
• I I

Advanced
MacintoshTMPascal

Advanced
Macintosli Pascal

Paul Goodman

HAYDEN BOOKS
A Division of Howard W. Sams & Company

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

© 1987 by Hayden Books
A Division of Howard W. Sams & Co.

FIRST EDITION
FIRST PRINTING-1986

All rights reserved. No part of this book shall be reproduced, stared in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions. Neither is any liability assumed
for damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-6570-1
Library of Congress Catalog Card Number: 86-63300

Acquisitions Editor: Bill Grout
Editor: Ronnie Groff
Cover Design: Jim Bernard
Cover Photo: Lou Odor
Composition and Production: Publishers Network

Printed in the United States of America

Contents

Chapter 1

Chapter 2

Chapter 3

v

Introduction

Macintosh System and Memory Overview

Macintosh Overview
Macintosh Pascal
Memory

Advanced Pascal Structures

Records
The With Statement
Variant Records
Sets
Set Operations

24
SetUnion 24
Set Intersection
Set Difference
Set Comparisons

24
24

Pointers

Files and File Programming

File Concepts
The File Data Type 35

Using Sequential Files
Opening a Sequential File 37
Closing a File 38

ix

1

2
4

5

13

14
16
18
22
23

33

33

36

·,

Chapter4

Chapter 5

Chapter 6

Vi Advanced Macintosh Pascal

Reading Data 39
Erasing a Sequential File 40
File Processing with Sequential Files

Random Files
Opening a Random File 41
Writing and Reading Data 42
Working with Random Files 42

Finding the End of a File
The Haiku Writer
Indexed Sequential Access Method

Events

Why Use Events?
Event Types
Event Records
Keyboard Events
Using Bits Masks
Using Events
Programming with GetNextEvent
EventAvail
Flush Events

40

QuickDraw Programming Techniques

The GridEdit Program
Drawing Other Shapes

Ovals 82
Round-Cornered Rectangles
Simple Animation Techniques
The PaulPaint Program
PaulPaint Revisited
Text-Drawing Routines
The Three-Card Monte Program
Simulating Pushbuttons
Radio Buttons

The InLine Routines-Accessing the Toolbox
Menus
Windows

More on FindWindow 128
Programming Example-Windows and Menus

41

43
47
52

59

59
60
62
64
65
68
70
72
74

77

78
82

83
84
87
91
94
95
97

105

1:: I
:111

I

11 ;1

I '

1 [1

I

I

i I

I

!

I
I

Chapter 7

Chapter 8

Vii Contents

Programmer Defined Windows
Miscellaneous Window Routines
The Controls Manager
Other Control Routines
Text Editing
Text Editing Summary

SHIFT Click 184
Building the Strings 185
Input Verification 185
Other Text Edit Routines 187

137
140
140
152
153
154

The Haiku Writer Revisited 168
Some Final Notes on Using InLines

Advanced QuickDraw

GraiPorts
More on Drawing Text

Determining Text Widths 195
Pen Characteristics

Pen Location 198
Pen Pattern 197
PenMode 197

Line Drawing Routines
Complex Drawing Shapes

Drawing a Region 204
Disposing a Region 205

Calculations with Regions
Using Regions
Polygons

Manipulating Polygons 218
Defining Custom Patterns
Cursors
Pictures
Calculations with Points
Drawing in Color
Additional Routines

A Complete Application: The Logger

188

191

191
193

198

201
201

205
210
212

217
224
226
230
231
232

235

Chapter 9

Appendix A

AppendixB

AppendixC

•
Index

Viii Advanced Macintosh Pascal

The Standard Apple Numerical Environment (SANE) .259

Data Types
Arithmetic Operations

Selecting a Data Type 264
Mathematical Functions

Logarithm Functions 266
Exponential Functions 266
Financial Functions 267
Random Number Generation

Macintosh Pascal Version .2.0

The Application Shell
Changes to Files and Devices
Procedural Parameters
Resources
Memory Management
Other Changes

Program Size 273
Error Handling 273
Relaxed Order of Declarations
User Interface Changes 273

Toolbox Quick Reference

Menu Manager
Window Manager
Controls
Text Editing

267

273

Decimal· Binary - Hexadecimal Chart

260
263

265

269

269
270
271
272
272
273

275

275
276
276
277

.279

281

1.··.,. I I' ,,

i'j,
"'

I
I.

Introduction

The Macintosh with its sophisticated concepts and its rich repertoire of
routines built into ROM presents an exciting programming environment to
use and explore. Unfortunately, the would-be explorer has had trouble find
ing a suitable programming language to work with. Certainly, most program
mers have outgrown BASIC, and the C language implementations for the
Macintosh have been complex, tedious to use, and expensive. Many program
mers have felt that they had a home with Macintosh Pascal, albeit a home
without the amenities one might hope for. Advanced Macintosh Pascal was
written for those who wish to break down the walls of that house and explore
the full meaning and depth of the Macintosh. The reader of this book will
already have some mastery of the Pascal language and will want to learn how
to use its more advanced features or may just want to "get into the ROM." The
approach of this book is broad enough for both.

The book's goals can be summarized as follows:

• To explore the Macintosh memory and memory management techniques
• To increase the reader's knowledge of Pascal structures and skills as a

programmer
• To teach data file programming
• To introduce the reader to the Macintosh User Interface Toolbox and

QuickDraw and explain their procedures and functions

• To show the reader how to use Macintosh Pascal to develop "real" Macin
tosh applications that implement windows, menus, controls and text edit-
ing.

ix

X Advanced Macintosh Pascal

Macintosh Pascal represents a significant advance in programming lan
guage systems. As a programming language, Macintosh Pascal is a full imple
mentation of the ANSI Pascal standards. Add to this full IEEE numeric
standards for accuracy and you have a Pascal system suitable for either
scientific or business applications.

As a programming environment, Macintosh Pascal combines the power of
Pascal programming with the ease of using BASIC. Implemented via an inter
preter rather than a compiler, Macintosh Pascal significantly cuts program
development time by eliminating long waits for compilation. Sophisticated
debugging tools also reduce development time. However, because of the speed
of the Macintosh, Macintosh Pascal does not suffer from the slow execution
times of other interpreted languages.

As a way to explore the Macintosh, Macintosh Pascal provides a safe, easy
environment to work with. Full access to the Macintosh's QuickDraw graphics
package is provided via built-in routines with full Pascal-type checking. This
means no fatal systems crashes will occur if you make a programming mistake
using QuickDraw. Partial access is provided to the Macintosh's Toolbox, which
controls the operation of the mouse and the other unique Macintosh features.
Access to the remaining Toolbox routines is provided via the unprotected
Inline procedures.

The only problem that programmers have faced with Macintosh Pascal
has been finding information on both advanced Pascal concepts and the
Macintosh itself. Advanced Macintosh Pascal will fill this need by introducing
the reader to all these areas of Macintosh Pascal. Some knowledge of Pascal is
needed but no previous exposure to the Macintosh is assumed. Chapter by
chapter the reader will learn advanced Pascal concepts such as records, files,
and pointers along with how to take advantage of the unique features of the
Macintosh such as windowing and pulldown menus.

Chapter 1 is an overview of the Macintosh, Macintosh Pascali and the
memory structures of the Macintosh. The important memory concepts, such
as the heap, the stack, and dynamic memory access through handle pointers,
are covered.

Chapter 2 introduces Pascal's "power" structures: sets, pointers, and
records, which are not covered in detail by most Pascal books. These struc
tures are explained in relation to how they can be used in developing pro
grams. Simple Toolbox routines are introduced as reinforcement and
motivation.

Chapter 3 covers files and file processing. Files are the key to writing
useful programs, yet information on their use and operation is scarce. This
chapter teaches the techniques needed to store and retrieve data from both I

xi Introduction

sequential and random files on the Macintosh. Several example programs are
presented including a program that composes poetry. Lazy I/O, totally
neglected in most books, is discussed in order to give the reader the full
understanding of how file input/ouptut is performed. Besides data files, the
important text files are covered with special emphasis placed on the use of
devices such as the printer and modem.

Chapter 4 covers event programming, which is the key to developing
Macintosh-like programs. Events allow a program to respond directly to user
action such as keyboard and mouse input. The Toolbox routines that manage
the event queue and report on events to programs are presented along with
helpful programming examples.

Chapter 5 reviews the basics of QuickDraw, the Macintosh's graphics
package. The Macintosh graphics coordinate system, drawing, and manipulat
ing of geometric shapes and animation techniques are all discussed. Events
and QuickDraw programming techniques are combined to simulate Macin
tosh controls such as pushbuttons and radio buttons. These simulations are
easily transferable to other programs and are a simple way to implement
Macintosh user interfaces in a program.

Chapter 6, the major focus of the book, covers the Macintosh Pascal InLine
procedures and functions. Using InLine procedures, programmers can access
the Toolbox routines needed to create "real" Macintosh applications that
conform to the Macintosh user interface standards. Learning how to access
the Toolbox is of little use without detailed information on how the Toolbox
routines operate. This chapter covers four of the major features of the
Toolbox: the Window Manager, the Menu Manager, the Control Manager, and
the TextEdit package. This information will allow the reader to create "real"
Macintosh programs utilizing multiple windows, pulldown menus, controls
such as pushbuttons and check boxes, and full mouse-based text editing. The
programming techniques needed to combine these concepts with event han
dling are carefully developed and explained.

Chapter 7 extends the reader's knowledge of QuickDraw by discussing
some of the more sophisticated concepts. The information presented includes
Grafports, control of fonts, regions, polygons, pictures, and drawing in color.

Chapter 8 presents a complete application combining QuickDraw, Events,
and file handling. The program called The Logger tracks computer usage and
produces a log suitable for income tax purposes.

Chapter 9 discusses the Standard Apple Numeric Environment, which
includes the extended data types needed for scientific and business program
ming. SANE provides Macintosh Pascal with the accuracy (if not the speed) of
the most powerful mainframe computers.

Xii Advanced Macintosh Pascal

Pedagogically speaking, Advanced Macintosh Pascal teaches with the aid of
small programming examples that demonstrate the concepts without confu
sion, and then later combines many features into larger examples. Normally,
routines are introduced, explained, and then used in a program. Much care
has been taken to ensure that the little questions do not go unanswered. Since
it is expected that readers will combine the knowledge and insight gained from
reading the book with their programs, reference sections have been added to
the end of most chapters for easy review.

After reading Advanced Macintosh Pascal, the reader will find new doors
opened when working with the Macintosh. Welcome!

Advanced
Macintosh ™Pascal

CHAPTER

§[!]----
Macintosh Syste01
andMe01ory
Overvieftl
Macintosh Pascal is a unique programming environment. It combines the
programming elegance of Pascal, the ease of execution of BASIC, unparalleled
debugging facilities, and the Macintosh's familiar user interface and text
editing. This combination provides a Pascal system that is easy to use but also
has_ surprising power and flexibility.

Macintosh Pascal is implemented via an interpreter rather than the more
commonly used compiler. This interpreter works by first checking the syntax
of a program and then executing the program one line at a time by examining
the statement and performing its action with the use of tables maintained
inside the memory of the computer. There are many advantages to the use of
an interpreter. Probably the greatest is the ability to perform editing, execu
tion, and debugging in one context-that is, without having to switch pro
grams. This is impossible when using a compiled language, normally the way
Pascal is implemented. When using a compiled language, the programmer
works in several different contexts in a short period of time. First, the
program is written with the help of a text editor or word processor. Next, the
program is saved as an ASCII file, which is then passed as input to a Pascal
compiler that reads the program, checks it for syntax, and, if no mistakes exist,
translates it into the machine language of the computer being used. After
compilation the machine language program is not yet ready for execution and
is saved in a second file passed as input to a program known as either a loader,
linker, or link/loader, depending_ on the ~erminology of the particular system.
The loader takes the machine language program and prepares it for execution
by linking the program together with subroutines and runtime libraries. The
output of the loader is placed either directly in memory or into a file for later
execution. This process produces a program that executes faster than one that
is interpreted but may or may not take up less memory space.

1

2 Advanced Macintosh Pascal

Along with this interpreter-versus-compiler debate, the developers of
Macintosh Pascal had to take into account the basic difficulties inherent in
running a program on the Macintosh itself and whether the programmer
should have to be troubled with them. The answers to all these questions
pointed to the use of an interpreter.

Macintosh Overview

The designers of the Macintosh wished to provide programmers with more
than just a box containing basic computer components. They wished to .

1 include in the computer all that programmers would need to write programs
based on the same building blocks. The goal was to eliminate the need for the
code to accomplish these tasks and to provide the computer users with a
consistent look and feel to all their programs. For instance, saving a file should
work the same way in all programs. This speeds up the time it takes to learn a
program and makes the program easier to remember when a user is working
with several different programs.

This consistency was accomplished on the Macintosh by including in Read
Only Memory a large set of already written subroutines that can be freely used
by the programmer. These subroutines, most of which were originally written
for the Macintosh's revolutionary predecessor, the Lisa, can be broken down
into two parts, the operating system and the User Interface Toolbox.

The operating system lies on the lowest level of this software. It performs
basic tasks such as the handling of files and memory. Unlike other computers,
the user of the Macintosh has very little interaction with the operating system,
dealing with it through a program called the Finder, which provides an easy
to-use graphical interface to perform actions such as copying a file or changing
the name of a file. A program written with Macintosh Pascal will also have very
little direct contact with the operating system, relying on Pascal to indirectly
call the operating system to do things such as open and close files.

The next level up is the User Interface Toolbox, the set of routines that
provide a way for constructing programs that conform to the standards
established by Apple for the look and feel of a program. These standards are
undoubtedly familiar to you already and include the use of pulldown menus,
windows, text editing, controls, and dialog boxes. The Toolbox is divided into a
set of managers, each one performing one of the standard functions. There is a
Window Manager, a Menu Manager, and so on (Figure 1.1).

3 Macintosh System and Memory Overview

[

LA Macintosh Application Program}
__t_

The User Interface Toolbox
Q.ik:kDraw
Wll1dow Manager
Toolbox Event Manager
Control Manager
Resource Manager
Scrap Manager
Package Manager

Font Manager
Menu Manager
TextEdit
Dialog Manager
Desk Manager
Toolbox Utilities

The Operating System
Memory Manager
Segment Loader
File Manager
Device Manager
Operating System
Utilities
Operating System
Event Manager

Disk Driver
Sound Driver
Vertical Retrace Manager
System Error Handler

MACINTOSH HARDWARE l
Figure Ll The Macintosh programming environment

The complete documentation for the Toolbox is found in Inside Macintosh,
a publication written by the Macintosh team at Apple Computer. This book has
existed in a number of formats since the introduction of the computer,
including a three-binder edition, a phonebook-like edition, and a version from
a major publisher. Although invaluable to the Macintosh programmer, Inside
Macintosh is not the last word in clarity or simplicity. It has been accurately
described as 25 chapters, each one assuming that you have already read the
other 24. For more information on obtaining a copy of Inside Macintosh,
contact Apple Computer.

An important part of the Toolbox is the QuickDraw graphics package.
QuickDraw is responsible for drawing all graphics on the screen, including
text. Built into QuickDraw is the ability to draw a variety of graphical shapes
and objects, to manipulate these objects, and to draw text in a variety of
shapes, sizes, and typefaces. QuickDraw itself is called by many of the Toobox
routines to do graphical operations. Direct calls to QuickDraw can also be
performed. QuickDraw is covered extensively in two chapters of this book.

4 Advanced Macintosh Pascal

Macintosh Pascal

The Toolbox was designed to sit between an application program and the
Macintosh. Macintosh Pascal adds another level to this pile since the applica
tion program is the language interpreter executing a high-level language
program. This solves some problems and causes several others. The major
advantage of this setup is that some of the programmer's work in writing
programs for the Macintosh is already done. This is significant because even
the seemingly simple task of creating a new window and displaying it on the
screen is complex enough to befuddle even a sophisticated programmer. It
requires extensive knowledge of the Window Manager, QuickDraw, and the
Event Manager. When programming in Macintosh Pascal, this knowledge is
not required since the interpreter maintains windows for text and graphics
ouptut. (However, if you really desire to do this, it is covered in Chapter 6).

The major question presented by this system is how does this system deal
with the Toolbox, and how can a programmer access the Toolbox routines.
This is handled by Macintosh Pascal in a variety of direct and indirect ways.
Essentially, all the Toolbox and operating system routines can be used by a
Macintosh Pascal program in one way or another. Direct access is provided to
all of QuickDraw and a portion of the rest of the Toolbox. Direct access means
that calls to these routines can be used in a program as though they were part
of standard Pascal. This extends not only to procedure and functions, but also
to special data types that the routines operate on. The directly supported data
types can be used in a program exactly as if they were an Integer or Boolean.
Pascal-type checking is also performed on all calls to routines that are directly
supported.

Direct access to the ROM routines is not always desirable for an inter
preted system. Some actions interfere with the interactions of the interpreter
itself and disrupt it. This is why only indirect access is provided to the
remainder of the Toolbox. Indirect access allows calls to Toolbox routines to
pass straight through Macintosh Pascal to be acted on by the computer.
Toolbox features such as windows and menus can be harnessed by your
Macintosh Pascal programs to create full-featured Macintosh applications.
Chapter 6 fully documents and details the use of menus, windows, controls
and text editing. Caution should be used, however, since no Pascal-type
checking is done, and it is very easy to crash both your program and Macin
tosh Pascal.

1111

I
11

11

, I

1'

l

Memory

5 Macintosh System and Memory Overview

The major disadvantages of an interpreted system is a slower execution
speed than a compiled program and limited ways to present a program to
users without having to train them to use the interpreter. The speed problem
is not as significant on the Macintosh as on other systems due to the fast clock
speed of the M68000 microprocessor and the speed that QuickDraw draws
graphics. The second problem-not being able to produce a "stand-alone"
program that separates the user from the interpreter-has been solved in
Version 2 of Macintosh Pascal. This version includes an application shell
designed to execute programs without entering the interpreter environment.
The additional features of Macintosh Pascal Version 2 are discussed in Appen
dix A.

In summary, Macintosh Pascal provides a powerful programming system
to develop and debug programs as well as significant access to the many
advanced features of the Macintosh. The remainder of this book will prepare
you to tackle advanced programming problems in Macintosh Pascal by cover
ing sophisticated Pascal structures and techniques, such as file handling, and
the use of QuickDraw and Toolbox routines.

One place to start our exploration of Macintosh Pascal's advanced features is
the Macintosh's memory. Even people who have never used a Macintosh
probably know from advertising that the Macintosh comes in 128K, 512K, and 1
megabyte versions (plus home-brewed super-Macs with up to 8 megabytes of
memory). These numbers refer to the amount of Random Access Memory
(RAM) held in the computer and exclude the 64K ROM (128K ROM in the
Macintosh Plus).

No matter what size the memory, it is not all available for use by a
program. This is because a computer's memory is used for several different
purposes simultaneously. Among these are:

• The Operating System-The operating system uses the first ZK of memory
to hold the information it needs.

• The Toolbox-The Toolbox keeps its system globals in memory reserved
for its own use.

• The Screen-The largest demand for memory comes from the bit-mapped
screen which requires ZOK to store the image of what is displayed.

• The Sound Buffer-The Mac's sophisticated four-part sound capability
requires memory space to store patterns to be translated into sound.

The allocation of memory for purposes such as these is part of a com
puter's system architecture and is one of the first parts of a systems design.
The following memory maps (Figure 1.2) detail the memory layout in both the
128K and 512K Macintosh.

6 Advanced Macintosh Pascal

Trcm. Vectors Trap Vectors

System Globals System Globals
Dispatch Table Dispatch Table

System Globals System Globals

System Heap System Heap

Application Heap

t
t

Application Stack

Main Screen Buller Main Screen Buffer
•X .·.~·:

Main Sound Buller Main Sound Buffer

Mt%t*t•rw&t!ttw~mtilJ!

Figure L2 Macintosh memory map Figure L3 Memory, stack, and heap

The big gap in the center of the maps is the space left for application
programs. This area is divided into three sections called the Application Global
Space, the Stack, and the Heap .

The Application Global Space is allocated when a program starts and holds
the global variables of a program; that is, those that are statically declared at
the start of a program. The machine Stack is a dynamic data structure that
grows and shrinks during the execution of a program whenever temporary
storage is needed. For example, the Stack would hold value parameters being
passed to a procedure . The Stack grows from the larger memory addresses to
the smaller (from high memory to low). The Heap (Figure 1.3) is also a dynamic
structure that grows toward the Stack from low memory to high. It is used to
hold both the actual program code that is executing and the larger dynamic
data structures created by the Toolbox and QuickDraw.

It is important to remember that this is the layout of memory prior to the
loading of Macintosh Pascal, which itself is an application program. Macintosh
Pascal exists in two separate code sections to preserve Heap space. One section
is for the interpreter and one is for the user interface, with either of them
residing in the Heap at any time. The area left in memory is what is left for
your Macintosh Pascal program that will be interpreted. When Macintosh
Pascal is running, it creates a second stack that starts at the end of the Heap
and grows toward the Stack. This second stack, called the General Stack,
(Figure 1.4) is used by Macintosh Pascal to hold temporary locations needed by
a program while it is being interpreted. The Machine Stack holds information
for the interpreter itself. The Heap is shared by both Macintosh Pascal and the
Macintosh Pascal program.

Unlike the Stack, space on the Heap must be explicitly allocated by a
program event in a high-level language. This is a manifestation of the operat
ing system and the fact that, unlike the Stack, the Heap is not supported by
hardware.

7 Macintosh System and Memory Overview

Heap

t
General Stack

t
Machint Stack

Figure L4 The stacks

Information in the Heap is held in blocks of a varying number of bytes that
are placed in the Heap on a first-fit basis. This means that the first portion of
the Heap with the required number of bytes is allocated even though a more
perfect fit could also have been made . The movement of information in and
out of the Heap can sometimes be rapid, occurring whenever dynamic struc
tures such as windows or desk accessories are used. Because of this revolving
door, the Heap can very quickly become fragmented, broken into scattered
blocks too small to be used, leaving requests for large blocks stifled. To keep
large blocks of free memory free, the operating system often compacts the
contents of the Heap, moving all the unused blocks together into one large
area (Figure 1.5).

Before

m Occupied Block

rmmmrn
lll!lfill:l Free Block

Figure L5 Before and after compact

Pointer

8 Advanced Macintosh Pascal

Before After

Pointer

Figure L6 Lost pointer

Before

Figure L 7 Handle

However, this solution presents a problem all it own. If a pointer (Figure
1.6) was used to keep track of a block in the Heap, it will be inaccurate when
the contents of the Heap are relocated.

The solution is the use of handles (pointers to pointers). Whenever a block
is allocated, a master pointer to it is placed in the Heap, and then a pointer to
that pointer, the handle, is also created (Figure 1. 7).

Now when a block is moved during Heap compaction, the value of the
pointer is also changed to reflect the move. For all this to work, the pointer in
the Heap is never moved during compaction. Now, since all access is done via
the handle, the movement inside of memory is transparent to the program.

---l~liil~·~-----+--N-o-te--------------------------------------!
If you are familar with the use of pointers,~ou will find that Chapter 2
reviews some adva,pced Pa8cal structures.

..----
'!-:--=
I
=

9 Macintosh System and Memory Overview

The clever programmers should now be asking themselves how this
feature can be useful. The answer is that the amount of space left over for both
a Macintosh Pascal program code and data is small and must be maximized.
Allocated Heap space on a per need basis rather than as global variables in the
Var section of a program will help manage the precious memory space.

Macintosh Pascal contains a series of Toolbox routines for dynamic alloca
tion of Heap space. The first of these is the NewHandle function.

function NewHandle(Size: Integer): Handle;

Note

Whenever a Toolbox routine is introduced, it's complete procedure or
function heading will be shown to indicate all the parameters and their
data types. This, by the way, is the way routines are documented in
Inside Macintosh.

The NewHandle function allocates a block Size bytes large in the Heap and
returns a handle to it. The operating system automatically takes care of
creating the master pointer and linking the block, pointer, and handle
together.

Since Handle is a data type not already declared in Macintosh Pascal, it
must be declared in your program's type section. For example, if you want to
create a handle to an Integer:

type
lntPtr = ·integer;
lntHandle = ·1ntPtr

First declared is a pointer to an Integer, and then the handle is declared as
a pointer to the pointer. A variable of the handle type must also be declared.

var
Int: lntHandle;

Int is then the variable that the newly created handle is assigned to.

Int:= NewHandle(2);

No Pascal-type checking is done for assignment of the result of NewHan
dle so the programmer must be very careful. Note that the size of an Integer is
2 bytes. It is unnecessary to know this beforehand since the SizeOf function
can be employed to find the number of bytes occupied by either a data type or
variable .

function SizeOf (ID: AnyType): Integer;

10 Advanced Macintosh Pascal

The SizeOf function returns the number of bytes needed to store a data
type or a variable. For instance :

SizeOf(lnteger);

will return the number of bytes needed to store an Integer (which we know to
be 2)and

SizeOf(lnt)

will return the number of bytes occupied by this particular variable, which
would be the same for any variable of that data type.

So, it is safer to always use SizeOf when calling New Handle.

Int:= NewHandle(SizeOf(lnteger));

Once declared, the integer that has Int as its handle can be referenced as

Int ..

The two arrows indicate two levels of indirection. Notice that the Integer
created has no variable name, which is true of all dynamically created vari
ables (variables not declared in the Var section of a program).

While the dynamic allocation of a single Integer makes little sense, if a
program required an array of 1,000 Integers to perform an operation done
once and then won't need it again, it would make little sense to have all that
memory space reserved.

The following set of declarations can be used to create a dynamic array.

type
arrayType = array[UOOOJ of Integer;
arrayPtr = ·arrayType;
arrayHdl = • arrayPtr;

var
AR : ArrayHdl
AR : = NewHandle(SizeOf(AR));

First, an array type was declared and then a handle to it was developed.
Finally, a variable of the handle type was declared in the Var section of the
program. An element of the array which had AR as a handle to it (can we say
AR handles to the array?) can be accessed as:

AR .. 111 : = 99;

This statement would assign 99 to the first element of the array.
When the dynamic array is no longer needed, it can be disposed of and the

memory it occupied reclaimed with the DisposeHandle procedure.

procedure DisposeHandle (Hdl : Handle);

11 Macintosh System and Memory Overview

The DisposeHandle procedure destroys the data structure indirectly
pointed to by Hdl and reclaims its Heap space. The handle must have been
created with NewHandle.

The following are three other memory management routines of lesser
importance than NewHandle and DisposeHandle.

function GetHandleSize(Hdl : Handle): Integer;

The GetHandleSize function returns the size in bytes of the data structure
indirectly pointed to by the handle Hdl. To use our example dynamic array AR,

GetHandleSize(AR)

would return 2,000 since that is the size in bytes of the 1,000-element array of
integers.

procedure SetHandleSize (Hdl : Handle; NewSize : Integer);

The SetHandleSize procedure changes the size of the block of memory
indirectly pointed to by Hdl by NewSize number of bytes. This can be used to
alter the size of a dynamic data structure. Since enough memory might be
available, a call to GetHandleSize must be made to confirm the effect of
SetHandleSize.

procedure BlockMove(FromPtr, ToPtr: Pointer; NumBytes: Integer);

The BlockMove procedure copies NumBytes number of bytes from the
data structure pointed to by FromPtr to the data structure pointed to by ToPtr.
Note that the parameters are pointers and not handles. To copy the memory
pointed to by a handle, one level of indirection must be added to the param
eter. For instance, if we had two dynamic arrays with AR1 and AR2 as handles,
a copy of AR1 could be made with:

BlockMove (AR1", AR2·, GetHandleSize(AR1));

Since it takes execution time to follow a handle all the way to its under
lying data structure, some programmers employ a short cut by using a copy of
the pointer that the pointer handle points to.

var
ARPtr : ArrayPtr;
AR: ArrayHdl;

By assigning AR" to ARPtr, one level of indirection can be removed. The
array can then be accessed with:

ARPtr[1]

12 Advanced Macintosh Pascal

The speed increase with this technique is approximately 10 percent.
However, danger lurks behind this technique . If memory is compacted at any
time, the handle and the master pointer will be updated, but the copy of the
master pointer held in ARPtr will not be. This leaves the copy pointing to an
undefined and undesigned memory location. This problem is known as a
dangling pointer.

This situation is normally prevented by locking the block of memory into
its position in the Heap so it is not moved during compaction. Once it is no
longer needed, it is then unlocked. Unfortunately, Macintosh Pascal does not
contain the necessary Toolbox procedures to do this. They have been added in
Macintosh Pascal Version 2.0 and are documented in Appendix A.

CHAPTER

§~------
Advanced Pascal
Structures

This chapter covers three advanced Pascal structures used extensively by
the Macintosh User Interface and QuickDraw-namely, records, sets, and
pointers. While you may be familiar with these structures from an introduc
tory Macintosh Pascal book, there is a good chance that they were not covered
in sufficient detail to allow you full flexibility with them.

Records are a structured Pascal data type that allows the grouping of
information of different data types together in the same variable. They are
used with files and as a way of exchanging information between the operating
system and a program. Pointers are variables that hold the address of another
variable rather than a value. They are used to facilitate dynamic memory
allocation both alone and in twos to form handles. Sets are the Pascal imple
mentation of the mathematical set concept. They prove quite useful in pro
gramming tasks such as input verification.

It is important that you completely understand these programming con
structs before you start exploring the inner workings of the Macintosh. Your
full concentration can then be placed on the material presented and you will
not be distracted by the programming techniques used to demonstrate them.
If you are already familiar with these subjects or think that you might be, skim
through the chapter so that you can refer back to it when necessary.

13

Records

14 Advanced Macintosh Pascal

The Pascal record data type provides a structure for storing information of
different data types together. In a record, several different variables of any
data type are stored with the same variable name. This is often compared to
arrays but the similarities are slim. In an array, many different values of the
same data type are stored under the array name and accessed with the use of a
subscript. The number of values in an array can range into the thousands and
still be easily managed with the help of a For loop. In a record, several values of
different data types are stored under a record name, but no subscript is used.
Access to each element in the record is done by using its complete name. This
limits the number of components in a record to a few dozen at most. This is not
to say, however, that records are of limited value. Their ability to coordinate
data of different types is one of the most important facilities of the Pascal
language.

Records are a structured type and are usually created by first declaring a
record data type and then declaring a variable of that type.

type
DateRec = record
Month : 1..12;
Day:1..30
Year: Integer;
DayOfWeek : string

end;

The record type DateRec contains four components or fields: Month, Day,
Year, and DayOfWeek. Three of the fields contain three subranges of integers
and one string.

The general form of a record-type definition is:

RecordName = record
Field1 : DataType;

Field2: Data Type;
end;

Once a record type is defined, variables of that type can be declared in the
Var section of the program.

var
Datelnfo : DateRec;

II
I,
I'

'

11

'I

I,
'!

ii
'I
I

1 I

I
!1

11

I
11

'
11

I

11

1 ,

15 Advanced Pascal Structures

Date Info.Day

Date Info.Month

Date Info.Year

Date Info. DayOfWeek

Figure 2.1 The record Datelnfo

The variable section declares a record of type DateRec, called Datelnfo.
The record Date Info (Figure 2.1) contains four fields based on the definition of
the type. Each field in the record is referred to by its record name followed by
its field name and they are separated by a period.

RecordName.FieldName

A field can be used just like any other variable. For instance, in an
assignment or Writeln statement.

Datelnfo.Year: = 1986;
Writeln(Datelnfo.Day);

More than one record of the same data type may be declared.

var
Day1, Day2: DateRec;

If this is the case, the same fields exist in both records but the field names
are different because the record names are different (Figure 2.2).

Day1.Day

Day1 .Month

Day1 .Year

Day1 .DayOfWeek

Day2.Day

Day2.Month

Day2.Year

Day2. DayOfWeek

Figure 2.2 The records Dayl and Day2

16 Advanced Macintosh Pascal

When two records are of the same record type, the entire contents of one
record can be assigned to the other in just one statement.

Day1:=Day2

This statement is equivalent to:

Day1.Day: = Day2.Day;
Day1.Month: = Day2.Month;
Day1.Year: = Day2.Year;
Day1.DayOfWeek: = Day2.DayOfWeek;

The With Statement

Since the full name of a field can be tedious to write, the With statement
was included in Pascal to provide shorthand forms of field names. The
With statement automatically adds the record name in front of the field
name.

with Day1 do
Year : = 1986;

In the preceding statement, the record name Dayl is automatically used
with the assignment statement. This With statement is the equivalent of:

Day1.Year:= 1986;

The general form of the With statement is:

with Record Name do
Statement;

Like any Pascal structure, the With statement can work with either a
single statement or a compound statement delimited by a Begin and End. The
With statement operates by checking the variables contained inside it to see if
any are the names of fields of the specified record. If they are, the field name is
preceded by record name. Assuming the following record declaration:

var
BirthDay : DateRec;
I: Integer;

The With statement:

with Birth Day do
Mcnth :=I;

will assume that Month refers to the field in the record BirthDay and will affix
the record name to it. Thus, the following statement is equivalent:

BirthDay.Month :=I;

1 7 Advanced Pascal Structures

If a field name is the same as an independent variable's name, some
programming confusion can arise.

var
PayDay : DateRec ;
Month : Integer;

We now have a field in the record Month and a stand-alone variable both
with the name Month. This is normally no problem, but a problem is created
by the following With statement.

with PayDay do
Month : = Month;

In the statement above, it is not clear if the Month referred to is the field in
the record or the stand-alone variable, and if it does refer to one, which one?
Pascal handles this situation by following the simple rule that any variable
used in a With statement that happens to be a field in the record specified is
assumed to be that field. Applying the rule to our example makes the following
statement equivalent.

PayDay.Month: = PayDay.Month;

It is best to stay away from situations like these by avoiding naming a
variable the same as a field.

Records are most commonly used with files and Chapter 3 carefully
examines this. Another common use of records, especially on the Macintosh, is
as a way to exchange information with the operating system, Toolbox, and
QuickDraw. In order to implement this exchange, several record types have
been predefined in Macintosh Pascal. To use a record of this type, no type
declaration is needed. An example of this is the record type used to represent
the time and date from the Macintosh's built-in clock. DateTimeRec is defined
as:

type
DateTimeRec =record
Year,
Month,
Day,
Minute,
Second,
DayOfWeek: Integer

end;

18 Advanced Macintosh Pascal

Where each field contains:

• Year - the number of years since 0 A.D.
• Month - the number of the month with January as 1 and December as 12
• Day - the day of the month (1, 2, etc.)

• Hour - the number of hours since midnight

• Minute - hopefully, this is self-explanatory

• DayOfWeek - a number from 1 to 7 representing Sunday to Saturday.

If a record of type DateTimeRec is declared in a program,

var
Today: DateTimeRec;

information can be passed to it from the clock with the help of the GetTime
procedure.

procedure GetTime (var Date: DateTimeRec);

The GetTime procedure passed to the parameter the current date and
time from the clock.

•'i

''

The following program uses a DateTimeRec with the GetTime procedure . \,
to retrieve and display the clock information.

Variant Records

program WhatTime;
var
Today: DateTimeRec;

begin
GetTime(Today);

with Today do
begin
Writeln(Hour);
Writein(Minute);
Writeln(Second)

end (with)
end

Pascal provides a mechanism for alternative storage schemes in the same
record structure. Called variant records, they allow the number and data
type of fields to change dynamically depending on what is stored in the
record.

19 Advanced Pascal Structures

A variant record has two parts. The first is the fixed part, which is the
same as a nonvariant record. The second part, known as the variant,
changes depending on the value stored in the field designated as the tag
field. A variant record allows us to store information in one record type
that is similar but may otherwise require two different record structures.
Let's take as an example an employment record that holds data for both
management and regular employees. Both classes of employees require
some information in common. This information forms the fixed part of the
record.

type
EmployeeType =(Management, Worker);
EmployeeRec = record
Name : strlng[30[;
Address: strlng[50J;
PhoneNo : Longlnt;

However, for the two different types of employees, some different infor
mation is required. For management, their direct supervisor, yearly salary,
and office number is needed but for workers, their hourly wage and the name
of their foreman is called for. Both of these requirements can be met with the
record's variant part. The variant part starts with the tag field, which lets the
record know which type of data will be stored, and then a Case statement to
select which fields are to be included.

case Position: Employee Type of
Management :

(Supervisor: strlng[301;
Salary: Real;
OfficeNo : Integer);

Employee:
(Foreman : strlng[301;
Wage: Integer)

end; (whole record)

20 Advanced Macintosh Pascal

The fourth field in the record, called position, is the tag field and is used in
the Case statement. Syntactically, the variant record part uses parentheses
instead of Begin and End to indicate a compound statement as part of the Case.
Only one End is used to signify both the end of the record and the Case
statement. Depending on the value of Position, the remaining fields in the
record will change. The remarkable thing about this is that two consecutive
records in a file can contain two different types of data. If the value of Position
is Management, the record will contain the following fields.

Name: strlng[30J;
Address: strlng[50];
PhoneNo: Longlnt;
Supervisor: strlng(30];
Salary: Real;
OfficeNo : Integer;

If the value of Position is Worker, the record will contain the following
fields.

Name: strlng(30J;
Address: strlng(50J;
PhoneNo : Longlnt;
Foreman: strlng(30];
Wage: Integer

Notice that not only are the field names in the variant part different but so
are the number of fields, the data types, and the storage requirements. A
record can contain only one variant part but there may be nested variants. If
the value of a tag field is changed from one value to another, the vairiant fields
become undefined. Concerning storage space for a variant record, all the
variant parts share the same memory event though one variant part is active at
a time. The amount of memory or file space needed is the space needed to hold
the largest combinations of the fixed fields and the variant fields; if the variant
part is changed, there is always room to store the new fields.

Variant records are of interest to us since many Toolbox and QuickDraw
data types are defined with variants. This gives the programmer a lot of
flexibility when working with these data types. The tag field in a variant
record is actually optional and is not used in most of the Macintosh data types.
When no tag field is used, all the variant fields are always accessible. This is the
way that the QuickDraw data type Point is defined.

21 Advanced Pascal Structures

type
VHSelect = 01, H);
Point = record case integer of
0:
01 : Integer;
H : Integer);

1:
(VH : array [VHSelectJ of Integer)

end;

The definition of Point uses no tag field and only a data type as the case
selector. This structure allows a programmer to access the fields of a record of
type Point in either of two ways. If a record called ThePoint is declared, the
fields can be called either:

or

ThePoint.V
ThePoint.H

ThePoint.VH[V]
ThePoint.VH[HJ

whichever is more convenient at the time.
Many programmers use variant records without a tag field to circumvent

Pascal's strong type-checking. They use the fact that variants occupy the same
space in memory to redefine a value of one type into another type. Consider
the following declaration:

var
Switch : record case boolean of
False:

(Int : Integer);
True:

(Ch: Char)
end;

I: Integer;

The above record structure setup will allow us to convert a character into
its ASCil value without the help of the ORD function.

Switch.Ch:= 'A';
I : = Switch.Int;

Sets

22 Advanced Macintosh Pascal

Since Switch.Ch and Switch.Int occupy the same memory location, the
ASCII code stored as the value of the character can be assigned to the integer I.
Note that the statement

I:= Switch.Ch;

could not be done since the data types are not the same. This technique is very
powerful but is not recommended unless the programmer is very familiar
with the way Pascal and the Macintosh represent data. Another use of this
technique might be a situation in which different data is stored in the record,
but the programmer can tell from the context which value is needed. An
example may be a file in which all the even records contain an integer and all
the odd records contain a character.

Sets are a data structure unique to Pascal. The set data type is Pascal's
implementation of the mathematical set concept. A Set can have up to 255
different members, which are all of the same ordinal data type. An ordinal
data type is one in which all the values can be enumerated. This includes all of
the scalar data types except Real.

A set type is declared in the program's Type section.

type
LetterSet = set of Char;

The declaration defines a set data type whose membership consists of
characters. The general form of a set type is:

type
SetType = set of ordinal type;

All of the following declarations are legal.

NumSet = set of Integer;
CharSet =set of' A' .. 'Z';

ColorType = (black, red, blue);
ColorSet .= set of ColorType;

The set -type declaration does not create any set; it just establishes a data
type. A set is created with a variable declaration.

var
lnputSet: NumSet;

Set Operations

23 Advanced Pascal Structures

Here a set of Integers called InputSet is created. At this point, In.putSet is empty
since it contains no values members. The members of a set must be of the
underlying data type and are placed into a set with an assignment statement.
Remember, a set may contain up to 255 members, each one different.

lnputSet: = [1, 2, 3, 4, 5);

Members of a set are delineated by a left and right bracket and separated
by commas. It can now be said that InputSet has five members, the integers 1
through 5. Since five members are consecutive values of an ordinal type, a
subrange could have been used in the assignment:

lnputSet : = [1.. 51;

Pascal contains a complete repertoire of operators that act on sets. The
first of these is the Set Membership function. Invoked with the keyword In,
the Membership function tests to see if a value is a member of a given set,
returning true if it is and false otherwise.

If Num In lnputSet then
Writeln(' Set Member')

else
Writeln('NotaSet Member');

The In function is very handy for doing many tasks, including input
verification: that is, the testing of a value entered to see if it falls within a
certain range. For instance, suppose we want to test an entered value to see if
it falls within 1 to 10. First, declare a set having all the acceptable values as
members. Then, test the value entered to see if it is a member of that set. This
is most often done in a Repeat loop so that the input sequence can be repeated
should the value fall out of range.

lnputSet : = [1 .. 10);
repeat
(Display choices)
Readln(Num);
if not (Num In lnputSet) then
(Error message)

untll Num In lnputSet;

In this situation an If statement could also be easily used, but if the possible
values are not consecutive, sets are much easier and more efficient way to go.

24 Advanced Macintosh Pascal

Set Union

The SetUnion operator is used to combine two sets. Remember, a set can have
only one occurrence of any member. The plus sign (+)is used as the set union
operator.

NewSet:= [1,21 + [2,3,41;

The members of NewSet are [1, 2, 3, 4)

Set Intersection

The set intersection operation is used to find the common members of two
sets. The multiplication sign (*) is the set intersection operator.

NewSet: = [1, 21•[2,3, 41;

The members of NewSet are [2).

Set Difference

The set difference operator is used to find all the members in one set that are
not in another. The minus sign (-) is the set difference operator.

NewSet:= [1,2,3)- [2,3);

The members of NewSet are [1).

Set Comparisons

The standard relational operators work with sets although their meanings
change some. The following table details the result of comparing two sets.

Table2.1

EXPRESSION

Set 1 = Set2
Set1 <>Set2
Set1<=Set2
Set 1 < Set2
Set1 >=Set2
Set2<Set1

RETURNS TRUE IF

Set 1 and Set 2 are identical
Set 1 and Set 2 are not identical
Set 1 is a subset of Set 2
Set 1 is a strict subset of Set 2
Set 2 is a subset of Set 1
Set 2 is a strict subset of Set 1

Pointers

25 Advanced Pascal Structures

Another demonstration of the use of sets is a procedure that converts the
characters in a string from lower case to upper case. This is done by declaring
a set consisting of the lower-case characters, testing the characters in the
string to see if they are members, and converting them if they are. Lower-case
characters can be converted to upper-case characters by changing their ASCII
value. The upper-case characters start with 65 as their ASCII code and the
lower case with 97, a difference of 32.

procedure LowerToUpper(S: string);
var
UpperSet: set of Char;
K: Integer;
begin
UpperSet:= ['A' .. 'Z'J;
for K : = 1 to Len(S) do
If S[KJ In UpperSet then
S[KJ : = Char(Ord(S[KJ - 32))

end;

Pointers may be the most sophisticated feature of Pascal. In Chapter 1,
pointers and handles were introduced. They are covered in more detail
here. A pointer is a variable that, instead of holding a value, holds a
reference to another variable (the address of another variable). While this
might not seem very important, it is-because the variable that a pointer
refers to can be created dynamically during program execution. This is
unlike the usual scheme in which variables are declared in the variable
section of a program and created by the program prior to execution.

Pointers are declared with the help of a pointer type.

type
NumPointer = ·integer;

The preceding type statement declares NumPointer as a pointer to a
location containing an integer. The circumflex ' A' (found above the 6 key on
the Macintosh keyboard) indicates that NumPointer points to an integer
rather than being an integer. Once a pointer type is defined, a pointer variable
is declared like any other.

var
P, Q: NumPointer;

26 Advanced Macintosh Pascal

Here we have declared two variables (pointers for short) which point to
integers. The particular variable a pointer references is not originally defined,
and a value can't be assigned to the pointer since it does not hold an integer. A
new variable is dynamically created and linked to a pointer with the New
procedure. The New procedure takes a pointer and then creates a new
variable pointed to it.

New(P);

This call to New creates a new integer variable pointed to by P (Figure 2.3).

I I

p
I •I __

Figure 2.3 The pointer P

The variable pointed to by P has no variable name since it is dynamically
created. The only way to reference it is through its pointer P. The location
referenced by a pointer is accessed with the address operator symbolized by
the up arrow n. So if p points to an integer, PA is the integer that it points to.
Figure 2.4 shows that a value can be placed in that variable with: p· : = 17;

I I I •_I _17 _____
p

Figure 2.4 The variable PA

We are now dealing with two different types of variables: the pointer
variable and a regular integer it points to that doesn't have a regular name.
Because they are of different types, the following assignment statement is
illegal.

P:= p•;

This statement attempts to assign an integer to a pointer producing a conflict
in data types. Other pointers, however, can be assigned the value of a pointer.

O:=P;

This statement makes the pointer Q point to the same variable as P (Figure
2.5).

.2 7 Advanced Pascal Structures

17

Q

Figure 2.S The pointers P and O

The variable can now be referenced as either PA or QA (Figure 2.6) so that
the following two assignment statements have the same effect.

p· := 99;
a·:= 99;

Q

99

Figure 2.6 The pointers P and Q

If the value of pointer P is changed, Q still points to the same location. The
value of a pointer can be changed by assigning it to a new location, passing it as
a parameter to the New statement, or assigning it the value Nil. Nil is a Pascal
reserved word used to represent a pointer whose value is undefined. The
advantage of assigning Nil to a pointer rather than just leaving it undefined is
that Nil can be checked for in an If statement.

If P = nllthen
Write(' Undefined pointer');

Pointers in general cannot be printed and can only be compared to the
value Nil or the value of another pointer.

28 Advanced Macintosh Pascal

The real power of pointers is harnessed when using records containing a
pointer. Consider the following type and variable declarations.

type
LinkRec = record
Data : Integer;
Link: ·unkRec

end;
var
First, P, Q : ·unkRec;

A record type called LinkRec is declared. One of the fields of LinkRec,
Link, is a pointer to the type LinkRec. That is, that field may hold a pointer to
another record of type LinkRec. Even though this definition seems recursive,
it is perfectly legal. The variables declared are three pointers to the type
LinkRec which initially point to nothing. With this structure it is possible to
create an unlimited (except by available memory) chain of records .all linked
together. A structure like this is called a link list and is very popular since only
the number of records needed can be generated.

The first step is to produce the first record (Figure 2. 7).

Figure 2. 7 The record pointed to by First is created

New(Firsl);

The variable pointed by First is known as Firsr. Because FirsC is a record,
there are two fields: First A .Data and FirsC .Link. A value can be assigned to the
Data field of the record with:

Firsr.Data:= 1;

A second record can be generated and then linked to the existing record
by creating a new record pointed to by Q (Figure 2.8).

New(Q);

To facilitate the linking of many records, P should also be made to point to
the first record.

P :=First;

29 Advanced Pascal Structures

Q

I 11--1 -+----•'-L===-= First -

Figure .2.8 The new record pointed to by Q

Because this is an assignment of a pointer, no up arrow is used. Since two
pointers point to the the first record, the Link field can be identified as either
Firsr .Link or p· .Link. The newly created record pointed to by Q can be linked
to the first by making the Link field of the first record point to the same thing
as Q (Figure 2.9).

Q

First

Figure .2.9 Linking the first two records

P".Link: = a·; (Make the first record point to the second)

HP is now made to point to the last record (where Q points), the entire
generation and linking of new records can be placed in a loop.

P:=O;
for I:= 1to3do
begin

New(Q);
P".Link: = Q;
P:=O

end;

I I

First

30 Advanced Macintosh Pascal

Q

Figure 2.10 The linked list

After the last record is placed on the list (Figure 2.10), its Link field should be
set to Nil in order to be able to detect it when later parsing the list.

a· .Link:= nil;

Here is the entire list-generation code together.

program LinkUp;
type
LinkRec = record
Data : Integer;
Link: ·unkRec

end;
var
First, P, Q : ·unkRec;
New(First);
P :=First;
P·.Unk: = Q·;
P:= Q;
for I : = Ho 3 do
begin
New(Q);
p·,Unk:= Q;
P:=Q

end;
Q·.Unk: = nil;

31 Advanced Pascal Structures

Once the list is created it can be traversed easily. For instance, to sum the
Data fields in all of the records, assign one of the pointers to the first record,
get the Data value, and then use the Link field to move the pointer up to the
next record. The action stops when the Nil Link field is encountered, signaling
the end of the list.

Sum:= O;
P :=First;
repeat
Sum : = Sum + P·.Data;
P := P·.Link

until P =nil;

Pointers are used extensively throughout Toolbox and QuickDraw since
many of the data structures utilized by them are dynamic in nature and are
often moved around in memory by the operating system.

File Concepts

CHAPTER

~~----
Files and File
PrograIDIDing

L programs lacked the ability to store data for later retrieval, all the
microcomputer applications we are familiar with today such as database
managers and word processors, would be impossible. Data is stored long term
in files held on external media such as a floppy disk. That data exists indepen
dently of the program that created it. This data can be retrieved at a later time
by the program that stored it or even by a different program. This chapter
discusses the entire spectrum of files available with Macintosh Pascal, includ
ing sequential files, the more powerful random files, and text files. Since files
would be of little use without the programming techniques needed to exploit
them the information is presented from the point of view of file-handling
techniques.

Files are traditionally defined as a collection of records. As with most glossary
type definitions, this does little to indicate how files operate and what purpose
they serve. To understand files more precisely it would be useful to first
review arrays. An array is a data structure that holds a predefined number of
values of the same data type in memory. An array is declared in the var
section of a program.

List : array[1..10[of Integer;

The preceding array declaration declares an array named List which
holds ten integers (Figure 3.1).

Since arrays are stored in memory, array elements can be manipulated
just like a variable; for instance, in an assignment statement such as:

K: = List[2[;

33

34 Advanced Macintosh Pascal

List[1]

List [2]

List [3]

List [4]

List [5]

List[6]

List[?]

List[BJ

List[9]

List[1 O]

Figure 3.1 The array list

Files have similar characteristics to arrays but also some major dif
ferences. A file like an array, holds a series of values of the same data type, but
these elements are not held in memory like an array's elements. Instead, they
are held on a secondary storage device which, in the case of the Macintosh is
usually a 3.5-inch floppy disk. The individual components of a file are known
as records. This introduces a second usage of the term "record" (the record
data type is the other). The data type of the components of a file is very often
declared as a record data type but not necessarily so. Unlike an array, the
number of elements in a file is not fixed but can vary. The records in files are
numbered with the first record numbered zero .

Record O Record 1 Record 2 Record 3

Figure 3 • .2 Records in a file

Record l~
.. ~ -.. JI

35 Files and File Programming

Since the data in a file is physically held outside the computer, it is a
complicated and relatively slow process to store or retrieve it. This is due to
the mechanical nature of the disk drive itself. Accessing data in a file requires
the assistance of the Macintosh's operating system to act as a go-between for
memory and the disk drive. The operating system contains a series of routines
to do the necessary file housekeeping such as starting the disk drive spinning,
checking to see that it is spinning at the proper speed, locating the proper part
of the disk surface, moving the disk drive head, and so on. Due to their
complexity, computer manufacturers include this series of operations in a
computer's operating system to alleviate the need for programmers to write
them. On the Macintosh, these routines are stored in the computer's ROM
along with the User Interface Toolbox.

Macintosh Pascal supports two types of files, sequential and random. The
difference lies in how the records in the file are accessed. In a sequential file,
the records must be accessed in sequential order, starting with the first record
in the file. For example, in order to add a record at the end of the file, the other
records in the file must first be passed over. Sequential files are of limited use
for this reason and are a leftover from the days before disk drives when the
only secondary storage devices available were sequential access devices such
as magnetic tapes. The second file type is random. These files allow sequential
access but also provide a mechanism to access any record in the file directly,
thus providing greater flexibility and speed.

Several operations are necessary to access files. Before a file can be used it
must first be opened. Opening a file performs several actions, but most
importantly, it establishes the channel of communications between the pro
gram and the storage device. Different procedures are used to open sequential
and random files. When a file is no longer needed, it must then be closed.
Closing a file terminates all communication between a program and the
storage device with reference to the particular file closed. The action of
placing data into a file from a program is known as writing. The opposite of
writing data is reading it.

The File Data Type

Pascal implements files with the use of the File data type. A file is first declared
in the var section of a program.

var
Numbers : flle of Integer;

3 6 Advanced Macintosh Pascal

The preceding statement declares a variable of type File called Numbers.
Following the keywords file of is the data type of the components of the file.
This is known as the file's component type. Of course, as you can see the
component type of file Numbers is Integer. Notice that there is no mention as
to the size of the file. This is because the number of records in a file is free to
vary dynamically. This file was declared in the var section of a pro~:ram but a
file can also be declared as a type.

type
Real File = file of Real;
Boolean file = flle of Boolean;
lntegerFile = flle of Integer;

var
Grades : lntegerFile;
Answers : Boolean file;
Temperature : RealFile;

The component type of a file is not limited to the basic Pascal scalar data
types but can also be a structured type such as a record-and very often is.

type
GradeRec = record

Name: string[20J;
Exam Number: Integer;
Grade: Integer

end;
GradeFile = file of GradeRec;

var
Class1, Class2: GradeFile;

The preceding sequence declares two files, Classland Class2, both having
the component type GradeRec.

Declaring a file in the var section of a program creates an internal data
structure but does not invoke any of the operating system routines that open a
file on the disk drive and link it to the program. This is accomplished with one
of the built-in procedures that open a file.

Using Sequential Files

The first type of files we will explore are sequential files. Since sequential files
are not as useful as random files, the main focus of this chapter is random files,
but the basic file operations are the same with both file types.

3 7 Files and File Programming

Opening a Sequential File

There are two routines used to open a sequential file, depending on whether
write-only or read-only access to the file is desired. Once a sequential file is
opened for write-only access, data can be added to the file but not read from it.
When a sequential file is opened for read-only access, data can be read from
the file but not added to it. Data cannot be read from and written to a
sequential file without closing the file and then reopening it. This is a major
disadvantage of sequential files. The Rewrite procedure is used to open an
existing sequential file for write-only access or to create a new sequential file
and then open it for write-only access. The Reset procedure is used to open an
existing sequential file for read-only access.

Both Rewrite and Reset take the same two parameters: the file variable
declared in the program and a string containing the name that file is identified
by on the secondary storage device.

Rewrite(file variable, 'external name');
Reset(file variable, 'external name');

For example, a file of integers was declared:

var
lntFile : fife of Integer;

A file named Data can be created on the disk drive with:

Rewrite(lntFile, 'Data');

The file Data can be seen on the desktop and appears as a generic
Macintosh file icon (Figure 3.3).

MocPoscol
22 items 385K in disk 15K aYailable

Figure 3.3 The file Data on the Macintosh desktop

38 Advanced Macintosh Pascal

Once a file is opened, communication is established between the file
variable and the file on the external device. Data can be passed back and forth
between the two with the Put and Get procedures.

The Put procedure is used to place information into a sequential file
opened for write access. Put operates in conjunction with the me variable.
When the file variable is declared, a pointer to that variable is automatically
created along with it.

To place information into a file, data is assigned to the file variable pointer,
and then the Put procedure is used. For example, assuming our file IntFile has
just been created for the first time with Rewrite, then a record can be written
to the file by first assigning a value to the file pointer:

lntFHe· : = 2846;

and then calling the Put procedure with the file variable.

Put(lntFile)

At this point, the value held in the file pointer is placed in the external file
associated with the file variable from the Rewrite statement. Specifically, in
our example the integer 2846 is placed in the first position of file Data (record
zero). The file is then ready to accept a second record.

lntFile· : = 777;
Put(lntFile);

Figure 3.4 depicts the file as it now stands.

2846 777

t
Figure 3.4 The file IntFile

Closing a File

Once a file is no longer needed, it should be closed with the Close procedure.
Close terminates the association between the file variable and the external file.
All subsequent references to the file variable (except to reopen it) are invalid
and will trigger a run-time error. The form of the Close procedure is simple.

Close(file variable)

3 9 Files and File Programming

Reading Data

Data is read from a sequential file with the Get procedure. Get can be thought of as
the inverse of Put.

Get(File variable);

When a Get is executed the data stored at the current file position is placed into
the file pointer. Before data can be read from a file, it must be opened for read
access with the Reset procedure. When a Reset is performed it automatically
reads into the file pointer the first record in the file, and then it advances the
file position to the next record in the file. This means that a Get does not have
to be executed to read the value of the first record.

We can read and display the integers stored on the disk drive by closing
the file and then reopening it with Reset.

Close(lntFile);
Reset(lntFile, 'Data'); (Performs the first Getl
Writeln(lntFile·);
Get(lntFile); (Get the second record!
Writeln(lntFile·);

Notice that only one Get is performed since the Reset reads the data stored
in the first record of the file.

In the previous example it was unnecessary to close the file before it was
Reset. At any point during operations with a sequential file, the file can be
Reset for read operations. When a file that is already open is Reset, only one
parameter, the file variable, is needed since the file is already associated with a
file on an external device (Figure 3.5). In our example, the Reset is performed
with:

Reset(lntFile)

2846 777

f
Figure 3.5 IntFile after Reset

40 Advanced Macintosh Pascal

Erasing a Sequential File

A sequential file can be removed from an external device with the Rewrite
procedure. We have already seen Rewrite used to create a nonexisting sequen
tial file, but when Rewrite is used to associate a file variable with an external
file that already exists, the contents of that external file are effectively deleted.
The file position is then set to the beginning of the file, and the file is ready to
have new records written to it. If Rewrite is called when the file is already
open

Rewrite(file variable)

the file is then rewound with the contents deleted, and the file posi1tion is set to
the beginning of the file.

File Processing with Sequential Files

The inability to change a sequential file from read access to write access or vice
versa while the file is open is the major weakness of sequential files. This fact
of sequential file life leads to several consequences:

• Records cannot be directly appended to the end of a file, a typical file
operation.

• A record in a file cannot be replaced or changed.
• The contents of a file may have to be read entirely into memory to be

processed, the file erased from the disk, and then the new file written to the
disk. This is not feasible if the size of the file exceeds the amount of available
memory space in the computer. If this is the case, certain types of file
processing are not possible.

If there are so many disadvantages to sequential files, why does Macintosh
Pascal even bother with them? The answer probably has to do with maintain
ing compatibility between older implementations of Pascal and newer ones,
such as Macintosh Pascal, so that old Pascal programs can be moved or ported
on to the Macintosh.

The following program is an example of programming with sequential
files. The program opens a new file, places the first 10 integers in :it, and then
reads them back.

program SeqExample;
var
lntFile : file of Integer;
Num : Integer;

begin
Rewrite(lntFile, 'Integer.Data');
for Num : = 1 to 10 do

Random Files

41 Files and File Programming

begin
lntFile·: = Num;
Put(lntFile)

end;
Reset(lntFile); (Does a Get too)
Writeln(lntFile•)
for Num : = 1to 9 do
begin
Get(lntFile); (Get the next 9 records)

end;
end.

Random files, the second Macintosh Pascal file type, have two major
advantages over sequential files. Once a random file is opened, both read or
write access can be performed without having to close the file first. This
allows a program to replace records in a file and append data to the end of a
file. The other advantage of a random file is the ability to zoom in and select
a specific record in the file without having to access all the other records
that sit before it in the file. This ability to directly (or randomly) access any
record in the file can greatly speed up file access. For these two reasons, all
the programming you do with files will probably be done with random
files. In Macintosh Pascal, fortunately, any file that was created with the
sequential file procedures can also be accessed as a random file.

Opening a Random File

A file is opened or, if necessary, created for random access with the Open
procedure. Open works in a similar fashion to Rewrite; that is, it takes two
parameters, the name of a file variable and the name of an external file. If
the external file already exists, it is opened; if the external file does not
exist, it is created and then opened.

The form of the Open procedure is

Open(File, External);

Where:

File is a variable declared in the program as type File.

External is a string expression containing then name of the file to be opened
or created on the external storage device.

42 Advanced Macintosh Pascal

The statement:

Open(lnventoryFile, 'May.data');

would open a file named May.data on the disk drive and associate it with the
file variable InventoryFile. If May.Data doesn't exist, it will first be created.
Like Reset, Open automatically performs a Get on the first record (record
number zero) in the file and then moves the file pointer forward one record.

Writing and Reading Data

Once a random file has been opened with Open, data is written to the file with
the Get procedure which operates in the same fashion as it does with a .
sequential file. Get "gets" the data held in the file variable pointer and places it
at the current file position of the external file. Data can be read from a random
file in either of two ways. The first method is to use the Put procedure just as
you would when working with a sequential file. The second way of reading
data from a random file is to use the Seek procedure. Seek moves the file
position directly to a specific record number in the file, and then it copies the
contents of that record into the file pointer. This is similar to a Get, but Seek
does not also advance the file position. This leaves the file position in the
correct spot to replace the record, if needed. The form of the Seek procedure
is:

Seek(File, N)

Where:

File is the name of a file variable declared in the program and opened.

N is an integer expression that specifies the record number to be accessed.
(The first record in a file is zero.)

Working with Random Files

As a simple example of using random files, plus the Seek procedure we can
rewrite the short program that demonstrated sequential file access.

program Random_Example;
var
Phi le : file of integer;
I: Integer;

begin
Open(phile, 'test2.data ');
for I : = Oto 4 do
begin
Seek(phile, I);
Phi le· : = I + 15;
Put(Phile);

end;

43 Files and File Programming

for I : = 0 to 4 do
begin
Seek(Phile, I);
Writeln(Phile·)

end;
end.

In this program, data was placed in the file by "seeking" the record
position with Seek and then doing a Put. Data was read from the file with Seek,
which both pinpoints a specific record and then places the data in the file
pointer.

Finding the End of a File

Typically, a program needs to know if any data remains in a file to be read.
Pascal provides a facility to determine whether any components of a file are
available to be read as input. The EOF (End of File) function is a built-in
function that returns the Boolean value True if the current file position is
beyond the last component of a file and False otherwise. The form of EOF is

EOF(Filename)

where Filename is a file variable of an already open file.
EOF can be used in any situation in which you want to identify the last

record in a file; for example, to drive a loop that reads data from each record of
a file, or to position the file pointer at the end of a file so that new records can
be appended. However, EOF has several subtle characteristics in certain
situations:

• When a Put is performed, EOF is True if the new file position is beyond the
end of the file. Incidentally, the value of the file pointer is undefined at that
point and should not be referenced.

• When a Get is performed, if no file component exists, EOF becomes True,
and the value of the file pointer becomes undefined and should not be
referenced.

• When a Seek is performed, if the file component requested is greater than
the number of components in the file, EOF becomes True.

• When a Reset is performed, EOF is True if the file is empty and False
otherwise. This is a way to tell if Reset has opened an existing file or if it has
created a new empty file.

• When a Rewrite is performed, EOF is always True.

• When an Open is performed, EOF is True if the file is empty and False
otherwise. This is a way to tell if Reset has opened an existing file or if it has
created a new empty file.

44 Advanced Macintosh Pascal

The following programs point out some important peculiarities about
using the EOF function. In EOF _Examplel, a new file of integers is created for
random access with the Open procedure. Three integer values a1re placed in
the file and then a While loop is used to read the values back from the file.

program EOF _Example1;
var
Phile : file of Integer;
I: Integer;

begin
Open(Phile, 'Test.Data'); !Open file!
!Write data!
Phile·: = 10;
Put(Phile);
Phile· := 20;
Put(Phile);
Phile· := 30;
Put(Phile);
I:= O;
!Read data)
while not(EOF(Phile)) do

begin
Seek(Phile,I);
I:= I+ 1;
Writeln(Phile•)

end
end.

This program does not work as intended because of the value of the EOF
function after the data is placed into the file. When the new file is opened, the
value of EOF becomes True. Since all the records placed into the new file are
actually being appended to the end of the file, the value of EOF after each Put is
also True. Therefore, when the EOF function is checked as the condition of the
While loop, it produces a value of False (not True) and the loop is. terminated
without being executed even once.

program EOF _Example1;
var
Phile: file of Integer;
I: Integer;

45 Files and File Programming

begin
Open(Phile, 'Test.Data'); !Open file) <-EOFisTrue
!Write data}
Phile·: =10;
Put(Phile);
Phi le· : = 20;
Put(Phile);
Phi le· : = 30;
Put(Phile); <--- EOF is True
I:= O;
!Read data)
while not(EOF(Phile)) do <---·- EOF is still True and loop not executed
begin
Seek(Phile,1); <-----------··-·····
I : = I + 1; <··-------Not Done
Writeln(Phile·) <-···--·····--·-·----··

end
end.

One way of correcting this problem is to make sure that the file is
"rewound" (set the file pointer back to the start of the file) before any attempts
are made to read it. qne way to do this is to close and then reopen the file
before the while loop.

program EOF _Example1;
var
Phile: file of Integer;
I: Integer;

begin
Open(Phile, 'Test.Data'); [Open file}
!Write data)
Phi le·:= 10;
Put(Phile);
Phile· := 20;
Put(Phile);
Phile· : = 30;
Put(Phile);
1:=0;
!Set file pointer back to start}
Close(Phile);
Open(Phile);

!Read data}
while not(EOF(Phile)) do

46 Advanced Macintosh Pascal

begin
Seek(Phile,i);
I:= I+ 1;
Writeln(Phiie")

end
end.

Another method of correcting the problem is to perform a Seek to record
zero record before attempting to read the file.

A second major problem with this program is the order in which the
statements appear within the While loop.

while not(EOF(Phile)) do
begin
Seek(Phile,I);
I:= I+ 1;
Writeln(Phile")

end

The Seek procedure does not set EOF to True until an attempt is made to
seek a record past the last record in the file. In this program, that would be an
attempt to seek the fourth record (record number 3). However .. when that
Seek is performed, the value of the file pointer Phile A becomes undefined, and
the attempt to use it in the Writeln statement produces an error. This subtle
bug..also occurs if a Get is performed instead of a Seek. This can be demon
strated by running the program as it is using the Step option and setting the
Observe window to watch the value of the file pointer and the values of the
functions FilePos and EOF. The wonderful debugging tools of Macintosh
Pascal should be used often to help demonstrate the complex structures of
Pascal.

Looking at our example, which is an attempt to read all the records in the
file, we can take advantage of the fact that when we rewind the file back to the
start, either with a Seek or Open, the contents of the first record (record
number zero) are automatically placed into the file pointer. This value can be
used as the first value tested by the While loop. Then by reversing the position
of the Writeln and Seek statements, the first value can be used before the next
value is read from the file.

Open(Phile, 'Test.Data); {Also reads the first record]
while not(EOF(Phile)) do
begin
Writeln(Phile")
I:= I+ 1;
Seek(Phile,I);

end

4 7 Files and File Programming

The Haiku Writer

program EOF _Example1;
var
Phile: file of Integer;
I: Integer;

begin
Open(Phile, 'Test.Data'); (Open file}
(Write data}
PhiJe· := 10;
Put(Phile);
PhiJe· := 20;
Put(Phile);
PhiJe· := 30;
Put(Phile);
I:= O;
(Set file pointer back to start}
Close(Phile);
Open(Phile, 'Test.Data); (Also reads the first record}
while not(EOF(Phile)) do
begin
Writeln(Phile·)
I:= I+ 1;
Seek(Phile,I);

end
end.

A more sophisticated application utilizing random files is the Haiku gener
ator program. A Haiku is a Japanese lyric poem that is 17 syllables long and
often points to a thing in nature that has moved the poet. A modern
example might be:

The Macintosh computer is the Apple of my eye, forever.

Since the form of the Haiku is so simple, it makes for easy computer
generation. The program operates by using a file, built by the user, which
holds words and information about the words. The record structure is called
WordRec:

WordRec = record
Word: string[10J;
Part: PartType;
Syl : Integer

end;

48 Advanced Macintosh Pascal

Along with a string holding the word is a field holding the number of
syllables in the word. There is also a field holding the part of speech of the
word expressed as an enumerated data type named PartType. The compo
nents of PartType are:

PartType = (verb, noun, adj, any);

The poems are created by randomly selecting a record number, seeking
that record, and seeing if the word held in that record fits into the poem in
terms of both number of syllables (doesn't make the poem over 17) and part of
speech. Determining whether the part of speech fits is one of the more
interesting aspects of the program, and it is done with the use of sets. A set
called PartSet is declared to be of PartType. This means that the possible
members of the set are the possible values of PartType: verb, noun, adj, and
any. An array called Grammars is then declared with PartType as its index
type. This means that there are four elements in the array: Grammars[verb),
Grammars[noun), Grammars[adj], and Grammars[any). Each of these ele
ments is then assigned a set of the possible grammatical parts of speech that
may legally follow that part of speech. For instance, the element Grammar
[noun] is assigned the set:

Grammars[adj]: = [adj, noun[;

This set represents the possible parts of speech that may legally follow an
adjective. Assume that an adjective is the part of speech of the word just
accepted into the poem. Then, when a new word is picked from the file, its
part of speech is checked with the use of the in operator to see if it is a member
of the set of the parts of speech that can follow an adjective. A special part of
speech called "Any," which contains all the parts of speech, is used to allow any
part of speech to be used as the first word in the poem.

The pseudo code for the program is:

Initialize Grammars and other variables

Open file

Display menu to user

get input

case input of

1: Get word from user

Advance to end of file

write word to file

49 Files and File Programming

.2: Found length of file

Pick a random number

Get that record

Does it fit Grammar?

Will adding this word total < = 17 syllables

3: Close file and exit

A second level of refinement adds the procedures needed and some of the
programming structures.

procedure AddWord

begin

prompt user for word, part of speech, and number of syllables

advance file to end

Put record in file

end

procedure WritePoem

begin

Find number of records in file

Get a random record

If part of speech in Grammar of previous word,

Then Will the word fit the syllable count

Then Print word

end

Initialize grammars and variables

repeat

display menu

get choice

case choice of
'1': AddWord
'.2 ': WritePoem
'3 ': close file and Done : = True

until Done;

50 · Advanced Macintosh Pascal

The third level of refinement produces the actual Pascal code for the program.
The following are some notes about the program.

• The length of the file is determined by first doing a Seek with a record
number of Maxlnt. This sets the file position to the end of the file, one past
the last record in the file. The procedure FilePos can then be used to find the
record number. When the file position is at the end of the file, the value
returned by FilePos is one more than the record number of the Kast record.
Since record numbers start with zero, it also represents the number of
records in the file. Subtracting one from this value will produce the record
number of the last record of the file. A random value within the range of the
record numbers in the file can be generated by calling the QuickDraw
random number function Random and then performing a Mod operation
with the number ofrecords in the file.

• In the procedure AddWord the user is required to enter the word (as a
string), the number of syllables (as an integer), and the part of speech (as a
PartType). This routine takes advantage of Macintosh Pascal's ability to read
and write values of an enumerated type as a string. No type checking is done
in this routine as long as the user enters the part of speech exactly, there is
no problem. If an illegal value is entered, the program will crash. Normally,
a programmer will protect against this by reading the value as a string and
then using a case statement to assign the proper value to the enumerated
variable. The program does an input validity check on the menu selection
entered by the user. The value is read as a character and a mem1bership test
is performed on a set of legal input values.

program HaikuWriter;
type
PartType = (verb, noun, adj, any);
PartSet = set of PartType;
WordRec = record
Word: stringl10];
Part: PartType;
Syl : Integer

end;
var
PoemWord, Previous : WordRec;
Word File : file of Word Rec;
Done : Boolean;
lnSet : set of Char;
Grammars: arraylPartType] of PartSet;
Ch: Char;
SylCount : Integer;

51 Files and File Programming

procedure AddWord;
begin
Write('Word to Add-·>');
Readln(PoemWord.Word);
Write('How many Syllables··>');
Readln(PoemWord.Syl);
Write('Which part of speech (noun, adj, or verb)··>');
Readln(PoemWord.Part);
WordFile· : = PoemWord; {Assign record to file pointer)
Put(WordFile)

end; (AddWord)
procedure WritePoem;
var
Pick, Size : Integer;

begin
Seek(WordFile, Maxin!); {Move to end of file)
Size:= FilePos(WordFile); (Find number of records)
Previous.Part:= Any;

repeat
Pick:= Random mod Size - 1; (Pick a random record)
Seek(WordFile, Pick); (Get it!)
If WordFile" .Part In Grammars(Previous.Part) then (Grammar check]
If SylCount + WordFile" .Syl < = 17 then
begin
Writeln(WordFile·. Word); (Print word]
Previous : = Word File"; (New word becomes old)
SylCount : = SylCount + WordFile' .Syl;

end;
until SylCount = 17;

end;(WritePoem)
begin
(Initialize variables and grammars)
lnSet:= 1'1', '2', '3');
SylCount : = O;
Grammars(Noun]: = (adj, verb);
Grammars(adj): = I adj, noun];
Grammars(verb) :=(adj, noun);
Grammars(anyJ : = (adj, noun, verb);
Done:= False;
Open(WordFile, 'Word.Data');

repeat
Writeln('1: Add a word'); (Display menu)
Writeln('2: Write a Poem');
Writeln('3: Quit');

52 Advanced Macintosh Pascal

repeat
Writeln;
Write('Selection ··> ');
Read(Ch);
Write In

until Ch In lnSet;
case Ch of
'1' :
AddWord;
'2':
Write Poem;
'3':
Done:= True;

end
until Done;
Close(WordFile)

end.

Indexed Sequential Access Method

Many applications require a program to search through a file for specific
information. Depending on the number of records in the file, the size of each
record, and the number of times it is searched, a tremendous degradation of
program speed may occur. Several programming techniques have been devel·
oped to allow faster data file access. For instance, if the file field that is most
constantly searched is kept in sort order, file searches can be done with a
binary search algorithm. However, if there are many additions or deletions
from the file, constant sorting of the file will negate any speed gained in
searching.

Another popular technique is the use of an index into the file, sometimes
called ISAM for indexed sequential access method. ISAM requires the mainte·
nance of an index to the file in an array. The array contains a duplication of
one of the fields in the file to be searched plus the record number of the
corresponding record in the file (Figure 3.6). This field, called the key field, is
the part of the record that is most often (or the only field) searched. for. When a
search is requested, the key field in the index is searched. Since the index is
held in memory, this search-done either sequentially or with a binary search
if the array is sorted-is quick. The search is complete when either a match is
found (providing the record number) or when there are no more positions in
the array to be examined (the desired record doesn't exist).

53 Files and File Programming

Bill No No

Bill Bob No No
Bob
Susan Susan Yes Yes
Larry
Moe Larry No No

Moe No No

Figure 3.6 An ISAM System

The following program uses an ISAM technique. This program maintains
a file holding a disk index for a disk library-which turns out to be a pretty
useful application if you have nearly as many disks as I do. The record
structure used to hold the information for a disk is quite interesting; it
incorporates an array in a record.

type
DiskRecord = record
DiskName: string[30J;
Files: array[UOJ ofstrlng[20J

end;

This essentially creates a record with 11 fields, the disk name and an array
which holds 10 file names. The record can be pictured as shown in Figure 3.7.

A collection of these records is held in a file named DiskFile, which is
associated with an external file called 'Disk.Data'. The user can add new disk
records to the file or search for a particular disk record by providing its name .

. DiskName

.Files

Figure 3. 7 The record type DiskRec

54 Advanced Macintosh Pascal

When the program is started, the first thing done is the building of the
index array. This is done by reading the records sequentially and assigning the
DiskName field of each record to a position in the array called Isam. Isam is a
one-dimensional array in which the record number is the same as the array
index for each DiskName in the array. To facilitate this, the array is declared to
start with zero as its first subscript:

Isam: array[0 .. 99] of strlng[30J;

All searching is performed on this array in a sequential fashion. Since the
record number is encoded as the array position, the array cannot he sorted to
allow binary searching. Alternatively, the array could have contained the
record number in a second field, and then it could be sorted.

The basic structure of the program consists of three procedures that build
·the index, search the array, and add a new record to the file.

program Disklndex;
type
DiskRecord = record
DiskName: strlng[30J;
Files: array[UOJ of strlng[20J
end;
lnputSet = set of Char;

var
ThreeSet: lnputSet;
I, Ct: Integer;
ArrayEnd : Integer;
DiskFile : file of DiskRecord;
lnputRec : DiskRecord;
Isam : array[0 .. 99] of strlng[30J;
Temp: strlng[20J;
Done : Boolean;
Ch: Char;

procedure Buildlndex;
var
I: Integer;

begin
Open(DiskFile, 'Disk.data');
If EOF(DiskFile) = False then (Check if file exists)
begin
Ct:= O;
Seek(DiskFile, Ct);

5 5 Files and File Programming

begin
repeat
lsam[Ct] : = DiskFile· .DiskName;
Ct:= Ct+ 1;
Seek(DiskFile, Ct);
until Eof(DiskFile);

ArrayEnd: = Ct - 1;
end

end
else
ArrayEnd : = o

end; [Buildlndex)
procedure Review;
var
I: Integer;
Found : Boolean;

begin
Page(Output);
Writeln('Enter name of disk to review');
Readln(Temp);
I:= O;

repeat
If lsam(IJ =Temp then
Found : = True

else

I:= I+ 1;
until (I = Ct) or (Found = True);
If Found = True then
begin
Seek(DiskFile, I);
for I:= 1to10 do
Writeln(I : 2, ':', DiskFile• .Files(IJ)

end
else
Write('That disk is not in the index, sorry');

end; [procedure Review)

5 6 Advanced Macintosh Pascal

procedure Add;
begin
with lnputRec do
begin
Page(Output);
Write('Enter Name of disk: ');
Readln(DiskName);
writeln('Enter file names, enter return to stop');
I :=1;
Done : = False;
repeat
Write('Enter a file name:');
Readln(Temp);
lfTemp < > "then
begin
Files[IJ: =Temp;
I:= I+ 1

end
else
Done:= True;

until Done;
Seek(DiskFile, Maxlnt);
DiskFile·: = lnputRec;
Put(DiskFile);
lsam[ArrayEnd] : = DiskName;
ArrayEnd : = ArrayEnd + 1

end; (with)
end; (procedure Add)
begin
ThreeSet:= ['1', '2', '3'];
Buildlndex;
repeat
repeat
Writeln('1: Review a disk');
Writeln('2: Add a disk');
Writeln('3: Quit');
Writeln;
Readln(Ch);

until Ch In ThreeSet;
case Ch of
'1' :
Review;
'2':
Add;

5 7 Files and File Programming

otherwise

end; (case)
until Ch= '3'

end.

This program assumes a decent amount of free memory space to work
with since the index requires 31 bytes for each record in the file. This number
equals the 30 characters in each string plus one. A string occupies an extra
byte in memory to hold the length of the string (the reason a string is limited to
255 bytes). In our program, since the array has 100 elements, this preallocates
3100 bytes of memory. Should memory space b!il tight, the program could also
be written using a separate disk file to hold the\ index information. Since this
file would be much smaller than the data file, searching it would take substan
tially less time. Alternatively, the memory space for the array could be
dynamically allocated after checking the number of records in the file. More
space could then be added to the array as needed during processing.

The program could also be expanded to include several other functions.
Probably the most desirable feature to add is the ability to delete a record from
the file. To accomplish this, all the records in the file following the deleted
record would have to be shifted one position up in the file. This type of file
manipulation is generally a waste of time and resources. A better way is to
mark the record to be deleted with a code indicating that the record has been
deleted. The position in the array should also be marked as deleted. This does
not physically remove the record from the file, but when storing the array
back to the file, any record marked deleted is not written and thus removed
forever.

CHAPTER

~~----
Events

Macintosh Pascal exists as a dichotomy. On one hand, Macintosh Pascal
operates as an ordinary Pascal system; it runs standard Pascal programs using
ordinary Pascal structures such as files, Readln and Writeln. On the other
hand, Macintosh Pascal has to effectively work with the complex Macintosh
Pascal operating environment with which it constantly interacts. This situa
tion has some interesting consequences. For instance, one reason that Macin
tosh Pascal is a highly desirable system to program with is that the
programmer need not worry much about dealing with the Toolbox and
operating system; however, Macintosh Pascal does allow several Toolbox
features to seep through to the programmer. One of the most important of
these features is event handling. Events are the Macintosh's way of responding
to actions taken by the user-clicking the mouse button or typing on the
keyboard. These events can be passed through Macintosh Pascal and on to
your program.

Why Use Events?

This chapter explores the event-handling system, the structure of events,
the Macintosh routines used to handle events, and the use of these routines in
a Macintosh Pascal program.

Events can relieve some sticky programming situations that may occur. An
example of this type of situation is a program that allows either keyboard or
mouse input at the same time. This is difficult to achieve since execution of a
Read or Readln statement causes the program to sit and wait for the input to be
entered on the keyboard; it does not allow anything else to happen while it is
waiting. Macintosh Pascal is very patient and will gladly sit and wait forever.

59

Event Types

60 Advanced Macintosh Pascal

Read(Ch); <-··The program will wait here
GetMouse(X, Y);

In the preceding two lines of Pascal code, the GetMouse procedure will not
be performed until input is entered on the keyboard. If you want the mouse
input before or instead, you're out of luck.

Two separate sets of low-level Macintosh routines are used to mana1ge events.
They are the operating system's Event Manager, which interfaces. with the
Macintosh's hardware, and the Toolbox's Event Manager, which works with
the application programs. The operating system's Toolbox Manager responds
to user actions such as clicking the mouse or clicking a key. When one of these
user responses takes place information about it is placed into a list known as
the Event Queue (Figure 4.1). The Event Queue is a first-in, first-out (FIFO)
structure in which the first event to occur is placed at the head of the list, and it
is the first event to be processed.

Event 1 It-- Event 2 It-- Event 3

Figure 4.1 The Event Queue

There are 16 different classifications of events that are tracked by the
operating system's Event Manager. The most important ones fall into these
categories.

• Mouse Events-There are separate events for when the mouse button is
depressed (Mouse Down Event) and released (Mouse Up Event).

• Keyboard Events-There are separate events for when a key is depressed
(Keyboard Down Event), when a key is held down (Auto Key Event), and
when a key is released (Key Up Event).

• Null Event-No event has occurred.

61 Events

The following event categories are of less importance to Macintosh Pascal
programmers and are included for completeness.

• Disk Event-An event is generated (Disk Insertion Event) when a disk is
inserted into a disk drive.

• Window Events-There are separate events generated whenever a win
dow is made active (Activate Event), when a window is made inactive
(Deactivate Event) and when the active window needs to be redrawn
(Update Event).

• Network Events-An event can be generated by an AppleTalk device
hooked up to the Macintosh's serial port.

• Application Events-Up to four different types of applications-defined
events are supported.

Each type of event has its own event code.

Table4.1

Event

Null Event
Mouse Down Event
Mouse Up Event
Key Down Event
Key Up Event
Auto-key Event
Update Event
Disk Insertion Event
Activate Event
Network Event
Device Driver Event
Application 1 Event
Application2 Event
Application3 Event
Application4 Event

Code

0

1

2

3

4

5
6

7

8

10

11

12

13
14

15

Event Records

62 Advanced Macintosh Pascal

When an event is detected, it is posted to the Event Queue by adding an event
record containing all the pertinent information about that event. The informa
tion included in the event record is:

1. The type of event (event code)

2. The time the event occurred expressed in ticks (1/60th's of a second) since
the system start-up occurred.

3. The location of the mouse, expressed in global coordinates, at the time of
the event.

4. The state of the mouse button and the modifier keys in the keyboard at the
time of the event.

5. Additional information particular to the type of event that occurred.

Event records are a predefined Macintosh Pascal data type defined as:

type
EventRecord = record
What: Integer;
Message : Longlnt;
When : Longlnt;
Where : Point;
Modifiers: Integer

end; [Event Record)

This record definition does not have to be defined in your program to be
used since it is predeclared. For instance, to declare an event record named
Event:

var
Event: EventRecord;

The fields in an event record have the following meanings (Figure 4.2):

What-indicates the type of events with the event codes listed above.

When-holds the time of the event as the number of ticks since system
start-up.

Where-holds the mouse location, expressed as a point, at the time of the
event.

63 Events

Modifier-holds the state of the modifier keys and the mouse button
expressed as the sum of the predeclared Macintosh Pascal constants.

const
ActiveFlag = 1;
btnState = 128;
cmdKey = 256;
shiftKey = 512;
alphalock = 1024;
optionKey = 2048;

Event

what

message

when

where

modifiers

~
;lt------1

Event Event

what what

message
-~

message

when ;It-- when

where where

modifiers modifiers

Figure 4.2 Event records in the event queue

The following are also predefined Macintosh Pascal constants that may be
used without declaring them in your program (Figure 4.3). These constants
represent the modifier flags held by the modifier field of the event record .

Notice that the btnState bit is set(value of 1) when the mouse button is up
but the bits for the modifier keys are set if the keys are down. If more than
one of these conditions exists, the value of the modifier field is the sum of
the bits set . For instance, if at the time of the event both the shift and the
option keys are being held down, the value of the modifier field will be the
value of shiftKey + optionKey (512 + 2048) which equals 2560.

Message - The message field is a longint that conveys additional informa
tion about the event. The context of the message changes with the type of
event and can be summarized as follows:

64 Advanced Macintosh Pascal

Bit 15 12 1110 9 8 7 6

*

* reserved for future use
1 if Option key down, 0-if not ____ ___.

1 if Caps Lock key down, O of not

1 if Shift key down, O if not

1 if Command key down, O if not

1 if mouse button up, 0 if not -------------'

Keyboard Events

1 if window being activated, 0 if deactivated

Event Type

Mouse event
Window event
Keyboard

Figure 4.3 The keyboard modifiers

Message

meaningless
pointer to window
character code and key code

0

When a keyboard event occurs (key up, auto, or down), the message field of
the event record contains two pieces of information held together: the ASCII
character code for the character and the key code (Figure 4.4).

How do these values differ? The ASCII code represents the actual char
acter selected by the user and is affected by the modifier keys. For instance,
the code for a capital C is different then a lower-case c. The key code (Figure
4.5) represents the key that was depressed on the keyboard and is the same
regardless of any modifiers pressed simultaneously.

Either of the two values held in the keyboard event record message field
can be separated with the proper use of a mask.

31 16 15 8 7 0

Not Used

charac:ter code

key code
Figure 4.4 Event message for keyboard events

65 Events

33

f$si]f$lzlfii31fii4]rstsl[$i7l~1 $1A ~I $lC ~rmll $1D ~[St6lfiiil Baclc-
~11...LJJILLJllLLJl!Ll.JIWllWJ 1 e !WI 0 IL;..J~ space

E;JI s~c II so.;1 H S~E H 5~ ~I 5~1 ~~ s~o ~~ 5~0 ~I 5~2 ~I s~F II s~ II 5l1 ~~ sjE 115~ ~
r=;;.$3=9==rsoo11[$0tllf$oilf$0sllrs05lf$04Jl~lfi2illfii51["Sz91fi27l~
Capsloct L!LJllL!...JILlUILLJllUUILJ.dllb:LJILLlJIU:.JILUIL:..J~
.$38 $06 f$ii7l $08 I SOB ~f$2oll $2E II $2B 11 ·$2F II $2C 1~ $38 ~

Shift IULJI C 8 IL!!Jl n , . I ~ Shift ~

~~53~ M531 ll$:4merl~
$3A $3A

Using Bit Masks

~[:]~~
I s~g ~I ~B ~I ~c I~ $4/D ~
I $~6 11 s;7 ~I $~8 1~ u: ~
[!]CT]CT]Dc
I 552

0 II ~1 I Enter

Figure 4.S Macintosh key codes

Using a mask is an ancient programming technique left over from the days
when all programming was done in machine language. It involves taking a
variable, such as an integer, and viewing the individual bits inside of it.
Normally, there is no need to do this while programming in a high-level
language, but in certain situations, a single variable is used to encode different
pieces of information by logically dividing the variable into several fields. Such
is the case with the event record message field when it holds a keyboard event.
For example, when the keyboard event involved typing a lower-case b, the
message field would look like this:

00001011 0110 0010
o B 6 2 (Hex value)

66 Advanced Macintosh Pascal

The contents of this long integer may appear strange. We are used to
thinking of the value of a long integer variable as a decimal value, but it is
actually stored as a series of 32 binary digits (bits). Binary values are very often
expressed as hexadecimal (hex) values (base 16). If you are unfamiliar with
binary and hex or need to brush up on them, Appendix C provides a short
review.

In order to separate the two discrete values held in the long integer, it is
necessary to operate directly on the bits themselves. This requires using the
logical AND operator and a properly selected mask value. When two bits are
ANDed, the result is:

First Bit Operator Second bit Result

0 AND 0 gives 0
1 AND 1 gives 0
0 AND 1 gives 0
1 AND 1 gives 1

Notice that when the second bit is zero, the result is always zero
regardless of the value of the first bit; but when the second bit is 1, the result is
always the same as the value of the first bit. This fact can be used to screen out
the bits we are not interested in and to let the bits we wish to examine filter
through. Specifically, in order to isolate the rightmost eight bits of the mes
sage, we can AND it with a bit pattern that is designed to only allow 1hose eight
bits to filter through. This type of bit pattern is known as a mask.

0000 1011 0110 0010
0000 0000 1111 1111 < =mask
0000 0000 0110 0010

The value of the result is the same as the value of the rightmost eight bits,
thus the value is isolated.

In Macintosh Pascal we can perform an AND with the BitAnd function. It's
form is:

function BitAnd(long1, long2: Longlnt) : Long Int;

where longl and long2 are both long integers.
Specifically, we could use one of the two long integers as our value and the

other as the mask in either decimal or hexadecimal.

BitAnd(Event.message, 255)

or

BitAnd(Event.message,$FF)

67 Events

The isolation of the second set of eight bits is slightly more complicated.
First, let's look at the mask needed to filter these bits.

0000 1011 0110 0010
1111 1111 0000 0000 < ... mask
0000 1011 0000 0000

The value of this mask is decimal 65280, or hexadecimal $FFOO. The result of
the AND isolates the eight bits we are interested in, but they are not in the
proper position to be used as an arithmetic value; that is, they are not the
rightmost eight bits of a variable. They must now be shifted eight bits to the
right. The Macintosh Pascal BitShift function is used for this purpose.

function BitShift(long : Longlnt; count: Integer) : Longlnt;

where long is a long integer value and count is the direction of the shift and the
number of bits to move. The direction is determined by the sign of count:
positive shifts to the left, negative shifts to the right. The number of bit
positions to move in the desired direction is the absolute value of count mod
32. This means that if the value of count is less than 32, it is simply count
number of bits.

In our example, to shift the value eight bits to the right, we can use:

L: = BitAnd(E.Message, $FFOO);
ASCllCode: = BitShift(L, -8); !Shift 8 bits to the rightl

The remaining bit operations are:

Bit0r(Long1, Long2)

returns the logical OR of two long integers. The table of results of the logical
OR operation is :

First Bit Second Bit

0 OR 0 gives 0
1 OR 0 gives 1
0 OR 1 gives 1
1 OR 1 gives 1

Using Events

68 Advanced Macintosh Pascal

BitXOr(Long1, Long2)

returns the logical Exclusive OR of two long integers. The table of results of the
logical Exclusive OR operation is:

First Bit Second Bit

0 XOR 0 gives 0
1 XOR 0 gives 1

0 XOR 1 gives 1

1 XOR 1 gives O

BitNot(Long)

returns the logical NOT of a long integer. The table of results of the NOT
operation is:

BitNOT 0 gives 1

BitNOT 1 gives 0

So far in this chapter a lot has been said about events, but no way to access
them from a Macintosh Pascal program has been presented. To utilize events,
the Event Queue is searched for an event of the desired type. If it is found, it is
removed from the queue and passed to the program as a parameter. In
Macintosh Pascal as in any program written for the Macintosh, this is per
formed by the function GetNextEvent, a direct implementation of a Toolbox
routine. GetNextEvent causes the Toolbox Event Manager to search the Event
Queue for an event of a specific type. If an event is found, the event record is
removed from the queue and passed to the program in a variable parameter.

function GetNextEvent(Mask: Integer; var Event: EventRecord): Boolean;

where:

mask is an integer used to specify what kind of events are to bo removed
from the Event Queue

event is a variable of type EventRecord that receives the event record from
the Event Queue as a variable parameter.

GetNextEvent is a function that returns two values. The result of the
function is a Boolean value, True, if an event record is found and False
otherwise. If the result is True, the actual event record is passed to the
function as a variable parameter.

69 Events

The mask used as the first parameter in the function describes what event
type to pull off the Event Queue. The mask is the sum of the event masks of the
specific event types that you want passed to your program. The event masks
have been conveniently defined as Macintosh Pascal constants.

con st
NullMask = 1;
MDownMask = 2;
MUpMask = 4;
KeyDownMask = 8;
KeyUpMask = 16;
AutoKeyMask = 32;
UpdateMask = 64;
DiskMask = 128;
ActiveMask = 256;
AbortMask = 512;
ReserveMask = 1024;
DriverMask = 2048;
App1Mask = 4096;
App2Mask = 8192;
App3Mask = 16384;
App4Mask = 32768;

Since these constants are predeclared, they are recognized by Macintosh
Pascal without needing to declare them in your program. For instance, if you
want to receive all mouse events (up and down), you would use a mask of
MDownMask + MUpEvents, 2 + 4, or 6.

Event removed from event queue

Event Event

what what

~ message message

when when
,.
::::

where where

modifiers

Information returned by GetNextEvent

Figure 4.6 The event masks

Event

what

message

when

where

modifiers

70 Advanced Macintosh Pascal

Remember, GetNextEvent returns only the first event on the queue that
matches the mask. Since the Event Queue is a FIFO structure, the first event of
that type to have occurred is the first sent to the program.

Programming with GetNextEvent

Using events changes the usual nature of the program you are writiing. Event·
driven programs often consist of a loop which continually calls GetNextEvent
until an event occurs and then processes it.

The following simple example of an event-driven program simply waits
for an event to occur and then displays the event type in the Text window.

program FirstEvent;
var
Event : EventRecord;

begin
while not(GetNextEvent(62, Event) do
Writeln('Waiting for an event');

Writeln(Event.What)
end.

When this program is run the 'Waiting for an event' message is displayed
by the while loop until an event occurs. At that point, the value returned by
GetNextEvent is True (then reversed for use as the condition of the while loop)
and the loop is terminated. Notice that when the program is running, the mere
repositioning of the mouse does not create an event. This program can be
improved with the use of a procedure that uses a case statement to display a
message about the event code.

program FirstEvent;
var
Event : EventRecord;
procedure WriteEvent;

begin
case Event.What of
1 :
Writeln(' Mouse Down');
2:
Writeln(' Mouse Up');
3:
Writeln('Key Down');
4:
Writeln('Key Up');
5:
Writeln('Auto Key');

end; [case]

71 Events

end; (procedure WriteEvent}
begin
while not(GetNextEvent(62, Event) do

Writeln('Waiting for an event'); (only statement in loop}
Writeln(Event. What);
WriteEvent

end.

The next example program displays the message field of the event record
for a keyboard down event. Unlike the previous example where the loop
terminated at the first event that occurred, this program will allow several
successive events to occur. A slightly different programming technique will be
needed to allow the program to eventually terminate. This is normally not a
problem when programming in Macintosh Pascal because the Pause menu is
always available to halt a wayward program. However, once GetNextEvent is
called, Macintosh Pascal's own event-handling capability is disabled with the
Pause menu highlighted, yet useless since Macintosh Pascal will never sense
the mouse down event in the menu bar. It has been passed to your program.
Once the running program terminates, Macintosh Pascal regains its lost event·
handling capability. Our new programming example implements a timer by
using a variable that is incremented once for each iteration of a repeat loop.
The loop will terminate when the timer reaches a predetermined value.

program EventTwo;
var
Timer: Integer;
Event: Eventrecord;
L: Longin!;

begin
Timer:= O;
repeat
If GetNextEvent(127, E) then
begin
L: = BitShift(BitAnd(Event.Message, $FFOO), - 8);
Writeln(Event.Message, L, BitAnd(Event.Message, $fij)

end;
Timer:= Timer + 1;

until Timer = 1000;
end.

Notice that this program utilizes a repeat loop rather than a while loop,
and GetNextEvent is called from inside an If statement. This is more typical of
event-handling programs on the Macintosh.

EventAvail

72 Advanced Macintosh Pascal

Our next programming example involves mouse down events. When any
event occurs, the Where field of the event record contains the loca1tion of the
mouse at the time of the event, expressed in a point. If the event record is
Event then the position of the mouse would be held in the Where :field of the
event record, which is a point. In our example the fields are Event.Where.ff
and Event.Where.v. The following program waits for a mouse event and then
displays the location of the mouse in the Text window. Notice that the
coordinates displayed are screen coordinates with the upper left-hand corner
of the screen being point 0,0.

program MouseEvent;
var
Timer : integer;
Event : Eventrecord;

begin
repeat
If GetNextEvent(6, Event) then
begin
Writeln(Event.Where.H, Event.Where.V)
end;

Timer:= Timer+ 1;
until Timer = 1000;

end.

The Toolbox Event Manager has a second function that is called EventAvail
similar to GetNextEvent. EventAvail (Figure 4. 7) scans the Event Queue just
like GetNextEvent, and if the event is found, it only reports back to the
program of it's existence but does not remove the event from the queue.
This means that a second call to EventAvail or GetNextEvent with the same
event mask will return the same event. EventAvail is often used as a way to
look at items in the Event Queue without removing them so that they can be
processed at a later time. The form of EventAvail is:

function EventAvail(Mask: Integer; var Event: EventRecord) : Boolean;

73 Events

Event Event

what what

message message

when .~ when ·~

where where

modifiers modifiers

Zat;on returned b EventAvail y

Figure 4. 7 The EventA vail

Event

what

message

when

where

modifiers

The next programming example demonstrates the differences between Event -
Avail and GetNextEvent. The program has two event loops, the first using
EventAvail and the second GetNextEvent. When an event is detected the
Event.What field is displayed in the Text window along with the output of the
WriteEvent procedure. To help differentiate the output from each loop, a
message is displayed prior to entering both. When the program is executed
you will notice that the first event discovered by EventA vail is the only event
that is displayed. This is because each time EventAvail is called it starts
scanning at the start of the Event Queue. Any other event of the same event
type will remain undiscovered. When the GetNextEvent loop starts, the same
event revealed by EventA vail will be the first event returned by GetNextEvent.

Notice that the timer used for the EventAvail is shorter than that for
GetNextEvent since 1000 calls to EventAvail will return the same event 1000
times, but 100 calls to GetNextEvent will return the event only once.

program LookAtEvents;
var
Timer: Integer;
Event : EventRecord;

procedure WriteEvent;
begin
case Event.What of
1:
Writeln('Mouse Down');
2:
Writeln(' Mouse Up');
3:
Writeln(' Key Down');
4:
Writeln(' Key Up');

Flush Events

7 4 Advanced Macintosh Pascal

5:
Writeln(' Auto Key');

end; [easel
end; [procedure WriteEventJ
begin
Writeln(' • ·EventAvail loop••');

repeat
If EventAvail($FF,Event) then
begin
Writeln(Event.What);
WriteEvent

end
Timer:= Timer + 1;

until Timer = 10;
Timer:= O;
Writeln(' .. Get next event loop .. ');
repeat
If GetNextEvent($FF,Event) then
begin

Writeln(Event.What);
WriteEvent;

end;
Timer:= Timer + 1;

until Timer = 1000;
end.

The procedure FlushEvents is used to remove events from the Event Queue
without passing them back to the program. This Operating System Event
Manager routine is commonly used to make sure that no stray events are
sitting in the Event Queue from the time prior to the execution of your
program. The form of FlushEvents is:

procedure FlushEvents(EventMask, StopMask : Integer)

Where:

EventMask is the sum of the event masks for the type of events to remove
from the queue.

StopMask is the event mask of the type of event at which FlushEvents will
stop.

75 Events

FlushEvents moves down the Event Queue, removing all the events of the
specified type up to but not including the first occurrence of the event type
specified as the StopMask. If the Event Queue contains no events of the type
specified, then no action is taken. A StopMask of 0 will remove all events of the
specified type. To remove all events of all types from the Event Queue (to make
sure that it is empty), use an EventMask that represents all events and a
StopMask of 0:

FlushEvents($FFFF,O) (removes all events from queue]

CHAPTER

~[!]----
QuickDravv
Progra0101ing
Techniques

L you have spent any time working with Macintosh Pascal you have no
doubt included QuickDraw routines in your program. The QuickDraw graph
ics package was originally developed for the now defunct Apple Lisa computer
and was transported to the Macintosh. It forms the foundation on which the
entire Macintosh user interface is based and is arguably the most impressive
part of the advanced technology that is the Macintosh.

QuickDraw is built into the Macintosh's read only memory along with the
Toolbox and operating system routines. It is directly supported by Macintosh
Pascal, meaning that all of the QuickDraw routines and data types are
accepted by the interpreter as though they were part of standard Pascal. This
does not mean that all of the QuickDraw procedures and functions can be
used with impunity. There are several areas of QuickDraw that should not be
experimented with since doing so may interfere with the way Macintosh
Pascal interfaces with QuickDraw and the operating system. These areas will
be pointed out as they are discussed.

Since this book deals with advanced Macintosh Pascal techniques and
features, it is assumed that you have some knowledge of the fundamental
concepts related to QuickDraw. This includes the QuickDraw coordinate
system, points, rectangles, the five drawing operations (Frame, Erase, Paint,
Fill, and Invert), and calculations with rectangles (most notably the PtlnRect
function). All these simple concepts will be used repeatedly throughout the
remainder of this book.

77

78 Advanced Macintosh Pascal

This chapter discusses specific QuickDraw programming techniques
using many of the topics just mentioned and Chapter 7 covers some of the
more advanced QuickDraw topics. These programming techniques highlight
the use of QuickDraw to provide useful graphic interfaces for your programs.
This includes using QuickDraw to simulate the standard Macintosh user
interface features such as pushbuttons and control buttons. These techniques
include examples that use event handling.

The GridEdit Program

Our first programming techniques involve the use of a large number of
rectangles and the PtlnRect function. The Grid.Edit program (Figure 5.1) is a
building block of a program that edits graphical elements such as the cursor.
This program displays an eight -by-eight grid of rectangles and allows the user
to select which rectangles are white or black. Eventually, this program will
provide a function similar to the FatBits operation in the MacPaint program,
but at this point the GridEdit simply tracks which grid elements are ON (black)
or OFF (white).

Figure G.1 The grid from GridEdit

The eight-by-eight grid is constructed by declaring a two-dimensional
array of rectangles.

type
GridSize = 1 .. 8;

var
Grid : array [GridSize, GridSize] of Rect;

Each rectangle is defined as a ten-by-ten point square with the top leftmost
square starting at point (20, 20). Figure 5.2 shows the coordinates for all the
squares which are defined as follows:

79 QuickDraw Programming Techniques

(20,20)
.L.30,30)

~

....
(100, 100)

Figure s.2 The coordinates of the GridEdit grid

If we think of the grid as eight columns and eight rows then the following
formulas define the coordinates for each of the rectangles.

Upper Left point: 10 +Row• 10, 10 +Column• 20

Lower Right point: 20 + Row • 10, 20 + Column • 10

Two nested For loops are used to initialize the rectangles.

for Col:= 1 to Bdo
for Row : = 1to 8 do
begin
SetRect(Grid[Row, Col], 10 + Row• 10, 10 + Col· 10, 20 + Row. 10, 20 +Col• 10);
FrameRect(Grid[Row, Coll);

end;

A loop then waits for a mouse event. Then the nested loops are used with
the PtlnRect function to test all the rectangles to see where the mouse was
clicked.

repeat
until button;
GetMouse(Pt.H, Pt.V);
for Col : = 110 8 do
for Row : = 110 8 do
If ptlnRect(Pt, Grid[Col, Row)) then

In order to track the state of each rectangle (white or black) a second array
of Boolean values is also needed.

Mark : array [GridSize, GridSize[of Boolean;

80 Advanced Macintosh Pascal

By convention, False will represent an OFF (or white) rectangle and True
represents an ON (or black) rectangle. When a white rectangle is SE!lected it is
turned black with FillRect; when a black rectangle is selected it is turned white
with FillRect, and then FrameRect is called to restore its outline. The corres
ponding position in the Mark array is then switched.

If PtlnRect(Pt, Grid[Col, Row)) then
begin
Mark[Col, Row] : = not (Mark[Col, Row));
If Mark[Col, Row] then

FillRect(Grid[Col, Row], black)
else

begin
FillRect(Grid[Col, Row), white);
FrameRect(Grid[Col, Row]);

end
end;

To terminate the program, a larger rectangle is displayed below the grid.
A click in this box will stop the program from accepting any new mouse input.
The program then displays, in the Text window, the corresponding values in
the array Mark.

for Row : = 1to 8 do
begin
for Col:= Ho 8 do
Write(Mark[Col, Row), ' ');

Writeln
end;

Later we will discuss how this data can be put to further use. Here is the
program all together.

program GridEdit;
type
GridSize = 1..8;

var
Grid : array[GridSize, GridSize] of Rect;
Mark: array[GridSize, GridSize] of Boolean;
R: Rect;
X, Y : Integer;
Row, Col: Integer;
Pt: Point;
StopRect : Rect;

81 QuickDraw Programming Techniques

begin
SetRect(StopRect, 150, 150, 180, 180);
FrameRect(StopRect);
for Col:= 1to8do
for Row:= 1to8do
begin
Mark[Row, Col] : = False;
SetRect(Grid[Row, Col], 10 + Row• 10, 10 + Col• 10, 20 + Row• 10, 20 + Col· 10);
FrameRect(Grid[Row, Coll);

end;
repeat
repeat
until Button;
GetMouse(Pt.H, Pt.V);
for Col:= 1to8do
for Row:= 1to8do
If PtlnRect(Pt, Grid[Col, Row]) then
begin
Mark[Col, Row] : = not (Mark[Col, Row]);
If Mark[Col, Row] then
FillRect(Grid[Col, Row), black)

else
begin
FillRect(Grid[Col, Row], white);
FrameRect(Grid[Col, Row));
end

end;
until ptlnRect(Pt, StopRect);
for Row : = 1to 8 do
begin
for Col : = 1to 8 do
Write(Mark[Col, Row), ' ');

Writeln
end;

end.

82 Advanced Macintosh Pascal

Drawing Other Shapes

QuickDraw supports the drawing of other simple shapes in addition to
rectangles, notably, ovals and round-cornered rectangles.

Ovals

Drawing ovals is simple once you understand rectangles. An oval is defined
as the largest oval that will fit inside a given rectangle as shown in Figure
5.3.

Figure 5.3 An oval inscribed inside a rectangle

To draw an oval, you define its enclosing rectangle and then use one of
the oval-drawing routines.

procedure FrameOval(R : Reel)

draws the outline of the oval enclosed in the rectangle R.

procedure PaintOval(R : Reel)

paints an oval just inside the specified rectangle.

procedure lnvertOval(R: Reel)

inverts the pixels in the oval enclosed by the rectangle R.

procedure FillOval(R : Reel; Pat: Pattern)

Fills the oval enclosed by the rectangle R with the pattern Pat.

83 Quick.Draw Programming Techniques

In addition to these routines Macintosh Pascal includes two routines
not normally part of QuickDraw.

procedure PaintCircle (X, Y, R: Integer);

paints a circle of radius R with its center as point (X, Y).

procedure lnvertCircle (X, Y, R : Integer);

inverts the pixels in the circle of radius R whose center is at point (X,Y).

The rectangle manipulation routines can all be used with ovals since
the defining structures of ovals are rectangles.

Round-Cornered Rectangles

A round-cornered rectangle (Figure 5.4) is a rectangle whose corners are
rounded by an oval inscribed inside them that determines the radius of the
curve.

There are four round-cornered rectangle drawing procedures analo
gous to the rectangle drawing procedures.

procedure FrameRoundRect(R: Rect; ovalWidth, ovalHeight: Integer)

draws the outline of the defined round -cornered rectangle.

procedure PaintRoundRect (R: Rect; ovalWidth, oval Height: Integer)

paints the defined round-cornered rectangle.

procedure lnvertRoundRect (R: Rect; ovalWidth, oval Height: Integer)

inverts the pixels in the defined round -cornered rectangle.

procedure FillRoundRect (R : Rect; ovalWidth, oval Height: Integer; Pat: Pattern)

fills the defined round-cornered rectangle with the pattern Pat.

Width

Height

Figure 6.4 A round-cornered rectangle

84 Advanced Macintosh Pascal

Simple Animation Techniques

Using rectangles, animation effects can be created on the Drawing win
dow. The basis of animation is the quick redrawing of the same shape in a
slightly altered position.

As a building block of an animation program, let's look at a program
that draws a series of rectangles across the screen.

program RectSeries;
var
R: Rect;
K, Oh : Integer;

begin
Oh:= O;
for K := 1to 100 do
begin
SetRect(R, 10 + Oh, 10 + Oh, 30 + Oh, 40 + Oh);
FrameRect(R);
Oh:= Oh+ 10

end
end.

The program RectSeries declares a rectangle, draws its outline, and then
redefines the rectangle displaced by 10 points both to the right and down
(Figure 5.5).

Drawing

Figure 5.5 The rectangles drawn by SeriesRect

85 QuickDraw Programming Techniques

I

Since we wish to move a single rectangle across the screen ratt
draw a group of rectangles, we must now erase the rectangle on th~
before drawing the displaced rectangle. This is exactly what is done in the
enhanced program now called AnimaRect (Figure 5.6). It is also more effective
if the rectangle is painted rather than just framed.

program AnimaRect;
var
A: Rect;
K, Oh : Integer;

begin
Oh:= O;
for K: = 1 to 100 do
begin
EraseRect(R);
SetRect(R, 10 + Dh, 10 + Oh, 30 + Oh, 40 + Oh);
PaintRect(R);
Oh:= Oh + 2 [Speed control]

end
end.

0

I

Drawing

Figure 5.6 A snapshot from AnimaRect

121

86 Advanced Macintosh Pascal

If you run AnimaRect there are some interesting things to note. The speed
of the rectangle is controlled by how much the rectangle is displaced each
time. The larger the displacement, the faster the speed; but as the speed is
picked up, the resolution of shape is decreased since there is less time to see
the object. Alter the displacement value and watch the results. The flicker in
the shape should also be noticeable. This flicker occurs because the drawing of
the rectangle is not synchronized with the electron beam refreshing the
Macintosh's screen. The human eye is not capable of sensing motion that
occurs faster than 50 to 60 times a second and, coincidentally, the contents of
the Macintosh's screen are redrawn at 60 times a second. Any drawing not
coordinated with this cycle will appear to flicker, or it may display a scanning
bar going from the top of the screen to the bottom. This is a particular problem
with Macintosh Pascal because of the delay involved in interpreting the Pascal
statements.

The Synch procedure is used to combat this problem. Synch holds control
of the program and doesn't return it until the electron beam has reached the
top of the screen and is about to redraw the entire screen. The procedure
takes no parameters. Inserting the Synch procedure before the drawing
routine will eliminate the flicker. This is not an exact science and the program
mer may have to play around with different numbers of Synch calls in
different positions in the program to get the desired effect.

program AnimaRect;
var
R: Rect;
K, Oh : Integer;

begin
Oh:= O;
for K: = 110100 do
begin
EraseRect(R);
Synch;
SetRect(R, 10 + Oh, 10 + Oh, 30 + Oh, 40 + Oh);
PaintRect(R);
Oh : = Oh + 2 [Speed control)

end
end.

87 QuickDraw Programming Techniques

D Drawing

[g
[Q]
[Q]

l2l

Figure 5. 7 The PaulPaint screen

The PaulPaint Program

PaulPaint is a program that allows freehand drawing of rectangles, ovals,
and round-cornered rectangles, loosely (very loosely) based on MacPaint.
The program displays a choice of three shapes (rectangle, oval, and round
cornered rectangle) on the left side of the Drawing window (Figure 5. 7).
Clicking in any of the shapes selects that shape as the one to be drawn . A
shape is drawn by clicking at the upper left-hand corner of the shape and
then clicking again in the lower right-hand corner.

You will find the structure of the program to be quite interesting since
the meaning of the mouse input is different, depending on the context that
the program is in . In programs of higher complexity it is helpful to examine
pseudocode for the program first.

Initialize menus

Repeat

Repeat

Until mouse button pressed

Test to see if cursor is in menu

If it wasn 't then

begin

Repeat

Animate rectangle

Until mouse button pressed

DrawShape

Until Forever.

88 Advanced Macintosh Pascal

First, the shapes to be selected are defined and drawn.

SetRect(R1, 10, 10, 40, 40);
FrameRect(R1);
SetRect(R2, 10, 45, 40, 75);
FrameRect (R2);
SetRect(R3, 10, 80, 40, 110);
FrameRect (R3);
SetRect(Re, 15, 15, 35, 35);
FrameRect (Re);
SetRect(Ov, 15, 50, 35, 70);
FrameRect (Ov);
SetRect(Rc, 15, 85, 35, 105);
FrameRoundRect(Rc, 15, 15);

The program then loops until the mouse button is pressed, at which time
the rectangles around the shapes are tested to see if the mouse click was inside
of them.

repeat
until button;
GetMouse(Pt.H, Pt. V);
If PtinRect(Pt, R1) then
begin
DrawMode : = Act;
Select:= True

end;
If PtinRect(Pt, R2) then
begin
DrawMode : = Oval;
Select : = True

end;
If PtinRect(Pt, R3) then
begin
DrawMode: = Round;
Select:= True

end;

89 QuickDraw Programming Techniques

If no shape was selected, then the click was intended to be the upper left
hand corner of the shape. It cannot be the lower point due to the context of the
program. That point is saved, and then the program follows the movement of
the mouse, drawing the rectangle defined by the current cursor position as its
lower right-hand comer. Then it quickly erases it as the cursor is moved. This
provides an animation effect. Once the mouse button is clicked, the final size
of the rectangle is known and the selected shape is drawn inside it.

begin
Top:= Pt;
repeat
GetMouse(Bottom.H, Bottom.V);
setRect(Draw, Top.H, Top.V, Bottom.H, Bottom.V); FrameRect(Draw);
EraseRect(Draw);

untll button;
GetMouse(Bottom.H, Bottom.V);
SetRect(Draw, Top.H, Top.V, Bottom.H, Bottom.V);
case DrawMode of
Rct:
FrameRect(Draw);

Oval:
FrameOval(Draw);

Round:
FrameRoundRect(Draw, 9, 9);

end; !Case)
end

Here is the entire program.

program PaulPaint;
type
Mode = (Act, Oval, Round);

var
R1, R2, R3, Re, Ov, Re: Reel;
DrawMode : Mode;
Pt: Point;
Select: Boolean;
Top, Bottom : Point;
Draw: Rect;

90 Advanced Macintosh Pascal

begin
Select:= False;
SetRect(R1, 10, 10, 40, 40);
FrameRect(R1);
SetRect(R2, 10, 45, 40, 75);
FrameRect (R2);
SetRect(R3, 10, 80, 40, 110);
FrameRect (R3);
SetRect(Re, 15, 15, 35, 35);
FrameRect (Re);
SetRect(Ov, 15, 50, 35, 70);
FrameRect (Ov);
SetRect(Rc, 15, 85, 35, 105);
FrameRoundRect(Rc, 15, 15);
repeat
repeat
untll button;
GetMouse(Pt.H, Pt.V);
If PtinRect(Pt, R1) then
begin
DrawMode : = Rct;
Select : = True

end;
If PtinRect(Pt, R2) then
begin
DrawMode : = Oval;
Select : = True
end;

If PtinRect(Pt, R3) then
begin
DrawMode : = Round;
Select : = True
end;
If Select then
Select : = False

else
begin
Top:= Pt;

91 QuickDraw Programming Techniques
~~~~~~~~~~~ 

PaulPaint Revisited 

repeat 
GetMouse(Bottom.H, Bottom.V); 
SetRect(Draw, Top.H, Top.V, Bottom.H, Bottom.V); 
FrameRect(Draw); 
EraseRect(Draw); 

until button; 
GetMouse(Bottom.H, Bottom. V); 
SetRect(Draw, Top.H, Top.V, Bottom.H, Bottom.V); 
case DrawMode of 
Rct: FrameRect(Draw); 

Oval: 
FrameOval(Draw); 

Round: 
FrameRoundRect(Draw, 9, 9); 

end; [Case} 
end 

untll false 
end. 

A second way of writing the PaulPaint program is to employ event handling. 
The advantage is improved response to mouse input. There is more direct 
handling of mouse down events with GetNe:xtEvent rather than the Button 
function, which checks the Event Queue itself. The basic structure of the 
program changes little except substituting of GetNextEvent calls for the Button 
and GetMouse functions. This results in improved response to the mouse 
clicks. The GetNextEvents are set up only to detect a mouse down event with 
an event mask of two. This is because pulling the mouse up events off the 
Event Queue will confuse the operation of a program that was originally 
written with the Button routine (which only detects mouse downs). When the 
GetNe:xtEvent detects a mouse down, the mouse location is held in the Where 
field of the event record. One call to GetMouse is still used to animate the 
movement of the rectangle across the screen since no event occurs as the 
mouse moves. Another change in the program is the inclusion of a fourth 
rectangle called "Stop," used to stop the program since Macintosh Pascal's 
event handling is shut off by the use of GetNe:xtEvent. A much maligned Goto 
statement is used to branch the program to the end. 

program PaulPaintll; 
label 
99; 

type 
Mode = (Rct, Oval, Round); 



92 Advanced Macintosh Pascal 

var 
R1, R2, R3, Re, Ov, Re, Stop: rect; 
DrawMode : Mode; 
Pt: Point; 
Select : Boolean; 
Top, Bottom: Point; 
Draw: Rect; 
E: EventRecord; 

begin 
Select : = False; 
setRect(R1, 10, 10, 40, 40); 
frameRect(R1); 
setRect(R2, 10, 45, 40, 75); 
frameRect(R2); 
setRect(R3, 10, 80, 40, 110); 
frameRect(R3); 
SetRect(Stop, 10, 115, 40, 145); 
FrameRect(Stop); 
MoveTo(12, 135); 
Drawstring(' Stop'); 
setRect(Re, 15, 15, 35, 35); 
frameRect(Re); 
setRect(Ov, 15, 50, 35, 70); 
frameOval(Ov); 
setRect(Rc, 15, 85, 35, 105); 
frameRoundRect(Rc, 15, 15); 
repeat 
repeat 
until GetNextEvent(2, E); 
GlobalTolocal(E. Where); 
Pt : = E. Where; 
If PtinRect(Pt, R1) then 
begin 
DrawMode : = Rct; 
Select : = True 

end; 
if PtinRect(Pt, R2) then 
begin 
DrawMode : = Oval; 
Select : = True 

end; 



93 QuickDraw Programming Techniques 

if PtinRect(Pt, R3) then 
begin 
DrawMode : = Round; 
Select : = True 
end; 
if PtinRect(Pt, Stop) then 
goto 99; 
if Select then 
Select : = False 
else 
begin 
Top:= Pt; 

repeat 
GetMouse(Bottom.H, Bottom.V); 
setRect(Draw, Top.H, Top.V, Bottom.H, Bottom.V); 
FrameRect(Draw); 
EraseRect(Draw); 
until GetNextEvent(2, E); 
GlobalToLocal(E. Where); 
Bottom : = E. Where; 
GetMouse(Bottom.H, Bottom.V); 
setRect(Draw, Top.H, Top.V, Bottom.H, Bottom.V); 
case DrawMode of 
Rct: 
FrameRect(Draw); 
Oval: 
FrameOval(Draw); 
Round: 
FrameRoundRect(Draw, 9, 9); 
otherwise 

end; (Case) 
end 
until false; 
99: 
end. 



94 Advanced Macintosh Pascal 

Text-Drawing Routines 

QuickDraw has a set of routines that write text data to the GrafPort. It is 
actually through these routines that all text output is done on the Macintosh, 
but this is transparent to the Macintosh Pascal user in every situation except 
when sending text information to the Drawing window. 

The two basic text-drawing routines are DrawChar and Drawstring. 
DrawChar draws one character at the current Pen location and Drawstring 
draws a string at the current Pen location. 

procedure DrawChar (Ch : Char); 
procedure Drawstring ( S: string); 

Both of the procedures start their output at the current Pen location. If 
this is not where you want the output to go, you are not stuck. The Pen 
location can be altered with the MoveTo procedure 

procedure Move To( h, v: Integer); 

which moves the Pen location to point (h,v) without writing anything. For 
instance, in order to write at location (10,20), the following instructions can be 
used. 

MoveTo(10, 20); 
DrawString('Good Morning'); 

A second procedure Move is used to perform a relative move of the Pen 
location. 

procedure Move( dh, dv: Integer); 

Move adds dh to the current horizontal and dv to the current vertical Pen. 
If the current Pen location is (100,n5), then the statement 

Move( -10, 5); 

changes the current Pen location to (90, 120). 



95 QuickDraw Programming Techniques 

The Three-Card Monte Program 

This program simulates the popular New York City street game Three-Card 
Monte. If you have never been to New York you may not be familiar with the 
game, which is designed to efficiently and quickly separate people from their 
money. Its premise is simple. The dealer has three cards, two of a black suit 
and one of a red suit. The player wages even money against the dealer that he 
or she can pick the red card after the three have been shuffled and placed on 
the table. Conceptually simple, the game (which the author has never played) 
is made more difficult with the use of a shill, who for five minutes wins 
handfuls of $20 bills from the seemingly "klutzy" dealer. But, when a pigeon 
who thinks he can make a quick buck puts up some money, a sleight-of-hand is 
used to take the player. I have seen dealers so good that when the shill bends 
the red card (with the dealer's back turned) in order to bring the "real" greed 
out in a player, the dealer does a sleight-of-hand during the shuffle that 
unbends the red and bends a black, leaving the player speechless and out $20. 

Anyway, the program, which is not this malicious, displays three filled 
rectangles as cards and randomly picks one to be the red card (Figure 5.8). The 
player clicks on the card he or she chooses. 

The technique of finding a mouse click in a rectangle should be old hat to 
you by now. What is interesting is the use of Drawstring to prompt the player 
and display text inside of the rectangles. 

Drawing 

2 3 

The Red you choose, the Black you Lose 
Which card is red? 

Figure 5.8 The Three-Card Monte program 



96 Advanced Macintosh Pascal 

The pseudocode is: 

Draw cards 

Repeat 

Until mouse button is pressed 

Randomly pick red card 

Find cursor position 

Was selected card red card 

Flip cards 

program ThreeCardMonte; 
type 
Color = (red, black); 
CardRange = 1..3; 
NumOfCards = 3; 

var 
Card : array[ CardRange I of Color; 
R : array[ CardRange I of Reel; 
CardNum, RedCard, I : Integer; 
Chin :Char; 
Pt: Point; 

begin 
SetRect(R[1[, 10, 10, 65, 85); [set up rectangles) 
SetRect(R[2[, 80, 10, 135, 85); 
SetRect(R[3f, 150, 10, 205, 85); 
for I : = 1to 3 do 
begin 
FillRect(R[lf, ltgray); [fill rectangles on screen) 
FrameRect(R[IJ); 
end; 

MoveTo(32, 9); [Display card numbers over cards) 
Drawstring( '1 '); 
MoveTo(104, 9); 
Drawstring(' 2 '); 
MoveTo(176, 9); 
Drawstring(' 3 '); 
MoveTo(10, 120); 
DrawString('The Red you choose, the Black you Lose'); 
MoveTo(10, 135); 
Drawstring( 'Which card is red?'); [prompt the user) 



97 QuickDraw Programming Techniques 

repeat 
until button; [wait for a mouse click) 
GetMouse(Pt.h, Pt.v); 
for I : = 1 to NumOfCards do 
If PtlnRect(Pt, Riii) then (find clicked card) 
CardNum :=I; 

for I : = 1 to NumOfCards do 
Cardi I] : = Black; 

RedCard: = TickCount mod 3 + 1; [now pick red card) 
CardlRedCardJ : = Red; 
for I : = 1 to NumOfCards do (turn cards over) 
begin 
EraseRect(R(ll); 
FrameRect(R(ll); 
if Card(IJ = Black then 
begin (display cards) 
Moveto(15 + 70 • (I - 1), 50); 
Drawstring(' BLACK') 
end 

else 
begin 
Moveto(15 + 70 • (I - 1), 50); 
Drawstring(' RED') 
end 

end; 
MoveTo(20, 150); 
if CardNum = RedCard then [congrats to the winner) 
Drawstring(' A WINNER') 

else [taunt loser) 
Drawstring(' A LOSER, I LIKE LOSERS') 

end. 

Now that we have explored both event handling and a subsection of 
QuickDraw 1 we can combine the two to simulate Macintosh Toolbox pushbut · 
tons and radio buttons. 

Simulating Pushbuttons 

Pushbuttons are a familiar part of the Macintosh User Interface. Unfortu
nately, Macintosh Pascal does not allow direct access to the use of pushbut
tons, but it is not difficult to simulate them with QuickDraw routines. 

A pushbutton is essentially a round-cornered rectangle with the name of 
the button displayed inside. When the mouse is clicked inside the button, it is 
inverted until the button is released. 



98 Advanced Macintosh Pascal 

As an example, the pushbuttons named Start and Stop (Figure .5.9) will be 
used. 

Essentially, each pushbutton is a round-cornered rectangle. The Quick
Draw routines will be used to define the rectangle, draw the round-cornered 
rectangle and place the strings inside them. This is quite straightforward 
programming. 

var 
Start, Stop : Reel; 

SetRect(Start, 20, 70, 80, 90); 
SetRect(Stop, 90, 70, 150, 90); 
FrameRoundRect(start, 10, 10); 
MoveTo(33, 85); 
Drawstring(' Start'); 
FrameRoundRect(stop, 10, 10); 
MoveTo(103, 85); 
DrawStrin g(' Stop'); 

( Stort ) (..___s_to_p~) 
Figure S.9 The example pushbuttons 

To detect a mouse click inside of one of the buttons, a Repeat .. Until 
Button loop could be used. This, however, is not the most desirable way to 
operate since as the program is waiting inside the loop, no other operations 
can take place. A more preferable way to operate is to use an event loop. The 
loop will wait for a mouse down event in one of the buttons, but the loop is also 
capable of processing other tasks or events that occur. The form of 1he loop is: 

repeat 
if GetNextEvent(2, E) then ... 

until False; 



99 QuickDraw Programming Techniques 

The simplest construction of the loop will detect a mouse down event, find 
out if the mouse location was inside a button's rectangle, and then invert that 
button. 

repeat 
if GetNextEvent(2, E) then 
begin 
GlobalToLocal(E.Where); 
if PtlnRect(E.Where, Start) then 
I nvertRound Rect(Start, 10, 10) 

else 
if PtlnRect(E.Where, Stop) then 
I nvertRoundRect(Stop, 10, 10) 

until . . . 

This program segment tests where the mouse down event occurred by 
checking both rectangles defining the buttons . Unlike GetMouse, the coordi
nates returned in the Where field of the event record are in global coordinates 
(where the top left of the screen is the origin) not the local coordinates of the 
Drawing window. Global coordinates can be converted to local coordinates 
with the GlobalToLocal procedure. 

procedure GlobalToLocal(var Pt: Point); 

GlobalToLocal takes the point passed as a parameter and converts it to the 
local coordinates of the current GrafFort (which in Macintosh Pascal is the 
Drawing window), returning the new point as a variable parameter. 

~~iEE3---~No-te-----------~ 
The original point is lost since it is replaced by the new local point. 

L 

Once the location of the mouse click is determined in local coordinates it is 
tested to see if it is contained in either button. If it is, the button is inverted 
with InvertRoundRect. 

This does not completely mimic the action of a button as it is only inverted 
while the mouse button is held down with the cursor inside the button. When 
the mouse button is released the rectangle, is "uninverted." 



100 Advanced Macintosh Pascal 

This can be added to the example by using a second repeat loop which 
terminates when the mouse up event occurs. 

if ptlnRect(E. Where, Start) then 
begin 
lnvertRoundRect(Start, 10, 10); 

repeat 
until GetNextEvent(4, E); (Waits for a mouse up) 
lnvertRoundRect(Start, 10, 10); 

The following program demonstrates the simulated pushbuttons. A tim
ing loop is used to control the execution of the program when Macintosh 
Pascal's regular event handling is turned off by the calls to GetNextEvent. An 
enumerated type, called ButtonType, is declared to track the button that was 
last pressed. 

program ButtonSim; 
type 
ButtonType = (StartButton, StopButton, None); 

var 
Start, Stop : Rect; 
E : EventRecord; 
Ct : Integer; 
Pressed: ButtonType; 

begin 
Pressed : = None; 
SetRect(Start, 20, 70, 80, 90); 
SetRect(Stop, 90, 70, 150, 90); 
FrameRoundRect(start, 10, 10); 
TextFont(O); 
MoveTo(33, 85); 
Drawstring(' Start'); 
FrameRoundRect(stop, 10, 10); 
MoveTo(103, 85); 
Drawstring(' Stop'); 
Ct:= O; 



101 QuickDraw Programming Techniques 

repeat 
Ct:=Ct+1; 
If GetNextEvent(2, E) then 
begin 
GlobalT olocal(E. Where); 
If ptlnRect(E. Where, Start) then 
begin 
lnvertRoundRect(Start, 10, 10); 
repeat 
untll GetNextEvent(4, E); 
lnvertRoundRect(Start, 10, 10); 
Pressed : = StartButton; 

end; 
If ptlnRect(E. Where, Stop) then 

begin 
lnvertRoundRect(Stop, 10, 10); 
repeat 
untll GetNextEvent(4, E); 
lnvertRoundRect(Stop, 10, 10); 
Pressed : = Stop Button; 

end 
end until Ct = 500; 

Writeln(Pressed); 
end. 

The simulation of push buttons can be further expanded by including 
both active and inactive buttons. An inactive button is displayed slightly 
dimmed and no action takes places when the mouse is clicked inside it. 
Simulating inactive buttons requires both displaying them differently from 
active buttons and programming so that no action takes place when the mouse 
is clicked in them. 

The first question to address is how to display a dimmed button. In actual 
buttons displayed by the Toolbox, the name of the button is written in gray, 
but there is no way to do this with QuickDraw. Any method that differentiates 
active from inactive buttons can be used. One possibility is to display the name 
of an active button in a different font than an inactive. The font drawn by 
QuickDraw can be controlled with the TextFont procedure. 

procedure TextFont(Font: Integer) 



102 Advanced Macintosh Pascal 

The TextFont procedure sets the font (or typeface) to be used by Quick
Draw in displaying text. The font is indicated by an integer. All the fonts are 
assigned a number in a sequence defined by Apple Computer. The system font 
(Chicago) is numbered O and the application font (almost always Geneva) is 
numbered L The entire sequence is: 

systemfont = 0 

applFont = 1 

NewYork= 2 

Geneva= 3 

Monaco= 4 

Venice= 5 

London= 6 

Athens= 7 

SanFran= 8 

Toronto= 9 

Notice that Geneva actually has two font numbers land 3. 
We can write the ButtonSim program so that only one of the two buttons 

are active at a time. This makes sense since the buttons are titled Start and 
Stop, which implies that their actions are mutually exclusive. We can also tie to 
the buttons some action such as tracking how much time has elapsed between 
button clicks. This can be done with calls to the TickCount function. 

The initial setting of the program is to have the Start button active and the 
Stop button inactive. Active button names will be displayed in the system font 
(Chicago) and inactive button names in Geneva. When the Start button is 
clicked, TickCount is called to mark the start time, and the Start but1ton is made 
inactive and the Stop button made active. To change a button from active to 
inactive or the reverse, the button is erased and then redrawn. Thus the code 
to draw the button should be placed into a procedure to eliminate duplication. 
The procedure can also receive a parameter to indicate which font to use in 
drawing the name. An example of such a procedure is DrawStart, which 
erases and then draws the Start button. 

procedure DrawStart (Fnt: Integer); 
begin 
TextFont(Fnt); 
MoveTo(33, 85); 
EraseRoundRect(start, 10, 10); 
FrameRoundRect(start, 10, 10); 
Drawstring(' Start') 

end; 



103 QuickDraw Programming Techniques 

In order to make an inactive button inactive a enumerated type called 
StatusType is declared. 

type 
StatusType = (On, Ofij; 

A variable of StatusType, Status, is used to track the current state of the 
program. When the value of Status is ON, the Start button is active. When 
Status is OFF, the Stop button is active. Before a button's action is performed, 
Status is checked; for instance, 

if ptlnRect(E.Where, Start) and (Status = On) then 

When the active Stop button is pushed, TickCount is called again and the 
elapsed time is computed. The outermost Repeat loop is then terminated. 

program ButtonSim2; 
type 
ButtonType = (StartButton, StopButton, None); 
StatusType = (On, Off); 

var 
Start, Stop : Rect; 
E: EventRecord; 
Ct : Integer; 
Pressed: ButtonType; 
Status: StatusType; 
StartTime, Stop Time: Longlnt; 

procedure DrawStart (Fnt: Integer); 
begin 
TextFont(Fnt); 
MoveTo(33, 85); 
EraseRoundRect(start, 10, 10); 
FrameRoundRect(start, 10, 10); 
Drawstring(' Start') 

end; 
procedure DrawStop (Fnt : Integer); 
begin 
TextFont(Fnt); 
EraseRoundRect(stop, 10, 10); 
FrameRoundRect(stop, 10, 10); 
MoveTo(103, 85); 
Drawstring(' Stop') 

end; 



104 Advanced Macintosh Pascal 

begin 
Pressed : = None; 
Status:= On; 
SetRect(Start, 20, 70, 80, 90); 
SetRect(Stop, 90, 70, 150, 90); 
DrawStart(O); {Chicago) 
DrawStop(1); {Geneva) 
Ct:= O; 
repeat 
Ct:= Ct+ 1; 
If GetNextEvent(2, E) then 
begin 
GlobalTolocal(E. Where); 
If ptlnRect(E.Where, Start) and (Status = On) then 

begin 
lnvertRoundRect(Start, 10, 10); 
repeat 
until GetNextEvent(4, E); 
lnvertRoundRect(Start, 10, 10); 
GlobalTolocal(E. Where); 
Status : = Off; 
Pressed : = StartButton; 
DrawStop(O); 
DrawStart(1); 
StartTime : = TickCount; 
end; 

If ptlnRect(E. Where, Stop) and (Status = Off) then 
begin 
lnvertRoundRect(Stop, 10, 10); 
repeat 
until GetNextEvent(4, E); 
lnvertRoundRect(Stop, 10, 10); 
Pressed:= Stop Button; 
DrawStop(1); 
DrawStart(O); 
StopTime := TickCount; 
end {for) 

end; 
until Pressed = StopButton; 
Writeln((StopTime- StartTime) / 60: 10: 2, 'seconds'); 

end. 



Radio Buttons 

105 QuickDraw Programming Techniques 

The second type of user interface controls we will simulate is radio buttons . 
Radio buttons are different than pushbuttons in that they maintain an OFF or 
ON setting. Typically, several radio buttons are grouped together, acting like 
the buttons on a car radio where only one can be pressed at a time. Pressing 
another button pops out the current one. 

The six buttons displayed in Figure 5.10 are used as our example through
out this discussion. The simulation of radio buttons requires two steps: draw
ing the buttons and coordinating their action . 

D Drawing 

OOptionl 

®Option2 

00ption3 

00ption4 

OOptionS 

00ption6 

'2:J 
Figure 5.10 Radio buttons 

The basic control structure for simulating a set of radio buttons is an array 
of type Rectangle. 

var 
C : arrayl1..61 of Rectangle; 

Each individual button is drawn in two parts: first the oval and then the 
button's name. The position of the first button in our group is (40,50) and the 
rectangle describing the oval is a 10-pixel square. The text is drawn next to the 
oval in the system font. 

TextFont(O); 
SetRect(Cl11. 40, 50, 50, 60); 
Frame0val(Cl11); 
MoveTo(52, 60); 
Drawstring(' Option1 '); 



106 Advanced Macintosh Pascal 

Each of the next buttons will be displayed 20 pixels down. A For loop could 
be used to provide more efficient code for setting and displaying the rec
tangles. 

for K : = 1to 6 do 
begin 
SetRect(CIKJ, 40, 50+(K-1)•20, 50, 60 +(K-1)•20); 
FrameOval(C!K]) 

end; 

The buttons' names can then be displayed with; 

MoveTo(52, 60); 
Drawstring(' Option1 '); 
MoveTo(52, 80); 
Drawstring(' Option2 '); 
MoveTo(52, 100); 
Drawstring(' Option3 '); 
MoveTo(52, 120); 
Drawstring(' Option4 '); 
MoveTo(52, 140); 
Drawstring(' Option5 '); 

Since an array of rectangles is used, searching for a mouse click in an oval 
is easy. 

repeat 
if GetNextEvent(2, E) then 
begin 
GlobalTolocal(E. Where); 
forK:=1to6do 
If ptlnRect(E.Where, C!K]) then 
Clicked:= K 

end; 
untll False; 

Before a mouse click can be processed, some strategy must be~ devised to 
draw and erase the dot inside the button currently ON. A dot can be drawn 
inside an oval by defining a smaller oval inside and then inverting it. This can 
be done by shrinking the rectangle with InsetRect, inverting the oval, and then 
using Insetrect to stretch the oval back to original size. 

lnsetRect(CIKJ, 2, 2); 
lnvertOval(C!K]); 
lnsetRect(CIKJ, -2, -2); 



107 QuickDraw Programming Techniques 

If the number of the button currently set ON is held in Clicked, then the 
following loop will find a mouse click and then change the look of that button. 

repeat 
if GetNextEvent(2, E) then 
begin 
GlobalToLocal(E. Where); 
for K: =Ho 6 do 
If ptlnRect(E. Where, C[K]) then 
begin 
(Remove current dot) 
lnsetRect(C[Clicked[, 2, 2); 
lnvertOval(C[Clicked]); 
lnsetRect(C[Clicked[, -2, -2); 
(Set new button) 
lnsetRect(C[K[, 2, 2); 
lnvertOval(C[KI); 
lnsetRect(C[K[, - 2, -2); 

To use the simulated radio buttons in a program, one button should be 
initialized as being ON prior to the event loop. The following program fully 
demonstrates simulating radio buttons. For efficiency, a procedure is used to 
invert the dot. 

procedure DoDot (K : Integer); 
begin 
lnsetRect(C[K[, 2, 2); 
lnvertOval(C[K]); 
lnsetRect(C[KJ, - 2, - 2); 

end; 

Here is the program in full. 

program RadioButton; 
var 
C : array[1..6[ of Rect; 
K, Clicked : Integer; 
E : EventRecord; 
Ct : Integer; 

procedure DoDot (K: Integer); 
begin 
lnsetRect(C[KJ, 2, 2); 
lnvertOval(C[K]); 
lnsetRect(C[KJ, - 2, - 2); 

end; 



108 Advanced Macintosh Pascal 

begin 
Ct:= 1; 
for K : = Ho 6 do 
begin 
SetRect(C[Kl, 40, 30 + K • 20, 50, 40 + K • 20); 
FrameOval(C[Kl) 

end; 
TextFont(O); 
MoveTo(52, 60); 
Drawstring(' Option1 '); 
MoveTo(52, 80); 
Drawstring( 'Option2 '); 
MoveTo(52, 100); 
Drawstring(' Option3 '); 
MoveTo(52, 120); 
Drawstring(' Option4 '); 
MoveTo(52, 140); 
Drawstring(' Options'); 
MoveTo(52, 160); 
DrawString('Option6'); 
Clicked:= 1; (Initial setting} 
Do Dot( Clicked); 
repeat 
if GetNextEvent(2, E) then 
begin 
GlobalToLocal(E.Where); 
for K : = Ho 6 do 
if ptlnRect(E. Where, C[Kl) then 
begin 
DoDot(Clicked); 
DoDot(K); 
Clicked:= K; 

end 
end; 
Ct:=Ct+1 

until Ct= 500 
end. 

One last touch can be added to the program to enhance the simulation. In 
actual radio buttons a mouse click anywhere inside the oval or the button's 
label will select the button-unlike our simulation where the cursor must be 
in the oval itself. This feature can be added by defining a second set of 
rectangles which enclose both the rectangle defining the oval and the label 
(Figure 5.11). This array of rectangles (Called R) is then searched for the mouse 
click. 



109 QuickDraw Programming Techniques 

~Option21 

Figure 5.ll Rectangle enclosing oval and label 

for K : = 1 to 6 do 
If ptlnRect(E. Where, RIKI) then ... 

The size of these rectangles is defined by the length of the label. You can 
either guess at the length or use the StringWidth function. 

function StringWidth(Str:strlng); 

The StringWidth function returns the length in pixels of the given string, 
assuming the last type font to be selected. If the font or drawing charac
teristics are changed after calling StringWidth but before drawing, the results 
will not be accurate. 

Since all the labels in the program are seven-characters long they are 
approximately the same length as 50 pixels in the system font. Note that since 
the system font is proportionately spaced, it may not always be the case that 
strings of the same number of characters have the same length in pixels. In a 
proportionately-spaced font, characters only use the amount of space needed 
instead of the even spacing for all characters found in monotonic fonts. 
However, in our case, six out of the seven letters are the same so all the lengths 
are almost all the same. The new rectangles can be defined with: 

for K: = 1to6 do (define second rectangles} SetRect(R(KJ, 40, 30 + K • 20, 102, 40 + K • 20); 

In programs where the labels vary in length, StringWidth can be used to 
define the rectangle accurately. For example: 

SetRect(R(1J, 40, 50, 40 + StringWidth('Option1'), 60); 
SetRect(R(2J, 40, 70, 40 + StringWidth('Option2'), 80); 
SetRect(R(3J, 40, 90, 40+StringWidth('Option1'),100); 
SetRect(R(4J, 40, 110, 40 + StringWidth('Option1'),120); 
SetRect(R(5J, 40, 130, 40+StringWidth('Option1'),140); 
SetRect(R(6(, 40, 150, 40 + StringWidth('Option1'),160); 

program RadioButton; 
var 
R, C : array[1..6J of Reel; 
K, Clicked : Integer; 
E : EventRecord; 
Ct : Integer; 



110 Advanced Macintosh Pascal 

procedure DoDot (K : Integer); 
begin 
lnsetRect(C[KJ, 2, 2); 
lnvertOval(C[K]); 
lnsetRect(C[KJ, - 2, - 2); 

end; 
begin 

Ct:= 1; 
for K : = 1to 6 do 
begin 
SetRect(C[KJ, 40, 30 + K • 20, 50, 40 + K • 20); 
FrameOval(C[K]) 

end; 
for K: = 1to6 do !define second rectangles] 
SetRect(R[KJ, 40, 30 + K • 20, 102, 40 + K • 20); 

TextFont(O); 
MoveTo(52, 60); 
Drawstring(' Option1 '); 
MoveTo(52, 80); 
Drawstring(' Option2' ); 
MoveTo(52, 100); 
Drawstring(' Option3 '); 
MoveTo(52, 120); 
DrawString('Option4'); 
MoveTo(52, 140); 
Drawstring(' Option5 '); 
MoveTo(52, 160); 
Drawstring(' Options'); 
Clicked:= 1; !Initial setting] 
DoDot(Clicked); 
repeat 
If GetNextEvent(2, E) then 
begin 
GlobalTolocal(E. Where); 
for K : = 1 to 6 do 
If ptlnRect(E. Where, R[K]) then 

begin 
DoDot(Clicked); 
DoDot(K); 
Clicked : = K; 

end 
end; 

Ct:=Ct+1; 
until Ct = 500 

end. 



CHAPTER 

~~----
ThelnLine 
Routines
Accessing the 
Toolbox 

L earlier chapters we saw how extensions to the standard Pascal language 
allow Macintosh Pascal to use routines from the Macintosh User Interface 
Toolbox. The function GetNextEvent and the procedures SetText and Get
DateTime are three examples of how Toolbox routines can be called as though 
they were Pascal intrinsics such as Writeln and Readln. Unfortunately, Macin
tosh Pascal provides for the use of only a small portion of the capability of the 
Toolbox by this method (although all the QuickDraw routines are supported). 
Most of the Toolbox features that every Macintosh user is familiar with, such 
as pulldown menus and windows, cannot be used. 

To allow use of the majority of the Toolbox the designers of Macintosh 
Pascal provided the In.Line routines. The In.Line routines, three functions and 
one procedure, allow programmers to step out of Macintosh Pascal to include 
the Toolbox routines directly in their programs and thus develop "real" 
Macintosh applications with menus, windows, pushbuttons, and the like. 
When the Macintosh Pascal interpreter encounters an In.Line statement, it 
branches directly to the ROM address of the Toolbox routine involved. This 
chapter explores four of the Toolbox's managers. Specifically, the Window 
Manager, Control Manager, Menu Manager, and TextEdit package. Some 
memory-management routines are thrown in for good measure. 

111 



11.2 Advanced Macintosh Pascal 

The power of the InLines does not come without a price. Since the InLines 
are not standard Pascal extensions like the built-in routines that access Quick
Draw, they provide absolutely none of Pascal's type checking or error trap
ping. This means Macintosh Pascal will not warn you if a routine is used 
improperly or if the parameters are of the wrong data type, and it will not 
provide a graceful exit after errors. Instead, when an error occurs, the entire 
Macintosh Pascal environment may "bomb," leaving you with no choice but to 
reboot the system, erasing your program. So it is imperative that when 
programming with InLines, you regularly save your program before you try 
running it. The warning is important enough to repeat. 

j1am~l1--~~~sA_v~E-v_o_u_R~P-R_o_G_RA~-M-O_FT~E-N--f ~~ ...... ~--·~~~1 

If you love your Macintosh and don't wish to harm it in a fit of anger after 
losing three hours of work, heed this advice. 

There are three InLine functions because Toolbox functions return one of 
three types of values, Boolean(! byte long), Integer(Z bytes), and Longlnt(4 
bytes). The InLine functions are: 

BlnlineF 

used for Toolbox functions that return a one-byte value. 

WlnlineF 

used for Toolbox functions that return a two-byte value. 

LlnlineF 

used for Toolbox functions that return a four -byte value . 

Similarly, any ToolBox procedure can be invoked with: 

lnlineP 

used for all Toolbox procedures. 



Menus 

113 The InLine Routines-Accessing the Toolbox 

The InLines can be thought of as Macintosh Pascal's way of encapsulat
ing calls to Toolbox routines. All of the InLine routines, when called, 
require at least one parameter to be passed to them, the ROM address of 
the routine, expressed in hexadecimal (Base 16). A hexadecimal address is 
denoted with a dollar sign $. A complete list of the routines covered in this 
book is in Appendix B. The routines are organized in the ROM with. the help 
of a branch table containing a pointer to each of the routines. The 
addresses used to access a routine are actually the position of the routine's 
entry in the branch table. It is done this way to assure compatability after 
future changes in the ROM routines. Toolbox routines are accessed by 
referencing the appropriate ROM address, which is actually the entry in 
the branch table, which in turn branches execution to the actual routine. 
The last action taken by each routine is a mechanism to branch back to the 
Macintosh Pascal program. Many of the Toolbox routines also require 
parameters to be passed to them. This is done by listing these parameters 
after the address ROM of the routine in the InLine call. 

The first examples of programming with InLines are menus. Pulldown 
menus are probably the most distinguishing feature of the Macintosh, but 
without using InLines there is no way to integrate menus into your Macin
tosh Pascal programs. 

Pulldown menus are implemented via routines that are part of the 
Toolbox's Menu Manager. They are displayed on the screen in the menu 
bar which runs 20 pixels wide along the top of the Macintosh's screen. It is 
in the menu bar that the menu titles are displayed. The choices provided by 
a menu are known as menu items (Figure 6.1). 

Menu Titles 

Menu Items 

Figure 6.1 Components of a menu 



114 Advanced Macintosh Pascal 

Internally, the Menu Manager maintains linked lists which consist of 
handles to one or more menus. The current menu list contains handles to 
all the menus in the menu bar being displayed. The Toolbox routines that 
are part of the Menu Manager are: 

Type Name Address Returns 

Function GetMenuBar $A93B Longlnt 
Procedure ClearMenuBar $A934 
Procedure SetMenuBar $A93C 
Function MenuSelect $A93D Long Int 
Procedure InsertMenu $A935 
Procedure DrawMenuBar $A937 
Procedure DisposeMenu $A932 
Procedure AppendMenu $A933 
Function New Menu $A934 Long Int 
Procedure HiLiteMenu $A938 

The best menu routine to start exploring the Menu Manager is the 
function GetMenuBar. 

function GetMenuBar: Handle Address -$A93B 

The purpose of GetMenuBar is to create a copy of the current menu list 
and return a reference to it in a handle. Since the size of a handle is 4 bytes (the 
same as a Longlnt), GetMenuBar is invoked with LlnLineF. 

For example: 

var 
SaveMenu : Handle; 

begin 
SaveMenu : = LlnLineF($A93B); 

This is our first demonstration of the use of an InLine. Notice that since 
GP,tMenuBar has no parameters itself, the only parameter used in the InLine 
call is the address of the GetMenuBar routine. This sequence of instructions 
will save a reference to the current menu list in the variable SaveMenu, which 
is declared as a Handle. Since Handle is not defined in Macintosh Pascal it is 
equated to a Longlnt, also a 4-byte data type. SaveMenu could have also been 
declared to be a Longlnt-byte data type. No data-type incompatability error 
would occur because Macintosh Pascal does no type checking anytime an 
Int.inn routine is used. 



115 The lnLine Routines-Accessing the Toolbox 

Instead of using the address of the Toolbox routine as the parameter for 
the lnLine, it is better programming style to declare a constant containing the 
address of the routine and use the constant in the InLine. 

con st 
Handle = Longlnt; 
GetMenuBar = $A93B; 

begin 
SaveMenu : = Flnline(GetMenuBar); 

This programming style is far more readable and is highly preferred. 
Now that we have saved a reference to the current menu list, it can be 

restored after we are done. Let's now clear the Macintosh Pascal menu from 
the screen. 

procedure ClearMenuBar Address· $A934 

ClearMenuBar removes the current list from the Menu Manager so you 
can start fresh with a new menu bar. ClearMenuBar only removes the current 
menu from memory; it does not remove them from the screen. The next 
procedure we will see does that. Notice that ClearMenuBar is a pro
cedure-not a function-and therefore returns no value. 

procedure DrawMenuBar Address • $A937 

DrawMenuBar redraws the menu bar on the screen according to the 
current menu list. If the current menu list contains no entries then the menu 
bar is blanked out. 

Combining the three menu routines the following program will save the 
Macintosh Pascal menu list and then clear the screen of all menus. 

program MenuClear; 
con st 
GetMenuBar = $A93B; 
ClearMenuBar = $A934 
DrawMenuBar = $A932; 
Handle = Longlnt; 

var 
SaveMenu : Handle; 

begin 
SaveMenu : = FlnlineF(GetMenuBar); 
lnlineP(ClearMenuBar); 
lnlineP(DrawMenuBar) 

end. 



116 Advanced Macintosh Pascal 
0 

If you run this program you will discover a small problem: after the 
program executes, you are left with no menus on the screen and thus no way 
to use Macintosh Pascal. Not being able to access the Macintosh Pa1;cal menus 
might be desirable if you are designing an application and want to prevent the 
user from accessing the Macintosh Pascal environment; otherwise, you must 
reboot the computer by turning it off and then on. It is generally easier to 
install the plastic programmer's switch (included with the computer) on the 
left side of the Macintosh and use that to reboot the system. Instructions to do 
so are in the Macintosh owner's guide. I hope you heeded the warning to save 
your program before you run it. If you didn't, you will next time. The next 
menu routine discussed can be used to restore the Macintosh Pascal menus 
which were saved in the variable SaveMenu. 

procedure SetMenuBar(menuList : Handle) Address-$A93C 

SetMenuBar is the first routine that takes a parameter, a Handle to a menu 
list. In our example, this is held in the variable SaveMenu. This routine 
replaces the current menu list with the one pointed to by the parameter 
menuList. The parameter is listed and separated by a comma after the routine 
address. 

lnLineP(SetMenuBar, SaveMenu); 

This routine does not draw the new menu bar on the screen; another routine, 
DrawMenu, is used for this purpose. The following program expands the 
previous one by waiting and then restoring the Macintosh Pascal menu bar. 

program MenuClear; 
con st 
GetMenuBar = $A93B; 
ClearMenuBar = $A934; 
DrawMenuBar = $A932; 
Handle = Longlnt; 

var 
K: Integer; 
SaveMenu : Handle; 

begin 
SaveMenu : = FlnLineF(GetMenuBar); 
lnLineP(ClearMenuBar); 
lnLineP(DrawMenuBar); 
for K: = 1to1000 do; !Wait loop! 

lnLineP(SetMenuBar, SaveMenu); 
lnLineP(DrawMenuBar) 

end. 

We have now seen the mechanism to save the Macintosh Pascal menu list, 
erase it, and then restore it to the screen. Now we are ready to build our own 
menus. The two menus in Figure 6.2 will serve as our example. 



117 The lnLine Routines-Accessing the Toolbox 

Options rtt~ Stop 
Optionl 

Option2 

Figure 6 • .2 Sample menus 

The function New Menu creates a new, empty menu that is not installed in 
the menu list. 

function NewMenu(menulD: Integer; menu Title: string) : Menu Handle Address· $A931 

The parameter menuID is an integer value greater than zero used to 
identify the menu and determine where in the menu bar it will be displayed. 
Menu numbers 1 through 9 are reserved for use by Macintosh Pascal and 
should never be used by a program. To create our sample menus the following 
NewMenu calls are used. 

var 
Menu1, Menu2: Longin!; 

Menu1 := FlnlineF(NewMenu,10, 'Options'); 
Menu2: = FlnlineF(NewMenu, 20, 'End'); 

The ID for the Options menu is 10 and for the End menu, 20. Both of the 
menus are empty at this point. Items are placed into a menu with the 
AppendMenu procedure. 

procedure AppendMenu(theMenu: Menu Handle; item: string) Address· $A933 

AppendMenu adds items to the end of a menu. Continuing with our 
example, the items can be placed into Menu2 with: 

lnlineP(AppendMenu, Menu2, 'End'); 

Since Menu1 has only one item, only one call to AppendMenu is needed. 
Menu1 appears to have only two items but actually has three. Let's look at it 
again (Figure 6. 3). 

Item 1 
Item 2 
Item 3 

Optionl 

Option2 

Stop 

Figure 6.3 Menu items 



118 Advanced Macintosh Pascal 

The dotted line between Optionl and Option2 is actually considered to be 
a separate menu item that is permanently disabled; that is, it can never be 
selected by the user. 

The dotted line between Optionl and Option2 is added to the menu by the 
second AppendMenu call which specifies a two-character sequence ' ( - ' used 
to specify that a dotted line be placed in that position as the item. The left 
parenthesis is the item disable operator. 

lnLineP(AppendMenu, Menu1, 'Option1 '); 
lnLineP(AppendMenu, Menu1, '(- '); 
lnLineP(AppendMenu, Menu1, '0ption2'); 

Once items have been appended to it the menu is placed into the menu list 
with the InsertMenu routine. 

procedure lnsertMenu(theMenu : MenuHandle; beforelD : Integer) Address· $A935 

The parameters used are the menu handles of the menu and the ID 
number of the menu it is to be inserted before in the menu list. An ID of 0 
means place the menu at the end of the menu list. Since this is where we want 
the two menus to be placed, the calls to InsertMenu are: 

lnLineP(lnsertMenu, Menu1, O); 
lnLineP(lnsertMenu, Menu2, O); 

To draw the two new menus on the screen a call to DrawMenu is used. 

lnLineP(DrawMenu); 
procedure DrawMenu Address· $A932 

DrawMenu displays on the screen the current menu list. No parameters 
other than the ROM address are passed because the current menu list is 
assumed. 

A small program to demonstrate all of the menu concepts covered so far 
follows. 

program MenuDemo; 
con st 
GetMenuBar = $A93B; 
ClearMenuBar = $A934; 
DrawMenuBar = $A932; 
AppendMenu = $A933; 
NewMenu = $A931; 
SetMenuBar = $A93C; 
Handle = Longlnt; 

var 
K: Integer; 
SaveMenu : Handle; 



119 The InLine Routines-Accessing the Toolbox 

begin 
SaveMenu : = lnlineF(GetMenuBar); 
lnlineP(ClearMenuBar); 
lnlineP(DrawMenuBar); 
lnlineP(NewMenu,10, 'Options'); 
lnlineP(NewMenu, 20, 'End'); 
lnlineP(AppendMenu, Menu2, 'End'); 
lnlineP(AppendMenu, Menu1, 'Option1'); 
lnlineP(AppendMenu, Menu1, '(- '); 
lnlineP(AppendMenu, Menu1, 'Option2'); 
lnlineP(lnsertMenu, Menu1, O); 
lnlineP(lnsertMenu, Menu2, O); 
lnlineP(AppendMenu, Menu2, 'End'); 
repeat 
until WaitMouseUp; 
lnlineP(SetMenuBar, SaveMenu); 
lnlineP(DrawMenuBar) 

end. 

Remember to save the program before you run it. The repeat loop is used 
to maintain the menus on the screen until the mouse button is released. 

If you run the MenuDemo program, you can see the installed menus on 
the screen, but the program has no ability to sense the mouse. To accomplish 
this, event handling must be combined with the MenuSelect function. When a 
mouse down event is detected it can be tested to see if it occurred in the menu 
bar. If so, the movement of the mouse can be tracked with the MenuSelect 
procedure. When the mouse button is released, the number of the menu item 
is returned. 

function MenuSelect(startPI : Point) : Longlnt Address-$A93D 

If MenuSelect is called after a mouse down event occurs in the menu bar, 
the routine will track the position of the cursor, highlighting menu items 
under the cursor. If the mouse button is released over an item, MenuSelect 
returns information about which item in which menu was selected. The 
information is passed in a Longlnt whose high-order word contains the 
menuID and the low-order word contains the item number (Figure 6.4). If no 
item was selected, a zero is returned. 

MenulD Item Number 

10 2 

Figure 6.4 Longlnt returned by MenuSelect 



120 Advanced Macintosh Pascal 

In order to dissect the Longlnt returned, the Toolbox functions HiWord 
and Lo Word, which are built into Macintosh Pascal, can be used. The function 
HiWord takes a Longlnt and returns the value of the high-order word, 
Lo Word returns the value of the low-order word. 

procedure HiliteMenu(menulD: Integer) Address -$A93B 

When MenuSelect returns a positive value it leaves the title of the selected 
menu highlighted. The procedure HiLiteMenu will reverse the highlighting if 
called with a parameter of 0. HiLiteMenu can be used to highlight any other 
menu in the menu bar by passing it the menuID of the menu title to be 
highlighted. 

The following program demonstrates all the menu routines used together 
with an event loop. When a mouse down event occurs, MenuSelect is called 
and the values returned in the Longlnt are displayed in the Text window. 
When an item is selected, the event loop is terminated and the Macintosh 
Pascal menu is restored. 

program MenuDriver; 
const 
GetMenuBar = $A93B; 
ClearMenuBar = $A934; 
NewMenu = $A931; 
AppendMenu = $A933; 
lnsertMenu = $A935; 
DrawMenuBar = $A937; 
DisposeMenu = $A932; 
SetMenuBar = $A93C; 
MenuSelect = $A93D; 
HiliteMenu = $A938; 

type 
MenuHandle = Longin!; 

var 
OldMenu, MyMenu, MyMenu2 : MenuHandle; 
E : EventRecord; 
X, Y : Integer; 
Result : Longin!; 
P: Point; 



121 The InLine Routines-Accessing the Toolbox 

begin 
lnitCursor; 
Old Menu : = LlnlineF(GetMenuBar); 
lnlineP(ClearMenuBar); 
MyMenu: = LlnlineF(NewMenu, 10, 'Options'); 
lnlineP(AppendMenu, MyMenu, 'Option1 '); 
lnlineP(AppendMenu, MyMenu, '(- '); 
lnlineP(AppendMenu, MyMenu, 'Option2'); 
lnlineP(lnsertMenu, MyMenu, O); 
MyMenu2: = LlnlineF(NewMenu, 12, 'Stop'); 
lnlineP(AppendMenu, MyMenu2, 'End'); 
lnlineP(lnsertMenu, MyMenu2, O); 
lnlineP(DrawMenuBar); 
repeat 
If GetNextEvent(2, E) then 
begin 
Result:= LlnlineF(MenuSelect, E.where); 
X: = HiWord(Result); 
Y : = LoWord(Result); 
Writeln(X, Y, Result); 
lfX > Othen 
lnlineP(HiliteMenu, 0) 

end 
untllX > O; 
lnlineP(ClearMenuBar); 
lnlineP(DisposeMenu, MyMenu); 
lnlineP(SetMenuBar, OldMenu); 
lnlineP(DrawMenuBar) 

end. 

Three additional menu routines that control menu appearance 
-Disableltem, Enableltem, and Checkltem-are of interest. 

procedure Disableltem(theMenu : MenuHandle; item : Integer); Address· $A932 

Disableltem disables the specified item in the specified menu. Disabled 
menu items are displayed dimmed and are not highlighted when the cursor 
moves over them. Thus, they cannot be selected. If the value of the item 
parameter is 0 the entire menu is disabled. 

procedure Enable Item (theMenu : MenuHandle; item : Integer); Address. $A939 



Windows 

122 Advanced Macintosh Pascal 

Enableltem reverses the effects of Disableltem, enabling a disabled menu 
item. If the item parameter is 0 the entire menu is enabled. 

procedure Checkltem( theMenu : Menu Handle; item : Integer; checked : Boolean) 
Address -$A945 

Checkltem places or removes a check mark to the left of the specified 
menu item. 

The second part of the Macintosh User Interface we will examine is the 
Window Manager. The similarity of the windows displayed by different 
Macintosh programs can be attributed to the Window Manager, whose rou
tines display and manipulate windows. The Macintosh Pascal program itself 
uses the Window Manager to maintain five windows: Program, Text, Draw
ing, Observe, and Instant. 

To review the elements of a window let's look at Macintosh Pascal's 
Drawing window (Figure 6.5). 

Go Away 
Region 

Title 
Bar 

Content 
Region 

r--------ir.i:I--- Size ________ [fi_. Box 

Figure 6.S The elements of a window 

The Window Manager allows six different styles of windows to be drawn. 
The Drawing window, pictured above, is known as a DocumentProc. The six 
styles are shown in Figure 6.6. 



123 The lnLine Routines-Accessing the Toolbox 

§§0~ untitled ~ §0~ untitled ~ 0 untitled -

documentProc noGrowDocProc rDocProc 
• 

dBoxProc plainDBox altDBoxProc 

Figure 6.6 Window types 

The Window Manager maintains a linked list of information about each 
window that is open. This list is what determines the position of the windows 
on the screen and their specific attributes. The Window Manager routines are 
used to manipulate the information stored in the list . The routines we will 
examine are listed in Table 6.1. 

A good way to start exploring the Window Manager is by manipulating the 
windows that Macintosh Pascal already has displayed on the screen. The 
function FrontWindow will return a pointer to the window record of the 
active window on the screen. 

function FrontWindow : WindowPtr Address· $A904 



1.24 Advanced Macintosh Pascal 

Table 6.1 Function and Procedure 

Type Name 

FUNCTION Front Window 
PROCEDURE GetWTitle 
PROCEDURE Select Window 
FUNCTION NewWindow 
PROCEDURE Close Window 
PROCEDURE Hide Window 
PROCEDURE BringToFront 
PROCEDURE DragWindow 
FUNCTION TrackGoAway 
FUNCTION Find Window 
PROCEDURE Show Window 
PROCEDURE Dispose Window 
PROCEDURE SetWRefCon 
FUNCTION GetWRefCon 
PROCEDURE SetWTitle 
PROCEDURE GetWTitle 

Address 

$A924 
$A919 
$A91F 
$A913 
$A914 
$A916 
$A920 
$A925 
$A91E 
$A92C 
$A915 
$A914 
$A918 
$A917 
$A91A 
$A919 

Fleturns 

LONG INT 

LONG INT 

HOO LEAN 
INTEGER 

LONG INT 

Each element of this list is of a record type known as a WirldowRec, 
containing the specific attributes for a window. Windows are manipulated by 
either changing the fields in that record or altering the position of the record 
in the list. This is not normally done directly but rather through tho Window 
Manager routines. The window records are referenced through a pointer to 
them. To accomplish this, the function looks at the window list and finds 
which window is active. It then returns a copy of the pointer to that window. 
The following is a simple program demonstrating FrontWindow. 

program FindFrontWindow; 
type 
FrontWindow = $A924; 
WindowPtr = Longlnt; 

var 
ActiveWindow : WindowPtr; 

begin 
ActiveWindow: = FlnLineF(FrontWindow); 
Writeln(ActiveWindow) 

end. 



125 The InLine Routines-Accessing the Toolbox 

Run this program and then run it again after changing the active window. 
The value displayed in the Text window is the address held in the window 
pointer, expressed in a decimal that changes when the active window changes. 
Run the program twice without changing the active window and notice that 
the value of the pointer to the active window doesn't change. This demon
strates a subtle fact about the Window Manager and the Macintosh Pascal 
environment. The window list is independent of the program currently run
ning under Macintosh Pascal, and Macintosh Pascal programs can manipulate 
the Macintosh Pascal windows just as if they were created by the running 
program itself. 

The procedure GetWTitle takes a pointer to a window as its parameter. It 
finds the entry for that window in the window list and then returns the title of 
the window. 

procedure GetWTitle(theWindow: WindowPtr; var Title: string) 

This procedure operates in a slightly different manner than any other 
Toolbox routine we have seen in the way that a value is returned. GetWTitle 
returns a string containing the window's title by passing it back to the 
procedure as a variable parameter. In order for this mechanism to operate 
properly, the parameter that receives the value must be preceded with the 
pass-by reference operator, the at sign (@).The following program gets a 
pointer to the active window and then displays the window's title. 

program FindFrontWindowTitle; 
type 
FrontWindow = $A924; 
GetWTitle = $A919; 
WindowPtr = Longin!; 

var 
ActiveWindow: WindowPtr; 
WinName : string; 

begin 
ActiveWindow : = FrontWindow; 
GetWTitle(ActiveWindow, @WinName); 
Writeln(WinName) 

end. 



126 Advanced Macintosh Pascal 

A much more sophisticated way to interact with the Macintosh Pascal 
windows is the function FindWindow used to locate the window the cursor 
was positioned in when the mouse button was clicked. 

function FindWindow (thePt: Point; var whichWindow: WindowPtr): 
Integer; 
Address -$A92C 

The function is passed the point where the mouse is clicked in global 
coordinates and returns a pointer to the proper window as a variable param
eter. We can combine Find Window with an event loop to track which window 
the mouse is clicked in. When using an event loop it is convenient to have a 
mechanism to exit the loop. In the following program the repeat loop is 
terminated when a variable, incremented in every iteration of the loop, 
reaches 50. 

program ClickandTell; 
con st 
GetWtitle = $A919; 
FindWindow = $A92C; 

var 
MyWindow: Longin!; 
B: Boolean; 
Str: string; 
E: EventRecord; 
Count, Code : Integer; 

begin 
Count:= O; 
repeat 
Count:= Count + 1; 
if GetNextEvent(2, E) then 
begin 
Code:= WlnLineF(FindWindow, E.Where,@MyWindow); 
If MyWindow < > O then 
begin 
lnLineP(GetWtitle, MyWindow, @Str); 
Writeln( 1-----', Str, '------ ') 

end; 
end; 
Writeln(' Loop iteration', Count); 

untll Count = 50; 
end. 

Position the Text window on the screen so that it is not obscured by the 
other windows and run the program. Clicking the mouse in a window will 
cause the name of the window to appear in the Text window. 



127 The InLine Routines-Accessing the Toolbox 

Since Find Window is a function, a value is returned by it. In the preceding 
program the value was assigned to the Integer variable Code. That value is 
useful in a way that will be discussed shortly. 

Program ClickandTell is admittedly rather dull since the window where 
the mouse is clicked is not made active; that is, highlighted and brought to the 
front of the screen. This provides a clue to how much of the windowing 
functions are actually performed by the applications software itself rather 
than the Window Manager. When you are editing a program in Macintosh 
Pascal, the Macintosh Pascal interpreter handles the window functions, but 
when your program is running it must handle the windows itself. The pro
cedure SelectWindow takes a window pointer and makes that window the 
active window. 

procedure SelectWindow (theWindow : WindowPtr) Address -$A91F 

We can now add SelectWindow to our program and allow it to highlight 
and bring forward the window clicked on. 

program ClickandShowandTell; 
con st 
GetWTitle = $A919; 
FindWindow = $A92C; 
SelectWindow = $A91F; 

var 
MyWindow : Longin!; 
B: Boolean; 
Sir: string; 
E : EventRecord; 
Count, Code : Integer; 
begin 
Count:= O; 
repeat 
Count:= Count + 1; 
if GetNextEvent(2, E) then 
begin 
Code:= WlnlineF(FindWindow, E.Where, @MyWindow); 
If MyWindow < > O then 
begin 
lnlineP(SelectWindow,MyWindow); 
lnlineP(GetWtitle, MyWindow,@Str); 
Writeln(' ······',Sir, '······') 

end; 
end; 

Writeln(' Loop iteration', Count); 
until Count = 50; 

end. 



128 Advanced Macintosh Pascal 

More on FindWindow 

As was mentioned previously, the procedure Find Window does more than 
just return a pointer to the selected window. FindWindow also returns, as 
the value of the function, a code for where in a window the cursor was 
when the mouse was clicked. The possible values returned by FindWindow 
are: 

6 - in the go-away box of the window selected (must be the active 
window) 

5 - in the grow region of the window selected (must be the active 
window) 

4 - in the draw region of the window 

3 - in the content region of the window 

2 - in the system window 

1 - in the menu bar 

0 - in the desktop (none of the above) 

By testing the value returned by Find Window, a program can determine 
the intention of the user by checking where the mouse was positioned then 
taking appropriate action. For instance, if the click is in the content region, 
the window can be highlighted; if the click is in the go-away box of the 
active window, the program can close the window with the procedure 
Hide Window. 

The procedure HideWindow takes the window pointed to by the 
parameter and removes it from the screen. 

procedure HideWindow (theWindow : WindowPtr) Address -$A916 

This procedure does not destroy references to the window and it can later 
be re-opened with the procedure ShowWindow. 

The following program implements both the highlight and go-away fea
tures. It is substantially similar to the previous examples except there are 
changes inside the repeat loop. To increase efficiency, a case statement is used 
to test the code returned by FindWindow. If the click event was in the content 
window, the same action as before is taken; but if the click is in the go-away 
box, a call is made to Hide Window. 

program WindowsGalore; 
con st 
HideWindow = $A916; 
CloseWindow = $A92D; 
GetWtitle = $A919; 
SelectWindow = $A91F; 
FindWindow = $A92C; 
inContent = 3; 
lnGoAway = 6; 



129 The InLine Routines-Accessing the Toolbox 

var 
MyWindow : Longlnt; 
B: Boolean; 
Str: String; 
E : EventRecord; 
Count, Code : Integer; 
begin 
Count:= O; 
repeat 
Count:= Count + 1; 
If GetNextEvent(2, E) then 
begin 
Code:= WlnLineF(FindWindow, E.Where,@MyWindow); 
case Code of 
inContent: 
begin 
lnLineP(GetWtitle, MyWindow, @str); 
lnLineP(SelectWindow, MyWindow); 
Writeln(Code, Str); 

end; 
inGoAway: 
lnLineP(HideWindow, MyWindow); 

end; {Case) 
end; 

Writeln(' Loop iteration', Count); 
until Count = 50; 

end. 

If you run the program you might notice that if you release the mouse 
button with the cursor outside of the go-away box, the window still closes. 
This does not conform to the standards of the Macintosh User Interface which 
specifies that a window is closed only if the mouse button is released inside the 
go-away box. The function TrackGoAway is used to track the cursor when a 
mouse down event occurs inside the go-away box by checking where the 
cursor is positioned when the mouse up event occurs. 

function TrackGoAway (theWindow: WindowPtr; thePt: Point): Boolean Address -$A91E 



130 Advanced Macintosh Pascal 

The parameters to the function are the pointer to the window and the 
point on the screen where the mouse down event occurs, expressed in global 
coordinates. The Where field from the event record holds this information. 
The function returns True value if the mouse up occurs inside the go-away 
box and False if it occurs outside the go-away box. If the result is True, 
HideWindow can then be called. 

program WindowsWithTrackGoAway; 
const 
NewWindow = $A913; 
FrontWindow = $A924; 
HideWindow = $A916; 
CloseWindow = $A92D; 
GetWtitle = $A919; 
SelectWindow = $A91F; 
DragWindow = $A925; 
FindWindow = $A92C; 
TrackGoAway = $A91E; 
inContent = 3; 
lnGoAway = 6; 

var 
Go: Boolean; 
MyWindow: Longin!; 
B: Boolean; 
Str: string; 
E : EventRecord; 
Count, Code: Integer; 

begin 
Count:= O; 
repeat 
Count:= Count + 1; 
If GetNextEvent(2, E) then 
begin 
Code:= WlnlineF(FindWindow, E.Where,@MyWindow); 
case Code of 
inContent: 
begin 
lnlineP(GetWtitle, MyWindow,@Str); 
lnlineP(SelectWindow, MyWindow); 
Writeln(Code, Str); 

end; 
lnGoAway: 



131 The InLine Routines-Accessing the Toolbox 

begin 
Go:= BlnLineF(TrackGoAway, MyWindow, E.Where); 
if Go then 
lnLineP(HideWindow, MyWindow); 

end; 
otherwise 

end; [Case) 
end; 
Writeln(' Loop iteration', Count); 

until Count = 50; 
end. 

If you run the program you will notice that TrackGoAway also takes 
responsibility for highlighting the go-away box when the cursor is moved 
inside of it. Notice that TrackGoAway is the first Toolbox routine we have seen 
that returns a byte value and thus is invoked with BlnLineF. 

The DragWindow procedure is used to allow the window to be moved 
around the screen by clicking the mouse in the window's drag bar and then 
dragging the mouse to a new position. 

procedure DragWindow (theWindow: WindowPtr; startPt : Point; boundsRect : Rect) 
Address • $A925 

The parameters used are the pointer to the window to be moved, the 
starting point where the mouse down event occurred (from the event record), 
and a rectangle describing the area inside which the window can be dragged. 
If the mouse button is released with the window outside of the rectangle, 
DragWindow returns without moving the window or making it active. This is 
used to prevent a window from being placed over an area of the screen such as 
the menu bar. 

program OldExamplewithMoveAdded; 
con st 
NewWindow = $A913; 
FrontWindow = $A924; 
HideWindow = $A916; 
CloseWindow = $A92D; 
GetWtitle = $A919; 
SelectWindow = $A91F; 
DragWindow = $A925; 
FindWindow = $A92C; 
TrackGoAway = $A91E; 
inDrag = 4; 
inContent = 3; 
lnGoAway = 6; 



132 Advanced Macintosh Pascal 

var 
Go: Boolean; 
DragRect : Reel; 
MyWindow: Longin!; 
B: Boolean; 
Sir: string; 
E : EventRecord; 
Count, Code : Integer; 

begin 
SetRect(DragRect, 5, 5, 500, 330); 
Count:= O; 
repeat 
Count:= Count + 1; 
if GetNextEvent(2, E) then 

begin 
Code:= WlnLineF(FindWindow, E.Where,@MyWindow); 
case Code of 
inContent: 
begin 
lnLineP(GetWlitle, MyWindow, @sir); 
lnLineP(SelectWindow, MyWindow); 
Writeln(Code, Str); 

end; 
lnGoAway: 
begin 
Go : = BlnLineF(TrackGoAway, MyWindow, E.Where); 
If Go then 
lnLineP(HideWindow, MyWindow); 

end; 
inDrag: 
begin 
lnLineP(SelectWindow, MyWindow); 
Writeln(' in drag routine'); 
lnLineP(DragWindow, MyWindow, E.Where, dragRect); 

end; 
otherwise 

end; (Case) 
end; 

Writeln(' Loop iteration', Count); 
until Count = 50; 
end. 



133 The InLine Routines-Accessing the Toolbox 

This revised version of our program now supports moving windows 
around on the screen. The code returned if the mouse down event is in the title 
bar is 4. This has been assigned to the constant inDrag and it has been added to 
the case statement. If the mouse is clicked in the title bar a call is made to 
SelectWindow to make it the active window and then DragWindow is called. 

Programming Example-Windows and Menus 

We have seen how to program using two of the Toolbox's managers: menu and 
window. However, coordinating the implementation of Toolbox features 
becomes more complex as more sophistication is attempted. The following 
program is our first attempt to produce a true Macintosh-style application 
using both menus and windows. The program will display a menu giving the 
user the ability to close the active window on the screen or exit the program. A 
third option, open the formerly active window, is also displayed but disabled. 
If the window is closed then the close window option is disabled and the open 
window option is then enabled. To develop a program of this complexity, it is 
best to first pseudocode. 

Initialize values 

Set up new menu 

Save old menu 

Install new menu 

Event loop 

GetNextEvent Oooking for mouse down) 

Find out where the event was (FindWindow) 

case event location of 

inMenuBar: 

Find out which item was selected (MenuSelect, HiWord, LoWord) 

case which item selected of 

Open the window : 

Display the window (ShowWindow, SelectWindow) 

Disable 'Open window' option in menu (Disable Item) 

Enable 'Close window' option in menu (Enable Item) 

Exit: 

Restore the Macintosh Pascal Menu (SetMenuBar, DrawMenuBar) 

Set Flag to exit event loop 

Remove highlight from menu (HiLiteMenu) 

end [item selected case} 



134 Advanced Macintosh Pascal 

inDrag: 

Drag the window around (DragWindow) 

Otherwise; 

Do nothing 

until exit flag from event loop 

Now the program itself. 

program WindowsandMenus; 
con st 
NewWindow = $A913; [Window routines) 
FrontWindow = $A924; 
HideWindow = $A916; 
CloseWindow = $A92D; 
GetWtitle = $A919; 
SelectWindow = $A91F; 
ShowWindow = $A915; 
DragWindow = $A925; 
FindWindow = $A92C; 
TrackGoAway = $A91E; 
GrowWindow = $A92B; 
SizeWindow = $A91D; 
GetMenuBar = $A93B; [Menu routines) 
SetMenuBar = $A93C; 
MenuSelect = $A93D; 
lnsertMenu = $A935; 
DrawMenuBar = $A937; 
AppendMenu = $A933; 
NewMenu = $A931; 
ClearMenuBar = $A934; 
Enableltem = $A939; 
Disableltem = $A93A; 
HiliteMenu = $A938; 
inMenuBar = 1; (FindWindow constants) 
inContent = 3; 
inDrag = 4; 
inGrow = 5; 
lnGoAway = 6; 



135 The InLine Routines-Accessing the Toolbox 

var 
Go : Boolean; 
SizeRect, DragRect : Rect; 
FrontSave, SaveMenu, MyMenu, GrowBy, MyWindow, Item: Longlnt; 
Stop, B: Boolean; 
Str : string; 
E : EventRecord; 
H, W, Count, Code: Integer; 

procedure SetUpMenu; 
begin 
SaveMenu: = LlnlineF(GetMenuBar); 
lnlineP(ClearMenuBar); 
MyMenu: = LlnlineF(NewMenu, 10, 'Window'); 
lnlineP(AppendMenu, MyMenu, 'Open it'); 
lnlineP(AppendMenu, MyMenu, 'Close it'); 
lnlineP(AppendMenu, MyMenu, ' (- '); 
lnlineP(AppendMenu, MyMenu, 'Quit and Restore'); 
lnlineP(lnsertMenu, MyMenu, O); 
lnlineP(DrawMenuBar); 
inlineP(Disableltem, MyMenu, 1); [Disable Open it] 

end;[SetUpMenu] 
procedure DoMenuCommand; 
begin 
Item:= LlnlineF(MenuSelect, E.Where); 
if HiWord(ltem) = 10 then 
case LoWord(item) of 
1: [Open It] 
begin 
lnlineP(ShowWindow, FrontSave); 
lnlineP(SelectWindow, FrontSave); 
lnlineP(Disableltem, MyMenu, 1); 
lnlineP(Enableltem, MyMenu, 2) 

end; 
2: [Close Ill 
begin 
lnlineP(HideWindow, FrontSave); 
lnlineP(Enableltem, MyMenu, 1); 
lnlineP(Disableltem, MyMenu, 2) 

end; 



136 Advanced Macintosh Pascal 

4: [Quill 
begin 
lnlineP(ClearMenuBar); 
lnlineP(SetMenuBar, SaveMenu); 
lnlineP(DrawMenuBar); 
Stop : = True; 
end; 

end; [CaseJ 
lnlineP(HiliteMenu, O); 

end; 
begin 
SetRect(DragRect, 5, 5, 500, 330); 
SizeRect.Top: = 5; 
SizeRect.Left: = 5; 
SizeRect.Bottom := 200; 
SizeRect.Right: = 400; 
Stop : = False; 
SetUpMenu; 
Count:= O; 
FrontSave : = LlnlineF(FrontWindow); 
repeat 
If GetNextEvent(2, E) then 
begin 
Code:= WlnlineF(FindWindow, E.Where,@MyWindow); 
case Code of 
inMenuBar: 
DoMenuCommand; 

inDrag: 
begin 
lnlineP(SelectWindow, MyWindow); 
lnlineP(DragWindow, MyWindow, E.Where, dragRect); 

end; 
otherwise 

end; [Case) 
end; 

Writeln(' Loop running'); 
until Stop = True; 

end. 



137 The InLine Routines-Accessing the Toolbox 

Programmer Defined Windows 

The Window Manager routines we have been dealing with are all used to 
manipulate existing windows which, in our examples, have been the win
dows displayed by Macintosh Pascal. The NewWindow function is used to 
create new windows. 

function NewWindow (wStorage: Ptr; boundsRect: Rect; title : string; 
visible : Boolean; proclD : Integer; behind : WindowPtr; 
goAwayFlag : Boolean; refCon : Longin!): WindowPtr; 

Address -$A913 

The NewWindow function provides a way for an application to create its 
own window, which can then be manipulated in the exact same manner as we 
have been manipulating the Macintosh Pascal windows. NewWindow is quite 
complex to use because some of the data types required are not predefined in 
Macintosh Pascal and because eight different parameters are used. 

The significance of the parameters passed to NewWindow are: 

wStorage. wStorage is a pointer to the place in memory where the window 
record will be stored by the Window Manager. An area large enough to 
hold the window record must be allocated by the program and a pointer to 
that area is passed as the parameter. Specifically, this is done by declaring a 
type called WindowRecord defined as: 

WindowRecord = array!1 .. 78] of Integer; 

This allocates 312 bytes of contiguous memory that is used by the 
Window Manager to store the descriptive information about the win
dow created. Secondly, a pointer to a WindowRecord is also needed to 
be able to refer to it indirectly: 

WindowPtr = ·windowRecord; 

boundRect. boundRect is a rectangle expressed in global coordinates. It 
is used to define the size and location of the window that will be created. 

title. The title parameter is a string that contains the name that is 
displayed in the window's title bar. 

visible. Visible is a boolean value that determines if the window is 
displayed on the screen; True to display the window, False not to. 



138 Advanced Macintosh Pascal 

procID. This is an integer value which describes the predefined window 
types to be created. The possible values are: 

O - a standard document window 

1 - alert box or modal dialog box 

2-plain box 

3 - plain box with shadow 

4 - document window without size box 

16 - round -cornered window 

behind. This is a pointer to the window that the new window is dis
played behind. If the new window is to be the front window then a - 1 is 
passed as a pointer using the built-in function Pointer( -1). 

goAwayFlag. This field is True if you want a goAway region in your 
window, False otherwise. 

RefCon. This is a field used only by your program for whatever purpose 
you please. This is a convenient way to associate a value with a window. 

A pointer is returned by NewWindow to the window being created. 
This can be used just as the pointers to the existing Macintosh Pascal 
windows were used in all the previous examples. 

The use of NewWindow is best demonstrated in a program. The follow
ing program opens a window, displays a short message in it, and then closes 
it after the user hits the mouse button (giving you time to examine what you 
have created). Let's look at the NewWindow call used: 

If LlnLineF(NewWindow, TheWindow, BoundsRect, 'My Window', True, 0, Poi11ter(-1), False, 
o + O) = Ord(TheWindow) then; 

Notice that the function call is contained inside an If statement. This is one 
of the small programming "fudges" necessary when using h1Lines. The 
rationale for this is that as a function, NewWindow returns a value which is a 
pointer to the window record. This value is not needed since it is the same as 
the value sent in the wRecord parameter. (It is needed in a vairiant of this 
NewWindow call not possible from Macintosh Pascal.) But the value must be 
used in some way in order not to cause a syntax error generated by an illegal 
use of a function. One safe way of handling this is to compare the value to the 
parameter set, since they will be the same, and then take no action in the If 
statement. Another possible solution is to call NewWindow from inside a 
Write statement which will open the window and then print the address held 
in the pointer in the Text window. hnaginative programmers will develop 
other ways of doing this. Once the window is open, it must be set as the 
current GrafFort with the SetPort procedure in order for QuickDraw output 
to be sent to it rather than Macintosh Pascal's Drawing window. When the 
window is no longer needed, it must be closed, otherwise a system error will 
occur. 



139 The lnLine Routines-Accessing the Toolbox 

Also look at the RefCon parameter which is passed as a value of O + O 
instead of just 0. This is done because the Toolbox expects a Longlnt value. 
Since the result of all arithmetic operations on integers returns a Longlnt, the 
addition of the two zeros will produce the proper parameter. Passing just O 
will cause a system error to occur. 

program BabysFirstWindow; 
con st 
NewWindow = $A913; 
CloseWindow = $A92D; 
SetPort = $A873; 

type 
WindowRecord = array[1..78) of Integer; 
WindowPtr = ·windowRecord; 

var 
WindowStorage: WindowRecord; 
TheWindow : WindowPtr; 
BoundsRect : Rect; 

begin 
SetRect(BoundsRect, 3, 40, 307, 239); 
TheWindow : = @WindowStorage; 
If LlnlineF(NewWindow, TheWindow, BoundsRect, 'My Window', True, 0, Pointer( -1), 
False, O + 0) = Ord(TheWindow) then 

lnlineP(SetPort, TheWindow); 
Moveto(20, 40); 
TextFont(O); 
TextSize(24); 
Drawstring(' I did it' I did ill'); 
repeat 
until button; 
lnlineP(CloseWindow, TheWindow) 

end. 

Opening windows proves to be one of the trickiest Toolbox operations but 
also one of the most rewarding to the programmer. Remember to save your 
programs before running. 



140 Advanced Macintosh Pascal 

Miscellaneous Window Routines 

Several other miscellaneous window manager procedures and functions are 
useful when programming with windows. 

procedure ShowWindow(theWindow : WindowPtr); Address- $A915 

The ShowWindow procedure makes visible the window pointed to by 
the Window. The window is not made active and is not brought to the front of 
the screen. 

procedure CloseWindow (theWindow: WindowPtr); Address -$A914 

The CloseWindow procedure removes theWindow from the screen and 
then deletes its window record and recovers the memory space. If your 
application creates windows, be sure to dispose of them with CloseWindow 
before returning to the Macintosh Pascal environment. 

procedure SetWRefCon (theWindow : WindowPtr; Data: Long Int); Address -M918 

The SetWRefCon procedure sets theWindow's RefCon field to the value 
held in Data. Remember to pass the Data parameter as a Long Integer. 

procedure GetWRefCon (theWindow : WindowPtr) : Longin!; Address -$A917 

The GetWRefCon procedure retrieves the value in theWindow's RefCon 
field. 

procedure SetWTitle (theWindow : WindowPtr; Title: string); Address -$A91A 

The SetWTitle procedure sets the title of the Window to the string held in 
Title. The window is then redrawn. 

procedure GetWTitle (theWindow: WindowPtr; var Title: string); 
Address -$A919 

The GetWTitle procedure returns the title of theWindow as the value of 
the Title parameter. Remember to use the pointer formation operator(@) in 
front of that parameter. 

The Controls Manager 

In Chapter 5, we saw how you can simulate Toolbox control by clever use of 
QuickDraw routines, but as that Motown song from the sixties goes, "There's 
nothing like the real thing baby." So, in this chapter we will explore using the 
Toolbox to produce three types of controls; radio buttons, check boxes, and 
pushbuttons (Figure 6. 7). 



141 The InLine Routines-Accessing the Toolbox 

( Push ) 

0 Radio Button 

0 Check Bm1 

Figure 6. 7 Radio button, check box and pushbutton 

You are already familiar with radio buttons and pushbuttons from our 
simulation of them. Check boxes are meant to function like radio buttons in 
that they have two states, ON or OFF (checked or not checked), but are usually 
displayed alone rather than coordinated in groups. 

Controls are handled by the Toolbox's Control Manager, which displays 
and manages them. All three types of controls are handled by the same set of 
Toolbox routines. They are all created by the NewControl function and a 
mouse click inside one of them, located with the FindControl function. Finally, 
the action of the particular type of control is handled with TrackControl. 

The Control Manager maintains a record for each control, initialized with 
New Control. These control records are linked together on a linked list with a 
control list being specific to a particular window. There is no need to allocate 
space in your program for control records like there is for window records 
because they are set up by the Toolbox on the system heap and all reference to 
the record is done via a handle returned by New Window. The control record 
holds a link to both the next record in the linked list and to the window it 
belongs to. It also holds the attributes of that control. There are several 
attributes that a particular control may have associated with it. A control has a 
value that is its setting. For instance, in a radio button a value of one means that 
the button is ON and a value of zero means OFF. Along with its current value, a 
control record holds the maximum and minimum value for that control. Other 
attributes include whether or not the control is visible, its title, and if it is active 
or highlighted. Each type of control has a different appearance when it is 
highlighted. For instance, a pushbutton has a dark ring around it. 



142 Advanced Macintosh Pascal 

The Control Manager routines we will examine are: 

Type Name Address Returns 

Function NewControl $A9C6 LONG INT 
Function Find Control $A96C INTEGER 
Function TrackControl $A968 INTEGER 
Procedure SetCtrlValue $A963 
Procedure HiLiteControl $A95D 
Procedure DisposeControl $A955 
Procedure Kill Controls $A956 
Procedure HideControl $A958 
Procedure ShowControl $A957 
Procedure DrawControls $A969 
Procedure SizeControl $A95C 
Function GetCtlValue $A960 INTEGER 
Procedure SetCtlMin $A964 
Function GetCtlMin $A961 INTEGER 
Procedure SetCtlMax $A965 
Function GetCtlMax $A962 INTEGER 
Procedure SetCRefCon $A95B 
Function GetCRefCon $A95A LONG INT 

function NewControl(theWindow : WindowPtr; boundsRect : Rect; title : stlrlng; visible : 
Boolean; value: Integer; min, max: Integer; proclD: Integer; refCon: Longlnt); 
Address • $A954 

Where: 

theWindow 

is the pointer to the window that the control will be displayed. in. 

boundsRect 

is a rectangle that defines the size and location of the control. Pushbut· 
tons are drawn to fit the rectangle exactly, and there should be at least 
20 points between the top and the bottom. For check boxes and radio 
buttons there should be at least 16 points between the top and bottom 
coordinates. 

title 

is the control's title which is displayed inside the control. Make sure that 
the title will fit inside the defining rectangle of the control. Use String· 
Width to make sure. 



143 The InLine Routines-Accessing the Toolbox 

visible 

should be True if you want the Control Manager to draw the control 
when it is defined. It can always be drawn at a different time if you use 
False instead. 

value 

is the initial and current setting of the control. 

min, max 

are the possible range of settings. For controls that have ON-OFF states, 
such as radio buttons and check boxes, these values should be O and 1. 
For pushbuttons, which have no settings, O should be used for min, max, 
and value. If other values are used they are ignored anyway. 

ProclD 

is the way you tell the Control Manager which standard type of the 
control is being defined. The values are: 

pushButton = O; 
checkBox = 1; 
radioButton = 2; 

Since Macintosh Pascal does not support controls these values are not 
defined in Macintosh Pascal. 

RefCon 

is a reference value that can be used by your program and has no effect 
on the control's appearance or operation. Note that since this parameter 
is a Longlnt, you must either pass a variable declared as a Longlnt or 
force a Longlnt to be passed with the technique demonstrated pre
viously. 

Examples of the use of NewControl are: 

For a pushbutton: 

SetRect(PushRect, 20,20,50, 70); 
Push : = Pointer(LlnlineF(NewControl, TheWindow, Push Rec!, 'Test1', True, 1, O, 1, 1, o + 

O)); 

For a check box: 

SetRect(CheckRect, 20,20, 170,40); 
Check:= Pointer(LlnlineF(NewControl, TheWindow, CheckRect, 'Test1',True,1, o, 1, 1, o 
+ O)); 



144 Advanced Macintosh Pascal 

For a radio button: 

SetRect(RadioRect, 20,20,170,40); 
Radio:= Pointer(LlnLineF(NewControl, TheWindow, RadioRect, 'Test1', True, 1, 0, 1, 2, 0 + O)); 

Since radio buttons will be very often used in a group it is effective to use 
an array of rectangles and control handles as demonstrated in the following 
definitions. 

CRect: array[1..6J of Reel; 
Radio : array[1..6J of Handle; 
Begin 

SetRect(CRect[1J, 20, 20, 170, 40); 
SetRect(CRect[2J, 20, 40, 170, 60); 
SetRect(CRect[3J, 20, 60, 170, 80); 
SetRect(CRect[4J, 20, 80, 170, 100); 
SetRect(CRect[5J, 20, 100, 170, 120); 
SetRect(CRect[6J, 20, 120, 170, 140); 
Radio[1J : = Pointer(LlnlineF(NewControl, TheWindow, CRect[1], 'Test1', Tru1~, 1, 0, 1, 2, 0 + 
O)); 
Radio[2J := Pointer(LlnlineF(NewControl, TheWindow, CRect[2], 'Test2', True, 0, 0, 1, 
Pointer, 0 + O)); 
Radio[3J := Pointer(LlnlineF(NewControl, TheWindow, CRect[3J, 'Test3', True, 0, 0, 1, 
Pointer, 0 + O)); 
Radio[4J : = Pointer(LlnlineF(NewControl, TheWindow, CRect[4J, 'Test4', True, 0, 0, 1, 
Pointer, 0 + O)); 
Radio[5] : = Pointer(LlnLineF(NewControl, TheWindow, CRect[5J, 'Test5', True, 0, 0, 1, 
Pointer, 0 + O)); 
Radio[6J : = Pointer(LlnlineF(NewControl, TheWindow, CRect[6J, 'Test6', True, 0, 0, 1, 
Pointer, O + O)); 

Essential to the use of controls is event handling. When a mouse down 
event is detected, it is the program's responsibility to call the FindControl 
function to determine if a control is involved, and if so, which one. 

function FindControl (thePoint : Point; theWindow: WindowPtr; var whichControl : 
Control Handle) : Integer; Address -$A96C 

The FindControl function reports if a mouse down event occurred in any 
of the controls in a window. The parameters are: 

thePoint 

is the point where the mouse click occurred-usually obtained from the 
event record. This point must be in local coordinates so if the Where 
field from an event record is used, it must first be converted to local 
coordinates with GlobalToLocal. 



145 The InLine Routines-Accessing the Toolbox 

theWindow 

is the handle to the window where the controls are. 

whichControl 

is the handle to the control involved and is returned by the function. The 
address operator (@) must be used with this parameter. 

The function returns two values. The first is an integer as the value of 
the function; it is either O if no control was selected or a part code if a 
control was selected. The second value returned is the whichControl 
parameter, which is passed to the program as a variable parameter. In 
order to receive variable parameters when using InLines, the address 
operator must be added to the actual parameter used in the function call. 
This is because when working outside the Pascal environment, variable 
parameters are passed as addresses rather than values. 

The part code is a set value for each type of control used. If the mouse 
down was inside a pushbutton, it is 10; inside a radio button or check box, 
eleven. This is a way of determining what of category of control was 
selected. 

Once a control handle is found, more work has to be performed by the 
program. This can be divided into two steps. First, the mouse action has to 
be tracked so that the control works as defined. For instance, when a 
mouse down occurs in a pushbutton, the button is inverted until it is 
released or the cursor is moved outside the button. With a radio button, the 
oval is highlighted until the button is released or moved outside the con
trols-defining rectangle. Unlike when we had to simulate this action our
selves, the Control Manager's TrackControl function handles this. The 
second thing that must be done is that the action tied to the button must be 
taken. When the Print pushbutton is pressed, printing should occur. Less 
obviously, with radio buttons the dot must be removed from the old button 
and placed in the new button. The Toolbox does not perform this function 
for your program because it cannot assume that all the radio buttons in a 
window are logically connected, and many times they may not be. This is 
done with the CtlValue procedure. Since an Integer is returned, Find
Control is called with WinLineF. 

function TrackControl ( theControl : ControlHandle; startPt : Point; actionProc : ProcPtr) : 
Integer Address -$A968 

Where: 

theControl 

is the handle to the control where the mouse down event occurred. This 
will usually be obtained from FindControl. 



146 Advanced Macintosh Pascal 

startPoint 

is the point where the mouse button was pressed, expressed in local 
coordinates. This will probably come from the Where field in the event 
record and if so, must first be converted to local coordinates with 
GlobalToLocal. 

actionProc 

is a pointer to a procedure that defines some action to be taken as long as 
the mouse button is held down. This is not used with simple controls, 
such as the ones being discussed, and as such is passed as nill. 

The TrackControl function follows the movement of the mouse and 
responds in an appropriate manner for that type of control until the mouse 
button is released. If highlighting is appropriate, this is done by Track
Control. When the mouse button is released the function returns either the 
part code, if the cursor was still in the control it originally was in, or 0 
otherwise. Since an Integer is returned, TrackControl is called with 
WlnLineF. 

The following several lines of code demonstrate how FindC:ontrol and 
TrackControl might be used together to determine which radio button was 
selected and then tracking it. First, FindControl determines if the mouse 
down event occurred inside a control. Both a part code and a control 
handle are returned. If the part code is greater than zero, TrackControl is 
called with the control handle returned. The value returned by Track
Control will tell us if any action has to be taken. If the value returned was 11, 
we then known that a button was selected. When used in a window with 
several types of controls, a Case statement can be used to check the part 
code returned. 

If WinLineF(FindControl, E.Where, TheWindow, @whControl) > 0 then 
begin 
lnControl : = WlnLineF(TrackControl, whControl, E. Where, nll); 
If lnControl > 0 then 

The changing of the ON radio button is done with the SetCtrlValue 
procedure. 

procedure SetCtrlValue (theControl : Control Handle; the Value : Integer); Add1·ess -$A963 



147 The lnLine Routines-Accessing the Toolbox 

The SetCtrlValue function changes the control's current value to the Value 
and then redraws the control to reflect the change. When a radio button or 
check boxes' value is 1, it appears ON; when it is O, it appears OFF. The control 
value has no meaning to a pushbutton. Usually, when working with a group of 
radio buttons, one will be set OFF with another immediately set ON. We will 
maintain a variable that holds the number of the button ON. The following 
program displays a window with the six radio buttons that have been defined. 
It then manages any mouse clicks in a button. The program implements a 
timer to shut the program down after a predetermined value is hit. 

program RadioRadio; 
con st 
NewWindow = $A913; 
CloseWindow = $A92D; 
SetPort = $A873; 
NewControl = $A954; 
DrawControls = $A969; 
DisposeControl = $A955; 
FindControl = $A96C; 
TrackControl = $A968; 
SetCtlValue = $A963; 
RadioButProc = 2; 

type 
WindowRecord = array[1.. 78] of Integer; 
WindowPtr = ·windowRecord; 
Ptr = ·Longlnt; 
Handle = ·Ptr; 

var 
WindowStorage : WindowRecord; 
TheWindow : WindowPtr; 
ScrollBarRect, Button, BoundsRect: Rect; 
CRect: array[1..6J of Rect; 
Radio : arrayJ1..6J of Handle; 
whControl : Handle; 
K, J : Integer; 
E: EventRecord; 
CtlOn, lnControl, whichpart: Integer; 



148 Advanced Macintosh Pascal 

begin 
K:= 1; 
CtlOn:= 1; 
lnitCursor; 
SetRect(BoundsRect, 3, 40, 407, 239); 
SetRect(ScrollBarRect, 20, 20, 170, 40); 
SetRect(CRect[1[, 20, 20, 170, 40); 
SetRect(CRect[2], 20, 40, 170, 60); 
SetRect(CRect[3], 20, 60, 170, 80); 
SetRect(CRect[4], 20, 80, 170, 100); 
SetRect(CRect[5], 20, 100, 170, 120); 
SetRect(CRect[6], 20, 120, 170, 140); 
TheWindow: = @WindowStorage; 
if LlnlineF(NewWindow, TheWindow, BoundsRect, 'My Window', True, 0, 
Pointer( -1), False, 0 + 0) = Ord(TheWindow) then 

lnlineP(SetPort, theWindow); 
Radio[1]: = Pointer (LlnlineF(NewControl, The Window, CRect[1J, 'Test1', 
True, 1, 0, 1, RadioButProc, 0 + O)); 
Radio[2] := Pointer(LlnlineF(NewControl, TheWindow, CRect[2J, 'Test2', 
True, 0, 0, 1, RadioButProc, O + O)); 
Radio[3] : = Pointer (LlnlineF(NewControl, TheWindow, CRectl3J, 'Test3' , 
True, 0, 0, 1, RadioButProc, 0 + O)); 
Radio[4J: = Pointer (LlnlineF(NewControl, TheWindow, CRect[4J, 'Test4', 
True, o, o, 1, RadioButProc, O + O)); 
RadioJ5J: =Pointer (LlnlineF(NewControl, TheWindow, CRect[5J, 'Test5', 
True, 0, 0, 1, RadioButProc, O + O)); 
Radio[6J: = Pointer (LlnlineF(NewControl, TheWindow, CRect[6J, 'Test6', 
True, 0, 0, 1, RadioButProc, 0 + O)); 
repeat 
K:=K+1; 
If GetNextEvent(2, E) then 
begin 
GlobaltoLocal(E. Where); 
case E.What of 
1: 
begin 

if WinlineF(FindControl, E.Where, TheWindow, @whControl) > O then 



149 The InLine Routines-Accessing the Toolbox 

begin 
lnControl : = (WlnlineF(TrackControl, whControl, E.Where, nll)); 
if lnControl > 0 then 
forJ:=1to6do 
if whControl = Radio[JI then 
begin 

lnlineP(SetCtlValue, Radio[CtlOnl, O); 
lnlineP(SetCtlValue, whControl, 1); 

CtlOn := J 
end 

end 
end 

end 
end; 

until K = 600; 
Writeln(' The set radio button is:', CtlOn); 
lnlineP(CloseWindow, TheWlndow) 

end. 

The program can be adapted to use a pushbutton to close the window 
rather than using the timer. This requires that the program be able to 
differentiate between the two types of controls in the window. This is done 
after the call to TrackControl by testing the part code returned and using that 
to determine which type of control was selected. 

program RadioPush; 
con st 
NewWindow = $A913; 
CloseWindow = $A92D; 
SetPort = $A873; 
NewControl = $A954; 
DrawControls = $A969; 
FindControl = $A96C; 
Trackcontrol = $A968; 
SetCtlValue = $A963; 
inButton = 11; 
inRadio = 10; 

type 
WindowRecord = array[1..781 of Integer; 
WindowPtr = ·WindowRecord; 
Ptr = ·Longlnt; 
Handle = ·Ptr; 



150 Advanced Macintosh Pascal 

var 
WindowStorage: WindowReeord; 
TheWindow : WindowPtr; 
CReet : array[1..6J of Reet; 
Radio: array[1..61 of Handle; 
StopReet, Button : Reel; 
Done: Boolean; 
whControl, Stop: Handle; 
J: Integer; 
E : EventReeord; 
CtlOn, lnControl, whiehpart : Integer; 

begin 
K:= 1; 
CtlOn: = 1; 
lnitCursor; 
SetReet(CReet[11. 20, 20, 170, 40); 
SetReet(CReet[2], 20, 40, 170, 60); 
SetReet(CReet[3), 20, 60, 170, 80); 
SetReet(CReet[41. 20, 80, 170, 100); 
SetReet(CReet[5), 20, 100, 170, 120); 
SetReet(CReet[6], 20, 120, 170, 140); 
SetReet(StopReet, 20, 150, 50, 170); 
TheWindow : = @WindowStorage; 
if LlnlineF(NewWindow, TheWindow, BoundsReet, 'My Window', True, 0, Pointer(-1), 
False, o + O) = ord(TheWindow) then 

lnlineP(SetPort, theWindow); 
Radio[11: = Pointer(LlnlineF(NewControl, TheWindow, CReet[1l, 'Test1', 

True, 1, 0, 1, 2, 0 + O)); 
Radio[2J: =Pointer (LlnlineF(NewControl, TheWindow, CReet[2), 'Test2', 

True, 0, 0, 1, 2, 0 + O)); 
Radio[3): =Pointer (LlnlineF(NewControl, TheWindow, CReet[3[, 'Test3', 

True, 0, 0, 1, 2, 0 + O)); 
Radio[4J : = Pointer (LlnlineF(NewControl, TheWindow, CReet[4], 'Test4', 

True, 0, 0, 1, 2, 0 + O)); 
Radio[5): =Pointer (LlnlineF(NewControl, TheWindow, CReet[5[, 'Test5', 

True, 0, 0, 1, 2, O + O)); 
Radio[61: =Pointer (LlnlineF(NewControl, TheWindow, CReet[6), 'Test6', 

True, 0, 0, 1, 2, 0 + O)); 
Stop : = Pointer (LlnlineF(NewControl, TheWindow, StopReet, 'Stop', 

True, 0, 0, 0, 0, 0 + O)); 
Done : = False; 



151 The InLine Routines-Accessing the Toolbox 

repeat 
if GetNextEvent(2, E) then 
begin 
Globaltolocal(E. Where); 
case E.Whatof 
0: 
; (Trap for when button outside control) 
1: 
if WinlineF(FindControl, E.Where, The Window, @whcontrol) > O then 
begin 
lnControl : = (WlnlineF(TrackControl, whControl, E. Where, nil)); 
case lnControl of 
inButton: 
Done : = True; 

inRadio: 
begin 
for J : = 1 to 6 do 
if whControl = Radio[JJ then 
begin 
lnlineP(SetCtlValue, Radio[CtlOnJ, O); 
lnlineP(SetCtlValue, whControl, 1); 
CtlOn := J 

end [if) 
end (case 11) 

end(Case) 
end (case1) 

end [Big case) 
end; (Big IF) 

until Done = True; 
Writeln('The set radio button is:', CtlOn); 
lnlineP(CloseWindow, TheWindow) 

end. 



15.2 Advanced Macintosh Pascal 

Other Control Routines 

procedure HiLiteControl (the Control: ControlHandle; HiLiteState: Integer); Address-$A95D 

The HiliteControl procedure changes the way theControl is hlighlighted. 
The parameter hiliteState can be a value from Oto 255. The default hiliteState 
of a control is 0, which displays the control as you expect to see it. A hiliteState 
value equal to the part code of a control will highlight it. For a pushbutton this 
will highlight the oval; for a radio button this will display the oval inverted, and 
there is little point doing this. A hiliteState value of 254 or 255 displays the 
control as inactive. The difference is that a hiliteState of 254 allows you to 
detect when the mouse button is pressed in the inactive control as opposed to 
not in any control. 

procedure DisposeControl (theControl: ControlHandle); Address- $A955 

The DisposeControl procedure removes theControl from the screen and 
from the window's control list and releases the memory occupied by the 
control record. 

procedure KillControls (theWindow: WindowPtr); Address -$A956 

The KillControls routine disposes of all the controls in theWindow as 
though DisposeControl had been called for each. 

procedure HideControl (theControl : Control Handle); Address -$A958 

The HideControl procedure makes the control pointed to by the control 
handle invisible. It can later be redisplayed by calling ShowControl. 

procedure ShowControl (theControl : Control Handle); Address -$A957 

The ShowControl procedure makes theControl visible and draws it on 
the screen. 

procedure DrawControls (theWindow : WindowPtr); Address-$A969 

The DrawControl procedure draws all the controls in the control list of 
the Window. 

procedure SizeControl (theControl: ControlHandle; w, h: Integer); Address-$A95C 

The SizeControl procedure changes the size of a controls-defining rec
tangle. The bottom right corner of the rectangle is moved W pixels 
horizontally and H pixels vertically (to the right and down). Negative 
values move the other way. There is no effect on the upper left-hand 
corner of the rectangle, which is then redrawn on the screen. 

function GetCtlValue (theControl : Control Handle) : Integer; Address- $A960 



Text Editing 

153 The InLine Routines-Accessing the Toolbox 

The GetCtlValue function returns the current value of theControl. 
When radio buttons are used, this is an alternative way of detecting 
which button is set ON. 

procedure SetCtlMin (theControl : Control Handle; min Value : Integer); Address· $A964 

The SetCtlMin procedure changes the minimum value setting of the· 
Control to min Value. The control is then redrawn. 

function GetCtlMin (theControl : Control Handle) : Integer; Address· $A961 

The GetCtlMin function returns the minimum value for theControl. 

procedure SetCtlMin (theControl : Control Handle; minValue : Integer); Address· $A964 

The SetCtlMin procedure changes the maximum value of theControl to 
maxValue. The control is then redrawn. 

function GetCtlMax (theControl : Control Handle) : Integer; Address· $A962 

The GetCtlMin function returns the maximum value for theControl. 

procedure SetCRefCon (theControl : Control Handle; data : Longlnt); Address· $A95B 

The SetCRefCon procedure sets the reference value of a control. This 
value is just for use by the program; the Toolbox has no interest in it. 
Note that the value used is a Longlnt and must be passed as so. 

function GetCRefCon (theControl : Control Handle) : Longin!; Address· $A95A 

The GetCtlMin function returns the reference value for theControl. 

The last Toolbox Manager we will explore is the TextEdit package. The 
designers of the Macintosh realized that text editing was probably the most 
prevalent operation performed by the user, no matter what type of applica· 
tion program was being run. If the Macintosh was going to be easy to use, then 
a standardized text editing package most be included in the Toolbox. The 
Macintosh's TextEdit package is an easy-to-use, mouse-based editing system 
that supports text operation such as: 

• inserting text in a line 

• deleting text that is backspaced over 
• selecting text by clicking and dragging with the mouse and double-clicking 

to select a word 

• Inverse highlighting of the text selected 
• word wrapping (preventing words from being split on two lines) 
• cutting, copying, and pasting to and from the clipboard 

• left and right justification of text and centering. 



154 Advanced Macintosh Pascal 

All this text-editing power is packaged in probably the easiest-to-use 
portion of the Toolbox. Although it is powerful, there are some features you 
may have seen in other programs that are not supported by TextEclit, such as 
full justification of text (even left and right margins), tabs, and the use of more 
than one font or style variation at a time. 

Text Editing Summary 

Type Name Address Returns 

Function TENew $A9D2 TEHandle 
Procedure TEKey $A9DC 
Procedure TEClick $A9D4 
Procedure TEDispose $A9CD 
Function GetCursor $A9B9 Curs Handle 
Procedure SetCursor $A851 
Procedure TEActivate $A9D9 
Procedure TE Idle $A9DA 
Procedure TECut $A9D6 
Procedure TECopy $A9D5 
Procedure TEPaste $A9D8 
Procedure TEDelete $A9D7 
Procedure TEDeactivate $A9D9 
Procedure TESetSelect $A9Dl 
Procedure TESetJust $A9DF 

The basic data structure used for text editing is a record of type TERec. 
Like window records, this type is not predeclared in Macintosh Pascal and has 
to be declared as a type in the program so a handle of that type can be 
declared. Unlike window records it is desirable to declare all the individual 
fields of a Text Edit record since you may want to access the values in the fields 
at some point. 



155 The InLine Routines-Accessing the Toolbox 

The declaration of a TERec is: 

type 
TERec = record 
DestRect, ViewRect, SelRect: Reel; 
LineHeight, FirstBL: Integer; 
SelPoint: Longin!; 
SelStart, SelEnd, Active: Integer; 
WorkBreak, ClikLoop, ClickTime : Longin!; 
ClickLoc: Integer; 
CaretTime : Longin!; 
CaretState, Just, TElength : Integer; 
HText : Handle; 
RecalBack, Recallines, ClikStuff, CrOnly: Integer; 
TxFont, TxFace, TxMode, TxSize : Integer; 
lnPort, HighHook: Ptr; 
CaretHook : Ptr; 
NLlnes : Integer; 
LlneStarts: array[0 .. 320001 of Integer; 

end; 

As you can see, the record type declaration has 31 separate fields. Most of 
them are of no consequence to the programmer and are documented in Inside 
Macintosh. The fields that are of interest to us are: 

DestRec 

and 

View Rec 

are two rectangles that are used to indicate where the window the text is 
displayed and how it is mapped to the display. Both expressed in local 
coordinates, the ViewRec is the rectangle within which text is visible on 
the screen; the DestRec, a more obscure concept, is where the text is 
actually drawn by the Toolbox. If the ViewRec is smaller than the 
DestRec, the text is clipped before being displayed on the screen. 

TxFont, TxFace, TxSize 

and 

TxMode 

are the font number, the style characteristics, the font size, and the pen 
mode of the text drawn. 

HT ext 

is a handle to the text. 



156 Advanced Macintosh Pascal 

TE Length 

is the number of characters of text stored, starting at HText ••. 

Nlines 

is the number of lines in the text 

line Starts 

is an array containing the position of the first character in each line. It is 
actually a dynamic structure that only uses as much space as needed. It 
is only declared as large as it is to comply with Pascal's type checking. 

Access to a Text Edit record is done via a handle-never directly. 

type 
TEPtr = ·TERec; 
TEHandle = ·TEPtr; 

Use of the TextEdit package is quite simple and, like the other Toolbox 
managers we have explored, event driven. When a mouse down event occurs 
in a ViewRec, a routine to track the mouse and select text is called. When a key 
down event occurs, the event record Message field is dissected to find the 
character and add it to the text. After every call to a TextEDit routine the text is 
redrawn in the ViewRect 

function TENew(DestRect, ViewRect) : TEHandle; Address -$A902 

The TENew function allocates a new Text Edit record and returns a 
handle to it. This handle is assigned to a variable of type TEHandle. The 
parameters passed to TENew are the Destination and View rectangles for the 
text. Each rectangle is in that rectangle's local coordinates. The DestRect must 
be at least as wide as the first character to be drawn (about 20 pixels). The 
ViewRect must not be an empty rectangle. The default settings for a. new Text 
Edit record is single spaced, left justified and an insertion point at position 0. 

procedure TEKey(key: Char; hTE: TEHandle); Address-$A9DC 



157 The InLine Routines-Accessing the Toolbox 

The TEKey procedure is used to insert a character at the insertion point in 
a ViewRect or to replace the selected text if text has been selected (the next 
operation to be covered). The parameters are the character to be entered into 
the text and the TEHandle for the Text Edit record. The character is usually 
found in the low word of the Message field of the event record for a key down 
event. It is up to your program to filter out illegal characters (do input 
verification). 

If the code for a backspace is passed to TEKey, the character to the left of 
the insertion point is removed. 

procedure TEClick(startPt: Point; Extend: Boolean; hTE: TEHandle); Address-$A9D4 

The procedure TEClick is the real workhorse of the Text Edit package. 
The routine controls the selecting and highlighting of text selected with the 
mouse. TEClick should be called anytime a mouse down event occurs in the 
ViewRect pointed to by hTE. The procedure maintains control of the program 
until the mouse button is released, highlighting and selecting as the mouse is 
moved. The other parameter passed to TEClick is the point (in local coordi
nates) where the mouse down event occurred (found in the event record). The 
Extend parameter is used to indicate whether the Shift key was held down at 
the time of the click, meaning that the selected text should be added to that 
already selected. This returns a True, if the Shift key is down; False otherwise. 

The following program uses these three routines to provide some 
rudimenatry text-editing functions. The program first creates a window and 
then an edit record in that window. A nested repeat loop is then used to wait 
for an event. If the event is a key down, a call is made to TEKey to add it to the 
edit record. If the event is a mouse down, the mouse location is checked to see 
if it is inside the view rectangle. If it is, TEClick is called to track the mouse and 
select the text. 

program TextDemo; 
con st 
TENew = $A9D2; 
TEKey = $A9DC; 
TEClick = $A9D4; 
NewWindow = $A913; 
CloseWindow = $A92D; 



158 Advanced Macintosh Pascal 

type 
Ptr = ·Longin!; 
Handle = ·Ptr; 
WindowRecord = array[1..78] of Integer; 
WindowPtr = ·windowRecord; 
TERec = record 
DestRect, ViewRect, SelRect: Reel; 
LineHeight, FirstBL: Integer; 
SelPoint: Longlnt; 
SelStart, SelEnd, Active : Integer; 
WorkBreak, Clikloop, ClickTime: Longlnt; 
Clickloc: Integer; 
CaretTime : Longlnt; 
CaretState, Just, TElength : Integer; 
HText: Handle; 
RecalBack, Recallines, ClikStuff, CrOnly: Integer; 
TxFont, TxFace, TxMode, TxSize: Integer; 
lnPort, HighHook: Ptr; 
CaretHook : Ptr; 
NLines : Integer; 
LineStarts : array[0 .. 32000] of Integer; 

end; 
TEPtr = ·TERec; 
TEHandle = ·TEPtr; 
var 
WindowStorage: WindowRecord; 
TheWindow: WindowPtr; 
BoundsRect, DestRect, ViewRect, ScrollBarRect: Reel; 
ScrollBar: Handle; 
TEH : TEHandle; Event: EventRecord; 
Mess : Integer; 
Ch: Char; 
Mouse: Point; 

begin 
TheWindow: = @WindowStorage; (Create window] 
SetRect(boundsRect, 10, 40, 200, 300); 
If LlnLineF(NewWindow, TheWindow, BoundsRect, 'Untitled', True, 0, 
Pointer( -1), False, 0 + 0) = ord(TheWindow) then ; 
lnLineP(SetPort, TheWindow); 
SetRect(DestRect, 30, 30, 180, 50); (Set up edit record] 
ViewRect : = DestRect; 
FrameRect(ViewRect); 
TEH: = Pointer(LlnlineF(TENew, DestRect, ViewRect)); 
FlushEvents(255, O); 
initCursor; 



159 The InLine Routines-Accessing the Toolbox 

repeat 
repeat (Wait for an event! 
until GetNextEvent(15, Event); 
If Event.What = 3 then (Its a key down! 
begin 
Mess:= Bitand(255, Event.Message); 
Ch : = Chr(Mess); 
lnlineP(TeKey, Ch, TEH); 

end 
else 
if event. what = 1 then (Its a mouse down} 
begin 
GlobalTolocal(event.where); 
if PtlnRect(Event. Where, ViewRect) then 
begin 

lnlineP(TEClick, Event.Where, False, TEH); 
end 

end; 
until Ch= 'z'; 
lnlineP(TEDispose, TEH); 
lnlineP(CloseWindow, TheWindow); 

end. 

The last action of the program is to clean up by closing the window and 
disposing of the Text Edit record. This is done with the TEDispose procedure. 

procedure TEDispose(hTE: TEHandle); Address -$A9CD 

The TEDispose procedure releases the memory occupied by the Text Edit 
record pointed to by hTE. Only call this procedure when you are done with 
this information. 

Not much more is needed in order to make this small program live up to 
standardized Macintosh text editing. Two features that have to be added are 
the blinking caret at the insertion point in the text line and changing the cursor 
from an arrow to the I-beam when it is moved into the ViewRec. Let's tackle 
the former first. 

We know how to change the cursor from MacPascal's cross hair to the 
north-northwest arrow by calling the lnitCursor routine(supported by Macin
tosh Pascal), but how can we change it to the I-beam? The resource section of 
the System File contains the basic cursor pattern used by most applications 
such as the arrow, the cross hair, and the I-beam. Any of these can be 
summoned with one of the Toolbox's utilities-the GetCursor function. 

function GetCursor (cursorlD : Integer) : CursHandle; Address -$A989 

The GetCursor function returns a handle to the cursor having the given 
cursorID. The standard cursors are held in the System Resource file. 



160 Advanced Macintosh Pascal 

The cursorID's for the standard cursors are: 

Cursor ID 

IBeam 1 

cross 2 

plus 3 

watch 4 

To use the I-beam cursor, we first get its handle with GetCursor as follows. 

var 
!Beam : Handle; 

I Beam:= Pointer(LlnLineF(GetCursor,1)); 

The same technique can be used with any of the other standard cursors. 
Any time we wish to display the I-beam, a call to the QuickDraw procedure 
SetCursor is used. 

procedure SetCursor ( crsr : Cursor); Address -$A851 

The SetCursor procedure is used to display the cursor pointer to by crsr. 
The current cursor can be changed to the I-beam with 

lnLineP(SetCursor, !Beam·); 

Notice that the parameter used is a pointer rather than a handle because 
SetCursor uses only one level of indirection. Of course, the cursor can be 
changed back to the north-northwest arrow with a call to InitCursor. 

Now that we know how to set the cursor to the I-beam, it is necessary to be 
able to detect where the cursor is at any time, especially when it is in the 
ViewRec. This can be done by constantly calling GetMouse to return the 
cursor position and then immediately calling PtlnRect to see if the cursor is in 
the ViewRec. This should be done at all time when the program is not 
processing an event, and it can be handled in the nested Repeat loop in our 
program, which waits for an event to occur. 

repeat 
GetMouse(Mouse.H, Mouse.VJ; 
If PtlnRect(Mouse, ViewRect) then 

lnLineP(SetCursor, !Beam·) 
else 
lnitCursor 

until GetNextEvent(15, Event); 

When the cursor is found to be in the ViewRect it set as the I-beam; 
otherwise, it is set back to the arrow. 



161 The InLine Routines-Accessing the Toolbox 

The second feature we wished to add is to provide the blinking caret at the 
insertion point. This is also quite simple to do and is implemented by a 
combination of two routines. 

procedure TEActivate (hTE: TEHandle) Address -$A909 

The TEActivate procedure highlights the selection range in the given Text 
Edit record. If the selection range is an insertion point it displays the blinking 
caret. This procedure should be called every time the window containing the 
Edit record becomes active. If you are using only one window, this procedure 
is called once. 

This procedure starts the caret blinking. In order to maintain it, it is 
necessary to call TEidle. 

procedure TEldle (hTE: TEHandle); Address -$A9DA 

The TEidle procedure is called to keep the displayed caret at the insertion 
point blinking. It should be called as often as possible and at least once, each 
time through the main loop of the program, in order to provide constant 
blinking. No matter how many times the procedure is called the time between 
blinks will never be less than the minimum of 30 ticks. The actual time before 
blinks is set by the user in the Control Panel desk accessory, but calls to TEidle 
are needed to implement it. 

program TestDemo2; 
con st 
TENew = $A902; 
TEldle = $A9DA; 
TEActivate = $A9D8; 
TEKey = $A9DC; 
TEClick = $A904; 
NewWindow = $A913; 
CloseWindow = $A92D; 
SetPort = $A873; 
SetCursor = $A851; 
GetCursor = $A989; 



162 Advanced Macintosh Pascal 

type 
Ptr = ·Longin!; 
Handle = ·Ptr; 
WindowRecord = array(1 .. 78( of Integer; 
WindowPtr = ·windowRecord; 
TERec = record 
DestRect, ViewRect, SelRect: Reel; 
LineHeight, FirstBL : Integer; 
SelPoint : Longin!; SelStart, SelEnd, Active : Integer; 
WorkBreak, ClikLoop, ClickTime : Longin!; 
ClickLoc : Integer; 
Care!Time : Longin!; 
CaretState, Just, TElength : Integer; 
HText: Handle; 
RecalBack, Recallines, ClikStuff, CrOnly : Integer; 
TxFont, TxFace, TxMode, TxSize: Integer; 
lnPort, HighHook: Ptr; 
CaretHook : Ptr; 
Nlines: Integer; 
LineStarts: array(0 .. 320001 of Integer; 

end; 
TEPtr = ·TERec; 
TEHandle = ·TEPtr; 

var 
WindowStorage : WindowRecord; 
TheWindow: WindowPtr; 
BoundsRect, DestRect, ViewRect, ScrollBarRect : Rect; 
ScrollBar: Handle; 
TEH : TEHandle; 
Event : EventRecord; 
I, Mess: Integer; 
Ch :Char; 
IBeam : Handle; 
Topline, ScrapSize: Integer; 
Mouse : Point; 



163 The InLine Routines-Accessing the Toolbox 

begin 
TheWindow : = @WindowStorage; 
SetRect(boundsRect, 10, 40, 200, 300); 
If LlnlineF(NewWindow, TheWindow, BoundsRect, 'Untitled', True, 0, Pointer( -1), False, 0 
+ O) = ord(TheWindow) then 

lnlineP(SetPort, TheWindow); 
SetRect(DestRect, 30, 30, 180, 50); 
ViewRect : = DestRect; 
IBEam: = Pointer(LlnlineF(GetCursor, 1)); 
TEH: = Pointer(LlnlineF(TENew, DestRect, ViewRect)); 
FlushEvents(255, O); 
lnitCursor; 
repeat 
repeat 
GetMouse(Mouse.h, Mouse.v); 
If PtlnRect(Mouse, ViewRect) then 
begin 
lnlineP(TEActivate, TEH); 
lnlineP(SetCursor, I Beam·) 
end 

else 
lnitCursor; 
lnlineP(TEldle, TEH); 
untll GetNextEvent(15, Event); 
If Event. What = 3 then 
begin 
Mess:= BitAnd(255, Event.Message); 
Ch : = Chr(Mess); 
lnlineP(TeKey, Ch, TEH); 

end 
else 
If Event. What = 1 then 
begin 
GlobalTolocal(Event.Where); 
If PtlnRect(Event. Where, ViewRect) then 
begin 
lnlineP(TEClick, Event.Where, False, TEH); 

end 
end; 
lnlineP(TEldle, TEH); 
untllCh = '\ '; 
lnlineP(TEDispose, TEH); 
lnlineP(CloseWindow, TheWindow); 
end. 



164 Advanced Macintosh Pascal 

At this point a fully functional text editing system has been implemented. 
However, several other features can be added to it. The first is being able to 
detect if the Shift key is down so that this information can be passed to 
TEClick. 

SHIFT Click 

If you refer back to the chapter on event handling you will see that informa
tion about the Modifier keys at the time of an event is passed in the Modifiers 
field of the event record. Specifically, if the Shift key was held down, the 
eighth bit is set. This value can be extracted from the field by performing a 
BitAnd using the field with 512 (28 ) as the mask. 

BitAnd(Event.Modifiers, 512) 

The value is returned and it can then be compared to 512 to see if that bit 
was set. 

if BitAnd(Event.Modifiers, 512) = 512 then 

To use this value we don't need the aid of an If statement because the 
parameter passed is a Boolean, and the result of any comparison is a Boolean. 
This can be placed directly into the expression. 

If Event. What = 1 then 
begin 
GlobalToLocal(Event.Where); 
if PtlnRect(Event.Where, ViewRect) then 
begin 
lnLineP(TEClick, Event.Where, BitAnd(Event.Modifiers, 512) = 512, TEH); 

end 
end; 

If this is to messy for you, the result of the comparison can be placed in a 
Boolean variable and that variable can be passed to TEClick. 

if Event. What = 1 then 
begin 
GlobalT oLocal(Event. Where); 
if PtlnRect(Event. Where, ViewRect) then 
begin 
Shift:= (BitAnd(Event.Modifiers, 512) = 512) 
lnLineP(TEClick, Event.Where, Shift, TEH); 

end 
end; 



165 The lnLine Routines-Accessing the Toolbox 

Building the Strings 

Next, it would be nice to be able to access the text that has been entered by the 
user. This text is placed by TextEdit into a packed array that has the field 
HText as a handle to it. The text is not placed into a string because of the 255-
character size limitation of a string. To access the text, a technique to circum
vent Pascal type checking must be used. Since HText is declared as a Handle, 
which is a pointer to a pointer to a Longlnt, we cannot use it as though it 
pointed to an array. This would violate Pascal data type rules. We must first 
declare a handle to a packed array of characters and then assign the value of 
HText to that handle. This is demostrated with the following declarations. 

type 
Chars = packed array[0 .. 101 of Char; 
CharsPtr = ·Chars; 
CharsHandle = ·charsPtr; 

var 
TextData: CharsHandle; 

If TextData is made equal to HText we can then work with it. 

Data : = TEH"·. HT ext; 

Notice that we use TEHAA since TEH is a handle to the Edit record and not 
the Edit record itself. Any operation can now be performed on the packed 
array TextData. An example of this is to display it in the Text window 
demonstrated below. 

for I : = 0 to TEH··. TE Length - 1 do 
Write(Data··[ll); 

This For loop uses as its upper boundary the length of the text that is 
stored in TEHAATELength. We subtract one from it since we are starting with 
the zeroth element. 

Input Verification 

The TEKey procedure is nondiscriminating; it will place any character pro
vided to it into the text, so in certain situations, input verification must be 
performed prior to calling TEKey. For instance, if only numeric data could be 
entered, a check to see if the character entered was a number is used. For 
example: 

var 
NumSet : set of Integer; 

NumSet:= ['0' .. '9'1; 
If Event. What = 3 then 



166 Advanced Macintosh Pascal 

begin 
Mess:= BitAnd(255, Event.Message); 
Ch : = Chr(Mess); 
if Ch In NumSet then 
lnlineP(TeKey, Ch, TEH) 

else 
SysBeep(3); 

end 

The use of Sets to do input verification is preferred programming style. 
Notice that if an illegal value is entered, a call to SysBeep is made to alert the 
user. Other techniques could also be used, such as displaying the illegal text 
and then flashing it or displaying an error message. 

Another aspect of input verification is limiting the number of characters 
that can be entered into an Edit record. This might be done in situations where 
there is a maximum number of characters allowed, such as for the name of a 
file. The current length of the text held in an Edit record is in the TELength 
field. This can be easily checked before a call is made to TEKey; for Instance, in 
this example the upper limit to the number of characters that can be entered is 
held in MaxChars. 

if Event.What= 3 then [Handle the Key down) 
begin 
Mess : = BitAnd(255, Event.Message); 
Ch : = Chr(Mess); 
If HTE ... TE Length < MaxChars then 
lnlineP(TeKey, Ch, TEH) 

else 
SysBeep(3); 

end 

There is one hitch to this example. It does not allow the one character that 
should be allowed when the maximum number of characters has been 
reached, the Backspace. A check to see if the Backspace (ASCII 8) has been 
typed should be added to the If statement. 

If Event.What = 3 then (Handle the Key down) 
begin 
Mess : = BitAnd(255, Event.Message); 
Ch:= Chr(Mess); 
if (HTE ... TELength < MaxChars) or (Ch = Chr(20)) then 
lnlineP(TeKey, Ch, TEH) 

else 
SysBeep(3); 

end 



167 The InLine Routines-Accessing the Toolbox 

Other Text Edit Routines 

The TextEdit package supports a large range of other text operations includ
ing the familar cut, copy, and paste. 

procedure TECut(hTE: TEHandle); Address -$A9D6 

The TECut procedure removes the selected text from the text specified by 
the parameter hTE and places it into the TextEdit scrap. The scrap is a 
temporary storage facility and is not the "desk scrap" used to support transfer 
of information between programs. If the selection range is the insertion point, 
the scrap is emptied. This function, along with copy and paste, is very often 
coordinated with a menu choice. 

procedure TECopy (hTE: TEHandle); Address -$A9D5 

The TECopy procedure copies the selected text in the text specified by 
hTE into the TextEdit scrap. erasing anything previously in it. If the selection 
range is the insertion point, the scrap is emptied. 

procedure TEPaste (hTE: TE Handle); Address -$A9D8 

The TEPaste procedure (Figure 6.8) replaces the selected text in the text 
specified by hTE with the contents of the TextEdit scrap and places the 
insertion point to the right of the inserted text. If the scrap is empty, the 
selected text is deleted. If the selection range is the insertion point, TEPaste 
just inserts the text at the insertion point. 

procedure TE Delete (hTE: TEHandle); Address -$A9D7 

The TEDelete procedure removes the selected text from the text specified 
by hTE. If the selection range is the insertion point, no action is taken. 

procedure TEDeactivate (hTE: TEHandle); Address -$A9D9 

The TEDActivate procedure unhighlights the selected part of the text 
specified by hTE. If the selection range is the insertion point, it is removed. 
TEDactivate should be called anytime that the window containing the Edit 
record is made inactive. 

procedure TESetSelect (selStart, selEnd: Long Int; hTE: TEHandle); Address· $A9D1 

The TESetSelect procedure is used to select and highlight text from inside 
a program. If you have ever seen a window appear with text already high
lighted, you have seen the effect of TESetSelect. The range of text selected is 
identified as selStart, selEnd where the position of the first character in the 
text edit record is zero. The maximum range is from 0 to 32767. If selEnd is 
beyond the last character of the text, the position just past the last character is 
used. 

procedure TESetJust (Just: Integer; hTE: TEHandle); Address -$A9DF 



168 Advanced Macintosh Pascal 

g~~ore I iiOpegu door slams I 
Text Clip Board 

After I door slams 
Cut I The screen I 

Text Clip Board 

Before 11111pegu door slams I 
Copy 

Text Clip Board 

After I The screen door slams I I The screen I 
Copy 

Text Clip Board 

Before 
door slams I The screen I Paste 

Text ClipBoard 

After 
door slams The screen I I The screen I Paste 

Text Clip Board 
Figure 6.8 Cut, copy, and paste 

The TESetJust procedure sets the justification of the text specified by hTE. 
Three types are supported, indicated by: 

Left justified O 

Centered 1 

Right justified 1 

The default justification is left justified. 

The Haiku Writer Revisited 

Now that we have examined the four Toolbox features used to create standard 
Macintosh applications-windows, controls, menus and TextEclit-we can 
combine all four of these features into a single program cooorclinating their 
actions. As an example, we can add a complete Macintosh interface to a 
program already developed, such as the Haiku program from Chapter 3. This 
way, we need not concentrate on the operations of the program, just the 
handling of the interface. 



169 The InLine Routines-Accessing the Toolbox 

Enter 8 Word 

Word ._I ____ __, 

Syllables D 
Part of Speech D 

( Accept J 

Figure 6.9 The Haiku user interface 

The new version of the Haiku program (Figure 6.9) has a user-defined 
window for entering words, the number of syllables, and the parts of speech 
into text-editing fields. After a word is typed, it is accepted by clicking a push
button located in the window. A menu is used to permit the poet to clear the 
fields for further input, create a poem to be displayed in the Text window, or 
quit the program. 

The program was adapted by breaking up its two major functions
adding words and writing a poem-into two procedures names AddWord and 
WritePoem. These procedures are tied to menu actions, as you will see later. 
Other procedures need to be added to create the Toolbox features and to 
manage them. The main program serves as the event handler, calling the 
appropriate routine. 

One major change has been added to the program to speed the writing of a 
poem and to demonstrate another file technique . In this version, all the words 
are initially read into memory and stored in an array of type WordRec . To 
write a poem, the words are randomly chosen from the array rather than the 
file. This saves the file access time each time a word is randomly selected. 
Words added by the user are appended to the end of the array. When the 
program is exited, the file on the disk is erased, and the words in the array are 
then sent to a new file with the same name. 



1 70 Advanced Macintosh Pascal 

The first procedures to be developed set up the menus, windows, con
trols, and text-editing facilities. Here are the procedures and the data types 
and variables used by them. 

type 
Ptr = ·Longlnt; 
Handle = ·Ptr; 
WindowRecord = array[1 .. 78) of Integer; 
WindowPtr = ·windowRecord; 
TERec = record 
DestRect, ViewRect, SelRect : Reel; 
LineHeight, FirstBL: Integer; 
SelPoint : Longlnt; 
SelStart, SelEnd, Active : Integer; 
WorkBreak, Clikloop, ClickTime : Longlnt; 
Clickloc : Integer; 
CaretTime : Longlnt; 
CaretState, Just, TElength : Integer; 
HText: Handle; 
RecalBack, Recallines, ClikStuff, CrOnly: Integer; 
TxFont, TxFace, TxMode, TxSize : Integer; 
lnPort, HighHook: Ptr; 
CaretHook : Ptr; 
Nlines: Integer; 
LineStarts: array[0 .. 32000) of Integer; 
end; 

TEPtr = ·TERec; 
TEHandle = ·TEPtr; 

var 
OldMenuBar, OurMenu: Handle; 
WindowStor1 : WindowRecord; 
EntryWindow: WindowPtr; 
TempRect, EntryWRect, PoemWRect, ClearRect: Rect; 
ViewRect1, ViewRect2, ViewRect3 : Rect; 
TE1, TE2, TE3, CurTE : TEHandle; 
ClearBut : Handle; 



171 The InLine Routines-Accessing the Toolbox 

The InitMenu procedure starts to create the user interface by saving the 
Macintosh Pascal menu bar and then replacing it with a single menu with the 
menuID number 100. 

procedure lnitMenu; 
begin 
OldMenuBar: = Pointer(LlnlineF(GetMenuBar)); 
lnlineP(ClearMenuBar); 
OurMenu : = Pointer(LlnlineF(NewMenu, 100, 'Options')); 
lnlineP(AppendMenu, OurMenu, 'Add a New Word;Write a Poem;(----;Quit'); 
lnlineP{lnsertMenu, OurMenu, O); 
lnlineP(DrawMenuBar); 

end; [lnitMenu] 

Next the window is created with the InitWindows procedure. It creates 
and displays the window described earlier. 

procedure lnitWindows; 
begin 
EntryWindow := @WindowStor1; 
SetRect(EntryWRect, 20, 45, 250, 300); 
If LlnlineF(NewWindow, EntryWindow, EntryWRect, 'Enter a Word', True, 
0, Pointer( -1), False, o + 0) = ord(EntryWindow) then 

end; [lnitWindows] 

The InitControls procedure is the most complex of the three and is used to 
display the interface, creating both a pushbutton and three text-editing 
records. 



1 7.2 Advanced Macintosh Pascal 

In succession, a view rectangle is defined, its text label is drawn, and a 
surrounding rectangle is drawn around the view record by enlarging the view 
rectangle by 4 pixels in each direction with In.setRect. You may notice that 
there are no destination rectangles declared. This is done to save space, since 
the view rectangles and the destination rectangles are the same. 

procedure lnitControl; 
begin 
lnlineP(SetPort, EntryWindow); 
SetRect(ClearRect, 120, 210, 210, 240); 
MoveTo(20, 40); 
DrawString('Word'); 
SetRect(ViewRect1, 60, 28, 170, 45); 
ClearBut: = Pointer(LlnlineF(NewControl, EntryWindow, ClearRect, 

'Accept', True, 0, 0, 0, 0, 0 + O)); 
MoveTo(20, 70); 
Drawstring(' Syllables'); 
SetRect(ViewRect2, 83, 58, 110, 74); 
MoveTo(20, 100); 
Drawstring(' Part of Speech'); 
SetRect(ViewRect3, 115, 88, 155, 110); 
TempRect := ViewRect1; 
lnsetRect(TempRect, -2, -2); 
FrameRect(T empRect); 
TempRect : = ViewRect2; 
lnsetRect(TempRect, - 2, - 2); 
FrameRect(T empRect); 
TempRect: = ViewRect3; 
lnsetRect(TempRect, - 2, - 2); 
FrameRect(T empRect); 
TE1 := Pointer(LlnlineF(TENew, ViewRect1, ViewRect1)); 
TE2 : = Pointer(LlnlineF(TENew, ViewRect2, ViewRect2)); 
TE3: = Pointer(Llnlin(IF(TENew, ViewRect3, ViewRect3)); 

end; 

The next portion of the program to be looked at is the main program. In a 
Macintosh application the main program usually serves two purposes: it acts 
as an interrupt handler, waiting for events and then dispatching them to 
routines to handle them; and it tracks the cursor, changing it's shape when 
and where necessary. 



173 The InLine Routines-Accessing the Toolbox 

This program is interested in two types of events, mouse down and key 
down. When a mouse down happens, it could be in one of four contexts: in the 
pushbutton, in the menu bar, in one of the three text edit view rectangles, or 
anywhere else on the screen (which, of course, has no meaning to the pro
gram). The main program must trap the events and then differentiate between 
the mouse downs, depending upon their location. The algorithm for handling 
the events is as follows: when GetNextEvent returns an event, a Case state
ment is used to differentiate between a mouse down and key down, based on 
the What field in the event record. If the event was a mouse down, several 
Toolbox routines are called to find out where it occurred and to track it. First, 
the FindWindow function is called. As you remember, FindWindow returns 
both a window pointer and a code that indicates if the mouse down occurred 
in the menu bar. Since this program only uses one window we are not 
interested in the window pointer returned-only the code. However, if the 
program was multi-windowed, we would use the window pointer to activate 
the window in which the mouse was clicked. In our program, if the window 
pointer returned does not equal the pointer for the window, we do a SysBeep. 
If the code returned is 1, which we have declared as the constant lnMenuBar, a 
call is then made to the procedure HandleMenu from which MenuSelect is 
called, and the values returned are processed. 

If the mouse down was not in the menu bar, the next place to check is the 
controls. The FindControl function is called and returns both a part code and 
the control handle for the control where the event occurred. In our case, this 
can only be the pushbutton. If the part code returned is greater than zero, the 
event was in the control and TrackControl is called to do just that. Track 
Control also returns a part code for where the mouse up was located. If the 
code is greater than zero, the user has pushed the button, and the procedure 
that handles the action of the pushbutton, AddWord, is called. Finally, if the 
mouse down was neither in the menu bar or the control, we check the text edit 
view rectangles to see if the event occurred in any of them. This is done by 
successive calls to PtlnRect with each of the rectangles. If the event was in one 
of the view rectangles, a simple call to TEActivate with the text edit handle is 
performed. 

The other event we are interested in is a key down. The only function a 
key down can serve is to enter text into the text edit record currently active. 
This is done in the procedure HandleKey after processing the Message field of 
the event record by calling TEKey. 

The other function of the main program is to maintain the shape of the 
cursor as the I-beam in the edit record view rectangles and as the arrow 
elsewhere. This is done with continual calls to GetMouse, checking the mouse 
position whenever the program is not handling an event. If the mouse is in a 
text edit rectangle, the cursor is set to the I-beam; otherwise, it is set to the 
north-northwest arrow. 



174 Advanced Macintosh Pascal 

Here is the entire main program. It begins by calling the routines which 
set up windows, menus, controls and text editing. 

begin (main program] 
lnitWindows; 
lnitMenu; 
lnitControl; 
lnitGrammars; 
I Beam:= Pointer(LlnLineF(GetCursor, 1)); 
CurTE : = TE1; 
lnLineP(TEActivate, CurTE); 
Done : = False; 
repeat 

repeat 
GetMouse(Mouse.h, Mouse.v); 
If PtlnRect(Mouse, ViewRect1) or PtlnRect(Mouse, ViewRect2) or 

PtlnRect(Mouse, ViewRect3) then 
lnLineP(SetCursor, IBeam·j 

else 
lnitCursor; 

lnLineP(TEldle, CurTe); 
until GetNextEvent(15, Event); 
GlobalTolocal(Event. Where); 
case Event.What of 
1: (Mouse down] 
begin 

ClickedRegion := WlnLineF(FindWindow, Event.Where,@WhWindow); 
if ClickedRegion = lnMenuBar then 
Handle Menu; 

ifWlnLineF(FindControl, Event.Where, EntryWindow,@WhControl) > O 
then 
begin 

In Control : = (WlnLineF(TrackControl, whControl, Event. Where, nil)); 
If I nControl > O then 
AddWord; 

end 



175 The InLine Routines-Accessing the Toolbox 

else 
begin 

inlineP(TeDeactivate, CurTE}; 
if PtlnRect(Event. Where, ViewRect1) then 

Cur TE : = TE1; 
if PtlnRect(Event. Where, ViewRect2} then 
CurTE : = TE2; 

if PtlnRect(Event.Where, ViewRect3) then 
CurTE : = TE3; 

inlineP(TEActivate, CurTE); 
inlineP(TEClick, Event.Where, False, CurTE); 

end 
end; 

3: !Key Down) 
HandleKey; 

end; (Case) 
until Done; 
inlineP(CloseWindow, EntryWindow); 
lnlineP(DisposeMenu, OurMenu}; 
inlineP(SetMenuBar, OldMenuBar}; 
inlineP(DrawMenuBar}; 
Save Words; 

end. !program) 

We can now look at the procedures tied to the user interface. The first one 
we will examine is called when FindWindow indicates that a mouse down 
event was located in the menu bar. HandleMenu calls MenuSelect, which 
returns a Long Integer with the menuID in the high word and the item number 
in the low word. Since we have only one menu we need not worry about the 
menuID. A value greater than zero returned by MenuSelect means that an 
item in the single menu was selected. Declared in the procedure are three 
constants representing the item numbers of the menu choices. Notice that the 
item numbers are 1, 2 and 4. The number 3 position in the menu is filled with a 
dotted line. 

The item choice is obtained from the value returned by MenuSelect, with 
the LoWord function called from a Case statement. The Case statement then 
branches to a procedure that performs the action tied to that menu item. The 
last InLineP in HandleMenu is the obligatory HiLiteMenu used to change the 
menu title to black on white from white on black. 

procedure HandleMenu; 
const 
Add= 1; 
Write= 2; 
Quit= 4; 



176 Advanced Macintosh Pascal 

var 
MenuChoice: Longlnt; 

begin 
MenuChoice: = LlnlineF(MenuSelect, Event.Where); 
case LoWord(MenuChoice) of 
Add: 
ClearWord; 

Write: 
WritePoem; 

Quit: 
Done:= True; 

otherwise 

end; {easel 
lnlineP(HiliteMenu, O); 

end; 

The HandleKey procedure is called every time a key down event is 
detected. It finds the character typed from the Message field of the event 
record and then adds it to whichever of the three text edit records is currently 
activated with TEKey. The procedure also checks to see if the number of 
characters in the current TE record is at the maximum for that :field. These 
maximum values are 10 characters for the word field, 2 for the number of 
syllables, and 1 for the part of speech (a for adjective, n for noun, and v for 
verb). 

procedure HandleKey; 
var 
Maxlen : Integer; 

begin 
if Cur TE = TE1 then 
Maxlen := 10 

else If CurTE = TE2 then 
Maxlen := 2 

else If CurTE = TE3 then 
Maxlen := 1; 

Event.Message:= BitAnd(Event.Message, 255); 
Ch : = Chr(Event.Message); 
if (CurTE··.TELength < Maxlen) or (Ch = Chr(B)) then 
lnlineP(TeKey, Ch, CurTE) 

else 
SysBeep(5); 

end; 



177 The InLine Routines-Accessing the Toolbox 

Now that we have looked at the procedures that handle the menu and text 
editing, we can turn our attention to the procedures that perform the actions 
tied to the menu items and the pushbutton. Two of these procedures you 
should be familar with because they are part of the old Haiku program. 

The AddWord procedure adds a word and its associated information to 
the end of the array of words WordList. This operation is more difficult than it 
might seem at first glance. It requires converting the information in the three 
text edit records into the form required for storage in the fields of the record 
type WordRec. Specifically, the Word field in a WordRec is a string, but the 
text stored in a TERec is held in a packed array. That means that a conversion 
from packed array to string must be done. The syllable field must be con
verted from a one- or two-character string representing a number to an 
integer. The part of speech from a one-character code to a value of the 
enumerated type PartType. 

The conversion from a packed array to which we have a handle to a string 
can be done by taking each character in the array and concatenating it to the 
end of the string. Remember, you cannot work with the TERec field HText 
directly because of Pascal's type checking. You must first assign that handle to 
one pointing to a packed array of Char. 

TextData: = Pointer(TE1 ... HText); 
PoemWord.Word := "; 
for I : = Oto TE1 ... TE Length -1 do 
begin 
S: = TextData .. [I]; 
PoemWord.Word: = Concat(PoemWord.word, S); 

end; 

Because the Concat function only works with strings and not with a string 
and a character, we must first assign the character we wish to add to a string 
of length and size one. Note that the first position in the packed array is 
position 0. 

The conversion of the part-of-speech code is simply done with a Case 
statement. 

TextData: = Pointer(TE3 ... HText); 
case Tex!Data .. [OJ of 
'n': 
PoemWord.Part: = noun; 
'v': 
Poem Word.Part:= verb; 
'a': 
PoemWord.Part: = adj; 

otherwise 
SysBeep(5); 



178 Advanced Macintosh Pascal 

The third conversion requires us to take note of the difference between 
the ASCII code for a character and the value of that character as a digit. The 
ASCII code is the value of the digit plus the ASCII code of the character zero (0). 
An If statement is fine for converting a one- or two-digit numeric string. 

If TE2 ... TE Length = 2 then 
PoemWord.Syl := (Ord(TextDatr[Ol) -Ord('O')) * 10 + Ord(TextData--(11) -Ord('O') 

else 
PoemWord.Syl := Ord(TextDatr[Ol) -Ord('O'); 

Here is the entire AddWord procedure. The only other function per
formed by AddWord is to place the record at the end of the array WordList, 
provided there is room. The procedure does only the minimal amount of input 
validity checking since the program is near the memory limit of Macintosh 
Pascal running on a 128K machine. The reader using another system may 
choose to add additional validity checks. 

procedure AddWord; 
type 
Chars = packed array[0 .. 9] of Char; 
Ptr = ·chars; 
CharHandle = ·Ptr; 

var 
TextData: CharHandle; 
I: Integer; 
s: strlng[1]; 
begin ( place in WordFileJ 
TextData: = pointer(TE1 ... HText); 
PoemWord.Word := '; 
for I : = Oto TE1 ... TE Length -1 do 
begin 
S := TextData .. (11; 
PoemWord.Word := concat(PoemWord.word, S); 

end; 
TextData: = Pointer(TE3 ... HText); 
case TextData .. [0] of 
'n': 
PoemWord.Part : = noun; 

'v': 
Poem Word.Part:= verb; 

'a': 
Poem Word.Part:= adj; 



1 79 The InLine Routines-Accessing the Toolbox 

otherwise 
SysBeep(5); 

end; 
TextData: = Pointer(TE2··.HText); 
lfTE2··.TELength = 2then 
PoemWord.Syl : = (Ord(TextData--[01) ·Ord( '0')) • 10 + Ord(TextData--[11) • 
Ord('O') 

else 
PoemWord.Syl := Ord(TextData··101)-0rd('O'); 
If NumWords + 1 > MaxWords then 
begin 
Wordlist[NumWords + 11 : = PoemWord; 
NumWords: = NumWords + 1; 

end; 
end; 

The next procedure is the one tied to the Add a New Word option in the 
menu. The Clear Word procedure simply clears the old text out of the text edit 
fields by selecting it and deleting it. Remember, the SelStart and SelEnd 
parameters of TESetSelect require long integers. 

procedure ClearWord; 
begin 
lnlineP(TESetSelect, 0 + 0, 100 + 0, TE1); 
lnlineP(TEDelete, TE1); 
lnlineP(TESetSelect, 0 + 0, 100 + 0, TE2); 
lnlineP(TEDelete, TE2); 
lnlineP(TESetSelect, 0 + 0, 100 + 0, TE3); 
lnlineP(TEDelete, TE3); 
lnlineP(TEActivate, TE1) 

end; 

The poems are written by the WritePoem procedure, which is almost a 
direct translation from the original Haiku program. The only difference is that 
the procedure picks words from the array rather than the file. 

procedure WritePoem; 
var 
Pick, Size : Integer; 

begin 
Previous.Part:= Any; 
SylCount: = O; 

repeat 
Pick:= Random mod NumWords + 1; 
If Wordlist!Pick!.Part In Grammars!Previous.Part] then 

If SylCount + Wordlist!Pick].Syl < = 17 then 



180 Advanced Macintosh Pascal 

begin 
Writeln(Wordlist[PickI.Word); 
Previous:= Wordlist[Pickl; 
SylCount: = SylCount + Wordlist[Pick!.Syl 

end; 
until SylCount = 17; 

end; 

To complete the program, the last two procedures GetWords and Save
Words, retrieve the words from the file at the start of the program and store 
them back afterward. They can be seen in this complete program listing. 

program MacHaiku; 
con st 
TENew = $A9D2; 
TEldle = $A9DA; 
TEActivate = $A9D8; 
TEDeactivate = $A9D9; 
TEDispose = $A9CD; 
TEKey = $A9DC; 
TEClick = $A9D4; 
TESetSelect = $A9D1; 
TEDelete = $A9D7; 
NewWindow = $A913; 
CloseWindow = $A92D; 
FindWindow = $A92C; 
SetPort = $A873; 
SetCursor = $A851; 
GetCursor = $A989; 
GetMenuBar = $A93B; 
ClearMenuBar = $A934; 
FreeMem = $A01C; 
NewMenu = $A931; 
AppendMenu = $A933; 
lnsertMenu = $A935; 
DrawMenuBar = $A937; 
SetMenuBar = $A93C; 
DisposeMenu = $A932; 
MenuSelect = $A93D; 
HiliteMenu = $A938; 
NewControl = $A954; 
FindControl = $A96C; 
HiliteControl = $A95D; 
TestControl = $A966; 
GetCtlValue = $A960; 



181 The InLine Routines-Accessing the Toolbox 

SetCtlValue = $A963; 
TrackControl = $A968; 
SetCtlMax = $A965; 
MouseDown = 1; 
KeyDown = 3; 
lnMenuBar = 1; 
MaxWords = 100; 

type 
PartType = (verb, noun, adj, any); 
PartSet = set of PartType; 
WordRec = record 
Word: strlng[10]; 
Part : PartType; 
Syl : Integer 

end; 
Ptr = ·Longlnt; 
Handle = ·Ptr; 
WindowRecord = array[t.78] of Integer; 
WindowPtr = ·windowRecord; 
TERec = record 
DestRect, ViewRect, SelRect : Rect; 
LineHeight, FirstBL : Integer; 
SelPoint : Longlnt; 
SelStart, SelEnd, Active : Integer; 
WorkBreak, Clikloop, ClickTime : Longlnt; 
Clickloc : Integer; 
CaretTlme : Longlnt; 
CaretState, Just, TElength : Integer; 
HText: Handle; 
RecalBack, Recallines, ClikStuff, CrOnly: Integer; 
TxFont, TxFace, TxMode, TxSize : Integer; 
lnPort, High Hook: Ptr; 
CaretHook : Ptr; 
Nlines: Integer; 
LineStarts : array[0 .• 32000] of Integer; 

end; 
TEPtr = ·TERec; 
TEHandle = ·TEPtr; 



182 Advanced Macintosh Pascal 

var 
OldMenuBar, OurMenu: Handle; 
WindowStor1 : WindowRecord; 
EntryWindow, PoemWindow, WhWindow: WindowPtr; 
TempRect, EntryWRect, PoemWRect, ClearRect: Rect; 
ViewRect1, ViewRect2, ViewRect3: Rect; 
TE1, TE2, TE3, CurTE: TEHandle; 
Event: EventRecord; 
Mouse : Point; 
WhControl, !Beam : Handle; 
ClearBut : Handle; 
lnControl, WhichPart, ClickedRegion, SYICount: Integer; 
Ch: Char; 
Done : Boolean; 
PoemWord, Previous: WordRec; 
Word File: file of WordRec; 
lnSet : set of Char; 
Grammars : array(PartType] of PartSet; 
Wordlist: array(1.. MaxWords] of WordRec; 
NumWords: Integer; 

procedure lnitMenu; 
begin 
OldMenuBar: = Pointer(LlnlineF(GetMenuBar)); 
lnlineP(ClearMenuBar); 
OurMenu : = Pointer(LlnlineF(NewMenu, 100, 'Options')); 
lnlineP(AppendMenu, OurMenu, 'Add a New Word;Write a Poem;(----;Quit'); 
lnlineP(lnsertMenu, OurMenu, O); 
lnlineP(DrawMenuBar); 

end; {INitMenu] 
procedure lnitWindows; 
begin 
EntryWindow: = @WindowStor1; 
SetRect(EntryWRect, 20, 45, 250, 300); 
If LlnlineF(NewWindow, EntryWindow, EntryWRect, 'Enter a Word', True, 0, Pointer(-1), 

False, O + 0) = ord(EntryWindow) then 

end; {lnitWindows) 



183 The InLine Routines-Accessing the Toolbox 

procedure lnitControl; 
begin 
lnlineP(SetPort, EntryWindow); 
SetRect(ClearRect, 120, 210, 210, 240); 
MoveTo(20, 40); 
Drawstring( 'Word'); 
SetRect(ViewRect1, 60, 28, 170, 45); 
ClearBut: = Pointer(LlnlineF(NewControl, EntryWindow, ClearRect, 

'Accept', True, 0, 0, 0, 0, 0 + O)); 
MoveTo(20, 70); 
Drawstring(' Syllables'); 
SetRect(ViewRect2, 83, 58, 110, 74); 
MoveTo(20, 100); 
DrawString('Part of Speech'); 
SetRect(ViewRect3, 115, 88, 155, 110); 
TempRect: = ViewRect1; 
lnsetRect(TempRect, - 2, -2); 
FrameRect(T empRect); 
TempRect : = ViewRect2; 
lnsetRect(TempRect, -2, -2); 
FrameRect(TempRect); 
TempRect: = ViewRect3; 
lnsetRect(TempRect, -2, -2); 
FrameRect(TempRect); 
TE1: = Pointer(LlnlineF(TENew, ViewRect1, ViewRect1)); 
TE2: = Pointer(LlnlineF(TENew, ViewRect2, ViewRect2)); 
TE3: = Pointer(LlnlineF(TENew, ViewRect3, ViewRect3)); 

end; 
procedure AddWord; 
type 
Chars = packed arrayl0 .. 91 of Char; 
Ptr = ·chars; 
CharHandle = ·Ptr; 

var 
TextData: CharHandle; 
I: Integer; 
Temp: strlngl51; 
s: strlngl11; 



184 Advanced Macintosh Pascal 

begin I place in WordFile) 
TextData: = pointer(TE1··.HText); 
PoemWord. Word : = '; 

for I : = o to TE1··. TE Length • 1 do 
begin 
S: = TextData··[IJ; 
PoemWord.Word := concat(PoemWord.word, S); 

end; 
TextData: = Pointer(TE3··.HText); 
case TextDatr[O] of 
'n': 
Poem Word.Part:= noun; 
'V': 
PoemWord.Part: = verb; 
'a': 
Poem Word.Part:= adj; 

otherwise 
SysBeep(5); 

end; 
TextData : = pointer(TE2··. HT ext); 

lfTE2"·.TELength = 2then 
PoemWord.Syl : = (Ord(TextData··10]) ·Ord(' 0 ')) * 10 + 
Ord(T extData··11]) ·Ord(' 0 ') 

else 
PoemWord.Syl: = Ord(TextData··10]) • Ord('O'); 
If NumWords+ 1 > MaxWords then 
begin 
Wordlist[NumWords + 1) : = PoemWord; 
NumWords := NumWords + 1; 

end; 
end; 
procedure WritePoem; 
var 

Pick, Size: Integer; 
begin 

Previous.Part : = Any; 
SylCount : = O; 



185 The InLine Routines-Accessing the Toolbox 

repeat 
Pick:= Random mod NumWords + 1; 
If Wordlist[Pick[.Part In Grammars[Previous.Part[ then 
If SylCount + Wordlist[Pick].Syl < = 17then 

begin 
Writeln(Wordlist[Pick].Word); 
Previous : = Wordlist[Pick] 
SylCount: = SylCount + Wordlist[Pick].Syl 

end; 
until SylCount = 17; 

end; 
until SylCount = 17 
end; 
procedure lnitGrammars; 
begin 
Grammars[Nouns : = [adj, verb]; 
Grammars[adj, noun]; 
Grammars[verbl : = [adj, noun]; 
Grammars[ any[ : = ]adj, verb, noun[ 

end; 
procedure ClearWord; 
begin 
lnlineP(TESetSelect, O +O, 100 + 0, TE 1); 
lnlineP(TEDelete, TE1); 
lnlineP(TESetSelect, 0 + 0, 100 + 0, TE2); 
lnlineP(TEDelete, TE2); 
lnlineP(TESetSelect, O + 0, 100 + 0, TE3); 
lnlineP(TEDelete, TE3); 
lnlineP(TEActivate, TE1) 

end; 
procedure GetWords; 
begin 
Open(WordFile, 'Words.Data'); 
NumWords : = 1; 
while not (eof(WordFile)) do 
begin 
Wordlist[NumWordsl : = WordFile • ; 
NumWords: = NumWords + 1; 
Get(WordFile); 

end; 
Close(WordFile) 

end 



186 Advanced Macintosh Pascal 

procedure SaveWords; 
var 
I: Integer; 

begin 
ReWrite(WordFile, 'Words.Data'); 
Open(WordFile); 
for I:= 1 to NumWords do 
begin 

WordFile • : = WordList[1]: 
Put(WordFile) 

end 
end; 
procedure HandleMenu; 
con st 
Add= 1; 
Write= 2; 
Quit= 4; 

var 
MenuChoice : Longlnt; 

begin 
MenuChoice: = LlnLineF(MenuSelect, Event.Where); 
caseLoWord(MenuChoice) of 
Add: 
ClearWord; 

Write: 
WritePoem; 

Quit: 
Done:= True; 

otherwise 

end; [case} 
lnLineP(HiLiteMenu, O); 

end; 
procedure HandleKey; 
var 
MaxLen : Integer; 

begin 
If CurTE = TE1then 
MaxLen := 10 

elself CurTE = TE2 then 
MaxLen := 2 

elselfCurTE = TE3 then 
MaxLen := 1; 

Event.Message:= BitAnd(Event.Message, 255); 
Ch : = Chr(Event Message); 



187 The InLine Routines-Accessing the Toolbox 

If (Cur TE· • .TE Length < Maxlength) or (Ch = Chr(S)) then 
lnlineP(TeKey, Ch, CurTE) 

else 
SysBeep(5); 

end; 
begin 
HideAll; 
GetWords; 
NumWords : = O; 
ShowText; 
lnitWindows; 
FlushEvents(15, O); 
lnitMenu; 
lnitControl; 
lnitGrammars; 
I Beam : = Pointer(LlnlineF(GetCursor, 1)); 
CurTE := TE1; 
lnlineP(TEActivate, CurTE); 
Done : = False; 
repeat 

repeat 
GetMouse(Mouse.h, Mouse.v); 
If PtlnRect(Mouse, ViewRect1) or PtlnRect(Mouse, ViewRect2) or PtlnRect(Mouse, View

Rect3) then 
lnlineP(SetCursor, IBeam·) 

else 
lnitCursor; 

lnlineP(TEldle, CurTe); 
until GetNextEvent(15, Event); 
GlobalT olocal(Event. Where); 
case Event. What of 

1: 
begin 
ClickedRegion: = WlnlineF(FindWindow, Event.Where, @WhWindow); 

1 if Clicked Region = lnMenuBar then 
HandleMenu; 

if WlnlineF(FindControl, Event. Where, EntryWindow, @WhControl) > 0 
then 
begin 
lnControl: = (WlnlineF(TrackControl, whControl, Event.Where, nil)); 
If lnControl > 0 then 

AddWord; 
end 



188 Advanced Macintosh Pascal 

begin 
lnlineP(TeDeactivate, CurTE); 

if PtlnRect(Event.Where, ViewRect 1then) 
CurTE: = TE1; 

if PtlnRect(Event. Where, ViewRect2) then 
CurTE : = TE2; 

if PtlnRect(Event. Where, ViewRect3) then 
CurTE : = TE3; 
lnlineP(TEActivate, CurTE); 
lnlineP(TEClick, Event.Where, False, CurTE); 

end 
end; 
3: [Key Down) HandleKey; 

end; [Case) 
until Done; 
lnlineP(CloseWindow, EntryWindow); 
lnlineP(DisposeMenu, OurMenu); 
lnlineP(SetMenuBar, OldMenuBar); 
lnlineP(DrawMenuBar); 
SaveWords; 

end 

Some Final Notes on Using InLines 

We have now seen how the use of InLines allow us to create true Macintosh 
applications in Macintosh Pascal. Of course, since the program must first pass 
through Macintosh Pascal, some problems can and do occur. 

First, program execution speed is slower than if the same program had 
been written in a compiled language such as C or assembly language. This is 
due to the fact that Macintosh Pascal must decode every statement each time it 
is executed (the bane of interpreters). Even when the statement is an InLine 
which, in turn, branches to a Toolbox ROM routine, time is needed to recog
nize the InLine keywords. Fortunately, the QuickDraw operates so fast that 
very little speed degradation can be noticed. 



189 The InLine Routines-Accessing the Toolbox 

Secondly, the maximum program size is limited since Macintosh Pascal 
occupies a significant portion of memory by itself. This situation is aggrevated 
when using features such as windows that need large amounts of memory to 
store information about them. Remember, Macintosh Pascal itself allocates 
five window records for its Program, Text, Drawing, Instant, and Observe 
windows. When using InLines, lack of memory space will cause the program 
to bomb, displaying everyone's favorite System Error alert box. The error 
code for this type of error will appear as ID = 2. A general System Error 
debugging hint when programming with InLines is to try to reduce the 
amount of memory required by the program and run it again to see if it still 
doesnt work. A simple way of doing this is to call the HideAll procedure to 
remove from memory the program text, freeing that space. Some of the space 
shortage is ameliorated with the use of the Version 2.0 Application Shell, 
which contains only the interpreter and omits all of the user/programmer 
interface, including the ability to edit a program. This frees a large amount of 
the memory required by the complete Macintosh Pascal system. (For more on 
the Application Shell see Appendix A.) 

Finally, it is important to keep in mind that you are sharing memory with 
Macintosh Pascal, and a small programming mistake may cause a system error 
and destroy Macintosh Pascal's ability to interpret your program. An example 
of this type of mistake is the sloppy use of a pointer or handle, which 
overwrites part of the interpreter or its supporting window, control, or menu 
records. 



GraiPorts 

CHAPTER 

§[!]----
Advanced 
QuickDraur 

The depth and breadth of QuickDraw goes far beyond the simple shape 
drawing demonstrated in Chapter 5. QuickDraw's more advanced features 
include complex drawing shapes that are dynamically allocated in the heap 
and precise control over the drawing environment. This chapter covers the 
majority of the advanced features of QuickDraw. 

In Chapter 5, GrafForts were described as a self-contained drawing environ
ment. Also mentioned was the fact that the current GrafFort in Macintosh 
Pascal is the Drawing window. Now that the Window Manager and the ability 
to create a window has been introduced, it seems appropriate to expand the 
discussion of GrafForts. 

191 



192 Advanced Macintosh Pascal 

A GrafPort is a record used to define how drawing will take place in an 
area of the screen. The GrafPort record is dynamically allocated and accessed 
via a pointer. Many GrafPorts can be open at once, though usuailly a single 
GrafPort is associated with a window. When you define a window, a GrafPort 
is automatically created for that window as part of its window record. The 
record type of a GrafPort is: 

type 
Graf Ptr = ·Graf Port; 
Graf Port= record 
device : Integer; 
portBits : BitMap; 
portRect : Rect; 
visRgn : RgnHandle; 
clipRgn : RgnHandle; 
bkPat : Pattern; 
fillPat: Pattern; 
pnloc: Point; 
pnSize : Point; 
pnMode : Integer; 
pnPat: Pattern; 
pnVis : Integer; 
txFont : Integer; 
txFace: Style 
txMode: Integer; 
txSize : Integer; 
spExtra : Integer; 
fgColor : Longlnt; 
bkColor : Longlnt; 
colorBit : Integer; 
patStretch : Integer; 
picSave : QDHandle; 
rgnSave: QDHandle; 
polySave : QDHandle; 
graf Pro cs : QDProcsPtr; 

end; 

Most of the fields in this record will be unfamiliar to you at this point. They 
are used, to describe the characteristics of the drawing environment, the pen, 
the font being used, and so forth. The exact meaning of each is as follows. 

The device field is the number of the output device the GrafPort will be 
using. The default value of 0 is the screen and is almost always the value 
used. 



193 Advanced QuickDraw 

The portsBit field is the BitMap that points to the Bitlmage where all 
drawing will be done. This is set by the WindowManager but is by default 
the entire screen (0, O, 512, 342). 

The portRect field is a rectangle that describes where, inside the Bitlmage, 
drawing will take place. This is set by the Window Manager. 

The visRgn and clipRgn fields are manipulated by the Window Manager 
and describe how much of the window is used for drawing and where the 
drawing will be clipped. 

The bkPat and fillPat fields hold patterns used by certain QuickDraw 
routines drawing in the Grafport. BkPat is the background pattern used to 
erase an area of the screen. It is white by default. The fillPat is the pattern 
used by the QuickDraw fill routines. It is black by default. QuickDraw 
contains routines to manipulate these fields. 

The pnLoc, pnSize, pnMode, pnPat, and PnVis fields describe the charac
teristics of the pen. Routines that manipulate these fields are described 
extensively in this chapter. 

The txFont, txFace, txMode, and txSize fields hold information about the 
font to draw characters. Routines that manipulate these fields are 
described extensively in this chapter. 

The fgColor, bkColor, and colorBit field hold information regarding draw
ing in color. Routines that manipulate these fields are described in this 
chapter. 

The patStretch field is used during output to a printer. A program should 
not alter its value. 

The picSave, rgnSave, and polySave fields are used to help define the 
QuickDraw complex drawing shapes pictures, polygons, and regions. They 
are covered extensively in this chapter. A program is not concerned with 
the values of these fields. 

Finally, the grafprocs field may be used to point to a special data structured 
used to customize QuickDraw drawing operations. Detailed information 
about this feature can be found in Apple's QuickDraw Programming Guide, 
a section of Inside Macintosh. 

More on Drawing Text 

In addition to selecting the font or textface of characters being drawn on the 
screen, QuickDraw offers wide control over the characteristics of text (Figure 
7.1), as you might have suspected from using programs such as MacWrite and 
MacPaint. The drawing characteristics are held in fields of the Grafport and 
are manipulated by QuickDraw routines. 



194 Advanced Macintosh Pascal 

Plein 
Bold 
lttJ/ic 

1!!1111111.llDllil® 

lllbSdl!IW 
Figure 7.1 Text characteristics 

To describe the style of text drawn, QuickDraw has an enumerated data 
type style defined as: 

type 
Styleltem = (Bold, Italic, Underline, Outline, Shadow, Condense, Expand); 

Since text can be drawn with combinations of the style attributes, a set of 
Styleltem has also been predefined by QuickDraw. 

type 
Style = set of Styleltem; 

The use of a set makes it possible to describe varying numbers of text 
characteristics to QuickDraw. This is done with the TextFace procedure. 

procedure TextFace (Face: Style); 

The TextFace procedure is used to indicate the text characteristics of text 
drawn in future calls to Drawstring and DrawChar. Since Style is defined as a 
set, a set must be passed as a parameter. 

TextFace([Boldl); 
TextFace([ltalic, Underline]); 
TextFace([Outline, Shadow, Condensed]); 
TextFace(ll); 

{Bold] 
{Italic, Underline] 
{Outline, Shadow, Condensed] 
{Normal] 

The size of the font being drawn can also be altered, demonstrating one of 
the more unique features of QuickDraw. The TextSize procedure is used for 
this purpose. 

procedure TextSize(Size: Integer); 

The TextSize procedure sets the size of the characters to be drawn by 
future calls to DrawChar or Drawstring. The size is expressed in typogra
pher's points which are each 1172 of an inch and are not equivalent to the 
points used to describe the intersection of two lines on the coordinate plane. 
For instance, a 6-point character will be 6/72 of an inch high. 



195 Advanced QuickDraw 

Any size can be specified but the results will vary depending on the 
contents of the system file on the disk being used. This is because the 
description of a font is maintained in the system resource file or, more rarely, 
in an application resource file. Separate definitions are needed for each 
different size font. Since font definitions take up a lot of space (approximately 
5K for a 12-point font), it is unusual to find all the possible sizes of a font in the 
resource file. The designers of QuickDraw were quick to realize this situation 
and include in QuickDraw the ability to simulate nonresident font sizes by 
stretching or shrinking existing sizes of the same font. The scheme works as 
follows. When the TextSize procedure is called, QuickDraw calls on the 
Toolbox Font Manager to look for the definition of the font in that exact size. If 
the exact size isn't available, it looks for a size that is close and then scales it to 
the desired size. The procedural steps are as follows: 

• It looks first for a font that's twice the size to scale it down. 
• If no font twice the size exists, it looks for a font one half the size and scales it 

up. 
• If no font one half the size exists, it looks for a larger size of the font and 

scales down the next larger size if one is there. 

• If no larger size font is available, it looks for a smaller size and scales up the 
next smallest size if one is there. 

The farther down this list the Font Manager must traverse, the worse the 
characters look on the screen. For example, if a 12-point font is requested and 
doesn't exist, the simulated font will look better if it is based on shrinking a 24-
point font rather than expanding a 10-point font. You may have noticed this 
effect while using application programs. 

If a size of zero is specified, the font manager will choose an available size 
closest to the system font size, which is 12. The default setting of TextSize is 0. 

If a request font is not available in any size, the application font is used 
instead and is scaled to the requested size. If the application font is available in 
any size, the system font is then used, scaled to the appropriate size. 

Determining Text Widths 

In addition to the previously discussed StringWidth function, QuickDraw also 
includes a function that determines the width of an individual character. 

function CharWidth(Ch : Char); 

The CharWidth function returns the width of a single character in points 
(screen points, not typographer points). By using CharWidth you can see the 
effect that style and font variations have on the size of a particular character. 



196 Advanced Macintosh Pascal 

Pen Characteristics 

In Chapter 5, the pen was introduced as the tool used by QuickDraw to draw 
shapes and text. The pen has four adjustable characteristics: its location, size, 
drawing mode, and drawing pattern. 

Pen Location 

The pen's location is a point in the coordinate grid where QuickDraw will start 
to draw the next shape, character, or line. The pen hangs down and to the 
right of this point. It's location is altered by some drawing routines and not by 
others. Drawing text moves the pen to the right of the last character, and 
drawing a line moves the pen to the last point on the line drawn. In addition, 
the Move and MoveTo procedures also alter the pen's location. Interestingly, 
the shape drawing routines, such as FrameRect and PaintOval, do not alter the 
pen location at all. 

The pen's shape is rectangular with a default size of a 1-by-lpoint square. 
The size of the pen can be changed with the PenSize procedure. 

procedure PenSize(Width, Length : Integer); 

The PenSize procedure sets the width and height of the pen to the number of 
pixels indicated. The minimum size of (0,0) causes no drawing to be per
formed; the maximum pen size of (32 767, 32767) would draw the entire screen 
at once. Changing the PenSize allows you to alter the width of lines and 
outlines drawn. The following call to PenSize: 

PenSize(B,10); 

has the effect shown in Figure 7.2 on the default pen size. 

D 
1 by 1 

8 by 10 

Figure 7.2 The change in PenSize 



197 Advanced QuickDraw 

Pen Pattern 

The pen pattern is the ink with which the pen writes. The standard pen 
patterns are the predefined QuickDraw values of Black, White, Gray, ltGray, 
and dkGray. The default pattern is black. Other patterns can also be defined 
and used. This feature is demonstrated later in this chapter with a program 
that lets you create your own patterns. We have already seen how the PenPat 
procedure can be used to alter the default pen pattern. 

Pen Mode 

The pen mode determines how the pen pattern is to affect what's already on 
the screen. It gives the programmer the option of several drawing modes 
rather than just painting the pen pattern over whatever is already on the 
screen. The pen mode is actually a Boolean operation with which QuickDraw 
compares the bit to be drawn with the bit already on the screen in order to 
determine what to draw. The eight Boolean operations are called: 

patCopy 
PatOr 
patXor 
patBic 

notPatCopy 
notPatOr 
notPatXor 
notPatBic 

The truth tables for each of the pen patterns are as follows: 

patCopy 
Source 
pixel 

black 
black 
white 
white 

patOr 
Source 
pixel 

black 
black 
white 
white 

Destination 
pixel 

black 
white 
black 
white 

Destination 
pixel 

black 
white 
black 
white 

Result 
pixel 

black 
black 
white 
white 

Result 
pixel 

black 
black 
black 
white 



198 Advanced Macintosh Pascal 

patXor 

Source Destination Result 
pixel pixel pixel 

black black white 
black white white 
white black black 
white white white 

patBic 

Source Destination Result 
pixel pixel pixel 

black black white 
black white black 
white black black 
white white white 

The Not transfer modes reverse the result pixel in the normal transfer 
mode from black to white or white to black. For example: 

notPatCopy 

Source Destination Result 
pixel pixel pixel 

black black white 
black white white 
white black black 
white white black 

The effect of the pen mode on a four-pixel screen area is shm~n in Figure 
7.3. 



199 Advanced QuickDraw 

Pen Pattern Screen Pattern 

PatCopy PatOr PatXOr PatBic 

NotPatCopy NotPatOr NotPatXOr NotPatBic 

Figure 7.3 The pen modes 

The pen mode can be changed with the PenMode procedure. 

procedure PenMode(mode: Integer); 

The PenMode procedure sets the transfer mode with which the pen 
pattern is transferred when lines or shapes (not characters) are drawn. The 
mode can be expressed as either an integer or one of the predefined Quick
Draw constants. 

con st 
patCopy 8; 
patOr 9; 
pa!Xor 10; 
patBic 11; 
notPatCopy 12; 
notPatOr 13; 
notPatXor 14; 
notPatBic 15; 

QuickDraw contains a set of additional procedures for manipulating pen 
characteristics. 



200 Advanced Macintosh Pascal 

procedure PenNormal; 

The PenNormal procedure resets the pen to the initial pen settings so that: 

PenSize (1,1) 

PenMode patCopy 

PenPat Black 

The pen location is not altered by a call to PenNormal. 

procedure GetPenState(var pnState : PenState); 

The GetPenState procedure stores the current pen location, size, pat
tern, and mode. QuickDraw conveniently provides a predefined record 
type called PenState to store the pen information. 

The type PenState is defined as: 

PenState = record 
pnloc: Point; 
pnSize: Point 
pnMode : Integer; 
pnPat : Pattern 

end; 

This routine is useful when calling subroutines that alter the pen charac
teristics. The reverse operation of GetPenState is SetPenState. 

procedure SetPenState (pnState : PenState); 

The procedure SetPenState sets the pen location, size, mode, and pat
tern to the information held in the specified record of type PenState. 

The remaining Pen routines follow. 

procedure GetPen(var Pt : Point); 

The GetPen procedure returns, as a point, the current location of the 
pen. 

procedure HidePen; 

The HidePen procedure causes the pen not to draw on the screen even 
when drawing procedures are called. HidePen is automatically called by 
certain complex drawing routines such as OpenRgn or OpenPoly. 

procedure ShowPen; 

The ShowPen procedure is the opposite of HidePen, making the pen 
visible. 



201 Advanced QuickDraw 

Line Drawing Routines 

QuickDraw contains two routines for drawing straight lines with the pen 
that are analogous to the two pen-movement routines Move and MoveTo. 

procedure LineTo(h, v: Integer); 

The LineTo procedure draws a line from the current pen location to the 
new location (h,v) expressed in local coordinates. The width of the line is 
the pen size and the pattern drawn is the pen pattern. 

procedure Line(dh, dv: Integer); 

The Line procedure draws a line from the current pen location to a point 
that is a distance dh points away horizontally and dv points away 
vertically . After a call to the Line procedure, the new pen location is (h 

+ dh, v + dv) where (h, v) was the pen location before the call to Line . 

Complex Drawing Shapes 

In addition to the relatively simple drawing shapes such as rectangles and 
ovals, QuickDraw has the ability to define and draw quite complex shapes 
such as regions. A region is an arbitrary set of spatially coherent points on 
which complex yet rapid calculations can be performed . It is structures 
such as regions that set QuickDraw apart from all other graphic packages . 
A region is defined as a combination of lines, shapes such as rectangles, and 
other regions . The shape of a region (Figure 7.4) can consist of one area or 
many areas and solid areas or areas with holes in them. A region can best be 
thought of as an outline that divides the bit map into pixels within the 
region and pixels outside the region . The Region procedure and functions 
belong to the QuickDrawZ library and, for the first time, a uses statement 
will have to be included in programs . 

Figure 7.4 Examples of two regions 



202 Advanced Macintosh Pascal 

The data structure of a region is a variable length record with two fixed 
fields at its beginning. 

uses 
QuickDraw2; 

type 
Region = record 
RgnSize : Integer; 
RgnBox : Rect; 
(Optional region definition data! 

end; 

The RgnSize field contains the size in bytes of the entire region variable. 
The RgnBox is a rectangle that completely encloses the entire region. 

Since regions are of variable size, they are stored dynamically in the heap 
and moved around by the operating system's memory management software 
as their size changes. This dynamic nature requires that access to a region be 
done with a handle. It should also be noted that in a program tight for memory, 
creation or expansion of a region could cause a program to exceed the amount 
of memory available. No manipulation is ever done directly on the region 
record; therefore, the programmer does not need to worry about the contents 
of the region record. 

A region is created by a QuickDraw function which allocates space for the 
region and returns a handle to it. The handle is of the QuickDraw type 
RgnHandle where: 

type 
RgnPtr = ·Region; 
RgnHandle = ·RgnPtr; 

Once again, regions are manipulated only by use of their handle and never 
directly. 

The function NewRgn allocates a new region, initializes the region record 
to the null region (RgnBox field set to 0,0,0,0), and returns a handle to the 
region. 

function NewRgn : RgnHandle; 

The small program segment that follows demonstrates the creation of a 
region. 

var 
BarBell : RgnHandle; 

begin 
Barbell : = NewRgn; 



203 Advanced QuickDraw 

First, a handle to the region is declared in the program's var section. This 
action is just like declaring any other variable. Then the NewRgn function is 
called to create the region, initialize it to the null region, and return a handle to 
it in the region handle Barbell. Notice that a Region record is never declared in 
the program but is created dynamically by the call to NewRgn. 

Once a region is created and a handle to it returned, the components of 
the region are placed in the region record with the OpenRgn procedure. 

procedure OpenRgn; 

The procedure OpenRgn starts to save the definition of a region. Notice 
that the procedure does not have a parameter specifying which region is being 
defined. That is because OpenRgn allocates temporary space for the region 
being created, which is later assigned to a specific region. When a region is 
open, all calls to Line, LineTo, and the procedures that frame shapes define the 
outline of the region. OpenRgn call the procedure HidePen so that no actual 
drawing takes place while the region is open. Since the pen hangs to the right 
and below the pen location, even the smallest pen will affect bits that lie 
outside the region defined. 

The region outline separates the bit map into those bits within the region 
and those bits outside the region. 

BarBell : = NewRgn 
Open Region; 
SetRect(Temp, 20, 20, 30, 50); 
FrameOval(Temp); 
SetRect(Temp, 30, 30, 80, 40); 
FrameRect(Temp); 
SetRect(Temp, 80, 20, 90, 50); 
FrameOval(Temp); 
CloseRgn(BarBell); 

The program segment above is a complete region definition. After the 
calls to NewRgn and OpenRgn, the region is defined by the drawing state
ments. Of course, no drawing is done at this time. The region definition is 
completed with the CloseRgn procedure. 

procedure CloseRgn(dstRgn : RgnHandle); 

The CloseRgn procedure stops the collection of drawing routines into the 
temporary region created by OpenRgn and saves the defined region into the 
region indicated by the dstRgn parameter. Even though no drawing is done by 
CloseRgn, the procedure does a call to ShowPen to restore the pen's drawing 
capability. 



204 Advanced Macintosh Pascal 

Drawing a Region 

Once a region is defined it can be drawn on the screen with one of the region 
drawing routines. 

procedure FrameRgn(rgn: RgnHandle); 

The FrameRgn procedure draws a hollow outline just inside the spec
ified region using the current pen pattern, mode, and size. The outline is 
as wide as the pen width and as tall as the pen height, but under no 
circumstances will the outline go outside the region boundary. Frame
Rgn has no effect on the pen location. 

Since this is an outlining routine, it can be called while a region fa open. If it 
is the outline of the region being framed it is mathematically added to the 
region that is open. 

To draw the region already defined, a call to the FrameRgn procedure is 
used. The result is shown in Figure 7.5. 

Drawing 

c 0 

Figure 7.S The result of FrameRgn (Bar Bell) 

FrameRgn(BarBell); 

The rest of the region drawing routines should appear familiar to you. 

procedure PaintRgn(rgn: RgnHandle); 

The procedure PaintRgn paints the specified region with the current 
pen pattern according to the current pen transfer mode. The pen 
location is not changed by PaintRgn. 



205 Advanced QuickDraw 

procedure EraseRgn(rgn : RgnHandle); 

The procedure EraseRgn erases the specified region by painting it with 
the background pattern. The current pen mode or pattern is ignored 
and the pen location is not changed. 

procedure lnvertRgn(rgn : RgnHandle); 

The procedure InvetRgn flips the pixels enclosed in the specified region 
from black to white or from white to black. The current pen mode and 
pattern are ignored and the pen location is not changed. 

procedure FillRgn(rgn : RgnHandle; pat: Pattern); 

The FillRgn procedure fills the specified region with the given pattern in 
patCopy mode. The current pen mode and pattern are ignored and the 
pen location is not changed. 

Disposing a Region 

Once a region is no longer needed it should be disposed of so the operating 
system can reclaim the section of memory occupied by the region. The 
DisposeRgn procedure is used for this purpose. 

procedure DisposeRgn (rgn : RgnHandle); 

The DisposeRgn procedure deallocates the space used to store the region 
record and returns the memory to the free memory pool. Once DisposeRgn is 
called, no other attempts to manipulate that region should be made or you risk 
working with the dreaded dangling pointers. 

Calculations with Regions 

Quick.Draw contains several routines that perform sophisticated mathe
matical manipulation of regions. 

The OffsetRgn procedure is used to move a region across the coordinate 
plan a distance of dh points horizontally and dv points vertically. 

procedure OffsetRgn(rgn : RgnHandle; dh, dv: Integer); 

A positive value for dh and dv moves the region to the right and down. A 
negative value for either moves the region in the opposite horizontal or 
vertical direction. This procedure doesn't affect the screen unless the region is 
redrawn after the call to OffsetRgn. This procedure is particularly efficient 
since the components are stored internally, relative to the rectangle surround
ing the region, and thus the offset need only be applied to the rectangle. 



206 Advanced Macintosh Pascal 

The ptinRgn function is analogous to the ptinRect function. It determines 
whether a specific point falls within a certain region, returning True if so or 
False if not. 

function ptinRgn( pt: Point; rgn: RgnHandle) : Boolean; 

The following program illustrates a simple video-type game us:ing regions. 
The program creates and displays a region that looks like a "bull's-eye" target. 
This region has a large hole in it. The target is animated across the screen by 
erasing it, offsetting it, and then repainting it in the new location. The object of 
the game is to position the cursor in either of the two painted bands of the 
bull's eye. This is detected by continual calls to GetMouse and then checking to 
see if the cursor position is in the region with ptinRgn. If so, the region is 
inverted and a SysBeep beeps the Macintosh's speaker. 

program BullsEye; 
uses 
QuickDraw2; 

var 
Eye : RgnHandle; 
K: Integer; 
Temp: Rect; 
Pt: Point; 

begin 
Eye:= NewRgn; 
OpenRgn; 
SetRect(Temp, 40, 40, 80, 80); 
FrameOval(Temp); 
SetRect(Temp, 50, 50, 70, 70); 
FrameOval(Temp); 
SetRect(Temp, 55, 55, 65, 65); 
FrameOval(Temp); 
CloseRgn(Eye); 
PaintRgn(Eye); 
for K : = 1to 30 do 
begin 
EraseRgn(Eye); 
OffSetRgn(Eye, 3, 3); 
PaintRgn(Eye); 
GetMouse(pt.h, pt. v); 
if ptinRgn(pt, Eye) then 
begin 
lnvertRgn(Eye); 
SysBeep(8) 

end 
end 

end. 



.207 Advanced QuickDraw 

procedure CopyRgn( rgn1, rgn2: RgnHandle); 

The CopyRgn procedure copies the mathematical structure of Rgn 1 into 
Rgn2. Since an actual copy is made, any subsequent changes to Rgnl 
have no effect on Rgn2. CopyRgn does not create the destination region; 
this must be previously done with NewRgn. 

procedure SetEmptyRgn(rgn : RgnHandle); 

The SetEmptyRgn procedure wipes out the contents of the specified 
region and sets it to the empty region (0,0,0,0). 

procedure SetRectRgn(rgn: RgnHandle; Left, Top, Bottom, Right); 

The SetRectRgn procedure takes similar action to SetEmptyRgn except 
that after the contents are wiped out, the rectangle surrounding the 
region is set to the region specified by Left, Top, Bottom and Right. 

procedure RectRgn(rgn: RgnHandle; R: Rect); 

The RectRgn procedure does the same thing as SetRectRgn except that 
the new rectangle is specified by a variable of type Rect rather than four 
boundary coordinates. 

procedure lnsetRgn ( rgn : rgnHandle; dh, dv: Integer); 

The InsetRgn procedure shrinks or expands the specified region. All the 
points on the region boundary are moved inward a distance dv points 
vertically and dh points horizontally. If dh or dv are negative the move
ment in that direction is outward instead of inward. InsetRgn per
formed on a rectangular region acts just like InsetRect. 

procedure SectRgn( rgn1, rgn2, dstRgn: RgnHandle); 

The SectRgn procedure calculates the intersection of Rgn 1 and Rgn2 
and places it in a third region dstRgn. This procedure does not create the 
destination region; that must be done with NewRgn. As an interesting 
note to the sophisticated programmer, the analogous rectangle routine 
SectRect requires that the destination rectangle be a variable param
eter, but this is not the case for SectRgn. This is because in SectRgn, the 
destination is not the region itself but a pointer to the region; no value is 
placed into the parameter but into what is pointed to by the handle. 



208 Advanced Macintosh Pascal 

The following program outlines two rectangular regions and then 
paints their intersection (Figure 7.6). 

§0 Drawing 

Figure 7.6 The intersection of Rgn 1 and Rgn 2 

If the intersection does not exist or one of the regions is empty, the 
result is the empty region. 

program lnsectRgn; 
uses 
QuickDraw2; 

var 
Rgn1, Rgn2, dstRgn: RgnHandle; 
Temp: Rect; 

begin 
Rgn1 : = NewRgn; 
Rgn2: = NewRgn; 
dstRgn : = NewRgn; 
OpenRgn; 
SetRect(Temp, 20, 20, 80, 60); 
FrameRect(Temp); 
CloseRgn(Rgn1); 
FrameRgn(Rgn1); 
OpenRgn; 
SetRect(Temp, 40, 40, 100, 160); 
FrameRect(Temp); 
CloseRgn(Rgn2); 
FrameRgn(Rgn2); 
SectRgn(Rgn1, Rgn2, dstRgn); 
PaintRgn(dstRgn) 

end. 



209 Advanced QuickDraw 

procedure UnionRgn( rgn1, rgn2, dstRgn: RgnHandle); 

The UnionRect procedure calculates the union of Rgn 1 and Rgn2 and 
places it in the third region dstRgn. This procedure does not create the 
third region; this must be done by a call to NewRgn before using 
UnionRgn. 

If both regions are empty, the result is also the empty region. 

procedure DiffRgn( rgn1, rgn2, dstRgn: RgnHandle); 

The DiffRect procedure subtracts region Rgn2 from Rgn 1 and places the 
result in the third region dstRgn. This procedure does not create the 
third region; this must be done by a call to NewRgn before using 
DiffRgn. 

If Rgn2 is empty, the result is the empty region. 

procedure XorRgn( rgn1, rgn2, dstRgn: RgnHandle); 

The XonRgn procedure calculates the difference between the union and 
intersection of Rgnl and Rgn2, and places it in the third region dstRgn. 
This procedure does not create the third region; this must be done by a 
call to NewRgn before using UnionRgn. 

If the regions are the same, that is coincident, the result is the empty 
region. 

function RectlnRgn( r: Rect; rgn: rgnHandle): Boolean; 

The RectlnRgn function checks whether the given rectangle intersects 
the specified region, returning True if so and False otherwise. 

function EqualRgn( rgn1, rgn2: RgnHandle): Boolean; 

The EqualRgn function checks to see if the two regions are equal, 
returning True if they are and false otherwise. Two regions are equal if 
they have the same size, shape, and location. Any two empty regions are 
equal. 

function EmptyRgn( rgn: RgnHandle): Boolean; 

The EmptyRgn function returns True if a region is empty and False 
otherwise. 



Using Regions 

210 Advanced Macintosh Pascal 

The following program called HockeyShot uses regions to display a hockey 
goal and backboard (Figure 7. 7) . The object of the game is to position the 
puck into the goal. The player controls the puck (an oval) by moving the 
mouse . This determines the puck's vertical position . The horiwntal posi
tion of the puck as it moves toward the goal is controlled by the program 
and sped up as the program progresses . The backboard, which is painted 
black, is defined as a rectangular region minus the goal , which is a smaller 
rectangular region and displayed in white. 

Drnwing 

Figure 7. 7 The HockeyShot program 

The vertical position of the puck is determined by two consecutive calls 
to GetMouse . The two vertical coordinates are compared, and then the 
puck is moved in the direction of the mouse move . 

program HockeyShot; 
uses 
QuickDraw2; 



211 Advanced QuickDraw 

var 
Board, Goal : rgnHandle; 
Temp, Puck: Rect; 
OldY, dx, dy, X, Y: Integer; 
Pt: Point; 
Hit, Miss: Boolean; 
Ct: Integer; 

begin 
Ct:= O; 
Hit:= False; 
Miss:= False; 
Board : = NewRgn; 
Goal : = NewRgn; 
OpenRgn; (Set up board) 
SetRect(Temp, 400, 10, 510, 250); 
FrameRect(Temp); 
CloseRgn(Board); 
OpenRgn; (Set up goal) 
SetRect(Temp, 400, 110, 420, 130); 
FrameRect(Temp); 
CloseRgn(Hole); 
DiffRgn(Board, Goal, Board); 
PaintRgn(Board); 
SetRect(Puck, 10, 10, 30, 30); 
FillOval(Puck, Gray); 
GetMouse(X, OldY); (Original mouse position) 
dx:= 3; 
repeat 
Ct:= Ct+ 1; 
EraseOval(Puck); 
GetMouse(X, Y); 
Pt.h := X; 
Pt.v:=Y; 
If RectinRgn(Puck, Goal) then 
begin 
SysBeep(30); 
Hit:= True; 
SysBeep(5); 

end 
else If RectinRgn(Puck, Board) then 
begin 
Miss:= True; 
SysBeep(2) 

end; 



Polygons 

212 Advanced Macintosh Pascal 

If Y > OldY then 
dy:= 2; 

If Y = oldY then 
dy:= O; 

If Y > OldY then 
dY:= -2; 

If Ct mod 15 = 0 then 
dx := dx + 1; !Speed up) 

OldY:= Y; 
OffSetRect(Puck, dx, dy); 
FillOval(Puck, Gray); 
until Hit or Miss; 
end. 

The second complex shape supported by QuickDraw is the Polygon. A 
polygon is a closed shape consisting of straight lines drawn with the Move 
and MoveTo procedure (Figure 7.8). In a sense, it is a subset of a region and 
is defined in a similar fashion, but it has fewer procedures capable of 
manipulating it. 

Figure 7.8 A Polygon 

The polygon data type is part of the QuickDraw2 library and is defined 
as a record with two fixed and one variable field: 

Polygon = record 
polySize : Integer; 
polyBBox : Reel; 
polyPoints : array 10 .. OJ of Point 

end; 



213 Advanced QuickDraw 

The polySize field contains the size, in bytes, of the polygon variable. The 
polyBBox field contains a rectangle that encloses the entire polygon. The 
polyPoint array is a variable-length array (expanded as necessary) containing 
all the end points that make up the polygon. 

Since the polygon record type is a dynamic data type with varying 
memory needs during execution, it is accessed through a handle like a region. 

type 
PolyPtr = ·Polygon; 
PolyHandle = ·PolyPtr; 

To create a polygon, a call must be made to the QuickDraw routine which 
allocates space for the polygon record in memory, returns a handle to the 
record, and starts to record the points on the perimeter of the polygon. This 
routine is called OpenPoly. 

function OpenPoly: PolyHandle; 

The OpenPoly function takes no parameters and returns a handle to a 
new polygon. The function also tells QuickDraw to start saving the polygon 
definition as specified by calls to the line drawing procedures Line and LineTo. 
OpenPoly calls the procedure HidePen so that while the polygon is open, no 
drawing is performed unless you call ShowPen from inside the polygon 
definition and then balance it with a call to HidePen afterward. 

Once OpenPoly is called, the polygon is then described with line drawing 
routines. For example, to define a rectangular polygon, the following code 
could be used. 

PaulsPoly: = Open Poly; 
MoveTo(10, 10); 
LineTo(100, 10); 
LineTo(100, 30); 
LineTo(10, 30); 
LineTo(10, 10); 

Close Poly; 

As you can see, the last statement in the polygon definition was termi · 
nated by the ClosePoly procedure. 

procedure ClosePoly; 

The ClosePoly procedure terminates the recording of the polygon defini
tion and causes QuickDraw to calculate the polygon size and enclosing rec
tangle. ClosePoly also calls ShowPen to balance the HidePen originally called 
by OpenPoly. 

Once a polygon is defined, it can then be displayed in the Drawing window 
with one of the Polygon drawing routines. 



214 Advanced Macintosh Pascal 

procedure FramePoly (Poly: PolyHandle); 

FramePoly draws the outline of the polygon pointed to by the specified 
polygon handle. This is done by playing back the routines used to define the 
polygon with the pen's current pattern, mode, and size. Remember, since the 
pen hangs below and to the right of the pen location, the polygon's outline will 
extend beyond the right and bottom edges of the polygon's enclosing rectangle 
or boundary. 

The other four polygon drawing routines should be very familiar to you 
by now. All of these routines draw within the polygon's boundary. 

procedure PaintPoly( Poly: PolyHandle); 
procedure ErasePoly( Poly: PolyHandle); 
procedure lnvertPoly( Poly: PolyHandle); 
procedure FillPoly( Poly: PolyHandle; pat: Pattern); 

When a polygon is no longer needed, it should be disposed of to reclaim 
the memory that it occupied. This is done with the KillPoly procedure. 

procedure KillPoly (Poly: PolyHandle); 

The KillPoly procedure deallocates the polygon whose handle is specified. 
This should only be done once the polygon is no longer needed. 

The following program allows freehand drawing of a polygon in the 
Drawing Window. It operates by opening the polygon, waiting for the first 
mouse down event, using that point as the start of the polygon, and perform -
ing a MoveTo to that point. It then waits for a series of mouse down events and 
performs a LineTo to each mouse down location. A stop box is used to 
terminate the drawing (no line is drawn to the stop box), or a code to detect a 
double mouse click could be used. Since no drawing is normally done inside 
the polygon definition, ShowPen is called to display the lines being drawn. 
Once the polygon is completely drawn, it is then redrawn with fillPoly. Of 
course, HidePen is called before this. 

program Poly1Moves; 
uses 
QuickDraw2; 

var 
Shape : Polyhandle; 
Stop: Rect; 
E : Eventrecord; 

begin 
SetRect(Stop, 10, 10, 30, 30); 
frameRect(Stop); 



210 Advanced QuickDraw 

repeat 
until GetNextEvent(2, E); 
GlobalTolocal(E.Where); (startpoint) 
Shape : = OpenPoly; 
ShowPen; 
MoveTo(E.Where.h, E.Where.v); 
repeat 
repeat 
until GetNextEvent(2, E); 
GlobalTolocal(E. Where); 
If not ptlnRect(E. Where, Stop) then 
LineTo(E.Where.h, E.Where.v); 

until ptinRect(E.Where, Stop); 
HidePen; 
Close Poly; 
fillPoly(Shape, gray); 
KillPoly(Shape) 

end. 

A second, more sophisticated, but not necessarily better version of the 
same program is presented below. This version uses an array to record the 
points forming the polygon and then plays them back inside the polygon 
definition. From this program, it is easy to get an idea of how QuickDraw 
replays the polygon definition when a polygon drawing routine is called. 

program DrawPolyll; 
uses 
QuickDraw2; 

var 
Shape : Polyhandle; 
List : arrayl1..10J of point; 
Pt: Point; 
NumPts, Ct, X, Y : Integer; 
Stop: Rect; 
E: EventRecord; 

begin 
SetRect(stop, 10, 10, 30, 30); 
frameRect(stop); 
repeat 
until GetNextEvent(2, E); 
GlobalTolocal(E.Where); (startpoint) 
Listl1J := E.Where; 
MoveTo(E.Where.h, E.Where.v); 
Ct:= 2; 
repeat 



216 Advanced Macintosh Pascal 

repeat 
until GetNextEvent{2, E); 
GlobalTolocal(E.Where); 
If not ptinRect(E. Where, Stop) then 
begin 
List!Ct] : = E.Where; 
LineTo(E.Where.h, E.Where.v); 
Ct:= Ct+ 1 

end 
until ptinRect(E.Where, Stop); 
NumPts: = Ct; 
Ct:= 2; 
Shape : = OpenPoly; 
MoveTo(List[1].h, List[1].v); 
repeat 
LineTo(List[Ct].h, List[Ct].v); 
Ct:= Ct+ 1; 

until Ct > NumPts; 
ClosePoly; 
fillPoly(Shape, gray); 
Kill Poly( Shape) 

end. 

Manipulating Polygons 

The only polygon manipulation routine available is OffSetPoly. 

procedure (Poly: PolyHandle; dh, dv : Integer); 

The OffSetPoly procedure moves the polygon a distance of dh points 
horizontally and dv points vertically on the coordinate plane. If dh and dv are 
positive, the movement is to the right and down. Negative values for either of 
these parameters move the polygon in the appropriate opposite direction. No 
change of the polygon on the screen occurs, but the change will be reflected 
when the polygon is redrawn. 

The following program adds some animation to the Poly1 program by 
moving the created polygon across the screen. 

program Poly1; 
uses 
QuickDraw2; 

var 
Shape : Polyhandle; 
Stop: Rect; 
E : Eventrecord; 
K: Integer; 



21 7 Advanced QuickDraw 

begin 
SetRect(Stop, 10, 10, 30, 30); 
frameRect(Stop); 
repeat 
until GetNextEvent(2, E); 
GlobaiToLocal(E. Where); (startpoint} 
Shape : = Open Poly; 
ShowPen; 
MoveTo(E.Where.h, E.Where.v); 
repeat 
repeat 
until GetNextEvent(2, E); 
GlobalToLocal(E. Where); 
if not ptinRect(E. Where, Stop) then 
LineTo(E.Where.h, E.Where.v); 

until ptinRect(E. Where, Stop); 
HidePen; 
ClosePoly; 
fillPoly(Shape, gray); 
for K : = 1to 30 do 
begin 
ErasePoly(Shape); 
OffSetPoly(Shape, 10,10); 
fillPoly(Shape, gray); 

end; 
KillPoly(Shape) 

end. 

Defining Custom Patterns 

We have already seen the five built-in QuickDraw patterns: White, Black, 
Gray, ltGray, and dkGray. However, programmers are free to define their own 
patterns to be used for purposes such as the pen pattern and in routines like 
FillRect. 

The pattern data type is defined by QuickDraw as: 

type 
Pattern : packed array[O .. 7] of O .. 255; 

This is essentially an 8-element array with each element holding a value from O 
to 255. The definition represents the basic structure of a pattern which is an 8 
pixel by 8 pixel grid (Figure 7.9). Since a pixel needs one bit to be represented 
and the maximum value of 8 bits is decimal 255, the array structure works just 
fine. 



218 Advanced Macintosh Pascal 

Figure 7.9 8-by-8 pixel grid 

If you see some similarity between this grid and the GridEdit program, it is 
not just a coincidence. The PatternMaker program that follows is based upon 
our old friend GridEdit from Chapter 5. Some major extensions must be added 
to GridEdit to adapt it to this task. Needed is the ability to determine a 
hexadecimal value based on which pixels are black and the ability to place 
those values into a pattern data structure. 

Let's remove the latter of these obstacles first. We could assign each 
element in the array the appropriate hexadecimal value, but the program 
would be easier to adapt for other uses if we use the StuffHex procedure. 

procedure StuffHex(Pointer: QDPtr; S: string); 

The StuffHex procedure pokes the hexadecimal values held as characters 
in the string S into the structure pointed to by Pointer. Pointer is a QDPtr 
which is essentially a pointer to any structure. StuffHex performs no type 
checking at all and it is easy to "mess up" a program with it. Use it carefully! 

Converting the black and white pixels in the grid to hexadecimal values is a 
relatively simple task. But first, a quick review of hexadecimal. The hex
adecimal number system, base 16, is often used as a shorthand notation for 
binary because there is a straightforward relationship between the two 
number systems. Table 7.1 summarizes the corresponding decimal, binary 
and hexadecimal values. 

Since 4 binary digits go into forming a single hexadecimal digit, each row 
of the grid is represented by 2 hexadecimal digits. Each pixel in a hexadecimal 
digit represents a different power of two. For instance, in the first row, the 
pixels represent the following power of two. 

23 22 21 20 23 22 21 20 



219 Advanced QuickDraw 

Table 7.1 

Decimal Binary Hexadecimal 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 
12 1100 c 
13 1101 D 

14 1110 E 

15 1111 F 

The array, which maintains the value of the pixel as a Boolean value, will 
be scanned, four positions at a time, calling a procedure named Convert to add 
the current pixel value to a hexadecimal value being determined. 

procedure Convert (Pt: Boolean); 
Base : Integer; 
var Sum : Integer); 

begin 
If Pt then 
case Base of 
3: 
Sum:= Sum+ 8; 

2: 
Sum:= Sum+ 4; 

1: 
Sum:= Sum+ 2; 

0: 
Sum:= Sum+ 1; 

end; case 
end; 



220 Advanced Macintosh Pascal 

Once four pixels have been converted in a hexadecimal number, this 
number must be converted to a character value which will be concatenated 
into the string sent to the StuffHex procedure. It is easy to convert a single 
decimal digit into a character by adding to it the ORD of the character 'O'. 

ORD(digit) + ORD('O'); 

However, to convert a single hexadecimal value, the digits greater than nine 
must be accounted for. This can be done by adding to the character 'A' the 
difference between the digit and 10. The function HexString performs this 
function. 

function HexString (N : Integer) : Char; 
begin 
If N < 10then 
HexString := Chr(ord(N) + Ord('O')) 

else 
begin 
N := N -10; 
HexString: = Chr(Ord(' A')+ N); 

end 
end; 

Once you create a pattern with the grid, you click inside the Stop rectangle and 
the program scans the grid to create the hexadecimal string to be stuffed. 

for Row:= 1 to GridSize do 
begin 
Sum:= O; 
Base:= 3; 
for Col : = 1 to GridSize do 
begin 
Convert(Mark[Col, Rowf, Base, Sum); 
Base:= Base - 1; 
If Base < O then 
begin 
StuffStr: = ConCat(StuffStr, HexString(Sum)); 
Base:= 3; 
Sum:= O 

end 
end 

end; 

The hexadecimal string is then stuffed into a variable of type Pattern, and the 
pattern is displayed by filling a rectangle with it. 

StuffHex(@NewPat, StuffStr); 
FillRect(PatRect, newPat) 



.2.21 Advanced QuickDraw 

Notice that the pointer operator @ is used in front of the variable of type 
Pattern because StuffHex works with a pointer rather than the variable itself. 

There are several other differences between GridEdit and PatternMaker, 
most notably the way mouse clicks inside the grid are handled. In GridEdit, the 
program scanned the two-dimensional array of rectangle to see where and in 
which rectangle the click occurred. PatternMaker uses a more efficient 
approach which calculates the rectangle selected by the coordinates of the 
cursor at the time of the click. This approach turns out to be faster when 
rectangles with higher coordinates are selected. This task has also been moved 
to a procedure for clarity. 

procedure FindClick; 
begin 
Row:= Pt.v div 10 - 1; 
Col:= Pt.h div 10 - 1; 
If (Row < = GridSize) or (Col < = GridSize) then 
begin 
Mark[ Col, Row) : = not (Mark[ Col, Row]); 
If Mark[Col, Row] then 
FillRect(Grid[Col, Row[, black) 
else 
begin 
FillRect(Grid[Col, Row], white); 
FrameRect(Grid[Col, Row]) 

end 
end 

end; 

The other major change is that event handling is used rather than relying 
on the Button and GetMouse procedures. You will find working with event 
handling is a more efficient and surprisingly easier programming technique. 
Here is the entire program together. 

program PatternMaker; 
con st 
GridSize = 8; 



222 Advanced Macintosh Pascal 

var 
Grid: array[1 .. GridSize, 1..GridSize] of Reel; 
Mark: array[1..GridSize, 1 .. GridSize] of Boolean; 
R: Reel; 
Sum, Base: Integer; 
Row, Col: Integer; 
Pt: Point; 
BigRect, PatRect, StopRect : Reel; 
StuffStr: string; 
NewPat: Pattern; 
E : EventRecord; 

(·········································) 
function HexString (N : Integer) : Char; 
begin 
If N < 10then 
hexString: =chr(ord(N) + ord('O')) 

else 
begin 
N := N -10; 
HexString: = Chr(Ord(' A')+ N); 
end 

end; 
(············································) 
procedure Convert (Pt: Boolean; 

Base : Integer; 
var Sum : Integer); 

begin 
If Pt then 
case Base of 
3: 
Sum:= Sum+ 8; 

2: 
Sum:= Sum+ 4; 

1 : 
Sum:= Sum+ 2; 

0: 
Sum:= Sum+ 1; 

end; (case) 
end; 

(·····················-·····················) 



223 Advanced QuickDraw 

procedure lnitGrid; 
begin 
for Col : = 1 to GridSize do 
for Row:= 1 to GridSize do 
begin 
Mark(Row, Col):= False; 
setRect(Grid[Row, Col), 10 + Row* 10, 10 + Col * 10, 20 + Row* 10, 20 
+Col* 10); 
frameRect(Grid[Row, Coll); 

end; 
SetRect(BigRect, 10, 10, 20 + GridSize * 10, 20 + GridSize * 10); 

end; 
(··········································-! 
procedure FindClick; 
begin 
Row:= Pt.v div 10 - 1; 
Col:= Pt.h div 10 - 1; 
If (row < = GridSize) or (Col < = GridSize) then 
begin 
Mark[ Col, Row] : = not (Mark[ Col, Rowl); 
If Mark[Col, Row] then 

FillRect(Grid[Col, Rowl, black) 
else 
begin 
FillRect(Grid[Col, Rowl, white); 
FrameRect(Grid[Col, Rowl); 

end 
end 

end; 
[············································! 
begin 
StuffStr : = •; 
SetRect(StopRect, 150, 150, 180, 180); 
SetRect(PatRect, 10, 150, 40, 180); 
FrameRect(StopRect); 
lnitGrid; 
repeat 
If GetNextEvent(2, E) then 
begin 
GlobalToLocal(E. Where); 
Pt:= E.Where; 
If ptinRect(Pt, BigRect) then 
FindClick; 

end; 



Cursors 

224 Advanced Macintosh Pascal 

until ptlnRect(Pt, StopRect); 
for Row : = 1 to GridSize do 
begin 
Sum:= O; 
Base:= 3; 
for Col : = 1 to GridSize do 
begin 
Convert(Mark[Col, Row), Base, Sum); 
Base:= Base - 1; 
if Base < 0 then 
begin 
Stuf!Str: = ConCat(StuffStr, HexString(Sum)); 
Base:= 3; 
Sum:= O 

end 
end 

end; 
StuffHex(@NewPat, Stuf!Str); 
FillRect(PatRect, newPat) 

end. 

You will find that the PatternMaker program is easily adaptable for other 
similar applications such as creating bit maps and cursors. 

When working with the Macintosh one of the first features a useir notices is 
the cursor, that little black arrow that moves with the mouse. The shape of the 
cursor is implemented via a QuickDraw data type and several routines that 
give the programmer control of the cursor's appearance and whether its 
displayed or not. QuickDraw's low-level, interrupt-driven routines link the 
cursor with the mouse location. The programmer need take no action for this 
to happen nor is there any way to disconnect the cursor from the mouse; they 
are inseparable. 

The Cursor data type is declared by QuickDraw as: 

type 
Cursor = record of 
Data : array[O .. 15) of Integer; 
Mask: array[O .. 15) of Integer; 
Hotspot : Point 

end; 

The shape of the cursor is defined by a 256-bit image arranged in a 16-by-16 
b_it square (Figure 7.10). 



225 Advanced QuickDraw 

Figure 7.10 A cursor 

The Data field of a cursor record holds the 256 bits defining a cursor in 16 
consecutive words of memory, each 2 bytes long, accessed as a 16-position 
array. The Mask field is used to determine how the cursor is displayed on the 
screen. The Mask field is also a grid of 256bitsin a 16·by-16array, but the value 
of the bits in the mask field are used to determine how the corresponding 
pixels in the Data field are shown on the screen. When the mask bit's value is 1, 
the corresponding bit the Data field will display is indicated by that bit (0 for 
white, lfor black). When the mask bit's value is O the corresponding position in 
the Data array will be displayed transparent; that is, the bit will be displayed 
the same as the pixel that lies underneath it. 

The Hotspot is the point where the cursor image will be aligned on the 
screen. It is expressed as a QuickDraw point. 

To provide some support for programmers, QuickDraw includes a pre
defined cursor which is known as the north-northwest arrow. This is the 
cursor you are most familiar with from many applications programs and the 
Finder. Several other cursor shapes are included as a resource in the system 
resource file. QuickDraw has five procedures for handling the cursor. 

procedure lnitCursor; 

The InitCursor procedure sets the current cursor to the predefined 
north-northwest arrow. 



Pictures 

226 Advanced Macintosh Pascal 

procedure HideCursor; 

The HideCursor procedure removes the cursor from the screen, 
restores the bits underneath it, and decrements a counter, called the 
cursor level, which keeps track of calls to HideCursor and its comple
mentary procedure ShowCursor. The cursor level is set to 0 by InitCur
sor. Every call to HideCursor should be balanced by a subsequent call to 
ShowCursor. 

procedure ShowCursor; 

ShowCursor increments the cursor level by one and if the cursor level 
becomes 0, displays it on the screen. A call to ShowCursor should 
balance every previous call to HideCursor. 

procedure ObscureCursor; 

The ObscureCursor procedure plays a form of hide-and-seek with the 
cursor, hiding it until the next time the mouse is moved. Unlike HideCur
sor, no call to ShowCursor is needed to balance ObscureCursor. 

procedure SetCursor (myCursor: Cursor); 

The SetCursor procedure sets the current cursor held in the cursor 
variable myCursor. If the cursor is currently hidden, its new 
appearance will be displayed when it's uncovered. 

The GridEdit program used to define custom patterns can be easily 
adapted to create cursors by expanding the size of the grid and using 
StuffHex to place a value in both the Data and Mask field of the cursor 
record. The program will also need to define the Hotspot of the i:::ursor. · 

Pictures are the last and most versatile of QD's complex drawing shapes. 
Like Regions and Polygons, Pictures record calls to drawing routines for 
future playback, but unlike Regions and Polygons, there are no restrictions 
on what can define a Picture. For instance, text drawing routines can be 
included as part of Picture but not a Region or Polygon. Pictures can also be 
automatically scaled, stretched or shrunk into any size. 

Like its counterparts, the Picture data type is a dynamic record type 
accessed via a handle. 

type 
Picture = record 
picSize : Integer; 
picFrame : Rect; 
[picture definition dataJ 

end; 



227 Advanced QuickDraw 

The Picture record type has three fields. The picSize holds the overall size 
of the picture record. The picFrame is a rectangle that surrounds the Picture, 
and unlike the structures of Regions and Polygons, is determined by the 
programmer and not by QuickDraw. The picFrame plays an important role in 
determining the scaling of a Picture. The last part of the record is the Picture 
definition information, which is the record of all the QuickDraw calls that 
make up the particular Picture and is analogous to the storing of the points of a 
polygon. Jn order to save space the definition data is stored in a coded form. Of 
course, since the number of drawing elements on a picture can vary dramat
ically, this field is allocated dynamically. A quick note on Computer Science: 
notice how in all of the complex drawing shapes the dynamic field is the last 
field of the record. This is done so the offset to this field is always known. Jn 
the case of a Picture record, it is always known that the definition data will 
start at the nth byte of the record since the other two fields will always occupy 
10 bytes (2 for the integer and 8 for the rectangle, which consists of four 
integers). The end of the Picture record can always be determined by the 
picSize field, which is updated by QuickDraw every time a change is made to 
the Picture definition. 

The information in a Picture record is always maintained by QuickDraw 
and there is no need for a programmer to directly access it. All access to a 
Picture is done through a PicHandle which is defined as: 

type 
PicPtr = ·Picture; 
PicHandle = ·PicPtr; 

All access to a Picture is done through its handle. Since a Picture is a 
dynamic structure, a QuickDraw routine is needed to allocate an area in 
memory for the Picture and return a handle to it. This is performed by the 
OpenPicture function. 

function Open Picture (picFrame : Rect) : PicHandle; 

The OpenPicture function is the first step in defining a picture. The 
function takes several actions including the allocation of an area of memory to 
hold the Picture record, returning a handle to that record. It also commences 
recording the calls to QuickDraw drawing routines in the Picture record, 
routines calling HidePen so that no drawing takes place on the screen while 
the Picture is open and storing the value of picFrame in the Picture's record. 

Once a Picture is open, all drawing routines called will become part of the 
Picture definition but will not be directly drawn on the screen unless a call to 
ShowPen is made (if it is, it must be later balanced with an explicit call to 
HidePen). The picFrame parameter indicates to QuickDraw the rectangle that 
encloses the picture. This rectangle will later be used by QuickDraw to 
determine the ratio used to shrink or expand the picture if that becomes 
necessary. 



228 Advanced Macintosh Pascal 

Only one Picture should be open at a time in a program. The complemen
tary QuickDraw routine to OpenPicture is ClosePicture. 

procedure ClosePicture; 

The ClosePicture procedure tells QuickDraw to stop saving Picture defini
tion information. Only one call to ClosePicture should be made for each 
OpenPicture since they are balancing routines. ClosePicture also calls Show
Pen. 

Once a picture is fully defined it can be drawn on the screen with only one 
drawing routine DrawPicture. 

procedure DrawPicture( myPicture : PicHandle; dstRect : Reel); 

The DrawPicture procedure plays back the specified Picture definition, 
drawing it on the screen. The drawing takes place inside the given destination 
rectangle which specifies both where on the screen to place the Picture and 
what size it should be. If the destination rectangle is the same size as the 
Picture frame used when the Picture was opened, then the Picture is drawn on 
the screen the same size as it was defined. If the destination rectangle is larger 
or smaller than the frame rectangle, then QuickDraw calls its low-level draw
ing routines to shrink or expand the picture to fit into the new sizie. 

The following program PictureRings defines a simple Picture consisting of 
three circle-shaped ovals and a text string. It is drawn on the screen in its 
original Picture frame, then in a destination rectangle slightly larger, and then 
in a third destination rectangle much larger and more oblong. Figure 7.11 
shows the Drawing window output for the program. Notice the effect chang
ing the size of the destination rectangle has on the shape of the ovals and the 
size of the text. 

program PictureRings; 
uses 
QuickDraw2; 

var 
Pie : PicHandle; 
Ov, R: Rect; 



.2.29 Advanced QuickDraw 

begin 
SetRect(R, 10, 10, 80, 100); 
Pie : = OpenPicture(R); 
SetRect(Ov, 40, 40, 60, 60); 
FrameOval(Ov); 
SetRect (Ov, 50, 50, 70, 70); 
FrameOval(Ov); 
SetRect (Ov, 60, 40, 80, 60); 
FrameOval(Ov); 
MoveTo(40, 90); 
Drawstring(' Our Picture'); 
ClosePicture; 
DrawPicture(Pic, R); 
SetRect (R, 100, 100, 180, 200); 
DrawPicture(Pic, R); 
SetRect (R, 100, 100, 280, 300); 
DrawPicture(Pic, R); 
KillPicture(Pic) 

end. 

The program ends with a call to the KillPicture procedure. 

procedure KillPicture (myPicture: PicHandle); 

The KiUPicture procedure frees up the memory space that was occupied 
by the Picture record pointed to by the specified Picture handle. Use this 
routine only when you are completely finished with a Picture and have no 
more use for it, but use it. 

-D ~Drawing 

CeY 
Our Picture 

Q9 
our Pi~ 

Our Picture 
ClJ 

Figure '7.11 The output of program PictureRings 



230 Advanced Macintosh Pascal 

Calculations with Points 

QuickDraw has a number of additional procedures and functions handy in 
many applications. A set of routines similar to the rectangle manipulation 
routines exist for points as well. 

procedure Add Point ( srcPoint : Point; var dstPoint : Point); 

The AddPoint procedure adds the coordinates of srcPoint to those of 
dstPoint and returns the result in destPoint. For example, consider the 
following points. 

srcPoint.x : = 1 O; 

srcPoint. y : = 1 O; 

dstPoint.x : = 30; 

stPoint.y: = 40; 

After the following call to AddPoint: 

AddPoint(srcPoint, dstPoint); 

The contents of dstPoint will be 

dstPoint.x is 40 

dstPoint.4 is 50 

procedure SubPt(srcPoint: Point; var dstPoint : Point); 

The SubPt procedure subtracts the coordinates of srcPoint from dst
Point and returns the result in dstPoint. 

function EqualPt(PointA, PointB) : Boolean; 

The EqualPoint function compares the two points and returns True if 
they are equal (have the same coordinates) and False otherwise. 

procedure SetPt(var Pt : Point; H, V : Integer); 

The SetPt procedure assigns the specified coordinates to the specified 
point. The following call to SetPoint: 

SetPoint(APoint, 30, 46); 

is equivalent to the following two assignment statements: 

APoint.H := 30; 

APoint.V: = 46; 



231 Advanced QuickDraw 

Drawing in Color 

procedure LocalToGlobal(var Pt: Point); 

The LocalToGlobal procedure is the opposite of the GlobalToLocal pro
cedure. LocalToGlobal takes a point in the local coordinates of the 
current GrafFort and returns the corresponding global coordinates of 
that point. The original coordinate is lost since it is overwritten by the 
new value. 

function GetPixel (H, V) : Boolean; 

The GetPixel function takes the specified coordinates as a point in local 
coordinates and returns the condition of the pixel that hangs down and 
to the right of it. If that pixel is black, the function returns True and if 
the pixel is white, False. 

This topic may seem strange since the Macintosh comes only with a black 
and white display (although a very good one). The people at Apple had the 
foresight to include color capability in QuickDraw to support future expan · 
sions of the Macintosh and peripherals. All colors are displayed on the 
black and white screen as black. 

procedure ForeColor (color: Longin!); 

The ForeColor procedure sets the foreground color of the GrafFort to the 
given color. The following colors (an artistic selection) are predefined as 
constant by QuickDraw. 

con st 
blackColor = 33; 
whiteColor = 30; 
redColor = 205; 
greenColor = 341; 
blueColor = 409; 
cyanColor = 273; 
magentaColor = 137; 
yellowColor = 69; 

The default background color is blackColor. 

procedure BackColor (color: Long Int); 

The BackColor procedure is used to set the GrafFort's background color to 
the given color. The same predefined colors listed for the ForeGround pro
cedure can also be used here. 



232 Advanced Macintosh Pascal 

Additional Routines 

The Random function returns an integer, randomly and uniformly 
pseudorandom in the range from - 32768 through 32767. 

function Random : Integer; 

The sequence of values returned depends upon the QuickDraw variable 
randSeed which Macintosh Pascal initializes to 1. You can restart the sequence 
by resetting randSeed to 1 in your program. 

It is common to need a random number from a smaller range than 
- 32768 through 32767. This can be done by taking the mod of the number 
returned. For instance, to produce a number from 1 to 48, a random number 
can be found like this: 

Ran:= Abs(Random mod 48) + 1; 

The mod 48 of the value returned by Random produces a number from O 
to 4 7 (the use of the Abs function assures that it is positive); adding 1 shifts the 
range from 1 to 48. 

The following program uses the above technique to select six random 
numbers to play the New York State Lotto 48 game. Lotto 48 is a state-run 
lottery game in which the player selects 6 numbers out of 48 and hopes 
(wishes, prays) that they match the 6 numbers picked in the weekly drawing. 
During the week this was written, the Lotto 48 jackpot exceeded 30 million 
dollars. Using Macintosh Pascal to select your numbers is as good a method as 
any. 

program Lotto48; 
var 
List: array[1..6] of Integer; 
Ct, I, guess: Integer; 
Flag : Boolean; 



233 Advanced QuickDraw 

begin 
Ct:= 1; 
Flag : = false; 
repeat 
Guess:= Random mod 48 + 1; 
for I:= 1to6do 
begin 
If Guess = Listlll then 
Flag:= True 

end; 
If Flag = False then 
begin 
ListlCtl : = Guess; 
Ct:= Ct+ 1; 

end; 
Flag : = False; 
until Ct> 6; 
for I : = 1to 6 do 
Writeln(Listlll); 
Write In(' Good Luck!ll ') 

end. 

The program uses an array to store the numbers already selected to make 
sure that it is not a duplicate of one already selected. The array is checked after 
each value is returned; if the value is not in the list, it is then added. 

procedure BackPat (pat: Pattern); 

The BackPat procedure sets the background pattern used in the GrafFort 
to be for any QuickDraw "erase" procedure. Any pattern can be used. 

procedure SetOrigin {h, v: Integer); 

SetOrigin changes the origin point of the local coordinate system of the 
Drawing window. The h and v parameters set the coordinates. 



CHAPTER 

~~----
A CoIDplete 
Application: The 
Logger 

This chapter presents a complete application using many of the concepts 
and routines developed in the other chapters of this book. The application 
called The Logger maintains a computerized record log of computer usage 
including date, time, purposes, and prints-both a detailed and summary 
report. It might be used to track computer usage to meet the ms standards for 
home computer use. The program uses events, simulated radio and pushbut
tons, text files, and random file processing. 

Jn describing a complex program it can be useful to show both the input 
and output of the program and then describe the processing that fits in 
between. The input of the logger is a simulated window displayed inside the 
Drawing window (Figure 8.1). It shows six radio buttons, three pushbuttons, 
and a text box. 

Each individual log record contains two pieces of information about how 
the computer is being used. One is a category selected from one of the six radio 
buttons displayed. The categories can be easily customized for a particular 
purpose but initially there are four business categories along with a personal 
and investment category. These categories will be the basis for a summary 
report showing the percentage of use per category. The second part of the 
description is a text string describing the task that can be entered by the user. 
These two of the three forms of input are used to form the data that is stored in 
a file. 

235 



.236 Advanced Macintosh Pascal 

0 
The logger 

0 Personal 

0 lnveslments 

0 Business 1 

0 Business 2 

0 Business 3 
0 Business 4 

Start ) ( Stop ) ( Report 

Description 

Figure 8.1 The Logger window 

The third form of input is the pushbuttons that control the action of the 
program. Initially, the Start and Report buttons are active. Pushing the Start 
button causes the program to store the current information in the file along 
with ~he time and date. After Start is pressed, both Start and Report become 
inactive. The Report button causes the program to send to the printer the 
detail and summary report pictured below. A number of calculations have to 
be made to produce the report, and they will be described later. The Stop 
button is only made active after the Start button has been pressed. Stop causes 
the program to complete the record that was previously started by finding it at 
the end of the file and logging the current time. 

The output of the program is pictured below in Figure 8.2. 
The report is in two sections: a detail section and a usage summary. The 

detail section lists in columnar form all the records that have been stored by 
the user and the elapsed time of use. The summary section lists the total time 
of usage of each category and a percentage of the total time used. 

The processing done can be thought of as being divided up into several 
parts: the handling of the mouse input and event handling, the file handling, 
and the report production. Of these, the mouse input will seem very familiar 
to you since it is based on the work done in the event handling and quickDraw 
chapters. The other two parts will be discussed in greater detail. 



Date 
3/29/86 
3./29./86 
3/29/86 
3/29/86 
3/29/86 

Summa;-v of 
Personal 
Investments 
8l!siness1 
9u:.iness2 
Cu:.iness3 
8:..: s i rress4 

237 A Complete Application: The Logger 

The Logger 

Start Stop Category Description Time 
4: 14P 4: 1 SP Businessl Payrol 1 00:01 

00:01 
00:04 
00:07 
00:02 

4: 1 SP 4: 16P Investments Stock tracking 
4: 17P 4:21P Business3 Inventory 
4:22P 4:29P Business3 Schedu 1 i ng 
·" , .-;' •:: t:· ..., ·-··I 4:31P Personal Invitations 

usage by category 
00:02 9.5% 
00:02 9,5;~ 

00:02 
00:00 
00: 15 
00:00 

9. 5~~ 

71 . 4~; 

Figure 8.2 The Logger report 

The basis of the entire program is the file containing the records. The file 
is of type LogRec defined as: 

LogRec = record 
Date: string[SJ; 
StartTime, StopTime : Integer; 
Cat: Ca!Type; 
Descript: string[25]; 

end; 

The fields hold the date in a string formed by the program from the clock 
information, the start and stop times (obviously not posted at the same time), 
the description entered, and the category read from the radio buttons. The 
start and stop time uses only the hour and minute with the seconds discarded. 
In the interest of saving storage space, the hours and minutes are encoded and 
stored together in one integer. This is done by multiplying the hour by 100 and 
then adding the minutes. This is later reversed by dividing by 100 to get the 
hours and taking the mod of 100 to get the minutes (handy thing, this base 10 
system!). Notice that the elapsed time is not stored in the record but is 
calculated later on by the report. This saves a few bytes in each record. The 
enumerated type CatType is defined as 

Ca!Type = (P, Iv, 81, 82, 83, 84); 

It is more efficient to store this information as an enumerated type than a 
_string since an enumerated value never takes more than one byte to store. 



238 Advanced Macintosh Pascal 

The file processing is rather simple since once a record is complete, we 
have no need to work with it again except to produce the report. This file is 
opened with the Open procedure as one of the first actions taken by the 
program. Using Open will allow us random access to the file which will speed 
processing time. When a new record is added to the file it is always placed at 
the end of the file. This is done by moving the file to the end of file and then 
placing the record. This is all done in the StartRoutine procedure. 

procedure StartRoutine; 
begin 
GetTime(Time); (read the clock) 
with Time do 
begin 
Log.Date:= Concat(StrToint(Month), 'I', StrTolnt(Day)); 
Log.Date : = Concat(Log.Date, 'I', Omit(StrTolnt(Year), 1, 2)); 
Log.StartTime : = Hour • 100 + Minute; 

end; 
Log.Descript :=Te; 
Seek(LogFile, Maxlnt); 
LogFile· : = Log; 
Put(LogFile); 

end; (Start Routine) 

This procedure assumes a variable called Time of type DateTimeRec and 
LogFile, a file of LogRec. Of interest in the procedure is the use of Seek to find 
the end of file by passing a record number of Maxlnt. 

The complementry procedure to StartRoutine is StopRoutine, which is 
called after the Stop button is pressed. This procedure has to find the last 
record in the file, which was placed in the file without a StopTime by the 
StartRoutine. 

procedure StopRoutine; 
begin 
GetTime(Time); 
Seek(LogFile, Maxlnt); 
K: = FilePos(LogFile); 
K:=K-1; 
Seek(Logfile, K); 
with Time do 
LogFile·.StopTime: = Hour• 100 + Minute; 

Put(LogFile); 
end; 

The StopRoutine must find the last record in the file. We saw before how 
to find the end of file with Seek, but Seek takes us one past the last record. To 
find the last record we seek the end of file, use the FilePos function to find its 
record number, and then seek the record that is before it. 



239 A Complete Application: The Logger 

The production of the report is more complex than the file processing. It 
requires printing a heading, reading the file record by record, calculating the 
elapsed time, printing the record, totaling the elapsed times, calculating the 
percentage of usage, and printing the summary. This is all handled in the 
PrintRoutine procedure which is called after the Report button is pressed. 
Let's take the tasks one at a time. 

Printing the heading is not as trivial as it might seem. Since the heading 
uses both the bold and underlined printing modes of the hnageWriter native 
typeface, it requires sending control codes to the printer. This is done through 
a Write statement. The control codes for these printer functions are as 
follows: 

Bold Face On • Chr(27), Chr(33) 
Bold Face Off· Chr(27), Chr(34) 
UnderlineOn • Chr(27), Chr(88) 
Underline Off· Chr(27), Chr(89) 

The heading is printed with: 

Writeln(Out, Chr(27), Chr(33), '' : 30, 'The Logger', Chr(27), Chr(34)); 
Writeln(Out); 
Write(Out, Chr(27), Chr(88), 'Date': 6, 11 : 4); 
Write(Out, 'Start': 6, 'Stop': 6, 11 : 2, 'Category' : 10); 
Writeln(Out, '': 4, 'Description': 12, '': 13, 'Time': 5, Chr(27), Chr(89)); 

Next the file is read one record at a time, the information formatted and 
sent to the printer. The first thing printed is the Date field, which is simple 
since it was formatted before it was placed in the file. Next is the Start and Stop 
times. These times must be converted from the 24 hour clock to AM and PM 
and then properly formatted. The HrsAndMins procedure, which is contained 
inside of PrintRoutine, is used for this. One of the things it must do is place a 
leading zero in front of a one-digit minute value. HrsandMins sends the 
information to the printer through the Text file named Out. 

procedure HrsandMins; 
begin 
if H = Othen 
Write(Out, '00:'); 

if H > 12then 
Write( Out, (H • 12) : 2, ': ') 

else if H > = 10 then 
Write(Out, H: 2, ':') 

else 
Write(Out, 'O', H: 1); 



240 Advanced Macintosh Pascal 

If M > = 10 then 
Write(Out, M : 2) 

else 
Write(Out, 'O', M : 1); 

If H > 12then 
Write(Out, 'P') 

else 
Write(Out, 'A'); 

end; 

Notice that no Writeln statements are used since all the information is 
printed on one line. Next to be printed is the category and description. Since 
the category is stored in a code, it must be converted to a string in a Case 
statement. The Description field is printed without modification, and then 
enough spaces are printed to occupy 25 columns, including the description. 
The elapsed time is calculated by converting the Start and Stop time into 
seconds and subtracting one from the other. This is later converted back into 
hours and minutes and printed with a version of the HrsAndMins routine that 
does not print the AM or PM adjective. 

Here is this section of PrintRoutine. 

H : = StartTime div 100; 
M : = StartTime mod 100; 
HrsandMins; 
Write(Out, '' : 1); 
ETime : = 60 * H + M; 
H := StopTimedlv100; 
M := StopTimemod100; 
HrsAndMins; 
ETime : = (60 * H + M)- ETime; 
case Cat of 
P: 
S: = 'Personal'; 

Iv: 
S : = 'Investments'; 

81: 
S:= '8usiness1 '; 

82: 
S : = '8usiness2 '; 

83: 
S : = '8usiness3 '; 

84: 
S : = '8usiness4 '; 

end; 



.241 A Complete Application: The Logger 

I : = 25 -Length(Descript); (figure padding} 
Write(Out, S, '' : 2, Descript, '' : I); 
(Calculate elapsed time} 
H : = ETime div 60; 
M : = ETime mod 60; 
NoAMorPM; (print it} 
Writeln(Out); 
Usage[Ord(Cat)] : = Usage[Ord(Cat)] + ETime; (total times} 

end; 
end; 

The final part of this routine prints the summary report. As each record is 
read from the file that the calculated elapsed time is added to a six-position 
array called Usage, that holds the running totals of the elapsed time for each 
category. The summary heading is printed, the category names printed along 
with the total time for that category, and the percentage of use is determined 
and printed. 

[Calculate elapsed time} 
H : = ETime div 60; 
M : = ETime mod 60; 
NoAMorPM; 
Writeln(Out); 
Usage[Ord(Cat)J : = Usage[Ord(Cat)J + ETime; 
end; 

end; 
Writeln(Out); 
Writeln(Out, Chr(27), Chr(88), 'Summary of usage by category', Chr(27), Chr(89)); 
for I : = 0 to 5 do 
TotUsage: = TotUsage + Usage[IJ; 

for I : = 0 to 5 do 
begin 
case lof 
0: 
S := 'Personal'; 

1 : 
S :='Investments'; 

2: 
S : = 'Business1 '; 

3: 
S : = 'Business2 '; 

4: 
S : = 'Business3 '; 

5: 
S : = 'Business4 '; 

end; (case} 



242 Advanced Macintosh Pascal 

Write(Out, S, ' '); 
H : = Usage(!] div 60; 
M : = Usage fl] mod 60; 
NoAMorPM; 
Writeln(Out, ' ' : 2, (Usage(!]/ TotUsage * 100): 5: 1, '% ') 
end 

end; 

Here is the entire PrintRoutine together. 

procedure PrintRoutine; 
var 
TotUsage, I: Integer; 

procedure HrsandMins; 
begin 
If H = Othen 
Write(Out, '00:' ); 

If H > 12then 
Write(Out, (H -12): 2, ': ') 

else if H > = 10 then 
Write(Out, H: 2, ': ') 

else 
Write(Out, 'O', H: 1); 

If M > = 10 then 
Write(Out, M : 2) 

else 
Write(Out, 'O', M: 1); 

If H > 12then 
Write(Out, 'P') 

else 
Write(Out, 'A'); 

end; 
(·······················-·······-··) 

procedure NoAMorPM; 
begin 
If H = Othen 
Write(Out, '00:') 

else if H > = 10 then 
Write(Out, H: 2, ':') 

else 
Write(Out, 'O', H :1, ':'); 

If M > = 10 then 
Write(Out, M : 2) 

else 
Write(Out, '0', M: 1); 

end; 



243 A Complete Application: The Logger 

begin (Print Routine) 
K:=O; 

Writeln(Out, Chr(27), Chr(33), ' ' : 30, 'The Logger', Chr(27), Chr(34)); 
Writeln(Out); 
Write(Out, Chr(27), Chr(88), 'Date': 6,' ': 4); 
Write(Out, 'Start': 6, 'Stop': 6,' ': 2, 'Category': 10); 
Writeln(Out,' ': 4, 'Description': 12,' ': 13, 'Time': 5, Chr(27), Chr(89)); 
while not eof(LogFile) do 
begin 
Seek(LogFile, K); 
K:=Kt1; 

If not eof(LogFile) then 
with LogFile· do 
begin 
Write(Out, Date: 8, ' ' : 2); 
H : = StartTime div 100; 
M : = StartTime mod 100; 
Write(H, M); 
HrsandMins; 
Write(Out, ' ' : 1); 
ETime := 60 * H + M; 
H := StopTimedlv100; 
M : = Stop Time mod 100; 
HrsAndMins; 
Write(Out, ' ' : 3); 
ETime : = (60 * H + M) • ETime; 

case Cat of 
P: 
S: = 'Personal'; 

Iv: 
S : = 'Investments'; 

81: 
S: = '8usiness1 '; 

82: 
S:= '8usiness2 '; 

83: 
S : = '8usiness3 '; 

84: 
S : = '8usiness4 '; 

end; 



244 Advanced Macintosh Pascal 

I : = 25 -Length(Descrlpt); 
Write(Out, S, ' ' : 2, Descript, ' ' : I); 

(Calculate elapsed time) 
H: = ETime div 60; 
M : = ETime mod 60; 
NoAMorPM; 
Wrlteln(Out); 
Usage[Ord(Cat)J : = Usage[Ord(Cat)J + ETime; 
encl; 

end; 
Writeln(Out); 
Writeln(Out, Chr(27), Chr(88}, 'Summary of usage by category', Chr(27}, Chr(89)); 
forl:=Oto5do · 
TotUsage: = TotUsage + Usage[IJ; 

forl:=Olo5do 
begin 
easel of 
0: 
S :='Personal'; 

1: 
S:= 'Investments'; 

2: 
S:= 'Business1 '; 

3: 
S : = 'Buslness2 '; 

4: 
S:= 'Business3 '; 

5: 
S : = 'Buslness4 '; 

end; (case) 
Write(Out, S, ' '); 
H : = Usage[IJ div 60; 
M : = Usage[IJ mod 60; 
NoAMorPM; 
Writeln(Out, ' ' : 2, (Usage[IJ / Totusage * 100): 5: 1, '% ') 

end 
end; 



245 A Complete Application: The Logger 

Notice that the procedures AMorPM and NoAMorPM are declared inside 
of PrintRoutine and are local to it. The remainder of the program is the main 
section, which initializes the window and handles the mouse and keyboard 
input in a manner explained in earlier chapters. When the program starts, it 
first checks the data file to see if the last record contains a value in the 
StopTime field. Remember that when a StartTime is placed in the file, the 
StopTime is set to -1. If StopTime of the last record in the file is -1, then the 
program is in the context of a record having been opened but not closed, and 
the program should start by displaying the Stop button as active rather than 
the Start button. 

When a keyboard event occurs, the key pressed is determined from the 
Message field of the event record. By anding it with 255, the ASCII code is 
found for the key. That code is then appended to the string TE which will be 
assigned to the Decript field of the LogRec. The character is also displayed on 
the screen in the Description box. 

Here is the entire main section of the program. 

begin 
HideAll; 
(Open files) 
Open(LogFile, 'Log.Data'); 
Rewrite( Out, 'Printer:'); 
Seek(LogFile, Maxin!); (Read last record) 
K : = FifePos(LogFile); 
K:= K-1; 
Seek(Logfile, K); 
If LogFife·.StopTime = -1 then (StopTime ?J 
Status:= Go 

else 
Status : = No; 

ShowDrawing; 
Flag : = False; 
(Display window) 
SetRect(Large, 10, 10, 250, 265); 
SetRect(Close, 17, 15, 27, 25); 
FrameRect(Large); 
FrameRect(Close); 
lnitCursor; 
MoveTo(65, 40); 
TextFont(O); (Chicago, Chicago) 
DrawString('T he Logger'); 
MoveTo(55, 60); 
Drawstring(' Personal'); 
MoveTo(55, 80); 
Draw String(' Investments'); 
MoveTo(55, 100); 



246 Advanced Macintosh Pascal 

Drawstring(' Business1 '); 
MoveTo(55, 120); 
Drawstring(' Business2' ); 
Moveto(55, 140); 
Drawstring(' Business3 '); 
Moveto(55, 160); 
Drawstring(' Business4 '); 
for K: = 1to6 do !Do radio buttonsj 
begin 
SetRect(CIKJ, 43, 50 + (K - 1) * 20, 53, 60 + (K - 1) * 20); 
FrameOval(CIK]); 

end; 
Clicked:= 1; !Turn on first buttonj 
DoDot(Clicked); 
SetRect(Start, 20, 170, 80, 190); 
SetRect(Stop, 90, 170, 150, 190); 
SetRect(Print, 160, 170, 220, 190); 
If Status = No then !Draw buttonsJ 
begin 
DrawStart(O); 
DrawReport(O); 
DrawStop(1); 

end 
else 
begin 
DrawStart(1); 
DrawReport(1); 
DrawStop(O) 

end; 
SetRect(Descrip, 20, 200, 230, 230); !Text boxJ 
FrameRect(Descrip); 
MoveTo(20, 240); 
TextFont(O); 
Drawstring(' Description'); 
MoveTo(22, 220); 
repeat 
If GetNextEvent(14, Event) then !process events! 
case Event. What of 
1 : !Mouse down eventJ 
begin 
GlobalTolocal(Event. Where); 
Mouse : = Event. Where; 
[Handle push buttonsJ 



24 7 A Complete Application: The Logger 

If (PtlnRect(Mouse, Start)) and (Status = No) then 
begin 
lnvertRoundRect(Start, 10, 10); 
repeat 
until GetNextEvent(14, Event); 
lnvertRoundRect(Start, 10, 10); 
DrawStart(1); 
DrawReport(1); 
DrawStop(O); 
Status : = Go; 
StartRoutine; 

end;(Start) 
if (PtinRect(Mouse, Stop)) and (Status = Go) then 
begin 
lnvertRoundRect(Stop, 10, 10); 
repeat 
untll GetNextEvent(6, Event); 
lnvertRoundRect(Stop, 10, 10); 
Status : = No; 
DrawStop(1); 
DrawStart(O); 
DrawReport(O); 
EraseRect(Descrip); 
FrameRect(Descrip); 
Te:="; 
MoveTo(22, 220); 
Stop Routine 

end;(Stop) 
if PtinRect(Mouse, Print) and (Status = No) then 
begin 
lnvertRoundRect(Print, 10, 10); 
repeat 
untll GetNextEvent(6, Event); 
lnvertRoundRect(Print, 10, 10); 
(Call Print routine) 
PrintRoutine 
end;(Print) 



248 Advanced Macintosh Pascal 

(Handle radio buttons! 
If Status = No then 
forK:= 1to6do 
If PtlnRect(Mouse, C!Kl) then 
begin 
DoDot(Clicked); 
DoDot(K); 
Clicked:= K; 

end; 
Log.Cat:= P; (Store category! 
for K := 1 to Clicked ·1 do 
Log.Cat : = Succ(Log.Cat); 
If PtlnRect(Mouse, Close) then 
begin 
Flag : = True; 
HideAll 
end 
end; 
2 : (Untrapped Mouse UpJ 

3: (Keyboard event! 
begin 
T: = Chr(BitAnd(Event.Message, 255)); 
If Ord(t) < > 8 then 
begin 
DrawChar(T); 
Te:= Concat(Te, T) 
end 
else 
DrawChar(chr(S)) 
end 
end;(casej 

untll flag; 
end. 



249 A Complete Application: The Logger 

Finally, here is the entire Logger program in one place. 

program TheLogger; 
type 
State = (Go, No); 
Ca!Type = (P, Iv, 81, 82, 83, 84); 
LogRec = record 

Date: strlng[Bl; 
StartTime, Stop Time: Integer; 
Cat: Ca!Type; 
Descript: strlng[25J; 
end; 

var 
Time: DateTimeRec; 
Status : State; 
Log : LogRec; 
LogFile : flle of LogRec; 
Descrip, Start, Stop, Print, Large, Close : Rect; 
C : array[1..61 of Rect; 
Flag: Boolean; 
Mouse : Point; 
Event: EventRecord; 
Clicked, I, K: Integer; 
H, M, ETime: Integer; 
T:Char; 
S, Te: string; 
Out: Text; 
Usage: array[0 .. 51 of integer; 

(······················] 
function ln!ToStr (Int: Integer): string; 
var 
Str : string; 
R: Integer; 

begin 
Str := "; 
while Int > 0 do 
begin 
R: =Int mod 10; 
Str: = Concat(CHR(R + 48), str); 
Int:= Int div 10; 
end; 

I n!T oStr : = Str 
end; 

( ·--···---··---] 



250 Advanced Macintosh Pascal 

procedure StartRoutine; 
begin 
GetTime(Time); 
with Time do 
begin 
Log.Date : = Concat(lntToStr(Month), 'I', lntToStr(Day)); 
Log.Date : = Concat(Log.Date, 'I', Omit(lntToStr(Year), 1, 2)); 
Log.StartTime: = Hour * 100 + Minute; 

end; 
Log.Descript: =Te; 
Log.StopTime: = -1; 
Seek(LogFile, Maxlnt); 
LogFile· : = Log; 
Put(LogFile); 

end; [Start Routine} 
{····-----} 
procedure StopRoutine; 
begin 
GetTime(Time); 
Seek(LogFile, Maxlnt); 
K: = FilePos(LogFile); 
K:= K-1; 
Seek(Logfile, K); 
with Time do 
LogFile· .Stop Time:= Hour * 100 + Minute; 

Put(LogFile); 
end; 
{····-···-··---------········} 
procedure PrintRoutine; 
var 
TotUsage, I : Integer; 

procedure HrsandMins; 
begin 
lfH = Othen 
Write(Out, '00: '); 

If H > 12then 
Write( Out, (H -12) : 2, ': ') 

else If H > = 10 then 
Write( Out, H : 2, ': ') 

else 
Write(Out, '0', H: 1); 



2o 1 A Complete Application: The Logger 

· If M > = 10 then 
Write(Out, M : 2) 

else 
Write(Out, '0', M: 1); 

lfH > 12then 
Write(Out, 'P') 

else 
Write(Out, 'A'); 

end; 
l·--·------------1 

procedure NoAMorPM; 
begin 
lfH = Othen 
Write(Out, '00:') 

else If H > = 10 then 
Write(Out, H: 2, ':') 

else 
Write(Out, '0', H: 1, ':'); 

lfM > = 10then 
Write(Out, M : 2) 

else 
Write(Out, 'O', M: 1); 

end; 
begin 
K:=O; 
Writeln(Out, Chr(27), Chr(33), ' ' : 30, 'The Logger', Chr(27), Chr(34)); 
Writeln(Out); 
Write(Out, Chr(27), Chr(BB), 'Date': 6,' ': 4); 
Write(Out, 'Start': 6, 'Stop': 6,' ': 2, 'Category': 10); 
Writeln(Out,' ':4, 'Description' :12,' ':13, 'Time' :5,Chr(27),Chr(89)); 
whlle not eof(LogFile) do 
begin 
Seek(LogFile, K); 
K:=K+1; 



252 Advanced Macintosh Pascal 

If not eof(LogFile) then 
with LogFile· do 
begin 
Write(Out, Date: 8, ' ' : 2); 
H : = StartTime div 100; 
M : = StartTime mod 100; 
HrsandMins; 
Write(Out, ' ' : 1); 
ETime: = 60 * H + M; 
H := StopTimediv100; 
M : = Stop Time mod 100; 
HrsAndMins; 
Write(Out, ' ' : 3); 
ETime : = (60 * H + M) • ETime; 
case Cat of 
P: 
S := 'Personal'; 

Iv: 
S : = 'Investments'; 

81: 
S : = '8usiness1 '; 

82: 
S : = '8usiness2 '; 

83: 
S : = '8usiness3 '; 

84: 
S := '8usiness4 '; 

end; 
I : = 25 • Length(Descript); 
Write(Out, S, ' ' : 2, Descript, ' ' : I); 

!Calculate elapsed time) 
H : = ETime div 60; 
M : = ETime mod 60; 
NoAMorPM; 
Writeln(Out); 
Usage(Ord(Cat)J : = Usage(Ord(Cat)J + ETime; 

end 
end; 



.203 A Complete Application: The Logger 

Writeln(Out); 
Writeln(Out, Chr(27), Chr(88), 'Summary of usage by category', Chr(27), Chr(89)); 
for I : = 0 to 5 do 
TotUsage := TotUsage + Usage[IJ; 

forl:=Oto5do 
begin 
easel of 
0: 
S: = 'Personal'; 
1: 
S := 'Investments'; 
2: 
S : = 'Business1 '; 
3: 
S : = 'Business2 '; 
4: 
S := 'Business3 '; 
5: 
S : = 'Business4 '; 
end; (easel 
Write(Out, S,' '); 
H : = Usage[IJ div 60; 
M : = Usage[ I) mod 60; 
NoAMorPM; 
Writeln(Out, ' ' : 2, (Usage[I] / Totusage * 100) : 5 : 1, ' % ') 

end 
end; 

(------·---------------------------) 
procedure DrawStart (Fnt: Integer); 
begin 
TextFont(Fnt); 
EraseRoundRect(Start, 10, 10); 
FrameRoundRect(Start, 10, 10); 
MoveTo(30, 185); 
Drawstring(' Start') 

end; 



.254 Advanced Macintosh Pascal 

procedure DrawStop (Fnt: Integer); 
begin 
TextFont(Fnt); 
EraseRoundRect(Stop, 10, 10); 
FrameRoundRect(Stop, 10, 10); 
MoveTo(100, 185); 
Drawstring(' Stop') 

end; 
I···-···········----······-·········· I 
procedure DrawReport (Fnt : Integer); 
begin 
TextFont(Fnt); 
EraseRoundRect(Print, 10, 10); 
FrameRoundRect(Print, 10, 10); 
Moveto(165, 185); 
Drawstring(' Report'); 

end; 
(····················-······················) 
procedure DoDot (K: Integer); 
begin 
lnsetRect(C(KJ, 2, 2); 
lnvertOval(C[KI); 
lnsetRect(C[K), - 2, - 2) 

end; 
(·····················--···················) 
begin 
HideAll; 
(Open files) 
Open(LogFile, 'Log.Data'); 
Rewrite(Out, 'Printer:'); 
Seek(LogFile, Maxlnt); (Read last record) 
K: = FilePos(LogFile); 
K:= K-1; 
Seek(Logfile, K); 



255 A Complete Application: The Logger 

if LogFile·.stopTime = -1 then !Stop Time ?J 
Status:= Go 

else 
Status:= No; 

ShowDrawing; 
Flag : = False; 
!Display window) 
SetRect(Large, 10, 10, 250, 265); 
SetRect(Close, 17, 15, 27, 25); 
FrameRect(Large); 
FrameRect(Close); 
lnitCursor; 
MoveTo(65, 40); 
TextFont(O); !Chicago, Chicago) 
Drawstring( 'The Logger'); 
MoveTo(55, 60); 
Drawstring(' Personal'); 
MoveTo(55, 80); 
Drawstring(' Investments'); 
MoveTo(55, 100); 
Drawstring(' Business1 '); 
MoveTo(55, 120); 
Drawstring(' Business2'); 
Moveto(55, 140); 
Drawstring(' Business3' ); 
Moveto(55, 160); 
DrawString('Business4 '); 
for K: = 1to6 do !Do radio buttons) 
begin 
SetRect(CIKJ, 43, 50 + (K • 1) * 20, 53, 60 + (K -1) * 20); 
FrameOval(CIKJ); 

end; 
Clicked:= 1; !Turn on first button) 
DoDot(Clicked); 
SetRect(Start, 20, 170, 80, 190); 
SetRect(Stop, 90, 170, 150, 190); 
SetRect(Print, 160, 170, 220, 190); 
If Status = No then !Draw buttons) 
begin 
DrawStart(O); 
DrawReport(O); 
DrawStop(1); 

end 



256 Advanced Macintosh Pascal 

else 
begin 
DrawStart(1); 
DrawReport(1); 
DrawStop(O) 

end; 
SetRect(Descrip, 20, 200, 230, 230); !Text box! 
FrameRect(Descrip); 
MoveTo(20, 240); 
TextFont(O); 
Drawstring(' Description'); 
MoveTo(22, 220); 
repeat 
If GetNextEvent(14, Event) then 
case Event.What of 
1 : !Mouse down event I 
begin 
GlobalTolocal(Event. Where); 
Mouse : = Event. Where; 
!Handle push buttons! 
If (PtlnRect(Mouse, Start)) and (Status = No) then 
begin 
lnvertRoundRect(Start, 10, 10); 
repeat 
until GetNextEvent(14, Event); 
lnvertRoundRect(Start, 10, 10); 
DrawStart(1); 
DrawReport(1); 
DrawStop(O); 
Status : = Go; 
StartRoutine; 

end; I Start I 
If (PtinRect(Mouse, Stop)) and (Status = Go) then 
begin 
lnvertRoundRect(Stop, 10, 10); 



25 7 A Complete Application: The Logger 

repeat 
until GetNextEvent{6, Event); 
lnvertRoundRect(Stop, 10, 10); 
Status : = No; 
DrawStop(1); 
DrawStart(O); 
DrawReport(O); 
EraseRect(Descrip); 
FrameRect(Descrip); 
Te:= "; 
MoveTo(22, 220); 
StopRoutine 

end; (Stop! 
If PtinRect(Mouse, Print) and (Status = No) then 
begin 
lnvertRoundRect(Print, 10, 10); 
repeat 
until GetNextEvent(6, Event); 
lnvertRoundRect(Print, 10, 10); 
(Call Print routine) 
PrintRoutine 

end;(Printl 
(Handle radio buttons) 
If Status = No then 
for K : = 1to 6 do 
If PtlnRect(Mouse, C[KJ) then 

begin 
Do Dot( Clicked); 
DoDot(K); 
Clicked:= K; 

end; 
Log.Cat:= P; (Store category! 
for K := 1 toClicked-1 do 
Log.Cat:= Succ(Log.Cat); 

If PtlnRect(Mouse, Close) then 
begin 
Flag : = True; 
HideAll 

end 
end; 



258 Advanced Macintosh Pascal 

2: (Untrapped Mouse Up) 

3: (Keyboard event) 
begin 
T: = Chr(BitAnd(Event.Message, 255)); 
If Ord(t) 8 then 
begin 
DrawChar(T); 
Te:= Concat(Te, T) 

end 
else 

DrawChar(chr(8)) 
end 

end;( case) 
untll flag; 

end. 



CHAPTER 

§~----
The Standard Apple 
Nulllerical 
Environlllent (SANE) 

SANE is not a description of a Macintosh owner but rather the acronym for 
the Standard Apple Numerical Environment, SANE, which is based on the 
Institute of Electrical and Electronic Engineer's (IEEE) Standard 754 for Binary 
Floating-Point Arithmetic and is an attempt by Apple to bring standardized 
numerical operations to a range of products. The IEEE standard specifies data 
types and conversion and manipulation routines for the data types. SANE 
supports the IEEE standard along with adding additional data types and 
functions. 

SANE is probably the most underrated feature of the Macintosh, giving 
the programmer accuracy surpassing the mainframe computers of the early 
1960's. Because of the incredible precision of SANE, the Macintosh becomes 
equally suitable for applications ranging from general ledger systems to 
computer simulated decays of subatomic particles. 

259 



Data Types 

260 Advanced Macintosh Pascal 

Like the Toolbox and QuickDraw, SANE is supported by Macintosh Pascal 
through both direct implementation and the use of a library. For in:itance, the 
Macintosh real data types are direct implementations of the SANE data types 
and require no effort by the programmer to use; but to use routines belonging 
to SANE, the SANE library must be first called with: 

uses 
SANE; 

This chapter provides an overview of SANE and descriptions of the SANE 
data types and routines with the intention of making the Macintosh Pascal 
programmer aware of its capabilities and the consequences of its use. Because 
the complexities of SANE are more applicable to the numerical analyst than 
the programmer, a complete description of SANE error codes, data type 
conversion, and numerical environment controls has been omitted. Those 
interested in these SANE topics should consult the Standard Apple Numeric 
Environment manual part of several publications from Apple Computer. 

SANE is primarily interested in real data types since the accuracy of a real 
number is limited by its physical representation inside the computer, and it is 
real values that are of greatest use for scientific and mathematical applica
tions. There can be some confusion between the use of the term real to mean a 
floating point value with a fractional component and Pascal's Real data type. In 
this discussion, the term real will be used to cover all real data types of which 
the Pascal Real type is only one. 

When working with reals, errors are introduced in arithmetic operations 
from the inability of a computer to store irrational fractions (those with an 
infinite number of decimal points) in a finite number of bits. Certain fractions 
that are rational in base ten are rational when converted to binary and can be 
stored exactly in the computer. Other rational decimal fractions are irrational 
when converted to binary. For instance, the decimal fraction 0.510 can be 
accurately represented in binary, by 0.121 but the decimal fraction o.iw is a 
repeating fraction in binary, represented as 0.00011001100 ... 2 • Thus the larger 
the capacity of the real data types being used, the higher the accuracy of the 
representation of the value. While the programmer may be familiar with only 
the Pascal Real data type, SANE and Macintosh Pascal implement four differ
ent real data types that have varying degrees of accuracy. In order to under
stand the differences between them, it is important to understand how any 
real number is stored in any computer. 

Reals are stored by dividing a memory location into three separate fields 
that store the numbers sign, its fractional component (sometimes called the 
mantissa), and the power of two that the fractional component is raised to. 
Figure 9.lshows the form of such a generic real. 



.261 The Standard Apple Numerical Environment (SANE) 

Exponent Mantissa 

Figure 9.1 The generic realdata types 

The value stored is represented as 

±mantissa • 2exponen1 

As was previously mentioned, SANE supports four real data types of 
which three fall into the form of this generic real. What differentiates the 
three is the total number of bits used to represent the number. The SANE data 
types have been given different names by Macintosh Pascal, but either name 
will be recognized in your program. The data type you are probably most 
familiar with from Macintosh Pascal is the Real type, also called Single by 
SANE, which is a 32-bit type devoting 1 bit for the sign, 24 bits for the mantissa, 
and 7 bits for the exponent. The second real type is called Double by both 
Macintosh Pascal and SANE. Double (probably for double precision) is a 64-bit 
data type using 1 bit for the sign of the number, 53 bits for the number's 
mantissa part, and 10 bits for the exponent. The third type, called Extended by 
both Macintosh Pascal and SANE, is a whopping 80-bit data type using 1 bit for 
the sign, 64 bits for the mantissa and 15 bits for the exponent. 

Figure 9.2 represents these three real types. 

8 23 

I s I Exponent Mantissa 

Single 

11 52 

Is I Exponent Mantissa 

Double 

15 63 

Exponent Mantissa 

Extended 

Figure 9.2 The single, double, and extended data types 



262 Advanced Macintosh Pascal 

A fourth real number type, called Comp by SANE and Computational by 
Macintosh Pascal, is organized differently. The Comp data type represents a 
real number as just an integral value without using a mantissa and exponent. 
This is intended for accounting-type applications in which dollars and cents 
values can be stored exactly without any worry of error introduced when 
converting to mantissa/exponent type format. Comp is implemented as a 64-bit 
type where 1 bit is used for the sign and the remaining 63 bits are used to store 
the integral value which can be as large as 263 -1. The format of the Comp data 
type is shown in Figure 9.3. 

63 

Integral value 

Figure 9.3 The Comp data type 

When working with the Comp data type a decimal point has to be assumed 
by the program wherever it is appropriate. The decimal point can be displayed 
by dividing the value by its scaling factor in a Writeln Statement. For instance, 
if the value of the Comp variable named Interest represents do llano and cents, 
it can be printed with a decimal point between the second and third digits with 
the following Write statement. 

Write(lnterest/100); 

The Macintosh Pascal manual speaks of a special form of the Write and 
Writeln statements designed to work with the Comp data type. This remains 
an unimplemented feature of the language and is best done with the above 
mentioned technique. 

The precision of the four real number data types are summarized in Table 
9.1. 

The maximum and minimum negative values are the negative of the 
values shown. 



263 The Standard Apple Numerical Environment (SANE) 

Table 9.1 

Single 

Size(bits) 32 

Exponent Range 
Minimum -126 
Maximum 127 

Mantissa Precision 
Bits 24 

Decimal 
Digits 7·8 

Approximate Decimal Range 
Minimum 1.5E-45 
Maximum 3.4E + 38 

Arithmetic Operations 

Double 

64 

-1022 
1023 

53 

15·16 

5.0E-324 
1.7E+308 

Comp Extended 

64 80 

-16383 
16384 

63 64 

18·19 19·20 

0 

9.2E+18 
1.9E-4951 
1.1E+4932 

Three of these real data types-Single, Double and Comp-are known by 
SANE as application data types, but Extended is known as an arithmetic data 
type. This is because of the way SANE handles all real arithmetic operations. 
SANE performs all arithmetic operations on Single, Double, and Comp types 
by first converting the values to Extended values. There is no loss in precision 
introduced since any value of these three types can be fully represented as an 
Extended. The result of the arithmetic operation is then returned as an 
Extended value that is converted to the real type needed by the expression. 
Through this scheme, operations can be performed with mixes of all three 
data types with equal precision, and storage space can be saved by declaring 
variables of the smallest data type that can hold the value being used. The 
following example will help to clarify this operation. 

program Example; 
uses SANE; 
var 
S: Single; 
D: Double; 
E : Extended; 

S := S + D * E; 



.264 Advanced Macintosh Pascal 

The preceding program uses three variables, each of different real types. 
Notice that the SANE data type names are used, but Real could have been 
substituted for Single. The expression 

S:=S+D*E 

will cause S and D to be converted to Extended values to be used in the 
expression. The expression will then compute an Extended value which will be 
converted to Single to be stored in the variable S. This presents no problem as 
long as the value computed by the expression can be represented by the Single 
data type. Should it be too large or small, an error will occur. 

Selecting a Data Type 

How should you select which of the real data types to use in your programs? 
The question is one oftradeoffs. If a value can be represented by an integer, it 
should since integer numbers are what any computer does best and most 
efficiently. If a real number is needed, the programmer must look at the 
precision and range needed to represent the values being worked with. It is 
important to keep in mind, however, that the more precise a data type, the 
larger the amount of storage that is needed. Speed is also a factor to be 
considered but one with surprising consequences. The following program 
was used to benchmark the execution time of the same program using the 
different real data types. The program does repeated evaluation of an 
expression having four different operators. 

program Benchmark; 
var 
X, Y:Real; 
Start, Stop, K : Integer; 

begin 
Start : = TickCount; 
forK:= 1to500do 
X:=2*Y/18+Y; 
Stop : = TickCount; 
Writeln((Stop ·Start)) 

end. 



265 The Standard Apple Numerical Environment (SANE) 

Execution was timed by recording the Macintosh's clock with the Tick
Count function, which holds ll60th of a second intervals since system startup. 
The results show the best execution time when X and Y are declared to be 
Extended. This is apparently because no conversion has to be done, either 
prior to the operation or after, to perform the assignment statement. The 
results are: 

Type Tick Counts 

Single 192 
Double 193 
Extended 159 
Comp 191 

The program using Extended variable was a full 20 % faster than its 
nearest competitor. This would tend to lead to the conclusion that Extended 
should always be used. This might very well be true except when you are 
worried about storage space, and most programmers are. Here is the same 
chart with the inclusion of the storage requirements for just the two variables 
XandY. 

Type Tick Counts Storage Bytes 

Single 192 8 
Double 193 16 
Extended 159 20 
Comp 191 8 

So Comp, while being ~bout 21% faster to execute than Single, also 
occupies 250 % more storage space. It turns out that no generalizations can be 
made about which data type to use; it must be considered and decided by the 
programmer on a case-by-case basis. Incidentally, the same program using 
Integers executed in 104 ticks and with Longin.ts, 108 ticks. 

Mathematical Functions 

The SANE library contains a number of mathematical functions which can be 
used to supplement the standard Pascal built-in functions. These functions 
help to rectify the deficiencies of standard Pascal in this area. Each of these 
functions will accept any of the real types, convert them to Extended for 
calculating the result, and then coerce the answer to the type needed in the 
expression. 



266 Advanced Macintosh Pascal 

Logarithm Functions 

Sane provides three logarithm functions. 

The Base 2 logarithm function: 

function Log2(X : Extended) : Extended 

This function computes the logarithm base 2 of X. 

The natural logarithm function: 

function Ln(X : Extended) : Extended 

This function computes the logarithm base e of X. 

The natural logarithm function of the argument plus 1 

' function Ln1(X : Extended) : Extended 

This function computes the logarithm base e of the argument plus 1 or 
the equivalent of Ln(X + 1). The advantage of using this function instead 
of Ln(X + 1) is that it is more accurate when the argument is a small 
value, such as an interest rate. 

Exponential Functions 

Along with the Logarithm function, the SANE library includes a set of 
exponential functions. 

The base 2 exponential function: 

function Exp2(X : Extended) : Extended 

This function computes the value of 2x. 

The base e exponential function: 

function Exp(X : Extended) : Extended 

This function computes the value of ex. 

The base e exponential minus 1 function: 

function Exp1(X: Extended): Extended 

This function computes the value of ex - 1. When the value of X is very 
small, Expl(X) is more accurate than the straightforward computation 
of Exp(X)- 1. 

The Integer exponential function. 

function Xpwrl(X : Extended; I : Integer) : Extended 

This function computes the value of X1 when X is a real value and I is an 
integer. 



267 The Standard Apple Numerical Environment (SANE) 

The general exponential function. 

function XpwrY(X, Y: Extended): Extended 

This function is similar to Xpwrl except that the power the value is 
raised to is a real value, not an integer. 

Financial Functions 

The SANE library contains two functions meant to save programmers 
effort while doing this type of computing. 

The Annuity function: 

function Annuity (R, N : Extended) : Extended 
The Annuity function computes Annuity(R,N) = 1 - (l + R)<-N> 

R 

R is the interest rate and N is the number of periods. The Annuity function 
is more accurate than the straightforward computation of the expression. 

The compound interest function: 

function Compound (R, N :Extended): Extended 

The Compound function computes (1 + R)N where R is the interest rate 
and N is the number of periods. When R is small this function returns a 
more accurate answer than the straightforward computation of the 
compound interest formula. 

Random Number Generation 

function Random(var X : Extended) : Extended 

The SANE library has its own random number generation function in 
addition to the one contained in QuickDraw. A sequence of pseudorandom 
numbers can be generated in the range from 1 to 231-1 by initializing the seed X 
to an integer value and then making repeated calls to the function, each call to 
the next random number in the function. If the seed value is a real value, the 
results are unspecified. 



APPENDIX 

~~----
Macintosh Pascal 
Version2.0 

L 1986, THINK Technologies, the developers of Macintosh Pascal, released 
an updated version of the programming language called Macintosh Pascal 
Version 2.0. The new version corrects some of the bugs associated with 
Version 1.0 and adds a few new features. Although the release did not include 
the increased support for the Toolbox that many had hoped for, it unexpect
edly included an application shell which makes creation of stand-alone Macin
tosh Pascal programs possible. 

The Application Shell 

The Version 2.0 disk contains a second program called the PShell which is 
essentially the Macintosh Pascal interpreter without the user interface. The 
PShell can be used to create and run stand-alone programs since the user has 
no access to the Program window and no ability to edit it. To use the PShell a 
version of your program must be saved with the new As application option in 
the Version 2.0 Save As command. Once a program is saved as an application, it 
cannot be edited any more so be sure that a second copy of the program exists 
that is not saved as an application. Once an application is created it can be run 
with the PShell by placing them both on the same disk and then Opening the 
applications icon. The icon for the PShell itself cannot be opened. 

When an application starts to run, it is executed as though the Go option 
had been selected but none of the familiar surroundings of the Macintosh 
Pascal environment are displayed. This means that the user sees no menus or 
windows. Be sure to open any windows you wish displayed with ShowText, 
Show Drawing, or the appropriate InLine call if you create your own window. 
When the program finishes, the PShell exits directly to the finder. 

269 



270 Advanced Macintosh Pascal 

If you create your own menus with InLine calls to the menu manager, you 
do not have to worry about saving a handle to the original menu list, since 
none exists, nor do you have to worry about returning the Macintosh Pascal 
environment to its original state. 

The PShell goes a long way to ward removing one of the largest complaints 
about Macintosh Pascal: you could not create a program for a user without 
having to explain the use of the programming environment. With the PShell, 
the user view of a Macintosh Pascal program is just like that of any other 
application that you start just with a double click. Even that inconvenience can 
be removed by setting the application as the disks start-up program. 

A second new option exists in the Save As dialog box and that is Save As 

Object. A program saved as an object is stored in Macintosh Pascal's internal 
format for a program and is thus loaded from the disk faster. The only 
drawback to saving a program as an object is that it occupies more space in this 
format. 

Changes to Files and Devices 

Version 2.0 has two new device names (TEXTWINDOW and KEYBOARD:) that 
can be associated with Text files. They can be used to return the Input and 
Output files to their default settings. TEXTWINDOW can be used only with 
Output and KEYBOARD: only with Input. For example: 

Reset(lnput, KEYBOARD:); 

will restore the keyboard as the device associated with the Input file. 
The device PRINTER: has also been changed in Version 2.0 .. Instead of 

always being associated with the device connected to the printer port it is now 
directed to whichever of the two ports is selected by the user with the Choose 
Printer desk accessory. 



271 Appendix A 

Procedural Parameters 

Version 2.0 now supports the passing of functions and procedures as param
eters. This is an interesting programming technique that you may not be fully 
familiar with. Here is a short example. 

program ParaExample; 
procedure A (procedure X); 
begin 
Writeln('in A'); 
x 

end; 
procedure B; 
begin 
Writeln('in B'); 

end; 
procedure C; 
begin 
Writeln ('in C'); 

end; 
function C (procedure X) : Integer; 
begin 
X; 
D:= 2 
end; 

begin 
A(B); 
A(C); 
Writeln(D(C)); 
Writeln(D(B)) 

end. 



Resources 

272 Advanced Macintosh Pascal 

The parameter list of the procedure A and the function D is a procedure 
declaration for the procedure X. This is the formal parameter and you will 
notice that there is no procedure X in the program. The name of the procedure 
that will be invoked when a call to Xis made is passed as the actual parameter. 
For instance, the first line in the main program is the statement A(B): a call to 
the procedure A with the formal parameter of B. Inside procedure A the 
procedure call X will call procedure B since that was passed to the procedure 
from the main program. Here is the output of the program. 

in A 
in B 
in A 
inC 
inC 
2 
inD 
2 

To further clarify the order of execution it might to helpful! to run the 
program with the Step execution option. 

Macintosh Pascal Version 2.0 supports the use of resources attached to a 
program file. This allows a programmer to use a resource editor or compiler to 
create resources such as icons, window definitions, and control definitions 
and place them in the resource fork of a program file. Resources are used to 
separate definitions of Toolbox features from the program for ease of pro
gramming and program maintenance. When a program is storied with the 
Save As option, the resources are also saved. 

Memory Management 

The HLock and HULock procedures are not directly supported by Macintosh 
Pascal Version 2.0 and do not have to be called from within an InJ[,ine call. An 
additional new function, not part of the Toolbox, has also been adlded. 

function MHHi (Hdl : Handle): Integer; 

The MHHi procedure takes the data structure indirectly pointed to by the 
handle Hdl and moves it to the top of the application heap. The function 
returns 0 if the move was possible and was performed and -1 if it wasn't. 



Other Changes 

273 Appendix A 

Program Size 

The maximum size of a program that can be written in Macintosh Pascal has 
been expanded to approximately 750 lines on a 128K Macintosh and 2000 lines 
on a 512K Macintosh. 

Error Handling 

After an error, the context of a program is now saved, allowing the program
mer to examine the values of variables. The Observe or Instant window can be 
used for this purpose. When using the Observe window the Enter key will 
force the evaluation of the expressions used. Version 2 .0 is also less sensitive to 
errors occurring with the use of In.Lines. It returns to the edit/debugging 
environment in situations where Version 1.0 would have caused a total system 
error. 

Relaxed Order of Declarations 

Version 2.0 allows the programmer to include variable, type, label, and 
constant declarations in any order. 

User Interface Changes 

A few minor changes have been made to the user interface, allowing the 
programmer to use tabs to space comments, to select the font and font size of 
the program, and to select preferences such as the number of characters to 
hold in the Text window (the more stored, the less memory for a program). 
Preference will also let you direct the Output file to the printer, a file, or both. 
This ability removes the necessity to perform this action in your program. 

Version 2.0 also saves the desktop setting, recording the positions, size, 
and order of the windows. They are restored to the last setting whenever the 
program is used again. 



Menu Manager 

APPENDIX 

~~----
Toolbox Quick 
Reference 

Type Name Address 

Function GetMenuBar $A93B 
Procedure ClearMenuBar $A934 
Procedure SetMenuBar $A93C 
Function Menu Select $A93D 
Procedure InsertMenu $A935 
Procedure DrawMenuBar $A937 
Procedure AppendMenu $A933 
Function New Menu $A934 

.275 

Returns 

Longlnt 

Long Int 

Long Int 



276 Advanced Macintosh Pascal 

Window Manager 

Type Name Address Returns 

Function Front Window $A924 Longlnt 

Procedure GetWTitle $A919 
Procedure Select Window $A91F 

Function NewWindow $A913 Longlnt 

Procedure Hide Window $A916 

Procedure BringToFront $A920 
Procedure DragWindow $A925 
Function TrackGoAway $A91E Boolean 
Function Find Window $A92C Integer 

Procedure ShowWindow $A915 
Procedure Dispose Window $A914 
Procedure SetWRefCon $A918 
Function GetWRefCon $A917 Longlnt 
Procedure SetWTitle $A91A 
Procedure GetWTitle $A919 

Controls 

Type Name Address Returns 

Function NewControl $A9C6 Long Int 
Function Find Control $A96C Integer 
Function TrackControl $A968 Integer 
Procedure SetCtrlValue $A963 
Procedure HiLiteControl $A95D 
Procedure DisposeControl $A955 
Procedure KillControls $A956 
Procedure HideControl $A958 
Procedure ShowControl $A957 
Procedure DrawControls $A969 
Procedure SizeControl $A95C 
Function GetCtlValue $A960 Integer 
Procedure SetCtlMin $A964 
Function GetCtlMin $A961 Integer 
Procedure SetCtlMax $A965 
Function GetCtlMax $A962 Integer 
Procedure SetCRefCon $A95B 
Function GetCRefCon $A95A Longlnt 



277 AppendixB 

Text Editing 

Type Name Address Returns 

Function NewControl $A9C6 Longlnt 
Function Find Control $A96C Integer 
Function TrackControl $A968 Integer 
Procedure SetCtrlValue $A963 
Function TENew $A9D2 TEHandle 
Procedure TEKey $A9DC 
Procedure TEClick $A9D4 
Procedure TEDispose $A9CD 
Function Get Cursor $A9B9 CursHandle 
Function Get Cursor $A9B9 CursHandle 
Procedure Set Cursor $A851 
Procedure TEActivate $A9D9 
Procedure TE Idle $A9DA 
Procedure TECut $A9D6 
Procedure TECopy $A9D5 
Procedure TEPaste $A9D8 
Procedure TEDelete $A9D7 
Procedure TEDeactivate $A9D9 
Procedure TESetSelect $A9Dl 
Procedure TESetJust $A9DF 



APPENDIX 

§@]----
Deci01al - Binary -
Hexadeci01al Chart 

Decimal Binary Hexadecimal 

0 00000000 0 
1 00000001 1 
2 00000010 2 
3 00000011 3 
4 0000 0100 4 
5 00000101 5 
6 0000 0110 6 
7 0000 0111 7 
8 00001000 8 
9 00001001 9 

10 00001010 A 
11 00001011 B 
12 00001100 c 
13 00001101 D 
14 00001110 E 
15 00001111 F 
16 00000000 10 
17 00010001 11 
18 00010010 12 
19 00010011 13 

279 



280 Advanced Macintosh Pascal 

Decimal Binary Hexadecimal 

20 00010100 14 
21 00010101 15 
22 00010110 16 
23 00010111 17 
24 00011000 18 
25 00011001 19 
26 00011010 lA 
27 00011011 1B 
28 00011100 lC 
29 00011101 1D 
30 00011110 1E 
31 00011111 lF 
32 00100000 20 



Index 

AddPoint, 230 
AND, logical, 66 
Animation, 84-86 
Annuity (SANE), 267 
AppendMenu (Toolbox), 114, 117-121, 275 
AppleTalk, network events, 61 
Application events, 61 
Application global space, 6 
Arithmetic. See Standard Apple Numeric 

Environment (SANE) 
Arrays 

creating and disposing, 10-11 
and files, 33 
pattern, 217 
in records, 53-54 
text, 165 

conversion to string, 177 
ASCII codes, cf. key scan codes, 64-65 
At sign(@), pointer operations, 125, 145, 

220-221 

BackColor, 231 
BackPat, 233 
Backspace, 166 
Binary number system, 219, 279-280 
BlnLineF (Toolbox access), 112 
BitAnd, 66-67, 164 
Bit masks, events, 65-70, 74-75 

mouse and shift key, 164 
TextEdit, 164 

BitNot and BitxOr, 68 
BitOrand BitShift, 67 
BlockMove, 11 
BringToFront (Toolbox), 124, 276 

CharWidth, 195 
Check boxes, 141 

coordinates/dimensions, 142 
new,example,143 
see also Control(s) 

Checkltem (Toolbox), 122 
ClearMenuBar (Toolbox), 114-121, 275 
Clipping 

Grafports, 193 
TextEdit, 155 

.281 

Close, 38 
ClosePicture,228 
ClosePoly, 213 
CloseRgn, 203 
CloseWindow (Toolbox), 140 
Color, QuickDraw, 192, 231 
Compiler cf. interpreter, 1-2, 4-5, 86 
Compound (SANE), 267 
Constants, Menu Manager, lnLine access, 115 
Control(s), 173, 235-236 

coordinates, 142, 146 
functions listed, 2 76 

HaikuWriter, complex version, 177 
code, listed, 180-188 

handles, 145 
and timers, 147 
and windows, 147-149 

Control Manager, InLine access, 140-153 
event handling and values, 143-151 
miscellaneous routines, 152-153 
pointer and title, 142 
routines, listed, 142 
types and characteristics, 141 

Coordinates 
controls, 142, 144-145, 146 
local, setting, 233 
points, 230-231 
QuickDraw 

conversion, 231 
global cf. local, 99 
setting, 233 
pen, 196 

text, 155, 164 
window,126 

Cursor(s) 
pointers, 160 
QuickDraw, 224-226 
TextEdit, 159-161 

Cursor (type), 224 

Data structures. See File(s); Pointers; Records; 
Sets 

DateTimeRec (record), 17 
Decimal number system, 219, 279-280 



282 Advanced Macintosh Pascal 

Declarations, relaxed order, version 2.0, 273 
Devices, version 2.0, 270 
DiffRgn, 209 
Disableltem (Toolbox), 121-122 
Disk events, 61 
DisposeControl (Toolbox), 142, 147-152, 

276 
DisposeHandle, 10 
DisposeMenu (Toolbox), 120-121 
DisposeRgn, 205 
DisposeWindow (Toolbox), 124, 276 
DragWindow (Toolbox), 124, 131-133, 276 
DrawChar, 94 
DrawControls (Toolbox), 142, 147-152, 276 
DrawMenuBar (Toolbox), 114-121, 275 
DrawPicture, 228 
Drawstring, 94 

EmptyRgn, 209 
Enableltem (Toolbox), 121-122 
Enumerated types, 237 
EOF, 43-47 
EqualPt, 230 
EqualRgn, 209 
ErasePoly, 214 
EraseRgn, 205 
Error handling, version 2.0, 273 
Event(s), 59-75 

bit masks, 69-70, 74-75 
driven programs, 70-72 

timed, 71 
importance, 59-60 
keyboard,64-68 

bit masks, 65-68 
queue,60 

flushing, 74-75 
reading, 68-72 
reading, nondestructive, 72-74 

records,62-64 
text, 156 
types, 60-61 

codes, 61 
and windows, 126 

EventA vail, 72 
cf. GetNextEvent, 68 
Exp, Expl and Exp2 (SANE), 266 
Exponentialfunctions,266-267 

File(s), 33-57 
component type, 36 
as data type, 35-36 
definition, 33 
pointer, 38 
random, 41-57 

end-0f -file, 43-4 7 

ISAM, 52-57 
opening, 41-42 
sample code (HaikuWriter), 47-52 
using, 42-43 

of records, 36 
records as arrays, 33 
sequential, 36-41 

closing, 38 
erasing, 40 
opening, 37-38 
reading, 39 
sample code, 40-41 

types of, 33, 35 
see also Records 

FillOval, 82 
FillPoly, 214 
FillRgn, 205 
FillRoundRect, 83 
Financial functions, 267 
FindControl (Toolbox), 142, 144-151, 276 
Finder, 2 

FindWindow (Toolbox), 124, 126-133, 276 
Flicker, screen, 86 
Floating point calculations. See Standard 

Apple Numeric Environment (SANE) 
FlushEvents, 74-75 
Fonts, 101-102, 155 

printer, control codes, 239 
resizing, 195 

ForeColor, 231 
FrameOval, 82 
FramePoly, 214 
FrameRect, 79 
FrameRgn, 204 
FrameRoundRect, 83 
FrontWindow (Toolbox), 123-127, 276 

Get, 39 
and EOF, 43-4 7 

GetCRefCon (Toolbox), 142, 15:~, 276 
GetCtlMax, GetCtlMin (Toolbox), 142, 152, 

276 
GetCtlVale (Toolbox), 142, 152-153, 276 
GetCursor (Toolbox), 154, 159-163, 277 
GetHandleSize, 11 
GetMenuBar (Toolbox), 114-121, 275 
GetNextEvent, 68-72 

cf. EventAvail, 73 
masks, 69 

GetPen, 200 
GetPixel, 231 
GetTime,18 
GetWRefCon (Toolbox), 124, 140, 276 
GetWTitle (Toolbox), 124-133, 140, 276 



283 Index 

GlobalToLocal, 99, 144-145, 164 
Goto, 91 
Gra!Ports,191-193 

clipping, 193 
record type, 192 

Handles, 8-9 
allocating, 9-W 
controls, 145 
disposing, W-11 
menu,118 
polygons, 213 
regions, 202 
text, 155, 165 
version 2.0, 272 

Heap, 6-12 
allocating handles, 9-W 
copying/moving data, 11 
dangling pointers, 12 
disposing handles, 10-11 
fragmentation/compaction, 7-9 
handles, 8-9 
locking/unlocking, 12 
regions, storage, 202 
resizing,11 
see also Memory 

Hexadecimal number system, 219-220, 
279-280 

HldeControl ffoolbox), 142, 152, 276 
HldeCursor, 226 
HldePen, 200 
HldeWlndow ffoolbox), 124, 128-133, 276 
HlLlteControl ffoolbox), 142, 152, 276 
HlLiteMenu ffoolbox), 120-121 
HiWord,120 
HLock and HULock, 272 

IEEE,259 
ImageWriter, control codes, 239 
Indexed sequential access method USAM) 

files, 52-57 
InitCursor, 225 
InLlneP O'oolbox access), 112 
Input 

redirection,270,273 
verification 

sets, 23 
TextEdit, 165-166 

InsertMenu ffoolbox), 114-121, 275 
InsetOval and InsetRect, 106 
Insetllgn, 207 
Interest, compound, 267 
Interpreter cf. compiler, 1-2, 4-5, 86 
Inverteircle, 83 
InvertOval, 82 

InvertPoly, 214 
InvertRgn, 205 
InvertRoundRect, 83, 99 
ISAM files, 52-57 

Justification, 167-168 

KEYBOARD: (device name), 270 
Keyboard events, 60, 64-68 
Key field USAMJ, 52-57 
Key scan codes cf. ASCII codes, 64-65 
KillControls ffoolbox), 142, 152, 276 
KillPicture, 229 
KillPoly, 214 

Line, 201 
Line drawing, 201 
LineTo, 201 
Linked lists, 28-31 

controls, 141 
window,123 

Linker,1 
LinLineF O'oolbox access), 112 
Ln and Lnl (SANE), 266 
Loader, 1 
LocalToGlobal, 231 
Locking heap, 12 
Log.z (SANE), 266 
Logarithmicfunctions,266 
Logger, The. See Sample code, The Logger 
LoWord, 120, 175 

Macintosh, overview, 2-4 
Mathematics. See Standard Apple Numeric 

Environment (SANE) 
Memory 

version 2.0, 272 
map,5-6 
read-only (ROM), Z, 4 

Toolbox routines, addresses, 113 
Toolbox, lnLine access, 189 
see also Heap 

Menu(s) 
components, 113 
HaikuWriter, complex version, 177 

code, listed, 180-188 
handles, 118 

Menu Manager, InLine access, 113-122 
checkingitems,122 
constants, using, ns 
disabling items, 118, 121 
functions listed, 275 
restoring previous menu, 116 
routines 

illustrated, 114-122 
listed, 114 



284 Advanced Macintosh Pascal 

sample code, 118-129, 133-136 
MenuSelect (Toolbox), 114-121, 275 
MHHi,272 
mod,232 
Mouse 

events, 60 
and shift key, 164 

Move, 94 
MoveTo, 94 

Network events, 61 
New, 26 
NewControl (Toolbox), 142, 276 
NewHandle, 9-10 
NewMenu (Toolbox), 114, 117-121, 275 
NewRgn, 202 
NewWindow (Toolbox), 124, 130-133, 137, 

276 
NOT, logical, 68 
Null events, 60 
Number systems, decimal/hexadecimal/ 

binary, 219, 220, 279-280 
Numeric calculations. See Standard Apple 

Numeric Environment (SANE) 

ObscureCursor, 226 
OffSetPoly, 1216 
OffsetRgn, 205 
Open,41-42 

and EOF, 43-47 
OpenPicture, 227 
OpenPoly, 213 
OpenRgn, 203 
Operating system, 2, 3 

Finder as, 2 
memory,5-6 

OR, logical, 67 
Output redirection, 270, 273 
Ovals, 82-83 

PaintCircle, 83 
PaintOval, 82 
PaintPoly, 214 
PaintRgn, 204 
PaintRoundRect, 83 
Pascal, Macintosh 

advantages, 1 
applicationshell,5,269-270 
error handling, 273 
interpreter cf. compiler, 1-2, 4-5, 86 
program size, 273 
Toolbox calls, 4-5; see also Toolbox, lnl.ine 

access 
version 2.0, 5, 269-273 

Pattern (type), 217 

Patterns, QuickDraw, 193 
background, 233 
custom, 217-224 
type,217 

PenMode, 199 
PenNormal, 200 
PenPat, 197 
Pen, QuickDraw, 193, 196-200 

coordinates, 196 
text, 155 

PenSize, 196 
PenState (record), 200 
Picture (type), 226 
Pictures, QuickDraw, 193, 226-229 
Pointers, 8, 13, 25-31 

cursor, 160 
dangling, 12 
declaration, 25-26 
and handles, 8; see also Handles 
master, 8 
nil,27 
operations on(@), 125, 145, 220-221 
and records, 28-31 
window, 123-125, 173 

Points 
QuickDraw (data type), 20-21, 230-231 
typography, 194-195 

Polygon (record), 212; see also (tuickDraw 
Printer control codes, hnageWriter, 239 
Procedural parameters, version 2.0, 271-272 
Program size, version 2.0, 273 
ptinRect, 77, 79 
Pushbuttons, 141, 235-236 

coordinates/dimensions, 142 
new, example, 143 
simulated, 97-104 
see also Control(s) 

Put, 38 
and BOF, 43-47 

QuickDraw, 3-5, 77-110, 191-233 
animation,84-86 
color, 193, 231 
coordinates 

conversion, 231 
global cf. local, 99 
setting, 233 

cursors,224-226 
type,224 

flicker, avoiding, 86 
freehand drawing, 87-93 
GrafForts, 191-193 

clipping, 193 
record type, 192 



285 Index 

line drawing, 201 
ovals, 82-83 
patterns, 193 

background, 233 
custom, 217-224 
type, 217 

pen characteristics, 193, 196-200 
coordinates, 196 

pictures, 193, 226-229 
type, 226 

points, calculations with, 230-232 
polygons, 193, 212-217 

drawing, 214 
handles, 213 
manipulating, 216-217 
opening and closing, 213-214 
record type, 212 · 
sample code, 214-216 

principal operations, 77 
pushbuttons, simulated, 97-104 
QuickDraw 2 library and uses, 201-202, 

212 
radio buttons, simulated, 105-110 
rectangles, 78-81 

rounded, 83 
regions, 193, 201-212 

calculations with, 205-209 
drawing,204-205 
handles, 202 
opening and closing, 202-203 
record type, 202 
sample program, 210-212 

text characteristics, 193-195 
type, 194 

text drawing, 94-97 
variant records, 20 

QuickDraw 2library, 201-202, 212 

Radio buttons, 141-144, 235 
coordinates/dimensions, 142 
simulated, 105-110 
see also Control(s) 

Random 
QuickDraw, 232 
SANE,267 

Random numbers, 232, 267 
Range checking, 23 
Rebooting, 116 
Records, 13-22 

arrays in, 53-54 
declaration, 14-15 
duplicating, 16 
event, 62-64 
files of, 36 

pointers in, 28-31 
predefined, 17 
toolbox interface, 17-18, 20-21 
variant, 18-22 
with statement, 16-18 
see also File(s) 

Rectangles, QuickDraw, 78-81 
rounded,83 
see also QuickDraw 

RectinRgn, 209 
RectRgn, 207 
Regions. See QuickDraw 
Reset, 37, 39, 40 

and EOF, 43-47 
Reset, system, 116 
Resources, version 2.0, 272 
Rewrite, 37, 39, 40 

and EOF, 43-47 
ROM,2,4 

Toolbox routines, addresses, 113 

Sample code 
AnimaRect (animation), 85 
BabysFirstWindow, 139 
BullsEye (regions), 206 
ButtonSim, 100-101 
ButtonSim2, 103-104 
ClickandShowandTell (windows), 127 
ClickandTell (windows), 126 
Convert (pattern), 219 
Disklndex (ISAM), 54-57 
DrawPolyll, 215-216 
EOF _Examplel, 44-4 7 
EventTwo, 71 
Example (SANE), 263-264 
FirstEvent, 70-71 
GridEdit, 78-81 

cf. PatternMaker, 218-221 
HaikuWriter, complex version, 168-188 

enhancements, 169 
event handling, 172-173 
listing, 180-188 
memory considerations, 178 
menus and controls, 177 
packed arrays and type conversion, 
177-178 

user interface, 169, 171, 175-176 
HaikuWriter, simple version (random 

files), 47-52 
HexString,220 
HockeyShot (regions), 210-212 
InsectRgn (regions), 208 
Linkup (linked list), 30 
LootAtEvents,73-74 



286 Advanced Macintosh Pascal 

Lotto48 (random numbers), 232 
LowerToUpper, 25 
MenuDemo, ll8-ll9 
MouseEvent, 72 
OldExamplewithMoveAdded (moving 

windows), 131-132 
PatternMaker, 221-224 
PaulPaint (freehand drawing), 87-93 
PictureRings, 228-229 
Polyl, 216-217 
Poly1Moves, 214-215 
RadioButton, 107-llO 
RadioPush, 149-151 
RadioRadio, 147-149 
RectSeries (animation), 84 
TextDemo, 157-159 
TextDemo2, 161-164 
ThreeCardMonte, 95-97 
time of day, 239-240 
WhatTime, 18 
WindowsandMenus, 134-136 
WindowsGalore, 128-129 
WindowsWithTrackGoAway, 130 

Sample code, The Logger, 235-258 
controls, 235-236 
event handling, 245 
files 

processing, 238 
structure, 237 

listing 
complete, 249-258 
main program, 245-248 
print routines, 242-244 

overview,235-237 
reports,239-244 

SANE. See Standard Apple Numeric 
Environment (SANE) 

Scrap, 167 
Screen 

flicker, controlling, 86 
memory,5-6 

SectRgn, 207 
Seek, 42 

and EOF, 43-47 
SelectWindow (Toolbox), 124, 127-133, 276 
SetCRefCon (Toolbox), 142, 152, 276 
SetCtlMax and SetCtlMin (Toolbox), 142, 

152, 276 
SetCtrlValue (Toolbox), 142, 146-151, 276 
SetCursor (Toolbox), 154, 160-163, 226, 277 
SetEmptyRgn, 207 
SetHandleSize, ll 
SetMenuBar (Toolbox), ll4-121, 275 
SetOrigin, 233 

SetPenState, 200 
SetPort (Toolbox), 139 
Setpt, 230 
SetRect, 79 

and controls, 143-144 
SetRectRgn, 207 
Sets, 13, 22-25 

input verification, 23 · 
operations, 23-25 

SetWRefCon (Toolbox), 124, 140, 276 
SetWTitle (Toolbox), 124, 127-133, 140, 276 
Shift key and mouse click, 164 
ShowControl (Toolbox), 142, :152, 276 
ShowCursor, 226 
ShowPen, 200 
ShowWindow (Toolbox), 124, 140, 276 
SizeControl, 276 
SizeOf, 9-10 
Sound buffer, memory, 5-6 
Speed, execution 

interpreter cf. compiler, 1-2, 4-5, 86 
SANE, 264-265 
Toolbox, InLine access, 188 

Stacks, 6 
Standard Apple Numeric Environment 

(SANE), 259-267 
arithmetic, basic, 263-265 
conversion, SANE-Pascal, 265 
executionspeed,264-265 
mathematical functions, 265--267 
cf. Pascal types, 260-261 
selecting, 264-265 
types, 260-265 
uses, 260 

Strings, type conversion from packed array, 
177; see also Text; TextEdit, InLine 
access 

StringWidth (Toolbox), 142 
StuffHex, 218 
Styleltem (type), 194 
Subpt, 230 
SysBeep, 166 

Tag field, 20 
TEActivate (Toolbox), 154, 160-163, 277 
TEClick (Toolbox), 154, 157-163, 277 
TECopy (Toolbox), 154, 167, 277 
TECut (Toolbox), 154, 167, 277 
TEDeactivate (Toolbox), 154, 167, 277 
TEDelete (Toolbox), 154, 167, ;177 
TEDispose (Toolbox), 154, 159, 277 
TEidle (Toolbox), 154, 161-163, 277 
TEKey and TENew (Toolbox), 154, 156-163, 

277 



287 Index 

TEPaste (Toolbox), 154, 167, 277 
TESetJust (Toolbox), 154, 168, 277 
TESetSelect (Toolbox), 154, 167, 277 
Text 

arrays, 165 
fonts, 101-102 
QuickDraw, 94-97, 193-195 

size, 194-195 
type, 194 

spacing, 109 
and windows, 155 

TextEdit, InLine access, 153-168 
clipping, 155 
coordinates, 155, 164 
cursors, 159-161 
event handling, 156 
features, 153 
functions listed, 277 
handles, 155, 165 
input verification, 165-166 
justification, 167-168 
record type, 154-156 
routines 

listed, 154 
miscellaneous, 165-166 

sample programs, 157-159, 161-164 
scrap, 167 
shift key and bit masks, 164 
text entry, 165 
window, 155 

TextFace and TextSize, 194 
TextFont, 101-102 
TESTWINDOW (device name), 270 
Ticks, defined, 62 
Time of day, 237, 239-240 
Timers and controls, 147 
Toolbox, 2-5 

memory,5-6 
records as interface, 17-18, 20-21 
ROM addresses, 113 
variant records, 20 

Toolbox, InLine access 
form, 112-113 
memory limits and system considerations, 

189 
no type checking, 114 
cf. Pascal intrinsics, 111 
pitfalls, 112, 189 

version 2.0improvements, 273 
speed, 188 

TrackControl (Toolbox), 142, 145-151, 276 
TrackGoAway (Toolbox), 124, 129-133, 276 
Types 

enumerated, 237 

SANE, 260-265 
cf. Pascal, 260-261, 265 

UnionRgn, 209 
User interface 

overview, 2-4 
version 2.0, 273 

User Interface Toolbox. See Toolbox 
uses 

QuickDraw 2, 201-202, 212 
SANE,260 

Variant records, 18-22 
Version 2.0, Macintosh Pascal, 5, 269-273 

Window(s) 
coordinates, 126 
events, 61 
pointers, 124-125, 137, 138, 173 
text, 155 
titles, 137 
types, 138 

Window Manager, InLine access, 122-133 
and controls, 147-149 
creating, 13 7 
dragging,131-133 
elements, 122-123 
event handling, 126 
functions listed, 2 76 
highlighting and closing, 128-129 
programmer-defined, 137-140 
record type, 124 
routines, 123-133 

listed, 124 
sample program, 133-136 
and text, 155 
types, 123 
values, 125 

WlnLineF (Toolbox access), 112 

XOR, logical, 68 
XorRgn, 209 
Xpwr (SANE), 267 
Xpwrl (SANE), 266 



·(': 



HAYDfi\' ~~ ~~ 8001\.S 

Advanced Macintosh Pascal 
Advanced Macintosh Pascal begins where most 
Pascal books leave off by teaching programmers 
the advanced skills needed to produce efficient and 
useful applications. It discusses Macintosh mem
ory management and examines records, sets, and 
pointers-the three advanced Pascal program
ming topics that are used extensively by the Mac
intosh User Interface Toolbox and QuickDraw 
graphics. Also examined are Pascal file types, se
quential and random access files , and programs 
that utilize the Indexed Sequential Access Methods 
(ISAM) of handling data. 

Learn how to use Macintosh QuickDraw, in
cluding advanced struc
tures, routines, and pro
gramming techniques . 
With this programming 
text you will examine 
event programming, in
cluding the use of the 

About the Author 
Paul Goodman has taught 
Pascal programming at 
Queens College in New 
York, a member of the Apple College Consortium, for 
over six years. He has also co-authored an introduc
tory Macintosh Pascal book and holds a Master of 
Science degree in Computer Science. 

various event types, event records, and bit masks. 
You will also explore how to use InLine routines 

to program the menu manager, window manager, 
and control manager, as well as program dialog 
boxes, pulldown menus, radio buttons, and many 
other of the key features that distinguish the Mac
intosh interface. 

Written in a highly readable style, Advanced 
Macintosh Pascal features numerous easy-to-fol
low program examples, including a complete ap
plication logger that records computer usage. It 
also presents an overview of Standard Apple Numer
ical Environment and covers the extended data 

types and routines needed 
for scientific and business 
programming. Program
mers of Pascal will find 
this book an invaluable 
source for programming 
the Macintosh. 

In addition to teach
ing, Paul is a ·consultant 
for major corporations 

and educational institutions on the use of 
personal computers and databases. He programs 
in ten languages, including Pascal , BASIC, Lisp, 
Prolog, and Assembly. 

#f 
HAYDEN BOOKS 

$19 .95/046570 

ISBN: 0-672-46570-1 

A Division of Howard W. Sams & Company 

4300 West 62nd Street 

Indianapolis, Indiana 46268 USA 

0 81262 lf6570 7 




