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Foreword 
At first glance, I might seem to be a strange person to be 
writing the foreword to a book about the PowerPC 
Macintosh. Until 1993, I was a professor of cognitive science 
at the University of California, San Diego, a scientist who 
studied the human mind. Now that I'm at Apple, I serve 
several roles. As an Apple Fellow, I wander across company 
divisions as champion of the user. In AppleSoft, our soft­
ware division, I operate under the title User Experience 
Architect. Neither of these roles would appear to have any­
thing to do with a new piece of hardware, especially a CPU 
chip. What has this got to do with either human interface 
or user experience? 

The exciting way to view the new chip is as an enabler 
for entirely new things that simply could not be imagined 
before. The PowerPC represents a completely new philoso­
phy and style of CPU for personal computers, which pro­
vides entry to a whole new level of affordable performance. 
This powerful chip will allow users to discover totally new 
ways of working with machines. 

Look, I don't believe the average citizen cares about the 
technical aspects of computing, such as: 

• The operating system; 

• The kind of chip used for their CPU; 

• How much memory they have; 

• CPU speed. 

There are several ways to view the power of a CPU based 
on a reduced instruction set computer (RISC) architecture. 
One way is simply to look at the speed of the chip: It is 
incredibly fast. In that sense, the PowerPC is a supercharger. 
It makes the things we are already doing with computers go 
faster. That's neat, but it isn't the sort of thing that makes 
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most people's hearts beat faster. Will the average person 
appreciate that a word processor or spreadsheet is faster? I 
doubt it. 

Many people are led to believe they should care about 
the technology, but that is only because of the way comput­
ers are currently marketed. Computer journalists, especially 
those who write for the trade magazines, tend to be champi­
ons of technology. They, and the salespeople in computer 
stores, emphasize the technology. But the average person 
doesn't really care about the details of technology. What we, 
the everyday users, really care about is getting on with our 
lives-enjoying our lives. Even the focus on making com­
puters friendly is wrong because it still emphasizes the com­
puter itself. 

I care about getting something done: reading the latest 
news story; seeing the demo my colleague in Tokyo just 
filmed; learning how sales are doing with our new catalog 
services; making a reservation at that new restaurant (speci­
fying no smoking, and maybe even peeking at the menu). I 
care about doing these things and preparing my material so 
that others can use it, but not about using a computer. 

Until now, we have designed machines from the 
machine's point of view. Computers use information. 
Invisible. Arbitrary. Difficult. To work, they require precise 
syntax, details, logic- just the sort of things we are bad at. 
But there is a mismatch: People are perceptual devices, 
machines are symbolic. 

If we want machines that are easy to use and comfort­
able for people, we have to make them match people's capa­
bilities. We have to provide perceptual information and 
minimize the requirements for precise, numerical, or syntac­
tically correct inputs. A graphical user interface such as the 
Macintosh desktop takes the first steps toward the solution 
by making heavy use of graphics and menus. But these are 
primitive steps. The desktop isn't really a desktop, and this 
graphical user interface isn't really very graphical. The vjsual 
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appearance is rather flat, more like line drawings and illus­
trations than rich, visual representations. Up to now, we 
have lacked the computer power necessary to do more. If we 
want machines to match people, we need to match the 
computing power of the brain, or at least of the eyes and 
ears. Then we can use more natural modes of interaction 
than keyboard and mouse and arbitrary commands. We can 
use speech, handwriting, gestures, and whatever else our 
creativity offers. 

The brain is an incredibly powerful device, but it works 
very differently from our computers. Each element in the 
brain- the individual neuron-is fairly slow, noisy, and 
unreliable. It is a semidigital, semianalog device, capable of 
doing complex signal processing. But there are some 1012 

neurons, each making an average of 104 connections, so 
interconnected that the apparent slowness and lack of relia­
bility of the individual neuron yields a fast, powerful, robust 
system. Each of the 1016 connections transmits 10 to 100 
impulses per second, for a total bandwidth of 1017 to 1018 

impulses per second. The eyes alone generate about 200 
megabits of data per second. The brain is a vast, parallel, 
neural computer that has very different properties from our 
serial, digital machines. 

Computers are good at the stuff we find hard, and bad at 
the stuff we find easy, such as seeing and walking and talk­
ing and-well, all the stuff we all do so well that we take it 
for granted. 

What are people good at? Creativity, humor, emotions, 
enjoyment. Sports, music, art. What are we bad at? 
Remembering details, systematic logic, arithmetic, spelling. 
What are computers good at? Details, systematic logic, arith­
metic. 

Now that we are moving to much more powerful CPUs, 
we can begin to make computers that interact with people 
on human terms. There are several ways in which this new 
power might be used. Let me point out some that might not 



xvl The PowerPC Macintosh 

be obvious. Consider the conceptual model of a typical 
application. People are very good at understanding sensible, 
coherent structures and not so good at understanding or 
remembering arbitrary commands and actions. This is one 
of the powers of the graphical user interface over the com­
mand-line interface. The real trick in making computers 
understandable is to provide a coherent, intelligible concep­
tualization to the users, making sure that all operations and 
results conform. Today's graphical interfaces do not present 
a coherent conceptual model. The user may have no under­
standing of how or why operations get performed. In a 
spreadsheet, it is difficult to tell the ranges of the func­
tions-just which cells are included in the operation. As a 
result, when you are using someone else's spreadsheet, it is 
often difficult to tell just what computations are being per­
formed, and what values are relevant. In a database, it isn't 
always clear which individual records have been linked, or 
which operations any query might have to use. Relational 
databases are often difficult for people to set up and query, 
in part because they lack an intelligible conceptual model of 
the operations. 

Now that we have the appropriate computer power, we 
could provide powerful clues to the underlying conceptual 
model through graphics. Imagine a database query that 
showed a pictorial rendition of the records and illustrated 
how a query traversed them, putting together the informa­
tion for its response. A proper illustration would dramati­
cally improve the user's understanding and make the 
debugging of failed queries or improperly constructed 
records much simpler. 

Consider educational packages tha t can make much 
heavier use of simulation, showing in detail the underlying 
operations. Today, we have many simulation packages, but 
they mostly concentrate upon the outcome, not upon 
showing the underlying processes. Suppose we could illus­
trate the process as well as the outcome? 
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What about new methods of interaction, more effective 
modes? Say gesture, or speech, or handwriting? Or what 
about using three-dimensional graphics, sound, or speech 
output? For all of these, we require a lot more computing 
power. We require the PowerPC. 

Today, the user does all the work. Do you want to send 
a file to a colleague over the network? You must know lots 
of technical details, including the network path and the 
name of your colleague's machine. You have to make sure 
the file and computer protections are appropriate. You have 
to know if your colleague has the correct applications and 
fonts. Suppose you could delegate all of this: "Send this 
OpenDoc document and viewer to Helen." Let the machine 
worry about the details, bothering you only if it isn't sure 
which Helen you had in mind or if a serious problem arises. 
This form of interaction-delegation rather than direct 
manipulation-requires some inference and general-purpose 
knowledge by the computer agent that is to do the task­
more reason why we need the capability of the PowerPC. 

The Power Macintosh provides a new hardware plat­
form, but I think of it as a mere beginning, as an enabler. 
The truth is, I don't know what the future will bring; 
nobody ever does. The secret is to be able to take advantage 
of new potentials, to help us move to another, higher level 
of capability. This is where we stand today. This book sets 
the stage by giving you the details you need to take that 
step. The world of computing has had a prodigious set of 
advances in the previous ten years. We are now beginning 
an equally marvelous set of changes during the next decade. 

Donald A. Norman 
Apple Fellow 
Apple Computer, Inc. 
Cupertino, California 



Introduction 
A little more than 10 years ago, a group of stubborn people 
at Apple Computer shipped the Macintosh and introduced 
the personal-computing world to a slew of neat new stuff 
that few users at the time knew what to do with. Those few 
who "got it" were quickly branded zealots, dismissed as a 
fringe group, and deemed not part of the Serious Business 
Computing World. 

During the intervening 10 years, the Macintosh has 
become a computer to be reckoned with in the business 
world, despite still owning less than 15 percent of the per­
sonal computer market. Imitation-litigation notwithstand­
ing-is the sincerest form of flattery, and Windows is doing 
its best to catch up to the Mac operating system. One of the 
Mac's great hallmarks has been its integration of system soft­
ware with hardware. The suggestion that Macintosh hard­
ware is a copy-protection device for the Macintosh operating 
system has a kernel of truth to it: Apple's strategy has limited 
the Macintosh environment to its own hardware and, by 
doing so, limited the proliferation of the Mac but also kept a 
degree of consistency and compatibility between product 
generations that is unparalleled elsewhere. 

The first generation of Power Macs is a bridge between the 
past and the upcoming decades. This first gen eration of 
Macs using the Power PC 601 chip are real Macs; no compro­
mises were made to provide extra performance at the 
expense of compatibility. The ongoing survival of the 
Macintosh, both hardware and software, depends on the 
success of these first Power Macs. 

The first step in the migration allows Power Mac owners 
to run their existing Macintosh software, based on the 
Motorola 68000 (68k) chips on the new machines. Given 
the investment that current Mac users have in their soft­
ware, without this compatibility, the Power Macs would be 

xlx 



xx The PowerPC Macintosh 

non-starters. Fortunately, 68k compatibility isn't an issue, 
as the Power Macs' 68k emulator has already proven reli­
able, compatible, and adequately fast for most tasks. 

The second part of the switchover from 68k to Power PC is 
centered around native software that takes fu ll advantage of 
the performance that the PowerPC-based systems are capa­
ble of. 

What's In This Book 

This book is structured to be read sequentially, but it can be 
used as a reference as well. Those reading it from start to fin­
ish will find it increases in technical depth as it progresses. 
It's designed to provide useful information to anyone inter­
ested in acquiring more than a superficial understanding of 
the first generation of Power Macs and the issues that sur­
round them. 

Chapter 1 sets the stage for the Power Macs by going over 
the history and development of the PowerPC alliance, a pre­
viously inconceivable coalition of former competitors. 
Chapters 2 and 3 provide an overview of the Power 
Macintosh hardware and software, to get you acquainted 
with the new machines from a big-picture perspective. 

Chapter 4 is an introduction to microprocessors. 
Differentiation of personal computers today has become 
increasingly complex and subtle. The ability to distinguish 
disinformation from useful detail requires more than a cur­
sory knowledge of how the chips work. This chapter offers a 
painless introduction to the key characteristics and differen­
tiators of different microprocessors. 

Chapter 5 introduces the known members of the 
PowerPC family of microprocessors. Even though the 601 is 
the only one shipping in systems as this book goes to press, 
much is already known about its siblings' capabilities. 

Chapter 6 is first of the three Power Mac in-depth chap­
ters; it explains the different emulators for the Power Mac 
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and how they work. Chapter 7 offers an in-depth look at the 
Power Mac hardware, and Chapter 8 does the same for 
Power Mac software. 

Finally, Chapter 9 looks into the future at technologies 
that are relevant to the Power Macs or PowerPC-based per­
sonal computers in general. These first machines from Apple 
are only the beginning, and some of the future is already 
visible. 

Who This Book Is For 

This book is not a step-by-step guide to specific migration 
strategies. Its goal is to provide the necessary information to 
allow individuals(or organizations) to make educated deci­
sions about when and how to migrate. 

Those who wonder whether to switch to PowerPC now or 
wait for an even faster Power Mac are doomed to indecision. 
There will always be a newer, better, whizzier Power Mac 
just around the corner. The best method for deciding when 
to switch to the Power Macs is straightforward. Determine 
the amount of productivity gain you can get from a Power 
Mac now, and base your decision on that. Most computa­
tionally intensive software, especially graphics and desktop­
publishing packages, are available now in native versions, 
optimized specifically for the Power Mac. If you spend most 
of your time waiting for your Macintosh to catch up, a 
Power Mac will almost certainly alleviate the problem. 
Those with compute-intensive software that requires a 68k­
based Mac but that isn't yet available in a native version 
may want to hold off for a while. Bear in mind, though, that 
the future of Macintosh is PowerPC, the 68k-based Macs' 
days are numbered. 

Users of x86-based PCs may also find this book useful in 
explaining the features of the new Macs. With the Power 
Macs, the price/performance ratio is in favor of the 



xxll The PowerPC Macintosh 

Now What 

Macintosh for the first time. Existing Windows users can 
even run most of their Windows applications on their 
Power Macs with the help of Insignia's SoftWindows. 

I hope this book will get you started on your way into the 
world of Power Macintosh. The PowerPC alliance and the 
resultant microprocessors are pitted in head-to-head compe­
tition with Intel and its high est-end x86 processors. The 
Power PC offers the first viable alternative to the x86 
because of the performance it offers at a comparatively low 
price. Although x86 PCs have always been able to offer 
greater performance for equal or less money, this is no 
longer the case. 

In the long run, adoption of the PowerPC by systems ven­
dors also heralds the beginning of operating system (OS) 
agnosticism. OSs will no longer be tied to the microproces­
sor families they run on. The Mac OS runs on 68k- and 
PowerPC-based systems, and Windows NT will be available 
for PowerPC machines, as will be some incarnations of 
IBM's OS/2 and AIX. Non-NT Windows is also available, 
with the help of SoftWindows, on non-x86 platforms. 

The notion of functioning industry alliances is also 
becoming more accepted. The success of the PowerPC troika 
is a ma jor counterbalance to the cynicism that developed 
after the vast number of failed collaborative in past years. 
The fac t that three companies as different as Apple, IBM, 
and Motorola can work together speaks for the adage that 
where there is a will, there is a way. 

So fa r, 1994 has seen great changes in the computer 
industry, and they show no sign of abating. Intel's domi­
nance is being contested not only by PowerPC, but also on 
the x86 side by companies such as AMD and Cyrix, which 
are gaining influential allies among systems vendors. 
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The Power Macs are at the forefront of all this change, 
and Apple for the first time stands a good chance of gaining 
significant ground against the installed base of Intel-based 
Windows PCs. 

Soon Macintosh systems will be developed that bring the 
PowerPC's performance across the entire Macintosh product 
line. With all these PowerPC-based Macs will come new soft­
ware that takes full advantage of the available horsepower. 
Sometimes thereafter, we will no doubt wonder how we ever 
got along without Power Macs. 

Stephan Somogyi 
San Francisco, California 
May 1994 
Somogyi@ZIFF.COM 
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CHAPTER ONE 

How We Got 
Here from 
There 

he Power Macintosh is a major leap forward in the evolu­
tion of the Macintosh. 

In hindsight, the change in the Macintosh since its intro­
duction in 1984 has been a gradual one. Memory capacity 
has grown from 128 kilobytes to hundreds of megabytes, 
storage capacity has gone from a 400-kilobyte floppy to 
multigigabyte hard drives, and increasingly powerful mem­
bers of Motorola's 68000 (68k) processor family have 
become the engines driving an ever-increasing number of 
Macintosh computers. However, the performance of later 
68k chips-the 68020, 68030, and 68040-didn't increase 
n early as much as the capabilities of either memory or mass­
storage technology. 

Putting a completely different processor, a PowerPC chip, 
at the core of a Macintosh appears at first to be a profound 
change, one that makes a Mac not quite a Mac anymore. Far 
from it. 

A Power Macintosh is a Macintosh-an extraordinarily 
fast one. A Power Macintosh can run all your existing Mac 
applications-with very few exceptions, thanks to sophisti­
cated software technology-and with the System 7 user 
interface you're accustomed to. Almost any hardware that 
you can connect to a 68k-based Macin tosh works with a 
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Jargon 101 

RISC stands for reduced instruction-set 
computer. This term describes microproces­
sors that were developed with a specific 
design philosophy in mind. The basic idea is 
that a chip can perform many simple func­
tions in the same time that a CISC chip can 
perform a single complex function. 

RISC's conventional counterpart is C/SC: 
complex instruction-set computer. CISC 
chips distinguish themselves by perform­
ing more complex functions, but with a 
comparatively steep performance penalty 
compared to RISC. CISC chips generally 
perform more slowly, are more compli­
cated to design and manufacture, and are 
consequently more expensive. The latest 
CISC chips, such as Intel 's Pentium, have 
many RISC-Iike features but aren't really 
RISC chips; they must still perform com­
plex functions like their predecessors for 
compatibility reasons. 

The term architecture is used to 
describe the basic design features that 
different chips of a processor family have 
in common, such as number of registers, 
floating-point capabilities, memory man­
agement, and the like. PowerPC is an 
architecture whose family initially con­
tains the 601, 603, 604, and 620 chips. 

POWER, the name of IBM's RISC archi­
tecture that was the basis for PowerPC, is 
another one of those great computer 
acronyms that itself contains an acronym: 
performance optimized with enhanced 
RISC. 

If you want more details about micro­
processor basics, the chips and features of 
the PowerPC family, and other chips that 
are competing with PowerPC, see 
Chapters Four and Five. 

Power Mac. But that's not all: New programs written 
specifically for the Power Macs run many times faster than 
on the highest-end Quadra. 

Fortunately for Mac users, the speed offered by the 
Power Macs doesn't come at the price of incompatibility. 
Thanks to Apple's emulator, existing Mac software thinks 
it's running on a 68k processor. 

These new Macs are based on a PowerPC chip, a prod­
uct of the Apple/IBM/Motorola alliance formed in 1991. 
But the history of the RISC Mac started about three years 
earlier, when a group of Apple engineers began building a 
computer system. 
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How We Got Here from There 3 

Apple has been using RlSC chips since the late 1980s and 
shipped its first RISC-based product, the Macintosh Display 
Card 8•24 GC, in March 1990. This graphics card used an 
AMD 29000 (29k) processor running at 30 MHz to accelerate 
graphics operations on the Macintosh. This acceleration was 
achieved by replacing code that would normally run on the 
Mac's own 68k processor with code that ran on the much 
faster 29000. Since only a specific part of the Macintosh 
operating system-the QuickDraw graphics software-was 
replaced by faster RISC code and not the entire operating 
system, the term toolbox acceleration was coined. Toolbox 
acceleration makes only the most computationally intensive 
parts of the Mac OS (operating system) run faster. Speeding up 
select parts of the operating system produces a performance 
increase perceivable throughout the system. The amount of 
engineering effort involved in converting only certain parts of 
the OS was also far smaller than the work required to make 
the whole thing native. Native software is developed specifi­
cally with RISC in mind and takes full advantage of the new 
processor's performance. 

The 8•24 GC card was plagued with incompatibilities, 
even with Apple's own hardware and software, and it was 
ultimately abandoned. However, the 8•24 GC was a valu­
able proving ground for some of the technology found in 
the Power Macs. The idea of selectively converting the most 
performance-critical parts of the operating system carried 
forward to the Power Macs' system software. Power Macs use 
a hybrid of PowerPC code for QuickDraw, parts of QuickTime, 
and other compute-intensive parts of the OS, and emulated 
68k code for those parts of the OS that wouldn't benefit as 
greatly from being run on the PowerPC chip. 

Entire computer systems based on RISC date back to two 
distinctly separate RISC projects at Apple that started in the 
late 1980s. 
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-------------Jaguar 

The Jaguar project officially got under way in summer 1989, 
although it had been in various stages of planning since 
mid-1988. The goal of the Jaguar project was to create a 
microcomputer that had more raw compute-horsepower 
than any other personal computer on the market and that 
had a truly human interface that, for example, accepted spo­
ken commands. 

Jaguar was to take advantage of RISC's horsepower not only 
to perform more raw computation in less time, but also to 
redefine the features of a basic personal computer. To this end, 
the Jaguar group had its own hardware and software teams. 
The project was independent of any existing Macintosh pro­
jects, much the same way the original Macintosh project was 
separate from any Apple 11- related projects. 

Apple's fixation on differentiation from the Macintosh 
came from Jean-Louis Gassee, at the time the president of 

Jaguar Spln-Offs 

Parts of Jaguar have accompanied 
recent Macintosh releases, even though 
Jaguar itself never made it to fruition. The 
following designs originated in the Jaguar 
project: 

• The industrial design introduced 
with the Centris 610 as well as the 
Quadra 800 

• The Apple Adjustable Keyboard, 
which can be split down the middle 
to angle the two halves so that your 
hands are held at an ergonomically 
correct angle 

The following were all released with 
the 68040-based Quadra 660Av and 
Quadra 840Av and were all results of 
development work for the original Jaguar 
system: 

• Apple's AudioVision monitor, with 
its integrated high-quality stereo 
sound and built-in microphone 
tuned specifically for speech input 

• The GeoPort high-speed telecom­
munications hardware and software 
modem technology 

• PlainTalk speech recognition, also 
known internally at Apple as Casper 
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Apple Products. He insisted that the new machine be com­
pletely different from any other computer system. One of 
the original plans was to use Pink, the code name for a new 
operating system developed internally at Apple, as the stan­
dard operating system for this new machine. Pink ulti­
mately became part of the Apple/IBM negotiations, and the 
project was spun off from Apple and turned into the joint 
venture Taligent, which is dedicated to developing and mar­
keting the Pink operating system and related technology as 
stand-alone products. 

Jaguar wasn't initially intended to be a high-volume 
mainstream system. Instead, mass-market RISC systems 
would follow sometime later. Shortly after Gassee left in early 
1990, however, Apple refocused the endeavor to be a main­
stream system: The new computer would be a Macintosh. 

In late 1989, the Jaguar engineers started to search for a 
RISC processor. They visited virtually every RISC chip ven­
dor to determine which chip would suit their needs best. 

------ RLC 

While work on the Jaguar was already under way, the early 
work on the machine that would evolve into the Power 
Macs began. The core engineering team that designed the 
Power Macs had previously designed the Macintosh Ilfx. As 
the Ilfx's development was nearing an end in late 1989, a 
pivotal get-together happened during a ski trip in Kirkwood, 
California. During this trip, the Cognac project was born. 

The Cognac project was named obliquely after John 
Hennessy, a Stanford University professor who is a big RISC 
proponent and a cofounder of MIPS, the maker of the 
R4000 family of RISC microprocessors. When the Ilfx was 
introduced in March 1990, the 8•24 GC card, Apple's first 
product built around toolbox acceleration, was introduced 
simultaneously. Cognac was an idea for a 68020- or 68030-
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based Mac that also contained a 29k RISC chip to accelerate 
time-critical parts of the OS-more than just the QuickDraw 
acceleration found on the 8•24 GC. 

Another part of the Cognac investigation resulted in a 
68020 emulator running on a 29k in software. At the time, 
the emulator was in the proof-of-concept stages, to deter­
mine whether it was feasible to emulate a 68020 in software 
and whether the resulting emulator would provide good 
enough performance to be acceptable to users. 

Ultimately, the Cognac investigation concluded that it 
wasn't a financially feasible product. There simply wasn't a 
way to produce a mass-market version of such a hybrid sys­
tem with two main processors at a sufficiently low price. 

In mid-1990, the 88100-based RLC project got under 
way. RLC was short for RISC LC, referring to the Macintosh 
LC, in whose flat box the new machine resided, and whose 
system software the new RISC-based system was to run. 

RLC was designed to be inexpensive to implement, 
quick to market and exclusively RISC-based. Its goal from 
the beginning was to support the 68k via emulation. RLC 
was designed to be as compatible as possible with existing 
Mac hardware-no changes without good reason. 
Essentially, RLC took a Mac LC and replaced the 68020 
processor with an 88100-based CPU and a 68020 emulator. 

RLC and its 68020 emulator were up and running in 
January 1991. It was able to boot with unmodified 68k-based 
Mac LC ROMs and run System 7. Early versions of the Mixed 
Mode Manager- the system software that determines whether 
code is 68k or for the RJSC processor and routes it appropri­
ately-were also put into RLC to allow toolbox acceleration. 

Mixed mode is a necessity for native and emulated soft­
ware to work together seamlessly. The Mixed Mode Manager 
knows which code is 68k-based and needs to be run by the 
emulator, and which code is native RISC code that can exe­
cute directly on the built-in RISC microprocessor. When 
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mixed mode was first conceived, little thought was given to 
native apps. These machines were expected to run 68k soft­
ware in emulation, with an accelerated operating system. 
The emulator was assumed to run fast enough for this to 
be a realistic way of running 68k software. Another 
performance-critical part of the Macintosh OS, the Standard 
Apple Numerics Environment (SANE) was also converted to 
run on the 88100. SANE, available in the Mac since the 
beginning, enables applications to perform floating-point 
calculations even if no floating-point hardware is present. 
SANE running native on the 88100-based system drastically 
sped up floating-point performance for those apps that used 
it for floating-point calculations. 

------ Searching Out RISC 

Using a ruse chip for a personal-computer system that wasn't 
a workstation was considered daring at the time. Analysts 
vigorously decried RISe as a fad, since it hadn't caught on in 
the mainstream personal-computer market. It was evident 
to the Apple engineers, however, that ruse processors had a 
brighter future than their else counterparts, since RISe had 
much greater potential for performance improvement over 
time. The workstation market, with Sun Microsystems in 
the lead, had already discovered that RISe provided much 
higher computational performance than the more conven­
tional else chip designs. 

The Jaguar team eventually picked the Motorola 88110 
RISe chip. That decision was not exclusively a result of the 
existing relationship between Apple and Motorola, but 
largely a technical one. The 88110 is a single-chip imple­
mentation of the 88000 RISe architecture that Motorola 
first showed the world in mid-1988. At the time, the only 
implementation of the 88000 (88k) architecture consisted of 
a three-chip set: an 88100 and two 88200s. 
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Following Sun's Lead 

Sun migrated from 68k-based worksta­
tions when it introduced systems based on 

its own SPARC chip, soon to become the 
most widespread RISC chip in the worksta­
tion world. In some ways, Apple is now fol­
lowing that lead. Although Sun made the 

transition to RISC with an installed base of 

far fewer 68k-based workstations than the 
existing number of 68k Macs, it was 

nonetheless a radical departure at the time. 
And history supports its decision-Sun's 
SPARCstations are successful products. 

The Other Contenders 

The jaguar team's initial round of inves­
tigation into high-performance processor 
architectures was comprehensive. The 
team looked at MIPS' R4000, Sun 
Microsystems' SPARC, Digital's Alpha, 
AMD's 29000, Advanced RISC Machines' 
ARM (used in Newtons), AT&T's Hobbit, 
Hewlett-Packard's PA-RISC, and even Intel's 
Nl 0, which was later named the i860. At 
the time, Apple disregarded IBM's POWER 
architecture, PowerPC's immediate ances­
tor, because IBM did not appear inclined 
to make it available to third parties. 

The reasons why each of these architec­
tures fell by the wayside were many and 
varied. Above all, Apple's executives wanted 
a partnership with a company that had a 
solid future and sufficient chip manufactur­
ing capability, and whose chip architecture 
fulfilled Apple's needs for mainstream com­
puter systems. This also meant that, ideally, 
Apple would get access to a whole proces­
sor family whose members could span the 

range needed to make low-end, high-end, 
and portable systems rather than just a sin­
gle class of computer. 

Negotiations between Sun ancl Apple 
went quite far: Sun was to use the 
Macintosh interface as the standard user 
interface for its UNIX, and in return Apple 
would use chips based on Sun's SPARC 
architecture at the heart of its RISC sys­
tems. Despite strong proponents of this 
plan within Apple, the negotiations didn't 
succeed because Apple felt the manufac­
turing capabilities for SPARC were insuffi­
cient for its needs. At the time, Sun had 
not yet cut its deal with Texas Instruments 
to manufacture SPARC chips. Additionally, 
Apple engineers had reseiVations about 
some of SPARC's technical features and the 
limited breadth of the SPARC family. 

The MIPS R4000 family was also a 
strong contender. In this scenario, the 
Macintosh user interface would be the 
alternate user interface for ACE, the 
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The Other Contenders (continued) 

Advanced Computing Environment. Apple turing volume was insufficient from Apple's 
would then use the R4000 fam ily of chips perspective. The ACE consortium later col-
for its computer systems. ACE, the censor- lapsed primarily because of power struggles 
tium that included MIPS, Compaq, and among its members but also because of 
Microsoft, intended to define a standard Intel's successful lobbying to dissuade sys-
RISC-based hardware and software environ- tems vendors from using RISC instead of 
ment that would become the equivalent of Intel's x86 architecture. 
the x86 standard in the DOS and Windows Apple eliminated Intel's i860 mainly 
world. Despite the R4000's technical merits, because it's fiendishly difficult to write soft-
however, Apple and MIPS didn't come to ware for. The i860 wasn't designed for the 
an agreement largely because Microsoft, mainstream, and Intel wasn't w illing to make 
Apple's primary competitor on the operat- the necessary modifications to turn it into a 
ing-systems side, was a driving force in the usable chip for an Apple computer. This 
ACE alliance. In addition, MIPS' manufac- inflexibility doomed further negotiations. 

Motorola's 88000 family was interesting to Apple for sev­
eral reasons. At the time, Compaq was also investigating 
ruse chips and its engineers liked the 88110. Both Motorola 
and Apple were trying to convince Compaq th at the 88110 
was a good choice. Motorola wanted more high-volume 
customers, and Apple didn't want to be the only one using 
the chip. 

Apple made the 88110 decision in mid-1990 because 
Apple engineers considered the architecture sound, and 
Motorola's intentions for further development meshed well 
with Apple's plans. 

The 88110 chip's feature set, in addition to being a single­
chip implementation, was driven largely by Apple's require­
ments for a mass-market RISC chip. Apple's opinion carried a 
great deal of weight because Apple's purchasing volume 
would probably eclipse the combined sales volume of several 
other ruse chip vendors. Although the projected number of 
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Power Macs sold is small compared to the projected sales fig­
ures for i486- and Pentium-based systems, it is huge com­
pared to the sales generated by the primary RISC market until 
now: workstations. 

After picking the 88000 architecture, the Apple engi­
neers built prototype devices. One of the first was the so­
called Cub card, an 88100-based NuBus card. The 88110 
single-chip implementation of the 88k was not ready yet; 
the 88100/88200 multichip solution used on the Cub was 
close enough to the 88110 so that Apple's engineers could 
begin work on the emulator and other system-related pro­
jects. They also had software development tools that worked 
with the Cub card, so development could begin quickly. The 
first version of the 88k-based 68k emulator was developed 
on the Cub card. The Cub card soon led to the RLC. 

RISC for the Mainstream 

In early 1991, the jaguar project was disbanded and folded 
into the existing Macintosh group. At this stage, Apple's 
RISC efforts were focused on the mainstream; they were not 
to be high-end, high-performance, high-price computers 
anymore. The 88110-based successor to Jaguar was built as a 
Macintosh and code-named Hurricane. 

One of the pivotal points in the 88k-based Mac develop­
ment came at a sales conference in mid-1991, where RLC 
was demonstrated to a large audience for the first time. Not 
only did it run with unmodified LC ROMs and LC system 
software, but one engineer successfully ran an Apple II emu­
lator for the Macintosh, much to the amusement of all pre­
sent: an emulator running on an emulator. 

RLC's immediate successor was born on another ski trip, 
this time to Banff, Canada, in March 1991. This machine, 
housed in a Ilsi case rather than the LC case, was the first 
RISC Mac based on the 88110 rather than the 88100/88200 
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combination, and it was used to continue work on the parts 
necessary to make the RISC Mac a viable product. 

Even after Apple was well into 88110-based develop­
ment, some people within Apple expressed market-related 
reservations about the long-term viability of the 88k family. 
Despite Ford Motor Company's commitment to using an 
88k chip in its next-generation engine computer, no major 
computer manufacturer had chosen the 88k. The sales vol­
ume for the 88k family looked too weak, and Apple didn't 
want to be the only computer maker using the 88k. So 
Apple went looking for a RISC chip for the second time. 

The first time around, Apple hadn't considered IBM's 
POWER architecture because it thought IBM was unwilling 
to let other companies use it. This misconception was 
cleared up during some of the early high-level talks between 
upper management at Apple and IBM that ultimately set the 
stage for the alliance. Even once it became an option, 
POWER still wasn't Apple's favorite, though: The only 
implementation of POWER at the time was a seven-chip set. 
Such a conglomeration was far too expensive and unwieldy 
for Apple's purposes, and it didn 't look as if IBM would be 
able to design a more suitable version of a POWER processor 
within Apple's time frame. 

While the upper corporate echelons at the two compa­
nies were talking about collaboration opportunities, the 
Apple and IBM engineers met for the first time. This meet­
ing happen ed to be on a Friday, which was dress-down day 
at the Austin-based IBM Advanced Workstation s and 
Systems Division, home of the POWER architecture; all the 
IBMers were in jeans. The Apple engineers, anticipating a 
meeting with a stereotypical bunch of Big Blue people, were 
all dressed up in suits. Needless to say, this was an unex­
pected situation for both sides. 

A follow-up meeting, which included Motorola represen­
tatives, was held the next week. Apple invited Motorola 
because of the two companies' long relationship, a result of 
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Clothing Cult 

While the talks were still between engi­
neers and the actual agreements were 
still off in the future, the IBM contingent, 
having studied Apple's project-clothing 
cult, presented the second meeting's 
attendees with sweatshirts. The sweat­
shirts bore an IBM logo rendered in 
Apple's six corporate colors, whose I had 
an apple stem and whose M was 

Motorola's logotype. Having blatantly vio­
lated all and sundry trademarks and thrown 
proper IBM decorum out the window, the 
head of the IBM delegation was anxiety-rid 
den about the possibility of the box con­
taining the shirts bursting open on the 
luggage turntable upon their arrival at the 
San jose airport. 

Apple using chips from the 68k family in Macs. This rela­
tionship continued with the collaboration on PowerPC 
because Apple felt uneasy about committing the company's 
future to IBM, one of whose divisions was still a direct com­
petitor to Apple's Macintosh business. Apple involved 
Motorola not only to have a second source for PowerPC 
chips, but also because Motorola is one of the few chip man­
ufacturers in the world accustomed to producing quantities 
of chips in the millions. 

Deal of the Century 

Apple and IBM have traditionally been archenemies, so the 
world was surprised to hear about the Apple/IBM/Motorola 
alliance, whose memorandum of intent was publicly 
announced in July 1991 and whose details were announced 
later that year. The alliance consisted of five specific parts. 

• Apple, IBM, and Motorola would collaboratively design 
and build a family of RISC chips, known as PowerPC, 
derived from IBM's POWER RISC architecture. 

• The Apple/IBM joint venture Taligent would be formed to 
develop, market, and sell a new multiplatform object­
oriented operating system that was already under devel­
opment at Apple. 
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• Kaleida, another joint venture, would create cross­
platform multimedia standards and authoring tools. 

• PowerOpen, the specification for a hybrid UNIX system 
much like Apple's A/UX but that runs on PowerPC sys­
tems, would be codeveloped at IBM and at Apple- no 
specific company was created. 

Based on IBM's AIX version of UNIX, the initial imple­
m entation of PowerOpen will provide the ability to run 
Macintosh software on UNIX-based PowerPC machines 
much like A/UX does today on 68k-based Macs. 

• Apple and IBM would cooperate to integrate Macs into 
IBM's enterprise networking systems. 

Although neither Taligent nor Kaleida has shipped a 
product and a PowerOpen OS isn't available yet on Power 
Macintosh either, the PowerPC alliance has already pro­
duced its first results: The 601 chip was announced in 
September 1992, and the 603 chip was announced approxi­
mately a year later. The 604 was announced in early 1994, 
and the 620 should be announced before the end of the 
1994. 

IBM's POWER seven-chip set, known as RIOS-which is 
the Spanish word for "rivers" and doesn't have any particu­
lar code-name significance-was completely unsuitable for 
high-volume, low-cost products. These days, RIOS is often 
referred to as Powerl to distinguish it from Power2, a more 
recent multichip implementation of the POWER architecture. 
A project known as RSC, for RIOS single-chip, was already in 
development at IBM when the Apple/IBM/Motorola negotia­
tions began. The RSC's design goal, however, was to create a 
straightforward implementation of RIOS without significant 
modifications. 

When IBM's and Apple's engineers got together before 
the alliance was finalized to discuss how to implement 
POWER in a way that made sense for Apple, they soon real­
ized that they could use POWER as a foundation, reworking 
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its design and improving the architecture. IBM's willingness 
to turn POWER into PowerPC greatly contributed to the 
success of the alliance. 

In their meetings, engineers from Apple and IBM recog­
nized several shortcomings of the POWER architecture that 
prevented its low-cost, high-yield implementation for per­
sonal computers. Powerl was, after all, originally designed 
for workstations with less stringent cost constraints. The 
IBM engineers took the suggested design changes that 
resulted from these meetings and convinced IBM manage­
ment that modifications to POWER were required. Man~ge­
ment buy-in at IBM was necessary to override dissen ting 
opinions and instances of "not invented here" syndrome in 
some divisions. 

Similar problems were apparent on the Motorola side. 
Motorola's contribution to the alliance wasn't only in man­
ufacturing and sales. Part of the PowerPC chips' hardware is 
based on designs that originated in Motorola's 88110 project. 
Although it was initially reluctant to share its technology, 
Motorola's technical contribution to the effort significantly 
enhanced the PowerPC's value to Apple by minimizing the 
reengineering of its 88k-based systems. 

The successful evolution from POWER to the PowerPC 
architecture, which made high-speed yet inexpensive single­
chip PowerPC implementations possible, is a testament to 
the willingness of the three companies to overcome signifi­
cant hurdles in the interest of a mutually beneficial goal. 

The first PowerPC chip, the 601, is an amalgam of RSC 
with enhancements, plus some features of the Motorola 
88110. The PowerPC architecture was designed to be more 
suitable for typical personal-computer tasks, as well as to 
make evolution and expansion easier. The strengths of 
PowerPC's ancestors complemented the new architecture: 
POWER was originally designed for high-performance work­
stations, and the 88110 had a well-designed interface 
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between the chip and the rest of the computer system. The 
latter helped conserve the investment that Apple already 
had in its 88110-based designs. Only minimal hardware 
modifications had to be made to existing prototype systems 
at Apple to accommodate the differences between the 601 
and the 88110. 

------- Meetings, Phone Calls, Meetings 

IBM entered negotiations with Apple because it was inter­
ested in having Apple adopt its RISC architecture; IBM also 
wanted access to the Pink operating system to run on its 
own hardware platforms. IBM's AIX group in Austin, how­
ever, wasn't particularly gung ho about putting the Mac user 
interface and application services on top of its UNIX. 
Hammering out the agreements between Apple, IBM, and 
Motorola took more than six months of frequent confer­
ence calls and face-to-face meetings held under the utmost 
secrecy and often in hastily furnished and otherwise unused 
IBM and Apple office space. Conference calls twice weekly 
between Apple and IBM kept everyone up-to-date. These 
calls were also intended to identify issues that could hinder 
the deal's completion. 

Aside from those negotiating at the executive level, most 
IBM representatives at the meetings were from the Ad­
vanced Workstations and Systems Division, today known as 
the RS/6000 Division. No one from IBM's Personal 
Computer division, based in Boca Raton, Florida, was 
involved at any point. The PC division didn't originally 
commit to using PowerPC chips and even reserved the right 
to build MIPS-based systems in case the MIPS architecture 
turned out to be the RISC standard for Windows. IBM h as 
since created a separate business unit as part of the Personal 
Systems Division that will build PowerPC-based, nonwork­
station computers. 
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Several landmark meetings with Apple and IBM execu­
tives got the entire process under way. One such meeting 
made RSC+, the initial version of the 601, possible by IBM's 
agreement to change POWER into PowerPC. Another meet­
ing paved the way for IBM's manufacturing specialists to 
agree on an aggressive delivery schedule for the 601's chip­
production process. The 601 went from design to produc­
tion in less than two years-a considerable feat . 

One of the first weeklong meetings was held in june 
1991 in an otherwise abandoned building on IBM's Austin, 
Texas, campus. The day before this meeting began, IBM 
installed a network, computers, phones, copiers, furniture, 
and all the other necessary accoutrements of a well­
equipped meeting place. The meeting focused on PowerPC, 
Pink, and PowerOpen; Kaleida didn't enter the equation 
until later. 

The same group of people reconvened one week later in 
the opulent Management Development Center training 
facility at IBM's corporate headquarters in Armonk, New 
York. Two further weeklong meetings were held here, 
focused on the same three issues. The final alliance agree­
ment was made at meetings held in Apple's River Park facil­
ity in San jose, California-office space that Apple had 
recently vacated but whose rent was still paid. Similarly to 
the first weeklong meeting in Austin, this venue was trans­
formed from an abandoned space to a functional conference 
facility in a day. This final get-together, during which most 
everyone lived at River Park, resulted in the full set of 
Apple/IBM/Motorola agreements, including the birth of 
Kaleida, that formed what many people within the three 
companies call the deal of the century. 

During the meeting at the River Park facility, each com­
pany had areas that were further subdivided by project: 
multimedia, PowerPC, Pink, PowerOpen, and Networking & 
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Communication. Because of the large number of attendees, 
everyone wore stickers, color-coded by company. Apple was 
red, IBM wore blue, and Motorola green. One of the Apple 
group's running jokes was that the meeting resembled Star 
Trek: Apple was the Federation; IBM was the Klingon empire 
with whom they were making peace; and Motorola was the 
Romulan empire-not because they were the badguys, but 
simply because they were the makers of the ROMs. Once 
again, pop culture and high technology collided. 

------- Somerset 

The PowerPC part of the Apple/IBM/Motorola alliance came 
together at Somerset, the PowerPC design facility opened in 
May 1992 in Austin, Texas. Initially dubbed the Customer 
Design Center, it was aptly renamed Somerset after the 
English legend of warring factions in the time of King 
Arthur laying down their arms and joining forces. 

The first PowcrPC chip, the 601, was designed primarily 
at an IBM facility in Austin, with the help of Apple and 
Motorola engineers, and completed at Somerset. The other 
members of the PowerPC family-the 603, the 604, and the 
620-originated at Somerset. The Somerset facility is singu­
lar not just because of its joint-venture nature, but also 
because of its large staff and because it has the funding to 
allow the parallel development of multiple chips. The 603, 
604, and 620 development went on simultaneously. (Many 
chip families are still designed in sequence, but even Intel is 
working on two generations of its x86 processor, the P6 and 
P7, simultaneously.) As a result of the parallel work at 
Somerset, all of the initially announced PowerPC chips 
should have reached first silicon by the end of 1994. 

The 601 was produced in record time: a total of 21 months 
from concept to high-volume production. Development 
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started in October 1991, first silicon happened in September 
1992, and volume production started in July 1993. As if this 
weren't challenge enough, the PowerPC architecture specifi­
cation was being designed simultaneously with the 601 
design, a process that took a total of six months, making life 
interesting for the chip designers by requiring changes in 
the chip's design at several steps during development 
because of changes in the architecture design. The complete 
PowerPC specification was finished well after work was 
under way on the 601. Considering that the members of the 
development team began as strangers, the successful com­
pletion of the 601 in that short period of time was no mean 
feat. 

Of all the engineers at Somerset, the Apple contingent 
numbers fewer than 10. In addition to being vastly outnum­
bered, they all have dual roles to fulfill: They are chip-design 
engineers as well as customer representatives to Somerset. 
Since Apple will almost certainly be the largest single cus­
tomer of PowerPC chips in the near term, Apple's needs 
carry significant weight in making design decisions. 

The composition of all design teams at Somerset is 
strictly half IBM and half Motorola, except, of course, if an 
Apple engineer is part of a team. In the spirit of "trust but 
verify," this 1:1 ratio ensures that no one company's interest 
is better represented than that of another. Consequently, no 
features particularly beneficial to one of the companies 
make it in to a design. Since the distribution of the compa­
nies' employees has been a constant from the outset, much 
potential disagreement has been avoided outright. Many 
believe that this is a major factor in Somerset's success. 
Certainly, no one would have forecast that the 601 would 
be completed slightly ahead of schedule, especially since the 
outside world was waiting to hear stories about infighting 
between the factions. 
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Mixing Corporate Cultures 

just because the majority of the 
Somerset engineers are from two compa­
nies not known for their casual corporate 
atmosphere doesn't mean that Somerset is 
a stuffy place to work. Overall, the 
Somerset environment is most similar to 
Apple's. When IBM was interviewing for 
positions at Somerset, dress-down day on 
Friday was touted as a perk. This notion is 
lud icrous to Apple people, and it was soon 
explained to the interviewers that they 
were more likely to scare away potential 
employees than lure them by offering 
casual Fridays. 

Another example of culture clash is the 
question of drug testing: Apple doesn't, 
Motorola tests employees randomly with 
advance notice, and IBM makes testing 
compulsory. The policy adopted at 
Somerset was that employees are subject 

to the personnel policies of their employ­
ers; no grand unif ied policy was set for 
Somerset as a whole. Another issue was 
alcohol. No alcoholic beverage is allowed 
in any IBM building; this is in stark con­
trast to Apple's traditional Friday-afternoon 
beer bashes in Cupertino. At Somerset, no 
alcohol is the norm, since both IBM and 
Motorola have similar policies. 

Even if the predominant mode of oper­
ation at Somerset is casual, there are also 
extremes. In the early days, one member 
of the Apple contingent always arrived at 
meetings with a bag of rubber toys. At 
the start of every meeting, the bag's con­
tents were dumped onto the meeting­
room table, and anyone who needed to 
use a rubber fish to accentuate a point 
during the meeting could do so. 

------ 601 Is Greater Than 88110 

After all the political hubbub had died down and the engi­
neers got to work, several things needed to happen. The 
most important task was to get the first PowerPC chip, the 
601, specified, designed, and into production. While meet­
ings between Apple, IBM, and Motorola people were going 
on, the Apple engineers wh o'd been working on 88110-
based systems needed to shift into gear for PowerPC devel­
opment. But since a real PowerPC chip was still quite a ways 
off, they initially used IBM's RSC processor, which was simi­
lar enough to allow productive work. The first system-on-a­
card similar to the Cub card was the RSC-based Smurf card, 
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named after a little blue thing (as opposed to a Big Blue 
one). Later versions of the Smurf card were 601-based. The 
68k emulator was moved over to it, as were Apple's other 
RISC software projects. 

Because of their active involvement with the 601 design, 
Apple's engineers were prepared when the first 601s 
appeared in September 1992. It took only a few days to get 
the 601 working on a Smurf card, and another two days 
until the emulator was running well enough to bring up the 
Finder. This impressive achievement was by far the fastest 
that Apple had managed to get Macintosh up and running 
on a new CPU. As one might imagine, it's rather more work 
to go from 68k to PowerPC than from 68020 to 68030 or 
from 68030 to 68040. Typically, getting a machine based on 
a new chip to boot all the way to the Finder takes weeks, 
rather than days. 

After the deal of the century, many engineers both 
within Apple and within Motorola who had spent consider­
able time on 88110-based projects weren't too thrilled about 
switching over to the 601. Nonetheless, Apple's 88110 pro­
jects moved over to PowerPC. The Hurricane project 
switched over to the 601 and soon was renamed Tesseract, 
and RLC and its Ilsi-boxed successor changed names to 
PDM, short for Piltdown Man. The engineers picked this 
name because of its symbolism: Piltdown Man was the sup­
posed evolutionary missing link between the ape and Homo 
sapiens. In this analogy, the 68k world was the past, and the 
future was Jaguar's original spec, a non-Macintosh computer 
with a vast set of sophisticated but easy-to-use features. 
PDM, with a ruse core but still a Macintosh, was the miss­
ing link. 

Since the PowerPC 601 has a virtually identical bus to 
the 88110, the hardware modifications needed to make the 
switch from RLC were minimal. The PDM's feature set was 
chosen deliberately to be less ambitious than that of Jaguar. 
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The goal, as with RLC, was to minimize the risk involved in 
introducing RISC into the Macintosh world and to support 
68k software via an emulator (by now in its third iteration), 
but with a high-end Mac feature set. At the time, the 
Cyclone project was under way, which would result in the 
Quadra 840Av and Quadra 660Av. PDM's design is deliber­
ately similar to Cyclone's, since it was to offer a high-end, 
high-performance Macintosh feature set at an affordable 
price. 

RISC System Software 

The development of RISC system software at Apple went 
through many iterations, much like the hardware. Work on 
many of the fundamentally new parts of System 7.1.2, the 
version of system software that shipped with the new Power 
Macs, began with the Cognac project, where the first 68k 
emulator running on a RlSC chip was developed. The Mixed 
Mode Manager is another addition to the system, and it has 
also existed in various forms for several years. However, run­
ning System 7 on the Power Macs hasn't always been the 
clear choice, no matter how obvious it seems today. 

Jaguar initially was slated to run Pink, Taligent's new 
object-oriented operating system, but the migration of the 
early RISC projects into the Macintosh realm changed the 
plan back to the Macintosh OS, albeit in a different form. 
Som e within Apple wanted the RISC Macs to take on the 
workstation market as well, and as a result, they wanted a 
version of UNIX to be the standard operating system for the 
RISC Macs. For a month in early 1991, the upper echelons 
at Apple h ad to be convinced that the Mac OS, and not 
A/UX, should be the default operating system. 

When the decision to go with PowerPC was made and 
PDM was in its early stages of development, an ambitious 
plan for system software was formulated. As attendees of the 
Apple Worldwide Developers' Conference in 1992 were to 
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learn, the p lanned evolution of the Mac OS was toward 
using a microkernel operating system. This new OS would 
provide features such as preemptive mult itasking and hard­
ware memory protection in addition to all the standard 
Macintosh operating-system services. 

The amount of work required to make the Mac OS 
native and to integrate it with the microkernel was ambi­
tious, to say the least. Although it made sense conceptually 
to have the next major Mac system-software transition hap­
pen simultaneously with the introduction of the new 
PowerPC-based Macs, the decision was made in July 1992 to 
scale back the initial RISC system -software effort. For this 
reason, the more conservative system-software specification, 
which included the emulator, the Mixed Mode Manager, the 
Code Fragment Manager, and substantial toolbox accelera­
tion, was dubbed VO, since this version was a step before the 
original goal of a full microkernel OS. The decision to go 
with VO had a major benefit : Since compatibility with exist­
ing Macintosh hardware and software is a primary goal for 
the Power Macs, keeping the changes to the operating sys­
tem to a min imum greatly reduced the potential for incom­
patibilities. 

When VO was se ttled upon as the target, a large effort 
got under way to determine exactly which parts of the oper­
ating system should be made native, to maximize the effect 
of the PowerPC microprocessor. Many months of investiga­
tion and data-gathering resulted in a list of most frequently 
used parts of the operating system. The more often a partic­
ular part of the OS was used, the higher priority it received 
to be made native. In general, the 90/ 10 rule is in effect 
here: 10 percent of the code is used 90 percent of the time. 
So, to maximize the impact of the PowerPC for system soft­
ware, finding that 10 or so percent was the key. 

In the end, all of QuickDraw, the part of the Mac OS that 
produces graphics, was made native, as well as many other 
often-used and performance-critica l parts of the OS. Because 
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of the Mixed Mode Manager's ability to switch back and 
forth between native PowerPC code and emulated code, 
emulated applications get the full advantage of the native 
parts of the OS. 

A big milestone for the PDM project happened in October 
1992, at the Apple Pacific sales meeting held in Hawaii. The 
PDM team was flown out to demonstrate the new PowerPC­
based system to a large audience for the first time. The hard­
ware and software for the demo were prepared at Apple, but 
armed with PowerBooks, the engineers zealously continued 
software development in Hawaii. Unfortunately, by continu­
ing their work, they wound up breaking the system software. 

Panic reigned until the hardware and software were on 
speaking terms and the demo was stable again-just in time, 
since it was the night before the demo. Unfortunately, the 
demo system was left on the stage overnight (the demo was 
to be a part of the next morning's talks) rather than being 
locked up and, when the members of the PDM team came 
to check the machine for the last time in the morning, it 
was dead. Completely. Perhaps a stagehand had bumped the 
PDM or inadvertently done something else to cause the 
machine's untimely demise. 

Finally, after taking the system apart completely, reseat­
ing all the chips on the motherboard, and putting it back 
together, it worked again. No one understood why, but they 
weren't about to question it, since the demo was set to 
begin within 30 minutes. The machine was gingerly snuck 
onstage behind a curtain, and when the time came, the 
demo came off perfectly and the audience of Apple sales­
people and executives was none the wiser. 

This demo wowed the audience, among whom were 
Michael Spindler and Ian Diery. It reinforced to all present 
that the PowerPC-based Mac was a viable product. 
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Code Names for the 7100 

In late 1993, Carl Sagan (the astronomer, 
not the Mac) became upset upon learning 
that his name was being used to refer to 
the midrange of the Power Mac line. He 
(and his lawyers) sent letters of complaint 
to Apple Computer as well as to the trade 
journal MacWEEK. From the letter, it was 
clear he believed Apple was planning to 
use his name as the product name. As a 
result of the brouhaha, the engineers 
changed the name to BHA. BHA is pur­
ported to stand for butt-head astronomer. 

But it didn't stop there. As a result of Dr. 
Sagan's actions, the code-name change 
made it into the national print and radio 
news and became well publicized. In the 
first week of 1994, MTV called Apple to 
check out what was going on. It isn't clear 
whether it was just calling to check facts or 
whether it was claiming that "Butthead" 
was its intellectual property; regardless, the 
machine's code name was changed once 
and for all. The Power Macintosh 71 00 
was finally code-named LAW. 

Soon after the demo at the sales conference, it became 
clear that a single RISC-based Mac wasn't going to be able to 
fill everyone's needs and that a broader product line was 
needed. In March 1993, the high-performance variant of 
PDM, code-named Cold Fusion and later known as the 
Power Macintosh 8100, was started. Three months later, the 
midrange machine controversially code-named Carl Sagan, 
and officially named the Power Macintosh 7100, was started 
as well, rounding out the product line. 

In May 1993, the Apple Worldwide Developers' 
Conference contained a lot of PowerPC-related technical 
information and.whetted developers' appetites for soon-to­
be-available high performance at reasonable prices. 
However, Apple realized that not all developers would be 
able to have PowerPC-native products ready in time for the 
machines' release, so they had to rely on its 68k emulation 
capabilities. In a successful attempt to assuage developers' 
fears about the emulator's compatibility, Apple set up a 
room with prototype PowerPC machines and let developers 
test their software. The success rate was over 90 percent. 
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To top it all off, at MacHack in June 1993, the annual 
Macintosh technical conference and impromptu software­
writing event, Apple engineers surreptitiously used a proto­
type PowerPC machine for people to demo their hacks on, 
without bothering to tell anyone. The assembled group 
wasn't told until it was all over that all these often nonstan­
dard and otherwise borderline pieces of software ran on the 
emulator without a hitch. This was the audience to con­
vince about the emulator's stability and compatibility. 
Running the hacks on a PDM proved the solidity of the 
emulator to even the most hardened cynics. 

In July 1993, a separate PowerPC upgrade project was 
started with the intent of providing the most inexpensive 
PowerPC upgrade possible. The Power Macintosh Upgrade 
Card, code-named STP, took the minimalist approach and 
provided only the hardware absolutely necessary for an 
existing 68040-based Mac to become a Power Mac. The STP 
solution was also ideal for owners of the Quadra 700, 900, 
and 950, who would not have the opportunity to get a 
logic-board upgrade like owners of the Macs that share the 
same boxes with the three Power Macs. 

Apple's PowerPC evangelism efforts began to bear fruit 
in 1993. Approximately two years before the introduction of 
the Power Macs, the PowerPC evangelists at Apple began 
canvassing developers to bring their software native as soon 
as possible. It was clear that key applications needed to be 
running native on the Pmver Mac on, or close to, the date of 
announcement. 

Developers were divided into two camps, InsideTrack and 
FastTrack, to help them bring theii apps native quicker. The 
small number of InsideTrack developers were those who had 
apps that Apple considered absolutely crucial to a successful 
launch of the new machines. The InsideTrack developers 
started work on their software the earliest and fought 
through numerous changes in the operating system and in 
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the development tools. The bleeding edge best described 
where they found themselves. Many of these developers 
used IBM RS/6000 workstations for development, since the 
Mac-based development tools weren't available early on. 
The larger group of FastTrack developers, those with key 
applications that ideally would be done when the Power 
Macs were introduced as well, got started later using the 
Mac-based development tools. Many of them managed to 
get their products ready in time for the Power Mac 
announcement, despite the later start. 

Many milestones were reached during 1993. System soft­
ware went alpha in June, and into beta in October. As the 
shipping date for the Power Macs drew nearer, logistical 
issues about announcement and availability of systems and 
upgrades became relevant. The original plan was to announce 
and ship PDM on January 24, 1994, the tenth anniversary of 
the Mac, and announce the later availability of the other 
two machines. This idea was soon nixed by Ian Diery, 
because he wanted to have not only a full product line avail­
able at launch, but sufficient inventory to be able to sell 
machines to people in volume. Some trade magazines 
reported this schedule change as a slip-far from it, since at 
the time the engineering schedules didn't change. The only 
difference was that there was more time to produce more 
inventory. The Power Macintosh announcement was also 
the only Macintosh roll-out where upgrades for previous 
Mac models were to be ava ilable the same day as the new 
systems. This was also a marked departure from previous 
announcements, where upgrades were available only many 
months after the systems' introductions. 

One of the final decisions to be made about the 
PowerPC-based Macs was their names. Speculation about 
their names ran rampant in the trade press and on online 
services. There was uncertainty whether they would even be 
called Macs. Within Apple, this question had an obvious 
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answer: Since one of the primary goals for these machines 
was total Macintosh compatibility, they were definitely 
going to be called Macs. But what kind of Macs was the big 
question within Apple. One faction insisted that they be 
named Quadras, since buyers were familiar with Quadras 
and this name connoted the high end of the Macintosh 
line. It was pointed out, however, that the Quadras were 
named for their 68040 processor, and that no permutation 
of 601 resulted jn the number 4. Additionally, since the 
601's main competitor is Intel's Pentium, it wouldn't look 
good to have a system name that refers to a lesser digit than 
the Pentium's 5. The name Power Macintosh seems like the 
obvious choice now. 

Time Lines 

Summer 1989: Official start of jaguar 
project 

Winter 1989/1990: The Kirkwood ski 
trip and the birth of the Cognac 
project 

March 1990: Release of the Mac llfx 
and Macintosh 8•24 GC accelerated 
graphics card 

june 1990: Birth of the RLC project 
March 1991: The Banff ski trip and the 

transition of the RLC project to 
8811 0-based system 

june 1991 to September 1991 : PDM is 
born from 881 1 0-based Mac 

july 1991: The PowerPC Alliance is 
announced 

May 1992: Somerset opens 
September 1992: First si licon of 601 

October 1992: Pacific sales meeting in 
Hawaii 

March 1993: Cold Fusion project 
started 

june 1993: Carl Sagan project started 
July 1993: STP project started 
Late Summer 1993: Decision to pro­

vide AV functionality in PowerPC 
systems at introduction made 

january 24, 1994: Original planned 
date for PDM shipment and 
announcement of LAW and Cold 
Fusion 

March 14, 1994: Introduction of the 
Power Macintosh line and its first 
three members: the 6100/60, the 
7100/66, and the 81 00/80 
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How We Got Here from There 

To the buying public, new computer systems often seem to 
appear out of thin air. The evolution of the Power 
Macintosh line was a long and colorful process. When the 
first RISC projects started, no one had any idea that the 
result would be the Power Macintosh. An alliance between 
Apple and IBM was previously unthinkable, yet this coali­
tion is the basis for Apple's long-term Macintosh plans. 

A vast number of people were involved in making these 
Macs happen-many more than for any other Macintosh, 
when you count all the IBM and Motorola people involved 
in the PowerPC effort. What's also amazing about the intro­
duction of the Power Macs is that it happened when Apple 
originally said it would, in the first half of 1994-even 
though the prediction was made in October 1991, which, in 
the computer indusb·y, is a huge time gap. 

These Macs are also h arbingers of new things to come. 
PowerPC is the first microprocessor architecture that has 
any chance of competing with the dominance of x86 
machines in the personal-computer world. At the time of 
writing, the available PowerPC chips provided a vastly better 
price/performance ratio than competing x86 chips. However, 
Intel's engineers are good, and the competition for the desk­
top market will be fierce. It's unlikely that PowerPC will 
unseat the x86 from its position of dominance anytime 
soon, but it will almost certainly put a serious dent in the 
overwhelmingly larger sales volume of x86-based personal 
computers. 

The Power Macs are the first PowerPC-based personal 
computers to ship, and the future of the Macintosh looks 
bright. More powerful PowerPC processors are on their way, 
and improved Macs are already in the works. Many people 
saw the Macintosh as a doomed system because of poor 
performance, but rather than achieving parity with the 
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competition, Power Macintosh has allowed the Mac to 
leapfrog over the high end of the x86 world by providing 
equal or better performance at lower prices. All these years, 
Macintosh users have clamored for cheaper yet faster Macs. 
Here they are. 



CHAPTER TWO 

Power 
Macintosh 
Hardware 
Overview 

he new PowerPC-based Macs don't look all that different T from the Quadras. But appearances can be deceiving. The 
--- familiar Quadra cases now contain powerful new hardware. 

But despite their standard Mac features, the Power Macs 
have the hardware to take advantage of the PowerPC 60l's 
high performance without forgoing compatibility. 

This chapter provides an overview of the features of 
Apple's new PowerPC-based Macs and their differences from 
and similarities to previous Macs. As you will see, the Power 
Macs are a combination of old and new. They provide high 
performance-from 13.5 to over 34 times the performance 
of a Mac IIci, depending on the task-but are nonetheless 
priced low. This combination of more compute-horsepower 
for less money is a result of the Power Macs' hardware 
design, which has been kept as straightforward as possible 
by taking advantage of recent Macs' hardware innovations. 
This design provides most of the features familiar to users of 
the Quadra 660Av and 840Av, Apple's high-end 68040-based 
Macs. 

The Power Macintosh 6100, Power Macintosh 7100, and 
Power Macintosh 8100 are the first Macintosh systems 
based on the PowerPC 601 chip. They are the first stage of 
Apple's plans to migrate the entire Macintosh product line 
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from Macs based on Motorola's 680x0 (68k) family of micro­
processors to PowerPC-based machines. Another part of 
Apple's migration strategy from 68k to PowerPC is the 
Power Macintosh Upgrade Card, a deceptively simple card 
fo r most 68040-based Macs that turns them into Power 
Macs without needing to swap out the existing mother­
board. 

When running native software, which takes maximum 
advantage of the PowerPC chip's high performance, users 
can expect to see a 66MHz Power Macintosh 7100/66 per­
form between two and five times faster, depending on the 
application, compared to 68k-based software running on a 
2SMHz 68040-based Quadra 700. Most existing software 
was developed for the 68k Macs, though; average perfor­
mance for these applications running on a PowerPC-based 
Macintosh will be roughly that of the Quadra 700. 

But predicting performance of software running on the 
Power Macs is tricky at best. To get a better idea of how the 
software side of the Power Macs looks and how to gauge 
software performance on these new machines, Chapter 3 
provides an overview of both system and third-party soft­
ware for the Power Macs, and Chapter 8 provides an even 
closer look at how software works on the Power Macs. 

The Big Picture 

Some of the basic hardware features of the new Power Macs 
will be familiar to those who have looked at the Quadra 
660Av and Quadra 840Av. Although the Power Macs don't 
have a built-in DSP (d igital signal processor) chip, they do 
use direct memory access (DMA) hardware to move data in 
the system without burdening the central processor. The 
Power Macs also sport a 64-bit-wide bus for access to the 
CPU, RAM, and ROM which allows more data to be moved 
around at higher speeds than in any previous Macintosh. 
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They have the same high-speed GeoPort serial ports as well 
as all the audio features found in the AV Quadras. Users who 
also want to have the video features offered by an AV Quadra 
can buy any of the three new Power Macs in a configuration 
that contains a preinstalled card with all the necessary video­
related hardware. Peripherals and NuBus cards that are com­
patible with AV Quadras and other 68k-based Macs should 
work unchanged with the three new Macs. 

The Power Macs have a standard set of input/output 
(l/0) ports to connect them to the outside world: ADB, two 
GeoPorts, audio in and out, SCSI, Ethernet, and the new 
AudioVision connector for video are available on every 
Power Mac. The Power Macs' internals also provide a stan­
dard Macintosh set of features, but implemented with a 
clear focus on performance. The hardware in the AV 
Quadras, the most advanced 68k-based Macs, was the foun­
dation for the Power Macs. But the Power Macs are not engi­
neering works La lions. They are designed to be the fastest 
Macs by far and to provide the highest possible degree of 
compatibility with their predecessors so that existing invest­
ments in hardware and software don't become worthless. 

The PowerPC 601 

At the heart of each Power Macintosh 6100, 7100, and 8100 
is a PowerPC 601 RISC chip, codesigned by Apple, IBM, and 
Motorola and manufactured by IBM. The 601 chip runs at 
60MHz in the Power Macintosh 6100/60, at 66MHz in the 
7100/66, and at 80MHz in the 8100/80. 

The 601 is the first member of the PowerPC family of 
RISC chips. Its primary design goals were short time to mar­
ket and high performance. A 601, which is at the low end of 
the performance curve for the PowerPC family, performs 
roughly on par with Intel's Pentium chip-it runs at the 
same speed-at approximately half Pentium's cost. The 
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Speed-Bumping 

Apple included the clock speed of the 
601 in the Power Macs' names so they 
can perform speed-bumping. As with the 
Quadra 610, which started as a 20M Hz 
68040 Centris 61 0 but was revised to use 
a 25MHz 68040, speed-bumping 
increases the frequency of the CPU chip 
and therefore increases performance. 

With these new names, Apple can speed­
bump a Power Mac without having to 
come up with a new name while calling 
attention to the different speed. It's likely 
that we will see newer, faster revisions of 
the 6100, 7100, and 8100 that contain 
601 s running at higher speeds. 

100 MHz PowerPC 601, announced in April 1994, is a faster 
version of the 601. Running at identical speeds, the 601 
bests Intel's second-generation Pentiums, running at 90 and 
100MHz, in floating-point performance, and it equals their 
performance when executing typical integer-based code. 

One of the 601's particular strengths is exceptionally fast 
floating-point performance. Floating-point math is used 
heavily by rendering and animation software. These appli­
cations wil l benefit greatly from going native-that is, 
adapting 68k-based software to run directly on the PowerPC 
chip. Floating-point-intensive software has been the excep­
tion rather than the rule on the Mac until now. Most appli­
cations haven't used floating-point math because it didn't 
provide enough of a performance boost considering the 
effort required to integrate it into software. The floating­
point performance of the PowerPC family is so great that 
even developers who wouldn't normally consider using 
floating-point math are redesigning their software because 
of the potential speed gain. 

System software itself hasn't used floating-point opera­
tions for much the same reason as other software. The 
native version of QuickDraw GX uses some floating-point 
calculations, however, and therefore benefits a from 
PowerPC's floating-point capabilities. 
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Another way of looking at PowerPC's floating-point per­
formance is by comparing the capabilities of the Power 
Macs with those of the Quadra 660Av and 840Av. Both of 
these AV Macs have a dedicated floating-point digital signal 
processor (DSP)-AT&T's DSP3210 chip-built in. The DSP 
chip handles specific vrocessor-intensive tasks such as soft­
ware modems. The PowerPC 601 can act as the central 
processor for the Power Macs and at the same time provide 
the necessary horsepower to run a software modem without 
needing a dedicated DSP. 

In addition to fast floating-point and fast integer perfor­
mance, the 601 has other features that make it go fast. The 
601 has 32 kilobytes of high-speed cache on the chip itself, 
so it can store the most frequently used data and code on 
the chip for the fastest possible access. This reduces the need 
to fetch code and data from memory, speeding up processing 
a great deal. Another crucial feature of the 601 is that it has a 
64-bit data bus that allows it to move 64 bits, or 8 bytes, of 
data between itself and the outside world-for example, 
DRAM, ROM, and an external cache in one fell swoop. 
Internally, the 601 is a 32-bit chip, though; this means that it 
commonly operates on 32 bits of data during an operation. It 
can access 4 gigabytes of memory directly. Four gigabytes is 
not an arbitrary limit. All memory has an address that lets the 
CPU chip find exactly the data it's looking for. These addresses 
usable by the 601 are at most 32 bits large, and the largest 32-
bit number is 4,294,967,296, or 4 gigabytes. The 601's 64-bit­
wide bus works together with the 601's 32 kilobytes of 
on-board cache to make it easy for the core of the 601 chip to 
get at the data it needs, and to send data it's done with back to 
memory with a minimum of hassle. 

The 601 has three other immediate relatives: the low­
power 603, the 601-successor 604, and the 64-bit 620, each 
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with different strengths and features. If you're interested in 
more details about the PowerPC architecture and family of 
chips, see Chapter 5. 

Direct Memory Access 

One of the hardware features of the new Power Macs that 
contributes to their high performance is direct memory 
access, or DMA. DMA is so critical because it provides help to 
almost all of the different sections of the Power Macintosh 
hardware. Its influence isn't limited to just one or two parts 
of the motherboard. 

One of the traditional problems with the Macintosh 
hardware architecture has been that the 68k CPU chip spent 
much of its time moving data around rather than devoting 
itself to running users' software. This was a waste of a CPU 
chip's processing power. 

DMA frees the CPU from having to deal with moving 
data between peripherals and memory. This means that the 
601 in a Power Mac can continue doing whatever it's busy 
with, without interruption, while data is being read in from 
the SCSI port or data is sent out over Ethernet. Keeping the 
CPU out of the nitty-gritty data moving leads to a measur­
able performance improvement for the user as well as 
higher-speed data transfer between the Power Mac and its 
peripherals. The Quadra 660Av and 840Av were the first 68k 
Macs to take advantage of DMA. The Macintosh Ilfx sup­
ported DMA for SCSI, serial, and floppy 1/0 but only if you 
were running A/UX, Apple's version of UNIX. The Power 
Macs' DMA is different from that of the 660Av and 840Av, 
but it fulfills the same purpose. 

The Power Macs use DMA for SCSI, Ethernet, both serial 
ports, sound, on-board video, the floppy drive, and NuBus. 
Delegating the management of these ports to the DMA 
hardware lets the PowerPC CPU be used for computation-
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ally intensive tasks-such as running a software modem, 
speech recognition, or full-motion video decompression­
without causing the machine to grind to a halt. 

The other benefit of DMA is that it allows the 64-bit data 
bus that the 601 is connected to and the 16-bit-wide 1/0 bus 
for the various Power Mac ports to be isolated from each 
other. This means that the 601 is not only freed from mov­
ing data back and forth between memory and the ports, but 
the 601's bus is kept free of this additional data. This leaves 
the full bandwidth available to the 601 so it can access 
important resources such as the Power Macs' ROM without 
being subject to frequent interruptions, as data from the 
ports needs to travel over the same bus. 

Access to memory, and the speed at which memory is 
accessed, is crucial to the performance of any computer sys­
tem. A high-performance CPU like the PowerPC 601 that 
can process large amounts of data quickly is especially sensi­
tive to the speed at which memory is accessed. As a result, 
the Power Macs' designers made the path between the 601 
and memory as fast as possible. 

Memory in the Power Macs can be one of several kinds. 

• Dynamic RAM, or DRAM, is the memory commonly 
referred to when talking about a system's RAM capacity. 
DRAM is used to store software while it's running as well 
as the software's data. 

• Level 2 cache RAM can be installed in Power Macs. A sys­
tem's CPU chip-for the Power Macs, the 601-can get at 
information stored in the cache much faster than data in 
regular memory. 

• Virtual memory (VM) isn't really memory, it just acts like 
it: VM reserves space on a hard disk to simulate the avail­
ability of more RAM. In reality, the Macintosh operating 
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system's virtual-memory system swaps data between the 
hard disk and real RAM to create the illusion of more 
RAM than is available. On the Power Macs, VM has addi­
tional benefits, which are discussed in Chapter 3. 

• ROM stands for read-only memory. The 4MB of ROM in 
the Power Mac contain a large part of the system soft­
ware, including the 68k emulator. This software in the 
ROM makes the Power Mac hardware a Macintosh rather 
than just a PowerPC 601-based computer. 

• VRAM, or Video RAM, is used specifically to store video 
data on a video card. None of the Power Macs have 
VRAM installed on the motherboard, nor can it be added 
at a later date. The only VRAM expansion possible with 
the Power Macs is on the optional VRAM video cards that 
come preinstalled in 7100 or 8100 models. 

------ Dynamic RAM 

Each PowerPC-based Macintosh has 8MB of SO-nanosecond 
(SOns) Dynamic RAM (DRAM) soldered onto the mother­
board. Part of this memory, up to 600 kilobytes, is used up 
by the video subsystem on the motherboard if a display is 
connected to the motherboard's video connector at startup. 

To expand a Power Mac's memory capacity, each Power 
Mac has SIMM (single inline memory module) sockets. The 
SIMMs used to increase DRAM in the 6100, 7100, and 8100 
are identical to the SIMMs required for Quadra models such 
as the 610, 650, 660Av, 800, and 840Av. All three Power 
Macs, however, have a different number of SIMM slots. 

The 6100 has two SIMM sockets that can hold up to 
64MB when using 32MB SIMMs, making for a maximum 
capacity of 72MB RAM. The 7100 has four SIMM sockets 
and can therefore support up to 136MB. Finally, the 8100 
has eight sockets; if filled, they can upgrade this Mac to 
264MB. 

SIMMs must be added a pair at a time because each of 
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the standard SIMMs used by the Power Macs provides only 
32-bit-wide access to its RAM. Since the Power Macs' data 
bus is 64 bits wide, RAM must always be added in 64-bit­
wide increments. 

From a user's perspective, RAM in a Power Macintosh is 
like RAM in any other Mac. There is no need for special 
high-speed RAM, as with many RISC-based workstations. 
Normal 80ns RAM is all that's required to keep the Power 
Macs running quickly. This ability to use standard RAM 
makes it much easier to inexpensively upgrade the Power 
Macs' RAM than would be the case for workstations with 
comparable performance, and it also lowers the cost of a 
basic Power Mac. 

Intuitively, you might think that using faster RAM might 
improve the Power Macs' performance. You can install faster 
RAM-for example, 60ns or 70ns RAM-but your Power 
Mac's performance will not increase as a result of the faster 
RAM since it is designed with 80ns RAM in mind. Using 
80ns RAM isn't a hindrance for the 601, because it doesn't 
need to read from or write to RAM nearly as often, thanks to 
the 60l's large 32-kilobyte on-chip cache. In addition, since 
the 601 can read or write up to 64 bytes of memory during 
one transaction it can still move a large amount of data in a 
short period of time. To get any significant boost in perfor­
mance would require significantly faster, and significantly 
more expensive, DRAM. 

------- Level 2 Cache 

The Power Macs all have a built-in socket that is designed to 
be home to a Level 2 (L2) cache SIMM. Level 1 cache refers to 
any very fast cache memory that is closest to a microproces­
sor, such as the 32 kilobytes of cache on the PowerPC 601. A 
Level 2 cache, which is one step further away from the CPU, 
consists of very high-speed SRAM (Static RAM), which is 
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much faster than traditional DRAM. This SRAM is physically 
separate from the CPU chip, but it is connected directly to it 
via the Power Macs' 64-bit bus. The 8100 ships with an L2 
cache SIMM preinstalled that has 256 kilobytes of h igh­
speed 14ns RAM. This cache SIMM is available as an option 
for the other two Power Macs. 

The idea behind the L2 cache is to provide a buffer 
between the processor and comparatively slower DRAM. To 
the microprocessor, an L2 cache looks like a part of normal 
RAM: It keeps most recently used data (and code-the L2 
cache makes no distinction between the two) around in case 
the CPU needs it again soon. The larger the L2 cache, the 
more data can be kept handy and the less often the system 
needs to read from or write to DRAM. However, th e 256 
kilobytes of L2 cache provide the best performance boost for 
the price. Although larger L2 caches would improve a Power 
Mac's performance further, adding larger L2 caches 
approaches the point of diminishing returns, since the per­
formance improvement doesn't increase by the same 
amount as the L2 cache increases. 

Anytime the CPU needs data that isn't in its own Ll 
cache, it looks elsewhere, and if an L2 cache is present and 
has the requested data, the CPU can get it much faster than 
if it had to go all the way to the system's DRAM to get it. 

------- Virtual Memory 

Virtual memory (VM), originally introduced with System 7 
for 68030- and 68040-based Macs, is also supported on the 
Power Macs. VM is a feature of system software, but it needs 
hardware to support it. The 601 chip has the necessary 
MMU (memory-management unit) built in, just like the 
68030 and 68040. But VM in the Power Macs isn't just a 
port from the 68k version; it's been completely revamped 
and greatly improved for the PowerPC to be faster and to 
provide additional memory savings for native applications. 
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Chapter 3 explains the new Power Macs' virtual-memory 
software in detail. 

------ ROM 

Video 

Each Power Mac has 4MB of ROM built in. This is twice as 
large as the previously largest ROM, the 2MB of ROM in the 
660Av and 840Av machines. The Power Macs' ROM contains 
much of the system software for the PowerPC Macs, includ­
ing the 68k emulator that allows Power Macs to run 68k 
software as if they also h ad a 68k chip built-in. One side 
effect of this large ROM is that the size of the 7.1.2 System 
fi le on disk is significantly smaller than that of, say, a 7.1 
System file on a Quadra 700. The other benefit is that the 
OS itself takes up less space in RAM as well, since code can 
be run directly in ROM, without the need to copy it to RAM 
first. 

All three PowerPC Macs come with built-in video support 
on the motherboard. The video options available on the 
new Power Macs h ave something for everyon e: 

• The basic built-in video on the 6100 suffices for most 
standard applications. 

• The AV Card provides the video side of Apple's AV tech­
nology. 

• Th e VRAM cards for the 7100 and 8100 provide the main­
stream yet high-performance video solution. 

Unlike the Quadras' built-in video support, which uses 
separate RAM dedicated to video, the 6100, 7100, and 8100 
allocate part of the system 's RAM when using motherboard 
video. If you look in the About This Macintosh window in the 
Finder, any DRAM allocated to video is part of the memory 
shown as used by the System and isn't separately identifiable. 
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------ Built-In VIdeo 

The built-in video hardware in the Power Macs has no more 
than a passing resemblance to motherboard video on previ­
ous Macs. A side effect of this video architecture that uses sys­
tem RAM rather than dedicated Video RAM is that, depending 
on the size of the monitor and the desired bit depth, it can 
use significant amounts of system resources. A Power 
Macintosh running internal video will slow down perceptibly 
as bit depth increases. Although the slowdown isn't debilitat­
ing, it's noticeable at higher bit depths. If you regularly need 
to use thousands of colors, you should consider avoiding 
internal video. A VRAM-based alternative is available for the 
7100 and 8100; it is discussed later in this chapter. 

The connector for the on-board video on the rear of the 
machines is Apple's HDI-45 AudioVision connector. Since 
the only display that directly supports this connector is 
Apple's own Audio Vision display, an adapter cable that con­
verts the AudioVision connector into the standard DB-15 
video connector used by most monitors comes with every 
Power Macintosh 6100. Since the other Power Macs come 
with additional video interfaces, they are not shipped with 
this adapter. 

If no display is connected to the motherboard's display 
connector-for example, on a headless server or when you 
are using another video card-no memory is allocated for 
on-board video. All the memory is available for the operat­
ing system and applications. With a display connected, the 
built-in video supports the displays at the bit depths shown 
in Table 2.1. 

The worst case is the 13-inch display in 16-bit mode; 600 
kilobytes of RAM are needed to support this display mode. 
However, even if a video mode that uses fewer than 600 
kilobytes is used, the Power Macs allocate the full 600; this 
is necessary if the user ever wants to increase the bit depth; 



Power Macintosh Hardware Overview 43 

Cycle-Stealing VIdeo 

The Power Macs' on-board video sub­
system shares the RAM on the mother­
board with the rest of the system. There 
is no separate Video RAM, as on the 
Quadras. This has the benefit of being 
less expensive, since there is no need for 
specialized RAM, and also less compli­
cated from a systems design perspective. 
The drawback to cycle-stealing video, 
though, is performance. 

On most personal-computer systems, 
there's only one path into and out of the 
system's RAM. If the CPU chip wants 
access to information in RAM, it must use 
that path. Most interaction with RAM is 
relatively short, since moving large quan­
tities of information in and out is rare. 
Video on the Power Macs is an exception 
to the rule, since a single screen refresh 
might need to move up to 600 kilobytes 
of data. Since a refresh happens roughly 
60 to 75 times per second, depending on 
the monitor being used, in the worst case 
a little less than 35 percent of the entire 
system's bus bandwidth is used to trans­
port video data. 

Although this may seem like an unrea­
sonable performance penalty to pay, in 
reality it isn't that bad. The Power Macs' 
Data Path chips, which are explained in 
Chapter 7, shield the 601 and all the 
parts of the system connected directly 

with the 601 from the constant video 
data flowing by. This allows the 601 to 
get on with its business, while the main 
effect of all the video data traveling 
across the bus is to limit the amount of 
available bandwidth. In addition, 98 per­
cent of the 601 's memory accesses stay 
on the chip; only 2 percent actually make 
it out onto the CPU bus. The only time 
that on-board video gives the 601 any 
pause is if it is trying to read from mem­
ory while a video refresh is going on. This 
situation is known as bus contention; in 
such instances, parts of the Power Mac 
hardware have different priorities that 
determine their access to the bus. The 
higher the priority, the less other subsys­
tems in the Power Mac can hog any part 
of the bus. The video subsystem has the 
second highest priority, since its refresh 
must happen without fail at exactly timed 
intervals. 

Users who need higher video perfor­
mance will have either an AV or a VRAM 
card. And most users of on-board video 
will not be using the worst case: 1 6-bit 
color on a 1 3-inch monitor. The most 
common case will probably be 8-bit color 
on a 1 3-inch monitor, which uses around 
15 percent of the system's bandwidth­
not inconsequential, but by no means 
debilitating, either. 



44 The PowerPC Macintosh 

Table 2.1 Displays Supported by Built-in Video 

Display Resolution Bit Depths RAM Used at Max Bit Depth 

12" RGB 512 X 384 1, 2, 4, 8, 16 393216 bytes 

13" RGB 640 X 480 1, 2, 4, 8, 16 614400 bytes 

15" Portrait 640 X 870 1, 2, 4, 8 556800 bytes 

16" RGB 832 X 624 1, 2, 4, 8 519168 bytes 

VGA 640 X 480 1, 2, 4, 8 307200 bytes 

for example, to look a t a color photograph. If the whole 
amount weren't already reserved, the user would either have 
to restart the machine or be faced with having to look at the 
image in an undesirable bit depth. 

However, internal video isn't the only option for the 
Power Macs. Apple ships higher-performance video cards 
with some of them. Both the Power Macintosh 7100 and 
8100 come with one of two video cards installed in their 
processor direct slot (PDS). 

------ Processor Direct Slot 

The processor direct slot (PDS) is a direct connection to the 
motherboard's 64-bit system bus. Any card in this slot has 
the same access to system resources as if it were directly on 
the motherboard. This is in contrast to expansion buses 
such as NuBus, which have significantly lower throughput. 
NuBus is a 32-bit bus that generally runs at lOMHz; a 
6100/60's 64-bit bus runs at 30MHz, half of its 60MHz CPU's 
speed, but still provides six times the bandwidth of NuBus. 
An 80MHz 8100/80's bus runs at 40MHz, eight times the 
throughput of NuBus. 

All three Power Macs have one PDS. The 6100's is 
unused by default but can contain either an AV Card or the 
Power Macintosh NuBus Adapter Card. The 7100's and 
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8100's PDSs are always used for one of t-vvo video cards: the 
AV Card or the Power Macintosh VRAM card. The VRAM 
card is not available as an option for the 6100. 

------ AV Card 

The AV (audio/video) versions of all three PowerPC Macs 
have the AV Card installed, adding another video-output 
option. The AV Card, which plugs into the processor direct 
slot (PDS), contains a less expensive but equally capable ver­
sion of the AV subsystem introduced in the Macintosh 
Quadra 660Av and 840Av and provides the same AV features 
as these Macs. The AV Card supports composite video and 
S-video in and out and has a standard DB-15 video connec­
tor. For more details about the AV Card's capabilities, see 
Chapter 7. 

The digital audio video (DAV) connector in the Quadra 
660Av and 840Av has changed for the Power Macs, since the 
AV hardware no longer resides on the system's mother­
board. The DAV connector allows direct access to the digital 
audio and video data coming from the AV hardware. This 
degree of access is necessary for cards that directly process 
the audio and video data and need the highest possible per­
formance. NuBus simply doesn't have the bandwipth to 
support continuous streams of audio and video data. 

The DAV connector on the AV Card has the same electri­
cal connections as the original DAV, but it is redesigned for 
use with a ribbon cable rather than as a plug-in slot for a 
card. With the new scheme, NuBus cards that have DAV 
support connect to the AV Card via a ribbon cable. Older 
cards that use the inline DAV slot on the 840Av (the 660Av 
doesn't have a DAV slot) are not easily usable in the AV con­
figurations of the new Power Macs, since the location of 
their DAV connector is on the underside of the card, rather 
than in a location more accessible to the DAV ribbon 
connector. 
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The AV Card comes with 2MB of VRAM installed on the 
card, and the VRAM capacity of this card can't be expanded. 

------ VRAM Cards 

Those 7100s and 8100s that don't come with the AV Card 
have a Power Macintosh VRAM card installed in the processor 
direct slot (PDS). As a result, every 7100 and 8100 ships with 
dual-display support as a standard feature. Out of the box, you 
can connect your Power Mac to two monitors without any 
additional video hardware. The VRAM frame-buffer card 
comes in two variants: one for the 7100 with 1MB of VRAM, 
expandable to 2MB, and one for the 8100 that comes with 
2MB, upgradable to 4MB. The VRAM frame-buffer card can 
support the displays and bit depths shown in Table 2.2. 

QuickDraw runs native on PowerPC Macs. Since 
QuickDraw isn't emulated, a VRAM card in a Power 
Macintosh will perform very well, rivaling and often exceed­
ing the performance of many NuBus video cards. 

Storage and SCSI 

As with all Macs since the Mac Plus, the Power Macs use a 
SCSI bus to connect to mass-storage devices such as hard 
drives, CD-ROM drives, OAT drives, removable media, and 
other devices such as scanners and printers. The SCSI 

Table 2.2 Displays Supported by the VRAM Cards 

Power Mac Model MBVRAM Display Size Resolution Maximum Bit Depth 

7100/66 1 12" 512 X 384 16 

1 13"- 14" 640 X 480 16 

1 15" 640 X 870 8 

7100/66 or 8100/80 2 16" 832 X 624 24 

2 21" 1152 X 870 16 

8100/80 4 21" 1152 X 870 24 
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connector on the back of a Power Macintosh is the same 25-
pin connector that Mac users have been accustomed to since 
the introduction of SCSI with the Mac Plus. Any SCSI 
peripheral that is compatible with the Quadra 660Av or 
840Av should work with the new Power Macs. 

Like the Quadra 660Av and 840Av, the standard SCSI bus of 
each Power Mac supports throughput up to SMB per second. 
The Power Macintosh 8100 has a second, independent SCSI 
bus that supports Fast SCSI throughput up to a theoretical 

Upgrading SCSI 

If you're upgrading from a 68k-based 
Macintosh to a Power Macintosh, you 
should be aware of a few problems that 
you may encounter on the path of migra­
t ion. Owners of the 660AV and 840AV Macs 
have experienced SCSI-related problems 
that manifest themselves most commonly 
as random but frequent crashes, none of 
which are ultimately the fault of the new 
Macs. Since the SCSI implementation­
both hardware and software-of the 
Power Macs is so similar to that of the 68k­
based AV Macs, users upgrading may 
experience similar challenges and be 
tempted to blame them on the new Macs. 

The main sources of problems with 
SCSI on the Mac are traceable to either 
SCSI cabling or termination. Make sure 
you have high-quality cables and proper 
termination. Most SCSI problems that 
appear to be the fault of new Macs are 
cabling or termination problems. 
Recently, vendors have begun offering 

digital active termination schemes. Such 
terminators generally improve the signa l 
quality on SCSI chains. Many SCSI prob­
lems on the 660Av and 840Av, as well as 
on the Power Macs, have cleared up as a 
result of installing this kind of terminator. 

The SCSI driver software installed on 
drives is another facet of SCSI devices 
that you shouldn't ignore. Apple intro­
duced the new SCSI Manager 4.3 with 
the Quadra 660Av and 840Av, and this 
new SCSI system software is also part of 
the Power Macs. If you want to get the 
best possible performance from your 
SCSI peripherals, make sure your drivers 
all take advantage of SCSI Manager 4.3's 
features. (Old drivers work fine, but do 
not offer peak performance.) 

If you want more information about 
things to watch out for when upgrading 
from your 68k Macs to a Power 
Macintosh, see Chapter 7. 
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maximum of lOMB per second, similar to the second inter­
nal SCSI bus in the Quadra 900 and 950. 

Each of the three new Macs is available with a double­
speed internal CD-ROM drive. These are the first drives from 
Apple that don't require a caddy to use discs. Previously, to 
use a CD-ROM disc in a drive, you had to place it in a 
holder called a caddy, and then the caddy went into the 
drive. The drives in the Power Macs behave just like audio 
CD players: They have a small button on the front that you 
press to make the CD drawer scoot out. Place the CD in the 
drawer, press the button, and the drawer scoots back in and 
brings the CD up on your Mac's desktop. 

Double-speed refers to the capability of the drive to spin 
the CD-ROM at twice the normal rotational speed. Despite 
their moniker, double-speed drives rarely perform at twice 
the speed of a conventional CD-ROM drive. The maximum 
amount of data that a double-speed drive can feed a Mac is 
around 300 kilobytes per second, quite pokey when com­
pared to hard disks. Higher-end hard drives typically allow 
transfer rates of around 3.5 to 4MB per second. At this writ­
ing, CD-ROM drive manufacturers were introducing triple­
and quad-speed CD-ROM drives-great for CD-ROM users, 
but still slower than a hard disk. To take fullest advantage of 
a quad-speed drive's ability to transfer data quickly to the 
Mac, the data on the disc must be arranged just right. 
Unfortunately, this arrangement can make for much slower 
reading on non-quad-speed drives. 

You can use the internal CD-ROM drive in a Power 
Macintosh for audio-playback and, with QuickTime's built­
in support for the audio-extraction features of these drives, 
you can also use it to convert audio tracks on an audio CD 
into QuickTime movies. All AV versions of the three Power 
Macs come with internal CD-ROM drives preinstalled. Some 
non-AV versions also come with CD-ROM drives. 
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Other SCSI devices can be installed inside the new Power 
Macs. Like the Quadra 610 and 660Av, the Power Macintosh 
6100 has two internal bays for SCSI devices. One is a 5.25-
inch half-height bay suitable for a CD-ROM drive; the other 
is a 3.5-inch one-third-height bay for a hard disk. Since all 
Power Macs come with hard drives, the hard-drive bays all 
contain a drive. The Power Macintosh 7100 has the same 
two internal bays as the Quadra 650. And like the Quadra 
800 and 840Av, the minitower 8100 has both the internal 
bays that the other two Power Macs' cases provide, plus a 
3.5-inch full-height internal bay for a large-capacity hard 
drive. The large bay in the 8100 box is intended for high­
performance drives, which should be connected to the 
8100's internal-only Fast SCSI bus. See Figure 2.1. 

The 8100 has a second independent Fast SCSI bus that is 
accessible only via an internal connector, identical to the 
internal SCSI ribbon connector used for all Macs. This bus is 
internal-only for several reasons. To achieve the highest pos­
sible throughput, this bus must remain as free as possible 
from electrical noise. With the wide variety of SCSI devices 
and cables available, an external bus is rarely clean enough 
to support such high throughput. 

Although active termination and high-grade cables min­
imize the problems, there are other good reasons to keep the 
Fast SCSI bus internal. Even most hard drives would have a 
hard time maxing out the 5MB per second bandwidth of the 
external bus. Minimizing the number of devices on the 
internal bus reduces the possibility of multiple devices hav­
ing to contend for available bandwidth on the Fast SCSI bus. 
If the Fast SCSI bus had an external connector, everyone 
would connect their existing SCSI chains to it since, after 
all, faster is better. All the slow devices would have to share 
the bandwidth of the Fast SCSI bus, severely reducing its 
utility for real fast drives. Today's double-speed CD-ROM 
drives deliver no more than 300 kilobytes per second 
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throughput; Apple connects any internal CD-ROM drive in 
the Power Macintosh 8100 to the standard SCSI bus, leaving 
the high-speed bus free for devices that can take advantage 
of its bandwidth. 

The 7100 and 8100 both have three NuBus slots for expan­
sion, and the 6100 can be outfitted with a NuBus adapter 
card that plugs into its processor direct slot (PDS). Once 
installed, this adapter supports one 7-inch NuBus card. Most 
NuBus cards that work in the 660Av and 840Av should func­
tion without problems in the Power Macs. 

The Power Macs support NuBus 90, which is a more 
recent version of the original NuBus 87 specification that 
has been used in all NuBus-endowed Macs prior to the 
Quadra 700. NuBus 90 can provide higher performance 
than NuBus 87 in its burst mode, when transferring data 
from one NuBus card to another. 

NuBus, however, may not be as crucial for the new 
Power Macs as it has been in previous 68k-based machines. 
Traditional inhabitants of NuBus slots have been video 
cards, Ethernet cards, and, more recently, audio/video cap­
ture cards. Since Ethernet comes on the motherboard of 
every Power Macintosh and the 7100 and 8100 have either 
a VRAM card or an AV Card preinstalled, much of the need 
for NuBus expansion has been eliminated. Nonetheless, 
these two Macs sport three available slots each. 

The NuBus adapter for the 6100 can't be used in the AV 
versions, since the 6100 motherboard has only one proces­
sor direct slot (PDS) that can be occupied either by the AV 
Card or by a NuBus adapter. Other NuBus adapters, such as 
the ones for the Ilsi and for the Centris/Quadra 610 or 
660Av, cannot be used in the 6100. The only specific 
requirement for a NuBus card to work with 6100's NuBus 
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GeoPort 

Ports 

adapter is that it must conform to the short 7-inch NuBus 
card-size specification; this requirement is the same for the 
610 and 660Av adapters. Cards that work in these machines 
should work in a 6100. 

The GeoPort software for Power Macs runs on the PowerPC 
chip. No digital signal processor is needed. The GeoPort fea­
tures aren't tied with the video capabilities of the AV Card, 
either. Consequently, every Power Macintosh, including those 
without AV Cards, can run a GeoPort modem. 

The GeoPort hardware and software, introduced with the 
Quadra 660Av and 840Av, used the DSP3210 digital signal 
processor built into those machines to provide a software 
modem. All the work that dedicated modem hardware 
would normally perform was done in software running on 
the DSP chip in the AV Quadras. 

Both setial ports on the Power Macs can be used as GeoPort 
ports. With the addition of a GeoPort Telecom Adapter con­
nected to a Power Mac's modem port, and with the necessary 
software installed, even the 601 in the Power Macintosh 6100 
has the oomph to also act as a 14400bps V.32bis modem, but it 
must have the hardware support of DMA to move all the data 
back and forth in the Power Mac system. Without DMA, a soft­
ware modem would not be possible. 

The slowdown caused by the compute-intensive task of 
running the modem is perceptible by the user, especially on 
the slower Power Macintosh configurations. The slowdown 
is by no means debilitating, however; the Power Mac is still 
responsive when the GeoPort modem is in use. 

Except for the HDI-45 AudioVision connector, none of the 
ports on the back of the new Power Macs are unfamiliar to 
users of earlier Macintosh models. They all have a DB-25 
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SCSI connector, an AAUI Ethernet port, two GeoPort serial 
connectors (modem and printer), ADB (for the keyboard and 
mouse), an audio-in jack, and a speaker jack, just like the 
660Av and 840Av. As with these two 68k-based Macs, the 
sound subsystem in the Power Macs supports high-quality 
16-bit stereo sound. 

These ports work with the same devices as 68k-based 
Macs, so buying a Power Macintosh means that you can still 
use your old peripherals. For 6100 owners, the bundled 
HDI-45 to DB-15 adapter allows existing monitors to be con­
nected without hassle. The additional microphone necessary 
for PlainTalk is supplied separately and plugs right into the 
sound-in jack in the Power Macs. 

All three Power Macs have high-quality sound input and 
output capabilities built in. None of these features require an 
AV Card, nor will an AV Card improve a Power Mac's sound 
features. 

Each Power Macintosh has a sound-in and a sound-out 
jack on its back panel. These stereo jacks are the same size 
used on portable stereos. The sound hardware inside the 
Power Macs supports 16-bit digital audio, in and out, at a 
sample rate of 44.1kHz. This sample rate is the standard rate 
for audio compact discs. 

With these high-quality sound capabilities, the Power 
Macs support Apple's PlainTalk speech-recognition and 
speech-synthesis software. This software is available from 
Apple, together with a microphone designed specifically for 
speech recognition, as an added-cost option. 

The Power Macintosh Upgrade Card 

The Power Macintosh Upgrade Card is the most inexpensive 
way of upgrading a 68040-based Macintosh to a Power 
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Macintosh, but it doesn't offer the same performance as a 
Power Macintosh. The Upgrade Card is deceptively simple. 
It plugs into the 68040 processor direct slot (PDS) in a 
Quadra 700, 900, 950, 650, o r 610 and contains a PowerPC 
601 chip, 1MB of 15ns Level 2 cache, and 4MB of ROM. The 
ROM on the Power Macintosh Upgrade Card is almost iden­
tical to that in the 6100/60, 7100/66, and 8100/80, except 
for minor differences necessary for the card to run in the 
Quadras. The ROM contains the 68k emulator as well as 
many other new PowerPC-related system-software features 
such as Native QuickDraw. 

The Upgrade Card is designed so that its 601 always runs 
twice as fast as the 68040 in the host Mac. The 601 runs at 
40MHz in an original Centris 610 whose 68040 runs at 
20MHz. In a Quadra 700, whose 68040 runs at 25MHz, the 
601 runs at 50MHz. In a 33MHz Quadra 950, the 601 on an 
Upgrade Card runs at 66MHz. There aren't different ver­
sions of the Upgrade Card-one size fits all. 

A Quadra with an installed Upgrade Card can boot up in 
one of two modes: 

• The 68040 is active, in which case the user can run 68k 
software native. 

• The card boots up in PowerPC mode to allow native 
PowerPC apps to run. 

When the Upgrade Card is active and the Mac is run­
ning in PowerPC mode, it cannot use the 68040 on the 
Quadra's motherboard to run 68k software. If the 601 is the 
active CPU, the 68k emulator is used to run 68k software. 

This ability to run in either mode is an excellent feature 
for those who want to make the most painless transition to 
PowerPC. Only a restart separates users from running native 
PowerPC apps and running 68k apps at full speed on a 
68040. 
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The performance of an Upgrade Card is less than that of 
a Power Mac, since Power Mac hardware features such as 
DMA and a 64-bit bus aren't available on the Macs that 
accept Upgrade Cards. The 601 alone provides a great deal 
of performance, and the large 1MB Level 2 cache on the 
Upgrade Card compensates for this problem. But having to 
go through the 32-bit 68040 PDS, which requires translation 
from the 601 bus to and from the 68040 bus, creates a bot­
tleneck. The 68040 bus acts like a funnel and limits the 
amount of data that can move between the card and the 
motherboard. 

Apple Business Systems (ABS) is also moving toward the 
PowerPC with its servers. The two lower-end offerings are 
identical to two of the Power Macs, and the high-end 
PowerPC-based Workgroup Server is a new development 
with a few significant changes. For more information about 
the software running on these servers, see Chapter 3. 

------ Apple Workgroup Server 6150 

The Apple Workgroup Server (AWS) 6150 is identical to the 
Power Macintosh 6100 except that it has a 512-kilobyte 
Level 2 cache preinstalled. The AWS 6150 runs at 60MHz 
and, except for the different front panel and the L2 cache, it 
is exactly the same machine. 

Apple Business Systems offers upgrades from the AWS 60 
to the 6150. 

------ Apple Workgroup Server 8150 

The AWS 8150 is identical to the 8100, except for its prein­
stalled 512-kilobyte Level 2 cache. There are no other differ­
ences other than the front panel. 

Upgrades are also available to help users migrate from 
the Apple Workgroup Server 80 to the AWS 8150. 
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------ Apple Workgroup Server 9150 

Performance 

The Apple Workgroup Server 9150 has no counterpart in the 
Power Macintosh line. The 9150 is a further development of 
the Power Mac 8100 hardware design and includes all of its 
featu res, including the two SCSI buses. The 9150 has two 
differences: It has a fomt h NuBus expansion slot as opposed 
to the 8100's three, and the 9150's motherboard is designed 
to fit into a Quadra 900/950 box. 

This case is the same one used by the Apple Workgroup 
Server 95; the 9150 is the upgrade for the 68k-based 
AWS 95. However, the AWS 9150 does not run A/UX and 
AppleShare Pro like the 95; it runs AppleShare 4.0.2 or later. 
This means that th e 9150's performance as a fileserver will 
lag behind the AWS 95 until improved server software 
becomes available. 

Determining performance on the Power Macs is not particu­
larly straightforward. Emulated software receives the benefit 
of toolbox accelera tion, introduced in Chapter 1 and dis­
cu ssed further in Chapter 3. Native software can be slowed 
down by the parts of the opera ting system that are still emu­
lated. In the meantime, Apple's engineers are working on 
making more of the operating system na tive. As a result, 
th ese are the fi rst Macs that will gain significant perfor­
mance over time just by installing new software. 

With n ative software, there is little question that the 
Power Macs best the 68k-based Macs in price versus per­
formance. 

If you're interested in a greater degree of detail than this 
chapter provides, see Chapter 7. 
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CHAPTER THREE 

Power 
Macintosh 
Software 
Overview 

he Power Macintosh hardware is impressive, but the success 
of the Power Macs rests squarely on how well software per­
forms-both native and emulated software. Without blaz­
ingly fast native applications, a Power Mac is just another 
Mac and certainly not competitive with offerings from the 
80x86 world. With native apps, however, even the first-gen­
era tion Power Macs offer performance rivaling that of some 
workstations, but with the familiar and easy-to-use 
Macintosh user interface-no UNIX required. 

Power Macintosh System Software 

The Power Macs run System 7 by default-System 7.1.2 and 
later, to be precise. They are real Macs, not disguised UNIX 
workstations, nor do they use the Taligent operating system, 
which won't ship until 1995. 

The same System 7 environment that existing Mac users 
are familiar with is the default operating system for these 
new Macs. Although the new version of System 7 contains 
enhancements to run faster on Power Macs, there are no vis­
ible changes to the Macintosh interface as a result of 
installing the new version of the Mac OS. 

57 
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------ Installing System 7.1 .2 

There are two ways to install System 7 .1.2: either as a fresh 
installation or as an update to an existing system for 68k 
Macs. The latter option is easier for users of existing Macs 
who want to move to the Power Macs with a minimum of 
hassle, but a fresh installation reduces the possibility of 
mishap during installation. 

If at all possible, you should perform a fresh installation 
of a new version of the Mac OS and copy all the third-party 
software and preferences in your System Folder and its sub­
folders into the freshly installed System Folder. 

The only instance where an update might be of greater 
convenience is when installing on a Mac with a Power 
Macintosh Upgrade Card. However, since the full installation 
from the Upgrade Card's system-software disks will also run 
in 68k mode Macs that accept Upgrade Cards, the benefit is 
negligible when compared to the security afforded by a freshly 
installed system. Furthermore, you're assured that with a fresh 
installation, your system software contains all the latest ver­
sions of network drivers and similar software that sometimes 
get missed when installing over an existing system. 

------- Basic Power Macintosh OS Features 

System 7 .1.2 has the same basic features as System 7 .1, with 
additional enhancements for the Power Macs. The version 
number may be somewhat misleading: System 7.1.2 doesn't 
contain all the features that came with System 7 .1.1, which 
was the system-software release included in System 7 Pro. 
PowerTalk and AppleScript, the main additions to System 
7.1 for the Pro version, are still separate parts of system soft­
ware and aren't automatically installed with 7.1.2. 

Anyone upgrading a System 7 Pro system to run on a 
Power Mac must also install an update to PowerTalk, version 
1.0.3 or later, to run on the Power Macs. The 1.0 version of 
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PowerTalk that comes with System 7 Pro will not run on the 
Power Macs. 

However, the standard installation of 7 .1.2 automatically 
installs QuickTime 1.6.2 and its accompanying QuickTime 
PowerPlug file, Apple's CD-ROM driver 4.5, AppleTalk 58.1, 
and EtherTalk 2.5.5. 

------- Toolbox Acceleration 

Apple's system-software engineers have understood the con­
cept of toolbox acceleration since the release of the 8•24 GC 
card in 1989. This video card came with an AMD 29000 
(29k) RISC processor installed, and it was running a version 
of QuickDraw on the 29k. Anytime the host Macintosh used 
QuickDraw, the code on the GC card would be executed, 
much faster than the 68k code on the host Macintosh. Thus 
was born toolbox acceleration, the selective replacement of 
performance-critical parts of the Macintosh operating sys­
tem with faster software versions running on faster hard­
ware. Following the 90/10 rule, where approximately 10 
percent of the code is executed 90 percent of the time, the 
acceleration of QuickDraw provided a disproportionately 
large performance improvement, since all Macintosh soft­
ware uses QuickOraw in one way or another. Making 
QuickOraw run faster made all software run faster. 

When Apple set out to develop the system software for 
the PowerPC-based Macs, some engineers wanted to make 
the entire system-software release for the new machines 
native. That laudable goal was soon proven to be overly 
optimistic. A second strategy-toolbox acceleration-was 
adopted. Typical applications were profiled to determine in 
which parts of the operating system the most time was 
spent. The more time spent in a routine, the more impor­
tant it was to make it native. 
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Emulation 

Using the data gathered by the profiling, Apple's engi­
neers made decisions about which parts of the operating 
system to make native, and which parts of the operating 
system wouldn't gain from being native. QuickDraw was 
found to be important for all Mac software, so it was made 
native in its entirety. Other frequently used parts of the 
operating system, such as parts of the Resource and Memory 
Managers, were also found to provide a benefit to almost all 
software, so they were made native as well. Throughout the 
development of the first version of system software for the 
Power Macs, a clear performance benefit was necessary 
before the engineers decided to make a particular part of the 
OS native. Since time and resources were limited at Apple's 
end, every bit of native code had to count. 

The emulator in the Power Macs' ROM, which is discussed 
in greater detail in Chapter 6, is the cornerstone in the 
Power Macs' system software. Without the emulator, exist­
ing 68k Macintosh software couldn't run on the new 
PowerPC-based machines. But equally important is the fact 
that much of the Power Macs' operating system is still 68k 
code. It isn't all native yet, so the emulator is necessary for 
the Mac OS to run on these machines. 

Consequently, the Power Macs' 68k emulator must be 
extremely reliable and compatible to be able to run all of 
Apple's 68k system software as well as all the third-party 68k 
software that users already have. 

The 68k emulator in the Power Macs acts like a 68LC040 
running in user mode. The 68LC040 is a variant of the 68040 
that lacks a floating-point unit on the chip. The user-mode 
distinction is an important one, because the emulator doesn't 
support any of the 68040 instructions that control the mem­
ory-management unit. These instructions are supervisor-mode 
instructions on any 68k processor, as well as on any PowerPC 
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processor. Since only the system software should be using 
memory-management-unit instructions to begin with, this is 
not a real limitation for the emulator. Also, the 60l's memory­
management model is different from that of the 68k family, 
so emulation wouldn't make much sense anyway. 

The Macintosh Centris 610 uses a 68LC040, as do the 
PowerBook 500 series machines, the 520, 520c, 540, and 540c; 
they also lack floating-point hardware support, and the few 
pieces of software that depend on floating-point hardware will 
not run on these 68k-based Macs either. However, any soft­
ware that uses SANE (Standard Apple Numerics Environment) 
will continue to run on the Power Macs, since SANE is sup­
ported, but only for emulated software. Native software 
should use the PowerPC's native floating-point support 
directly to take full advantage of the performance available. 

Native PowerPC System Software 

Most of the system software for the Power Macs still con­
sists of 68k code, which runs under emulation on the Power 
Macs. However, several parts of the operating system that 
are executed most frequently are native on the Power Macs. 
Some of these pieces of system software are in the ROM, 
some in the System file, some in the system enabler for the 
PowerPC Macs, and some in separate files. 

Regardless of their location, these bits of native code 
benefit both native and emulated software. Emulated soft­
ware gains particularly since, by definition, an emulator 
runs slower than hardware. When emulated applications 
call the operating system and the part of the OS that is 
being called is native on a Power Mac, the emulated applica­
tion gets the full advantage of the native system software 
without needing any specific knowledge of it. For that rea­
son, emulated software should never need to know whether 
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Mixed Mode 

a particular part of the OS is emulated. Some native software 
needs to know such details for performance reasons, but as a 
rule, most software shouldn't care whether parts of the oper­
ating system are native, since access to them from the soft­
ware's perspective is identical. 

At first glance, mixing emulated 68k code and native code 
seems to be a tricky endeavor. It is. However, this complica­
tion is completely shielded from emulated 68k software 
thanks to a new piece of system software called the Mixed 
Mode Manager. Since emulated software has to be able to 
run on the Power Macs unchanged, the combination of the 
emulator and the Mixed Mode Manager lets emulated 68k 
software run the same way as on a 68k-based Mac. See 
Figure 3.1. 

The Mixed Mode Manager keeps track of the type of code 
being executed at the moment. It knows when native code is 
running, and it knows when code is running under emula­
tion. The important task for the Mixed Mode Manager to 
perform is the orderly transition between the two. Since 
much of the Power Macs' operating system is still emulated, 
native apps need to be able to call emulated code. The con­
verse is true as well: Emulated apps automatically benefit 
from native QuickDraw, so emulated code must be able to 
call native code. The most amazing part about this is that the 
two types of code don't even need to know about each other. 

Despite the magic of mixed mode, there is a downside to 
being able to execute two different types of code without a 
hiccup. The transitions between the two modes are slow. In 
fact, frequent transitions between 68k and native PowerPC 
code can negate the performance benefits offered by native 
code. Such transitions are referred to as mixed-mode switches. 
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In some cases, native software can cause a slowdown because 
of the mixed-mode switches involved. See Figure 3.2. 

The speed improvement of native PowerPC code on the 
Power Macs is not necessarily a given: When emulated soft­
ware calls on native software to perform some work, the 
operating system has to do some housekeeping during each 
mixed-mode switch, before and after the switch from 
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running emulated to running native and back. Sometimes, 
these housekeeping chores can take longer than the time 
gained by running native, particularly if the operation to be 
performed by the native software is very short. So it might 
seem productive to switch from 68k code to PowerPC code 
wherever possible, because native software executes as much 
as 10 times faster. But staying in emulated 68k code can 
sometimes be faster than switching if the time saved is more 
than the time lost due to two mixed-mode switches. 

Understanding mixed-mode switches is important to 
further understand the decisions of developers at Apple and 
elsewhere regarding which parts of code they chose to make 
native. In many cases, native code isn't faster and would 
simply cause mixed-mode switches; in such cases, executing 
emulated code winds up being faster. If the entire Mac OS 
were native from top to bottom, and all third-party prod­
ucts, including INITs, drivers, and other low-level pieces of 
software, were as well, then there wouldn't be a problem. 
However, making the entire operating system for the Power 
Macs native would have delayed the release of the Power 
Macs and would also have caused significant compatibility 
hassles, especially with third-party extensions. 

Since many parts of the Mac OS aren't native, it doesn't 
make sense to make certain kinds of software-SCSI drivers, 
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SCSI Manager 4.3 

Chapter 2 provided an overview 
describing the new SCSI hardware and 
the DMA supporting it. However, this 
new hardware wouldn't be able to run at 
its highest speed without the appropriate 
software. The Centris 660Av and the 
Quadra 840Av were the first Macs with 
DMA SCSI that was usable from the Mac 
OS. (The Macintosh llfx has the dubious 
distinction of being the first Macintosh 
with SCSI DMA, but only users of A/UX, 
Apple's version of UNIX for Macs, were 
able to benefit from it.) To be able to 
take advantage of this new SCSI hard­
ware, the new SCSI Manager 4.3 is 
required. It, too, was first introduced with 
the 660AV and 840AV. 

The new SCSI Manager provides sev­
eral benefits over the old SCSI Manager: 
It has support for DMA, it supports asyn­
chronous l/0 as well as SCSI features 
such as disconnect, and it has support for 
multiple SCSI buses. 

However, support for DMA does not 
mean that DMA is required for the new 
SCSI Manager to be active. A Quadra 
with an installed and active Power Mac 

Upgrade Card also has SCSI Manager 4.3 
installed, but no DMA. The DMA hard­
ware in the Power Macs allows the new 
SCSI Manager to take fullest advantage 
of the available performance in the SCSI 
hardware. Because of the way SCSI 
Manager 4.3 is designed, it can set up a 
SCSI transaction and let the DMA hard­
ware do all the work. The SCSI Manager 
gets out of the way once the transaction 
is started. 

Asynchronous 1/0, a term that's 
applicable to the Macintosh operating 
system, shouldn't be confused with asyn­
chronous and synchronous SCSI transac­
tions. Async 1/0 in the Mac OS sense 
means that software-either application 
software or any other kind of software 
that's likely to cause a SCSI transaction­
can call the OS to do its bidding, for 
example to write data to a hard disk, and 
while the SCSI Manager is off doing that, 
the software can go on and perform 
other work while the SCSI 1/0 is taking 
place. Before SCSI Manager 4.3, the OS 
wasn't able to support such simultaneous 
SCSI activity. 

for example-native, since such software would cause many 
mixed-mode switches and not enhance performance at all. 
On the contrary, a native SCSI driver would slow down per­
formance. Such a driver isn't beneficial until a native SCSI 
Manager as well as a native version of the Mac's hierarchical 
file system is available. 
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One way that some low-level software can avoid unneces­
sary mixed-mode switching is by being fat, a term used to 
describe software that contains 68k and PowerPC code. In 
the case of low-level software that needs to hook into parts 
of the operating system, installing so-called fat patches 
reduces the number of mixed-mode switches. The reason for 
this is that the Mixed Mode Manager always tries to stay in 
the mode it's currently in. So if emulated software is execut­
ing and it calls a piece of the operating system that has been 
augmented by a fat patch from third-party software, the 
Mixed Mode Manager executes the 68k version of the patch 
software to avoid a mixed-mode switch. As with the preced­
ing driver example, the only time when it makes sense to 
provide native software is if the native version, including 
mixed-mode switches, is always faster. In such cases, any 
software that installs patches can install only a native patch 
on a Power Mac, since all software will profit from the 
greater speed. 

If you'd like to learn more about the Mixed Mode 
Manager, it is discussed in greater depth in Chapter 8. 

Native QuickDraw 

QuickDraw on the Power Macs is entirely native-no emula­
tion anywhere. The reason for this is straightforward: In all 
cases, even when calling it from emulated apps and causing 
a minimum of two mixed-mode switches, Native 
QuickDraw (NQD) runs faster than emulated QuickDraw. 

As part of the investigations into the parts of the 
Macintosh operating system where the most time was spent, 
QuickDraw came out as one of the clear leaders. Since the 
Macintosh is a graphics-oriented system, this is no great sur­
prise. 

Native QuickDraw is an evolution of the version of 
QuickDraw present in the Quadras, version 1.3.0. This ver­
sion of the Mac's imaging system software is still largely 
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written in 68k assembly language for performance reasons. 
NQD, whose version number is 1.3.5, is based upon version 
1.3.0 but rewritten completely in C and compiled for 
Power PC. 

Intuitively, one might think that a C-based version of 
QuickDraw would be significantly slower than a hand-tuned 
one written in assembly language. This may be so on a CISC 
processor, but it isn't necessarily the case with a RISC 
processor. Many of the performance benefits of RISC proces­
sors require sometimes fiendishly clever machine-language 
constructions; a compiler can take human-legible and 
-maintainable C code and translate it into highly optimized 
RISC machine language that runs extremely fast. In the 
CISC days, a good assembly-language programmer could 
almost always write better code than a compiler. With 
today's complex RISC chips, however, the compilers often 
generate faster code than handwritten assembly. For this 
reason, one of the translations of the RISC acronym is "rele­
gate the interesting stuff to the compilers". If you'd like to 
learn more about how RISC chips and the PowerPC family 
in general work, see Chapters 4 and 5. 

Native QuickDraw runs many times faster than 
QuickDraw 1.3.0. It not only benefits from running on a 
faster microprocessor, but NQD also takes advantage of spe­
cific features of the PowerPC family to boost performance 
even further. Some of the most processor-intensive parts of 
NQD take advantage of the PowerPC's 64-bit-wide data bus 
to write graphics data out to memory as quickly as possible. 

Both emulated and native apps benefit from Native 
QuickDraw's speed. Those emulated apps that use QuickDraw 
frequently show especially large speedups when running on a 
Power Mac. Much like Apple's 8•24 GC card, which contained 
its own RISC processor and a RISC version of QuickDraw, the 
Power Mac's NQD acts like a QuickDraw accelerator. Unlike 
many hardware accelerators that accelerate only the most 
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time-critical parts of QuickDraw, such as those that move 
large blocks of a screen around, all of NQD is accelerated. 

Since all of QuickDraw is native on the Power Macs and 
since it's used so frequently, NQD's performance is particu­
larly susceptible to slowdown from excessive mixed-mode 
switches. Extensions that install patches into QuickDraw, 
either to enhance features or to accelerate it in a 68k environ­
ment, can cause NQD to be throttled down to significantly 
lower performance. The section on third-party software later 
in this chapter discusses this issue in greater depth. 

Native QulckTime 

The Power Macs come with QuickTime 1.6.2, which by itself 
consists exclusively of 68k code. When you install 
QuickTime on a Power Macintosh, however, you also install 
the QuickTime PowerPlug, which contains native versions 
of the most processor-intensive parts of QuickTime. Much 
of QuickTime is dependent on the speed with which it can 
get data to and from where it needs to be. The frame rate of 
QuickTime playback is determined largely by the speed of 
the hard disk or CD-ROM drive that the QuickTime data is 
on, but also by the speed of the video hardware and soft­
ware. Since the Power Macs' I/0 features are emulated, and 
the hardware's SCSI and Ethernet DMA do the work of get­
ting the data from mass storage to memory, the emulated 
parts of QuickTime are less critical than one might think. 
The same logic that was used for toolbox acceleration is 
used in QuickTime: Only the parts where the most time is 
spent, or those parts that would benefit the most, are made 
native. 

CPU-intensive parts of QuickTime such as the Cinepak 
compressor/decompressor (codec), as well as other codecs, 
are native and come in the QuickTime PowerPlug. 
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QuickTime version 2.0 follows the same philosophy as 
1.6.2 with its native support. QuickTime 2.0 has inherent per­
formance improvements as a result of changes made to some 
of its internal operations-for example, the new data-pipe 1/0 
architecture within QuickTime 2.0 provides a big perfor­
mance boost by itself, even though it is not native. This new 
version of QuickTime also comes with its own QuickTime 
PowerPlug that, like 1.6.2's, contains the most performance­
critical parts, the compressor/decompressors (codecs). 

Memory: Modern and Virtual Both 

Another critical part of the revised operating system for the 
Power Macs is the Modern Memory Manager, which is in 
charge of allocating and deallocating parts of memory. The 
Modern Memory Manager is a complete rewrite of a venera­
ble part of system software that's been with the Macintosh 
since 1984. Despite being a complete rewrite, the Modern 
Memory Manager behaves just like the old ones; typical 
software need not change to use it and take advantage of it. 

The Modern Memory Manager makes itself known to 
users only by snappier Macintosh performance. That and 
the additional items in the Memory control panel that allow 
the Modern Memory Manager to be turned on and off are 
the only outward manifestations of this new system soft­
ware. Internally, the Modern Memory Manager does the 
same job as the old Memory Manager, only more efficiently 
and quickly. Since all software on the Mac uses the Memory 
Manager, a faster one benefits the entire system. 

The Modern Memory Manager is fat: It exists both as 
68k and as PowerPC code. Since mixed-mode switches can 
cause such a slowdown, it's beneficial to avoid them where 
possible. A fat memory manager means that native software 
calls a native memory manager and causes no mixed-mode 
switch, and emulated software calls an emulated memory 
manager, likewise without a mixed-mode switch. 
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In addition to the modern memory manager's greater 
basic efficiency, it coexists with virtual memory (VM) much 
better. When either of the memory managers receives a 
request from software that wants to have access to another 
block of memory, the memory manager must first find a 
block of RAM to allocate to the software. The previous 
memory manager would go looking around in RAM to see 
where it could find a block of unused RAM; this hunt for 
RAM happened without regard for whether a part of RAM 
was swapped to djsk or whether it was really in RAM. This 
behavior caused frequent page swaps, and performance dete­
riorated as a result. The Modern Memory Manager is aware 
of which parts of RAM are real RAM and which have been 
temporarily stored to disk. By keeping track of this informa­
tion, the Modern Memory Manager doesn't cause any 
unnecessary swapping and thus keeps performance high. 

But why use virtual memory in the first place? On the 
68k Macs, this is a reasonable question. VM is much slower 
than real RAM, real RAM is relatively cheap, and those 
applications that really need lots of RAM-such as Adobe 
Photoshop-don't operate well with VM enabled. But on 
the Power Macs, VM has a memory-saving benefit that 
makes the use of existing RAM more efficient, even if the 
Power Macintosh has plenty of RAM installed. 

A large drawback of virtual memory on the Macintosh, 
even on the Power Macs, is that it must create a VM swap 
file on a local hard drive that is equal in size to the total 
amount of memory available with VM enabled. For exam­
ple, let's say your Mac has 16MB of real RAM, and VM is 
configured for the smallest size-1MB in addition to avail­
able RAM. When you turn on your Mac, the VM system 
software creates a 17MB file on the volume that you specify 
in the Memory control panel. There is no way around this. 
The more real RAM you have, the larger the swap file 
becomes if you enable virtual memory. 
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On the Power Macs, there is a good reason to enable VM, 
especially if you use many native apps. The executable code 
for native apps is stored in one contiguous piece in the data 
fork of an application file. Previously, the data fork of appli­
cations has been unused by the operating system. When vir­
tual memory is enabled on the Power Macs, it treats the area 
on disk where a native app's executable code resides as a type 
of VM swap file. Only the application code that's really 
needed is loaded into RAM, and code that's needed later on 
is transparently loaded into RAM by the VM system soft­
ware. Another side effect of all this is that with VM enabled, 
native code is protected by the PowerPC chip's built-in 
memory-management hardware. Native code is marked as 
read-only in RAM, so anything that tries to write to a part of 
RAM that contains code will be thwarted. This is a small, 
early step toward a Macintosh operating system with mem­
ory protection. Read-only code has another benefit as well: 
Since this code can never be modified, there's never any 
need to write it back to disk if the memory it was occupying 
is needed. So, instead of writing the code to disk before read­
ing in other code, the VM system software need only read in 
the new code, saving a time-consuming write to disk. 

All of the operating-system code that handles input and 
output, from and to the various ports inside and outside the 
Power Macs, is emulated in this version of the operating sys­
tem. Although this may seem silly at first, it turns out that 
making the I/0 code native wouldn't have provided that 
much of a benefit. The main reason that I/0 still runs in 
emulation on the Power Macs is compatibility. The Mac sys­
tem software's methods of handling I/0 rely on behaviors of 
the 68k ·microprocessor family. The emulator and the 
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nanokernel, the lowest-level part of system software on the 
Power Macs, collude to make it appear as if the Power Macs 
had the same I/0 behavior as previous 68k Macs. 

The SCSI Manager 4.3, discussed earlier in this chapter, is 
emulated. SCSI performance gains much more from the DMA 
hardware than from the system software. The drivers for the 
serial and Ethernet ports are the same way: Once a transac­
tion is under way, the hardware handles most of the work. 

Some I/O-related system software would, however, benefit 
from going native, since it's fairly computationally intense. 

• The AppleTalk protocol stack, as well as MacTCP, which is 
the TCP/IP protocol stack for Macs, handles the process­
ing of network traffic to and from the Ethernet and 
LocalTalk ports of a Mac. They spend a lot of their time 
decoding and encoding packets and would almost cer­
tainly benefit from going native. 

• Apple Remote Access, which performs error correction, 
compression, and protocol processing, would also benefit 
from being native, since today's high-speed modems can 
move data back and forth very quickly, and an emulated 
ARA has a great deal of work to do. 

• All of the GeoPort software except the software modem, 
also known as the data pump, runs in emulation, includ­
ing the error-correction and compression code. Since this 
is time-critical software that does a lot of processing, it 
would benefit from being native. However, because this 
software relies upon the behavior of the 1/0 in 68k Macs, 
it would be difficult to make the switch without better 
support within system software for native drivers and 
other I/O-related software. 

All of these examples run well under emulation today, 
albeit not as fast as they could. Some of this system software 
is already slated to be native by the end of 1994; others have 
no announced plans to go native. The AppleTalk and 
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TCP/IP protocol stacks, for example, will be native by the 
end of 1994 as part of the new OpenTransport network sys­
tem software. This will allow high-performance networking 
for both Power Mac servers and clients. 

But to bring all 1/0 software native would have required 
making the Device Manager and many other parts of the OS 
native. Since the Device Manager is also tied to the 68k 
hardware design, and since a native Device Manager with 
support for the PowerPC would have to behave differently 
and would require native drivers as well, this scenario was 
dropped. Full native 1/0 support is expected when the 
microkernel version of the Macintosh operating system is 
introduced. 

INITs and Patches 

Users can customize their systems to their heart's content by 
dropping extensions and control panels into their System 
Folder. A great deal of nonfrivolous software also requires 
the installation of an extension or a control panel. In the 
past, a slowdown has always been associated with using 
many extensions and control panels, but this slowdown was 
rarely severe enough to worry about. With the advent of the 
Power Mac and its emulator, extensions and control panels 
still work. However, some of these extensions and control 
panels install code into your system that can drastically 
decelerate your Power Mac. 

Mixed-mode switches are again the problem here. Many 
of the extensions and control panels install patches, which 
replace or reroute existing system code. Such patches can 
cause performance degradation by themselves, but coupled 
with a mixed-mode switch, the performance loss can be great. 

On the Power Macs, you can install a 68k patch, a 
PowerPC patch, or a fat patch that contains both 68k and 
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PowerPC code. The best type of patch for a given situation 
depends on the part of system software that's being patched 
and how much computation it performs. However, system 
software consisting of PowerPC code should never be 
patched with 68k code, since in all cases, this will cause a 
performance hit and slow down the system. The severity of 
performance loss in this situation depends on how often the 
patched code is executed. If it's called frequently, the perfor­
mance loss will be great. Adobe Type Manager (ATM), for 
example, was not available in a native version when the 
Power Macs were introduced. Apple's profiling had, however, 
identified text-drawing as the single most time-critical part of 
the operating system; for this reason, the text-drawing code 
in system software was PowerPC code. Since ATM installed a 
68k patch into a frequently called PowerPC routine and 
caused many mixed-mode switches, overall system perfor­
mance decreased measurably. In one test performed with 
a word processor, the presence of ATM caused as much as 
a 30 percent performance degradation when scrolling. 
Unfortunately, since so many people are dependent on ATM 
to provide high-resolution Type 1 fonts, most Power Mac 
users were stt~_ck with a decelerating ATM until Adobe 
released a native version with native patches. 

Fat patches are discussed further in Chapter 8. 

------- GeoPort for Power Macintosh 

Although GeoPort is a hardware feature of the Power Macs 
and uses an external adapter to connect to phone lines, it 
requires software to work as a modem. The GeoPort software 
for Power Macintosh is native code that performs all the 
work of a traditional hardware-based modem exclusively on 
the PowerPC processor. 

A GeoPort modem is made up of several software parts. 
At the lowest level is the driver that allows the Power Mac to 
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communicate with the external GeoPort Telecom Adapter at 
2 megabits per second. This high data rate is necessary to 
transmit and receive the audio data between the phone line 
and the software modem in the Power Mac. The GeoPort 
Telecom Adapter is a straightforward piece of hardware that 
converts the analog audio data from the phone line to digi­
tal data for transfer to the Power Mac. 

The next part is the native software that performs all the 
signal processing and is the actual modem. The PowerPC 
processor family supports a particular instruction that is the 
core operation performed by dedicated digital signal proces­
sor (DSP) chips. The PowerPC 601 in the Power Macs can 
therefore do much of the same work that a dedicated DSP 
chip can, but the Power Macs need not incur the additional 
cost of adding dedicated DSP hardware to the system. At 
this writing, the native software modem supports data con­
nections at up to 14400bps (bits per second) using the 
V.32bis modem standard, and fax connections of up to 
9600bps via the V.29 standard. 

Layered on top of the driver and the software modem is 
Apple's Express Modem software, which is the part that 
application software interacts with. The Express Modem 
software contains an AT command interpreter. AT com­
mands are the standard method of configuring a modem, 
and most communications software relies on being able to 
send a modem AT commands, so a good software modem 
must support them as well. The Express Modem software 
also contains code that provides standard error-correction 
protocols such as V.42 as well as standard data-compression 
protocols such as V.42bis. 

The GeoPort software simulation of a hardware modem 
is well-rounded and has no fundamental omissions; com­
munications software has no idea that it's not dealing with 
a piece of hardware. Compared with a hardware modem 
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Compatibility 

Compatibility means different things 
to different people, but it's clear that 
compatibility is a good thing in every­
one's book. In the past, moving from an 
older Mac to a newer one, or upgrading 
to the latest version of the OS, generally 
brought problems, and users had to 
upgrade some of their third-party soft­
ware to work with the new stuff. This 
time around, things are different. Most 
everyone is so intent on seeing how com­
patible the new Power Macs are, and 
expectations are higher than they would 
be for any other Mac. 

Hardware and software compatibility 
issues cropped up with the introduction 
of the Quadra 660Av and Quadra 840Av, 
but since these machines were consid­
ered high-end, fewer people than usual 
encountered these problems. Many of 
the same issues that proved to be com-

patibility problems with the AV Quadras 
can also be problematic with the Power 
Macs. On the hardware side, Chapter 2 
illustrates how the increased SCSI perfor­
mance of the 660Av, the 840Av, and the 
Power Macs also results in a more finicky 
SCSI bus. Similar issues face users of exist­
ing Mac software. 

The emulator itself is remarkably solid, 
but if you have software that's a bit older, 
especially extensions and control panels, 
you should make sure you have the latest 
versions before making the switch from 
68k to PowerPC. This goes not only for 
third-party software, but also for Apple 
software that isn't part of the operating 
system-Apple Remote Access, for exam­
ple. ARA 1.0 will not work on the Power 
Macs, but the ARA 2.0 client software, 
which was released well before the intro­
duction of the Power Macs, works fine. 

with a similar feature set, the GeoPort modem for Power 
Macintosh is inexpensive. The software is free, and the 
GeoPort Telecom Adapter to connect the Power Mac to 
phone lines is cheaper than a V.32bis modem. 

Networking Software 

Since the networking hardware in the Power Macs is identi­
cal to that in the Quadra 660Av and Quadra 840Av, and the 
AppleTalk and EtherTalk software is emulated, existing net­
work software can be used on the Power Macs. In addition, 
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as Apple comes out with newer versions of AppleTalk as well 
as newer LocalTalk and Ethernet drivers, these new versions 
can also be used on the Power Macs. Some of Apple's own 
installers don't mention the Power Macs by name in the 
Installer options yet, but network software intended for the 
660Av and 840Av is suitable for the Power Macs as well. 
Other networking software, such as the AppleShare client 
and most third-party network software, runs without 
mishap on the Power Macs. 

Some networking apps, such as the protocol analyzers 
from Neon Software and the AG Group, benefit from going 
native despite the Ethernet drivers being emulated. This 
software is used to analyze large amounts of network traffic, 
usually to track down a problem with the network. The 
faster the software can crunch through the captured packets 
and figure out what's going on, the faster the user can get 
on with fixing the problem. Although this isn't a typical 
Power Mac application, it does illustrate how the PowerPC's 
raw performance can boost the productivity of users whose 
software is limited by low-level parts of the OS that are still 
emulated. 

------- Apple Business Systems Software 

Apple Business Systems' software runs on the Power Macs, 
but none of the major products from ABS will be native 
before the end of 1994. The AppleShare server software was 
upgraded to version 4.0.2 to add support for the Power 
Macs, desktop models as well as the Apple Workgroup 
Servers 6150, 8150, and 9150. This new version of AppleShare 
contains changes made for compatibility reasons as well as 
some performance enhancements. The server software is 
still emulated, so these changes bring the performance of 
Power Mac AppleShare servers up to and, in some cases, 
beyond the performance of AppleShare servers running 
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under the Mac OS on 68k hardware. In the future, as more 
of the server software available for Macs goes native, and as 
the OpenTransport native protocol stacks also become avail­
able, the PowerPC-based Mac servers will get major perfor­
mance boosts just from software upgrades. 

For the fastest possible server performance, Net Ware run­
ning on a Power Mac and AppleShare Pro, which runs under 
A/UX, will remain the kings of the hill. Apple's AppleShare 
servers are designed primarily to serve workgroups, and 
these high-performance server packages are designed with 
large workgroups and multiple departments in mind. They 
also cost accordingly. 

------ Floating Point-Who Needs It Anyway? 

Much ado has been made about the Power Macs' floating­
point capabilities, but a big question remains: Who, other 
than 30 renderers, cares? Without software that takes 
advantage of the screamingly fast hardware, it doesn't pro­
vide the user with any tangible benefit. 

Until the introduction of the Power Macs, the only soft­
ware that used floating-point hardware was relatively spe­
cialized: 30 software, scientific and engineering software, 
and Fortran compilers all took advantage of the 68k 
floating-point hardware if it was available. Many such appli­
cations even required it, since without hardware support, 
the software would be unusably slow. However, the perfor­
mance boost provided by taking advantage of the 68k 
floating-point hardware wasn't enough for mainstream devel­
opers to make the effort to change their code to use it. In 
addition, floating-point hardware wasn't available in all 68k 
Macs, so the work required to use the floating-point hard­
ware would benefit only a subset of the buying populace. 

In contrast, floating-point hardware support is part of the 
PowerPC architecture specification. Any PowerPC processor 
must be able to handle floating-point instructions. This 
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NetWare on Power Macintosh 

Apple and Novell announced in April 
1994 that they are collaborating on the 
development of a NetWare 4.1 port for 
the Power Macintosh hardware. As with 
NetWare implementations on x86 proces­
sors, NetWare is the OS for such a 
machine; it does not run with another 
operating system the way AppleShare runs 
on top of the Macintosh operating system. 

NetWare on the Power Macintosh will 
look and feel just like any NetWare 4 
server. Its management user interface will 
be identical to other implementations of 
NetWare 4-no Macintosh front end. You 
also won't be able to run any Macintosh 
software on a Power Mac NetWare 
server, since NetWare takes over the 
machine completely. The Power Mac ver­
sion of NetWare comes with the NetWare 
for Macintosh server software prein­
stalled. This NetWare Loadable Module is 
required to allow Macs using the 
AppleShare client software to connect to 
a NetWare server. 

In the future, Novell plans to offer a 
NetWare client that uses Novell's de facto 
standard IPX/SPX protocols. Novell has 
already shipped MaciPX, a 68k 
Macintosh implementation of the 
IPX/SPX protocol stack, but it has not yet 
provided a NetWare client that uses 
MaciPX. There are also plans to deliver a 
native IPX/SPX protocol stack for the 
Open Transport architecture that Apple 
will introduce in late 1994. Native IPX 
will allow the highest performance for 
Power Macintosh clients connecting to 
NetWare servers. 

The Power Mac version of NetWare 
will not replace AppleShare; where 
AppleShare is focused on workgroups 
with tens of people, NetWare 4 is 
designed with hundreds of users in mind. 
NetWare on Power Macintosh will conse­
quently cost much more than 
AppleShare. 

means that every Power Mac will always have hardware 
floating-point support. However, Power Macs do not include 
emulated support for 68k floating-point hardware: 68k apps 
that require 68k floating-point hardware will not run on the 
Power Macs. The only high-performance floating-point sup­
port on the Power Macs is for native apps. 

This doesn't mean that emulated apps can't perform 
floating-point operations: SANE is supported on the Power 
Macs. SANE has been in the ROM of every Macintosh since 
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the original 128k Mac. Its purpose was to offer highly accu­
rate and consistent floating-point results on all Macs. At the 
time, the 68020 and its floating-point sidekick the 68881, 
didn't exist yet. SANE made these floating-point features 
available by performing the calculations with integer opera­
tions, a slower but equally effective way of going about this. 
In fact, SANE later turned out to be more accurate in some 
calculations than Motorola's own floating-point chips. 

SANE on the Power Macs is also implemented exclu­
sively using integer code. One reason for this is that SANE's 
main floating-point number format, the 80-bit large 
extended-precision format, is different from the 64-bit double­
precision format used by the PowerPC family. If SANE were 
to use the floating-point hardware in the PowerPC, a great 
deal of time would be spent converting between the 64- and 
80-bit formats. This frequent conversion would have a big 
impact on performance. More important, though, the calcu­
lations performed by a PowerPC hardware-assisted SANE 
would be less accurate, since it would be using only the 64-
bit numbers rather than 80-bit numbers. For this reason, 
SANE is native on the Power Macs, but it performs all calcu­
lations with 80-bit precision using integer code. As a result, 
SANE is still considerably faster than SANE on any 68k­
based Mac, but it's nowhere near as fast as the somewhat 
less accurate native PowerPC floating-point hardware. 

SANE is an Apple-defined standard that wasn't adopted 
by any other computer vendor, since, in many ways, it was 
well ahead of its time. Comparable floating-point standards 
exist today, and the native PowerPC Numerics environment 
on the Mac supports them. IEEE 754 is the name of the 
standards definition put forth by the IEEE and NCEG. 

------ UNIX and the Power Macintosh 

Even though UNIX isn't important for most personal­
computer users, some users need to run UNIX on occasion. 
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Apple has traditionally made UNIX available for the 
Macintosh in the form of A/UX, which evolved through 
three major revisions to be a working hybrid of the 
Macintosh operating system and UNIX. However, A/UX runs 
only on 68k-based Macs. At the introduction of the Power 
Macs, no mention was made of UNIX support for the new 
PowerPC-based machines. Since then, the UNIX picture has 
cleared up somewhat. The Power Macs will ultimately be 
able to run two versions of UNIX. 

Tenon Intersystems' MachTen is a version of UNIX based 
on the Mach microkernel. MachTen is a novel approach 
because it runs as an application under the Macintosh oper­
ating system rather than taking over the entire Mac for itself. 
Within its own environment, MachTen provides preemptive 
multitasking, virtual memory, and other standard UNIX fea­
tures. But it also behaves like a Macintosh application. This 
allows Mac apps and UNIX apps to be running on the same 
machine at the same time, with neither aware of the other. 

MachTen runs emulated on the Power Macs, except that 
it doesn't provide virtual-memory capability, since the emu­
lator doesn't emulate a 68k MMU. Otherwise, MachTen 
behaves like it normally does. Tenon intends to ship a cross­
development kit in the third quarter of 1994 that allows the 
creation of PowerPC native MachTen binaries. In the fourth 
quarter of this year, Tenon plans to ship a native version of 
MachTen that still behaves like a Macintosh application, but 
performs much better and has support for native MachTen 
apps. 

The other version of UNIX available for Power Macintosh 
will be based on IBM's AIX 4.1. This version of UNIX is com­
pliant with the PowerOpen specification, which defines a 
standard operating environment for UNIX software running 
on PowerPC-based systems. The idea behind PowerOpen is 
to allow PowerOpen-compliant applications to run on any 
PowerOpen-compliant operating system. If Apple and IBM 
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ship different versions of UNIX, but both are PowerOpen­
compliant, software that runs on one should run on the 
other as well. 

PowerOpen also includes software known as Macintosh 
Application Services. MAS allows the user to run 68k 
Macintosh applications on a PowerOpen-compliant system, 
just like A/UX did. MAS includes a 68k emulator, albeit a 
different one than in the Power Mac's ROM, as well as an 
implementation of the Macintosh operating system that 
translates many of the Mac OS calls into UNIX calls, com­
pletely transparently to the Macintosh software. 

At this writing, it was unclear when a PowerOpen OS 
would be available for the Power Macs, or when IBM's AIX 
4.1 would ship. 

Software on the Power Macintosh 

The combination of PowerPC-native and emulated 68k soft­
ware on the Power Macs makes the software environment 
on these new machines significantly more complex than on 
previous Macs. In many instances-I/O software being a 
prime example- the intuitive conclusion that native soft­
ware is automatically better is a false one. Emulated system 
software still has good reasons for existing. 

The Power Macs' selectively native system software 
accelerates performance for the most commonly used rou­
tines in the OS. Many parts of the operating system and 
toolbox still aren't native and have no need to remain emu­
lated the way 1/0 software does. These parts are likely to go 
native over time and be provided by Apple as incremental 
performance enhancements. The Power Macs will get faster 
over time simply by adding new software. 

Users are also finding certain bottlenecks in system soft­
ware that aren't necessarily easy to predict, no matter how 
much profiling is done. Any task that uses Copy and Paste 
frequently from within native software will find it slow 
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going; the freq uent mixed-mode switches going between 
the native application and the emulated clipboard code can 
act as decelerators. This type of issue will be dealt with over 
time as more of the Power Macintosh system software goes 
native. 

At this point, it looks like Apple's decision to favor com­
patibility over performance has served it well. The uproar 
over compatibility issues would h ave been far worse than 
the discovery of limited performance problems such as the 
emulated clipboard. Thanks to the high compatibility 
afforded by the first generation of PowerPC-based Macs, it 
appears that the migration from 68k to PowerPC is well 
under way. The next step in the process is to concentrate on 
allowing native software to reach its fullest performance 
potential, but this will require significant amounts of native 
system software, which will take time. Until then, the Power 
Macs work, and those computationally intensive apps that 
run native get the majority of the performance boost today, 
with the promise of even more to come later. 

Macintosh Application Environment (MAE) 

UNIX users with SPARC or HP PA-RISC to their UNIX counterparts, and it also-
hardware can also run 68k Mac apps with translates the Macintosh QuickDraw 
the help of the Macintosh Application graphics calls into X Windows commands. 
Environment for these two platforms. MAE MAE runs in a window on the host 
is a product developed by Apple; the core workstations, just like any other UNIX 
technology is the same as for MAS for application. It has a Finder and supports 
PowerOpen. printing. AppleTalk-based networking is 

MAE is available for SPARC-based work- not part of the first release, though; t radi-
stations running Solaris 2.3 or later, and for tional methods must be used to move 
Hewlett-Packard PA-RISC-based worksta- files back and forth between Macs and a 
tions running HP/UX 9.0 or later. MAE is a 
separate UNIX process that mimics a 68k 
Mac. It translates many Macintosh OS calls 

workstation running MAE over the net­
work. 



CHAPTER FOUR 

An Introduction 
to Microprocessors 

he term microprocessor refers to a type of integrated circuit, 
or chip, that is designed and used to perform processing of 
some kind, primarily calculation. RAM chips, for example, 
aren 't microprocessors because they don't transform any 
input values into different output values; they are simply 
storage devices. As the need for faster processors grows, 
microprocessors are becoming increasingly complex, with a 
vast array of different features, many of them increasingly 
subtle or esoteric. Understanding each processor's intricate 
design details these days is beyond the scope of even the 
most interested individual. However, current microproces­
sors share traits that allow an adequate understanding of the 
processors' function and that also allow a reasonably accu­
rate comparison of their different abilities. 

The design of a microprocessor can be deconstructed 
into different levels: higher ones, such as a processor's archi­
tecture, and lower levels, such as implementation details 
that are specific to a single microprocessor. 

Fundamental Microprocessor Concepts 

To understand the higher-level issues and features of micro­
processors, knowledge of some basic microprocessor con­
cepts is required. 

85 
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------ Cycle 

A cycle is the smallest measurement of time for a micro­
processor or in a computer system. All computer systems use 
signals generated by clocks to synchronize the different 
parts of the system and keep them running together. One 
full period of a clock signal is called a cycle. 

Cycles are measured in hertz. The PowerPC 601 proces­
sor in a Power Mac 6100/60 runs at 60 megahertz (60MHz), 
which means that it performs 60 million cycles of work per 
second. 

------- Address 

To access information in memory requires knowledge of 
where in memory that data resides. An address is a numeric 
value, much like an address in the real world, that describes 
a location in memory. Each byte in memory has its own 
address. 

A pointer is an address that points to specific information 
in memory. Pointers commonly have specific types, depend­
ing on the data that's being pointed at. 

- ----- Register 

A register is the fastest and smallest type of memory in a 
computer system. It resides directly on the microprocessor 
and is used to store data or addresses. Most operations per­
formed on a RISC processor are performed on data and 
addresses in registers. In contrast, CISC processors perform 
many of their operations directly on values stored in mem­
ory outside of the microprocessor. Such operations take sig­
nificantly more time, since accessing memory is much 
slower than accessing a register. 

A group of registers on a microprocessor, such as the 32 
general-purpose registers (GPRs) on PowerPC chips, is referred 
to as a register file. The PowerPC 601 processor has two main 
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register files: one is made up of the GPRs; the other consists of 
the 32 64-bit floating-point registers. 

------- Instruction 

An instruction constitutes the smallest amount of work that 
a microprocessor can perform. 

Each instruction has a unique numeric value and is 
stored in memory where it can be fetched by the micro­
processor. The microprocessor decodes an instruction and 
determines the operation to be performed. In a RISC micro­
processor, all instructions are the same size; in the case of 
the PowerPC family, all instructions are 32 bits long. 

A microprocessor instruction is much like a sentence in 
a human language. 

When an instruction is about to be executed, it is first 
fetched from memory, decoded, then dispatched (or issued) 
to the appropriate execution unit. An instruction is com­
pleted (or retired) when its result has been calculated and 
written back to a register. 

------- Branch 

A branch is a type of instruction that changes the flow of a 
program. 

When a program is executing, individual instructions 
are retrieved from memory that is pointed to by a special 
register known as the program counter, which contains the 
address of the current instruction being executed. As each 
instruction is processed, the address in the program counter 
is incremented to point at the next instruction to be 
fetched. A program consists of sequentially executed 
instructions. 

There are times when program flow must change, often 
because a particular condition is met. A branch instruction 
changes the value of the program counter to point to the 
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next instruction it should fetch, which is not the next 
instruction after the branch instruction itself. 

When a branch is referred to as taken, it means that pro­
gram flow was changed as a result of the branch instruction. 
A branch not taken had no effect on the program flow. 

------Bus 

A bus is a shared connection among multiple units that 
wish to transfer data back and forth. The most efficient way 
of transferring data is a direct connection between two 
points. But if every separate unit in a microprocessor had a 
dedicated connection to every other one, the overall design 
would be so complex that it would not be feasible to build­
too complicated and consequently too expensive. 

Since only a single transaction can go over a bus at a 
time, any device wishing access to the bus must first check 
whether it's free before starting a transaction; this process is 
known as bus arbitration. 

Bus contention occurs when a transaction is already going 
on and another device connected to the bus wishes to per­
form a transaction as well. Since the bus is already in use, 
the second device must wait its turn, causing a lag. 

Bus traffic describes the transactions going across the 
bus-both the amount of data and the time taken. The 
larger the amount of bus traffic, the greater is the likelihood 
of bus contention. 

Buses exist both within microprocessors and within 
computer systems. A microprocessor's connection to the rest 
of the computer commonly consists of two buses: the data 
bus and the address bus. The address bus is used to commu­
nicate the address of the desired data to the rest of the sys­
tem. The data bus is the pathway along which the data 
travels to and from the address specified by the address bus. 

When data is moved across a bus, it is usually done one 
bus width worth of data at a time. For example, a 64-bit-wide 
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bus can move 64 bits of data per transaction. The amount of 
data that is transferred during a single bus cycle is known as a 
beat. 

A burst transaction on a bus allows a microprocessor to 
move a larger amount of data than usual, commonly a single 
cache block's worth, to or from the processor. Typical non­
burst bus transactions are only as large as the bus itself-64 
bits on a PowerPC 601. When moving data to or from the 
Ll cache, speed is of the utmost importance, so an entire 
cache block is moved during a burst transaction. 

The speed of a burst is described in a notation that is 
dependent on the type of burst and the bus size; the time 
unit is bus cycles. For example, a 3-1-1-1 burst describes a 
transaction that moves four beats' worth of data; each of the 
numbers describes how many cycles it took to get each beat 
of data. The first beat takes 3 cycles because it takes time to 
address and access the desired location in memory. This 
overhead happens only once; the subsequent beats of data in 
the burst are moved across in a single cycle in this example. 

----- - - Transistor 

Transistors are the building blocks of microprocessors. They 
are used to construct the different functional units within a 
microprocessor. Transistor count is commonly used as a 
measurement of the complexity of a microprocessor- the 
more transistors used in a chip's design, the more complex 
that chip is. Added complexity doesn't necessarily translate 
into added performance, though. 

Not all transistor counts are created equal, either. When 
comparing two microprocessors, it's worthwhile to subtract 
the number of transistors used in the processors' on-board 
cache(s), leaving only those transistors that make up the 
core of the processor. This is a much better indicator of a 
processor's complexity. 
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------ Die 

Chips come into being on large circular pieces of silicon 
known as wafers. When fabrication is complete, each indi­
vidual rectangular chip, known as a die, is cut from the 
wafer. The number of dice per wafer affects the price of the 
individual chip, since the cost of manufacturing a wafer is 
roughly constant. The smaller the individual die, the more 
dice can fit onto a wafer, and the cheaper the dice become. 

------- Dependencies 

There are two kinds of data dependencies: true dependen­
cies and antidependencies. A true dependency exists when an 
instruction generates a new value and the subsequent 
instructions use that value. This is also known as a read-after­
write dependency. 

An antidependency exists if an instruction uses a value as 
an operand and the subsequent instruction creates a new 
value in the previous one's location. Antidependencies are 
also known as write-after-read dependencies. There is also a 
write-after-write, or output dependency, which is also an anti­
dependency. This occurs when two instructions write their 
results to the same location, either a register or memory. 

------ Pipelines 

High-performance microprocessors achieve much of their 
performance through a technique called pipelining, in which 
the operations in a microprocessor's functional units are fur­
ther subdivided into smaller steps, and different instructions 
can occur in each of the pipeline's stages. Each instruction 
goes through each step of the pipeline in sequence. The ben­
efit of pipelines is that when an instruction moves from one 
stage in the pipeline to the next, the following instruction 
moves into the freshly vacated pipeline stage. See Figure 4.1. 

Pipelines traditionally have four stages: fetch, decode, 
execute, and writeback. The first stage retrieves an instruction 
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FIGURE 4.1 

The ideal pipeline Fetch 1 2 3 4 5 
Decode 1 2 3 4 
Execute 1 2 3 

Writeback 1 2 

Time 

from memory or cache. The second stage decodes an 
instruction and fetches its operands. The third pipeline 
stage executes the instruction in its appropriate execution 
unit. The final stage writes the result of the execution stage 
back into the register fi le. 

Even though each individual instruction takes multiple 
cycles in total, once a pipeline is full, an execution unit is 
able to complete an instruction every cycle. In contrast, a 
processor that doesn't support pipelining can issue an 
instruction only if the previous instruction has been com­
pleted. See Figure 4.2. 

Superpipelining is a variation of pipelining where a proces­
sor's internal steps are subdivided into even more granular 
steps than the standard four to six pipeline stages. 

Pipelines can stall. See Figure 4.3. When something hin­
ders the pipeline from continuing at its constant pace, a 
stall occurs. Pipeline hazards-the factors that cause 
pipeline stalls-are many and varied. The most common 
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FIGURE 4.2 
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pipeline hazard is when two instructions are trying to access 
the same memory or register or if a particular stage in the 
pipeline takes more than a cycle to complete. When this 
happens, instructions following the stalled instruction must 
wait until it's finished, after which execution of the 
pipelined instructions can resume. 

Since pipeline stalls break the rhythm of completing one 
instruction per cycle, it's worth a little extra effort to avoid 
stalls. RISC compilers work hard to generate instruction 
sequences that aren't likely to stall, but sometimes this is 
unavoidable. 

------- Superscalar 

A superscalar processor is one that can issue multiple instruc­
tions per cycle without the programmer having to think 
about the sequence in which the instructions are dis­
patched. PowerPC 6xx processors are superscalar, since all of 
them can issue at least an integer instruction and a floating­
point instruction during the same cycle, and both instruc­
tions are processed independently of each other. Processors 
that require the compiler to specify multiple instructions to 
be issued and executed together are not superscalar; they are 
known as very long instruction word or VLIW. 

------- Latency 

Latency is a fancy word for wait. When trying to access 
memory or complete a task, a microprocessor must often 
wait until all the relevant parts of a system are synchro­
nized. The delay until the processor can proceed is a latency. 

Latency is also used to describe the time it takes for an 
instruction to travel through a pipeline. For example, if a 
processor can issue and retire one instruction per cycle, an 
individual instmction's latency may still be 4 cycles. 

------- Exceptions and Interrupts 

Processors execute instructions sequentially and fetch subse­
quent instructions from the next address that the program 
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Architecture 

counter points to. There are times, however, when specific soft­
ware needs to get the processor's attention to handle, for exam­
ple, a time-critical piece of work, or to recover from an error. 

Interrupts, as their name suggests, interrupt the instruction 
flow in a microprocessor and cause a piece of code called an 
interrupt handler to be executed. Interrupts usually happen 
because a piece of hardware external to the microprocessor 
requires attention. Different interrupts can be caused by dif­
ferent parts of a computer system, and microprocessors can 
handle different types of interrupts in different ways. 
Exceptions and interrupts are generally synonymous. 

The architecture of a microprocessor consists of the features 
that are visible and accessible to the programmer who is creat­
ing software for it. A processor's architecture consists of traits 
that it shares with other members of its processor family. 

An architecture is characterized by its instruction set, the 
data types its instruction set operates on, and the organization 
and number of registers. Implementation aspects are those fea­
tures of a particular processor that aren't directly visible to the 
programmer; these are often features that are used to improve 
a processor's performance. Pipelining and superscalar design 
are two implementation details that software cannot affect. 

------- Instruction Set 

An architecture's instruction set is the collection of instruc­
tions that processors of an architecture can recognize and 
execute. Characteristics of an instruction set are architec­
tural issues; for that reason, the collection of instructions 
that a family of processors can execute is referred to as its 
instruction set architecture (ISA). 

All PowerPC processors share the same ISA. For example, 
the ISA determines that every PowerPC instruction is 32 bits 
long. 
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------RISC versus CISC 

The two major opposing microprocessor design philoso­
phies are RISC (reduced instruction-set computer) and CISC 
(complex instruction-set computer). RISC versus CISC is an 
instruction-set architectural issue. 

ruse processors have common traits that set them apart 
from their CISC cousins: 

• Constant instruction length: All instructions are the same 
size. 

• Relatively simple individual instructions: To perform 
complex operations, multiple RISC instructions are usu­
ally required. 

• Load/store architecture: Only specific load and store 
instructions can read from or write to memory. 

CISC processors share contrasting traits: 

• Variable instruction length: Because of the complex 
nature of CISC instructions, they can vary greatly in size. 
This puts an additional performance burden on the 
instruction decoder in a CISC chip. 

• Complex instructions: CISC instructions perform a great 
deal of work within a single instruction. 

• Memory can be an operand: Many CISC instructions can 
use values in memory as operands. Since memory 
accesses are relatively slow, such instructions can intro­
duce latencies that slow the system down. 

One of the fundamental notions of RISC is that it is pos­
sible to execute many simple instructions more quickly than 
fewer complex instructions. Three basic metrics are at work 
here: 

• CPI, cycles per instruction 
• IPC, instructions per cycle 
• Clock speed, the clock frequency of the processor 
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Performance increases as either the IPC increases or the 
CPI decreases. 

CISC attempts to minimize the number of instructions 
required to perform a single task by making each instruction 
perform a lot of work. As a result, the IPC is reduced and the 
maximum clock speeds achievable with such complex 
microprocessor designs are limited. RISC designs emphasize 
higher IPC and clock speed rather than instructions per task. 

One of the problems with complex instructions is that 
they often have internal dependencies that cannot be bro­
ken up or rescheduled via software. With the simpler RISC 
instruction sets, optimizing compilers can carefully schedule 
instructions to minimize dependencies. 

Given the current state of the art in microprocessors, it 
appears that RISC is winning the battle. Even one of the last 
great holdouts-Digital, the inventor of the VAX-has 
admitted that RISC is the way to go and is aggressively 
working on siblings to the existing processors based on its 
Alpha architecture. 

The only real CISC holdout in the desktop-computer 
world today is Intel, with its x86 architecture. The x86 is 
still managing to keep pace on the performance axis, but 
the current state-of-the-art Pentium is much more complex 
than the comparable PowerPC 601, although the two have 
roughly equivalent performance. The important detail to 
bear in mind is that the 601 is at the beginning of the 
upward performance curve for PowerPC, whereas Pentium is 
the fastest x86 processor that Intel can currently manufac­
ture. The 604's performance leaps ahead of the Pentium; 
Intel's next-generation P6 processor, the successor to 
Pentium, is an unknown at this writing, but it will certainly 
compete directly with the 604. 

It's important not to categorize CISC as bad and RISC as 
good. When CISC processors were first developed, memory 
was scarce and it was easier to increase software performance 
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by throwing hardware at the problem and making the micro­
processor do all the work. As technology has advanced, RISC 
designs and the compiler technology necessary to take advan­
tage of them have become feasible. Many years from now, 
RISC may look the way CISC does from our current vantage 
point: RISC is a good solution to today's problems, but it isn't 
necesarily the end-all. 

Implementation 

Caches 

Individual members of a family conform to an architecture 
specification, but each processor in a family is implemented 
differently. Variable implementation details include the num­
ber of functional units, a processor's clock speed, and the 
process used to manufacture it, as well as such other features 
as pipelining, superscalar design, register renaming, branch 
prediction, and the size of a processor's buses. Implementation 
details are often mistaken for architectural features. For this 
reason, it's important to remember the distinction between 
the two: Architecture remains constant among processors of the 
same family, whereas implementation varies. 

A cache is a small amount of fast memory where frequently 
used data is stored. The purpose of a cache is to reduce the 
frequency with which a processor must access external 
memory to get a particular piece of data. 

The principle of temporal Locality is what allows caches 
to be useful. This principle says that software reuses both 
instructions and data often. Therefore, if already used data 
and code are kept close at hand, any speed improvement in 
accessing them will translate into improved processing 
speed, since the processor spends less time waiting for data 
to arrive. 
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Since a cache is, by definition, smaller than main mem­
ory, it has to keep track of the main memory whose data the 
cache contains. This bookkeeping is accomplished by tags. A 
cache tag stores the addresses of main memory that is 
cached. 

Caches are divided into blocks, also known as lines. 
Depending on an individual processor's implementation, a 
cache block is sometimes further subdivided into sectors. 
Each cache block has its own tag, which contains the 
address of the memory cached within the block. 

Processor caches have a characteristic known as associa­
tivity. A cache's associativity determines which part of it 
stores data found in main memory. A fully associative cache 
can store any part of main memory in any cache block. This 
is ideal, but it is also the most complex type of cache to 
implement. 

A direct-mapped cache can only cache data from a partic­
ular part of main memory in a specific cache block; no other 
cache blocks can be used to cache data from that part of 
main memory. 

Finally, a set associative cache allows several blocks-a 
set-to store data from a part of main memory. The number 
of blocks per set is specified when describing a cache's set 
associativity: an eight-way set associative cache, such as the 
one found on the PowerPC 601, has eight blocks per set. In 
a hypothetical 601-based system with 8MB of addressable 
memory space, the space would be divided among the 
cache's 64 sets. 

In order to minimize cache contention, where the same 
cache block is needed to store data from different parts of 
memory, a particular cache set is not associated with a con­
tiguous block of memory. Instead, the range of addressable 
memory is divided into increments depending on the num­
ber of sets. These chunks of memory are further subdivided 
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into pieces depending on the size of cache blocks. In our 
example, the first 64 bytes at address 0 would be cached in 
the same set as the first 64 bytes at address 4096 
(64x64=4096) and as the first 64 bytes at address 8192. 

This 'method is used because of the principle of locality. 
If your software is running in the first 128 kilobytes of mem­
ory, it can use the entire cache rather than fighting over the 
eight blocks in the first set. See Figure 4.4. 

Caches have two modes that can be changed on a per-block 
basis. A write-through cache is set up in such a way that any 
data written to it is written out to memory as well, thereby 
making sure that the two contain identical data. When writing 
data to a cache that is in copyback, or writeback, mode, the data 
is not automatically written back to main memory. 
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In addition to the different caching modes, specific parts 
of memory can be marked as noncacheable; any data written 
to such locations will not be stored within the cache. In some 
instances, the addresses don't refer to main memory, but are 
translated by a computer system's hardware and rerouted to 
access various input/output (I/0) devices-SCSI or Ethernet, 
for example. This way of accessing l/0 is referred to as mem­
Oty-mapped l/0, since memory locations are mapped, or redi­
rected, to 1/0 devices. Reading back data from such addresses 
immediately after writing to them-which is precisely the 
type of interaction that a cache is supposed to optimize­
should not return the written data, but should rather return 
the real data that's coming in from the l/0 port. To avoid such 
a mishap, 1/0 addresses are marked as noncacheable so that 
writes to and reads from them do exactly what they should. 

When the core of the microprocessor needs to get some 
data from main memory, one of two things can happen. 
The desired occurrence is that the address of the requested 
data matches the value in one of the cache tags, and the 
data can be transferred directly from the cache without 
needing to read from main memory; this is called a cache 
hit. The other possibility is that the address doesn't match 
any of the cache tags' contents and the data must be fetched 
from (slower) memory; this is known as a cache miss. 

If a cache's blocks are subdivided into sectors, some addi­
tional information comes into play. Each sector in a cache 
block has an additional bit associated with it that denotes 
whether that sector contains valid information. This bit is 
called the valid bit. When a cache miss happens, only one sec­
tor needs to be read into the cache from RAM, minimizing the 
amount of bus traffic required on a miss, since a sector's worth 
of data is less than that of an entire block. However, this 
comes at the expense of increasing the ratio of cache misses. 

Cache coherency is a nuisance on single-processor 
systems, but it can turn into a full-fledged problem in 
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multiprocessor environments. Whenever the core of a 
processor writes data back to memory, it's usually in the 
cache. If the cache is marked as copyback, the updated 
information exists only in the cache but not in memory. 
When multiple processors share the same RAM, they must 
be able to know whether one processor has recently modi­
fied an address they're about to read from. If such a modifi­
cation has taken place, the current data must be used rather 
than the stale data that resides in memory. 

For this reason, cache-coherency protocols exist to allow 
multiple processors to arbitrate and determine who has the 
most recent version of an address's data. The protocol used 
in the 601 and 604 is called MESI: modified, exclusive, 
shared, invalid. These attributes are associated with individ­
ual cache blocks and determine the processor's behavior 
when it detects another processor on the system bus trying 
to access data in memory that it has already cached. 

Caches are often referred to in connection with levels. 
There are Level I (Ll) and Level 2 (L2) caches. A Level 1 
cache is one that is closest to the microprocessor core. It 
commonly resides on the microprocessor itself-this is the 
case with the 6xx family of PowerPC processors- but this is 
not a requirement. Like a Level 1 cache, the Level 2 cache 
provides a buffer between a fast processor and slower main 
memory. A Level 2 cache is larger than an L1 cache, and it 
also consists of tags and cache. 

The microprocessor is the key to a computer system's per­
formance, but many different factors come into play when 
determining the ability of the processor to perform well. In 
addition to its own architecture and implementation, the 
design of the computer system that it's built into has a great 
deal to do with how well the microprocessor operates. 

The following chapter is a detailed look at several mem­
bers of the PowerPC family. 
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CHAPTER FIVE 

The PowerPC 
Family 

he PowerPC 601 processor used in the Power Macintosh 
6100, 7100, and 8100, as well as in their Workgroup Server 
counterparts, is the first in a long line of microprocessors in 
the PowerPC family. All PowerPC processors, five have been 
announced at this writing, share common traits that make 
them PowerPC processors, but all five also have unique fea­
tures that set them apart from each other. Some of the 
processors may seem to overlap and have similar features, 
but the announced processors have subtler distinguishing 
characteristics, often nontechnological ones such as price, 
that differentiate them sufficiently to those designing sys­
tems around them. 

PowerPC is an architecture as well as the name of a fam­
ily of microprocessors. PowerPC is based on IBM's POWER 
architecture, which was designed for high-performance 
UNIX workstations. 

Now We're Playing with POWER 

The POWER architecture, whose acronym was reverse-engi­
neered into "performance optimized with enhanced RISC", 
was revealed in February 1990 when IBM shipped the first 
RS/6000 series workstations. IBM wasn't a complete newcomer 
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to the workstation market, since it had shipped its ill-fated 
RT PC in 1986. It was based on the ROMP processor, a direct 
descendant of IBM's original RISC chip, the 801, which was 
designed in the late 1970s. When the first RS/6000s shipped, 
Sun Microsystems had·the market more or less cornered. But 
within two years, IBM had garnered over 10 percent of the 
worldwide workstation market; clearly, it had a good product. 

The original POWER architecture had standard RISC fea­
tures as well as some less conventional ones. Its instructions 
were of fixed length, which made decoding instructions 
much easier, and it used a load/store architecture, where all 
operations are performed with data already in registers-no 
operations are performed directly on memory, and values 
must be explicitly loaded into registers or stored back into 
memory. 

The first implementation of the POWER architecture, 
which IBM called RIOS at the time and now dubs Power1, 
had its functional units segregated and as independent as 
possible of each other. The separation of the functional 
units was largely a result of the actual implementation of 
Power1, where the CPU consisted of multiple-chip set. 
Powerl's branch processor, for example, had its own register 
file because the bandwidth required to allow the branch 
processor to access registers on another chip was too great. 
Powerl's target was maximum performance, and there was 
no way to fit all the functional units onto a single chip. 

Powerl consisted of the following chips: 

• Instruction Cache Unit: contained 8 kilobytes of instruc­
tion cache, the branch processing unit, and the instruction 
dispatcher 

• Fixed-point unit: executed all fixed-point instructions 
• Floating-point unit: executed all floating-point instructions 
• Data-cache unit: two or four of these were used per sys­

tem, each containing 16 kilobytes of data cache 
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• Storage-control unit: controlled access to memory 
• 1/0 unit: responsible for l/0 and serial ports, as well as 

MicroChannel cards 

This division looks clean, but it has small idiosyncrasies. 
For example, the fixed-point unit was also responsible for 
address calculations used to access memory. This means 
that any time data has to be read from or written to mem­
ory, the fixed-point unit is responsible for calculating the 
correct address. 

One novel aspect of the Powerl architecture was the 
separation of branch processing from the execution units. 
Traditionally, the fixed-point unit of a RISC processor is also 
responsible for determining whether a branch is taken and 
executing it. Taking a branch can have numerous side 
effects that reduce performance, especially in a highly 
pipelined environment where instructions are typically 
fetched well in advance of their execution. A change in pro­
gram flow can cause a pipeline stall while the instructions 
after the taken branch are fetched. 

The instruction-cache unit contains the Powerl 's 
instruction cache, the branch processor, and the instruction 
dispatcher. The branch processor is the key to this unit: It 
analyzes each branch in the instruction flow and deter­
mines, to the extent that it can, whether the branch will be 
taken. Depending on what the branch processor concludes, 
it fetches the appropriate instructions-either the one 
immediately after the branch or the one that the branch 
instruction points and that should be executed if the 
branch is taken-and passes them on to the correct execu­
tion unit. This technique is known as branch folding, since 
the fixed-point and floating-point units never execute 
branches; to them, it's a single instruction flow. 
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In the best case, the branch unit correctly predicts 
whether a branch is taken and sends the correct instructions 
to the instruction dispatcher. The instruction dispatcher is 
the next key to Powerl's high performance. Since Powerl's 
instruction-set architecture is designed to minimize depen­
dencies between the two execution units, the instruction 
dispatcher can send an instruction to the fixed-point unit 
and the floating-point unit during the same cycle. 

The big win for RS/6000 systems in the workstation mar­
ket was its high floating-point performance. Surprisingly, 
Powerl supported only double-precision floating-point 
operations, which had previously been avoided where possi­
ble in favor of less accurate single-precision floating-point 
math for performance reasons. Since Powerl's designers 
didn't seem to be constrained by the number of transistors 
used to implement the chip set, they were able to build a 
very high performance double-precision FPU that executed 
double-precision floating-point instructions as quickly as 
other chips were able to execute single-precision instruc­
tions. 

The Powerl chip set introduced another feature that was 
passed on to the PowerPC family: the so-called multiply-add 
fused (MAF). This floating-point instruction performs a mul­
tiplication and an addition without any rounding of the 
intermediate result in three to four cycles; thanks to pipelin­
ing, a MAF instruction can be issued every cycle. This 
instruction is one of the factors that gives Powerl such high 
floating-point performance, since application profiling 
showed that floating-point software often performed this 
type of calculation. 

Another reason that a MAF is such a useful instruction is 
based on the type of mathematical operation it performs: a 
multiply followed by an add is the basic instruction that 
digital signal processors (DSPs) perform. Most other proces­
sors refer to such an instruction as a MAC, short for 
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multiply-accumulate. Although DSPs will always have a 
niche for specific applications where maximum perfor­
mance at all times is a requirement, the presence of a fast 
MAC instruction can reduce the need to integrate a DSP 
into a computer system. Many recently announced chips, 
especially those going into consumer electronics devices, 
implement MAC instructions to reduce overall system cost 
by obviating the need to install a separate DSP chip. 

When it first came out, Powerl provided a great deal of 
performance, using a complex chip set that was by no 
means cheap to produce. IBM realized this and designed 
RSC, short for RIOS single-chip, which implemented the 
Powerl architecture at a significantly reduced price and with 
less performance. RSC included a simple branch unit, a 
fixed- and a floating-point unit, and a unified cache, as well 
as memory and 1/0 controllers. RSC shipped in IBM's low­
end RS/6000 workstations in April1992 and was supplanted 
by the PowerPC 601 chip in the October 1993 release of 
IBM's low-end workstations. 

What Makes a PowerPC a PowerPC? 

PowerPC is an architecture specification: a detailed recipe 
that describes the way a PowerPC-compliant microprocessor 
behaves. PowerPC is neither a specific chip nor a kind of 
computer system. 

IBM talks about "toasters to teraflops" when describing 
PowerPC's flexibility: 

• At the low-end, low-cost versions of the PowerPC archi­
tecture 

• At the high end, IBM's Power Parallel Systems division 
will use PowerPC chips in their massively parallel super­
computer designs 

The family of PowerPC chips produced by Motorola and 
IBM will have something for everyone. 
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Since the design of PowerPC was a communal effort, it 
was important to make sure that each aspect of the 
PowerPC architecture specification was well documented 
and spelled out in great detail. The result of this effort is 
known as Books I through III, which together describe the 
PowerPC architecture. Each PowerPC processor has its own 
Book IV that contains that processor's implementation-spe­
cific details. 

Book I defines the instruction set that a chip must be 
able to execute to be called a PowerPC chip. Some future 
PowerPC chips may not support certain instructions in 
hardware; if such a chip encounters an unimplemented 
instruction, it raises an exception that software has to han­
dle. It's therefore possible to build more cost-effective 
PowerPC chips with limited functionality and have less­
common instructions executed in software. An application 
would never notice the difference. 

Book II describes the virtual environment architecture and 
details the way PowerPC interacts with storage, whether it's 
on-chip cache, external memory, or virtual memory. One of 
PowerPC's target applications is in multiprocessing systems, 
where multiple PowerPC chips operate in the same com­
puter systems. For such a system to function properly, the 
individual chips need to know when a particular piece of 
memory is accessed or altered by another chip. For exam­
ple, if one chip has the contents of a particular memory 
location in its cache and another chip changes the data in 
that part of memory, the first chip needs to invalidate that 
part of its cache so that any subsequent access to that part 
of memory doesn't use the wrong value. 

Book II further defines how the PowerPC processors 
interact with memory-for example, the sequence in which 
burst reads and writes may be performed. The notion of 
storage-access ordering in the PowerPC architecture is also 
explained in Book II. Two specific instructions, EIEIO and 
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SYNC, are responsible for ensuring that certain writes to 
memory happen in the correct sequence. When writing to 
memory-mapped 1/0 devices, it is imperative that no opti­
mizations are made to the order in which the writes occur; 
such a rearrangement could drastically affect the behavior of 
the intended write. EIEIO- an acronym for enforce in-order 
execution of 1/0-is an instruction placed between write 
instructions to make sure that a write completes before the 
next one. EIEIO also affects reads for the same reason. When 
data is read from an 1/0 device, the reads must be performed 
in the proper sequence and shouldn't be reordered by the 
processor. The SYNC instruction, which behaves similarly to 
EIEIO, is used in instances where the memory write is not to 
a memory-mapped 1/0 device. 

Book III defines the PowerPC operating environment archi­
tecture. It defines a PowerPC processor's lowest-level opera­
tions and their results. The state of the processor, interrupt 
handling, memory protection, and address translation are 
all defined in this volume. 

Finally, Book IV describes individual chip implementa­
tions. There is no generic book four. The 601 and 603 user 
manuals, for example, are sanitized versions of the Book IVs 
for those chips. A Book IV contains chip-specific implemen­
tation details: instructions supported in hardware, instruc­
tion timings, cache implementation, and suchlike. Assembly 
language programmers (yes, there are RISC assembly-language 
programmers), compiler writers, and hardware designers, and 
those trying to divine the greater meaning of code gener­
ated by a compiler, are the primary beneficiaries of a user 
manual. 

The Abstract PowerPC 

Despite the great detail that Books I through IV go into, 
the basic features of PowerPC are straightforward, as shown 
in Figure 5.1. 



110 The PowerPC Macintosh 

Integer instructions 
dispatched to integer unit 

Integer 
Processing 

" 

Branch Processing 

-

Floating point instructions 
dispatched to floating point unit 

~ 

- - f 

Floating-Point 
Processing 

Results from instructions are 
written back to storage ' ,. 

Results from instructions are 
written back to storage 

' 
M emory 

Instructions from memory 
are sent to the branch 
processor, non-branch 
instructions are pased on 

I 

to the appropriate execution units. 

FIGURE 5.1 
The Abstract PowerPC 

The PowerPC architecture is derived from Powerl. The 
idea behind PowerPC was to make single-chip, high-volume, 
low-cost implementation feasible and also to remove any 
limitations to scalability of the architecture. 

Similar to Powerl, each PowerPC chip has a branch 
processor that deals with branches and the resulting instruc­
tion dispatch. Each PowerPC chip also has a fixed-point exe­
cution unit, which performs all fixed-point calculations. On 
the PowerPC 601, the fixed-point unit is also responsible for 
performing address calculations and executing loads and 
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stores for the general-purpose registers. In contrast to 
Powerl, PowerPC's floating-point support includes single­
precision operations-for reasons of chip real estate, it makes 
sense to support single precision in a single-chip processor. 
In addition, typical floating-point-intensive applications, 
such as renderers or other graphics apps, don't need the 
additional precision provided by doubles. Finally, double­
precision operands are twice as large, 64 bits versus 32 bits 
for singles, so using single-precision operands can actually 
result in memory savings for floating-point-intensive soft­
ware. 

One of the main differences for the Macintosh universe 
is that the floating-point part of the PowerPC architecture 
doesn't support the 80-bit extended floating-point format, 
which is the native format for 68k floating-point hardware as 
well as for Apple's Standard Apple Numerics Environment, 
the floating-point system software available on every Mac. 
As a result, those applications that depend on extended 
floating-point operations need to change to use either sin­
gle- or double-precision floating-point operations. 

The individual execution units all interact with memory 
through the cache and the chip's bus. Caches are implemen­
tation-specific, so there's no specification on how a 
PowerPC cache is designed or how it should behave. The 
differences in cache implementation between the 601 and 
603 alone are quite drastic. 

Compared to Powerl, PowerPC implements changes 
designed to facilitate future, more superscalar implementa­
tions. This approach exemplifies the so-called brainiac ver­
sus the speed-demon approach. Today's RISC processors can 
be grouped loosely into two camps: 

• Those that achieve increased performance by raising the 
clock frequency 

• Those that increase performance by adding more paral­
lelism and more execution units within the chip 
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Alpha and MIPS clearly are speed demons with their 
high frequencies. PowerPC is a brainiac, since it uses multi­
ple independent execution units to perform its tasks. It also 
executes more complex calculations, such as multiply-add 
fused. 

The differences between Powerl and PowerPC are subtle 
to the casual observer, but all the changes share common 
goals. The goals of the Power PC architecture are as follows: 

• Allow a broad range of implementations, from low-end 
embedded chips to high-performance superscalar versions 

• Support multiprocessing (multiple PowerPC processors 
running in the same system) 

• Remove limitations that would hinder superscalar imple­
mentations 

• Define 32- and 64-bit operating environments 

These goals have been achieved. The PowerPC chips are 
detailed in the following sections. 

The PowerPC 601 

The 601 is the first member of the PowerPC family. It has all 
the standard features of a 32-bit PowerPC processor, but it 
also has characteristics that set it apart from its successors. 
The main goals of the 601 design were as follows: 

• Fast time to market 
• Serve as a bridge between the POWER and Power PC 
• Provide high performance 

The 601 was designed for use in desktop computers, and 
although IBM has shipped a laptop based on the 601, this 
doesn't make the 601 especially suitable for use in hardware 
that stays away from power sockets for prolonged periods of 
time. Apple's backward-compatibility solution for existing 
Mac software is to provide a 68k emulator, but IBM had an 
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existing installed base of POWER-based workstations whose 
software couldn't be converted immediately. For this reason, · 
the 601 supports not only the PowerPC instruction set, but 
it also implements the Power1 instruction set and can exe­
cute Power1 code. The 601 will be the only processor with 
this degree of backward compatibility in hardware. 
Subsequent PowerPC chips support only the PowerPC 
instruction set. 

The 601's design is based on work that started out being 
called RSC+. At the time that the PowerPC alliance came 
into being, IBM's designers had a follow-on chip to the 
original RSC chip in the works, and its design was used as 
the basis for the 601. This approach had the benefits of not 
having to start from scratch, making quick time-to-market 
possible. 

The 601 is a hybrid chip from an instruction-set perspec­
tive, since it executes the Power1 instruction set as well as 
the PowerPC instruction set, albeit both with minor excep­
tions, none of which will ever be noticeable to users or 
high-level-language programmers. 

The 601's bus design was based on the work that 
Motorola did for the 88110, the chip that at one point was 
going to be the basis for the RISC Macintosh. Apple already 
had an investment in logic-board and support-chip designs 
that assumed an 88110 bus; the 601's bus is similar enough 
to the 88110's that only minor modifications had to be 
made to existing designs to support the 601. 

All versions of the 601 are built by IBM at its manufactur­
ing facilities. Motorola will begin PowerPC production with 
the 603; customers purchasing 601s from Motorola receive 
IBM-fabricated parts. Since fast time-to-market was one of 
the primary goals of the 601 design, the companies agreed 
to let IBM be the sole manufacturer of the 601 using an 
IBM-only 0.6].1 process. All subsequent processors are built 
by both IBM and Motorola. Except for the sub-100MHz 601, 
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the two manufacturers use exactly the same fabrication 
processes, so an IBM-built PowerPC chip has no inherent 
process-related benefit over one made by Motorola. 

------· Basic Features 

Like all 32-bit PowerPC processors, the 601 has 32 general 
purpose registers (GPRs), each of which is 32 bits wide. The 
601 also has 32 floating-point registers (FPRs), each of which 
is 64 bits wide, the size of a double-precision floating-point 
number. 

The 601 1s connection to the outside is via a 64-bit-wide 
data bus and a 32-bit-wide address bus. It can issue up to 
three instructions per cycle: a branch, a fixed-point instruc­
tion, and a floating-point instruction. 

Cache, Bus, Memory: The 601 has a single 32 kilobyte uni­
fied cache. There are no separate caches for data and for 
instructions. The cache is eight-way set-associative, which 
means that data from a particular location in memory can be 
stored in one of eight cache blocks in a set. Each cache block 
in the 601 is 64 bytes (not bits) in size. The cache has eight 
sets of 64 blocks, making for a total of 512 blocks in the cache. 
On the 601, each cache block is further subdivided into two 
sectors of 32 bytes each; a sector1

S worth of data can be trans­
ferred during a single 4-beat burst transaction on the bus. 

The 601 1
S bus is the standard PowerPC 60x bus and is 

compatible with the buses of the other members of the 
PowerPC 60x family. This bus is a derivation of the 
Motorola 88110 bus; it supports so-called split transactions, 
where the address bus and data bus are performing two dif­
ferent transactions simultaneously. 

Multiprocessing Support: The 601 is also designed with 
multiprocessing in mind. It supports the MESI protocol, 
which allows a cache block to be declared modified, exclusive, 
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shared, or invalid. These states are important when multiple 
processors share the same memory space. If one processor 
has a piece of memory cached and has modified it, this fact 
needs to be communicated to the other processors in the 
system so that they can take the necessary precautions to 
make sure they're working on the most recent data. 

Finally, the 601 can operate at an integer multiple of its 
bus frequency. In the case of the Power Macs, the 601's 
speed is two times that of the bus speed. The Power 
Macintosh 6100/60 runs its 601 at 60MHz and its system 
bus at 30MHz. 

When the 601 was first released, speeds of SOMHz and 
66MHz were announced. At the May 1992 Apple Worldwide 
Developers' Conference, an 80MHz technology demo was 
shown, only to have the PowerPC alliance announce the 
availability of an 80MHz 601 a few months later. In late 
March 1994, the alliance announced a 100MHz 601. The 
original 601 was manufactured using a 0.65p process, and 
the faster 100MHz 601 is manufactured using a newer O.SJ.l 
process. Consequently, the die size of the 100MHz 601 is 
smaller than that of the first generation 601s. No changes 
were made to the 601's design per se; the size difference is 
exclusively a matter of the new process. 

------ Execution Units 

The PowerPC 601 contains three main execution units: the 
branch-processing unit (BPU), the integer unit (IU), and the 
floating-point unit (FPU). In addition, the 601 has a mem­
ory-management unit (MMU) and a bus-interface unit 
(BIU). See Figure 5.2. 

As a result of the way the BPU, IU, and FPU work 
together, the 601 supports out-of-order dispatch. This means 
that instructions can be issued to execution units even if 
preceding instructions for another execution unit are still 
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FIGURE 5.2 
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waiting to be issued. Out-of-order execution by itself would 
be a problem, since it's important that instructions complete 
in the order that they appear in software; the 601 ensures 
in-order completion of instructions when necessary. Branch 
instructions, for example, are executed as early as possible. 
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The Branch-Processing Unit: The 60l's branch-process­
ing unit fetches instructions to be executed from the 
instruction cache, decodes them, and issues them to either 
the fixed-point or the floating-point unit, whichever is 
appropriate. Branch instructions are processed within the 
BPU. The 601 tries to predict whether a branch will be 
taken, and fetches subsequent instructions depending on its 
prediction. 

The 60l's branch-prediction scheme, however, is static 
and not as sophisticated as that on higher-end RISC proces­
sors such as 604. The static prediction scheme assumes that 
branches backward-ones that point to an address in mem­
ory prior to that of the current program counter-will be 
taken. Since much software consists of often reexecuted 
code, the same characteristic that makes caches worthwhile, 
this assumption is frequently correct. Branches forward­
those that jump beyond the instruction immediately after 
the branch-are assumed by the 601's BPU to be not taken. 
In instances where the branch prediction is false, a time 
penalty is incurred while the BPU fetches the correct instruc­
tion. This default prediction can be changed by the compiler 
by changing a bit in the instruction; if that particular bit in 
a branch instruction is set, the BPU assumes the opposite of 
its default about the direction the branch will take. 

When the BPU guesses right about the branch, it per­
forms what is known as branch folding. In most other 
microprocessors, the fixed-point unit is in charge of execut­
ing branch instructions, so branches occupy space in the 
pipeline and take time to be executed. By contrast, the 601's 
IU and FPU both see continuous streams of instructions 
without interruption by branches; the BPU removes the 
branches from the instruction stream (it folds them away). 
This also means that branches are executed in zero cycles, 
since they have no effect on the performance of either the 
IU or the FPU. 
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As a result of the BPU's branch folding, the IU and FPU 
can run without frequent branch-based interruptions. This 
is a core factor in the 60l's high performance. 

The Integer Unit: The 601's IU is responsible for execut­
ing all fixed-point, also known as integer, instructions. In 
addition to performing addition, subtraction, multiplica­
tion, and division on data in one of the 32 general-purpose 
registers, the IU is also responsible for any address calcula­
tion required for any load or store operations, regardless of 
whether they are integer or floating-point loads and stores. 
The IU also performs fast comparison between two operands 
and forwards the result to the BPU, which uses this informa­
tion to efficiently process subsequent branch instructions 
that depend on the outcome of the comparison. The IU is 
also responsible for performing all loads and stores to the 
GPRs. Unlike later members of the PowerPC family, the IU 
has a great deal more to do than just integer math. 

The Floating-Point Unit: The 601's floating-point unit 
supports operations using either 32-bit single-precision or 
64-bit double-precision floating-point values. As with the 
IU, the FPU is responsible for all loads and stores of the 32 
floating-point registers. The FPU is compliant with the IEEE-
754 standard for single- and double-precision floating-point 
operations. 

In addition to support for the standard operations, the FPU 
contains hardware to perform single-precision multiply-add 
fused (MAF) as well as double-precision MAF. This instruc­
tion is executed more quickly than individual multiply and 
add instructions would be if they were issued in sequence. 
The MAF instruction contributes significantly to the 60l's 
floating-point performance, provided that compilers gener­
ate code that takes advantage of it. 
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The 601's floating-point unit also supports a mode 
where exceptions caused by floating-point instructions 
aren't raised immediately, but rather a few instructions later, 
the pipeline permitting. This allows floating-point code to 
execute faster, but at the expense of not being able to catch 
floating-point exceptions immediately. 

------- The Bottom Line 

The 601 is at the heart of the first generation of PowerPC­
based machines from Apple, IBM, and others. Its success will 
make or break the future of the PowerPC family. At this 
writing, a vigorous battle was under way with Intel, which 
announced the availability of 90 and 100MHz Pentium 
chips one week before the introduction of the Power Macs. 
IBM has been shipping 601-based UNIX workstations since 
October 1993, which met with favorable reviews. The first 
weeks of the Power Macs' availability indicate that the 601 
is a success in Apple's machines as well. 

The 100MHz 601 will offer even better performance 
than was originally anticipated from the 601, and at much 
lower cost; smaller die size means lower chip prices. This 
high-speed version is also helpful for IBM's midrange and 
low-end workstation business, since it extends the time 
period for migration from Powerl to PowerPC by providing 
increasingly higher performance. 

At this writing, Apple had not announced plans to use 
the 100MHz 601 in forthcoming Power Macs. Historically, 
however, Apple has often provided so-called speed-bumped 
new versions of existing Macs. The Quadra 900 to 950 tran­
sition was a speed boost from 25MHz to 33MHz; the Centris 
610 running at 20MHz later became the Quadra 610 run­
ning at 25. And since the Power Macs contain the processor 
frequency in the product designation, it would be easy to 
change just the frequency without confusing anyone about 
the individual Mac's features set. 

The 601's statistics are shown in Table 5.1. 
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Table 5.1 601 Statistics 

Speed BOMHz lOOMHz 

SPECint92 85 110 

SPECfp92 lOS 130 

Voltage 3.6V 2.5V 

Power (max) 8 Watts 4 Watts 

Size 120mm2 74mm2 

Process 0.61J. O.S!J. 

Transistors 2.8 million 2.8 million 

The PowerPC 603 

The 603 is the second member of the PowerPC family to be 
announced and produced. First silicon for the 603 was 
announced in October 1993, and high-volume production 
was scheduled for summer 1994. The 603 has two firsts in 
the PowerPC family: 

• The 603 is the first PowerPC chip to implement the 
PowerPC architecture and no other; the 601's POWER 
backward compatibility is not supported. 

• The 603 is the first PowerPC chip to be produced by both 
IBM and Motorola. For the first time, the two manufac­
turing members of the alliance will be competing against 
each other on the merchant market with chips of their 
own fabrication. 

The 603 is designed as a low-cost, low-power processor. 
It is perfect for use in laptops, but also for low-cost, high­
volume desktop machines. At this writing, Apple had 
announced that PowerBooks based on the PowerPC 603 will 
be available in the first half of 1995. Given also the success 
of LC-class 68k Macs, it also stands to reason that 603-based 
desktop machines are probably being developed as well. 
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Even the lower-priced 100MHz 601 will cost more than the 
603. And when it comes to extremely low-priced desktop 
systems that must compete with x86 machines, every dollar 
of materials cost is important. 

------- Basic Features 

The 603 is a completely new design, not based on any previ­
ous processor designs from IBM or Motorola. Consequently, 
it has several design differences when compared to the 601. 
Where the 601 used the integer- and floating-point units for 
loads and stores, the 603 has a dedicated load/store unit 
that handles the mechanics of moving data between regis­
ters and memory, including calculation of addresses. The 
603's integer unit is free to concentrate completely on per­
forming the duties of an integer unit. See Figure 5.3. 

Cache, Memory, Bus: The second major difference is that 
the 603 has separate caches for instructions and data. Each 
cache is 8 kilobytes of two-way set-associative cache. The 
cache-block size is 32 bytes. The 603 can be integrated into 
a system with either 32-bit or a 64-bit data-bus width. The 
former allows for more inexpensive designs at the cost of 
performance. With a 64-bit-wide bus, the 603 supports sin­
gle-beat transactions of 1 to 8 bytes, as well as 4-beat, 32-
byte bursts. With a 32-bit data bus, the 603 allows 
single-beat, 1 to 4 byte transactions, as well as 2- and 8-beat 
bursts. 

The 603 supports clock-speed to bus-speed ratios of 1:1, 
2:1, 3:1, and 4:1. A 66MHz 603 supports bus speeds of 
66MHz, 33MHz, 22MHz, and 16.6MHz. The 603's bus is the 
standard PowerPC 60x bus and is compatible with the buses 
of other PowerPC 60x chips. 

Multiprocessing Support: The 603 was not designed to 
operate in a multiprocessor environmenti it doesn't contain 
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FIGURE 5.3 
The PowerPC 603 
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support for the full MESI protocol as the 601 and 604 do. 
Instead, it implements a subset that is sufficient for the 603 
to coexist on a bus with other bus masters such as direct 
memory access (DMA)-capable devices. Each cache block in 
the 603 can have either exclusive, modified, or invalid 
attributes; the shared attribute necessary for multiprocessing 
is not available. 
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Power Management: The next main change from the 601 
is the 603's power-saving modes, of which there are four. 
Full-power is, as its name suggests, the most energy­
inefficient mode, but it also provides the most performance. 
Even when in full-power mode, the 603 consumes less than 
3 Watts of power when running at 80MHz. The full-power 
mode is the default mode for the 603, but it allows a 
dynamic power-management mode that selectively disables 
functional units that are idle, without any part of the sys­
tem being any wiser. When a functional unit disabled in 
this fashion is needed again, there is no lag or any other 
penalty to pay for having enabled the dynamic mode. 

Doze mode is the first major power-saver mode. It dis­
ables all functional units on the 603 except for the unit that 
maintains the clock on the bus, the part of the chip that 
tracks data moving across the external data bus, and the on­
chip timers. Even when running at 80MHz, the 603 con­
sumes less than 0.5 Watts in doze mode. A downside of this 
mode is that it takes a few processor cycles to bring the 603 
back up and into a fully functional state. This lag, however, 
is rarely problematic for software. 

Nap mode is a step beyond doze mode. In nap mode, 
the 603 stops tracking what's happening on the data bus; 
only the on-chip timers are still running. The power con­
sumption is less than half of doze mode's. Compared to 
consumption at full -power mode, these last modes 
approach the point of diminishing returns, as the 603's 
power use becomes infinitesimally small. 

Finally, sleep mode is the most power-frugal of them all. 
It disables all the 603's internal functional units, and the 
computer system can turn off the external timers as well. 
Waking a sleeping 603 is considerably more work than 
resuscitating it from any of the other modes. On the other 
hand, the chip uses hardly any power in this mode, so if 
you know that the machine will be dormant for a while, 
this mode is an excellent alternative. 
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------- Execution Units 

The PowerPC 603 has five execution units and is able to 
issue a total of three instructions per cycle. 

Branch Processing Unit (BPU): The 603 has a branch­
processing unit as well. It performs the same duties as that 
of the 601, with some additions thrown in. The 603's BPU 
constitutes a superset of the 601's. Like the 601's, it provides 
the ability to execute and fold branches so that the integer 
and floating-point units never have to contend with pro­
cessing a branch. The BPU also performs branch prediction, 
using the same static prediction scheme that the 601 does. 
The difference in the 603's BPU lies in its ability to calculate 
branch addresses by itself rather than relying on the integer 
unit (IU) to calculate the addresses needed by the BPU. This 
further unburdens the IU from maintenance tasks. 

Integer Unit (IU): The integer unit is responsible for pro­
cessing all integer instructions. Most integer instructions on 
the 603 take a single cycle to execute. Unlike the 601, the 
register file for the GPRs is not an integral part of the integer 
unit. The general-purpose register file contains 32 32-bit 
GPRs, as the PowerPC specification requires. In addition, the 
GPR file also contains five rename buffers. 

Register renaming is a performance-enhancement tech­
nique used to keep the pipeline flowing. One of the most 
common instances of resource contention within a micro­
processor occurs when multiple instructions want to write 
their data to the same register. The hardware of the renam­
ing scheme examines the instructions in the pipeline to 
make sure that there are no interdependencies where one 
instruction relies on the value that the other placed in the 
conflicting register. Once it's determined that no conflict 
exists, one of the values is written to a rename register, so 
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titled because the register has been temporarily renamed to 
that of another. The data in the rename register is written 
into the real register once the conflict has gone away. 

Floating-Point Unit (FPU): The 603's floating-point unit 
supports the same basic functionality as the 601's. It's 
IEEE-754 compliant with regard to single- and double-preci­
sion arithmetic. Also like the 601, the 603's FPU supports 
the multiply-add fused (MAF) instruction. Like the 603's IU, 
the 603's FPU also has rename registers at its disposal to 
handle register conflicts without having to stall the pipeline. 

The 603 had an additional floating-point mode, called 
NI, for non-IEEE. Informally, this mode is referred to as 
sleaze mode. The IEEE 754 specification is explicit about 
how to handle denormalized floating-point numbers. 
Numbers with a zero exponent field and a zero fraction are 
defined as being zero. Numbers that have a zero exponent 
field and a nonzero fraction part are known as denormal 
numbers and are defined carefully by the specification as 
having a specific value; with sleaze mode enabled on the 
603, such a number is quietly treated as zero. The 603's 
sleaze mode is useful for software that requires the highest 
performance but not the utmost accuracy. 

Load/Store Unit (LSU): The PowerPC 603 is the first 
PowerPC processor with a separate load/store unit. This exe­
cution unit performs the work necessary to move data 
between the register files-both the GPR and FPR files-and 
memory, including cache. The LSU doesn't rely on the inte­
ger unit to calculate addresses; it performs these calculations 
internally. 

System-Register Unit (SRU): The system-register unit exe­
cutes the various system-register instructions that don't fit 
in with any of the other execution units. The SRU performs 
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logical operations on the condition registers to determine 
their status, and it moves data to and from special-purpose 
registers. 

Completion Unit (CU): The 603's completion unit isn't a 
functional unit like the others. It is more like the MMU or 
caches, since it does not execute instructions directly. The 
CU guarantees that integer and floating-point operations 
complete in the order that they appear in the incoming 
instruction stream. This feature is important when out-of­
order execution takes place, since instructions don't neces­
sarily execute in the same order as they are found in 
memory. The completion unit makes sure that the results of 
operations happen in the sequence that the executing soft­
ware expects them to. 

------ The Bottom Line 

The 603's smaller split caches will cause the performance of 
603-based Macs to be less than that of 601-based ones, since 
the 68k emulator is a major beneficiary of the 60l's large 
unified cache. Since the 68k instructions are treated as data 
by the 603, there will be more cache reloads on a 603-based 
Mac. It is certainly possible to add a Level 2 cache to a 603-
based Mac to compensate for the smaller cache, but this 
would raise the price of such a system significantly as well as 
lose much of the benefit of lower power consumption. Also, 
if the 603 is implemented using its 32-bit-wide data-bus 
option, available bandwidth between the chip and the rest 
of the system is decreased, leading to further performance 
degradation. 

Despite these performance-related issues, the 603 looks 
to be a promising chip for mobile systems as well as for low­
cost, lower-power desktop machines. 

The 603's statistics are shown in Table 5.2. 
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Table 5.2 603 Statistics 

Speed 66MHz 80MHz 

SPECint92 60 (estimated) 70 (estimated) 

SPECfp92 75 (estimated) 85 (estimated) 

Voltage 3.3V 3.3V 

Power (Macs) 2.5 Watts 3 Watts 

Size 85mm2 85mm2 

Process 0.51! 0.5j.i. 

Transistors 1.6 million 1.6 mill ion 

The PowerPC 604 

The PowerPC 604 was announced in April 1994. It's the first 
pure PowerPC processor designed for the desktop. Its perfor­
mance is suitable for midrange to high-end desktop 
machines as well as servers. Like the 603, the 604 doesn't 
support any of the original POWER instructions that the 
601 does. 

------- Basic Features 

The 604 is easily the most complex of the PowerPC processors 
known today. It has many similarities with the 603 's microar­
chitecture, including a dispatch bus, a completion bus, and a 
completion unit that tracks instructions from dispatch 
through execution. This ensures that they are completed in 
the order they appear in the instruction flow, regardless of 
whether they were executed out of order. See Figure 5.4. 

Cache, Memory, Bus: The 604 has two 16-kilobyte, four­
way set-associative caches, one each for data and instruc­
tions. The 604's cache-block size is 32 bytes. The 604's 
interface to the outside world is through a 32-bit address bus 
and a 64-bit data bus. There is no provision for a 32-bit data 
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FIGURE 5.4 
The PowerPC 604 
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bus. Single-beat transactions of 1 to 4 bytes are supported by 
the 604, as are 4-beat-burst reads and writes. 

The 100MHz 604's bus supports speeds up to 66MHz 
and can be run at ratios of 1:1, 1.5:1, 2:1, and 3:1 to the 
processor speed. This means that the 100MHz 604 supports 
bus speeds of 66MHz, SOMHz, and 33MHz. The 604's bus is 
the standard PowerPC 60x bus, and it is compatible with the 
buses of the other members of the Power PC 60x family. 

Multiprocessing Support: Like the 601, the PowerPC 604 
supports the MESI cache-coherency protocol, which allows 
cache blocks to be designated as modified, exclusive, shared, 
or invalid. This allows multiple 604 processors, or multiple 
bus masters such as devices that support direct memory 
access, to share the same main memory and allow all parties 
to communicate with each other about whether a particular 
part of memory is cached or in use. 
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Power Management: The 604 contains support for a nap 
mode, during which all internal processing and bus opera­
tions are suspended. Nap mode is enabled through a soft­
ware instruction; when a 604 is napping, its internal timers 
are still active, but it does not pay attention to data traveling 
over the external data bus. 

------- Execution Units 

The 604 has the largest number of execution units of any 
announced PowerPC processor. Most of them are familiar 
from the 603: a floating-point unit, a load/store unit, a 
branch-processing unit, a dispatch unit, and a completion 
unit. Unlike any previous PowerPC processor, the 604 has 
three integer units, two of which are identical. 

Integer Units: The 604's general-purpose register file con­
tains 32 32-bit GPRs, and it also has 12 rename registers. Like 
the 603, the 604 supports register renaming to avoid stalling. 

The 604 has two single-cycle integer units (SCIUs). They 
execute only those integer instructions that can complete 
within a single cycle: additions, comparisons, and logical 
operations, as well as rotate and shift operations. 

The single multicycle integer unit (MCIU) in the 604 
performs the more complicated integer operations: multipli­
cation and division. The MCIU is not a superset of the 
SCIUs; it does not support any of the arithmetic operations 
that they do. 

Floating-Point Unit: Like the FPUs in the 601 and the 603, 
the 604's FPU is compliant with the IEEE-754 standard 
for single- and double-precision floating-point arithmetic. 
Although the 604's FPU is faster than those of the other two 
PowerPC processors, it behaves exactly the same way. 

The 604's floating-point register file contains the stan­
dard complements of 32 64-bit FPRs; in addition, it also has 
eight rename registers to help avoid stalls. 
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Load/Store Unit: As in the 603, the 604's load/store unit 
(LSU) is responsible for moving data between memory/cache 
and the register files. It performs all the necessary address 
calculations required to determine the source or target 
address of a transaction. 

The LSU on the 604 allows speculative load operations 
that precede already pending store operations. It also performs 
the work necessary to resolve dependencies between the data 
in the pending store operation and the speculative load if the 
two transactions go to the same addresses in memory. 

Decode/Dispatch Unit: The 604's decode/dispatch unit 
(DDU) works closely with the branch-processing unit to 
keep instructions flowing to the execution units as quickly 
as possible. In the 601 and 603, the branch-prediction logic 
is static: The BPUs in these processors always predict 
branches the same way. Unlike the BPU on the 601 or 603, 
the BPU in the 604 isn't responsible for branch prediction. 
Branch prediction on the 604 is dynamic and performed by 
the DDU. The DDU contains logic that evaluates the likeli­
hood of the direction to which a branch will resolve, 
updated every time a branch is executed. 

In the 604, the first time a branch is encountered, the 
DDU takes note in its branch-h~story table (BHT) and 
remembers which way the branch went. Every time this 
branch is executed again, the DDU updates the information 
in the BHT, depending on whether the branch was taken. 
Each entry in the BHT can have one of four values: strongly­
taken, taken, not-taken, and strongly-not-taken. Each time a 
branch is executed, its entry in the BHT is incremented for 
each branch taken, decremented for each branch not taken. 
This way, when a branch is first encountered and it's taken 
twice in a row, the DDU predicts the next instance of that 
branch as strongly-taken. This dynamic branch prediction is 
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more accurate in the long run than the static prediction of 
the 601 and 603, since it's based on past history rather than 
fixed assumptions. 

Branch-Processing Unit: The 604's BPU is different than 
those of the 601 or the 603. Unlike its predecessors, the 
604's BPU doesn't perform any branch folding. Branch 
instructions are issued to the BPU by the 604's dispatch unit 
just like a floating-point instruction would be issued to the 
FPU. The BPU in the 604 processes the branch based on the 
prediction of the DDU whether the branch will be taken. 

------- The Bottom Line 

The 604 is a big leap in performance beyond the 601. At the 
same clock frequency, the 604 outperforms the 601 by 60 
percent in integer operations and by approximately 27 per­
cent in floating-point operations. The 604 will be used in 
midrange and high-end systems, where price and power 
consumption are less of an issue. By comparison, the 603 
will be used in extremely low-cost desktop systems as well as 
portable machines; the 601 will be used in the low-cost to 
midrange systems, just like today's crop of Power Macs. 

The 604's statistics are shown in Table 5.3. 

Table 5.3 604 Statistics 

Speed 

SPECint92 

SPECfp92 

Voltage 

Power 

Size 

Process 

Transistors 

lOOMHz 

160 (estimated) 

165 (estimated) 

3.3V 

< 10 Watts 

196mm2 

O.SJl 

3.6 million 
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The PowerPC 403GA 

IBM's PowerPC 403GA is a so-called embedded controller: 
It's designed to be used in dedicated hardware such as laser 
printers and television set-top boxes. The 403GA will never 
be used in desktop systems such as Macs. The 403GA is 
included here to illustrate that the PowerPC architecture is 
more far-reaching than simply a line of processors for main­
stream desktop systems. 

The PowerPC 4xx series is designed and produced by IBM 
alone. The PowerPC alliance allows its members to build their 
own PowerPC variants, as long as these variants conform to 
the PowerPC architecture specification. IBM's 4xx series will 
be a line of embedded microprocessors with feature sets 
reflecting their intended use. The 403GA is the first member 
of that line, and it is a general-purpose microcontroller with 
features that make it usable in a variety of situations. 

Motorola is known to be working on its own family of 
embedded processors, the 5xx family, but at this writing had 
not made any public announcements about features or 
availability of specific 5xx processors. Ford Motor Company, 
however, is using a Motorola-supplied embedded PowerPC 
processor for at least its next-generation transmission com­
puters. 

------- Features 

The 403GA is a 32-bit PowerPC processor. It contains a 
general-purpose register file with 32 32-bit GPRs, and an 
execution unit that performs one-cycle integer arithmetic, 
shift, rotate, and logical operations. Its branch processor per­
forms branch folding as well as static branch prediction. The 
403GA has a 2-kilobyte instruction cache and a 1-kilobyte 
data cache; both are two-way set-associative and have a 
cache-block size of 16 bytes. See Figure 5.5. 
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The 403GA does not contain a floating-point uniti the 
additional cost of a FPU would make the 403GA unnecessar­
ily expensive. In the embedded controller market, where 
devices containing the controllers are made in much larger 
volumes than, for example, personal computers, the sensi­
tivity of additional cents per controller is very high. The less 
the controller costs, the likelier it is to be adopted. In addi­
tion, embedded microcontrollers don't traditionally need to 
perform many floating-point calculations anyway. 

------- The Bottom Line 

The 403GA is proof of IBM's toasters-to-teraflops claim 
about the PowerPC. The 403GA is clearly on the toaster side 
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of the axis where low cost-per-unit is paramount. Although 
the 403GA isn't at all relevant to the Macintosh or the per­
sonal-computer market, it is an indicator of the flexibility 
of the architecture. In the embedded market, the adoption 
by a single large-volume customer can make the difference 
between a successful and a mediocre product. Intel's i960 
processors were chosen by Hewlett-Packard for its Laser]et 4 
family of printers; this decision catapulted the i960 into the 
lead as the highest-volume RISC processor. With the 6xx 
series on the desktop, and the 4xx and Sxx series in the 
embedded controller market, the PowerPC looks to have a 
good shot of attaining that designation in the near future. 
The 403GA is statistics are shown in Table 5.4. 

Table 5.4 403GA Statistics 

The PowerPC 620 

Speed 

Voltage 

Power 

Size 

Process 

Transistors 

25M Hz 

3.3V 

1.2 Watts 

39.4mm2 

0.5~L 

585,000 

At this writing, first silicon for the PowerPC 620 was unan­
nounced. Its designation is known from the original 
PowerPC alliance announcement, and a few technical 
details are also available, but no in-depth information about 
this chip is publicly available. 

The 620 will be the first 64-bit PowerPC processor. The 
601, 603, and 604 are all 32-bit processors; their GPRs are 32 
bits wide, and the internal workings of their integer units are 
based on a 32-bit unit of data. The 620 will have 64-bit-wide 
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GPRs and the additional instructions to support operations 
on these larger integer numbers. 

The 620 is also expected to be by far the fastest PowerPC 
processor; it will be a true high-end chip. The 604 is a good 
hint that future performance improvements may happen as a 
result of additional execution units. During the 620's design, 
when a decision had to be made between cost and perfor­
mance, performance was chosen. The 620 will not be an inex­
pensive chip, nor will systems based on it be inexpensive. 

Typical applica tions for the 620 will be high-perfor­
mance servers. IBM has already alluded that it plans to put a 
620 into future AS/400 minicomputers, as well as in parallel 
supercomputers. IBM has a separate division, Power Parallel 
Systems, that has already built parallel computers based on 
IBM's Power2 chip set; it is expected to build a lower-cost 
system around the 620 when the chip becomes available. 

It's unclear how soon after its introduction 620-based 
Mac systems would be available. The 620 has the ability to 
run in 32-bit mode, so it will provide backward compatibil­
ity with today's PowerPC processors and their software. 
However, a 620-based Mac, if it happens, will probably be 
the most expensive Mac ever, and since the personal­
computer market is so lcompetitive on price, a 620-based 
Mac might not even make sense to build since so few would 
want to buy it. On the other hand, recent market studies 
show that the primary reason for the strong sales of the 
Quadra 660Av and Quadra 840Av had little to do with the 
machines' AV capabilities-buyers wanted the fastest Macs 
available at the time, and the AV Quadras were the ones. 

However, this is all speculation. The 620's first silicon is 
expected to be announced before the end of 1994. 

The PowerPC family's breadth and depth has already 
been made evident by its first four members. The three first 
6xx series PowerPC processors were delivered on schedule, 
proof that the Apple/IBM/Motorola alliance is working. 



CHAPTER SIX 

Emulators on 
the Power 
Macintosh 

he promise of the Power Macintosh is that it will offer 
unprecedented performance in a personal computer, perfor­
mance that until now has been seen only in high-end com­
puters such as engineering workstations. These fast 
workstations never succeeded outside their own niche in the 
computer market partially because they were expensive, but 
mainly because hardly any of the mainstream productivity 
applications, such as word processors and spreadsheets, were 
available for the OSs and processor architectures in the work­
station world. 

The Power Macs won't have to face this problem, since 
existing Macintosh software runs on the new Macs, even 
though the PowerPC family of microprocessors cannot exe­
cute 68k code directly. This compatibility with existing 68k­
based software is courtesy of an emulator-software in the 
Power Macs' ROM that interprets 68k code and performs the 
68k code's work on the PowerPC chip. The only drawback of 
the emulator is speed. Since it takes more time to perform 
the interpretation, performance of emulated software is 
roughly the same as if the software were running on a high­
end 68030- or low-end 68040-based Mac and not nearly at 
native speeds. 

137 
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One other emulator is available for the Power Macs, 
although it's neither part of the ROM nor an Apple product. 
Insignia Solutions has developed a software package called 
SoftWindows that runs on Power Macs. SoftWindows emu­
lates an 80286-based PC running MS-DOS and Windows 
3.1. The performance of this emulator is roughly equivalent 
to a high-end 80386 or low-end i486 PC. 

The emulation offered on the Power Macs is investment 
insurance and models, the migration to native software. It 
will take some time before most Mac software runs native 
on PowerPC, and some 68k software, especially if it's old, 
may never run native on a Power Mac. 

With these two emulation solutions-one built into 
every Power Mac and the other available as an option-the 
new PowerPC-based Macs are easily the most versatile and 
compatible personal computers available today. 

Emulation Works 

Using emulation as a transition strategy isn't a new idea. 
IBM used emulation successfully to help its mainframe cus­
tomers make the transition from its 1401 mainframes to its 
7094 series. Later, it made another transition from the 7094 
to the IBM 360 series. 

IBM, however, wasn't the only company to successfully 
use emulation to make a transition survivable for its cus­
tomers. DEC included PDP-11 emulation in its VAX mini­
computers for the same reasons: The installed base of 
software was a valuable investment for its customers, and 
making it obsolete would only serve to alienate its customers. 

The 68LC040 Emulator 

From the user's perspective, the Power Macs' 68LC040 emu­
lator is integrated seamlessly into the Power Macintosh 
environment. There's no way to tell whether emulated code 
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or native code is running. And emulated software never has 
any idea that it's not running on a 68k-based Mac. The only 
clue that software is running in emulation is performance: 
Emulated code runs considerably slower on the Power Macs 
than native PowerPC code. 

------------- Insurance 

The 68LC040 emulator in every Power Mac's ROM is insur­
ance for users, developers, and Apple alike. Without it, there 
would be no smooth transition from 68k Macintosh to 
PowerPC Macintosh-it would be as if the two were com­
pletely different systems. With the 68k emulator, however, 
existing 68k-based Mac software can run on the new Macs, 
albeit with less performance than native apps. Still, users' 
existing investment in Mac software isn't made suddenly 
worthless. In fact, most developers of popular Macintosh 
apps will be offering inexpensive upgrades from 68k to 
native PowerPC software; unfortunately, at this writing, a 
few Macintosh software vendors are trying to make this 
migration into a profit center. 

But developers and users aren't the only beneficiaries of 
the emulator; Apple benefits as well. Not all of the system 
software for the new Power Macs is completely native. Had 
Apple decided to wait until the entire operating system was 
native, the Power Macs would never have shipped when 
they did. The system software running on the Power Macs is 
as dependent on the emulator's compatibility and reliability 
as third-party software is. 

A side effect of having parts of the OS remain as 68k 
code is a high degree of compatibility, since some of the 
code used in the Power Macs is, in fact, identical to code in 
68k Macs. Consequently, existing software that works on 
68k-based Macs is likely to work with the same 68k code 
running in emulation on the PowerPC-based Macs. 
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------ 68LC040 Emulation 

The emulator in the Power Macs acts like a 68LC040 proces­
sor in the processor's so-called user mode. The 68k proces­
sors also have a so-called supervisor mode, which allows the 
execution of special instructions that control, for example, 
the MMU and on-chip cache; these instructions cannot be 
executed in user mode. The 68LC040 is a version of the 
68040 that doesn't have a built-in floating-point unit, so it 
can't execute floating-point instructions like a 68040, a 
68881, or a 68882. The emulator doesn't support floating­
point instructions and it acts like a 68020 processor when 
processing supervisor mode instructions. In fact, this is what 
the Gestalt operating-system function, which Mac software 
can use to find out details about available hardware and 
software, will tell you when asked which kind of processor is 
installed. The emulator, however, supports a 68040-specific 
instruction that the 68020 doesn't: MOVE16. 

The MOVE16 instruction does as its name implies: It 
moves 16 bytes of data in memory from the source location 
to the target location. MOVE16 is extremely fast on a 68040 
and is used to good effect within Apple's system software. 
MOVE16 was implemented within the emulator as a fast 
memory copy, although the emulated version doesn't sup­
port MOVE16's ability to perform burst reads and burst 
writes to noncacheable address spaces. See Chapter 7 for 
more on MOV£16. 

A few other details distinguish the emulator's behavior 
from a real silicon 68LC040. Every instruction for a micro­
processor takes a certain amount of time to execute, and this 
time is measured in cycles. A 25MHz 68LC040 runs 25 mil­
lion cycles' worth of code per second. More complex instruc­
tions generally take more cycles to complete than simpler 
ones. The execution times for instructions are documented 
by the microprocessor vendor to allow programmers to figure 
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out the fastest way to do what they want to do, given that 
there are always multiple ways of accomplishing the same 
thing. The emulator in the Power Macs has one clear goal: 
to emulate as fast as possible. Because of this, instruction 
timings are different in the emulator than for a real 
68LC040. A few 68k instructions can be emulated with a 
single PowerPC instruction, but most take several. 

One other notable difference in the emulator is related 
to caching. As early adopters will remember, the introduc­
tion of the 68040 processor in Macs caused compatibility 
problems because of the design of the 68040's instruction 
cache. The Power Macs' emulator doesn't emulate the 68040 
cache so faithfully that software with problems running on 
the 68040 will also have problems running on the emulator: 
in this sense, the emulator is actually more compatible with 
older Mac software than 68040-based Macs are. 

Finally, even the emulator gets a chance to use the most 
fun PowerPC instruction: EIEIO. As described in Chapter 5, 
EIEIO (enforce in-order execution of 1/0) makes sure that 
write operations to memory are performed in the order that 
the software being executed specifies. With many RISC 
architectures, the processor could deliberately reorder writes 
to memory to improve performance. In instances where 
writing to memory controls 1/0 devices, such reordering can 
cause big problems. The Power Macs' emulator interprets 
the 68k NOP instruction (no operation) and executes an 
EIEIO. On pipelined versions of the 68k family, such as the 
68040, a NOP has the same effect as EIEIO anyway. 



142 The PowerPC Macintosh 

Floating-Point Emulation 

The 68LC040 Macintosh emulator in 
the Power Macs explicitly doesn't emu­
late the floating-point coprocessor found 
in the 68040 chip. This has caused much 
consternation among some existing 
Macintosh users, but the omission has 
sound technical reasons. 

First of all, the emulator does support 
floating-point math via SANE (Standard 
Apple Numerics Environment). Defensively 
written floating-point apps will first check 
for the presence of a floating-point 
coprocessor and use it if available. Then, 
if no floating-point hardware is available, 
the software should use SANE, which is 
guaranteed to be available on every 
Macintosh. Another detail not to miss is 
that some 68k Macs don't have a float­
ing-point coprocessor: the LC family, the 
Mac llsi, the Centris 61 0, and the Quadra 
605, for example. So 68k software that 
won't run on the Power Macs for lack of 
floating-point hardware also won't run 
on these 68k-based Macs. The most pre­
cise explanation of 68k floating point on 
the Power Macs is that the 
68881/68882/68040 processors and the 
floating-point instructions understood by 
these processors aren't emulated. This is 
very different from not supporting float­
ing-point math at all. 

The reason for the nonemulation of 
the 68k floating-point instructions can be 
reduced to the ratio between price and 
performance. The PowerPC architecture 

has two floating-point formats for which 
the floating-point hardware has explicit 
and optimized support: 32-bit single­
precision and 64-bit double-precision. 
PowerPC compilers also support the 128-
bit long-double floating-point format, 
but it's computationally more intensive, 
since the compilers must generate code 
to use the PowerPC's double-precision 
capabilities to mimic long double calcula­
tion and to translate between double and 
long double. The floating-point-capable 
processors in the 68k family use the 80-
bit extended floating-point format. To 
emulate floating-point calculations using 
the extended format, the emulator would 
spend most of its time translating to and 
from the extended format. Since using 
64-bit doubles would be less accurate 
than the 80-bit extendeds and unable to 
represent as large a range of values, the 
emulator would have to perform all cal­
culations either using the long double 
format, or using the PowerPC's integer 
instructions to emulate the floating-point 
coprocessor. The latter is precisely what 
SANE on PowerPC does. Native SANE 
doesn't use any of the PowerPC's 
floating-point hardware, since it needs to 
provide the identical results as SANE on 
all other Macs, and SANE is implemented 
on these other Macs exclusively using 
integer instructions. 

Emulating 68k floating-point instruc­
tions would be so computationally 
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Floating-Point Emulation (continued) 

intensive that virtually no benefits would 
result. In addition, the engineering effort 
it would take to provide emulation for 
the full complement of 68k floating-point 
instructions is better spent working on 
other parts of the operating system to 
take full advantage of the PowerPC's per­
formance. 

Finally, those applications that need 
the maximum speed provided on the 68k 
Macs by a floating-point coprocessor are 
perfect candidates to go native, since the 
PowerPC's floating-point performance is 
so high. Most floating-point-intensive 
applications only need single- or double­
precision accuracy, so they can use one 
of the PowerPC's native floating-point 
formats to achieve significantly higher 
performance than 68k apps that use 68k 
floating-point instructions. In fact, when 
companies describe performance differ­
ences of two and five times for 68k versus 
PowerPC software, the higher number 

refers to the boost that floating-point­
intensive applications get by running 
native. 

Floating-point math is supported in 
abundance on the PowerPC, even for 68k 
applications. Any 68k software that 
requires a floating-point coprocessor and 
that doesn't run on 68k Macs without 
one won't run in several existing 68k­
based Macs. SANE is supported for emu­
lated software on the Power Macs, so any 
software that can run on any 68k Mac 
will also run on the Power Macs. Finally, 
the high floating-point performance on 
the PowerPC makes going native essen­
tial for software that benefits from fast 
floating-point performance. Developers 
with floating-point-intensive software 
that requires 68k floating-point hardware 
who aren't already developing native ver­
sions of their software are showing a lack 
of commitment to the Macintosh. 

------- Emulator Performance 

Even with all these details about the emulator in mind, per­
formance of emulated software still can't be predicted read­
ily. Each piece of Macintosh software is different; Mac 
software spends certain amounts of time in the operating 
system-some software more, some less-and each piece of 
software calls different parts of the operating system. On the 
Power Macs, some parts of the OS are native and run at full 
Power PC speeds, but some parts of the OS are still emulated. 
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This notion of a partially emulated, partially native Mac 
OS is called toolbox acceleration by Apple and is covered in 
detail in Chapters 3 and 8. Apple spent a lot of time observ­
ing which parts of the OS were most frequently used by 
Macintosh software. This information helped determine 
which parts of System 7 needed to be made native first. 
Obviously, those parts of the operating system where soft­
ware spent the most time were prime candidates for going 
native. For example, QuickDraw, the Mac's graphics soft­
ware, is entirely native on the Power Macs. And thanks to 
the wonders of the emulator and mixed mode, emulated 
software benefits from Native QuickDraw as well. For this 
reason, performance of emulated apps can't be estimated by 
a rule of thumb. Performance depends on how much time 
the software spends in which parts of the operating system 
and whether those parts are native or emulated. There are 
even parts of the operating system that exist both as 68k 
and PowerPC code. This is for a good reason. Since a mixed­
mode switch is fairly expensive fTom a performance perspec­
tive, it can be faster sometimes to execute some code in 
emulation and avoid two mixed-mode switches. If you want 
to learn more about mixed-mode switches and the Mixed 
Mode Manager in general, see Chapter 8. 

Many variables determine the performance of emulated 
code. The most significant factor is how much time is spent 
in native parts of the OS, how much is spent in emulated 
parts, and how much is spent in the software itself. An appli­
cation such as Microsoft Excel 4.0 is a worst case for the 
emulator, since it spends the vast majority of time in its own 
code, all of which runs through the emulator, and not much 
time in the operating system. Such worst cases perform 
roughly on par with a Macintosh Ilci, which is still adequate 
for most applications. On the other hand, 68k software that 
uses QuickDraw a lot will perform much better than a Ilci 
because of Native QuickDraw's speed on the Power Macs. 
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How the 68LC040 Macintosh Emulator Works 

The Power Macs' 68LC040 Macintosh 
emulator is an interpreter, not a transla­
tor. An interpreter takes every instruction 
to be emulated, determines what it 
needs to do, and then does the work. A 
translator takes one or more instructions 
to be emulated, analyzes them, and then 
generates native code that performs the 
work. The downside of the translation 
approach is that it generally takes more 
time to analyze, translate, and execute 
the translated code than to interpret it. 
However, translation has the benefit of 
being able to cache the native code gen­
erated by the translation process for later 
reuse-think of it as an emulator's Level 1 
cache. Over time, the higher execution 
speed of often reused translated code 
negates the additional time taken during 
the initial translation . 

Internally, the 68LC040 emulator uses 
one of the PowerPC's 32 general-purpose 
registers for each of the 68k's eight data 
and eight address registers. This direct 
mapping of 68k registers to PowerPC 
registers removes a great deal of compli­
cation for the emulator, since it doesn't 
have to worry about keeping track of the 
68k register values. 

Every time the emulator encounters a 
new instruction, it looks in a table that 
contains an entry for every 68LC040 
instruction to determine what to do. 
Some 68k instructions, such as simple 
addition, can be mapped directly to 

PowerPC instructions. This simplifies the 
work that the emulator has to perform. 
For more complex instructions, the table 
entry contains a pointer to the code that 
will perform the work necessary to emu­
late the 68k instruction's behavior. 

Blocks of PowerPC code that emulate 
a single 68k instruction can execute very 
fast at times. Any instruction that uses 
only information in registers will perform 
very quickly in the emulator. Any 68k 
instruction that must read from or write 
to memory will be emulated more slowly, 
since the PowerPC processor has to go to 
the trouble of looking in the Level 1 
cache for the data first, then the Level 2 
cache if one is installed, and finally go 
out to RAM to read or write the data. The 
large size of the 601 's unified Level 1 
cache is a big benefit for the emulator, 
since the cache stores frequently used 
data as well as code. 

The 68LC040 emulator has some Mac­
specific features built in as well. With tool­
box acceleration, many parts of the Mac's 
operating system are already native, and 
emulated apps benefit from this without 
any action on their part. However, the 
emulator implements particularly 
performance-critical calls to the operating 
system directly rather than calling the OS. 
The amount of overhead saved and per­
formance gained per instance is tiny, but 
cumulatively such optimizations can make 
a measurable difference. The Blo~kMove 
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How the 68LC040 Macintosh Emulator Works (continued) 

call, an operating-system service that 
moves the contents of memory from one 
part of RAM to another, is built into the 
emulator. 

Translation is not part of the 
68LC040's repertoire. Unlike both 
SoftWindows and IBM's Wabi, both of 
which perform on-the-fly translation of 

-----1/0 

x86 code to PowerPC code and then 
store it for possible later reuse, the 68k 
emulator interprets each 68k instruction 
one by one. The emulator does, however, 
perform some work to look for certain 
common patterns in code. This allows 
the emulator to execute common 68k 
code sequences quickly. 

Certain parts of the Macintosh operating system in particu­
lar still run in emulation: drivers and other software control­
ling input/output on the Power Macs. The Ethernet driver, 
sound drivers, serial drivers, and even SCSI drivers all still 
run in emulation. No provision exists at this writing for 
developing native drivers, since the 68k interrupt model dif­
fers so much from that of the PowerPC. Again, since com­
patibility was a primary goal, it makes sense to keep the 
drivers emulated. This choice also further underscores the 
compatibility of the emulator. If drivers run properly under 
emulation-not just Apple's drivers, but third-party drivers 
as well- this bodes well for overall compatibility. 

Despite what might seem a foolish choice for perfor­
mance reasons, l/0 performance on the Power Macs is 
respectable. The main reason for this is DMA: direct mem­
ory access. As described in Chapter 2, and in more detail in 
Chapter 7, the Power Macs have DMA hardware that 
removes the CPU from the drudgework of moving l/0 data 
through the system. The 601 concentrates on computation, 
and the DMA hardware handles the transport of 1/0 data. 
The drivers for the Power Macs, despite being 68k code, still 
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take advantage of the DMA features offered by the hard­
ware. As a result, once a particular 1/0 process is started, the 
driver generally stays out of the way until the 1/0 is done. 
On non-DMA-capable Macs, drivers are also responsible for 
handling writing and reading data to and from the 1/0 
device. Such drivers would cause a big slowdown, since 
moving data would be handled by emulated code and not 
dedicated DMA hardware. 

Another example where emulated drivers don't have a 
significant adverse effect on I/0 performance is SCSI drivers. 
As explained in Chapter 3, the Power Macs include SCSI 
Manager 4.3, itself running in emulation. SCSI drivers that 
are 4.3-aware will reap the benefits of DMA on the Power 
Macs. Hard drives with 4.3 drivers perform equivalently on 
Power Macs and 840Avs. 

The reason for this equivalent I/0 performance is a 
straightforward one: The emulator itself is still faster than 
most I/0 devices. In its day, the Ilci was fast enough to keep 
up with its I/0 devices, and the Ilci's SCSI performance was 
even measurably faster than that of the Ilfx, which had a 
68030 running at a 60 percent faster clock rate. 

One area where emulated low-level l/0 software is a bot­
tleneck on the Power Macs is networking. The protocol 
stacks for AppleTalk and TCP/IP both run in emulation; 
native versions are to be available in late 1994. The Ethernet 
and LocalTalk drivers that handle the work of sending and 
receiving raw data aren't bothered by the emulation, since 
the DMA hardware takes care of most of the work, but net­
work traffic requires CPU horsepower to process informa­
tion and network protocols that make up the network data. 
Although the performance of the protocol stacks under 
emulation is perfectly acceptable, even for servers, it's by no 
means as fast as it could be. Native AppleTalk and TCP/IP 
protocol stacks will speed up networking on the Power 
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Macs. To learn more about the new native protocol stacks 
and the new Open Transport architecture, see Chapter 9. 

------ Compatibility 

Soft Windows 

The bottom line for the success of an emulator is compati­
bility first, performance second. A fast but flaky emulator is 
worse than a solid but sometimes slow one. Fortunately for 
Power Mac owners, the emulator is extremely reliable, and 
the performance of software running on the 68LC040 emu­
lator is speedy, thanks to toolbox acceleration. 

Apple's system software relies on the emulator and is 
integrated with it flawlessly, but the true acid test of Mac 
compatibility is whether the emulator can handle a power 
user's standard load of extensions and control panels. In 
tests conduced by several Macintosh trade publications, less 
than 1 percent of the software tested caused any compatibil­
ity problems with the Power Macs' emulator. In fact, the 
overall compatibility of the emulator generally exceeded 
expectations. Many Macintosh IS managers publicly took a 
wait-and-see attitude to the Power Macs, basing their skepti­
cism on the unknown quality of the emulator. 

Surprisingly enough for this industry of excessive hype, 
the Power Macs' emulator is rock-solid: It just plain works. 
Rather than fretting about possible incompatibilities, early 
adopters should focus their energies on acquiring native ver­
sions of the apps they use most frequently. For more infor­
mation about migrating from the 68k-based Macintosh 
world in to the universe of the Power Macintosh, see 
Chapters 3 and 8. 

Unlike the emulator built into every Power Mac's ROM, 
Insignia Solutions' SoftWindows is a separate native applica­
tion that runs under the Mac operating system. SoftWindows 
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emulates a complete 80286 and 80287 system as well as an 
MS-DOS and Windows 3.1 environment. To do this, it 
requires a Power Mac system with at least 16MB of RAM. All 
Power Macintosh configurations that come bundled with 
SoftWindows have 16MB preinstalled. The 80286/287 emula­
tion and integration with DOS in Soft\.Vindows is a direct 
descendant of Insignia's existing SoftPC package. 
SoftWindows adds the Windows 3.1 support, and it allows 
Windows apps to execute at low-end i486 speeds. 

------- Insignia and Microsoft 

Insignia and Microsoft entered into an agreement in 1992 
that gives Insignia the license to use Windows source code 
directly. At the time, Microsoft was looking for 80x86 emu­
lation technology to integrate into the Windows NT operat­
ing system. Since Windows NT runs on processor 
architectures other than x86, NT must offer compatibility 
for the existing x86 base of software until native NT apps for 
the different platforms become available. Currently, 
Windows NT is available on Alpha-based and MIPS R4x00-
based systems; the PowerPC version is under development 
by Microsoft, Motorola, and IBM. Rather than develop its 
own emulator, Microsoft bought the rights to Insignia's 
emulation technology for Windows NT. In return, Insignia 
has access to the Windows source code, which allows 
Insignia to provide the most compatible Windows emula­
tion possible. 

Another result of access to the Windows source code is 
that Insignia can do the work necessary to make the most 
performance-critical parts of Windows run native. This is 
virtually identical to Apple's toolbox-acceleration strategy: 
The most performance-critical parts of Windows run native 
with SoftWindows on the Power Macs, allowing these parts 
of Windows to run faster than if they had to be emulated by 
Insignia's 286 emulator. 
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A further side effect of the licensing agreement with 
Microsoft and the resultant high degree of compatibility for 
applications running under SoftWindows is that Microsoft is 
willing to provide normal technical support for its Windows 
productivity applications when they are run under 
SoftWindows. This may seem obvious, but it isn't necessarily 
so. Wabi, another Windows emulation technology codevel­
oped by Sun and IBM, also promises to allow Windows apps 
to run on PowerPC systems, but Microsoft has explicitly 
announced that it would not support its productivity appli­
cations running on top of Wabi. 

- - - - -- Networking 

Since one of the main purposes of SoftWindows is to allow 
interoperability with existing applications and other x86-
based machines, SoftWindows also includes networking 
support that allows DOS- and Windows-based applications 
access to network resources that they would be able to use if 
they were running on x86-based hardware. SoftWindows 
ships with full Novell NetWare support, including the 
IPX/SPX protocol stack and NetWare client software, so that 
SoftWindows users can connect to NetWare servers as if 
they were PCs. 

No additional hardware is required for SoftWindows to 
act as a PC on a network. Any PC networking is routed 
through the Power Macs' LocalTalk or Ethernet interface or, 
if a separate card is installed, Token Ring is supported as 
well. SoftWindows includes all the necessary drivers. 

------ SoftWindows Emulation Strategies 

SoftWindows uses different approaches to maximize emula­
tion performance. This is how it can achieve the low-end 
i486 performance of emulated Windows apps running on 
Power Macs. In contrast to Apple's 68k emulator, 
SoftWindows is not exclusively an interpreter. Instead, it 
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analyzes one or more x86 instructions and translates them 
into PowerPC code. The analysis determines exactly what 
the to-be-emulated code is trying to do, and the translation 
phase is much like a compiler for a programming language. 
In this case, the translator operates on the fly, without the 
user having to wait perceptibly, and it generates native 
PowerPC code that is executed quickly on a Power Mac. 

The analysis and translation can take more time than 
straightforward interpretation would. However, the long­
term benefits of translation are great, since SoftWindows 
keeps the translated code in a cache, in case it's needed 
again. This cache functions the same way as a Level 1 
instruction cache on a microprocessor, where the most 
recently used code is kept nearby for fast access. In the case 
of an emulator like SoftWindows, such a cache can boost 
performance a great deal, since the original time spent ana­
lyzing and translating is won back many times over if a par­
ticular piece of code is executed again frequently, obviating 
the need for additional analysis and translation. 

The combination of cached blocks of pretranslated code 
and the native parts of Windows in SoftWindows makes for 
high performance. However, this almost-perfect picture is 
marred somewhat by the instruction-set architecture that 
SoftWindows emulates: that of the 80286. Some popular 
applications take advantage of features in the 80386 proces­
sor, such as its flat, nonsegmented memory model. 
Although Windows 3.1 itself runs fine on an 80286, the 
next version of Windows, 4.0, will not. It will require an 
80386 at minimum. 

A final part of the emulation strategy is l/0 emulation. 
SoftWindows provides all the standard BIOS services, 
including support for serial ports. Any PC software wishing 
to use the COM1 port will never know that SoftWindows 
reroutes the serial traffic to and from the Mac's modem or 
printer port. The same goes for video: Any BIOS video calls 
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made are converted into QuickDraw calls. Since the Power 
Macs all have Native QuickDraw, graphics performance for 
most PC apps under SoftWindows is quite high. Software 
that writes directly to a PC's video memory because it runs 
faster on PC hardware will actually run slower under 
SoftWindows, since the emulator has to spend time translat­
ing the code and figuring out where the software is writing 
to instead of just emulating the BIOS call. 

--- --- i486 Emulation and Windows 4.0 

Insignia Solutions has stated publicly that it intends to pro­
vide i486 emulation in SoftWindows before the end of 
1994. Support for this processor in emulation is also a 
requirement for the next major revision of Windows, code­
named Chicago. 

Windows 4.0 needs at minimum an 80386 processor to 
run on, since it uses the 80386's flat memory model. 
Insignia's source-code license also extends to the source for 
Windows 4.0, presumably because Microsoft also wants to 
offer Chicago emulation for Windows NT. Consequently, 
Insignia is beefing up its emulator to support the i486 
instruction set. 

In addition to committing to providing an i486 emula­
tor, Insignia is planning a version of SoftWindows that emu­
lates Windows 4.0. Although it has not announced any time 
frames, nor has Microsoft announced any time frames for 
when it will release Windows 4.0, SoftWindows for 
Windows 4.0 will incorporate the same toolbox-acceleration 
features that the Windows 3.1 version has, and will also take 
maximum advantage of high-performance features of the 
Power Macs, such as Native QuickDraw. 

Interestingly enough, discussion of x86 emulation on 
many online services often focuses on games. At this writ­
ing, ID's DOOM and LucasArts' X-WING were the most 
hotly debated. Both of these games require a. system with at 
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least an 80386, so SoftWindows for Windows 3.1 will not 
support these games. However, it's questionable whether it 
makes sense to run these games on an em ulator in the first 
place. Since most of these games perform immense amounts 
of calculation, they spend hardly any time at all in the oper­
ating system-the worst case for an emulator. So, if you are 
rubbing your hands with glee at the prospect of running a 
80386-or-above-only game under a future version of 
SoftWindows, bear in mind that this is the worst situation 
for the emulator, and the performance you'll get will be far 
less th an what you would see running directly on native 
hardware. Then again, not many people are expected to buy 
an emulator such as SoftWindows to run games in the first 
place, and native PowerPC games sh ould put even the 
highest-end x86 games to shame over time. After all, games 
are one area where more compute horsepower is clearly ben­
eficial, and the PowerPC 601 and its successors have more 
than enough oomph for the most sophisticated games. 

Wabi started out as an acronym for Windows application 
binary interface. Version 1.0 of the Wabi software was 
designed and developed at SunSoft, the software subsidiary of 
Sun Microsystems, the maker of SPARC-based Sun worksta­
tions. The idea behind Wabi is similar conceptually to that of 
toolbox acceleration: Windows apps interact with Windows 
through a documented and public interface. In theory, all a 
Windows emulator would have to do is act like Windows and 
make Windows apps think they're running on top of 
Windows. Since this emulation would work with existing 
Windows apps, and not be something for developers to take 
into account during development, the emulator would have 
to emulate the application binary interface, the ABI, rather 
than the application programming interface, the API. 
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The Other Emulators 

A big deal has been made about the 
various 68k and x86 emulation options 
for the Power Macs, but several lesser­
known emulators run on the Power Macs 
as well. Independently of each other and 
on their own time, two engineers at 
Apple developed Power Macintosh-based 
emulators for Motorola's 6809 micro­
processor. The 6809 enjoyed some suc­
cess as an embedded microprocessor but 
certainly wasn't relevant to the personal­
computer industry at any time. But many 
early arcade games are based on the 6809, 
and the point of these two emulators is to 
run these arcade games on a Power 
Macintosh. Such games should quash the 
notion that cool games are not available 
on the Macintosh once and for all. 

The first of the two 6809 emulators was 
originally developed on a 68040-based 
Mac, where it ran, albeit rather slowly. 
Shortly after the Smurf card- the first 
PowerPC-based card used for early devel­
opment work at Apple-was up and run­
ning, this emulator, which was written in 
portable C, was made to run on the 
Smurf. The PowerPC-native version per­
formed much better. But the emulator 
alone isn't necessarily all that interesting 
without the games. Williams' Defender 
and Stargate, released in 1980 and 1981 
respectively, were the first two games to 
run with the emulator, mainly because the 
hardware in the original arcade games 

was simple and easily emulatable. Games 
like Robotron and joust use custom chips 
that are more difficult to emulate. 

The second 6809 emulator was the 
result of an engineer's craving to write 
some sort of emulator, but not being 
completely sure which chip to emulate; 
again, the intent was to run games. 
Initially, a Sega Genesis emulator was 
considered, but abandoned. The 8-bit 
Z80 was ruled out, even though this CPU 
is used in many arcade games. The 
65816, the CPU used in the Super NES 
and Apple llgs, was also ruled out. The 
6809 ultimately was the only one left. 
This second emulator was originally writ­
ten in PowerPC assembly language and 
later recoded to portable C. The first 
game running on this emulator was 
Stargate, again because of the simplicity 
of hardware emulation. 

The two programmers found out 
about each other well after both emula­
tors were running well. However, 
because of the dearth of documentation 
about the 6809 chip, both emulators still 
had known bugs, although the nature of 
the bugs wasn't always clear. To improve 
both, the authors integrated the two 
emulators and had them run in lockstep. 
After an instruction was executed, each 
emulator would send the other the cur­
rent processor state of the emulated CPU 
for comparison. If the states of the two 
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The Other Emulators (continued) 

emulated 6809s ever differed, the devel­
opers were alerted to the problem and 
able to isolate it. In one instance, they 
even uncovered an error in early 
Motorola 6809 documentation. The 
proof of correctness of the emulator was 
ultimately whether they could execute 
the games flawlessly. This integration of 
the two emulators helped seek out and 
destroy the final bugs in both. 

Another emulator running native on 
the Power Mac-and running faster than 
the original hardware-is a Commodore 
64 emulator. This emulator was also orig­
inally developed on a 68k-based Mac, 
and it was later converted to run native 
on the Power Macs. Although the initial 
incarnation of the emulator lacks support 
for color and sprites, it runs BASIC pro­
grams quite nicely. 

A benefit of this approach is that no licensing with 
Microsoft is required-the interfaces from the application 
side to Windows are publicly documented. The downside is 
that Wabi can emulate only those parts of Windows that are 
public knowledge. This limitation hampered the first imple­
mentation of Wabi. 

Another side effect of emulating just the Windows ABI is 
that there is no need to emulate the exact look and feel of 
Windows. Typical users are most familiar with the Windows 
user interface, but Sun's Wabi uses Motif for Windows and 
menus, and the Windows software is none the wiser, since 
the information that Wabi provides to the applications is 
just like Windows'. 

------ Wabi 1.0 

Sun's first version of Wabi was plagued by problems. It 
turned out that Windows apps, by and large, didn't exclu­
sively stick to the documented Windows interface to do their 
work. It also turned out that many applications still made 
calls to DOS, for which there is not emulation in Wabi. Some 
books that explained undocumented Windows calls became 
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popular because they explained exactly what other features 
were available within Windows. The downside of the prolif­
eration of this information is that Windows developers 
began to take advantage of these undocumented features, 
making the work of the Wabi developers more difficult. 

Since emulating Windows turned out to be more diffi­
cult than anticipated, SunSoft took the approach of validat­
ing and certifying Windows apps to run with Wabi. This 
meant that the Wabi developers did the necessary work to 
explicitly support individual applications and their idiosyn­
crasies within the Wabi emulator. A setback to the Wabi 
effort came when Microsoft announced that it would n ot 
support its applications running under Wabi. If a user were 
to call Microsoft technical support about a Microsoft appli­
cation and answer "Wabi" when asked what environment 
the app was running under, Microsoft would tell the user 
that Wabi is unsupported as an environment for Microsoft 
applications. It's clear that Microsoft frowns upon Wabi, 
since it competes to some extent with Windows, but this 
explicit nonsupport is a setback, because Microsoft's are 
among the most popular and widespread Windows applica­
tions. In contrast to Wabi, Microsoft supports its Windows 
apps running under Insignia's SoftWindows emulator. 

------ Wabl 2.0 

IBM licensed Wabi from Sun and continued development 
on it. IBM Power Personal Systems, the division of IBM that 
will build and sell PowerPC-based desktop systems- not the 
popular RS/6000 family of UNIX workstations-will use a 
Wabi-based solution to provide the necessary emulation to 
help existing users of x86-based PCs migrate to their 
PowerPC-based systems. 

However, IBM has additional emulation technologies 
that it will integrate with Wabi. IBM has an x86 emulator 
that is already shipping on IBM's RS/6000 workstations. This 
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emulator, much like Insignia's SoftWindows, performs on­
the-fly analysis, translation, and caching to achieve high 
performance. A distinguishing characteristic of IBM's emula­
tor is that the version that ships with Power Personal 
Systems' machines will emulate the 80386 from the start. 
IBM will also include full emulation of DOS and BIOS in 
addition to the Wabi-based Windows emulation. 

Since the release of Wabi 1.0, many more applications 
have been certified to work with Wabi. When IBM ships its 
PowerPC-based desktop systems in the second half of 1994, 
it expects to have well over 100 of the most popular 
Windows apps certified for use with its emulation. And 
since IBM has the source code to DOS and is a successful 
x86 system vendor, it's likely that IBM's Wabi will be a stable 
and solid emulation solution and will ease users' migration 
from x86 to PowerPC. 

The Bottom Line 

Emulation, in the context of the Power Macintosh, exists 
primarily to provide a smooth transition from 68k to 
PowerPC. For the companies where the Macs are the minor­
ity, consider that Windows NT will be available for 
PowerPC, but plain Windows never will be (this is where 
Insignia comes in). 

The emulation solutions available on the Power Macs are 
reliable and perform adequately. These emulators aren't 
designed to compete with the top-of-the-line machines 
they're emulating; they provide a smooth and painless tran­
sition from the existing computing environment to the 
world of native PowerPC applications, which will run many 
times faster than their counterparts running on 68k or 
80x86. 

Compatibility is ultimately more important than perfor­
mance, since users shouldn't have to be faced with the 
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hassle of existing applications that don't work under emula­
tion. In most cases, Power Mac users will be running emu­
lated software because the native versions aren't finished 
yet. Upgrading 68k software to work under the emulator is 
frustrating and pointless, but from all appearances, it looks 
like this will hardly be necessary. The 68LC040 Macintosh 
emulator built into every Power Mac works admirably. 

On the x86 side, things also look good. Insignia 
Solutions' x86 and DOS emulation technologies have been 
around for several years. The licensing agreement with 
Microsoft guarantees a high degree of compatibility with 
Windows 3.1-high enough for Microsoft to include 
Insignia's SoftWindows in the Windows NT operating sys­
tem for RISC processors. 

The Power Macs' 68LC040 emulator will provide the 
smooth transition that the Macintosh world needs to make 
the leap from 68k to PowerPC safely and without undue 
trauma. The performance provided by native apps will also 
give users of x86 machines cause to investigate, or reinvesti­
gate, the Macintosh as a viable computing platform. With 
SoftWindows' ability to run popular x86 productivity soft­
ware, anyone wanting to switch from the x86 world will 
find little reason not to switch if compelling native apps are 
available on the Power Macs. Even those apps available for 
both the Power Macintosh and high-end Pentium systems 
will usually run faster on the PowerPC-based machine. If 
such apps are available on both platforms anyway, data 
interchange is not likely to be a problem. All these factors 
come together to simplify the selection of the best tool for 
the task. 
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he raw horsepower of the PowerPC 601 chip is impressive by 
itself, but building a high-performance computer system 
involves much more than taking an existing system design 
and simply adding a fast CPU chip. Doing so would be like 
putting a 1-liter BMW boxer motorcycle engine in a Vespa 
scooter. 

Intel experienced this phenomenon when it introduced 
the Pentium. The first Pentium-based systems were basically 
i486 motherboards with Pentiums swapped in. As a result, 
these first Pentium systems didn't perform much better than 
their i486-based predecessors, and really fast Pentium systems 
didn't become available until the motherboard designers 
designed systems to take advantage of the Pentium's features. 

Despite the similarity between the Power Macintosh sys­
tems and high-end 68040-based systems, these new 601-based 
Macs are designed very much with the PowerPC in mind. The 
addition of the 601 is by no means a simple retrofit; these sys­
tems offer high performance for relatively low cost. 

This chapter will provide an in-depth look at the Power 
Macintosh systems' hardware components as well as that of 
the Power Macintosh Upgrade Card, which lets users of 
Macs that can't be upgraded via motherboard swap upgrade 
to PowerPC nonetheless. 

159 
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System Hardware 

The Power Macs' hardware has been optimized for use with 
the 64-bit-wide bus that connects the 601 to the outside 
world. Taking advantage of this bus width provides the 
greatest possible throughput and permits as much data as 
possible to move as quickly as possible through the system. 

The three Power Macs are based on a single overall 
design. See Figure 7.1. The Power Macintosh 6100 is the base 
model, since all three Power Macs share the 6100's features: 

• The Power Mac 7100 is a 6100 with three NuBus slots 
added, and with a 601 running at a higher clock rate. 

• The Power Mac 8100 has all of the 7100's features, plus a 
second high-speed SCSI bus, an even faster 601 than the 
7100, and a preinstalled Level 2 cache SIMM. 

The design of the Power Macintosh 6100, 7100, and 
8100 systems can be divided into three major parts: the CPU 
area, DRAM, and the input/output area. These three areas 
are all interconnected via the Data Path chips, which are the 
key to much of the Power Macs' performance. 

- ----- The 601 CPU Bus 

Each Power Macintosh has a PowerPC 601 processor run­
ning the show. The speed of the 601 is easily discernible 
from the Power Mac's name: The 6100/60 has a 60MHz 601 
at its heart; the 8100/80's 601 runs at 80MHz. 

The Power Macs' 601 has two connections to the outside 
world: a 64-bit-wide data bus and a 32-bit-wide address bus. 
The data bus is the path over which data travels to and from 
the 601; the address bus is the way the 601 communicates 
to the rest of the system from where, or to where, data 
should move. 

For further details about the PowerPC 601 processor, see 
ChapterS. 
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Level 2 Cache: Each Power Macintosh supports an optional 
Level 2 (L2) cache. The Power Mac 8100/80 comes with a 
256-kilobyte L2 cache preinstalled. The purpose of an L2 
cache in the Power Macs is to provide an additional buffer 
between the 601 CPU and the outside world: DRAM, ROM, 
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and the Power Macs' 1/0 subsystems. For a precise descrip­
tion of L2 caches and Level 1 caches, how they work, and 
why they're useful, please see Chapter 4. 

With the Power Macs, the default L2 cache size is 256 
kilobytes. This size was determined by a performance analy­
sis group within Apple to offer the best ratio between price 
and performance. Since the high-speed static RAM used in 
L2 caches is relatively pricey, the measurers of performance 
needed to find the amount of L2 cache that would offer the 
highest performance benefit. As they experimented with dif­
ferent sizes, they found the place where the curve of perfor­
mance increase flattened out at 256 kilobytes. Larger cache 
sizes are beneficial, but they don't offer as much of a perfor­
mance boost. A 512-kilobyte L2 cache does not offer twice 
the performance increase of a 256-kilobyte cache. Smaller 
caches certainly also provide a performance boost, but the 
cost of the 256-kilobyte cache is small enough, considering 
the speed increase it offers, that it doesn't make much sense 
to use a size smaller than 256 kilobytes. 

Unlike the Level 1 cache on the 601, the Level2 cache in 
the Power Macs has only one mode: write-through. This 
means that any data written to the L2 cache is written out 
to DRAM, or 1/0 space, as quickly as possible. In contrast, 
parts of the 601's L1 cache can be defined as copyback, 
where the data isn't written back to DRAM, or the L2 cache, 
immediately. Copyback mode is somewhat faster than 
writethrough because it causes less bus traffic. 

High-Speed Memory Controller: The high-speed memory 
controller (HMC) in the Power Macs is the nexus for interac­
tions between the 601 CPU and memory. The HMC is 
designed to provide for the 601's memory-access needs, as 
well as connections to ROM, L2 cache, DRAM, the processor 
direct slot (PDS), and the Power Macs' input/output (1/0) 
devices. 
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Although the 601 and the DMA logic in the Power Macs 
actually write to or read from memory, HMC keeps track of 
memory being read from or written to and makes sure that 
no two parts of the system try to get at the same part of 
memory at the same time. It is, in a sense, a traffic cop for 
the data moving throughout the Power Mac system. 

This function is particularly important because the 
design of the 1/0 on the Power Macs is memory-mapped. 
This means that v.rriting data to a particular 1/0 device is just 
like writing data to a particular address in RAM. The HMC, 
in combination with another chip called AMIC, makes sure 
that all the right things happen and that data goes where it's 
supposed to. 

HMC supports a maximum of 264MB of installed RAM. 
To install this much RAM in a Power Mac would require a 
32MB SIMM installed in each of the Power Macintosh 
8100's eight SIMM slots. On the Level 2 cache front, HMC 
supports sizes starting at 128 kilobytes; the upper limit is 
determined only by hardware technology. When the Power 
Macs' design was being developed, it was assumed that 512 
kilobytes of L2 cache would be the largest possible. 1MB L2 
caches for the Power Macs are already advertised today. 

When HMC plays traffic cop on the buses of the Power 
Macintosh, it has to decide who gets access when multiple 
parties want use of the bus at the same time. DRAM refresh 
gets the highest priority; for dynamic RAM to keep its con­
tents intact, it has to receive a signal every so often. If the 
refresh doesn't happen, data is lost from memory. Video 
gets the next highest priority on the bus, which is important 
because video information destined for a monitor is time­
critical. Since the motherboard-based video subsystem uses 
system DRAM to store video data, it's possible that the CPU 
may stall when wanting to read some part of DRAM while 
the video data is accessed. If this happens, the CPU must 
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wait until the video subsystem is done fetching the video 
data from DRAM before it can perform its DRAM access. As 
a result, the CPU gets last priority, since it is assumed that it 
can wait a bit, whereas the other two types of access to 
DRAM are time-critical and have to happen then rather than 
later. 

The order of priority in the Power Macintosh 6100, 
7100, and 8100 is as follows, from the highest to lowest: 

Order Device 

1 DRAM Refresh 

2 Video Refresh 

3 1/0 DMA 

a Sound 

b SWIM III 

c sec 
d Ethernet 

e SCSI 

4 Processor Direct Slot 

5 The PowerPC CPU 

ROM: Each Power Macintosh has 4MB of ROM. ROM has 
traditionally been slow to read from-much slower than 
DRAM. The ROM in the Power Macs con sists of 120ns burst­
mode ROM-slower than DRAM, but not so slow as to cause 
a significant performance impact on the system. Faster 
ROMs would offer an insignificant performance improve­
ment but increase the cost a great deal. 

The path between the Power Macs' ROM is 64 bits wide. 
This path allows the Power Macs to access ROM data as 
quickly as possible, which is important because much of the 
system software is contained in the Power Macs' ROM and 
n eeds to be accessed frequently. 
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Processor Direct Slot: The processor direct slot (PDS) on 
the Power Macs is a direct connection to the 64-bit CPU 
bus. Any card installed in this slot behaves no differently 
than if it were hard-wired into the system. 

Although Apple has documented the PDS in the Power 
Macs, it's not encouraging developers to design cards for it, 
for the following reasons: 

• Too many different kinds of slots are available on the 
Macintosh as it is; the last thing Macintosh card develop­
ers need is another type of slot to support. 

• There really shouldn't be a need for third-party develop­
ers to build PDS cards for the Power Macs. Most existing 
NuBus cards work fine, and most standard expansion-card 
functionality, such as Ethernet, is already supplied on the 
motherboard. 

• If many third parties jump on the Power Mac PDS band­
wagon, Apple will have to provide long-term support for 
this PDS design. The current PDS interface is 601-specific 
and would require some changes for 603- and 604-based 
systems, so it wouldn't be a general-purpose solution. 

• Apple has already announced its intent to support the 
PCI (Peripheral Component Interconnect) expansion-card 
standard in the second generation of PowerPC-based 
Macs. PCI has significantly more bandwidth available 
than NuBus-at least three times as much. Since it's 
already known that a better, faster, multiplatform stan­
dard expansion-card interface is on its way, there's no 
good reason to create a new one. 

• The only very high bandwidth application for the Power 
Macs that requires a bus faster than NuBus is audio and 
video, and the AV Card for the Power Macs supports the 
DAY digital audio/video slot originally introduced with 
the Quadra 660Av and Quadra 840AV. 
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• The Power Macintosh 7100 and 8100 models come with 
either the VRAM or the AV Card preinstalled in the PDS. 
The non-AV version of the 6100 is the only Power Mac 
that ships with an unused PDS, which is sometimes filled 
with the NuBus adapter. 

Given all these reasons, it doesn't make sense for the 
PDS to be public. As a result, buyers of expansion cards for 
the first generation of Power Macs will be limited to NuBus 
cards. The only thing to consider when buying NuBus cards 
for the Power Macs is that the cards should come with soft­
ware drivers that specifically support the Power Macs. Older 
drivers will work, but not necessarily as quickly. Some exist­
ing drivers will cause the Power Macs to slow down, since 
the drivers are designed with 68k Macs in mind; depending 
on how they interact with the rest of the Macintosh system, 
they can cause many mixed-mode switches. Chapter 8 
explains the issues surrounding this problem. 

BART: BART is the name of the Power Macs' NuBus con­
troller. The Quadra 660Av and Quadra 840Av contain a NuBus 
controller named MUNI, short for Macintosh Universal 
NuBus Interface. (MUNI is also the name of San Francisco's 
light-rail system.) When the Power Macs' NuBus controller 
chip needed a name, the result was also the namesake of a 
local public transportation system: BART (short for Bay Area 
Rapid Transit, which serves much of the San Francisco Bay 
Area). 

BART provides the same functionality as MUNI does in 
the AV Quadras, but with a PowerPC twist. BART's interface 
to the rest of the Power Mac system is a full 64 bits wide; it 
can support one and four beat transactions between NuBus 
and the Power Macs' CPU bus, which move 64 or 256 bits at 
a time, respectively. 
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NuBus Performance 

Even though the Power Macs have the 

most popular features found on NuBus 

cards built in, there are still many good 

reasons to use NuBus cards. However, 

two major issues can affect NuBus p~rfor­

mance on the Power Macs. The most 

popular NuBus cards used on the Power 

Macs tend to be high-performance cards 
such as video frame grabbers or 

QuickDraw accelerators. These cards 

need every little bit of NuBus perfor­

mance so they can transfer data and per­

form their work as quickly as possible. 

Excessive Mixed-Mode Switches 
NuBus cards need driver software for the 

Mac to be able to use them. In the case 

of some NuBus cards-most notably, 
QuickDraw accelerators-the driver soft­

ware redirects parts of the OS to use the 

driver to perform certain operations. 

Existing NuBus drivers are written in 68k 

code, which causes no problems until 

this code is called frequently by PowerPC 
code. QuickDraw is native on the Power 

Macs, so any QuickDraw accelerator dri­
vers that intercept QuickDraw calls will 

cause a major slowdown because they're 

68k code. To remedy this, vendors of 
NuBus cards whose drivers need to inter­

cept native PowerPC code must supply 

new versions of their drivers to eliminate 
the frequent switches between PowerPC 
code and emulated 68k code. 

Bursting Into the Bus The other issue 

with NuBus on Power Macintosh is hard­
ware-related, but is partially solvable by 

software. Since the Power Macs are sup­
posed to be the fastest Macs available, 

they are commonly compared with the 

top-of-the-line 68040-based Mac, the 

Quadra 840Av, which has the highest 
NuBus performance of any Macintosh. 

On the 840Av, Nubus drivers can take 

advantage of a particularly useful 68040 
instruction: MOVE16. This instruction 

moves 16 bytes of data via burst reads 
and writes, achieving the fastest transfer 

rates to and from NuBus cards on any 
Macintosh. 

The PowerPC 601 processor has no simi­

lar instruction to MOVE1 6. Although it is 

certainly possible to move 16 bytes dur­

ing one burst to and from the 601, it's 

not possible to do this between the 601 

and NuBus. The 601 is unable to burst­

read or burst-write to an address that is 

not designated as cacheable memory; 
the 68040 can. 

As you will remember from Chapter 4, 
several modes of caching exist. For 

addresses that are 1/0 devices, it is a bad 
idea to mark this memory as cacheable, 
since a memory-mapped 1/0 device 

won't behave like a memory address. If 
you write a value to an 1/0 device's 

address and read back from that address, 
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NuBus Performance (continued) 

you often won't read the same value that 

you just wrote, especially since l/0 
addresses often deliberately behave d if­

ferently depending on whether they're 
being read from or written to. 

Because of this disparity between the 

w ritten data and the va lue resulting from 

immediately reading from that same 

address again, marking such an address 
as cacheable is dangerous, since an 

immediate read after writing to a 

cacheable address will return a value 

from the cache rather than the real data 
from the 1/0 device. 

Since the 601 can't burst to or from 

noncacheable addresses, and the 68040's 
MOVE16 does allow bursts to and from 

noncacheable addresses, the 601 's supe-

rior overall performance won't make up 

for the lack of this particular feature of 

the 68040. 

To help remedy the situation, Apple 

has provided developers with a new call, 

PBBiockMove, which they can use to 
move memory to and from l/0 addresses 

as quickly as possible. Since this API is 

independent of how the memory copying 

is done, Apple's engineers can continu­
ously improve PBBiockMove's perfor­

mance over time without driver writers 

ever having to know about the details. 

The initial version of PBBiockMove pro­
vides performance that exceeds that of 

any Mac except the 840Av. Future ver­
sions of PBBiockMove may very well reach 

or eclipse the 840Av's NuBus transfer rate. 

The NuBus 90 slots in the 7100, 8100, and the 6100's 
NuBus adapter card are functionally identical to those found 
in the Quadra 840Av and on the Quadra 660Av NuBus 
adapter card. The NuBus 90 specification supports standard 
lOMHz operation for a maximum throughput of approxi­
mately 38MB per second. NuBus 90 also has a 20MHz burst 
mode for high-speed transfers, but only between cards. The 
maximum throughput of this mode is roughly 76MB per sec­
ond. These speeds are the same as in previous Macs. Some 
applications, notably audio and video, have often been 
thwarted by NuBus' throughput. This doesn't change for the 
Power Macs and it won't really be addressed until a PCI card 
standard appears in future Power Macs. If you'd like to know 
more about PCI, Chapter 9 covers it in greater detail. 
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------ Data Path 

The two Data Path chips in the Power Macs hold the key to 
the overall high performance exhibited by these new 
PowerPC-based machines. Data Path is divided into two 
chips for a relatively banal reason: production cost. One of 
the chips handles the even bits on the bus, the other han­
dles the odd ones, and it's simply cheaper to produce two 
chips rather than a single huge chip. 

Data Path has four different connections to the different 
buses: 

• DRAM bus: 64 bits wide 
• CPU bus: 64 bits wide 
• The pixel bus leads to Ariel, the chip responsible for the 

motherboard video subsystem: 16 bits wide 
• 1/0 bus: 16 bits wide 

The Data Path chips create four almost-autonomous sub­
systems within the Power Mac hardware, and each subsys­
tem can do its thing without adversely influencing the 
others. The Data Path combined with DMA allows high­
speed 1/0 while high-speed processing continues unaffected. 

Data Path is crucial to the Power Macs' performance 
because it acts as a router, directing data so as not to 
bother any part of the system unnecessarily. The Data Path 
chips separate the CPU bus, the 1/0 bus, DRAM, and the 
video subsystem from each other. With this division in 
place, data coming from, for example, a serial port can be 
moved to DRAM without the CPU bus being affected, 
allowing the 601 to continue its work uninterrupted and 
allowing the use of the full bandwidth of the CPU bus all 
the while. The 601 could be writing graphics data to a 
video card while the serial transfer goes on, and neither is 
affected by the other. 

As part of its duties to separate the CPU bus from the 
rest of the system, Data Path also contains write buffers so 
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that any write transactions from the CPU bus finish as 
quickly as possible. The idea is similar to the idea behind 
Print Monitor, which attempts to give you back control of 
your Mac as soon as possible, and then performs the print­
ing while you're doing other things. For example, when the 
601 writes to memory, the Data Path will accept the data 
and make sure that it makes it to DRAM. In the meantime, 
the 601 can get on with its work. This is a further contribu­
tor to the high system performance of the Power Macs. 

SCSI and Ethernet 1/0 are also noteworthy since Data 
Path contains special buffers for these two ports. Since speed 
is of the utmost importance with these two, Data Path per­
forms a process called byte assembly on data coming from 
either of them. Rather than sending each byte of data as it 
arrives from the SCSI or Ethernet port, Data Path waits for 8 
bytes, or 64 bits, to collect before it moves the data across 
the bus to DRAM in one go. This is far more efficient than 
sending eight individual bytes across the bus; moving one 
64-bit chunk requires only a single bus transaction rather 
than eight, even though the amount of data is the same. 
Byte assembly happens for data received from these two 
ports because they have the highest throughput. Sound data 
is byte-assembled as well. This scheme also works for these 
three ports in particular: Since they're used frequently, it's 
reasonable to assume that once a byte arrives from one of 
these ports, more data will follow shortly. So it's worthwhile 
to wait a bit to get the whole 8 bytes together. For slower 
1/0 ports-for example, ADB-byte assembly makes no 
sense at all, since ADB data comes along far less frequently. 

------DRAM 

Each Power Macintosh has 8MB of SOns DRAM soldered on 
the motherboard. Each of the three models has different 
numbers of SIMM slots for RAM expansion: two in the 
6100, four in the 7100, and eight in the 8100. 
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A single 64-bit path goes into DRAM from the Data Path. 
This is the only way in or out of DRAM. The width of this 
bus is important, since it determines the maximum amount 
of data that can go in and out of RAM during a single trans­
action. Since the Power Macs use the standard 72-pin 
SIMMs also used in the Quadra 650, Quadra 800, Quadra 
660Av, and Quadra 840Av, which only support 32-bit-wide 
access, two identical SIMMs must be added at a time to 
expand a Power Mac's RAM. 

When you are using the on-board video, 600 kilobytes 
of the Power Macs' DRAM are set aside for the video buffer. 
On top of the memory taken up, and thus lost to applica­
tion software, use of system DRAM for video also consumes 
bandwidth on the DRAM bus. Monitors need to receive 
updates to their information many times per second; typical 
monitor refresh rates are 60 or 75MHz. This means that 60 
to 7 5 times per second, up to 600 kilobytes of data is moved 
from DRAM and sent out to the monitor via the on-board 
video subsystem. This is approximately 37MB per second of 
video data, and it uses up a significant fraction of the bus 
bandwidth. Here again, Data Path's isolation of the Power 
Macs' different buses allows individual parts of the system 
to run as efficiently as possible. 

------ The 1/0 Bus 

The Power Macs' input/output devices are connected to a 
16-bit bus that goes to the Data Path. The one exception is 
NuBus: The BART controller is on the CPU bus, since trans­
fers to and from NuBus require significantly more band­
width than even the highest-speed SCSI transfer. Since 
NuBus is 32 bits wide, it's much closer to the CPU bus in 
performance than to any of the l/0 devices. 

Although a 16-bit-wide 1/0 bus might appear to be 
small, it is sufficient for the type of transfers it needs to sup­
port. Even on the Power Macintosh 6100/60's 30MHz bus, 
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the slowest of the three Power Macs' buses, the 16-bit l/0 
bus supports up to 57MB per second. The 8100/80's 1/0 bus 
supports approximately 76MB per second, more than 
enough for the standard 5MB per second SCSI bus and the 
8100's Fast SCSI high-speed internal bus, with plenty left 
over for other 1/0. For example, the theoretical maximum 
bandwidth required for Ethernet is 1.25MB per second, but 
it typically uses only around 500 kilobytes per second on 
most computer systems. Each GeoPort serial port is capable 
of 256 kilobytes per second throughput, and CO-quality 
audio only takes up about 86 kilobytes per second. As these 
numbers show, the 16-bit 1/0 bus has ample available band­
width. 

The 1/0 bus and the different 1/0 devices all provide com­
parable performance to the fastest 68040-based Macs. The 
on-board video, despite using system DRAM and precious 
bus cycles, outperforms many other video solutions on the 
Mac market. The VRAM Expansion Card, combined with 
Native QuickDraw, offers performance that rivals some 
QuickDraw accelerator cards, and the Power Macintosh AV 
Card adds video capture and playback features to these pow­
erful systems. 

AMIC: AMIC is short for Apple memory-mapped l/0 con­
troller. AMIC controls the data flow between the different 
1/0 devices and the rest of the system and manages the 
direct memory access for SCSI, Ethernet, audio, the two ser­
ial ports, and the floppy drive. 

AMIC also handles interrupts generated by the different 
I/O devices. This is a critical feature for the Power Macs, 
since throughout the history of Macintosh hardware archi­
tecture, the 68k family's interrupt scheme has been at the 
core of hardware I/0. 
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Bandwidth 

A great deal of data flows through a 
Power Macintosh system. The purpose of 
the Data Path is to isolate the four differ­
ent buses inside the Power Macs (CPU, 
DRAM, Video, and 1/0), so that data flow 
affects only the buses that it has to, thus 
making the most bandwidth available on 
every bus. 

Table 7.1 gives the available band­
width of the various buses on a Power 
Macintosh 6100/60 as well as the maxi­
mum bandwidth requirements of various 
1/0 devices. The buses of the 7100/66 
run at 33M Hz; the 81 00/SO's run at 
40MHz. 

Table 7.1 Bandwidth 

Available Bandwidth (6100/60) 

The 20MHz NuBus block transfers go 
only from card to card, never between a 
card and the rest of the system. As a 
result, a NuBus transfer to the Power Mac 
system could never use more than 
38.15MB, which is the theoretical maxi­
mum of NuBus. In reality, the implemen­
tation of NuBus, including the overhead 
of NuBus protocols and the time taken to 
synchronize NuBus to the system bus, 
results in real NuBus throughput of 
between 7 and 15MB per second, 
depending on whether data is going to 
or coming from NuBus, and which Power 
Mac is being used. 

CPU and DRAM Bus 

1/0 and Video Bus 

30MHz x 64 bits 

30MHz x 16 bits 

228.88MB/sec 

57.22MB/sec 

Bandwidth Used 

Video Data 

Internal SCSI (8100 only) 

External SCSI 

Ethernet 

GeoPort 

CO-Quality Audio 

LocalTalk 

75Hz x 600kB 

hardware max 

hardware max 

10 Mbps (theoretical max) 

2 Mbps (max) 

44.1kHz x 16 bits 

230.4 kbps 

43.95MB/sec 

lOMB/sec 

5MB/sec 

1.25MB/sec 

0.2SMB/sec 

86.2SkB/sec 

28.8kB/sec 
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Interrupts are signals generated by 1/0 devices that cause 
the main processor to stop what it's doing and deal with the 
cause of the interrupt. l /0 is time-critical and can't be han­
dled whenever the CPU gets around to it. The 68k family 
has seven levels of interrupts, which signify seven levels of 
importance. Different l/0 has a different interrupt level, and 
thus a different interrupt priority. A higher-level interrupt 
can interrupt the processing of a lower-level interrupt but 
not vice versa. 

The 68k offers a comparatively rich set of interrupt lev­
els, but the PowerPC only has a single one. So it's up to 
AMIC to handle the simulation of the different interrupt 
levels for the different I/0 devices. This simulation is neces­
sary to make the I/0 subsystem as compatible with previous 
Macs as possible. Had the designers of the Power Macs not 
made this effort, no existing Macintosh peripherals would 
work with the Power Macs unless all their drivers were com­
pletely rewritten. 

Curio: The Curio chip is the most versatile of the 1/0 chips 
in the Power Macs. Curio is responsible for handling SCSI, 
Ethernet, and both serial ports for the Power Macs. Curio is 
also used to support the same ports in the 660Av and 840Av. 

The SCSI port that Curio is responsible for can support 
throughput of up to 5MB per second. 

The Ethernet part of Curio connects to the outside world 
through the Power Macs' AAUI interface, which is a 
medium-agnostic Ethernet port. To actually connect a 
Power Mac to an Ethernet network, you need an adapter for 
either lOBASE-T (twisted-pair), lOBASE-2 (coax/ThinNet), or 
lOBASE-5 (AUI/ThickNet) Ethernet wiring. 

Finally, Curio contains the hardware for the two serial 
ports in the Power Macs. Each port has 8 bytes of buffer 
when LocalTalk and GeoPort are active; otherwise the serial 
buffers are 3 bytes for incoming and 1 byte for outgoing 
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GeoPort 

GeoPort is a new type of high-speed The first GeoPort adapter available was 
serial port that was originally introduced Apple's own Telecom Adapter, which 
with the Quadra 660Av and Quadra offers two RJ-11 jacks to plug standard 
840AV. It started as an Apple-only innova- phone wires into. The Telecom Adapter 
tion, but in early March 1 994 was contains the hardware necessary to con-
licensed to Aox and Analog Devices. vert the analog signals from a phone line 
These two companies will make the into digital data, and vice versa. The 
GeoPort technology available for the x86 adapter has no modem capabilities; it 
hardware as well as the Windows and provides the minimal hardware necessary 
OS/2 software environments. to connect a system to phone lines. 

A GeoPort system has multiple parts: The GeoPort for Power Macintosh soft-
the GeoPort hardware built into a com- ware provides all the features and func-
puter system, an external GeoPort tions of a modem purely in software. 
adapter, and the necessary system soft- Combined with the Telecom Adapter, the 
ware to allow the computer to access GeoPort software acts just like a stand-
and control the adapter. The GeoPort alone modem, but at a considerably 
port itself looks like a standard mini- lower price. Version 1 .0 of the GeoPort 
DIN-8 serial port, just like the modem for Power Macintosh software provides 
and printer ports on Macs since the Mac the functions of a 14.4 kilobits per sec-
Plus. The only difference is that a GeoPort and V.32bis modem for data as well as 
has an additional ninth pin, which is used that of a 9600bps V.29 fax modem. In 
to supply power to an external GeoPort addition, the GeoPort software comes 
adapter. The GeoPort port is designed so with Apple's Express Modem software, 
that all existing DIN-8 plugs will work which makes the GeoPort look like a reg-
without modification. ular modem to conventional communica-

The GeoPort can act as a conventional 
modem or printer port, allowing up to 
57600bps asynchronous serial rates as 
well as supporting LocaiTalk's 230.4kbps 
data rate. When communicating with an 
external GeoPort adapter, the GeoPort 
port operates at 2 megabits per second, 
enough to support very high bandwidth 
serial applications. 

tions software. 
The software modem runs on the 

Power Macs' 601 chip, which illustrates 
clearly how much computational horse­
power the Power Macs have. Both the 
660Av and 840AV included a separate DSP 
(digital signal processor) chip that, com­
bined with the appropriate GeoPort soft­
ware, ran a software modem on these 
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GeoPort (Continued) 

machines. The Power Macs offer the 
same features, but without the need for a 
separate DSP chip. 

Another benefit of a software modem 
is that it's upgradable over time. When 
the GeoPort modem was first introduced 
for the 660Av and 840Av, it was only able 
to support 9600bps for data connections. 
Shortly thereafter, a software upgrade 
made 14400bps available to users, with­
out any change to the Mac or the 
GeoPort Telecom Adapter. 

Current GeoPort is usable only with 
Apple's own Telecom Adapter, but future 
plans call for an ISDN GeoPort adapter, 
as well as adapters for T-1 high-band­
width digital phone lines, which provide 
up to 1.5 megabits per second through­
put. To use one of these alternat ive con­
nection methods, all that's needed is a 
new adapter, since most of the necessary 
hardware is built into each Power Mac. 

traffic, as on most other Macs. The combination of the 
larger buffer and the systems' support for DMA for serial I/0 
make the two serial ports capable of supporting Apple's 
GeoPort high-speed serial architecture. 

AWACs: The AWACs (audio waveform amplifier and con­
verter) chip is in charge of all audio-related 1/0 in the Power 
Macs. A WACs is a further evolution of the Singer audio chip 
and waveform amplifier chip (WAC), both of which are 
found in the Quadra 660Av and Quadra 840Av. 

AWACs has three stereo inputs and internally supports 
two channels of 16-bit sampled digital audio. The protocol 
used by AMIC and AWACs supports eight channels of 20-bit 
data. 

SWIM Ill: The SWIM III chip is the Power Macs' floppy con­
troller. SWIM is a spoonerized acronym that stands for 
super-integrated Woz machine; the original integrated Woz 
machine was a floppy controller designed by Steve Wozniak, 
cofounder of Apple Computer. The original SWIM included 
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support for the 1.44MB high-density floppy format. SWIM 
III is the third generation of the SWIM chip. 

SWIM III supports DMA data transfer of floppy data and 
doesn't need interrupts to be disabled during floppy 1/0. In 
the past, use of floppies has been unfriendly in the Mac 
hardware architecture. During floppy access, virtually all 
other hardware 1/0 stopped until floppy I/0 had completed, 
since the CPU was responsible for moving the data to and 
from the floppy. With the added support for DMA, the CPU 
must no longer babysit the floppy controller during 1/0 and 
is free to do real work. 

Ariel II: The Ariel II chip combines a color lookup table 
(CLUT) and a digital-to-analog converter (DAC) in a single 
chip. Ariel II is the same chip used for on-board video in the 
Macintosh Color Classic. Ariel II contains a 256-element 
color lookup table and the necessary circuitry to convert the 
video data in DRAM to analog signals for the on-board 
AudioVision port. 

Ariel has two connections to the rest of the system. One, 
the pixel bus, is to the Data Path chips, where video data 
comes from DRAM. The other connection goes to the Power 
Macs' 1/0 bus and is used to set up and control Ariel's func­
tions. 

CUDA: The CUDA chip is responsible for managing the 
Apple Desktop Bus (ADB), turning system power on and off, 
managing Parameter RAM, and managing the built-in clock. 

Input devices such as keyboards and mice use the ADB 
to communicate vvith the Macintosh system. Since the 7100 
and 8100 systems are turned on via the keyboard and 
turned off by software, combining ADB and the on/off 
switch in the same chip makes sense. In addition, GeoPort 
devices can also turn on a Macintosh. This allows incoming 
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Upgrade Card 

phone calls, or an incoming fax, to start up the Power Mac 
and allow it to receive incoming data. 

Squldlet: The Squidlet chip provides all the clock signals 
needed by the CPU and other ASICs within the Power Macs 
except for the clock signals for on-board video. 

Squidlet provides 2x and 4x clocks for the 601 CPU, as 
well as 2x and lx clocks for the other ASICs. Squidlet's main 
clock speed is determined by the Power Mac system it's in; 
on the 6100/60, for example, Squidlet's main clock runs at 
30MHz, hence the 60 and 120MHz clocks on the 601. 

54CF96: The 54CF96 is the second SCSI controller in the 
Power Macintosh 8100. Curio handles the standard external 
SCSI bus in the 8100, and the 54CF96 is in charge of manag­
ing the internal high-speed SCSI bus that can support up to 
lOMB per second SCSI throughput. The 53CF96's bus is acces­
sible only via a ribbon connector on the 8100's motherboard. 

The Power Macintosh Upgrade Card is the lowest-cost 
upgrade solution for owners of 68040-based Macs. Only 
some Quadra models can be upgraded to one of the Power 
Macs via logic board upgrade. Some Macs can't be upgraded 
in this way, but Apple didn't want to leave these machines 
in the lurch. 

The Power Macintosh Upgrade Card contains a PowerPC 
601 chip, 1MB of lSns Level 2 cache, and a standard 4MB 
Power Macintosh ROM. The 601 always runs at twice the 
speed of the system it's installed in. For example, in the 
2SMHz 68040-based Quadra 700, the 601 on the Upgrade 
Card runs at SOMHz. 

The 601 used on the Power Macintosh Upgrade Card is 
slightly different from the ones found inside the Power 
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Macs. The difference between the 601s is a minor one; 
Upgrade Card users will almost certainly never notice. 

The 601s on the Upgrade Card run their floating-point 
units in so-called synchronous mode. This mode defeats 
some of the benefits offered by pipelining in the floating­
point unit. For this reason, floating-point performance on 
Upgrade Card-based Power Macs will be lower than on 
equivalently fast 601s in Power Macs. This decision was 
made deliberately, since those users who need the utmost in 
floating-point performance will almost certainly buy a new 
Power Mac anyway. Users upgrading via the card will still 
see floating-point performance far higher than on their 
68040 Macs, but not quite as high as on the Power Macs. 

The Upgrade Card runs at twice the speed of the system 
it's installed in because it makes the work of the bus con­
verter on the Upgrade Card much easier. For the Upgrade 
Card to function properly, it must contain a converter that 
allows the 601 bus on the Upgrade Card to work with the 
68040 bus on the Macintosh system the Upgrade Card's 
plugged into. Since the Upgrade Card contains no RAM of its 
own, nor any 1/0 ports, it's dependent on the host system 
for these resources. The large Level 2 cache acts as a buffer to 
counteract much of the performance hit caused by having to 
access the slower 68040 bus to get at RAM and 1/0. 

The Power Macintosh AV Card is the only part of the Power 
Macintosh hardware that is basically identical to existing 
hardware on a 68k-based Mac. The AV Card contains virtu­
ally the same video hardware found in the Quadra 660Av 
and 840Av. The audio features in the AV-equipped Quadras 
are available on all Power Macs, not just those with the AV 
Card. 
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The Power Macintosh AV Card uses several different 
ASICs to do its job. Since the design of the card is an adapta­
tion of the design in the AV Quadras, the AV Card contains 
a bus-converter chip named PODRIC that provides the nec­
essary signal conversion and buffers to translate the Power 
Macs' 601 bus signals into 68040 bus signals that are under­
stood by the chips on the AV card. 

All of the AV Card's sound capabilities come from the 
AWACs chip on the Power Macs' motherboard; the AV Card 
itself has no additional audio hardware. 

------ CIVIC 

The heart of the AV Card is CIVIC, the Cyclone integrated 
video controller. Cyclone was the code name for the Quadra 
840Av, and CIVIC was originally designed for the two AV 
Quadras. CIVIC can manage between 1 and 4MB of VRAM, 
although the AV Card has 2MB soldered on it and has no 
expansion capabilities. CIVIC also controls the interaction 
between the Philips SAA7194 chip and the Sebastian chip, 
and it provides timing signals for the different standard tele­
vision formats. It additionally is responsible for handling 
the convolution of graphics for line-interlaced displays such 
as televisions, which allows the AV Card to be used to dis­
play Macintosh video data on TV screens. 

------ Sebastian 

Sebastian is a combination CLUT and DAC, similar to Ariel 
II, but designed for higher performance. Sebastian has two 
32-bit-wide connections to the rest of the card. It can accept 
data either as a 64-bit quantity coming in both ports or as 
one or two individual 32-bit parts. 

Sebastian allows one of its 32-bit ports to be used for digi­
tal video while the other is processing graphics data such as 
QuickTime. This feature makes it possible to mix video and 
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graphics on the same screen, even if the two have different 
bit depths. 

------ SAA7194 

The SAA7194 chip is a single-chip version of the two-chip 
set used in the Quadra 660Av and Quadra 840Av. The 
SAA7194 is made by Philips and is used on the AV Card to 
decode video data from the incoming video port in either 
S-video or composite NTSC, PAL, or SECAM format and 
translate the analog data to a digital format. 

The SAA7194 chip also provides the ability to scale the 
incoming video picture in hardware. No computationally 
intensive and therefore slow softWare scaling is required. 
When the Philips chip is done decoding the incoming video 
signal, it passes the digitized data into VRAM as either 16-bit 
RGB data, 8-bit grayscale, or YUV. 

------ Mickey 

Mickey is the chip responsible for video output. Outgoing 
video can leave the AV Card either via a standard DB-15 
monitor connector or via the outgoing S-video connector. 

Mickey can output video data as RGB, or it can translate 
the RGB data into composite NTSC, PAL, or SECAM format 
as well as S-video. 

------- The DAV Connector 

A new type of connector was introduced with the 660Av and 
840Av to allow NuBus card developers direct access to the 
raw audio and video data in the two AV systems. This con­
nector was named DAV, for digital audio/video. 

A typical use for the DAV connector is hardware-assisted 
video compression and decompression, to allow larger-size 
video windows and higher frame rates than software-based 
compression schemes. The DAV slot allows the NuBus cards 
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direct access to the digital data without having to transfer 
the data via NuBus. 

In the AV Quadras, the DAV slot is inline with a NuBus 
slot in the system. In the case of the 660Av, the DAV slot is 
on the NuBus adapter card that plugs into the 660Av's PDS 
slot. Either way, the only realistic way to connect to the 
DAV slot is from a NuBus card that has its DAV and NuBus 
connectors lined up to plug into both connectors in the 
Quadras. Since the video part of the AV features for the 
Power Macs is implemented on a card, it doesn't make sense 
to put a DAV slot on the motherboard, inline with a NuBus 
slot on the 7100 or 8100. The 6100Av models are particu­
larly tricky in this regard: A 6100Av cannot support a NuBus 
adapter card, since the AV Card is plugged into the only 
processor direct slot, the same slot that would otherwise 
house the 6100's NuBus adapter card. 

The DAV connector for the Power Macs is designed to be 
connected to a DAV connector on a NuBus card via a ribbon 
cable. Since the 6100Av model can't support a NuBus card in 
addition to the AV Card, the DAV slot is something of an 
atavism in this system. The electrical signals for the ribbon­
cable version of DAV are identical and provide the same 
access to the raw digital audio and video data as the DAV 
slots in the 660Av and 840Av. 

VRAM Expansion Card 

Those models of the Power Macintosh 7100 and 8100 that 
don't have an AV Card come with the VRAM Expansion Card 
preinstalled in the processor direct slot. The VRAM Expansion 
Card is a VRAM-based frame buffer that provides significantly 
higher video performance than the video subsystem on the 
Power Macs' motherboard. The VRAM Expansion Card con­
sists of the VRAM, a video/VRAM controller, a DAC (digital­
to-analog converter), and a clock generator. 
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Two versions of the VRAM Expansion Card are available: 
The card that comes with the 7100 has 1MB of SOns VRAM 
soldered onto the card itself, with four SIMM slots to allow 
expansion up to 2MB of VRAM. The 8100 version of the 
VRAM Expansion Card comes with 2MB soldered, with 
SIMM slots for an additional 2MB of VRAM. Other than the 
preinstalled VRAM and its expandability, the two cards are 
completely identical. 

The VRAM Expansion Card contains 

• DaMFB, the dual-array memory frame buffer chip 
• RaDACal, a color lookup table and digital-to-analog con­

verter (CLUT/DAC) designed specifically for this card 
• PUMA, a clock-generator chip 

DaMFB acts as the memory controller for the VRAM on 
the card, managing VRAM refreshes and access to the VRAM 
data. RaDACal is a combination CLUT and DAC, much like 
Ariel for motherboard video and Sebastian on the AV Card, 
except that it supports up to 24 bits per pixel and is 
designed specifically for the 64-bit-wide bus on the VRAM 
Expansion Card. PUMA is the chip that generates all the 
timing signals on the VRAM Expansion Card, for VRAM 
refreshes as well as for video refreshes for the monitor. 

The VRAM Expansion Card has a single, standard DB-15 
monitor interface, the same DB-15 connector that 
Macintosh users (and their monitors) have been accustomed 
to since the introduction of the Apple 13-inch RGB monitor. 
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he decision about whether to make code native is not a sim­
ple matter of saying "yes!" and then doing it. It requires 
careful consideration about the type of code involved and 
the work it performs. In general, most applications benefit 
from going native. Those applications that spend most of 
their time waiting for I/0 to happen benefit less than others 
that spend the majority of their time performing computa­
tions. In all cases, however, user interfaces can benefit 
greatly from the added performance, so developers of I/O­
bound apps should also try to go native. One of the Mac's 
main benefits is the high quality of its user interface. With 
the introduction of the PowerPC, much more interactive 
and responsive user interfaces are possible. 

The Mixed Mode Manager handles all the work involved in 
switching between native and 68k code on Power Macs. 
Since existing 68k software has to run unmodified on the 
Power Macs, the Mixed Mode Manager is completely trans­
parent to 68k code. This means that so-called accelerated 
toolbox traps-parts of the operating system that are 
native-appear no different to 68k software than emulated 
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ones. However, this means that the Mixed Mode Manager is 
handling the switch from 68k code to PowerPC behind the 
scenes and also handling the switch back when the native 
code is done and control needs to be returned to the 68k 
software. 

------ Mixed-Mode Switch: 68k to PowerPC 

The exact mechanics of a mixed-mode switch from 68k to 
PowerPC code varies somewhat, depending on whether the 
68k passes any additional information to the native code in 
the form of parameters. When one 68k routine calls 
another, it must adhere to standard calling conventions that 
define how the caller and the called routine exchange infor­
mation. Both parties in the exchange need to know exactly 
how much information is passed from one to the other and 
how it is passed. Software written in Pascal passes parame­
ters differently than software written in C. Most Mac OS 
routines use the Pascal calling conventions; there are excep­
tions to this rule that have calling conventions of their own, 
which conform to neither those of C nor those of Pascal. 

When a piece of 68k code calls native code, a piece of 
information known as a routine descriptor is used to make the 
transition. The routine descriptor, a data structure intro­
duced with the new runtime architecture of the Power Mac, 
contains all the information that the Mixed Mode Manager 
needs to know about the routine that's being called. The 
Mixed Mode Manager must convert and possibly reorder 
any parameters that the emulated software passes to the 
native routine, before the native software is executed. In 
addition to the information about the called routine, the 
routine descriptor contains a pointer to the transition vector. 
This data structure contains two pointers: 

• A pointer to the actual PowerPC routine 
• A pointer to the called routine's global variables 
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------ Mixed-Mode Switch: PowerPC to 68k 

When the native code is done executing, any return values 
need to be converted by the Mixed Mode Manager into the 
form that the emulated 68k code expects. The Mixed Mode 
Manager adheres to the standard register-saving conven­
tions on the 68k side: 

• Registers whose contents used to be documented as saved 
will be saved 

• Registers whose contents could change almost certainly 
will change 

One of the sneakiest pitfalls of the switch from 68k to 
PowerPC-based machines happens if the 68k software relies 
on undocumented behavior of system calls. If, for example, 
a toolbox call on a 68k machine deposited an undocu­
mented but useful value in a specific register that is not 
guaranteed to be saved, you should expect that this value 
may no longer appear there. Any software that depends on 
such undocumented behavior will malfunction on the 
Power Macs-if not now, then maybe after the next system 
software release or with the introduction of new PowerPC­
based machines. 

------ Penalty for Switching 

No matter in which direction a mixed-mode switch occurs, 
the switch takes time. The average mixed-mode switch takes 
about SO emulated 68k instructions. Although this may 
seem short in human terms, this is a significant lag for a 
computer. The cumulative effect of many mixed-mode 
switches can degrade performance drastically. Any fre­
quently called parts of the OS that incur mixed-mode 
switches can cancel out the added performance provided by 
the Power Macs. 

Native software can have it particularly hard if it calls 
emulated traps frequently. Each time an emulated trap is 
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Call Chains 

called from native software, a mixed-mode switch happens 
going into the routine and again coming back out. In 
System 7.1.2, the first release of the Mac OS for the Power 
Macs, some traps that you would have thought would be 
native aren't. For example, the Microseconds trap, used for 
fine-precision timing, is emulated. Calling this trap repeat­
edly from a native app yields not only unexpectedly long 
times, but also slows down the native software. Apple's 
steadfast refusal to release information about which traps 
are native and which are emulated seems a bit odd consider­
ing this example. 

Apple's rationale is that people shouldn' t count on 
whether a trap is emulated or native, since emulated traps 
are liable to go native without any warning. This is an 
understandable stance. But since one of the main goals of 
going native is increased software performance, and knowl­
edge of which traps are emulated would allow developers to 
avoid those traps that would slow them down-possibly in 
favor of a solution that is already native-it's not clear that 
this strategy accomplishes anything useful. Regardless of 
Apple's position on this matter, at this writing, a list of 
native, fat, and emulated traps had already been posted by 
an enterprising developer to numerous online services. 

A mixed-mode switch rarely comes alone. For this reason, 
determining the effect of making a particular piece of soft­
ware native or leaving it in emulation on a Power Mac 
requires careful investigation to determine how the code is 
called, and where execution continues after the code in 
question is completed. A call chain is the path of execution 
taken when a call to a particular system-software routine is 
made. Many different bits of code are executed after a piece 
of software calls a system-software routine and before the 
code of the routine itself is executed. Each separate routine 
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of intervening code makes up a link in the call chain. To 
make matters even more complicated, not only are these 
different intervening routines executed going down the 
chain from caller to called routine, but different parts of 
those same routines are generally executed on the way up 
the chain, back to the original caller, after the system­
software routine has done its job. 

Since each link in the call chain can consist of either 
PowerPC or 68k code, you may incur a mixed-mode switch 
once for every routine in the chain. On the way back up, 
the same number of mixed-mode switches happens again. 

When third-party software-or even Apple software­
patches into such a call chain, any additional mode 
switches that result from the patch can bog down the entire 
machine. Some operating-system routines are so popular 
that they are sometimes patched multiple times, each time 
by a different extension or control panel. In the worst case, 
the different patches in a single trap use both PowerPC and 
68k code, causing many extra mixed-mode switches. 

If you're a developer who patches traps, you owe it to 
your users to investigate this issue in great detail and deter­
mine the best method for minimizing the impact of any 
mixed-mode switches. If you're a user, you should find out 
whether any of the extensions that you use regularly cause 
unnecessary mixed-mode switches by patching emulated 
code into a native trap. 

Extensions and Fat Patches 

Extensions and control panels are an unavoidable part of 
today's Macintosh experience, but they aren't inherently 
evil. What gives these pieces of software such a bad reputa­
tion is programmers' often shoddy programming practices 
that manifest themselves as INIT conflicts. In general, it is a 
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good idea to use as few third-party extensions and control 
panels as possible. Even on a 68k-based Macintosh, exten­
sions and control panels cause a slowdown just because of 
the added work that they perform. 

On the Power Macs, the incentive to avoid unnecessary 
extensions is even greater, since emulated software runs 
slower than native software anyway, and the likelihood is 
high that extensions are causing mixed-mode switches and 
thereby degrading the overall performance of a Power Mac. 

During the migration from 68k to PowerPC, which will 
undoubtedly take many years, extension authors need to be 
aware of the choices they face about how to patch system 
software. 

Relying on the fact that a trap is currently emulated isn't 
necessarily a wise thing, since it can become a native trap 
without warning as soon as the next system software 
release, or even a new version of the PowerPC Enabler, 
comes out. The 11but the trap's emulated" excuse will hold 
water for a while, but not for much longer. 

Native traps-any of the QuickDraw calls, for example­
should always be patched native. There is no excuse for 
slowing down users' machines by introducing 68k 
QuickDraw patches on a Power Mac system. QuickDraw 
accelerator cards are a good example of this. By now, all the 
major video card vendors have added Power Mac support to 
the drivers on their video cards. Those accelerators that 
don't have Power Mac support wind up patching Native 
QuickDraw with the intent of speeding it up, but by adding 
a 68k patch to a native QuickDraw call, the accelerator's 
software is actually slowing everything down. If you have a 
NuBus video card that you want to use in your Power Macs, 
make sure the card has the latest ROMs from the vendor 
and that any additional Power Mac-specific drivers are 
installed. This will minimize any chance of slowdown 
related to mixed-mode switches. 
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In general, extensions these days should install fat 
patches. These patches contain both 68k and PowerPC code 
and have the benefit of never causing an unnecessary 
mixed-mode switch. When an extension installs a fat patch 
and the patched trap is called, the Mixed Mode Manager 
looks at the patch to see what kind of a patch it is. 

• If it's an emulated patch and the caller is native, a mixed­
mode switch must happen. 

• If it's a fat patch, the Mixed Mode Manager picks the code 
type of the caller. If the caller is emulated, the emulated 
patch code is executed. If the caller is native, the native 
patch is run. 

The only time when it makes sense to patch 68k traps 
exclusively with a native patch is if more time is saved exe­
cuting the patch than it takes for two mixed-mode switches 
to occur. If this is the case, then a native patch is a fine idea. 

It's safe to assume that system-software calls that are 
native today will remain so. Therefore, if you have to patch 
such a trap, make sure your patch is native; a fat patch 
won't be much help. Even if the rest of your code is still 
emulated, make sure that the piece of code that determines 
whether the rest of your code should be executed is native. 
This is the strategy Farallon's engineers used starting with 
version 1.0.3 of Timbuktu Pro. 

Timbuktu Pro intercepts QuickDraw calls and retransmits 
them over the network to another Mac, allowing the user of 
the remote Mac to see what's happening on the local Mac's 
screen. To intercept the QuickDraw routines, Timbuktu must 
patch them. Since QuickDraw is native on the Power Macs, 
using 68k patches would slow the machine down measur­
ably. Farallon's solution was to install native patches that did­
n't incur mixed-mode switches. Only when a remote 
Macintosh is connected to the local Mac does Timbuktu need 
to intercept and retransmit the QuickDraw information. 
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Since Timbuktu Pro 1.0.3 isn't otherwise native, mixed­
mode switches happen when someone is connected 
remotely; the code to capture the QuickDraw information 
and send it is still emulated. But if no one's watching, 
Timbuktu's patches stay dormant and do nothing. As a 
result, the patches cause no mixed-mode switches. This is 
the ideal strategy for this kind of situation. Ideally, the rest 
of Timbuktu would be native as well, but the need for a 
native version has been alleviated since Timbuktu's patches 
no longer affect the Power Macs' overall performance. 

The Code Fragment Manager 

The Code Fragment Manager (CFM) is a crucial new piece of 
system-software technology introduced with the Power 
Macs. The initial implementation of the CFM is focused on 
the PowerPC, but a 68k version of the CFM will become 
available before the end of 1994. 

When the Macintosh operating system was originally 
designed, RAM was a scarce commodity, and virtual memory 
required far more computing resources than were available. 
The designers of the original Mac OS came up with a scheme 
that would allow applications to load only the code they 
really need into RAM and leave unused code on the disk to be 
retrieved later if needed. In this scheme, known as segmenta­
tion, each individual piece of code is referred to as a segment. 

Over the years, the Mac operating system's segmentation 
scheme has become a hindrance to many developers. The 
state of the Mac has also progressed. From experience gajned 
in the intervening years, a definjte need has arisen for a new 
piece of system software that is responsible for the same 
things the segment loader was, but that is far cleverer and 
more modern about it. Enter the Code Fragment Manager. 

Rather than storing executable code in small 32-kilobyte 
chunks, native PowerPC applications store their executable 
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code in a contiguous chunk in the data fork of the applica­
tion file. This new scheme also allows fat binary applica­
tions-apps that contain both 68k and PowerPC code and 
that can run on any kind of Macintosh at the best possible 
speed. 

Storing the PowerPC code in a single piece allows the 
implementation of a useful feature on the Power Macs: code 
swapping. When virtual memory is enabled on a Power 
Mac, any native app that is launched has only the code that 
it actually needs loaded into RAM. Code needed later is 
loaded into memory with the help of the Virtual Memory 
Manager, which treats the data fork of the native applica­
tion as if it were a mini VM swap file. With this scheme, 
PowerPC-executable code is also made to be read-only-the 
first time memory protection of any kind is available in the 
Mac OS. 

Som e apps store PowerPC code in external plug-in files. 
As long as the plug-in's code is in the file's data fork and the 
application software calls the appropriate parts of the CFM, 
the code-swapping feature is also available for nonapplica­
tion code. 

Since the code will never be modified while it's running, 
anytime new code needs to be loaded into RAM, the operat­
ing system doesn't have to save the least recently used piece 
of code to disk; it just loads the new code. This makes the 
performance hit for using this scheme small, since reads 
from h ard disks are always much faster than writes. 

Another important feature of the Code Fragment 
Manager is that every fragment has its own global variables. 
This feature, provided for all types of PowerPC code that use 
the CFM, makes development of stand-alone code vastly 
easier. An application usually consists of a single fragment, 
but it can also be m ade up of multiple small fragments. 
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Under the standard 68k environment, stand-alone pieces of 
code had to go through all sorts of contortions to create a 
scheme for accessing global variables. 

The final key feature of the CFM is support for shared 
libraries, known as import libraries. These libraries are not to 
be mistaken for shared libraries used by Apple's Shared 
Library Manager-they are two different things. The CFM 
has the ability to bind multiple fragments at runtime and 
allow one fragment access to code and data that has been 
explicitly exported by other fragments. CFM's support for 
import libraries lets you keep a single copy of core code 
around that is shared by multiple applications in the same 
family. But that's not all. CFM's import libraries can also act 
as update libraries, providing replacements for existing code. 
This would allow an application developer to provide 
updates simply by making update libraries available rather 
than sending an entirely new app. With the update library 
scheme, only code that needs to be overridden is provided, 
and the CFM deals with all the trickiness involved in recon­
ciling different version of libraries and making sure that the 
most recent version of a routine is called. 

The CFM for PowerPC is a welcome addition to system 
software and provides extremely useful features to develop­
ers of native PowerPC software. 

The Nanokernel 

The nanokernel in the first PowerPC 
version of Macintosh system software is 
the lowest-level piece of system code and 
handles many of the hardware-specific 
tasks. It provides a layer of insulation 
between the hardware and the system 
software, allowing system software to use 
a standardized way of accessing certain 

low-level hardware features. When the 
hardware changes, the nanokernel must 
change as well to support the hardware, 
but the system software that calls the 
nanokernel should not have to change 
much, if at all. The nanokernel is a prede­
cessor of the long-awaited microkernel for 
the Macintosh operating system. 
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On the 68k Macs, calling the operating system involves the 
use of traps. Traps are a method of interrupting software that's 
currently running. Trying to execute a particular type of 
instruction-for example, one whose hexadecimal form 
begins with the value A-causes an A-trap exception, which is 
dealt with by the A-trap handler. The A-trap handler on a Mac 
is known as the trap dispatche1~· it looks at the value of the 
other 12 bits in the 16-bit instruction that begins with A and, 
based on the value, jumps to the part of the operating system 
that's being called by the 68k software. This routing of execu­
tion to the correct part of the OS is the trap dispatcher's job. 

For native code, operating-system calls are dispatched 
via a different scheme that uses features of the Code 
Fragment Manager, but there is still a basic similarity. Traps 
can still be patched on the Power Macs, and the patches can 
be of three different varieties: a 68k patch, a PowerPC patch, 
or a fat patch. 

There are four different types of traps on the Power 
Macs, described by the type of code that the OS dispatcher 
routes a call to. 

------- Native Trap 

Native traps are something of a misnomer, since a 68k trap 
is a native trap on 68k-based Macs. The dispatcher routes an 
OS call to a routine called a native trap that consists of 
PowerPC code. If a native trap is called by emulated soft­
ware, it causes a mixed-mode switch before executing the 
trap's code, and another switch afterward before continuing 
execution of the emulated code. 

------ Emulated Trap 

The dispatcher routes the call to emulated 68k code. If the 
emulated trap is called by native software, it causes two 
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mixed-mode switches: one before the trap's code is exe­
cuted, and another afterward. 

------ Fat Trap 

The trap dispatcher has a table of addresses where it looks 
up where to route a call to. A fat trap has both PowerPC and 
68k code; the decision about which type of code to use 
depends on the caller. Since mixed-mode switches exact a 
big performance penalty, the Mixed Mode Manager endeav­
ors to avoid causing a switch where possible. For this reason, 
if emulated 68k code calls a fat trap, the code executed is 
also emulated 68k code, thus avoiding two mixed-mode 
switches. If PowerPC code calls a fat trap, PowerPC code is 
executed, again to avoid the switches. 

Fat traps are the ideal solution during the transition 
from 68k Macintosh to Power Macintosh; a fat trap causes 
the fewest mixed-mode switches. 

- ----- Split Trap 

A split trap denotes an OS routine whose native PowerPC ver­
sion doesn't go through the central OS dispatcher. For this rea­
son, there is no way for third-party software to patch such a 
trap. Even if the patch is installed, it has no effect on the exe­
cution of the native OS call. Split traps generally occur where 
Apple engineers felt that there was no good reason for any 
software to patch that routine, and avoiding the overhead of 
the dispatcher provides a small performance boost as well. 

The PowerPC system software contains significant 
changes when compared with Macintosh system software 
running on 68k. The Mixed Mode Manager transparently 
takes care of much of the work involved in calling PowerPC 
code from 68k code and vice versa. The Code Fragment 
Manager provides a new runtime environment for PowerPC 
native apps and stand-alone PowerPC code. The CFM in par­
ticular is the first sign of some major changes to the 
Macintosh operating system to come. 
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Floating-Point Writes Go Fast 

On a Power Mac, Native QuickDraw 
uses an interesting way to double its read 
and write performance when moving 
large amounts of memory around, for 
example when transferring a block of 
image data from one part of the screen 
to another. The trick is in putting 
together two details: the PowerPC 60l's 
data bus is 64 bits wide, and so are 
floating-point registers (FPRs). 

Experimentation has shown that a sig­
nificant performance increase can be 
seen when using floating-point writes to 
memory that is non-cacheable, such as 
video memory, rather than doing the 
same thing from 32-bit GPRs (general­
purpose registers). The trick is this: Data 

is written from two GPRs into a location 
in memory that is actually cached in 
writeback mode. These two 32-bit values 
are read back into a 64-bit FPR and then 
written out again in a single beat, this 
time to the location in memory where 
the data is supposed to go. 

This method won't show a clear bene­
fit for moving small amounts of data 
around on a Power Mac, and it's detri­
mental when writing to cacheable mem­
ory, but if your software spends much of 
its time writing large amounts of data to 
noncacheable memory, you should defi­
nitely look into those big floating-point 
registers. 



Looking Ahead 

he first generation of Power Macs hit the mark by providing a 
great performance enhancement over 68k-based Macs when 
running native applications, all the while maintaining hard­
ware compatibility with existing Macintosh peripherals. 
However, overall system performance is determined by more 
than just the performance of the system's central processor. 
Despite the high-performance design of the Power Macs' 
64-bit CPU bus and DMA hardware, some carryovers from the 
68k Mac that were already known as serious bottlenecks have 
also come along for the ride, and they remain sore points. 

Apple has already announced its intention to support 
forthcoming technology standards such as PCI and Fire Wire, 
both of which offer features and performance that is much 
more in line with the increased speed offered by native 
PowerPC applications. In addition to performance boosts in 
the midrange and high end, PowerPC processors will 
migrate across Apple's entire product line. 

The current Power Macs are the starting point for many 
major developments to come, within the Macintosh indus­
try as well as outside of it. This chapter takes a look at some 
of the major new hardware and software technologies that 
are on the way and their impact on the Macintosh and the 
rest of the personal-computer industry. 

199 
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Hardware 

Processors like the lOOMHz 601 and the 604 run software 
very quickly on their own, but the applications that benefit 
the most from these PowerPC chips' computational horse­
power are also dependent on 1/0 performance. Multimedia 
applications such as digital video and audio are a major bur­
den on the video and storage subsystems in a Mac, and any­
thing that improves performance in these areas is a major 
boon. 

PCI and FireWire are two technologies that Apple has 
openly committed to supporting in the Macintosh line­
perhaps as soon as in the next generation of the Power 
Macs. Not only are these technologies solutions to existing 
bottlenecks in the standard Macintosh hardware, but they 
are also multiplatform standards. The Mac won't be the only 
personal-computer system using peripherals based on these 
schemes (unlike SCSI, which, until the popularity of 
CD-ROM in the x86 world, was virtually unheard of there). 
With multiplatform support comes larger production and 
sales volumes for these products and, consequently, lower 
prices and a broader selection of products for Macintosh 
users to choose from. 

------ PCI 

PCI (Peripheral Component Interconnect) is an expansion­
card standard, analogous to NuBus on the Mac, that was 
originally developed by Intel but whose management has 
since been taken over by a vendor-independent organiza­
tion called the PCI Special Interest Group. As the central 
contact point for vendors wishing to create PCI products, 
the PCI SIG has all the necessary information about tech­
nology licensing and related issues. 

PCI is being evangelized as an open standard. Early fears 
that Intel would rule over PCI heavy-handedly and require 
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exorbitant licensing fees and royalties have proven 
unfounded. In fact, Digital, maker of the Alpha family of 
RISC processors, announced an Alpha chip in late 1993 that 
contained PCI interface logic directly on the chip. This 
bodes well for future microprocessors of other families that 
might wish to integrate PCI directly on-chip as well, thereby 
reducing system cost by obviating the need to use PCI inter­
face chips in the system design. 

Basic Features: PCI is an expansion bus designed to allow 
peripheral cards to be added to a computer system. Today's 
Macs' NuBus will be replaced by PCI in future Power Macs. 
It is possible to use PCI as a bus on a system's motherboard, 
but common PCI use today is for expansion cards. Future 
hardware designs might access a motherboard video subsys­
tem via the PCI expansion bus. 

Like NuBus, but unlike the common expansion buses in 
the x86 world, PCI cards are self-configuring. They require 
no setting of dip switches or jumpers. 

The initial version of PCI has a 32-bit-wide bus and runs 
at 33MHz, providing maximum theoretical throughput of 
roughly 126MB per second. NuBus' theoretical maximum is 
approximately 38MB per second, or twice that when mov­
ing data between two cards on the same NuBus. 

NuBus has long been a major bottleneck for video cards 
on the Mac. PCI's added bandwidth should remove that 
problem and allow new kinds of video cards that aren't pos­
sible with NuBus' limited bandwidth. 

The current PCI specification already defines a 64-bit 
version of the bus, doubling the theoretical maximum 
throughput to approximately 252MB per second-plenty 
e~en for the most bandwidth-hungry applications. 

PCI cards can use one of two voltages for power: SV or 
3.3V. See Figure 9.1. The current standard for desktop com­
puters is SV, but 3.3V is rapidly gaining popularity because 
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it is the standard voltage used in laptops and mobile 
computers. Also, 3.3V is gaining increasing support in the 
desktop-computer world because of the popularity of 
power-conserving "Green" PCs. 

The mechanical specification for PCI cards ensures that 
the wrong card can't be plugged into a PCI slot. However, 
support for the two voltages is designed in such a way that 
it doesn't make them mutually exclusive: It's possible for a 
single PCI card to support both SV and 3.3V power. Some 
cards already have this support. 

Drivers: PCI promises to allow a single card to operate in 
many different hardware and system software environ­
ments, since nothing about the PCI hardware ties it to any 
particular microprocessor architecture. However, the issue 
of PCI drivers is a thorny one. 

A Power Macintosh with a PCI slot is a very different 
operating environment than a Windows-based Pentium-PC 
with a PCI slot. The hardware is identical, but the operating 
systems have completely different 1/0 architectures that 
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aren't even slightly compatible. The purpose of a PCI driver 
is to allow operating systems to use their standard APis to 
access the cards' features. But given multiple operating sys­
tems and hardware environments, how can the card know 
which driver is the right one? 

The answer is to store the PCI driver on a system's hard 

Open Firmware 

Open Firmware is the colloquial name 
for the IEEE standard number 1275-1994 
for boot firmware. Open Firmware's ances­
tor OpenBoot was originally developed at 
Sun Microsystems in 1988 when Sun was 
shipping machines based on three differ­
ent processor architectures. Sun needed a 
standard method for booting its systems 
that would work equally well on all of its 
systems. Version 1 of Sun's OpenBoot soft­
ware was introduced with Sun's 
SPARCstation 1 workstations. Version 2 of 
Open Boot, which is the version that the draft 
standard of Open Firmware was based upon, 
was first introduced with Sun's SPARCstation 
2 machines. 

Open Firmware is designed to provide 
an operating-system- and processor­
independent method for booting a com­
puter system. During the boot process, 
peripheral devices must be identified and 
their drivers loaded, and when all the 
hardware is initialized, the operating sys­
tem must be loaded and started. Once 
the operating system is launched, Open 
Firmware has completed its work. 

Since Open Firmware must be proces­
sor independent, its native language is 

interpreted and based on the program­
ming language Forth. Open Firmware 
drivers written in FCode, as Open 
Firmware's Forth derivative is known, can 
operate in any Open Firmware environ­
ment, since every Open Firmware imple­
mentation contains the FCode interpreter. 

When an Open Firmware-based sys­
tem boots and identifies the devices con­
nected to the system, it builds a device 
tree. This data structure contains entries 
for all devices that Open Firmware has 
identified. An operating system can later 
traverse the device tree to determine the 
available hardware. 

Open Firmware and PCI form a symbi­
otic relationship and allow PCI's multi­
platform driver problem to be solved. 
Since PCI is a platform-independent stan­
dard, there is no way of knowing in 
advance what kind of processor is avail­
able in the system that the PCI card is 
plugged into. Putting an FCode driver in 
the PCI card's ROM allows any Open 
Firmware-based system to initialize the 
PCI card and use it. 
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disk and have it load at boot time, instead of loading the 
driver from the card's ROM. It is certainly possible to store a 
card's driver(s) in ROM on the card itself, but in the future, 
including one driver for every PCI-capable hardware and 
operating-system configuration will be unworkable. The 
amount of ROM required for this would raise the card's 
price unnecessarily. Storing the driver on a local hard drive 
guarantees that the correct driver is loaded for the card, and 
it also allows easy upgrading of a card's drivers-much easier 
and less expensive than replacing a card's ROM. In this sce­
nario, the card's ROM must contain only the necessary 
information to allow the boot firmware of the system that 
the card is installed in to identify the card so that the cor­
rect driver can be loaded. The Open Firmware standard, a 
platform-agnostic scheme for booting a computer system 
and configuring its peripherals at boot time, has provisions 
to support this method of driver loading at boot time. 

PCI will bring high-speed peripherals back into line with 
the additional performance offered by the Power Macs' 
PowerPC processors. For Mac users, the switch to PCI is an 
all-around win: installation will be as hassle-free as with 
NuBus, performance will be higher, and card prices are likely 
to be lower, since PCI card manufacturers can build one card 
for all PCI markets and need only provide driver software 
for the Mac. 

FlreWire: FireWire is another new high-speed l/0 technol­
ogy that Apple has publicly committed to support. In the 
long run, FireWire may replace today's SCSI for access to 
external mass-storage connection. 

FireWire is the Apple-trademarked name for the IEEE 
draft standard P1394. FireWire's goals are to provide a low­
cost, high-performance, plug-and-play peripheral bus to 
connect a computer system and external high-speed periph­
erals. See Figure 9 .2. 
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Compared to SCSI, FireWire has significant advantages: 

• Allows hot connections: You don't need to power down 
all devices on the bus to add one. 

• Fast : Current implementations provide throughput of 
98.3 megabits (roughly 12.3MB) per second. This is faster 
than today's Fast SCSI implementations. 

• Small: The connectors and cables are tiny when compared 
to SCSI cables. 

• Real-time: P1394 supports isochronous data transfers. 
This means that time-critical data, such as a QuickTime 
movie or digital video content, plays back over FireWire 
with no drop-outs. 

• Multiple masters: FireWire devices can commun icate 
and transfer data between themselves without the com­
puter system being the midpoint in the transaction. 
Data is transferred from point to point between th e 
devices. 

FireWire has some additional features that those familiar 
with the trials and tribulations of functioning SCSI buses 
will love. 

• Topology: FireWire doesn't need to be a strict ch ain as 
with SCSI. Any sequence of connections is fine, as long as 
the entire Fire Wire chain doesn't form a closed loop. 
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• Termination: No explicit termination is necessary; it's 
handled automatically. 

• No ID conflicts: FireWire devices identify themselves on 
the bus and arbitrate a free ID without user intervention. 

With these many features, FireWire appears to be the 
perfect external high-speed peripheral bus. The only current 
catch with Fire Wire is that support for it is beginning slowly. 
Manufacturers of mass-storage devices need to integrate 
FireWire interfaces into their controllers. Several companies 
have announced the availability of FireWire chip sets for 
this kind of application, but most vendors are waiting to see 
whether FireWire takes off before investing time and 
resources into this new technology. FireWire will remain 
dormant until some major computer and expansion-card 
manufacturers ship FireWire interfaces for popular computer 
systems. Without support for it on the system side, there's 
no sense in making peripherals for it. 

FireWire is a clearly superior technology and should 
have no problem supplanting SCSI in the long run. In the 
short term, however, it will be difficult to convince systems 
and peripherals vendors to support the new technology and 
produce sufficiently inexpensive solutions to get the migra­
tion started. 

The PowerPC Reference Platform 

The PowerPC Reference Platform is a hardware and system 
software specification developed by IBM and Motorola. Its 
purpose is to provide guidelines for the implementation of 
PowerPC-based personal computers, so that PowerPC-based 
systems from multiple vendors remain as compatible as pos­
sible with each other. 

Unlike many specifications, the PowerPC Reference 
Platform document doesn't go into the nitty-gritty imple­
mentation details of each of its features. The intent with the 
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specification is to provide a set of features for the lowest­
common-denominator PowerPC-based system. Exactly how 
the features are implemented is left up to the individual 
manufacturer. 

The PowerPC Reference Platform specification also 
includes details about a system-abstraction layer (SAL) of 
firmware that provides a standard API for operating systems 
to access Reference Platform hardware features. The idea is 
to be able to buy a shrink-wrapped Reference Platform oper­
ating system at the superstore of your choice and be able to 
install it successfully on any Reference Platform-compliant 
machine. 

The first batch of Power Macs does not comply with the 
Reference Platform. Their design commenced well before 
the Reference Platform effort got under way. Whether future 
Power Macs will comply with this standard is unclear. The 
specification requires every machine to have a parallel port, 
something for which there is no need at all in the 
Macintosh universe, and at this writing, the Reference 
Platform does not include support for the Apple Desktop 
Bus, which is used to connect keyboards, mice, and other 
input devices. 

There is in many quarters the hope that Apple will pro­
duce a Reference Platform version of the Macintosh system 
software, to broaden the Macintosh market significantly. 
Such a move would make a great deal of sense for the 
Macintosh market as a whole. And even if there were 
PowerPC clones capable of running the Mac OS, Apple's 
hardware would in all likelihood still be the best for running 
the Mac OS, because of the close integration of Macintosh 
system software with new hardware features such as the AV 
capabilities. 

No major PC vendors other than IBM had jumped onto 
the PowerPC Reference Platform bandwagon by mid-April 
1994. Numerous operating systems for the Reference 
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Platform were already being planned to support the stan­
dard PowerPC hardware, however, among them Microsoft's 
Window NT, IBM's Workplace OS, and SunSoft's Solaris. 

The long-term success of the Reference Platform is 
unclear. The idea of a standard PowerPC hardware specifica­
tion is a good one, but good ideas alone don't guarantee 
success. The basic OS support is there: IBM has a 
bridge/migration strategy for existing x86-based Windows 
users, and the rest is up to the buying populace. 

------- Hardware 

The initial version of the Reference Platform specifies a 6xx 
series central processor. It has provisions for all the stan­
dard l/0 ports such as SCSI, Ethernet, a parallel port, and 
even LocalTalk. There is no standard expansion bus, 
although it looks like PCI will be the de facto standard. The 
Reference Platform specification is so flexible that the aging 
ISA PC bus is supported for low-speed peripheral cards. In 
general, the Reference Platform prototype designs show 
philosophical similarities with current x86 PCs. Since x86 
users are the target market for these machines, it makes 
sense to provide as familiar a transition environment as 
possible. 

------· Software 

The software side of the PowerPC Reference Platform is in 
many ways more interesting than the hardware. Each 
Reference Platform system comes with enough firmware to 
initialize the hardware and load a compliant operating sys­
tem. The Reference Platform specifies the use of 1275-1994 
Open Firmware (described in the "Open Firmware" sidebar) 
for the initial startup process. Low-level drivers for periph­
eral devices can be provided either as FCode or in a specific 
operating-system-dependent form. 
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Once Open Firmware has brought the hardware up and 
tested it, it hands over control to the chosen operating system. 
It will be possible to install multiple operating systems on a 
Reference Platform machine and choose between them at 
startup time. This flexibility and OS agnosticism will aid the 
adoption of the PowerPC Reference Platform hardware. 
Large corporations-the desired early adopters, mainly 
because they buy many machines at a time-are more likely 
to investigate new hardware if it offers a clear benefit over 
their existing systems. The anticipated ability to buy a stan­
dard PowerPC-based personal-computer system and install 
operating-system software as users require is appealing to 
large organizations that like to minimize the number of dif­
ferent systems they must support. For this reason alone, 
Reference Platform hardware warrants careful consideration 
by existing x86-based organizations. 

Graphing Calculator 

The Graphing Calculator that ships with every Macintosh is 
more than just a demo application to show off how quick 
the PowerPC's floating point is. It's a harbinger of the type 
of software that's in development now. 

Although the calculator itself is useful enough to make it 
far more than a toy, its primary goal is to illustrate how user 
interfaces can benefit from the additional processing power 
afforded by the PowerPC. When you create a 3-D graph in 
the calculator, you can pick it up with the mouse and rotate 
the graph. On a 68k-based machine, an application like this 
would probably offer a wireframe rendition of the graph for 
rotation, since it would be too computationally expensive to 
rotate and redraw the entire graph. Not only does the 
Graphing Calculator allow the user to freely rotate the full 
nonwireframe graph, but the calculator is also recalculating 
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every point on the graph during the rotation. It's not just 
moving video data around. 

When a user types an equation in for the first time, the 
Graphing Calculator's display is a simple white space with­
out a hint of graphing capability. But when the user hits the 
graph button, the divider bar that separates the equation 
area from the graphing area moves up the calculator's win­
dow, gradually revealing the graph behind. The movement 
of the divider is smooth, and the graph behind it is drawn 
as the divider goes up. There's no quick redraw at the end; 
the calculator is drawing the graph bit by bit, like an open­
ing window shade that gradually reveals what's behind it. 

Developers take note: Power Macintosh isn't just about 
software that crunches numbers faster. The available com­
putational horsepower should be used to make Power 
Macintosh software even more user-friendly, more respon­
sive, and more interactive. Above all, now that it's available, 
the Power Macs' performance should be used. This doesn't 
mean that developers should be wasteful with the computa­
tional power available. Applications such as the Graphing 
Calculator are examples of software that appears simple to 
the user, but a lot of thought, effort, and engineering have 
gone into making it so. 

System Software 

Early in 1994, Apple outlined milestones for the future of 
Macintosh system software: System 7.5, Copland and 
Gershwin, and OpenDoc. Power Mac support is a given for 
all of them. 

------system 7.5 

System 7.5 is the first so-called reference release of Mac sys­
tem software since the introduction of System 7.1 and will 
be available in summer 1994. System 7.5 combines several 
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previously separate system-software products. It is the first 
reference release that contains support for the Power Mac. 
In fact, System 7.5 does not require system Enablers for any 
Macintosh CPUs that were shipped prior to the 7.5 release 
date. All the Enablers' functionality is now built in. 

System 7.5 contains new pieces of system software, 
including Apple's long-awaited QuickDraw GX software, 
which offers new imaging, type, and printing capabilities. 
QuickDraw GX runs native on Power Macs. System 7.5 also 
comes with Apple Guide, the first part of Apple's strategy to 
offer a more active help system on the Macintosh. System 
software as well as applications can now provide all their 
documentation in an electronic format that also includes 
built-in tutorials that show the user exactly how to perform 
specific tasks. Software developers have to provide the nec­
essary infrastructure to use Apple Guide to its fullest, but the 
user, especially those learning new software, will benefit 
tremendously from the software's ability to guide users 
through tasks. 

System 7.5 integrates a large amount of system software 
technology that has been released in bits and pieces since 
the introduction of System 7.1: 

• AppleScript 
• A new scriptable Finder that can be controlled with 

AppleScript 
• Macintosh Drag & Drop, which allows users to drag data 

between applications; for example, users can drag files 
from the Finder directly into open windows of some Drag 
& Drop-aware applications, obviating the need to use the 
Open item in the File menu 

• Threads Manager, which offers software developers the 
ability to have multiple threads executing within their 
software 

• QuickTime and the QuickTime PowerPlug 
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• Macintosh PC Exchange, which allows PC floppies and 
other removable media to be mounted in the Finder just 
like Mac disks 

• MacTCP, the Macintosh implementation of the TCP/IP 
protocol stack; users at organizations that use MacTCP no 
longer require separate software licenses 

• PowerTalk, the Macintosh implementation of the Apple 
Open Collaborative Environment; there will be no sepa­
rate System 7.5 Pro just for PowerTalk 

System 7.5 adds many small improvements, such as sup­
port for volumes larger than 2 gigabytes, in addition to the 
major enhancements listed here. Much of 7.5 was integra­
tion of existing technology, but the new features will both 
be helpful to Mac users and provide software developers 
with more opportunities to build easier-to-use products. 

------- Copland and Gershwin 

Copland and Gershwin are the code names for the next 
major releases of Macintosh system software. The ultimate 
goal is to move the Mac OS to a completely microkernel­
based system that provides, among other things, memory 
protection between processes, preemptive multitasking, and 
high-performance 1/0. As the Mac OS evolves away from 
dependence on the 68k architecture, more of the Mac sys­
tem software will become native, boosting performance for 
Power Mac users via new system software. 

Further details about these operating systems were not 
available at the time this book went to press. 

------- OpenDoc 

OpenDoc is a fundamental part of Apple's future software 
strategy, and even though it isn't dependent on the Power 
Macs, it will run on them and pave the way for a fundamen­
tal shift in software and use of personal computers. 
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In today's typical operating-system environments, docu­
ments are associated with specific applications, and multiple 
applications don't necessarily allow seamless integration of 
their different types of data in the same document. OpenDoc 
creates an environment where the document is the focal 
point for the user. A document is a virtual blank slate that can 
contain many different types of data. Each separate type of 
data is known as a part in OpenDoc parlance. 

In the OpenDoc world, large monolithic applications are 
a thing of the past. Instead, there are part editors, one for 
each type of part. In an OpenDoc environment, a user can 
create a word-processing part and embed a spreadsheet or 
graphic part within it, or have the two follow one another. 

OpenDoc is an open architecture managed by Com­
ponent Integration Labs (CIL), an independent organization 
whose sole purpose is to support the proliferation of 
OpenDoc. CIL will act not only as the central repository of 
OpenDoc knowledge, but also provide validation and certi­
fication services to guarantee that OpenDoc parts work 
together. OpenDoc will fail if parts from different vendors 
don't work together. The user will come to expect to be able 
to use any number of different part editors together in the 
same document. 

OpenDoc will be available on the Macintosh, Windows, 
OS/2, and some UNIX platforms. It uses technology devel­
oped at Apple as well as a technology from IBM. OpenDoc 
will be multiplatform from the outset and won't be limited 
to Macs at all. 

OpenDoc will change the economies of software pub­
lishing drastically, since smaller developers will once again 
be able to compete with the software giants on a part-by­
part basis. Since users can pick and choose the parts that suit 
their needs the best, they can use one vendor's word­
processing part editor with another's spelling checker and 
have them work together seamlessly. 
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Open Transport is the name for 
Apple's new network software architec­
ture for the Macintosh that will be 
released in fall 1994. Open Transport will 
be available for 68k Macs, and it will be 
the only native networking software for 
Power Macs. The Power Macs currently 
run all their networking software in emu­
lation. 

Open Transport (OT) will initially ship 
from Apple with support for the 
Appletalk and TCP/IP network protocols. 
Novell has announced plans to provide 
IPX/SPX support for OT, but at this writ­
ing, no announcements about availability 
had been made. 

Open Transport solves a large number 
of problems both for the user and for the 
developer. The big win for Power 
Macintosh users is that Open Transport's 
protocol stacks will run native on the 
Power Macs and support new features 
such as multihoming, the ability to use 
multiple network interfaces in the same 
Macintosh. OT will allow PowerPC-based 
Macs to be high-performance network 

The Future 

servers, since all the protocol processing 
is performed in the native code, and with 
the addition of multihoming, the net­
work interface ceases to be the bottle­
neck. OT will also provide backward 
compatibility and act like the familiar 
Apple Talk and MacTCP that software uses 
today. Existing AppleTalk and MacTCP 
software will be able to run with OT and 
benefit from OT's added performance 
without any need to change the software 
itself. 

For developers, Open Transport pro­
vides a single API that is applicable to all 
available OT protocol stacks. Today, 
developing AppleTalk-based software is 
quite different from the development of 
MacTCP-based software. With the intro­
duction of OT, development for any OT 
protocol stack will be virtually identical. 
Networking software can support multi­
ple protocol stacks quickly without any­
where near the effort required to develop 
for multiple protocol stacks on the Mac 
today. 

In the fast-moving computer industry, it's difficult to make 
predictions because things change so quickly. There are, 
however, some safe Power Macintosh-related assumptions 
that can be made. The 603, or a 603 variant will be used in 
PowerBooks and laptops from IBM's Power Personal Systems 
division as soon as 603s are available in volume and as soon 
as the hardware designs can be completed. The 603 will also 
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find its way into desktop machines from Apple and IBM's 
PPS. The 603 has a good price/performance ratio, despite its 
lower performance compared to the 601. 

Since the Power Macs aim to stay at the forefront of 
personal-computer performance, 604-based Macs will also 
be created as soon as 604s are available in sufficient quantities. 

Apple has gambled on the PowerPC, and it looks like it 
made a good bet. The alliance still seems to be functioning 
well, much to the surprise of most outsiders who would 
never have thought that three companies like Apple, IBM, 
and Motorola could work together without mishap. 

If native software ships quickly enough, both on Power 
Mac and on IBM's Power Personal Systems machines, it can 
begin to capture the large Intel market. Emulation is an 
excellent migration and bridge strategy, but in the long term 
it'll be the native apps that convert users. 

The future looks bright for Macintosh. The hardware is 
fast, the operating system is being overhauled to come up to 
speed with hardware developments, and for the first time in 
several years, there is palpable excitement in the Macintosh 
market. The sense of adventure has returned, as well as the 
desire to compete on even terms with an adversary that out­
numbers the Mac by nearly an order of magnitude. Intel 
realizes the threat that PowerPC poses to its leadership posi­
tion, and its advertising campaigns speak of its concern far 
more eloquently than any written analysis. The next 18 to 
24 months will determine whether the Macintosh survives 
against overwhelming odds, whether it remains a niche 
machine, whether it is completely overrun by Windows 
running on Pentium, or whether it succeeds in gaining sig­
nificant marketshare based on technical superiority and 
lower price/performance ratios. 



Resources 

f you are interested in learning more about microprocessor 
and computer architecture, or you are looking for a good ref­
erence on the subject, I cannot recommend the following 
book highly enough: 

Computer Architecture, A Quantitative Approach 
by John L. Hennessy and David A. Patterson 
Published by Morgan Kaufmann Publishers 
ISBN 1-55860-069-8 

IBM publishes a condensed version of PowerPC books I to 
III that also doesn't contain any nonpublic information. 
Anyone interested in knowing about the PowerPC architec­
ture in greater detail will find this book useful: 

PowerPC Architecture 
Customer Reorder Number 52G7487 
Available from IBM at 800/426-6477, or via fax at 
512/823-9467 

User manuals and technical summaries about the individ­
ual PowerPC microprocessors are available from IBM and 
Motorola. If you are outside of the United States, contact 
your local IBM or Motorola sales office. Within the United 
States, you can contact 
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Motorola Semiconductor Products Technical Respon­
siveness Center: 800/521-6274 

IBM Microelectronics: 800-POWERPC (800/769-3772) or 
via fax at 800-POWERfax (800/769-3732) 

Two new Inside Macintosh volumes are available if you're 
looking for more information about the system software 
available on the Power Macs: 

Inside Macintosh-PowerPC System Software 
ISBN 0-201-40727-2 
Inside Macintosh-PowerPC Numerics 
ISBN 0-201-40728-0 
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