelined instructions can resume.

Since pipeline stalls break the rhythm of completing one
instruction per cycle, it's worth a little extra effort to avoid
stalls. RISC compilers work hard to generate instruction
sequences that aren't likely to stall, but sometimes this is
unavoidable.

------- Superscalar

A superscalar processor is one that can issue multiple instruc­
tions per cycle without the programmer having to think
about the sequence in which the instructions are dis­
patched. PowerPC 6xx processors are superscalar, since all of
them can issue at least an integer instruction and a floating­
point instruction during the same cycle, and both instruc­
tions are processed independently of each other. Processors
that require the compiler to specify multiple instructions to
be issued and executed together are not superscalar; they are
known as very long instruction word or VLIW.

------- Latency

Latency is a fancy word for wait. When trying to access
memory or complete a task, a microprocessor must often
wait until all the relevant parts of a system are synchro­
nized. The delay until the processor can proceed is a latency.

Latency is also used to describe the time it takes for an
instruction to travel through a pipeline. For example, if a
processor can issue and retire one instruction per cycle, an
individual instmction's latency may still be 4 cycles.

------- Exceptions and Interrupts

Processors execute instructions sequentially and fetch subse­
quent instructions from the next address that the program

94 The PowerPC Macintosh

Architecture

counter points to. There are times, however, when specific soft­
ware needs to get the processor's attention to handle, for exam­
ple, a time-critical piece of work, or to recover from an error.

Interrupts, as their name suggests, interrupt the instruction
flow in a microprocessor and cause a piece of code called an
interrupt handler to be executed. Interrupts usually happen
because a piece of hardware external to the microprocessor
requires attention. Different interrupts can be caused by dif­
ferent parts of a computer system, and microprocessors can
handle different types of interrupts in different ways.
Exceptions and interrupts are generally synonymous.

The architecture of a microprocessor consists of the features
that are visible and accessible to the programmer who is creat­
ing software for it. A processor's architecture consists of traits
that it shares with other members of its processor family.

An architecture is characterized by its instruction set, the
data types its instruction set operates on, and the organization
and number of registers. Implementation aspects are those fea­
tures of a particular processor that aren't directly visible to the
programmer; these are often features that are used to improve
a processor's performance. Pipelining and superscalar design
are two implementation details that software cannot affect.

------- Instruction Set

An architecture's instruction set is the collection of instruc­
tions that processors of an architecture can recognize and
execute. Characteristics of an instruction set are architec­
tural issues; for that reason, the collection of instructions
that a family of processors can execute is referred to as its
instruction set architecture (ISA).

All PowerPC processors share the same ISA. For example,
the ISA determines that every PowerPC instruction is 32 bits
long.

An Introduction to Microprocessors 95

------RISC versus CISC

The two major opposing microprocessor design philoso­
phies are RISC (reduced instruction-set computer) and CISC
(complex instruction-set computer). RISC versus CISC is an
instruction-set architectural issue.

ruse processors have common traits that set them apart
from their CISC cousins:

• Constant instruction length: All instructions are the same
size.

• Relatively simple individual instructions: To perform
complex operations, multiple RISC instructions are usu­
ally required.

• Load/store architecture: Only specific load and store
instructions can read from or write to memory.

CISC processors share contrasting traits:

• Variable instruction length: Because of the complex
nature of CISC instructions, they can vary greatly in size.
This puts an additional performance burden on the
instruction decoder in a CISC chip.

• Complex instructions: CISC instructions perform a great
deal of work within a single instruction.

• Memory can be an operand: Many CISC instructions can
use values in memory as operands. Since memory
accesses are relatively slow, such instructions can intro­
duce latencies that slow the system down.

One of the fundamental notions of RISC is that it is pos­
sible to execute many simple instructions more quickly than
fewer complex instructions. Three basic metrics are at work
here:

• CPI, cycles per instruction
• IPC, instructions per cycle
• Clock speed, the clock frequency of the processor

96 The PowerPC Macintosh

Performance increases as either the IPC increases or the
CPI decreases.

CISC attempts to minimize the number of instructions
required to perform a single task by making each instruction
perform a lot of work. As a result, the IPC is reduced and the
maximum clock speeds achievable with such complex
microprocessor designs are limited. RISC designs emphasize
higher IPC and clock speed rather than instructions per task.

One of the problems with complex instructions is that
they often have internal dependencies that cannot be bro­
ken up or rescheduled via software. With the simpler RISC
instruction sets, optimizing compilers can carefully schedule
instructions to minimize dependencies.

Given the current state of the art in microprocessors, it
appears that RISC is winning the battle. Even one of the last
great holdouts-Digital, the inventor of the VAX-has
admitted that RISC is the way to go and is aggressively
working on siblings to the existing processors based on its
Alpha architecture.

The only real CISC holdout in the desktop-computer
world today is Intel, with its x86 architecture. The x86 is
still managing to keep pace on the performance axis, but
the current state-of-the-art Pentium is much more complex
than the comparable PowerPC 601, although the two have
roughly equivalent performance. The important detail to
bear in mind is that the 601 is at the beginning of the
upward performance curve for PowerPC, whereas Pentium is
the fastest x86 processor that Intel can currently manufac­
ture. The 604's performance leaps ahead of the Pentium;
Intel's next-generation P6 processor, the successor to
Pentium, is an unknown at this writing, but it will certainly
compete directly with the 604.

It's important not to categorize CISC as bad and RISC as
good. When CISC processors were first developed, memory
was scarce and it was easier to increase software performance

An Introduction to Microprocessors 97

by throwing hardware at the problem and making the micro­
processor do all the work. As technology has advanced, RISC
designs and the compiler technology necessary to take advan­
tage of them have become feasible. Many years from now,
RISC may look the way CISC does from our current vantage
point: RISC is a good solution to today's problems, but it isn't
necesarily the end-all.

Implementation

Caches

Individual members of a family conform to an architecture
specification, but each processor in a family is implemented
differently. Variable implementation details include the num­
ber of functional units, a processor's clock speed, and the
process used to manufacture it, as well as such other features
as pipelining, superscalar design, register renaming, branch
prediction, and the size of a processor's buses. Implementation
details are often mistaken for architectural features. For this
reason, it's important to remember the distinction between
the two: Architecture remains constant among processors of the
same family, whereas implementation varies.

A cache is a small amount of fast memory where frequently
used data is stored. The purpose of a cache is to reduce the
frequency with which a processor must access external
memory to get a particular piece of data.

The principle of temporal Locality is what allows caches
to be useful. This principle says that software reuses both
instructions and data often. Therefore, if already used data
and code are kept close at hand, any speed improvement in
accessing them will translate into improved processing
speed, since the processor spends less time waiting for data
to arrive.

98 The PowerPC Macintosh

Since a cache is, by definition, smaller than main mem­
ory, it has to keep track of the main memory whose data the
cache contains. This bookkeeping is accomplished by tags. A
cache tag stores the addresses of main memory that is
cached.

Caches are divided into blocks, also known as lines.
Depending on an individual processor's implementation, a
cache block is sometimes further subdivided into sectors.
Each cache block has its own tag, which contains the
address of the memory cached within the block.

Processor caches have a characteristic known as associa­
tivity. A cache's associativity determines which part of it
stores data found in main memory. A fully associative cache
can store any part of main memory in any cache block. This
is ideal, but it is also the most complex type of cache to
implement.

A direct-mapped cache can only cache data from a partic­
ular part of main memory in a specific cache block; no other
cache blocks can be used to cache data from that part of
main memory.

Finally, a set associative cache allows several blocks-a
set-to store data from a part of main memory. The number
of blocks per set is specified when describing a cache's set
associativity: an eight-way set associative cache, such as the
one found on the PowerPC 601, has eight blocks per set. In
a hypothetical 601-based system with 8MB of addressable
memory space, the space would be divided among the
cache's 64 sets.

In order to minimize cache contention, where the same
cache block is needed to store data from different parts of
memory, a particular cache set is not associated with a con­
tiguous block of memory. Instead, the range of addressable
memory is divided into increments depending on the num­
ber of sets. These chunks of memory are further subdivided

FIGURE 4.4

Cache Associativity

An Introduction to Microprocessors 99

into pieces depending on the size of cache blocks. In our
example, the first 64 bytes at address 0 would be cached in
the same set as the first 64 bytes at address 4096
(64x64=4096) and as the first 64 bytes at address 8192.

This 'method is used because of the principle of locality.
If your software is running in the first 128 kilobytes of mem­
ory, it can use the entire cache rather than fighting over the
eight blocks in the first set. See Figure 4.4.

Caches have two modes that can be changed on a per-block
basis. A write-through cache is set up in such a way that any
data written to it is written out to memory as well, thereby
making sure that the two contain identical data. When writing
data to a cache that is in copyback, or writeback, mode, the data
is not automatically written back to main memory.

Fully associative
cache memory
Block 12 can be
cached in any
cache block

0

0

7

Direct mapped
Memory block 12
can only go into
cache block 4
(12 mod 8)

0 7

12

2-way set
associative Memory
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3

31

100 The PowerPC Macintosh

In addition to the different caching modes, specific parts
of memory can be marked as noncacheable; any data written
to such locations will not be stored within the cache. In some
instances, the addresses don't refer to main memory, but are
translated by a computer system's hardware and rerouted to
access various input/output (I/0) devices-SCSI or Ethernet,
for example. This way of accessing l/0 is referred to as mem­
Oty-mapped l/0, since memory locations are mapped, or redi­
rected, to 1/0 devices. Reading back data from such addresses
immediately after writing to them-which is precisely the
type of interaction that a cache is supposed to optimize­
should not return the written data, but should rather return
the real data that's coming in from the l/0 port. To avoid such
a mishap, 1/0 addresses are marked as noncacheable so that
writes to and reads from them do exactly what they should.

When the core of the microprocessor needs to get some
data from main memory, one of two things can happen.
The desired occurrence is that the address of the requested
data matches the value in one of the cache tags, and the
data can be transferred directly from the cache without
needing to read from main memory; this is called a cache
hit. The other possibility is that the address doesn't match
any of the cache tags' contents and the data must be fetched
from (slower) memory; this is known as a cache miss.

If a cache's blocks are subdivided into sectors, some addi­
tional information comes into play. Each sector in a cache
block has an additional bit associated with it that denotes
whether that sector contains valid information. This bit is
called the valid bit. When a cache miss happens, only one sec­
tor needs to be read into the cache from RAM, minimizing the
amount of bus traffic required on a miss, since a sector's worth
of data is less than that of an entire block. However, this
comes at the expense of increasing the ratio of cache misses.

Cache coherency is a nuisance on single-processor
systems, but it can turn into a full-fledged problem in

An Introduction to Microprocessors 101

multiprocessor environments. Whenever the core of a
processor writes data back to memory, it's usually in the
cache. If the cache is marked as copyback, the updated
information exists only in the cache but not in memory.
When multiple processors share the same RAM, they must
be able to know whether one processor has recently modi­
fied an address they're about to read from. If such a modifi­
cation has taken place, the current data must be used rather
than the stale data that resides in memory.

For this reason, cache-coherency protocols exist to allow
multiple processors to arbitrate and determine who has the
most recent version of an address's data. The protocol used
in the 601 and 604 is called MESI: modified, exclusive,
shared, invalid. These attributes are associated with individ­
ual cache blocks and determine the processor's behavior
when it detects another processor on the system bus trying
to access data in memory that it has already cached.

Caches are often referred to in connection with levels.
There are Level I (Ll) and Level 2 (L2) caches. A Level 1
cache is one that is closest to the microprocessor core. It
commonly resides on the microprocessor itself-this is the
case with the 6xx family of PowerPC processors- but this is
not a requirement. Like a Level 1 cache, the Level 2 cache
provides a buffer between a fast processor and slower main
memory. A Level 2 cache is larger than an L1 cache, and it
also consists of tags and cache.

The microprocessor is the key to a computer system's per­
formance, but many different factors come into play when
determining the ability of the processor to perform well. In
addition to its own architecture and implementation, the
design of the computer system that it's built into has a great
deal to do with how well the microprocessor operates.

The following chapter is a detailed look at several mem­
bers of the PowerPC family.

-=T

CHAPTER FIVE

The PowerPC
Family

he PowerPC 601 processor used in the Power Macintosh
6100, 7100, and 8100, as well as in their Workgroup Server
counterparts, is the first in a long line of microprocessors in
the PowerPC family. All PowerPC processors, five have been
announced at this writing, share common traits that make
them PowerPC processors, but all five also have unique fea­
tures that set them apart from each other. Some of the
processors may seem to overlap and have similar features,
but the announced processors have subtler distinguishing
characteristics, often nontechnological ones such as price,
that differentiate them sufficiently to those designing sys­
tems around them.

PowerPC is an architecture as well as the name of a fam­
ily of microprocessors. PowerPC is based on IBM's POWER
architecture, which was designed for high-performance
UNIX workstations.

Now We're Playing with POWER

The POWER architecture, whose acronym was reverse-engi­
neered into "performance optimized with enhanced RISC",
was revealed in February 1990 when IBM shipped the first
RS/6000 series workstations. IBM wasn't a complete newcomer

103

104 The PowerPC Macintosh

to the workstation market, since it had shipped its ill-fated
RT PC in 1986. It was based on the ROMP processor, a direct
descendant of IBM's original RISC chip, the 801, which was
designed in the late 1970s. When the first RS/6000s shipped,
Sun Microsystems had·the market more or less cornered. But
within two years, IBM had garnered over 10 percent of the
worldwide workstation market; clearly, it had a good product.

The original POWER architecture had standard RISC fea­
tures as well as some less conventional ones. Its instructions
were of fixed length, which made decoding instructions
much easier, and it used a load/store architecture, where all
operations are performed with data already in registers-no
operations are performed directly on memory, and values
must be explicitly loaded into registers or stored back into
memory.

The first implementation of the POWER architecture,
which IBM called RIOS at the time and now dubs Power1,
had its functional units segregated and as independent as
possible of each other. The separation of the functional
units was largely a result of the actual implementation of
Power1, where the CPU consisted of multiple-chip set.
Powerl's branch processor, for example, had its own register
file because the bandwidth required to allow the branch
processor to access registers on another chip was too great.
Powerl's target was maximum performance, and there was
no way to fit all the functional units onto a single chip.

Powerl consisted of the following chips:

• Instruction Cache Unit: contained 8 kilobytes of instruc­
tion cache, the branch processing unit, and the instruction
dispatcher

• Fixed-point unit: executed all fixed-point instructions
• Floating-point unit: executed all floating-point instructions
• Data-cache unit: two or four of these were used per sys­

tem, each containing 16 kilobytes of data cache

The PowerPC Family 1 OS

• Storage-control unit: controlled access to memory
• 1/0 unit: responsible for l/0 and serial ports, as well as

MicroChannel cards

This division looks clean, but it has small idiosyncrasies.
For example, the fixed-point unit was also responsible for
address calculations used to access memory. This means
that any time data has to be read from or written to mem­
ory, the fixed-point unit is responsible for calculating the
correct address.

One novel aspect of the Powerl architecture was the
separation of branch processing from the execution units.
Traditionally, the fixed-point unit of a RISC processor is also
responsible for determining whether a branch is taken and
executing it. Taking a branch can have numerous side
effects that reduce performance, especially in a highly
pipelined environment where instructions are typically
fetched well in advance of their execution. A change in pro­
gram flow can cause a pipeline stall while the instructions
after the taken branch are fetched.

The instruction-cache unit contains the Powerl 's
instruction cache, the branch processor, and the instruction
dispatcher. The branch processor is the key to this unit: It
analyzes each branch in the instruction flow and deter­
mines, to the extent that it can, whether the branch will be
taken. Depending on what the branch processor concludes,
it fetches the appropriate instructions-either the one
immediately after the branch or the one that the branch
instruction points and that should be executed if the
branch is taken-and passes them on to the correct execu­
tion unit. This technique is known as branch folding, since
the fixed-point and floating-point units never execute
branches; to them, it's a single instruction flow.

1 06 The PowerPC Macintosh

In the best case, the branch unit correctly predicts
whether a branch is taken and sends the correct instructions
to the instruction dispatcher. The instruction dispatcher is
the next key to Powerl's high performance. Since Powerl's
instruction-set architecture is designed to minimize depen­
dencies between the two execution units, the instruction
dispatcher can send an instruction to the fixed-point unit
and the floating-point unit during the same cycle.

The big win for RS/6000 systems in the workstation mar­
ket was its high floating-point performance. Surprisingly,
Powerl supported only double-precision floating-point
operations, which had previously been avoided where possi­
ble in favor of less accurate single-precision floating-point
math for performance reasons. Since Powerl's designers
didn't seem to be constrained by the number of transistors
used to implement the chip set, they were able to build a
very high performance double-precision FPU that executed
double-precision floating-point instructions as quickly as
other chips were able to execute single-precision instruc­
tions.

The Powerl chip set introduced another feature that was
passed on to the PowerPC family: the so-called multiply-add
fused (MAF). This floating-point instruction performs a mul­
tiplication and an addition without any rounding of the
intermediate result in three to four cycles; thanks to pipelin­
ing, a MAF instruction can be issued every cycle. This
instruction is one of the factors that gives Powerl such high
floating-point performance, since application profiling
showed that floating-point software often performed this
type of calculation.

Another reason that a MAF is such a useful instruction is
based on the type of mathematical operation it performs: a
multiply followed by an add is the basic instruction that
digital signal processors (DSPs) perform. Most other proces­
sors refer to such an instruction as a MAC, short for

The PowerPC Family 107

multiply-accumulate. Although DSPs will always have a
niche for specific applications where maximum perfor­
mance at all times is a requirement, the presence of a fast
MAC instruction can reduce the need to integrate a DSP
into a computer system. Many recently announced chips,
especially those going into consumer electronics devices,
implement MAC instructions to reduce overall system cost
by obviating the need to install a separate DSP chip.

When it first came out, Powerl provided a great deal of
performance, using a complex chip set that was by no
means cheap to produce. IBM realized this and designed
RSC, short for RIOS single-chip, which implemented the
Powerl architecture at a significantly reduced price and with
less performance. RSC included a simple branch unit, a
fixed- and a floating-point unit, and a unified cache, as well
as memory and 1/0 controllers. RSC shipped in IBM's low­
end RS/6000 workstations in April1992 and was supplanted
by the PowerPC 601 chip in the October 1993 release of
IBM's low-end workstations.

What Makes a PowerPC a PowerPC?

PowerPC is an architecture specification: a detailed recipe
that describes the way a PowerPC-compliant microprocessor
behaves. PowerPC is neither a specific chip nor a kind of
computer system.

IBM talks about "toasters to teraflops" when describing
PowerPC's flexibility:

• At the low-end, low-cost versions of the PowerPC archi­
tecture

• At the high end, IBM's Power Parallel Systems division
will use PowerPC chips in their massively parallel super­
computer designs

The family of PowerPC chips produced by Motorola and
IBM will have something for everyone.

1 08 The PowerPC Macintosh

Since the design of PowerPC was a communal effort, it
was important to make sure that each aspect of the
PowerPC architecture specification was well documented
and spelled out in great detail. The result of this effort is
known as Books I through III, which together describe the
PowerPC architecture. Each PowerPC processor has its own
Book IV that contains that processor's implementation-spe­
cific details.

Book I defines the instruction set that a chip must be
able to execute to be called a PowerPC chip. Some future
PowerPC chips may not support certain instructions in
hardware; if such a chip encounters an unimplemented
instruction, it raises an exception that software has to han­
dle. It's therefore possible to build more cost-effective
PowerPC chips with limited functionality and have less­
common instructions executed in software. An application
would never notice the difference.

Book II describes the virtual environment architecture and
details the way PowerPC interacts with storage, whether it's
on-chip cache, external memory, or virtual memory. One of
PowerPC's target applications is in multiprocessing systems,
where multiple PowerPC chips operate in the same com­
puter systems. For such a system to function properly, the
individual chips need to know when a particular piece of
memory is accessed or altered by another chip. For exam­
ple, if one chip has the contents of a particular memory
location in its cache and another chip changes the data in
that part of memory, the first chip needs to invalidate that
part of its cache so that any subsequent access to that part
of memory doesn't use the wrong value.

Book II further defines how the PowerPC processors
interact with memory-for example, the sequence in which
burst reads and writes may be performed. The notion of
storage-access ordering in the PowerPC architecture is also
explained in Book II. Two specific instructions, EIEIO and

The PowerPC Family 1 09

SYNC, are responsible for ensuring that certain writes to
memory happen in the correct sequence. When writing to
memory-mapped 1/0 devices, it is imperative that no opti­
mizations are made to the order in which the writes occur;
such a rearrangement could drastically affect the behavior of
the intended write. EIEIO- an acronym for enforce in-order
execution of 1/0-is an instruction placed between write
instructions to make sure that a write completes before the
next one. EIEIO also affects reads for the same reason. When
data is read from an 1/0 device, the reads must be performed
in the proper sequence and shouldn't be reordered by the
processor. The SYNC instruction, which behaves similarly to
EIEIO, is used in instances where the memory write is not to
a memory-mapped 1/0 device.

Book III defines the PowerPC operating environment archi­
tecture. It defines a PowerPC processor's lowest-level opera­
tions and their results. The state of the processor, interrupt
handling, memory protection, and address translation are
all defined in this volume.

Finally, Book IV describes individual chip implementa­
tions. There is no generic book four. The 601 and 603 user
manuals, for example, are sanitized versions of the Book IVs
for those chips. A Book IV contains chip-specific implemen­
tation details: instructions supported in hardware, instruc­
tion timings, cache implementation, and suchlike. Assembly
language programmers (yes, there are RISC assembly-language
programmers), compiler writers, and hardware designers, and
those trying to divine the greater meaning of code gener­
ated by a compiler, are the primary beneficiaries of a user
manual.

The Abstract PowerPC

Despite the great detail that Books I through IV go into,
the basic features of PowerPC are straightforward, as shown
in Figure 5.1.

110 The PowerPC Macintosh

Integer instructions
dispatched to integer unit

Integer
Processing

"

Branch Processing

-

Floating point instructions
dispatched to floating point unit

~

- - f

Floating-Point
Processing

Results from instructions are
written back to storage ' ,.

Results from instructions are
written back to storage

'
M emory

Instructions from memory
are sent to the branch
processor, non-branch
instructions are pased on

I

to the appropriate execution units.

FIGURE 5.1
The Abstract PowerPC

The PowerPC architecture is derived from Powerl. The
idea behind PowerPC was to make single-chip, high-volume,
low-cost implementation feasible and also to remove any
limitations to scalability of the architecture.

Similar to Powerl, each PowerPC chip has a branch
processor that deals with branches and the resulting instruc­
tion dispatch. Each PowerPC chip also has a fixed-point exe­
cution unit, which performs all fixed-point calculations. On
the PowerPC 601, the fixed-point unit is also responsible for
performing address calculations and executing loads and

The PowerPC Family 111

stores for the general-purpose registers. In contrast to
Powerl, PowerPC's floating-point support includes single­
precision operations-for reasons of chip real estate, it makes
sense to support single precision in a single-chip processor.
In addition, typical floating-point-intensive applications,
such as renderers or other graphics apps, don't need the
additional precision provided by doubles. Finally, double­
precision operands are twice as large, 64 bits versus 32 bits
for singles, so using single-precision operands can actually
result in memory savings for floating-point-intensive soft­
ware.

One of the main differences for the Macintosh universe
is that the floating-point part of the PowerPC architecture
doesn't support the 80-bit extended floating-point format,
which is the native format for 68k floating-point hardware as
well as for Apple's Standard Apple Numerics Environment,
the floating-point system software available on every Mac.
As a result, those applications that depend on extended
floating-point operations need to change to use either sin­
gle- or double-precision floating-point operations.

The individual execution units all interact with memory
through the cache and the chip's bus. Caches are implemen­
tation-specific, so there's no specification on how a
PowerPC cache is designed or how it should behave. The
differences in cache implementation between the 601 and
603 alone are quite drastic.

Compared to Powerl, PowerPC implements changes
designed to facilitate future, more superscalar implementa­
tions. This approach exemplifies the so-called brainiac ver­
sus the speed-demon approach. Today's RISC processors can
be grouped loosely into two camps:

• Those that achieve increased performance by raising the
clock frequency

• Those that increase performance by adding more paral­
lelism and more execution units within the chip

The PowerPC Macintosh

Alpha and MIPS clearly are speed demons with their
high frequencies. PowerPC is a brainiac, since it uses multi­
ple independent execution units to perform its tasks. It also
executes more complex calculations, such as multiply-add
fused.

The differences between Powerl and PowerPC are subtle
to the casual observer, but all the changes share common
goals. The goals of the Power PC architecture are as follows:

• Allow a broad range of implementations, from low-end
embedded chips to high-performance superscalar versions

• Support multiprocessing (multiple PowerPC processors
running in the same system)

• Remove limitations that would hinder superscalar imple­
mentations

• Define 32- and 64-bit operating environments

These goals have been achieved. The PowerPC chips are
detailed in the following sections.

The PowerPC 601

The 601 is the first member of the PowerPC family. It has all
the standard features of a 32-bit PowerPC processor, but it
also has characteristics that set it apart from its successors.
The main goals of the 601 design were as follows:

• Fast time to market
• Serve as a bridge between the POWER and Power PC
• Provide high performance

The 601 was designed for use in desktop computers, and
although IBM has shipped a laptop based on the 601, this
doesn't make the 601 especially suitable for use in hardware
that stays away from power sockets for prolonged periods of
time. Apple's backward-compatibility solution for existing
Mac software is to provide a 68k emulator, but IBM had an

The PowerPC Family 113

existing installed base of POWER-based workstations whose
software couldn't be converted immediately. For this reason, ·
the 601 supports not only the PowerPC instruction set, but
it also implements the Power1 instruction set and can exe­
cute Power1 code. The 601 will be the only processor with
this degree of backward compatibility in hardware.
Subsequent PowerPC chips support only the PowerPC
instruction set.

The 601's design is based on work that started out being
called RSC+. At the time that the PowerPC alliance came
into being, IBM's designers had a follow-on chip to the
original RSC chip in the works, and its design was used as
the basis for the 601. This approach had the benefits of not
having to start from scratch, making quick time-to-market
possible.

The 601 is a hybrid chip from an instruction-set perspec­
tive, since it executes the Power1 instruction set as well as
the PowerPC instruction set, albeit both with minor excep­
tions, none of which will ever be noticeable to users or
high-level-language programmers.

The 601's bus design was based on the work that
Motorola did for the 88110, the chip that at one point was
going to be the basis for the RISC Macintosh. Apple already
had an investment in logic-board and support-chip designs
that assumed an 88110 bus; the 601's bus is similar enough
to the 88110's that only minor modifications had to be
made to existing designs to support the 601.

All versions of the 601 are built by IBM at its manufactur­
ing facilities. Motorola will begin PowerPC production with
the 603; customers purchasing 601s from Motorola receive
IBM-fabricated parts. Since fast time-to-market was one of
the primary goals of the 601 design, the companies agreed
to let IBM be the sole manufacturer of the 601 using an
IBM-only 0.6].1 process. All subsequent processors are built
by both IBM and Motorola. Except for the sub-100MHz 601,

114 The PowerPC Macintosh

the two manufacturers use exactly the same fabrication
processes, so an IBM-built PowerPC chip has no inherent
process-related benefit over one made by Motorola.

------· Basic Features

Like all 32-bit PowerPC processors, the 601 has 32 general
purpose registers (GPRs), each of which is 32 bits wide. The
601 also has 32 floating-point registers (FPRs), each of which
is 64 bits wide, the size of a double-precision floating-point
number.

The 601 1s connection to the outside is via a 64-bit-wide
data bus and a 32-bit-wide address bus. It can issue up to
three instructions per cycle: a branch, a fixed-point instruc­
tion, and a floating-point instruction.

Cache, Bus, Memory: The 601 has a single 32 kilobyte uni­
fied cache. There are no separate caches for data and for
instructions. The cache is eight-way set-associative, which
means that data from a particular location in memory can be
stored in one of eight cache blocks in a set. Each cache block
in the 601 is 64 bytes (not bits) in size. The cache has eight
sets of 64 blocks, making for a total of 512 blocks in the cache.
On the 601, each cache block is further subdivided into two
sectors of 32 bytes each; a sector1

S worth of data can be trans­
ferred during a single 4-beat burst transaction on the bus.

The 601 1
S bus is the standard PowerPC 60x bus and is

compatible with the buses of the other members of the
PowerPC 60x family. This bus is a derivation of the
Motorola 88110 bus; it supports so-called split transactions,
where the address bus and data bus are performing two dif­
ferent transactions simultaneously.

Multiprocessing Support: The 601 is also designed with
multiprocessing in mind. It supports the MESI protocol,
which allows a cache block to be declared modified, exclusive,

The PowerPC Family 115

shared, or invalid. These states are important when multiple
processors share the same memory space. If one processor
has a piece of memory cached and has modified it, this fact
needs to be communicated to the other processors in the
system so that they can take the necessary precautions to
make sure they're working on the most recent data.

Finally, the 601 can operate at an integer multiple of its
bus frequency. In the case of the Power Macs, the 601's
speed is two times that of the bus speed. The Power
Macintosh 6100/60 runs its 601 at 60MHz and its system
bus at 30MHz.

When the 601 was first released, speeds of SOMHz and
66MHz were announced. At the May 1992 Apple Worldwide
Developers' Conference, an 80MHz technology demo was
shown, only to have the PowerPC alliance announce the
availability of an 80MHz 601 a few months later. In late
March 1994, the alliance announced a 100MHz 601. The
original 601 was manufactured using a 0.65p process, and
the faster 100MHz 601 is manufactured using a newer O.SJ.l
process. Consequently, the die size of the 100MHz 601 is
smaller than that of the first generation 601s. No changes
were made to the 601's design per se; the size difference is
exclusively a matter of the new process.

------ Execution Units

The PowerPC 601 contains three main execution units: the
branch-processing unit (BPU), the integer unit (IU), and the
floating-point unit (FPU). In addition, the 601 has a mem­
ory-management unit (MMU) and a bus-interface unit
(BIU). See Figure 5.2.

As a result of the way the BPU, IU, and FPU work
together, the 601 supports out-of-order dispatch. This means
that instructions can be issued to execution units even if
preceding instructions for another execution unit are still

116 The PowerPC Macintosh

FIGURE 5.2

The PowerPC 601

Instruction I
~ Queue
I

256

_j~

'
_ _ J

~ I

I I

I ' I II

I IU BPU FPU
GPRs FPRs

-- -
0 u ~~ I~

~
I r I~ MMU - Tags Cache -
~ I 1

4~ 256

•
~~

Memory Unit & Bus Interface Unit

4~ I·~

waiting to be issued. Out-of-order execution by itself would
be a problem, since it's important that instructions complete
in the order that they appear in software; the 601 ensures
in-order completion of instructions when necessary. Branch
instructions, for example, are executed as early as possible.

The PowerPC Family 117

The Branch-Processing Unit: The 60l's branch-process­
ing unit fetches instructions to be executed from the
instruction cache, decodes them, and issues them to either
the fixed-point or the floating-point unit, whichever is
appropriate. Branch instructions are processed within the
BPU. The 601 tries to predict whether a branch will be
taken, and fetches subsequent instructions depending on its
prediction.

The 60l's branch-prediction scheme, however, is static
and not as sophisticated as that on higher-end RISC proces­
sors such as 604. The static prediction scheme assumes that
branches backward-ones that point to an address in mem­
ory prior to that of the current program counter-will be
taken. Since much software consists of often reexecuted
code, the same characteristic that makes caches worthwhile,
this assumption is frequently correct. Branches forward­
those that jump beyond the instruction immediately after
the branch-are assumed by the 601's BPU to be not taken.
In instances where the branch prediction is false, a time
penalty is incurred while the BPU fetches the correct instruc­
tion. This default prediction can be changed by the compiler
by changing a bit in the instruction; if that particular bit in
a branch instruction is set, the BPU assumes the opposite of
its default about the direction the branch will take.

When the BPU guesses right about the branch, it per­
forms what is known as branch folding. In most other
microprocessors, the fixed-point unit is in charge of execut­
ing branch instructions, so branches occupy space in the
pipeline and take time to be executed. By contrast, the 601's
IU and FPU both see continuous streams of instructions
without interruption by branches; the BPU removes the
branches from the instruction stream (it folds them away).
This also means that branches are executed in zero cycles,
since they have no effect on the performance of either the
IU or the FPU.

118 The PowerPC Macintosh

As a result of the BPU's branch folding, the IU and FPU
can run without frequent branch-based interruptions. This
is a core factor in the 60l's high performance.

The Integer Unit: The 601's IU is responsible for execut­
ing all fixed-point, also known as integer, instructions. In
addition to performing addition, subtraction, multiplica­
tion, and division on data in one of the 32 general-purpose
registers, the IU is also responsible for any address calcula­
tion required for any load or store operations, regardless of
whether they are integer or floating-point loads and stores.
The IU also performs fast comparison between two operands
and forwards the result to the BPU, which uses this informa­
tion to efficiently process subsequent branch instructions
that depend on the outcome of the comparison. The IU is
also responsible for performing all loads and stores to the
GPRs. Unlike later members of the PowerPC family, the IU
has a great deal more to do than just integer math.

The Floating-Point Unit: The 601's floating-point unit
supports operations using either 32-bit single-precision or
64-bit double-precision floating-point values. As with the
IU, the FPU is responsible for all loads and stores of the 32
floating-point registers. The FPU is compliant with the IEEE-
754 standard for single- and double-precision floating-point
operations.

In addition to support for the standard operations, the FPU
contains hardware to perform single-precision multiply-add
fused (MAF) as well as double-precision MAF. This instruc­
tion is executed more quickly than individual multiply and
add instructions would be if they were issued in sequence.
The MAF instruction contributes significantly to the 60l's
floating-point performance, provided that compilers gener­
ate code that takes advantage of it.

The PowerPC Family 119

The 601's floating-point unit also supports a mode
where exceptions caused by floating-point instructions
aren't raised immediately, but rather a few instructions later,
the pipeline permitting. This allows floating-point code to
execute faster, but at the expense of not being able to catch
floating-point exceptions immediately.

------- The Bottom Line

The 601 is at the heart of the first generation of PowerPC­
based machines from Apple, IBM, and others. Its success will
make or break the future of the PowerPC family. At this
writing, a vigorous battle was under way with Intel, which
announced the availability of 90 and 100MHz Pentium
chips one week before the introduction of the Power Macs.
IBM has been shipping 601-based UNIX workstations since
October 1993, which met with favorable reviews. The first
weeks of the Power Macs' availability indicate that the 601
is a success in Apple's machines as well.

The 100MHz 601 will offer even better performance
than was originally anticipated from the 601, and at much
lower cost; smaller die size means lower chip prices. This
high-speed version is also helpful for IBM's midrange and
low-end workstation business, since it extends the time
period for migration from Powerl to PowerPC by providing
increasingly higher performance.

At this writing, Apple had not announced plans to use
the 100MHz 601 in forthcoming Power Macs. Historically,
however, Apple has often provided so-called speed-bumped
new versions of existing Macs. The Quadra 900 to 950 tran­
sition was a speed boost from 25MHz to 33MHz; the Centris
610 running at 20MHz later became the Quadra 610 run­
ning at 25. And since the Power Macs contain the processor
frequency in the product designation, it would be easy to
change just the frequency without confusing anyone about
the individual Mac's features set.

The 601's statistics are shown in Table 5.1.

120 The PowerPC Macintosh

Table 5.1 601 Statistics

Speed BOMHz lOOMHz

SPECint92 85 110

SPECfp92 lOS 130

Voltage 3.6V 2.5V

Power (max) 8 Watts 4 Watts

Size 120mm2 74mm2

Process 0.61J. O.S!J.

Transistors 2.8 million 2.8 million

The PowerPC 603

The 603 is the second member of the PowerPC family to be
announced and produced. First silicon for the 603 was
announced in October 1993, and high-volume production
was scheduled for summer 1994. The 603 has two firsts in
the PowerPC family:

• The 603 is the first PowerPC chip to implement the
PowerPC architecture and no other; the 601's POWER
backward compatibility is not supported.

• The 603 is the first PowerPC chip to be produced by both
IBM and Motorola. For the first time, the two manufac­
turing members of the alliance will be competing against
each other on the merchant market with chips of their
own fabrication.

The 603 is designed as a low-cost, low-power processor.
It is perfect for use in laptops, but also for low-cost, high­
volume desktop machines. At this writing, Apple had
announced that PowerBooks based on the PowerPC 603 will
be available in the first half of 1995. Given also the success
of LC-class 68k Macs, it also stands to reason that 603-based
desktop machines are probably being developed as well.

The PowerPC Family 121

Even the lower-priced 100MHz 601 will cost more than the
603. And when it comes to extremely low-priced desktop
systems that must compete with x86 machines, every dollar
of materials cost is important.

------- Basic Features

The 603 is a completely new design, not based on any previ­
ous processor designs from IBM or Motorola. Consequently,
it has several design differences when compared to the 601.
Where the 601 used the integer- and floating-point units for
loads and stores, the 603 has a dedicated load/store unit
that handles the mechanics of moving data between regis­
ters and memory, including calculation of addresses. The
603's integer unit is free to concentrate completely on per­
forming the duties of an integer unit. See Figure 5.3.

Cache, Memory, Bus: The second major difference is that
the 603 has separate caches for instructions and data. Each
cache is 8 kilobytes of two-way set-associative cache. The
cache-block size is 32 bytes. The 603 can be integrated into
a system with either 32-bit or a 64-bit data-bus width. The
former allows for more inexpensive designs at the cost of
performance. With a 64-bit-wide bus, the 603 supports sin­
gle-beat transactions of 1 to 8 bytes, as well as 4-beat, 32-
byte bursts. With a 32-bit data bus, the 603 allows
single-beat, 1 to 4 byte transactions, as well as 2- and 8-beat
bursts.

The 603 supports clock-speed to bus-speed ratios of 1:1,
2:1, 3:1, and 4:1. A 66MHz 603 supports bus speeds of
66MHz, 33MHz, 22MHz, and 16.6MHz. The 603's bus is the
standard PowerPC 60x bus and is compatible with the buses
of other PowerPC 60x chips.

Multiprocessing Support: The 603 was not designed to
operate in a multiprocessor environmenti it doesn't contain

122 The PowerPC Macintosh

FIGURE 5.3
The PowerPC 603

IU
GPRs

Instruction Fetch & Branch Unit

Bus Interface Unit

FPU
FPRs

J
support for the full MESI protocol as the 601 and 604 do.
Instead, it implements a subset that is sufficient for the 603
to coexist on a bus with other bus masters such as direct
memory access (DMA)-capable devices. Each cache block in
the 603 can have either exclusive, modified, or invalid
attributes; the shared attribute necessary for multiprocessing
is not available.

The PowerPC Family 123

Power Management: The next main change from the 601
is the 603's power-saving modes, of which there are four.
Full-power is, as its name suggests, the most energy­
inefficient mode, but it also provides the most performance.
Even when in full-power mode, the 603 consumes less than
3 Watts of power when running at 80MHz. The full-power
mode is the default mode for the 603, but it allows a
dynamic power-management mode that selectively disables
functional units that are idle, without any part of the sys­
tem being any wiser. When a functional unit disabled in
this fashion is needed again, there is no lag or any other
penalty to pay for having enabled the dynamic mode.

Doze mode is the first major power-saver mode. It dis­
ables all functional units on the 603 except for the unit that
maintains the clock on the bus, the part of the chip that
tracks data moving across the external data bus, and the on­
chip timers. Even when running at 80MHz, the 603 con­
sumes less than 0.5 Watts in doze mode. A downside of this
mode is that it takes a few processor cycles to bring the 603
back up and into a fully functional state. This lag, however,
is rarely problematic for software.

Nap mode is a step beyond doze mode. In nap mode,
the 603 stops tracking what's happening on the data bus;
only the on-chip timers are still running. The power con­
sumption is less than half of doze mode's. Compared to
consumption at full -power mode, these last modes
approach the point of diminishing returns, as the 603's
power use becomes infinitesimally small.

Finally, sleep mode is the most power-frugal of them all.
It disables all the 603's internal functional units, and the
computer system can turn off the external timers as well.
Waking a sleeping 603 is considerably more work than
resuscitating it from any of the other modes. On the other
hand, the chip uses hardly any power in this mode, so if
you know that the machine will be dormant for a while,
this mode is an excellent alternative.

124 The PowerPC Macintosh

------- Execution Units

The PowerPC 603 has five execution units and is able to
issue a total of three instructions per cycle.

Branch Processing Unit (BPU): The 603 has a branch­
processing unit as well. It performs the same duties as that
of the 601, with some additions thrown in. The 603's BPU
constitutes a superset of the 601's. Like the 601's, it provides
the ability to execute and fold branches so that the integer
and floating-point units never have to contend with pro­
cessing a branch. The BPU also performs branch prediction,
using the same static prediction scheme that the 601 does.
The difference in the 603's BPU lies in its ability to calculate
branch addresses by itself rather than relying on the integer
unit (IU) to calculate the addresses needed by the BPU. This
further unburdens the IU from maintenance tasks.

Integer Unit (IU): The integer unit is responsible for pro­
cessing all integer instructions. Most integer instructions on
the 603 take a single cycle to execute. Unlike the 601, the
register file for the GPRs is not an integral part of the integer
unit. The general-purpose register file contains 32 32-bit
GPRs, as the PowerPC specification requires. In addition, the
GPR file also contains five rename buffers.

Register renaming is a performance-enhancement tech­
nique used to keep the pipeline flowing. One of the most
common instances of resource contention within a micro­
processor occurs when multiple instructions want to write
their data to the same register. The hardware of the renam­
ing scheme examines the instructions in the pipeline to
make sure that there are no interdependencies where one
instruction relies on the value that the other placed in the
conflicting register. Once it's determined that no conflict
exists, one of the values is written to a rename register, so

The PowerPC Family 125

titled because the register has been temporarily renamed to
that of another. The data in the rename register is written
into the real register once the conflict has gone away.

Floating-Point Unit (FPU): The 603's floating-point unit
supports the same basic functionality as the 601's. It's
IEEE-754 compliant with regard to single- and double-preci­
sion arithmetic. Also like the 601, the 603's FPU supports
the multiply-add fused (MAF) instruction. Like the 603's IU,
the 603's FPU also has rename registers at its disposal to
handle register conflicts without having to stall the pipeline.

The 603 had an additional floating-point mode, called
NI, for non-IEEE. Informally, this mode is referred to as
sleaze mode. The IEEE 754 specification is explicit about
how to handle denormalized floating-point numbers.
Numbers with a zero exponent field and a zero fraction are
defined as being zero. Numbers that have a zero exponent
field and a nonzero fraction part are known as denormal
numbers and are defined carefully by the specification as
having a specific value; with sleaze mode enabled on the
603, such a number is quietly treated as zero. The 603's
sleaze mode is useful for software that requires the highest
performance but not the utmost accuracy.

Load/Store Unit (LSU): The PowerPC 603 is the first
PowerPC processor with a separate load/store unit. This exe­
cution unit performs the work necessary to move data
between the register files-both the GPR and FPR files-and
memory, including cache. The LSU doesn't rely on the inte­
ger unit to calculate addresses; it performs these calculations
internally.

System-Register Unit (SRU): The system-register unit exe­
cutes the various system-register instructions that don't fit
in with any of the other execution units. The SRU performs

126 The PowerPC Macintosh

logical operations on the condition registers to determine
their status, and it moves data to and from special-purpose
registers.

Completion Unit (CU): The 603's completion unit isn't a
functional unit like the others. It is more like the MMU or
caches, since it does not execute instructions directly. The
CU guarantees that integer and floating-point operations
complete in the order that they appear in the incoming
instruction stream. This feature is important when out-of­
order execution takes place, since instructions don't neces­
sarily execute in the same order as they are found in
memory. The completion unit makes sure that the results of
operations happen in the sequence that the executing soft­
ware expects them to.

------ The Bottom Line

The 603's smaller split caches will cause the performance of
603-based Macs to be less than that of 601-based ones, since
the 68k emulator is a major beneficiary of the 60l's large
unified cache. Since the 68k instructions are treated as data
by the 603, there will be more cache reloads on a 603-based
Mac. It is certainly possible to add a Level 2 cache to a 603-
based Mac to compensate for the smaller cache, but this
would raise the price of such a system significantly as well as
lose much of the benefit of lower power consumption. Also,
if the 603 is implemented using its 32-bit-wide data-bus
option, available bandwidth between the chip and the rest
of the system is decreased, leading to further performance
degradation.

Despite these performance-related issues, the 603 looks
to be a promising chip for mobile systems as well as for low­
cost, lower-power desktop machines.

The 603's statistics are shown in Table 5.2.

The PowerPC Family 127

Table 5.2 603 Statistics

Speed 66MHz 80MHz

SPECint92 60 (estimated) 70 (estimated)

SPECfp92 75 (estimated) 85 (estimated)

Voltage 3.3V 3.3V

Power (Macs) 2.5 Watts 3 Watts

Size 85mm2 85mm2

Process 0.51! 0.5j.i.

Transistors 1.6 million 1.6 mill ion

The PowerPC 604

The PowerPC 604 was announced in April 1994. It's the first
pure PowerPC processor designed for the desktop. Its perfor­
mance is suitable for midrange to high-end desktop
machines as well as servers. Like the 603, the 604 doesn't
support any of the original POWER instructions that the
601 does.

------- Basic Features

The 604 is easily the most complex of the PowerPC processors
known today. It has many similarities with the 603 's microar­
chitecture, including a dispatch bus, a completion bus, and a
completion unit that tracks instructions from dispatch
through execution. This ensures that they are completed in
the order they appear in the instruction flow, regardless of
whether they were executed out of order. See Figure 5.4.

Cache, Memory, Bus: The 604 has two 16-kilobyte, four­
way set-associative caches, one each for data and instruc­
tions. The 604's cache-block size is 32 bytes. The 604's
interface to the outside world is through a 32-bit address bus
and a 64-bit data bus. There is no provision for a 32-bit data

128 The PowerPC Macintosh

FIGURE 5.4
The PowerPC 604

l Bus lnle~ace Unit

bus. Single-beat transactions of 1 to 4 bytes are supported by
the 604, as are 4-beat-burst reads and writes.

The 100MHz 604's bus supports speeds up to 66MHz
and can be run at ratios of 1:1, 1.5:1, 2:1, and 3:1 to the
processor speed. This means that the 100MHz 604 supports
bus speeds of 66MHz, SOMHz, and 33MHz. The 604's bus is
the standard PowerPC 60x bus, and it is compatible with the
buses of the other members of the Power PC 60x family.

Multiprocessing Support: Like the 601, the PowerPC 604
supports the MESI cache-coherency protocol, which allows
cache blocks to be designated as modified, exclusive, shared,
or invalid. This allows multiple 604 processors, or multiple
bus masters such as devices that support direct memory
access, to share the same main memory and allow all parties
to communicate with each other about whether a particular
part of memory is cached or in use.

The PowerPC Family 129

Power Management: The 604 contains support for a nap
mode, during which all internal processing and bus opera­
tions are suspended. Nap mode is enabled through a soft­
ware instruction; when a 604 is napping, its internal timers
are still active, but it does not pay attention to data traveling
over the external data bus.

------- Execution Units

The 604 has the largest number of execution units of any
announced PowerPC processor. Most of them are familiar
from the 603: a floating-point unit, a load/store unit, a
branch-processing unit, a dispatch unit, and a completion
unit. Unlike any previous PowerPC processor, the 604 has
three integer units, two of which are identical.

Integer Units: The 604's general-purpose register file con­
tains 32 32-bit GPRs, and it also has 12 rename registers. Like
the 603, the 604 supports register renaming to avoid stalling.

The 604 has two single-cycle integer units (SCIUs). They
execute only those integer instructions that can complete
within a single cycle: additions, comparisons, and logical
operations, as well as rotate and shift operations.

The single multicycle integer unit (MCIU) in the 604
performs the more complicated integer operations: multipli­
cation and division. The MCIU is not a superset of the
SCIUs; it does not support any of the arithmetic operations
that they do.

Floating-Point Unit: Like the FPUs in the 601 and the 603,
the 604's FPU is compliant with the IEEE-754 standard
for single- and double-precision floating-point arithmetic.
Although the 604's FPU is faster than those of the other two
PowerPC processors, it behaves exactly the same way.

The 604's floating-point register file contains the stan­
dard complements of 32 64-bit FPRs; in addition, it also has
eight rename registers to help avoid stalls.

130 The PowerPC Macintosh

Load/Store Unit: As in the 603, the 604's load/store unit
(LSU) is responsible for moving data between memory/cache
and the register files. It performs all the necessary address
calculations required to determine the source or target
address of a transaction.

The LSU on the 604 allows speculative load operations
that precede already pending store operations. It also performs
the work necessary to resolve dependencies between the data
in the pending store operation and the speculative load if the
two transactions go to the same addresses in memory.

Decode/Dispatch Unit: The 604's decode/dispatch unit
(DDU) works closely with the branch-processing unit to
keep instructions flowing to the execution units as quickly
as possible. In the 601 and 603, the branch-prediction logic
is static: The BPUs in these processors always predict
branches the same way. Unlike the BPU on the 601 or 603,
the BPU in the 604 isn't responsible for branch prediction.
Branch prediction on the 604 is dynamic and performed by
the DDU. The DDU contains logic that evaluates the likeli­
hood of the direction to which a branch will resolve,
updated every time a branch is executed.

In the 604, the first time a branch is encountered, the
DDU takes note in its branch-h~story table (BHT) and
remembers which way the branch went. Every time this
branch is executed again, the DDU updates the information
in the BHT, depending on whether the branch was taken.
Each entry in the BHT can have one of four values: strongly­
taken, taken, not-taken, and strongly-not-taken. Each time a
branch is executed, its entry in the BHT is incremented for
each branch taken, decremented for each branch not taken.
This way, when a branch is first encountered and it's taken
twice in a row, the DDU predicts the next instance of that
branch as strongly-taken. This dynamic branch prediction is

The PowerPC Family 131

more accurate in the long run than the static prediction of
the 601 and 603, since it's based on past history rather than
fixed assumptions.

Branch-Processing Unit: The 604's BPU is different than
those of the 601 or the 603. Unlike its predecessors, the
604's BPU doesn't perform any branch folding. Branch
instructions are issued to the BPU by the 604's dispatch unit
just like a floating-point instruction would be issued to the
FPU. The BPU in the 604 processes the branch based on the
prediction of the DDU whether the branch will be taken.

------- The Bottom Line

The 604 is a big leap in performance beyond the 601. At the
same clock frequency, the 604 outperforms the 601 by 60
percent in integer operations and by approximately 27 per­
cent in floating-point operations. The 604 will be used in
midrange and high-end systems, where price and power
consumption are less of an issue. By comparison, the 603
will be used in extremely low-cost desktop systems as well as
portable machines; the 601 will be used in the low-cost to
midrange systems, just like today's crop of Power Macs.

The 604's statistics are shown in Table 5.3.

Table 5.3 604 Statistics

Speed

SPECint92

SPECfp92

Voltage

Power

Size

Process

Transistors

lOOMHz

160 (estimated)

165 (estimated)

3.3V

< 10 Watts

196mm2

O.SJl

3.6 million

132 The PowerPC Macintosh

The PowerPC 403GA

IBM's PowerPC 403GA is a so-called embedded controller:
It's designed to be used in dedicated hardware such as laser
printers and television set-top boxes. The 403GA will never
be used in desktop systems such as Macs. The 403GA is
included here to illustrate that the PowerPC architecture is
more far-reaching than simply a line of processors for main­
stream desktop systems.

The PowerPC 4xx series is designed and produced by IBM
alone. The PowerPC alliance allows its members to build their
own PowerPC variants, as long as these variants conform to
the PowerPC architecture specification. IBM's 4xx series will
be a line of embedded microprocessors with feature sets
reflecting their intended use. The 403GA is the first member
of that line, and it is a general-purpose microcontroller with
features that make it usable in a variety of situations.

Motorola is known to be working on its own family of
embedded processors, the 5xx family, but at this writing had
not made any public announcements about features or
availability of specific 5xx processors. Ford Motor Company,
however, is using a Motorola-supplied embedded PowerPC
processor for at least its next-generation transmission com­
puters.

------- Features

The 403GA is a 32-bit PowerPC processor. It contains a
general-purpose register file with 32 32-bit GPRs, and an
execution unit that performs one-cycle integer arithmetic,
shift, rotate, and logical operations. Its branch processor per­
forms branch folding as well as static branch prediction. The
403GA has a 2-kilobyte instruction cache and a 1-kilobyte
data cache; both are two-way set-associative and have a
cache-block size of 16 bytes. See Figure 5.5.

FIGURE 5.5

The IBM PowerPC

403GA

)TAG Port

Serial Port

4-Channel
DMA Controller

Bus Interface
Unit

Data Address
Bus Bus

The PowerPC Family 133

Timers

Execution Unit

On-chip
Peripheral
Bus

DRAM
Controls

SRAM, ROM,
1/0 Controls

The 403GA does not contain a floating-point uniti the
additional cost of a FPU would make the 403GA unnecessar­
ily expensive. In the embedded controller market, where
devices containing the controllers are made in much larger
volumes than, for example, personal computers, the sensi­
tivity of additional cents per controller is very high. The less
the controller costs, the likelier it is to be adopted. In addi­
tion, embedded microcontrollers don't traditionally need to
perform many floating-point calculations anyway.

------- The Bottom Line

The 403GA is proof of IBM's toasters-to-teraflops claim
about the PowerPC. The 403GA is clearly on the toaster side

134 The PowerPC Macintosh

of the axis where low cost-per-unit is paramount. Although
the 403GA isn't at all relevant to the Macintosh or the per­
sonal-computer market, it is an indicator of the flexibility
of the architecture. In the embedded market, the adoption
by a single large-volume customer can make the difference
between a successful and a mediocre product. Intel's i960
processors were chosen by Hewlett-Packard for its Laser]et 4
family of printers; this decision catapulted the i960 into the
lead as the highest-volume RISC processor. With the 6xx
series on the desktop, and the 4xx and Sxx series in the
embedded controller market, the PowerPC looks to have a
good shot of attaining that designation in the near future.
The 403GA is statistics are shown in Table 5.4.

Table 5.4 403GA Statistics

The PowerPC 620

Speed

Voltage

Power

Size

Process

Transistors

25M Hz

3.3V

1.2 Watts

39.4mm2

0.5~L

585,000

At this writing, first silicon for the PowerPC 620 was unan­
nounced. Its designation is known from the original
PowerPC alliance announcement, and a few technical
details are also available, but no in-depth information about
this chip is publicly available.

The 620 will be the first 64-bit PowerPC processor. The
601, 603, and 604 are all 32-bit processors; their GPRs are 32
bits wide, and the internal workings of their integer units are
based on a 32-bit unit of data. The 620 will have 64-bit-wide

The PowerPC Family 135

GPRs and the additional instructions to support operations
on these larger integer numbers.

The 620 is also expected to be by far the fastest PowerPC
processor; it will be a true high-end chip. The 604 is a good
hint that future performance improvements may happen as a
result of additional execution units. During the 620's design,
when a decision had to be made between cost and perfor­
mance, performance was chosen. The 620 will not be an inex­
pensive chip, nor will systems based on it be inexpensive.

Typical applica tions for the 620 will be high-perfor­
mance servers. IBM has already alluded that it plans to put a
620 into future AS/400 minicomputers, as well as in parallel
supercomputers. IBM has a separate division, Power Parallel
Systems, that has already built parallel computers based on
IBM's Power2 chip set; it is expected to build a lower-cost
system around the 620 when the chip becomes available.

It's unclear how soon after its introduction 620-based
Mac systems would be available. The 620 has the ability to
run in 32-bit mode, so it will provide backward compatibil­
ity with today's PowerPC processors and their software.
However, a 620-based Mac, if it happens, will probably be
the most expensive Mac ever, and since the personal­
computer market is so lcompetitive on price, a 620-based
Mac might not even make sense to build since so few would
want to buy it. On the other hand, recent market studies
show that the primary reason for the strong sales of the
Quadra 660Av and Quadra 840Av had little to do with the
machines' AV capabilities-buyers wanted the fastest Macs
available at the time, and the AV Quadras were the ones.

However, this is all speculation. The 620's first silicon is
expected to be announced before the end of 1994.

The PowerPC family's breadth and depth has already
been made evident by its first four members. The three first
6xx series PowerPC processors were delivered on schedule,
proof that the Apple/IBM/Motorola alliance is working.

CHAPTER SIX

Emulators on
the Power
Macintosh

he promise of the Power Macintosh is that it will offer
unprecedented performance in a personal computer, perfor­
mance that until now has been seen only in high-end com­
puters such as engineering workstations. These fast
workstations never succeeded outside their own niche in the
computer market partially because they were expensive, but
mainly because hardly any of the mainstream productivity
applications, such as word processors and spreadsheets, were
available for the OSs and processor architectures in the work­
station world.

The Power Macs won't have to face this problem, since
existing Macintosh software runs on the new Macs, even
though the PowerPC family of microprocessors cannot exe­
cute 68k code directly. This compatibility with existing 68k­
based software is courtesy of an emulator-software in the
Power Macs' ROM that interprets 68k code and performs the
68k code's work on the PowerPC chip. The only drawback of
the emulator is speed. Since it takes more time to perform
the interpretation, performance of emulated software is
roughly the same as if the software were running on a high­
end 68030- or low-end 68040-based Mac and not nearly at
native speeds.

137

138 The PowerPC Macintosh

One other emulator is available for the Power Macs,
although it's neither part of the ROM nor an Apple product.
Insignia Solutions has developed a software package called
SoftWindows that runs on Power Macs. SoftWindows emu­
lates an 80286-based PC running MS-DOS and Windows
3.1. The performance of this emulator is roughly equivalent
to a high-end 80386 or low-end i486 PC.

The emulation offered on the Power Macs is investment
insurance and models, the migration to native software. It
will take some time before most Mac software runs native
on PowerPC, and some 68k software, especially if it's old,
may never run native on a Power Mac.

With these two emulation solutions-one built into
every Power Mac and the other available as an option-the
new PowerPC-based Macs are easily the most versatile and
compatible personal computers available today.

Emulation Works

Using emulation as a transition strategy isn't a new idea.
IBM used emulation successfully to help its mainframe cus­
tomers make the transition from its 1401 mainframes to its
7094 series. Later, it made another transition from the 7094
to the IBM 360 series.

IBM, however, wasn't the only company to successfully
use emulation to make a transition survivable for its cus­
tomers. DEC included PDP-11 emulation in its VAX mini­
computers for the same reasons: The installed base of
software was a valuable investment for its customers, and
making it obsolete would only serve to alienate its customers.

The 68LC040 Emulator

From the user's perspective, the Power Macs' 68LC040 emu­
lator is integrated seamlessly into the Power Macintosh
environment. There's no way to tell whether emulated code

Emulators on the Power Macintosh 139

or native code is running. And emulated software never has
any idea that it's not running on a 68k-based Mac. The only
clue that software is running in emulation is performance:
Emulated code runs considerably slower on the Power Macs
than native PowerPC code.

------------- Insurance

The 68LC040 emulator in every Power Mac's ROM is insur­
ance for users, developers, and Apple alike. Without it, there
would be no smooth transition from 68k Macintosh to
PowerPC Macintosh-it would be as if the two were com­
pletely different systems. With the 68k emulator, however,
existing 68k-based Mac software can run on the new Macs,
albeit with less performance than native apps. Still, users'
existing investment in Mac software isn't made suddenly
worthless. In fact, most developers of popular Macintosh
apps will be offering inexpensive upgrades from 68k to
native PowerPC software; unfortunately, at this writing, a
few Macintosh software vendors are trying to make this
migration into a profit center.

But developers and users aren't the only beneficiaries of
the emulator; Apple benefits as well. Not all of the system
software for the new Power Macs is completely native. Had
Apple decided to wait until the entire operating system was
native, the Power Macs would never have shipped when
they did. The system software running on the Power Macs is
as dependent on the emulator's compatibility and reliability
as third-party software is.

A side effect of having parts of the OS remain as 68k
code is a high degree of compatibility, since some of the
code used in the Power Macs is, in fact, identical to code in
68k Macs. Consequently, existing software that works on
68k-based Macs is likely to work with the same 68k code
running in emulation on the PowerPC-based Macs.

140 The PowerPC Macintosh

------ 68LC040 Emulation

The emulator in the Power Macs acts like a 68LC040 proces­
sor in the processor's so-called user mode. The 68k proces­
sors also have a so-called supervisor mode, which allows the
execution of special instructions that control, for example,
the MMU and on-chip cache; these instructions cannot be
executed in user mode. The 68LC040 is a version of the
68040 that doesn't have a built-in floating-point unit, so it
can't execute floating-point instructions like a 68040, a
68881, or a 68882. The emulator doesn't support floating­
point instructions and it acts like a 68020 processor when
processing supervisor mode instructions. In fact, this is what
the Gestalt operating-system function, which Mac software
can use to find out details about available hardware and
software, will tell you when asked which kind of processor is
installed. The emulator, however, supports a 68040-specific
instruction that the 68020 doesn't: MOVE16.

The MOVE16 instruction does as its name implies: It
moves 16 bytes of data in memory from the source location
to the target location. MOVE16 is extremely fast on a 68040
and is used to good effect within Apple's system software.
MOVE16 was implemented within the emulator as a fast
memory copy, although the emulated version doesn't sup­
port MOVE16's ability to perform burst reads and burst
writes to noncacheable address spaces. See Chapter 7 for
more on MOV£16.

A few other details distinguish the emulator's behavior
from a real silicon 68LC040. Every instruction for a micro­
processor takes a certain amount of time to execute, and this
time is measured in cycles. A 25MHz 68LC040 runs 25 mil­
lion cycles' worth of code per second. More complex instruc­
tions generally take more cycles to complete than simpler
ones. The execution times for instructions are documented
by the microprocessor vendor to allow programmers to figure

Emulators on the Power Macintosh 141

out the fastest way to do what they want to do, given that
there are always multiple ways of accomplishing the same
thing. The emulator in the Power Macs has one clear goal:
to emulate as fast as possible. Because of this, instruction
timings are different in the emulator than for a real
68LC040. A few 68k instructions can be emulated with a
single PowerPC instruction, but most take several.

One other notable difference in the emulator is related
to caching. As early adopters will remember, the introduc­
tion of the 68040 processor in Macs caused compatibility
problems because of the design of the 68040's instruction
cache. The Power Macs' emulator doesn't emulate the 68040
cache so faithfully that software with problems running on
the 68040 will also have problems running on the emulator:
in this sense, the emulator is actually more compatible with
older Mac software than 68040-based Macs are.

Finally, even the emulator gets a chance to use the most
fun PowerPC instruction: EIEIO. As described in Chapter 5,
EIEIO (enforce in-order execution of 1/0) makes sure that
write operations to memory are performed in the order that
the software being executed specifies. With many RISC
architectures, the processor could deliberately reorder writes
to memory to improve performance. In instances where
writing to memory controls 1/0 devices, such reordering can
cause big problems. The Power Macs' emulator interprets
the 68k NOP instruction (no operation) and executes an
EIEIO. On pipelined versions of the 68k family, such as the
68040, a NOP has the same effect as EIEIO anyway.

142 The PowerPC Macintosh

Floating-Point Emulation

The 68LC040 Macintosh emulator in
the Power Macs explicitly doesn't emu­
late the floating-point coprocessor found
in the 68040 chip. This has caused much
consternation among some existing
Macintosh users, but the omission has
sound technical reasons.

First of all, the emulator does support
floating-point math via SANE (Standard
Apple Numerics Environment). Defensively
written floating-point apps will first check
for the presence of a floating-point
coprocessor and use it if available. Then,
if no floating-point hardware is available,
the software should use SANE, which is
guaranteed to be available on every
Macintosh. Another detail not to miss is
that some 68k Macs don't have a float­
ing-point coprocessor: the LC family, the
Mac llsi, the Centris 61 0, and the Quadra
605, for example. So 68k software that
won't run on the Power Macs for lack of
floating-point hardware also won't run
on these 68k-based Macs. The most pre­
cise explanation of 68k floating point on
the Power Macs is that the
68881/68882/68040 processors and the
floating-point instructions understood by
these processors aren't emulated. This is
very different from not supporting float­
ing-point math at all.

The reason for the nonemulation of
the 68k floating-point instructions can be
reduced to the ratio between price and
performance. The PowerPC architecture

has two floating-point formats for which
the floating-point hardware has explicit
and optimized support: 32-bit single­
precision and 64-bit double-precision.
PowerPC compilers also support the 128-
bit long-double floating-point format,
but it's computationally more intensive,
since the compilers must generate code
to use the PowerPC's double-precision
capabilities to mimic long double calcula­
tion and to translate between double and
long double. The floating-point-capable
processors in the 68k family use the 80-
bit extended floating-point format. To
emulate floating-point calculations using
the extended format, the emulator would
spend most of its time translating to and
from the extended format. Since using
64-bit doubles would be less accurate
than the 80-bit extendeds and unable to
represent as large a range of values, the
emulator would have to perform all cal­
culations either using the long double
format, or using the PowerPC's integer
instructions to emulate the floating-point
coprocessor. The latter is precisely what
SANE on PowerPC does. Native SANE
doesn't use any of the PowerPC's
floating-point hardware, since it needs to
provide the identical results as SANE on
all other Macs, and SANE is implemented
on these other Macs exclusively using
integer instructions.

Emulating 68k floating-point instruc­
tions would be so computationally

Emulators on the Power MaCintosh 143

Floating-Point Emulation (continued)

intensive that virtually no benefits would
result. In addition, the engineering effort
it would take to provide emulation for
the full complement of 68k floating-point
instructions is better spent working on
other parts of the operating system to
take full advantage of the PowerPC's per­
formance.

Finally, those applications that need
the maximum speed provided on the 68k
Macs by a floating-point coprocessor are
perfect candidates to go native, since the
PowerPC's floating-point performance is
so high. Most floating-point-intensive
applications only need single- or double­
precision accuracy, so they can use one
of the PowerPC's native floating-point
formats to achieve significantly higher
performance than 68k apps that use 68k
floating-point instructions. In fact, when
companies describe performance differ­
ences of two and five times for 68k versus
PowerPC software, the higher number

refers to the boost that floating-point­
intensive applications get by running
native.

Floating-point math is supported in
abundance on the PowerPC, even for 68k
applications. Any 68k software that
requires a floating-point coprocessor and
that doesn't run on 68k Macs without
one won't run in several existing 68k­
based Macs. SANE is supported for emu­
lated software on the Power Macs, so any
software that can run on any 68k Mac
will also run on the Power Macs. Finally,
the high floating-point performance on
the PowerPC makes going native essen­
tial for software that benefits from fast
floating-point performance. Developers
with floating-point-intensive software
that requires 68k floating-point hardware
who aren't already developing native ver­
sions of their software are showing a lack
of commitment to the Macintosh.

------- Emulator Performance

Even with all these details about the emulator in mind, per­
formance of emulated software still can't be predicted read­
ily. Each piece of Macintosh software is different; Mac
software spends certain amounts of time in the operating
system-some software more, some less-and each piece of
software calls different parts of the operating system. On the
Power Macs, some parts of the OS are native and run at full
Power PC speeds, but some parts of the OS are still emulated.

144 The PowerPC Macintosh

This notion of a partially emulated, partially native Mac
OS is called toolbox acceleration by Apple and is covered in
detail in Chapters 3 and 8. Apple spent a lot of time observ­
ing which parts of the OS were most frequently used by
Macintosh software. This information helped determine
which parts of System 7 needed to be made native first.
Obviously, those parts of the operating system where soft­
ware spent the most time were prime candidates for going
native. For example, QuickDraw, the Mac's graphics soft­
ware, is entirely native on the Power Macs. And thanks to
the wonders of the emulator and mixed mode, emulated
software benefits from Native QuickDraw as well. For this
reason, performance of emulated apps can't be estimated by
a rule of thumb. Performance depends on how much time
the software spends in which parts of the operating system
and whether those parts are native or emulated. There are
even parts of the operating system that exist both as 68k
and PowerPC code. This is for a good reason. Since a mixed­
mode switch is fairly expensive fTom a performance perspec­
tive, it can be faster sometimes to execute some code in
emulation and avoid two mixed-mode switches. If you want
to learn more about mixed-mode switches and the Mixed
Mode Manager in general, see Chapter 8.

Many variables determine the performance of emulated
code. The most significant factor is how much time is spent
in native parts of the OS, how much is spent in emulated
parts, and how much is spent in the software itself. An appli­
cation such as Microsoft Excel 4.0 is a worst case for the
emulator, since it spends the vast majority of time in its own
code, all of which runs through the emulator, and not much
time in the operating system. Such worst cases perform
roughly on par with a Macintosh Ilci, which is still adequate
for most applications. On the other hand, 68k software that
uses QuickDraw a lot will perform much better than a Ilci
because of Native QuickDraw's speed on the Power Macs.

Emulators on the Power Macintosh 145

How the 68LC040 Macintosh Emulator Works

The Power Macs' 68LC040 Macintosh
emulator is an interpreter, not a transla­
tor. An interpreter takes every instruction
to be emulated, determines what it
needs to do, and then does the work. A
translator takes one or more instructions
to be emulated, analyzes them, and then
generates native code that performs the
work. The downside of the translation
approach is that it generally takes more
time to analyze, translate, and execute
the translated code than to interpret it.
However, translation has the benefit of
being able to cache the native code gen­
erated by the translation process for later
reuse-think of it as an emulator's Level 1
cache. Over time, the higher execution
speed of often reused translated code
negates the additional time taken during
the initial translation .

Internally, the 68LC040 emulator uses
one of the PowerPC's 32 general-purpose
registers for each of the 68k's eight data
and eight address registers. This direct
mapping of 68k registers to PowerPC
registers removes a great deal of compli­
cation for the emulator, since it doesn't
have to worry about keeping track of the
68k register values.

Every time the emulator encounters a
new instruction, it looks in a table that
contains an entry for every 68LC040
instruction to determine what to do.
Some 68k instructions, such as simple
addition, can be mapped directly to

PowerPC instructions. This simplifies the
work that the emulator has to perform.
For more complex instructions, the table
entry contains a pointer to the code that
will perform the work necessary to emu­
late the 68k instruction's behavior.

Blocks of PowerPC code that emulate
a single 68k instruction can execute very
fast at times. Any instruction that uses
only information in registers will perform
very quickly in the emulator. Any 68k
instruction that must read from or write
to memory will be emulated more slowly,
since the PowerPC processor has to go to
the trouble of looking in the Level 1
cache for the data first, then the Level 2
cache if one is installed, and finally go
out to RAM to read or write the data. The
large size of the 601 's unified Level 1
cache is a big benefit for the emulator,
since the cache stores frequently used
data as well as code.

The 68LC040 emulator has some Mac­
specific features built in as well. With tool­
box acceleration, many parts of the Mac's
operating system are already native, and
emulated apps benefit from this without
any action on their part. However, the
emulator implements particularly
performance-critical calls to the operating
system directly rather than calling the OS.
The amount of overhead saved and per­
formance gained per instance is tiny, but
cumulatively such optimizations can make
a measurable difference. The Blo~kMove

146 The PowerPC Macintosh

How the 68LC040 Macintosh Emulator Works (continued)

call, an operating-system service that
moves the contents of memory from one
part of RAM to another, is built into the
emulator.

Translation is not part of the
68LC040's repertoire. Unlike both
SoftWindows and IBM's Wabi, both of
which perform on-the-fly translation of

-----1/0

x86 code to PowerPC code and then
store it for possible later reuse, the 68k
emulator interprets each 68k instruction
one by one. The emulator does, however,
perform some work to look for certain
common patterns in code. This allows
the emulator to execute common 68k
code sequences quickly.

Certain parts of the Macintosh operating system in particu­
lar still run in emulation: drivers and other software control­
ling input/output on the Power Macs. The Ethernet driver,
sound drivers, serial drivers, and even SCSI drivers all still
run in emulation. No provision exists at this writing for
developing native drivers, since the 68k interrupt model dif­
fers so much from that of the PowerPC. Again, since com­
patibility was a primary goal, it makes sense to keep the
drivers emulated. This choice also further underscores the
compatibility of the emulator. If drivers run properly under
emulation-not just Apple's drivers, but third-party drivers
as well- this bodes well for overall compatibility.

Despite what might seem a foolish choice for perfor­
mance reasons, l/0 performance on the Power Macs is
respectable. The main reason for this is DMA: direct mem­
ory access. As described in Chapter 2, and in more detail in
Chapter 7, the Power Macs have DMA hardware that
removes the CPU from the drudgework of moving l/0 data
through the system. The 601 concentrates on computation,
and the DMA hardware handles the transport of 1/0 data.
The drivers for the Power Macs, despite being 68k code, still

Emulators on the Power Macintosh 147

take advantage of the DMA features offered by the hard­
ware. As a result, once a particular 1/0 process is started, the
driver generally stays out of the way until the 1/0 is done.
On non-DMA-capable Macs, drivers are also responsible for
handling writing and reading data to and from the 1/0
device. Such drivers would cause a big slowdown, since
moving data would be handled by emulated code and not
dedicated DMA hardware.

Another example where emulated drivers don't have a
significant adverse effect on I/0 performance is SCSI drivers.
As explained in Chapter 3, the Power Macs include SCSI
Manager 4.3, itself running in emulation. SCSI drivers that
are 4.3-aware will reap the benefits of DMA on the Power
Macs. Hard drives with 4.3 drivers perform equivalently on
Power Macs and 840Avs.

The reason for this equivalent I/0 performance is a
straightforward one: The emulator itself is still faster than
most I/0 devices. In its day, the Ilci was fast enough to keep
up with its I/0 devices, and the Ilci's SCSI performance was
even measurably faster than that of the Ilfx, which had a
68030 running at a 60 percent faster clock rate.

One area where emulated low-level l/0 software is a bot­
tleneck on the Power Macs is networking. The protocol
stacks for AppleTalk and TCP/IP both run in emulation;
native versions are to be available in late 1994. The Ethernet
and LocalTalk drivers that handle the work of sending and
receiving raw data aren't bothered by the emulation, since
the DMA hardware takes care of most of the work, but net­
work traffic requires CPU horsepower to process informa­
tion and network protocols that make up the network data.
Although the performance of the protocol stacks under
emulation is perfectly acceptable, even for servers, it's by no
means as fast as it could be. Native AppleTalk and TCP/IP
protocol stacks will speed up networking on the Power

148 The PowerPC Macintosh

Macs. To learn more about the new native protocol stacks
and the new Open Transport architecture, see Chapter 9.

------ Compatibility

Soft Windows

The bottom line for the success of an emulator is compati­
bility first, performance second. A fast but flaky emulator is
worse than a solid but sometimes slow one. Fortunately for
Power Mac owners, the emulator is extremely reliable, and
the performance of software running on the 68LC040 emu­
lator is speedy, thanks to toolbox acceleration.

Apple's system software relies on the emulator and is
integrated with it flawlessly, but the true acid test of Mac
compatibility is whether the emulator can handle a power
user's standard load of extensions and control panels. In
tests conduced by several Macintosh trade publications, less
than 1 percent of the software tested caused any compatibil­
ity problems with the Power Macs' emulator. In fact, the
overall compatibility of the emulator generally exceeded
expectations. Many Macintosh IS managers publicly took a
wait-and-see attitude to the Power Macs, basing their skepti­
cism on the unknown quality of the emulator.

Surprisingly enough for this industry of excessive hype,
the Power Macs' emulator is rock-solid: It just plain works.
Rather than fretting about possible incompatibilities, early
adopters should focus their energies on acquiring native ver­
sions of the apps they use most frequently. For more infor­
mation about migrating from the 68k-based Macintosh
world in to the universe of the Power Macintosh, see
Chapters 3 and 8.

Unlike the emulator built into every Power Mac's ROM,
Insignia Solutions' SoftWindows is a separate native applica­
tion that runs under the Mac operating system. SoftWindows

Emulators on the Power Macintosh 149

emulates a complete 80286 and 80287 system as well as an
MS-DOS and Windows 3.1 environment. To do this, it
requires a Power Mac system with at least 16MB of RAM. All
Power Macintosh configurations that come bundled with
SoftWindows have 16MB preinstalled. The 80286/287 emula­
tion and integration with DOS in Soft\.Vindows is a direct
descendant of Insignia's existing SoftPC package.
SoftWindows adds the Windows 3.1 support, and it allows
Windows apps to execute at low-end i486 speeds.

------- Insignia and Microsoft

Insignia and Microsoft entered into an agreement in 1992
that gives Insignia the license to use Windows source code
directly. At the time, Microsoft was looking for 80x86 emu­
lation technology to integrate into the Windows NT operat­
ing system. Since Windows NT runs on processor
architectures other than x86, NT must offer compatibility
for the existing x86 base of software until native NT apps for
the different platforms become available. Currently,
Windows NT is available on Alpha-based and MIPS R4x00-
based systems; the PowerPC version is under development
by Microsoft, Motorola, and IBM. Rather than develop its
own emulator, Microsoft bought the rights to Insignia's
emulation technology for Windows NT. In return, Insignia
has access to the Windows source code, which allows
Insignia to provide the most compatible Windows emula­
tion possible.

Another result of access to the Windows source code is
that Insignia can do the work necessary to make the most
performance-critical parts of Windows run native. This is
virtually identical to Apple's toolbox-acceleration strategy:
The most performance-critical parts of Windows run native
with SoftWindows on the Power Macs, allowing these parts
of Windows to run faster than if they had to be emulated by
Insignia's 286 emulator.

150 The PowerPC Macintosh

A further side effect of the licensing agreement with
Microsoft and the resultant high degree of compatibility for
applications running under SoftWindows is that Microsoft is
willing to provide normal technical support for its Windows
productivity applications when they are run under
SoftWindows. This may seem obvious, but it isn't necessarily
so. Wabi, another Windows emulation technology codevel­
oped by Sun and IBM, also promises to allow Windows apps
to run on PowerPC systems, but Microsoft has explicitly
announced that it would not support its productivity appli­
cations running on top of Wabi.

- - - - -- Networking

Since one of the main purposes of SoftWindows is to allow
interoperability with existing applications and other x86-
based machines, SoftWindows also includes networking
support that allows DOS- and Windows-based applications
access to network resources that they would be able to use if
they were running on x86-based hardware. SoftWindows
ships with full Novell NetWare support, including the
IPX/SPX protocol stack and NetWare client software, so that
SoftWindows users can connect to NetWare servers as if
they were PCs.

No additional hardware is required for SoftWindows to
act as a PC on a network. Any PC networking is routed
through the Power Macs' LocalTalk or Ethernet interface or,
if a separate card is installed, Token Ring is supported as
well. SoftWindows includes all the necessary drivers.

------ SoftWindows Emulation Strategies

SoftWindows uses different approaches to maximize emula­
tion performance. This is how it can achieve the low-end
i486 performance of emulated Windows apps running on
Power Macs. In contrast to Apple's 68k emulator,
SoftWindows is not exclusively an interpreter. Instead, it

Emulators on the Power Macintosh 151

analyzes one or more x86 instructions and translates them
into PowerPC code. The analysis determines exactly what
the to-be-emulated code is trying to do, and the translation
phase is much like a compiler for a programming language.
In this case, the translator operates on the fly, without the
user having to wait perceptibly, and it generates native
PowerPC code that is executed quickly on a Power Mac.

The analysis and translation can take more time than
straightforward interpretation would. However, the long­
term benefits of translation are great, since SoftWindows
keeps the translated code in a cache, in case it's needed
again. This cache functions the same way as a Level 1
instruction cache on a microprocessor, where the most
recently used code is kept nearby for fast access. In the case
of an emulator like SoftWindows, such a cache can boost
performance a great deal, since the original time spent ana­
lyzing and translating is won back many times over if a par­
ticular piece of code is executed again frequently, obviating
the need for additional analysis and translation.

The combination of cached blocks of pretranslated code
and the native parts of Windows in SoftWindows makes for
high performance. However, this almost-perfect picture is
marred somewhat by the instruction-set architecture that
SoftWindows emulates: that of the 80286. Some popular
applications take advantage of features in the 80386 proces­
sor, such as its flat, nonsegmented memory model.
Although Windows 3.1 itself runs fine on an 80286, the
next version of Windows, 4.0, will not. It will require an
80386 at minimum.

A final part of the emulation strategy is l/0 emulation.
SoftWindows provides all the standard BIOS services,
including support for serial ports. Any PC software wishing
to use the COM1 port will never know that SoftWindows
reroutes the serial traffic to and from the Mac's modem or
printer port. The same goes for video: Any BIOS video calls

, ,

152 The PowerPC Macintosh

made are converted into QuickDraw calls. Since the Power
Macs all have Native QuickDraw, graphics performance for
most PC apps under SoftWindows is quite high. Software
that writes directly to a PC's video memory because it runs
faster on PC hardware will actually run slower under
SoftWindows, since the emulator has to spend time translat­
ing the code and figuring out where the software is writing
to instead of just emulating the BIOS call.

--- --- i486 Emulation and Windows 4.0

Insignia Solutions has stated publicly that it intends to pro­
vide i486 emulation in SoftWindows before the end of
1994. Support for this processor in emulation is also a
requirement for the next major revision of Windows, code­
named Chicago.

Windows 4.0 needs at minimum an 80386 processor to
run on, since it uses the 80386's flat memory model.
Insignia's source-code license also extends to the source for
Windows 4.0, presumably because Microsoft also wants to
offer Chicago emulation for Windows NT. Consequently,
Insignia is beefing up its emulator to support the i486
instruction set.

In addition to committing to providing an i486 emula­
tor, Insignia is planning a version of SoftWindows that emu­
lates Windows 4.0. Although it has not announced any time
frames, nor has Microsoft announced any time frames for
when it will release Windows 4.0, SoftWindows for
Windows 4.0 will incorporate the same toolbox-acceleration
features that the Windows 3.1 version has, and will also take
maximum advantage of high-performance features of the
Power Macs, such as Native QuickDraw.

Interestingly enough, discussion of x86 emulation on
many online services often focuses on games. At this writ­
ing, ID's DOOM and LucasArts' X-WING were the most
hotly debated. Both of these games require a. system with at

Wabi

Emulators on the Power Macintosh 153

least an 80386, so SoftWindows for Windows 3.1 will not
support these games. However, it's questionable whether it
makes sense to run these games on an em ulator in the first
place. Since most of these games perform immense amounts
of calculation, they spend hardly any time at all in the oper­
ating system-the worst case for an emulator. So, if you are
rubbing your hands with glee at the prospect of running a
80386-or-above-only game under a future version of
SoftWindows, bear in mind that this is the worst situation
for the emulator, and the performance you'll get will be far
less th an what you would see running directly on native
hardware. Then again, not many people are expected to buy
an emulator such as SoftWindows to run games in the first
place, and native PowerPC games sh ould put even the
highest-end x86 games to shame over time. After all, games
are one area where more compute horsepower is clearly ben­
eficial, and the PowerPC 601 and its successors have more
than enough oomph for the most sophisticated games.

Wabi started out as an acronym for Windows application
binary interface. Version 1.0 of the Wabi software was
designed and developed at SunSoft, the software subsidiary of
Sun Microsystems, the maker of SPARC-based Sun worksta­
tions. The idea behind Wabi is similar conceptually to that of
toolbox acceleration: Windows apps interact with Windows
through a documented and public interface. In theory, all a
Windows emulator would have to do is act like Windows and
make Windows apps think they're running on top of
Windows. Since this emulation would work with existing
Windows apps, and not be something for developers to take
into account during development, the emulator would have
to emulate the application binary interface, the ABI, rather
than the application programming interface, the API.

154 The PowerPC Macintosh

The Other Emulators

A big deal has been made about the
various 68k and x86 emulation options
for the Power Macs, but several lesser­
known emulators run on the Power Macs
as well. Independently of each other and
on their own time, two engineers at
Apple developed Power Macintosh-based
emulators for Motorola's 6809 micro­
processor. The 6809 enjoyed some suc­
cess as an embedded microprocessor but
certainly wasn't relevant to the personal­
computer industry at any time. But many
early arcade games are based on the 6809,
and the point of these two emulators is to
run these arcade games on a Power
Macintosh. Such games should quash the
notion that cool games are not available
on the Macintosh once and for all.

The first of the two 6809 emulators was
originally developed on a 68040-based
Mac, where it ran, albeit rather slowly.
Shortly after the Smurf card- the first
PowerPC-based card used for early devel­
opment work at Apple-was up and run­
ning, this emulator, which was written in
portable C, was made to run on the
Smurf. The PowerPC-native version per­
formed much better. But the emulator
alone isn't necessarily all that interesting
without the games. Williams' Defender
and Stargate, released in 1980 and 1981
respectively, were the first two games to
run with the emulator, mainly because the
hardware in the original arcade games

was simple and easily emulatable. Games
like Robotron and joust use custom chips
that are more difficult to emulate.

The second 6809 emulator was the
result of an engineer's craving to write
some sort of emulator, but not being
completely sure which chip to emulate;
again, the intent was to run games.
Initially, a Sega Genesis emulator was
considered, but abandoned. The 8-bit
Z80 was ruled out, even though this CPU
is used in many arcade games. The
65816, the CPU used in the Super NES
and Apple llgs, was also ruled out. The
6809 ultimately was the only one left.
This second emulator was originally writ­
ten in PowerPC assembly language and
later recoded to portable C. The first
game running on this emulator was
Stargate, again because of the simplicity
of hardware emulation.

The two programmers found out
about each other well after both emula­
tors were running well. However,
because of the dearth of documentation
about the 6809 chip, both emulators still
had known bugs, although the nature of
the bugs wasn't always clear. To improve
both, the authors integrated the two
emulators and had them run in lockstep.
After an instruction was executed, each
emulator would send the other the cur­
rent processor state of the emulated CPU
for comparison. If the states of the two

Emulators on the Power Macintosh 155

The Other Emulators (continued)

emulated 6809s ever differed, the devel­
opers were alerted to the problem and
able to isolate it. In one instance, they
even uncovered an error in early
Motorola 6809 documentation. The
proof of correctness of the emulator was
ultimately whether they could execute
the games flawlessly. This integration of
the two emulators helped seek out and
destroy the final bugs in both.

Another emulator running native on
the Power Mac-and running faster than
the original hardware-is a Commodore
64 emulator. This emulator was also orig­
inally developed on a 68k-based Mac,
and it was later converted to run native
on the Power Macs. Although the initial
incarnation of the emulator lacks support
for color and sprites, it runs BASIC pro­
grams quite nicely.

A benefit of this approach is that no licensing with
Microsoft is required-the interfaces from the application
side to Windows are publicly documented. The downside is
that Wabi can emulate only those parts of Windows that are
public knowledge. This limitation hampered the first imple­
mentation of Wabi.

Another side effect of emulating just the Windows ABI is
that there is no need to emulate the exact look and feel of
Windows. Typical users are most familiar with the Windows
user interface, but Sun's Wabi uses Motif for Windows and
menus, and the Windows software is none the wiser, since
the information that Wabi provides to the applications is
just like Windows'.

------ Wabi 1.0

Sun's first version of Wabi was plagued by problems. It
turned out that Windows apps, by and large, didn't exclu­
sively stick to the documented Windows interface to do their
work. It also turned out that many applications still made
calls to DOS, for which there is not emulation in Wabi. Some
books that explained undocumented Windows calls became

156 The PowerPC Macintosh

popular because they explained exactly what other features
were available within Windows. The downside of the prolif­
eration of this information is that Windows developers
began to take advantage of these undocumented features,
making the work of the Wabi developers more difficult.

Since emulating Windows turned out to be more diffi­
cult than anticipated, SunSoft took the approach of validat­
ing and certifying Windows apps to run with Wabi. This
meant that the Wabi developers did the necessary work to
explicitly support individual applications and their idiosyn­
crasies within the Wabi emulator. A setback to the Wabi
effort came when Microsoft announced that it would n ot
support its applications running under Wabi. If a user were
to call Microsoft technical support about a Microsoft appli­
cation and answer "Wabi" when asked what environment
the app was running under, Microsoft would tell the user
that Wabi is unsupported as an environment for Microsoft
applications. It's clear that Microsoft frowns upon Wabi,
since it competes to some extent with Windows, but this
explicit nonsupport is a setback, because Microsoft's are
among the most popular and widespread Windows applica­
tions. In contrast to Wabi, Microsoft supports its Windows
apps running under Insignia's SoftWindows emulator.

------ Wabl 2.0

IBM licensed Wabi from Sun and continued development
on it. IBM Power Personal Systems, the division of IBM that
will build and sell PowerPC-based desktop systems- not the
popular RS/6000 family of UNIX workstations-will use a
Wabi-based solution to provide the necessary emulation to
help existing users of x86-based PCs migrate to their
PowerPC-based systems.

However, IBM has additional emulation technologies
that it will integrate with Wabi. IBM has an x86 emulator
that is already shipping on IBM's RS/6000 workstations. This

Emulators on the Power Macintosh 157

emulator, much like Insignia's SoftWindows, performs on­
the-fly analysis, translation, and caching to achieve high
performance. A distinguishing characteristic of IBM's emula­
tor is that the version that ships with Power Personal
Systems' machines will emulate the 80386 from the start.
IBM will also include full emulation of DOS and BIOS in
addition to the Wabi-based Windows emulation.

Since the release of Wabi 1.0, many more applications
have been certified to work with Wabi. When IBM ships its
PowerPC-based desktop systems in the second half of 1994,
it expects to have well over 100 of the most popular
Windows apps certified for use with its emulation. And
since IBM has the source code to DOS and is a successful
x86 system vendor, it's likely that IBM's Wabi will be a stable
and solid emulation solution and will ease users' migration
from x86 to PowerPC.

The Bottom Line

Emulation, in the context of the Power Macintosh, exists
primarily to provide a smooth transition from 68k to
PowerPC. For the companies where the Macs are the minor­
ity, consider that Windows NT will be available for
PowerPC, but plain Windows never will be (this is where
Insignia comes in).

The emulation solutions available on the Power Macs are
reliable and perform adequately. These emulators aren't
designed to compete with the top-of-the-line machines
they're emulating; they provide a smooth and painless tran­
sition from the existing computing environment to the
world of native PowerPC applications, which will run many
times faster than their counterparts running on 68k or
80x86.

Compatibility is ultimately more important than perfor­
mance, since users shouldn't have to be faced with the

158 The PowerPC Macintosh

hassle of existing applications that don't work under emula­
tion. In most cases, Power Mac users will be running emu­
lated software because the native versions aren't finished
yet. Upgrading 68k software to work under the emulator is
frustrating and pointless, but from all appearances, it looks
like this will hardly be necessary. The 68LC040 Macintosh
emulator built into every Power Mac works admirably.

On the x86 side, things also look good. Insignia
Solutions' x86 and DOS emulation technologies have been
around for several years. The licensing agreement with
Microsoft guarantees a high degree of compatibility with
Windows 3.1-high enough for Microsoft to include
Insignia's SoftWindows in the Windows NT operating sys­
tem for RISC processors.

The Power Macs' 68LC040 emulator will provide the
smooth transition that the Macintosh world needs to make
the leap from 68k to PowerPC safely and without undue
trauma. The performance provided by native apps will also
give users of x86 machines cause to investigate, or reinvesti­
gate, the Macintosh as a viable computing platform. With
SoftWindows' ability to run popular x86 productivity soft­
ware, anyone wanting to switch from the x86 world will
find little reason not to switch if compelling native apps are
available on the Power Macs. Even those apps available for
both the Power Macintosh and high-end Pentium systems
will usually run faster on the PowerPC-based machine. If
such apps are available on both platforms anyway, data
interchange is not likely to be a problem. All these factors
come together to simplify the selection of the best tool for
the task.

Power
Macintosh
Hardware
in Depth

he raw horsepower of the PowerPC 601 chip is impressive by
itself, but building a high-performance computer system
involves much more than taking an existing system design
and simply adding a fast CPU chip. Doing so would be like
putting a 1-liter BMW boxer motorcycle engine in a Vespa
scooter.

Intel experienced this phenomenon when it introduced
the Pentium. The first Pentium-based systems were basically
i486 motherboards with Pentiums swapped in. As a result,
these first Pentium systems didn't perform much better than
their i486-based predecessors, and really fast Pentium systems
didn't become available until the motherboard designers
designed systems to take advantage of the Pentium's features.

Despite the similarity between the Power Macintosh sys­
tems and high-end 68040-based systems, these new 601-based
Macs are designed very much with the PowerPC in mind. The
addition of the 601 is by no means a simple retrofit; these sys­
tems offer high performance for relatively low cost.

This chapter will provide an in-depth look at the Power
Macintosh systems' hardware components as well as that of
the Power Macintosh Upgrade Card, which lets users of
Macs that can't be upgraded via motherboard swap upgrade
to PowerPC nonetheless.

159

160 The PowerPC Macintosh

System Hardware

The Power Macs' hardware has been optimized for use with
the 64-bit-wide bus that connects the 601 to the outside
world. Taking advantage of this bus width provides the
greatest possible throughput and permits as much data as
possible to move as quickly as possible through the system.

The three Power Macs are based on a single overall
design. See Figure 7.1. The Power Macintosh 6100 is the base
model, since all three Power Macs share the 6100's features:

• The Power Mac 7100 is a 6100 with three NuBus slots
added, and with a 601 running at a higher clock rate.

• The Power Mac 8100 has all of the 7100's features, plus a
second high-speed SCSI bus, an even faster 601 than the
7100, and a preinstalled Level 2 cache SIMM.

The design of the Power Macintosh 6100, 7100, and
8100 systems can be divided into three major parts: the CPU
area, DRAM, and the input/output area. These three areas
are all interconnected via the Data Path chips, which are the
key to much of the Power Macs' performance.

- ----- The 601 CPU Bus

Each Power Macintosh has a PowerPC 601 processor run­
ning the show. The speed of the 601 is easily discernible
from the Power Mac's name: The 6100/60 has a 60MHz 601
at its heart; the 8100/80's 601 runs at 80MHz.

The Power Macs' 601 has two connections to the outside
world: a 64-bit-wide data bus and a 32-bit-wide address bus.
The data bus is the path over which data travels to and from
the 601; the address bus is the way the 601 communicates
to the rest of the system from where, or to where, data
should move.

For further details about the PowerPC 601 processor, see
ChapterS.

FIGURE 7.1

The main

motherboard of the

Power Macs

Floppy
connector

Power Macintosh Hardware In Depth 161

~ NuBus
Slots

~ AudioVision
connector

~Audio-In

~Audio-Out

AOB

Ethernet

2 serial ports

Internal and external
~ connectors for

external SCSI bus

Internal connector for
internal SCSI bus

Level 2 Cache: Each Power Macintosh supports an optional
Level 2 (L2) cache. The Power Mac 8100/80 comes with a
256-kilobyte L2 cache preinstalled. The purpose of an L2
cache in the Power Macs is to provide an additional buffer
between the 601 CPU and the outside world: DRAM, ROM,

162 The PowerPC Macintosh

and the Power Macs' 1/0 subsystems. For a precise descrip­
tion of L2 caches and Level 1 caches, how they work, and
why they're useful, please see Chapter 4.

With the Power Macs, the default L2 cache size is 256
kilobytes. This size was determined by a performance analy­
sis group within Apple to offer the best ratio between price
and performance. Since the high-speed static RAM used in
L2 caches is relatively pricey, the measurers of performance
needed to find the amount of L2 cache that would offer the
highest performance benefit. As they experimented with dif­
ferent sizes, they found the place where the curve of perfor­
mance increase flattened out at 256 kilobytes. Larger cache
sizes are beneficial, but they don't offer as much of a perfor­
mance boost. A 512-kilobyte L2 cache does not offer twice
the performance increase of a 256-kilobyte cache. Smaller
caches certainly also provide a performance boost, but the
cost of the 256-kilobyte cache is small enough, considering
the speed increase it offers, that it doesn't make much sense
to use a size smaller than 256 kilobytes.

Unlike the Level 1 cache on the 601, the Level2 cache in
the Power Macs has only one mode: write-through. This
means that any data written to the L2 cache is written out
to DRAM, or 1/0 space, as quickly as possible. In contrast,
parts of the 601's L1 cache can be defined as copyback,
where the data isn't written back to DRAM, or the L2 cache,
immediately. Copyback mode is somewhat faster than
writethrough because it causes less bus traffic.

High-Speed Memory Controller: The high-speed memory
controller (HMC) in the Power Macs is the nexus for interac­
tions between the 601 CPU and memory. The HMC is
designed to provide for the 601's memory-access needs, as
well as connections to ROM, L2 cache, DRAM, the processor
direct slot (PDS), and the Power Macs' input/output (1/0)
devices.

Power Macintosh Hardware In Depth 163

Although the 601 and the DMA logic in the Power Macs
actually write to or read from memory, HMC keeps track of
memory being read from or written to and makes sure that
no two parts of the system try to get at the same part of
memory at the same time. It is, in a sense, a traffic cop for
the data moving throughout the Power Mac system.

This function is particularly important because the
design of the 1/0 on the Power Macs is memory-mapped.
This means that v.rriting data to a particular 1/0 device is just
like writing data to a particular address in RAM. The HMC,
in combination with another chip called AMIC, makes sure
that all the right things happen and that data goes where it's
supposed to.

HMC supports a maximum of 264MB of installed RAM.
To install this much RAM in a Power Mac would require a
32MB SIMM installed in each of the Power Macintosh
8100's eight SIMM slots. On the Level 2 cache front, HMC
supports sizes starting at 128 kilobytes; the upper limit is
determined only by hardware technology. When the Power
Macs' design was being developed, it was assumed that 512
kilobytes of L2 cache would be the largest possible. 1MB L2
caches for the Power Macs are already advertised today.

When HMC plays traffic cop on the buses of the Power
Macintosh, it has to decide who gets access when multiple
parties want use of the bus at the same time. DRAM refresh
gets the highest priority; for dynamic RAM to keep its con­
tents intact, it has to receive a signal every so often. If the
refresh doesn't happen, data is lost from memory. Video
gets the next highest priority on the bus, which is important
because video information destined for a monitor is time­
critical. Since the motherboard-based video subsystem uses
system DRAM to store video data, it's possible that the CPU
may stall when wanting to read some part of DRAM while
the video data is accessed. If this happens, the CPU must

164 The PowerPC Macintosh

wait until the video subsystem is done fetching the video
data from DRAM before it can perform its DRAM access. As
a result, the CPU gets last priority, since it is assumed that it
can wait a bit, whereas the other two types of access to
DRAM are time-critical and have to happen then rather than
later.

The order of priority in the Power Macintosh 6100,
7100, and 8100 is as follows, from the highest to lowest:

Order Device

1 DRAM Refresh

2 Video Refresh

3 1/0 DMA

a Sound

b SWIM III

c sec
d Ethernet

e SCSI

4 Processor Direct Slot

5 The PowerPC CPU

ROM: Each Power Macintosh has 4MB of ROM. ROM has
traditionally been slow to read from-much slower than
DRAM. The ROM in the Power Macs con sists of 120ns burst­
mode ROM-slower than DRAM, but not so slow as to cause
a significant performance impact on the system. Faster
ROMs would offer an insignificant performance improve­
ment but increase the cost a great deal.

The path between the Power Macs' ROM is 64 bits wide.
This path allows the Power Macs to access ROM data as
quickly as possible, which is important because much of the
system software is contained in the Power Macs' ROM and
n eeds to be accessed frequently.

Power Macintosh Hardware In Depth 165

Processor Direct Slot: The processor direct slot (PDS) on
the Power Macs is a direct connection to the 64-bit CPU
bus. Any card installed in this slot behaves no differently
than if it were hard-wired into the system.

Although Apple has documented the PDS in the Power
Macs, it's not encouraging developers to design cards for it,
for the following reasons:

• Too many different kinds of slots are available on the
Macintosh as it is; the last thing Macintosh card develop­
ers need is another type of slot to support.

• There really shouldn't be a need for third-party develop­
ers to build PDS cards for the Power Macs. Most existing
NuBus cards work fine, and most standard expansion-card
functionality, such as Ethernet, is already supplied on the
motherboard.

• If many third parties jump on the Power Mac PDS band­
wagon, Apple will have to provide long-term support for
this PDS design. The current PDS interface is 601-specific
and would require some changes for 603- and 604-based
systems, so it wouldn't be a general-purpose solution.

• Apple has already announced its intent to support the
PCI (Peripheral Component Interconnect) expansion-card
standard in the second generation of PowerPC-based
Macs. PCI has significantly more bandwidth available
than NuBus-at least three times as much. Since it's
already known that a better, faster, multiplatform stan­
dard expansion-card interface is on its way, there's no
good reason to create a new one.

• The only very high bandwidth application for the Power
Macs that requires a bus faster than NuBus is audio and
video, and the AV Card for the Power Macs supports the
DAY digital audio/video slot originally introduced with
the Quadra 660Av and Quadra 840AV.

166 The PowerPC Macintosh

• The Power Macintosh 7100 and 8100 models come with
either the VRAM or the AV Card preinstalled in the PDS.
The non-AV version of the 6100 is the only Power Mac
that ships with an unused PDS, which is sometimes filled
with the NuBus adapter.

Given all these reasons, it doesn't make sense for the
PDS to be public. As a result, buyers of expansion cards for
the first generation of Power Macs will be limited to NuBus
cards. The only thing to consider when buying NuBus cards
for the Power Macs is that the cards should come with soft­
ware drivers that specifically support the Power Macs. Older
drivers will work, but not necessarily as quickly. Some exist­
ing drivers will cause the Power Macs to slow down, since
the drivers are designed with 68k Macs in mind; depending
on how they interact with the rest of the Macintosh system,
they can cause many mixed-mode switches. Chapter 8
explains the issues surrounding this problem.

BART: BART is the name of the Power Macs' NuBus con­
troller. The Quadra 660Av and Quadra 840Av contain a NuBus
controller named MUNI, short for Macintosh Universal
NuBus Interface. (MUNI is also the name of San Francisco's
light-rail system.) When the Power Macs' NuBus controller
chip needed a name, the result was also the namesake of a
local public transportation system: BART (short for Bay Area
Rapid Transit, which serves much of the San Francisco Bay
Area).

BART provides the same functionality as MUNI does in
the AV Quadras, but with a PowerPC twist. BART's interface
to the rest of the Power Mac system is a full 64 bits wide; it
can support one and four beat transactions between NuBus
and the Power Macs' CPU bus, which move 64 or 256 bits at
a time, respectively.

Power Macintosh Hardware In Depth 167

NuBus Performance

Even though the Power Macs have the

most popular features found on NuBus

cards built in, there are still many good

reasons to use NuBus cards. However,

two major issues can affect NuBus p~rfor­

mance on the Power Macs. The most

popular NuBus cards used on the Power

Macs tend to be high-performance cards
such as video frame grabbers or

QuickDraw accelerators. These cards

need every little bit of NuBus perfor­

mance so they can transfer data and per­

form their work as quickly as possible.

Excessive Mixed-Mode Switches
NuBus cards need driver software for the

Mac to be able to use them. In the case

of some NuBus cards-most notably,
QuickDraw accelerators-the driver soft­

ware redirects parts of the OS to use the

driver to perform certain operations.

Existing NuBus drivers are written in 68k

code, which causes no problems until

this code is called frequently by PowerPC
code. QuickDraw is native on the Power

Macs, so any QuickDraw accelerator dri­
vers that intercept QuickDraw calls will

cause a major slowdown because they're

68k code. To remedy this, vendors of
NuBus cards whose drivers need to inter­

cept native PowerPC code must supply

new versions of their drivers to eliminate
the frequent switches between PowerPC
code and emulated 68k code.

Bursting Into the Bus The other issue

with NuBus on Power Macintosh is hard­
ware-related, but is partially solvable by

software. Since the Power Macs are sup­
posed to be the fastest Macs available,

they are commonly compared with the

top-of-the-line 68040-based Mac, the

Quadra 840Av, which has the highest
NuBus performance of any Macintosh.

On the 840Av, Nubus drivers can take

advantage of a particularly useful 68040
instruction: MOVE16. This instruction

moves 16 bytes of data via burst reads
and writes, achieving the fastest transfer

rates to and from NuBus cards on any
Macintosh.

The PowerPC 601 processor has no simi­

lar instruction to MOVE1 6. Although it is

certainly possible to move 16 bytes dur­

ing one burst to and from the 601, it's

not possible to do this between the 601

and NuBus. The 601 is unable to burst­

read or burst-write to an address that is

not designated as cacheable memory;
the 68040 can.

As you will remember from Chapter 4,
several modes of caching exist. For

addresses that are 1/0 devices, it is a bad
idea to mark this memory as cacheable,
since a memory-mapped 1/0 device

won't behave like a memory address. If
you write a value to an 1/0 device's

address and read back from that address,

168 The PowerPC Macintosh

NuBus Performance (continued)

you often won't read the same value that

you just wrote, especially since l/0
addresses often deliberately behave d if­

ferently depending on whether they're
being read from or written to.

Because of this disparity between the

w ritten data and the va lue resulting from

immediately reading from that same

address again, marking such an address
as cacheable is dangerous, since an

immediate read after writing to a

cacheable address will return a value

from the cache rather than the real data
from the 1/0 device.

Since the 601 can't burst to or from

noncacheable addresses, and the 68040's
MOVE16 does allow bursts to and from

noncacheable addresses, the 601 's supe-

rior overall performance won't make up

for the lack of this particular feature of

the 68040.

To help remedy the situation, Apple

has provided developers with a new call,

PBBiockMove, which they can use to
move memory to and from l/0 addresses

as quickly as possible. Since this API is

independent of how the memory copying

is done, Apple's engineers can continu­
ously improve PBBiockMove's perfor­

mance over time without driver writers

ever having to know about the details.

The initial version of PBBiockMove pro­
vides performance that exceeds that of

any Mac except the 840Av. Future ver­
sions of PBBiockMove may very well reach

or eclipse the 840Av's NuBus transfer rate.

The NuBus 90 slots in the 7100, 8100, and the 6100's
NuBus adapter card are functionally identical to those found
in the Quadra 840Av and on the Quadra 660Av NuBus
adapter card. The NuBus 90 specification supports standard
lOMHz operation for a maximum throughput of approxi­
mately 38MB per second. NuBus 90 also has a 20MHz burst
mode for high-speed transfers, but only between cards. The
maximum throughput of this mode is roughly 76MB per sec­
ond. These speeds are the same as in previous Macs. Some
applications, notably audio and video, have often been
thwarted by NuBus' throughput. This doesn't change for the
Power Macs and it won't really be addressed until a PCI card
standard appears in future Power Macs. If you'd like to know
more about PCI, Chapter 9 covers it in greater detail.

Power Macintosh Hardware In Depth 169

------ Data Path

The two Data Path chips in the Power Macs hold the key to
the overall high performance exhibited by these new
PowerPC-based machines. Data Path is divided into two
chips for a relatively banal reason: production cost. One of
the chips handles the even bits on the bus, the other han­
dles the odd ones, and it's simply cheaper to produce two
chips rather than a single huge chip.

Data Path has four different connections to the different
buses:

• DRAM bus: 64 bits wide
• CPU bus: 64 bits wide
• The pixel bus leads to Ariel, the chip responsible for the

motherboard video subsystem: 16 bits wide
• 1/0 bus: 16 bits wide

The Data Path chips create four almost-autonomous sub­
systems within the Power Mac hardware, and each subsys­
tem can do its thing without adversely influencing the
others. The Data Path combined with DMA allows high­
speed 1/0 while high-speed processing continues unaffected.

Data Path is crucial to the Power Macs' performance
because it acts as a router, directing data so as not to
bother any part of the system unnecessarily. The Data Path
chips separate the CPU bus, the 1/0 bus, DRAM, and the
video subsystem from each other. With this division in
place, data coming from, for example, a serial port can be
moved to DRAM without the CPU bus being affected,
allowing the 601 to continue its work uninterrupted and
allowing the use of the full bandwidth of the CPU bus all
the while. The 601 could be writing graphics data to a
video card while the serial transfer goes on, and neither is
affected by the other.

As part of its duties to separate the CPU bus from the
rest of the system, Data Path also contains write buffers so

170 The PowerPC Macintosh

that any write transactions from the CPU bus finish as
quickly as possible. The idea is similar to the idea behind
Print Monitor, which attempts to give you back control of
your Mac as soon as possible, and then performs the print­
ing while you're doing other things. For example, when the
601 writes to memory, the Data Path will accept the data
and make sure that it makes it to DRAM. In the meantime,
the 601 can get on with its work. This is a further contribu­
tor to the high system performance of the Power Macs.

SCSI and Ethernet 1/0 are also noteworthy since Data
Path contains special buffers for these two ports. Since speed
is of the utmost importance with these two, Data Path per­
forms a process called byte assembly on data coming from
either of them. Rather than sending each byte of data as it
arrives from the SCSI or Ethernet port, Data Path waits for 8
bytes, or 64 bits, to collect before it moves the data across
the bus to DRAM in one go. This is far more efficient than
sending eight individual bytes across the bus; moving one
64-bit chunk requires only a single bus transaction rather
than eight, even though the amount of data is the same.
Byte assembly happens for data received from these two
ports because they have the highest throughput. Sound data
is byte-assembled as well. This scheme also works for these
three ports in particular: Since they're used frequently, it's
reasonable to assume that once a byte arrives from one of
these ports, more data will follow shortly. So it's worthwhile
to wait a bit to get the whole 8 bytes together. For slower
1/0 ports-for example, ADB-byte assembly makes no
sense at all, since ADB data comes along far less frequently.

------DRAM

Each Power Macintosh has 8MB of SOns DRAM soldered on
the motherboard. Each of the three models has different
numbers of SIMM slots for RAM expansion: two in the
6100, four in the 7100, and eight in the 8100.

Power Macintosh Hardware In Depth

A single 64-bit path goes into DRAM from the Data Path.
This is the only way in or out of DRAM. The width of this
bus is important, since it determines the maximum amount
of data that can go in and out of RAM during a single trans­
action. Since the Power Macs use the standard 72-pin
SIMMs also used in the Quadra 650, Quadra 800, Quadra
660Av, and Quadra 840Av, which only support 32-bit-wide
access, two identical SIMMs must be added at a time to
expand a Power Mac's RAM.

When you are using the on-board video, 600 kilobytes
of the Power Macs' DRAM are set aside for the video buffer.
On top of the memory taken up, and thus lost to applica­
tion software, use of system DRAM for video also consumes
bandwidth on the DRAM bus. Monitors need to receive
updates to their information many times per second; typical
monitor refresh rates are 60 or 75MHz. This means that 60
to 7 5 times per second, up to 600 kilobytes of data is moved
from DRAM and sent out to the monitor via the on-board
video subsystem. This is approximately 37MB per second of
video data, and it uses up a significant fraction of the bus
bandwidth. Here again, Data Path's isolation of the Power
Macs' different buses allows individual parts of the system
to run as efficiently as possible.

------ The 1/0 Bus

The Power Macs' input/output devices are connected to a
16-bit bus that goes to the Data Path. The one exception is
NuBus: The BART controller is on the CPU bus, since trans­
fers to and from NuBus require significantly more band­
width than even the highest-speed SCSI transfer. Since
NuBus is 32 bits wide, it's much closer to the CPU bus in
performance than to any of the l/0 devices.

Although a 16-bit-wide 1/0 bus might appear to be
small, it is sufficient for the type of transfers it needs to sup­
port. Even on the Power Macintosh 6100/60's 30MHz bus,

172 The PowerPC Macintosh

the slowest of the three Power Macs' buses, the 16-bit l/0
bus supports up to 57MB per second. The 8100/80's 1/0 bus
supports approximately 76MB per second, more than
enough for the standard 5MB per second SCSI bus and the
8100's Fast SCSI high-speed internal bus, with plenty left
over for other 1/0. For example, the theoretical maximum
bandwidth required for Ethernet is 1.25MB per second, but
it typically uses only around 500 kilobytes per second on
most computer systems. Each GeoPort serial port is capable
of 256 kilobytes per second throughput, and CO-quality
audio only takes up about 86 kilobytes per second. As these
numbers show, the 16-bit 1/0 bus has ample available band­
width.

The 1/0 bus and the different 1/0 devices all provide com­
parable performance to the fastest 68040-based Macs. The
on-board video, despite using system DRAM and precious
bus cycles, outperforms many other video solutions on the
Mac market. The VRAM Expansion Card, combined with
Native QuickDraw, offers performance that rivals some
QuickDraw accelerator cards, and the Power Macintosh AV
Card adds video capture and playback features to these pow­
erful systems.

AMIC: AMIC is short for Apple memory-mapped l/0 con­
troller. AMIC controls the data flow between the different
1/0 devices and the rest of the system and manages the
direct memory access for SCSI, Ethernet, audio, the two ser­
ial ports, and the floppy drive.

AMIC also handles interrupts generated by the different
I/O devices. This is a critical feature for the Power Macs,
since throughout the history of Macintosh hardware archi­
tecture, the 68k family's interrupt scheme has been at the
core of hardware I/0.

Power Macintosh Hardware In Depth 173

Bandwidth

A great deal of data flows through a
Power Macintosh system. The purpose of
the Data Path is to isolate the four differ­
ent buses inside the Power Macs (CPU,
DRAM, Video, and 1/0), so that data flow
affects only the buses that it has to, thus
making the most bandwidth available on
every bus.

Table 7.1 gives the available band­
width of the various buses on a Power
Macintosh 6100/60 as well as the maxi­
mum bandwidth requirements of various
1/0 devices. The buses of the 7100/66
run at 33M Hz; the 81 00/SO's run at
40MHz.

Table 7.1 Bandwidth

Available Bandwidth (6100/60)

The 20MHz NuBus block transfers go
only from card to card, never between a
card and the rest of the system. As a
result, a NuBus transfer to the Power Mac
system could never use more than
38.15MB, which is the theoretical maxi­
mum of NuBus. In reality, the implemen­
tation of NuBus, including the overhead
of NuBus protocols and the time taken to
synchronize NuBus to the system bus,
results in real NuBus throughput of
between 7 and 15MB per second,
depending on whether data is going to
or coming from NuBus, and which Power
Mac is being used.

CPU and DRAM Bus

1/0 and Video Bus

30MHz x 64 bits

30MHz x 16 bits

228.88MB/sec

57.22MB/sec

Bandwidth Used

Video Data

Internal SCSI (8100 only)

External SCSI

Ethernet

GeoPort

CO-Quality Audio

LocalTalk

75Hz x 600kB

hardware max

hardware max

10 Mbps (theoretical max)

2 Mbps (max)

44.1kHz x 16 bits

230.4 kbps

43.95MB/sec

lOMB/sec

5MB/sec

1.25MB/sec

0.2SMB/sec

86.2SkB/sec

28.8kB/sec

174 The PowerPC Macintosh

Interrupts are signals generated by 1/0 devices that cause
the main processor to stop what it's doing and deal with the
cause of the interrupt. l /0 is time-critical and can't be han­
dled whenever the CPU gets around to it. The 68k family
has seven levels of interrupts, which signify seven levels of
importance. Different l/0 has a different interrupt level, and
thus a different interrupt priority. A higher-level interrupt
can interrupt the processing of a lower-level interrupt but
not vice versa.

The 68k offers a comparatively rich set of interrupt lev­
els, but the PowerPC only has a single one. So it's up to
AMIC to handle the simulation of the different interrupt
levels for the different I/0 devices. This simulation is neces­
sary to make the I/0 subsystem as compatible with previous
Macs as possible. Had the designers of the Power Macs not
made this effort, no existing Macintosh peripherals would
work with the Power Macs unless all their drivers were com­
pletely rewritten.

Curio: The Curio chip is the most versatile of the 1/0 chips
in the Power Macs. Curio is responsible for handling SCSI,
Ethernet, and both serial ports for the Power Macs. Curio is
also used to support the same ports in the 660Av and 840Av.

The SCSI port that Curio is responsible for can support
throughput of up to 5MB per second.

The Ethernet part of Curio connects to the outside world
through the Power Macs' AAUI interface, which is a
medium-agnostic Ethernet port. To actually connect a
Power Mac to an Ethernet network, you need an adapter for
either lOBASE-T (twisted-pair), lOBASE-2 (coax/ThinNet), or
lOBASE-5 (AUI/ThickNet) Ethernet wiring.

Finally, Curio contains the hardware for the two serial
ports in the Power Macs. Each port has 8 bytes of buffer
when LocalTalk and GeoPort are active; otherwise the serial
buffers are 3 bytes for incoming and 1 byte for outgoing

Power Macintosh Hardware In Depth 175

GeoPort

GeoPort is a new type of high-speed The first GeoPort adapter available was
serial port that was originally introduced Apple's own Telecom Adapter, which
with the Quadra 660Av and Quadra offers two RJ-11 jacks to plug standard
840AV. It started as an Apple-only innova- phone wires into. The Telecom Adapter
tion, but in early March 1 994 was contains the hardware necessary to con-
licensed to Aox and Analog Devices. vert the analog signals from a phone line
These two companies will make the into digital data, and vice versa. The
GeoPort technology available for the x86 adapter has no modem capabilities; it
hardware as well as the Windows and provides the minimal hardware necessary
OS/2 software environments. to connect a system to phone lines.

A GeoPort system has multiple parts: The GeoPort for Power Macintosh soft-
the GeoPort hardware built into a com- ware provides all the features and func-
puter system, an external GeoPort tions of a modem purely in software.
adapter, and the necessary system soft- Combined with the Telecom Adapter, the
ware to allow the computer to access GeoPort software acts just like a stand-
and control the adapter. The GeoPort alone modem, but at a considerably
port itself looks like a standard mini- lower price. Version 1 .0 of the GeoPort
DIN-8 serial port, just like the modem for Power Macintosh software provides
and printer ports on Macs since the Mac the functions of a 14.4 kilobits per sec-
Plus. The only difference is that a GeoPort and V.32bis modem for data as well as
has an additional ninth pin, which is used that of a 9600bps V.29 fax modem. In
to supply power to an external GeoPort addition, the GeoPort software comes
adapter. The GeoPort port is designed so with Apple's Express Modem software,
that all existing DIN-8 plugs will work which makes the GeoPort look like a reg-
without modification. ular modem to conventional communica-

The GeoPort can act as a conventional
modem or printer port, allowing up to
57600bps asynchronous serial rates as
well as supporting LocaiTalk's 230.4kbps
data rate. When communicating with an
external GeoPort adapter, the GeoPort
port operates at 2 megabits per second,
enough to support very high bandwidth
serial applications.

tions software.
The software modem runs on the

Power Macs' 601 chip, which illustrates
clearly how much computational horse­
power the Power Macs have. Both the
660Av and 840AV included a separate DSP
(digital signal processor) chip that, com­
bined with the appropriate GeoPort soft­
ware, ran a software modem on these

176 The PowerPC Macintosh

GeoPort (Continued)

machines. The Power Macs offer the
same features, but without the need for a
separate DSP chip.

Another benefit of a software modem
is that it's upgradable over time. When
the GeoPort modem was first introduced
for the 660Av and 840Av, it was only able
to support 9600bps for data connections.
Shortly thereafter, a software upgrade
made 14400bps available to users, with­
out any change to the Mac or the
GeoPort Telecom Adapter.

Current GeoPort is usable only with
Apple's own Telecom Adapter, but future
plans call for an ISDN GeoPort adapter,
as well as adapters for T-1 high-band­
width digital phone lines, which provide
up to 1.5 megabits per second through­
put. To use one of these alternat ive con­
nection methods, all that's needed is a
new adapter, since most of the necessary
hardware is built into each Power Mac.

traffic, as on most other Macs. The combination of the
larger buffer and the systems' support for DMA for serial I/0
make the two serial ports capable of supporting Apple's
GeoPort high-speed serial architecture.

AWACs: The AWACs (audio waveform amplifier and con­
verter) chip is in charge of all audio-related 1/0 in the Power
Macs. A WACs is a further evolution of the Singer audio chip
and waveform amplifier chip (WAC), both of which are
found in the Quadra 660Av and Quadra 840Av.

AWACs has three stereo inputs and internally supports
two channels of 16-bit sampled digital audio. The protocol
used by AMIC and AWACs supports eight channels of 20-bit
data.

SWIM Ill: The SWIM III chip is the Power Macs' floppy con­
troller. SWIM is a spoonerized acronym that stands for
super-integrated Woz machine; the original integrated Woz
machine was a floppy controller designed by Steve Wozniak,
cofounder of Apple Computer. The original SWIM included

Power Macintosh Hardware In Depth 177

support for the 1.44MB high-density floppy format. SWIM
III is the third generation of the SWIM chip.

SWIM III supports DMA data transfer of floppy data and
doesn't need interrupts to be disabled during floppy 1/0. In
the past, use of floppies has been unfriendly in the Mac
hardware architecture. During floppy access, virtually all
other hardware 1/0 stopped until floppy I/0 had completed,
since the CPU was responsible for moving the data to and
from the floppy. With the added support for DMA, the CPU
must no longer babysit the floppy controller during 1/0 and
is free to do real work.

Ariel II: The Ariel II chip combines a color lookup table
(CLUT) and a digital-to-analog converter (DAC) in a single
chip. Ariel II is the same chip used for on-board video in the
Macintosh Color Classic. Ariel II contains a 256-element
color lookup table and the necessary circuitry to convert the
video data in DRAM to analog signals for the on-board
AudioVision port.

Ariel has two connections to the rest of the system. One,
the pixel bus, is to the Data Path chips, where video data
comes from DRAM. The other connection goes to the Power
Macs' 1/0 bus and is used to set up and control Ariel's func­
tions.

CUDA: The CUDA chip is responsible for managing the
Apple Desktop Bus (ADB), turning system power on and off,
managing Parameter RAM, and managing the built-in clock.

Input devices such as keyboards and mice use the ADB
to communicate vvith the Macintosh system. Since the 7100
and 8100 systems are turned on via the keyboard and
turned off by software, combining ADB and the on/off
switch in the same chip makes sense. In addition, GeoPort
devices can also turn on a Macintosh. This allows incoming

178 The PowerPC Macintosh

Upgrade Card

phone calls, or an incoming fax, to start up the Power Mac
and allow it to receive incoming data.

Squldlet: The Squidlet chip provides all the clock signals
needed by the CPU and other ASICs within the Power Macs
except for the clock signals for on-board video.

Squidlet provides 2x and 4x clocks for the 601 CPU, as
well as 2x and lx clocks for the other ASICs. Squidlet's main
clock speed is determined by the Power Mac system it's in;
on the 6100/60, for example, Squidlet's main clock runs at
30MHz, hence the 60 and 120MHz clocks on the 601.

54CF96: The 54CF96 is the second SCSI controller in the
Power Macintosh 8100. Curio handles the standard external
SCSI bus in the 8100, and the 54CF96 is in charge of manag­
ing the internal high-speed SCSI bus that can support up to
lOMB per second SCSI throughput. The 53CF96's bus is acces­
sible only via a ribbon connector on the 8100's motherboard.

The Power Macintosh Upgrade Card is the lowest-cost
upgrade solution for owners of 68040-based Macs. Only
some Quadra models can be upgraded to one of the Power
Macs via logic board upgrade. Some Macs can't be upgraded
in this way, but Apple didn't want to leave these machines
in the lurch.

The Power Macintosh Upgrade Card contains a PowerPC
601 chip, 1MB of lSns Level 2 cache, and a standard 4MB
Power Macintosh ROM. The 601 always runs at twice the
speed of the system it's installed in. For example, in the
2SMHz 68040-based Quadra 700, the 601 on the Upgrade
Card runs at SOMHz.

The 601 used on the Power Macintosh Upgrade Card is
slightly different from the ones found inside the Power

AV Card

Power Macintosh Hardware In Depth 179

Macs. The difference between the 601s is a minor one;
Upgrade Card users will almost certainly never notice.

The 601s on the Upgrade Card run their floating-point
units in so-called synchronous mode. This mode defeats
some of the benefits offered by pipelining in the floating­
point unit. For this reason, floating-point performance on
Upgrade Card-based Power Macs will be lower than on
equivalently fast 601s in Power Macs. This decision was
made deliberately, since those users who need the utmost in
floating-point performance will almost certainly buy a new
Power Mac anyway. Users upgrading via the card will still
see floating-point performance far higher than on their
68040 Macs, but not quite as high as on the Power Macs.

The Upgrade Card runs at twice the speed of the system
it's installed in because it makes the work of the bus con­
verter on the Upgrade Card much easier. For the Upgrade
Card to function properly, it must contain a converter that
allows the 601 bus on the Upgrade Card to work with the
68040 bus on the Macintosh system the Upgrade Card's
plugged into. Since the Upgrade Card contains no RAM of its
own, nor any 1/0 ports, it's dependent on the host system
for these resources. The large Level 2 cache acts as a buffer to
counteract much of the performance hit caused by having to
access the slower 68040 bus to get at RAM and 1/0.

The Power Macintosh AV Card is the only part of the Power
Macintosh hardware that is basically identical to existing
hardware on a 68k-based Mac. The AV Card contains virtu­
ally the same video hardware found in the Quadra 660Av
and 840Av. The audio features in the AV-equipped Quadras
are available on all Power Macs, not just those with the AV
Card.

180 The PowerPC Macintosh

The Power Macintosh AV Card uses several different
ASICs to do its job. Since the design of the card is an adapta­
tion of the design in the AV Quadras, the AV Card contains
a bus-converter chip named PODRIC that provides the nec­
essary signal conversion and buffers to translate the Power
Macs' 601 bus signals into 68040 bus signals that are under­
stood by the chips on the AV card.

All of the AV Card's sound capabilities come from the
AWACs chip on the Power Macs' motherboard; the AV Card
itself has no additional audio hardware.

------ CIVIC

The heart of the AV Card is CIVIC, the Cyclone integrated
video controller. Cyclone was the code name for the Quadra
840Av, and CIVIC was originally designed for the two AV
Quadras. CIVIC can manage between 1 and 4MB of VRAM,
although the AV Card has 2MB soldered on it and has no
expansion capabilities. CIVIC also controls the interaction
between the Philips SAA7194 chip and the Sebastian chip,
and it provides timing signals for the different standard tele­
vision formats. It additionally is responsible for handling
the convolution of graphics for line-interlaced displays such
as televisions, which allows the AV Card to be used to dis­
play Macintosh video data on TV screens.

------ Sebastian

Sebastian is a combination CLUT and DAC, similar to Ariel
II, but designed for higher performance. Sebastian has two
32-bit-wide connections to the rest of the card. It can accept
data either as a 64-bit quantity coming in both ports or as
one or two individual 32-bit parts.

Sebastian allows one of its 32-bit ports to be used for digi­
tal video while the other is processing graphics data such as
QuickTime. This feature makes it possible to mix video and

Power Macintosh Hardware In Depth

graphics on the same screen, even if the two have different
bit depths.

------ SAA7194

The SAA7194 chip is a single-chip version of the two-chip
set used in the Quadra 660Av and Quadra 840Av. The
SAA7194 is made by Philips and is used on the AV Card to
decode video data from the incoming video port in either
S-video or composite NTSC, PAL, or SECAM format and
translate the analog data to a digital format.

The SAA7194 chip also provides the ability to scale the
incoming video picture in hardware. No computationally
intensive and therefore slow softWare scaling is required.
When the Philips chip is done decoding the incoming video
signal, it passes the digitized data into VRAM as either 16-bit
RGB data, 8-bit grayscale, or YUV.

------ Mickey

Mickey is the chip responsible for video output. Outgoing
video can leave the AV Card either via a standard DB-15
monitor connector or via the outgoing S-video connector.

Mickey can output video data as RGB, or it can translate
the RGB data into composite NTSC, PAL, or SECAM format
as well as S-video.

------- The DAV Connector

A new type of connector was introduced with the 660Av and
840Av to allow NuBus card developers direct access to the
raw audio and video data in the two AV systems. This con­
nector was named DAV, for digital audio/video.

A typical use for the DAV connector is hardware-assisted
video compression and decompression, to allow larger-size
video windows and higher frame rates than software-based
compression schemes. The DAV slot allows the NuBus cards

182 The PowerPC Macintosh

direct access to the digital data without having to transfer
the data via NuBus.

In the AV Quadras, the DAV slot is inline with a NuBus
slot in the system. In the case of the 660Av, the DAV slot is
on the NuBus adapter card that plugs into the 660Av's PDS
slot. Either way, the only realistic way to connect to the
DAV slot is from a NuBus card that has its DAV and NuBus
connectors lined up to plug into both connectors in the
Quadras. Since the video part of the AV features for the
Power Macs is implemented on a card, it doesn't make sense
to put a DAV slot on the motherboard, inline with a NuBus
slot on the 7100 or 8100. The 6100Av models are particu­
larly tricky in this regard: A 6100Av cannot support a NuBus
adapter card, since the AV Card is plugged into the only
processor direct slot, the same slot that would otherwise
house the 6100's NuBus adapter card.

The DAV connector for the Power Macs is designed to be
connected to a DAV connector on a NuBus card via a ribbon
cable. Since the 6100Av model can't support a NuBus card in
addition to the AV Card, the DAV slot is something of an
atavism in this system. The electrical signals for the ribbon­
cable version of DAV are identical and provide the same
access to the raw digital audio and video data as the DAV
slots in the 660Av and 840Av.

VRAM Expansion Card

Those models of the Power Macintosh 7100 and 8100 that
don't have an AV Card come with the VRAM Expansion Card
preinstalled in the processor direct slot. The VRAM Expansion
Card is a VRAM-based frame buffer that provides significantly
higher video performance than the video subsystem on the
Power Macs' motherboard. The VRAM Expansion Card con­
sists of the VRAM, a video/VRAM controller, a DAC (digital­
to-analog converter), and a clock generator.

Power Macintosh Hardware In Depth 183

Two versions of the VRAM Expansion Card are available:
The card that comes with the 7100 has 1MB of SOns VRAM
soldered onto the card itself, with four SIMM slots to allow
expansion up to 2MB of VRAM. The 8100 version of the
VRAM Expansion Card comes with 2MB soldered, with
SIMM slots for an additional 2MB of VRAM. Other than the
preinstalled VRAM and its expandability, the two cards are
completely identical.

The VRAM Expansion Card contains

• DaMFB, the dual-array memory frame buffer chip
• RaDACal, a color lookup table and digital-to-analog con­

verter (CLUT/DAC) designed specifically for this card
• PUMA, a clock-generator chip

DaMFB acts as the memory controller for the VRAM on
the card, managing VRAM refreshes and access to the VRAM
data. RaDACal is a combination CLUT and DAC, much like
Ariel for motherboard video and Sebastian on the AV Card,
except that it supports up to 24 bits per pixel and is
designed specifically for the 64-bit-wide bus on the VRAM
Expansion Card. PUMA is the chip that generates all the
timing signals on the VRAM Expansion Card, for VRAM
refreshes as well as for video refreshes for the monitor.

The VRAM Expansion Card has a single, standard DB-15
monitor interface, the same DB-15 connector that
Macintosh users (and their monitors) have been accustomed
to since the introduction of the Apple 13-inch RGB monitor.

Mixed Mode

Power
Macintosh
Software in
Depth

he decision about whether to make code native is not a sim­
ple matter of saying "yes!" and then doing it. It requires
careful consideration about the type of code involved and
the work it performs. In general, most applications benefit
from going native. Those applications that spend most of
their time waiting for I/0 to happen benefit less than others
that spend the majority of their time performing computa­
tions. In all cases, however, user interfaces can benefit
greatly from the added performance, so developers of I/O­
bound apps should also try to go native. One of the Mac's
main benefits is the high quality of its user interface. With
the introduction of the PowerPC, much more interactive
and responsive user interfaces are possible.

The Mixed Mode Manager handles all the work involved in
switching between native and 68k code on Power Macs.
Since existing 68k software has to run unmodified on the
Power Macs, the Mixed Mode Manager is completely trans­
parent to 68k code. This means that so-called accelerated
toolbox traps-parts of the operating system that are
native-appear no different to 68k software than emulated

185

186 The PowerPC Macintosh

ones. However, this means that the Mixed Mode Manager is
handling the switch from 68k code to PowerPC behind the
scenes and also handling the switch back when the native
code is done and control needs to be returned to the 68k
software.

------ Mixed-Mode Switch: 68k to PowerPC

The exact mechanics of a mixed-mode switch from 68k to
PowerPC code varies somewhat, depending on whether the
68k passes any additional information to the native code in
the form of parameters. When one 68k routine calls
another, it must adhere to standard calling conventions that
define how the caller and the called routine exchange infor­
mation. Both parties in the exchange need to know exactly
how much information is passed from one to the other and
how it is passed. Software written in Pascal passes parame­
ters differently than software written in C. Most Mac OS
routines use the Pascal calling conventions; there are excep­
tions to this rule that have calling conventions of their own,
which conform to neither those of C nor those of Pascal.

When a piece of 68k code calls native code, a piece of
information known as a routine descriptor is used to make the
transition. The routine descriptor, a data structure intro­
duced with the new runtime architecture of the Power Mac,
contains all the information that the Mixed Mode Manager
needs to know about the routine that's being called. The
Mixed Mode Manager must convert and possibly reorder
any parameters that the emulated software passes to the
native routine, before the native software is executed. In
addition to the information about the called routine, the
routine descriptor contains a pointer to the transition vector.
This data structure contains two pointers:

• A pointer to the actual PowerPC routine
• A pointer to the called routine's global variables

Power Macintosh Software In Depth 187

------ Mixed-Mode Switch: PowerPC to 68k

When the native code is done executing, any return values
need to be converted by the Mixed Mode Manager into the
form that the emulated 68k code expects. The Mixed Mode
Manager adheres to the standard register-saving conven­
tions on the 68k side:

• Registers whose contents used to be documented as saved
will be saved

• Registers whose contents could change almost certainly
will change

One of the sneakiest pitfalls of the switch from 68k to
PowerPC-based machines happens if the 68k software relies
on undocumented behavior of system calls. If, for example,
a toolbox call on a 68k machine deposited an undocu­
mented but useful value in a specific register that is not
guaranteed to be saved, you should expect that this value
may no longer appear there. Any software that depends on
such undocumented behavior will malfunction on the
Power Macs-if not now, then maybe after the next system
software release or with the introduction of new PowerPC­
based machines.

------ Penalty for Switching

No matter in which direction a mixed-mode switch occurs,
the switch takes time. The average mixed-mode switch takes
about SO emulated 68k instructions. Although this may
seem short in human terms, this is a significant lag for a
computer. The cumulative effect of many mixed-mode
switches can degrade performance drastically. Any fre­
quently called parts of the OS that incur mixed-mode
switches can cancel out the added performance provided by
the Power Macs.

Native software can have it particularly hard if it calls
emulated traps frequently. Each time an emulated trap is

188 The PowerPC Macintosh

Call Chains

called from native software, a mixed-mode switch happens
going into the routine and again coming back out. In
System 7.1.2, the first release of the Mac OS for the Power
Macs, some traps that you would have thought would be
native aren't. For example, the Microseconds trap, used for
fine-precision timing, is emulated. Calling this trap repeat­
edly from a native app yields not only unexpectedly long
times, but also slows down the native software. Apple's
steadfast refusal to release information about which traps
are native and which are emulated seems a bit odd consider­
ing this example.

Apple's rationale is that people shouldn' t count on
whether a trap is emulated or native, since emulated traps
are liable to go native without any warning. This is an
understandable stance. But since one of the main goals of
going native is increased software performance, and knowl­
edge of which traps are emulated would allow developers to
avoid those traps that would slow them down-possibly in
favor of a solution that is already native-it's not clear that
this strategy accomplishes anything useful. Regardless of
Apple's position on this matter, at this writing, a list of
native, fat, and emulated traps had already been posted by
an enterprising developer to numerous online services.

A mixed-mode switch rarely comes alone. For this reason,
determining the effect of making a particular piece of soft­
ware native or leaving it in emulation on a Power Mac
requires careful investigation to determine how the code is
called, and where execution continues after the code in
question is completed. A call chain is the path of execution
taken when a call to a particular system-software routine is
made. Many different bits of code are executed after a piece
of software calls a system-software routine and before the
code of the routine itself is executed. Each separate routine

Power Macintosh Software In Depth 189

of intervening code makes up a link in the call chain. To
make matters even more complicated, not only are these
different intervening routines executed going down the
chain from caller to called routine, but different parts of
those same routines are generally executed on the way up
the chain, back to the original caller, after the system­
software routine has done its job.

Since each link in the call chain can consist of either
PowerPC or 68k code, you may incur a mixed-mode switch
once for every routine in the chain. On the way back up,
the same number of mixed-mode switches happens again.

When third-party software-or even Apple software­
patches into such a call chain, any additional mode
switches that result from the patch can bog down the entire
machine. Some operating-system routines are so popular
that they are sometimes patched multiple times, each time
by a different extension or control panel. In the worst case,
the different patches in a single trap use both PowerPC and
68k code, causing many extra mixed-mode switches.

If you're a developer who patches traps, you owe it to
your users to investigate this issue in great detail and deter­
mine the best method for minimizing the impact of any
mixed-mode switches. If you're a user, you should find out
whether any of the extensions that you use regularly cause
unnecessary mixed-mode switches by patching emulated
code into a native trap.

Extensions and Fat Patches

Extensions and control panels are an unavoidable part of
today's Macintosh experience, but they aren't inherently
evil. What gives these pieces of software such a bad reputa­
tion is programmers' often shoddy programming practices
that manifest themselves as INIT conflicts. In general, it is a

190 The PowerPC Macintosh

good idea to use as few third-party extensions and control
panels as possible. Even on a 68k-based Macintosh, exten­
sions and control panels cause a slowdown just because of
the added work that they perform.

On the Power Macs, the incentive to avoid unnecessary
extensions is even greater, since emulated software runs
slower than native software anyway, and the likelihood is
high that extensions are causing mixed-mode switches and
thereby degrading the overall performance of a Power Mac.

During the migration from 68k to PowerPC, which will
undoubtedly take many years, extension authors need to be
aware of the choices they face about how to patch system
software.

Relying on the fact that a trap is currently emulated isn't
necessarily a wise thing, since it can become a native trap
without warning as soon as the next system software
release, or even a new version of the PowerPC Enabler,
comes out. The 11but the trap's emulated" excuse will hold
water for a while, but not for much longer.

Native traps-any of the QuickDraw calls, for example­
should always be patched native. There is no excuse for
slowing down users' machines by introducing 68k
QuickDraw patches on a Power Mac system. QuickDraw
accelerator cards are a good example of this. By now, all the
major video card vendors have added Power Mac support to
the drivers on their video cards. Those accelerators that
don't have Power Mac support wind up patching Native
QuickDraw with the intent of speeding it up, but by adding
a 68k patch to a native QuickDraw call, the accelerator's
software is actually slowing everything down. If you have a
NuBus video card that you want to use in your Power Macs,
make sure the card has the latest ROMs from the vendor
and that any additional Power Mac-specific drivers are
installed. This will minimize any chance of slowdown
related to mixed-mode switches.

Power Macintosh Software In Depth 191

In general, extensions these days should install fat
patches. These patches contain both 68k and PowerPC code
and have the benefit of never causing an unnecessary
mixed-mode switch. When an extension installs a fat patch
and the patched trap is called, the Mixed Mode Manager
looks at the patch to see what kind of a patch it is.

• If it's an emulated patch and the caller is native, a mixed­
mode switch must happen.

• If it's a fat patch, the Mixed Mode Manager picks the code
type of the caller. If the caller is emulated, the emulated
patch code is executed. If the caller is native, the native
patch is run.

The only time when it makes sense to patch 68k traps
exclusively with a native patch is if more time is saved exe­
cuting the patch than it takes for two mixed-mode switches
to occur. If this is the case, then a native patch is a fine idea.

It's safe to assume that system-software calls that are
native today will remain so. Therefore, if you have to patch
such a trap, make sure your patch is native; a fat patch
won't be much help. Even if the rest of your code is still
emulated, make sure that the piece of code that determines
whether the rest of your code should be executed is native.
This is the strategy Farallon's engineers used starting with
version 1.0.3 of Timbuktu Pro.

Timbuktu Pro intercepts QuickDraw calls and retransmits
them over the network to another Mac, allowing the user of
the remote Mac to see what's happening on the local Mac's
screen. To intercept the QuickDraw routines, Timbuktu must
patch them. Since QuickDraw is native on the Power Macs,
using 68k patches would slow the machine down measur­
ably. Farallon's solution was to install native patches that did­
n't incur mixed-mode switches. Only when a remote
Macintosh is connected to the local Mac does Timbuktu need
to intercept and retransmit the QuickDraw information.

192 The PowerPC Macintosh

Since Timbuktu Pro 1.0.3 isn't otherwise native, mixed­
mode switches happen when someone is connected
remotely; the code to capture the QuickDraw information
and send it is still emulated. But if no one's watching,
Timbuktu's patches stay dormant and do nothing. As a
result, the patches cause no mixed-mode switches. This is
the ideal strategy for this kind of situation. Ideally, the rest
of Timbuktu would be native as well, but the need for a
native version has been alleviated since Timbuktu's patches
no longer affect the Power Macs' overall performance.

The Code Fragment Manager

The Code Fragment Manager (CFM) is a crucial new piece of
system-software technology introduced with the Power
Macs. The initial implementation of the CFM is focused on
the PowerPC, but a 68k version of the CFM will become
available before the end of 1994.

When the Macintosh operating system was originally
designed, RAM was a scarce commodity, and virtual memory
required far more computing resources than were available.
The designers of the original Mac OS came up with a scheme
that would allow applications to load only the code they
really need into RAM and leave unused code on the disk to be
retrieved later if needed. In this scheme, known as segmenta­
tion, each individual piece of code is referred to as a segment.

Over the years, the Mac operating system's segmentation
scheme has become a hindrance to many developers. The
state of the Mac has also progressed. From experience gajned
in the intervening years, a definjte need has arisen for a new
piece of system software that is responsible for the same
things the segment loader was, but that is far cleverer and
more modern about it. Enter the Code Fragment Manager.

Rather than storing executable code in small 32-kilobyte
chunks, native PowerPC applications store their executable

Power Macintosh Software In Depth 193

code in a contiguous chunk in the data fork of the applica­
tion file. This new scheme also allows fat binary applica­
tions-apps that contain both 68k and PowerPC code and
that can run on any kind of Macintosh at the best possible
speed.

Storing the PowerPC code in a single piece allows the
implementation of a useful feature on the Power Macs: code
swapping. When virtual memory is enabled on a Power
Mac, any native app that is launched has only the code that
it actually needs loaded into RAM. Code needed later is
loaded into memory with the help of the Virtual Memory
Manager, which treats the data fork of the native applica­
tion as if it were a mini VM swap file. With this scheme,
PowerPC-executable code is also made to be read-only-the
first time memory protection of any kind is available in the
Mac OS.

Som e apps store PowerPC code in external plug-in files.
As long as the plug-in's code is in the file's data fork and the
application software calls the appropriate parts of the CFM,
the code-swapping feature is also available for nonapplica­
tion code.

Since the code will never be modified while it's running,
anytime new code needs to be loaded into RAM, the operat­
ing system doesn't have to save the least recently used piece
of code to disk; it just loads the new code. This makes the
performance hit for using this scheme small, since reads
from h ard disks are always much faster than writes.

Another important feature of the Code Fragment
Manager is that every fragment has its own global variables.
This feature, provided for all types of PowerPC code that use
the CFM, makes development of stand-alone code vastly
easier. An application usually consists of a single fragment,
but it can also be m ade up of multiple small fragments.

194 The PowerPC Macintosh

Under the standard 68k environment, stand-alone pieces of
code had to go through all sorts of contortions to create a
scheme for accessing global variables.

The final key feature of the CFM is support for shared
libraries, known as import libraries. These libraries are not to
be mistaken for shared libraries used by Apple's Shared
Library Manager-they are two different things. The CFM
has the ability to bind multiple fragments at runtime and
allow one fragment access to code and data that has been
explicitly exported by other fragments. CFM's support for
import libraries lets you keep a single copy of core code
around that is shared by multiple applications in the same
family. But that's not all. CFM's import libraries can also act
as update libraries, providing replacements for existing code.
This would allow an application developer to provide
updates simply by making update libraries available rather
than sending an entirely new app. With the update library
scheme, only code that needs to be overridden is provided,
and the CFM deals with all the trickiness involved in recon­
ciling different version of libraries and making sure that the
most recent version of a routine is called.

The CFM for PowerPC is a welcome addition to system
software and provides extremely useful features to develop­
ers of native PowerPC software.

The Nanokernel

The nanokernel in the first PowerPC
version of Macintosh system software is
the lowest-level piece of system code and
handles many of the hardware-specific
tasks. It provides a layer of insulation
between the hardware and the system
software, allowing system software to use
a standardized way of accessing certain

low-level hardware features. When the
hardware changes, the nanokernel must
change as well to support the hardware,
but the system software that calls the
nanokernel should not have to change
much, if at all. The nanokernel is a prede­
cessor of the long-awaited microkernel for
the Macintosh operating system.

Traps

Power Macintosh Software in Depth 195

On the 68k Macs, calling the operating system involves the
use of traps. Traps are a method of interrupting software that's
currently running. Trying to execute a particular type of
instruction-for example, one whose hexadecimal form
begins with the value A-causes an A-trap exception, which is
dealt with by the A-trap handler. The A-trap handler on a Mac
is known as the trap dispatche1~· it looks at the value of the
other 12 bits in the 16-bit instruction that begins with A and,
based on the value, jumps to the part of the operating system
that's being called by the 68k software. This routing of execu­
tion to the correct part of the OS is the trap dispatcher's job.

For native code, operating-system calls are dispatched
via a different scheme that uses features of the Code
Fragment Manager, but there is still a basic similarity. Traps
can still be patched on the Power Macs, and the patches can
be of three different varieties: a 68k patch, a PowerPC patch,
or a fat patch.

There are four different types of traps on the Power
Macs, described by the type of code that the OS dispatcher
routes a call to.

------- Native Trap

Native traps are something of a misnomer, since a 68k trap
is a native trap on 68k-based Macs. The dispatcher routes an
OS call to a routine called a native trap that consists of
PowerPC code. If a native trap is called by emulated soft­
ware, it causes a mixed-mode switch before executing the
trap's code, and another switch afterward before continuing
execution of the emulated code.

------ Emulated Trap

The dispatcher routes the call to emulated 68k code. If the
emulated trap is called by native software, it causes two

196 The PowerPC Macintosh

mixed-mode switches: one before the trap's code is exe­
cuted, and another afterward.

------ Fat Trap

The trap dispatcher has a table of addresses where it looks
up where to route a call to. A fat trap has both PowerPC and
68k code; the decision about which type of code to use
depends on the caller. Since mixed-mode switches exact a
big performance penalty, the Mixed Mode Manager endeav­
ors to avoid causing a switch where possible. For this reason,
if emulated 68k code calls a fat trap, the code executed is
also emulated 68k code, thus avoiding two mixed-mode
switches. If PowerPC code calls a fat trap, PowerPC code is
executed, again to avoid the switches.

Fat traps are the ideal solution during the transition
from 68k Macintosh to Power Macintosh; a fat trap causes
the fewest mixed-mode switches.

- ----- Split Trap

A split trap denotes an OS routine whose native PowerPC ver­
sion doesn't go through the central OS dispatcher. For this rea­
son, there is no way for third-party software to patch such a
trap. Even if the patch is installed, it has no effect on the exe­
cution of the native OS call. Split traps generally occur where
Apple engineers felt that there was no good reason for any
software to patch that routine, and avoiding the overhead of
the dispatcher provides a small performance boost as well.

The PowerPC system software contains significant
changes when compared with Macintosh system software
running on 68k. The Mixed Mode Manager transparently
takes care of much of the work involved in calling PowerPC
code from 68k code and vice versa. The Code Fragment
Manager provides a new runtime environment for PowerPC
native apps and stand-alone PowerPC code. The CFM in par­
ticular is the first sign of some major changes to the
Macintosh operating system to come.

Power Macintosh Software In Depth 197

Floating-Point Writes Go Fast

On a Power Mac, Native QuickDraw
uses an interesting way to double its read
and write performance when moving
large amounts of memory around, for
example when transferring a block of
image data from one part of the screen
to another. The trick is in putting
together two details: the PowerPC 60l's
data bus is 64 bits wide, and so are
floating-point registers (FPRs).

Experimentation has shown that a sig­
nificant performance increase can be
seen when using floating-point writes to
memory that is non-cacheable, such as
video memory, rather than doing the
same thing from 32-bit GPRs (general­
purpose registers). The trick is this: Data

is written from two GPRs into a location
in memory that is actually cached in
writeback mode. These two 32-bit values
are read back into a 64-bit FPR and then
written out again in a single beat, this
time to the location in memory where
the data is supposed to go.

This method won't show a clear bene­
fit for moving small amounts of data
around on a Power Mac, and it's detri­
mental when writing to cacheable mem­
ory, but if your software spends much of
its time writing large amounts of data to
noncacheable memory, you should defi­
nitely look into those big floating-point
registers.

Looking Ahead

he first generation of Power Macs hit the mark by providing a
great performance enhancement over 68k-based Macs when
running native applications, all the while maintaining hard­
ware compatibility with existing Macintosh peripherals.
However, overall system performance is determined by more
than just the performance of the system's central processor.
Despite the high-performance design of the Power Macs'
64-bit CPU bus and DMA hardware, some carryovers from the
68k Mac that were already known as serious bottlenecks have
also come along for the ride, and they remain sore points.

Apple has already announced its intention to support
forthcoming technology standards such as PCI and Fire Wire,
both of which offer features and performance that is much
more in line with the increased speed offered by native
PowerPC applications. In addition to performance boosts in
the midrange and high end, PowerPC processors will
migrate across Apple's entire product line.

The current Power Macs are the starting point for many
major developments to come, within the Macintosh indus­
try as well as outside of it. This chapter takes a look at some
of the major new hardware and software technologies that
are on the way and their impact on the Macintosh and the
rest of the personal-computer industry.

199

200 The PowerPC Macintosh

Hardware

Processors like the lOOMHz 601 and the 604 run software
very quickly on their own, but the applications that benefit
the most from these PowerPC chips' computational horse­
power are also dependent on 1/0 performance. Multimedia
applications such as digital video and audio are a major bur­
den on the video and storage subsystems in a Mac, and any­
thing that improves performance in these areas is a major
boon.

PCI and FireWire are two technologies that Apple has
openly committed to supporting in the Macintosh line­
perhaps as soon as in the next generation of the Power
Macs. Not only are these technologies solutions to existing
bottlenecks in the standard Macintosh hardware, but they
are also multiplatform standards. The Mac won't be the only
personal-computer system using peripherals based on these
schemes (unlike SCSI, which, until the popularity of
CD-ROM in the x86 world, was virtually unheard of there).
With multiplatform support comes larger production and
sales volumes for these products and, consequently, lower
prices and a broader selection of products for Macintosh
users to choose from.

------ PCI

PCI (Peripheral Component Interconnect) is an expansion­
card standard, analogous to NuBus on the Mac, that was
originally developed by Intel but whose management has
since been taken over by a vendor-independent organiza­
tion called the PCI Special Interest Group. As the central
contact point for vendors wishing to create PCI products,
the PCI SIG has all the necessary information about tech­
nology licensing and related issues.

PCI is being evangelized as an open standard. Early fears
that Intel would rule over PCI heavy-handedly and require

Looking Ahead 201

exorbitant licensing fees and royalties have proven
unfounded. In fact, Digital, maker of the Alpha family of
RISC processors, announced an Alpha chip in late 1993 that
contained PCI interface logic directly on the chip. This
bodes well for future microprocessors of other families that
might wish to integrate PCI directly on-chip as well, thereby
reducing system cost by obviating the need to use PCI inter­
face chips in the system design.

Basic Features: PCI is an expansion bus designed to allow
peripheral cards to be added to a computer system. Today's
Macs' NuBus will be replaced by PCI in future Power Macs.
It is possible to use PCI as a bus on a system's motherboard,
but common PCI use today is for expansion cards. Future
hardware designs might access a motherboard video subsys­
tem via the PCI expansion bus.

Like NuBus, but unlike the common expansion buses in
the x86 world, PCI cards are self-configuring. They require
no setting of dip switches or jumpers.

The initial version of PCI has a 32-bit-wide bus and runs
at 33MHz, providing maximum theoretical throughput of
roughly 126MB per second. NuBus' theoretical maximum is
approximately 38MB per second, or twice that when mov­
ing data between two cards on the same NuBus.

NuBus has long been a major bottleneck for video cards
on the Mac. PCI's added bandwidth should remove that
problem and allow new kinds of video cards that aren't pos­
sible with NuBus' limited bandwidth.

The current PCI specification already defines a 64-bit
version of the bus, doubling the theoretical maximum
throughput to approximately 252MB per second-plenty
e~en for the most bandwidth-hungry applications.

PCI cards can use one of two voltages for power: SV or
3.3V. See Figure 9.1. The current standard for desktop com­
puters is SV, but 3.3V is rapidly gaining popularity because

202 The PowerPC Macintosh

FIGURE 9.1
PCI with 3.3V and

5V connections

3.3V
connection

32-bit PCI

5V
connection

it is the standard voltage used in laptops and mobile
computers. Also, 3.3V is gaining increasing support in the
desktop-computer world because of the popularity of
power-conserving "Green" PCs.

The mechanical specification for PCI cards ensures that
the wrong card can't be plugged into a PCI slot. However,
support for the two voltages is designed in such a way that
it doesn't make them mutually exclusive: It's possible for a
single PCI card to support both SV and 3.3V power. Some
cards already have this support.

Drivers: PCI promises to allow a single card to operate in
many different hardware and system software environ­
ments, since nothing about the PCI hardware ties it to any
particular microprocessor architecture. However, the issue
of PCI drivers is a thorny one.

A Power Macintosh with a PCI slot is a very different
operating environment than a Windows-based Pentium-PC
with a PCI slot. The hardware is identical, but the operating
systems have completely different 1/0 architectures that

Looking Ahead 203

aren't even slightly compatible. The purpose of a PCI driver
is to allow operating systems to use their standard APis to
access the cards' features. But given multiple operating sys­
tems and hardware environments, how can the card know
which driver is the right one?

The answer is to store the PCI driver on a system's hard

Open Firmware

Open Firmware is the colloquial name
for the IEEE standard number 1275-1994
for boot firmware. Open Firmware's ances­
tor OpenBoot was originally developed at
Sun Microsystems in 1988 when Sun was
shipping machines based on three differ­
ent processor architectures. Sun needed a
standard method for booting its systems
that would work equally well on all of its
systems. Version 1 of Sun's OpenBoot soft­
ware was introduced with Sun's
SPARCstation 1 workstations. Version 2 of
Open Boot, which is the version that the draft
standard of Open Firmware was based upon,
was first introduced with Sun's SPARCstation
2 machines.

Open Firmware is designed to provide
an operating-system- and processor­
independent method for booting a com­
puter system. During the boot process,
peripheral devices must be identified and
their drivers loaded, and when all the
hardware is initialized, the operating sys­
tem must be loaded and started. Once
the operating system is launched, Open
Firmware has completed its work.

Since Open Firmware must be proces­
sor independent, its native language is

interpreted and based on the program­
ming language Forth. Open Firmware
drivers written in FCode, as Open
Firmware's Forth derivative is known, can
operate in any Open Firmware environ­
ment, since every Open Firmware imple­
mentation contains the FCode interpreter.

When an Open Firmware-based sys­
tem boots and identifies the devices con­
nected to the system, it builds a device
tree. This data structure contains entries
for all devices that Open Firmware has
identified. An operating system can later
traverse the device tree to determine the
available hardware.

Open Firmware and PCI form a symbi­
otic relationship and allow PCI's multi­
platform driver problem to be solved.
Since PCI is a platform-independent stan­
dard, there is no way of knowing in
advance what kind of processor is avail­
able in the system that the PCI card is
plugged into. Putting an FCode driver in
the PCI card's ROM allows any Open
Firmware-based system to initialize the
PCI card and use it.

204 The PowerPC Macintosh

disk and have it load at boot time, instead of loading the
driver from the card's ROM. It is certainly possible to store a
card's driver(s) in ROM on the card itself, but in the future,
including one driver for every PCI-capable hardware and
operating-system configuration will be unworkable. The
amount of ROM required for this would raise the card's
price unnecessarily. Storing the driver on a local hard drive
guarantees that the correct driver is loaded for the card, and
it also allows easy upgrading of a card's drivers-much easier
and less expensive than replacing a card's ROM. In this sce­
nario, the card's ROM must contain only the necessary
information to allow the boot firmware of the system that
the card is installed in to identify the card so that the cor­
rect driver can be loaded. The Open Firmware standard, a
platform-agnostic scheme for booting a computer system
and configuring its peripherals at boot time, has provisions
to support this method of driver loading at boot time.

PCI will bring high-speed peripherals back into line with
the additional performance offered by the Power Macs'
PowerPC processors. For Mac users, the switch to PCI is an
all-around win: installation will be as hassle-free as with
NuBus, performance will be higher, and card prices are likely
to be lower, since PCI card manufacturers can build one card
for all PCI markets and need only provide driver software
for the Mac.

FlreWire: FireWire is another new high-speed l/0 technol­
ogy that Apple has publicly committed to support. In the
long run, FireWire may replace today's SCSI for access to
external mass-storage connection.

FireWire is the Apple-trademarked name for the IEEE
draft standard P1394. FireWire's goals are to provide a low­
cost, high-performance, plug-and-play peripheral bus to
connect a computer system and external high-speed periph­
erals. See Figure 9 .2.

FIGURE 9.2
FireWire

Looking Ahead 205

Stereo Interface Macintosh Hard Disk

CD-ROM Drive Printer Scanner

Compared to SCSI, FireWire has significant advantages:

• Allows hot connections: You don't need to power down
all devices on the bus to add one.

• Fast : Current implementations provide throughput of
98.3 megabits (roughly 12.3MB) per second. This is faster
than today's Fast SCSI implementations.

• Small: The connectors and cables are tiny when compared
to SCSI cables.

• Real-time: P1394 supports isochronous data transfers.
This means that time-critical data, such as a QuickTime
movie or digital video content, plays back over FireWire
with no drop-outs.

• Multiple masters: FireWire devices can commun icate
and transfer data between themselves without the com­
puter system being the midpoint in the transaction.
Data is transferred from point to point between th e
devices.

FireWire has some additional features that those familiar
with the trials and tribulations of functioning SCSI buses
will love.

• Topology: FireWire doesn't need to be a strict ch ain as
with SCSI. Any sequence of connections is fine, as long as
the entire Fire Wire chain doesn't form a closed loop.

206 The PowerPC Macintosh

• Termination: No explicit termination is necessary; it's
handled automatically.

• No ID conflicts: FireWire devices identify themselves on
the bus and arbitrate a free ID without user intervention.

With these many features, FireWire appears to be the
perfect external high-speed peripheral bus. The only current
catch with Fire Wire is that support for it is beginning slowly.
Manufacturers of mass-storage devices need to integrate
FireWire interfaces into their controllers. Several companies
have announced the availability of FireWire chip sets for
this kind of application, but most vendors are waiting to see
whether FireWire takes off before investing time and
resources into this new technology. FireWire will remain
dormant until some major computer and expansion-card
manufacturers ship FireWire interfaces for popular computer
systems. Without support for it on the system side, there's
no sense in making peripherals for it.

FireWire is a clearly superior technology and should
have no problem supplanting SCSI in the long run. In the
short term, however, it will be difficult to convince systems
and peripherals vendors to support the new technology and
produce sufficiently inexpensive solutions to get the migra­
tion started.

The PowerPC Reference Platform

The PowerPC Reference Platform is a hardware and system
software specification developed by IBM and Motorola. Its
purpose is to provide guidelines for the implementation of
PowerPC-based personal computers, so that PowerPC-based
systems from multiple vendors remain as compatible as pos­
sible with each other.

Unlike many specifications, the PowerPC Reference
Platform document doesn't go into the nitty-gritty imple­
mentation details of each of its features. The intent with the

Looking Ahead 207

specification is to provide a set of features for the lowest­
common-denominator PowerPC-based system. Exactly how
the features are implemented is left up to the individual
manufacturer.

The PowerPC Reference Platform specification also
includes details about a system-abstraction layer (SAL) of
firmware that provides a standard API for operating systems
to access Reference Platform hardware features. The idea is
to be able to buy a shrink-wrapped Reference Platform oper­
ating system at the superstore of your choice and be able to
install it successfully on any Reference Platform-compliant
machine.

The first batch of Power Macs does not comply with the
Reference Platform. Their design commenced well before
the Reference Platform effort got under way. Whether future
Power Macs will comply with this standard is unclear. The
specification requires every machine to have a parallel port,
something for which there is no need at all in the
Macintosh universe, and at this writing, the Reference
Platform does not include support for the Apple Desktop
Bus, which is used to connect keyboards, mice, and other
input devices.

There is in many quarters the hope that Apple will pro­
duce a Reference Platform version of the Macintosh system
software, to broaden the Macintosh market significantly.
Such a move would make a great deal of sense for the
Macintosh market as a whole. And even if there were
PowerPC clones capable of running the Mac OS, Apple's
hardware would in all likelihood still be the best for running
the Mac OS, because of the close integration of Macintosh
system software with new hardware features such as the AV
capabilities.

No major PC vendors other than IBM had jumped onto
the PowerPC Reference Platform bandwagon by mid-April
1994. Numerous operating systems for the Reference

208 The PowerPC Macintosh

Platform were already being planned to support the stan­
dard PowerPC hardware, however, among them Microsoft's
Window NT, IBM's Workplace OS, and SunSoft's Solaris.

The long-term success of the Reference Platform is
unclear. The idea of a standard PowerPC hardware specifica­
tion is a good one, but good ideas alone don't guarantee
success. The basic OS support is there: IBM has a
bridge/migration strategy for existing x86-based Windows
users, and the rest is up to the buying populace.

------- Hardware

The initial version of the Reference Platform specifies a 6xx
series central processor. It has provisions for all the stan­
dard l/0 ports such as SCSI, Ethernet, a parallel port, and
even LocalTalk. There is no standard expansion bus,
although it looks like PCI will be the de facto standard. The
Reference Platform specification is so flexible that the aging
ISA PC bus is supported for low-speed peripheral cards. In
general, the Reference Platform prototype designs show
philosophical similarities with current x86 PCs. Since x86
users are the target market for these machines, it makes
sense to provide as familiar a transition environment as
possible.

------· Software

The software side of the PowerPC Reference Platform is in
many ways more interesting than the hardware. Each
Reference Platform system comes with enough firmware to
initialize the hardware and load a compliant operating sys­
tem. The Reference Platform specifies the use of 1275-1994
Open Firmware (described in the "Open Firmware" sidebar)
for the initial startup process. Low-level drivers for periph­
eral devices can be provided either as FCode or in a specific
operating-system-dependent form.

Looking Ahead 209

Once Open Firmware has brought the hardware up and
tested it, it hands over control to the chosen operating system.
It will be possible to install multiple operating systems on a
Reference Platform machine and choose between them at
startup time. This flexibility and OS agnosticism will aid the
adoption of the PowerPC Reference Platform hardware.
Large corporations-the desired early adopters, mainly
because they buy many machines at a time-are more likely
to investigate new hardware if it offers a clear benefit over
their existing systems. The anticipated ability to buy a stan­
dard PowerPC-based personal-computer system and install
operating-system software as users require is appealing to
large organizations that like to minimize the number of dif­
ferent systems they must support. For this reason alone,
Reference Platform hardware warrants careful consideration
by existing x86-based organizations.

Graphing Calculator

The Graphing Calculator that ships with every Macintosh is
more than just a demo application to show off how quick
the PowerPC's floating point is. It's a harbinger of the type
of software that's in development now.

Although the calculator itself is useful enough to make it
far more than a toy, its primary goal is to illustrate how user
interfaces can benefit from the additional processing power
afforded by the PowerPC. When you create a 3-D graph in
the calculator, you can pick it up with the mouse and rotate
the graph. On a 68k-based machine, an application like this
would probably offer a wireframe rendition of the graph for
rotation, since it would be too computationally expensive to
rotate and redraw the entire graph. Not only does the
Graphing Calculator allow the user to freely rotate the full
nonwireframe graph, but the calculator is also recalculating

210 The PowerPC Macintosh

every point on the graph during the rotation. It's not just
moving video data around.

When a user types an equation in for the first time, the
Graphing Calculator's display is a simple white space with­
out a hint of graphing capability. But when the user hits the
graph button, the divider bar that separates the equation
area from the graphing area moves up the calculator's win­
dow, gradually revealing the graph behind. The movement
of the divider is smooth, and the graph behind it is drawn
as the divider goes up. There's no quick redraw at the end;
the calculator is drawing the graph bit by bit, like an open­
ing window shade that gradually reveals what's behind it.

Developers take note: Power Macintosh isn't just about
software that crunches numbers faster. The available com­
putational horsepower should be used to make Power
Macintosh software even more user-friendly, more respon­
sive, and more interactive. Above all, now that it's available,
the Power Macs' performance should be used. This doesn't
mean that developers should be wasteful with the computa­
tional power available. Applications such as the Graphing
Calculator are examples of software that appears simple to
the user, but a lot of thought, effort, and engineering have
gone into making it so.

System Software

Early in 1994, Apple outlined milestones for the future of
Macintosh system software: System 7.5, Copland and
Gershwin, and OpenDoc. Power Mac support is a given for
all of them.

------system 7.5

System 7.5 is the first so-called reference release of Mac sys­
tem software since the introduction of System 7.1 and will
be available in summer 1994. System 7.5 combines several

Looking Ahead 211

previously separate system-software products. It is the first
reference release that contains support for the Power Mac.
In fact, System 7.5 does not require system Enablers for any
Macintosh CPUs that were shipped prior to the 7.5 release
date. All the Enablers' functionality is now built in.

System 7.5 contains new pieces of system software,
including Apple's long-awaited QuickDraw GX software,
which offers new imaging, type, and printing capabilities.
QuickDraw GX runs native on Power Macs. System 7.5 also
comes with Apple Guide, the first part of Apple's strategy to
offer a more active help system on the Macintosh. System
software as well as applications can now provide all their
documentation in an electronic format that also includes
built-in tutorials that show the user exactly how to perform
specific tasks. Software developers have to provide the nec­
essary infrastructure to use Apple Guide to its fullest, but the
user, especially those learning new software, will benefit
tremendously from the software's ability to guide users
through tasks.

System 7.5 integrates a large amount of system software
technology that has been released in bits and pieces since
the introduction of System 7.1:

• AppleScript
• A new scriptable Finder that can be controlled with

AppleScript
• Macintosh Drag & Drop, which allows users to drag data

between applications; for example, users can drag files
from the Finder directly into open windows of some Drag
& Drop-aware applications, obviating the need to use the
Open item in the File menu

• Threads Manager, which offers software developers the
ability to have multiple threads executing within their
software

• QuickTime and the QuickTime PowerPlug

212 The PowerPC Macintosh

• Macintosh PC Exchange, which allows PC floppies and
other removable media to be mounted in the Finder just
like Mac disks

• MacTCP, the Macintosh implementation of the TCP/IP
protocol stack; users at organizations that use MacTCP no
longer require separate software licenses

• PowerTalk, the Macintosh implementation of the Apple
Open Collaborative Environment; there will be no sepa­
rate System 7.5 Pro just for PowerTalk

System 7.5 adds many small improvements, such as sup­
port for volumes larger than 2 gigabytes, in addition to the
major enhancements listed here. Much of 7.5 was integra­
tion of existing technology, but the new features will both
be helpful to Mac users and provide software developers
with more opportunities to build easier-to-use products.

------- Copland and Gershwin

Copland and Gershwin are the code names for the next
major releases of Macintosh system software. The ultimate
goal is to move the Mac OS to a completely microkernel­
based system that provides, among other things, memory
protection between processes, preemptive multitasking, and
high-performance 1/0. As the Mac OS evolves away from
dependence on the 68k architecture, more of the Mac sys­
tem software will become native, boosting performance for
Power Mac users via new system software.

Further details about these operating systems were not
available at the time this book went to press.

------- OpenDoc

OpenDoc is a fundamental part of Apple's future software
strategy, and even though it isn't dependent on the Power
Macs, it will run on them and pave the way for a fundamen­
tal shift in software and use of personal computers.

Looking Ahead 213

In today's typical operating-system environments, docu­
ments are associated with specific applications, and multiple
applications don't necessarily allow seamless integration of
their different types of data in the same document. OpenDoc
creates an environment where the document is the focal
point for the user. A document is a virtual blank slate that can
contain many different types of data. Each separate type of
data is known as a part in OpenDoc parlance.

In the OpenDoc world, large monolithic applications are
a thing of the past. Instead, there are part editors, one for
each type of part. In an OpenDoc environment, a user can
create a word-processing part and embed a spreadsheet or
graphic part within it, or have the two follow one another.

OpenDoc is an open architecture managed by Com­
ponent Integration Labs (CIL), an independent organization
whose sole purpose is to support the proliferation of
OpenDoc. CIL will act not only as the central repository of
OpenDoc knowledge, but also provide validation and certi­
fication services to guarantee that OpenDoc parts work
together. OpenDoc will fail if parts from different vendors
don't work together. The user will come to expect to be able
to use any number of different part editors together in the
same document.

OpenDoc will be available on the Macintosh, Windows,
OS/2, and some UNIX platforms. It uses technology devel­
oped at Apple as well as a technology from IBM. OpenDoc
will be multiplatform from the outset and won't be limited
to Macs at all.

OpenDoc will change the economies of software pub­
lishing drastically, since smaller developers will once again
be able to compete with the software giants on a part-by­
part basis. Since users can pick and choose the parts that suit
their needs the best, they can use one vendor's word­
processing part editor with another's spelling checker and
have them work together seamlessly.

214 The PowerPC Macintosh

Open Transport is the name for
Apple's new network software architec­
ture for the Macintosh that will be
released in fall 1994. Open Transport will
be available for 68k Macs, and it will be
the only native networking software for
Power Macs. The Power Macs currently
run all their networking software in emu­
lation.

Open Transport (OT) will initially ship
from Apple with support for the
Appletalk and TCP/IP network protocols.
Novell has announced plans to provide
IPX/SPX support for OT, but at this writ­
ing, no announcements about availability
had been made.

Open Transport solves a large number
of problems both for the user and for the
developer. The big win for Power
Macintosh users is that Open Transport's
protocol stacks will run native on the
Power Macs and support new features
such as multihoming, the ability to use
multiple network interfaces in the same
Macintosh. OT will allow PowerPC-based
Macs to be high-performance network

The Future

servers, since all the protocol processing
is performed in the native code, and with
the addition of multihoming, the net­
work interface ceases to be the bottle­
neck. OT will also provide backward
compatibility and act like the familiar
Apple Talk and MacTCP that software uses
today. Existing AppleTalk and MacTCP
software will be able to run with OT and
benefit from OT's added performance
without any need to change the software
itself.

For developers, Open Transport pro­
vides a single API that is applicable to all
available OT protocol stacks. Today,
developing AppleTalk-based software is
quite different from the development of
MacTCP-based software. With the intro­
duction of OT, development for any OT
protocol stack will be virtually identical.
Networking software can support multi­
ple protocol stacks quickly without any­
where near the effort required to develop
for multiple protocol stacks on the Mac
today.

In the fast-moving computer industry, it's difficult to make
predictions because things change so quickly. There are,
however, some safe Power Macintosh-related assumptions
that can be made. The 603, or a 603 variant will be used in
PowerBooks and laptops from IBM's Power Personal Systems
division as soon as 603s are available in volume and as soon
as the hardware designs can be completed. The 603 will also

Looking Ahead 215

find its way into desktop machines from Apple and IBM's
PPS. The 603 has a good price/performance ratio, despite its
lower performance compared to the 601.

Since the Power Macs aim to stay at the forefront of
personal-computer performance, 604-based Macs will also
be created as soon as 604s are available in sufficient quantities.

Apple has gambled on the PowerPC, and it looks like it
made a good bet. The alliance still seems to be functioning
well, much to the surprise of most outsiders who would
never have thought that three companies like Apple, IBM,
and Motorola could work together without mishap.

If native software ships quickly enough, both on Power
Mac and on IBM's Power Personal Systems machines, it can
begin to capture the large Intel market. Emulation is an
excellent migration and bridge strategy, but in the long term
it'll be the native apps that convert users.

The future looks bright for Macintosh. The hardware is
fast, the operating system is being overhauled to come up to
speed with hardware developments, and for the first time in
several years, there is palpable excitement in the Macintosh
market. The sense of adventure has returned, as well as the
desire to compete on even terms with an adversary that out­
numbers the Mac by nearly an order of magnitude. Intel
realizes the threat that PowerPC poses to its leadership posi­
tion, and its advertising campaigns speak of its concern far
more eloquently than any written analysis. The next 18 to
24 months will determine whether the Macintosh survives
against overwhelming odds, whether it remains a niche
machine, whether it is completely overrun by Windows
running on Pentium, or whether it succeeds in gaining sig­
nificant marketshare based on technical superiority and
lower price/performance ratios.

Resources

f you are interested in learning more about microprocessor
and computer architecture, or you are looking for a good ref­
erence on the subject, I cannot recommend the following
book highly enough:

Computer Architecture, A Quantitative Approach
by John L. Hennessy and David A. Patterson
Published by Morgan Kaufmann Publishers
ISBN 1-55860-069-8

IBM publishes a condensed version of PowerPC books I to
III that also doesn't contain any nonpublic information.
Anyone interested in knowing about the PowerPC architec­
ture in greater detail will find this book useful:

PowerPC Architecture
Customer Reorder Number 52G7487
Available from IBM at 800/426-6477, or via fax at
512/823-9467

User manuals and technical summaries about the individ­
ual PowerPC microprocessors are available from IBM and
Motorola. If you are outside of the United States, contact
your local IBM or Motorola sales office. Within the United
States, you can contact

217

218 The PowerPC Macintosh

Motorola Semiconductor Products Technical Respon­
siveness Center: 800/521-6274

IBM Microelectronics: 800-POWERPC (800/769-3772) or
via fax at 800-POWERfax (800/769-3732)

Two new Inside Macintosh volumes are available if you're
looking for more information about the system software
available on the Power Macs:

Inside Macintosh-PowerPC System Software
ISBN 0-201-40727-2
Inside Macintosh-PowerPC Numerics
ISBN 0-201-40728-0

Index

54CF96 chip, 178
6809 emulators, 154-155
68LC040 emulator, 138-143

A

caching, 141
cycles, 140-141
EIEIO instruction, 141
floating-point calculations, 142-143
how it works, 145- 146
insurance, 139
MOVE16 instruction, 140
operation, 140-141

A/UX, 81
ABS (Apple Business System) hardware, 55
Abstract PowerPC, 108-111
ACE (Advanced Computing Environment),

8-9
Address, 86
Adobe Type Manager (ATM), 74
AMIC (Apple memory-mapped 1/0

controller), 172, 174
Antidependency, 90
Apple Adjustable Keyboard and jaguar

project, 4
Apple Business Systems software, 77
Apple Computer

collaboration with IBM, 11-12
RISC (reduced instruction-set computer)

and, 3- 21
Apple Desktop Bus (ADB), managing, 177
Apple Remote Access, 72
Apple Workgroup Server (AWS) 6150, 55
Apple Workgroup Server (AWS) 8150, 55
Apple Workgroup Server (AWS) 9150, 56
Apple/IBM/Motorola alliance, lZ-21

601 chip design beginings, 19- 21
integrating Macintosh into enterprise

networking systems, 13
Kaleida, 13

landmark decisions, 16-17
PowerOpen, 13
PowerPC, 12
Somerset design facility, 17- 19
Taligent, 12

AppleShare, 77
AppleShare Pro, 78
AppleTalk, 76- 77

protocol stack, 72
Architecture, 2
Ariel II chip, 177
Asynchronous 1/0, 65
AudioVision connector, 42
Audio Vision monitor and jaguar pro ject, 4
AV card, 44-45

digital audio video (DAV) connector, 45
memory, 46

AWACs (audio waveform amplifier and
converter) chip, 176

B
Bandwidth, 173
BART, 166, 168
Branch folding, lOS
Branch instruction, 87-88
Branch-history table (BHT), 130
Branch-processing unit (BPU)

601 chip, 114, 117- 118
603 chip, 125
604 chip, 131

Burst transaction, 89
Bus, 88-89

arbitration, 88
burst transaction, 89
contention, 43, 88
PowerPC 601 chip, 113
PowerPC 603 chip, 121
PowerPC 604 chip, 113, 127-128
split transactions, 113
traffic, 88

Byte assembly, 170

c
Cache-coherency protocols, 101

219

220 The PowerPC Macintosh

Caches, 110
68LC040 emulator, 141
associativity, 98
blocks, 98
coherency, 100-101
copyback mode, 99
direct-mapped, 98
hit, 100
Level 1, 40, 101, 162
Level2, 37,39-40,101,160-163
lines, 98
microprocessors, 97-101
minimizing contention, 98-99
miss, 100
PowerPC 601 chip, 113
PowerPC 603 chip, 121
PowerPC 604 chip, 127- 128
principle of temporal locality, 97
set associative, 98
SoftWindows, 151
valid bit, 100
write-back mode, 99
write-through, 99

Call chains, 188-189
CD-ROM drives, 48
CISC (complex instruction-set computer),

2, 95-97
contrasting traits, 95
Pentium chips, 2

CIVIC (Cyclone integrated video
controller), 180

Code segments and segmentation, 192
Code Fragment Manager (CFM), 193
Cognac project, S-7
Cold Fusion project, 24
Color lookup table (CLUT), 177, 180
Completion unit (CU), 603 chip, 126
Copyback mode cache, 99
Cub card, 9-10
CUDA chip, 177- 178
Curio chip, 174, 176
Cycles, 86

68LC040 emulato r, 140-141
Cyclone project, 21

D
Data Path chips, 43, 170

PowerPC 601 CPU bus, 169
Decode/dispatch unit (DDU)
Die, 90
digital audio video (DAV) connector, 45,

181-182
Digital-to-analog converter (DAC), 177, 180
Direct memory access (DMA), 36-37, 177
Direct-mapped caches, 98
DRAM (Dynamic RAM), 37-39, 170- 171

expansion, 38-39
Drivers and PC! (peripheral component

interconnect), 202-204
Dynamic RAM (DRAM)

video, 41

E
EIEIO instruction, 108

68LC040 emulator, 141
Emulated traps, 195-196
Emulators, 137- 158

6809, 154-155
68LC040, 138-143
compatibility, 148
l/0, 146-148
performance, 143- 144
SoftWindows, 148- 153
Wabi, 153, 155-157

Ethernet, 51
EtherTaJk, 76-77
Exceptions, 93-94
Express Modem software, 75
Extension s and fat patches, 189-192

F
Fast SCSI bus, 49, 51
Fast SCSI throughput, 47-48
Fat binary applications, 193
Fat patches, 66, 189-192
Fat trap, 196
FireWire, 204-206
Floating-point calculations, 7, 79-80

68LC040 emulator, 142-143
software overview, 78-80

Floating-point digita l signal processor
(DSP), 35

Floating-point performance and PowerPC
601 chip, 34-35

Floating-point unit (FPU)
601 chip, 114, 118-119
603 chip, 125
604 chip, 129

FPRs (floating-point registers), 197

G
GeoPort, 52, 175-177

hardware, 175
jaguar project, 4
software, 72,74-76,175-177

GeoPort Telecom Adapter, 52
GPRs (general-purpose registers), 197
Graphing Calculator, 209-210

H
Hardware, 31-35

ABS (Apple Business System), 55
CD-ROM drives, 48
direct memory access (DMA), 36-37
FireWire, 204-206
future, 200-206
GeoPort, 52, 175
memory, 37- 41
NuBus, 51-52
overview, 32- 33
PCI (peri pheral component

interconnect), 200-204
ports, 52- 53
Power Macintosh, 159- 178
Power Macintosh AV Card, 179-183
Power Macintosh Upgrade Card, 32,

53-55, 178-179
PowerPC 601 chip, 33-35
PowerPC 603 ch ip, 35
PowerPC 604 chip, 35
PowerPC Reference Platform, 208
sound, 53
storage and SCSI, 46-49, 51
system, 160-178
video, 41-46

Index 221

VRAM Expansion Card, 182-183
High-speed memory controller (HMC),

162-164
Hurricane project, 20

I
1/0 (input/output)

emulators, 146-148
memory-mapped, 100
n oncacheable addresses, 100
Software overview, 71-73

1/0 bus, 171-1 78
54CF96 chip, 178
AMIC (Apple memory-mapped 1/0

controller), 172, 174
Ariel II chip, 177
AWACs (audio waveform amplifier and

converter) chip, 176
CUDA chip, 177- 178
Curio chip, 174, 176
Squidlet chip, 178
SWIM III chip, 176-177

IBM collaboration wilh Apple Computer,
11- 12

IEEE draft standard Pl394, 204
IEEE standard 1275-1994, 203
Import libraries, 194
Industrial design and jaguar project, 4
INITs and patches, 73-74
Insignia Solutions and Microsoft

agreement, 149-150
Instruction set architecture (ISA), 94
instruction s, 87
Integer uni t (IU)

601 chip, 114, 118
603 ch ip, 124-125
604 chip, 129
register renaming, 124-125

Interrupt handlers, 94
Interrupts, 93- 94

J
j aguar project, 4-5

Apple Ad justable Keyboard, 4
AudioVision monitor, 4

222 The PowerPC Macintosh

K

GeoPort, 4
Industrial design, 4
other chips investigated by, 8-9
Pink operating system, 5
PlainTalk speech recognition, 4
Quadra 660Av, 4
Quadra 800, 4
Quadra 840AV, 4

Kaleida, 13

L
Latency, 93
LAW (Power Macintosh 7100), 24
Level 1 cache, 101
Level 1 cache RAM, 39
Level 2 cache, 101

PowerPC 601 CPU bus, 161-162
Level 2 cache RAM, 37, 39-40

SRAM (static RAM}, 39-40
Lines, 98
Load/store unit (LSU)

603 chip, 125
604 chip, 130

LocalTalk, 77

M
MacHack, 25
MachTen, 81
Macintosh Application Environment

(MAE), 83
Macintosh Application Services (MAS),

82
Macintosh Display Card 8•24 GC, 3
Macintosh llfx, direct memory access

(DMA), 36
MacTCP, 72
Memory

AV card, 46
Dynamic RAM (DRAM), 37-39
hardware, 37-41
Level 2 cache RAM, 37, 39-40
page swaps, 70

PowerPC 601 chip, 113
PowerPC 603 chip, 121
PowerPC 604 chip, 127-128
ROM (read-only memory), 38, 41
software overview, 69-71
virtual memory (VM), 37-38, 40-41
VRAM (video RAM), 38

Memory addresses, 35
Memory-mapped I/0, 100
MESI protocol, 113-114
Mickey chip, 181
Microkernel operating system, 22
Microprocessors, 85-101

address, 86
architecture, 94-97
basic concepts, 85-94
branch instruction, 87-88
bus, 88-89
caches, 97-101
CISC (complex instruction-set computer),

2, 95-97
cycles, 86
dependencies, 90
die, 90
exceptions and interrupts, 93-94
implementation, 97
instruction set architecture (ISA), 94
instructions, 87
latency, 93
pipelines, 90-93
pointers, 86
registers, 86-87
RISC (reduced instruction-set computer),

2, 95-97
superscalar, 93
transistors, 89
wafers, 89

Mixed mode, 62-66
Mixed Mode Manager, 6-7, 21, 62, 185-188

68k to PowerPC mode, 186
fat patches, 66
penalty for switching, 187-188
PowerPC to 68k mode, 187
routine descriptor, 186

transition vector, 186
Mixed-mode switches, 62-66

INITs and patches, 73
Modern Memory Manager, 69-70

virtual memory (VM) and, 70
Motorola 88110 RISC chip, 7, 9-11
MOVE16 instruction, 140, 167-168
Multiply-add-fused (MAF) instruction, 106,

118, 125
Multiprocessing support, 113-114
MUNI (Macintosh Universal NuBus

Interface), 166

N
Nanokernel, 194
Native PowerPC system software, 61-62
Native QuickDraw (NQD), 66-68

doubling read and write performance,
197

speed, 67-68
Native QuickTime, 68-69
Native traps, 195
NetWare, 78-79
Networking

software, 76-78
SoftWindows, 150

Noncacheable addresses, 100
NuB us

bursting into the bus, 167-168
card connections, 181-182
excessive mixed-mode switches, 167
hardware, 51-52
performance, 167-168
slots, 51

NuBus 90, 51, 168
burst mode, 51

0
Open Firmware, 203

PowerPC Reference Platform, 208
OpenBoot, 203
OpenDoc, 212-213
OpenTransport native protocol stacks, 78
Output dependency, 90

p

Page swaps, 70
PBBiockMove call, 168

Index 223

PCI (peripheral component interconnect),
200-204

PDM pro ject (Piltdown Man), 20
Pentium chips, 2
Pink operating system, 5
Pipelines, 90

hazards, 91-93
stages, 91

PlainTalk, 53
Jaguar project, 4

Pointers, 86
Ports, 52-53
POWER architecture (performance

optimized with enhanced RISC), 2, 11,
13-14, 103-106

Powerl, 104-106
Power Macintosh

bandwidth, 173
compatibility, 76
Data Path chips, 43
emulators, 137-158
evolution and future, 28-29
first demonstration of, 23
future, 199-215
hardware, 31-56, 159-178
naming, 26-27
performance, 56
software, 57-83, 185-196
system hardware, 160-178
timelines, 27

Power Macintosh 6100, 31
built-in video, 41-42
CD-ROM drive, 49
hard disks, 49
HDI-45 AudioVision connector, 42
internal bays for SCSI devices, 49
NuBus adapter, 51-52
SIMMs (single inline memory modules),

38
Power Macintosh 7100, 24, 31

internal bays for SCSI devices, 49

224 The PowerPC Macintosh

processor direct slot (PDS), 44-45
SIMMs (single inline memory modules),

38
VRAM cards, 41, 46

Power Macintosh 8100, 24, 31
Fast SCSI bus, 49, 51
internal bays for SCSI devices, 49
Level 2 cache RAM, 40
processor direct slot (PDS), 44-45
SIMMs (single inline memory modules),

38
VRAM cards, 41, 46

Power Macintosh AV Card, 179-183
CIVIC (Cyclone integrated video

controller), 180
DAV connector, 181-182
Mickey chjp, 181
SAA7194 chip, 181
Sebastian chip, 180-181

Power Macintosh NuBus Adapter card, 44
Power Macintosh Upgrade Card, 25, 32,

53-55, 178-179
installing System 7.1.2, 58
modes, 54
performance, 54

Power1
branch processor, 105-106
chips, 104-105
multiply-add-fused (MAF) instruction,

106
vs. PowerPC, 111

PowerOpen specification, 13, 81-82
PowerPC, 12

abstract, 108-111
architecture, 109
branch processor, 109
caches, 110
fixed-point execution unit, 109-110
floating-point support, 110
Somerset design facility, 17-19
upgrades, 25
vs. Power1, 111

PowerPC 403GA, 132-134

PowerPC 601 chip, 33-35, 111-120
64-bit data bus, 35
basic features, 113-114
branch-processing unit (BPU), 114,

117-118
bus, 113
cache, 113
Data Path chips, 43
execution units, 114-119
floating-point performance, 34-35
floating-point unit (FPU), 114, 118-119
high-speed cache, 35
integer unit (IU), 114, 118
memory, 37, 113
memory addresses, 35
multiprocessing support, 113-114
speed, 33-35, 114

PowerPC 601 CPU bus, 160-169
BART, 166-168
Data Path chips, 169
high-speed memory controller (HMC),

162-164
Level 2 cache, 161-162
processor direct slot (PDS), 165-166
ROM (read-only memory), 164

PowerPC 603 chip, 35, 120-127
basic features, 121
branch processing unit (BPU), 124
bus, 121
cache, 121
completion unit (CU), 126
execution units, 124-126
floating-point unit (FPU), 125
integer unit (IU), 124-125
load/store unit (LSU), 125
memory, 121
multiprocessing support, 121-122
power management, 123
sleaze mode, 125
system-register unit (SRU), 125-126

PowerPC 604 chip, 35, 127-131
basic features, 127-129
branch-processing unit (BPU), 131
bus, 113, 127-128

cache, 127-128
decode/dispatch unit (DDU), 130-131
execution units, 129-131
floating-point units (FPU), 129
integer units (IU), 129
load/store unit (LSU), 130
memory, 127-128
multiprocessing support, 128
power management, 129

PowerPC 620, 134-135
PowerPC architecture, 2, 14, 217-218
PowerPC family, 103- 135

601 chip, 112-120
603 chip, 120-127
604 chip, 127-131
abstract PowerPC, 109-111
Books I-IV, 108-109
instruction set, 107
memory interaction, 107-108
operating environment architecture, 109
POWER architecture, 103- 106
PowerPC 403GA, 132-134
PowerPC 620, 134-135
virtual-environment architecture, 108
what makes a PowerPC a PowerPC,

107-109
PowerPC Reference Platform, 206-209

hardware, 208
Open Firmware, 208
software, 208-209
system-abstraction layer (SAL), 207

Principle of temporal locality, 97
Processor direct slot (PDS)

PowerPC 601 CPU bus, 165-166
video, 44-45

Q
Quadra 660Av, 21

direct memory access (DMA), 36
jaguar project, 4
SCSI Manager 4.3, 65
SCSI problems, 47

Quadra 800 and jaguar project, 4
Quadra 840Av, 21

Index 225

direct memory access (DMA), 36
jaguar project, 4
NuBus performance, 167
SCSI Manager 4.3, 65
SCSI problems, 4 7

QuickDraw, 22, 46
native (NQD), 66-68, 197

QuickDraw GX, 211
floating-point calculations, 34

QuickTime
audio extraction features, 48
native, 68-69
version 2.0, 69

QuickTime PowerPlug, 68

R
RAM (random access memory) and cycle-

stealing video, 43
Register files, 86-8 7
Registers, 86-87
RIOS. See POWER architecture, 13
RISC (reduced instruction-set computer), 2,

95-97
Apple Computer and, 3-21
Cognac project, 5-7
common traits, 95
jaguar project, 4-5
Macintosh Display Card 8.24 GC, 3
Motorola 88110 chip, 7-11
RLC (RISC LC), 5
searching out chips, 7-12
Sun Microsystems, 8
system software, 21-22

RLC (RISC LC), 5, 10, 20
Mixed Mode Manager, 6- 7
Standard Apple Numerics Environment

(SANE), 7
ROM (read-only memory), 38, 41

PowerPC 601 CPU bus, 164
Routine descriptor, 186
RSC (RIOS single-chip), 13, 106

s
SAA7194 chip, 181

226 The PowerPC Macintosh

SANE (Standard Apple Numerics
Environment), 142-143

SCSI
cabling, 47
controller, 178
driver software, 47
handling port, 1 7 4
internal bays for, 49
termination, 47
upgrading, 47

SCSI and storage, 46-49, 51
SCSI Manager 4.3, 47, 65
Sebastian chip, 180-181
Serial ports, handling, 17 4
Set associative cache, 98
SIMMs (single inline memory modules),

38-39
Smurf Card 19-20
Software, 57-83, 185-196

Apple Business Systems software, 77
call chains, 188- 189
Code Fragment Managager (CFM),

192-194
compatibility, 76
emulation, 60-61
extensions and fat patches, 189-192
fat patches, 66
floating-point calculations, 78--80
GeoPort software, 74-76
l/0 (input/output), 71-73
INITs and patches, 73-74
memory, 69-71
mixed mode, 62-66
Mixed Mode Manager, 6-7, 185-188
Modern Memory Manager, 69-70
native PowerPC system software, 61-62
native QuickDraw (NQD), 66-68
native QuickTime, 68--69
networking software, 76-78
PowerPC Reference Platform, 208-209
System 7.1.2, 57-61
traps, 195-196
UNlX, 80-82
virtual memory (VM), 70-71

SoftWindows, 148-153
i486 emulation, 152-153
cache, 151
emulation strategies, 150-151
I/0 emulation, 151-152
Insignia Solutions and Microsoft

agreement, 149-150
netw·orking, 150

Somerset design facility, 17-19
mixing corporate cultures, 19

Sound hardware, 53
Speed-bumping, 34
Split transactions, 113
Split trap, 196
Squidlet chip, 178
SRAM (static RAM), 39-40
Standard Apple Numerics Environment

(SANE), 7, 79-80
extended-precision format, 80

Storage and SCSI, 46-51
Sun Microsystems and RISC (reduced

instruction-set computer), 8
Superpipelining, 91
Superscalar processors, 93
SWIM III chip, 176-177
SYNC instruction, 108
System 7.1.2, 21, 57

basic features, 58
installing, 58
Mixed Mode Manager, 21
toolbox acceleration, 59-60

System 7.5, 210-212
QuickDraw GX, 211

System hardware, 160-178
601 CPU bus, 160-169
Data Path chips, 170
DRAM, 170-171
I/0 bus, 171-178

System software
Copland and Gershwin, 212
diversification, 23-27
future, 210-213
microkernel operating system, 22
OpenDoc, 212-213

RISC (reduced instruction-set computer),
21-22

System-abstraction layer (SAL), 207
System-register unit (SRU)

603 chip, 125- 126

T
Taligent, 5, 12
Tesseract project, 20
Timbuktu Pro, 191- 192
Toolbox acceleration, 3, 59-60
Transistors, 89
Transition vector, 186
Trap dispatcher, 195
Traps, 195-196

emulated, 195- 196
fat, 196
native, 195
Split, 196

True dependency, 90

u
UNIX, 80-82

A/UX, 81
MachTen, 81

v

Macintosh Application Environment
(MAE), 83

PowerOpen specification, 81-82

VO operating system and QuickDraw, 22
Video

AV card, 41, 45-46
built-in, 41-44
cycle stealing, 43
digital audio video (DAV) connector, 45
DRAM (Dynamic RAM), 41
hardware, 41-46
processor direct slot (PDS), 44-45
VRAM cards, 41, 46

Virtual memory (VM), 37-38, 40-41
drawbacks, 70
Modern Memory Manager and, 70
software overview, 70-71

Index 227

Virtual-environment architecture, 107
VRAM (video RAM), 38

cards, 46
VRAM Expansion Card, 182-183

w
Wabi, 153-157

version 1.0, 155-156
version 2.0, 156-157

Wafers, 89
Write-after-read dependency, 90
Write-after-write dependency, 90
Write-back mode cache, 99
Write-through cache, 99

Tile PowerPC•"~>• Macintosh® Book tells the inside story of the revolutionary new RISe­
based Macintosh computers. This book tells you everything you need to know about
the new Power Macintosh line: Why the new PowerPC chip family is so important,
what's different and what's the same as 68k-based Macs, how to upgrade, and more.

Starting with a brief history of the Power PC fami ly's development by Apple, IBM, and
Motorola, the book introduces the Power Macintosh hardware and software and moves
on to introduce members of the PowerPC family of microprocessors. It explains the
advantages of RISC technology and the differences from C ISC technology.

The book also provides extensive coverage of the Power Macintosh operating system
featu res, discussing toolbox acceleration, mixed mode, native QuickDrawTM, native
QuickTime"~"M, and Virtual Memory. You'll learn about the Power Mac's highly compat­
ible 68k emulator as well as Insignia Solutions' SoftWindows emulator for the Power
Macs. The book also explains the Power Macs' design in detai l, illuminating such
Power Mac hardware features as:

• Level 2 Cache • Power Macintosh I/0 Subsystems
• NuBusTM • High -performance v ideo and AV technology
• Direct Memory Access (DMA) • GeoPort and more

This is crucial information that every user, manager, and developer should know to get
the most out of Apple's fo rmidable new line ofPowerPC-based personal computers:
The future of Macintosh is PowerPC.

Stephan Somogyi was until recently
Technology Editor at MacUser magazine,
where he tracked and wrote about new tech­
nologies, products, and markets. He is cur­
rently Senior Ed itor at Digital Media: A
Seybold Report.

Cover design by Barbara T. Atkinson

Addison-Wesley Publishing Company

n•• •u• ••• • 111111 1111 ••••u 11 r:- "" n n r

llllll l~lll ll lllllllll ll lilllll lllllllll .
X00015H7SX

The Poworpc Moontosh- The Inside Story on the Now
Rlsc-Basud Mcetn!osh

Used, Vel"'/ Good

ISBN 0-201-62650-0

$19.95 us
$25.95 CANADA

