SANSINTRODUCTION

TOEPROGRAMMING @&
USINGMACINTOSH®
JEeERPASCALEOED®

(L]

Paul Pritchard



AN INTRODUCTION TO
PROGRAMMING USING
MACINTOSH PASCAL



AN INTRODUCTION TO
PROGRAMMING USING
MAGINTOSH™ PASCAL

PAUL PRITGHARD

UNIVERSITY OF QUEENSLAND

&)

ADDISON-WESLEY PUBLISHING COMPANY

Sydney ® Wokingham, England ® Reading, Massachusetts
Menlo Park, California ® New York @ Don Mills, Ontario
Amsterdam @ Bonn @ Singapore

Tokyo ® Madrid @ San Juan



© 1988 Addison-Wesley Publishers Limited
© 1988 Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher.

The programs presented in this book have been included for their instructional
value. They have been written and tested with care but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs.

Cover design by 20/20 Graphics, Iver, Bucks.

Text design by Roger Walker/Linde Hardaker.

Typeset by Morton Computer Services Ltd, Scarborough.
Printed in Singapore

First printed in 1988.
Reprinted with corrections in 1988.
Third printing, 1989.

British Library Cataloguing in Publication Data

Pritchard, Paul
An introduction to programming using
Macintosh Pascal.
1. Macintosh (Computer) — Programming
2. PASCAL (Computer program language)
I. Title
005.2°65 QA76.8.M3

ISBN 0-201-17539-8

Library of Congress Cataloguing in Publication Data

Pritchard, Paul, 1951-
An introduction to programming using Macintosh Pascal / Paul
- Pritchard
p. cm.

On t.p. the registered trademark symbol “TM” is superscript
following “Macintosh” in the title.

Includes index.

ISBN 0-201-17539-8:

1. Macintosh (Computer) — Programming. 2. Pascal (Computer program
language). 1. Title.
QA76.8.M3P75 1988 87.3186D
005.°265—dc 19



To my mother and father



PREFAGE

This book is aimed primarily at students taking an introductory course
in computer programming, where the programming language is Pascal,
and practical work is done using either Macintosh Pascal or Lightspeed
Pascal.t It is intended to be suitable for both one-semester (half-year)
and two-semester (full-year) university-level courses. It contains:

° A modern and thorough introduction to solving programming
problems in a procedural language;
] A self-contained guide to the use of the Macintosh and the

Macintosh Pascal programming environment;
° A complete description of ANSI Standard Pascal;

° A complete description of Macintosh Pascal’s extensions to and
deviations from Standard Pascal; and
° A thorough introduction to the use of Macintosh Pascal’s librar-

ies for graphics and numeric programming.

The reader is not assumed to have had any previous exposure to
computers or programming, or any mathematical background beyond
the level of simple high-school algebra. Nevertheless, the book should
prove useful to those with prior programming experience.

The sections that follow elaborate on the book’s objectives. It is
left to the reader to judge how appropriate these are and how success-
fully they have been met. The proof is in the pudding, not in the pre-
face.

Philosophy

The emphasis is fairly and squarely on problem-solving in the domain
of programming. Every opportunity is taken to expose the reader to
new problems, and to increase the reader’s problem-solving ability

1*Macintosh Pascal’ will refer to both Macintosh Pascal and Lightspeed Pascal, unless other-
wise indicated.

PREFACE vii



viii

gradually. Particular emphasis is placed on stepwise refinement and
program schemas. Each program is developed from its specifications,
not presented as a fait accompli. Invariants are presented as of practical
rather than theoretical interest. They are implicitly used from the start,
and are explicitly identified first in Chapter 11, on one-dimensional
arrays, in the guise of general pictures.

Learning a programming language is of secondary importance.
Nevertheless, the student is entitled to a careful and complete descrip-
tion of the language he or she is using, and will find it in this book.
Because programming to a recognized standard is important, Standard
Pascal is defined as well as Macintosh Pascal, and the differences are
described. And whenever one of Macintosh Pascal’s predefined sub-
programs is introduced, it is properly specified.

Case-studies

Few would dispute that it is very desirable for the beginner to be
exposed to a variety of exemplary programs, but programming is the
thought process that culminates in a program, not the finished product.
Accordingly, a dozen case-studies are tackled and each results in a sub-
stantial, meticulously written program that illustrates the use of a
particular feature of Pascal. All but one of these programs s (not was)
developed from its specifications using stepwise refinement. Care has
been taken to explain every significant design decision.

Most of the case-studies are much larger programming problems
than are typically found in introductory texts, and lead to correspond-
ingly larger programs. It is essential for students to be exposed to such
problems as early as possible, lest they develop problem-solving habits
that do not scale up. Although stepwise refinement reduces large
problems to many small ones, it is the programmer who formulates
these problems, using skills quite different from those used in solving
small, given programming problems (exercises). The student is not
asked to solve these large problems, only to follow the processes of
their solutions.

Programming style

This book treats the matter of programming style seriously. All pro-
grams and program fragments are written in a consistent and dis-
ciplined style, the main features of which are:

] Documentation of the process of stepwise refinement by means
of comments representing high-level actions;

PREFACE



] Documentation of the meaning of each variable (unless it is clear
from its name or obvious from the context of its use);

° Specification of all (sub)programs; and
° Eschewing global variables.

Every program or fragment of a program is written in accordance with
these principles.

Style of presentation

The philosophy is to expose the student early to a significant sub-
language (the required simple types, basic control structures, textual
input and output), and then to start solving problems. Further
language constructs are introduced as needed, always in a problem-
solving context.

Repetition accordingly precedes procedures and functions — no
significant problem-solving can be done without it, and to do otherwise
is to emphasize language issues when they are not important and
cannot be appreciated. Subprograms are the next cab off the rank
though, since they are needed as soon as programs get sufficiently
complex.

Problems are chosen carefully to require only the language
features at hand — problems that have significantly superior alterna-
tives using unfamiliar features are avoided. In any case, the reader is
informed whenever new features or concepts can be used to improve a
solution, and the improvement appears either in the text or as an
exercise.

Syntax is presented formally, in a highly simplified adaptation of
Extended Backus Naur Formalism (EBNF), that uses typographic
devices and familiar conventions in preference to special grammatical
symbols, thereby achieving a written form that is as close as possible to
that used in the display of Macintosh Pascal programs. Section A.3 of
the Appendix presents the complete syntax of ANSI Standard Pascal in
syntax diagrams, and Section A.4 gives a brief explanation of EBNF
notation.

Exercises

There are a great many exercises. Most have solutions at the end of the
book. They are arranged to follow the order of material within each
chapter, so that it is not necessary to complete a chapter before
embarking on the early exercises. No indication of the difficulty of

PREFACE ix



X

exercises is given. This is a deliberate policy — the difficulty of a
programming problem depends on the programmer as much as the
problem, and programmers are not normally given difficulty-ratings for
their programming tasks. None of the exercises is meant to be beyond
the ability of a beginner of average talent.

Exploiting the Macintosh

This text was conceived to exploit the rich, predefined libraries of
Macintosh Pascal to give more realistic and interesting examples than
are possible in a generic Pascal text.

A thorough, self-contained introduction to the Macintosh, and to
Macintosh Pascal as a programming environment, is given in Chapters
1, 2, and 4. The Macintosh’s graphics capabilities are exploited in
many case-studies, with an emphasis on getting meaningful and
attractive results from a small body of graphics knowledge. Gimmicky
programs that produce gee-whiz effects are conspicuously absent —
programs are always written to specifications, not to see what interest-
ing displays they might produce.

Macintosh Pascal’s extensions for string-processing, which are
very attractively done in the main, are exploited in Chapter 14.
Chapter 15, on records, indicates how to implement Macintosh Pascal’s
string-types in Standard Pascal as an abstract data type.

Macintosh Pascal’s facility to open random-access files permit-
ting mixed reading and writing is explained in Chapter 16.

Situations in which Lightspeed Pascal differs from Macintosh
Pascal are indicated by numbered icons in the margin. These refer the
reader to Section A.5 in the Appendix. Although these icons officially
represent bug spray cans, for our purposes they are better regarded as
sources of light; candles are the obvious choice.

About the chapters

] Chapters 1 and 2 introduce the Macintosh and Macintosh
Pascal’s editor. Their exercise sections lead the reader at a
Macintosh systematically through all the important aspects.

° Chapter 3 previews Pascal, following the ‘Reading Before Wri-
ting’ school of language learning. It introduces the ‘Macaveats’
sections that inform the reader of the differences between
Macintosh Pascal and ANSI Standard Pascal. Several have been
discovered that are not documented by Apple.

PREFACE



Chapter 4 documents the sophisticated execution features of
Macintosh Pascal, and illustrates them using the programs pre-
sented in Chapter 3.

Chapter 5 introduces our method of syntax definition, and pre-
sents a sublanguage that will enable the reader to embark on
significant problem-solving.

It is with Chapter 6 that problem-solving starts in earnest. It in-
troduces stepwise refinement and program schemas, and
exemplifies thoroughly the use of both in its two case-studies.

Chapters 7 and 8 introduce functions and procedures, respect-
ively. They are akin in style to Chapter 5, concentrating on
explaining these new language features. The examples use sub-
programs to give improved solutions to previous problems.

Chapter 9 presents two case-studies that exploit subprograms to
solve new problems. It also introduces the fundamentals of
Macintosh graphics that are heavily used thereafter.

Chapter 10 gives the whole story on ordinal types and their
associated control structures, in preparation for the following
chapter on arrays. Nevertheless, it contains a substantial case-
study that thoroughly exploits user-defined types, and provides
notes for a further case-study involving graphics in its exercise
section.

Chapter 11, on one-dimensional arrays, is the most important
chapter for an introductory course. Many interesting problems
can be tackled and the opportunity arises to present invariants in
a very natural way (through general pictures). Its case-study
demonstrates the wisdom of writing general procedures — the
graphics for n-processor scheduling use exactly the same
procedures as for two-processor scheduling.

Chapter 12 rounds out a most thorough introduction to pro-
gramming with a discussion and illustration of two important
aspects of programming methodology, namely, correctness and
efficiency.

Ideally, a one-semester course would cover these first twelve chapters.
The remaining chapters do not so much follow on from the ones men-
tioned as cover special topics. Instructors who, for example, like to in-
troduce sets, records, recursion or string-processing in a first course,
should have minimal difficulty selecting the chapters or sections of
interest. These chapters contain exercises that do not rely on all the
special topics covered previously. There are some dependencies in
these chapters:

PREFACE



Xii

° Chapter 16 (on files) should be read after Chapter 15 (on re-
cords) as is natural;

° Case-study 11 in Chapter 18 makes use of sets (treated in
Chapter 17) and Macintosh Pascal strings (treated in Chapter
14); and

L Chapter 20 (on dynamic data structures) assumes knowledge of
the material in Chapter 15 (on records) as is inevitable.

Software supplement

The dozen case-studies are substantial programs. Some of the exercises
invite the reader to trace their execution, or to make certain modifica-
tions. A software supplement, available from the author, includes all
the case-studies and complete subprograms in the book (together with
test-drivers when necessary). Any of these programs may be copied
freely for non-commercial purposes, provided that they are copied in
full (with the source and copyright information retained).

For ordering information, write to ‘Dr Paul Pritchard, Depart-
ment of Computer Science, University of Queensland, St Lucia,
Australia 4067°. Alternatively, e-mail may be sent to the author at one
of the following addresses:

ACSnet: pap@ugqcspe.oz

ARPA: pap%uqcspe.oz@uunet.uu.net
CSNET: pap@uqcspe.oz

UUCEP: ...!uunet!munnariluqcspe.oz!pap
JANET: uqcspe.oz!pap@ukc

Suggestions for improvements to the book are also most welcome, as
are unsolicited testimonials.

Paul Pritchard
St Lucia, September 1987

PREFACE



ACKNOWLEDGMENTS

The material in this book is based on courses given by the author in
the Department of Computer Science at Cornell University, and later at
the University of Queensland, Australia. Some of it has evolved from
the rich store of material accumulated over the years by the professors
who taught CS100 at Cornell: to my former colleagues Tim Teitelbaum
(especially), Ken Birman, Alan Demers, John Gilbert, Dale ‘Downhill’
Skeen, and Kay Wagner, my thanks. John Gilbert kindly permitted me
to adapt his notes on floating-point arithmetic. The neat sequence of
three case-studies on job scheduling was suggested by Nava Aizikowitz.
My antipodean colleague, Gordon Rose, generously allowed me to
adapt his program for Case-study 12; Mike Henning did likewise for
his notes on the Macintosh and Macintosh Pascal. And back in the
USA, Chanderjit Bajaj graciously performed important cultural re-
search on my behalf.

I am indebted to David Gries for giving me my chance in the
Big Time, for serving as Master to my Apprentice in the art of pro-
gramming and for his generosity in agreeing to review the manuscript.
Andrew Lister gave me the flexitime needed to write the book, and
together with other members of the Department of Computer Science
at the University of Queensland, helped provide an environment con-
ducive to writing and typesetting. Jim Welsh and John Elder produced
syntax diagrams worth emulating. Niklaus Wirth, the Macintosh
development team, and the Macintosh Pascal and Lightspeed Pascal
development teams, respectively, created a language, a computer, and
two programming environments worth writing about. Thanks to all of
the above, to C.A.R. Hoare for his encouraging assessment of the
book’s quality, to Stephen Troth of Addison-Wesley for his support
and professionalism, to the reviewers for their constructive suggestions,
and to Cheryl Pritchard for proof-reading. Finally, my thanks go to
Errol Martin and Ozalp Babaoglu for their friendship and encourage-
ment, and with most gratitude, to Cheryl and Roxanne for their love
and forbearance.

The author and publishers also wish to thank the following for permis-
sion to reproduce figures and quotations:

ACKNOWLEDGMENTS  xiii



Xiv

° THINK Technologies, Inc., for permission to use Table 5.3 (the
Macintosh Pascal character set), taken from Appendix E of the
Macintosh Pascal Technical Appendix.

° Appleseed Music, Inc. for permission to use the quotation on

page 383, taken from:

ALICE’S RESTAURANT by Arlo Guthrie

Copyright 1966, 1969 by APPLESEED MUSIC INC.
All rights reserved. Used by permission.

Paul Pritchard
St Lucia, September 1987

Trademark notice

Macintosh is a trademark licensed to Apple Computer, Inc.; Apple and the Macintosh logo
are trademarks of Apple Computer, Inc.; Ada is a trademark of the US Government — Ada
Joint Program Office.

The publishers have made every attempt to supply trademark information about
company names and products mentioned in this book. All designations used by manufactur-
ers to distinguish their products are printed in initial caps or all caps, where Addison-Wesley
was aware of a trademark claim.

ACKNOWLEDGMENTS



CONTENTS

Preface vii
Acknowledgments xiii
Chapter 1  Algorithms and the Macintosh 1
1.1  Algorithms 2

1.2 Computers 3

1.3  The Macintosh hardware 6

1.4  Software 6

1.5 An introduction to the Macintosh 9

1.5.1 Floppy disks 9

1.5.2  Starting a session 10

1.5.3 Using the mouse 10

1.5.4 Icons 12

1.5.5 Windows 12

1.5.6 Dialog boxes 14

1.5.7 The menu bar 14

1.5.8 Using Macintosh Pascal 15

1.5.9 Managing files 15

1.5.10 Terminating a session 16

1.6  Further reading 16

Exercises 17

Chapter 2 Editing Macintosh Pascal programs 19
2.1 Introduction 20

2.2 The Macintosh Pascal environment 20

2.3 Editing 20

2.3.1 Setting the insertion point 22

2.3.2 Inserting the text 22

2.3.3  Selecting text 22

2.3.4 Editing selected text 22

2.3.5 Deleting text without selection 23

2.3.6  Searching and replacing 23

CONTENTS xv



Xvi

2.4  Controlling the environment 24
2.5  Error messages 25
2.6  Checking a program 25
2.7  Saving your program 26
2.8  Reverting to the last version 27
2.9  Opening a saved program 27
2.10 Copying between programs 28
2.11 Printing 28
2.12  Leaving Macintosh Pascal 29
2.13  Further reading 29
Exercises 29
Chapter 3 A preview of Pascal 35
3.1 The history of Pascal 36
3.2 Reading before writing 37
3.3  First program 37
3.4  Second program 40
3.5 Third program 45
3.6  Macaveats 47
3.7  Further reading 48
Exercises 49
Chapter 4 Running Macintosh Pascal programs S51
4.1 Introduction 52
4.2  Running a program 52
4.3 Controlling execution 52
4.3.1 Stopping execution 53

4.3.2 Stepwise execution 53

4.3.3 Setting stop marks 53

4.4  Tracing execution 54
4.5 The Instant window 54
Exercises 55
Chapter 5 Basic Pascal 57
5.1  Introduction 58
5.2 Specifying syntax 58
5.3  Types of values 60
5.3.1 Integer 61

5.3.2 Real 62

5.3.3 Char 65

5.3.4 Boolean 67

5.4  Expressions 68

CONTENTS



5.5 Constants and variables 71

5.5.1 Constant definitions 71

5.5.2 Variable declarations 72

5.5.3 The assignment statement 73

5.6 Input and output 75
5.6.1 Input 75

5.6.2  Output 78

5.6.3 Interactive I/O 81

5.7  Conditional statements 83
5.8 Repetitive statements 86
5.9 Programs 90
5.9.1 High-level syntax 90

5.9.2 Low-level syntax 91

5.10 Macaveats 93
Exercises 94
Chapter 6 Solving programming problems 99
6.1 Introduction 100
6.2  Stepwise refinement 101
6.3  Using repetition 103
6.4  Deriving loop conditions 107
6.5 Program schemas 109
6.6  Case-study 1: Scheduling 113
6.6.1 Setting of the problem 113

6.6.2 Specifications 114

6.6.3 Writing the program 115

6.6.4 The complete program 118

6.7  Some other schemas 121
6.8  Case-study 2: The character-set table 123
6.8.1 Specifications 123

6.8.2  Writing the program 124

6.8.3 The complete program 125

6.9  Choosing the form of iteration 125
6.10 Testing, testing 127
6.10.1 The role of testing 127
6.10.2 What and when to test 127
6.10.3 Desk-checking 128
6.10.4 Testing by execution 130
6.10.5 Coping with errors detected by testing 130
6.10.6 Defensive programming 132
6.10.7 Final words on testing 133

6.11 Macaveats 133
Exercises 135

CONTENTS  xvii



Chapter 7 Functions 139
7.1  Predefined functions: A review 140
7.2 User-defined functions 141
7.3  Functions as subprograms 143

7.3.1 Syntax of function-declarations 143
7.3.2 Invoking a function 145
7.4  Writing functions 147
7.4.1 Modularity 149
7.5 Macaveats 151
Exercises 151

Chapter 8 Procedures 153
8.1 Introduction 154
8.2  Parameterless procedures 154
8.3  Parameters 157

8.3.1 Value parameters 157
8.3.2 Variable parameters 159
8.3.3 Aliasing 162
8.3.4 Syntax of procedure-declarations 163
8.4  Pascal’s parameter mechanism: A summary 163
8.4.1 Syntax 163
8.4.2 Function-declarations 164
8.4.3 Procedure-declarations 164
8.4.4 Value parameters 164
8.4.5 Variable parameters _ 164
8.4.6 Which kind of parameter? 164
8.4.7 Formal and actual parameter
correspondence 165
8.4.8 Local variables 165
8.4.9 Function invocation 165
8.4.10 Procedure invocation 165
8.5  Scope 166
8.5.1 The issue of scope 166
8.5.2 Scope rules 166
8.5.3 Scope rules and the programmer 169
Exercises 170

Chapter 9 Programming with procedures 175
9.1 Introduction 176
9.2  Macintosh graphics 177

9.2.1 The coordinate plane 177

xviii CONTENTS



9.2.2 The pen 177
9.2.3 Drawing lines, rectangles, and ovals 178

9.2.4 Drawing text 180

9.3  Case-study 3: Scheduling II 180
9.3.1 Setting of the problem 180

9.3.2 Specifications 181

9.3.3 Writing the program 181

9.3.4 The complete program 187

9.4  Case-study 4: MiniNim 190
9.4.1 Setting of the problem 190

9.4.2 Specifications 191

9.4.3 Writing the program 191

9.4.4 The complete program 197

9.5  Testing procedures 202
9.5.1 Preconditions and postconditions 202

9.5.2 Desk-checking 203

9.5.3 Testing by execution 203

9.5.4 Coping with errors detected by testing 205

9.5.5 Defensive programming 206

9.6  Using procedures: A summary 206
9.7  Further reading 207
Exercises 207
Chapter 10 Ordinal types 211
10.1 Required ordinal types 212
10.2 Enumerated types 213
10.3 Subrange types 214
10.4 Type definitions 215
10.5 Two simple examples 216
10.5.1 Example one 216

10.5.2 Example two 217

10.6 Statements associated with ordinal types 218
10.6.1 The case-statement 218

10.6.2 The for-statement 219

10.7 Case-study 5: An arithmetic tutor 220
10.8 Macaveats 227
Exercises 228
Chapter 11 Arrays 231
11.1 Introduction 232
11.2  Array-types 235
11.2.1 Another program using an array 236

CONTENTS  xix



11.3 Operations on an entire array 237
11.4 Linear search 238
11.4.1 Optimistic linear search 238
11.4.2 Truncated safe linear search 239
11.4.3 Sentinel search 241
11.4.4 Boolean safe linear search 244
11.4.5 The right search for the right occasion 245
11.5 Sorting 246
11.5.1 The problem 246
11.5.2 Selection sort 246
11.5.3 Bubble sort 249
11.6 Strings in Standard Pascal 250
11.6.1 Packed arrays 250
11.6.2 Strings 252
11.7 Case-study 6: Scheduling III 253
11.7.1. Setting of the problem 253
11.7.2. Specifications 254
11.7.3. Writing the program 254
11.7.4. The complete program 259
11.8 Macaveats 264
11.9 Further reading 264
Exercises 264
Chapter 12 On correctness and efficiency 271
12.1 Programming methodology 272
12.2 Assertions and invariants 273
12.2.1 Assertions 273
12.2.2 Specifications 274
12.2.3 Expressing assertions 274
12.2.4 Proving a program correct 275
12.2.5 Invariants 275
12.2.6 Proving termination 277
12.2.7 Solving problems with invariants 278

12.2.8 An example of correctness-oriented
programming 279
12.2.9 Other examples of invariants 282
12.2.10 How invariants expedite testing 283
12.3 Efficiency 284
12.3.1 Introduction 284
12.3.2 Performance evaluation 284
12.3.3 Creating efficient programs 288
12.4 Further reading 292
Exercises 292

xx CONTENTS



Chapter 13 Multidimensional arrays 297

13.1 Two-dimensional arrays 298
13.1.1 Introduction 298
13.1.2 Two examples 298

13.2 General arrays 300
13.2.1 Syntax 300
13.2.2 Arrays of arrays 300

13.3 Two inventory problems 301

13.4 Two schemas for rectangular array-sections 303

13.5 Geometric problems 304
13.5.1 Problem one 304
13.5.2 Problem two 306

13.6 Case-study 7: A random walk 308
13.6.1 Setting of the problem 308
13.6.2 Specifications 309
13.6.3 Writing the program 309
13.6.4 The complete program 319

13.7 Further reading 325
Exercises 326

Chapter 14 Text processing 329

14.1 Introduction 330

14.2 Text files 330
14.2.1 Input and Output as text files 330
14.2.2 Internal and external text files 331
14.2.3 Using a text file 331
14.2.4 The file position and the file buffer 331
14.2.5 Writing a text file 332
14.2.6 Reading a text file 333
14.2.7 External text files in Macintosh Pascal 334
14.2.8 Two examples 335

14.3 Strings in Macintosh Pascal 336
14.3.1 Syntax 336
14.3.2 Assignment 337
14.3.3 String input/output 339
14.3.4 Quasi-I/O 340
14.3.5 Comparing strings 341
14.3.6 Predefined functions for strings 342
14.3.7 Predefined string procedures 345
14.3.8 Drawing strings 347

14.4 Case-study 8: A mail minder 348
14.4.1 Setting of the problem 348
14.4.2 Specifications 348

CONTENTS xxi



xxii

14.4.3 Writing the program 349

14.4.4 The complete program 352

14.5 Macaveats 355
Exercises 355
Chapter 15 Records 359
15.1 Introduction 360
15.2 Syntax 363
15.3 Some predefined record-types 364
15.4 The with-statement 366
15.5 Implementing variable-length strings 367
15.6 Abstract data types 370
15.7 Variant records 371
15.7.1 Syntax 372
15.7.2 Using variant-records 373
15.7.3 Undiscriminated variants 375
15.7.4 Restrictions concerning variant-records 377

15.8 Case-studies involving records 377
15.9 Macaveats 379
15.10 Further reading 379
Exercises 380
Chapter 16 Files 383
16.1 Introduction 384
16.2 Sequential files 384
16.2.1 Syntax 384
16.2.2 Writing a file 385

16.2.3 Reading a file 386
16.2.4 A simple example: Merging 388

16.2.5 Avoiding text files 389

16.3 Random-access files 390
16.3.1 A simple example: Error messages 391

16.4 Case-study 9: An idiot sheet 393
16.4.1 Setting of the problem 393

16.4.2 Specifications 393
16.4.3 Writing the program 393
16.4.4 The complete program 397

16.5 Macaveats 401
Exercises 401
Chapter 17 Sets 405
17.1 Introduction 406
17.2  Syntax of set types 407

CONTENTS



17.3 Constructing sets 408

17.3.1 Set constructors 408

17.3.2 Set-valued operations 409

17.4 Boolean operations on sets 410

17.5 Subprograms involving sets 412

17.6 Binary numbers as sets 412

17.6.1 Binary representations 412

17.7 Case-study 10: Nim 415

17.7.1 Setting of the problem 415

17.7.2 Specifications 416

17.7.3 Writing the program 417

17.7.4 The complete program 420

17.8 Macaveats 426

Exercises 426

Chapter 18 Advanced use of subprograms 431

18.1 Recursion 432

18.1.1 A recursive function 432

18.1.2 A recursive procedure 433

18.1.3 Exploiting recursion: An example 434
18.1.4 Exploiting recursion: The fundamental

principles 436

18.1.5 Mutual recursion 437

18.1.6 [Executing recursive subprograms 439

18.2 Case-study 11: Illustrating all text styles 441

18.2.1 Setting of the problem 441

18.2.2 Specifications 441

18.2.3 Writing the program 441

18.2.4 The complete program 443

18.3 Subprograms as parameters 445

18.3.1 Examples 445

18.3.2 Syntax 448

18.4 Conformant arrays 449

18.5 Further reading 449

Exercises 449

Chapter 19 Numeric computing 455

19.1 Representing integer values 456

19.2 Representing real numbers 458

19.2.1 Representation roundoff error 460

19.3 Problems with real arithmetic 460

19.3.1 Overflow 461

19.3.2 Underflow 462

CONTENTS  xxiii



19.3.3 Roundoff error 462

19.3.4 Catastrophic cancellation 464

19.4 Cautionary examples of numeric programming 464

19.4.1 Example one 464

19.4.2 Example two 465

19.4.3 Example three 467

19.4.4 Example four 468

19.4.5 Summary 470

19.5 Macaveats 471

19.6 Further reading 471

Exercises 471

Chapter 20 Dynamic data structures 475
20.1 Introduction 476

20.2 Pointer types 476

20.3 The fundamentals of pointers 477

20.3.1 The special value nil 477

20.3.2 Creating a dynamic variable 477

20.3.3 Pointer assignment 478

20.3.4 Comparing pointers 479

20.3.5 Disposing of dynamic variables 479

20.4 Linear structures 480

20.4.1 Implementing a stack using pointers 484

20.5 Non-linear structures 487

20.5.1 Binary search trees 487

20.6 Case-study 12: Drawing a binary search tree 490

20.6.1 Setting of the problem 490

20.6.2 Specifications 490

20.6.3 Writing the program 490

20.6.4 The complete program 493

20.7 Further reading 497

20.8 Exercises 497

Appendix 501
A.1 The goto-statement 501

A.2 Syntax diagrams 504

A.3 Syntax diagrams for Standard Pascal 505

A.4 EBNEF syntax notation 512

A.5 Notes on Lightspeed Pascal 513

Solutions to selected exercises 523
Index 557

xxiv. CONTENTS



1

ALGORITHMS AND THE
MACINTOSH

‘Okay,’ said Lolita, ‘here is where we start.’
— Vladimir Nabokov, Lolita

1.1 Algorithms 2
1.2 Computers 3
1.3 The Macintosh hardware 6
1.4  Software 6
1.5 An introduction to the Macintosh 9
1.5.1 Floppy disks 9
1.5.2 Starting a session 10
1.5.3 Using the mouse 10
1.5.4 Icons 12
1.5.5 Windows 12
1.5.6 Dialog boxes 14
1.5.7 The menu bar 14
1.5.8 Using Macintosh Pascal 15
1.5.9 Managing files 15
1.5.10 Terminating a session 16
1.6 Further reading 16
Exercises 17




1.1 Algorithms

This book is mainly concerned with algorithms, which are also the
major concern of computer science. Look up ‘algorithm’ in a dic-
tionary. The second meaning listed in the Concise Oxford Dictionary
reads ‘Process or rules for (esp. machine) calculation etc.” This is close
enough to the technical sense of the word, which is a precise, complete
description of a course of action. The COD also tells us that the
word entered Middle English from the Old French from the medieval
Latin from the Arabicized Persian surname of a ninth century
mathematician: alKuwarizmi, meaning man of Kuwarizm. The etymo-
logy is fascinating, but what interests the computer scientist more, even
more than the meaning of the word, is the process or rules you used
when you looked up the word. Because you used an algorithm!

Moreover, if you found the word reasonably quickly — the
author took roughly ten seconds — you almost certainly used a quite
sophisticated algorithm. (There are, after all, tens of thousands of
words in the dictionary.) And it is apparent that you use many other
algorithms in the course of your everyday life: when you drive a car,
make your own World’s Best Barbecue Sauce, knit a scarf. Some
would even argue that all you do is follow an algorithm, but we shall
avoid opening that philosophical can of worms.

Do you come to this book, then, as an expert on the subject?
The answer, for most people, is no. The explanation for this seeming
paradox is that although most of us may be quite competent at follow-
ing algorithms, we have much less experience of the much more
challenging task of creating them: it is much easier to follow a perfect
recipe than to write one, to follow accurate directions than to give
them, to follow precise knitting instructions than to write them.
Furthermore, the algorithms created by programmers are often much
more complex and sophisticated than the aforementioned everyday
ones.

Algorithms are abstract. For example, the long-division algo-
rithm (which was widely known before the advent of pocket

PROGRAMMING USING MACINTOSH PASCAL



calculators) is a precise method for calculating the quotient and re-
mainder when one number is divided by another. It deals with
numbers, not decimal numerals, and is known to many cultures with
many different languages. But any explanation or presentation of the
algorithm must involve a language, whether it be written, spoken,
signed or whatever, and the resulting description we call a program.
Algorithms are to programs what numbers are to numerals.

1.2 Computers

In this century algorithms have assumed unprecedented importance,
because of the invention of man-made devices that are able to follow
them with incomparably more speed and freedom from error than can
people. These devices, which are currently based on electromagnetic
technology, have come to play an indispensable role in modern in-
dustrialized society. They are called, as you know, computers; more
properly, digital computers, to distinguish them from analog
computers which do not follow algorithms but rather use physical
models to solve problems. We shall henceforth confine ourselves to the
former kind and drop the prefix ‘digital’.

Algorithms written to be followed (we say executed) by
computers are called computer programs, and the languages that they
are expressed in are called computer programming languages. We
henceforth limit these terms to computers and drop the prefix
‘computer’.

A computer is, in essence, a simple device. It consists of a
central processing unit (CPU), memory, and input and output
devices, which are collectively called the hardware. Figure 1.1 re-
presents a computer, with arrows indicating the main directions of flow
of information.

The CPU is capable of performing a number of simple opera-

memory

Y
)

input ] output
devices V devices

CPU

ALGORITHMS AND THE MACINTOSH

Figure 1.1
Information flow in a
computer.

3



Figure 1.2
A one Megabyte main
memory of 16-bit cells.

address main memory

0 0
1
2

o[1]o]o]1]o[o]o]o]1]1]o]1]o]0]

524287 219 _1

tions, called machine instructions. The number of different instruc-
tions is typically from 50 to 500. They are performed with essentially
no error and at very high speeds, ranging from around 100000 to 100
million per second (100 Mips). CPUs are currently made from mini-
ature electronic circuits etched on small chips of silicon.

The other major component of a computer is its memory, which
is divided for economic reasons into two parts: primary memory (or
main memory) and secondary memory. The main memory consists of
a sequence of identical cells (locations, words), with addresses
running from zero onwards. A cell can store an instruction or data. It
consists of a sequence of bits (the term comes from ‘binary digit’) each
of which is zero or one. A minimal cell-size is 8 bits (called a byte);
this is large enough to store a single character from an alphabet of 256
(2%). Some machines have cells as large as 64 bits. Main memories
typically have from 4096 to around 10 million bytes.

The letter ‘k’ is used to abbreviate the prefix ‘kilo’, which is
ambiguously used to denote either 1000 or 1024 (2!%). The letter ‘M’
is used to abbreviate the prefix ‘Mega’, which denotes one million, but
is likely to be an approximation to (22%), which equals 1048576.
These are used in conjunction with ‘b’ to abbreviate ‘byte’. So the last
sentence in the previous paragraph is written ‘Main memories typically
have from 4kb to 10 Mb.” Figure 1.2 shows a 1 Mb main memory of
16-bit cells, and the bits comprising a typical cell.

The interpretation of the pattern of bits in a cell depends on the
CPU. It contains a number of special high-speed cells, called re-
gisters. These include a program counter (PC), which contains the
address in main memory of the next instruction to be executed, an in-
struction register (IR), which receives the instruction to be executed,
and at least one accumulator (AC), which receives the results of

4 PROGRAMMING USING MACINTOSH PASCAL



repeat indefinitely the following four steps:
Fetch into IR the instruction whose address is in PC;
Increment PC;
Decode instruction in IR,
Execute instruction in IR

arithmetic and logical operations (much like the display on a pocket
calculator). The CPU obeys the simple algorithm shown in Figure 1.3,
which is called the fetch—execute cycle.

Execution of an instruction might entail copying the contents of
an AC into a specified cell of main memory, or copying in the other
direction, or adding two ACs (i.e. interpreting them as representing
numbers) and storing the result in another AC, or changing the
address in the PC, or sending the contents of an AC to an output
device (which might interpret it as text), and so on. On a Macintosh,
the cell shown in Figure 1.2 represents the pair of characters Hi if
interpreted as text, 18 537 if interpreted as a whole number, and who-
knows-what instruction.

The great speed of computers arises from the technological fact
that information can be transferred between the CPU and an arbitrary
address in main memory very quickly. The term RAM is used to
denote such a random-access memory. The CPU gets its instructions at
a rate commensurate with its speed in executing them. If there has
been a single Great Idea in the invention of computers, it was to store
the instructions in the memory (which one more naturally thinks of as

' containing data).

Main memory is also realized in current technology with silicon
chips. Because it is very expensive to provide main memories large en-
ough for the massive amounts of information computers are expected to
deal with, a secondary memory is used which is larger in capacity but
slower in transferring information (to and from main memory).
Secondary memory is most commonly in the form of spinning magnetic
disks which record information by magnetizing tiny portions of their
surfaces. Typical sizes are from S5S0kb to 500 Mb; typical rates of
transfer between main and secondary memory are from 10kb to 1 Mb
per second. Although the transfer rate can be high, there is a
significant minimum access time before information can be transferred.
This is typically from 10 to 100 milliseconds (thousandths of a second,
written ‘msecs’).

Input and output devices (I/O devices) are used to transfer data
between programs executing on the computer and the outside world.
Examples are keyboards, card readers (a dying breed), paper tape read-
ers (extinct?), printers, and visual display units (VDUs).

ALGORITHMS AND THE MACINTOSH

Figure 1.3
The fetch-execute cycle.



1.3 The Macintosh hardware

The members of the Macintosh family of personal computers are based
on a Motorola 68000 CPU chip which supports a cell-size of 32 bits.
Standard issue for the original Macintosh was a RAM of 128kb, a
ROM (a read-only memory for storing permanent programs and data)
of 64 kb, which together constitute the main memory, a 3.5 inch 400 kb
single-sided internal microfloppy disk drive as secondary memory, a
keyboard and mouse (a position-signaling device) as input devices, and
a high resolution bit-mapped display screen, a sound generator, and an
Imagewriter dot-matrix printer as output devices. Figure 1.4 presents
a well-known still life of a Macintosh and an apple.

The term bit-mapped means that the screen is made up of
thousands of spots (called pixels), each of which is on or off according
to whether an associated bit of main memory is 1 or 0; the upshot is
that the display can be changed very quickly. The dot-matrix printer
can print arbitrary pages of black and white pictorial information, such
as text or screen images, by printing immense numbers of suitably
arranged small black dots.

The next-born was the better nourished Fat Mac, which differed
mainly in having a 512kb RAM. It was followed by the Macintosh
Plus, with a 1 Mb RAM, 128 kb ROM, and 800kb double-sided inter-
nal disk drive. More recently, the Macintosh II and the Macintosh SE
have appeared, having 256 kb ROMs and various other enhancements.
All the Macintoshs have provision for additional secondary memory in
the form of external versions of the internal disk drives, and faster,
more capacious (and more expensive) hard disk drives.

Your Macintosh will be one of the above (possibly enhanced),
but for the purposes of learning to program with Macintosh Pascal, it
does not much matter which.

1.4 Software

Programming is the process of creating and modifying programs. It is a
difficult and challenging intellectual activity, and there seems to be a
wide spectrum of levels of aptitude for it. Almost all programming is
done by humans; computers are better at executing programs, but
hopeless at programming, i.e. at creating programs that solve non-
trivial problems. This is because humans have not been able to solve
the programming problem of mimicking human intelligence — the Big
Enchilada, as someone else said in another context. If you are in-
tellectually ambitious, you need not worry about a shortage of hard
programming problems!

A program in main memory for execution by a computer con-
sists of a sequence of machine instructions, each of which is no more

6 PROGRAMMING USING MACINTOSH PASCAL



than a pattern of bits. Creating the very long sequences of these very
simple instructions needed to solve non-trivial programming problems
is a boring, error-prone task, as a single wrong bit will probably cause
the program to behave in wild and unpredictable ways. Fortunately,
the computer itself can be exploited to relieve much of the burden.

What actually happens when a program is created is this. The
underlying algorithm is expressed not in machine instructions but in a
high-level programming language, such as Pascal, Modula-2, or Ada.
By opening this book at almost any page after the introductory chapters
you will see what programs written in Pascal look like. The details
need not concern us now; the main point is that the level of expression
is much higher than the computer’s level of operation.

The program is prepared for execution by first typing it on a
computer keyboard, as the input of an executing program called an
editor. This will store the text as a file, that is, a package of informa-
tion, on secondary memory. Editors allow text files to be prepared and
maintained; they permit the insertion, deletion, replacement, and loca-
tion of arbitrary text. This book was prepared with such an editor.
Each computer system provides at least one editor; the best ones are
interactive (i.e. request the user to enter input data during execution
of the program, rather than preparing all input as a file beforehand)
and display the text on a VDU as it changes.

Before a program written in a high-level language can be
executed it must be translated to machine instructions. This task is
accomplished by a program called a translator. At least one translator
is needed for each high-level language used on a particular computer;
all translate to the same machine language.

One of the great advantages of writing programs in high-level
languages is that they can be run on any computer with a translator for
that language, and should, of course, produce exactly the same results
(as much as is possible; e.g. some computers represent real numbers
more accurately than others — see Chapter 19). In order to permit
such portability of programs, both programs and translators should

ALGORITHMS AND THE MACINTOSH

Figure 1.4
An artist’s impression of a
Macintosh (and an apple).



Figure 1.5
The software-hardware
hierarchy.

8

conform to a recognized international standard.

There are two kinds of translators: compilers and interpreters.
A compiler translates the entire program prior to execution, storing the
resulting sequence of machine instructions as a file. That file can then
be placed in main memory by another program called a loader, after
which it can be executed.

An interpreter repeatedly translates and then immediately exec-
utes each high-level instruction as necessary. It will probably find it
convenient to represent the program in symbolic rather than textual
form, entailing a preliminary translation.

The two types of translators have contrasting properties. Inter-
preters hide the translation from the user of the program, give great
flexibility in the execution process, provide more informative descrip-
tions of errors during execution, and permit integrated editing, transla-
tion, and execution in a single consistent programming environment.
These advantages make them perfectly suited to program development.
Macintosh Pascal is based on an interpreter.

The price paid for the conveniences of interpretation is very
slow execution speed, because high-level instructions have to be repeat-
edly translated before execution. When speed of execution is
important — and it should not be in a learning context — a compiler
should be used. A compiler-based version of Macintosh Pascal is avail-
able, called Lightspeed Pascal.

Needless to say, much goes on behind the scenes in the process
of creating and executing programs. For example, a file system is
needed that organizes files so that they may be quickly created,
located, appended to, edited, combined, and moved. Such backstage
work is handled by an integrated collection of system programs called
the operating system. For details, consult the further reading list at
the end of this chapter.

applicationg
goftware

systems
goﬂware

hardware

PROGRAMMING USING MACINTOSH PASCAL



Programs written by or for the user for particular purposes (as
distinct from general operating system tasks) are called application
programs. An example is a spreadsheet program for managing financial
data. Translators and editors are described as applications programs in
Macintosh documents, though such programs that are used to prepare
other programs are usually classified as systems programs. The pro-
grams used with a computer are called its software. The hardware
and software together form a computer system, but the term is usually
abbreviated to just ‘computer’.  Figure 1.5 shows the
software-hardware hierarchy; this layered view makes sense at much
finer levels of detail of both hardware and software.

1.5 An introduction to the Macintosh

We describe here the basic aspects of using the Macintosh. Those con-
cerning Macintosh Pascal are left until Chapters 2 and 4. The last
exercise (at the end of this chapter) invites the reader to try out the
Macintosh; this is best done by following the text as you do so.

1.5.1 FLOPPY DISKS

You will need floppy disks to hold your program and data files. The
type of disk used by the original and Fat Macintoshes is a 3.5-inch
micro-floppy disk, single-sided, 135 tracks per inch; the later
Macintoshes use double-sided versions. Although micro-floppies have
their own protective plastic casing, they still require care in handling
and transport.

Inside the protective cover is the actual disk itself, made of soft
(‘floppy’) mylar plastic with a magnetic coating. This coating is
extremely thin and fragile, and small particles of dirt or dust can dam-
age its surface permanently. Special stiff cardboard envelopes with
anti-static lining are available to protect your disks; the plastic covers
that sometimes come with disks at least help keep out dust.

Never open a disk’s metal dust-cover and touch the magnetic
surface underneath; this will almost certainly render the disk useless.
Do not leave your disk in a car parked in the sun, or near a source of
high heat. The top of the Macintosh itself can get quite warm, so it is
best not to leave disks there. Since a disk’s information is magnetically
recorded, any strong magnetic field can destroy it. You should there-
fore keep disks away from magnets (in speakers and telephones) and
objects likely to generate magnetic fields (electric motors, TV sets,
UFQOs, etc.)

Disks are inserted into the drive with the metal end first and the

ALGORITHMS AND THE MACINTOSH



o>

A [ O

10

label side up. Never use force when handling disks. In particular,
never attempt to pull a disk out of its drive by hand; serious damage to
both disk and drive could result — the Macintosh will eject the disk
when operated correctly.

There is a movable plastic tab at the bottom right corner of the
underside of a disk. This is normally away from the edge; if not, the
disk is locked, meaning its information can be read but not altered.

1.5.2 STARTING A SESSION

The power-on switch of the Macintosh is at the rear, just above the
socket for the power cord. The brightness control is at the front,
underneath the protruding ledge just below the colored apple logo. Set
the screen brightness to a comfortable level; an over bright or dull
screen imposes unnecessary strain on the eyes.

After turning the power on you will see a small disk-symbol
with a blinking question mark in the center of the screen. It indicates
that the Macintosh is waiting for a startup disk (one containing the
Macintosh’s operating system). The Macintosh Pascal Program disk
will do. Insert it into a drive and push until the disk snaps into place
with an audible click. The Macintosh displays the message ‘Welcome
to Macintosh’. After a few seconds, you will see the desktop (dis-
played in Figure 1.6).

There are three features of interest: a list of menus along the
top, little pictures (called icons) of the disk and a trash can, and a little
arrow (called a cursor). We shall deal with these in reverse order.

1.5.3 USING THE MOUSE

The cursor is controlled by the mouse — a small box on the end of a
cord, with a rubber ball underneath and a button on top. Whenever
you move the mouse, the pointer will duplicate the motion on the
screen. You will use the mouse to move files around, select commands
or text, and to otherwise communicate with the Macintosh.

The cursor has different appearances in different situations. The
most common shapes are an arrow for selecting items and an I-beam
pointer for text editing. Another one looks like an (analog!) wrist
watch, indicating that you have to wait for the Macintosh to finish
something.

There are several ways to use the mouse:

° Pointing: moving the mouse until the cursor is positioned over
the object to be pointed at.
° Clicking: pressing and releasing the mouse button once.

PROGRAMMING USING MACINTOSH PASCAL



® File Edit View Special

al2.0

ARt e

Figure 1.6
The desktop.

Double-clicking means clicking twice in quick succession.
Advanced users sometimes even triple-click!

° Pressing: positioning the pointer on an object and then pressing
the mouse button without moving the mouse until an action is
complete.

° Shift-clicking: clicking while holding the Shift-key down.

° Dragging is used both for repositioning objects on the screen

and for selecting text when editing. To drag an object, point at
it, press and hold down the mouse button, move the mouse until
the object has reached the desired place, and then release the
button. Normally, while dragging an object, only an outline of
the object follows the pointer on the screen; the object changes
its position as soon as you release the button. If you are drag-
ging across some text, the parts of the text you drag over are
highlighted, meaning that they have been selected for some
editing operation.

ALGORITHMS AND THE MACINTOSH 11



Finder

System Folder YouGuess

i |

If you happen to run out of space on your desktop (as distinct
from the Macintosh’s) during a mouse operation, lift the mouse off the
desk and place it where you can move it; the cursor follows the mouse
only as long as the mouse slides over the surface of the desk.

1.5.4 ICONS
Icons are used to represent three things:
° Applications: what Macintosh manuals call compiled programs,

whether they be systems programs (like the file system program
Finder) or applications programs (like Macintosh Pascal);

° Documents: files of textual or pictorial information, such as
Macintosh Pascal programs and data files;

° Folders: collections of applications, documents, and other
folders.

There are two icons on the desktop shown in Figure 1.6, for the
disk and trash can respectively; both are folders, albeit special ones.
Icons can be dragged around as described above and selected for a
future operation by clicking on them. A selected icon is indicated by
color reversal.

1.5.5 WINDOWS

Double-clicking on a folder icon opens its window, a box on the screen
representing its contents. Doing this to the Macintosh Pascal Program
disk icon results in a screen like that shown in Figure 1.7.

Most of the information you deal with on a Macintosh is pre-
sented to you in windows. They are used to display and edit both text
and pictures. Several windows can be present at once on the screen,
but just one is distinguished as active. Its title bar is filled with hor-
izontal stripes, and it will be on top of the desk (i.e. not under another
window). Commands concerning windows always refer to this
window.

Here is a summary of the main properties of windows:

° Activating a window is done by clicking anywhere inside it. If
a window is completely obscured it can still be made active by
choosing it from the Windows menu (see below).

The title bar indicates the name of the window.

° Repositioning a window is done by pointing to the title bar and
dragging it to its new position.

PROGRAMMING USING MACINTOSH PASCAL



& File Edit View Special K

Macintosh Pascal 2.0
353K in disk

[ [ I R

Macintosh Pascal 2.0 System Folder Demos My programs

Figure 1.7
The desktop after opening
the disk’s window.

® Changing a window’s size is done by pointing to the size box
(bottom right corner) and dragging it to the desired place. The
upper left corner of the window remains in its old position, so
dragging the size box changes the window’s size and/or shape.

° Scrolling a window enables you to examine hidden contents of a
window, by moving the window relative to its contents. There
are four ways to do so:

—  Clicking on one of the scroll arrows scrolls the window
by a small amount in the indicated direction. The
physical location of the window on the screen doesn’t
change; rather, a different portion of the contents is
shown inside the window.

—  Pressing on one of the scroll arrows will scroll the
window continuously until the mouse button is released.

—  Clicking inside the scroll bar moves the window by
almost one full window.

ALGORITHMS AND THE MACINTOSH 13



Sape

—  Dragging the scroll box positions the window over a
different part of the text. The position of the scroll box
inside the scroll bar roughly indicates the current position
of the window in relation to all its contents.

] Closing a window is done by clicking in the close box (in the
upper left corner). The window is removed from the screen.

1.5.6 DIALOG BOXES

Sometimes you will come across a special type of window called a dia-
log box, which appears when the Macintosh needs a decision by you.
You make your decision by clicking in one of the labeled buttons that
usually appear in the box, or just by clicking in it if there are no
buttons (in which case the box represents a message). The box dis-
appears when you click.

1.5.7 THE MENU BAR

Along the top of the screen, you will find a white bar containing an
apple symbol on the left followed by a few words. This is the menu
bar. It is used to give commands, select files, edit text, and perform
other operations. You open a menu by pressing on either the apple or
one of the words (which function as headings); a menu appears under-
neath, presenting you with a number of choices. The menu disappears
as soon as you release the mouse button.

To make a selection, open the menu and drag the cursor down
the menu. As you drag, the line that the cursor is currently on is
highlighted. As soon as you release the mouse button, the currently
highlighted command is selected (i.e. the appropriate action is carried
out) and the menu disappears. Figure 1.8 shows the Open command
from the File menu being selected.

If you have dragged the cursor into the menu but have second
thoughts, move the pointer out of the menu and release the mouse
button; no selection is made.

Sometimes some menu commands are dimmed (shown in gray
print). This indicates that they are not currently applicable. When
you drag across a dimmed command, it is not highlighted, and cannot
be selected.

Some menu commands are followed by a clover symbol with a
letter beside it. The symbol is called the command symbol. To the left
of the space bar on the keyboard is a key labeled with this symbol. It is
called the Command-key and is used as a shortcut for certain
commands. It works like the Shift-key, in that it is held down while
another key is pressed. For example, holding down the Command-key

PROGRAMMING USING MACINTOSH PASCAL



r

« WACW Edit Diew Special
a1 Folder

Print
{ipse

Get Info 81
Buplivate =i

Put Bwny

Payge Setup
Print {alsing

while typing ‘O’ has exactly the same effect as using the mouse to
choose Open from the File menu. Choosing a command in this way is
described as ‘using the keyboard equivalent’ of the command.

Macintosh Pascal has its own menus, which are described in
Chapters 2 and 4.

1.5.8 USING MACINTOSH PASCAL

The Macintosh Pascal icon represents a program that enables you to
prepare, edit, and run algorithms written in the programming language
Macintosh Pascal, i.e. it implements a programming environment.
You run this program by selecting the Macintosh Pascal icon, or the
icon for a Macintosh Pascal program, and then opening it as just de-
scribed. The desktop is replaced by a different one. Chapters 2 and 4
describe how to interact with the program. You end execution of
Macintosh Pascal by choosing Quit from its File menu. This returns to
the desktop.

1.5.9 MANAGING FILES

You will want to print, copy, move, and otherwise manipulate files
created by Macintosh Pascal and other applications. Here is a summary
of the important operations:

° To rename a file or folder, first select its icon and then either
type the new name or edit it (in the same way that programs are
edited in Macintosh Pascal — see Chapter 2).

° To duplicate a file or folder (including all its contents), select its
icon, choose Duplicate from the File menu, and rename the

ALGORITHMS AND THE MACINTOSH

Figure 1.8
Selecting Open from the
File menu.

o

o
ts j
Macintosh Pascal 2.0
1.3

Duplicate; ¥#D

15



New Folder ¥#N

resulting icon. You get a new folder by duplicating the Empty
Folder or choosing New Folder from the File menu.

To move a file or folder (and all its contents) drag its icon. If
you want to put it in a folder with a window on the desktop,
move it into the window. If you want to put it in a folder which
does not have an open window, but whose icon is visible, drag
the object’s icon onto the folder’s icon (which will reverse color).
If you want to put it in an invisible place, first move it onto the
desktop (outside all windows); then make the folder’s icon or
window visible (by closing other windows or using the Windows
menu), and finally move the icon from the desktop as described
above. If you move something to a different disk it is copied —
the original remains.

To delete a file or folder (and all its contents) put it in the
Trash folder. It has the special property that anything in it is re-
moved when the disk that it belongs to is ejected, or when you
choose Empty Trash from the Special menu, or when an
application is opened. You can recover something in the Trash
can by opening the Trash window and moving the file or folder
out of it.

1.5.10 TERMINATING A SESSION

Once you have returned to the original desktop, you finish your session
by choosing Shut Down from the Special menu. The Macintosh ejects
all disks and returns to the same state as that following powering-up. If
the Macintosh will not be used for several hours or more, power-down.
Otherwise, leave the Macintosh on with the brightness turned down
somewhat to prevent burning-in the image.

1.6 Further reading

M

@

Anon. (1984). Macintosh. Apple product #M1500. USA and
Canada: Apple Computer, Inc.

This is the manual that comes with each Macintosh. It is very
simply and clearly written.

Goldschlager, L. and Lister, A. (1987). Computer Science: A
Modern Introduction. 2nd edition. Englewood Cliffs, New
Jersey: Prentice-Hall.

This is a superb introduction to computer science, which anyone
interested in the subject would profit from reading. Its Chapters
4 and 5 cover all the topics in the first part of this chapter.

16 PROGRAMMING USING MACINTOSH PASCAL



3

Lu, C. (1985). The Apple Macintosh Book. 2nd edition. Micro-
soft.

Another source of general information about the Macintosh,
written in a similar style to the Macintosh manual.

EXERCISES

1.1

1.2

13

14

1.5

When you look up ‘computer’ in your dictionary you use the same
algorithm as when you look up ‘algorithm’, yet you perform a different
sequence of actions. How can this be?

In the Victorian museum in Melbourne, Australia, there is a machine
that has never been beaten at tic-tac-toe (which it calls noughts and
crosses). The machine can play first or second. Assuming not all visit-
ors to the museum are pushovers at tic-tac-toe, what does this suggest
about algorithms for playing tic-tac-toe?

Here is an extract from a program, but not a computer program:

sl 1, work 1, psso, * work in seed st to 2 sts before next marker,
work 2 tog, sl 1, work 1, psso, repeat from * 3 times more,
work in seed st to last 2 sts, work 2 tog.

What kind of algorithm is being described? Hint: If you do not know,
ask your grandmother.

Here are two algorithms, written in English, that indicate whether a
given whole number is even or odd:
Algorithm (a):

1. Read the number.

2. Divide the number by 2 and get the remainder.

3. If it is 0, say ‘even’, otherwise say ‘odd’.

Algorithm (b):

1. Read the number.

2. Get the number’s rightmost digit.

3. If it is ‘0%, 2°, ‘4’, °6’ or ‘8’ say ‘even’, otherwise say ‘odd’.
Which algorithm is more abstract?

How many words is a picture worth? Hint: Update a proverb.

ALGORITHMS AND THE MACINTOSH

17



18

1.6  What is likely to be the biggest address in a computer with a main
memory of 1 Mt and cells of 32 bits?

1.7 How is it possible for a CPU to execute repeatedly a sequence of
machine instructions?

1.8  Obtain a Macintosh and a startup disk, and experiment by doing some-
thing like the following (in order):

Power-up if necessary and insert the startup disk.

Move the mouse around while observing the cursor. Pick up the
mouse and reposition it a couple of times.

Double-click on the icon for the disk. Close the window that re-
sults, then get it back again by choosing Open from the File menu.

Move the disk’s window around and change its size. Note that part
but not all of a window can be off-screen.

Open the window of the System Folder icon in the startup disk’s
window. Make it small and scroll both vertically and horizontally.

Open up lots of windows — really mess up that desktop. Make
various windows active by clicking and by choosing them in the
Windows menu.

Make a non-empty window active and wide, and choose various
commands from the View menu (not mentioned in the text). Figure
out what they do.

Duplicate the Empty Folder and rename it ‘Copies Folder’.

Duplicate a file (any one will do), rename it if you like, and move
it to the Copies Folder. Repeat using a different way of moving.

Move the Copies Folder to the Trash can; open the latter’s window
and look inside. Choose Empty Trash from the Special menu.

Otherwise experiment, being careful not to delete files unless you
are sure they are unimportant. Think again even then.

PROGRAMMING USING MACINTOSH PASCAL



2

EDITING MACINTOSH
PASCAL PROGRAMS

Give us the tools, and we will finish the job.
— Winston Churchill, Radio Broadcast,
9 February 1941, addressing President Roosevelt.

2.1 Introduction 20
2.2 The Macintosh Pascal environment 20
2.3 Editing 20
2.3.1 Setting the insertion point 22
2.3.2 Inserting text 22
2.3.3  Selecting text 22
2.3.4 Editng selected text 22
2.3.5 Deleting text without selecting 23
2.3.6  Searching and replacing 23
2.4 Controlling the environment 24
2.5  Error messages 25
2.6 Checking a program 25
2.7 _ Saving your program 26
2.8 Reverting to the last version 27
2.9  Opening a saved program 27
2.10 Copying between programs 28
2.11 Printing 28
2.12  Leaving Macintosh Pascal 29
2.13  Further reading 29
Exercises 29




2.1 Introduction

This chapter explains how to use Macintosh Pascal’s special-purpose
editor to type and modify (i.e. edit) Macintosh Pascal programs. You
need not know anything about Pascal to follow it. The material is
written in such a way as to be useful as a reference when you eventu-
ally edit programs yourself. The exercises ask you to create and
modify two of the three sample programs in Chapter 3; you may prefer
to do them as you read that chapter.

2.2 The Macintosh Pascal environment

After entering Macintosh Pascal you will see a screen like that dis-
played in Figure 2.1. Macintosh Pascal initially shows three windows:
the Program window, the Text window, and the Drawing window.

The Program window is used to enter and edit Pascal programs.
If you entered Macintosh Pascal by opening its icon, a skeleton of a
Pascal program is displayed (in white on a black rectangle, indicating
that the skeleton has been selected — see below), and the name of the
window is Untitled. This is the case in Figure 2.1. If, on the other
hand, you opened the icon of a previously created program, a window
full of that program will be displayed.

The Text window shows the text typed as input to, or written as
output by, the program. The Drawing window shows graphics output.
There are also special windows for editing the program and observing
it during execution; these are opened as needed.

2.3 Editing

Macintosh Pascal has many editing features, and it is worthwhile to
become familiar with them. Its editor is special-purpose: it is used
only to edit Pascal programs, and takes advantage of this fact. Thus

20 PROGRAMMING USING MACINTOSH PASCAL



% File Edit Search Run Windows
3%[!% Untitled ==Ficc0FF—— Teut

pfogram Untitled;
{Your declarations}
begin

{Your program statements}
end. _ Drawing

Kal o

Figure 2.1
The Macintosh Pascal
environment.

certain special words (called reserved words) are displayed in bold
type, the syntax (grammatical form) of the program is checked, and the
program is displayed using a consistent scheme of indentation. All of
this happens automatically as you type. You need not even press the
Return-key to get to a new line: the display is updated whenever you
type a semicolon (;) or move the insertion point to a different part of
the program.

Most editing takes place in the Program window, which always
contains a blinking vertical bar. It marks the insertion point — the |
place where the text that you type on the keyboard appears. Whenever
you move the cursor into the Program window, it changes into an I- I
beam. You use the I-beam cursor to change the insertion point and to
select text for editing.

The main editing operations are as follows.

EDITING MACINTOSH PASCAL PROGRAMS 21



Select ._ﬂlli#i:ﬂ

22

2.3.1 SETTING THE INSERTION POINT

To set the insertion point, move the I-beam cursor to the place where
you want to insert text, and click. The insertion point can be anywhere
in the program, even in the middle of a word.

2.3.2 INSERTING TEXT

Whatever you type on the keyboard starts at the insertion point, which
moves so as to be just after the last character entered. Text to the right
of the insertion point moves over as you type to make way for the new-
ly inserted characters.

2.3.3 SELECTING TEXT

To change existing text first select it: position the I-beam cursor at
the beginning of the text to be selected and drag it to the end of the
selection. As you drag, the selected text is highlighted in white on a
black background. If you have selected text but want to change it,
click anywhere in the Program window, or select some other text.

Dragging to select text may be done in any direction — it is the
start and end points that determine the selected text. A selection can
extend over several lines and is not limited to line boundaries. Drag-
ging along the left-hand margin selects entire lines. To select a piece
of text larger than the Program window, drag the cursor off the top or
bottom edge of the window without releasing the mouse button. The
window will scroll, and the program text that moves into the window is
included in the selection.

Double-click to select a word; triple-click to select a whole line.
To select the whole program, choose Select All from the Edit menu. A
more convenient alternative for long selections is first to place the in-
sertion point at the beginning of the text to be selected, then move (not
drag) the cursor to the end and shift-click. The Program window can
be scrolled during this operation.

2.3.4 EDITING SELECTED TEXT

To replace selected text, type the new text. To delete selected text, hit
the Backspace-key. That is how to remove program Untitled in Figure
2.1.

To move selected text, first choose Cut from the Edit menu.
The selected text disappears. Then set the insertion point as desired
and choose Paste from the Edit menu. The cut text reappears starting
at the insertion point.

To copy selected text, choose Copy instead of Cut and proceed

PROGRAMMING USING MACINTOSH PASCAL



as above. The selected text remains, but a copy is inserted after the in-
sertion point when Paste is chosen.

Cut or copied text is placed in a file called the Clipboard, repla-
cing whatever was there before. Choosing Paste simply inserts a copy
of the Clipboard at the insertion point. It can be done as many times as
desired. The Clipboard can be displayed by choosing Clipboard from
the Windows menu.

2.3.5 DELETING TEXT WITHOUT SELECTING

Another way to delete text is to set the insertion point after the last
character to be deleted, and then repeatedly hit the Backspace-key to
remove the character just before the insertion point. This is the easiest
way to delete one or two characters, or replace them, since you can in-
sert afterwards.

2.3.6 SEARCHING AND REPLACING

It is common when editing to need to locate certain text. Often it is
because you need to change it, possibly wherever it occurs. Such
operations are done with the Search menu. If you choose What to
find... , the dialog box shown in Figure 2.2 appears.

To search for occurrences of particular text, type it as the Search
for text. Set the desired search conditions using the small buttons in
the dialog box. Click OK to remove the dialog box. Now whenever
you choose Find from the Search menu, the next occurrence of the text
will be searched for and selected if found.

The Replace with text replaces the currently selected text (and
itself remains selected) whenever you choose Replace from the Search

Search for

Replace with

Separate Words
fill Occurrences

Case Is Irrelevant

Cases Must Match

When this button is on,
the Search for text must
be surrounded by spaces
or punctuation.

When this button is on, the case (upper or
lower, i.e. capitalized or not) of letters in the
Search for text is not significant.

When this button is on, When this button is on, the case of letters in
the context of the Search the Search for text is significant.
for text is irrelevant.

EDITING MACINTOSH PASCAL PROGRAMS

Chpboard

@

22

Uhat to..,!ind

Replace; #R

Figure 2.2
The dialog box for What to
find... .

23



@

23

Font Control

Preferencgs

menu. You can therefore replace multiple occurrences of the Search for
text by repeatedly choosing first Find and then Replace if desired. To
replace every occurrence automatically, choose Everywhere from the
Search menu (just once). Always think twice before doing this, as you
cannot halt the process once it is underway, and mistakes can be very
painful.

Each search starts at the current insertion point and proceeds
forwards through the program, as far as the end if necessary. If no
occurrence of the Search for text is found, you get a message which
misleadingly says that the text was not found in the active window. If
a search is unexpectedly unsuccessful, check the settings in the What
to find... box. If they are correct, move the insertion point to the start
of the program and try again.

2.4 Controlling the environment

Two commands in the Windows menu allow you to control aspects of
the programming environment.

Choosing Font Control... produces a dialog box that displays the
font in use in the Program windows (the Program, Observe, and In-
stant windows) or the Text window, depending on which of two
corresponding buttons is on. Font names are made up of a word and a
number; thus ‘Geneva-12° names the 12-point Geneva font. Buttons
labeled Next and Prev enable you to cycle through the available fonts
in either direction. Click OK when you have found the desired font. It
is often best to choose a font with fixed-width characters for the Text
window, to permit more control over the formatting of output. Suitable
choices are Monaco-9 and Monaco-12.

Choosing Preferences... produces a dialog box that displays
certain current editing and output settings, and lets you change them.
The Indent Width is the horizontal offset of an indented line. Tab
Stops are the positions in a line associated with the Tab-key: pressing
the Tab-key when typing text spaces to the next tab stop position. It is
recommended that you set the Indent Width and Tab Stops values to
the same value (12 seems about right); this enables you to use the
Tab-key to line up comments with other lines of the program.

You can also control the maximum number of characters held in
the Text window; if more are written by the program the extra ones
written first are lost. Finally, you may specify that any output written
to the Text window also be sent to a file (that you name) and/or the
printer that is specified by choosing the Choose Printer desk accessory
from the apple menu.

24 PROGRAMMING USING MACINTOSH PASCAL



2.5 Error messages

To err is human. Macintosh Pascal knows this saw, and informs you
whenever it detects an error. Certain types of error that occur when
editing do not produce explicit messages; rather, the editor indicates
them by displaying the offending part of the program text in outlined
characters. This only happens when the editor finds something that
cannot possibly be part of a Pascal program, e.g. when a right curly
bracket to end a comment is missing, or when a semicolon is followed
by the reserved word else. After such an error is corrected, the out-
lined characters do not immediately revert to normal type. But by
moving the insertion point a few lines you can force the editor to re-
check the program and update the screen.

Other errors are detected when you check (the syntax of ) your
program or during execution, in which case an error message appears
at the top of the screen. Figure 2.3 shows one such message. Usually
the message states clearly what has gone wrong, but sometimes the best
Macintosh Pascal can do is to issue a very general message such as
“This doesn’t make sense.” There are over a hundred different error
messages; try to get a copy of the file that comes with Macintosh Pascal
which explains them.

Whenever you have an error, Macintosh Pascal refuses to re-
spond to your commands until you acknowledge the error by clicking
anywhere inside its box. Once you have done this, the box disappears
and a hand in the left margin of the Program window points to the
offending line. Usually the problem is in that line or at the end of the
previous one, but sometimes, as with mistakes in the declarative part of
the program, the symptom may be far removed from the cause.

It is hoped that you will not come across a type of error known
as a system error. Messages like ‘Sorry, a system error occurred’ or
‘Out of memory’ mean that something has gone seriously wrong with
the Macintosh’s operating system. You will probably have no choice
about how to proceed, but, if possible, get expert help.

2.6 Checking a program

If, when entering a program, you want to check whether you have
made any mistakes so far, choose Check from the Run menu. This

A period (.) is required following the last END of the program but
one has not been found.

EDITING MACINTOSH PASCAL PROGRAMS

eles

Figure 2.3
An error message.

25



Figure 2.4
The dialog box for Save
As... .

Macintosh Pascal 2.0|

i4.p

Finder
GuessMyNumber

Y bmagewiter

& Macintosh Paseat 2.8

e
i/

poons gones
s 7

e

Save your program as Macint...

L |

( save ] [ Cancel ) ( Brive )] |

@®AsText (OAs Object O As Application

invokes the part of Macintosh Pascal that does the preliminary trans-
lation. It checks your program for syntactic errors. If none are reported
you may run the program.

The many facilities provided for running Macintosh Pascal pro-
grams are described in Chapter 4.

2.7 Saving your program

In the File menu there are two commands for saving programs: Save
As... and Save. When you create a new program the Program window
has the name Untitled, and only the Save As... command is active.
Choosing it produces a dialog box like that shown in Figure 2.4.

The topmost box shows the name of the disk currently chosen to
receive the program, in this case ‘Macintosh Pascal 2.0’. The biggest
box is the contents window; scroll it to list all programs on this disk.
The first part of the disk’s name also appears just above the Eject
button. If you want to save on a different disk, click the Eject button
and insert the new disk; if you are using an external disk drive and
want to save on the other disk, click the Drive button (which will not
be dimmed if a disk is inserted).

If you insert a virgin disk to receive the program, a dialog box
will appear; it tells you that the disk is unreadable, and asks whether
you want to ipitialize it. Sometimes this can happen with disks that
have been initialized and contain files, in which case you should click
Eject and try again. Clicking Initialize causes certain control informa-
tion to be written on the disk. After a minute or so you will be asked
to name the disk. Type any name you like as long as it does not

26 PROGRAMMING USING MACINTOSH PASCAL



contain a colon (:). Then click OK and resume saving your program.

Type the name under which you want to save your program in
the box labeled ‘Save your program as’. The name must not contain
any colons. Click the Save button to save the program, or the Cancel
button to avoid saving. The dialog box disappears in either case. You
can save a copy by choosing Save As... again and using a different
name or disk.

There are three forms in which to save a program, correspond-
ing to the three buttons at the bottom of the box. The default and
normal option is As Text, which saves the program as a text file. As
Object saves it in Macintosh Pascal’s translated form. Using this
between editing sessions saves time by avoiding translation. Saving As
Application is used to create an application, i.e. a program that does
not involve the Macintosh Pascal editing and execution environment.
Never save only in this form, as you will not be able to edit or even
print your program. Consult the Macintosh Pascal 2.0 Update docu-
ment on the Macintosh Pascal Utilities disk for details.

After saving with Save As... the title in the Program window
changes to whatever name you specified. Also, the topmost item in the
Windows menu gets that name, and choosing it displays the Program
window. Choosing Save from the File menu automatically replaces the
saved program with the current version, though Save As... is still avail-
able if you want to save with a different name (or disk).

It is a good idea to save your program at frequent intervals, say
after adding or changing about twenty lines of code. You will be glad
you did if there is a power failure, a system error, or, more likely, you
inadvertently lose or change code when editing.

2.8 Reverting to the last version

When something goes terribly wrong (such as a substitution with
Everywhere) and you feel that you have really messed up your pro-
gram, choose Revert from the File menu. This will restore your pro-
gram to the state it was in when you last saved it. A dialog box appears
to double check with you before reverting.

2.9 Opening a saved program

After entering the desktop at the start of a session on a Macintosh, you
can run Macintosh Pascal with an existing program by simply double-
clicking on the icon of that program (providing Macintosh Pascal is
present).

EDITING MACINTOSH PASCAL PROGRAMS

g
»

N
u

27



28

Alternatively, open Macintosh Pascal and choose Open... from
the File menu. A dialog box is displayed that looks and functions in a
similar way to the one for Save As... shown in Figure 2.4. Scroll the
contents window until the name of the program appears, click on the
name to select it (highlighting it), and click the Open button. A short-
cut is just to double-click on the name.

If you finish with a program in a Macintosh Pascal session, and
wish to work on another, save it, choose Close from the File menu,
and then open the new program.

2.10 Copying between programs

To copy part of one program (such as a procedure or function) for use
in another, open the program containing the text to be copied, select
the text, and choose Copy from the Edit menu, putting it on the Clip-
board. Then close the program and open the one to receive the text.
Set the insertion point and choose Paste from the Edit menu. The text
on the Clipboard is inserted.

The contents of the Clipboard can be copied into the Note Pad
or Scrapbook desk accessory (if available) by choosing the accessory
from the apple menu before choosing Paste from the Edit menu. Click
in the bottom-left corner of the Note Pad to pick one of its eight pages,
or scroll the Scrapbook to pick one of its areas. To copy from the
Note Pad, select the desired text and Copy to the Clipboard. It is not
possible to select part of a Scrapbook area — Copy copies all of the
currently displayed area to the Clipboard.

To extract rather than copy part of a program proceed as above
but choose Cut instead of Copy.

2.11 Printing

In the File menu there are two commands for printing: Page Setup...
and Print... .

Choosing Page Setup... produces a dialog box that displays the
current settings of various options that control printing, and allows you
to change them by clicking the appropriate buttons. You do not norm-
ally need to choose this before printing.

Choosing Print... produces a simple dialog box. The only
option is to print all the program (the default) or to indicate a range of
pages. To initiate printing, click OK.

You can print an image of the screen whenever your program is
not running, by first engaging the Caps-Lock-key and then holding

PROGRAMMING USING MACINTOSH PASCAL



down both the Command-key and the Shift-key as you type ‘4’. If the
Caps-Lock-key is disengaged, only the active window is printed.

2.12 Leaving Macintosh Pascal

To end a Macintosh Pascal session, choose Quit from the File menu.
If you have not saved your program since the last change, a dialog box
gives you the opportunity. The desktop will be restored to the state it
was in when you left it, except that some additional program icons may
be present.

2.13 Further reading

(1)  Anon. (1986). Macintosh Pascal 2.0 Update.
This is a MacWrite document included on the Macintosh Pascal
Utilities disk that comes with Macintosh Pascal 2.0. The section
headed ‘The Applications Shell’ explains how to use programs
Saved as Application. Much of the rest assumes familiarity with
the Macintosh’s operating system.

(2) Hueras, J. (1984). Macintosh Pascal User’s Guide. Apple product
#M1504. USA and Canada: Apple Computer, Inc.
This is one of the manuals that come with Macintosh Pascal. It
covers much the same material as do this chapter and chapter 4,
but is much richer in pictorial illustrations.

EXERCISES

Open Macintosh Pascal by double-clicking on its icon, and put it
through its paces by doing something like the following (in order):

2.1 The Macintosh Pascal environment
Browse through the menus at the top of the screen.

Experiment with moving and changing the size of the windows on the
screen.

Activate different windows on the screen. How do you activate a
window that is completely hidden?

Make the Program window occupy the whole screen prior to entering a
program.

EDITING MACINTOSH PASCAL PROGRAMS

29



Editing; error messages

Type the Backspace-key to get rid of program Untitled, then enter pro-
gram YouGuess2 from Chapter 3:

program YouGuess2 (Input, Output);

el:l.t.i. { YouGuess2 }

If you make a mistake you can use the Backspace-key to erase character
by character what you have typed so far. If you hold the Backspace-key
down, it will auto-repeat, enabling you quickly to erase half a line or
$0.

It is sensible to save a newly entered program before checking or
running it. Do so now.

Activate the Clipboard window, resize it to about three lines of half
screen width, and reposition it at the bottom right corner of the screen.

Now edit the program into program YouGuess3 in Chapter 3. Do so
by performing the following operations (which mostly proceed down
through the program), observing the changing contents of the Clip-
board:

e Insert and repeatedly before asks, by setting the insertion point
before a, and typing the missing text.

® Select { and ... correct } and type the two lines that should replace
it.

e Set the insertion point before var and type const ... number }.
Notice that const is displayed in bold, viz. const.

Replace the 10 after mod by MaxSecret.
Update the line before the first Writeln, replacing it with two lines.

Select 10 after and and replace it with ',MaxSecret, ’, hitting the
Return-key after the first comma to force a new line.

Insert first after your .

Copy the line if guess = secret then and replace the line before it
with a copy. (You can Paste to replace selected text.)

® Select if in the first occurrence of the duplicated line by double-
clicking, and type while to replace it; replace = by <>. Replace
then by do begin.

Insert end; WriteIn('That’’s correct!’) after the second last line.

Change = to > and update each of the two lines starting with
Writeln.

30 PROGRAMMING USING MACINTOSH PASCAL



23

Copy the two lines before the line starting with while.
After too low.’), add ; and then the two copied lines.

Change first to next in the first added line, and remove the semi-
colon at the end of the second added line.

Use the Search menu to change the name of the program: Choose
What to find... from the Search menu. Enter Guess2 as the Search for
text and Guess3 as the Replace with text. Put the All Occurrences
button on. Why? The setting of the other search option is unimportant
here. Why? Click OK to both confirm your selection and close the
dialog box.

Choose Everywhere from the Search menu. Is every occurrence of
YouGuess2 changed to YouGuess3? (It should be.)

At this point your program should be identical to the one given in
Chapter 3. Edit if necessary to make this the case.

Again choose What to find... and then Everywhere, this time to change
all occurrences of secret to number. Make sure at least one of the
Cases Must Match and the Separate Words buttons is on. Why?

Now try to reverse the previous change by repeating with the Search for
and Replace with texts swapped. Note that some spurious occurrences
of secret result.

Moral Think carefully before you choose Everywhere.

To restore the original occurrences of number, first choose What to
find... from the search menu and exchange the Search for and Replace
with texts. Then set the insertion point at the beginning of the pro-
gram, and make the necessary changes with a sequence of Find or Re-
place commands. Use the keyboard equivalent each time.

Choose Replace again. What happens? Why?
If you saved the original program, also save this new one. How do you

save a program once you have named it? What happens to the pro-
gram that was stored previously under that name?

Controlling the environment

Use Font Control from the Windows menu to peruse the available
fonts, and change the fonts in both the Program windows and the Text
window.

Choose Preferences from the Windows menu and change the indent
width and the space between tab stops. Note how the first change
affects the display of the program, and temporarily insert several tabs,
noting their effects.

EDITING MACINTOSH PASCAL PROGRAMS

31



24

25

2.6

w27

2.8

ity

29

Checking a program

Choose Check from the Run menu. Notice that the heading Run in the
menu bar is highlighted during this operation. If Check does not find
any errors, nothing further happens — you are not explicitly informed.
Otherwise, an error message is displayed at the top of the screen in-
forming you of the first error found.

In case Check did find an error, carefully check your program. The
smallest deviations, such as an additional or missing comma (,), can in-
validate the program.

If you did not get an error from Check, provoke one by simply remov-
ing any semicolon (;) in the program, and choose Check again. Fix the
error before proceeding.

Saving your program

Save the current program. If you have saved it before, save now under
a different name. If you have not, and you have your own new disk,
initialize it if necessary and save on it.

Reverting to the last version

Select a substantial part of the program and hit Backspace. It dis-
appears and, unlike the case with Cut, cannot be recovered with Paste.
Choose Revert from the File menu to restore the last saved version.

Opening a saved program

Close the current program and open.a different one. It does not matter
if you did not create it.

Copying between programs

Put the Clipboard on the screen, and copy a section of the program. If
the Note Pad or Scrapbook desk accessories are present, copy a differ-
ent section into each of them.

Close the current program (without saving it) and open the one you
worked on previously (YouGuess3). Insert the text in the Clipboard at
a chosen place in the program. If you copied to the Note Pad or Scrap-
book, insert the text you copied into the program.

Since you have just done something that makes no sense, revert to the
last saved program!

Printing
Obtain a printed listing of your program.

Send the current screen image to the printer, remembering to diseng-
age the Caps-Lock-key afterwards.

32 PROGRAMMING USING MACINTOSH PASCAL



2.10

Activate the Program window, set it to about half screen size, and print
an image of it (but not the rest of the screen).

Leaving Macintosh Pascal

First make sure that you have saved the current version of your pro-
gram to disk, by opening the File menu and checking that the Save
command is dimmed. If not, save the program.

Terminate the Macintosh Pascal session.

EDITING MACINTOSH PASCAL PROGRAMS

33



3

A PREVIEW OF PASCAL

Language is the dress of thought.
— Dr Johnson, Lives of the English Poets

3.1 The history of Pascal 36
3.2 Reading before writing 37
3.3 First program 37
3.4 Second program 40
3.5 Third program 45
3.6 Macaveats 47
3.7 Further reading 48

Exercises 49




3.1 The history of Pascal

The programming language Pascal was created around 1970 by Niklaus
Wirth, a professor of computer science at the Eidgendssische
Technische Hochschule in Ziirich, Switzerland. The period of its gesta-
tion was a heady one for computer science, in which great advances
were made in understanding the programming process. Wirth set out
to design a language that reflected the emerging fundamental structures
and concepts of programming.

Despite having no corporate or government backing, Pascal
achieved its present position as the virtual lingua franca of university-
level teaching of programming, an important language for both systems
and application programming, and the departing point for more
modern languages such as Ada and Wirth’s own Modula-2. Wirth
succeeded because his goals were wisely chosen and by and large were
met. He built a better bug-trap!

The final seals of approval were bestowed on Pascal when an
international standard was approved by the International Organization
for Standardization in 1982, and adopted (with one omission) by the
American National Standards Institute in 1983. We shall call the
language defined by ANSI, Standard Pascal, and the defining docu-
ment, the Standard. The significance of the Standard is that a Pascal
program that conforms to it is guaranteed to be treated in exactly the
same way by each Pascal translator that itself conforms to the Standard,
i.e. Standard Pascal programs are transportable.

This does not quite mean that an arbitrary Standard Pascal pro-
gram will produce the same output, irrespective of the Standard Pascal
translator that processed it, because certain properties of the Standard
language may vary between implementations. Prime examples are the
range and precision of real numbers (see Chapter 19). But in most real-
istic cases, the output will be identical, or nearly so for real numbers.

Except in a few relatively minor respects (all made explicit in the
sequel) Macintosh Pascal is an extemsion of Standard Pascal, i.e.

36 PROGRAMMING USING MACINTOSH PASCAL



Standard Pascal programs are accepted and behave as they should, but
additional features are provided, most of which provide access to the
built-in graphics and sound capabilities of the Macintosh, and, more-
over, do little violence to the Standard.

Our attitude to the differences between Macintosh Pascal and
Standard Pascal stems from the principle that language issues, and
especially the fine points, should not detract from the overriding aim of
learning how best to solve programming problems and how best to pre-
sent the solutions. Our first priority is learning problem solving rather
than learning Standard or Macintosh Pascal. Nevertheless, the ability
to program to a Standard is a valuable one; indeed, it is essential to the
professional programmer. Accordingly, usages at variance with the
Standard are pointed out in end-of-chapter sections headed
‘Macaveats’, and kosher alternatives are outlined whenever possible.

3.2 Reading before writing

Although Pascal is a relatively modest language, and was designed with
teaching in mind, its defining document runs to a hundred pages or so
of very technical jargon-ridden English. One way to proceed in learn-
ing to program with Pascal is to start with its basic low-level con-
structs, learning all the details, and seeing examples of their applica-
tion, and painstakingly working up to the higher levels of the language.
Such a bottom-up approach is traditionally used in presenting
mathematical theories, and it is the approach used in the formal
definition.

Humans, of course, do not learn their own languages in that
fashion. They are ambitious and impatient to use their language to
communicate, before learning all the subtleties of grammar and
vocabulary. Without wishing to push the analogy too hard, we take
the view that it is desirable for the beginner to be exposed to a simple
but non-trivial part of Pascal right from the start. This approach is con-
sistent with our natural mode of language acquisition, provides a con-
text that helps demystify the language constructs as they are explicated
properly later, and shows those with prior experience of another pro-
gramming language (Basic, perhaps) how Pascal compares with it.

So without further ado, let us launch with bold hearts and fear-
less spirits into an exciting voyage of discovery.

3.3 First program

Here is a complete Macintosh Pascal program:

A PREVIEW OF PASCAL

37



@

3.1

Figure 3.1
The Text window before
input.

38

program YouGuess (Input, Output);
{ Asks the user to guess a number, reads it, }
{ and announces that it is wrong! }
begin { YouGuess }
Writeln(’I”’m thinking of a number between 1 and 10 inclusive.’);
Write('Please type your guess: ’);
Readin;
Writeln('That”’s wrong.’)
end. { YouGuess }

Run this program by choosing Go from the Run menu. You
will first see the text: .

I'm thinking of a number between 1 and 10 inclusive.

appear at the top of the Text window. It will occupy one line, unless
the window is too narrow, in which case it will take as many lines as
necessary. Very soon after, a new line appears, and nothing further
happens. The Text window is now as shown in Figure 3.1.

What has happened so far is this. The program basically consists
of four statements, each of which specifies an action. Running the
program amounts to executing the statements in turn, starting with:

Writeln(’l”’m thinking of a number between 1 and 10 inclusive.’)

which printed the first line in the Text window. The next statement
printed the second line, which prompts the user to enter input. The
Macintosh is now executing the third statement, Readin, which reads
one line of input. It cannot be completed until a line is entered. Do so
by typing any text and then hitting the Return-key to finish the line.
You will see the text appear in the Text window as it is typed, and
then a third line appear very soon after you hit the Return-key. This
is because the third statement was executed, reading your line of input,
and then the fourth and last, writing the last line of output. Execution
of the program has now finished, and the Text window is now as
shown in Figure 3.2. (The input has been underlined to distinguish it
from the program’s output; it is not underlined on the Macintosh.)

Our first program plays a rather dirty trick on the user, reading
but ignoring the input line: it’s a tough program for tough times. If

S[E=—————— Tett ==——————
I'm thinking of a number between 1 and 10 inclusive. Q
Please type your guess:

PROGRAMMING USING MACINTOSH PASCAL



(=Tt "i—""——
I'm thinking of a number between 1 and 10 inclusive. |3

Please type your guess: I'm picking 4.
That's wrong.

|

your style isn’t so Nixonesque, you might change the last statement to
print “That’s close.’, or even ‘That’s correct.” if you can handle taunts
of ‘bleeding-heart liberal!”. Do so and rerun the program. You have
successfully modified your first Pascal program!

Let us now examine the program and learn what we can about
Pascal. We first notice some words in boldface; they are called re-
served words and cannot be used for other purposes. We also notice
that the other technical words, viz. Writeln, Write, and Readin, re-
cognizably derive from English. The statements are separated by semi-
colons — there is no semicolon following the last statement because it
is not followed by another statement. Macintosh Pascal has set out the
statements one per line. (Basic programmers please note: statements
are not numbered.) They appear in a context reminiscent of program
Untitled (see Figure 2.1). Matching curly brackets and the text they
enclose form a comment. Comments have no effect on execution; they
are included for the human reader. We correctly deduce that a pro-
gram may take the form:

program name (Input, Output);
comments
begin { name }
statements
end. { name }

where italicized terms are not literally present, but act as placeholders
for unspecified parts of the program. Each occurrence of name is the
same here; commenting begin and end with the program’s name is a
convention we shall adhere to. Its utility will become apparent later.
The first section of comments specifies what task the program per-
forms, in terms of what input it expects and what output it produces.
Do not worry about the presence of Input and Output in the first line;
their significance is explained in Chapter 5.

So much for now for syntax. Let us turn to the meaning of the
program: it is executed by executing each of the statements, in the
order written. We have seen examples of two kinds of statements. The
output statement:

Writeln(string)

A PREVIEW OF PASCAL

Figure 3.2
The Text window after
execution.

@

32

39



where string denotes arbitrary text enclosed by single quotes (’), writes
the string in the Text window and ends the line. The version using
Write (without the suffix In) writes the string in the Text window with-
out ending the line. You have no doubt noticed a peculiarity of
strings: when a single quote is wanted in a string, it is typed twice (but
only appears once when written). This is so Pascal can distinguish
single quotes in strings from those that delimit strings.

The input statement:

Readin

waits until a line of input is typed, and then ignores it! Actually, it
reads the line without remembering it.

3.4 Second program

The output of our first program does not depend on the user’s guess,
and the user will either deduce its true nature or postulate some form
of psychic (in)ability. The modified program below dispenses with the
pretence, giving the user a chance. It introduces several new features
which will shortly be explained, but you can probably figure out kow it
works by yourself. (What it does, at least in general terms, is stated in
the comments.) Give it a try.

program YouGuess2 (Input, Output);

{ Picks a number, asks for and reads a guess, }

{ and announces whether or not it is correct. }
var

X, ¥, { (X, y) is the mouse’s position }
secret, { the number to be guessed }
guess : integer; .

begin { YouGuess2 }

{ Define the number to be guessed }
GetMouse(x, y);
secret := (x + y) mod 10 + 1;

{ Prompt for and read the guess }
WriteIn(’'I”’m thinking of a number between 1 and 10 inclusive.’);
Write('Please type your guess: ’);
Readin(guess);

{ Announce the result of the guess }
if guess = secret then

Writeln("That’’s correct.’)
else
Writein('That™’s wrong.’)
end. { YouGuess2 }

40 PROGRAMMING USING MACINTOSH PASCAL



&= Test

I'm thinking of a number between 1 and 10 inclusive.
Please type your guess: 3, | can just feel it!

That's wrong.

31

<]

Right! Execution of YouGuess2 proceeds as before up to the
point where input is required. Now things ain’t what they used to be.
The input must start with a whole number (written with digits, not a
word), although it may be preceded by spaces. After the Return-key is
hit, a line is printed that announces the outcome. Furthermore, rerun-
ning the program with the same guess does not usually produce the
same output, as the secret number depends on the position of the
mouse (and the user isn’t told of that)! The Text window produced by
a typical run is shown in Figure 3.3.

In reading YouGuess2 you surely noticed the three comments
among the statements. These represent the high-level actions that were
originally chosen to solve the problem. They remain in the program to
describe what the Pascal statements do that follow (up to the next com-
ment or blank line). Thus you understand the body of YouGuess2 at a
high level as:

begin { YouGuess2 }
Define the number to be guessed ;
Prompt for and read the guess ;
Announce the result of the guess
end. { YouGuess2 }

Some new kinds of statement and other new constructs are used.
The most important new notion is that of a variable. It is a named
container of a value; the name of the container is fixed, but its value
may (and usually does) change during execution. The three lines
following var declare four variables to be used in the program. Their
names are X, Y, secret, and guess, and they will all have integer
values, i.e. whole numbers. There are many types of value in Pascal,
and when each variable is declared, as it must be, its type is specified.
Like its name, a variable’s type is fixed.

All variables used by the program are declared in the variable-
declaration-part, which starts with the reserved-word var and consists
of one or more declarations each followed by a semicolon. Since com-
ments may be ignored, we might correctly deduce from our program
that a declaration consists of a list of one or more names separated
by commas, then a colon (:), then a type (such as integer).

A PREVIEW OF PASCAL

Figure 3.3
The Text window after a
run of YouGuess2.

41



Figure 3.4
A picture of a variable.

42

secret
7

Unless a variable’s purpose is obvious from its name or the context of
its use, its declaration should be accompanied by a comment describing
1t.

We picture a variable as a named box containing its current
value. Figure 3.4 illustrates the integer variable named secret, assum-
ing its current value is 7. It would seem sensible to label the box with
the variable’s type, but we shall not do so since the type can be
deduced from the value (together with the context, if necessary).

When execution of a program begins, the variables exist but
have undefined values (which will be represented in pictures by
question-marks (?)). There are two major ways in which a variable
gets its initial value or a new value. One is by execution of an assign-
ment statement, an example of which is:

secret ;= (x + y) mod 10 + 1

When executed, this computes the value of (evaluates) the expression
on the right of the assignment symbol :=, and then makes this the
new value of the variable on the left. The assignment symbol is read as
‘gets’.

The expression above is a little complicated; let us see how it is
evaluated. Suppose x and y have the values 205 and 137 respectively.
The brackets around x + y force it to be evaluated first; the result is
342. The next value to be computed is 342 mod 10. The operator
mod gives the remainder when the integer on its left is divided by the
one on its right; in this case 10 into 342 goes 34 times with 2 re-
mainder, so the result is 2. Finally, 2 + 1 is computed to get 3, which
is the value of the entire expression. So the value of secret after exec-
ution of the assignment is 3.

The brackets around x + y are essential. Without them, Pascal’s
rules for expression evaluation require y mod 10 to be evaluated first.
The result in the example above would be:

205 + (137 mod 10) + 1

which equals 213. The program would run, but the chances of the user
guessing the secret would be unexpectedly remote! We shall see in
Chapter 10 that variable secret (and variable guess) can be declared to
have a value between 1 and 10, which if done (as it should be) would
cause a run-time error when an attempt is made to assign an improper
value.

PROGRAMMING USING MACINTOSH PASCAL



The operators + and mod are not the only ones used in integer
expressions. Also available are — (representing subtraction), * (re-
presenting multiplication), and div (representing integer division:
342 div 10 equals 34).

The other major way to give a variable a value is by reading a
value from input. An example is the input statement:

Readin(guess)
which is an abbreviation of the sequence of two input statements:

Read(guess);
Readin

The first of these waits for and then reads the input, skipping over
spaces and even new lines in search of a value for the integer variable
guess. An optional sign and then digits are read until a non-digit
character is encountered. The textual representation of the number
read is converted to an integer value which then becomes the new
value of the variable. We have met ReadIn before; it skips the rest of
the line.

Another newly introduced statement is the if-statement, which
has the form:

if condition then
statement

else
statement

A condition is a special kind of expression that when evaluated
produces either the value true or the value false. The conditional
statement is executed by first evaluating the condition. If it gives the
value true, the statement following then is executed, otherwise the
statement following else is executed. In our program, the condition is
guess = secret. Since the names of variables always stand for their
values in expressions, and = has its familiar mathematical meaning,
this condition gives true just in case the values of variables guess and
secret are equal.

It is not necessary to write variables either side of =; any two
integer expressions can be compared. We shall see later that expres-
sions of other types can also be compared. Neither is with = the only
way to compare them; the full complement of relational operators is
given in Table 3.1. The usual mathematical symbols in the last three
cases are <, = and #, respectively; these are not used since they are
unavailable on most keyboards.

A PREVIEW OF PASCAL

43



Table 3.1 The relational
operators.

Relational | Meaning
operator
= equals
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> not equal to

A conditional statement is called a structured statement because
it contains other statements as components. The part starting with
else can be omitted, meaning ‘else do nothing’.

YouGuess2 introduced one more new kind of statement:

GetMouse(x, y)

is a procedure statement. A procedure is a self-contained subprogram
that does something in terms of parameters. Section 10.6.3.2 of the
Macintosh Pascal Reference Manual (hereafter called the Reference) tells
us that: GetMouse(x, y) ... returns in X and y the horizontal and
vertical coordinates respectively of the ... cursor connected to the
mouse ... at the time GetMouse is called. Coordinates are integer
values; each position on the screen is defined by a horizontal co-
ordinate and a vertical coordinate; the origin, i.e. the position with
zero coordinates, is in the top-left corner of the Drawing window; hor-
izontal coordinates increase to the right; vertical ones increase down
(unlike the usual system in Cartesian geometry). The scale is 72 to the
inch in each direction.

GetMouse is a predefined procedure of Macintosh Pascal.
(Procedures can also be defined by the programmer; this facility is
crucially important, and what we have to say now applies also to such
procedures.) In the Reference the parameters x and y are used only to
define the effect of calling GetMouse. As with calls of the required
(by the Standard) procedure Read — yes, it is also a procedure,
though a special one — the two integer variables supplied in the call to
receive the values can have any names whatever. The same variable can
even be supplied twice. So we could change the names X and y in
YouGuess2 and the program would have the same effect. Of course,
this applies also to the names of the other variables.

There is another kind of parameter used with procedures. Its
role is to supply a value to the procedure, rather than, as happens with
GetMouse, to supply a variable to receive a value from the procedure.
The required procedure Write has such parameters.

44 PROGRAMMING USING MACINTOSH PASCAL



3.5 Third program

YouGuess2 is hardly satisfactory even for its modest application. A
respectable number-guessing game should let the user guess until he or
she is successful. The modified program below does this, and also
gives useful information about incorrect guesses.

program YouGuess3 (Input, Output);
{ Picks a number, and repeatedly asks for and reads a guess, }
{ indicating whether the guess is too high, too low, or correct }
{ (in which case it stops). }
const
MaxSecret = 10; { the biggest possible secret number }
var
x, ¥, { (x, y) is the mouse’s position }
secret, { the number to be guessed }
guess : integer;
begin { YouGuess3 }
{ Define the number to be guessed }
GetMouse(x, y);
secret := (x + y) mod MaxSecret + 1;
{ Repeatedly prompt for, read, and describe }
{ guesses until the guess is correct }
Writeln('I”’m thinking of a number between 1 and’,
MaxSecret, ’ inclusive.’);
Write('Please type your first guess: °);
ReadIn(guess);
while guess <> secret do
begin
if guess > secret then
Writeln('That’s too high.’)
else
Writeln('That”’s too low.’);
Write('Please type your next guess: ');
Readin(guess)
end;
Writeln('That’’s correct!’)
end. { YouGuess3 }

It is not so easy to guess what this program does, because a new
type of statement is used that employs an English word, viz. ‘while’, in
a way that differs from normal usage. The while-statement is written:

while condition do
statement

It is executed by repeatedly executing the statement it contains (which

A PREVIEW OF PASCAL 45



is called its body), provided that before each successive repetition (in-
cluding the first), the condition gives true. When the condition gives
false, execution of the while-statement finishes.

It sometimes happens that the action that is to be repeatedly
executed is expressed with several Pascal statements rather than one.
For this reason, the while-statement is often used with a compound
statement, which is a single statement formed by enclosing a sequence
of statements between begin and end:

begin

statements
end

It is executed by simply executing each of the statements in the
sequence in the given order.
Another new feature is the constant definition:

MaxSecret = 10

which makes the name MaxSecret stand for the constant 10. Note that
MaxSecret is not a variable — it makes as little sense to try to assign a
value to it as it does to assign a value to 10. The constant-definition-
part appears before the variable-declaration-part. It consists of the re-
served word const followed by one or more constant definitions, each
followed by a semicolon. It is good practice to use named constants to
demystify various magic values in the program.

There is a new example of the Writeln-statement, hinting at the
general form, where a list of expressions separated by commas may
appear between the brackets. The effect is to evaluate and then print
the value of each expression in turn, and then end the line. As with
the Readln-statement,

Writeln(list-of-expressions)
is equivalent to:

Write(list-of-expressions);
Writeln

The first statement does the writing; the second ends the line. We
have already seen that a string is written literally (and now know that
strings, too, are expressions). An integer value is written in familiar
decimal notation using a fixed number of characters. Enough leading
spaces are written to ensure that the last character is the last digit. In
Macintosh Pascal, eight characters are written; provided a fixed-width

46 PROGRAMMING USING MACINTOSH PASCAL



9

/[:

= Tt =— |
I'm thinking of a number between 1 and 10 inclusive. iy
Please type your first guess: 5
That's too high.

Please type your next guess: 2
That's too Tow.

Please type your next guess: 3
That's too low.

Please type your next guess: 4
That's correct!

2K

font is used in the Text window, the output width for an integer is
constant.

Now we can understand YouGuess3, seeing that it does indeed
do what its first group of comments claims. It starts by defining the
secret number, and writing output as in YouGuess2, except that the
first guess is requested. If it equals the secret, a new line announces
that, and execution finishes. (Since the condition of a while-statement
is checked before each potential execution of its body, the body will
not be executed at all if the condition initially gives false.) If the guess
is incorrect, the compound statement is executed that first announces
whether the guess was high or low, and then prompts for and reads the
next guess. Then that is compared to the secret, and so on until the
correct value is guessed. The input and output for a typical run is
shown in Figure 3.5.

The ability to describe repetition is one of the most important
attributes of a programming language. The while-statement is the
fundamental form of repetition in Pascal, although there are two other
statements provided for expressing special forms of repetition.

This completes our preview of Pascal. It is important to
appreciate that we have been reading programs, not writing them. You
may now be able to execute a program that is composed of the features
we have seen (although many details remain to be given). But it is a
much bigger intellectual step to writing them. After all, even
computers can do the former! And there are six-line while-statements
whose understanding can tax even the most accomplished of pro-
grammers. We’ve only just begun ...

3.6 Macaveats

The scheme of interactive I/O illustrated in our example programs
works very nicely on the Macintosh, but it need not according to the

A PREVIEW OF PASCAL

Figure 3.5
The Text window after a
typical run of YouGuess3.

47



Standard. Specifically, text output by Write need not be sent to the
output device before the following Read is executed. The details of
interactive I/O are given in Chapters 5 and 14. But the news is that
the Standard cops out in this respect, and there is no technique that is
guaranteed to be transportable.

Contrary to this book, the Reference does not state that an in-
teger is written in a field of 8 characters. Instead, it implies (on pp.
9-16 to 9-18) that the minimum number of characters is used, so that,
for example, 0 would be output as just 0. This is contrary to the
Standard and the observed behavior of Macintosh Pascal 2.0. Put it
down to a bug in the Reference.

3.7 Further reading

()  Anon. (1983). Specification for Computer Programming Language
Pascal. Document ISO 7185:1983. International Organization
for Standardization.

The international standard. Included for completeness only;
there is little reason for a beginner to consult it.

(2 Anon. (1983). American National Standard Pascal Computer Pro-
gramming Language. ANSI/IEEE770X3.97-1983. New York:
IEEE/Wiley-Interscience.

The US standard — what this book calls the Standard. Differs
from the ISO document in omitting conformant arrays.

(3) Cooper, D. (1983). STANDARD PASCAL User Reference
Manual. New York: Norton.
Lives up to its self-description as ‘a correct, comprehensive, and
comprehensible reference for Pascal.” For the professional Pascal
programmer or the stickler for detail.

@ (4)  Hueras, J. (1984). Macintosh Pascal Reference Manual. Apple

33 product #M1505. USA and Canada: Apple Computer, Inc.
The Reference — one of three manuals that come with Macintosh
Pascal. Presumably intended to be definitive, but there are
cases where the Macintosh Pascal software is at variance with it.
Where the fault is an obvious bug in the software, this book
sides with the Reference. But there are cases where the fault
would appear to be in the Reference. An example is given in
the last paragraph under ‘Macaveats’. In such cases, this book
sides with the software.

48 PROGRAMMING USING MACINTOSH PASCAL



EXERCISES

Exercises involving running the programs presented in this chapter are
postponed until Chapter 4.

3.1 The sample programs tell the user that a number has been chosen that
is between 1 and 10 inclusive. Does the assignment to variable secret
always give such a number? Why?

3.2  What does the assignment statement
number := number + 1
do to the integer variable number?

The next three exercises actually involve writing and modifying Pascal
programs. This may seem a little premature, but you did learn to
speak English by imitation, the exercises are quite modest, and you
have already written your own output statements. So why not give
them a try?

3.3  Modify program YouGuess3 so that after the last (successful) guess it
prints the number of guesses. You’ll need a new integer variable which
should be initialized to zero.

Hint: Use the answer to Exercise 3.2.

3.4  Congratulations if you solved the previous question! (If not, don’t
worry, the technique you need is covered in Chapter 5.) If you just
printed a bare number, spruce up the last output statement so that it
prints something like:

You guessed 3 times.

3.5  Write Algorithm (a) given in Exercise 1.4 in Pascal.

A PREVIEW OF PASCAL 49



4

RUNNING MACINTOSH
PASCAL PROGRAMS

None of the programs in this monograph, needless to say, has been
tested on a machine.
— Edsger W. Dijkstra, A Discipline of Programming

4.1 Introduction 52
4.2  Running a program 52
4.3  Controlling execution 52
4.3.1 Stopping execution 53
4.3.2 Stepwise execution 53
4.3.3  Setting stop marks 53
4.4 Tracing execution 54
4.5 The Instant window 54

Exercises

55




5y

4.1

52

4.1 Introduction

Like Chapter 2, this chapter is designed to serve as a reference, so do
not be worried if some of the material seems strange on first reading.
The only way to learn how to exploit the features of the Macintosh
Pascal programming environment properly is to experiment with them
on a Macintosh. The exercises invite the reader to do just that. They
are presented in the same order as the text, so that you can tackle them
either after reading the whole chapter, or during the first reading as the
appropriate material is covered.

4.2 Running a program

To run a program, choose Go from the Run menu. If changes have
been made since the last Check or run, the translator is automatically
invoked. If the translator detects no errors, execution begins. An
error (such as an illegal operation) may occur during execution, in
which case execution stops and a message is displayed. Or the pro-
gram may run without error but never stop! If both these hurdles are
passed, there is the further possibility — historically a probability for
most new, non-trivial programs — that the output produced is in-
correct. Then you need all the help you can get.

4.3 Controlling execution

Errors that are revealed by execution (called bugs) are the hardest to
fix. Macintosh Pascal has sophisticated facilities for controlling and
observing the execution of a program, which are very helpful for test-
ing and debugging programs.

PROGRAMMING USING MACINTOSH PASCAL



4.3.1 STOPPING EXECUTION

Whenever your program is running, the menu bar contains the Pause
menu. Its only available command is Halt. If you press on Pause,
execution is suspended until you release the mouse button. Choosing
Halt stops execution of the program. To resume execution, choose Go
from the Run menu; but if you want execution to start again from
scratch, choose Reset and then Go from the Run menu.

4.3.2 STEPWISE EXECUTION

You can run your program one step at a time by choosing Step from
the Run menu. A hand appears in the left margin of the Program
window. Each time you choose Step, the line pointed to by the hand
is executed, and the hand advances to the next line to be executed.

Choosing Step-Step from the Run menu causes execution to step
continuously until it finishes, an error occurs, or you stop it. You can
watch the hand trace through the program.

4.3.3 SETTING STOP MARKS

Stopping a program by choosing Halt from the Pause menu is a rather
crude way of interrupting execution. A Pascal program executes many
statements a second, and quite often you want a program to run norm-
ally until it reaches some critical statement and then stop precisely
there. Unless you are a video games virtuoso, your chance of hitting
that statement with Halt is small.

There is a much better way: choose Stops In from the Run
menu. A white bar appears in the left margin of the Program window,
with a small stop sign at the bottom. When you move the cursor into
the bar, it changes into a stop sign. If you click when the stop sign
cursor is before an executable statement, a stop sign is deposited there.
You can deposit as many as you like. When the program is executed,
it stops whenever the hand reaches a line marked with a stop sign
(before executing it).

To restart the program, choose Go from the Run menu; the pro-
gram resumes execution at the line where it stopped, and continues un-
til the next stop mark is reached.

Choosing Go-Go from the Run menu causes the program to stop
at each stop mark only long enough to update the Observe window
(another testing aid, described below). Used in conjunction with a stop
mark inside a loop, Go-Go enables you to observe the values of vari-
ables as they change after each iteration.

To remove a stop mark, point at it and click. To get rid of
all stops, switch off the stop feature by choosing Stops Out from the
Run menu.

RUNNING MACINTOSH PASCAL PROGRAMS

Step-Step

g

o:

Stops Out.

53



Figure 4.1
The Observe window.

o

4.4 Tracing execution

The Observe window allows you to observe the values of expressions
(and therefore variables) as they change during execution. It is an in-
valuable aid to testing and debugging programs, particularly when used
in conjunction with stepwise execution and stop marks.

When you choose Observe from the Windows menu, the
Observe window becomes visible and active. It consists of a number of
rows divided by a vertical line into two parts. In the right parts you
can type (or Paste) expressions, using the Enter-key to skip to each
new part. Whenever the program pauses or halts, the value of each
expression is calculated and displayed to the left of the expression.
Figure 4.1 shows the Observe window in use with program
YouGuess3 from Chapter 3.

The best ways to use the Observe window are with Step-Step,
when the values are updated after each step, or by leaving stop marks
where the values of the expressions are of interest, and either to choose
Go repeatedly to resume execution or to choose Go-Go just once.

A restriction should be noted: expressions that depend on key-
board input (such as eoln) cannot always be evaluated. In such cases
you will get the error message ‘Can’t use keyboard’.

4.5 The Instant window

Any time that your program is not running, you can use the Instant
window to execute any Pascal statement or statements immediately.
You can even change the value of one or more of your program’s vari-
ables before resuming execution.

Choosing Instant from the Windows menu displays the Instant
window and makes it active, as shown in Figure 4.2. You can enter
and edit any Pascal statements there, using the Edit menu to copy and
paste between the Program, Observe, and Instant windows. Clicking
the Do It button executes the statements you have entered.

The Instant window is of limited and dubious use. It is limited
because a call to a procedure that the interpreter has not yet en-
countered, for example, will not be executed. It is dubious because

E(J=— Observe —r— =
5 [guess a3
1 [secret
Enter an expression | NN -
o

54 PROGRAMMING USING MACINTOSH PASCAL



Instant =———

i

tAny statements, any time.}

i<

there is little it does that cannot be done better with the Observe
window or by editing the program, and because there is much it
permits that is unwise (such as arbitrary assignments).

We shall use it mainly as an aid to learning low-level Pascal.

EXERCISES

The first group of exercises assume that program YouGuess3 from
Chapter 3 is in the Program window, ready for execution.

4.1

4.2

43

Running a program

Run the program. To be able to see its output you have to make the
Text window visible. Whenever input is required the program will
prompt you (with a message in the Text window) to enter input. To do
s0, type a number and press the Return-key. What happens?

Controlling execution

Step through the program, observing the moving hand. Use the key-
board equivalent of Step from the Run menu.

Run the program again, but this time choose Step-Step from the Run
menu instead of stepping manually.

Choose Stops In from the Run menu. Set a stop mark at the line that
reads while guess <> secret do. Run the program by choosing Go
from the Run menu. What is its keyboard equivalent?

What is the effect of the stop mark on execution? How do you restart
the program?

Rerun the program, but this time choose Go-Go from the Run menu.
How does this differ from using Go?

You can combine stop marks and stepwise execution. Choose Step-Step
from the Run menu without removing the stop mark.

Tracing execution
Activate the Observe window. Type guess in the first line.

Activate the Program window and select any of the occurrences of
secret. Choose Copy from the Edit menu. Now activate the Observe
window and set the insertion point to the second line. Choose Paste

RUNNING MACINTOSH PASCAL PROGRAMS

Figure 4.2
The Instant window.

55



from the Edit menu to put secret there.

Using Copy and Paste to transfer a single word between the Program
and the Observe window is hardly worth the effort in this case. When
would it be?

Now run the program. What happens to the Observe window? Why?
Choose Step-Step from the Run menu to rerun the program.

Choose Go-Go from the Run menu to rerun the program.

Deactivate the stop feature.

4.4  The Instant window
Activate the Instant window.

Enter Writeln('Cogito Ergo Sum.’). Make sure that the Text window
is visible, then click Do It.

Make the Observe window active (with guess and secret entered),
then run the program. Halt it when it prompts for input. What
happens? Enter secret := 2 in the Instant window (except if 2 appears
to the left of secret in the Observe window, in which case use 3 in-
stead of 2), then Do It. What happens? Resume execution of the pro-
gram.

Use the Instant window to experiment with different output statements
and different types of expressions. What output is produced by a con-
dition?

4.5  Change the value of MaxSecret to 100, then run the program. Note
that it works as it should because every use of MaxSecret was
explicitly identified. By the way, you should be able to guess the secret
in at most 7 guesses!

The remaining exercises do not involve program YouGuess3.

4.6 Use the Instant window to execute different Write- and Weriteln-
statements with string expressions only. Observe their effects in the
Text window.

4.7  Execute program YouGuess2 by repeatedly using Step. Use the
Observe window to track the values of the four variables. What
happens if the same input is typed as for YouGuess in Figure 3.2?

4.8 Investigate the coordinate system of the screen by writing a little pro-
gram that just repeatedly gets the mouse position. It need never stop,
so you can use 1 = 1 or just true for the condition of the while-
statement. Use the Observe window to follow the changing values of
the coordinate variables as you move the mouse around. Execute the
program by repeatedly using Step.

56 PROGRAMMING USING MACINTOSH PASCAL



BASIC PASCAL

Oh! I know their tricks and their manners.

— Charles Dickens, Our Mutual Friend

5.1 Introduction 58
5.2 Specifying syntax 58
5.3 Types of values 60
5.3.1 Integer 61

5.3.2 Real 62

5.3.3 Char 65

5.3.4 Boolean 67

5.4 Expressions 68
5.5 Constants and variables 71
5.5.1 Constant definitions 71

5.5.2 Variable declarations 72

5.5.3 The assignment statement 73

5.6 Input and output 75
5.6.1 Input 75
5.6.2  Output 78

5.6.3 Interactive I/O 81

5.7 Conditional statements 83
5.8  Repetitive statements 86
5.9 Programs 90
5.9.1 High-level syntax 90

5.9.2 Low-level syntax 91

5.10 Macaveats 93
Exercises 94




58

5.1 Introduction

This chapter presents the fine print for the part of Pascal previewed in
Chapter 3. Several new features are introduced: the types real, char,
and Boolean, required functions, the repeat-statement. With the
exception of our method of specifying syntax, which is designed to be
as natural and non-technical as possible, no major new concepts are in-
troduced. The aim is to flesh out a modest sublanguage of Pascal, yet
one that is sufficiently powerful to tackle interesting programming
problems.

Much of the information in this chapter consists of relatively
unimportant nitty-gritty details that are peculiar to Standard Pascal or
Macintosh Pascal (if not outright peculiar). They are here because
sooner, but most likely later, you will want to get the details right, or
perhaps because something unexpected happens that involves some fine
points. Be assured that the challenge in learning to program is not to
memorize massive amounts of low-level knowledge, but rather to learn
how to solve programming problems effectively. The tough get going
in the next chapter.

5.2 Specifying syntax

Learning a new programming language necessarily involves learning its
syntax, or written form. Your implicit working knowledge of the
syntax of English was deduced from the set of examples of English that
you were exposed to, and was perhaps augmented by an informal study
of syntax at school (‘a sentence is a subject followed by a verb followed
by an object’). Such approaches will not do for a language that is to be
translated by a computer: a formal method is needed. The Standard
defines Pascal’s syntax using a particular formal method called
Extended Backus Naur Formalism, or EBNF for short. (It is briefly
described in Section A.4 of the Appendix). We shall use a method that
is loosely based on EBNF, but that strives closely to reflect the way

PROGRAMMING USING MACINTOSH PASCAL



programs are displayed by Macintosh Pascal. It tries to follow the
principle that what you see is what you should get.

The Reference, as well as most texts on Pascal, presents syntax
using graphical devices called syntax diagrams, sometimes called
syntax charts. They were introduced by Wirth for his reports on
Pascal, and have since become de rigueur. Accordingly, syntax diagrams
for Pascal are presented in Section A.3 of the Appendlx, after an
explanation of their use in Section A.2.

Our method was broached in Chapter 3. The basic ideas are:

] To represent each important class of syntactic items by a
technical term;

° To describe the typical member of each syntactic class by dis-
playing it as does Macintosh Pascal, using italicized technical
terms to stand for arbitrary members of their corresponding
syntactic classes, and displaying literal text in the Helvetica font.

For example, we use the term ‘identifier-list’ for the class of comma-
separated lists of legal Pascal names, ‘type’ for the class of types, and
‘variable-declaration’ for the class of (you guessed it) variable declara-
tions. The syntactic form of a variable declaration is defined as follows:

variable-declaration: identifier-list : type

It says that a variable-declaration consists of an identifier-list followed
by a colon followed by a type. Note that the colon, in Helvetica,
appears literally. Spaces are not significant.

To express the notion of arbitrarily many, the time-honored
device of three dots is used. When it appears on a line by itself, it re-
presents arbitrarily many (possibly zero) appearances of the previous
line, as in:

variable-declaration-part:
var
variable-declaration ;

This says that a variable-declaration-part starts with the reserved-word
var, which is followed by one or more variable-declarations, each of
which is followed by a semicolon. Moreover, it shows the layout used
by Macintosh Pascal. Incidentally, this definition will be modified
later to show that a variable-declaration-part may be empty.

When three dots occur within a line, the following part of the
line may appear zero or more times, as in:

BASIC PASCAL

59



identifier-list: identifier ... , identifier

This says that an identifier-list consists of an identifier followed by zero
or more groups, each consisting of a comma followed by an identifier.
Note that, unlike in the other case, the repeated part might not appear
at all.

Syntactic alternatives are separated by a vertical bar (‘|’, read
‘or’), as in:

input statement: Read-statement | Readln-statement

This says that an input statement is either a Read-statement or a
Readln-statement.

A vertical line on the left indicates that the lines that it spans are
optional. You may regard it as a vertical bar separating an empty alter-
native on its left from another on its right. For example:

statement-list:
statement ;

statement

This says that a statement-list consists of a statement optionally pre-
ceded by one or more lines, each consisting of a statement followed by
a semicolon.

Similarly, an underlined section of a line is optional. For
example:

ReadIn-statement: Readin (variable-list)

It says that a Readln-statement consists of Readin optionally followed
by a group consisting of a left-bracket followed by a variable-list
followed by a right-bracket.

These techniques are all we need to specify Pascal’s syntax. So
now let us look at the language itself, working bottom-up from the
simplest components.

5.3 Types of values

Each variable used in a Pascal program is declared to have a certain
type. It determines the set of possible values of the variable, and
what operations may be performed with it. Standard Pascal has four

60 PROGRAMMING USING MACINTOSH PASCAL



required simple types: integer, real, char, and Boolean. We shall look
at each in turn.

5.3.1 INTEGER

As we saw in Chapter 3, type integer corresponds to the mathematical
integers, i.e. all the whole numbers, whether positive, zero, or nega-
tive. For practical reasons, Pascal’s integers are constrained to lie
between minus and plus a machine-dependent limit, which is made
available as a predefined constant:

const
Maxint = 32767; { integers lie in the range —Maxint..Maxint }

Integer constants are written in familiar decimal notation. An in-
teger constant is called a signed-integer. Its syntax is defined below,
using some extra terms which are needed later.

signed-integer: sign unsigned-integer

sign: + | -

unsigned-integer: digit-sequence
digit-sequence: digit ... digit

digit 0[1]|2]|3|4|5|6]|7|8]9

Note that neither a decimal point nor the common convention of using
commas to group digits into thousands is allowed. Here are some
signed-integers:

2001 -65 O 007

Although leading zeros are permitted, it is not normal practice to use
them. The plus sign is normally omitted; —0, +0, and O all represent
the number of Beatles’ singles that bombed.

Macintosh Pascal also provides a type longint that has a bigger
range of values than integer. See Chapter 19.

Integer expressions are constructed from constants, variables,
operators, and functions. The operators listed in Table 5.1 take two
integer operands and return an integer result. Each of these operators
is written between its two operands (but see below re + and —).

The value returned by div can be defined as the exact real
quotient with its fractional part discarded. Division by zero is an error.
For example:

31div7 gives 4, since % = 442857 ...

BASIC PASCAL

61



Table 5.1 Integer
operators.

62

Operator | Operation
+ addition (or multiplication by +1)
- subtraction (or multiplication by 1)
* multiplication
div integer division
mod the modulo operation

—21div5s gives -4, since _521 =42

2div9 gives 0, since % =0.22222 ...

The value of x mod y is defined only when y > 0 — it is an
error otherwise. It is the smallest integer = 0 that leaves an integral
multiple of y when subtracted from x. It is thus in the range 0 .. y —1.
When x is non-negative, as it usually is in this context, x mod y is the
remainder from x div y. For example:

31mod7 gives 3, since31-3=28=4X%x7
—21mod5 gives 4, since -21-4=-25=-5X35
2mod9 gives 2, since2-2=0=0X9

Operators + and — can also be placed in front of a single integer
operand to denote multiplication by +1 or —1 respectively.

The remaining building-blocks for integer expressions are func-
tions, which can either be predefined or defined by the programmer.
A Pascal function returns a single value that depends upon given values
called arguments, i.e. it is just like a mathematical function. There are
two required (and therefore predefined) functions that take and return
integers:

abs(x): the absolute value of x, i.e. x if x = 0 or —x if x < 0.
sqr(x): the square of x, i.e. x? (x X x).

The rules for forming and evaluating expressions are dealt with
in Section 5.4.

5.3.2 REAL

Type real corresponds to the mathematical real numbers. For practical
reasons, Pascal’s real numbers are constrained to lie between two
limits, and also to have a limited number of significant digits. In

PROGRAMMING USING MACINTOSH PASCAL



Macintosh Pascal, the range of real values is approximately —3.4 x 103
to 3.4 x 10%, that is, -R to +R, where R is approximately
340000 000 000 0600 000 000 000 000 000 000000 000. The smallest posi-
tive non-zero real number is approximately 1.5 x' 10, The number
of significant decimal digits is between 7 and 8. Unfortunately, none of
these machine-dependent values is captured by a predefined constant.

Real constants may be written in familiar decimal notation,
using a decimal point. But because they can be very large or small,
they may also be written in power notation, i.e. using powers of 10 as
above. Superscripts are avoided by writing En instead of X 10”. The
full syntax is specified as follows:

signed-real: sign unsigned-real

unsigned-real: digit-sequence . digit-sequence |
digit-sequence . digit-sequence E scale-factor

scale-factor: sign unsigned-integer

Note that if a decimal point appears it must have at least one digit on
either side. Here are some signed-reals:

2001.0 -6.5E1 0.0 7EO
1E+9 1.0E+9 1E9 1000000000.0
iE-6 1.0E-6 0.000001

The numbers in the first line are real versions of the integers given
previously, but they are not the same numbers. The numbers in the
second line all represent the same real number: a (US) billion. The
numbers in the third line all represent one millionth.

Macintosh Pascal also provides types double and extended that
have bigger ranges of more precise real values. See Chapter 19.

The operators listed in Table 5.2 take two reals and return a real
result. Again, each of these operators is written between its two real
operands; also, + and — may be written in front of a single real oper-
and. Real division is what you would expect:

31/7 gives 4.42857 ...
-21/5 gives 4.2
2/9 gives  0.22222 ...

Real operations rarely produce the exact result, and it is necessary to
be very careful when doing calculations with real values. The topic is
taken up in Chapter 19.

The functions abs and sqr may also be applied to a real argu-
ment, in which case a real value is returned. Several other required
functions are provided that always produce real values:

BASIC PASCAL

63



Table 5.2 Real operators.

Operator | Operation
+ addition (or multiplication by +1)
- subtraction (or multiplication by -1)
* multiplication
/ real division

sqgrt(x): the non-negative square root of x (x must be = 0)
sin(x): the sine of x (x represents radians)

cos(x): the cosine of x (x represents radians)

arctan(x): the principal value, in radians, of the arctangent of x
exp(x): e to the power x

In(x): the natural logarithm of x (x must be > 0)

Because every integer value has a corresponding real value, in-
tegers may be used in expressions in place of reals. When only integers
are used with +, —, *, abs, or sqr, the result is an integer, as stated
previously. Otherwise, the result is real. Here are some examples:

1E2 * 0 gives 0.0
1005 + 1 gives 101.5
9/5 gives 1.8 (not 1)
sqrt(9) gives 3.0

Remember, the results may not be exactly those shown.

Real values do not have corresponding integers, but there are
two required functions that convert real values to integer values,
provided the results are in range:

trunc(x): the integer part of x
round(x): the nearest integer to x, rounding to a greater absolute value
if there is a choice

Thus, for example:

trunc(19.95) gives 19
trunc(-19.95) gives -19
round(19.95) gives 20
round(-19.95) gives -20
round(1.5) gives 2
-round(-1.5) gives -2

They are called transfer functions, because they transfer between two
types.

64 PROGRAMMING USING MACINTOSH PASCAL



5.3.3 CHAR

Although digital computers were originally devoted mainly to numeric
computation, number-crunching is no longer their most important task.
The ubiquity of computers is due to their ability to perform all kinds
of non-numeric computation. The most common form of non-numeric
information is textual, and its basic unit is the character.

The Pascal type char has as its values the characters made avail-
able by a particular implementation. The set of these values, called
the character set, is therefore implementation-dependent. Macintosh
Pascal provides 256 characters, numbered 0 to 255. They are shown in
Table 5.3, which is taken from Appendix E of the Macintosh Pascal
Technical Appendix (see the ‘Further reading’ list at the end of
Chapter 9). Not all of them are visible; those that are not are called
control characters, because they are used to send control information

0123 456 7 8 9101112 13 14 15
0| N |oe O@P“pAéTw6
=™ i1{1/A|Qla|q|A|&]|°]+];
211 {72 |B|R|blr|Cli]¢]¢]n
el |#[8|C|S|c|s|E|i[s]) |V
A= ™| $ |4 |D|T|d|t|N|1|§|¥|Ff
SI™|™|%|5|E|U|e|ulO|i]||u]|z=
6l |™|&|6|F|V|f|v|U|n|]]a]A
=" |7|c|w|lg|w|a|o|B|Z]«
8= (™| (|8|H|X|h|x|al|o|®|O|»
ol | |ylo|1|Y|i|ylal|o|e|n
10fv =] « JIZljlzlalo|™| S|
=l K[ |x|{]ala]| |alA
217050, [<|L|N\|1]|]| |a]a] |e]|A
Bl™ & -|=[M|1|m[}|¢|ul#]|Q|0
M= g5l [> IN| " |n|” |é|a|&|e|®
Sfs il /1 2]0|—|o|™|e|ii|@]|o]|oe

Table 5.3 The Macintosh
Pascal character set.

BASIC PASCAL 65



to various devices. The control characters are those in the first two
columns.

Character constants are written by enclosing them in single
quotes. As we saw previously, the single quote character is written
twice, and enclosed in single quotes like the others, so that four single
quotes represent the single quote character! Pascal does not have a
special syntactic class for character constants, because they are the
character-strings of one character. Their syntax is given by:

character-string: ' string-element-sequence ’
string-element-sequence: string-element ... string-element
string-element: string-character | apostrophe-image
string-character: one-of-the-visible-characters-in-Table-5 .3-except-'
apostrophe-image:

Here are seven different character constants:
IA] !al )1! )$Y '*, L 1399

The latter two are the space (or blank) and the single quote (or
apostrophe).

There are no operators that give character values, but there are
two required functions that do:

succ(c): the character after ¢ in the character set
(it is an error if ¢ is the last character)

pred(c): the character before ¢ in the character set
(it is an error if ¢ is the first character)

The ordering of the characters is captured by two required
transfer functions:

ord(c): the position of ¢ in the character set;

positions start with 0, and, in Macintosh Pascal, go to 255
chr(i): the character in position ¢ in the character set

(it is an error if 7 is not in the range of positions)

Values returned by ord are called ordinal values. They may be read
off Table 5.3 by multiplying the column number by 16 and adding the
row number.

Here are some examples of the above functions:

succ('A’) gives 'B’
pred('7’) gives '6’
ord(’'a’) gives 97
chr(98) gives 'b’

66 PROGRAMMING USING MACINTOSH PASCAL



None of the above results is guaranteed by the Standard, which re-
quires only that ordinal values increase when proceeding through both
the upper-case (i.e. capital) letters and lower-case letters in alphabetic
order, and that the digits form a contiguous group in numeric order.
Thus, for example, ord('7’) — ord(’6’) must give 1, but ord(’c’) —
ord(’b’) need only give a value = 1 (although both groups of letters are
contiguous in Macintosh Pascal, and in most other implementations).

5.3.4 BOOLEAN

The type Boolean is named after the nineteenth century English
mathematician George Boole, because he first expounded the properties
of its operators. It is a rare program that does not use Boolean values,
since what were called conditions in Chapter 3 are Boolean expres-
sions.

There are only two Boolean values, written:

false true
The syntax of Boolean constants is subsumed in:
constant-identifier: identifier

The syntax of identifier is given later.

The three operators that take and return only Boolean values are
listed in Table 5.4. They may be defined thus, letting p and ¢ stand
for Boolean values:

not p gives  true if and only if p is false.
pand g gives true if and only if both p and q are true.
porg gives  true if and only if at least one of p, ¢ is true.

(We henceforth write ‘iff” for ‘if and only if’.) It is these technical
definitions that you should keep in mind when you use these operators
— everyday usage of the corresponding English words is less precise.
Some examples:

not true gives false
true and false gives false
true and true  gives true
false or true gives  true
false or false  gives false

The operands of Boolean operators are typically produced by the
relational operators that we met in Chapter 3:

BASIC PASCAL

67



Table 5.4 Boolean
operators.

Operator | Operation
not logical negation
and logical and
or logical inclusive or
< > <= >= = <>

When used with numeric values they have their usual mathematical
meanings. They may also be used with character values (and, as we
shall see later, strings). In this case, the result is the same as that
obtained by comparing the ordinal values of the two characters. For
example:

77 >="0" gives true
a’ <’b’ gives true
'a’<'B gives false (in Macintosh Pascal)

Boolean values themselves can be compared: false < true gives true.
This is not normally done, but it does allow other logical operators to
be represented: <=, =, and <> correspond respectively to logical
implication, equivalence, and exclusive or. (You need not worry if
those terms are unfamiliar.)

Save for the fact that an integer may be compared with a real,
the two operands of a relational operator must produce values of the
same type. It makes no sense, for example, to compare a character to
an integer.

Three required functions return Boolean values. Two of them,
viz. eoln and eof, test certain input conditions, and are discussed later
in this chapter. The other one is odd (so to speak):

odd(z): true if and only if the integer value i is odd,
ie.iffimod2 = 1.

5.4 Expressions

As stated previously, expressions are constructed from constants, vari-
ables (which stand for their current values), operators, and functions.
One way to specify the legal expressions is as follows:

(1) A constant is an expression. Examples: 1, 1E2, 'I’, true, Max-
Secret.

(2 A variable is an expression. Example: guess.

68 PROGRAMMING USING MACINTOSH PASCAL



(3)  An operator with arbitrary expressions as operand(s) is an
expression, provided the number, order, and types of the oper-
and(s) satisfy the appropriate requirements, and rules 6 and 7
are met. Examples: x + y, (x + y) mod 10, not odd(i).

(4 A function with arbitrary expressions as argument(s) is an
expression, provided the number, order, and types of the argu-
ment(s) satisfy the appropriate requirements. Examples: sqr(x),
sqri(sqr(x) + sqr(y)).

(5)  Any expression may be bracketed by ( and ). Example: (x + y).

(6) Two arithmetic operators may never be adjacent, ruling out, for
example, 1 * -3.

(7)  An operand of a relational operator may not be a relational
expression, unless it is bracketed. For example, this rules out
X <y < z (even if X, y, and z give Boolean values).

The meaning of an expression would not appear to be proble-
matic, because we know the meaning of all the component parts. But
there are potential ambiguities concerning operators which must be re-
solved. For example, does 3 — 2 — 1 mean (3 — 2) — 1, which gives 0,
or 3— (2 - 1), which gives 2? Similarly, what is the implied bracket-
ing in X + y mod 10 + 1?

Such ambiguities in the order of evaluation are resolved by
precedence rules, which come into play when there would otherwise
be a choice:

(I)  Operators are applied in order of decreasing precedence. Table
5.5 gives the precedence of each operator.

(II) Operators with equal precedence are performed from left to
right.

We can now answer the questions about our examples. Rule II
implies that 3 — 2 — 1 means (3 — 2) — 1, which gives 0. Regarding

x + ymod 10 + 1

rule I implies y mod 10 is a subexpression, because mod has pre-

Precedence | Operator(s)

not + (1 operand) - (1 operand)
div mod / and

- or

< > <= >= <>

3
2 *
1 +
0 =

BASIC PASCAL

Table 5.5 Precedence of
operators.

69



cedence over +. Then rule II gets into the act, implying x and y mod
10 are added. The implicit bracketing is:

((x + (y mod 10)) + 1)

The effect of the rules is not to specify the precise order of
evaluation of the operators and functions, but rather to specify
completely the operand(s) of each operator and the argument(s) of each
function. The distinction is illustrated by the expression:

(a<>0)and (sgr(b) —4 * a * ¢ >= 0)
where a, b, and ¢ are real variables. The implied bracketing is:
((a <> 0) and ((sqr(b) — ((4 * a) * c)) >= 0))

But there is still plenty of freedom in the evaluation, which can start
with either a <> 0 or sqgr(b) or 4 * a. Moreover, the left or right
operand of and might not be evaluated at all, because if one gives
false it is not necessary to evaluate the other. The Standard does not
specify which of two operands of a single operator is evaluated first, or
even that one or the other is evaluated first — they might be evaluated
simultaneously — or not evaluated at all. The same goes for the argu-
ments of a function. All this is hair-splitting rather than hair-raising,
but there is at least one common hairy programming situation that is
affected; see Subsection 11.4.2, ‘Truncated safe linear search’ for the
bald facts.

The syntax rules for expressions are cleverly designed to imply
their structure without needing the notion of operator precedence. We
give them for completeness, but they need not keep you awake at
night:

expression:
simple-expression relational-operator simple-expression
simple-expression: sign term ... adding-operator term
term: factor ... multiplying-operator factor
factor: variable | unsigned-constant | function-designator |
(expression) | not factor
unsigned-constant: unsigned-integer | unsigned-real |
character-string | constant-identifier
relational-operator: = | < | > | <= | >= | <>
adding-operator: + | — | or
multiplying-operator: * | div | mod | / | and
function-designator: function-identifier ( actual-parameter-list )
function-identifier: identifier
actual-parameter-list: actual-value ... , actual-value
actual-value: expression

70 PROGRAMMING USING MACINTOSH PASCAL



The writer of programs — as distinct from the reader prepared
for anything — need not be fanatically concerned with the rules for
expressions, since it is not necessary to rely on them when writing
expressions. Stick to the following principles:

° Use extra brackets whenever they make it easier to understand
an expression.
° Avoid very complex expressions by introducing variables for

some of the subexpressions. Macintosh Pascal encourages this by
insisting on placing long expressions on a single line!

° Always bracket relational subexpressions (since you have to).

A final piece of terminology relating to expressions: we say ‘(the
value of) e is ... ’ to mean ‘evaluation of e gives the value ... .

5.5 Constants and variables

Programs manipulate values; some values are fixed, others change.
Simple values of the first kind may be represented by named constants;
values of the second kind are represented by variables.

5.5.1 CONSTANT DEFINITIONS

A constant value used in a program may be given a name by means of
a constant definition. Thereafter, the name may be used in place of the
constant. Constant definitions are gathered in a possibly empty con-
stant definition part. The syntax is as follows:

constant-definition-part:
const
constant-definition ;

constant-definition: identifier = constant
constant: character-string | sign unsigned-number |
sign constant-identifier
constant-identifier: identifier
We met an example in Chapter 3:

const
MaxSecret = 10; { the biggest possible secret number }

Note that a constant may consist of a sign followed by a constant-
identifier, allowing constructions such as:

BASIC PASCAL

71



72

Minint = —-Maxint; { the minimum integer }
and that a string constant can be given a name, as in:
ChapterHeading = 'Basic Pascal’;

The payoff from constant definitions is far greater than their
simplicity might suggest:

° The name is usually more suggestive than the value.

° The value need only be written once, reducing the chance of
error, especially when the value is modified.

° Different uses of the same value can be distinguished, by simply

having two constant definitions with the same value. This allows
one or both of the values to be changed without confusion.

Maxint is the only constant required to be predefined. Addition-
ally, Macintosh Pascal provides:

pi = 3.1415926535897932385; { an approximation to the ratio }
{ of a circle’s circumference to its diameter }

as well as a host of other constants related to the Macintosh’s operating
system (for which see the Reference and the Technical Appendix).

5.5.2 VARIABLE DECLARATIONS

A variable, as we have seen, may be regarded as a named container of
a value of a certain type. It is introduced by a variable declaration,
which fixes its name and type. Initially its value is undefined, and may
change arbitrarily often during execution of the program.

All variables used in a program must be declared. The variable
declarations are collected in the variable declaration part, whose syntax
is specified as follows:

variable-declaration-part:
var
variable-declaration

variabl.;declaration: identifier-list : type
identifier-list: identifier ... , identifier

Here is an example of a variable declaration part, contrived to
involve each of the types we have seen so far:

PROGRAMMING USING MACINTOSH PASCAL



var
X, y . integer; { (x, y) is the mouse’s position }
declination : real; { angle in radians between line from (x, y) to }
{ origin and line along top of Drawing window }
FirstChar : char; { first character in current input line }
IsCommand : Boolean; { true iff current input line is a command }
NumberOfCommands : integer;

(For other examples, look at any of the programs throughout the
book.)

The following stylistic guidelines are highly recommended,
because they make for programs that are easier to read. They apply
equally to constant definitions:

° Mnemonic names should be chosen, unless there is an estab-
lished naming convention. Witness the names in the above
example, which all suggest the roles of their variables (x and y
are traditionally used for coordinates).

° A clear and concise comment should explain the role of each
variable, unless its role is obvious from its name (as happens
with NumberOfCommands).

° Related variables should be close to each other in the text, as
illustrated by x, y, and declination. (It is not necessary for all
variables of a certain type to appear in the same variable declara-
tion.)

5.5.3 THE ASSIGNMENT STATEMENT

The assignment statement is the fundamental way of changing a vari-
able’s value. (The only other important way is by an input statement.)
Its syntax is as follows:

assignment-statement:
variable-identifier .= expression
variable-identifier: identifier

An assignment statement is executed by first evaluating the
expression, and then making the result the new value of the variable.
The expression must produce a value that is assignment-compatible
with the variable. This means that the value must belong to the
declared type of the variable, unless that type is real, when the value
may be an integer which will be converted to a real before the assign-
ment.

When the assignment statement is used to imitialize a variable,
i.e. to give it its first defined value, the variable should not appear in

BASIC PASCAL

73



74

the expression, lest the value of the expression be undefined. Here is a
typical initializing assignment:

NumberOfCommands := 0

Once a variable has been initialized, however, it is perfectly natural
and common for it to appear in the expression. The quintessential
example occurs when an integer counter is increased by 1:

NumberOfCommands := NumberOfCommands + 1

Two typical assignment statements involving other types of vari-
ables are shown below:

declination := arctan(y / x)

IsCommand := FirstChar = 'V’

The mathematics involved in the first does not concern us here; just
note that y / x gives a real value as the argument of the predefined
function arctan, which then gives a real value representing an angle in
radians. In the second example, FirstChar = '!" is a Boolean expression
which gives true if the value of the character variable FirstChar is the
exclamation-mark, and false otherwise. Whatever the outcome, the re-
sult becomes the new value of the Boolean variable IsCommand.

We have now reached a milestone (but we hope not a millstone)
because we are about to tackle our first programming problem.
Solving programming problems is supposed to be the main concern of
this book, so let us leap in.

The problem is to exchange the values of two variables a and b
which have the same unspecified type. We assume that this problem
occurs in a context where both variables have already been given
values. For example, if the value of a is 5 and of b is 7, execution of
our solution should result in b having the value 5 and a the value 7.

Let us examine the following attempt, which might cursorily be
read as: give a the value of b and b the value of a.

{ Exchange values of aand b }
a:=b;
b:=a

We can test it by executing it by hand with the initial values as above,
as shown in Figure 5.1.

Rats! Our mistake was to fail to take into account the con-
sequences of sequential execution of a sequence of statements. An

PROGRAMMING USING MACINTOSH PASCAL



Figure 5.1

initially 5 7 Execution of a := b;
b:= a.
a f b
aftera:=b 7 7
a b
afterb:=a 7 7

accurate reading of our attempted solution highlights the error: give a
the current value of b then b the current value of a. We want to give b
the original value of a; the solution is to remember it before it is lost.

{ Exchange values of a and b }

temp := a;
a:=b;
b := temp

The new variable temp must be declared to have the same type as a
and b.

5.6 Input and output

Rather than try to second-guess the nature of I/O devices used by a
Pascal program, which can vary greatly between implementations (and
between runs on the same computer), the Standard takes an abstract
approach. It decrees that textual input should come from an input
stream, and textual output should form an output stream. Each of
these streams of information has the same structure: it consists of a
sequence of lines, each of which consists of a sequence of characters
terminated by a special end-of-line marker. We represent the marker
by O.

5.6.1 INPUT

The name of the input stream is Input (which is why that name
appears in the heading at the start of a program). Two kinds of input
statement are available; their syntax is as follows:

BASIC PASCAL 75



76

input-statement: Read-statement | Readin-statement
Read-statement: Read (variable-list)
ReadIn-statement: Readin (variable-list)
variable-list: variable ... , variable

variable: identifier

The effect of Pascal’s input statements can most easily be
defined by first breaking them down into sequences of the simplest
versions. Let us write a,, a,, etc. for the first, second, etc. arguments
of an input statement. Then:

ReadIn(a,, a,, ...)
is equivalent to:

begin
Read(a,, a,, ... );
Readin

end

and
Read(q,, a,, ... )
is equivalent to:

begin
Read(a,);
Read(a,);

end

Associated with the input stream is a unique input position. All
characters or markers to its left have been read; those to its right re-
main to be read. The input position begins at the start of the input
stream, and moves steadily to the right as information is read under
control of the program. Once it reaches the end, it can go no farther,
and we say that ‘the end of the file has been reached.’

A required Boolean function is available to test for this condi-
tion:

eof: true if and only if the input position is at end-of-file.
Eof is actually a permitted abbreviation of eof(Input). It is an error to

execute any input statement if the end of file has been reached.

PROGRAMMING USING MACINTOSH PASCAL



Another required function indicates whether the end of a line
has been reached:

eoln: true if and only if an end-of-line marker is immediately to the
right of the input position.

It is similarly an abbreviation.
Executing

ReadIn

simply moves the input position to just past the next end-of-line mark-
er, i.e. to the start of the next line. Eoln will give false afterwards un-
less this line is empty.

Executing

Read(a,)

moves the input position to the right and converts the character(s)
and/or marker(s) read to a value which is then assigned to a,. Any
markers that are read are treated as blank characters. The details
depend on the type of a,.

] Integer: Spaces (and markers) are skipped until a character that
can start a signed-integer is read. Starting with it, a maximal
sequence of characters is read that form a signed-integer. It is
an error if a complete signed-integer is not present. Any re-
maining characters are left over for the next input statement.

° Real: as for integer, except that a signed-integer or signed-real is
acceptable.

An example of the effect of executing two input statements is
given in Figure 5.2. The input position is represented by 1. Each
space is made explicit by representing it as A. Note that eoln would
give false initially, true after execution of the Read-statement, and
false after the Readln-statement.

° Char: A single character or marker is read; a marker is read as a
space. In the example above, if the statement

Read(ch)
where ch is a character variable, was to be executed after the

first input statement, it would move the input pointer past the
marker and assign a space to ch.

BASIC PASCAL

77



Figure 5.2
Execution of two input
statements.

78

i r

initially 3 0.0

~AtA1700-8.0E+10A...

i r

after Read(j) 17 0.0

~AAT400-8.0E+104...
i r

after Readin(r) 17 -30.0

~AA700-8.0E+100p A

. Boolean: Standard Pascal does not provide for the input of
Boolean values. Macintosh Pascal does — see Section 5.10,
‘Macaveats’. There is, of course, nothing to stop a program
from, say, reading a value into an integer or character variable
and interpreting it as true (e.g. 1, T) or false (e.g. 0, F).

5.6.2 OUTPUT

The name of the output stream is Output (which is why that name
appears in the heading at the start of a program). Two kinds of output
statement are available; their syntax is as follows:

output-statement: Write-statement | Whriteln-statement
Write-statement: Write (output-value-list)
Writeln-statement: Writeln (output-value-list)
output-value-list: output-value ... , output-value
output-value: expression

As with input statements, we can break down a complex output
statement into an equivalent sequence of simple ones:

Writeln(a, , a,, ...)
is equivalent to:

begin
Write(a, , a,, ... );
Writeln

end

PROGRAMMING USING MACINTOSH PASCAL



and:
Write(a,, a,, ...)
is equivalent to:

begin
Write(a,);
Write(a,);

end
Executing
Writeln

appends an end-of-line marker to the end of the output stream. This
will be interpreted by a VDU or a printer as a command to move the
display position to the start of the next line. And, of course, if the out-
put were presented later as the input to another Pascal program, eoln
could be used to detect the marker.

Executing

Write(a,)

appends a character string indicating the value of @, to the end of the
output stream. The expression must be a string, or have one of the
types integer, real, char, Boolean. The length of the character string
that is output is called its field width. Like the string itself, it depends
on the type of a,.

° Integer: A minimal length signed-integer is written, preceded by
spaces if necessary to make up the field width. The field width
is implementation-dependent; in Macintosh Pascal it is 8.

. Real: A signed-real in power notation is written, preceded by
spaces if necessary. The details are implementation-dependent.
In Macintosh Pascal, the field width is 10, and the number is
written in the form sd . descccc, where the first s is either a space
or minus, the second is plus or minus, each d is a decimal digit,
the first d is not O unless the value is 0.0, and the four cs
comprise a minimal decimal numeral followed by spaces if
necessary (but see Section 5.10 ‘Macaveats’).

] Char: The single character value is written (the field width is 1).
For a string, as many characters as are in the string are written.

BASIC PASCAL

79



Table 5.6 Output
statements with default
representations.

~

Output statement Appended to output stream
Write(10) AAAAAALD
Write(—Maxint) AA—=32767

Write(0.0) A0.0e+0AAA
Write(—pi) —3.1e+0AAA
Write(98.6) A9.9e+1AAA
Write(7E-11) AT.0e—11AA
Write('A’) A

Write(' ’) A

Write(chr(38)) &

Write('That’s All Folks.’) | That'sAAl1AFolks.

] Boolean: If the value is true, the string 'True’ is written (the
field width is 4); otherwise, 'False’ is written (the field width is
S).

Table 5.6 shows some Macintosh Pascal output statements with
their effects. You can try others by using the Instant window. Note
that the last significant digit of the string for a real value is rounded —
the value displayed is only an approximation.

Pascal gives the programmer more control over the output for a
value by allowing its field width to be specified. A field width must be
greater than zero. Except in the case of reals, if it is greater than the
length of the string representing the value, spaces are added on the
left; for reals in power notation, the number of digits after the decimal
point increases to make up the difference. If it is smaller, a field width
is used that exactly accommodates the representation, unless the value
is a string, in which case as many characters as specified are taken
from the left. Additionally, for real values, further information in the
form of a fraction length may be given. If present, the fraction length
forces normal decimal notation with the fraction having the specified
number of digits. A fraction length must be greater than zero.

The modified syntax for output values is:

output-value: expression : field-width : fraction-length
field-width: integer-expression
fraction-length: integer-expression

Table 5.7 gives some examples. Note that a real value in power
notation always has either a space or a minus for its sign (see the
second 98.6 example). Two useful tricks emerge:

° To write n = 1 spaces, use:

80 PROGRAMMING USING MACINTOSH PASCAL



Output statement Appended to output stream
Wirite(10 : 8) AAAAAALD
Write(10 : 1) 10
Write(-Maxint : 1) —-32767
Write(pi : 15) A3.141593e+0AAA
Write(pi : 10 : 7) A3.1415927
Write(pi : 1 :7) 3.1415927
Write(—pi : 1:7) —3.1415927
Write(98.6 : 4 : 1) 98.6
Write(98.6 : 1) A9.9e+1AAA
Write('A’ : 2) AA
Write(’ ’ : 6) AAAAANA
Write('That’s All Folks.” : 10) | That'sAAll
Write(’ ' : n)
° To include an integer x in text, with just a single space either
side, use

Write(' ... ", x: 1,7 ...)
See Exercise 5.15 if x is real. Also,

o It is a good idea to specify field widths explicitly (and fraction
lengths if appropriate); output becomes more readable and
attractive, and programs are less implementation-dependent.

The official syntax for I/O statements treats them as special
procedure-statements.

5.6.3 INTERACTIVE I/O

The preceding abstract description of textual I/O in terms of separate
input and output streams is all very well, coming as it does from the
Standard horse’s mouth. But the reader cannot fail to have noticed that
it does not immediately jibe with our knowledge of Macintosh Pascal
I/O that we gained by running the programs in Chapter 3, for the
usual form of I/O in Macintosh Pascal is interactive. Input is typed on
the keyboard in response to output from the program, and input and
output text are intermixed in the Text window.

Fortunately, things are not as different as they seem. In fact,
Macintosh Pascal’s I/O does conform to the Standard’s stream-based
model. This is what happens. The input stream is associated with the

BASIC PASCAL

Table 5.7 Output
statements with controlled
representations.

81



82

keyboard, and the output stream with the Text window on the
Macintosh’s screen. The keyboard and the screen are separate devices.
The main complication is that input is displayed as it is read.

Consider execution of program YouGuess3 from Chapter 3.
The first Writeln-statement appends this to the output stream:

I'mathinkingaofaraanumberabetweenalaand
AAAAAALD Ainclusive.O

Figure 3.5 shows how it is displayed. The cursor goes to the start of
the next line. The Write-statement that follows appends this to the out-
put stream:

Pleaseatypeayourafirstaguess:a

This time the cursor is positioned after the last character, a space,
because no end-of-line marker was sent — see Figure 3.5 again. The
next statement to be executed is:

ReadIn(guess)

It first expects to read a signed-integer, and then to skip past the next
end-of-line marker. Since Input is associated with the keyboard, the
Macintosh waits for you to create the input stream. You are permitted
to type acceptable characters only — illegal ones cause a beep but are
otherwise ignored. So first you may hit the space-bar and even the
Return-key (which creates a marker) as often as you like, although
there is no reason to do so in this context. Then you must type char-
acters that form a signed-integer. As soon as you type a character that
is not part of a signed-integer, the implicit statement:

Read(guess)

finishes executing and assigns the appropriate value to guess.
Furthermore, the characters or markers that were read are displayed.
(The effect is as if they were permanently appended to the output
stream.) Up until this point you could remove them (back to a mark-
er) by hitting the Backspace-key.

The other character or characters that you typed remain on the
right of the input pointer for the next input statement, if any. In this
case there is an implicit Readln-statement. If you have already hit the
Return-key, it reads up to and over the marker created, whereafter
execution of the program resumes. If you have not hit the Return-key,
the Macintosh waits until you do, then reads over the marker. Since

PROGRAMMING USING MACINTOSH PASCAL



what is read is displayed, execution of the complete Readln-statement
ends the second line.

This style of interactive I/O, where a Write-statement produces a
prompt and a following Readln-statement reads the input and ends the
line, works well. But suppose instead you wanted the prompt, the in-
put, and the output in response to the input, to be on the same line. In
the context of YouGuess3, this would mean producing a second line
like:

Please type your first guess: 5 -- That's wrong.

You might expect to be able to do this by replacing both Readln-
statements with a Read-statement, and inserting the characters ¢ -- * at
the front of the strings written in response. Try it. Depending on what
you type as input, you will notice the problem, which is this. You
must eventually type a character that is not part of a signed-integer,
and that therefore is held over for the next input statement. In this
case, if another input statement is executed, it expects an integer. So if
you typed a comma, say, all you will get is a beep. That is not too bad.
But if you typed, say, the Return-key, it will be read by the next
Readln-statement, and therefore force a new line in the Text window,
messing up your nice display.

In general, the effect of the extra character is to foul up the
works.

Moral Use a Readln-statement to read prompted input, as in pro-
gram YouGuess3.

There are some other traps for young players in interactive I/O.
The main one is that evaluation of eoln or eof may require input
information to be entered, even though it will not be read at that
point. (You signal end-of-file by hitting the Enter-key.) But you should
not become paranoid about interactive I/O: this information is
supplied for reference only. As long as you stick to the schemes pre-
sented in this book, you can program in blissful ignorance of the fine
points.

5.7 Conditional statements

Conditional actions are represented in Pascal by the if-statement,
which comes in two forms:

BASIC PASCAL 83



if-statement:
if Boolean-expression then
statement
else
statement
Boolean-expression: expression

As we saw in Chapter 3, an if-statement is executed by evalua-
ting the Boolean expression first. If it gives true, only the first
component statement (the one following then) is executed; otherwise,
the Boolean expression gives false, and only the second component
statement (the one following else) is executed — provided it is present
of course: if not, nothing is done. For examples of the full form,
called an if-then-else statement, see programs YouGuess2 and
YouGuess3 in Chapter 3. An example of the short form, called an
if-then statement, will be given shortly.

The statement(s) occurring in the if-statement may, as usual, be
any Pascal statement(s) whatsoever. It often happens that one or both
of them should consist of a group of statements. In such cases, the
compound statement is used.

compound-statemem:
begin
statement-list
end
statement-list:
statement ,

statement

Below is an example of an if-then statement with a compound
component statement:

{ Arrange the values of a and b so thata <=b }
if a > b then
begin { Exchange values of a and b }
temp := a;
a:=b;
b := temp
end

There is a glitch in the syntax of Pascal concerning nested if-
statements, i.e. if-statements containing other if-statements as
components. Consider a statement of the form:

84 PROGRAMMING USING MACINTOSH PASCAL



if p then if g then S, else S,

where p, g represent Boolean expressions, and S, S, represent state-
ments. It has been set out on one line (which is legal) to illustrate the
problem. It is ambiguous, i.e. there are two possible interpretations.
One is:

if p then
if ¢ then
Sl
else
SZ

In this case, the else belongs to the second if, S, is executed iff p gives
true and g gives true, and S, is executed iff p gives true and g gives
false.

The other possible interpretation is:

if p then
if ¢ then
Sl
else
SZ

In this case, the else belongs to the first if, S, is executed iff p gives
true and g gives true, which is as before, but S, is executed iff p gives
false, which is different.

Will the real if-statement please stand up? Drum roll. It’s the
first one! As you would discover by the way it is laid out by Macintosh
Pascal. If you do want the second form, put the inner if-then statement
in a compound statement.

A common error with the if-then-else statement is to put a semi-
colon after the first component statement, as in:

if x > y then

maximum := x; {XXXX ERROR XXXX}
else

maximum :=y;,

Entering this provokes Macintosh Pascal to display the else in outlined
characters, signaling that it may not appear in this context. The reason
is that the semicolon after X is interpreted as separating an if-then state-
ment from the next statement, which cannot start with else.

BASIC PASCAL

85



A common programming problem is to have a sequence p,, p,,

. » p, of conditions, a sequence S 8y s S, of corresponding

statements, and to have to find the first true condition and then execute
its corresponding statement. The statement to use is:

if p, then
S1
else if p, then

2

else if p, then
S

n

Notice that Macintosh Pascal does not indent when an if-statement
follows an else: the elses do not march off to the right, despite the
format of the if-statement in its syntactic definition.

A special case of the aforementioned situation occurs sufficiently
often for Pascal to provide a special form of conditional statement
called the case-statement. You can read about it in Chapter 10.

5.8 Repetitive statements

The fundamental form of repetition is indefinite repetition. It is
sometimes called condition-controlled repetition, because the duration
of the repetition is controlled by a condition that is repeatedly
evaluated. Pascal caters for indefinite repetition with the while-
statement:

while-statement:
while Boolean-expression do
statement

To execute a while-statement, simply follow the directions in
step (1) below:

(1)  Evaluate the Boolean expression. If it gives true, do step (2);
otherwise, i.e. if it gives false, stop execution of the while-
statement.

(2)  Execute the statement (which is called the body of the while-
statement). Then do step (1) again.

Here is a simple example involving integer variables x and
PowerOf2:

86 PROGRAMMING USING MACINTOSH PASCAL



{ Output the least non-negative power of 2 that is >= x }
PowerOf2 := 1;
while PowerOf2 < x do
PowerOf2 := 2 * PowerOf2;
Writeln ('The least non-negative power of 2 not less than °,
x:1,'is’, PowerOf2 : 1)

The non-negative powers of 2 are =1,21=2,22=4,2= 8, etc.
PowerOf2 takes on these values in increasing order, until PowerOf2 <
x gives false, implying PowerOf2 >= x gives true.

To trace the execution of our example, first embed it in a
complete program:

program WhileTest (Input, Output);
{ Executes a while-statement; run using Step-Step, }
{ and x and PowerOf2 in the Observe window. }
var
x, { an arbitrary integer from Input }
PowerOf2 : integer; { a non-negative power of 2 }
begin { WhileTest }
Write('Pick an integer, any integer: °);
Readin(x);
{ Output the least non-negative power of 2 that is >= x }

end. { WhileTest }

Now run WhileTest as its comment specifies. Follow the hand as it
moves to indicate the next statement to be executed, and observe the
changing value of PowerOf2. Try several different integers as input.

The while-statement is frequently used with a compound state-
ment as its body, allowing a group of statements to be repeatedly
executed. Here is one such instance:

{ Print all the squares between 1 and limit inclusive }
Wiriteln('The squares between 1 and ’, limit : 1, ’ inclusive:’);
n:=1;
while sgr(n) <= limit do

begin
Writeln (sqr(n) : 11);
n:=n+1
end;
Writeln(===========")

If limit (which may be a variable or a constant) has the value 100, the
output shown in Figure 5.3 will be produced.

BASIC PASCAL

87



Figure 5.3
Output produced by the
loop that prints squares.

88

S(=—— Tesut
The squares between 1 and 100 inclusive:

Some miscellaneous notes on the while-statement:

The Boolean-expression is called the condition of the loop.
When we say the condition is true (false), we mean that evaluation
of the Boolean-expression gives true (false).

The statement is called a loop because the flow of execution
loops around and around the condition and body.

The body of the loop will not be executed at all if the condition
is initially false.

The condition is tested before each potential repetition of the
body, not during execution of the body: if the body is executed,
it is completely executed.

The body of a while-loop must contain some statement that can
affect the value of its condition, such as an assignment or input
statement. Otherwise, execution of the loop either does nothing
(if the condition is initially false) or runs until the cows come
home, and then some (if the condition is initially true).

There are occasions when the statement to be repeated must be

executed at least once. The while-statement can handle such situations
readily — it is only necessary to ensure that the condition is true initi-
ally (see Exercise 5.26). Sometimes this can be a little awkward, so
Pascal provides another form of loop called the repeat-statement:

repeat-statement:
repeat
statement-list
until Boolean-expression

PROGRAMMING USING MACINTOSH PASCAL



Note that advantage is taken of the fact that repeat and until surround
the body of the loop (like brackets) by allowing the body to be a
statement-list.

To execute a repeat-loop, simply follow the directions shown in
step (1):

(1)  Execute the the body of the repeat-statement, i.e. the statement-
list. Then do step (2).

(2)  Evaluate the Boolean expression. If it is false, do step (1) again;
otherwise, i.e. if it is true, stop execution of the repeat-
statement.

Here is an example where a repeat-statement is marginally more
suitable than a while-statement:

{ Read the next non-blank input character into ch }
repeat
Read(ch)
until ch <> "’

And here is an example with more than one statement in the
body (all variables have type integer):

{ Set NrDigits = number of decimal digits in numeral of n }

NrDigits := 0;
RestOfn := n;
repeat

NrDigits := NrDigits + 1;
RestOfn := RestOfn div 10
until RestOfn = 0

Note that zero’s numeral has one decimal digit, viz. 0. If you have
trouble understanding the above, pick a value of n and follow the
changing values of RestOfn and NrDigits.

A common special case of repetition is when a statement needs
to be executed for each value between two limits which are known in
advance. Pascal provides the for-statement for such occasions,
although they can easily be handled by while-statements. While-
statements capture the fundamental form of repetition, and it is
essential that they be mastered. Since the for-statement tends to distract
from their mastery, its introduction is delayed until Chapter 6, and
its precise description delayed until Chapter 10, where it belongs
naturally.

BASIC PASCAL

89



5.9 Programs

We need to describe both the high- and low-level syntactic structure of
Pascal programs.

5.9.1 HIGH-LEVEL SYNTAX
The high-level syntax of programs is straightforward:

program:
program-heading
program-block .
program-heading:
program program-identifier (identifier-list) ;
program-identifier: identifier
program-block: block
block:
constant-definition-part
variable-declaration-part
statement-part
statement-part:
compound-statement

Examples, naturally, occur throughout the book. The identifier list in
the program heading names the external files used by the program.
They will usually be Input and Output. Executing a program involves:

(1)  Taking note of any constant definitions;

(2) Creating all declared variables and giving them undefined
values;

(3)  Executing the statement-part.

Now is a good time to recall the various kinds of statements we
have met so far:

statement: simple-statement | structured-statement
simple-statement: empty-statement | assignment-statement |
input-statement | output-statement
structured-statement: compound-statement | if-statement |
while-statement | repeat-statement

A new statement sneaked in there; it is the simplest statement imagin-
able:

empty-statement:

90 PROGRAMMING USING MACINTOSH PASCAL



That’s right! The empty statement consists of precisely nothing. One
of the consequences of having it is that you can sometimes get away
with extra semicolons, as in:

begin
Writeln(sqr(n) : 11);
n:=n+1;

end

where the semicolon after the assignment to n separates it from the
next statement, which is the empty-statement. But do not think you
can let the semicolons take care of themselves. Consider this:

while PowerOf2 < x do; {XXXX ERROR XXXX}
PowerOf2 := 2 * PowerOf2;

It is also legal, but the way Macintosh Pascal displays it reveals that
something is amiss: the first line is a while-statement with an empty
body, which is separated from the next statement (the assignment to
PowerOf2) by a semicolon. The offender is the semicolon after do, but
the empty-statement is its accomplice.

A program can have other parts which we will meet in due
course.

5.9.2 LOW-LEVEL SYNTAX

A Pascal program can be regarded as a sequence of symbols, called
tokens, in the same way that an English paragraph can be regarded as
a sequence of words and punctuation marks. Figure 5.4 shows program
WhileTest above, when viewed at this low level. There is only one
sequence of tokens — it is broken up into lines solely out of typo-
graphic necessity. Note that comments are treated just like spaces,
tabs, and ends-of-lines: their only function as far as the translator is
concerned is to act as token separators (so to speak). Their syntax is
informally given by:

comment:
{ any-characters-other-than-} }

You may not have *) inside a comment, because it is treated as } (as

required by the Standard).
We may note five kinds of tokens in Figure 5.4:

BASIC PASCAL

91



Figure 5.4
A program considered as a
sequence of tokens.

92

[program|[WhileTest][(][Input] ;] Output] D[] (var][x][]
[PowerOf2][-][integer] ;] [egin ] [Write][(]

[Pick an integer, any integer '] [][Readin][(x]DI[]
[PowerOf2][:=][{][] [while] [PowerOf2][<] [x] [do] [PowerOf2][:=]
[2][¢][PowerOf2][J[Writeln][(]

[ The least nonnegative power of 2 not less than’|[J[xI[:][T1[]

(i) Poweror2 (] [1]0]end]]

(1)  special-symbols, such asl and [4 ;

(2) word-symbols, such as [do]and ;

(3) identifiers, such as [Write] and [Power0f2] ;

(4  numbers, such as[f]and [7] ;

(5)  character-strings, such as [Pick an integer, any integer '] and .

Word symbols are classified as special symbols. The syntactic
details for Standard Pascal are as follows:

leter: a | b | c|d|e|f]lg|h]ilijlk]|
llm|in|o|plalr]s|[t]|u]v]|
wlx|yl|z|A|B|]C|D|E|F]|G]
H|l|J|K|[L|M|[N]JO]|P]|Q|]
R|S|T|U|V|W|X|Y|Z

digit: 0 | 1|2 |3 |4 |5|6]|]7]|8]9

special-symbol: + | = | * | / | = |<>|<|>|

<—I>—I(I)I[I]|
| 1 word-symbol

word-symbol: div | "mod | il | in | or | and | not |

if | then | else | case | of | repeat |

until | while | do | for | to | do | begin |

end | with | goto | const | var | type |

array | repeat | set | file | function |

program | label | packed | procedure
identifier: letter ... letter-or-digit

letter-or-digit: letter | digit

Square and curly brackets have alternative forms; see the Refer-
ence if you are interested. The word symbols are sometimes called re-
served words, because they may not be used as identifiers. Macintosh
Pascal displays them in bold face as shown. Character strings and
numbers (signed integers and signed reals) have been dealt with pre-
viously.

Examples of identifiers:

PowerOf2 powerof2 x Route66 R2D2
AWopLopALooBopAWopBamBoom

PROGRAMMING USING MACINTOSH PASCAL



The case of letters in identifiers is not significant, so the first two
examples are regarded as the same. But you should give the reader a
break and use exactly the same written form in each instance of an
identifier. Every letter or digit in an identifier is supposed to be
significant, but most implementations only go so far. In Macintosh
Pascal, identifiers can have at most 255 characters, which is plenty.

Pascal requires tokens to be separated only when there would
otherwise be confusion. The only requirement is that there be at least
one token separator between two successive tokens, if each of them is
an identifier or word-symbol or unsigned number. Note that a token
separator cannot appear within a token; consequently, a character
string must appear within a single line, and neither < > nor : =, for
instance, is a token.

5.10 Macaveats

There are a number of minor ways in which Macintosh Pascal extends
or deviates from the Standard:

] Boolean values can be read. Either false or true must
appear, possibly preceded by blanks and end-of-line markers.
The case of the letters is not significant.

(] Output of real values in power notation is non-Standard. The
Standard, and the Reference (!), specify that the exponent must
consist of a sign and a fixed number of digits (4), and not be
followed by any spaces.

° Although Macintosh Pascal 2.0 correctly outputs Boolean values
as strings, the Reference implies that the complete identifier is
always written, which violates the Standard.

° Hexadecimal numbers are permitted. They start with $ and use
A, B, C, D, E, F for the extra base-16 digits. (It does not
matter if you do not know what this means.)

° @ has a special meaning. It is not an alternative to *, like 1 is,
although the Standard requires it to be.

° There are three extra reserved words: otherwise, string, and

uses.

° The underscore (_ ) may be used in identifiers after the initial
letter.

° Comments must be at the end of a line or on a separate line; a

comment may not span more than 1 line.

BASIC PASCAL 93



EXERCISES

5.1 Consider the following syntactic definitions, with identifier defined as
in Standard Pascal:

original: Rocky Horror Picture Show |
Godzilla versus identifier ... identifier

movie: Son-of-sequence original | original numeral

Son-of-sequence: Son of ... Son of

numeral: Il | W | IV | V| VI | Vil | vl |
X | X

movie-marathon:

movie ,

movie
(@) Which of the following is a movie?

(i) Rocky

(i) Son of Son of Son of Godzilla versus The Three Stooges
(iii) Rocky versus Rambo

(iv) Rocky Horror Picture Show Vil

(v)  Son of Rocky Horror Picture Show Viil

(vi) R2D2 versus Son of Son of Godzilla

(vii) Godzilla versus Son of Spartacus IV

(b) Give the shortest movie marathon.

(c) Give a movie marathon that demonstrates your complete mastery
of these syntax rules.

(d) Can the same movie appear twice in a movie marathon?

5.2  Give the value of each of the following expressions.

(@ 17 div (-7) (b) 13 mod 13
(c) abs(-Maxint) (d) sqr(-3)

5.3  Suppose ¢ = 20, d = 51 and e = 5. Give the value of:

(a dmodc (b) ddivce
(¢) (e—d mod c) modc (d e+ (d-—e)modc

94 PROGRAMMING USING MACINTOSH PASCAL



5.4

5.5

5.6

5.7

5.8

Suppose cigars come 20 to a box, and that a certain well-stocked cigar
emporium only opens a box to get loose cigars. A customer asks for
NrWanted cigars. Suppose NrLoose is the number of loose cigars
(between 0 and 19 inclusive). Write a sequence of statements that:

® Sets NrSingles to the number of loose cigars given to the customer;
Sets NrBoxes to the number of boxes given to the customer; and
® updates the value of NrLoose; if:

(a) the attendant satisfies the order by first getting as many whole
boxes as possible, then loose cigars if necessary;

(b) the attendant first gets as many of the loose cigars as possible,
then as many whole boxes as possible, and then more loose
cigars from a new box if necessary.

Give the value of each of the following expressions:

(@ 2.0/2E3 (b) 1.0/3.0
(© 1/3 (d) sart(sqr(5) — sar (3))
() round(5/9) (f) trunc(1.9E0 * 1E-1) - 1.0

Give the value of each of the following expressions in Macintosh Pascal.

(a) succ('P’) (b) pred(’P’)
(c) pred(succ(’x’)) (d) chr(ord('A’) + 26 - 1)

Which expressions’ values are guaranteed by the Standard?

Suppose a, b, and c are real variables with current values 1.0, 8.0, and
15.0 respectively. Give the value of:

—b + sqri(sqr(b) -4 *a*c)/ (2 * a)

Suppose the cost of sending a letter first class is 22¢ for the first ounce
and 17¢ for each additional ounce or part thereof.

(@ Write a constant definition part so that increased mail costs can be
easily handled.

(b) Using the answer to (a), write a statement-sequence that assigns to
integer variable cost the cost of sending a letter first class, given
that its weight in ounces is the value of real variable weight.

Hint: Use function trunc.

BASIC PASCAL

95



5.9

5.10

5.11

5.12

5.13

5.14

What is the value of the expression:
(a<>0)and (sqr(b) -4 *a*c >=0)

(@ ifa=0.0,b=10.0,c=10.0?
(b) ifa=1.0,b=-50,c=6.0?

Suppose x and y are integer variables. Give a Boolean expression that
gives true iff:

(a) xis between —y and +y inclusive.

(b) xis between 0 and 5 inclusive.

(¢) xis not between 0 and 5 inclusive.

(d) xand y are not both negative.

Modify the answers to Exercises 5.4(a),(b) so that they additionally set
Boolean variable NewBoxOpened to true iff a new box is opened.

Replace the statement:

if odd(n) then
IsEven := false
else
IsEven := true

with a simpler equivalent one.

Suppose variables i, r, ¢, and p have types integer, real, char, and
Boolean respectively. Give each of their values after execution of:

i=9r=idiv2;c:=""p:=c<’r

Given the variables of the previous question, suppose that the input
stream is currently in the state:

.../\T/\215—1E2D—15D5/\...

Give the values of each of the variables, and the new input position,
after execution of each of the following. Use the same initial state of the
input stream, as shown above, for each part.

(a) Read(,r, c)
(b) Readin(i, r); Readin(c)
(c) Read(i, c,r)

96 PROGRAMMING USING MACINTOSH PASCAL



5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

(d) Read(r, i, c)
(e) Readin(i); Readin (r); Readin (c)

Suppose real variable LightSpeed contains an experimentally
determined value for the speed of light, in miles per second, accurate
to two decimal places. Give a statement that writes the value in decimal
form, preceded by:

The speed of light is approximately
and followed by:

miles per second.
and an end-of-line marker.

Show exactly what is appended to the output stream by execution of:

Writeln('lI''m thinking of a number between 1 and’,
MaxSecret, ' inclusive.’)

Modify the statement in the previous question so that the value of Max-
Secret has only one blank either side of it.

Given that integer variable cost contains the cost of an item in cents,
give an output statement that writes the cost in dollars. For example,
if cost = 1795, the output should be $17.95.

Change the scheme of interactive I/O in YouGuess3 as suggested in
subsection ‘Interactive I/O’, and run it to observe the described
behavior.

What is the implication of the expression ‘until the cows come home’
used in our discussion of the while-statement?

What integers cause program WhileTest to fail?

How should the implementation of the action:
Output the least non-negative power of 2 that is = X
in the text be modified if = is changed to >?
What happens when the implementation of the action:
Print all the squares between 1 and limit inclusive

in the text is executed if limit = 0?

BASIC PASCAL

97



98

5.24

5.25

5.26

5.27

5.28

5.29

5.30

The body of a while-statement cannot be a statement-list rather than a
single statement? Why?

Show that a while-statement can be used to implement the action:
Read the next non-blank input character into ch

instead of a repeat-loop as used in the text.

A typical repeat-statement has the form:
repeat
Sy

Sn
until p
Show that it can be replaced by an equivalent statement that does not
involve a repeat-statement.

Suppose you are prepared to have the same prompt for each guess in
program YouGuess3 in Chapter 3. (The first prompt in the given ver-
sion is special.) Will the program behave properly if the while-
statement and the two statements preceding it are replaced by the
repeat-statement below?

repeat
Write('Please type your guess: ’);
Readin(guess);
if guess > secret then
Writeln('That’’'s too high.’)
else
Writeln('That’’s too low.’)
until guess = secret

Which of the following are not legal Standard Pascal identifiers, and
why not?

(a) TheCount (b) The_Count
(c) time-limit (d H20

(e) E235 (f) S.ALT.

(g) ’'Dracula’ (h) DownTo

When you choose What to find... from the Search menu, you should
normally ensure that the Case Is Irrelevant button is on. Why?

Give a shortest Pascal program.

PROGRAMMING USING MACINTOSH PASCAL



SOLVING PROGRAMMING

PROBLEMS

Each problem that I solved became a rule which served afterwards to
solve other problems.
— René€ Descartes, Discours de la Methode

6.1 Introduction 100
6.2 Stepwise refinement 101
6.3  Using repetition 103
6.4  Deriving loop conditions 107
6.5 Program schemas 109
6.6 Case-study 1: Scheduling 113
6.6.1 Setting of the problem 113
6.6.2  Specifications 114
6.6.3 Writing the program 115
6.6.4 The complete program 118
6.7 Some other schemas 121
6.8 Case-study 2: The character-set table 123
6.8.1 Specifications 123
6.8.2 Writing the program 124
6.8.3  The complete program 125
6.9 Choosing the form of iteration 125
6.10 Testing, testing 127
6.10.1 The role of testing 127
6.10.2 What and when to test 127
6.10.3 Desk-checking 128
6.10.4 Testing by execution 130
6.10.5 Coping with errors detected by testing 130
6.10.6 Defensive programming 132
6.10.7 Final words on testing 133
6.11 Macaveats 133
Exercises 135




6.1 Introduction

Programming is a creative act. It is not possible to specify in detail
how to solve an arbitrary programming problem. To do so would
amount to presenting an algorithm for writing algorithms, the existence
of which would remove the need for programmers (and human in-
tellectual workers of all kinds).

Programming is, however, a very special kind of creative act,
because both the finished product and the tools with which to create it
are rigidly specified. (We have nothing to say about writing programs
in the absence of specifications: programs, that, for example, produce
amusing graphics effects on the Macintosh. It may be fun, but it won’t
get you into the Programmers’ Club.) Because of the enormous dis-
parity in scale between our tools, which for us are the statements of
Pascal, and the programs to be created, which can amount to literally
millions of lines, a particular approach to programming has come to be
seen as crucially important. It is called stepwise refinement, and we
examine it in the next section.

Before we do, it is important to recall our goal, which should be
kept firmly in mind throughout this chapter.

Goal To learn how to write correct and clear programs as easily as

possible.

] Correct: Our programs must do precisely what they are
supposed to do, always.

o Clear: Our programs must be as intelligible as possible, to all
potential readers. Cleverness should be an ally of clarity, not an
enemy.

° Easily: We must be able to solve a programming problem

efficiently, with an amount of effort that is not out of proportion
to its difficulty.

100 PROGRAMMING USING MACINTOSH PASCAL



6.2 Stepwise refinement

The method of stepwise refinement is this. There is a given program-
ming problem to be solved. A solution is formulated that is short en-
ough to be easily understood: no more than several lines. This is done
by employing sufficiently powerful actions and conditions in the solu-
tion. If the problem was a very simple one, these may be expressed
directly in the programming language at hand, in which case we do so,
and are done. If not, the high-level actions are regarded as sub-
problems, and stepwise refinement is applied to each of them. The
process continues until all subproblems have solutions that are
expressed in the programming language. Conditions are formulated in
the programming language when the variables that they involve
emerge.

All that sounds very abstract, because it is. Let us look at the
method in action. We shall begin with a simple problem: the one for
which program YouGuess2 in Chapter 3 is a solution. That problem
can be deduced from the comments that immediately follow the pro-
gram heading:

program YouGuess2 (Input, Output);
{ Picks a number, asks for and reads a guess, }
{ and announces whether or not it is correct. }

These comments are descriptive as well as prescriptive. They describe
precisely what is achieved by running the program. Programming
problems, recall, always involve doing something. Strictly speaking, it
is the execution of the program that solves the problem. So the
problem was:

Pick a number, ask for and read a guess,
and announce whether or not it is correct.

The way to write the comments is to complete the following:

Write a program that (when executed) ...

A short solution to the problem is apparent, and uses the
simplest kind of solution: a sequence of actions. Since the problem at
hand is the original problem, we write the sequence as the statement
part of the program:

begin { YouGuess2 }

Define the number to be guessed ;
Prompt for and read the guess ;

SOLVING PROGRAMMING PROBLEMS

101



Announce the result of the guess
end. { YouGuess2 }

You should not think of the above solution as a vague one; rather, it is
a precise high-level solution, whose correctness is apparent.

We now need to solve three subproblems, and will do so by
again using stepwise refinement. Let us start with the first, since it will
influence the second. Now we discover that the specification of the or-
iginal problem was incomplete, because it did not state anything about
the secret number. Let us require it to be between 1 and 10 inclusive.
It would be best to pick an unpredictable number, so let us base it on
the position of the mouse. Our solution, which again uses a sequence
of actions, is:

{ Define the number to be guessed }
Get the position of the mouse ;
Compute a number between 1 and 10 that depends on the mouse’s
position
Note that we retain the high-level action as a comment; what follows it
is called its refinement.

In this case it happens that each of the actions employed in the
solution can be directly formulated in Macintosh Pascal. We could
elect to retain the comments, but it is rarely advantageous to do so for
a single line solution. So we write:

var
X, ¥, { (x, y) is the mouse’s position }
secret : integer; { the number to be guessed }

{ Define the number to be guessed }
GetMouse(x, y);
secret := (x + y) mod 10 + 1

The new variables X, y, and secret that are needed for the refinement
are noted. Similarly, any newly defined constants should also be noted
(such as MaxSecret = 10, if it were used here as it should be).

Having disposed of the first subproblem, we turn to the second.
It is fairly straightforward to refine it directly into Pascal, yet again
with a sequence of actions (statements):

var
guess : integer;

{ Prompt for and read the guess }
Writeln('I”’m thinking of a number between 1 and 10 inclusive.’);

102 PROGRAMMING USING MACINTOSH PASCAL



Write('Please type your guess: ’);
Readin(guess)

The name guess is sufficiently meaningful in this simple context as to
not require elaboration with a comment.

Finally to the only remaining original subproblem. To Announce
the result of the guess we need to write one of two messages, depending
on whether or not the guess is correct. The apparent solution is to use
the second fundamental form of action, viz. a choice. It can be directly
formulated in Pascal using the if-then-else statement:

{ Announce the result of the guess }
if guess = secret then
Writeln('That’’s correct.’)
else
Writeln('That’’s wrong.’)

No new variables or constants are required here.

Our solution is complete. We say that the original problem or
action has been completely refined, or implemented in Pascal. To
save a few forests (would you believe wood chips ?), please refer back to
Chapter 3, where you will find the fully assembled solution in all its
glory.

Besides a sequence of actions, and a conditional action, there is
one other fundamental form of action used in solving subproblems: re-
petition.

6.3. Using repetition

Here is a new, more challenging problem. Instead of writing a
complete program, we shall regard the problem as a subproblem from
an unspecified program, and solve it with a program segment.

Set NextPrime = the least prime number = n, where n = 2.

Here n and NextPrime are given integer variables, and n already has a
value = 2. A prime number is a number = 2 divisible by no number
= 2 except itself; the first five primes are 2, 3, 5, 7, 11.

This is not an easy problem. A sensible way to prepare for a
high-level solution is to view the problem at a high level. We want to
compute the smallest number = n with a certain property (that of
being prime), so we examine the numbers n, n + 1, n +.2, ... , in in-
creasing order, until one is found with the required property. Clearly
this is a repetitive action: the subaction that is repeated is adding one

SOLVING PROGRAMMING PROBLEMS

103



to the candidate answer, and the condition under which it should be
done is that the candidate answer does not have the required property.
Since the subaction may not need to be executed, a while-loop is
appropriate, and we obtain:

var
m : integer; { a number >= n to be tested for primality }

{ Set NextPrime = the least prime >= n }

m = n;
while m s not prime do
m:=m+1;

NextPrime := m

The wvariable m 1is introduced to represent candidate answers.
NextPrime itself could be used, in which case the final assignment is
unnecessary; we choose not to do so because the name NextPrime
would then be misleading.

Think carefully about this solution: about why it is correct. Note
that the loop continues executing only if the condition is true, i.e. it
stops as soon as the condition is false, which is when m is prime.

To complete the solution, we need to refine the condition of the
loop. From the definition of primality, we know that m is not prime
just when it has a divisor d satisfying 2 < d < m. Let us decide to
search for such a divisor by examining the numbers = 2 in increasing
order, which amounts to finding the least divisor d = 2 of m. If d <
m, the condition is true; otherwise the condition is false (and d = m).

Finding the value d is just like the original problem, since it is
the least value = 2 with a certain property (that of dividing m). A
variable d can be used to contain the candidate divisors. Its value is
not a divisor just when m mod d <> 0 is true, leading to the follow-
ing solution:

{ Set d = least divisor >= 2 of m }
d:=2;
while m mod d <> 0 do
di=d+1

Our reasoning has been essentially language independent, using
only the concepts of assignment and condition-controlled repetition.
And rightly so, because it is important to learn programming
techniques that work for any language in Pascal’s broad class (called
procedural languages). But in attempting to formulate our solution in
the sublanguage of Pascal defined in Chapter 5, the problem arises that
the value of the condition:

104 PROGRAMMING USING MACINTOSH PASCAL



m is not prime

must be computed with a Boolean expression — we may not use a
statement-list.

There are several ways to overcome this. One is to use a richer
sublanguage of Pascal, to define a function that tests for primality (just
as the required function odd tests for oddness). This option becomes
available after reading the next chapter, and Exercise 7.6 asks you to
give such a solution.

Another technique involves using a Boolean variable to move the
evaluation of the complex condition inside the loop, permitting a
statement-list to be used. Our original high-level solution is therefore
first transformed to:

var
m : integer; { a number >= n to be tested for primality }
continue : Boolean; { true if and only if m not known to be prime }
d : integer; { a candidate for a divisor of m }

{ Set NextPrime = the least prime >=n }
m:=n;
continue := true;
while continue do

begin
Set d = least divisor = 2 of m;
if d < m then
m:=m+ 1
else
continue := false
end;

NextPrime := m

You should examine this solution carefully, and satisfy yourself that it
is equivalent to the original one.

We may now use our refinement of the remaining high-level
action, giving the following solution:

var :
m : integer; { a number >= n to be tested for primality }
continue : Boolean; { true if and only if m not known to be prime }
d : integer; { a candidate for a divisor of m }
{ Set NextPrime = the least prime >=n }
m:=n;
continue := true;
while continue do

begin

SOLVING PROGRAMMING PROBLEMS

105



{ Set d = least divisor >= 2 of m }
d:=2;
while m mod d <> 0 do
d:=d+ 1;

if d < m then
m:=m+ 1
else
continue := false
end;
NextPrime := m

Note the empty line after the while-loop. This marks the end of the re-
finement of:

Set d = least divisor = 2 of m

If it were absent the reader might erroneously include the conditional
statement that follows it in that refinement.

Note also that one loop is included in the body of another. This
phenomenon is known as nested loops, but it is no Big Deal — nested
loops arise naturally out of stepwise refinement, and should not cause
the programmer any special concern.

Yet another approach arises out of the observation that repeat-
loops with high-level conditions are very simply translated into Pascal,
because the calculation of the condition can be done at the end of the
body of the loop. So let us seek to use a repeat-loop in the present
problem.

Variable m will now be increased before it is tested for
primality. This slight problem can be overcome by the simple device
of initializing m so that the first increase produces the first value to be
tested. The rest of the development proceeds as before, and we obtain:

var
m, { a number >= n to be tested for primality }
d : integer; { a candidate for a divisor of m }

{ Set NextPrime = the least prime >=n }
m:=n-1;
repeat
m:=m+1;
{ Set d = least divisor >= 2 of m }
d:=2;
while m mod d <> 0 do
di=d+ 1
untild = m;
NextPrime := m

106 PROGRAMMING USING MACINTOSH PASCAL



This is preferable to the second solution, because it is easier to under-
stand, i.e. clearer. The solution using a function is clearer still, because
it directly represents the language-independent solution.

There is more than one way to skin a cat (or test for primality).
But whatever insight your solution is based on, you must be able to
express it as an algorithm. Learning to do that requires much thought
and much practice.

6.4 Deriving loop conditions

Conditions for repeat-loops tend to give beginners less trouble than
those for while-loops. The reason is that a repeat-loop’s condition
simply expresses the required state of affairs when the loop finishes,
and this is foremost in the programmer’s mind. Thus, in the above
problem, a prime number is sought, and m is prime if and only if its
least divisor d = 2 satisfies d = m. So the condition for the repeat-
loop is justd = m.

On the other hand, the condition for a while-loop describes a
state of affairs that is opposite to the one required when the loop stops.
However, since the relationship between a while-loop’s condition
and the required outcome of the loop is so clear cut, it is actually
quite straightforward to formulate the condition: just negate the
required condition with not. In the above problem, the inner loop
searches for a divisor, i.e. a value of d satisfying m mod d = 0.
Since it is formulated as a while-loop, its condition may be written
not (mmod d = 0).

That is actually what we did above, only we did not stop there,
because conditions involving not can often be simplified, in which
case, in the name of clarity, they should be. We simplified
not (m mod d = 0) by writing m mod d <> 0. This is an example
of one of a general class of simplifications listed in Table 6.1, where
x and y stand for arbitrary simple expressions.

It often happens that the condition to be negated is a Boolean
expression formed with a Boolean operator. Consider, for example, the
following refinement:

var
ch : char; { last input character read }

{ Process next sentence }
Read(ch);
while not (ch is one of ", ’?’, ’') do
begin

Process ch;

SOLVING PROGRAMMING PROBLEMS

107



Table 6.1 Simplifying
negated relational
expressions.

108

Negated relat- Equivalent
ional expression | simpler form
not (x = y) x<>y
not (x <y) x>=y
not (x > y) x<=y

not (x <=y) x>y
not (x >=y) x<y
not (x <> y) x=y

Read(ch)
end;
Process end-of-sentence mark ch

The loop should stop when ch is an end-of-sentence mark, i.e. when
the following condition is true:

(ch="")or(ch="?)or(ch="")

So the condition of the loop may be written:
not ((ch = ")) or (ch = '?") or (ch =)
This can be written more simply as:

(ch <> ") and (ch <> '?") and (ch <> ')

Such simplifications can be derived using two logical equations
due to Augustus De Morgan. They are given in Table 6.2, using p and
q to stand for Boolean (sub)expressions. Note that the right-hand form -
is not advertised as simpler, only equivalent. In fact, Boolean expres-
sions like those on the right can be simplified by using the correspond-
ing form on the left! But when p and g are relational expressions, the
right-hand forms can be simplified using Table 6.1. Thus, in our
example, we start with:

not ((ch = '.") or (ch = '?’) or (ch = "))

Using De Morgan’s law for negated ors twice, we get:

not (ch = '.’) and not (ch = '?’) and not (ch = '!)

Finally, we use Table 6.1 to simplify each operand of and, obtaining:

PROGRAMMING USING MACINTOSH PASCAL



Negated Equivalent form
Boolean expression
not (p and g) not p or not ¢
not (p or g) ‘not p and not ¢

(ch <> ') and (ch <> '?") and (ch <> ')

There is always a choice when writing relational expressions,
e.g. between ("." = ch) and (ch = '.’), and it is best to stick to a con-
sistent style. In such situations we prefer to mention the variable first.
The only exception concerns a test involving an interval of values. The
familiar mathematical notation:

Osn<9
is best mimicked in Pascal with
(0 <=n)and (n<=9)

because the textual location of n is then between those of the expres-
sions representing the limits of the interval.

6.5 Program schemas

Programming would be impossibly demanding if each new problem
had to be solved from scratch. It is of the utmost importance, there-
fore, especially for beginners, to reflect carefully on each new solution,
to abstract away from the details, uncover any general problem-solving
principles, and file them away for later use. The principles that can be
expressed as a high-level solution for stepwise refinement are called
program schemas. Their level of abstraction is one up from programs.
There are other, even higher-level, and therefore more vague principles
called paradigms, but their further discussion now would be pre-
mature.

We have seen solutions to a few non-trivial problems, so now is
a good time to reflect and begin stocking our problem-solving arsenal.
Let us begin by focusing on the most recently solved problem (that of
finding the next prime).

We obtained our original high-level solution, and the solution to
the subproblem of finding the least divisor, using the same idea. It is
applicable to any problem involving a sequence of values, where the
first value with a specified property is wanted, and each successive
value depends only on the previous one. We nail it down as schema

SOLVING PROGRAMMING PROBLEMS

Table 6.2 De Morgan’s
laws.

109



Sequential Search. The top part names the schema and defines the
general problem situation to which it applies; the bottom part is the
general solution, in a form ready for stepwise refinement. Variable v is
included in the first part here because it is part of the problem, not the
solution. We use the notation P(v) to imply that the property P can be
formulated as a Boolean expression.

Schema Sequential Search:
var

o : the type of values in the sequence ;
{ Given the first member of a sequence, a way of generating }
{ the next member from a given member, and a property P, }
{ set v = the first member having property P. }

o = the first member of the sequence
while not P(») do
Set v = the next member of the sequence (after v)

Program schemas like this capture the knowledge that really
matters: how to solve problems. Like Descartes, always be on the look-
out for them — they are nuggets of pure programming gold. The
more general they are the better, because then there are fewer to re-
member.

When using a schema to solve a particular problem, it is better
to give problem-specific descriptions of the placeholders of the schema
(the unrefined parts shown in italics), in order to define more precisely
the subproblems to be solved.

The first example of a while-loop in Chapter 5 also employs this
schema. There the problem was:

Ourput the least non-negative power of 2 that is = X
It was implicitly solved with:

Set PowerOf2 = the least non-negative power of 2 that is = X;
Wiriteln('The least non-negative power of 2 not less than ’,
x:1,"is’, PowerOf2 : 1)

The action to be refined fits the schema perfectly, with PowerOf2 for
v. The sequence is the non-negative powers of 2, in increasing order;
the first member is 1; the rule for generating successive members is to
multiply by 2. P(v) is v = X. Refer back to Chapter 5 to see the solu-
tion provided by the schema.

What about the other while-loop in Chapter 5? There the
problem was:

110 PROGRAMMING USING MACINTOSH PASCAL



Print all the squares between 1 and limit inclusive

This does not quite fit the schema, because something must be done to
each member of the sequence except the last. But it does not take
much thought to modify the schema to accommodate this option, giv-
ing schema Sequential Search With Processing. Note that in this case
v is needed for the solution — it is not part of the problem. Even
though this variation has been presented separately, you should not re-
member it that way. Instead, file the modifications to the original
schema.

Schema Sequential Search With Processing:

{ Given the first member of a sequence, a way of generating }
{ the next member from a given member, and a property P, }
{ process all values up to but not including the first with }

{ property P. }

var
v : the type of values in the sequence;

v 1= the first member of the sequence ;
while not P(») do

begin

Process v;

Set v = the next member of the sequence (after v)
end

Another generally applicable technique was used in the next
prime problem: our implementation of a while-loop with a complex
condition. By regarding the high-level loop as a high-level action to be
refined, we can express the technique as schema Complex While Loop
(see overleaf). Although programmer-defined functions can be used in-
stead (see Chapter 7), this schema is useful when it would be unnatural
to define a function.

‘This emphasis on schemas is all very well,” you say. ‘After all,
why solve a problem from scratch, with the time and possibility of
error involved, when I can use a canned solution with a written guar-
antee? But isn’t it difficult to recognize the applicability of a schema in
a given situation?’ Good question. The answer is that the style of think-
ing involved here is exactly that used when you discover schemas: you
try to characterize a problem abstractly. That means that your ability
to discover schemas increases hand in hand with your ability to apply
them. Both will come with practice, as long as you think about what
you are doing.

SOLVING PROGRAMMING PROBLEMS

111



112

Schema Complex While Loop:
{ while Cdo S }

var
continue : Boolean;
other variable declarations as needed ;

continue := true;
while continue do
begin
Define variables so that C is equal to the expression p ;
if p then
S
else
continue := false
end

Program YouGuess3 in Chapter 3 is an instance of a the oft-
used schema Interactive I/O. In this schema each instance of v stands
for the same variable. The condition of the loop does not require a
single stopping-value; instead, it is only necessary to be able to re-
cognize when the value of v is not a regular value (and is therefore a
stopping-value). If there is a single stopping-value, it is best defined as -
a named constant.

Read the schema carefully, to be sure you understand exactly
how it works. Note that each input value (regular value or stopping-
value) is prompted for, and must be followed by an end-of-line marker;
i.e. the user types the input and then hits the Return-key. When all
values are to be read before any output is produced, it may be
appropriate to have a single initial prompt and omit the one in the
body of the loop. See Exercise 6.9(a).

Each regular value is processed once, by the action inside the
body of the loop. The stopping-value is not processed. There is provi-
sion for initialization (of counts, for example) and finalization; one or
both might be dropped in a given instance of the schema. Occasionally
it is convenient to initialize after the first Readln-statement, although
this does not mean that the initialization processes the first input value,
only that it sneaks a look at it — see Exercise 6.11 for an example.

We have already seen one instance of this schema: program
YouGuess3. We will meet another in our first substantial complete
program, which, like the others, is accorded the honorary title of
‘case-study’. It should be coming along at the end of this sentence.

PROGRAMMING USING MACINTOSH PASCAL



Schema Interactive I/O:
{ Repeatedly prompt for, read, and process input data }
{ until a stopping-value is read (which is not processed). }

var
o : type of input data and stopping-value;

Initialize ;
Write(prompt for input);
Readin(v);
while v is not a stopping-value do
begin
Process v;
Write(prompt for input);
Readin(v)
end;
Finalize

6.6 Case-study 1: Scheduling

6.6.1 SETTING OF THE PROBLEM

A fundamental problem in the discipline of Operations Research is that
of scheduling jobs on processors. The idea is very general: a job is
some activity that takes a certain amount of time to process; a processor
is something capable of performing the desired activity.

We shall assume the following situation applies. There is a
sequence of jobs to be processed. The time needed to process each job
is known in advance. Two processors are available, each capable of
processing one job at a time, and starting a new job immediately the
current one is finished. The jobs are to be assigned to the processors
subject to two conditions.

(1)  Jobs are assigned to processors in the order given.

(2) Each successive job is to be assigned to the first available
processor, and then processed immediately. In case both
processors become available at the same time, either may be
chosen.

Many situations fit this model. One example is that of two
craftspersons (restorers of old books, for instance) who work together,
process jobs in the order received, and never catch up with their work.

SOLVING PROGRAMMING PROBLEMS

113



Figure 6.1

Jobs assigned
chronologically to two
Pprocessors.

6.6.2 SPECIFICATIONS

Our task is to write a Pascal program that meets the following
specifications. Input is to be prompted by the program. Each prompt
requests the time needed to process the next job, or an end-of-input
signal; the latter, of course, does not correspond to a job. Times are
assumed to be non-zero positive integers (representing hours, say).
The prompt may specify a particular end-of-input signal (e.g. 0 or
—1), but any number < 0 should be treated as the signal.

The processor assigned to a job must be indicated immediately,
before prompting for more input. After all jobs have been assigned,
the program should report:

(1)  The number of jobs;
(2)  The average of the times at which jobs complete; and
(3)  The total time scheduled on each processor.

Note that (2) is not the average length of a job, but a statistic that
measures how long on average a client must wait before a job is
finished. Items (2) and (3) should only be reported if there is at least
one job. (The program is expected to handle input of just —1, say,
reasonably.)

For example, suppose the sequence of input values is:

4,1,2,6,2,—1

Then the jobs, numbered according to their position in the input
sequence, are assigned to processors as shown in Figure 6.1. There are
five jobs. The average job-completion time is:

4+1+3+9+6
5

= 4.6.

The total time used on processor 1 is 6. The total time used on
processor 2 is 9.

time =4
processor
1 #1 #5 — job number
2| #2 #3 #4
| | ] ] | |

> time

114 PROGRAMMING USING MACINTOSH PASCAL



6.6.3 WRITING THE PROGRAM

We begin by writing the program heading, and precisely and concisely
describing what the program is to do:

program JobScheduler1 (Input, Output);

{ Input: repeatedly prompts user to enter either a processing time }
{ for a job, which must be a positive integer, or —1 to end input. }

{ Jobs are assigned in input order to the first available of two }

{ processors. Output: for each job, the processor assigned to it; }

{ the average of the times at which jobs are completed; }

{ for each processor, the total time used. }

The comment follows a standard style: it first describes the expected
input, then what is done with the input, and finally the output that is
produced.

We now begin the process of stepwise refinement with a high-
level solution:

begin { JobScheduler1 }
Write heading ;
Prompt for, read, and process each job time, until a stopping-value
is read ;
Write statistics
end. { JobScheduler1 }

It is usually most sensible to refine the last action in a sequence
first, because it is the one that will establish the known goal. Then the
immediately preceding action can be refined, and so on.

Principle Refine the actions of a sequence in reverse order.

So, bearing in mind that no jobs may be input, Write statistics is re-
fined with:

var
JobCount, { number of jobs processed }
TotalTimeOn1, TotalTimeOn2, { total processing time on }
{ each processor }
SumOfCompletionTimes : integer; { sum of completion times of }
{ all jobs processed }

{ Write statistics }
Writeln;
WriteIn(JobCount : 1, ’ jobs processed.’);
if JobCount > 0 then

begin

SOLVING PROGRAMMING PROBLEMS

115



Writeln('The total time used on processor 1 =,
TotalTimeOn1 : 1);
Writeln(’The total time used on processor 2 = ’,
TotalTimeOn2 : 1);
Writeln('The average time at which jobs complete = °,
SumOfCompletionTimes / JobCount : 1 : 1)
end

Four variables have been introduced, and their required values
specified by comments. Note that the required average is known
implicitly in the form of a numerator (a sum) and a denominator (a
count). The sum is an integer, since it is a sum of integer values — it
matters not that the average will be a real value.

We next turn to the preceding action, which is the major one.
We are in luck, since it fits schema.Interactive /0. We choose Job-
Time for v, and make the following simple refinements. Replace:

prompt for input
with:
'Enter processing time for job, or —1 to end input:’
Replace:
JobTime is not a stopping-value
with:
JobTime > 0
Replace:
Process JobTime
with the high-level action:
Assign job to processor and update statistics
At this point, our refinement of this subproblem is:

var
JobTime : integer; { processing time for current job, }
{ or end-of-input signal }

{ Prompt for, read, and process each job time, until a }
{ stopping-value is read }
Initialize ;
Write(’Enter processing time for job, or —1 to end input: °);
ReadIn(JobTime);
while JobTime > 0 do

116 PROGRAMMING USING MACINTOSH PASCAL



begin
Assign job to processor and update statistics ;
Write('Enter processing time for job, or —1 to end input: °);
Readin(JobTime) '
end;
Finalize

Three subproblems need to be refined. Again, it is most sensible
to tackle them in reverse order. Action Finalize is not needed if the
values required by Write statistics are updated by the body of the loop.
So we first generalize the comments of the appropriate variables, by
appending so far to them (see the complete solution). In refining:

Assign job to processor and update statistics

we know (thanks to the schema) that JobTime contains the processing
time for the job. Since the job is assigned to the first available
processor, we write:

{ Assign job to processor and update statistics }
if TotalTimeOn1 <= TotalTimeOn2 then
Assign to processor 1 and update statistics
else
Assign to processor 2 and update statistics

Refining deeper, we tackle the action Assign to processor 1 and
update statistics. This involves updating the values of the variables used
by Write statistics. We obtain:

begin { Assign to processor 1 and update statistics }
Writeln(’Job assigned to processor 1.’);
JobCount := JobCount + 1;
TotalTimeOn1 := TotalTimeOn1 + JobTime;
SumOfCompletionTimes := SumOfCompletionTimes +
TotalTimeOn1
end

When a high-level action is refined with a compound statement, we
document the action with a comment attached to begin. The refine-
ment of the action for processor 2 is a trivial adaptation of the above
refinement. In Chapter 8 we shall see how to capture this fact with a
programmer-defined procedure.

Both actions in the conditional statement have refinements that
include the same statement, viz.:

JobCount := JobCount + 1

SOLVING PROGRAMMING PROBLEMS

117



118

and it is independent of the others. In such cases, the common state-
ment can be removed and placed before or after the conditional state-
ment, taking care to adjust any comments accordingly. See the fully
assembled solution below.

After refining the body of a loop, only the initialization remains.
Any new or previously introduced variables used in the body that are
not involved in input statements need to be initialized. In our case we
have:

{ Initialize statistics }
JobCount := 0;
TotalTimeOn1 := 0;
TotalTimeOn2 := 0;
SumOfCompletionTimes := 0

We have made the comment a little more problem-specific.
Finally, we consider the first highest-level action, viz. Write
heading , and adhere to the following principle:

Principle Output should be intelligible on its own.

It is sound practice to head the output with the name of the program
that produced it and the time and date of the run. We shall content
ourselves for now with a simple heading:

{ Write heading }
Writeln('SCHEDULING JOBS ON TWO PROCESSORS IN
CHRONOLOGICAL ORDER’);
Writeln

Since strings cannot extend over more than one line, please consider
the first output statement as being on one line. (We shall not mention
this typographic problem in the sequel, so watch out.) The second
output statement produces an empty line.

6.6.4 THE COMPLETE PROGRAM

After assembling all our refinements, we obtain the solution given
below. Note that our style of laying out comments clearly documents
that the initialization action is part of the action for the whole schema.
Furthermore, the statements that refine the initialization action are
delimited by the blank line that follows them. Macintosh Pascal can
not always adequately handle the comments that emerge from a step-
wise refinement. For example, three successive comments can not be
indented without losing their relationship to their refinements.

There are styles of layout that better suit stepwise refinement.

PROGRAMMING USING MACINTOSH PASCAL



Our preferred style is presented in ‘Macaveats’, Section 6.11, since it is

important, but unfortunately inconsistent with Macintosh Pascal’s auto-
matic formatting.

program JobScheduler1 (Input, Output);

{ Input: repeatedly prompts user to enter either a processing time }
{ for a job, which must be a positive integer, or —1 to end input. }

{ Jobs are assigned in input order to the first available of two }

{ processors. Output: for each job, the processor assigned to it; }

{ the average of the times at which jobs are completed; }

{ for each processor, the total time used. }

var
JobCount, { number of jobs processed so far }
JobTime, { processing time for current job, }
{ or end-of-input signal }
TotalTimeOn1, TotalTimeOn2, { total processing time on }
{ each processor so far }
SumOfCompletionTimes { sum of completion times of }
{ all jobs processed so far }
: integer;

begin { JobScheduler1 }
{ Write heading }
Writeln('SCHEDULING JOBS ON TWO PROCESSORS IN
CHRONOLOGICAL ORDER’);
Writeln;
{ Prompt for, read, and process each job time, until a }
{ stopping-value is read }
{ Initialize statistics }
JobCount := 0;
TotalTimeOn1 := 0;
TotalTimeOn2 := 0;
SumOfCompletionTimes := 0;

Write('Enter processing time for job, or —1 to end input: °);
ReadIn(JobTime);
while JobTime > 0 do
begin
{ Assign job to processor and update statistics }
JobCount := JobCount + 1;
if TotalTimeOn1 <= TotalTimeOn2 then
begin { Assign to processor 1 and update sums }
Writeln('Job assigned to processor 1.’);
TotalTimeOn1 := TotalTimeOn1 + JobTime;
SumOfCompletionTimes := SumOfCompletionTimes +
TotalTimeOn1
end
else

begin { Assign to processor 2 and update sums }

SOLVING PROGRAMMING PROBLEMS 119



Writeln(’Job assigned to processor 2.’);
TotalTimeOn2 := TotalTimeOn2 + JobTime;
SumOfCompletionTimes := SumOfCompletionTimes +
TotalTimeOn2
end;

Write('Enter processing time for job, or —1 to end input: ’);
Readin(JobTime)
end; { of while-loop }
{ Write statistics }
Writeln;
Writeln(JobCount : 1, ’ jobs processed.’);
if JobCount > 0 then
begin
Writeln('The total time used on processor 1 ;
TotalTimeOn1 : 1);
Writeln('The total time used on processor 2 = ',
TotalTimeOn2 : 1);
WriteIn('The average time at which jobs complete = ',
SumOfCompletionTimes / JobCount : 1 : 1)

end
end. { JobScheduler1 }

Note that the end of the while-loop has been labeled with a comment,
to make the program easier to read.

Figure 6.2 shows the output from a run of JobScheduleri.
User input is underlined.

Figure 6.2 B E——————-— Tent

The Text window after a SCHEDULING JOBS ON TWO PROCESSORS IN CHRONOLOGICAL ORDER
run of JobScheduleri.

Enter processing time for job, or -1 to end input:
Job assigned to processor 1.

Enter processing time for job, or -1 to end input: 1
Job assigned to processor 2.

Enter processing time for job, or -1 to end input: 2
Job assigned to processor 2.

Enter processing time for job, or -1 to end input: 6
Job assigned to processor 2.

Enter processing time for job, or -1 to end input: 2
Job assigned to processor 1.

Enter processing time for job, or -1 to end input: -1

|-

S jobs processed.

The total time used on processor 1 = 6

The total time used on processor 2 = 9

The average time at which jobs complete = 4.6

120 PROGRAMMING USING MACINTOSH PASCAL



6.7 Some other schemas

Repeat-statements tend not to be used as often as while-statements.
The reason is that it is prudent to test (the condition) before deciding
to execute (the body). Even when a repeat-loop seems a good choice, a
while-loop is often even better.

Here is a case in point concerning an important principle:

Principle Check input data as thoroughly as possible.

One way to do this with interactive input is repeatedly to prompt for,
read, and check an input value until it is correct. It might seem that
the natural way to do so is with:

repeat
Write(Prompt for input);
Readin(z)

until v is legal

Think again. The problem with this solution is that each prompt
is the same: the user is not explicitly informed of a mistake, and may
wrongly but understandably assume that a new prompt is a request for
more input. The while-loop wins out once again, giving schema Check
Interactive Input. The type of » should be as large as possible so as to
include illegal as well as legal input values; this will make more sense
after Chapter 10. For an example of using this schema, see Exercise
6.10.

Schema Check Interactive Input:
var

v : largest type that includes type of value requested ;
{ Repeatedly prompt for, read into v, and check }
{ an input value, until it is legal }

Write(Prompt for input);
Readin(v);
while v is not legal do
begin
Write(Error message & prompt for corrected input);
Readin(v)
end

Another common programming situation is to have to do some-
thing a given n times, where n = 0. This can be regarded as a special
case of the following action:

SOLVING PROGRAMMING PROBLEMS 121



For each value of v between first and last, in order, do A

where, in general, the subaction A depends on the value of v. This
action can be refined with a while-statement, but Pascal provides a
special statement precisely for this situation. The advantage of using it
is that the schema is made explicit, informing the reader, for instance,
that execution of this loop will definitely terminate (provided that of A
always does). The statement is called the for-statement, and it comes
in two forms, depending on whether the values of v are taken in in-
creasing or decreasing order:

for-statement:
for variable-identifier := initial-expression to-symbol
final-expression do
statement
to-symbol: to | downto
initial-expression: expression
final-expression: expression

It would be premature to fully define the for-statement — we
will wait until Chapter 10. In this sneak preview, we shall be content
to use it in two schemas. The first, For Increasing Values In An Inter-
val, is more common. Even though v is mentioned in the definition of
the problem, it is only as a notational convenience; it really belongs to
the solution, and is shown as such. Note that if lower > upper, A is
never executed, because there are no values of v in the specified inter-
val. Like a while-loop, a for-loop looks before it leaps.

The other schema is For Decreasing Values In An Interval.
Again, if upper < lower, A is never executed.

The expressions upper and lower are evaluated once only, before
the body of the loop is executed. They must be of the same type as the
variable v, which can be integer, char, or even Boolean, but not real.

Here are three applications of these schemas. The first is the
simplest case, where some action is to be repeated a given number of
times.

Schema For Increasing Values In An Interval :
{ For each value v for which lower <= v <= upper, }
{ in increasing order, do A }

var
v : type of lower and upper;

for v := lower to upper do
A

122 PROGRAMMING USING MACINTOSH PASCAL



Schema For Decreasing Values In An Interval :
{ For each value v for which upper >= v >= lower, }
{ in decreasing order, do A }

var
v : type of upper and lower ;

for v ;= upper downto lower do
A

var
count : integer;

{ Print a line of width LineWidth }
for count := 1 to LineWidth do
Write(’-');
Writeln

Variables used in for-loops must be declared like any others. The vari-
able or constant LineWidth is assumed to exist already, since it is men-
tioned in the problem (in the comment).
In the second example, the action A depends on the value of the
variable:
var
ch : char; { ranges over entire character set }

{ Print the Macintosh Pascal character set in increasing order }
for ch := chr(0) to chr(255) do
Write(ch)
Macintosh Pascal will use as many lines of the Text window as
necessary to display the long line that is produced. For a slight varia-
tion on this solution, see Exercise 6.12.
Our third example of the use of for-loops is a case-study.

6.8 Case-study 2: The character-set table

6.8.1 SPECIFICATIONS

The Macintosh Pascal character set is to be printed in the form used in
Table 5.3, i.e. in a 16 X 16 grid, column by column from the left,
with rows and columns numbered 0 to 15. The format for each row
should be:

ﬂn/\lACC/\CC/\ ACANANCANCANCAANCANCANCAANCANCANCANCANCANCAANCAACA ACA|

SOLVING PROGRAMMING PROBLEMS

123



where nn is a number between 0 and 15, CC is printed for each control
character (to avoid chaos), A represents a space, and ¢ represents a vis-
ible character. The vertical bar (|) at each end will form the sides of a
box. The top and bottom of the box, and column numbers, should also
be printed.

6.8.2 WRITING THE PROGRAM
We begin with the program heading:

program CharacterSet (Input, Output);

{ Prints the Macintosh Pascal character set in a boxed 16 by 16 }
{ grid, column by column from the left, with rows and columns }

{ numbered 0 to 15, and a box around the grid. Each control }

{ character is represented by CC. }

Since all printing is done row by row, it will not do to take the char-
acters in increasing order. Instead, we start our refinement with:

begin { CharacterSet }
Print column numbers ;
Print top of box;
Print rows 0 to 15, with row number & left & right sides of box ;
Print bottom of box
end. { CharacterSet }

The major part of each of these actions fits the schema For Increasing
Values, leading directly to:

var
row, col : integer; { number of row and column respectively }

{ Print column numbers }

Write(' * : 4);

for col := 0 to 15 do
Write(col : 3);

Writeln;

{ Print top of box }

Write('--' : 5);

for col := 0 to 15 do
Write('---");

Writeln(’-’);

{ Print rows 0 to 15, with row number & left & right sides of box }
for row := 0 to 15 do

124  PROGRAMMING USING MACINTOSH PASCAL



Print row, left side of box, row’th row of characters, and right side

of box ;
{ Print bottom of box }
Write(’--’ : 5);
for col := 0to 15 do
Write('---');
Writeln(’-")

Note that the first and last actions are refined with the same code. We
shall find out in Chapter 8 how to exploit this with a procedure.

For the last remaining refinement, we first print the row
number, box side, and control characters in the first two columns, then
the visible characters in columns 2 to 15, then print the other box side
and end the line. The major action again fits the same schema, making
five applications of it in all! For-loops, like cabs, tend to come in
bunches.

{ Print row, left side of box, row’th row of characters, }
{ and right side of box }
begin

Write(row : 2, ' | CC CC’);

for col := 2 to 15 do

Write(chr(col * 16 + row) : 3);

Writein(’ |)

end

6.8.3 THE COMPLETE PROGRAM

The task of assembling the program is left until Exercise 6.13. The
output produced by the assembled program is shown in Figure 6.3.
You will notice a glitch in the last row. It is caused by the fact that
chr(127) is a control character that has strayed from its compadres. It
prints as a zero-width space. Exercise 6.14 invites you to divert some
of your intellectual funds to it and thereby fix the glitch.

6.9 Choosing the form of iteration

After you digest this book and become an expert on programming,
you’ll find that people who are aware of your guru status always ask
the same question — at dinner parties, on talk shows, at celebrity get-
togethers, at major product launches, anywhere you’re likely to be in-
vited — “What sort of loop do I choose?’ Here’s what to answer.

First, most garden-variety programming can be done mainly
with schemas, and this is increasingly so as you accumulate more of

SOLVING PROGRAMMING PROBLEMS

125



Figure 6.3
Output from program
CharacterSet.

126

Ell Text

0 1 2 3 45 6 7 8 9101112131415
o | ccce 0 e P p A & « ¢& - D0 O
rlecec ! 1 AR Q a g fl & ° i - D00
2lccec " 2B Rb PG i ¢ £ .~ “ 00D
3leccec ® 3 €C S e s E £ x4 7 00
4lccec $4 DT dt N 7§ ¥ f < 00D
slccecc ¢ 5 E U e ud i o pu = 700
6lccec & 6 F Uf v iOA 9 2 a4 + 00
7lccec * ? G H g wd 6B S « o 00D
glccee ( 8 H & h x a dd T » g 00
glccec ) 91 Y iy & b ?ow f oo
iojecee *x 2 J 2 joza s ™ f 00D
1mmleec + ; KL k { & 8 e A 00O
t2]ecec , <L N & a e A 0DoOoaGO
13]¢cccC - =M 1nm} ¢ =00 00T0
14 | cC CC >N ~n ~ é G F e E 0 0D
1s|ccecc /2 2 0 6o & 0 0 e e O O O]

them with thoughtful experience. In such cases, the question should
not arise, as the solution part of the schema will tell you which loop to
use. (If more than one schema applies, choose the most specific.)

If you do not have a schema that fits, you can always use a
while-loop. It can do anything the others can. Therefore, if you are
after the neatest choice, as you should be, do not begin by asking ‘Can
I use a while-loop?’ Instead, first check again to see if the problem can
be cast in a form matching one of the two for-loop schemas. If it can,
you are home. If not, the while-loop is usually your best bet. Only use
a repeat-loop after carefully ensuring that you really do want to execute
the action to be repeated at least once.

Principle Favor while-loops over repeat-loops.

In Chapters 11 and 12 you will find a valuable technique for
solving hard problems with loops. It is based on a fundamental
theorem about while-loops (which therefore applies also to the others).
In the meantime we shall use the technique implicitly whenever we
need it, so that the abstract technique will seem familiar by the time we
formulate it explicitly.

For now, the exercises provide ample opportunity to practice
solving problems that require loops for their solutions.

PROGRAMMING USING MACINTOSH PASCAL



6.10 Testing, testing
6.10.1 THE ROLE OF TESTING

Testing is not an activity that should commence after writing a pro-
gram, with the aim of discovering and correcting any mistakes made
along the way. Implicit in such a view is a thoroughly discredited (but
nevertheless still widely held) notion of how to program — that by
some mysterious process the programmer assembles an ‘almost correct’
program, runs it with various sets of test data that reveal the ‘bugs’
that are present as a matter of course, and ‘debugs’ the program by
modifying it until the results of the test runs are satisfactory. Bitter
experience has shown that programs created in such a fashion take far
too long to reach the point of usefulness (if they ever do), and require
far too much maintenance to fix the bugs that inevitably continue to
crop up.

Instead, correct programs are obtained by starting with precise
specifications, and correctly managing the process of stepwise refine-
ment. And the following principle is paramount:

Principle Testing is no substitute for thinking.

Nevertheless, testing does have an important role to play. It
should be used right from the start, as a check on our reasoning (which
may, despite all our care, occasionally be erroneous), and to help un-
cover any typographic errors. When the complete program is finally
tested, we should be genuinely surprised if, typographical and other
clerical mistakes aside, it does not perform properly. Our experience
should be that testing is a process that confirms our confidence in the
correctness of our creations, rather than one that shatters it.

6.10.2 WHAT AND WHEN TO TEST
The basic principle of testing is this:

Principle Every refinement in the process of stepwise refinement
should be tested.

Testing implies comparing actual and required performance. There is
simply no point in testing to see what a program-segment does, without
knowing beforehand precisely what it should do. When testing the en-
tire program, this information is provided by the program’s specifica-
tions. When testing the refinement of a high-level action, this informa-
tion is usually not formulated precisely, but the programmer must be
capable of doing so.

SOLVING PROGRAMMING PROBLEMS

127



Figure 6.4
Desk-checking two cases.

128

6.10.3 DESK-CHECKING

How, then, is a refinement of a high-level action to be tested? Well, if
it is the first refinement of a program, the specifications define the
desired result, called the postcondition, and also the assumptions we
may make about the input data, called the precondition. Otherwise,
the postcondition is described by the action itself, and the precondition
may be described either by the action or by the comments for the con-
stants and variables involved. The rationale of our style of describing
high-level actions is now apparent:

Principle Describe a high-level action by specifying the desired
result.

Let us consider our first refinement of the next prime problem:
{ Set NextPrime = the least prime >= n }

m:=n;
while m is not prime do
m:=m+ 1,

NextPrime := m

The postcondition is clear. It is that:

NextPrime = the least prime = n.
and the precondition is that:

n=2

The refinement is tested with pen and paper, by tracing its exec-
ution on selected values of the variables involved (provided they are
consistent with the precondition). This process is known as desk-

checking. There are two important guidelines:

(1)  determine in advance what the outcome should be;

n 3
m ?2 3
NextPrime ?7 3

n
m ? 8 9 10 1
NextPrime ? 11

PROGRAMMING USING MACINTOSH PASCAL



n 3
m ?
NextPrime ?

n 8 9 10 1" 12
m ? 8

NextPrime ?

(2)  act like a robot: execute each step mechanically, ignoring com-
ments.

Adherence to these guidelines helps avoid the psychological problems
of being predisposed to a correct outcome, and making the same
assumptions in execution as were made in creation.

The more values that are checked the better, and it is a good
idea to try extreme or pathological values, such as the smallest possible
and the largest possible, as well as typical ones.

In the case at hand, only one variable changes in the loop, and it
is sufficient to record its successive values, as shown in Figure 6.4.

Our refinement passes the tests, which should be no surprise.
But suppose we accidentally wrote n := n + 1 for the body of the
loop. We would obtain the traces shown in Figure 6.5. The first trace
reveals nothing amiss, but not the second.

Do not think of an incorrect result as revealing a bug which
needs to be fixed. No — an incorrect result simply means that our re-
finement is incorrect, and needs to be replaced by a correct one. It
sometimes happens that the correct refinement can be obtained by
making a minor adjustment to the incorrect one (as in the preceding
example). If so, well and good. But in general, especially with novice
programmers, the problem needs to be thought through again in the
light of the test. After doing so, do not forget the following principle:

Principle After replacing an erroneous refinement, desk-check the
new one.

The new refinement should at least be tested with the sets of values
used previously, and preferably some new ones as well. After all, we
did get it wrong the first time.

Sometimes the value of more than one variable may be changed
in the body of a loop, as in this example from Chapter 5:

{ Set NrDigits = number of decimal digits in numeral of n }
NrDigits := 0;

SOLVING PROGRAMMING PROBLEMS

Figure 6.5
Desk-checking an
erroneous refinement.

129



Figure 6.6
Desk-checking with two
changing variables.

NrDigits | 2 | 0 | | 1] | 2 | | 3] |4]
Resom | 2| |sroe | |ao | e | |3] Jo
RestOfn := n;
repeat

NrDigits := NrDigits + 1;
RestOfn := RestOfn div 10
until RestOfn = 0

It pays to be a little more careful in such cases. A sensible technique is
to use a row for each variable, and a new column for each step, so that
the trace shows the order in which changes occurred. Figure 6.6 gives
an example with n = 3709.

6.10.4 TESTING BY EXECUTION

Whenever a program has been completely refined, i.e. when it is
written entirely in the programming language, it should be tested by
executing it. The first requirement of the test is this:

° Execution of the program terminates normally.

Assuming it is met, the output is then carefully checked to see that the
second requirement is met.

° Output should be exactly as expected.

Whether or not all is well, the output should be saved for
possible later reference. It should therefore be clearly labeled, prefer-
ably by the program itself.

6.10.5 COPING WITH ERRORS DETECTED BY TESTING

Errors revealed by desk-checking have already been discussed. In gen-
eral, they are fixed by disposing of the incorrect refinement, and
developing and testing a new one. So let us suppose that it is a test run
that has revealed an error.

First, do not yell for help. Coping with your own errors is an
important aspect of learning to program. Some beginners seem content
to make an attempt at a solution, and get someone else to fix it when it
does not work. If you are in that category, have some self-respect, and
get out of it. Now is as good a time as any to learn how to cope with

130 PROGRAMMING USING MACINTOSH PASCAL



errors. If you are stumped, despite your best efforts, you have no re-
course but to get help (or sleep on it, which often works); but ask your
rescuer to show you how to find the problem, not just to find the
problem. End-of-homily.

One’s first thought, then, as a careful programmer, is that an
error of transcription (a typo) has been made. So the first thing to do is
carefully to check that the program has been faithfully typed. Look out
for mistakes such as:

Typing a similar character (e.g. O for 0, | for 1);
Wrong identifiers of any kind (e.g. n for m);

Wrong operations (e.g. + for *, and for or);
Wrongly placed brackets in expressions;

A semicolon or begin or end in the wrong place;
Statements entered in the wrong place or wrong order;
Missing statements or parts of conditions;

and so on, none of which need lead to a syntax error. Any such mis-
takes should be corrected and the program retested.

If an error remains, what you do next depends on its nature. If
execution of the program does not terminate, observe the range of
movement of the hand that indicates the statement being executed; use
Step or Step-Step to slow it down if necessary. Observe the values of
the variables appearing in the condition of the innermost loop that
bounds the range of movement of the hand, and figure out why the
value of its condition never changes.

Principle When a while- or repeat-loop is written, confirm that its
body is capable of changing the value of at least one variable
appearing in its condition.

Check the reasoning that satisfied you that the loop would always
terminate. Where did it go wrong?

If wrong output is produced, concentrate on the first dis-
crepancy. At least one of the variables appearing in the printed expres-
sion must have been given the wrong value. Similarly for a run-time
error: use the Observe window to find the variable(s) with incorrect
values. Work backwards through the program, carefully checking each
statement that affects any of these variables. Try desk-checking these
statements. With luck, you will find the problem. Then retest, first
with the same test data. (It is usually not worthwhile attempting to
track down the cause of other incorrect output values, as it is too hard
(and counterproductive) to take account of the error you discovered.)

SOLVING PROGRAMMING PROBLEMS

131



132

If you are unable to find anything wrong with the program, you
should check every precondition and postcondition, whether explicit or
implicit. With the current test data, the final postcondition is not met.
The problem is to find the point at which things first go wrong. Put
STOP marks just before each high-level action, and rerun the program
with the same test data. When a STOP mark is reached, check that the
postcondition of the preceding high-level action (if any) and the pre-
condition of the next one are true (they may be the same). If it is
possible to formulate these conditions as Boolean expressions, use the
Observe window to check their values. Remember, hitting the Enter-
key will force the evaluation of an expression you have just typed. For
more complex conditions, try to get all the information you need using
the Observe window. It helps if you follow the following principle:

Principle Begin testing with small, simple sets of test data.

Alternatively, use the Instant window to print out the values of the
variables involved, but be very careful not to change the values of any
variables. (If you need a control-variable for a for-loop, remember its
value and restore it afterwards.)

Sometimes another programmer will find the cause of your error
with enviable speed, even though you may have unsuccessfully racked
your brains until exhaustion. Put that down to a mental block — the
error was obvious.

6.10.6 DEFENSIVE PROGRAMMING

It is not testing that is a drag, it is having to fix errors. A thorough test
session that reveals no errors does not take an inordinate amount of
time, increases one’s confidence, and reinforces good programming
practices. But test sessions that reveal errors are another matter. As
you may well have discovered!

Much of the heartache can be avoided by being more disciplined
and careful in the process of program development, and by performing
a number of simple checks as soon as they are applicable — a stitch in
time saves nine. One such check has already been mentioned:

] Check that each while- and repeat-loop has a chance of termina-
ting. The body must affect the condition.

Here are some other worthwhile tests:

° Check for initialization before use. Each variable must get a
value before being used in an expression.

PROGRAMMING USING MACINTOSH PASCAL



° Check conditions carefully. English use of ‘and’ and ‘or’ is
terribly imprecise. Many errors are caused by using and for or
or vice versa.

° If you choose a repeat-loop, check that you really do want it to
execute its body at least once.

6.10.7 FINAL WORDS ON TESTING

Do not expect to obtain a correct program by makmg random changes
to an incorrect one. If your first few programming assignments are all
small and simple, you might get away with such a policy, but it is
hopeless for non-trivial programs. Programs do not evolve into correct-
ness — almost all mutations are losers, and you do not have a million
years. When it comes to programming, Creationism is the better
theory.

When you have tried everything, and your program still says
1+1=3, consider the following two possibilities before you pull the
trigger:

(1) The original specifications may have errors. A missile-
monitoring system might be required only to report on missiles
whose altitude over a country is decreasing, in the mistaken idea
that only in that situation are the citizens in danger.

(2) Maybe the problem is in Macintosh Pascal. Even that cause can
be tracked down by careful testing, after which the problem
should be reproduced as simply as possible, and reported, as
they say, to the authorities.

Chapter 12 presents a technique that helps the programmer to
develop certifiably correct programs. If mastered, it will alleviate most
of the burden of correcting errors revealed by testing.

6.11 Macaveats

When you next find yourself writing a Pascal program other than in
Macintosh Pascal, chances are you will be worse off. You will probably
even have to format your programs yourself. But along with this re-
sponsibility comes freedom, which permits you to use a formatting
style that more clearly reflects the process of stepwise refinement. Our
preferred style is based on just three simple principles:

(1)  Each action in a sequence should be indented at the same level.

SOLVING PROGRAMMING PROBLEMS

133



134

@
©)

The subactions that refine a high-level action should be indented
with respect to a comment that describes it.

In a multi-line Pascal statement, lines after the first line should
be indented with respect to it. (This is sometimes bent for
compound statements; see the example and commentary below.)

Actions here refer to both high-level actions and Pascal statements.
The upshot of these rules is that the first-level refinement of each
action can be read by simply collecting each sub-action at the next level
of indentation. The same goes for the components of structured state-

ments.

As an example, here is program JobScheduler1 laid out in this

fashion. Some inessential detail has been suppressed with three dots.

program JobScheduler1 (Input, Output);
{ Input: repeatedly prompts user to enter either a processing time }

{ for each processor, the total time used. }
var
JobCount, { number of jobs processed so far }

: integer;
begin { JobScheduler1 }

{ Write heading }
Writein('SCHEDULING JOBS ON TWO PROCESSORS ... °);
Writeln;

{ Prompt for, read, and process each job time, until a }

{ stopping-value is read }
{ Initialize statistics }

JobCount := 0;

Write('Enter processing time for job, or —1 to end input: *);
ReadIn(JobTime);
while JobTime > 0 do begin
{ Assign job to processor and update statistics }
JobCount := JobCount + 1;
if TotalTimeOn1 <= TotalTimeOn2
then begin
{ Assign to processor 1 and update sums }
WriteIn('Job assigned to processor 1.");
end
else begin
{ Assign to processor 2 and update sums }
Writeln('Job assigned to processor 2.’);

end;

PROGRAMMING USING MACINTOSH PASCAL



Write('Enter processing time for job, or —1 to end input: °);
Readin(JobTime)
end; { of while-loop }
{ Write statistics }
Writeln;
Writein(JobCount : 1, * jobs processed.’);
if JobCount > 0
then begin
WriteIn('The total time used on processor 1 =, ... );
end
end. { JobScheduler1 }
Note that when a compound statement is used as a component state-
ment of a structured statement, its begin and end are kept out of the
way. The effect is to focus on the statement sequence that they enclose.

EXERCISES

There is no substitute for experience in learning to solve programming
problems. If you are the programming equivalent of a gym rat, you
will want to tackle all these exercises. If you can not find the time to
do that, try giving a first refinement rather than a complete one, or just
determining which schema or form of loop, if any, should be used. To
keep you on your toes, a couple of problems have simpler solutions
than might seem to be the case at first sight. Heh heh.

6.1 What was the first refinement in the development of program
YouGuess3?

6.2  Use stepwise refinement to describe the following action in Pascal.
Ghiven that integer variables hours and minutes represent
the time on a 24-hour clock, print the time in 12-hour format.
E.g., for 0,0 print 12 :00am, for 9,3 print 9:03am,
for 12,0 print 12 : 00pm, for 17,5 print 5: 05pm,
for 23,59 print 11 :59pm

6.3  Suppose value and limit are integer variables. Simplify each of the
following expressions.
(a) value — 1 < limit

(b) not (value <= limit)

SOLVING PROGRAMMING PROBLEMS

135



6.4

6.5

6.6

6.7

6.8

6.9

(c) not((~2 * limit <= value) and (value <= limit))

(d) not((—limit <= value) and (value <= limit))

Suppose limit is non-negative. Use a required function to simplify part
(d) of the previous question even further.

Suppose temperature is a real variable (representing °F) and sunny is a
Boolean variable. Simplify the following expression that describes an
atypical day in Ithaca, NY, to find out whether it is relatively pleasant
or not.

not((temperature <= 32.0) or not sunny)

A number m >= 2 is prime if and only if its greatest divisor < m is 1.
Use this fact to give a different solution to the next prime problem. Is
the solution in the text preferable? Why?

Here is the top part of a schema:

Schema Sequential Search After First:
var
v : the type of values in the sequence ;
{ Given the first member x, of a sequence, a way of generating }
{ the next member from a given member, and a property P, }
{ set v = the first member after x, with property P. }

(a) Give the bottom part of the schema.

(b) Use the schema to solve the following problem:
Set NextPrime = the least prime > n

Implement the following action, where x and Mult32 are integer vari-
ables, and x = 0.

Set Mult32 = the least multiple of 32 = x

The following problems all share a common context: the user is to be
prompted, just once, to enter zero or more examination grades, each of
which is an integer between 0 and 100 inclusive, and then a stopping-
value of —1. After reading all the input, some information is to be
printed.

(a) Give a high-level solution by adapting a schema.

(b) Write a program that prints the number of grades in the input
data. Do so here, and in questions (c¢) and (d), by completely re-
fining your answer to (a).

136 PROGRAMMING USING MACINTOSH PASCAL



6.10

6.11

6.12

6.13

6.14

6.15

6.16

(c) Write a program that prints the average grade. If there are no
grades, the average does not exist, so a suitable message should be
printed instead.

(d) Write a program that prints the maximum grade. A suitable
message should be printed if there are no grades. It would not do
to print O in this case. Why?

(e) Suppose we decide to look out for illegal marks, and print how
many were found, but otherwise ignore them. How should our
general solution in (a) be modified? Note that schema Check Inter-
active Input is not applicable, because each grade is not individu-
ally prompted for.

Suppose a user is to be prompted to enter a real number between lower
and upper inclusive, to be read into variable measurement. Give a

program segment that repeatedly does this until a legal number is en-
tered.

Write a program segment that prompts for and reads a sequence of
positive integers followed by a stopping-value of —1, and sets max to
the maximum value read (-1 if only a stopping-value is entered).

Hint: Initialize after the first input statement.

Implement the action:
Print the Macintosh Pascal character set in increasing order

by using a for-loop with an integer variable.

Assemble program CharacterSet. Run it with Step-Step and use the
Observe window to follow the changing values of row and col.

Implement this CC-rider to the specifications for Case-study 2: print
CC instead of chr(127). Then run it to see what you have done.

Modify program CharacterSet so that the characters appear in order
when taken row by row from the top, rather than column by column
from the left. Thus the first two rows will consist of CCs.

Write another program to print the character set in the format of the
previous question. This time, use a single for-loop to print all the char-
acters.

Hint: After printing each character, have the program take special
action if it is the last in a row.

SOLVING PROGRAMMING PROBLEMS

137



138

6.17

6.18

6.19

6.20

6.21

6.22

Implement the action:

Seesum=1+4+2+3+ ...+ n,givenn = 0.

In Chapter 19 we shall learn that the most accurate way to implement
the following action is by adding the values in increasing order. Imple-
ment it that way.

1 1 |
— 1 + —_— — o e e + _’ ; .
Set sum = 2 + 3 + = givenn =0

Suppose part of an input line has been read. Write a program segment
that reads the rest of the line and the end-of-line marker, and sets un-
used to the number of characters skipped (not including the marker).

The Fibonacci sequence is 0, 1, 1, 2, 3, S, 8, 13, ... ; the first member
is 0, the second is 1, and each successive member is the sum of the two
previous members. Implement the following actions.

(a) Print the Fibonacci numbers < limit.

(b) Print the first n Fibonacci numbers, given n = 0.

Hint: Consider the sequence of successive pairs, i.e. (0,1),
(1,1, (1,2), 2,3), (3,5), (5,8), (8,13), ... . Since each successive
member of this sequence can be computed from the previous
member, our Sequential Search schemas are applicable.

Consider the action:
Set d = least divisor = 2 of m

(a) What is its postcondition?
(b) What is its precondition?
(¢) Desk-check the given refinement.

Ask a friend to make a minor change to one of your programs, prefer-
ably one you have not thought about for a while. Suggested changes
are altering a variable, deleting a statement, deleting part of a condi-
tion; the change should not introduce syntax errors. First try to find
the error by checking the points listed in the section ‘Defensive pro-
gramming.” Then, if necessary, test by execution.

PROGRAMMING USING MACINTOSH PASCAL



7

FUNGTIONS

The Form remains, the Function never dies.
— William Wordsworth, The River Duncton

7.1 Predefined functions: A review 140
7.2  User-defined functions 141
7.3 Functions as subprograms 143
7.3.1 Syntax of function-declarations 143
7.3.2 Invoking a function 145
7.4  Writing functions 147
7.4.1 Modularity 149
7.5 Macaveats 151
Exercises 151




7.1 Predefined functions: A review

In Chapter 5 we met some of Pascal’s required functions. Examples
are abs, exp, In, chr, and odd. Each one of these is a function in the
mathematical sense; i.e. when supplied with a value (called an argu-
ment), it gives back a value (said to be the result of applying the func-
tion to the argument). For example, abs(—3.8) gives 3.8, odd(1987)
gives true.

Each of the required functions happens to have one argument
(even eof and eoln, whose file argument may be implicit). But the
concept of a function allows for an arbitrary list of arguments, and
there is nothing to stop an implementation supplying a predefined
function that takes more than one argument, or even no arguments.
(Macintosh Pascal has several; see, for example, the functions
associated with strings given in Chapter 14.)

The Standard’s term for the application of a function to an argu-
ment list is a function-designator. A function-designator is an expres-
sion which belongs to the syntactic category factor. Its argument list is
called an actual-parameter-list. We recall the relevant definitions from
Chapter 5:

factor: variable | unsigned-constant | function-designator |
(expression) | not factor

function-designator: function-identifier ( actual-parameter-list )

function-identifier: identifier

actual-parameter-list: actual-parameter ... , actual-parameter

actual-parameter: actual-value

actual-value: expression

Predefined functions play a useful role in programs even when
the service that they perform is a very simple one. We could, for
example, replace every application of odd by an equivalent expression:
odd(x * y) could be replaced by x * y mod 2 = 1, odd(a + b) by
(@ + b) mod 2 = 1, and, in general, odd(:) by () mod 2 = 1.

140 PROGRAMMING USING MACINTOSH PASCAL



Similarly, but with more trouble, every use of abs could be avoided by
using extra variables and conditional statements.

But the effect would be deleterious even in these very simple
cases, let alone those where non-trivial algorithms are needed to
compute the result (of an application of arctan, for example). It is
apparent that predefined functions make an important contribution to
the clarity of our programs. Because applications of predefined func-
tions do not have to be refined, programs are shorter and, more
importantly, higher-level than they would otherwise be, and localiza-
tion is increased, meaning that closely related parts of a program are
textually closer.

There are many occasions in programming when what we do
abstractly is to apply a function. If it is predefined, we are in luck. But
chances are it will not be. Nevertheless, the advantages mentioned
above can still be obtained in Pascal, because we can define our own
functions, and thereafter use them in just the same way as predefined
functions. With user-defined functions, of course, it is necessary to
specify how to compute the result. But this is done in a separate sec-
tion of the program, and is only done once, no matter how many times
the function is used. The idea is to specify the result in terms of named
parameters, much like we did above with odd, where we denoted its
argument by 1.

7.2 User-defined functions

Here is an example of a simple but useful user-defined function.

function IsDigit (ch : char) : Boolean;
{ Returns true if ch is a digit, otherwise false. }
begin { IsDigit }
IsDigit := (0’ <= ch) and (ch <= "9’)
end; { IsDigit }

The first line contains the function heading, which states that:

° The name of the function is IsDigit;

° It is used with a single argument of type char;

° In the definition of the function, the value of the argument is re-
presented by the name ch; it is called a formal parameter;

° The function gives a Boolean value.

Next comes a comment that defines the value of the function in
terms of its formal parameter. Together with the heading, it is all that

FUNCTIONS

141



needs to be known to use the function. Finally comes the statement-
part of the function. Its job is to compute the value of the function,
which is specified by assigning it to the name of the function. We need
to update the definition of assignment-statement to allow this:

assignment-statement: variable-identifier := expression |
Sfunction-identifier := expression

The statement-part of IsDigit is minimal, as a single assignment state-
ment suffices to compute and specify the result.

The definition of a function is called a function-declaration.
Function declarations come just before the statement-part of a pro-
gram, i.e. after the variable-declarations. Our syntax definition for
block needs updating to reflect this:

block:
constant-definition-part
variable-declaration-part
function-declaration-part
statement-part

function-declaration-part:
function-declaration ;

Here is a simple program that tests function IsDigit:

program TestisDigit (Input, Output);
{ Interactively tests function IsDigit. Run for instructions. }
var
¢ : char; { latest character read }

function IsDigit (ch : char) : Boolean;
{ Returns true if ch is a digit, otherwise false. }
begin { IsDigit }
IsDigit := ('0’ <= ch) and (ch <= "9’)
end; { IsDigit }

begin { TestIsDigit }
Writein('Type characters one at a time, waiting for a response
before typing another. Finish by typing a period (.).’);
repeat
Read(c);
if IsDigit(c) then
Writeln(’ is a digit.’)
else
Writeln(’ is NOT a digit.’)
untilc ="’
end. { TestlIsDigit }

142 PROGRAMMING USING MACINTOSH PASCAL



SNe=————— —Tewt==—"7——— |
Type characters one at a time, waiting for a response [
before typing another. Finish by typing a period (.).
is NOT a digit.

is a digit.

is NOT a digit.

is a digit.

is a digit.

is NOT a digit.

is NOT a digit.

o lnl— 1— 1o 1o

Typical output is shown in Figure 7.1, with input underlined.

Two points should be noted now. First, the function is used to
form a Boolean expression. It takes exactly one argument, which may
be any expression of type char. Thus, for example, we may write not
IsDigit(chr(100)). Second, a function-declaration is always followed by
a semicolon. Because our practice is to follow that with a comment
giving the name of the function, whenever we present a function-
declaration we add the semicolon at the end, in order not to mislead
the reader.

Here is a declaration of another function; it has two formal para-
meters.

function power (a, b : real) : real;
{ Assumes a > 0; }
{ returns a to the power b. }

begin { power }
power := exp(b * In(a))
end; { power }

Exercise 7.4 explains how to test this function with minimal pro-
gramming effort. Note that you need not understand how it computes
its result — to test or otherwise use it, you need know only its heading
and associated comment, which define how to use it and what value it
returns. Testing it will reveal that both real and integer arguments are
acceptable, just as with predefined functions that expect real argu-
ments, such as sin. The result, though, is always real. Also, of course,
you will observe that the order of the arguments is important.

7.3 Functions as subprograms
7.3.1 SYNTAX OF FUNCTION-DECLARATIONS

The value to be returned by a function may require a complex algo-
rithm for its calculation. Pascal therefore allows all its resources to be
brought to bear, and decrees that the body of a function should be a

FUNCTIONS

Figure 7.1
The text window after a
run of TestlsDigit.

143



block. That means that a function-declaration can introduce its own
constants, variables, and even other functions if need be, since we
now know that blocks may have function-declarations. Function-
declarations are called subprograms, for obvious reasons.

function-declaration:

function-heading ;

Sfunction-body
function-heading:

function function-identifier (formal-parameter-list) : result-type
result-type: type-identifier
type-identifier: identifier
function-body: block
formal-parameter-list:

formal-parameter-section ... ; formal-parameter-section
formal-parameter-section: value-parameter-section
value-parameter-section: identifier-list . parameter-type
parameter-type: type-identifier

All examples but the next in this chapter have a formal-
parameter-list consisting of a single formal-parameter-section. You will
need more than one if there is more than one type of formal parameter.
For example:

function ForceUpper (ch : char; upper : Boolean) : char;
{ If ch is a lower-case letter and upper is true, }
{ returns the upper-case version of ch, otherwise ch. }

Thus, for example:

ForceUpper('a’, false) gives 'a’
ForceUpper(’'x’, true) gives X'
ForceUpper('&’, true)  gives &’

There are some requirements that are not captured by the above
rules:

° The result-type of a function must be an unstructured type; for
now, just note that all the types we have met so far are un-
structured.

° The statement-part of the function-body must include at least
one assignment to the function-identifier.

° Although the function-identifier may appear on the left of an
assignment statement, it may not be used in an expression as if
it were a variable. (But see Chapter 18 on recursion.)

144 PROGRAMMING USING MACINTOSH PASCAL



A function-declaration limits the class of legal function-
designators in two ways:

(1)  The number of arguments must equal the number of formal
parameters.

(2)  Each argument expression must be assignment-compatible with
a variable of the corresponding formal parameter’s type.
Parameter/argument correspondence is by position; i.e. they are
paired off from left to right.

Here is an example of a function with a more complex body:

function Ipf (n : integer) : integer;
{ Assumes n > 1; }
{ returns the least prime factor of n. }
var
d : integer; { candidate for a divisor of n }
begin { Ipf }
{ Set d = least divisor > 1 of n }
d:.=2;
while n mod d <> 0 do
d:=d+ 1;
Ipf:=d
end; { Ipf }

It will doubtless seem familiar, because it incorporates the solution to a
subproblem of the mext prime problem in Chapter 6. Note that we
cannot dispense with d and work directly with Ipf instead, because
Ipf := Ipf + 1 is illegal.

7.3.2 INVOKING A FUNCTION

A function is invoked during the evaluation of an expression that in-
cludes one of its function-designators. The following sequence of events
then occurs:

(1)  Each argument (actual parameter) is evaluated.

(2) For each formal parameter, a quasi-variable is created and
assigned the value of the corresponding argument (which is why
it must be assignment-compatible). The quasi-variable
henceforth behaves as if it was a variable.

(3) For each variable declaration in the variable-declaration-part of
the function-declaration’s block, a variable is created with an un-
defined value.

FUNCTIONS

145



(4) The statement-part of the function-declaration’s block is
executed. It may refer to the parameters, which denote their
corresponding quasi-variables, and the variables created in step
(3). Any constants or functions introduced by the function-
declaration’s block are also available. Values of the function’s
type may be assigned to the function-identifier.

(5) When execution of the previous step terminates, the last value
assigned to the function-identifier becomes the value of the
function-designator. It is an error for this value to be un-
defined. Furthermore, all quasi-variables introduced for para-
meters in step (2) are exterminated, and all variables created in
step (3) are annihilated.

In summary, the function’s block is treated just the same as the pro-
gram’s (or any other block). v

Let us trace the evaluation of the function-designator Ipf(m),
where m is an integer variable declared in the same block as the func-
tion.

(1) The argument (actual parameter) m is evaluated, giving, say, 9.

block invoking Ipf

m
.. [[9 ] m gives 9
(2) A quasi-variable is created for the formal parameter n of Ipf, and

initialized to 9.

block invoking Ipf
m

block of Ipf
n

EX

(3)  The variable d of Ipf is created with an undefined value.

block invoking Ipf
m

]
block of Ipf
n d

[%]

146  PROGRAMMING USING MACINTOSH PASCAL




(4)  The statement-part of Ipf is executed. On completion we have:

block invoking Ipf
m

-[9]
block of Ipf
n d

9]

last value assigned to Ipf: 3

(5)  Execution terminates: 3 is the value of the function-designator;
all quasi-variables and variables introduced in steps (2) and (3)
are destroyed. Execution continues in the context of the expres-
sion that included Ipf(m).

block invoking Ipf
m
... 9 ]lpf(m) gives 3

7.4 Writing functions

When writing a function it is very important that you do not try to
think in terms of the previous pictorial illustration of a function invoca-
tion. That is strictly behind-the-scenes stuff, to clarify and illustrate
the discussion prior to it. No, you write a function-declaration by
solving a programming problem in the usual way — with stepwise re-
finement. The problem is to assign the result of the function to the
function-identifier, and you may treat the formal parameters as vari-
ables which have already been given values.

The description of step (4) of invoking a function is not the
whole truth, though it is the truth and nothing but the truth, because a
function-declaration’s statement-part may refer to additional para-
meters, constants, variables, and functions. For example, it may refer
to any of these that are predefined, such as the constant pi and the
function succ. The issue here is what is available in a given part of a
program. It is dealt with fully in the next chapter, under the rubric of
Scope rules. OK?

For the present, let us restrict our interest to function-
declarations. A function-declaration makes the function available
throughout the block in whose function-declaration-part it is declared.
There are two riders to this stipulation, however. One is that Pascal
follows the principle of declaration before use, which means what
it says: in particular, if a function G makes use of another

FUNCTIONS

147



148

function F declared in the same function-declaration-part, then the
declaration of F must come first. The other rider is that a function-
identifier may be reused for some other purpose, decreasing the region
of availability of the function. Again, refer to the next chapter for the
full story.

An example should clarify matters. Consider the following
program:

program Primes (Input, Output);
{ Prompts for and reads an integer, and prints all the prime }
{ numbers not exceeding it, in increasing order. }
var

limit, { bound on size of prime numbers }

n, { a number to be tested for primality }

i { n = i'th odd number }

: integer;

{ (A) FUNCTION Ipf CAN BE DECLARED HERE }
function IsPrime (n : integer) : Boolean;

{ Returns true if n is prime, i.e. a number > 1 whose only }
{ divisor > 1 is itself; otherwise returns false. }

{ (B) OR FUNCTION Ipf CAN BE DECLARED HERE }

begin { IsPrime }

if n < 2 then
IsPrime := false
else

IsPrime := Ipf(n) = n
end; { IsPrime }

{ (C) BUT FUNCTION Ipf CANNOT BE DECLARED HERE }

begin { Primes }
Write('Enter bound on size of prime numbers: °);
Readin(limit);
Writeln('The primes not exceeding ’, limit : 1, * are as follows:’);
if limit >= 2 then
begin
{ Print the only even prime }
Write(2);
{ Print in order the odd primes <= limit }
for i := 2 to (limit + 1) div 2 do
begin
n:=2%*i-1;
if IsPrime(n) then

PROGRAMMING USING MACINTOSH PASCAL



Write(n)

end { for-locop }

end { limit >= 2}
end. { Primes }

7.4.1 MODULARITY

Position (B) is the most natural one for the declaration of Ipf. For then
we read program Primes as declaring three variables and the function
IsPrime, which are all that it uses in its statement-part. And reading
deeper, we see that IsPrime declares a function Ipf, which is then used
in its statement-part. Function IsPrime is completely self-contained:
its only interaction with its environment is per medium of its formal
parameter. We say it is modular. So also is function Ipf, wherever it is
declared.

Modularity is a Good Thing: a modular function can be read
and completely understood without any knowledge of the program that
uses it. It can be tested independently, and incorporated in any pro-
gram with complete confidence. It can also be included in a library of
functions to be made available to any program.

Principle A subprogram should be modular: it should interact
with its environment solely through its formal parameter(s).

A function that performs input or output is not a function in the
mathematical sense. One may debate whether Real Men eat quiche,
but certainly Real Functions do not change anything — they only
compute a value. It makes no sense for evaluation of an expression to
affect the input or output streams, except where output is necessary to
signal an error condition.

Principle Functions should not move the input position, and
should only produce output to signal an error condition.

Note that this principle permits functions with file parameters, such as
eoln, as long as they do not affect them.

If Ipf is declared in position (A), we read program Primes as
declaring two functions, each of which istherefore available throughout
the program (i.e., throughout the program’s block). So Ipf may be
used by IsPrime, as the requirement of declaration-before-use is met.
In this version, IsPrime is not completely independent of its environ-
ment: it can only be used by a program that makes function Ipf avail-
able to it. A comment should indicate this.

Principle If a subprogram makes an assumption about its envir-
onment, the comment accompanying its heading should say so.

FUNCTIONS

149



Modularity is not an absolute thing; there are degrees of it. With
Ipf declared in position (A), function IsPrime fails to be completely
modular in a relatively minor way; a way, moreover, that is often un-
avoidable in practice without going to ridiculous extremes. For
example, consider a program that needs to make use of both Ipf and
IsPrime. It makes sense to declare them as above with Ipf in position
(A); the alternative is to make IsPrime fully modular by redeclaring Ipf
in it, and that is ridiculous. A similar situation is where a program
needs to use two functions, each of which needs to use another. In that
case, all three should be declared at the same level, with the latter first.
The upshot is that declaring Ipf at (A) is so familiar that some would
not consider it at all stylistically inferior. You pay your money and
you take your choice. Position (C) is illegal for declaring Ipf because it
is used beforehand.

Another advantage of modularity is that the body of a function
can be replaced by another with no change to the results of any pro-
gram that uses it (except if results depend on timing considerations).
It is only necessary that the new body implements the comment
accompanying the function-heading. A reason, by the way, why such
comments should be as precise as possible. Thus improvements in the
efficiency of the calculation of the function’s value can be made in-
dependently of its use.

Here is an example of this possibility. The calculation for func-
tion Ipf can be sped up considerably by exploiting the fact that if the
smallest divisor of a number n > 1 exceeds Vn then it must be n
itself. Accordingly, we might like to replace the original Ipf by the
following version, and can do so with impunity.

function Ipf (n : integer) : integer;
{ Assumes n > 1;}
{ returns the least prime factor of n. }

var

d : integer; { candidate for a divisor of n }

begin { Ipf }
{ Set d = minimum of: (a) least divisor > 1 of n, and }
{ (b) least integer >= sqrt(n) }

d:=2;

while (n mod d <> 0) and (sqr(d) < n) do
di=d+ 1;

if n mod d = O then
Ipf:=d

else
Ipf:=n

end; { Ipf }

Exercise 7.12 invites you to make yet another improvement to the
efficiency of Ipf.

150 PROGRAMMING USING MACINTOSH PASCAL



7.5 Macaveats

Macintosh Pascal allows the result-type of a function to be any structured
type (not being or containing a file-type). This is a very welcome
extension.

EXERCISES

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

Complete the following partial function-declaration:

function IsLetter (ch : char) : Boolean;
{ Returns true if ch is a letter, otherwise false. }
{ N.B. Assumes both upper- & lower-case letters contiguous. }

Complete the following partial function-declaration:
(a) using the required function odd,
(b) without using odd.

function even (i : integer) : Boolean;
{ Returns true if i is even, otherwise false. }

Werite a function that returns the maximum of two integers.

Test function power by first declaring it in a skeletal program, such as
Program Untitled. Then choose Step from the Run menu to process the
declaration. Finally, use the Observe window to evaluate the function
with various argument lists.

Package the solution to Exercise 6.7(b) as a function.

Use function IsPrime to implement the original high-level solution to
the next prime problem in Chapter 6.

Solve Exercise 6.18 by declaring and using a suitable function.

Write a function that returns the cost of mailing a letter when given its
weight. Use the information in Exercise 5.8.

Write function ForceUpper. It may assume that both the lower- and
upper-case letters are contiguous.

Test your function ForceUpper by writing a program along the lines of
program TestlsDigit.

Modify program Primes to print the primes 10 to a line. Hint: Count
up to 10 and start again.

FUNCTIONS

151



Table 7.1 Bizarro
multiplication of 109 by 57.
(Exercise 7.13)

7.12

7.13

7.14

Table 7.2 Computing
gcd(5460,294) by Euclid’s
algorithm.

First | Second | Sum
57 109 109
28 218 109
14 436 109

7 872 981
3 1744 2725
1 3488 6213

Speed up function Ipf even further by exploiting the fact that the small-
est divisor > 1 of a number >1 is either 2 or odd.

The denizens of the planet Bizarro multiply two integers > 0 as
follows. Call the smaller the first number, and the larger the second.
The first is repeatedly halved as the second is doubled, until the first
becomes 1. But whenever the first is odd, the second is added to a
cumulative sum. The answer is the final sum. The Bizarro-calculation
of 109 x 57 = 6213 is shown in Table 7.1.

Write a function that multiplies two integers > 0 by this method. It
should not use any multiplications, and should avoid an unnecessary
doubling at the end. If that was too easy, modify your solution to
handle any integers.

One of the earliest recorded algorithms is Euclid’s beautiful method for
calculating gcd(x, ), the greatest common divisor of two non-negative
integers x, y, which is defined as long as both integers are not zero. It
is based on three facts:

(1) ged(0, y) =y, ify # 0,
(2) ged(x, y) = ged(x, y mod x), if x # 0,
(3) ged(x, y) = ged®, x).

Table 7.2 illustrates the method applied to calculating gcd (5460, 294).
In each line, gcd (x, y) is the same, by (2) and (3). In the last line, it
is 42, by (1), which is therefore the answer.

Write Euclid’s algorithm as a function.

x y | ymod x
5460 294 294
294 | 5460 168
168 294 126
126 168 42
42 126 0
0 42 | (illegal)

152 PROGRAMMING USING MACINTOSH PASCAL



PROCEDURES

‘In such cases,’ said the Owl, ‘the customary procedure is as follows.’
‘What does Crustimoney Proceedcake mean?,” said Pooh. ‘For I am a
bear of very little brain, and long words bother me.’
‘It means the thing to do.’

— A. A. Milne, Winnie the Pooh

8.1 Imtroduction 154
8.2  Parameterless procedures 154
8.3 Parameters 157
8.3.1 Value parameters 157
8.3.2 Variable parameters 159
8.3.3 Aliasing 162
8.3.4 Syntax of procedure-declarations 163
8.4 Pascal’s parameter mechanism: A summary 163
8.4.1 Syntax 163
8.4.2 Function-declarations 164
8.4.3 Procedure-declarations 164
8.4.4 Value parameters 164
8.4.5 Variable parameters 164
8.4.6 Which kind of parameter? 164
8.4.7 Formal and actual parameter correspondence 165
8.4.8 Local variables 165
8.4.9 Function invocation 165
8.4.10 Procedure invocation 165
8.5 Scope 166
8.5.1 The issue of scope 166
8.5.2 Scope rules 166
8.5.3 Scope rules and the programmer 169
Exercises 170




8.1 Introduction

Suppose you look up a recipe in a well-organized cook book. You will
notice that the recipes are quite short — most in The Foy of Cooking,
for instance, occupy only half a column or so — because they
frequently refer the reader to other recipes that explain how to prepare
certain ingredients, or perform certain stock techniques (so to speak).
And these subrecipes are presented in exactly the same way.

The benefits are great. Each recipe is read easily and quickly,
because details do not get in the way. There is no loss of precision,
though, because the details can be pursued elsewhere. Furthermore,
much space is saved, because the preparation of a common ingredient
or the way to perform an important technique needs to be explained
once only.

With stepwise refinement, we create programs by giving high-
level descriptions and then refining their component parts. But, with
our present knowledge, the details can be removed only when sub-
problems are solved with predefined procedures. Imagine how much
worse off we would be if, for instance, each read of a real value had to
be spelled out in detail, on the spot, with all the complications of read-
ing a character at a time, processing a sign, a decimal point, an
exponent, and so on.

Well, have we got good news for you! Because all the advantages
of predefined procedures are available to you in the privacy of your
own programming environment. All you need is Pascal’s facility to
define your very own procedures. Once you have tried them, you’ll
never know how you did without.

8.2 Parameterless procedures

Recall our first refinement of program CharacterSet:

154 PROGRAMMING USING MACINTOSH PASCAL



Print column numbers ;

Print top of box ;

Print rows 0 to 15, with row number & left & right sides of box ;
Print bottom of box

Two of the high-level actions have exactly the same refinement, viz.
Print top of box and Print bottom of box. Instead of refining each as in
Chapter 6, we can define a procedure and use it twice. The definition
is called a procedure-declaration. The one we need is as follows. (As
with function-declarations, we always present procedure-declarations
with the following semicolon.)

procedure PrintBoxSide;
{ Prints line representing top or bottom of box. }
var
col : integer; { column number }
begin { PrintBoxSide }

Write(’--' : 5);

for col := O to 15 do
Write(’---");

Writeln(’-’)

end; { PrintBoxSide }

This should be reminiscent of a function-declaration, because it
is also a subprogram. The first line is the heading, which in this case
simply names the procedure, which is parameterless, i.e. has no
formal parameters. The accompanying comment describes what the
procedure does, and the block that follows specifies how it does it. All
we have done is incorporate the statement-list used as the original re-
finement in the statement-part, and declare that it uses variable col.
Like variables declared in a function-declaration, col is said to be local
to the procedure.

Procedure-declarations appear in the same part of a block as
function-declarations. We update the syntactic description of a block to
reflect this.

block:
constant-definition-part ;
variable-declaration-part ;
procedure-and-function-declaration-part ;
statement-part
procedure-and-function-declaration-part:
procedure-or-function-declaration ;

procedure-or-function-declaration:
procedure-declaration | function-declaration

PROCEDURES

155



Having declared a procedure, a new statement, called a
procedure-statement, becomes available. The act of executing it is
called a procedure call. We also take the opportunity to treat input-
statements and output-statements syntactically as procedure-statements
with special actual-parameter-lists.

simple-statement: empty-statement | assignment-statement |
procedure-statement

A parameterless procedure’s procedure-statement consists solely of its
name. So, in program CharacterSet, the two high-level actions are re-
fined as follows:

{ Print top of box }
PrintBoxSide

{ Print bottom of box }
PrintBoxSide

The effect of each of these procedure-statements is to execute the
block of the procedure-declaration. The variable col is created with an
undefined value, and then the statement-part is executed, which uses
col to print a horizontal side of the box. On completion, variable col
disappears.

A great advantage of this solution over the original is that the re-
finement for printing a side is specified just once, saving space and re-
ducing the opportunity for error. But also, because details are re-
moved, the program is more readable and the high-level solution is
more apparent. This latter property is sufficiently important to justify
implementing a high-level action with a procedure-statement, even
when it is the procedure’s only use.

We can do this for one of the two remaining high-level actions
of program CharacterSet with a parameterless procedure:

procedure NumberColumns;
{ Prints column numbers. }
var
col : integer; { column number }
begin { NumberColumns }

Write(’ ’ : 4);

for col := 0 to 15 do
Write(col : 3);

Writeln

end; { NumberColumns }

The refinement becomes just:

156 PROGRAMMING USING MACINTOSH PASCAL



NumberColumns

Retaining the original description of the high-level action as a comment
is hardly worthwhile here. The comments for the refinements using
PrintBoxSide were retained because they add information, although it
is so slight as to make the decision a finicky one.

8.3 Parameters
8.3.1 VALUE PARAMETERS

The remaining high-level action in the original refinement of program
CharacterSet exactly matches a schema, giving the refinement:

{ Print rows 0 to 15, with row number & left & right sides of box }
for row := 0 to 15 do
Print row of table numbered with row

There is no reason to use a procedure-statement for this refinement,
both because there is hardly any detail worth hiding, and because
printing a line of the table is the appropriate level of abstraction, since
that is what each of the other high-level actions does.

But the component action is another matter. Here the computa-
tion to be performed depends on a value, namely that of row, so we
declare a procedure with a single parameter:

procedure PrintRow (RowNumber : integer);
{ Prints row of table, consisting of row number, left side of box, }
{ characters in row, and right side of box. }
const
OrdOfSpecialCC = 127; { ord value of isolated control
character }
var
col, { column number }
OrdValue { ordinal value of character to be printed }
: integer;
begin { PrintRow }
{ Print start of row, with control characters in cols 1,2 }
Write(RowNumber : 2, ' | CC CC);
{ Print remaining characters in row }
for col := 2to 15 do
begin
OrdValue := col * 16 + RowNumber;
if OrdValue = OrdOfSpecialCC then { indicate control
character }
Write(' CC’)

PROCEDURES

157



158

else
Write(chr(OrdValue) : 3)
end;
{ Print end of row }
Writein(’ |')
end; { PrintRow }

We have used the modification requested in Exercise 6.14 that in-
dicates that chr(127) is a control-character, and added comments
because of the extra complication.

The formal parameter RowNumber is called a value-parameter.
It is the kind of parameter used for functions in the previous chapter.
The procedure statement:

PrintRow(row)

that refines the body of the loop is executed in much the same way as a
function-invocation, i.e. the actual-parameter row is evaluated, the re-
sulting value is assigned to the quasi-variable created for RowNumber,
the local variables col and OrdValue are created, and the statement-
part of the procedure-declaration is exec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>