

AN INTRODUCTION TD
PROGRAMMING USING
MACINTOSH™ PASCAL

AN INTRODUCTION TO
PROGRAMMING USING
MACINTOSH™ PASCAL
PAUL PRITCHARD
UNIVERSITY OF QUEENSLAND

ADDISON-WESLEY PUBLISHING COMPANY

Sydney • Wokingham, England • Reading, Massachusetts
Menlo Park, California • New York • Don Mills, Ontario
Amsterdam • Bonn • Singapore
Tokyo • Madrid • San Juan

© 1988 Addison-Wesley Publishers Limited
© 1988 Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher.

The programs presented in this book have been included for their instructional
value. They have been written and tested with care but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs.

Cover design by 20/20 Graphics, Iver, Bucks.
Text design by Roger Walker/Linde Hardaker.
Typeset by Morton Computer Services Ltd, Scarborough.
Printed in Singapore

First printed in 1988.
Reprinted with corrections in 1988.
Third printing, 1989.

British Library Cataloguing in Publication Data

Pritchard, Paul
An introduction to programming using
Macintosh Pascal.
1. Macintosh (Computer) - Programming
2. PASCAL (Computer program language)
I. Title
005.2'65 QA76.8.M3

ISBN 0-201-17539-8

Library of Congress Cataloguing in Publication Data

Pritchard, Paul, 1951-
An introduction to programming using Macintosh Pascal I Paul

· Pritchard
p. cm.

On t.p. the registered trademark symbol "TM" is superscript
following "Macintosh" in the title.

Includes index.
ISBN 0-201-17539-8:
1. Macintosh (Computer) - Programming. 2. Pascal (Computer program

language). I. Title.
QA76.8.M3P75 1988 87.3186D
005.'265-dc 19

To my mother and father

PREFACE

This book is aimed primarily at students taking an introductory course
in computer programming, where the programming language is Pascal,
and practical work is done using either Macintosh Pascal or Lightspeed
Pascal. t It is intended to be suitable for both one-semester (half-year)
and two-semester (full-year) university-level courses. It contains:

• A modem and thorough introduction to solving programming
problems in a procedural language;

• A self-contained guide to the use of the Macintosh and the
Macintosh Pascal programming environment;

• A complete description of ANSI Standard Pascal;
• A complete description of Macintosh Pascal's extensions to and

deviations from Standard Pascal; and
• A thorough introduction to the use of Macintosh Pascal's librar­

ies for graphics and numeric programming.

The reader is not assumed to have had any previous exposure to
computers or programming, or any mathematical background beyond
the level of simple high-school algebra. Nevertheless, the book should
prove useful to those with prior programming experience.

The sections that follow elaborate on the book's objectives. It is
left to the reader to judge how appropriate these are and how success­
fully they have been met. The proof is in the pudding, not in the pre­
face.

Philosophy
The emphasis is fairly and squarely on problem-solving in the domain
of programming. Every opportunity is taken to expose the reader to
new problems, and to increase the reader's problem-solving ability

t'Macintosh Pascal' will refer to both Macintosh Pascal and Lightspeed Pascal, unless other­
wise indicated.

PREFACE vii

gradually. Particular emphasis is placed on stepwise refinement and
program schemas. Each program is developed from its specifications,
not presented as a fait accompli. Invariants are presented as of practical
rather than theoretical interest. They are implicitly used from the start,
and are explicitly identified first in Chapter 11, on one-dimensional
arrays, in the guise of general pictures.

Learning a programming language is of secondary importance.
Nevertheless, the student is entitled to a careful and complete descrip­
tion of the language he or she is using, and will find it in this book.
Because programming to a recognized standard is important, Standard
Pascal is defined as well as Macintosh Pascal, and the differences are
described. And whenever one of Macintosh Pascal's predefined sub­
programs is introduced, it is properly specified.

Case-studies
Few would dispute that it is very desirable for the beginner to be
exposed to a variety of exemplary programs, but programming is the
thought process that culminates in a program, not the finished product.
Accordingly, a dozen case-studies are tackled and each results in a sub­
stantial, meticulously written program that illustrates the use of a
particular feature of Pascal. All but one of these programs is (not was)
developed from its specifications using stepwise refinement. Care has
been taken to explain every significant design decision.

Most of the case-studies are much larger programming problems
than are typically found in introductory texts, and lead to correspond­
ingly larger programs. It is essential for students to be exposed to such
problems as early as possible, lest they develop problem-solving habits
that do not scale up. Although stepwise refinement reduces large
problems to many small ones, it is the programmer who formulates
these problems, using skills quite different from those used in solving
small, given programming problems (exercises). The student is not
asked to solve these large problems, only to follow the processes of
their solutions.

Programming style
This book treats the matter of programming style seriously. All pro­
grams and program fragments are written in a consistent and dis­
ciplined style, the main features of which are:

• Documentation of the process of stepwise refinement by means
of comments representing high-level actions;

viii PREF ACE

• Documentation of the meaning of each variable (unless it is clear
from its name or obvious from the context of its use);

• Specification of all (sub)programs; and
• Eschewing global variables.

Every program or fragment of a program is written in accordance with
these principles.

Style of presentation
The philosophy is to expose the student early to a significant sub­
language (the required simple types, basic control structures, textual
input and output), and then to start solving problems. Further
language constructs are introduced as needed, always in a problem­
solving context.

Repetition accordingly precedes procedures and functions - no
significant problem-solving can be done without it, and to do otherwise
is to emphasize language issues when they are not important and
cannot be appreciated. Subprograms are the next cab off the rank
though, since they are needed as soon as programs get sufficiently
complex.

Problems are chosen carefully to require only the language
features at hand - problems that have significantly superior alterna­
tives using unfamiliar features are avoided. In any case, the reader is
informed whenever new features or concepts can be used to improve a
solution, and the improvement appears either in the text or as an
exercise.

Syntax is presented formally, in a highly simplified adaptation of
Extended Backus Naur Formalism (EBNF), that uses typographic
devices and familiar conventions in preference to special grammatical
symbols, thereby achieving a written form that is as close as possible to
that used in the display of Macintosh Pascal programs. Section A.3 of
the Appendix presents the complete syntax of ANSI Standard Pascal in
syntax diagrams, and Section A.4 gives a brief explanation of EBNF
notation.

Exercises
There are a great many exercises. Most have solutions at the end of the
book. They are arranged to follow the order of material within each
chapter, so that it is not necessary to complete a chapter before
embarking on the early exercises. No indication of the difficulty of

PREFACE ix

:1:iY
0.0

exercises is given. This is a deliberate policy - the difficulty of a
programming problem depends on the programmer as much as the
problem, and programmers are not normally given difficulty-ratings for
their programming tasks. None of the exercises is meant to be beyond
the ability of a beginner of average talent.

Exploiting the Macintosh
This text was conceived to exploit the rich, predefined libraries of
Macintosh Pascal to give more realistic and interesting examples than
are possible in a generic Pascal text.

A thorough, self-contained introduction to the Macintosh, and to
Macintosh Pascal as a programming environment, is given in Chapters
1, 2, and 4. The Macintosh's graphics capabilities are exploited in
many case-studies, with an emphasis on getting meaningful and
attractive results from a small body of graphics knowledge. Gimmicky
programs that produce gee-whiz effects are conspicuously absent -
programs are always written to specifications, not to see what interest­
ing displays they might produce.

Macintosh Pascal's extensions for string-processing, which are
very attractively done in the main, are exploited in Chapter 14.
Chapter 15, on records, indicates how to implement Macintosh Pascal's
string-types in Standard Pascal as an abstract data type.

Macintosh Pascal's facility to open random-access files permit­
ting mixed reading and writing is explained in Chapter 16.

Situations in which Lightspeed Pascal differs from Macintosh
Pascal are indicated by numbered icons in the margin. These refer the
reader to Section A.5 in the Appendix. Although these icons officially
represent bug spray cans, for our purposes they are better regarded as
sources of light; candles are the obvious choice.

About the chapters
• Chapters 1 and 2 introduce the Macintosh and Macintosh

Pascal's editor. Their exercise sections lead the reader at a
Macintosh systematically through all the important aspects.

• Chapter 3 previews Pascal, following the 'Reading Before Wri­
ting' school of language learning. It introduces the 'Macaveats'
sections that inform the reader of the differences between
Macintosh Pascal and ANSI Standard Pascal. Several have been
discovered that are not documented by Apple.

x PREFACE

• Chapter 4 documents the sophisticated execution features of
Macintosh Pascal, and illustrates them using the programs pre­
sented in Chapter 3.

• Chapter 5 introduces our method of syntax definition, and pre­
sents a sublanguage that will enable the reader to embark on
significant problem-solving.

• It is with Chapter 6 that problem-solving starts in earnest. It in­
troduces stepwise refinement and program schemas, and
exemplifies thoroughly the use of both in its two case-studies.

• Chapters 7 and 8 introduce functions and procedures, respect­
ively. They are akin in style to Chapter 5, concentrating on
explaining these new language features. The examples use sub­
programs to give improved solutions to previous problems.

• Chapter 9 presents two case-studies that exploit subprograms to
solve new problems. It also introduces the fundamentals of
Macintosh graphics that are heavily used thereafter.

• Chapter 10 gives the whole story on ordinal types and their
associated control structures, in preparation for the following
chapter on arrays. Nevertheless, it contains a substantial case­
study that thoroughly exploits user-defined types, and provides
notes for a further case-study involving graphics in its exercise
section.

• Chapter 11, on one-dimensional arrays, is the most important
chapter for an introductory course. Many interesting problems
can be tackled and the opportunity arises to present invariants in
a very natural way (through general pictures). Its case-study
demonstrates the wisdom of writing general procedures - the
graphics for n -processor scheduling use exactly the same
procedures as for two-processor scheduling.

• Chapter 12 rounds out a most thorough introduction to pro­
gramming with a discussion and illustration of two important
aspects of programming methodology, namely, correctness and
efficiency.

Ideally, a one-semester course would cover these first twelve chapters.
The remaining chapters do not so much follow on from the ones men­
tioned as cover special topics. Instructors who, for example, like to in­
troduce sets, records, recursion or string-processing in a first course,
should have minimal difficulty selecting the chapters or sections of
interest. These chapters contain exercises that do not rely on all the
special topics covered previously. There are some dependencies in
these chapters:

PREFACE xi

• Chapter 16 (on files) should be read after Chapter 15 (on re­
cords) as is natural;

• Case-study 11 in Chapter 18 makes use of sets (treated in
Chapter 17) and Macintosh Pascal strings (treated in Chapter
14); and

• Chapter 20 (on dynamic data structures) assumes knowledge of
the material in Chapter 15 (on records) as is inevitable.

Software supplement
The dozen case-studies are substantial programs. Some of the exercises
invite the reader to trace their execution, or to make certain modifica­
tions. A software supplement, available from the author, includes all
the case-studies and complete subprograms in the book (together with
test-drivers when necessary). Any of these programs may be copied
freely for non-commercial purposes, provided that they are copied in
full (with the source and copyright information retained).

For ordering information, write to ·'Dr Paul Pritchard, Depart­
ment of Computer Science, University of Queensland, St Lucia,
Australia 4067'. Alternatively, e-mail may be sent to the author at one
of the following addresses:

ACSnet: pap@uqcspe.oz
ARPA: pap%uqcspe.oz@uunet.uu.net
CSNET: pap@uqcspe.oz
UUCP: ... !uunet!munnari!uqcspe.oz!pap
JANET: uqcspe.oz!pap@ukc

Suggestions for improvements to the book are also most welcome, as
are unsolicited testimonials.

xii PREFACE

Paul Pritchard
St Lucia, September 1987

ACKNOWLEDGMENTS

The material in this book is based on courses given by the author in
the Department of Computer Science at Cornell University, and later at
the University of Queensland, Australia. Some of it has evolved from
the rich store of material accumulated over the years by the professors
who taught CSIOO at Cornell: to my former colleagues Tim Teitelbaum
(especially), Ken Birman, Alan Demers, John Gilbert, Dale 'Downhill'
Skeen, and Kay Wagner, my thanks. John Gilbert kindly permitted me
to adapt his notes on floating-point arithmetic. The neat sequence of
three case-studies on job scheduling was suggested by Nava Aizikowitz.
My antipodean colleague, Gordon Rose, generously allowed me to
adapt his program for Case-study 12; Mike Henning did likewise for
his notes on the Macintosh and Macintosh Pascal. And back in the
USA, Chanderjit Bajaj graciously performed important cultural re­
search on my behalf.

I am indebted to David Gries for giving me my chance in the
Big Time, for serving as Master to my Apprentice in the art of pro­
gramming and for his generosity in agreeing to review the manuscript.
Andrew Lister gave me the flexitime needed to write the book, and
together with other members of the Department of Computer Science
at the University of Queensland, helped provide an environment con­
ducive to writing and typesetting. Jim Welsh and John Elder produced
syntax diagrams worth emulating. Niklaus Wirth, the Macintosh
development team, and the Macintosh Pascal and Lightspeed Pascal
development teams, respectively, created a language, a computer, and
two programming environments worth writing about. Thanks to all of
the above, to C.A.R. Hoare for his encouraging assessment of the
book's quality, to Stephen Troth of Addison-Wesley for his support
and professionalism, to the reviewers for their constructive suggestions,
and to Cheryl Pritchard for proof-reading. Finally, my thanks go to
Errol Martin and bzalp Babaoglu for their friendship and encourage­
ment, and with most gratitude, to Cheryl and Roxanne for their love
and forbearance.

The author and publishers also wish to thank the following for permis­
sion to reproduce figures and quotations:

ACKNOWLEDGMENTS xiii

• THINK Technologies, Inc., for permission to use Table 5.3 (the
Macintosh Pascal character set), taken from Appendix E of the
Macintosh Pascal Technical Appendix.

• Appleseed Music, Inc. for permission to use the quotation on
page 383, taken from:

ALICE'S RESTAURANT by Arlo Guthrie
Copyright 1966, 1969 by APPLESEED MUSIC INC.
All rights reserved. Used by permission.

Trademark notice

Paul Pritchard
St Lucia, September 1987

Macintosh is a trademark licensed to Apple Computer, Inc.; Apple and the Macintosh logo
are trademarks of Apple Computer, Inc.; Ada is a trademark of the US Government - Ada
Joint Program Office.

The publishers have made every attempt to supply trademark information about
company names and products mentioned in this book. All designations used by manufactur­
ers to distinguish their products are printed in initial caps or all caps, where Addison-Wesley
was aware of a trademark claim.

xiv ACKNOWLEDGMENTS

CONTENTS

Preface vii

Acknowledgments xiii

Chapter 1 Algorithms and the Macintosh 1

1.1 Algorithms 2
1.2 Computers 3
1.3 The Macintosh hardware 6
1.4 Software 6
1.5 An introduction to the Macintosh 9

1.5.1 Floppy disks 9
1.5.2 Starting a session 10
1.5.3 Using the mouse 10
1.5.4 Icons 12
1.5.5 Windows 12
1.5.6 Dialog boxes 14
1.5.7 The menu bar 14
1.5.8 Using Macintosh Pascal 15
1.5.9 Managing files 15
1.5.10 Terminating a session 16

1.6 Further reading 16
Exercises 17

Chapter 2 Editing Macintosh Pascal programs 19

2.1 Introduction 20
2.2 The Macintosh Pascal environment 20
2.3 Editing 20

2.3.l Setting the insertion point 22
2.3.2 Inserting the text 22
2.3.3 Selecting text 22
2.3.4 Editing selected text 22
2.3.5 Deleting text without selection 23
2.3.6 Searching and replacing 23

CONTENTS xv

2.4 Controlling the environment 24
2.5 Error messages 25
2.6 Checking a program 25
2.7 Saving your program 26
2.8 Reverting to the last version 27
2.9 Opening a saved program 27
2.10 Copying between programs 28
2.11 Printing 28
2.12 Leaving Macintosh Pascal 29
2.13 Further reading 29

Exercises 29

Chapter 3 A preview of Pascal 35

3.1 The history of Pascal 36
3.2 Reading before writing 37
3.3 First program 37
3.4 Second program 40
3.5 Third program 45
3.6 Macaveats 47
3.7 Further reading 48

Exercises 49

Chapter 4 Running Macintosh Pascal programs 51

4.1 Introduction 52
4.2 Running a program 52
4.3 Controlling execution 52

4.3.1 Stopping execution 53
4.3.2 Stepwise execution 53
4.3.3 Setting stop marks 53

4.4 Tracing execution 54
4.5 The Instant window 54

Exercises 55

Chapter 5 Basic Pascal 57

5.1 Introduction 58
5.2 Specifying syntax 58
5.3 Types of values 60

5.3.1 Integer 61
5.3.2 Real 62
5.3.3 Char 65
5.3.4 Boolean 67

5.4 Expressions 68

xvi CONTENTS

5.5 Constants and variables 71
5.5.1 Constant definitions 71
5.5.2 Variable declarations 72
5.5.3 The assignment statement 73

5.6 Input and output 75
5.6.1 Input 75
5.6.2 Output 78
5.6.3 Interactive 110 81

5.7 Conditional statements 83
5.8 Repetitive statements 86
5.9 Programs 90

5.9.1 High-level syntax 90
5.9.2 Low-level syntax 91

5.10 Macaveats 93
Exercises 94

Chapter 6 Solving programming problems 99

6.1 Introduction 100
6.2 Stepwise refinement 101
6.3 Using repetition 103
6.4 Deriving loop conditions 107
6.5 Program schemas 109
6.6 Case-study 1: Scheduling 113

6.6.1 Setting of the problem 113
6.6.2 Specifications 114
6.6.3 Writing the program 115
6.6.4 The complete program 118

6.7 Some other schemas 121
6.8 Case-study 2: The character-set table 123

6.8.1 Specifications 123
6.8.2 Writing the program 124
6.8.3 The complete program 125

6.9 Choosing the form of iteration 125
6.10 Testing, testing 127

6.10.1 The role of testing 127
6.10.2 What and when to test 127
6.10.3 Desk-checking 128
6.10.4 Testing by execution 130
6.10.5 Coping with errors detected by testing 130
6.10.6 Defensive programming 132
6.10.7 Final words on testing 133

6.11 Macaveats 133
Exercises 135

CONTENTS xvii

Chapter 7 Functions 139

7.1 Predefined functions: A review 140
7.2 User-defined functions 141
7.3 Functions as subprograms 143

7.3.1 Syntax of function-declarations 143
7.3.2 Invoking a function 145

7.4 Writing functions 147
7.4.1 Modularity 149

7.5 Macaveats 151
Exercises 151

Chapter 8 Procedures 153

8.1 Introduction 154
8.2 Parameterless procedures 154
8.3 Parameters 157

8.3.l Value parameters 157
8.3.2 Variable parameters 159
8.3.3 Aliasing 162
8.3.4 Syntax of procedure-declarations 163

8.4 Pascal's parameter mechanism: A summary 163
8.4.1 Syntax 163
8.4.2 Function-declarations 164
8.4.3 Procedure-declarations 164
8.4.4 Value parameters 164
8.4.5 Variable parameters 164
8.4.6 Which kind of parameter? 164
8.4.7 Formal and actual parameter

correspondence 165
8.4.8 Local variables 165
8.4.9 Function invocation 165
8.4.10 Procedure invocation 165

8.5 Scope 166
8.5.1 The issue of scope 166
8.5.2 Scope rules 166
8.5.3 Scope rules and the programmer 169
Exercises 170

Chapter 9 Programming with procedures 175

9.1 Introduction 176
9.2 Macintosh graphics 177

9.2.1 The coordinate plane 177

xviii CONTENTS

9.2.2 The pen 177
9.2.3 Drawing lines, rectangles, and ovals 178
9. 2 .4 Drawing text 180

9.3 Case-study 3: Scheduling II 180
9.3.1 Setting of the problem 180
9.3.2 Specifications 181
9.3.3 Writing the program 181
9.3.4 The complete program 187

9.4 Case-study 4: MiniNim 190
9.4.1 Setting of the problem 190
9.4.2 Specifications 191
9.4.3 Writing the program 191
9.4.4 The complete program 197

9.5 Testing procedures 202
9.5.l Preconditions and postconditions 202
9.5.2 Desk-checking 203
9.5.3 Testing by execution 203
9.5.4 Coping with errors detected by testing 205
9.5.5 Defensive programming 206

9.6 Using procedures: A summary 206
9. 7 Further reading 207

Exercises 207

Chapter 10 Ordinal types 211

10.1 Required ordinal types 212
10.2 Enumerated types 213
10.3 Subrange types 214
10.4 Type definitions 215
10.5 Two simple examples 216

10.5.1 Example one 216
10.5.2 Example two 217

10.6 Statements associated with ordinal types 218
10.6.l The case-statement 218
10.6.2 The for-statement 219

10.7 Case-study 5: An arithmetic tutor 220
10.8 Macaveats 227

Exercises 228

Chapter 11 Arrays 231

11.1 Introduction 232
11.2 Array-types 235

11.2.1 Another program using an array 236

CONTENTS xix

11.3 Operations on an entire array 237
11.4 Linear search 238

11.4.1 Optimistic linear search 238
11.4.2 Truncated safe linear search 239
11.4.3 Sentinel search 241
11.4.4 Boolean safe linear search 244
11.4.5 The right search for the right occasion 245

11.5 Sorting 246
11.5.l The problem 246
11.5.2 Selection sort 246
11.5.3 Bubble sort 249

11.6 Strings in Standard Pascal 250
11.6.l Packed arrays 250
11.6.2 Strings 252

11.7 Case-study 6: Scheduling III 253
11. 7 .1. Setting of the problem 253
11. 7 .2. Specifications 254
11. 7 .3. Writing the program 254
11. 7.4. The complete program 259

11.8 Macaveats 264
11.9 Further reading 264

Exercises 264

Chapter 12 On correctness and efficiency 271

12.1 Programming methodology 272
12.2 Assertions and invariants 273

12.2.1 Assertions 273
12.2.2 Specifications 274
12.2.3 Expressing assertions 274
12.2.4 Proving a program correct 275
12.2.5 Invariants 275
12.2.6 Proving termination 277
12.2.7 Solving problems with invariants 278
12.2.8 An example of correctness-oriented

programming 279
12.2.9 Other examples of invariants 282
12.2.10 How invariants expedite testing 283

12.3 Efficiency 284
12.3.l Introduction 284
12.3.2 Performance evaluation 284
12.3.3 Creating efficient programs 288

12.4 Further reading 292
Exercises 292

xx CONTENTS

Chapter 13 Multidimensional arrays 297

13.1 Two-dimensional arrays 298
13.1.1 Introduction 298
13.1.2 Two examples 298

13.2 General arrays 300
13.2.1 Syntax 300
13.2.2 Arrays of arrays 300

13.3 Two inventory problems 301
13.4 Two schemas for rectangular array-sections 303
13.5 Geometric problems 304

13.5.1 Problem one 304
13.5.2 Problem two 306

13.6 Case-study 7: A random walk 308
13.6.1 Setting of the problem 308
13.6.2 Specifications 309
13.6.3 Writing the program 309
13.6.4 The complete program 319

13.7 Further reading 325
Exercises 326

Chapter 14 Text processing 329

14.1 Introduction 330
14.2 Text files 330

14.2.1 Input and Output as text files 330
14.2.2 Internal and external text files 331
14.2.3 Using a text file 331
14.2.4 The file position and the file buffer 331
14.2.5 Writing a text file 332
14.2.6 Reading a text file 333
14.2.7 External text files in Macintosh Pascal 334
14.2.8 Two examples 335

14.3 Strings in Macintosh Pascal 336
14.3.1 Syntax 336
14.3.2 Assignment 337
14.3.3 String input/output 339
14.3.4 Quasi-1/0 340
14.3.5 Comparing strings 341
14.3.6 Predefined functions for strings 342
14.3.7 Predefined string procedures 345
14.3.8 Drawing strings 347

14.4 Case-study 8: A mail minder 348
14.4.1 Setting of the problem 348
14.4.2 Specifications 348

CONTENTS xxi

14.4.3 Writing the program 349
14.4.4 The complete program 352

14.5 Macaveats 355
Exercises 355

Chapter 15 Records 359

15.1 Introduction 360
15.2 Syntax 363
15.3 Some predefined record-types 364
15.4 The with-statement 366
15.5 Implementing variable-length strings 367
15.6 Abstract data types 370
15.7 Variant records 371

15.7.1 Syntax 372
15.7.2 Using variant-records 373
15.7.3 Undiscriminated variants 375
15. 7.4 Restrictions concerning variant-records 377

15.8 Case-studies involving records 377
15.9 Macaveats 379
15 .10 Further reading 379

Exercises 380

Chapter 16 Files 383

16.1 Introduction 384
16.2 Sequential files 384

16.2.1 Syntax 384
16.2.2 Writing a file 385
16.2.3 Reading a file 386
16.2.4 A simple example: Merging 388
16.2.5 A voiding text files 389

16.3 Random-access files 390
16.3.1 A simple example: Error messages 391

16.4 Case-study 9: An idiot sheet 393
16.4.1 Setting of the problem 393
16.4.2 Specifications 393
16.4.3 Writing the program 393
16.4.4 The complete program 397

16.5 Macaveats 401
Exercises 401

Chapter 17 Sets 405

17.1 Introduction 406
17.2 Syntax of set types 407

xxii CONTENTS

17.3 Constructing sets 408
17.3.l Set constructors 408
17 .3.2 Set-valued operations 409

17.4 Boolean operations on sets 410
17.5 Subprograms involving sets 412
17.6 Binary numbers as sets 412

17.6.l Binary representations 412
17.7 Case-study 10: Nim 415

17.7.1 Setting of the problem 415
17.7.2 Specifications 416
17.7.3 Writing the program 417
17. 7.4 The complete program 420

17.8 Macaveats 426
Exercises 426

Chapter 18 Advanced use of subprograms 431

18.l Recursion 432
18.1.1 A recursive function 432
18.1.2 A recursive procedure 433
18.1.3 Exploiting recursion: An example 434
18.1.4 Exploiting recursion: The fundamental

principles 436
18.1.5 Mutual recursion 437
18.1.6 Executing recursive subprograms 439

18.2 Case-study 11: Illustrating all text styles 441
18.2.1 Setting of the problem 441
18.2.2 Specifications 441
18.2.3 Writing the program 441
18.2.4 The complete program 443

18.3 Subprograms as parameters 445
18.3.1 Examples 445
18.3.2 Syntax 448

18.4 Conformant arrays 449
18.5 Further reading 449

Exercises 449

Chapter 19 Numeric computing 455

19.1 Representing integer values 456
19.2 Representing real numbers 458

19.2.1 Representation roundoff error 460
19.3 Problems with real arithmetic 460

19.3.l Overflow 461
19.3.2 Underflow 462

CONTENTS xxiii

19.3.3 Roundoff error 462
19.3.4 Catastrophic cancellation 464

19.4 Cautionary examples of numeric programming 464
19.4.1 Example one 464
19.4.2 Example two 465
19.4.3 Example three 467
19.4.4 Example four 468
19.4.5 Summary 470

19.5 Macaveats 471
19.6 Further reading 471

Exercises 471

Chapter 20 Dynamic data structures 475

20.1 Introduction 476
20.2 Pointer types 476
20.3 The fundamentals of pointers 477

20.3.1 The special value nil 477
20.3.2 Creating a dynamic variable 477
20.3.3 Pointer assignment 478
20.3.4 Comparing pointers 479
20.3.5 Disposing of dynamic variables 479

20.4 Linear structures 480
20.4.1 Implementing a stack using pointers 484

20.5 Non-linear structures 487
20.5.1 Binary search trees 487

20.6 Case-study 12: Drawing a binary search tree 490
20.6.1 Setting of the problem 490
20.6.2 Specifications 490
20.6.3 Writing the program 490
20.6.4 The complete program 493

20.7 Further reading 497
20.8 Exercises 497

Appendix 501

A.I The goto-statement 501
A.2 Syntax diagrams 504
A.3 Syntax diagrams for Standard Pascal 505
A.4 EBNF syntax notation 512
A.5 Notes on Lightspeed Pascal 513

Solutions to selected exercises 523

Index 557

xxiv CONTENTS

1 ______ _
ALGORITHMS AND THE
MACINTOSH
'Okay,' said Lolita, 'here is where we start.'
- Vladimir Nabokov, Lolita

1.1 Algorithms
1.2 Com~uters

1.3 The Macintosh hardware
1.4 Software
1.5 An introduction to the Macintosh

1.5.1 Flor!!:!~ disks
1.5.2 Starting a session

1.5.3 Using the mouse

1.5.4 Icons

1.5.5 Windows

1.5.6 Dialog boxes
1.5.7 The menu bar

1.5.8 Using Macintosh Pascal

1.5.9 Managing files

1.5.10 Terminating a session

1.6 Further reading
Exercises

2

3

6

6

9
9

10

10

12

12

14

14

15

15

16

16

17

1.1 Algorithms
This book is mainly concerned with algorithms, which are also the
major concern of computer science. Look up 'algorithm' in a dic­
tionary. The second meaning listed in the Concise Oxford Dictionary
reads 'Process or rules for (esp. machine) calculation etc.' This is close
enough to the technical sense of the word, which is a precise, complete
description of a course of action. The COD also tells us that the
word entered Middle English from the Old French from the medieval
Latin from the Arabicized Persian surname of a ninth century
mathematician: alKuwarizmi, meaning man of Kuwarizm. The etymo­
logy is fascinating, but what interests the computer scientist more, even
more than the meaning of the word, is the process or rules you used
when you looked up the word. Because you used an algorithm!

Moreover, if you found the word reasonably quickly - the
author took roughly ten seconds - you almost certainly used a quite
sophisticated algorithm. (There are, after all, tens of thousands of
words in the dictionary.) And it is apparent that you use many other
algorithms in the course of your everyday life: when you drive a car,
make your own World's Best Barbecue Sauce, knit a scarf. Some
would even argue that all you do is follow an algorithm, but we shall
avoid opening that philosophical can of worms.

Do you come to this book, then, as an expert on the subject?
The answer, for most people, is no. The explanation for this seeming
paradox is that although most of us may be quite competent at follow­
ing algorithms, we have much less experience of the much more
challenging task of creating them: it is much easier to follow a perfect
recipe than to write one, to follow accurate directions than to give
them, to follow precise knitting instructions than to write them.
Furthermore, the algorithms created by programmers are often much
more complex and sophisticated than the aforementioned everyday
ones.

Algorithms are abstract. For example, the long-division algo­
rithm (which was widely known before the advent of pocket

2 PROGRAMMING USING MACINTOSH PASCAL

calculators) is a precise method for calculating the quotient and re­
mainder when one number is divided by another. It deals with
numbers, not decimal numerals, and is known to many cultures with
many different languages. But any explanation or presentation of the
algorithm must involve a language, whether it be written, spoken,
signed or whatever, and the resulting description we call a program.
Algorithms are to programs what numbers are to numerals.

1.2 Computers
In this century algorithms have assumed unprecedented importance,
because of the invention of man-made devices that are able to follow
them with incomparably more speed and freedom from error than can
people. These devices, which are currently based on electromagnetic
technology, have come to play an indispensable role in modern in­
dustrialized society. They are called, as you know, computers; more
properly, digital computers, to distinguish them from analog
computers which do not follow algorithms but rather use physical
models to solve problems. We shall henceforth confine ourselves to the
former kind and drop the prefix 'digital'.

Algorithms written to be followed (we say executed) by
computers are called computer programs, and the languages that they
are expressed in are called computer programming languages. We
henceforth limit these terms to computers and drop the prefix
'computer'.

A computer is, in essence, a simple device. It consists of a
central processing unit (CPU), memory, and input and output
devices, which are collectively called the hardware. Figure I. I re­
presents a computer, with arrows indicating the main directions of flow
of information.

The CPU is capable of performing a number of simple opera-

input
devices

memory

CPU

output
devices

Figure 1.1
Information flow in a
computer.

ALGORITHMS AND THE MACINTOSH 3

Figure 1.2
A one Megabyte main
memory of 16-bit cells.

address main memory

0 0

2

0100100001101001

524287

tions, called machine instructions. The number of different instruc­
tions is typically from SO to 500. They are performed with essentially
no error and at very high speeds, ranging from around 100 000 to 100
million per second (100 Mips). CPUs are currently made from mini­
ature electronic circuits etched on small chips of silicon.

The other major component of a computer is its memory, which
is divided for economic reasons into two parts: primary memory (or
main memory) and secondary memory. The main memory consists of
a sequence of identical cells (locations, words), with addresses
running from zero onwards. A cell can store an instruction or data. It
consists of a sequence of bits (the term comes from 'binary digit') each
of which is zero or one. A minimal cell-size is 8 bits (called a byte);
this is large enough to store a single character from an alphabet of 256
(28). Some machines have cells as large as 64 bits. Main memories
typically have from 4096 to around 10 million bytes.

The letter 'k' is used to abbreviate the prefix 'kilo', which is
ambiguously used to denote either 1000 or 1024 (21°). The letter 'M'
is used to abbreviate the prefix 'Mega', which denotes one million, but
is likely to be an approximation to (220), which equals 1048 576.
These are used in conjunction with 'b' to abbreviate 'byte'. So the last
sentence in the previous paragraph is written 'Main memories typically
have from 4 kb to 10 Mb.' Figure 1.2 shows a 1 Mb main memory of
16-bit cells, and the bits comprising a typical cell.

The interpretation of the pattern of bits in a cell depends on the
CPU. It contains a number of special high-speed cells, called re­
gisters. These include a program counter (PC), which contains the
address in main memory of the next instruction to be executed, an in­
struction register (IR), which receives the instruction to be executed,
and at least one accumulator (AC), which receives the results of

4 PROGRAMMING USING MACINTOSH PASCAL

repeat indefinitely the following four steps:
Fetch into IR the instruction whose address is in PC;
Increment PC;
Decode instruction in IR;
Execute instruction in IR

arithmetic and logical operations (much like the display on a pocket
calculator). The CPU obeys the simple algorithm shown in Figure 1.3,
which is called the fetch-execute cycle.

Execution of an instruction might entail copying the contents of
an AC into a specified cell of main memory, or copying in the other
direction, or adding two ACs (i.e. interpreting them as representing
numbers) and storing the result in another AC, or changing the
address in the PC, or sending the contents of an AC to an output
device (which might interpret it as text), and so on. On a Macintosh,
the cell shown in Figure 1.2 represents the pair of characters Hi if
interpreted as text, 18 537 if interpreted as a whole number, and who­
knows-what instruction.

The great speed of computers arises from the technological fact
that information can be transferred between the CPU and an arbitrary
address in main memory very quickly. The term RAM is used to
denote such a random-access memory. The CPU gets its instructions at
a rate commensurate with its speed in executing them. If there has
been a single Great Idea in the invention of computers, it was to store
the instructions in the memory (which one more naturally thinks of as

· containing data).
Main memory is also realized in current technology with silicon

chips. Because it is very expensive to provide main memories large en­
ough for the massive amounts of information computers are expected to
deal with, a secondary memory is used which is larger in capacity but
slower in transferring information (to and from main memory).
Secondary memory is most commonly in the form of spinning magnetic
disks which record information by magnetizing tiny portions of their
surfaces. Typical sizes are from 50 kb to 500 Mb; typical rates of
transfer between main and secondary memory are from 10 kb to I Mb
per second. Although the transfer rate can be high, there is a
significant minimum access time before information can be transferred.
This is typically from 10 to 100 milliseconds (thousandths of a second,
written 'msecs ').

Input and output devices (1/0 devices) are used to transfer data
between programs executing on the computer and the outside world.
Examples are keyboards, card readers (a dying breed), paper tape read­
ers (extinct?), printers, and visual display units (VDUs).

Figure 1.3
The fetch-execute cycle.

ALGORITHMS AND THE MACINTOSH 5

1.3 The Macintosh hardware
The members of the Macintosh family of personal computers are based
on a Motorola 68 000 CPU chip which supports a cell-size of 32 bits.
Standard issue for the original Macintosh was a RAM of 128 kb, a
ROM (a read-only memory for storing permanent programs and data)
of 64kb, which together constitute the main memory, a 3.5 inch 400kb
single-sided internal microfloppy disk drive as secondary memory, a
keyboard and mouse (a position-signaling device) as input devices, and
a high resolution bit-mapped display screen, a sound generator, and an
Imagewriter dot-matrix printer as output devices. Figure 1.4 presents
a well-known still life of a Macintosh and an apple.

The term bit-mapped means that the screen is made up of
thousands of spots (called pixels), each of which is on or off according
to whether an associated bit of main memory is 1 or O; the upshot is
that the display can be changed very quickly. The dot-matrix printer
can print arbitrary pages of black and white pictorial information, such
as text or screen images, by printing immense numbers of suitably
arranged small black dots.

The next-born was the better nourished Fat Mac, which differed
mainly in having a 512 kb RAM. It was followed by the Macintosh
Plus, with a 1 Mb RAM, 128 kb ROM, and 800kb double-sided inter­
nal disk drive. More recently, the Macintosh II and the Macintosh SE
have appeared, having 256 kb ROMs and various other enhancements.
All the Macintoshs have provision for additional secondary memory in
the form of external versions of the internal disk drives, and faster,
more capacious (and more expensive) hard disk drives.

Your Macintosh will be one of the above (possibly enhanced),
but for the purposes of learning to program with Macintosh Pascal, it
does not much matter which.

1.4 Software
Programming is the process of creating and modifying programs. It is a
difficult and challenging intellectual activity, and there seems to be a
wide spectrum of levels of aptitude for it. Almost all programming is
done by humans; computers are better at executing programs, but
hopeless at programming, i.e. at creating programs that solve non­
trivial problems. This is because humans have not been able to solve
the programming problem of mimicking human intelligence - the Big
Enchilada, as someone else said in another context. If you are in­
tellectually ambitious, you need not worry about a shortage of hard
programming problems!

A program in main memory for execution by a computer con­
sists of a sequence of machine instructions, each of which is no more

6 PROGRAMMING USING MACINTOSH PASCAL

than a pattern of bits. Creating the very long sequences of these very
simple instructions needed to solve non-trivial programming problems
is a boring, error-prone task, as a single wrong bit will probably cause
the program to behave in wild and unpredictable ways. Fortunately,
the computer itself can be exploited to relieve much of the burden.

What actually happens when a program is created is this. The
underlying algorithm is expressed not in machine instructions but in a
high-level programming language, such as Pascal, Modula-2, or Ada.
By opening this book at almost any page after the introductory chapters
you will see what programs written in Pascal look like. The details
need not concern us now; the main point is that the level of expression
is much higher than the computer's level of operation.

The program is prepared for execution by first typing it on a
computer keyboard, as the input of an executing program called an
editor. This will store the text as a ftle, that is, a package of informa­
tion, on secondary memory. Editors allow text files to be prepared and
maintained; they permit the insertion, deletion, replacement, and loca­
tion of arbitrary text. This book was prepared with such an editor.
Each computer system provides at least one editor; the best ones are
interactive (i.e. request the user to enter input data during execution
of the program, rather than preparing all input as a file beforehand)
and display the text on a VDU as it changes.

Before a program written in a high-level language can be
executed it must be translated to machine instructions. This task is
accomplished by a program called a translator. At least one translator
is needed for each high-level language used on a particular computer;
all translate to the same machine language.

One of the great advantages of writing programs in high-level
languages is that they can be run on any computer with a translator for
that language, and should, of course, produce exactly the same results
(as much as is possible; e.g. some computers represent real numbers
more accurately than others - see Chapter 19). In order to permit
such portability of programs, both programs and translators should

Figure 1.4
An artist's impression of a
Macintosh (and an apple).

ALGORITHMS AND THE MACINTOSH 7

Figure 1.5
The software-hardware
hierarchy.

conform to a recognized international standard.
There are two kinds of translators: compilers and interpreters.

A compiler translates the entire program prior to execution, storing the
resulting sequence of machine instructions as a file. That file can then
be placed in main memory by another program called a loader, after
which it can be executed.

An interpreter repeatedly translates and then immediately exec­
utes each high-level instruction as necessary. It will probably find it
convenient to represent the program in symbolic rather than textual
form, entailing a preliminary translation.

The two types of translators have contrasting properties. Inter­
preters hide the translation from the user of the program, give great
flexibility in the execution process, provide more informative descrip­
tions of errors during execution, and permit integrated editing, transla­
tion, and execution in a single consistent programming environment.
These advantages make them perfectly suited to program development.
Macintosh Pascal is based on an interpreter.

The price paid for the conveniences of interpretation is very
slow execution speed, because high-level instructions have to be repeat­
edly translated before execution. When speed of execution is
important - and it should not be in a learning context - a compiler
should be used. A compiler-based version of Macintosh Pascal is avail­
able, called Lightspeed Pascal.

Needless to say, much goes on behind the scenes in the process
of creating and executing programs. For example, a file system is
needed that organizes files so that they may be quickly created,
located, appended to, edited, combined, and moved. Such backstage
work is handled by an integrated collection of system programs called
the operating system. For details, consult the further reading list at
the end of this chapter.

8 PROGRAMMING USING MACINTOSH PASCAL

Programs written by or for the user for particular purposes (as
distinct from general operating system tasks) are called application
programs. An example is a spreadsheet program for managing financial
data. Translators and editors are described as applications programs in
Macintosh documents, though such programs that are used to prepare
other programs are usually classified as systems programs. The pro­
grams used with a computer are called its software. The hardware
and software together form a computer system, but the term is usually
abbreviated to just 'computer'. Figure 1.5 shows the
software-hardware hierarchy; this layered view makes sense at much
finer levels of detail of both hardware and software.

1.5 An introduction to the Macintosh
We describe here the basic aspects of using the Macintosh. Those con­
cerning Macintosh Pascal are left until Chapters 2 and 4. The last
exercise (at the end of this chapter) invites the reader to try out the
Macintosh; this is best done by following the text as you do so.

1.5.1 FLOPPY DISKS

You will need floppy disks to hold your program and data files. The
type of disk used by the original and Fat Macintoshes is a 3.5-inch
micro-floppy disk, single-sided, 135 tracks per inch; the later
Macintoshes use double-sided versions. Although micro-floppies have
their own protective plastic casing, they still require care in handling
and transport.

Inside the protective cover is the actual disk itself, made of soft
('floppy') mylar plastic with a magnetic coating. This coating is
extremely thin and fragile, and small particles of dirt or dust can dam­
age its surface permanently. Special stiff cardboard envelopes with
anti-static lining are available to protect your disks; the plastic covers
that sometimes come with disks at least help keep out dust.

Never open a disk's metal dust-cover and touch the magnetic
surface underneath; this will almost certainly render the disk useless.
Do not leave your disk in a car parked in the sun, or near a source of
high heat. The top of the Macintosh itself can get quite warm, so it is
best not to leave disks there. Since a disk's information is magnetically
recorded, any strong magnetic field can destroy it. You should there­
fore keep disks away from magnets (in speakers and telephones) and
objects likely to generate magnetic fields (electric motors, TV sets,
UFOs, etc.)

Disks are inserted into the drive with the metal end first and the

ALGORITHMS AND THE MACINTOSH 9

Ii';' J
=·=~ l!:J
1.1

........

~

I 0

label side up. Never use force when handling disks. In particular,
never attempt to pull a disk out of its drive by hand; serious damage to
both disk and drive could result - the Macintosh will eject the disk
when operated correctly.

There is a movable plastic tab at the bottom right corner of the
underside of a disk. This is normally away from the edge; if not, the
disk is locked, meaning its information can be read but not altered.

1.5.2 STARTING A SESSION

The power-on switch of the Macintosh is at the rear, just above the
socket for the power cord. The brightness control is at the front,
underneath the protruding ledge just below the colored apple logo. Set
the screen brightness to a comfortable level; an over bright or dull
screen imposes unnecessary strain on the eyes.

After turning the power on you will see a small disk-symbol
with a blinking question mark in the center of the screen. It indicates
that the Macintosh is waiting for a startup disk (one containing the
Macintosh's operating system). The Macintosh Pascal Program disk
will do. Insert it into a drive and push until the disk snaps into place
with an audible click. The Macintosh displays the message 'Welcome
to Macintosh'. After a few seconds, you will see the desktop (dis­
played in Figure 1.6).

There are three features of interest: a list of menus along the
top, little pictures (called icons) of the disk and a trash can, and a little
arrow (called a cursor). We shall deal with these in reverse order.

1.5.3 USING THE MOUSE

The cursor is controlled by the mouse - a small box on the end of a
cord, with a rubber ball underneath and a button on top. Whenever
you move the mouse, the pointer will duplicate the motion on the
screen. You will use the mouse to move .files around, select commands
or text, and to otherwise communicate with the Macintosh.

The cursor has different appearances in different situations. The
most common shapes are an arrow for selecting items and an I-beam
pointer for text editing. Another one looks like an (analog!) wrist
watch, indicating that you have to wait for the Macintosh to finish
something.

There are several ways to use the mouse:

• Pointing: moving the mouse until the cursor is positioned over
the object to be pointed at.

• Clicking: pressing and releasing the mouse button once.

10 PROGRAMMING USING MACINTOSH PASCAL

File Edit Uiew Special

Double-clicking means clicking twice in quick succession.
Advanced users sometimes even triple-click!

• Pressing: positioning the pointer on an object and then pressing
the mouse button without moving the mouse until an action is
complete.

• Shift-clicking: clicking while holding the Shift-key down.
• Dragging is used both for repositioning objects on the screen

and for selecting text when editing. To drag an object, point at
it, press and hold down the mouse button, move the mouse until
the object has reached the desired place, and then release the
button. Normally, while dragging an object, only an outline of
the object follows the pointer on the screen; the object changes
its position as soon as you release the button. If you are drag­
ging across some text, the parts of the text you drag over are
highlighted, meaning that they have been selected for some
editing operation.

Figure 1.6
The desktop.

ALGORITHMS AND THE MACINTOSH 11

.,

[g
Finder

CJ mi
System Folder VouGuess

;;:~

l!:I
1.2

If you happen to run out of space on your desktop (as distinct
from the Macintosh's) during a mouse operation, lift the mouse off the
desk and place it where you can move it; the cursor follows the mouse
only as long as the mouse slides over the surface of the desk.

1.5.4 ICONS

Icons are used to represent three things:

•

•
•

Applications: what Macintosh manuals call compiled programs,
whether they be systems programs (like the file system program
Finder) or applications programs (like Macintosh Pascal);
Documents: files of textual or pictorial information, such as
Macintosh Pascal programs and data files;
Folders: collections of applications, documents, and other
folders.

There are two icons on the desktop shown in Figure 1.6, for the
disk and trash can respectively; both are folders, albeit special ones.
Icons can be dragged around as described above and selected for a
future operation by clicking on them. A selected icon is indicated by
color reversal.

1.5.5 WINDOWS

Double-clicking on a folder icon opens its window, a box on the screen
representing its contents. Doing this to the Macintosh Pascal Program
disk icon results in a screen like that shown in Figure 1. 7.

Most of the information you deal with on a Macintosh is pre­
sented to you in windows. They are used to display and edit both text
and pictures. Several windows can be present at once on the screen,
but just one is distinguished as active. Its title bar is filled. with hor­
izontal stripes, and it will be on top of the desk (i.e. not under another
window). Commands concerning windows always refer to this
window.

Here is a summary of the main properties of windows:

• Activating a window is done by clicking anywhere inside it. If
a window is completely obscured it can still be made active by
choosing it from the Windows menu (see below).
The title bar indicates the name of the window.

• Repositioning a window is done by pointing to the title bar and
dragging it to its new position.

12 PROGRAMMING USING MACINTOSH PASCAL

r
File Edit Uiew

4 items

Macintosh P asca 1 2 .0

Special

353K in disk

0
System Folder

0
Demos My programs

Figure 1.7
The desktop after opening
the disk's window.

• Changing a window's size is done by pointing to the size box 11211
(bottom right corner) and dragging it to the desired place. The
upper left corner of the window remains in its old position, so
dragging the size box changes the window's size and/or shape.

• Scrolling a window enables you to examine hidden contents of a
window, by moving the window relative to its contents. There
are four ways to do so:

Clicking on one of the scroll arrows scrolls the window IQ] IQJ IQ] [QI
by a small amount in the indicated direction. The
physical location of the window on the screen doesn't
change; rather, a different portion of the contents is
shown inside the window.
Pressing on one of the scroll arrows will scroll the
window continuously until the mouse button is released.

~:~:~~n!n;~tle w:~~o~~roll bar moves the window by 11111111 mmi~mmmm
ALGORITHMS AND THE MACINTOSH 13

Dragging the scroll box positions the window over a
different part of the text. The position of the scroll box
inside the scroll bar roughly indicates the current position
of the window in relation to all its contents.

Closing a window is done by clicking in the close box (in the
upper left corner). The window is removed from the screen.

1.5.6 DIALOG BOXES

Sometimes you will come across a special type of window called a dia­
log box, which appears when the Macintosh needs a decision by you.
You make your decision by clicking in one of the labeled buttons that
usually appear in the box, or just by clicking in it if there are no
buttons (in which case the box represents a message). The box dis­
appears when you click.

1.5.7 THE MENU BAR

Along the top of the screen, you will find a white bar containing an
S apple symbol on the left followed by a few words. This is the menu

bar. It is used to give commands, select files, edit text, and perform
other operations. You open a menu by pressing on either the apple or
one of the words (which function as headings); a menu appears under­
neath, presenting you with a number of choices. The menu disappears
as soon as you release the mouse button.

To make a selection, open the menu and drag the cursor down
the menu. As you drag, the line that the cursor is currently on is
highlighted. As soon as you release the mouse button, the currently
highlighted command is selected (i.e. the appropriate action is carried
out) and the menu disappears. Figure 1.8 shows the Open command
from the File menu being selected.

If you have dragged the cursor into the menu but have second
thoughts, move the pointer out of the menu and release the mouse
button; no selection is made.

S<U.~(~ Sometimes some menu commands are dimmed (shown in gray
print). This indicates that they are not currently applicable. When
you drag across a dimmed command, it is not highlighted, and cannot
be selected.

X Some menu commands are followed by a clover symbol with a
letter beside it. The symbol is called the command symbol. To the left
of the space bar on the keyboard is a key labeled with this symbol. It is
called the Command-key and is used as a shortcut for certain
commands. It works like the Shift-key, in that it is held down while
another key is pressed. For example, holding down the Command-key

14 PROGRAMMING USING MACINTOSH PASCAL

Get Info
Ou p!ic <11 (~
Put HW!Hj

Eject

while typing 'O' has exactly the same effect as using the mouse to
choose Open from the File menu. Choosing a command in this way is
described as 'using the keyboard equivalent' of the command.

Macintosh Pascal has its own menus, which are described in
Chapters 2 and 4.

1.5.8 USING MACINTOSH PASCAL

The Macintosh Pascal icon represents a program that enables you to
prepare, edit, and run algorithms written in the programming language
Macintosh Pascal, i.e. it implements a programming environment.
You run this program by selecting the Macintosh Pascal icon, or the
icon for a Macintosh Pascal program, and then opening it as just de­
scribed. The desktop is replaced by a different one. Chapters 2 and 4
describe how to interact with the program. You end execution of
Macintosh Pascal by choosing Quit from its File menu. This returns to
the desktop.

1.5.9 MANAGING FILES

You will want to print, copy, move, and otherwise manipulate files
created by Macintosh Pascal and other applications. Here is a summary
of the important operations:

• To rename a file or folder, first select its icon and then either
type the new name or edit it (in the same way that programs are
edited in Macintosh Pascal - see Chapter 2).

• To duplicate a file or folder (including all its contents), select its
icon, choose Duplicate from the File menu, and rename the

Figure 1.8
Selecting Open from the
File menu .

Macintosh Pascal 2.0

;;:iY

1.3

Uuplic ate :~:u

ALGORITHMS AND THE MACINTOSH 15

New Folder :~fN

•

resulting icon. You get a new folder by duplicating the Empty
Folder or choosing New Folder from the File menu.

i·

To move a file or folder (and all its contents) drag its icon. If
you want to put it in a folder with a window on the desktop,
move it into the window. If you want to put it in a folder which
does not have an open window, but whose icon is visible, drag
the object's icon onto the folder's icon (which will reverse color).
If you want to put it in an invisible place, first move it onto the
desktop (outside all windows); then make the folder's icon or
window visible (by closing other windows or using the Windows
menu), and finally move the icon from the desktop as described
above. If you move something to a different disk it is copied -
the original remains.
To delete a file or folder (and all its contents) put it in the
Trash folder. It has the special property that anything in it is re­
moved when the disk that it belongs to is ejected, or when you
choose Empty Trash from the Special menu, or when an
application is opened. You can recover something in the Trash
can by opening the Trash window and moving the file or folder
out of it.

Trash

Empty Trash

'1®•1N'Y1M

"
1.5.10 TERMINATING A SESSION

Once you have returned to the original desktop, you finish your session
by choosing Shut Down from the Special menu. The Macintosh ejects
all disks and returns to the same state as that following powering-up. If
the Macintosh will not be used for several hours or more, power-down.
Otherwise, leave the Macintosh on with the brightness turned down
somewhat to prevent burning-in the image.

1.6 Further reading

(1) Anon. (1984). Macintosh. Apple product #MISOO. USA and
Canada: Apple Computer, Inc.
This is the manual that comes with each Macintosh. It is very
simply and clearly written.

(2) Goldschlager, L. and Lister, A. (1987). Computer Science: A
Modern Introduction. 2nd edition. Englewood Cliffs, New
Jersey: Prentice-Hall.
This is a superb introduction to computer science, which anyone
interested in the subject would profit from reading. Its Chapters
4 and 5 cover all the topics in the first part of this chapter.

16 PROGRAMMING USING MACINTOSH PASCAL

(3) Lu, C. (1985). The Apple Macintosh Book. 2nd edition. Micro­
soft.
Another source of general information about the Macintosh,
written in a similar style to the Macintosh manual.

EXERCISES
1.1 When you look up 'computer' in your dictionary you use the same

algorithm as when you look up 'algorithm', yet you perform a different
sequence of actions. How can this be?

1.2 In the Victorian museum in Melbourne, Australia, there is a machine
that has never been beaten at tic-tac-toe (which it calls noughts and
crosses). The machine can play first or second. Assuming not all visit­
ors to the museum are pushovers at tic-tac-toe, what does this suggest
about algorithms for playing tic-tac-toe?

1.3 Here is an extract from a program, but not a computer program:

sl 1, work 1, psso, * work in seed st to 2 sts before next marker,
work 2 tog, sl 1, work 1, psso, repeat from * 3 times more,
work in seed st to last 2 sts, work 2 tog.

What kind of algorithm is being described? Hint: If you do not know,
ask your grandmother.

1.4 Here are two algorithms, written in English, that indicate whether a
given whole number is even or odd:
Algorithm (a):

1. Read the number.
2. Divide the number by 2 and get the remainder.
3. If it is 0, say 'even', otherwise say 'odd'.

Algorithm (b):
1. Read the number.
2. Get the number's rightmost digit.
3. If it is 'O', '2', '4', '6' or '8' say 'even', otherwise say 'odd'.

Which algorithm is more abstract?

1.5 How many words is a picture worth? Hint: Update a proverb.

ALGORITHMS AND THE MACINTOSH 17

m.1;.;#1

1.6 What is likely to be the biggest address in a computer with a main
memory of 1 Mb :md cells of 32 bits?

I. 7 How is it possible for a CPU to execute repeatedly a sequence of
machine instructions?

1.8 Obtain a Macintosh and a startup disk, and experiment by doing some­
thing like the following (in order):

• Power-up if necessary and insert the startup disk.
• Move the mouse around while observing the cursor. Pick up the

mouse and reposition it a couple of times.

• Double-click on the icon for the disk. Close the window that re­
sults, then get it back again by choosing Open from the File menu.

• Move the disk's window around and change its size. Note that part
but not all of a window can be off-screen.

• Open the window of the System Folder icon in the startup disk's
window. Make it small and scroll both vertically and horizontally.

• Open up lots of windows - really mess up that desktop. Make
various windows active . by clicking and by choosing them in the
Windows menu.

• Make a non-empty window active and wide, and choose various
commands from the View menu (not mentioned in the text). Figure
out what they do.

• Duplicate the Empty Folder and rename it 'Copies Folder'.
• Duplicate a file (any one will do), rename it if you like, and move

it to the Copies Folder. Repeat using a different way of moving.

• Move the Copies Folder to the Trash can; open the latter's window
and look inside. Choose Empty Trash from the Special menu.

• Otherwise experiment, being careful not to delete files unless you
are sure they are unimportant. Think again even then.

18 PROGRAMMING USING MACINTOSH PASCAL

2 ______ _
EDITING MACINTOSH
PASCAL PROGRAMS
Give us the tools, and we will finish the job.
- Winston Churchill, Radio Broadcast,

9 February 1941, addressing President Roosevelt.

2.1 Introduction
2.2 The Macintosh Pascal environment
2.3 Editing

2.3.l Setting the insertion QOint
2.3.2 Inserting text

2.3.3 Selecting text

2.3.4 Editing selected text

2.3.5 Deleting text without selecting

2.3.6 Searching and re2lacing

2.4 Controlling the environment
2.5 Error messages
2.6 Checking a ~rogram
2.7 Saving ~our ~rogram
2.8 Reverting to the last version
2.9 Opening a saved ~rogram
2.10 Copying between ~rograms
2.11 Printing
2.12 Leaving Macintosh Pascal
2.13 Further reading

Exercises

20
20
20
22
22
22
22
23
23
24
25
25
26
27
27
28
28
29
29
29

:::iY ..
L

2.1

2 .1 Introduction
This chapter explains how to use Macintosh Pascal's special-purpose
editor to type and modify (i.e. edit) Macintosh Pascal programs. You
need not know anything about Pascal to follow it. The material is
written in such a way as to be useful as a reference when you eventu­
ally edit programs yourself. The exercises ask you to create and
modify two of the three sample programs in Chapter 3; you may prefer
to do them as you read that chapter.

2.2 The Macintosh Pascal environment
After entering Macintosh Pascal you will see a screen like that dis­
played in Figure 2.1. Macintosh Pascal initially shows three windows:
the Program window, the Text window, and the Drawing window.

The Program window is used to enter and edit Pascal programs.
If you entered Macintosh Pascal by opening its icon, a skeleton of a
Pascal program is displayed (in white on a black rectangle, indicating
that the skeleton has been selected - see below), and the name of the
window is Untitled. This is the case in Figure 2.1. If, on the other
hand, you opened the icon of a previously created program, a window
full of that program will be displayed.

The Text window shows the text typed as input to, or written as
output by, the program. The Drawing window shows graphics output.
There are also special windows for editing the program and observing
it during execution; these are opened as needed.

2.3 Editing
Macintosh Pascal has many editing features, and it is worthwhile to
become familiar with them. Its editor is special-purpose: it is used
only to edit Pascal programs, and takes advantage of this fact. Thus

20 PROGRAMMING USING MACINTOSH PASCAL

,. .&.
• File Edit Search Run Windows

Te Ht

Drawing

certain special words (called reserved words) are displayed in bold
type, the syntax (grammatical form) of the program is checked, and the
program is displayed using a consistent scheme of indentation. All of
this happens automatically as you type. You need not even press the
Return-key to get to a new line: the display is updated whenever you
type a semicolon (;) or move the insertion point to a different part of
the program.

Figure 2.1
The Macintosh Pascal
environment.

Most editing takes place in the Program window, which always
contains a blinking vertical bar. It marks the insertion point - the I
place where the text that you type on the keyboard appears. Whenever
you move the cursor into the Program window, it changes into an I- I
beam. You use the I-beam cursor to change the insertion point and to
select text for editing.

The main editing operations are as follows.

EDITING MACINTOSH PASCAL PROGRAMS 21

.,

f1rst +p1pe11t

Select All :~:A

(ut :~:H

Paste :~:u

(opy :~:(

2.3.1 SETTING THE INSERTION POINT

To set the insertion point, move the I-beam cursor to the place where
you want to insert text, and click. The insertion point can be anywhere
in the program, even in the middle of a word.

2.3.2 INSERTING TEXT

Whatever you type on the keyboard starts at the insertion point, which
moves so as to be just after the last character entered. Text to the right
of the insertion point moves over as you type to make way for the new­
ly inserted characters.

2.3.3 SELECTING TEXT

To change existing text first select it: position the I-beam cursor at
the beginning of the text to be selected and drag it to the end of the
selection. As you drag, the selected text is highlighted in white on a
black background. If you have selected text but want to change it,
click anywhere in the Program window, or select some other text.

Dragging to select text may be done in any direction - it is the
start and end points that determine the selected text. A selection can
extend over several lines and is not limited to line boundaries. Drag­
ging along the left-hand margin selects entire lines. To select a piece
of text larger than the Program window, drag the cursor off the top or
bottom edge of the window without releasing the mouse button. The
window will scroll, and the program text that moves into the window is
included in the selection.

Double-click to select a word; triple-click to select a whole line.
To select the whole program, choose Select All from the Edit menu. A
more convenient alternative for long selections is first to place the in­
sertion point at the beginning of the text to be selected, then move (not
drag) the cursor to the end and shift-click. The Program window can
be scrolled during this operation.

2.3.4 EDITING SELECTED TEXT

To replace selected text, type the new text. To delete selected text, hit
the Backspace-key. That is how to remove program Untitled in Figure
2.1.

To move selected text, first choose Cut from the Edit menu.
The selected text disappears. Then set the insertion point as desired
and choose Paste from the Edit menu. The cut text reappears starting
at the insertion point.

To copy selected text, choose Copy instead of Cut and proceed

22 PROGRAMMING USING MACINTOSH PASCAL

as above. The selected text remains, but a copy is inserted after the in­
sertion point when Paste is chosen.

Cut or copied text is placed in a file called the Clipboard, repla­
cing whatever was there before. Choosing Paste simply inserts a copy
of the Clipboard at the insertion point. It can be done as many times as
desired. The Clipboard can be displayed by choosing Clipboard from
the Windows menu.

2.3.5 DELETING TEXT WITHOUT SELECTING

Another way to delete text is to set the insertion point after the last
character to be deleted, and then repeatedly hit the Backspace-key to
remove the character just before the insertion point. This is the easiest
way to delete one or two characters, or replace them, since you can in­
sert afterwards.

2.3.6 SEARCHING AND REPLACING

It is common when editing to need to locate certain text. Often it is
because you need to change it, possibly wherever it occurs. Such
operations are done with the Search menu. If you choose What to
find ... , the dialog box shown in Figure 2.2 appears.

To search for occurrences of particular text, type it as the Search
for text. Set the desired search conditions using the small buttons in
the dialog box. Click OK to remove the dialog box. Now whenever
you choose Find from the Search menu, the next occurrence of the text
will be searched for and selected if found.

The Replace with text replaces the currently selected text (and
itself remains selected) whenever you choose Replace from the Search

Search for ~

Replace with [

~Separate Words
All Occurrences

When this button is on,
the Search for text must
be surrounded by spaces
or punctuation.

When this button is on,
the context of the Search
for text is irrelevant.

~Case Is lrreleuant (OK

Q1 Cases Must Match (Cancel
1

When this button is on, the case (upper or
lower, i.e. capitalized or not) of letters in the
Search fortext is not significant.

When this button is on, the case of letters in
the Search for text is significant.

l
l

(lipboard

::,~ ..
L

2.2

lllhat to find

Find . :~:F

Replace :~:R

Figure 2.2
The dialog box for What to
find

EDITING MACINTOSH PASCAL PROGRAMS 23

:::iY
2.3

191g1pcp.Ifi

24

menu. You can therefore replace multiple occurrences of the Search for
text by repeatedly choosing first Find and then Replace if desired. To
replace every occurrence automatically, choose Everywhere from the
Search menu (just once). Always think twice before doing this, as you
cannot halt the process once it is underway, and mistakes can be very
painful.

Each search starts at the current insertion point and proceeds
forwards through the program, as far as the end if necessary. If no
occurrence of the Search for text is found, you get a message which
misleadingly says that the text was not found in the active window. If
a search is unexpectedly unsuccessful, check the settings in the What
to find ... box. If they are correct, move the insertion point to the start
of the program and try again.

2.4 Controlling the environment
Two commands in the Windows menu allow you to control aspects of
the programming environment.

Choosing Font Control. .. produces a dialog box that displays the
font in use in the Program windows (the Program, Observe, and In­
stant windows) or the Text window, depending on which of two
corresponding buttons is on. Font names are made up of a word and a
number; thus 'Geneva-12' names the 12-point Geneva font. Buttons
labeled Next and Prev enable you to cycle through the available fonts
in either direction. Click OK when you have found the desired font. It
is often best to choose a font with fixed-width characters for the Text
window, to permit more control over the formatting of output. Suitable
choices are Monaco-9 and Monaco-12.

Choosing Preferences... produces a dialog box that displays
certain current editing and output settings, and lets you change them.
The Indent Width is the horizontal offset of an indented line. Tab
Stops are the positions in a line associated with the Tab-key: pressing
the Tab-key when typing text spaces to the next tab stop position. It is
recommended that you set the Indent Width and Tab Stops values to
the same value (12 seems about right); this enables you to use the
Tab-key to line up comments with other lines of the program.

You can also control the maximum number of characters held in
the Text window; if more are written by the program the extra ones
written first are lost. Finally, you may specify that any output written
to the Text window also be sent to a file (that you name) and/or the
printer that is specified by choosing the Choose Printer desk accessory
from the apple menu.

PROGRAMMING USING MACINTOSH PASCAL

2.5 Error messages
To err is human. Macintosh Pascal knows this saw, and informs you
whenever it detects an error. Certain types of error that occur when
editing do not produce explicit messages; rather, the editor indicates
them by displaying the offending part of the program text in outlined
characters. This only happens when the editor finds something that
cannot possibly be part of a Pascal program, e.g. when a right curly
bracket to end a comment is missing, or when a semicolon is followed
by the reserved word else. After such an error is corrected, the out- riUI@
lined characters do not immediately revert to normal type. But by
moving the insertion point a few lines you can force the editor to re-
check the program and update the screen.

Other errors are detected when you check (the syntax of) your
program or during execution, in which case an error message appears
at the top of the screen. Figure 2.3 shows one such message. Usually
the message states clearly what has gone wrong, but sometimes the best
Macintosh Pascal can do is to issue a very general message such as
'This doesn't make sense.' There are over a hundred different error
messages; try to get a copy of the file that comes with Macintosh Pascal
which explains them.

Whenever you have an error, Macintosh Pascal refuses to re­
spond to your commands until you acknowledge the error by clicking
anywhere inside its box. Once you have done this, the box disappears
and a hand in the left margin of the Program window points to the
offending line. Usually the problem is in that line or at the end of the
previous one, but sometimes, as with mistakes in the declarative part of
the program, the symptom may be far removed from the cause.

It is hoped that you will not come across a type of error known
as a system error. Messages like 'Sorry, a system error occurred' or
'Out of memory' mean that something has gone seriously wrong with
the Macintosh's operating system. You will probably have no choice
about how to proceed, but, if possible, get expert help.

2.6 Checking a program
If, when entering a program, you want to check whether you have
made any mistakes so far, choose Check from the Run menu. This

R period (.) is required following the last END of the program but
one has not been found.

(heck :~:K

Figure 2.3
An error message.

EDITING MACINTOSH PASCAL PROGRAMS 25

Figure 2.4
The dialog box for Save
As

Saue As ...

26

I {g) Macintosh Pascal 2.0 I
D l 4.p fl,
D rinih~r
D (!trn~sM~JNumbN 'mm

~ ~r;1~I1~~:~~·~:~,1~1~c<11 Lo ~
Saue your program as {g) Macint ••.

Eject

Cancel

® Hs TeHt O Hs Object O Hs Application

invokes the part of Macintosh Pascal that does the preliminary trans­
lation. It checks your program for syntactic errors. If none are reported
you may run the program.

The many facilities provided for running Macintosh Pascal pro­
grams are described in Chapter 4.

2.7 Saving your program
In the File menu there are two commands for saving programs: Save
As ... and Save. When you create a new program the Program window
has the name Untitled, and only the Save As ... command is active.
Choosing it produces a dialog box like that shown in Figure 2.4.

The topmost box shows the name of the disk currently chosen to
receive the program, in this case 'Macintosh Pascal 2.0'. The biggest
box is the contents window; scroll it to list all programs on this disk.
The first part of the disk's name also appears just above the Eject
button. If you want to save on a different disk, click the Eject button
and insert the new disk; if you are using an external disk drive and
want to save on the other disk, click the Drive button (which will not
be dimmed if a disk is inserted).

If you insert a virgin disk to receive the program, a dialog box
will appear; it tells you that the disk is unreadable, and asks whether
you want to ir:iitialize it. Sometimes this can happen with disks that
have been initialized and contain files, in which case you should click
Eject and try again. Clicking Initialize causes certain control informa­
tion to be written on the disk. After a minute or so you will be asked
to name the disk. Type any name you like as long as it does not

PROGRAMMING USING MACINTOSH PASCAL

contain a colon (:). Then click OK and resume saving your program.
Type the name under which you want to save your program in

the box labeled 'Save your program as'. The name must not contain
any colons. Click the Save button to save the program, or the Cancel
button to avoid saving. The dialog box disappears in either case. You
can save a copy by choosing Save As ... again and using a different
name or disk.

There are three forms in which to save a program, correspond­
ing to the three buttons at the bottom of the box. The default and
normal option is As Text, which saves the program as a text file. As
Object saves it in Macintosh Pascal's translated form. Using this
between editing sessions saves time by avoiding translation. Saving As
Application is used to create an application, i.e. a program that does
not involve the Macintosh Pascal editing and execution environment.
Never save only in this form, as you will not be able to edit or even
print your program. Consult the Macintosh Pascal 2.0 Update docu­
ment on the Macintosh Pascal Utilities disk for details.

After saving with Save As ... the title in the Program window
changes to whatever name you specified. Also, the topmost item in the
Windows menu gets that name, and choosing it displays the Program
window. Choosing Save from the File menu automatically replaces the
saved program with the current version, though Save As ... is still avail­
able if you want to save with a different name (or disk).

It is a good idea to save your program at frequent intervals, say
after adding or changing about twenty lines of code. You will be glad
you did if there is a power failure, a system error, or, more likely, you
inadvertently lose or change code when editing.

2.8 Reverting to the last version
When something goes terribly wrong (such as a substitution with
Everywhere) and you feel that you have really messed up your pro­
gram, choose Revert from the File menu. This will restore your pro­
gram to the state it was in when you last saved it. A dialog box appears
to double check with you before reverting.

2. 9 Opening a saved program
After entering the desktop at the start of a session on a Macintosh, you
can run Macintosh Pascal with an existing program by simply double­
clicking on the icon of that program (providing Macintosh Pascal is
present).

=··IY ..
L

2.4

:1·~
l!:J
2.5

:::iY
2.6

EDITING MACINTOSH PASCAL PROGRAMS 27

Open... :#€:0

"""''
:i·~

l!:I
2.7

(opy . :#€:(

Paste :#€:LI

111n.A\s1n.w

Print

28

Alternatively, open Macintosh Pascal and choose Open... from
the File menu. A dialog box is displayed that looks and functions in a
similar way to the one for Save As ... shown in Figure 2.4. Scroll the
contents window until the name of the program appears, click on the
name to select it (highlighting it), and click the Open button. A short­
cut is just to double-click on the name.

If you finish with a program in a Macintosh Pascal session, and
wish to work on another, save it, choose Close from the File menu,
and then open the new program.

2.10 Copying between programs
To copy part of one program (such as a procedure or function) for use
in another, open the program containing the text to be copied, select
the text, and choose Copy from the Edit menu, putting it on the Clip­
board. Then close the program and open the one to receive the text.
Set the insertion point and choose Paste from the Edit menu. The text
on the Clipboard is inserted.

The contents of the Clipboard can be copied into the Note Pad
or Scrapbook desk accessory (if available) by choosing the accessory
from the apple menu before choosing Paste from the Edit menu. Click
in the bottom-left comer of the Note Pad to pick one of its eight pages,
or scroll the Scrapbook to pick one of its areas. To copy from the
Note Pad, select the desired text and Copy to the Clipboard. It is not
possible to select part of a Scrapbook area - Copy copies all of the
currently displayed area to the Clipboard.

To extract rather than copy part of a program proceed as above
but choose Cut instead of Copy.

2.11 Printing
In the File menu there are two commands for printing: Page Setup ...
and Print

Choosing Page Setup ... produces a dialog box that displays the
current settings of various options that control printing, and allows you
to change them by clicking the appropriate buttons. You do not norm­
ally need to choose this before printing.

Choosing Print... produces a simple dialog box. The only
option is to print all the program (the default) or to indicate a range of
pages. To initiate printing, click OK.

You can print an image of the screen whenever your program is
not running, by first engaging the Caps-Lock-key and then holding

PROGRAMMING USING MACINTOSH PASCAL

down both the Command-key and the Shift-key as you type '4'. If the
Caps-Lock-key is disengaged, only the active window is printed.

2.12 Leaving Macintosh Pascal
To end a Macintosh Pascal session, choose Quit from the File menu.
If you have not saved your program since the last change, a dialog box
gives you the opportunity. The desktop will be restored to the state it
was in when you left it, except that some additional program icons may
be present.

2.13 Further reading

(1)

(2)

Anon. (1986). Macintosh Pascal 2.0 Update.
This is a MacWrite document included on the Macintosh Pascal
Utilities disk that comes with Macintosh Pascal 2.0. The section
headed 'The Applications Shell' explains how to use programs
Saved as Application. Much of the rest assumes familiarity with
the Macintosh's operating system.
Hueras, J. (1984). Macintosh Pascal User's Guide. Apple product
#Ml504. USA and Canada: Apple Computer, Inc.
This is one of the manuals that come with Macintosh Pascal. It
covers much the same material as do this chapter and chapter 4,
but is much richer in pictorial illustrations.

EXERCISES
Open Macintosh Pascal by double-clicking on its icon, and put it
through its paces by doing something like the following (in order):

2.1 The Macintosh Pascal environment
Browse through the menus at the top of the screen.

Experiment with moving and changing the size of the windows on the
screen.

Activate different windows on the screen. How do you activate a
window that is completely hidden?
Make the Program window occupy the whole screen prior to entering a
program.

Quit :~€:0

::,~ ..
L

2.8

!i=~
l!:J

2.9

EDITING MACINTOSH PASCAL PROGRAMS 29

::~
2.10

2.2 Editing; error messages

Type the Backspace-key to get rid of program Untitled, then enter pro­
gram YouGuess2 from Chapter 3:

program YouGuess2 (Input, Output);

end. { YouGuess2}

If you make a mistake you can use the Backspace-key to erase character
by character what you have typed so far. If you hold the Backspace-key
down, it will auto-repeat, enabling you quickly to erase half a line or
so.

It is sensible to save a newly entered program before checking or
running it. Do so now.

Activate the Clipboard window, resize it to about three lines of half
screen width, and reposition it at the bottom right corner of the screen.

Now edit the program into program YouGuess3 in Chapter 3. Do so
by performing the following operations (which mostly proceed down
through the program), observing the changing contents of the Clip­
board:

• Insert and repeatedly before asks, by setting the insertion point
before a, and typing the missing text.

• Select { and . . . correct } and type the two lines that should replace
it.

• Set the insertion point before var and type const ... number } .
Notice that const is displayed in bold, viz. const.

• Replace the 10 after mod by MaxSecret.

• Update the line before the first Writeln, replacing it with two lines.

• Select 10 after and and replace it with ',MaxSecret, ', hitting the
Return-key after the first comma to force a new line.

• Insert first after your .

• Copy the line if guess = secret then and replace the line before it
with a copy. (You can Paste to replace selected text.)

• Select if in the first occurrence of the duplicated line by double­
clicking, and type while to replace it; replace = by <>. Replace
then by do begin.

• Insert end; Writeln('That"s correct!') after the second last line.

• Change = to > and update each of the two lines starting with
Writeln.

30 PROGRAMMING USING MACINTOSH PASCAL

2.3

• Copy the two lines before the line starting with while.

• After too low.'), add ; and then the two copied lines.

• Change first to next in the first added line, and remove the semi-
colon at the end of the second added line.

Use the Search menu to change the name of the program: Choose
What to find ... from the Search menu. Enter Guess2 as the Search for
text and Guess3 as the Replace with text. Put the All Occurrences
button on. Why? The setting of the other search option is unimportant
here. Why? Click OK to both confirm your selection and close the
dialog box.

Choose Everywhere from the Search menu. Is every occurrence of
YouGuess2 changed to YouGuess3? (It should be.)

At this point your program should be identical to the one given in
Chapter 3. Edit if necessary to make this the case.

Again choose What to find ... and then Everywhere, this time to change
all occurrences of secret to number. Make sure at least one of the
Cases Must Match and the Separate Words buttons is on. Why?

Now try to reverse the previous change by repeating with the Search for
and Replace with texts swapped. Note that some spurious occurrences
of secret result.

Moral Think carefully before you choose Everywhere.

To restore the original occurrences of number, first choose What to
find ... from the search menu and exchange the Search for and Replace
with texts. Then set the insertion point at the beginning of the pro­
gram, and make the necessary changes with a sequence of Find or Re­
place commands. Use the keyboard equivalent each time.

Choose Replace again. What happens? Why?

If you saved the original program, also save this new one. How do you
save a program once you have named it? What happens to the pro­
gram that was stored previously under that name?

Controlling the environment

Use Font Control from the Windows menu to peruse the available
fonts, and change the fonts in both the Program windows and the Text
window.

Choose Preferences from the Windows menu and change the indent
width and the space between tab stops. Note how the first change
affects the display of the program, and temporarily insert several tabs,
noting their effects.

:i:ty
2.11

:i·~
l!:I

2.12

EDITING MACINTOSH PASCAL PROGRAMS 31

:11iY

2.13

l!siY
2.14

2.4 Checking a program

Choose Check from the Run menu. Notice that the heading Run in the
menu bar is highlighted during this operation. If Check does not find
any errors, nothing further happens - you are not explicitly informed.
Otherwise, an error message is displayed at the top of the screen in­
forming you of the first error found.

In case Check did find an error, carefully check your program. The
smallest deviations, such as an additional or missing comma (,), can in­
validate the program.

If you did not get an error from Check, provoke one by simply remov­
ing any semicolon (;) in the program, and choose Check again. Fix the
error before proceeding.

2.5 Saving your program

Save the current program. If you have saved it before, save now under
a different name. If you have not, and you have your own new disk,
initialize it if necessary and save on it.

2.6 Reverting to the last version

2.7

2.8

Select a substantial part of the program and hit Backspace. It dis­
appears and, unlike the case with Cut, cannot be recovered with Paste.
Choose Revert from the File menu to restore the last saved version.

Opening a saved program

Close the current program and open a different one. It does not matter
if you did not create it.

Copying between programs

Put the Clipboard on the screen, and copy a section of the program. If
the Note Pad or Scrapbook desk accessories are present, copy a differ­
ent section into each of them.

Close the current program (without saving it) and open the one you
worked on previously (YouGuess3). Insert the text in the Clipboard at
a chosen place in the program. If you copied to the Note Pad or Scrap­
book, insert the text you copied into the program.

Since you have just done something that makes no sense, revert to the
last saved program!

2.9 Printing

Obtain a printed listing of your program.

Send the current screen image to the printer, remembering to diseng­
age the Caps-Lock-key afterwards.

32 PROGRAMMING USING MACINTOSH PASCAL

Activate the Program window, set it to about half screen size, and print
an image of it (but not the rest of the screen).

2.10 Leaving Macintosh Pascal

First make sure that you have saved the current version of your pro­
gram to disk, by opening the File menu and checking that the Save
command is dimmed. If not, save the program.

Terminate the Macintosh Pascal session.

EDITING MACINTOSH PASCAL PROGRAMS 33

3 ______ _
A PREVIEW OF PASCAL
Language is the dress of thought.
- Dr Johnson, Lives of the English Poets

3.1 The history of Pascal 36
3.2 Reading before writing 37
3.3 First program 37
3.4 Second program 40
3.5 Third program 45
3.6 Macaveats 47
3.7 Further reading 48

Exercises 49

3 .1 The history of Pascal
The programming language Pascal was created around 1970 by Niklaus
Wirth, a professor of computer science at the Eidgenossische
Technische Hochschule in Zurich, Switzerland. The period of its gesta­
tion was a heady one for computer science, in which great advances
were made in understanding the programming process. Wirth set out
to design a language that reflected the emerging fundamental structures
and concepts of programming.

Despite having no corporate or government backing, Pascal
achieved its present position as the virtual lingua franca of university­
level teaching of programming, an important language for both systems
and application programming, and the departing point for more
modern languages such as Ada and Wirth's own Modula-2. Wirth
succeeded because his goals were wisely chosen and by and large were
met. He built a better bug-trap!

The final seals of approval were bestowed on Pascal when an
international standard was approved by the International Organization
for Standardization in 1982, and adopted (with one omission) by the
American National Standards Institute in 1983. We shall call the
language defined by ANSI, Standard Pascal, and the defining docu­
ment, the Standard. The significance of the Standard is that a Pascal
program that conforms to it is guaranteed to be treated in exactly the
same way by each Pascal translator that itself conforms to the Standard,
i.e. Standard Pascal programs are transportable.

This does not quite mean that an arbitrary Standard Pascal pro­
gram will produce the same output, irrespective of the Standard Pascal
translator that processed it, because certain properties of the Standard
language may vary between implementations. Prime examples are the
range and precision of real numbers (see Chapter 19). But in most real­
istic cases, the output will be identical, or nearly so for real numbers.

Except in a few relatively minor respects (all made explicit in the
sequel) Macintosh Pascal is an extension of Standard Pascal, i.e.

36 PROGRAMMING USING MACINTOSH PASCAL

Standard Pascal programs are accepted and behave as they should, but
additional features are provided, most of which provide access to the
built-in graphics and sound capabilities of the Macintosh, and, more­
over, do little violence to the Standard.

Our attitude to the differences between Macintosh Pascal and
Standard Pascal stems from the principle that language issues, and
especially the fine points, should not detract from the overriding aim of
learning how best to solve programming problems and how best to pre­
sent the solutions. Our first priority is learning problem solving rather
than learning Standard or Macintosh Pascal. Nevertheless, the ability
to program to a Standard is a valuable one; indeed, it is essential to the
professional programmer. Accordingly, usages at variance with the
Standard are pointed out in end-of-chapter sections headed
'Macaveats', and kosher alternatives are outlined whenever possible.

3.2 Reading before writing
Although Pascal is a relatively modest language, and was designed with
teaching in mind, its defining document runs to a hundred pages or so
of very technical jargon-ridden English. One way to proceed in learn­
ing to program with Pascal is to start with its basic low-level con­
structs, learning all the details, and seeing examples of their applica­
tion, and painstakingly working up to the higher levels of the language.
Such a bottom-up approach is traditionally used in presenting
mathematical theories, and it is the approach used in the formal
definition.

Humans, of course, do not learn their own languages in that
fashion. They are ambitious and impatient to use their language to
communicate, before learning all the subtleties of grammar and
vocabulary. Without wishing to push the analogy too hard, we take
the view that it is desirable for the beginner to be exposed to a simple
but non-trivial part of Pascal right from the start. This approach is con­
sistent with our natural mode of language acquisition, provides a con­
text that helps demystify the language constructs as they are explicated
properly later, and shows those with prior experience of another pro­
gramming language (Basic, perhaps) how Pascal compares with it.

So without further ado, let us launch with bold hearts and fear­
less spirits into an exciting voyage of discovery.

3.3 First program
Here is a complete Macintosh Pascal program:

A PREVIEW OF PASCAL 37

program YouGuess (Input, Output);
{ Asks the user to guess a number, reads it, }
{ and announces that it is wrong! }
begin { YouGuess}

Writeln('l"m thinking of a number between 1 and 10 inclusive.');
Write('Please type your guess: ');
Read In;
Writeln('That"s wrong.')

end. { YouGuess }

:;:jy Run this program by choosing Go from the Run menu. You
3.1 will first see the text:

Figure 3.1
The Text window before
input.

I'm thinking of a number between 1 and 10 inclusive.

appear at the top of the Text window. It will occupy one line, unless
the window is too narrow, in which case it will take as many lines as
necessary. Very soon after, a new line appears, and nothing further
happens. The Text window is now as shown in Figure 3.1.

What has happened so far is this. The program basically consists
of four statements, each of which specifies an action. Running the
program amounts to executing the statements in turn, starting with:

Writeln('l"m thinking of a number between 1 and 10 inclusive.')

which printed the first line in the Text window. The next statement
printed the second line, which prompts the user to enter input. The
Macintosh is now executing the third statement, Readln, which reads
one line of input. It cannot be completed until a line is entered. Do so
by typing any text and then hitting the Return-key to finish the line.
You will see the text appear in the Text window as it is typed, and
then a third line appear very soon after you hit the Return-key. This
is because the third statement was executed, reading your line of input,
and then the fourth and last, writing the last line of output. Execution
of the program has now finished, and the Text window is now as
shown in Figure 3.2. (The input has been underlined to distinguish it
from the program's output; it is not underlined on the Macintosh.)

Our first program plays a rather dirty trick on the user, reading
but ignoring the input line: it's a tough program for tough times. If

D Te Ht
I'm thinking of a number between 1 and 1 O inclusive. !Qi
Please type your guess:

38 PROGRAMMING USING MACINTOSH PASCAL

_o Te Ht
I'm thinking of a number between 1end10 inclusive. ~
Pl ease type your guess: I'm picking 4.
That's wrong.

your style isn't so Nixonesque, you might change the last statement to
print 'That's close.' , or even 'That's correct.' if you can handle taunts
of 'bleeding-heart liberal!' . Do so and rerun the program. You have
successfully modified your first Pascal program!

Let us now examine the program and learn what we can about
Pascal. We first notice some words in boldface; they are called re­
served words and cannot be used for other purposes . We also notice
that the other technical words, viz. Writeln, Write, and Readln, re­
cognizably derive from English. The statements are separated by semi­
colons - there is no semicolon following the last statement because it
is not followed by another statement. Macintosh Pascal has set out the
statements one per line. (Basic programmers please note: statements
are not numbered.) They appear in a context reminiscent of program
Untitled (see Figure 2.1). Matching curly brackets and the text they
enclose form a comment. Comments have no effect on execution; they
are included for the human reader. We correctly deduce that a pro­
gram may take the form:

program name (Input, Output);
comments
begin { name }

statements
end. {name }

where italicized terms are not literally present, but act as placeholders
for unspecified parts of the program. Each occurrence of name is the
same here; commenting begin and end with the program's name is a
convention we shall adhere to. Its utility will become apparent later.
The first section of comments specifies what task the program per­
forms, in terms of what input it expects and what output it produces.
Do not worry about the presence of Input and Output in the first line;
their significance is explained in Chapter 5.

So much for now for syntax. Let us turn to the meaning of the
program: it is executed by executing each of the statements, in the
order written. We have seen examples of two kinds of statements . The
output statement:

Writeln(string)

Figure 3.2
The Text window after
execution.

=··~ l!:J
3.2

A PREVIEW OF PASCAL 39

where string denotes arbitrary text enclosed by single quotes ('), writes
the string in the Text window and ends the line. The version using
Write (without the suffix In) writes the string in the Text window with­
out ending the line. You have no doubt noticed a peculiarity of
strings: when a single quote is wanted in a string, it is typed twice (but
only appears once when written). This is so Pascal can distinguish
single quotes in strings from those that delimit strings.
The input statement:

Read In

waits until a line of input is typed, and then ignores it! Actually, it
reads the line without remembering it.

3.4 Second program
The output of our first program does not depend on the user's guess,
and the user will either deduce its true nature or postulate some form
of psychic (in)ability. The modified program below dispenses with the
pretence, giving the user a chance. It introduces several new features
which will shortly be explained, but you can probably figure out how it
works by yourself. (What it does, at least in general terms, is stated in
the comments.) Give it a try.

program YouGuess2 (Input, Output);
{ Picks a number, asks for and reads a guess, }
{ and announces whether or not it is correct. }

var
x, y, { (x, y) is the mouse's position }
secret, { the number to be guessed }
guess : integ_er;

begin { YouGuess2 }
{ Define the number to be guessed }

GetMouse(x, y);
secret := (x + y) mod 10 + 1;

{ Prompt for and read the guess }
Writeln('l"m thinking of a number between 1 and 10 inclusive.');
Write('Please type your guess: ');
Readln(guess);

{ Announce the result of the guess }
if guess = secret then

Writeln('That"s correct.')
else

Writeln('That"s wrong.')
end. { YouGuess2 }

40 PROGRAMMING USING MACINTOSH PASCAL

D Te Ht
I'm thinking of a number between 1 and 10 inclusive.
Please type your guess: 3, I can just feel it!
That 's wrong.

Right! Execution of YouGuess2 proceeds as before up to the
point where input is required. Now things ain't what they used to be.
The input must start with a whole number (written with digits, not a
word), although it may be preceded by spaces. After the Return-key is
hit, a line is printed that announces the outcome. Furthermore, rerun­
ning the program with the same guess does not usually produce the
same output, as the secret number depends on the position of the
mouse (and the user isn't told of that)! The Text window produced by
a typical run is shown in Figure 3.3.

In reading YouGuess2 you surely noticed the three comments
among the statements. These represent the high-level actions that were
originally chosen to solve the problem. They remain in the program to
describe what the Pascal statements do that follow (up to the next com­
ment or blank line). Thus you understand the body of YouGuess2 at a
high level as:

begin { YouGuess2}
Define the number to be guessed ;
Prompt for and read the guess ;
Announce the result of the guess

end. { YouGuess2}

Some new kinds of statement and other new constructs are used .
The most important new notion is that of a variable . It is a named
container of a value; the name of the container is fixed, but its value
may (and usually does) change during execution. The three lines
following var declare four variables to be used in the program. Their
names are x, y, secret, and guess, and they will all have integer
values, i.e. whole numbers. There are many types of value in Pascal,
and when each variable is declared, as it must be, its type is specified.
Like its name, a variable's type is fixed .

All variables used by the program are declared in the variable­
declaration-part, which starts with the reserved-word var and consists
of one or more declarations each followed by a semicolon. Since com­
ments may be ignored, we might correctly deduce from our program
that a declaration consists of a list of one or more names separated
by commas, then a colon (:), then a type (such as integer) .

Figure 3.3
The Text window after a
run ofYouGuess2.

A PREVIEW OF PASCAL 41

Figure 3.4
A picture of a variable.

secret

[!]
Unless a variable's purpose is obvious from its name or the context of
its use, its declaration should be accompanied by a comment describing
it.

We picture a variable as a named box containing its current
value. Figure 3.4 illustrates the integer variable named secret, assum­
ing its current value is 7. It would seem sensible to label the box with
the variable's type, but we shall not do so since the type can be
deduced from the value (together with the context, if necessary).

When execution of a program begins, the variables exist but
have undefined values (which will be represented in pictures by
question-marks (?)). There are two major ways in which a variable
gets its initial value or a new value. One is by execution of an assign­
ment statement, an example. of which is:

secret:= (x + y) mod 10 + 1

When executed, this computes the value of (evaluates) the expression
on the right of the assignment symbol : =, and then makes this the
new value of the variable on the left. The assignment symbol is read as
'gets'.

The expression above is a little complicated; let us see how it is
evaluated. Suppose x and y have the values 205 and 137 respectively.
The brackets around x + y force it to be evaluated first; the result is
342. The next value to be computed is 342 mod 10. The operator
mod gives the remainder when the integer on its left is divided by the
one on its right; in this case 10 into 342 goes 34 times with 2 re­
mainder, so the result is 2. Finally, 2 + 1 is computed to get 3, which
is the value of the entire expression. So the value of secret after exec­
ution of the assignment is 3.

The brackets around x + y are essential. Without them, Pascal's
rules for expression evaluation require y mod 10 to be evaluated first.
The result in the example above would be:

205 + (137 mod 10) + 1

which equals 213. The program would run, but the chances of the user
guessing the secret would be unexpectedly remote! We shall see in
Chapter 10 that variable secret (and variable guess) can be declared to
have a value between 1 and 10, which if done (as it should be) would
cause a run-time error when an attempt is made to assign an improper
value.

42 PROGRAMMING USING MACINTOSH PASCAL

The operators + and mod are not the only ones used in integer
expressions. Also available are - (representing subtraction), * (re­
presenting multiplication), and div (representing integer division:
342 div 10 equals 34).

The other major way to give a variable a value is by reading a
value from input. An example is the input statement:

Readln(guess)

which is an abbreviation of the sequence of two input statements:

Read(guess);
Read In

The first of these waits for and then reads the input, skipping over
spaces and even new lines in search of a value for the integer variable
guess. An optional sign and then digits are read until a non-digit
character is encountered. The textual representation of the number
read is converted to an integer value which then becomes the new
value of the variable. We have met Readln before; it skips the rest of
the line.

Another newly introduced statement is the if-statement, which
has the form:

if condition then
statement

else
statement

A condition is a special kind of expression that when evaluated
produces either the value true or the value false. The conditional
statement is executed by first evaluating the condition. If it gives the
value true, the statement following then is executed, otherwise the
statement following else is executed. In our program, the condition is
guess = secret. Since the names of variables always stand for their
values in expressions, and = has its familiar mathematical meaning,
this condition gives true just in case the values of variables guess and
secret are equal.

It is not necessary to write variables either side of =; any two
integer expressions can be compared. We shall see later that expres­
sions of other types can also be compared. Neither is with = the only
way to compare them; the full complement of relational operators is
given in Table 3.1. The usual mathematical symbols in the last three
cases are :::::::, ~ and i=, respectively; these are not used since they are
unavailable on most keyboards.

A PREVIEW OF PASCAL 43

Table 3.1 The relational
operators. Relational Meaning

operator

equals
< less than
> greater than

<= less than or equal to
>= greater than or equal to
<> not equal to

A conditional statement is called a structured statement because
it contains other statements as components. The part starting with
else can be omitted, meaning 'else do nothing'.

YouGuess2 introduced one more new kind of statement:

GetMouse(x, y)

is a procedure statement. A procedure is a self-contained subprogram
that does something in terms of parameters. Section 10.6.3.2 of the
Macintosh Pascal Reference Manual (hereafter called the Reference) tells
us that: GetMouse(x, y) . . . returns in x and y the horizontal and
vertical coordinates respectively of the . . . cursor connected to the
mouse . . . at the time GetMouse is called. Coordinates are integer
values; each position on the screen is defined by a horizontal co­
ordinate and a vertical coordinate; the origin, i.e. the position with
zero coordinates, is in the top-left corner of the Drawing window; hor­
izontal coordinates increase to the right; vertical ones increase down
(unlike the usual system in Cartesian geometry). The scale is 72 to the
inch in each direction.

GetMouse is a predefined procedure of Macintosh Pascal.
(Procedures can also be defined by the programmer; this facility is
crucially important, and what we have to say now applies also to such
procedures.) In the Reference the parameters x and y are used only to
define the effect of calling GetMouse. As with calls of the required
(by the Standard) procedure Read - yes, it is also a procedure,
though a special one - the two integer variables supplied in the call to
receive the values can have any names whatever. The same variable can
even be supplied twice. So we could change the names x and y in
YouGuess2 and the program would have the same effect. Of course,
this applies also to the names of the other variables.

There is another kind of parameter used with procedures. Its
role is to supply a value to the procedure, rather than, as happens with
GetMouse, to supply a variable to receive a value from the procedure.
The required procedure Write has such parameters.

44 PROGRAMMING USING MACINTOSH PASCAL

3.5 Third program
YouGuess2 is hardly satisfactory even for its modest application. A
respectable number-guessing game should let the user guess until he or
she is successful. The modified program below does this, and also
gives useful information about incorrect guesses.

program YouGuess3 (Input, Output);
{ Picks a number, and repeatedly asks for and reads a guess, }
{indicating whether the guess is too high, too low, or correct}
{ (in which case it stops). }

con st
MaxSecret = 1 O; { the biggest possible secret number }

var
x, y, { (x, y) is the mouse's position }
secret, { the number to be guessed }
guess : integer;

begin { YouGuess3}
{ Define the number to be guessed }

GetMouse(x, y);
secret := (x + y) mod MaxSecret + 1;

{ Repeatedly prompt for, read, and describe }
{ guesses until the guess is correct }

Writeln('l"m thinking of a number between 1 and',
MaxSecret, ' inclusive.');

Write('Please type your first guess: ');
Readln(guess);
while guess<> secret do

begin
If guess > secret then

Writeln('That"s too high.')
else

Writeln('That"s too low.');
Write('Please type your next guess: ');
Readln(guess)

end;
Writeln('That"s correct!')

end. { YouGuess3 }

It is not so easy to guess what this program does, because a new
type of statement is used that employs an English word, viz. 'while', in
a way that differs from normal usage. The while-statement is written:

while condition do
statement

It is executed by repeatedly executing the statement it contains (which

A PREVIEW OF PASCAL 45

is called its body), provided that before each successive repetition (in­
cluding the first), the condition gives true. When the condition gives
false, execution of the while-statement finishes.

It sometimes happens that the action that is to be repeatedly
executed is expressed with several Pascal statements rather than one.
For this reason, the while-statement is often used with a compound
statement, which is a single statement formed by enclosing a sequence
of statements between begin and end:

begin
statements

end

It is executed by simply executing each of the statements in the
sequence in the given order.

Another new feature is the constant definition:

MaxSecret = 1 o

which makes the name MaxSecret stand for the constant 10. Note that
MaxSecret is not a variable - it makes as little sense to try to assign a
value to it as it does to assign a value to 10. The constant-definition­
part appears before the variable-declaration-part. It consists of the re­
served word const followed by one or more constant definitions, each
followed by a semicolon. It is good practice to use n~med constants to
demystify various magic values in -the program.

There is a new example of the Writeln-statement, hinting at the
general form, where a list of expressions separated by commas may
appear between the brackets. The effect is to evaluate and then print
the value of each expression in tum, and then end the line. As with
the Readln-statement,

Writeln(list-ofexpressions)

is equivalent to:

Write(list-of expressions);
Writeln

The first statement does the writing; the second ends the line. We
have already seen that a string is written literally (and now know that
strings, too, are expressions). An integer value is written in familiar
decimal notation using a fixed number of characters. Enough leading
spaces are written to ensure that the last character is the last digit. In
Macintosh Pascal, eight characters are written; provided a fixed-width

46 PROGRAMMING USING MACINTOSH PASCAL

D Te Ht
I 'm thinking of a number bet ween 1 and
Please type your first guess:~
That's too high.
Pl ease type your next guess: .2.
That's too 1 ow. -
Pl ease type your next guess:°}
That's too low.
Pl ease type your next guess: .1
That's correct!

10 inclusive. LA.1
~

font is used in the Text window, the output width for an integer is
constant.

Now we can understand YouGuess3, seeing that it does indeed
do what its first group of comments claims. It starts by defining the
secret number, and writing output as in YouGuess2, except that the
first guess is requested. If it equals the secret, a new line announces
that, and execution finishes. (Since the condition of a while-statement
is checked before each potential execution of its body, the body will
not be executed at all if the condition initially gives false.) If the guess
is incorrect, the compound statement is executed that first announces
whether the guess was high or low, and then prompts for and reads the
next guess. Then that is compared to the secret, and so on until the
correct value is guessed. The input and output for a typical run is
shown in Figure 3. 5.

The ability to describe repetition is one of the most important
attributes of a programming language. The while-statement is the
fundamental form of repetition in Pascal, although there are two other
statements provided for expressing special forms of repetition.

This completes our preview of Pascal. It is important to
appreciate that we have been reading programs, not writing them. You
may now be able to execute a program that is composed of the features
we have seen (although many details remain to be given). But it is a
much bigger intellectual step to writing them. After all, even
computers can do the former! And there are six-line while-statements
whose understanding can tax even the most accomplished of pro­
grammers. We've only just begun ...

3.6 Macaveats
The scheme of interactive 1/0 illustrated in our example programs
works very nicely on the Macintosh, but it need not according to the

Figure 3.5
The Text window after a
typical run of YouGuess3.

A PREVIEW OF PASCAL 47

Standard. Specifically, text output by Write need not be sent to the
output device before the following Read is executed. The details of
interactive 1/0 are given in Chapters 5 and 14. But the news is that
the Standard cops out in this respect, and there is no technique that is
guaranteed to be transportable.

Contrary to this book, the Reference does not state that an in­
teger is written in a field of 8 characters. Instead, it implies (on pp.
9-16 to 9-18) that the minimum number of characters is used, so that,
for example, 0 would be output as just 0. This is contrary to the
Standard and the observed behavior of Macintosh Pascal 2.0. Put it
down to a bug in the Reference.

3.7 Further reading

(1) Anon. (1983). Specification for Computer Programming Language
Pascal. Document ISO 7185: 1983. International Organization
for Standardization.
The international standard. Included for completeness only;
there is little reason for a beginner to consult it.

(2) Anon. (1983). American National Standard Pascal Computer Pro­
gramming Language. ANSl/IEEE770X3.97-1983. New York:
IEEE/Wiley-lnterscience.
The US standard - what this book calls the Standard. Differs
from the ISO document in omitting conformant arrays.

(3) Cooper, D. (1983). STANDARD PASCAL User Reference
Manual. New York: Norton.
Lives up to its self-description as 'a correct, comprehensive, and
comprehensible reference for Pascal.' For the professional Pascal
programmer or the stickler for detail.

:i•iY (4)
3.3

Hueras, J. (1984). Macintosh Pascal Reference Manual. Apple
product #Ml505. USA and Canada: Apple Computer, Inc.
The Reference - one of three manuals that come with Macintosh
Pascal. Presumably intended to be definitive, but there are
cases where the Macintosh Pascal software is at variance with it.
Where the fault is an obvious bug in the software, this book
sides with the Reference. But there are cases where the fault
would appear to be in the Reference. An example is given in
the last paragraph under 'Macaveats'. In such cases, this book
sides with the software.

48 PROGRAMMING USING MACINTOSH PASCAL

EXERCISES
Exercises involving running the programs presented in this chapter are
postponed until Chapter 4.

3.1 The sample programs tell the user that a number has been chosen that
is between I and 10 inclusive. Does the assignment to variable secret
always give such a number? Why?

3.2 What does the assignment statement

number := number + 1

do to the integer variable number?

The next three exercises actually involve writing and modifying Pascal
programs. This may seem a little premature, but you did learn to
speak English by imitation, the exercises are quite modest, and you
have already written your own output statements. So why not give
them a try?

3.3 Modify program YouGuess3 so that after the last (successful) guess it
prints the number of guesses. You'll need a new integer variable which
should be initialized to zero.

Hint: Use the answer to Exercise 3.2.

3.4 Congratulations if you solved the previous question! (If not, don't
worry, the technique you need is covered in Chapter 5.) If you just
printed a bare number, spruce up the last output statement so that it
prints something like:

You guessed 3 times.

3.5 Write Algorithm (a) given in Exercise 1.4 in Pascal.

A PREVIEW OF PASCAL 49

4 ______ _
RUNNING MACINTOSH
PASCAL PROGRAMS
None of the programs in this monograph, needless to say, has been
tested on a machine.
- Edsger W. Dijkstra, A Discipline of Programming

4.1 Introduction
4.2 Running a program
4.3 Controlling execution

4.3.l StOEEing execution
4.3.2 SteEwise execution

4.3.3 Setting stoE marks

4.4 Tracing execution
4.5 The Instant window

Exercises

52
52
52
53
53
53
54
54
55

~·iY
4.2

:11iY

4.1

4.1 Introduction
Like Chapter 2, this chapter is designed to serve as a reference, so do
not be worried if some of the material seems strange on first reading.
The only way to learn how to exploit the features of the Macintosh
Pascal programming environment properly is to experiment with them
on a Macintosh. The exercises invite the reader to do just that. They
are presented in the same order as the text, so that you can tackle them
either after reading the whole chapter, or during the first reading as the
appropriate material is covered.

4.2 Running a program
To run a program, choose Go from the Run menu. If changes have
been made since the last Check or run, the translator is automatically
invoked. If the translator detects no errors, execution begins. An
error (such as an illegal operation) may occur during execution, in
which case execution stops and a message is displayed. Or the pro­
gram may run without error but never stop! If both these hurdles are
passed, there is the further possibility - historically a probability for
most new, non-trivial programs - that the output produced is in­
correct. Then you need all the help you can get.

4.3 Controlling execution
Errors that are revealed by execution (called bugs) are the hardest to
fix. Macintosh Pascal has sophisticated facilities for controlling and
observing the execution of a program, which are very helpful for test­
ing and debugging programs.

52 PROGRAMMING USING MACINTOSH PASCAL

4.3.l STOPPING EXECUTION

Whenever your program is running, the menu bar contains the Pause
menu. Its only available command is Halt. If you press on Pause,
execution is suspended until you release the mouse button. Choosing
Halt stops execution of the program. To resume execution, choose Go
from the Run menu; but if you want execution to start again from
scratch, choose Reset and then Go from the Run menu.

4.3.2 STEPWISE EXECUTION

You can run your program one step at a time by choosing Step from
the Run menu. A hand appears in the left margin of the Program
window. Each time you choose Step, the line pointed to by the hand
is executed, and the hand advances to the next line to be executed.

Choosing Step-Step from the Run menu causes execution to step
continuously until it finishes, an error occurs, or you stop it. You can
watch the hand trace through the program.

4.3.3 SETTING STOP MARKS

Stopping a program by choosing Halt from the Pause menu is a rather
crude way of interrupting execution. A Pascal program executes many
statements a second, and quite often you want a program to run norm­
ally until it reaches some critical statement and then stop precisely
there. Unless you are !l video games virtuoso, your chance of hitting
that statement with Halt is small.

There is a much better way: choose Stops In from the Run
menu. A white bar appears in the left margin of the Program window,
with a small stop sign at the bottom. When you move the cursor into
the bar, it changes into a stop sign. If you click when the stop sign
cursor is before an executable statement, a stop sign is deposited there.
You can deposit as many as you like. When the program is executed,
it stops whenever the hand reaches a line marked with a stop sign
(before executing it).

To restart the program, choose Go from the Run menu; the pro­
gram resumes execution at the line where it stopped, and continues un­
til the next stop mark is reached.

Choosing Go-Go from the Run menu causes the program to stop
at each stop mark only long enough to update the Observe window
(another testing aid, described below). Used in conjunction with a stop
mark inside a loop, Go-Go enables you to observe the values of vari­
ables as they change after each iteration.

To remove a stop mark, point at it and click. To get rid of
all stops, switch off the stop feature by choosing Stops Out from the
Run menu.

RUNNING MACINTOSH PASCAL PROGRAMS

;:~
l!:I
4.3

lllD.\
hi4i§i'

'''''"" ~
:::lY
4.4

:::lY
4.5

:1:lY
4.6 •

Stops In

[d.id.liil

;:~
l!:I
4.7

53

Stops Out .

Obserue

Instant

Figure 4.1
The Observe window.

4.4 Tracing execution
The Observe window allows you to observe the values of expressions
(and therefore variables) as they change during execution. It is an in­
valuable aid to testing and debugging programs, particularly when used
in conjunction with stepwise execution and stop marks .

When you choose Observe from the Windows menu, the
Observe window becomes visible and active. It consists of a number of
rows divided by a vertical line into two parts . In the right parts you
can type (or Paste) expressions , using the Enter-key to skip to each
new part. Whenever the program pauses or halts, the value of each
expression is calculated and displayed to the left of the expression.
Figure 4.1 shows the Observe window in use with program
YouGuess3 from Chapter 3.

The best ways to use the Observe window are with Step-Step,
when the values are updated after each step, or by leaving stop marks
where the values of the expressions are of interest, and either to choose
Go repeatedly to resume execution or to choose Go-Go just once.

A restriction should be noted: expressions that depend on key­
board input (such as eoln) cannot always be evaluated . In such cases
you will get the error message 'Can't use keyboard'.

4.5 The Instant window
Any time that your program is not running, you can use the Instant
window to execute any Pascal statement or statements immediately.
You can even change the value of one or more of your program's vari­
ables before resuming execution.

Choosing Instant from the Windows menu displays the Instant
window and makes it active, as shown in Figure 4.2. You can enter
and edit any Pascal statements there, using the Edit menu to copy and

::·~ paste between the Program, Observe, and Instant windows. Clicking
l!:I the Do It button executes the statements you have entered.
4.8 The Instant window is of limited and dubious use. It is limited

because a call to a procedure that the interpreter has not yet en­
countered, for example, will not be executed. It is dubious because

Obserue
5

Enter an expression

54 PROGRAMMING USING MACINTOSH PASCAL

D Instant

(Do It

there is little it does that cannot be done better with the Observe
window or by editing the program, and because there is much it
permits that is unwise (such as arbitrary assignments).

We shall use it mainly as an aid to learning low-level Pascal.

EXERCISES
The first group of exercises assume that program YouGuess3 from
Chapter 3 is in the Program window, ready for execution.

4.1 Running a program

Run the program. To be able to see its output you have to make the
Text window visible. Whenever input is required the program will
prompt you (with a message in the Text window) to enter input. To do
so, type a number and press the Return-key. What happens?

4.2 Controlling execution

Step through the program, observing the moving hand. Use the key­
board equivalent of Step from the Run menu.
Run the program again, but this time choose Step-Step from the Run
menu instead of stepping manually.
Choose Stops In from the Run menu. Set a stop mark at the line that
reads while guess <> secret do. Run the program by choosing Go
from the Run menu. What is its keyboard equivalent?
What is the effect of the stop mark on execution? How do you restart
the program?
Rerun the program, but this time choose Go-Go from the Run menu.
How does this differ from using Go?
You can combine stop marks and stepwise execution. Choose Step-Step
from the Run menu without removing the stop mark.

4.3 Tracing execution
Activate the Observe window. Type guess in the first line.
Activate the Program window and select any of the occurrences of
secret. Choose Copy from the Edit menu. Now activate the Observe
window and set the insertion point to the second line. Choose Paste

Figure 4.2
The Instant window.

=··IY ..
L

4.9

RUNNING MACINTOSH PASCAL PROGRAMS 55

from the Edit menu to put secret there.
Using Copy and Paste to transfer a single word between the Program
and the Observe window is hardly worth the effort in this case. When
would it be?
Now run the program. What happens to the Observe window? Why?
Choose Step-Step from the Run menu to rerun the program.
Choose Go-Go from the Run menu to rerun the program.
Deactivate the stop feature.

4.4 The Instant window
Activate the Instant window.
Enter Writeln('Cogito Ergo Sum.'). Make sure that the Text window
is visible, then click Do It.
Make the Observe window active (with guess and secret entered),
then run the program. Halt it when it prompts for input. What
happens? Enter secret := 2 in the Instant window (except if 2 appears
to the left of secret in the Observe window, in which case use 3 in­
stead of 2), then Do It. What happens? Resume execution of the pro­
gram.
Use the Instant window to experiment with different output statements
and different types of expressions. What output is produced by a con­
dition?

4.5 Change the value of MaxSecret to 100, then run the program. Note
that it works as it should because every use of MaxSecret was
explicitly identified. By the way, you should be able to guess the secret
in at most 7 guesses!

The remaining exercises do not involve program YouGuess3.

4.6 Use the Instant window to execute different Write- and Writeln­
statements with string expressions only. Observe their effects in the
Text window.

4.7 Execute program YouGuess2 by repeatedly using Step. Use the
Observe window to track the values of the four variables. What
happens if the same input is typed as for YouGuess in Figure 3.2?

4.8 Investigate the coordinate system of the screen by writing a little pro­
gram that just repeatedly gets the mouse position. It need never stop,
so you can use 1 = 1 or just true for the condition of the while­
statement. Use the Observe window to follow the changing values of
the coordinate variables as you move the mouse around. Execute the
program by repeatedly using Step.

56 PROGRAMMING USING MACINTOSH PASCAL

5 ______ _
BASIC PASCAL
Oh! I know their tricks and their manners.
- Charles Dickens, Our Mutual Friend

5.1 Introduction
5.2 S~ecifying slntax
5.3 Tl~es of values

5.3.1 Integer
5.3.2 Real
5.3.3 Char
5.3.4 Boolean

5.4 Ex~ressions

5.5 Constants and variables
5.5.1 Constant definitions
5.5.2 Variable declarations
5.5.3 The assignment statement

5.6 In~ut and output
5.6.1 In~ut

5.6.2 Out~ut

5.6.3 Interactive 1/0
5.7 Conditional statements
5.8 Re~etitive statements
5.9 Programs

5.9.1 High-level syntax
5.9.2 Low-level syntax

5.10 Macaveats
Exercises

58
58
60
61
62
65
67
68
71

71

72
73
75
75
78
81
83
86
90
90
91
93
94

5.1 Introduction
This chapter presents the fine print for the part of Pascal previewed in
Chapter 3. Several new features are introduced: the types real, char,
and Boolean, required functions, the repeat-statement. With the
exception of our method of specifying syntax, which is designed to be
as natural and non-technical as possible, no major new concepts are in­
troduced. The aim is to flesh out a modest sublanguage of Pascal, yet
one that is sufficiently powerful to tackle interesting programming
problems.

Much of the information in this chapter consists of relatively
unimportant nitty-gritty details that are peculiar to Standard Pascal or
Macintosh Pascal (if not outright peculiar). They are here because
sooner, but most likely later, you will want to get the details right, or
perhaps because something unexpected happens that involves some fine
points. Be assured that the challenge in learning to program is not to
memorize massive amounts of low-level knowledge, but rather to learn
how to solve programming problems effectively. The tough get going
in the next chapter.

5.2 Specifying syntax
Learning a new programming language necessarily involves learning its
syntax, or written form. Your implicit working knowledge of the
syntax of English was deduced from the set of examples of English that
you were exposed to, and was perhaps augmented by an informal study
of syntax at school ('a sentence is a subject followed by a verb followed
by an object'). Such approaches will not do for a language that is to be
translated by a computer: a formal method is needed. The Standard
defines Pascal's syntax using a particular formal method called
Extended Backus Naur Formalism, or EBNF for short. (It is briefly
described in Section A.4 of the Appendix). We shall use a method that
is loosely based on EBNF, but that strives closely to reflect the way

58 PROGRAMMING USING MACINTOSH PASCAL

programs are displayed by Macintosh Pascal. It tries to follow the
principle that what you see is what you should get.

The Reference, as well as most texts on Pascal, presents syntax
using graphical devices called syntax diagrams, sometimes called
syntax charts. They were introduced by Wirth for his reports on
Pascal, and have since become de rigueur. Accordingly, syntax diagrams
for Pascal are presented in Section A.3 of the Appendix, after an
explanation of their use in Section A.2.

Our method was broached in Chapter 3. The basic ideas are:

• To represent each important class of syntactic items by a
technical term;

• To describe the typical member of each syntactic class by dis­
playing it as does Macintosh Pascal, using italicized technical
terms to stand for arbitrary members of their corresponding
syntactic classes, and displaying literal text in the Helvetica font.

For example, we use the term 'identifier-list' for the class of comma­
separated lists of legal Pascal names, 'type' for the class of types, and
'variable-declaration' for the class of (you guessed it) variable declara­
tions. The syntactic form of a variable declaration is defined as follows:

variable-declaration: identifier-list : type

It says that a variable-declaration consists of an identifier-list followed
by a colon followed by a type. Note that the colon, in Helvetica,
appears literally. Spaces are not significant.

To express the notion of arbitrarily many, the time-honored
device of three dots is used. When it appears on a line by itself, it re­
presents arbitrarily many (possibly zero) appearances of the previous
line, as in:

variable-declaration-part:
var

variable-declaration ;

This says that a variable-declaration-part starts with the reserved-word
var, which is followed by one or more variable-declarations, each of
which is followed by a semicolon. Moreover, it shows the layout used
by Macintosh Pascal. Incidentally, this definition will be modified
later to show that a variable-declaration-part may be empty.

When three dots occur within a line, the following part of the
line may appear zero or more times, as in:

BASIC PASCAL 59

identifier-list: identifier . . . , identifier

This says that an identifier-list consists of an identifier followed by zero
or more groups, each consisting of a comma followed by an identifier.
Note that, unlike in the other case, the repeated part might not appear
at all.

Syntactic alternatives are separated by a vertical bar (' I ', read
'or'), as in:

input statement: Read-statement I Readln-statement

This says that an input statement is either a Read-statement or a
Readln-statement.

A vertical line on the left indicates that the lines that it spans are
optional. You may regard it as a vertical bar separating an empty alter­
native on its left from another on its right. For example:

statement-list:

I ~~tement;
statement

This says that a statement-list consists of a statement optionally pre­
ceded by one or more lines, each consisting of a statement followed by
a semicolon.

Similarly, an underlined section of a line is optional. For
example:

Readln-statement: Readln (variable-list)

It says that a Readln-statement consists of Readln optionally followed
by a group consisting of a left-bracket followed by a variable-list
followed by a right-bracket.

These techniques are all we need to specify Pascal's syntax. So
now let us look at the language itself, working bottom-up from the
simplest components.

5.3 Types of values
Each variable used in a Pascal program is declared to have a certain
type. It determines the set of possible values of the variable, and
what operations may be performed with it. Standard Pascal has four

60 PROGRAMMING USING MACINTOSH PASCAL

required simple types: integer, real, char, and Boolean. We shall look
at each in turn.

5.3.1 INTEGER

As we saw in Chapter 3, type integer corresponds to the mathematical
integers, i.e. all the whole numbers, whether positive, zero, or nega­
tive. For practical reasons, Pascal's integers are constrained to lie
between minus and plus a machine-dependent limit, which is made
available as a predefined constant:

con st
Maxint = 32767; { integers lie in the range -Maxint..Maxint}

Integer constants are written in familiar decimal notation. An in­
teger constant is called a signed-integer. Its syntax is defined below,
using some extra terms which are needed later.

signed-integer: sign unsigned-integer
sign: + I - -
unsigned-integer: digit-sequence
digit-sequence: digit ... digit
digit: o I 1 I 2 I 3 I 4 I s I 6 I 1 I a I 9

Note that neither a decimal point nor the common convention of using
commas to group digits into thousands is allowed. Here are some
signed-integers:

2001 -65 0 007

Although leading zeros are permitted, it is not normal practice to use
them. The plus sign is normally omitted; -0, +0, and 0 all represent
the number of Beatles' singles that bombed.

Macintosh Pascal also provides a type longint that has a bigger
range of values than integer. See Chapter 19.

Integer expressions are constructed from constants, variables,
operators, and functions. The operators listed in Table 5.1 take two
integer operands and return an integer result. Each of these operators
is written between its two operands (but see below re + and-).

The value returned by div can be defined as the exact real
quotient with its fractional part discarded. Division by zero is an error.
For example:

31 div 7 gives 4, since 3
7
1 = 4.428 57 ...

BASIC PASCAL 61

Table 5.1 Integer
operators. Operator Operation

+ addition (or multiplication by + 1)
subtraction (or multiplication by -1)

* multiplication
div integer division

mod the modulo operation

-21 div 5 gives -4,
-21

since -- = --4.2
5

2 div 9 gives 0, since 2 = 0.222 22 ...
9

The value of x mod y is defined only when y > 0 - it is an
error otherwise. It is the smallest integer ~ 0 that leaves an integral
multiple of y when subtracted from x. It is thus in the range 0 .. y -1.
When x is non-negative, as it usually is in this context, x mod y is the
remainder from x div y. For example:

31 mod 7 gives 3, since 31 - 3 = 28 = 4 x 7
-21 mod 5 gives 4, since -21 - 4 = -25 = -5 x 5

2 mod 9 gives 2, since 2 - 2 = 0 = 0 x 9

Operators + and - can also be placed in front of a single integer
operand to denote multiplication by + 1 or -1 respectively.

The remaining building-blocks for integer expressions are func­
tions, which can either be predefined or defined by the programmer.
A Pascal function returns a single value that depends upon given values
called arguments, i.e. it is just like a mathematical function. There are
two required (and therefore predefined) functions that take and return
integers:

abs(x): the absolute value of x, i.e. x if x ~ 0 or -x if x < 0.
sqr(x): the square of x, i.e. x2 (x x x).

The rules for forming and evaluating expressions are dealt with
in Section 5 .4.

5.3.2 REAL

Type real corresponds to the mathematical real numbers. For practical
reasons, Pascal's real numbers are constrained to lie between two
limits, and also to have a limited number of significant digits. In

62 PROGRAMMING USING MACINTOSH PASCAL

Macintosh Pascal, the range of real values is approximately -3.4 x 1038

to 3.4 x 1038, that is, -R to +R, where R is approximately
340 000 000 000 000 000 000 000 000 000 000 000 000. The smallest posi­
tive non-zero real number is approximately 1.5 x 10-45. The number
of significant decimal digits is between 7 and 8. Unfortunately, none of
these machine-dependent values is captured by a predefined constant.

Real constants may be written in familiar decimal notation,
using a decimal point. But because they can be very large or small,
they may also be written in power notation, i.e. using powers of 10 as
above. Superscripts are avoided by writing En instead of x ion. The
full syntax is specified as follows:

signed-real: sign unsigned-real
unsigned-real: digit-sequence . digit-sequence I

digit-sequence . digit-sequence E scale-factor
scale-factor: sign unsigned-integer

Note that if a decimal point appears it must have at least one digit on
either side. Here are some signed-reals:

2001.0 -6.5E1
1E+9 1.0E+9
1E-6 1.0E-6

0.0 7EO
1 E9 1000000000.0

0.000001

The numbers in the first line are real versions of the integers given
previously, but they are not the same numbers. The numbers in the
second line all represent the same real number: a (US) billion. The
numbers in the third line· all represent one millionth.

Macintosh Pascal also provides types double and extended that
have bigger ranges of more precise real values. See Chapter 19.

The operators listed in Table 5 .2 take two reals and return a real
result. Again, each of these operators is written between its two real
operands; also, + and - may be written in front of a single real oper­
and. Real division is what you would expect:

31 I 7 gives 4.42857 ...
-21 I 5 gives -4.2

2 I 9 gives 0.22222 ...

Real operations rarely produce the exact result, and it is necessary to
be very careful when doing calculations with real values. The topic is
taken up in Chapter 19.

The functions abs and sqr may also be applied to a real argu­
ment, in which case a real value is returned. Several other required
functions are provided that always produce real values:

BASIC PASCAL 63

Table 5.2 Real operators. Operator Operation

+

*
I

addition (or multiplication by + 1)
subtraction (or multiplication by -1)
multiplication
real division

sqrt(x): the non-negative square root of x (x must be ~ 0)
sin(x): the sine of x (x represents radians)
cos(x): the cosine of x (x represents radians)
arctan(x): the principal value, in radians, of the arctangent of x
exp(x): e to the power x
ln(x): the natural logarithm of x (x must be > 0)

Because every integer value has a corresponding real value, in­
tegers may be used in expressions in place of reals. When only integers
are used with +, -, *, abs, or sqr, the result is an integer, as stated
previously. Otherwise, the result is real. Here are some examples:

gives 0.0 1E2 * 0
100.5 + 1
9/5
sqrt(9)

gives 101.S
gives 1.8 (not 1)
gives 3.0

Remember, the results may not be exactly those shown.
Real values do not have corresponding integers, but there are

two required functions that convert real values to integer values,
provided the results are in range:

trunc(x): the integer part of x
round(x): the nearest integer to x, rounding to a greater absolute value

if there is a choice

Thus, for example:

trunc(19.95) gives 19
trunc(-19.95) gives -19
round(19.95) gives 20
round(-19.95) gives -20
round(1.5) gives 2

.round(-1.5) gives -2

They are called transfer functions, because they transfer between two
types.

64 PROGRAMMING USING MACINTOSH PASCAL

5.3.3 CHAR

Although digital computers were originally devoted mainly to numeric
computation, number-crunching is no longer their most important task.
The ubiquity of computers is due to their ability to perform all kinds
of non-numeric computation. The most common form of non-numeric
information is textual, and its basic unit is the character.

The Pascal type char has as its values the characters made avail­
able by a particular implementation. The set of these values, called
the character set, is therefore implementation-dependent. Macintosh
Pascal provides 256 characters, numbered 0 to 255. They are shown in
Table 5.3, which is taken from Appendix E of the Macintosh Pascal
Technical Appendix (see the 'Further reading' list at the end of
Chapter 9). Not all of them are visible; those that are not are called
control characters, because they are used to send control information

0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

0 NUL OLE SP
0 @ p ' p .A e t 00 (., - :~:~1:1 :::rr

1 SCH DCl 1 A Q q A e 0 ± i - ::1:1 tII a
2 STX DC2 II 2 B R b <; i ¢ ~ " rt::: :::rt r ,
3 ETX DC3

,
£) ,/ " /Jt :~:~11: Enter # 3 c s c s E i

4 EQT OC4 $ 4 D T d t :N f § ¥ f ' IJI ft:::
5 ENQ NAK % 5 E u 6 r ' ft::: ·.·.·.·.·.·.· e u • µ N

N

6 ACK SYN
& 6 F v f u fi ~ a /). .

v . :·:·:·:·:·:·: ·:·:·:-:-:-:-

7 BEL ETB
7 G w g a 6 B L: ¢ w « ·.·.·.·.-.·.·

8 BS CAN ® II
..

rr~r ::t:f (8 H x h x a 0 » y
9 HT EM) 9 I y i y a 6 © Jt ~III t?t~ :::::::::::::

10 ~III
·.·.·.·.·.·.·

Lr Sl.8

* J z a 0 TH 1 ?I~f J z L....J :;:::::::::::

1 1 VT ESC
,

::rt: t:t:: II Ii Clear + K [k { a 0 a A
12 - :::tr

·.·.·.·.·.·.·

:::tt FF F'S (L \. 1 I a (I Q A ~ :::::::::::::

13 CR GS - ::::::::::::: ::t:t ~ M] m } <;; u 'f Q 0 ::::::::::::: I?~f
14 so RS) N e u iE re CE IJI ft::: ~f{f 00 n
15 SI

~ / ? 0
DEL e (i 0 :::tt :t:t: 0 0 re

BASIC PASCAL

Table 5.3 The Macintosh
Pascal character set.

65

to various devices. The control characters are those in the first two
columns.

Character constants are written by enclosing them in single
quotes. As we saw previously, the single quote character is written
twice, and enclosed in single quotes like the others, so that four single
quotes represent the single quote character! Pascal does not have a
special syntactic class for character constants, because they are the
character-strings of one character. Their syntax is given by:

character-string: ' string-element-sequence '
string-element-sequence: string-element ... string-element
string-element: string-character I apostrophe-image
string-character: one-of-the-visible-characters-in-Table-5 .3-except-'
apostrophe-image: "

Here are seven different character constants:

'A' 'a' '1' '$' '*' ' '

The latter two are the space (or blank) and the single quote (or
apostrophe).

There are no operators that give character values, but there are
two required functions that do:

succ(c): the character after c in the character set
(it is an error if c is the last character)

pred(c): the character before c in the character set
(it is an error if c is the first character)

The ordering of the characters is captured by two required
transfer functions:

ord(c): the position of c in the character set;
positions start with 0, and, in Macintosh Pascal, go to 255

chr(i): the character in position i in the character set
(it is an error if i is not in the range of positions)

Values returned by ord are called ordinal values. They may be read
off Table 5.3 by multiplying the column number by 16 and adding the
row number.

Here are some examples of the above functions:

succ('A')
pred('7')
ord('a')
chr(98)

gives
gives
gives
gives

'B'
'6'
97
'b'

66 PROGRAMMING USING MACINTOSH PASCAL

None of the above results is guaranteed by the Standard, which re­
quires only that ordinal values increase when proceeding through both
the upper-case (i.e. capital) letters and lower-case letters in alphabetic
order, and that the digits form a contiguous group in numeric order.
Thus, for example, ord('7') - ord('6') must give 1, but ord('c') -
ord('b') need only give a value ~ 1 (although both groups of letters are
contiguous in Macintosh Pascal, and in most other implementations).

5.3.4 BOOLEAN

The type Boolean is named after the nineteenth century English
mathematician George Boole, because he first expounded the properties
of its operators. It is a rare program that does not use Boolean values,
since what were called conditions in Chapter 3 are Boolean expres­
sions.

There are only two Boolean values, written:

false true

The syntax of Boolean constants is subsumed in:

constant-identifier: identifier

The syntax of identifier is given later.
The three operators that take and return only Boolean values are

listed in Table 5.4. They may be defined thus, letting p and q stand
for Boolean values:

notp gives
p and q gives
p or q gives

true if and only if p is false.
true if and only if both p and q are true.
true if and only if at least one of p, q is true.

(We henceforth write 'iff' for 'if and only if'.) It is these technical
definitions that you should keep in mind when you use these operators
- everyday usage of the corresponding English words is less precise.
Some examples:

not true gives false
true and false gives false
true and true gives true
false or true gives true
false or false gives false

The operands of Boolean operators are typically produced by the
relational operators that we met in Chapter 3:

BASIC PASCAL 67

Table 5.4 Boolean
operators.

< >

Operator

<=

not
and
or

>=

Operation

logical negation
logical and
logical inclusive or

<>

When used with numeric values they have their usual mathematical
meanings. They may also be used with character values (and, as we
shall see later, strings). In this case, the result is the same as that
obtained by comparing the ordinal values of the two characters. For
example:

'7' >= 'O' gives true
'a' < 'b' gives true
'a' < 'B' gives false (in Macintosh Pascal)

Boolean values themselves can be compared: false < true gives true.
This is not normally done, but it does allow other logical operators to
be represented: <=, =, and <> correspond respectively to logical
implication, equivalence, and exclusive or. (You need not worry if
those terms are unfamiliar.)

Save for the fact that an integer may be compared with a real,
the two operands of a relational operator must produce values of the
same type. It makes no sense, for example, to compare a character to
an integer.

Three required functions return Boolean values. Two of them,
viz. eoln and eof, test certain input conditions, and are discussed later
in this chapter. The other one is odd (so to speak):

odd(i): true if and only if the integer value i is odd,
i.e. iff i mod 2 = 1.

5.4 Expressions
As stated previously, expressions are constructed from constants, vari­
ables (which stand for their current values), operators, and functions.
One way to specify the legal expressions is as follows:

(1) A constant is an expression. Examples: 1, 1 E2, '!', true, Max­
Secret.

(2) A variable is an expression. Example: guess.

68 PROGRAMMING USING MACINTOSH PASCAL

(3) An operator with arbitrary expressions as operand(s) is an
expression, provided the number, order, and types of the oper­
and(s) satisfy the appropriate requirements, and rules 6 and 7
are met. Examples: x + y, (x + y) mod 10, not odd(i).

(4) A function with arbitrary expressions as argument(s) is an
expression, provided the number, order, and types of the argu­
ment(s) satisfy the appropriate requirements. Examples: sqr(x),
sqrt(sqr(x) + sqr(y)).

(5) Any expression may be bracketed by (and). Example: (x + y).

(6) Two arithmetic operators may never be adjacent, ruling out, for
example, 1 * -3.

(7) An operand of a relational operator may not be a relational
expression, unless it is bracketed. For example, this rules out
x < y < z (even if x, y, and z give Boolean values).

The meaning of an expression would not appear to be proble­
matic, because we know the meaning of all the component parts. But
there are potential ambiguities concerning operators which must be re­
solved. For example, does 3 - 2 - 1 mean (3 - 2) - 1, which gives 0,
or 3 - (2 - 1) , which gives 2? Similarly, what is the implied bracket­
ing in x + y mod 10 + 1?

Such ambiguities in the order of evaluation are resolved by
precedence rules, which come into play when there would otherwise
be a choice:

(I) Operators are applied in order of decreasing precedence. Table
5.5 gives the precedence of each operator.

(II) Operators with equal precedence are performed from left to
right.

We can now answer the questions about our examples. Rule II
implies that 3 - 2 - 1 means (3 - 2) - 1, which gives 0. Regarding

x + y mod 10 + 1

rule I implies y mod 10 is a subexpression, because mod has pre-

Precedence

3
2
I
0

Operator(s)

not + (1 operand) - (1 operand)
* div mod I and
+ or

< > <= >= <>

Table 5.5 Precedence of
operators.

BASIC PASCAL 69

cedence over +. Then rule II gets into the act, implying x and y mod
10 are added. The implicit bracketing is:

((x + (y mod 10)) + 1)

The effect of the rules is not to specify the precise order of
evaluation of the operators and functions, but rather to specify
completely the operand(s) of each operator and the argument(s) of each
function. The distinction is illustrated by the expression:

(a<> 0) and (sqr(b) - 4 * a* c >= 0)

where a, b, and care real variables. The implied bracketing is:

((a <> 0) and ((sqr(b) - ((4 * a) * c)) >= 0))

But there is still plenty of freedom in the evaluation, which can start
with either a <> 0 or sqr(b) or 4 * a. Moreover, the left or right
operand of and might not be evaluated at all, because if one gives
false it is not necessary to evaluate the other. The Standard does not
specify which of two operands of a single operator is evaluated first, or
even that one or the other is evaluated first - they might be evaluated
simultaneously - or not evaluated at all. The same goes for the argu­
ments of a function. All this is hair-splitting rather than hair-raising,
but there is at least one common hairy programming situation that is
affected; see Subsection 11.4.2, 'Truncated safe linear search' for the
bald facts.

The syntax rules for expressions are cleverly designed to imply
their structure without needing the notion of operator precedence. We
give them for completeness, but they need not keep you awake at
night:

expression:
simple-expression relational-operator simple-expression

simple-expression: sign term ... adding-operator term
term: factor ... multiplying-operator factor
factor: variable I unsigned-constant I function-designator

(expression) I not factor
unsigned-constant: unsigned-integer I unsigned-real I

character-string I constant-identifier
relational-operator: = I < I > I <= I >= I <>
adding-operator: + I - I or
multiplying-operator: * I div I mod I I I and
function-designator: function-identifier (actual-parameter-list)
function-identifier: identifier
actual-parameter-list: actual-value ... , actual-value
actual-value: expression

70 PROGRAMMING USING MACINTOSH PASCAL

The writer of programs - as distinct from the reader prepared
for anything - need not be fanatically concerned with the rules for
expressions, since it is not necessary to rely on them when writing
expressions. Stick to the following principles:

• Use extra brackets whenever they make it easier to understand
an expression.

• Avoid very complex expressions by introducing variables for
some of the subexpressions. Macintosh Pascal encourages this by
insisting on placing long expressions on a single line!

• Always bracket relational subexpressions (since you have to).

A final piece of terminology relating to expressions: we say '(the
value of) e is ... ' to mean 'evaluation of e gives the value ... '.

5.5 Constants and variables
Programs manipulate values; some values are fixed, others change.
Simple values of the first kind may be represented by named constants;
values of the second kind are represented by variables.

5.5.1 CONSTANT DEFINITIONS

A constant value used in a program may be given a name by means of
a constant definition. Thereafter, the name may be used in place of the
constant. Constant definitions are gathered in a possibly empty con­
stant definition part. The syntax is as follows:

constant-definition-part:
const

constant-definition ;

constant-definition: identifier = constant
constant: character-string I sign unsigned-number

Es!!. constant-identifier
constant-identifier: identifier

We met an example in Chapter 3:

const
MaxSecret = 1 O; { the biggest possible secret number }

Note that a constant may consist of a sign followed by a constant­
identifier, allowing constructions such as:

BASIC PASCAL 71

Minint = -Maxint; { the minimum integer }

and that a string constant can be given a name, as in:

ChapterHeading = 'Basic Pascal';

The payoff from constant definitions is far greater than their
simplicity might suggest:

• The name is usually more suggestive than the value.
• The value need only be written once, reducing the chance of

error, especially when the value is modified.
• Different uses of the same value can be distinguished, by simply

having two constant definitions with the same value. This allows
one or both of the values to be changed without confusion.

Maxint is the only constant required to be predefined. Addition­
ally, Macintosh Pascal provides:

pi = 3.1415926535897932385; { an approximation to the ratio }
{ of a circle's circumference to its diameter}

as well as a host of other constants related to the Macintosh's operating
system (for which see the Reference and the Technical Appendix).

5.5.2 VARIABLE DECLARATIONS

A variable, as we have seen, may be regarded as a named container of
a value of a certain type. It is introduced by a variable declaration,
which fixes its name and type. Initially its value is undefined, and may
change arbitrarily often during execution of the program.

All variables used in a program must be declared. The variable
declarations are collected in the variable declaration part, whose syntax
is specified as follows:

varlia~~e;declaration-part:

~~riable-declaration ;

variable-declaration: identifier-list : type
identifier-list: identifier . . . , identifier

Here is an example of a variable declaration part, contrived to
involve each of the types we have seen so far:

72 PROGRAMMING USING MACINTOSH PASCAL

var
x, y : integer; { (x, y) is the mouse's position }
declination : real; {angle in radians between line from (x, y) to}

{ origin and line along top of Drawing window }
FirstChar : char; { first character in current input line }
lsCommand: Boolean; {true iff current input line is a command}
NumberOfCommands : integer;

(For other examples, look at any of the programs throughout the
book.)

The following stylistic guidelines are highly recommended,
because they make for programs that are easier to read. They apply
equally to constant definitions:

• Mnemonic names should be chosen, unless there is an estab­
lished naming convention. Witness the names in the above
example, which all suggest the roles of their variables (x and y
are traditionally used for coordinates).

• A clear and concise comment should explain the role of each
variable, unless its role is obvious from its name (as happens
with NumberOfCommands).

• Related variables should be close to each other in the text, as
illustrated by x, y, and declination. (It is not necessary for all
variables of a certain type to appear in the same variable declara­
tion.)

5.5.3 THE ASSIGNMENT STATEMENT

The assignment statement is the fundamental way of changing a vari­
able's value. (The only other important way is by an input statement.)
Its syntax is as follows:

assignment-statement:
variable-identifier := expression

variable-identifier: identifier

An assignment statement is executed by first evaluating the
expression, and then making the result the new value of the variable.
The expression must produce a value that is assignment-compatible
with the variable. This means that the value must belong to the
declared type of the variable, unless that type is real, when the value
may be an integer which will be converted to a real before the assign­
ment.

When the assignment statement is used to initialize a variable,
i.e. to give it its first defined value, the variable should not appear in

BASIC PASCAL 73

the expression, lest the value of the expression be undefined. Here is a
typical initializing assignment:

NumberOfCommands := 0

Once a variable has been initialized, however, it is perfectly natural
and common for it to appear in the expression. The quintessential
example occurs when an integer counter is increased by 1:

NumberOfCommands := NumberOfCommands + 1

Two typical assignment statements involving other types of vari­
ables are shown below:

declination := arctan(y Ix)

lsCommand : = FirstChar = '!'

The mathematics involved in the first does not concern us here; just
note that y I x gives a real value as the argument of the predefined
function arctan, which then gives a real value representing an angle in
radians. In the second example, FirstChar = '!'is a Boolean expression
which gives true if the value of the character variable FirstChar is the
exclamation-mark, and false otherwise. Whatever the outcome, the re­
sult becomes the new value of the Boolean variable lsCommand.

We have now reached a milestone (but we hope not a millstone)
because we are about to tackle our first programming problem.
Solving programming problems is supposed to be the main concern of
this book, so let us leap in.

The problem is to exchange the values of two variables a and b
which have the same unspecified type. We assume that this problem
occurs in a context where both variables have already been given
values. For example, if the value of a is 5 and of b is 7, execution of
our solution should result in b having the value 5 and a the value 7.

Let us examine the following attempt, which might cursorily be
read as: give a the value of band b the value of a.

{ Exchange values of a and b }
a:= b;
b :=a

We can test it by executing it by hand with the initial values as above,
as shown in Figure 5 .1.

Rats! Our mistake was to fail to take into account the con­
sequences of sequential execution of a sequence of statements. An

74 PROGRAMMING USING MACINTOSH PASCAL

a b

initially 0 7

a b

after a:= b 7 8
a b

afterb :=a 8 7

accurate reading of our attempted solution highlights the error: give a
the current value of b then b the current value of a. We want to give b
the origi,nal value of a; the solution is to remember it before it is lost.

{ Exchange values of a and b }
temp:= a;
a:= b;
b :=temp

The new variable temp must be declared to have the same type as a
and b.

5.6 Input and output
Rather than try to second-guess the nature of 1/0 devices used by a
Pascal program, which can vary greatly between implementations (and
between runs on the same computer), the Standard takes an abstract
approach. It decrees that textual input should come from an input
stream, and textual output should form an output stream. Each of
these streams of information has the same structure: it consists of a
sequence of lines, each of which consists of a sequence of characters
terminated by a special end-of-line marker. We represent the marker
by D.

5.6.1 INPUT

The name of the input stream is Input (which is why that name
appears in the heading at the start of a program). Two kinds of input
statement are available; their syntax is as follows:

Figure 5.1
Execution of a : = b;
b := a.

BASIC PASCAL 75

input-statement: Read-statement I Readln-statement
Read-statement: Read (variable-list)
Readln-statement: Readln (variable-list)
variable-list: variable ... , variable
variable: identifier

The effect of Pascal's input statements can most easily be
defined by first breaking them down into sequences of the simplest
versions. Let us write al' a2' etc. for the first, second, etc. arguments
of an input statement. Then:

Readln(a1 , a2 , ...)

is equivalent to:

and

begin
Read(a1 , a2 , •••);

Read In
end

Read(a1 , a2 , •••)

is equivalent to:

begin
Read(a1);

Read(a2);

end

Associated with the input stream is a unique input position. All
characters or markers to its left have been read; those to its right re­
main to be read. The input position begins at the start of the input
stream, and moves steadily to the right as information is read under
control of the program. Once it reaches the end, it can go no farther,
and we say that 'the end of the file has been reached.'

A required Boolean function is available to test for this condi-
tion:

eof: true if and only if the input position is at end-of-file.

Eof is actually a permitted abbreviation of eof(lnput). It is an error to
execute any input statement if the end of file has been reached.

76 PROGRAMMING USING MACINTOSH PASCAL

Another required function indicates whether the end of a line
has been reached:

eoln: true if and only if an end-of-line marker is immediately to the
right of the input position.

It is similarly an abbreviation.
Executing

Read In

simply moves the input position to just past the next end-of-line mark­
er, i.e. to the start of the next line. Eoln will give false afterwards un­
less this line is empty.

Executing

Read(a1)

moves the input posmon to the right and converts the character(s)
and/or marker(s) read to a value which is then assigned to a1• Any
markers that are read are treated as blank characters. The details
depend on the type of a1•

• Integer: Spaces (and markers) are skipped until a character that
can start a signed-integer is read. Starting with it, a maximal
sequence of characters is read that form a signed-integer. It is
an error if a complete signed-integer is not present. Any re­
maining characters are left over for the next input statement.

• Real: as for integer, except that a signed-integer or signed-real is
acceptable.

An example of the effect of executing two input statements is
given in Figure 5.2. The input position is represented by j. Each
space is made explicit by representing it as A. Note that eoln would
give false initially, true after execution of the Read-statement, and
false after the Readln-statement.

• Char: A single character or marker is read; a marker is read as a
space. In the example above, if the statement

Read(ch)

where ch is a character variable, was to be executed after the
first input statement, it would move the input pointer past the
marker and assign a space to ch.

BASIC PASCAL 77

Figure 5.2
Execution of two input
statements.

i r

initially 0 0
. .. Af A17DD- 3.0E+1 DA ...

i r

after Read(Q 0 G
... AA17 tDD-3.0E+1 DA ...

i r

after Readln(r) 0 ~
... AA 17DD-3.0E+ 1 Dt A ...

• Boolean: Standard Pascal does not provide for the input of
Boolean values. Macintosh Pascal does - see Section 5.10,
'Macaveats'. There is, of course, nothing to stop a program
from, say, reading a value into an integer or character variable
and interpreting it as true (e.g. 1, T) or false (e.g. 0, F).

5.6.2 OUTPUT

The name of the output stream is Output (which is why that name
appears in the heading at the start of a program). Two kinds of output
statement are available; their syntax is as follows:

output-statement: Write-statement I Writeln-statement
Write-statement: Write (output-value-list)
Writeln-statement: Writeln (output-value-list)
output-value-list: output-value ... , output-value
output-value: expression

As with input statements, we can break down a complex output
statement into an equivalent sequence of simple ones:

Writeln(a1 , ll:! , ...)

is equivalent to:

begin
Write(a1 , a2 , ..•);

Writeln
end

78 PROGRAMMING USING MACINTOSH PASCAL

and:

Write(a1 , a2 , .••)

is equivalent to:

begin
Write(a1);

Write(a2);

end

Executing

Writeln

appends an end-of-line marker to the end of the output stream. This
will be interpreted by a VDU or a printer as a command to move the
display position to the start of the next line. And, of course, if the out­
put were presented later as the input to another Pascal program, eoln
could be used to detect the marker.

Executing

Write(a1)

appends a character string indicating the value of a1 to the end of the
output stream. The expression must be a string, or have one of the
types integer, real, char, Boolean. The length of the character string
that is output is called its field width. Like the string itself, it depends
on the type of a1•

• Integer: A minimal length signed-integer is written, preceded by
spaces if necessary to make up the field width. The field width
is implementation-dependent; in Macintosh Pascal it is 8.

• Real: A signed-real in power notation is written, preceded by
spaces if necessary. The details are implementation-dependent.
In Macintosh Pascal, the field width is 10, and the number is
written in the form sd. descccc, where the first s is either a space
or minus, the second is plus or minus, each d is a decimal digit,
the first d is not 0 unless the value is 0.0, and the four cs
comprise a minimal decimal numeral followed by spaces if
necessary (but see Section 5.10 'Macaveats').

• Char: The single character value is written (the field width is 1).
For a string, as many characters as are in the string are written.

BASIC PASCAL 79

Table 5.6 Output
statements with default
representations.

Output statement

Write(10)
Write(-Maxint)
Write(O.O)
Write(-pi)
Write(98.6)
Write(7E-11)
Write(' A')
Write(' ')
Write(chr(38))
Write('That"s All Folks.')

Appended to output stream

AAAAAA10
I\ A-32767
/\O.Oe+OAA/\
-3.le+OAA/\
A9.9e+lA/\/\
A 7. Oe-llA A
A
I\

&

That'sAAllAFolks.

• Boolean: If the value is true, the string 'True' is written (the
field width is 4); otherwise, 'False' is written (the field width is
5).

Table 5.6 shows some Macintosh Pascal output statements with
their effects. You can try others by using the Instant window. Note
that the last significant digit of the string for a real value is rounded -
the value displayed is only an approximation.

Pascal gives the programmer more control over the output for a
value by allowing its field width to be specified. A field width must be
greater than zero. Except in the case of reals, if it is greater than the
length of the string representing the value, spaces are added on the
left; for reals in power notation, the number of digits after the decimal
point increases to make up the difference. If it is smaller, a field width
is used that exactly accommodates the representation, unless the value

1 is a string, in which case as many characters as specified are taken
from the left. Additionally, for real values, further information in the
form of a fraction length may be given. If present, the fraction length
forces normal decimal notation with the fraction having the specified
number of digits. A fraction length must be greater than zero.

The modified syntax for output values is:

output-value: expression : field-width : fraction-length
field-width: integer-expression
fraction-length: integer-expression

Table 5.7 gives some examples. Note that a real value in power
notation always has either a space or a minus for its sign (see the
second 98.6 example). Two useful tricks emerge:

• To write n ;;::i: 1 spaces, use:

80 PROGRAMMING USING MACINTOSH PASCAL

Output statement

Write(10 : 8)
Write(1 O : 1)
Write(-Maxint : 1)
Write(pi : 15)
Write(pi : 1 O : 7)
Write(pi : 1 : 7)
Write(-pi : 1 : 7)
Write(98.6 : 4 : 1)
Write(98.6 : 1)
Write('A' : 2)
Write(' ' : 6)
Write('That"s All Folks.' : 10)

Write(' ' : n)

Appended to output stream

1\1\1\l\l\l\lO

10
-32767
1\3 .141593e+0AAA
1\3.1415927
3.1415927
-3.1415927
98.6
A9. 9e+lA A A
AA
I\ I\ I\ I\ I\ I\

That' sl\All

• To include an integer x in text, with just a single space either
side, use

Write(' . .. ', x : 1, ' .. . ')

See Exercise 5 .15 if x is real. Also,

• It is a good idea to specify field widths explicitly (and fraction
lengths if appropriate); output becomes more readable and
attractive, and programs are less implementation-dependent.

The official syntax for 1/0 statements treats them as special
procedure-statements.

5.6.3 INTERACTIVE 1/0

The preceding abstract description of textual 1/0 in terms of separate
input and output streams is all very well, coming as it does from the
Standard horse's mouth. But the reader cannot fail to have noticed that
it does not immediately jibe with our knowledge of Macintosh Pascal
1/0 that we gained by running the programs in Chapter 3, for the
usual form of 1/0 in Macintosh Pascal is interactive. Input is typed on
the keyboard in response to output from the program, and input and
output text are intermixed in the Text window.

Fortunately, things are not as different as they seem. In fact,
Macintosh Pascal's 1/0 does conform to the Standard's stream-based
model. This is what happens. The input stream is associated with the

Table 5.7 Output
statements with controlled
representations.

BASIC PASCAL 81

keyboard, and the output stream with the Text window on the
Macintosh's screen. The keyboard and the screen are separate devices.
The main complication is that input is displayed as it is read.

Consider execution of program YouGuess3 from Chapter 3.
The first Writeln-statement appends this to the output stream:

I'mAthinkingAOfAaAnumberAbetweenAlAand
AAAAAA10Ainclusive.O

Figure 3.5 shows how it is displayed. The cursor goes to the start of
the next line. The Write-statement that follows appends this to the out­
put stream:

This time the cursor is positioned after the last character, a space,
because no end-of-line marker was sent - see Figure 3.5 again. The
next statement to be executed is:

Readln(guess)

It first expects to read a signed-integer, and then to skip past the next
end-of-line marker. Since Input is associated with the keyboard, the
Macintosh waits for you to create the input stream. You are permitted
to type acceptable characters only - illegal ones cause a beep but are
otherwise ignored. So first you may hit the space-bar and even the
Return-key (which creates a marker) as often as you like, although
there is no reason to do so in this context. Then you must type char­
acters that form a signed-integer. As soon as you type a character that
is not part of a signed-integer, the implicit statement:

Read(guess)

finishes executing and assigns the appropriate value to guess.
Furthermore, the characters or markers that were read are displayed.
(The effect is as if they were permanently appended to the output
stream.) Up until this point you could remove them (back to a mark­
er) by hitting the Backspace-key.

The other character or characters that you typed remain on the
right of the input pointer for the next input statement, if any. In this
case there is an implicit Readln-statement. If you have already hit the
Return-key, it reads up to and over the marker created, whereafter
execution of the program resumes. If you have not hit the Return-key,
the Macintosh waits until you do, then reads over the marker. Since

82 PROGRAMMING USING MACINTOSH PASCAL

what is read is displayed, execution of the complete Readln-statement
ends the second line.

This style of interactive 110, where a Write-statement produces a
prompt and a following Readln-statement reads the input and ends the
line, works well. But suppose instead you wanted the prompt, the in­
put, and the output in response to the input, to be on the same line. In
the context of YouGuess3, this would mean producing a second line
like:

Please type your first guess: 5 -- That's wrong.

You might expect to be able to do this by replacing both Readln­
statements with a Read-statement, and inserting the characters ' -- ' at
the front of the strings written in response. Try it. Depending on what
you type as input, you will notice the problem, which is this. You
must eventually type a character that is not part of a signed-integer,
and that therefore is held over for the next input statement. In this
case, if another input statement is executed, it expects an integer. So if
you typed a comma, say, all you will get is a beep. That is not too bad.
But if you typed, say, the Return-key, it will be read by the next
Readln-statement, and therefore force a new line in the Text window,
messing up your nice display.

In general, the effect of the extra character is to foul up the
works.

Moral Use a Readln-statement to read prompted input, as in pro­
gram YouGuess3.

There are some other traps for young players in interactive 1/0.
The main one is that evaluation of eoln or eof may require input
information to be entered, even though it will not be read at that
point. (You signal end-of-file by hitting the Enter-key.) But you should
not become paranoid about interactive 110: this information is
supplied for reference only. As long as you stick to the schemes pre­
sented in this book, you can program in blissful ignorance of the fine
points.

5. 7 Conditional statements
Conditional actions are represented in Pascal by the if-statement,
which comes in two forms:

BASIC PASCAL 83

if-statement:
if Boolean-expression then

statement

I else
statement

Boolean-expression: expression

As we saw in Chapter 3, an if-statement is executed by evalua­
ting the Boolean expression first. If it gives true, only the first
component statement (the one following then) is executed; otherwise,
the Boolean expression gives false, and only the second component
statement (the one following else) is executed - provided it is present
of course: if not, nothing is done. For examples of the full form,
called an if-then-else statement, see programs YouGuess2 and
YouGuess3 in Chapter 3. An example of the short form, called an
if-then statement, will be given shortly.

The statement(s) occurring in the if-statement may, as usual, be
any Pascal statement(s) whatsoever. It often happens that one or both
of them should consist of a group of statements. In such cases, the
compound statement is used.

compound-statement:
begin

statement-list
end

statement-list:

I ~~~tement ;
statement

Below is an example of an if-then statement with a compound
component statement:

{ Arrange the values of a and b so that a < = b }
lfa>bthen

begin { Exchange values of a and b }
temp:= a;
a:= b;
b :=temp

end

There is a glitch in the syntax of Pascal concerning nested if­
statements, i.e. if-statements containing other if-statements as
components. Consider a statement of the form:

84 PROGRAMMING USING MACINTOSH PASCAL

if p then If q then SI else s2

where p, q represent Boolean expressions, and SI' S2 represent state­
ments. It has been set out on one line (which is legal) to illustrate the
problem. It is ambiguous, i.e. there are two possible interpretations.
One is:

if p then
if q then

SI
else

s2

In this case, the else belongs to the second if, S 1 is executed iff p gives
true and q gives true, and S2 is executed iff p gives true and q gives
false.

The other possible interpretation is:

if p then
if q then

SI

In this case, the else belongs to the first if, S 1 is executed iff p gives
true and q gives true, which is as before, but S2 is executed iff p gives
false, which is different.

Will the real if-statement please stand up? Drum roll. It's the
first one! As you would discover by the way it is laid out by Macintosh
Pascal. If you do want the second form, put the inner if-then statement
in a compound statement.

A common error with the if-then-else statement is to put a semi­
colon after the first component statement, as in:

ifx>ythen
maximum := x; {XXXX ERROR XXXX}

else
maximum := y;

Entering this provokes Macintosh Pascal to display the else in outlined
characters, signaling that it may not appear in this context. The reason
is that the semicolon after x is interpreted as separating an if-then state­
ment from the next statement, which cannot start with else.

BASIC PASCAL 85

A common programming problem is to have a sequence Pp pZ'
... , p of conditions, a sequence S 1' SZ' ... , Sn of corresponding
statem~nts, and to have to find the first true condition and then execute
its corresponding statement. The statement to use is:

If p1 then
s1

else if p2 then
s2

else If p n then
s.

Notice that Macintosh Pascal does not indent when an if-statement
follows an else: the elses do not march off to the right, despite the
format of the if-statement in its syntactic definition.

A special case of the aforementioned situation occurs sufficiently
often for Pascal to provide a special form of conditional statement
called the case-statement. You can read about it in Chapter 10.

5.8 Repetitive statements
The fundamental form of repetition is indefinite repetition. It is
sometimes called condition-controlled repetition, because the duration
of the repetition is controlled by a condition that is repeatedly
evaluated. Pascal caters for indefinite repetition with the while­
statement:

while-statement:
while Boolean-expression do

statement

To execute a while-statement, simply follow the directions m
step (1) below:

(1) Evaluate the Boolean expression. If it gives true, do step (2);
otherwise, i.e. if it gives false, stop execution of the while­
statement.

(2) Execute the statement (which is called the body of the while­
statement). Then do step (1) again.

Here is a simple example involving integer variables x and
Power0f2:

86 PROGRAMMING USING MACINTOSH PASCAL

{Output the least non-negative power of 2 that is>= x }
Power0f2 := 1 ;
while Power0f2 < x do

Power0f2 := 2 * Power0f2;
Writeln (The least non-negative power of 2 not less than ',

x : 1, • is ', Power0f2 : 1)

The non-negative powers of 2 are 2° = 1, 21 = 2, 22 = 4, 23 = 8, etc.
Power0f2 takes on these values in increasing order, until Power0f2 <
x gives false, implying Power0f2 >= x gives true.

To trace the execution of our example, first embed it in a
complete program:

program WhileTest (Input, Output);
{ Executes a while-statement; run using Step-Step, }
{and x and Power0f2 in the Observe window.}
var

x, { an arbitrary integer from Input }
Power0f2 : integer; { a non-negative power of 2 }

begin { WhileTest }
Write('Pick an integer, any integer: ');
Readln(x);

{ Output the least non-negative power of 2 that is > = x }

end. { WhileTest }

Now run WhileTest as its comment specifies. Follow the hand as it
moves to indicate the next statement to be executed, and observe the
changing value of Power0f2. Try several different integers as input.

The while-statement is frequently used with a compound state­
ment as its body, allowing a group of statements to be repeatedly
executed. Here is one such instance:

{ Print all the squares between 1 and limit inclusive }
Writeln('The squares between 1 and ', limit : 1, • inclusive:');
n := 1;
while sqr(n) <= limit do

begin
Writeln (sqr(n) : 11);
n := n + 1

end;
Writeln(' = = = == = = = == =')

If limit (which may be a variable or a constant) has the value 100, the
output shown in Figure 5.3 will be produced.

BASIC PASCAL 87

Figure 5.3
Output produced by the
loop that prints squares .

Te Ht
The squares between 1 and 100 inclusive:

1
4
9

16
25
36
49
64
81

100

Some miscellaneous notes on the while-statement:

• The Boolean-expression is called the condition of the loop.
When we say the condition is true (false), we mean that evaluation
of the Boolean-expression gives true (false).

• The statement is called a loop because the flow of execution
loops around and around the condition and body.

• The body of the loop will not be executed at all if the condition
is initially false.

• The condition is tested before each potential repetition of the
body, not during execution of the body: if the body is executed,
it is completely executed.

• The body of a while-loop must contain some statement that can
affect the value of its condition, such as an assignment or input
statement. Otherwise , execution of the loop either does nothing
(if the condition is initially false) or runs until the cows come
home, and then some (if the condition is initially true).

There are occasions when the statement to be repeated must be
executed at least once. The while-sratement can handle such situations
readily - it is only necessary to ensure that the condition is true initi­
ally (see Exercise 5.26). Sometimes this can be a little awkward, so
Pascal provides another form of loop called the repeat-statement:

repeat-statement:
repeat

statement-list
until Boolean-expression

88 PROGRAMMING USING MACINTOSH PASCAL

Note that advantage is taken of the fact that repeat and until surround
the body of the loop (like brackets) by allowing the body to be a
statement-list.

To execute a repeat-loop, simply follow the directions shown in
step (1):

(1) Execute the the body of the repeat-statement, i.e. the statement­
list. Then do step (2).

(2) Evaluate the Boolean expression. If it is false, do step (1) again;
otherwise, i.e. if it is true, stop execution of the repeat­
statement.

Here is an example where a repeat-statement is marginally more
suitable than a while-statement:

{ Read the next non-blank input character into ch }
repeat

Read(ch)
until ch <> ' '

And here is an example with more than one statement in the
body (all variables have type integer):

{ Set NrDigits = number of decimal digits in numeral of n }
NrDigits := O;
RestOfn := n;
repeat

NrDigits := NrDigits + 1;
RestOfn : = RestOfn div 1 O

until RestOfn = 0

Note that zero's numeral has one decimal digit, viz. 0. If you have
trouble understanding the above, pick a value of n and follow the
changing values of RestOfn and NrDigits.

A common special case of repetition is when a statement needs
to be executed for each value between two limits which are known in
advance. Pascal provides the for-statement for such occasions,
although they can easily be handled by while-statements. While­
statements capture the fundamental form of repetition, and it is
essential that they be mastered. Since the for-statement tends to distract
from their mastery, its introduction is delayed until Chapter 6, and
its precise description delayed until Chapter 10, where it belongs
naturally.

BASIC PASCAL 89

5. 9 Programs
We need to describe both the high- and low-level syntactic structure of
Pascal programs.

5.9.l HIGH-LEVEL SYNTAX

The high-level syntax of programs is straightforward:

program:
program-heading
program-block .

program-heading:
program program-identifier (identifier-list) ;

program-identifier: identifier
program-block: block
block:

constant-definition-part
variable-declaration-part
statement-part

statement-part:
compound-statement

Examples, naturally, occur throughout the book. The identifier list in
the program heading names the external files used by the program.
They will usually be Input and Output. Executing a program involves:

(1) Taking note of any constant definitions;
(2) Creating all declared variables and giving them undefined

values;
(3) Executing the statement-part.

Now is a good time to recall the various kinds of statements we
have met so far:

statement: simple-statement I structured-statement
simple-statement: emp(Jl-statement I assignment-statement

input-statement I output-statement
structured-statement: compound-statement I if-statement I

while-statement I repeat-statement

A new statement sneaked in there; it is the simplest statement imagin­
able:

empty-statement:

90 PROGRAMMING USING MACINTOSH PASCAL

That's right! The empty statement consists of precisely nothing. One
of the consequences of having it is that you can sometimes get away
with extra semicolons, as in:

begin
Writeln(sqr(n) : 11);
n := n + 1;

end

where the semicolon after the assignment to n separates it from the
next statement, which is the empty-statement. But do not think you
can let the semicolons take care of themselves. Consider this:

while Power0f2 < x do; {XXXX ERROR XXXX}
Power0f2 := 2 * Power0f2;

It is also legal, but the way Macintosh Pascal displays it reveals that
something is amiss: the first line is a while-statement with an empty
body, which is separated from the next statement (the assignment to
Power0f2) by a semicolon. The offender is the semicolon after do, but
the empty-statement is its accomplice.

A program can have other parts which we will meet in due
course.

5.9.2 LOW-LEVEL SYNTAX

A Pascal program can be regarded as a sequence of symbols, called
tokens, in the same way that an English paragraph can be regarded as
a sequence of words and punctuation marks. Figure 5.4 shows program
WhileTest above, when viewed at this low level. There is only one
sequence of tokens - it is broken up into lines solely out of typo­
graphic necessity. Note that comments are treated just like spaces,
tabs, and ends-of-lines: their only function as far as the translator is
concerned is to act as token separators (so to speak). Their syntax is
informally given by:

comment:
{ any-characters-other-than-} }

You may not have *) inside a comment, because it is treated as } (as
required by the Standard).

We may note five kinds of tokens in Figure 5.4:

BASIC PASCAL 91

Figure 5.4
A program considered as a
sequence of tokens.

(1)

(2)

(3)

(4)

(5)

lprogramliWhileTestl[Jlinputl[JIOutputl[i)IJ~[~][J
1PowerOf21[J~IJ~[Writel[J
l'Pick an integer, any integer :'l!IllJ[Readln llIJ~[il!J
IPowerOf21GIIUJ[whilel[Power0f21@0~""'1Po=w'--erO~f~2IEJ
~EJ[PowerOf2IQIWritelnllIJ
I' The least non-negative power of 2 not less than'IQ0[][]Q

~QIPower0f2l[][][i]lend l[J

special-symbols, such as Kl and G ;
word-symbols, such as~ and ~ ;
identifiers, such as [Write I and [Power0f2 I ;

numbers, such as [] and lg) ;
character-strings, such as l~.P-ic-k-an-in-teg-er-. a-n-y-in-te-ge-r~:'I and ~.

Word symbols are classified as special symbols. The syntactic
details for Standard Pascal are as follows:

letter: a I b I c I d I e I t I g I h I I j I k I
llmlnlolplql rlsltlulvl

w I x I y I z I A I 8 I c I D I E I F I G
Hll IJIKI LIMINIOIPIOI
RISITIUIVIWIXIYIZ

digit: o I 1 I 2 I 3 I 4 I s I s I 1 I a I 9
special-symbol: + I - I * I I I = I <> I < I > I

<= I >= I (I > I l I 1 I := I . I
' I : I ; I .. I t I word-symbol

word-symbol: div I mod I nil I in I or I and I not
if I then I else I case I of I repeat I
until I while I do I for I to I do I begin
end I with I goto I const I var I type I
array I repeat I set I flle I function I
program I label I packed I procedure

identifier: letter ... letter-or-digit
letter-or-digit: letter I digit

Square and curly brackets have alternative forms; see the Refer­
ence if you are interested. The word symbols are sometimes called re­
served words, because they may not be used as identifiers. Macintosh
Pascal displays them in bold face as shown. Character strings and
numbers (signed integers and signed reals) have been dealt with pre­
viously.

Examples of identifiers:

Power0f2 powerof2 x Route66 R2D2
AWoplopALooBopAWopBamBoom

92 PROGRAMMING USING MACINTOSH PASCAL

The case of letters in identifiers is not significant, so the first two
examples are regarded as the same. But you should give the reader a
break and use exactly the same written form in each instance of an
identifier. Every letter or digit in an identifier is supposed to be
significant, but most implementations only go so far. In Macintosh
Pascal, identifiers can have at most 255 characters, which is plenty.

Pascal requires tokens to be separated only when there would
otherwise be confusion. The only requirement is that there be at least
one token separator between two successive tokens, if each of them is
an identifier or word-symbol or unsigned number. Note that a token
separator cannot appear within a token; consequently, a character
string must appear within a single line, and neither < > nor : =, for
instance, is a token.

5.10 Macaveats
There are a number of minor ways in which Macintosh Pascal extends
or deviates from the Standard:

• Boolean values can be read. Either false or true must
appear, possibly preceded by blanks and end-of-line markers.
The case of the letters is not significant.

• Output of real values in power notation is non-Standard. The
Standard, and the Reference (!), specify that the exponent must
consist of a sign and a fixed number of digits (4), and not be
followed by any spaces.

• Although Macintosh Pascal 2.0 correctly outputs Boolean values
as strings, the Reference implies that the complete identifier is
always written, which violates the Standard.

•

•
•

Hexadecimal numbers are permitted. They start with $ and use
A, B, C, D, E, F for the extra base-16 digits. (It does not
matter if you do not know what this means.)
@ has a special meaning. It is not an alternative to ", like j is,
although the Standard requires it to be.
There are three extra reserved words: otherwise, string, and
uses.

• The underscore L) may be used in identifiers after the initial
letter.

• Comments must be at the end of a line or on a separate line; a
comment may not span more than I line.

===~
l!:I
5.1

BASIC PASCAL 93

EXERCISES

5.1 Consider the following syntactic definitions, with identifier defined as
in Standard Pascal:

original: Rocky Horror Picture Show I
Godzilla versus identifier . . . identifier

movie: Son-of-sequence original I original numeral
Son-of-sequence: Son of ... Son of
numeral: 11 I Ill I IV I V I VI I VII I VIII

IX I x
movie-marathon:

I ~~ie.
movie

(a) Which of the following is a movie?

(i) Rocky
(ii) Son of Son of Son of Godzilla versus The Three Stooges

(iii) Rocky versus Rambo
(iv) Rocky Horror Picture Show VIII

(v) Son of Rocky Horror Picture Show VIII

(vi) R2D2 versus Son of Son of Godzilla
(vii) Godzilla versus Son of Spartacus IV

(b) Give the shortest movie marathon.

(c) Give a movie marathon that demonstrates your complete mastery
of these syntax rules.

(d) Can the same movie appear twice in a movie marathon?

5.2 Give the value of each of the following expressions.

(a) 17 div (-7)
(c) abs(-Maxint)

(b) 13 mod 13
(d) sqr(-3)

5.3 Suppose c = 20, d = 51 and e = 5. Give the value of:

(a) d mod c (b) d div c
(c) (e - d mod c) mod c (d) e + (d - e) mod c

94 PROGRAMMING USING MACINTOSH PASCAL

5.4 Suppose cigars come 20 to a box, and that a certain well-stocked cigar
emporium only opens a box to get loose cigars. A customer asks for
NrWanted cigars. Suppose Nrloose is the number of loose cigars
(between 0 and 19 inclusive). Write a sequence of statements that:

• Sets NrSingles to the number of loose cigars given to the customer;
• Sets NrBoxes to the number of boxes given to the customer; and
• updates the value of Nrloose; if:

(a) the attendant satisfies the order by first getting as many whole
boxes as possible, then loose cigars if necessary;

(b) the attendant first gets as many of the loose cigars as possible,
then as many whole boxes as possible, and then more loose
cigars from a new box if necessary.

5.5 Give the value of each of the following expressions:

(a) 2.0 / 2E3
(c) 1 I 3
(e) round(S I 9)

(b) 1.0 I 3.0
(d) sqrt(sqr(S) - sqr (3))
(f) trunc(1.9EO * 1E-1) - 1.0

5.6 Give the value of each of the following expressions in Macintosh Pascal.

(a) succ('P') (b) pred('P')
(c) pred(succ('x')) (d) chr(ord('A') + 26-1)

Which expressions' values are guaranteed by the Standard?

5.7 Suppose a, b, and care real variables with current values 1.0, 8.0, and
15.0 respectively. Give the value of:

-b + sqrt(sqr(b) - 4 * a * c) I (2 * a)

5.8 Suppose the cost of sending a letter first class is 22¢ for the first ounce
and 17 ¢ for each additional ounce or part thereof.

(a) Write a constant definition part so that increased mail costs can be
easily handled.

(b) Using the answer to (a), write a statement-sequence that assigns to
integer variable cost the cost of sending a letter first class, given
that its weight in ounces is the value of real variable weight.

Hint: Use function trunc.

BASIC PASCAL 95

5.9 What is the value of the expression:

(a <> 0) and (sqr(b) - 4 * a * c >= 0)

(a) if a = 0.0, b = 10.0, c = 10.0?
(b) if a = 1.0, b = -5.0, c = 6.0?

5.10 Suppose x and y are integer variables. Give a Boolean expression that
gives true iff:

(a) xis between -y and +y inclusive.
(b) xis between 0 and 5 inclusive.
(c) xis not between 0 and 5 inclusive.
(d) x and y are not both negative.

5.11 Modify the answers to Exercises 5.4(a),(b) so that they additionally set
Boolean variable NewBoxOpened to true iff a new box is opened.

5.12 Repl~ce the statement:

if odd(n) then
lsEven :=false

else
lsEven :=true

with a simpler equivalent one.

5.13 Suppose variables i, r, c, and p have types integer, real, char, and
Boolean respectively. Give each of their values after execution of:

i := 9; r := i div 2; c := 'i'; p := c < 'r'

5.14 Given the variables of the previous question, suppose that the input
stream is currently in the state:

••• Af A 2 l 5-1E20-l 505 A •••

Give the values of each of the variables, and the new input position,
after execution of each of the following. Use the same initial state of the
input stream, as shown above, for each part.

(a) Read(i, r, c)
(b) Readln(i, r); Readln(c)
(c) Read(i, c, r)

96 PROGRAMMING USING MACINTOSH PASCAL

(d) Read(r, i, c)
(e) Readln(i); Readln (r); Readln (c)

5.15 Suppose real variable LightSpeed contains an experimentally
determined value for the speed of light, in miles per second, accurate
to two decimal places. Give a statement that writes the value in decimal
form, preceded by:

The speed of light is approximately

and followed by:
miles per second.

and an end-of-line marker.

5.16 Show exactly what is appended to the output stream by execution of:

Writeln('l"m thinking of a number between 1 and',
MaxSecret, ' inclusive.')

5.17 Modify the statement in the previous question so that the value of Max­
Secret has only one blank either side of it.

5.18 Given that integer variable cost contains the cost of an item in cents,
give an output statement that writes the cost in dollars. For example,
if cost= 1795, the output should be $17. 95.

5.19 Change the scheme of interactive 1/0 in YouGuess3 as suggested in
subsection 'Interactive 1/0', and run it to observe the described
behavior.

5.20 What is the implication of the expression 'until the cows come home'
used in our discussion of the while-statement?

5.21 What integers cause program WhileTest to fail?

5.22 How should the implementation of the action:

Output the least non-negative pawer of 2 that is ~ x

in the text be modified if ~ is changed to >?

5.23 What happens when the implementation of the action:

Print all the squares between 1 and limit inclusive

in the text is executed if limit = O?

BASIC PASCAL 97

5.24 The body of a while-statement cannot be a statement-list rather than a
single statement? Why?

5.25 Show that a while-statement can be used to implement the action:
Read the next non-blank input character into ch

instead of a repeat-loop as used in the text.

5.26 A typical repeat-statement has the form:
repeat

SI;

Sn
until p

Show that it can be replaced by an equivalent statement that does not
involve a repeat-statement.

5.27 Suppose you are prepared to have the same prompt for each guess in
program YouGuess3 in Chapter 3. (The first prompt in the given ver­
sion is special.) Will the program behave properly if the while­
statement and the two statements preceding it are replaced by the
repeat-statement below?

repeat
Write('Please type your guess:');
Readln(guess);
if guess > secret then

Writeln('That"s too high.')
else

Writeln('That"s too low.')
until guess = secret

5.28 Which of the following are not legal Standard Pascal identifiers, and
why not?

(a) TheCount
(c) time-limit
(e) E235
(g) 'Dracula'

(b) The Count
(d) H20
(f) S.A.L.T.
(h) DownTo

5.29 When you choose What to find ... from the Search menu, you should
normally ensure that the Case Is Irrelevant bunon is on. Why?

5.30 Give a shortest Pascal program.

98 PROGRAMMING USING MACINTOSH PASCAL

& _____ _
SOLVING PROGRAMMING
PROBLEMS
Each problem that I solved became a rule which served afterwards to
solve other problems.
- Rene Descartes, Discours de la Mithode

6.1 Introduction 100
6.2 Ste~wise refinement 101

6.3 Using repetition 103

6.4 Deriving loo~ conditions 107

6.5 Program schemas 109

6.6 Case-stud! 1: Scheduling 113

6.6.1 Setting of the Eroblem 113

6.6.2 SEecifications 114

6.6.3 Writing the Erogram 115

6.6.4 The comElete Erogram 118
6.7 Some other schemas 121

6.8 Case-stud! 2: The character-set table 123

6.8.1 SEecifications 123
6.8.2 Writing the Erogram 124

6.8.3 The com2lete Erogram 125

6.9 Choosing the form of iteration 125
6.10 Testing, testing 127

6.10.1 The role of testing 127
6.10.2 What and when to test 127
6.10.3 Desk-checking 128

6.10.4 Testing by execution 130
6.10.5 CoEing with errors detected by testing 130
6.10.6 Defensive Erogramming 132

6.10.7 Final words on testing 133
6.11 Macaveats 133

Exercises 135

6.1 Introduction
Programming is a creative act. It is not possible to specify in detail
how to solve an arbitrary programming problem. To do so would
amount to presenting an algorithm for writing algorithms, the existence
of which would remove the need for programmers (and human in­
tellectual workers of all kinds).

Programming is, however, a very special kind of creative act,
because both the finished product and the tools with which to create it
are rigidly specified. (We have nothing to say about writing programs
in the absence of specifications: programs, that, for example, produce
amusing graphics effects on the Macintosh. It may be fun, but it won't
get you into the Programmers' Club.) Because of the enormous dis­
parity in scale between our tools, which for us are the statements of
Pascal, and the programs to be created, which can amount to literally
millions of lines, a particular approach to programming has come to be
seen as crucially important. It is called stepwise refinement, and we
examine it in the next section.

Before we do, it is important to recall our goal, which should be
kept firmly in mind throughout this chapter.

Goal To learn how to write correct and clear programs as easily as
possible.

• Correct: Our programs must do precisely what they are
supposed to do, always.

• Clear: Our programs must be as intelligible as possible, to all
potential readers. Cleverness should be an ally of clarity, not an
enemy.

• Easily: We must be able to solve a programming problem
efficiently, with an amount of effort that is not out of proportion
to its difficulty.

100 PROGRAMMING USING MACINTOSH PASCAL

6.2 Stepwise refinement
The method of stepwise refmement is this. There is a given program­
ming problem to be solved. A solution is formulated that is short en­
ough to be easily understood: no more than several lines. This is done
by employing sufficiently powerful actions and conditions in the solu­
tion. If the problem was a very simple one, these may be expressed
directly in the programming language at hand, in which case we do so,
and are done. If not, the high-level actions are regarded as sub­
problems, and stepwise refinement is applied to each of them. The
process continues until all subproblems have solutions that are
expressed in the programming language. Conditions are formulated in
the programming language when the variables that they involve
emerge.

All that sounds very abstract, because it is. Let us look at the
method in action. We shall begin with a simple problem: the one for
which program YouGuess2 in Chapter 3 is a solution. That problem
can be deduced from the comments that immediately follow the pro­
gram heading:

program YouGuess2 (Input, Output);
{ Picks a number, asks for and reads a guess, }
{ and announces whether or not it is correct. }

These comments are descriptive as well as prescriptive. They describe
precisely what is achieved by running the program. Programming
problems, recall, always involve doing something. Strictly speaking, it
is the execution of the program that solves the problem. So the
problem was:

Pick a number, ask for and read a guess,
and announce whether or rwt it is correct.

The way to write the comments is to complete the following:

Write a program that (when executed) ...

A short solution to the problem is apparent, and uses the
simplest kind of solution: a sequence of actions. Since the problem at
hand is the original problem, we write the sequence as the statement
part of the program:

begin { YouGuess2 }
Define the number to be guessed ;
Prompt for and read the guess ;

SOLVING PROGRAMMING PROBLEMS 101

Announce the result of the guess
end. { YouGuess2}

You should not think of the above solution as a vague one; rather, it is
a precise high-level solution, whose correctness is apparent.

We now need to solve three subproblems, and will do so by
again using stepwise refinement. Let us start with the first, since it will
influence the second. Now we discover that the specification of the or­
iginal problem was incomplete, because it did not state anything about
the secret number. Let us require it to be between 1 and 10 inclusive.
It would be best to pick an unpredictable number, so let us base it on
the position of the mouse. Our solution, which again uses a sequence
of actions, is:

{ Define the number to be guessed }
Get the position of the mouse ;
Compute a number between 1 and JO that depends on the mouse's
position

Note that we retain the high-level action as a comment; what follows it
is called its refinement.

In this case it happens that each of the actions employed in the
solution can be directly formulated in Macintosh Pascal. We could
elect to retain the comments, but it is rarely advantageous to do so for
a single line solution. So we write:

var
x, y, { (x, y) is the mouse's position }
secret : integer; { the number to be guessed }

{ Define the number to be guessed }
GetMouse(x, y);
secret:= (x + y) mod 10 + 1

The new variables x, y, and secret that are needed for the refinement
are noted. Similarly, any newly defined constants should also be noted
(such as MaxSecret = 10, if it were used here as it should be).

Having disposed of the first subproblem, we turn to the second.
It is fairly straightforward to refine it directly into Pascal, yet again
with a sequence of actions (statements):

var
guess : integer;

{ Prompt for and read the guess }
Writeln('l"m thinking of a number between 1 and 10 inclusive.');

102 PROGRAMMING USING MACINTOSH PASCAL

Write('Please type your guess: ');
Readln(guess)

The name guess is sufficiently meaningful in this simple context as to
not require elaboration with a comment.

Finally to the only remaining original subproblem. To Announce
the result of the guess we need to write one of two messages, depending
on whether or not the guess is correct. The apparent solution is to use
the second fundamental form of action, viz. a choice. It can be directly
formulated in Pascal using the if-then-else statement:

{ Announce the result of the guess }
if guess = secret then

Writeln('That"s correct.')
else

Writeln('That"s wrong.')

No new variables or constants are required here.
Our solution is complete. We say that the original problem or

action has been completely refmed, or implemented in Pascal. To
save a few forests (would you believe wood chips?), please refer back to
Chapter 3, where you will find the fully assembled solution in all its
glory.

Besides a sequence of actions, and a conditional action, there is
one other fundamental form of action used in solving subproblems: re­
petition.

6.3. Using repetition
Here is a new, more challenging problem. Instead of wntmg a
complete program, we shall regard the problem as a subproblem from
an unspecified program, and solve it with a program segment.

Set NextPrime = the least prime number;;:: n, where n ;;:: 2.

Here n and NextPrime are given integer variables, and n already has a
value ~ 2. A prime number is a number ~ 2 divisible by no number
~ 2 except itself; the first five primes are 2, 3, 5, 7, 11.

This is not an easy problem. A sensible way to prepare for a
high-level solution is to view the problem at a high level. We want to
compute the smallest number ~ n with a certain property (that of
being prime), so we examine the numbers n, n + 1, n +.2, ... , in in­
creasing order, until one is found with the required property. Clearly
this is a repetitive action: the subaction that is repeated is adding one

SOLVING PROGRAMMING PROBLEMS 103

to the candidate answer, and the condition under which it should be
done is that the candidate answer does not have the required property.
Since the subaction may not need to be executed, a while-loop is
appropriate, and we obtain:

var
m : integer; { a number>= n to be tested for primality}

{Set NextPrime =the least prime>= n}
m := n;
while m is not prime do

m := m + 1;
NextPrime := m

The variable m is introduced to represent candidate answers.
NextPrime itself could be used, in which case the final assignment is
unnecessary; we choose not to do so because the name NextPrime
would then be misleading.

Think carefully about this solution: ~bout why it is correct. Note
that the loop continues executing only if the condition is true, i.e. it
stops as soon as the condition is false, which is when mis prime.

To complete the solution, we need to refine the condition of the
loop. From the definition of primality, we know that m is not prime
just when it has a divisor d satisfying 2 =:::: d < m. Let us decide to
search for such a divisor by examining the numbers ~ 2 in increasing
order, which amounts to finding the least divisor d ~ 2 of m. If d <
m, the condition is true; otherwise the condition is false (and d = m).

Finding the value d is just like the original problem, since it is
the least value ~ 2 with a certain property (that of dividing m). A
variable d can be used to contain the candidate divisors. Its value is
not a divisor just when m mod d <> 0 is true, leading to the follow­
ing solution:

{ Set d = least divisor >= 2 of m }
d := 2;
while m mod d <> O do

d := d + 1

Our reasoning has been essentially language independent, using
only the concepts of assignment and condition-controlled repetition.
And rightly so, because it is important to learn programming
techniques that work for any language in Pascal's broad class (called
procedural languages). But in attempting to formulate our solution in
the sublanguage of Pascal defined in Chapter 5, the problem arises that
the value of the con.dition:

104 PROGRAMMING USING MACINTOSH PASCAL

m is not prime

must be computed with a Boolean expression - we may not use a
statement-list.

There are several ways to overcome this. One is to use a richer
sublanguage of Pascal, to define a function that tests for primality (just
as the required function odd tests for oddness). This option becomes
available after reading the next chapter, and Exercise 7.6 asks you to
give such a solution.

Another technique involves using a Boolean variable to move the
evaluation of the complex condition inside the loop, permitting a
statement-list to be used. Our original high-level solution is therefore
first transformed to:

var
m : integer; { a number > = n to be tested for primality }
continue: Boolean; {true if and only if m not known to be prime}
d : integer; { a candidate for a divisor of m }

{ Set NextPrime = the least prime > = n }
m := n;
continue := true;
while continue do

begin
Set d = least divisor~ 2 of m;
ifd<mthen

m := m + 1
else

continue := false
end;

NextPrime := m

You should examine this solution carefully, and satisfy yourself that it
is equivalent to the original one.

We may now use our refinement of the remaining high-level
action, giving the following solution:

var
m : integer; { a number > = n to be tested for primality }
continue : Boolean; {true if and only if m not known to be prime}
d : integer; { a candidate for a divisor of m }

{Set NextPrime =the least prime>= n}
m := n;
continue := true;
while continue do

begin

SOLVING PROGRAMMING PROBLEMS 105

{ Set d = least divisor > = 2 of m }
d := 2;
while m mod d <> 0 do

d := d + 1;

ifd<mthen
m := m + 1

else
continue := false

end;
NextPrime := m

Note the empty line after the while-loop. This marks the end of the re­
finement of:

Set d = least divisor ;a: 2 of m

If it were absent the reader might erroneously include the conditional
statement that follows it in that refinement.

Note also that one loop is included in the body of another. This
phenomenon is known as nested loops, but it is no Big Deal - nested
loops arise naturally out of stepwise refinement, and should not cause
the programmer any special concern.

Yet another approach arises out of the observation that repeat­
loops with high-level conditions are very simply translated into Pascal,
because the calculation of the condition can be done at the end of the
body of the loop. So let us seek to use a repeat-loop in the present
problem.

Variable m will now be increased before it is tested for
primality. This slight problem can be overcome by the simple device
of initializing m so that the first increase produces the first value to be
tested. The rest of the development proceeds as before, and we obtain:

var
m, { a number > = n to be tested for primality }
d : integer; { a candidate for a divisor of m }

{ Set NextPrime = the least prime > = n }
m := n-1;
repeat

m := m + 1;
{ Set d = least divisor >= 2 of m }

d := 2;
while m mod d <> O do

d := d + 1
until d = m;
NextPrime := m

106 PROGRAMMING USING MACINTOSH PASCAL

This is preferable to the second solution, because it is easier to under­
stand, i.e. clearer. The solution using a function is clearer still, because
it directly represents the language-independent solution.

There is more than one way to skin a cat (or test for primality).
But whatever insight your solution is based on, you must be able to
express it as an algorithm. Learning to do that requires much thought
and much practice.

6.4 Deriving loop conditions
Conditions for repeat-loops tend to give beginners less trouble than
those for while-loops. The reason is that a repeat-loop's condition
simply expresses the required state of affairs when the loop finishes,
and this is foremost in the programmer's mind. Thus, in the above
problem, a prime number is sought, and m is prime if and only if its
least divisor d ~ 2 satisfies d = m. So the condition for the repeat­
loop is just d = m.

On the other hand, the condition for a while-loop describes a
state of affairs that is opposite to the one required when the loop stops.
However, since the relationship between a while-loop's condition
and the required outcome of the loop is so clear cut, it is actually
quite straightforward to formulate the condition: just negate the
required condition with not. In the above problem, the inner loop
searches for a divisor, i.e. a value of d satisfying m mod d = 0.
Since it is formulated as a while-loop, its condition may be written
not (m mod d = 0).

That is actually what we did above, only we did not stop there,
because conditions involving not can often be simplified, in which
case, in the name of clarity, they should be. We simplified
not (m mod d = 0) by writing m mod d <> 0. This is an example
of one of a general class of simplifications listed in Table 6.1, where
x and y stand for arbitrary simple expressions.

It often happens that the condition to be negated is a Boolean
expression formed with a Boolean operator. Consider, for example, the
following refinement:

var
ch : char; { last input character read }

{ Process next sentence }
Read(ch);
while not (ch is one of'.', '?', '!')do

begin
Process ch;

SOLVING PROGRAMMING PROBLEMS 107

Table 6.1 Simplifying
negated relational
expressions.

Read(ch)
end;

Negated relat­
ional expression

not (x = y)
not (x <y)
not (x > y)
not (x <= y)
not (x >= y)
not (x <> y)

Process end-of-sentence mark ch

Equivalent
simpler form

x<>y
x>=y
x<=y
x>y
x<y
x=y

The loop should stop when ch is an end-of-sentence mark, i.e. when
the following condition is true:

(ch = '.')or (ch = '?')or (ch = '!')

So the condition of the loop may be written:

not ((ch = '.') or (ch = '?') or (ch = '!'))

This can be written more simply as:

(ch<> '.')and (ch<> '?')and (ch <> '!')

Such simplifications can be derived using two logical equations
due to Augustus De Morgan. They are given in Table 6.2, using p and
q to stand for Boolean (sub)expressions. Note that the right-hand form
is not advertised as simpler, only equivalent. In fact, Boolean expres­
sions like those on the right can be simplified by using the correspond­
ing form on the left! But when p and q are relational expressions, the
right-hand forms can be simplified using Table 6.1. Thus, in our
example, we start with:

not ((ch = '.')or (ch = '?')or (ch = '!'))

Using De Morgan's law for negated ors twice, we get:

not (ch = '.')and not (ch = '?')and not (ch = '!')

Finally, we use Table 6.1 to simplify each operand of and, obtaining:

108 PROGRAMMING USING MACINTOSH PASCAL

Negated Equivalent form
Boolean expression

not (p and q)
not (p or q)

notp or not q
not p and not q

(ch <> '.') and (ch <> '?') and (ch <> '!')

There is always a choice when writing relational expressions,
e.g. between('.' = ch) and (ch = '.'),and it is best to stick to a con­
sistent style. In such situations we prefer to mention the variable first.
The only exception concerns a test involving an interval of values. The
familiar mathematical notation:

O~n~9

is best mimicked in Pascal with

(O <= n) and (n <= 9)

because the textual location of n is then between those of the expres­
sions representing the limits of the interval.

6.5 Program schemas
Programming would be impossibly demanding if each new problem
had to be solved from scratch. It is of the utmost importance, there­
fore, especially for beginners, to reflect carefully on each new solution,
to abstract away from the details, uncover any general problem-solving
principles, and file them away for later use. The principles that can be
expressed as a high-level solution for stepwise refinement are called
program schemas. Their level of abstraction is one up from programs.
There are other, even higher-level, and therefore more vague principles
called paradigms, but their further discussion now would be pre­
mature.

We have seen solutions to a few non-trivial problems, so now is
a good time to reflect and begin stocking our problem-solving arsenal.
Let us begin by focusing on the most recently solved problem (that of
finding the next prime).

We obtained our original high-level solution, and the solution to
the subproblem of finding the least divisor, using the same idea. It is
applicable to any problem involving a sequence of values, where the
first value with a specified property is wanted, and each successive
value depends only on the previous one. We nail it down as schema

Table 6.2 De Morgan's
laws.

SOLVING PROGRAMMING PROBLEMS 109

Sequential Search. The top part names the schema and defines the
general problem situation to which it applies; the bottom part is the
general solution, in a form ready for stepwise refinement. Variable vis
included in the first part here because it is part of the problem, not the
solution. We use the notation P(v) to imply that the property P can be
formulated as a Boolean expression.

Schema Sequential Search:
var

v : the type of values in the sequence ;
{ Given the first member of a sequence, a way of generating }
{the next member from a given member, and a property P,}
{ set v = the first member having property P. }

v := the first member of the sequence;
while not P(v) do

Set v = the next member of the sequence (after v)

Program schemas like this capture the knowledge that really
matters: how to solve problems. Like Descartes, always be on the look­
out for them - they are nuggets of pure programming gold. The
more general they are the better, because then there are fewer to re­
member.

When using a schema to solve a particular problem, it is better
to give problem-specific descriptions of the placeholders of the schema
(the unrefined parts shown in italics), in order to define more precisely
the subproblems to be solved.

The first example of a while-loop in Chapter 5 also employs this
schema. There the problem was:

Output the least non-negative power of 2 that is ~ x

It was implicitly solved with:

Set Power0f2 = the least non-negative power of 2 that is ~ x;
Writeln('The least non-negative power of 2 not less than ·,

x: 1, 'is', Power0f2: 1)

The action to be refined fits the schema perfectly, with Power0f2 for
v. The sequence is the non-negative powers of 2, in increasing order;
the first member is I; the rule for generating successive members is to
multiply by 2. P(v) is v ;;:::: x. Refer back to Chapter 5 to see the solu­
tion provided by the schema.

What about the other while-loop in Chapter S? There the
problem was:

110 PROGRAMMING USING MACINTOSH PASCAL

Print all the squares between 1 and limit inclusive

This does not quite fit the schema, because something must be done to
each member of the sequence except the last. But it does not take
much thought to modify the schema to accommodate this option, giv­
ing schema Sequential Search With Processing. Note that in this case
v is needed for the solution - it is not part of the problem. Even
though this variation has been presented separately, you should not re­
member it that way. Instead, file the modifications to the original
schema.

Schema Sequential Search With Processing:
{ Given the first member of a sequence, a way of generating }
{the next member from a given member, and a property P,}
{ process all values up to but not including the first with }
{ property P. }

var
v : the type of values in the sequence;

v := the first member of the sequence;
while not P(v) do

begin
Process v;
Set v = the next member of the sequence (after v)

end

Another generally applicable technique was used in the next
prime problem: our implementation of a while-loop with a complex
condition. By regarding the high-level loop as a high-level action to be
refined, we can express the technique as schema Complex While Loop
(see overleaf). Although programmer-defined functions can be used in­
stead (see Chapter 7), this schema is useful when it would be unnatural
to define a function.

'This emphasis on schemas is all very well,' you say. 'After all,
why solve a problem from scratch, with the time and possibility of
error involved, when I can use a canned solution with a written guar­
antee? But isn't it difficult to recognize the applicability of a schema in
a given situation?' Good question. The answer is that the style of think­
ing involved here is exactly that used when you discover schemas: you
try to characterize a problem abstractly. That means that your ability
to discover schemas increases hand in hand with your ability to apply
them. Both will come with practice, as long as you think about what
you are doing.

SOLVING PROGRAMMING PROBLEMS 111

Schema Complex While Loop:
{whileCdoS}

var
continue : Boolean;
other variabk declarations as needed ;

continue := true;
while continue do

begin
Define variabks so that C is equal to the expression p ;
If p then
s

else
continue := false

end

Program YouGuess3 in Chapter 3 is an instance of a the oft­
used schema Interactive 1/0. In this schema each instance of v stands
for the same variable. The condition of the loop does not require a
single stopping-value; instead, it is only necessary to be able to re­
cognize when the value of v is not a regular value (and is therefore a
stopping-value). If there is a single stopping-value, it is best defined as
a named constant.

Read the schema carefully, to be sure you understand exactly
how it works. Note that each input value (regular value or stopping­
value) is prompted for, and must be followed by an end-of-line marker;
i.e. the user types the input and then hits the Return-key. When all
values are to be read before any output is produced, it may be
appropriate to have a single initial prompt and omit the one in the
body of the loop. See Exercise 6.9(a).

Each regular value is processed once, by the action inside the
body of the loop. The stopping-value is not processed. There is provi­
sion for initialization (of counts, for example) and finalization; one or
both might be dropped in a given instance of the schema. Occasionally
it is convenient to initialize after the first Readln-statement, although
this does not mean that the initialization processes the first input value,
only that it sneaks a look at it - see Exercise 6.11 for an example.

We have already seen one instance of this schema: program
YouGuess3. We will meet another in our first substantial complete
program, which, like the others, is accorded the honorary title of
'case-study'. It should be coming along at the end of this sentence.

112 PROGRAMMING USING MACINTOSH PASCAL

Schema Interactive 110:
{ Repeatedly prompt for, read, and process input data}
{ until a stopping-value is read (which is not processed). }

var
v : type of input data and stopping-value;

Initialize ;
Write(prompt for input);
Readln(v);
while v is not a stopping-value do

begin
Process v;
Write(prompt for input);
Readln(v)

end;
Finalize

6.6 Case-studY. 1: Scheduling ____ _
6.6.1 SETTING OF THE PROBLEM

A fundamental problem in the discipline of Operations Research is that
of scheduling jobs on processors. The idea is very general: a job is
some activity that takes a certain amount of time to process; a processor
is something capable of performing the desired activity.

We shall assume the following situation applies. There is a
sequence of jobs to be processed. The time needed to process each job
is known in advance. Two processors are available, each capable of
processing one job at a time, and starting a new job immediately the
current one is finished. The jobs are to be assigned to the processors
subject to two conditions.

(1) Jobs are assigned to processors in the order given.
(2) Each successive job is to be assigned to the first available

processor, and then processed immediately. In case both
processors become available at the same time, either may be
chosen.

Many situations fit this model. One example is that of two
craftspersons (restorers of old books, for instance) who work together,
process jobs in the order received, and never catch up with their work.

SOLVING PROGRAMMING PROBLEMS 113

Figure 6.1
Jobs assigned
chronologically to two
processors.

6.6.2 SPECIFICATIONS

Our task is to write a Pascal program that meets the following
specifications. Input is to be prompted by the program. Each prompt
requests the time needed to process the next job, or an end-of-input
signal; the latter, of course, does not correspond to a job. Times are
assumed to be non-zero positive integers (representing hours, say).
The prompt may specify a particular end-of-input signal (e.g. 0 or
-1), but any number :s:: 0 should be treated as the signal.

The processor assigned to a job must be indicated immediately,
before prompting for more input. After all jobs have been assigned,
the program should report:

(1) The number of jobs;
(2) The average of the times at which jobs complete; and
(3) The total time scheduled on each processor.

Note that (2) is not the average length of a job, but a statistic that
measures how long on average a client must wait before a job is
finished. Items (2) and (3) should only be reported if there is at least
one job. (The program is expected to handle input of just -1, say,
reasonably.)

For example, suppose the sequence of input values is:

4, 1, 2, 6, 2, -1

Then the jobs, numbered according to their pos1llon in the input
sequence, are assigned to processors as shown in Figure 6.1. There are
five jobs. The average job-completion time is:

4+1+3+9+6 = 46 s ..

The total time used on processor 1 is 6. The total time used on
processor 2 is 9.

time= 4

processor

#1 #5 job number

2 #2 #3 #4

J_ J_ l l J_ J_ _,,, time
0 2 3 4 5 6 7 8 9

114 PROGRAMMING USING MACINTOSH PASCAL

6.6.3 WRITING THE PROGRAM

We begin by writing the program heading, and precisely and concisely
describing what the program is to do:

program JobScheduler1 (Input, Output);
{ Input: repeatedly prompts user to enter either a processing time }
{for a job, which must be a positive integer, or-1 to end input. }
{ Jobs are assigned in input order to the first available of two }
{ processors. Output: for each job, the processor assigned to it; }
{the average of the times at which jobs are completed; }
{ for each processor, the total time used. }

The comment follows a standard style: it first describes the expected
input, then what is done with the input, and finally the output that is
produced.

We now begin the process of stepwise refinement with a high­
level solution:

begin { JobScheduler1 }
Write heading ;
Prompt for, read, and process each job time, until a stopping-value
is read;
Write statistics

end. { JobScheduler1 }

It is usually most sensible to refine the last action in a sequence
first, because it is the one that will establish the known goal. Then the
immediately preceding action can be refined, and so on.

Principle Refine the actions of a sequence in reverse order.

So, bearing in mind that no jobs may be input, Write statistics is re­
fined with:

var
JobCount, { number of jobs processed }
Tota1Time0n1, Tota1Time0n2, { total processing time on }

{ each processor }
SumOfCompletionTimes: integer; {sum of completion times of}

{ all jobs processed }

{ Write statistics }
Writeln;
Writeln(JobCount : 1, ' jobs processed.');
If JobCount > O then

begin

SOLVING PROGRAMMING PROBLEMS 115

Writeln('The total time used on processor 1 = ',
Tota1Time0n1 : 1);

Writeln('The total time used on processor 2 = ',
Tota1Time0n2 : 1) ;

Writeln('The average time at which jobs complete = ',
SumOfCompletionTimes I JobCount : 1 : 1)

end

Four variables have been introduced, and their required values
specified by comments. Note that the required average is known
implicitly in the form of a numerator (a sum) and a denominator (a
count). The sum is an integer, since it is a sum of integer values - it
matters not that the average will be a real value.

We next turn to the preceding action, which is the major one.
We are in luck, since it fits schema . Interactive 1/0. We choose Job­
Time for v, and make the following simple refinements. Replace:

prompt fur input

with:

'Enter processing time for job, or -1 to end input:'

Replace:

Job Time is not a stopping-value

with:

JobTime > 0

Replace:

Process JobTime

with the high-level action:

Assign job to processur and update statistics

At this point, our refinement of this subproblem is:

var
JobTime : integer; { processing time for current job, }

{ or end-of-input signal }

{ Prompt for, read, and process each job time, until a}
{ stopping-value is read }

Initialize ;
Write('Enter processing time for job, or-1 to end input: ');
Readln(JobTime);
while JobTime > 0 do

116 PROGRAMMING USING MACINTOSH PASCAL

begin
Assign job to processur and update statistics ;
Write('Enter processing time for job, or-1 to end input: ');
Readln(JobTime) ·

end;
Finalize

Three subproblems need to be refined. Again, it is most sensible
to tackle them in reverse order. Action Finalize is not needed if the
values required by Write statistics are updated by the body of the loop.
So we first generalize the comments of the appropriate variables, by
appending so far to them (see the complete solution). In refining:

Assign job to processur and update statistics

we know (thanks to the schema) that JobTime contains the processing
time for the job. Since the job is assigned to the first available
processor, we write:

{ Assign job to processor and update statistics }
if Tota1Time0n1 <= Tota1Time0n2 then

Assign to processur I and update statistics
else

Assign to processur 2 and update statistics

Refining deeper, we tackle the action Assign to processor 1 and
update statistics. This involves updating the values of the variables used
by Write statistics. We obtain:

begin { Assign to processor 1 and update statistics }
Writeln('Job assigned to processor 1.');
JobCount := JobCount + 1;
Tota1Time0n1 := Tota1Time0n1 + JobTime;
SumOfCompletionTimes := SumOfCompletionTimes +

Tota1Time0n1
end

When a high-level action is refined with a compound statement, we
document the action with a comment attached to begin. The refine­
ment of the action for processor 2 is a trivial adaptation of the above
refinement. In Chapter 8 we shall see how to capture this fact with a
programmer-defined procedure.

Both actions in the conditional statement have refinements that
include the same statement, viz.:

JobCount := JobCount + 1

SOLVING PROGRAMMING PROBLEMS 117

and it is independent of the others. In such cases, the common state­
ment can be removed and placed before or after the conditional state­
ment, taking care to adjust any comments accordingly. See the fully
assembled solution below.

After refining the body of a loop, only the initialization remains.
Any new or previously introduced variables used in the body that are
not involved in input statements need to be initialized. In our case we
have:

{ Initialize statistics }
JobCount := O;
Tota1Time0n1 := O;
Tota1Time0n2 := O;
SumOfCompletionTimes := 0

We have made the comment a little more problem-specific.
Finally, we consider the first highest-level action, viz. Write

heading, and adhere to the following principle:

Principle Output should be intelligible on its own.

It is sound practice to head the output with the name of the program
that produced it and the time and date of the run. We shall content
ourselves for now with a simple heading:

{ Write heading }
Writeln('SCHEDULING JOBS ON TWO PROCESSORS IN

CHRONOLOGICAL ORDER');
Write In

Since strings cannot extend over more than one line, please consider
the first output statement as being on one line. <:We shall not mention
this typographic problem in the sequel, so watch out.) The second
output statement produces an empty line.

6.6.4 THE COMPLETE PROGRAM

After assembling all our refinements, we obtain the solution given
below. Note that our style of laying out comments clearly documents
that the initialization action is part of the action for the whole schema.
Furthermore, the statements that refine the initialization action are
delimited by the blank line that follows them. Macintosh Pascal can
not always adequately handle the comments that emerge from a step­
wise refinement. For example, three successive comments can not be
indented without losing their relationship to their refinements.

There are styles of layout that better suit stepwise refinement.

118 PROGRAMMING USING MACINTOSH PASCAL

Our preferred style is presented in 'Macaveats', Section 6.11, since it is
important, but unfortunately inconsistent with Macintosh Pascal's auto­
matic formatting.

program JobScheduler1 (Input, Output);
{ Input: repeatedly prompts user to enter either a processing time }
{for a job, which must be a positive integer, or-1 to end input. }
{ Jobs are assigned in input order to the first available of two }
{ processors. Output: for each job, the processor assigned to it; }
{ the average of the times at which jobs are completed; }
{for each processor, the total time used. }

var
JobCount, { number of jobs processed so far }
JobTime, { processing time for current job, }

{ or end-of-input signal }
Tota1Time0n1 ,·rota1Time0n2, {total processing time on }

{ each processor so far }
SumOfCompletionTimes {sum of completion times of}

: integer;

begin { JobScheduler1 }
{ Write heading }

{ all jobs processed so far }

Writeln('SCHEDULING JOBS ON TWO PROCESSORS IN
CHRONOLOGICAL ORDER');

Writeln;
{ Prompt for, read, and process each job time, until a}
{ stopping-value is read }

{ Initialize statistics }
JobCount := O;
Tota1Time0n1 := O;
Tota1Time0n2 := O;
SumOfCompletionTimes := O;

Write('Enter processing time for job, or-1 to end input: ');
Readln(JobTime);
while JobTime > o do

begin
{ Assign job to processor and update statistics }

JobCount := JobCount + 1;
If Tota1Time0n1 <= Tota1Time0n2 then

begin { Assign to processor 1 and update sums }
Writeln('Job assigned to processor 1 .');
Tota1Time0n1 := Tota1Time0n1 + JobTime;
SumOfCompletionTimes := SumotCompletionTimes +

end
else

Tota1Time0n1

begin { Assign to processor 2 and update sums }

SOLVING PROGRAMMING PROBLEMS 119

Figure 6.2
The Text window after a
run of JobScheduler1 .

Writeln('Job assigned to processor 2.');
Tota1Time0n2 :== Tota1Time0n2 + JobTime;
SumOfCompletionTimes :== SumOfCompletionTimes +

Tota1Time0n2
end;

Write('Enter processing time for job, or -1 to end input: ');
Readln(JobTime)

end; { of while-loop }
{ Write statistics }

Writeln;
Writeln(JobCount : 1, ·jobs processed .');
if JobCount > O then
begin

Writeln('The total time used on processor 1
Tota1Time0n1 : 1);

Writeln('The total time used on processor 2 == ',
Tota1Time0n2 : 1);

Writeln('The average time at which jobs complete == ',
SumOfCompletionTimes I JobCount : 1 : 1)

end
end. { JobScheduler1 }

Note that the end of the while-loop has been labeled with a comment,
to make the program easier to read.

Figure 6.2 shows the output from a run of JobScheduler1.
User input is underlined.

~D Te Ht
SCHEDULING JOBS ON TUO PROCESSORS IN CHRONOLOGICAL ORDER

Enter processing time for job, or -1 to end input: i
Job assigned to processor 1.
Enter processing time for job, or -1 to end input: 1
Job assigned to processor 2.
Enter processing time for job, or -1 to end input: 2-
Job assigned to processor 2.
Enter processing time for job, or -1 to end input : Q.
Job assigned to processor 2.
Enter processing time for job, or -1 to end input : £
Job assigned to processor 1.
Enter processing time for job, or -1 to end input: .=.1

5 jobs processed.
The total time used on processor 1 = 6
The total time used on processor 2 = 9
The average time at which jobs complete 4.6

120 PROGRAMMING USING MACINTOSH PASCAL

6. 7 Some other schemas
Repeat-statements tend not to be used as often as while-statements.
The reason is that it is prudent to test (the condition) before deciding
to execute (the body). Even when a repeat-loop seems a good choice, a
while-loop is often even better.

Here is a case in point concerning an important principle:

Principle Check input data as thoroughly as possible.

One way to do this with interactive input is repeatedly to prompt for,
read, and check an input value until it is correct. It might seem that
the natural way to do so is with:

repeat
Write(Prompt for input);
Readln(v)

until v is legal

Think again. The problem with this solution is that each prompt
is the same: the user is not explicitly informed of a mistake, and may
wrongly but understandably assume that a new prompt is a request for
more input. The while-loop wins out once again, giving schema Check
Interactive Input. The type of v should be as large as possible so as to
include illegal as well as legal input values; this will make more sense
after Chapter 10. For an example of using this schema, see Exercise
6.10.

Schema Check Interactive Input:
var

v : largest type that includes type of value requested ;
{ Repeatedly prompt for, read into v, and check }
{ an input value, until it is legal }

Write(Prompt for input);
Readln(v);
while v is not legal do

begin
Write(Error message & prompt for corrected input);
Readln(v)

end

Another common programming situation is to have to do some­
thing a given n times, where n ;:::: 0. This can be regarded as a special
case of the following action:

SOLVING PROGRAMMING PROBLEMS 121

For each value of v between first and last, in order, do A

where, in general, the subaction A depends on the value of v. This
action can be refined with a while-statement, but Pascal provides a
special statement precisely for this situation. The advantage of using it
is that the schema is made explicit, informing the reader, for instance,
that execution of this loop will definitely terminate (provided that of A
always does). The statement is called the for-statement, and it comes
in two forms, depending on whether the values of v are taken in in­
creasing or decreasing order:

for-statement:
for variable-identifier := initial-expression to-symbol

final-expression do
statement

to-symbol: to I downto
initial-expression: expression
final-expression: expression

It would be premature to fully define the for-statement - we
will wait until Chapter 10. In this sneak preview, we shall be content
to use it in two schemas. The first, For Increasing Values In An Inter­
val, is more common. Even though v is mentioned in the definition of
the problem, it is only as a notational convenience; it really belongs to
the solution, and is shown as such. Note that if lower > upper, A is
never executed, because there are no values of v in the specified inter­
val. Like a while-loop, a for-loop looks before it leaps.

The other schema is For Decreasing Values In An Interval.
Again, if upper< lower, A is never executed.

The expressions upper and lower are evaluated once only, before
the body of the loop is executed. They must be of the same type as the
variable v, which can be integer, char, or even Boolean, but not real.

Here are three applications of these schemas. The first is the
simplest case, where some action is to be repeated a given number of
times.

Schema For Increasing Values In An Interval:
{For each value v for which lower<= v <=upper,}
{ in increasing order, do A }

var
v : type of lower and upper;

for v := lower to upper do
A

122 PROGRAMMING USING MACINTOSH PASCAL

Schema For Decreasing Values In An Interval:
{For each value v for which upper>= v >=lower,}
{ in decreasing order, do A }

var
v : type of upper and lower;

for v :=upper downto lower do
A

var
count : integer;

{ Print a line of width LineWidth }
for count := 1 to LineWidth do

Write('-');
Writeln

Variables used in for-loops must be declared like any others. The vari­
able or constant LineWidth is assumed to exist already, since it is men­
tioned in the problem (in the comment).

In the second example, the action A depends on the value of the
variable:

var
ch : char; { ranges over entire character set }

{ Print the Macintosh Pascal character set in increasing order }
for ch := chr(O) to chr(255) do

Write(ch)

Macintosh Pascal will use as many lines of the Text window as
necessary to display the long line that is produced. For a slight varia­
tion on this solution, see Exercise 6.12.

Our third example of the use of for-loops is a case-study.

6.8 Case-study: 2: The character-set table
6.8.1 SPECIFICATIONS

The Macintosh Pascal character set is to be printed in the form used in
Table 5.3, i.e. in a 16 x 16 grid, column by column from the left,
with rows and columns numbered 0 to 15. The format for each row
should be:

nnl\11\CCl\CCI\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ /\Cl\ l\Cl\I

SOLVING PROGRAMMING PROBLEMS 123

where nn is a number between 0 and 15, CC is printed for each control
character (to avoid chaos), " represents a space, and c represents a vis­
ible character. The vertical bar CD at each end will form the sides of a
box. The top and bottom of the box, and column numbers, should also
be printed.

6.8.2 WRITING THE PROGRAM

We begin with the program heading:

program CharacterSet (Input, Output);
{ Prints the Macintosh Pascal character set in a boxed 16 by 16 }
{ grid, column by column from the left, with rows and columns }
{ numbered 0 to 15, and a box around the grid. Each control }
{character is represented by CC. }

Since all printing is done row by row, it will not do to take the char­
acters in increasing order. Instead, we start our refinement with:

begin { CharacterSet }
Print column numbers ;
Print top of box ;
Print rows 0 to 15, with row number & left & right sides of box ;
Print bottom of box

end. { CharacterSet}

The major part of each of these actions fits the schema For Increasing
Values, leading directly to:

var
row, col : integer; { number of row and column respectively }

{ Print column numbers }
Write(' ' : 4);
for col :=Oto 15 do

Write(col : 3);
Writeln;

{ Print top of box }
Write('--' : 5);
for col :=Oto 15 do

Write('---');
Writeln(' -');

{ Print rows 0 to 15, with row number & left & right sides of box }
for row := Oto 15 do

124 PROGRAMMING USING MACINTOSH PASCAL

Print row, left side of box, row'th row of characters, and right side
of box;

{ Print bottom of box }
Write('--' : 5);
for col:= 0 to 15 do

Write('---');
Writeln('-')

Note that the first and last actions are refined with the same code. We
shall find out in Chapter 8 how to exploit this with a procedure.

For the last remaining refinement, we first print the row
number, box side, and control characters in the first two columns, then
the visible characters in columns 2 to 15, then print the other box side
and end the line. The major action again fits the same schema, making
five applications of it in all! For-loops, like cabs, tend to come in
bunches.

{ Print row, left side of box, row'th row of characters, }
{ and right side of box }
begin

Write(row : 2, ' I CC CC');
for col:= 2 to 15 do

Write(chr(col * 16 + row) : 3);
Writeln(' I')

end

6.8.3 THE COMPLETE PROGRAM

The task of assembling the program is left until Exercise 6.13. The
output produced by the assembled program is shown in Figure 6.3.
You will notice a glitch in the last row. It is caused by the fact that
chr(127) is a control character that has strayed from its compadres. It
prints as a zero-width space. Exercise 6.14 invites you to divert some
of your intellectual funds to it and thereby fix the glitch.

6.9 Choosing the form of iteration
After you digest this book and become an expert on programming,
you'll find that people who are aware of your guru status always ask
the same question - at dinner parties, on talk shows, at celebrity get­
togethers, at major product launches, anywhere you're likely to be in­
vited - 'What sort of loop do I choose?' Here's what to answer.

First, most garden-variety programming can be done mainly
with schemas, and this is increasingly so as you accumulate more of

SOLVING PROGRAMMING PROBLEMS 125

Figure 6.3
Output from program
CharacterSet.

-D Te Ht
0 I 2 3 'l 5 6 7 a 9 10 11 12 13 l'l 15 ~ --

0 cc cc 0 @ p p ii e t .. l - a a
I cc cc ! I A Q Cl q ~ e 0 ± i - a a
2 cc cc " 2 B A b r c r ¢ ~ a a
3 cc cc 11 3 c s c s ~ 1 £ ~ .(.. a a
'l cc cc $ 'l D T d t fl i § ¥ f . a a
5 cc cc x 5 E u e u ii "j • µ .. . a a
6 cc cc g, 6 F u f u 0 i'i cg (> "' + a a
7 cc cc ' 7 G IJ g w a 6 13 ~ < 0 a a
a cc cc (a H x h x d 0 !) 1l > g a a
9 cc cc) 9 I y i y a 0 SI 11 ... [a a

10 cc cc * : J 2 j z ii 0 .. I a a a
11 cc cc + j K [k { a 5 g ~ a a a
12 cc cc < L \ I I a u ..

!! A a a a ' 13 cc cc - = M] m } 9 u - !l 0 a a a
Ii cc cc > ti " n N e a IE CB IE a a a
15 cc cc I ? 0 - 0 e (j 0 0 CB a a a I

--- l2J

them with thoughtful experience. In such cases, the question should
not arise, as the solution part of the schema will tell you which loop to
use. (If more than one schema applies, choose the most specific.)

If you do not have a schema that fits, you can always use a
while-loop. It can do anything the others can. Therefore, if you are
after the neatest choice, as you should be, do not begin by asking 'Can
I use a while-loop?' Instead, first check again to see if the problem can
be cast in a form matching one of the two for-loop schemas. If it can,
you are home. If not, the while-loop is usually your best bet. Only use
a repeat-loop after carefully ensuring that you really do want to execute
the action to be repeated at least once.

Principle Favor while-loops over repeat-loops.

In Chapters 11 and 12 you will find a valuable technique for
solving hard problems with loops. It is based on a fundamental
theorem about while-loops (which therefore applies also to the others).
In the meantime we shall use the technique implicitly whenever we
need it, so that the abstract technique will seem familiar by the time we
formulate it explicitly.

For now, the exercises provide ample opportunity to practice
solving problems that require loops for their solutions.

126 PROGRAMMING USING MACINTOSH PASCAL

6.10 Testing, testing
6.10. l THE ROLE OF TESTING

Testing is not an activity that should commence after writing a pro­
gram, with the aim of discovering and correcting any mistakes made
along the way. Implicit in such a view is a thoroughly discredited (but
nevertheless still widely held) notion of how to program - that by
some mysterious process the programmer assembles an 'almost correct'
program, runs it with various sets of test data that reveal the 'bugs'
that are present as a matter of course, and 'debugs' the program by
modifying it until the results of the test runs are satisfactory. Bitter
experience has shown that programs created in such a fashion take far
too long to reach the point of usefulness (if they ever do), and require
far too much maintenance to fix the bugs that inevitably continue to
crop up.

Instead, correct programs are obtained by starting with precise
specifications, and correctly managing the process of stepwise refine­
ment. And the following principle is paramount:

Principle Testing is no substitute for thinking.

Nevertheless, testing does have an important role to play. It
should be used right from the start, as a check on our reasoning (which
may, despite all our care, occasionally be erroneous), and to help un­
cover any typographic errors. When the complete program is finally
tested, we should be genuinely surprised if, typographical and other
clerical mistakes aside, it does not perform properly. Our experience
should be that testing is a process that confirms our confidence in the
correctness of our creations, rather than one that shatters it.

6.10.2 WHAT AND WHEN TO TEST

The basic principle of testing is this:

Principle Every refinement in the process of stepwise refinement
should be tested.

Testing implies comparing actual and required performance. There is
simply no point in testing to see what a program-segment does, without
knowing beforehand precisely what it should do. When testing the en­
tire program, this information is provided by the program's specifica­
tions. When testing the refinement of a high-level action, this informa­
tion is usually not formulated precisely, but the programmer must be
capable of doing so.

SOLVING PROGRAMMING PROBLEMS 127

Figure 6.4
Desk-checking two cases.

6.10.3 DESK-CHECKING

How, then, is a refinement of a high-level action to be tested? Well, if
it is the first refinement of a program, the specifications define the
desired result, called the postcondition, and also the assumptions we
may make about the input data, called the precondition. Otherwise,
the postcondition is described by the action itself, and the precondition
may be described either by the action or by the comments for the con­
stants and variables involved. The rationale of our style of describing
high-level actions is now apparent:

Principle Describe a high-level action by specifying the desired
result.

Let us consider our first refinement of the next prime problem:
{ Set NextPrime = the least prime >= n }

m := n;
while m is not prime do

m := m + 1;
NextPrime := m

The postcondition is clear. It is that:

NextPdme = the least prime ~ n.

and the precondition is that:

n ~ 2.

The refinement is tested with pen and paper, by tracing its exec­
ution on selected values of the variables involved (provided they are
consistent with the precondition). This process is known as desk­
checking. There are two important guidelines:

(1) determine in advance what the outcome should be;

n 3

m ? 3

Next Prime ? 3

n 8

m ? 8 9 10 11

Next Prime ? 11

128 PROGRAMMING USING MACINTOSH PASCAL

n 3

m ? 3

NextPrime ? 3

n 8 9 10 11 12

m ? 8

Next Prime ?

(2) act like a robot: execute each step mechanically, ignoring com­
ments.

Adherence to these guidelines helps avoid the psychological problems
of being predisposed to a correct outcome, and making the same
assumptions in execution as were made in creation.

The more values that are checked the better, and it is a good
idea to try extreme or pathological values, such as the smallest possible
and the largest possible, as well as typical ones.

In the case at hand, only one variable changes in the loop, and it
is sufficient to record its successive values, as shown in Figure 6.4.

Our refinement passes the tests, which should be no surprise.
But suppose we accidentally wrote n := n + 1 for the body of the
loop. We would obtain the traces shown in Figure 6.5. The first trace
reveals nothing amiss, but not the second.

Do not think of an incorrect result as revealing a bug which
needs to be fixed. No - an incorrect result simply means that our re­
finement is incorrect, and needs to be replaced by a correct one. It
sometimes happens that the correct refinement can be obtained by
making a minor adjustment to the incorrect one (as in the preceding
example). If so, well and good. But in general, especially with novice
programmers, the problem needs to be thought through again in the
light of the test. After doing so, do not forget the following principle:

Principle After replacing an erroneous refinement, desk-check the
new one.

The new refinement should at least be tested with the sets of values
used previously, and preferably some new ones as well. After all, we
did get it wrong the first time.

Sometimes the value of more than one variable may be changed
in the body of a loop, as in this example from Chapter 5:

{ Set NrDigits = number of decimal digits in numeral of n }
NrDigits := O;

Figure 6.5
Desk-checking an
erroneous refinement.

SOLVING PROGRAMMING PROBLEMS 129

Figure 6.6
Desk-checking with two
changing variables.

NrDigits

RestOfn

RestOfn := n;
repeat

3709 I I

NrDigits := NrDigits + 1;
RestOfn := RestOfn div 10

until RestOfn = 0

370

It pays to be a little more careful in such cases. A sensible technique is
to use a row for each variable, and a new column for each step, so that
the trace shows the order in which changes occurred. Figure 6.6 gives
an example with n = 3709.

6.10.4 TESTING BY EXECUTION

Whenever a program has been completely refined, i.e. when it is
written entirely in the programming language, it should be tested by
executing it. The first requirement of the test is this:

• Execution of the program terminates normally.

Assuming it is met, the output is then carefully checked to see that the
second requirement is met.

• Output should be exactly as expected.

Whether or not all is well, the output should be saved for
possible later reference. It should therefore be clearly labeled, prefer­
ably by the program itself.

6.10.S COPING WITH ERRORS DETECTED BY TESTING

Errors revealed by desk-checking have already been discussed. In gen­
eral, they are fixed by disposing of the incorrect refinement, and
developing and testing a new one. So let us suppose that it is a test run
that has revealed an error.

First, do not yell for help. Coping with your own errors is an
important aspect of learning to program. Some beginners seem content
to make an attempt at a solution, and get someone else to fix it when it
does not work. If you are in that category, have some self-respect, and
get out of it. Now is as good a time as any to learn how to cope with

130 PROGRAMMING USING MACINTOSH PASCAL

errors. If you are stumped, despite your best efforts, you have no re­
course but to get help (or sleep on it, which often works); but ask your
rescuer to show you how to find the problem, not just to find the
problem. End-of-homily.

One's first thought, then, as a careful programmer, is that an
error of transcription (a typo) has been made. So the first thing to do is
carefully to check that the program has been faithfully typed. Look out
for mistakes such as:

• Typing a similar character (e.g. 0 for 0, I for 1);
• Wrong identifiers of any kind (e.g. n for m);
• Wrong operations (e.g. + for *, and for or);
• Wrongly placed brackets in expressions;
• A semicolon or begin or end in the wrong place;
• Statements entered in the wrong place or wrong order;
• Missing statements or parts of conditions;

and so on, none of which need lead to a syntax error. Any such mis­
takes should be corrected and the program retested.

If an error remains, what you do next depends on its nature. If
execution of the program does not terminate, observe the range of
movement of the hand that indicates the statement being executed; use
Step or Step-Step to slow it down if necessary. Observe the values of
the variables appearing in the condition of the innermost loop that
bounds the range of movement of the hand, and figure out why the
value of its condition never changes.

Principle When a while- or repeat-loop is written, confirm that its
body is capable of changing the value of at least one variable
appearing in its condition.

Check the reasoning that satisfied you that the loop would always
terminate. Where did it go wrong?

If wrong output is produced, concentrate on the first dis­
crepancy. At least one of the variables appearing in the printed expres­
sion must have been given the wrong value. Similarly for a run-time
error: use the Observe window to find the variable(s) with incorrect
values. Work backwards through the program, carefully checking each
statement that affects any of these variables. Try desk-checking these
statements. With luck, you will find the problem. Then retest, first
with the same test data. (It is usually not worthwhile attempting to
track down the cause of other incorrect output values, as it is too hard
(and counterproductive) to take account of the error you discovered.)

SOLVING PROGRAMMING PROBLEMS 131

If you are unable to find anything wrong with the program, you
should check every precondition and postcondition, whether explicit or
implicit. With the current test data, the final postcondition is not met.
The problem is to find the point at which things first go wrong. Put
STOP marks just before each high-level action, and rerun the program
with the same test data. When a STOP mark is reached, check that the
postcondition of the preceding high-level action (if any) and the pre­
condition of the next one are true (they may be the same). If it is
possible to formulate these conditions as Boolean expressions, use the
Observe window to check their values. Remember, hitting the Enter­
key will force the evaluation of an expression you have just typed. For
more complex conditions, try to get all the information you need using
the Observe window. It helps if you follow the following principle:

Principle Begin testing with small, simple sets of test data.

Alternatively, use the Instant window to print out the values of the
variables involved, but be very careful not to change the values of any
variables. (If you need a control-variable for a for-loop, remember its
value and restore it afterwards.)

Sometimes another programmer will find the cause of your error
with enviable speed, even though you may have unsuccessfully racked
your brains until exhaustion. Put that down to a mental block - the
error was obvious.

6.10.6 DEFENSIVE PROGRAMMING

It is not testing that is a drag, it is having to fix errors. A thorough test
session that reveals no errors does not take an inordinate amount of
time, increases one's confidence, and reinforces good programming
practices. But test sessions that reveal errors are another matter. As
you may well have discovered!

Much of the heartache can be avoided by being more disciplined
and careful in the process of program development, and by performing
a number of simple checks as soon as they are applicable - a stitch in
time saves nine. One such check has already been mentioned:

• Check that each while- and repeat-loop has a chance of termina­
ting. The body must affect the condition.

Here are some other worthwhile tests:

• Check for initialization before use. Each variable must get a
value before being used in an expression.

132 PROGRAMMING USING MACINTOSH PASCAL

• Check conditions carefully. English use of 'and' and 'or' is
terribly imprecise. Many errors are caused by using and for or
or vice versa.

• If you choose a repeat-loop, check that you really do want it to
execute its body at least once.

6.10. 7 FINAL WORDS ON TESTING
Do not expect to obtain a correct program by making random changes
to an incorrect one. If your first few programming assignments are all
small and simple, you might get away with such a policy, but it is
hopeless for non-trivial programs. Programs do not evolve into correct­
ness - almost all mutations are losers, and you do not have a million
years. When it comes to programming, Creationism is the better
theory.

When you have tried everything, and your program still says
1+1=3, consider the following two possibilities before you pull the
trigger:

(1) The original specifications may have errors. A missile­
monitoring system might be required only to report on missiles
whose altitude over a country is decreasing, in the mistaken idea
that only in that situation are the citizens in danger.

(2) Maybe the problem is in Macintosh Pascal. Even that cause can
be tracked down by careful testing, after which the problem
should be reproduced as simply as possible, and reported, as
they say, to the authorities.

Chapter 12 presents a technique that helps the pi:ogrammer to
develop certifiably correct programs. If mastered, it will alleviate most
of the burden of correcting errors revealed by testing.

6.11 Macaveats
When you next find yourself writing a Pascal program other than in
Macintosh Pascal, chances are you will be worse off. You will probably
even have to format your programs yourself. But along with this re­
sponsibility comes freedom, which permits you to use a formatting
style that more clearly reflects the process of stepwise refinement. Our
preferred style is based on just three simple principles:

(1) Each action in a sequence should be indented at the same level.

SOLVING PROGRAMMING PROBLEMS 133

(2) The subactions that refine a high-level action should be indented
with respect to a comment that describes it.

(3) In a multi-line Pascal statement, lines after the first line should
be indented with respect to it. (This is sometimes bent for
compound statements; see the example and commentary below.)

Actions here refer to both high-level actions and Pascal statements.
The upshot of these rules is that the first-level refinement of each
action can be read by simply collecting each sub-action at the next level
of indentation. The same goes for the components of structured state­
ments.

As an example, here is program JobScheduler1 laid out in this
fashion. Some inessential detail has been suppressed with three dots.

program JobScheduler1 (Input, Output);
{ Input: repeatedly prompts user to enter either a processing time }

{ for each processor, the total time used. }
var

JobCount, { number of jobs processed so far }

: integer;
begin { JobSche~uler1 }

{ Write heading }
Writeln('SCHEDULING JOBS ON TWO PROCESSORS ... ');
Writeln;

{ Prompt for, read, and process each job time, until a}
{ stopping-value is read }

{ Initialize statistics }
JobCount := O;

Write('Enter processing time for job, or-1 to end input: ');
Readln(JobTime);
while JobTime >Odo begin

{ Assign job to processor and update statistics }
JobCount := JobCount + 1;
if Tota1Time0n1 <= Tota1Time0n2

then begin
{ Assign to processor 1 and update sums }

Writeln('Job assigned to processor 1.');

end
else begin

{ Assign to processor 2 and update sums }
Writeln('Job assigned to processor 2.');

end;

134 PROGRAMMING USING MACINTOSH PASCAL

Write('Enter processing time for job, or -1 to end input: ');
Readln(JobTime)
end; {of while-loop}

{ Write statistics }
Writeln;
Writeln(JobCount : 1, 'jobs processed.');
if JobCount > o

then begin
Writeln('The total time used on processor 1 = ', ...);

end
end. { JobScheduler1 }

Note that when a compound statement is used as a component state­
ment of a structured statement, its begin and end are kept out of the
way. The effect is to focus on the statement sequence that they enclose.

EXERCISES
There is no substitute for experience in learning to solve programming
problems. If you are the programming equivalent of a gym rat, you
will want to tackle all these exercises. If you can not find the time to
do that, try giving a first refinement rather than a complete one, or just
determining which schema or form of loop, if any, should be used. To
keep you on your toes, a couple of problems have simpler solutions
than might seem to be the case at first sight. Heh heh.

6.1 What was the first refinement in the development of program
YouGuess3?

6.2 Use stepwise refinement to describe the following action in Pascal.
Given that integer variables hours and minutes represent
the time on a 24-hour dock, print the time in 12-hour format.
E.g., for 0,0 print 12: OOam, for 9,3 print 9: 03arn,
for 12 ,0 print 12 : 0 0 pm, for 17,5 print 5 : 0 5 pm,
for 23,59 print 11: 59pm

6.3 Suppose value and limit are integer variables. Simplify each of the
following expressions.
(a) value - 1 < limit

(b) not (value < = limit)

SOLVING PROGRAMMING PROBLEMS 135

(c) not((-2 * limit <= value) and (value <= limit))

(d) not((-limit <=value) and (value<= limit))

6.4 Suppose limit is non-negative. Use a required function to simplify part
(d) of the previous question even further.

6.5 Suppose temperature is a real variable (representing °F) and sunny is a
Boolean variable. Simplify the following expression that describes an
atypical day in Ithaca, NY, to find out whether it is relatively pleasant
or not.

not((temperature <= 32.0) or not sunny)

6.6 A number m >= 2 is prime if and only if its greatest divisor < mis 1.
Use this fact to give a different solution to the next prime problem. Is
the solution in the text preferable? Why?

6. 7 Here is the top part of a schema:

Schema Sequential Search After First :
var

v : the type of values in the sequence ;
{ Given the first member x0 of a sequence, a way of generating }
{the next member from a given member, and a property P,}
{set v =the first member after x0 with property P. }

(a) Give the bottom part of the schema.

(b) Use the schema to solve the following problem:
Set NextPrime = the least prime> n

6.8 Implement the following action, where x and Mult32 are integer vari­
ables, and x ~ 0.

Set Mult32 = the least multiple of 32 ~ x

6.9 The following problems all share a common context: the user is to be
prompted, just once, to enter zero or more examination grades, each of
which is an integer between 0 and 100 inclusive, and then a stopping­
value of ..:.1. After reading all the input, some information is to be
printed.

(a) Give a high-level solution by adapting a schema.

(b) Write a program that prints the number of grades in the input
data. Do so here, and in questions (c) and (d), by completely re­
fining your answer to (a).

136 PROGRAMMING USING MACINTOSH PASCAL

(c) Write a program that prints the average grade. If there are no
grades, the average does not exist, so a suitable message should be
printed instead.

(d) Write a program that prints the maximum grade. A suitable
message should be printed if there are no grades. It would not do
to print 0 in this case. Why?

(e) Suppose we decide to look out for illegal marks, and print how
many were found, but otherwise ignore them. How should our
general solution in (a) be modified? Note that schema Check Inter­
active Input is not applicable, because each grade is not individu­
ally prompted for.

6.10 Suppose a user is to be prompted to enter a real number between lower
and upper inclusive, to be read into variable measurement. Give a
program segment that repeatedly does this until a legal number is en­
tered.

6.11 Write a program segment that prompts for and reads a sequence of
positive integers followed by a stopping-value of -1, and sets max to
the maximum value read (-1 if only a stopping-value is entered).

Hint: Initialize after the first input statement.

6.12 Implement the action:

Print the Macintosh Pascal character set in increasing order

by using a for-loop with an integer variable.

6.13 Assemble program CharacterSet. Run it with Step-Step and use the
Observe window to follow the changing values of row and col.

6.14 Implement this CC-rider to the specifications for Case-study 2: print
CC instead of chr(127). Then run it to see what you have done.

6.15 Modify program CharacterSet so that the characters appear in order
when taken row by row from the top, rather than column by column
from the left. Thus the first two rows will consist of CCs.

6.16 Write another program to print the character set in the format of the
previous question. This time, use a single for-loop to print all the char­
acters.

Hint: After prmtmg each character, have the program take special
action if it is the last in a row.

SOLVING PROGRAMMING PROBLEMS 137

6.17 Implement the action:

Set sum = 1 + 2 + 3 + ... + n, given n ~ 0.

6.18 In Chapter 19 we shall learn that the most accurate way to implement
the following action is by adding the values in increasing order. Imple­
ment it that way.

S 1 1 1 1 . >-O et sum = + - + - + · · · + - , given n
2 3 n

6.19 Suppose part of an input line has been read. Write a program segment
that reads the rest of the line and the end-of-line marker, and sets un­
used to the number of characters skipped (not including the marker).

6.20 The Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, ... ; the first member
is 0, the second is 1, and each successive member is the sum of the two
previous members. Implement the following actions.

(a) Print the Fibonacci numbers ~ limit.

(b) Print the first n Fibonacci numbers, given n ~ 0.

Hint: Consider the sequence of successive pairs, i.e. (0,1),
(1,1), ,(1,2), (2,3), (3,5), (5,8), (8,13), Since each successive
member of this sequence can be computed from the previous
member, our Sequential Search schemas are applicable.

6.21 Consider the action:

Set d = least divisor ~ 2 of m

(a) What is its postcondition?

(b) What is its precondition?

(c) Desk-check the given refinement.

6.22 Ask ~ friend to make a minor change to one of your programs, prefer­
ably one you have not thought about for a while. Suggested changes
are altering a variable, deleting a statement, deleting part of a condi­
tion; the change should not introduce syntax errors. First try to find
the error by checking the points listed in the section 'Defensive pro­
gramming.' Then, if necessary, test by execution.

138 PROGRAMMING USING MACINTOSH PASCAL

7 ______ _
FUNCTIONS
The Form remains, the Function never dies.
- William Wordsworth, The River Duncton

7.1 Predefined functions: A review
7.2 User-defined functions
7.3 Functions as subprograms

7.3.1 Syntax of function-declarations
7.3.2 Invoking a function

7.4 Writing functions
7.4.1 Modularity

7.5 Macaveats
Exercises

140
141
143
143
145
147
149
151
151

7 .1 Predefined functions: A review
In Chapter 5 we met some of Pascal's required functions. Examples
are abs, exp, In, chr, and odd. Each one of these is a function in the
mathematical sense; i.e. when supplied with a value (called an argu­
ment), it gives back a value (said to be the result of applying the func­
tion to the argument). For example, abs(-3.8) gives 3.8, odd(1987)
gives true.

Each of the required functions happens to have one argument
(even eof and eoln, whose file argument may be implicit). But the
concept of a function allows for an arbitrary list of arguments, and
there is nothing to stop an implementation supplying a predefined
function that takes more than one argument, or even no arguments.
(Macintosh Pascal has several; see, for example, the functions
associated with strings given in Chapter 14.)

The Standard's term for the application of a function to an argu­
ment list is a function-designator. A function-designator is an expres­
sion which belongs to the syntactic category factor. Its argument list is
called an actual-parameter-list. We recall the relevant definitions from
Chapter 5:

factor: variable I unsigned-constant I function-designator I
(expression) ·1 not factor

function-designator: function-identifier (actual-parameter-list)
function-identifier: identifier
actual-parameter-list: actual-parameter ... , actual-parameter
actual-parameter: actual-value
actual-value: expression

Predefined functions play a useful role in programs even when
the service that they perform is a very simple one. We could, for
example, replace every application of odd by an equivalent expression:
odd(x * y) could be replaced by x * y mod 2 = 1, odd(a + b) by
(a + b) mod 2 = 1, and, in general, odd(i) by (i) mod 2 = 1.

140 PROGRAMMING USING MACINTOSH PASCAL

Similarly, but with more trouble, every use of abs could be avoided by
using extra variables and conditional statements.

But the effect would be deleterious even in these very simple
cases, let alone those where non-trivial algorithms are needed to
compute the result (of an application of arctan, for example). It is
apparent that predefined functions make an important contribution to
the clarity of our programs. Because applications of predefined func­
tions do not have to be refined, programs are shorter and, more
importantly, higher-level than they would otherwise be, and localiza­
tion is increased, meaning that closely related parts of a program are
textually closer.

There are many occasions in programming when what we do
abstractly is to apply a function. If it is predefined, we are in luck. But
chances are it will not be. Nevertheless, the advantages mentioned
above can still be obtained in Pascal, because we can define our own
functions, and thereafter use them in just the same way as predefined
functions. With user-defined functions, of course, it is necessary to
specify how to compute the result. But this is done in a separate sec­
tion of the program, and is only done once, no matter how many times
the function is used. The idea is to specify the result in terms of named
parameters, much like we did above with odd, where we denoted its
argument by i.

7 .2 User-defined functions
Here is an example of a simple but useful user-defined function.

function lsDigit (ch : char) : Boolean;
{ Returns true if ch is a digit, otherwise false. }
begin { lsDigit }

lsDigit := ('O' <= ch) and (ch <= '9')
end; { lsDigit }

The first line contains the function heading, which states that:

• The name of the function is lsDigit;
• It is used with a single argument of type char;
• In the definition of the function, the value of the argument is re­

presented by the name ch; it is called a formal parameter;
• The function gives a Boolean value.

Next comes a comment that defines the value of the function in
terms of its formal parameter. Together with the heading, it is all that

FUNCTIONS 141

needs to be known to use the function. Finally comes the statement­
part of the function. Its job is to compute the value of the function,
which is specified by assigning it to the name of the function. We need
to update the definition of assignment-statement to allow this:

assignment-statement: variable-identifier := expression I
function-identifier : = expression

The statement-part of lsDigit is minimal, as a single assignment state­
ment suffices to compute and specify the result.

The definition of a function is called a function-declaration.
Function declarations come just before the statement-part of a pro­
gram, i.e. after the variable-declarations. Our syntax definition for
block needs updating to reflect this:

block:
constant-definition-part
variable-declaration-part
function-declaration-part
statement-part

function-declaration-part:

I ~ction-declaration;
Here is a simple program that tests function lsDigit:

program TestlsDigit (Input, Output);
{ Interactively tests function lsDigit. Run for instructions. }

var
c : char; { latest character read }

function lsDigit (ch : char) : Boolean;
{ Returns true if ch is a digit, otherwise false. }
begin { lsDigit }

lsDigit := ('O' <= ch) and (ch <= '9')
end; { lsDigit }

begin { TestlsDigit}
Writeln('Type characters one at a time, waiting for a response

before typing another. Finish by typing a period (.).');
repeat

Read(c);
if lsDigit(c) then

Writeln(' is a digit.')
else

Writeln(' is NOT a digit.')
until c = '.'

end. { TestlsDigit}

142 PROGRAMMING USING MACINTOSH PASCAL

D Te Ht
Type characters one at
before typing another.
Q s NOT a digit.

a time, waiting for a response~
Finish by typing a period(,), Imm

I
Q s a digit.
l s NOT a digit.
l s a digit.
~ s a digit.
~ s NOT a digit.
~ s NOT a digit.

Typical output is shown in Figure 7 .1, with input underlined.

~

Two points should be noted now. First, the function is used to
form a Boolean expression. It takes exactly one argument, which may
be any expression of type char. Thus, for example, we may write not
lsDigit(chr(100)). Second, a function-declaration is always followed by
a semicolon. Because our practice is to follow that with a comment
giving the name of the function, whenever we present a function­
declaration we add the semicolon at the end, in order not to mislead
the reader.

Here is a declaration of another function; it has two formal para­
meters.

function power (a, b : real) : real;
{ Assumes a > O; }
{ returns a to the power b. }
begin { power }

power:= exp(b * ln(a))
end; { power }

Exercise 7.4 explains how to test this function with minimal pro­
gramming effort. Note that you need not understand how it computes
its result - to test or otherwise use it, you need know only its heading
and associated comment, which define how to use it and what value it
returns. Testing it will reveal that both real and integer arguments are
acceptable, just as with predefined functions that expect real argu­
ments, such as sin. The result, though, is always real. Also, of course,
you will observe that the order of the arguments is important.

7 .3 Functions as subprograms
7.3.1 SYNTAX OF FUNCTION-DECLARATIONS

The value to be returned by a function may require a complex algo­
rithm for its calculation. Pascal therefore allows all its resources to be
brought to bear, and decrees that the body of a function should be a

Figure 7.1
The text window after a
run of TestlsDigit.

FUNCTIONS 143

block. That means that a function-declaration can introduce its own
constants, variables, and even other functions if need be, since we
now know that blocks may have function-declarations. Function­
declarations are called subprograms, for obvious reasons.

function-declaration:
function-heading ;
function-body

function-heading:
function function-identifier (formal-parameter-list) : result-type

result-type: type-identifier
type-identifier: identifier
function-body: block
formal-parameter-list:

formal-parameter-section . . . ; formal-parameter-section
formal-parameter-section: value-parameter-section
value-parameter-section: identifier-list : parameter-type
parameter-type: type-identifier

All examples but the next in this chapter have a formal­
parameter-list consisting of a single formal-parameter-section. You will
need more than one if there is more than one type of formal parameter.
For example:

function ForceUpper (ch : char; upper : Boolean) : char;
{ If ch is a lower-case letter and upper is true, }
{ returns the upper-case version of ch, otherwise ch. }

Thus, for example:

rules:

ForceUpper('a', false)
ForceUpper('x', true)
ForceUpper('&', true)

gives
gives
gives

'a'
'X'
'&'

There are some requirements that are not captured by the above

• The result-type of a function must be an unstructured type; for
now, just note that all the types we have met so far are un­
structured.

• The statement-part of the function-body must include at least
one assignment to the function-identifier.

• Although the function-identifier may appear on the left of an
assignment statement, it may not be used in an expression as if
it were a variable. (But see Chapter 18 on recursion.)

144 PROGRAMMING USING MACINTOSH PASCAL

A function-declaration limits the class of legal function­
designators in two ways:

(1) The number of arguments must equal the number of formal
parameters.

(2) Each argument expression must be assignment-compatible with
a variable of the corresponding formal parameter's type.
Parameter/argument correspondence is by position; i.e. they are
paired off from left to right.

Here is an example of a function with a more complex body:

function lpf (n : integer) : integer;
{Assumes n > 1;}
{ returns the least prime factor of n. }

var
d : integer; { candidate for a divisor of n }

begin { lpf}
{ Set d = least divisor > 1 of n }

d := 2;
while n mod d <> 0 do

d := d + 1;

lpf := d
end; { lpf}

It will doubtless seem familiar, because it incorporates the solution to a
subproblem of the next prime problem in Chapter 6. Note that we
cannot dispense with d and work directly with lpf instead, because
lpf : = lpf + 1 is illegal.

7.3.2 INVOKING A FUNCTION

A function is invoked during the evaluation of an expression that in­
cludes one of its function-designators. The following sequence of events
then occurs:

(1) Each argument (actual parameter) is evaluated.
(2) For each formal parameter, a quasi-variable is created and

assigned the value of the corresponding argument (which is why
it must be assignment-compatible). The quasi-variable
henceforth behaves as if it was a variable.

(3) For each variable declaration in the variable-declaration-part of
the function-declaration's block, a variable is created with an un­
defined value.

FUNCTIONS 145

(4) The statement-part of the function-declaration's block is
executed. It may refer to the parameters, which denote their
corresponding quasi-variables, and the variables created in. step
(3). Any constants or functions introduced by the function­
declaration's block are also available. Values of the function's
type may be assigned to the function-identifier.

(5) When execution of the previous step terminates, the last value
assigned to the function-identifier becomes the value of the
function-designator. It is an error for this value to be un­
defined. Furthermore, all quasi-variables introduced for para­
meters in step (2) are exterminated, and all variables created in
step (3) are annihilated.

In summary, the function's block is treated just the same as the pro­
gram's (or any other block).

Let us trace the evaluation of the function-designator lpf(m),
where m is an integer variable declared in the same block as the func­
tion.

(1) The argument (actual parameter) mis evaluated, giving, say, 9.

block invoking lpf
m

. . . [!] m gives 9

(2) A quasi-variable is created for the formal parameter n of lpf, and
initialized to 9.

block invoking lpf
m

... [!]

block of lpf
n

[!]

(3) The variable d of lpf is created with an undefined value.

block invoking lpf
m

... [!]

block of lpf
n d

[!] [TI

146 PROGRAMMING USING MACINTOSH PASCAL

(4) The statement-part of lpf is executed. On completion we have:

block invoking lpf
m

... IT]

block of lpf
n d

IT] QJ
last value assigned to lpf: 3

(5) Execution terminates: 3 is the value of the function-designator;
all quasi-variables and variables introduced in steps (2) and (3)
are destroyed. Execution continues in the context of the expres­
sion that included lpf(m).

block invoking lpf
m

... [!] lpf(m) gives 3

7.4 Writing functions
When writing a function it is very important that you do not try to
think in terms of the previous pictorial illustration of a function invoca­
tion. That is strictly behind-the-scenes stuff, to clarify and illustrate
the discussion prior to it. No, you write a function-declaration by
solving a programming problem in the usual way - with stepwise re­
finement. The problem is to assign the result of the function to the
function-identifier, and you may treat the formal parameters as vari­
ables which have already been given values.

The description of step (4) of invoking a function is not the
whole truth, though it is the truth and nothing but the truth, because a
function-declaration's statement-part may refer to additional para­
meters, constants, variables, and functions. For example, it may refer
to any of these that are predefined, such as the constant pi and the
function succ. The issue here is what is available in a given part of a
program. It is dealt with fully in the next chapter, under the rubric of
Scope rules. OK?

For the present, let us restrict our interest to function­
declarations. A function-declaration makes the function available
throughout the block in whose function-declaration-part it is declared.
There are two riders to this stipulation, however. One is that Pascal
follows the principle of declaration before use, which means what
it says: in particular, if a function G makes use of another

FUNCTIONS 147

function F declared in the same function-declaration-part, then the
declaration of F must come first. The other rider is that a function­
identifier may be reused for some other purpose, decreasing the region
of availability of the function. Again, refer to the next chapter for the
full story.

An example should clarify matters. Consider the following
program:

program Primes (Input, Output);
{ Prompts for and reads an integer, and prints all the prime }
{ numbers not exceeding it, in increasing order. }

var
limit, { bound on size of prime numbers }
n, { a number to be tested for primality }
i { n = i'th odd number}

: integer;

{ (A) FUNCTION lpf CAN BE DECLARED HERE }

function lsPrime (n : integer) : Boolean;
{ Returns true if n is prime, i.e. a number > 1 whose only }
{ divisor > 1 is itself; otherwise returns false. }

{ (B) OR FUNCTION lpf CAN BE DECLARED HERE }

begin { lsPrime }
lfn<2then

lsPrime :=false
else

lsPrime := lpf(n) = n
end; { lsPrime }

{ (C) BUT FUNCTION lpf CANNOT BE DECLARED HERE }

begin { Primes }
Write('Enter bound on size of prime numbers: ');
Readln(limit);
Writeln('The primes not exceeding ', limit : 1, ' are as follows:');
if limit>= 2 then

begin
{ Print the only even prime }
Write(2);
{ Print in order the odd primes < = limit }
for i := 2 to (limit+ 1) div 2 do

begin
n := 2 * i-1;
if lsPrime(n) then

148 PROGRAMMING USING MACINTOSH PASCAL

Write(n)
end {for-loop}

end { limit > = 2 }
end. { Primes }

7.4.1 MODULARITY

Position (B) is the most natural one for the declaration of lpf. For then
we read program Primes as declaring three variables and the function
lsPrime, which are all that it uses in its statement-part. And reading
deeper, we see that ls Prime declares a function lpf, which is then used
in its statement-part. Function lsPrime is completely self-contained:
its only interaction with its environment is per medium of its formal
parameter. We say it is modular. So also is function lpf, wherever it is
declared.

Modularity is a Good Thing: a modular function can be read
and completely understood without any knowledge of the program that
uses it. It can be tested independently, and incorporated in any pro­
gram with complete confidence. It can also be included in a library of
functions to be made available to any program.

Principle A subprogram should be modular: it should interact
with its environment solely through its formal parameter(s).

A function that performs input or output is not a function in the
mathematical sense. One may debate whether Real Men eat quiche,
but certainly Real Functions do not change anything - they only
compute a value. It makes no sense for evaluation of an expression to
affect the input or output streams, except where output is necessary to
signal an error condition.

Principle Functions should not move the input position, and
should only produce output to signal an error condition.

Note that this principle permits functions with file parameters, such as
eoln, as long as they do not affect them.

If lpf is declared in position (A), we read program Primes as
declaring two functions, each of which is· therefore available throughout
the program (i.e., throughout the program's block). So lpf may be
used by lsPrime, as the requirement of declaration-before-use is met.
In this version, lsPrime is not completely independent of its environ­
ment: it can only be used by a program that makes function lpf avail­
able to it. A comment should indicate this.

Principle If a subprogram makes an assumption about its envir­
onment, the comment accompanying its heading should say so.

FUNCTIONS 149

Modularity is not an absolute thing; there are degrees of it. With
lpf declared in position (A), function lsPrime fails to be completely
modular in a relatively minor way; a way, moreover, that is often un­
avoidable in practice without going to ridiculous extremes. For
example, consider a program that needs to make use of both lpf and
lsPrime. It makes sense to declare them as above with lpf in position
(A); the alternative is to make lsPrime fully modular by redeclaring lpf
in it, and that is ridiculous. A similar situation is where a program
needs to use two functions, each of which needs to use another. In that
case, all three should be declared at the same level, with the latter first.
The upshot is that declaring lpf at (A) is so familiar that some would
not consider it at all stylistically inferior. You pay your money and
you take your choice. Position (C) is illegal for declaring lpf because it
is used beforehand.

Another advantage of modularity is that the body of a function
can be replaced by another with no change to the results of any pro­
gram that uses it (except if results depend on timing considerations).
It is only necessary that the new body implements the comment
accompanying the function-heading. A reason, by the way, why such
comments should be as precise as possible. Thus improvements in the
efficiency of the calculation of the function's value can be made in­
dependently of its use.

Here is an example of this possibility. The calculation for func­
tion lpf can be sped up considerably by exploiting the fact that if the
smallest divisor of a number n > 1 exceeds Vn then it must be n
itself. Accordingly, we might like to replace the original lpf by the
following version, and can do so with impunity.

function lpf (n : integer) : integer;
{ Assumes n > 1 ; }
{ returns the least prime factor of n. }

var
d : integer; { candidate for a divisor of n }

begin { lpf}
{ Set d = minimum of: (a) least divisor > 1 of n, and }
{ (b) least integer >= sqrt(n) }

d := 2;
while (n mod d <> 0) and (sqr(d) < n) do

d := d + 1;

ifnmodd=Othen
lpf := d

else
lpf := n

end; { lpf}

Exercise 7 .12 invites you to make yet another improvement to the
efficiency of lpf.

ISO PROGRAMMING USING MACINTOSH PASCAL

7 .5 Macaveats
Macintosh Pascal allows the result-type of a function to be any structured
type (not being or containing a file-type). This is a very welcome
extension.

EXERCISES
7 .1 Complete the following partial function-declaration:

function lsletter (ch: char) : Boolean;
{ Returns true if ch is a letter, otherwise false. }
{ N.B. Assumes both upper- & lower-case letters contiguous. }

7 .2 Complete the following partial function-declaration:
(a) using the required function odd,
(b) without using odd.

function even (i : integer) : Boolean;
{ Returns true if i is even, otherwise false. }

7 .3 Write a function that returns the maximum of two integers.

7 .4 Test function power by first declaring it in a skeletal program, such as
Program Untitled. Then choose Step from the Run menu to process the
declaration. Finally, use the Observe window to evaluate the function
with various argument lists.

7.5 Package the solution to Exercise 6.7(b) as a function.

7 .6 Use function lsPrime to implement the original high-level solution to
the next prime problem in Chapter 6.

7. 7 Solve Exercise 6.18 by declaring and using a suitable function.

7.8 Write a function that returns the cost of mailing a letter when given its
weight. Use the information in Exercise 5.8.

7.9 Write function ForceUpper. It may assume that both the lower- and
upper-case letters are contiguous.

7.10 Test your function ForceUpper by writing a program along the lines of
program TestlsDigit.

7 .11 Modify program Primes to print the primes 10 to a line. Hint: Count
up to 10 and start again.

FUNCTIONS 151

Table 7.1 Bizarro
multiplication of 109 by 57.
(Exercise 7 .13)

Table 7.2 Computing
gcd(5460,294) by Euclid's
algorithm.

First Second Sum

57 109 109
28 218 109
14 436 109
7 872 981
3 1744 2725
1 3488 6213

7 .12 Speed up function lpf even further by exploiting the fact that the small­
est divisor > 1 of a number > 1 is either 2 or odd.

7 .13 The denizens of the planet Bizarro multiply two integers > 0 as
follows. Call the smaller the first number, and the larger the second.
The first is repeatedly halved as the second is doubled, until the first
becomes 1. But whenever the first is odd, the second is added to a
cumulative sum. The answer is the final sum. The Bizarro-calculation
of 109 x 57 = 6213 is shown in Table 7.1.

Write a function that multiplies two integers > 0 by this method. It
should not use any multiplications, and should avoid an unnecessary
doubling at the end. If that was too easy, modify your solution to
handle any integers.

7.14 One of the earliest recorded algorithms is Euclid's beautiful method for
calculating gcd(x, y), the greatest common divisor of two non-negative
integers x, y, which is defined as long as both integers are not zero. It
is based on three facts:

(1) gcd(O, y) = y, if y :I= 0,

(2) gcd(x, y) = gcd(x, y mod x), if x :I= 0,

(3) gcd(x, y) = gcd(y, x).

Table 7.2 illustrates the method applied to calculating gcd (5460, 294).
In each line, gcd (x, y) is the same, by (2) and (3). In the last line, it
is 42, by (1), which is therefore the answer.

Write Euclid's algorithm as a function.

x y ymodx

5460 294 294
294 5460 168
168 294 126
126 168 42
42 126 0
0 42 (illegal)

152 PROGRAMMING USING MACINTOSH PASCAL

8 ______ _
PROCEDURES
'In such cases,' said the Owl, 'the customary procedure is as follows.'
'What does Crustimoney Proceedcake mean?,' said Pooh. 'For I am a
bear of very little brain, and long words bother me.'
'It means the thing to do.'
- A. A. Milne, Winnie the Pooh

8.1 Introduction 154
8.2 Parameterless erocedures 154
8.3 Parameters 157

8.3.1 Value Qarameters 157
8.3.2 Variable Qarameters 159
8.3.3 Aliasing 162
8.3.4 S~ntax of Qrocedure-declarations 163

8.4 Pascal's earameter mechanism: A summary 163
8.4.1 S~ntax 163
8.4.2 Function-declarations 164
8.4.3 Procedure-declarations 164
8.4.4 Value Qarameters 164
8.4.5 Variable Qarameters 164
8.4.6 Which kind of 2arameter? 164
8.4.7 Formal and actual Qarameter corresQondence 165
8.4.8 Local variables 165
8.4.9 Function invocation 165
8.4.10 Procedure invocation 165

8.5 Scope 166
8.5.1 The issue of sco2e 166
8.5.2 Sco2e rules 166
8.5.3 ScoQe rules and the 2rogrammer 169
Exercises 170

8.1 Introduction

Suppose you look up a recipe in a well-organized cook book. You will
notice that the recipes are quite short - most in The Joy of Cooking,
for instance, occupy only half a column or so - because they
frequently refer the reader to other recipes that explain how to prepare
certain ingredients, or perform certain stock techniques (so to speak).
And these subrecipes are presented in exactly the same way.

The benefits are great. Each recipe is read easily and quickly,
because details do not get in the way. There is no loss of precision,
though, because the details can be pursued elsewhere. Furthermore,
much space is saved, because the preparation of a common ingredient
or the way to perform an important technique needs to be explained
once only.

With stepwise refinement, we create programs by giving high­
level descriptions and then refining their component parts. But, with
our present knowledge, the details can be removed only when sub­
problems are solved with predefined procedures. Imagine how much
worse off we would be if, for instance, each read of a real value had to
be spelled out in detail, on the spot, with all the complications of read­
ing a character at a time, processing a sign, a decimal point, an
exponent, and so on.

Well, have we got good news for you! Because all the advantages
of predefined procedures are available to you in the privacy of your
own programming environment. All you need is Pascal's facility to
define your very own procedures. Once you have tried them, you'll
never know how you did without.

8.2 Parameterless procedures
Recall our first refinement of program CharacterSet:

154 PROGRAMMING USING MACINTOSH PASCAL

Print column numbers ;
Print top of box ;
Print rows 0 to 15, with row number & left & right sides of box ;
Print bottom of box

Two of the high-level actions have exactly the same refinement, viz.
Print top of box and Print bottom of box. Instead of refining each as in
Chapter 6, we can define a procedure and use it twice. The definition
is called a procedure-declaration. The one we need is as follows. (As
with function-declarations, we always present procedure-declarations
with the following semicolon.)

procedure PrintBoxSide;
{ Prints line representing top or bottom of box. }
var

col : integer; { column number }
begin { PrintBoxSide }

Write('--' : 5);
for col:= 0 to 15 do

Write('---');
Writeln('-')

end; { PrintBoxSide }

This should be reminiscent of a function-declaration, because it
is also a subprogram. The first line is the heading, which in this case
simply names the procedure, which is parameterless, i.e. has no
formal parameters. The accompanying comment describes what the
procedure does, and the block that follows specifies how it does it. All
we have done is incorporate the statement-list used as the original re­
finement in the statement-part, and declare that it uses variable col.
Like variables declared in a function-declaration, col is said to be local
to the procedure.

Procedure-declarations appear in the same part of a block as
function-declarations. We update the syntactic description of a block to
reflect this.

block:
constant-definition-part ;
variable-declaration-part ;
procedure-and-fanction-declaration-part ;
statement-part

procedure-and-function-declaration-part: I ~ocedure-or-fanction-declaration ;
procedure-or-function-declaration:

procedure-declaration I /Unction-declaration

PROCEDURES 155

Having declared a procedure, a new statement, called a
procedure-statement, becomes available. The act of executing it is
called a procedure call. We also take the opportunity to treat input­
statements and output-statements syntactically as procedure-statements
with special actual-parameter-lists.

simple-statement: empty-statement assignment-statement
procedure-statement

A parameterless procedure's procedure-statement consists solely of its
name. So, in program CharacterSet, the two high-level actions are re­
fined as follows:

{ Print top of box }
PrintBoxSide

{ Print bottom of box }
PrintBoxSide

The effect of each of these procedure-statements is to execute the
block of the procedure-declaration. The variable col is created with an
undefined value, and then the statement-part is executed, which uses
col to print a horizontal side of the box. On completion, variable col
disappears.

A great advantage of this solution over the original is that the re­
finement for printing a side is specified just once, saving space and re­
ducing the opportunity for error. But also, because details are re­
moved, the program is more readable and the high-level solution is
more apparent. This latter property is sufficiently important to justify
implementing a high-level action with a procedure-statement, even
when it is the procedure's only use.

We can do this for one of the two remaining high-level actions
of program CharacterSet with a parameterless procedure:

procedure NumberColumns;
{ Prints column numbers. }

var
col : integer; { column number }

begin { NumberColumns }
Write(' ' : 4);
for col :=Oto 15 do

Write(col : 3);
Writeln

end; { NumberColumns }

The refinement becomes just:

156 PROGRAMMING USING MACINTOSH PASCAL

NumberColumns

Retaining the original description of the high-level action as a comment
is hardly worthwhile here. The comments for the refinements using
PrintBoxSide were retained because they add information, although it
is so slight as to make the decision a finicky one.

8.3 Parameters
8.3.1 VALUE PARAMETERS

The remaining high-level action in the original refinement of program
CharacterSet exactly matches a schema, giving the refinement:

{ Print rows o to 15, with row number & left & right sides of box }
for row:= o to 15 do

Print row of table numbered with row

There is no reason to use a procedure-statement for this refinement,
both because there is hardly any detail worth hiding, and because
printing a line of the table is the appropriate level of abstraction, since
that is what each of the other high-level actions does.

But the component action is another matter. Here the computa­
tion to be performed depends on a value, namely that of row, so we
declare a procedure with a single parameter:

procedure PrintRow (RowNumber: integer);
{ Prints row of table, consisting of row number, left side of box, }
{characters in row, and right side of box. }
con st

OrdOfSpecialCC = 127; { ord value of isolated control
character}

var
col, { column number }
OrdValue { ordinal value of character to be printed }

: integer;
begin { PrintRow }
{ Print start of row, with control characters in cols 1,2 }

Write(RowNumber : 2, ' I CC CC');
{ Print remaining characters in row }

for col:= 2 to 15 do
begin

OrdValue := col * 16 + RowNumber;
If OrdValue = OrdOfSpecialCC then { indicate control

character}
Write(' CC')

PROCEDURES 157

else
Write(chr(OrdValue) : 3)

end;
{ Print end of row }

Writeln(' I')
end; { PrintRow }

We have used the modification requested in Exercise 6.14 that in­
dicates that chr(127) is a control-character, and added comments
because of the extra complication.

The formal parameter RowNumber is called a value-parameter.
It is the kind of parameter used for functions in the previous chapter.
The procedure statement:

PrintRow(row)

that refines the body of the loop is executed in much the same way as a
function-invocation, i.e. the actual-parameter row is evaluated, the re­
sulting value is assigned to the quasi-variable created for RowNumber,
the local variables col and OrdValue are created, and the statement­
part of the procedure-declaration is executed. The only difference is
that there is no notion of a result, so that it is illegal to assign a value
to the procedure-identifier, and that the invocation is from a statement
rather than an expression.

The three procedures that were introduced for program Char­
acterSet are all modular, in the sense of depending only on their para­
meters (if any). But they are nevertheless not independent, because
they each make common assumptions about how the character-set table
is to be formatted. The best way to document their mutual dependence
is to make them procedures that are declared by a master procedure
that prints the character-set. This done, the program to print the
character-set is as follows. The blocks for each of the low-level
procedures have been omitted.

program CharacterSet (Output);
{ Prints the Macintosh Pascal character-set. }

procedure PrintCharacterSet;
{ Prints character set column by column from the left, }
{as in Macintosh Pascal Technical Appendix.}

var
row : integer; { number of row }

procedure PrintBoxSide;
{ Prints line representing top or bottom of box. }

158 PROGRAMMING USING MACINTOSH PASCAL

procedure NumberColumns;
{ Prints column numbers. }

procedure PrintRow (RowNumber: integer);
{ Prints row of table, consisting of row number, left side of box, }
{characters in row, and right side of box. }

begin { PrintCharacterSet }
NumberColumns;

{ Print top of box }
PrintBoxSide;

{ Print rows 0 to 15, with row number & left & right sides of box }
for row:= o to 15 do

PrintRow(row);
{ Print bottom of box }

PrintBoxSide
end; { PrintCharacterSet }

begin { CharacterSet }
PrintCharacterSet

end. { CharacterSet }

Notice that procedure PrintCharacterSet declares only a single
variable, viz. row, since that is all it uses. The program itself uses no
variables. The important thing to appreciate is how much more read­
able this version of the program is than the procedureless original (with
the modification to handle chr(127)). Each subprogram has a short
and easily understood statement-part, either because it is simple
(NumberColumns, PrintBoxSide, PrintRow), or because the details are
handled by calls of other procedures (PrintCharacterSet, Char­
acterSet).

8.3.2 VARIABLE PARAMETERS

It often happens that a program segment which we would like to en­
capsulate as a subprogram changes the value of one or more variables
that belong to the environment of its use. If only one variable is
affected, and there is no input or output, a function is the appropriate
form of subprogram: the variable can simply be assigned the value of
the function.

But suppose more than one variable is affected, or that input or
output is performed. Then a procedure is called for (if you'll pardon
the expression). Since the procedure should be modular, any variables
that it affects should be actual parameters of the call. But they cannot
be the kind of parameters we have used so far, because value para-

PROCEDURES 159

meters are only capable of sending information (in the form of values) to
a procedure, not receiving information (in the form of changed values of
variables) from it.

Pascal provides another kind of parameter for such occasions,
called a variable parameter. Variable parameters are signaled by the
appearance of var at the front of their formal-parameter-section of the
formal-parameter-list. A variable formal parameter acts as a temporary
name for the variable which must be supplied as the corresponding
actual parameter in the procedure-statement.

Here is an example. In program JobScheduler1 from Chapter 6
the following refinement occurs.

{ Assign job to processor and update statistics }
if Tota1Time0n1 <= Tota1Time0n2 then

Assign to processor I and update statistics
else

Assign to processor 2 and update statistics

Each of the two component high-level actions involves the same
computation, except that some of the variables involved depend on the
action.

The best way to refine these actions is with the help of a single
procedure:

procedure schedule (duration, processor : integer;
var StartTime, sum : integer);

{ Schedules job of length duration on given processor, starting at }
{ time StartTime: outputs scheduling decision; updates StartTime }
{ to the starting time for the next job on this processor; updates }
{ the sum of completion times (sum) of all jobs. }
begin { schedule }

Writeln('Job assigned to processor ', processor : 1, '.');
StartTime := StartTime +duration;
sum:= sum+ StartTime

end; { schedule }

The refinement becomes:

begin { Assign job to processor and update statistics }
JobCount := JobCount + 1;
if Tota1Time0n1 <= Tota1Time0n2 then

schedule(JobTime, 1, Tota1Time0n1, SumOfCompletionTimes)
else

schedule(JobTime, 2, Tota1Time0n2, SumOfCompletionTimes)
end

160 PROGRAMMING USING MACINTOSH PASCAL

This example shows that the role of formal parameters is not just to
capture the variation in effects between different calls of a procedure,
but also to make procedures modular. Some of the actual parameters
may, in practice, be the same in all uses of a procedure, as happens
with the first and fourth parameters above.

An actual variable parameter must be a variable of the same type
as the formal parameter. When a procedure-statement is executed, a
variable formal parameter becomes a temporary name for the actual
parameter variable; any operation on the formal parameter is an opera­
tion on that variable. The temporary name is rescinded when execution
of the procedure's statement-part is completed.

Let us trace the execution of the procedure-statement:

schedule(JobTime, 1, Tota1Time0n1, SumOfCompletionTimes)

after input of 4, 4, has been processed, and the next input value 6 has
been read into variable Job Time. (This is not part of the run illustrated
in Figure 6.1.)

(1) The actual value parameters JobTime and 1 are evaluated.

block of JobScheduler1

JobTime gives 6 1 gives I

Tota1Time0n1 SumOfCompletionTimes m m
(2) The quasi-variables for the value formal parameters duration and

processor are created and initialized, and the variable formal
parameters StartTime and sum are made temporary names of
their corresponding actual variable parameters.

block of JobScheduler1

To1a1i:imeon1 sumOrCmtionTimes

~~ sum

duration processor
IT] [!]
block of schedule

(3) (Procedure schedule has no local variables.)

PROCEDURES 161

(4) The statement-part is executed. On completion, the situation is
as shown below. (That the output stream has been appended to
is not shown.)

block of JobScheduler1

Tota1Time0n1 SumOfCompletionTimes

or ~
Start Time sum

duration processor
[!] [!]
block of schedule

(5) All the information introduced for the execution of the
procedure-statement vanishes. Execution resumes in Job­
Scheduler1 .

block of JobScheduler1

Tota1Time0n1 SumOfCompletionTimes
[!QJ [!!]

The action Write statistics in JobScheduler1 is also ripe for
implementation with a procedure-statement; see Exercise 8.6.

8.3.3 ALIASING

Suppose two actual variable parameters are the same. When the
procedure-call is executed, two formal variable parameters will each act
as a temporary name of the actual parameter. This phenomenon is
known as aliasing, and it is Bad News. For example, suppose x and y
are two formal variable parameters aliased to the same integer actual
variable parameter. Then, after execution of:

y := O;
x := x + 1

the value of y is 1 !
We almost always solve programming problems under the

assumption that different identifiers name different variables. When
this is violated, anything can happen, and probably will.

Principle A void procedure-calls with identical actual variable
parameters.

162 PROGRAMMING USING MACINTOSH PASCAL

8.3.4 SYNTAX OF PROCEDURE-DECLARATIONS

Except for minor differences in their headings, procedure-declarations
have the same syntax as function-declarations.

procedure-declaration:
procedure-heading ;
procedure-body

procedure-heading:
procedure procedure-identifier (formal-parameter-list)

procedure-body: block

8.4 Pascal's parameter mechanism:
A summary

8.4.1 SYNTAX

We need to update our syntax descriptions to accommodate variable
parameters. First come formal-parameter-sections of formal­
parameter-lists:

formal-parameter-section: value-parameter-section I
variable-parameter-section

variable-parameter-section: var identifier-list : parameter-type

Note that a var at the head of a formal-parameter-section affects only
the identifiers in that section; each section of variable formal para­
meters must be headed by var.

Next come actual-parameters of function-designators and
procedure-statements:

actual-parameter: actual-value I actual-variable
actual-variable: variable

Note that the last definition does not state that an actual-variable must
be a variable, only that it has the same syntax as a variable. It is
perfectly normal for actual-variables to be formal parameters of the
procedure whose statement-part contains the procedure-statement.

The syntax definitions do not distinguish between the formal- or
actual-parameter-lists of functions and procedures. That is to say, func­
tions may have variable parameters. But except for reasons of efficiency
concerned with large structured variables (which we have yet to meet),
it is not a good idea to exploit this loophole, because functions should
not change their environment. A function that sins against this
principle by moving the input position, producing output, or changing

PROCEDURES 163

the value of a variable (via a variable parameter, for instance), is said to
have side-effects. This is a pejorative term.

Principle Functions should not have side-effects.

8.4.2 FUNCTION-DECLARATIONS

A function-declaration associates a name with a parameterized subpro­
gram that computes a value of a specified type. A comment should
specify what value is returned, in terms of the parameters, if any. In
the statement-part of a function-declaration, the name of the function
may be assigned values of the result-type of the function. Function
declarations come after the variable-declaration-part of a block.

8.4.3 PROCEDURE-DECLARATIONS

A procedure-declaration associates a name with a parameterized sub­
program that performs some clearly defined action. A comment should
specify what the procedure does, in terms of its parameters, if any.
Procedure declarations come after the variable-declaration-part of a
block.

8.4.4 VALUE PARAMETERS

A value formal parameter acts like a local variable that is initialized to
the value of its corresponding actual parameter (argument), which must
be an expression that is assignment-compatible with the type of the
parameter. An assignment to a value formal parameter has no effect on
its corresponding actual parameter, even if it happens to be a variable.

8.4.5 VARIABLE PARAMETERS

A variable formal parameter (also called a var-parameter) acts as a
temporary local name for its corresponding actual parameter, which
must be either a variable or a formal parameter of the same type. An
assignment to a variable parameter changes the value of its correspond­
ing actual parameter.

8.4.6 WHICH KIND OF PARAMETER?

Functions should use only value parameters. The only exception to this
rule concerns large structured types (see Chapter 11). When a
procedure only needs a value, use a value parameter. Such a parameter
is sometimes called an input parameter, because it transmits input

164 PROGRAMMING USING MACINTOSH PASCAL

to the procedure; e.g. formal parameter RowNumber of procedure
PrintRow. When a procedure only returns a value, use a variable
parameter. Such a parameter is called an output parameter, because
it receives output from a procedure; e.g. both parameters of the pre­
defined procedure GetMouse. When a procedure updates a value, use
a variable parameter. Such a parameter is both an input and output
parameter; e.g. formal parameter sum of procedure schedule. These
terms are not entirely happy choices: the parameters of the predefined
input procedure Read are output parameters, and those of the pre­
defined output procedure Write are input parameters!

Exercise 8.4 highlights the difference between value and variable
parameters.

8.4. 7 FORMAL AND ACTUAL PARAMETER
CORRESPONDENCE

Formal and actual parameters are matched by position, i.e. they are
paired off according to their positions in their respective sections.
There must be the same number of parameters of each kind. Actual
value parameters are expressions; actual variable parameters are vari­
ables or formal parameters.

8.4.8 LOCAL VARIABLES

Local variables are created, with undefined values, when a subprogram
is invoked. They are used during execution of the subprogram's
statement-part, and are disposed of when that execution is completed.

8.4.9 FUNCTION INVOCATION

A function is invoked when one of its function-designators is evaluated
as part (or all) of the evaluation of an expression. Execution of the
statement-part of the function-declaration should assign a value to the
function-identifier. The last value so assigned becomes the value of the
function-designator.

8.4.10 PROCEDURE INVOCATION

Procedure invocation occurs when a procedure-statement is executed.
Execution of the statement-part of the procedure-declaration may either
change the values of actual variable parameters, or produce output, or
cause input to be read, or a combination of these actions.

PROCEDURES 165

8.5 Scope
8.5.1 THE ISSUE OF SCOPE
Predefined constants, functions, and procedures may be used anywhere
in a program - as long as they are not used by the programmer for
another purpose. Because it is perfectly acceptable to reuse a pre­
defined identifier for our own purposes, in which case our definition or
declaration takes precedence - predefined identifiers are not, after all,
reserved words. And it is just as well, because the number of such
identifiers in Macintosh Pascal is quite large. We, too, would some­
times like to make constants, functions, or procedures available
throughout a program, or, in general, in particular parts of a program.

The issue here is that of scope. The scope of a definition or
declaration is the textual part of the program in which it is in effect. It
is accepted practice to refer to the scope of an identifier to mean that of
its definition or declaration, and we shall occasionally do so. In Pascal,
scope is defined in terms of blocks. A block, we recall, is all but the
heading of a program, function-declaration, or procedure-declaration.
A block may contain other blocks, since it may contain function- and
procedure-declarations. We say that blocks may be nested, but blocks
never overlap. Because blocks are the carriers of definitions and
declarations, and the mediators of the scopes of their associated
identifiers, Pascal is said to be a block-structured language.

8.5.2 SCOPE RULES

Pascal's scope rules are simple and uniform. The first two define the
region of an identifier, which is its largest possible scope:

(1) The region of a definition or declaration is the smallest block in
which it occurs.

(2) The region of a formal parameter is its formal-parameter-list
together with the block that starts immediately after the heading
in which this list occurs.

A region is either a block, or a block and a little extra for a parameter.
All the blocks contained in this block are included in the region. The
third rule defines all scopes.

(3) The scope of an identifier is its region minus all other regions
for the same identifier that are contained within it.

The region of a predefined identifier is a notional block that contains
the entire program; this is a different region from the program's block.
Pascal has two requirements for definitions and declarations.

166 PROGRAMMING USING MACINTOSH PASCAL

program Primes (I input, Output I);
B

var
limit, n, i ; integer;

function lsPrime (I n : integer I) : Boolean;

D

function lpf (I n : integer I) : integer;

F

var
d: integer;

begin { lpf}

statement-list referring to n and d

~;{lpf} G

begin { lsPrime }

statement referring to lsPrime, lpf, and n

~; { lsPrime} E

begin { Primes }

statement-list referring to Write, Writeln, Readln,
limit, n, i, lsPrime

~.{Primes} c

A

(4) There cannot be more than one definition or declaration of an
identifier with the same region.

(5) An identifier may not be used before its defining point.

Let us look at these rules as they relate to program Primes
from Chapter 7, with function lpf declared in position (B), i.e. local to
function lsPrimes. The various regions of identifiers are shown in
Figure 8.1.

It is straightforward to check that rule (4) is obeyed. This allows
us unambiguously to specify a particular definition or declaration of an
identifier by also giving its region. Thus, for example, identifier n
whose region is D + E is the formal parameter of function lsPrime.
Similarly, we can check that rule (5) is obeyed.

Table 8.1 gives the region and scope of each identifier that
appears in program Primes. Region A is the notional block that en­
closes the program. These regions and scopes are found using scope
rules (1) to (3) above. Let us consider three examples.

Figure 8.1
Th.e regions of program
Primes.

PROCEDURES 167

Table 8.1 Scopes of all
identifiers in program
Primes.

Identifier Region Scope

Write A A
Writeln A A
Read In A A
integer A A
Boolean A A
Primes A A
Input B+C B+C
Output B+C B+C
limit c c
n c C-0-E
i c c
lsPrime c c
n D+E D+E-F-G
lpf E E
n F+G F+G
d G G

(a) The region for lsPrime is C, by rule (1). Since there are no
other definitions or declarations of the identifier lsPrime in C,
its scope is also C by rule (3). It follows that function lsPrime
can be invoked in any statement-part of C, although it is used
only in the program's statement-part.

(b) The region for variable n of Primes is also C, by rule (1), since,
as with lsPrime, that is the smallest block containing its declara­
tion. But it is reused twice within C, the first time as a formal
parameter of lsPrime, with the region D + E by rule (2). So
D + Eis not within the scope of variable n. The second is with­
in D + E so it does not further reduce the scope. It follows that
variable n may only be used in the statement-part of Primes.

(c) The region of local variable d of lpf is G, by rule (1). Its
identifier is not reused in G, so its scope is G, by rule (3). A re­
ference to d in the statement-part of lsPrime, for example,
would be detected as illegal, because there is no instance of d
whose scope includes that part of the program.

Figure 8.1 and Table 8.1 may be used to check that every use of
an identifier in Primes is legal, and, moreover, refers to the
appropriate definition or declaration.

168 PROGRAMMING USING MACINTOSH PASCAL

8.5.3 SCOPE RULES AND THE PROGRAMMER

The recommended attitude for the reader who has scrupulously slogged
through all this scope scrap is that it is reassuring that Pascal gets
everything right. It would be a big mistake to think that a programmer
needs to draw complex diagrams, and perform tedious calculations for
each identifier. We certainly did no such thing when we wrote program
Primes. No, it is sufficient to choose the right kinds of parameters,
and then to refine subprograms in the usual way. Modular subpro­
grams can be written independently with safety; the details take care of
themselves, because local definitions and declarations take precedence,
but only have a local scope.

Occasionally, however, we need to take advantage of the rules.
For example as mentioned previously, it is easy to imagine a program
that makes use of functions lpf and lsPrime in, say, a statement-part of
a single block B. The scope rules tell us that if lpf and ls Prime are
declared by B, in that order, all is well, because the scope of lpf will
include B's statement-part and also the statement-part of the function­
declaration for lsPrime:

function lpf (n : integer) : integer;

end; { lpf}

function lsPrime (n : integer) : Boolean;
begin { lsPrime }

statement-list referring to lpf
end; { lsPrime }

begin { B}
statement-list referring to lpf and lsPrime

end{B}

The occurrence of lpf in lsPrime is said to be non-local or relatively
global. Incidentally, identifiers introduced in the program-block are
called global, because potentially they are available everywhere. Warn­
ing: it is common practice to say that an identifier is global to a block
when it is non-local, and we shall do so when documenting subpro­
grams.

Another example where we need to exploit the scope rules is
when constants are used to document the common assumptions of re­
lated subprograms. This practice is very common with graphics; see,
for example, the two case-studies in the next chapter.

Using non-local subprograms and constants is a common and re­
latively safe practice, but using non-local variables or formal para­
meters is another matter. It is much more dangerous, because variables

PROCEDURES 169

change, unlike subprograms and const.ants. A subprogram that relies
on a non-local constant or subprogram only requires its environment to
provide a definition or declaration, which is easily checked. But one
that uses a non-local variable requires its environment to maintain its
value appropriately. This is a matter of faith, and when it comes to
programming, it pays to be sceptical. Not only that, but if a non-local
variable of a procedure is used as an actual-variable in one of its calls,
the dreaded specter of aliasing arises.

Principle A procedure should not use relatively global variables
or formal parameters unless it is specific to the subprogram that in­
troduces them.

Be reassured that the details of scope do not intrude much in the
programming process. The fundamental principle concerning scope is
one that maximizes modularity:

Principle In the absence of a reason to the contrary, give each
identifier the minimum possible scope.

Much of the information in this chapter is about the program­
ming language Pascal, rather than programming per se. As such it is of
secondary importance. Other programming languages may differ from
Pascal in their parameter mechanisms and how they handle the issue of
scope. In particular, Wirth's successor to Pascal, Modula-2, differs
mainly in how it treats the latter issue.

Subprograms are such an important aid to programming that the
next chapter is devoted to their use. It includes two substantial case­
studies.

EXERCISES
8.1 Check out The Joy of Cooking, and bake yourself a Pumpkin Gelatin

Chiffon Pie. While you're enjoying the pie, meditate on the usefulness
of procedures.

8.2 Trace the execution of program CharacterSet. First put stop signs at
the start of each local procedure of PrintCharacterSet. Then run the
program. Whenever it stops at a stop sign, enter any formal parameters
or local variables in the Observe window, and resume execution with
Step-Step. Note especially the initial values displayed. ·

170 PROGRAMMING USING MACINTOSH PASCAL

8.3 Suppose a block has the following variable-declaration-section:

var
a, b, c, d : integer;
sum: real;
ch: char;

Suppose further that the procedure schedule given earlier in this
chapter is declared in the same block. Say whether each of the follow­
ing procedure statements is legal or not, and in the latter case, say why.
Never mind that the calls may not make any sense - be legalistic.

(a) schedule(a, '1 ', c, d)
(b) schedule(a + b, a - b, c, d)
(c) schedule(trunc(sum), a, b, sum)
(d) schedule(sum, ord(ch) - ord('A') + 1, b, c)
(e) schedule(a, 3, c, round(sum))
(f) schedule(a, b, c, 0)

8.4 Consider the partial program below; parts in italics remain to be filled
m.

program test (Output);
{ Demonstration of missing] parameters }
var

x, y : integer;

procedure ParameterTest (missing2 x, y: integer);
begin { ParameterTest}

x := y;
y := O;
Writeln(x, y)

end; { ParameterTest}

begin { test }
x := 1;
y := 2;
Writeln(x, y);
ParameterTest(x, y);
Writeln(x, y)

end. {test}

(a) Suppose x and y are value-parameters, i.e. missing] is replaced by
value, and missing2 is replaced by nothing. What output does
execution of test produce?

PROCEDURES 171

(b) Suppose x and y are variable parameters, i.e. missing] is replaced
by variable, and missing2 is replaced by var. What output does
execution of test produce?

8.5 Suppose a procedure is written to solve the cigar problem presented in
Exercises S.4(a) and 5.11. Its formal parameters should be NrWanted,
Nrloose, NrSingles, NrBoxes, and NewBoxOpened.

(a) What are the input parameters?
(b) What are the output parameters?
(c) What are the input and output parameters?
(d) What are the value formal parameters?
(e) What are the variable formal parameters?

8.6 Declare and call a procedure WriteStats to refine the action Write
statistics in program JobScheduler1 .

8.7 Write a procedure swap that exchanges the values of two real variables.

8.8 Write a procedure order that arranges the values of two real variables
so that the second is at least as big as the first. It may use the non­
local procedure swap.

8.9 Solve Exercise 6.10 by declaring and using a suitable procedure.

8.10 What is wrong with this procedure?

procedure getmax (var a, b, max: integer);
{ Sets max = bigger of a and b. }
{XXXX NOT RECOMMENDED XXXX}
begin { getmax }

max:= a;
if b > max then

max:= b
end; { getmax}

8.11 Suppose procedure getmax is as declared above, and big and x are in­
teger variables. What is printed as a result of executing the statement­
list below? Why?

big:= 100;
x := 1;
getmax(x, big, big);
Writeln(big)

172 PROGRAMMING USING MACINTOSH PASCAL

8.12 Produce the equivalents of Figure 8.1 and Table 8.1 for the version of
program Primes in Chapter 7 that declares function lpf in position (A).
Convince yourself that all is well.

8.13 The following situation violates Pascal's scope rules. In what way?

con st
base= 10;

procedure p;
con st

pbase = base;
var

base : integer;
begin { p}

8.14 Show by example how aliasing arises if a non-local variable of a
procedure is supplied as an actual-variable in one of its calls.

PROCEDURES 173

g _____ _
PROGRAMMING WITH
PROCEDURES
Good things come in small packages.
- Proverb

9.1 Introduction
9.2 Macintosh graphics

9.2.1 The coordinate Qlane
9.2.2 The Qen
9.2.3 Drawing lines, rectangles, and ovals
9.2.4 Drawing text

9.3 Case-Study 3: Scheduling II
9.3.l Setting of the 2roblem
9.3.2 S2ecifications
9.3.3 Writing the 2rogram
9.3.4 The comQlete Qrogram

9.4 Case-Stud! 4: MiniNim
9.4.1 Setting of the Qroblem

9.4.2 SQecifications

9.4.3 Writing the Qrogram

9.4.4 The comQlete Qrogram

9.5 Testing procedures
9.5.1 Preconditions and QOStconditions
9.5.2 Desk-checking
9.5.3 Testing by execution
9.5.4 CoQing with errors detected by testing
9.5.5 Defensive Qrogramming

9.6 Using procedures: A summary
9.7 Further reading

Exercises

176
177
177
177
178
180
180
180
181
181
187
190
190
191
191
197
202
202
203
203
205
206
206
207
207

;ltiY
9.1

9 .1 Introduction
Programming with procedures is in no sense a special topic - from
now on, all our programming will exploit the many advantages of
procedures, and the other kind of subprogram, viz. functions. The
opportunity to use procedures arises continually in stepwise refine­
ment, because unrefined actions are prime candidates for implementa­
tion with procedure-statements.

There are usually more procedure-statements than declarations.
There are two major reasons for this, other than the obvious one that
we need not write any of Pascal's required procedures. One is that
several actions may be refined with a single procedure, as with Print
top of box and Print bottom of box in program CharacterSet. The other
reason is that much programming is done with predefined libraries of
subprograms which may be provided by Pascal systems for special
kinds of applications. Macintosh Pascal provides two major libraries:
one for graphics, called QuickDraw, and one for numeric computing,
called SANE (Standard Apple Numeric Environment). Both are
models of their kind, and are comprehensively described in the
Technical Appendix (one of the three Macintosh Pascal manuals).
SANE is dealt with in Chapter 19.

Both case-studies in this chapter use the part of QuickDraw,
called QuickDraw1 , that is automatically available to Macintosh Pascal
programs. Note that incorporating a library (such as QuickDraw1) in a
program effectively introduces its constants, types, variables, and sub­
programs in the program-block. Consequently, the identifiers so in­
troduced may be reused only in enclosed regions.

One of the advantages of using procedures is highlighted by
Case-study 3: writing a program in terms of modular subprograms
makes it much more amenable to modification to meet extended
specifications, which is a task that programmers are very often asked
to perform.

176 PROGRAMMING USING MACINTOSH PASCAL

9 .2 Macintosh graphics
9.2.1 THE COORDINATE PLANE

QuickDraw graphics take place in a coordinate plane, which is a square
grid. There are two notional, infinitely thin grid lines associated with
each integer value: a vertical line and a horizontal line. Every pair of a
vertical and horizontal grid line defines a point at their intersection. A
point is represented as an ordered pair of coordinates: the horizontal
coordinate corresponds to the vertical grid line, and vice versa. It is
customary to use x (or h) for the horizontal coordinate, and y (or v) for
the vertical coordinate, and to write the point as (x, y) (or (h, v)). Hor­
izontal coordinates increase to the right; vertical coordinates increase
downwards (which is contrary to the convention in Cartesian geo­
metry). The coordinate plane is illustrated in Figure 9.1.

Mathematical objects such as lines and rectangles are always
defined in terms of points in the coordinate plane. The Drawing
window is superimposed on the coordinate plane by regarding each
pixel in the window as a square bounded by successive vertical and
horizontal grid lines, and by fixing the top-left corner of the window at
some point in the plane. By default that point is the origin (0, 0). The
Macintosh's screen is 512 pixels across and 342 down (640 by 480 for the
Macintosh II), which limits the dimensions of the Drawing window. The
scale is 72 pixels per inch (approximately 28.35 per centimeter)

9.2.2 THE PEN

A unique pen is associated with the Drawing window. It has four char­
acteristics, all of which can be changed: a size, a location, a pattern,
and a mode. The shape of the pen is rectangular. The pen size is 1x1

-Maxint

-Maxint
(0,0) x

I
Maxint

I
I
I
I
I
I
I

y r--------J (x,y)

Maxint

Figure 9.1
The coordinate plane.

PROGRAMMING WITH PROCEDURES 177

by default; it can be changed by calling the predefined procedure
PenSize.

procedure PenSize (width, height : integer);
{ Sets the width and height of the pen to the given values }
{ (if either is negative, both are set to zero). }

The pen location corresponds to the top-left corner of its rect­
angle. Two procedures are provided to set and change its coordinates
respectively:

procedure MoveTo (h, v : integer);
{ Moves the pen location to the point (h, v). }

procedure Move (dh, dv : integer);
{ Moves the pen by adding dh to its current horizontal }
{ coordinate and dv to its current vertical coordinate. }

We say that Move adds (dh,dv) to the current pen location. It is
permitted for the pen to be outside the Drawing window. Procedures
that either depend on or affect the pen's position or do both will have
comments to that effect in their headings.

The pen pattern is the pattern drawn by the pen. Five pre­
defined patterns are provided: white, ltGray, gray, dkGray, and black,
in order of increasing darkness. These are predeclared global variables
of the predefined structured type Pattern (see Case-study 7 in Chapter
13). The default pen pattern is black. A procedure is provided to set it:

procedure PenPat (pat : Pattern);
{ Sets the pen pattern to pat. }

Although we have yet to meet structured types, it should be no
surprise, for instance, that PenPat(dkGray) is a legal statement which
does the expected.

To find out about the pen mode, see the Technical Appendix.

9.2.3 DRAWING LINES, RECTANGLES, AND OVALS

There are three procedures to draw lines:

procedure LineTo (h, v : integer);
{ Draws a line from the current pen location to point (h, v), }
{ which becomes the new pen location. }

178 PROGRAMMING USING MACINTOSH PASCAL

procedure Line (dh, dv: integer);
{Adds (dh, dv) to the current pen location, and draws a line}
{ from the old pen location to the new one. }

procedure DrawLine (x1, y1, x2, y2 : integer);
{ Draws a line from point (x1, y1) to point (x2, y2). }

Remember that the pen hangs down from and to the right of its loca­
tion. The region of the Drawing window that is traversed by the pen
as it moves between the end points of the line is filled with the pen's
pattern. The result need not look like a line at all.

There are several related procedures for drawing rectangles and
ovals (and therefore circles). For rectangles:

procedure FrameRect (t, I, b, r : integer);
{ Draws a rectangle inside the rectangular section }
{ with top left corner at (I, t) and bottom right corner at (r, b), }
{ keeping the pen's outer edge(s) against the rectangle's. }

procedure PaintRect (t, I, b, r : integer);
{ Paints the rectangular section with top left comer at (I, t) }
{ and bottom right corner at (r, b). }

procedure EraseRect (t, I, b, r : integer);
{ Paints the rectangular section with top left comer at (I, t) }
{and bottom right corner at (r, b) with the background pattern, }
{ which by default is white. }

procedure lnvertRect (t, I, b, r : integer);
{ Changes each pixel in the rectangular section with top left }
{ corner at (I, t) and bottom right corner at (r, b). }

There are four similar procedures for ovals. Their names are
obtained by replacing Rect with Oval. The formal parameters define
the corners of a rectangle with all four sides tangential to the oval,
which is inside the rectangle. Therefore if the rectangle is square, the
oval is circular.

Two special procedures are provided for drawing circles:

procedure PaintCircle (x, y, r: integer);
{ Paints the circle with center (x, y) and radius r. }

procedure lnvertCircle (x, y, r: integer);
{ Inverts the circle with center (x, y) and radius r. }

PROGRAMMING WITH PROCEDURES 179

9.2.4 DRAWING TEXT

Textual information may be drawn in the Drawing window. It has four
characteristics, all of which can be changed: a font, a size, a style, and
a mode.

The font is specified by a number; the default is 0, representing
the system font (Chicago - it's a wonderful font). There is a
procedure to set it:

procedure TextFont (font : integer);
{ Sets the current font to the given one. }

Common fonts and their numbers are Chicago: 0, Geneva: 1,3, New
York: 2, Monaco: 4, Venice: 5, London: 6, Athens: 7, San Francisco:
8, Toronto: 9. The available fonts and their sizes can be inspected by
choosing Font Control ... from the Windows menu.

The type size is specified in points, which correspond in size to
pixels. It may be set by the following procedure:

procedure TextSize (size : integer);
{ Sets the current type size to the given number of points. }

The default is 12, which is unaltered if a size < 1 is specified. If the
current font is not available in the specified size, an existing size will
be scaled, which can look unattractive, especially if the scaling factor is
not integral.

Text style (italic, bold, outlined, etc., and combinations there­
of) is specified by sets - see Chapter 17. Text mode need not con­
cern us.

A single procedure called WriteDraw suffices for all drawing of
text. It takes an actual-parameter-list identical to that for Write, i.e. an
output-value-list. (It is therefore not possible to give its heading, since
it has a variable number of parameters.) The string that results from its
output-value-list is written starting at the current pen position.
Specifically, the first character begins just to the right of its horizontal
coordinate, and the base line is at its vertical coordinate.

9.3 Case-study: 3: Scheduling II
9.3.l SETTING OF THE PROBLEM

The setting of the problem is exactly the same as for Case-study 1 in
Chapter 6: jobs have to be scheduled chronologically on two identical
processors.

180 PROGRAMMING USING MACINTOSH PASCAL

9.3.2 SPECIFICATIONS

A program is to be written that accepts exactly the same input as
specified in Case-study 1. It should maintain a diagram showing all the
scheduling decisions, which must be updated immediately after reading
each processing time. Jobs are to be identified in the diagram by their
position in the input (1,2,3, ...). It must be possible to read off
quickly the number of the job assigned to each processor at any point
on a time axis, and the total time allocated to each processor. The out­
put in the Text window need only announce the number of jobs
processed and, if that is not zero, the average of the times at which
jobs complete.

9.3.3 WRITING THE PROGRAM

The program should obviously be obtained by modifying our program
for Case-study 1, viz. JobScheduler1. We will work with the version
from Chapter 8 that uses procedure schedule, but will not need
procedure WriteStats (requested in Exercise 8.6). Making the minor
modifications that reduce the Text output is a cinch, leaving the
graphics output to be dealt with. The specification allows plenty of
freedom, so we need to decide the details ourselves. Let us settle on a
diagram as shown in Figure 9.2, where the sequence of input values 2,
1, 1, 3, 7, 1, 4 has been processed.

This diagram satisfies all the specifications. Writing job numbers
in the top-left corner of their rectangles rather than their centers is
partly a matter of expediency - until we learn about strings in
Chapter 14, it is difficult to position text precisely in the Drawing
window. More importantly, though, this approach enjoys the property
that it is easy to see that jobs have been scheduled chronologically, as
their numbers should then appear in ascending order from left to right!

It is essential to get graphics details exactly right. The safest way
to do so is to draw a blown-up picture labeled with the important co­
ordinates, such as the one given in Figure 9.3, which shows the dia­
gram after input of 2, 1, 1 has been processed.

[~ [3 [: r· ~, ~ 2

I I
0 2 4 6 B 10

PROGRAMMING WITH PROCEDURES

Figure 9.2
A scheduling diagram.

181

Figure 9.3
A blow-up of the diagram.

Left Left+Unit Left+2•Unit

I I I Top- ,;......,.........--.--..----..--..---..,.... __,,........,T

Top+Height-1--+-...--.--..---lir--..---..,....--.-......... --1f---I I

-r- J Drop

j f----Unit

The individual squares represent the black pixels that make up
the lines in the diagram. Textual information, such as job numbers, is
not shown. Below we note the constants that determine the size or
location of parts of the diagram. They need not all appear in the same
constant-definition-part, and their values in Figure 9.3 are certainly un­
realistic.

con st
Top = ... ; {top-left corner of drawing is ... }
Left = ... ; { ... at (Left.Top). }
Height = ... ; { height of rectangle for job }
Unit = ... ; { size of time-unit }
Drop= ... ; {depth of marker on time axis}
NrProcessors = 2; { number of processors }

NrProcessors is not shown in Figure 9.3; it corresponds to the
occurrence of 2 in the vertical coordinate Top + 2 * Height.

It is important to appreciate why the indicated values of Height
and Unit are the appropriate ones - they lead to simple and regular
formulas for the crucial vertical and horizontal coordinates respectively.

Principle Always measure a repeated distance between the same
relative positions.

In this case, we read off Height between the top edges of horizontal
screen lines, and Unit between the left edges of vertical screen lines.

182 PROGRAMMING USING MACINTOSH PASCAL

The two circled points near the middle and bottom-right respectively of
Figure 9 .3 define the top-left and bottom-right corners of the rectangle
drawn for job number 3. The two circled points near the bottom-left
define the line drawn for the marker for time O; remember, the pen
hangs below and to the right of its location.

There are two distinct parts of our scheduling diagram. The first
consists of the axes, i.e. the processor numbers, and the time axis and
its labeled markers. The other consists of the rectangles for the
scheduled jobs. We decide to create the first by calling a procedure
DrawAxes before processing the input, and the second as jobs are
scheduled by procedure schedule.

We begin with DrawAxes, and first specify it:

procedure DrawAxes;
{ Draws time axis with labeled markers, and labels processors. }

For the first refinement, we use a sequence of actions:

begin { DrawAxes }
Label processors ;
Draw time a.xis ;
Draw and label markers for time a.xis

end; { DrawAxes }

The first action fits schema For Increasing Values, giving:

var
p : integer; { number of a processor }

{ Label processors }
for p := 1 to NrProcessors do

Label processor p

The body of the loop is implemented with a sequence of two state­
ments; the first moves to the appropriate place, the second writes the
label.

const
PointSize = 12; {size of text}

begin { Label processor p }
MoveTo(Left- 2 * PointSize, Top+ p *Height-

WriteDraw(p : 2)
end

(Height - PointSize) div 2);

PROGRAMMING WITH PROCEDURES 183

The chosen coordinates of MoveTo will cause the text to be roughly
centered in, and to the left of, the row for the processor. The text size
needs to be initialized at the start of the program with:

TextSize(PointSize)

The second high-level action of DrawAxes is simply
implemented. We decide to draw a line that extends to the end of the
widest possible Drawing window, and introduce a constant accord­
ingly. We also introduce a variable to avoid repeating an expression.

const
MaxWidth = 512; { maximum width of Drawing window }

var
base : integer; { vertical coordinate of top of time axis }

{ Draw time axis }
base:= Top+ NrProcessors *Height;
DrawLine(Left, base, MaxWidth, base)

Any drawing outside the boundaries of the Drawing window is lost,
but does no harm.

We now tackle the last high-level action of DrawAxes. To
compute the number of markers, we reason as follows. One marker is
drawn at horizontal coordinate Left. There are at most MaxWidth -
Left - 1 pixels to the right of this marker, and a marker is drawn every
2 * Unit pixels. So the total number of markers is at most:

1 + (MaxWidth - Left - 1) div (2 * Unit)

Now schema For Increasing Values applies, and we get:

var
i : integer; { number of marker: 1,2, . . . }

{ Draw and label markers for time axis }
for i := 1 to 1 + (MaxWidth - Left - 1) div (2 * Unit) do

Draw and label i'th marker

If the above sort of calculation gives you the heebie-jeebies, you will be
pleased to know that it can be avoided by using a while-loop; see
Exercise 9. 6.

To refine the body of the loop we use a sequence of simple
actions, introducing a variable:

var
time : integer; { label of marker on time-axis }

184 PROGRAMMING USING MACINTOSH PASCAL

begin { Draw and label i'th marker }
time:= 2 * (i-1);
MoveTo(Left + time* Unit, base);
Line(O, Drop);
Move(-PointSize div 2, PointSize);
WriteDraw(time : 2)

end

Since variable base is used also in this refinement, it should strictly be
defined prior to the first refinement that uses it.

We have now completed our implementation of procedure
DrawAxes. See the complete program below for the assembled
procedure. It can and should be tested now, by embedding it in a pro­
gram that simply calls it. It should be tried out with many different
values for the constants that it depends on.

Let us tum now to the drawing of the job-rectangles, which,
since it is part of the scheduling of jobs, will come under the umbrella
of procedure schedule. We first add the following formal parameter,
so that the diagram can include job numbers:

NrJob : integer;

After updating the description of the procedure, we proceed to modify
its body, making one change: adding an action to draw the job­
rectangle.

begin { schedule }
Draw and label a rectangle fur this job ;

{ Update StartTime and sum }
StartTime := StartTime +duration;
sum:= sum+ StartTime

end; {schedule}

The unrefined action is implemented with a procedure­
statement, after first determining its formal parameters and writing its
heading.

procedure DrawRect (from, length, row, ID: integer);
{ Draws rectangle of given length in given row, starting at}
{ time from; draws ID in rectangle. }

{ Draw and label a rectangle for this job }
DrawRect(StartTime, duration, processor, NrJob)

DrawRect is typical of procedures that only produce output: all its
parameters are value-parameters. Note how it is defined in general

PROGRAMMING WITH PROCEDURES 185

rather than problem-specific terms: the procedure draws rectangles,
and should be written and understood in those terms. Although it will
be used only to display job allocations, when writing DrawRect it
helps to be unencumbered by all the notions associated with schedul­
ing, which are irrelevant to the task at hand.

Principle When writing subprograms, be general.

We refine the body of DrawRect with a sequence of three
actions:

begin { DrawRect }
Set corners of rectangle;
Draw rectangle ;
Draw ID in rectangle

end; { DrawRect}

The first action is not subsumed in the second because the information
it creates is used also in the third action.

To refine the first action, we introduce four variables to define
the corners of the rectangle, and assign the appropriate values to them,
with the help of Figure 9.3:

var
t, I, b, r : integer; { top, left, bottom, & right of rectangle }

{ Set comers of rectangle }
I := Left + from * Unit;
r := I + length * Unit + 1 ;
t := Top + (row - 1) * Height;
b := t + Height + 1

The second action can now be implemented with the procedure­
statement:

{ Draw rectangle }
FrameRect(t, I, b, r)

There is no great need to retain the original description of the action as
a comment, but we may as well, because otherwise a blank line is
needed to mark the end of the previous refinement.

It is straightforward to implement the final action with a
sequence of two statements:

{Draw ID in rectangle}
MoveTo(I, t + PointSize);
WriteDraw('#', ID: 1)

186 PROGRAMMING USING MACINTOSH PASCAL

9.3.4 THE COMPLETE PROGRAM

This completes the implementation of procedure DrawRect. Several
constants are used in both DrawRect and DrawAxes; they must there­
fore be declared in the same block as DrawRect and schedule, which
happens to be the program-block. The complete program is as shown
below:

program JobScheduler2 (Input, Output);
{ Input: repeatedly prompts user to enter either a processing }
{time for a job, which must be a positive integer, or -1 to end }
{ input. Jobs are assigned in input order to the 1st available of 2 }
{ processors. Output: a diagram is maintained showing the jobs }
{ assigned to each processor; each job is specified by its position }
{ in the input. On completion, the number of jobs processed, }
{ and the average of the times at which jobs are completed are }
{printed.}
con st

NrProcessors = 2;
Top = 12; {top-left corner of drawing is ... }
Left = 24; { ... at (Left,Top). }
Height = 40; { height of rectangle }
Unit = 30; { size of time-unit in pixels }
PointSize = 12; { size of text }

var
JobTime, { processing time for current job, or end-of-input}

{signal}
Tota1Time0n1, Tota1Time0n2, { total processing time on }

{ each processor so far }
JobCount, { number of jobs processed so far }
SumOfCompletionTimes {of all jobs processed}

: integer;

procedure DrawAxes;
{ Draws time axis with labeled markers, and labels processors. }
{Global constants: NrProcessors, Top, Left, Height, Unit,

PointSize. }
con st

Drop = 8; { depth of marker on time axis }
MaxWidth = 512; {maximum width of Drawing window}

var
base, { vertical coordinate of top of time axis }
time, { label of marker on time-axis }
p, { number of a processor }
i : integer; { number of marker: 1,2, .. . }

begin { DrawAxes}
{ Label processors }
for p := 1 to NrProcessors do

PROGRAMMING WITH PROCEDURES 187

begin { Label processor p }
MoveTo(Left - 2 * PointSize, Top + p * Height -

WriteDraw(p : 2)
end;

(Height - PointSize) div 2);

base := Top + NrProcessors * Height;
{ Draw time axis }

Drawline(Left, base, MaxWidth, base);
{ Draw and label markers for time axis }

for i := 1 to 1 + (MaxWidth - Left - 1) div (2 * Unit) do
begin { Draw and label i'th marker }

time := 2 * (i - 1);
MoveTo(Left +time* Unit, base);
Line(O, Drop);
Move(-PointSize div 2, PointSize);
WriteDraw(time : 2)

end
end; { DrawAxes}

procedure schedule (duration, processor: integer;
var StartTime : integer;
NrJob : integer;
var sum : integer);

{Schedules job of length duration on given processor, starting }
{ at time StartTime: updates diagram of scheduling decisions, }
{ identifying job with NrJob; updates StartTime to the starting }
{ time for the next job on this processor; updates sum of }
{ completion times (sum) of all jobs. }

procedure DrawRect (from, length, row, ID: integer);
{ Draws rectangle of given length in given row, starting at}
{ time from; draws ID in rectangle. }
{Global constants: Top, Left, Height, Unit, PointSize.}

var
t, I, b, r : integer; { top, left, bottom, & right of rectangle }

begin { DrawRect }
{ Set corners of rectangle }

I := Left+ from * Unit;
r :=I+ length* Unit+ 1;
t := Top + (row- 1) * Height;
b := t + Height + 1 ;

{ Draw rectangle }
FrameRect(t, I, b, r);

{ Draw ID in rectangle }
MoveTo(I, t + PointSize);
WriteDraw('#', ID: 1)

end; { DrawRect }

188 PROGRAMMING USING MACINTOSH PASCAL

begin { schedule }
{ Draw and label a rectangle for this job }

DrawRect(StartTime, duration, processor, NrJob);
{ Update StartTime and sum }

StartTime := StartTime + duration;
sum := sum + StartTime

end; { schedule}

begin { JobScheduler2 }
{ Write heading }

Writeln('SCHEDULING JOBS ON TWO PROCESSORS IN
CHRONOLOGICAL ORDER');

Writeln;

TextSize(PointSize);
Draw Axes;

{ Prompt for, read and process each job time, until a}
{ stopping-value is read }

{ Initialize sums and counts }
JobCount := O;
Tota1Time0n1 := O;
Tota1Time0n2 := O;
SumOfCompletionTimes := O;

Write('Enter processing time for job, or -1 to end input: ');
Readln(JobTime);
while JobTime > O do

begin
JobCount := JobCount + 1;
if Tota1Time0n1 <= Tota1Time0n2 then

schedule(JobTime, 1, Tota1Time0n1, JobCount,
SumOfCompletionTimes)

else
schedule(JobTime, 2, Tota1Time0n2, JobCount,

SumOfCompletionTimes);
Write('Enter processing time for job, or -1 to end input: ');
Readln(JobTime)

end; {of while loop}

Writeln;
Writeln(JobCount : 1, ' jobs processed.');
If JobCount > O then

Writeln('The average time at which jobs complete = ',
SumOfCompletionTimes I JobCount : 1 : 1)

end. { JobScheduler2 }

The components of program JobScheduler2 have been arranged
according to the principle of minimizing scopes. So the constants that

PROGRAMMING WITH PROCEDURES 189

Figure 9.4
The screen after a run of
JobScheduler2.

r j File Edit Search Run Windows
..,

Te Ht
SCHEDULING JOBS ON TWO PROCESSORS IN CHRONOLOGICRL ORDER

Enter process ing time for job , or -1 l o end input 5
Enter process ing time f or j ob , or -1 lo end input 1

·Ente r proce ss ing time for job , or -1 to end input 3
Enter processing time for job, or -1 lo end input 7
Enter process ing time for job , or -1 lo end input 2 ,,
En ter processing time for job, or -1 lo end input 2
Enter processing time for job, or -1 lo end input -1

5 jobs processed .
The over age lime al which jobs complete = 5 .2 t-

D Drawing

j# 1 T5 I6] 1

j#2 13 1#4

J 2

0 ~ 4 ~ ~ 1
1
0 i'2 1

1
4

l2J

are used only in DrawAxes are made local to it, and DrawRect is
declared local to schedule (although it could be declared in the
program-block, because it depends only on the global constants which
are explicitly documented in its heading-comment). We think that
there is a better way to organize the program. The overriding principle
involved is announced at the end of the next case-study. Exercise 9 .13
asks you to give the alternative arrangement of JobScheduler2.

The resulting state of the screen after running JobScheduler2
with input 4 , 1, 2, 6, 2 , -1 is shown in Figure 9.4. This is the same
input as used in Figure 6.1.

9 .4 Case-study_4..;;....;:......;;M~i=n=iN-'-'1=· m;;;;;;...._ ______ _
9.4.1 SETTING OF THE PROBLEM

A simple version of the game of Nim is played as follows . Two players
each take turns removing matches from a single pile . On each turn, the
number of matches taken can be any number between 1 and a pre­
determined limit. The player who takes the last match wins the game.
For example, suppose there are 12 matches and a limit of 4 per move.
Players Alonzo and Brigit might make the following moves, in which
case Alonzo wins: A :2, B:l, A :4, B:3 , A:2.

A little thought reveals the best strategy. Consider the case
where the limit is 2, for example. If A is to move and has 1 or 2
matches left, he can win by taking them all . But with 3 left, both

190 PROGRAMMING USING MACINTOSH PASCAL

choices leave B in a situation from which she can win. With 4 or 5 left,
A can win by removing I or 2 respectively; and so on. It is not
difficult to see that if:

number of matches left mod 3 > 0

then the player to move can win by taking that many matches and
playing similarly thereafter; otherwise, any move will leave the
opponent in a situation from which she can win. The strategy readily
generalizes to an arbitrary limit n on the number of matches that may
be taken per move: 3 is replaced by n + I in the above condition.

9.4.2 SPECIFICATIONS

A Macintosh Pascal program is to be written that plays MiniNim with
the user. The program should explain the game first, and then ask if it
can make the first move. If the reply starts with the letter 'Y' (in
upper- or lower-case) the program should (re-)move first, otherwise it
should ask the user to move. The number of matches taken on each
move is to be indicated in the Text window, along with the number of
matches remaining. Also, the program should maintain in the Drawing
window a picture of the remaining matches, and erase matches from
the right after each move. The program must use the strategy outlined
previously; if it cannot force a win in the current situation, it should
take I match.

9.4.3 WRITING THE PROGRAM

Our first refinement uses a sequence of four actions:

begin { MiniNim }
Introduce the game ;
Determine whether Macintosh or user should move first;
Process moves until game is over & determine who moved last ;
Announce winner

end. { MiniNim }

The first action is refined with a procedure-statement:

procedure introduce;
{ Explains the game and draws the matches. }

introduce

There is no need to retain the comment. We refine the second action

PROGRAMMING WITH PROCEDURES 191

with another procedure-statement, after deciding to use a Boolean vari­
able to record which player moves next:

var
MacNext: Boolean; {true iff Macintosh moves next }

procedure FindOut (var lsYes : Boolean {true iff 'Y' or 'y' typed
); first }

{Asks for & reads a yes/no response, & sets lsYes accordingly.}

Findout(MacNext)

There is again no need to retain the original action as a comment.
Note that the formal parameter of FindOut is described with its own
comment, rather than in the header-comment. Either way is accept­
able, as long as the following principle is followed:

Principle The heading of a procedure should specify what it does,
in terms of its parameters. It should provide sufficient information
to employ the procedure.

The third action involves processing moves repeatedly until the
game is over. Since the number of moves cannot be known in advance,
a for-loop is unsuitable. We choose a repeat-loop because at least one
move will be made. A procedure is declared to handle moves; it will be
told which player is to move, and update the number of matches re­
maining. After each move, the value of MacNext is changed; its final
value therefore determines who moved last (and therefore who won).
The initial number of matches is given by a constant.

const
StartMatches = ... ; { initial number of matches }

var
Matchesleft : integer; { number of matches left }

procedure move (var LeftOver : integer; { number of
matches remaining }

MacToMove: Boolean {true iff Macintosh is to move}
);

{ Makes move, updating Leftover. }

{ Process moves until game is over & determine who moved last }
Matchesleft := StartMatches;
repeat

move(Matchesleft, MacNext);

192 PROGRAMMING USING MACINTOSH PASCAL

MacNext :=not MacNext
until Matchesleft = 0

Note that it is more logical for the program to record whose turn it is
to move than it is for move - the program decides who moves; the
procedure carries out the move on its behalf.

Now is the time to dispose of the last highest-level action,
because it follows readily from the previous refinement: MacNext will
be true if the user made the last move, and false if the program did.

{ Announce winner }
If MacNext then

Writeln('Congratulations, you won!')
else

Writeln('I won!')

It remains to refine three procedures. The first procedure,
introduce, writes a description of the game and draws the matches.
The former action can be implemented directly, after defining a new
constant. For the latter, we decide to number matches 1,2,3, ... from
the left, and to draw the required number of matches with a for-loop.
A procedure is introduced to draw a specified match.

con st
MaxTake = ... ; {maximum number of matches that can be taken

in 1 move}

var
Matchlndex : integer; { number of match }

procedure DrawMatch (MatchNr: integer);
{ Draws match number MatchNr. }

begin { introduce }
Writeln('This is the game of MiniNim, in which we take turns

removing matches from a pile of ', StartMatches : 1, '.');
Writeln('On each move at least 1 but at most ', MaxTake : 1,

'matches must be taken.');
Writeln('The player who takes the last match wins.');

for Matchlndex := 1 to StartMatches do
DrawMatch(Matchlndex)

end; { introduce }

We also note (in its heading-comment) that introduce uses the global
constants StartMatches and MaxTake.

We postpone refining DrawMatch until all the graphics actions
are specified, and instead turn to procedure FindOut.

PROGRAMMING WITH PROCEDURES 193

var
response : char; { answer to yes/no question }

begin { FindOut }
Write('May I move first? ');
Readln(response);
lsYes := (response = 'y') or (response = 'Y')

end; { FindOut}

The next cab off the rank is move. This is the heart of the pro­
gram, so we decide to proceed slowly and carefully.

begin { move }
if MacToMove then

Detemzine & print Macintosh's move
else

Read user's move ;
Remove matches ;
Writeln('There are ', Leftover : 1, · remaining.')

end; {move}

The first unrefined action is refined with a sequence of actions,
which is formulated as a compound statement because of its context.

var
taken : integer; { number of matches to take }

begin { Determine & print Macintosh's move }
Write('Hit Return to see my move.');
Read In;
Set taken = number of matches Macintosh will remove;
Writeln('I take ', taken : 1, • .')

end

The idea of using the 1/0 statements might occur only after testing a
version without them, which would respond too quickly to the player's
moves. Such niceties of the user-interface should not be pooh-poohed
- perhaps they are why you are learning to program on a Macintosh.

Refining deeper, we implement the action that determines the
strategy.

{ Set taken = number of matches Macintosh will remove }
taken := Leftover mod (MaxTake + 1);
if taken = 0 then

taken := 1

194 PROGRAMMING USING MACINTOSH PASCAL

Reading the user's move is straightforward:

begin { Read user's move }
Write('How many matches do you take?');
Readln(taken)

end

Exercise 9. 9 asks you to fix a problem with the above - it does not
check that the value read is permissible.

There are two parts to the action Remove matches : decreasing the
count of matches and erasing the drawings of those removed. It is
convenient to do the latter first, because it uses the count before it is
reduced. The numbers (i.e. positions) of the matches removed are
easily calculated, so a for-loop is appropriate. The decreasing form is
used so that matches are taken individually from the right. It employs
a procedure EraseMatch that is the inverse of DrawMatch. Again,
thinking from the user's point of view, a procedure wait is used so that
the removals occur at human rather than computer speed, and each re­
moval is signaled with a beep.

var
Matchlndex: integer; { index of match }

procedure EraseMatch (MatchNr: integer);
{ Erases drawing of match number MatchNr. }

procedure wait (n : integer);
{ Pauses for n 60ths of a second (ticks). }

{ Remove matches }
for Matchlndex := LeftOver downto LeftOver- taken+ 1 do

begin
EraseMatch(Matchlndex);
SysBeep(11);
wait(15)

end;
Leftover:= LeftOver- taken

The unit of time in wait happens to be the natural one on the
Macintosh, as you can see from its implementation:

var
time : longint; { TickCount when procedure called. }

begin {wait}
time:= TickCount;
repeat
until TickCount > = time + n

end; {wait}

PROGRAMMING WITH PROCEDURES 195

Figure 9.5
The nth match.

The predefined, parameterless function TickCount is specified as:

function TickCount : longint;
{ Returns the elapsed time since startup in 60ths of a second. }

The predefined procedure SysBeep, whose effect you have
doubtless heard if you have used a Macintosh, is specified as follows:

procedure SysBeep (duration : integer);
{ Sounds a square-wave tone lasting approx. duration * 0.022 s. }

The actual-value 11 in the call of SysBeep thus represents about a
quarter-second, as does the actual-value 15 in the call of wait. These
figures might be arrived at after testing with various values to get the
most pleasing effect.

Only the graphics details remain. Again, we begin by carefully
planning the drawing and noting the constants that determine its place­
ment and size. We decide to draw each match about a vertical line of
symmetry whose distance from the left side of the Drawing window is
a multiple of a certain constant. The complete specifications are shown
in Figure 9.5.

Length

___ J
-1 Width h--

y

196 PROGRAMMING USING MACINTOSH PASCAL

Because QuickDraw draws inside mathematical rectangles, we
take coordinates according to the following principle:

Principle Read coordinates from the outer edges of rectangles.

The constants that we have introduced are defined as follows; all have
integer values.

con st
Top = ... ; { vertical coordinate of top of matchstick }
Length = ... ; { length of matchstick }
Dist = ... ; { space between matches }
Width= ... ; {width of matchstick; must be even}
HeadLength = ... ; { length of match head }
HeadWidth = ... ; {width of match head; must be even}
Overlap = ... ; { overlap of head on stick }

Both widths must be even for the match to be symmetrical about the
central vertical line.

It is now a simple matter to refine our two graphics procedures.
A match is drawn by framing a rectangle for the stick and painting an
oval for the head. The appropriate coordinates are read off Figure 9.5:

begin { DrawMatch }
FrameRect(Top, MatchNr * Dist - Width div 2, Top + Length,

MatchNr *Dist+ Width div 2);
PaintOval(Top - HeadLength + Overlap, MatchNr * Dist -

HeadWidth div 2,
Top+ Overlap, MatchNr *Dist+ HeadWidth div 2)

end; { DrawMatch}

There is no need to erase the rectangle and oval separately; it
suffices to erase a rectangle containing both:

begin { EraseMatch }
EraseRect(Top - Headlength + Overlap, MatchNr * Dist -

HeadWidth div 2,
Top+ Length, MatchNr *Dist+ HeadWidth div 2)

end; { EraseMatch }

We record the assumption HeadWidth > = Width in the header­
comment.

9.4.4 THE COMPLETE PROGRAM
Finally, we write the program heading and assemble the program.
Since the game explains itself, the heading need only say how to run

PROGRAMMING WITH PROCEDURES 197

the program. Assembling the program amounts to choosing values for
constants (which can be fine-tuned by testing), and deciding where the
various definitions and declarations should be placed. In this instance
the general principle of minimizing scope is too crude. It is more
natural, for example, to assemble all the graphics-related definitions
and declarations in one place, viz. at the start of the program block,
because the two graphics procedures are so strongly related (one is the
inverse of the other). There is an overriding principle at work here:

Principle Try to keep strongly related definitions and declarations
together.

Similarly, StartMatches could be local to introduce, but it is more
sensible to declare it with MaxTake at the start of the program, so that
they can easily be changed to give different games. Finally, wait is
also made global according to the following principle:

Principle Declare low-level modular utility procedures at the start
of the program.

These procedures are then available throughout the program, if
needed, and you know where to look for them in other programs.

The procedures that use global constants say so in their head­
ings, to guard against the possibility of inadvertently accessing a non­
local variable or the wrong non-local constant. Reliance on global sub­
programs is also documented (as an aid to testing).

program MiniNim (Input, Output);
{ Plays a game of MiniNim with the user. Run with Text and }
{ Drawing windows each half screen size and stacked vertically. }
con st

StartMatches = 23; { initial number of matches }
MaxTake = 4; { maximum number of matches that can be

taken in 1 move }
Top= 20; { vertical coordinate of top of matchstick }
Length = 90; { length of matchstick }
Dist= 20; {space between matches}
Width = 6; { width of matchstick; must be even }
Head length = 1 O; { length of match head }
HeadWidth = 8; {width of match head; must be even}
Overlap = 3; { overlap of head on stick }

var
Matchesleft : integer; { number of matches left }
MacNext : Boolean; { true iff Macintosh moves next

procedure DrawMatch (MatchNr: integer);
{ Draws match number MatchNr. }

198 PROGRAMMING USING MACINTOSH PASCAL

{Global constants: Top, Dist, Width, Length, HeadWidth,
HeadLength, Overlap. }

begin { DrawMatch }
FrameRect(Top, MatchNr * Dist - Width div 2, Top + Length,

MatchNr * Dist + Width div 2);
PaintOval(Top - HeadLength + Overlap, MatchNr * Dist -

HeadWidth div 2,
Top + Overlap, MatchNr * Dist + HeadWidth div 2)

end; { DrawMatch}

procedure EraseMatch (MatchNr : integer);
{ Erases drawing of match number MatchNr; }
{assumes HeadWidth >=Width. }
{ Global constants: Top, Dist, Length, HeadLength, HeadWidth,

Overlap.}
begin { EraseMatch }

EraseRect(Top - HeadLength + Overlap, MatchNr * Dist -
HeadWidth div 2,

Top + Length, MatchNr * Dist + HeadWidth div 2)
end; { EraseMatch }

procedure wait (n : integer);
{ Pauses for n 60ths of a second (ticks). }

var
time : longint; { TickCount when procedure called. }

begin { wait }
time:= TickCount;
repeat
until TickCount >=time+ n

end; {wait}

procedure introduce;
{ Explains the game and draws the matches. }
{ Global constants: StartMatches, MaxTake. }
{ Global subprogram: DrawMatch. }

var
Matchlndex : integer; { number of match }

begin { introduce }
Writeln('This is the game of MiniNim, in which we take turns

removing matches from a pile of ', StartMatches : 1, '.');
Writeln('On each move at least 1 but at most ', MaxTake : 1,

' matches must be taken.');
Writeln('The player who takes the last match wins.');

for Matchlndex := 1 to StartMatches do
DrawMatch(Matchlndex)

end; { introduce }

PROGRAMMING WITH PROCEDURES 199

procedure FindOut (var lsYes : Boolean {true iff 'Y' or 'y' typed
); first }

{Asks for & reads a yes/no response, & sets lsYes accordingly. }
var

response : char; { answer to yes/no question }
begin { FindOut }

Write('May I move first? ');
Readln(response);
lsYes := (response = 'y') or (response = 'Y')

end; { FindOut }

procedure move (var LeftOver : integer; { number of
matches remaining }

MacToMove: Boolean {true iff Macintosh to move}
);

{ Makes move, updating Leftover. }
{ Global constant: MaxTake. }
{Global subprograms: EraseMatch, wait.}
var

taken, { number of matches to take }
Matchlndex { index of match }

: integer;

begin { move }
if MacToMove then

begin { Determine & print Macintosh's move }
Write('Hit Return to see my move.');
Readln;

{ Set taken = number of matches Macintosh will remove }
taken:= LeftOver mod (MaxTake + 1);
if taken = O then

taken:= 1;

Writeln('I take ', taken : 1, '.')
end

else
begin { Read user's move }

Write('How many matches do you take?');
Readln(taken)

end;
{ Remove matches }
for Matchlndex := Leftover downto LeftOver- taken+ 1 do

begin
EraseMatch(Matchlndex);
SysBeep(11);
wait(15)

end;
Leftover : = Leftover - taken;

200 PROGRAMMING USING MACINTOSH PASCAL

Writeln('There are ', Leftover : 1, ' remaining.')
end; {move}

begin { MiniNim }
introduce;
FindOut(MacNext);

{ Process moves until game is over & determine who nioved last }
Matchesleft := StartMatches;
repeat

move(Matchesleft, MacNext);
MacNext : = not MacNext

until Matchesleft = O;
{ Announce winner }

if MacNext then
Writeln('Congratulations, you won!')

else
Writeln('I won!')

end. { MiniNim }

Figure 9.6 shows the screen after the first two moves in a game
with StartMatches = 23 and MaxTake = 4. Unfortunately, no figure
can do justice to the visual and sonic fireworks of the program.

A couple of improvements to MiniNim should be made. One is
that user input should be checked, to make sure that the number of
matches taken is permissible. See Exercise 9.9. The other is that there
are many instances where variables may take only a restricted range of
integers as their values; we shall see in the next chapter how to declare
such information explicitly, and why it is useful to do so.

r s File Edit Search Run Windows

Te Ht
This is the game of MiniNim, in which we take turns removing matches from a pi le
of 23.
On each move at least 1 but at most 4 matches must be taken.
The player who lakes the last match wins.
May I move first? Yes
Hit Return to see my move.
I take 3.
There are 20 remaining.
How many matches do you take? 2
There are 18 remaining.
Hit Return to see my move.

I--

;;O Drawing

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
'21

Figure 9.6
The screen after two
moves.

PROGRAMMING WITH PROCEDURES 201

9 .5 Testing procedures
For the sake of specificity, this section focuses attention on the role of
procedures in testing programs. The methods advanced need only minor
alterations to be applicable to functions. The topic is treated under the
same subheadings as used in Section 6.10, 'Testing, testing'.

9.5.1 PRECONDITIONS AND POSTCONDITIONS
Procedures are a great help in the task of testing every refinement.
One reason is that the precondition and postcondition of a procedure
are documented in its specifications. The precondition is that input
parameters (value formal parameters and variable formal parameters
that are updated) and global constants have appropriate values; some­
times this is explicitly formulated, as when the comment includes a
clause assumes . . . , but often it is implicit. The postcondition should
always be explicitly documented (even if the details are left implicit). It
should state that the output parameters (var-parameters) receive the
appropriate values, and that appropriate output is produced and/or in­
put read (if applicable).

Consider procedure move from program MiniNim, for example.
From its specification we obtain the following precondition:

LeftOver is the number of matches remaining (it is therefore
> 0, and there should be that many matches in the display).

And the following postcondition:

If MacToMove was true, the Macintosh has announced the
move defined by the specified strategy, otherwise the user's
move has been read.

LeftOver = its value on entry minus the number of matches
taken.

The appropriate number of matches have been erased from the
right of the display.

The exercise of stating the precondition and postcondition pre­
cisely, as a prelude to testing, often reveals flaws or vagueness in the
given specification. In the above example, vagueness does no great
harm, but in more serious or complex programs, the specification
should be rewritten in more precise terms.

202 PROGRAMMING USING MACINTOSH PASCAL

9.5.2 DESK-CHECKING

Desk-checking the refinement of a procedure reduces to the same
exercise as desk-checking the refinement of a high-level action. Value
formal parameters are treated as variables already initialized in
accordance with the precondition; variable formal parameters are
treated as variables which are initialized only if the parameter is an in­
put parameter (i.e. is updated). Local variables are initially undefined.
After tracing the execution of the body with selected values for the in­
put parameters, we check that the output parameters have the
appropriate values.

9.5.3 TESTING BY EXECUTION

Whenever a procedure has been completely refined, i.e. when it is
written entirely in the programming language, it should be tested by
executing it. A program called a test-driver is created that consists of a
sequence of three actions: the first initializes; the second calls the
procedure; and the third prints out appropriate values.

The initialization action needs to give values to all variables used
as actual input parameters; these values must be consistent with the
precondition of the procedure. One way to do this is to prompt for and
read the values from the programmer as user (the values will then be
conveniently displayed). The third action should print the value of all
actual output parameters (and other selected variables if you are very
suspicious).

The first requirement of the test is that:

(1) Execution of the procedure terminates normally.

Assuming it is met, the output is then carefully checked, to see that the
following requirements are met.

(2) If the procedure produces output, it should be as expected.
(3) The values of all actual output parameters should be as

expected.
(4) The values of all variables that are not used as actual output

parameters are unchanged.

Whether or not all is well, the output should be saved for possible later
reference. It should therefore be clearly labeled, preferably by the test­
driver.

There is a problem with the above scenario: the procedure to be
tested may call other subprograms which have yet to be written. This

PROGRAMMING WITH PROCEDURES 203

Figure 9.7
The calling diagram for
program MiniNim.

MiniNim

introduce FindOut move

! /\
Draw Match EraseMatch wait

sort of situation occurs frequently with stepwise refinement. One re­
sponse is simply to postpone testing until all the required subprograms,
and all the subprograms that they call, and so on, have been
implemented and tested. This style of testing is called bottom-up test­
ing, because the first subprograms to be tested are those that depend
on no others, and others are tested after all the subprograms that they
call have been tested, until finally the complete program is tested.

Consider program MiniNim for Case-study 4. The dependencies
among the programmer-defined subprograms are captured by Figure
9.7, which is called a calling-diagram. An arrow from subprogram A
to subprogram B signifies that A calls B.

We can see that DrawMatch, FindOut, EraseMatch, and wait
can be tested as soon as they are implemented, in any order; introduce
can be tested after DrawMatch is implemented and tested; move after
both EraseMatch and wait; MiniNim after all of introduce, FindOut,
and move (and the subprograms they call).

There is another style of testing, called top-down testing, which
allows subprograms to be partially tested as soon as they are
implemented. The idea is to give very simple special implementations
for all the as-yet-unwritten subprograms that might be called as a result
of calling the subprogram at hand. These special implementations are
called stubs, or dummy subprograms. Common forms are procedures
that do nothing, functions that prompt for and read the value to be re­
turned, and procedures that do likewise for output parameters. Con­
sider procedure move in program MiniNim, for example. It calls
procedure EraseMatch, but can be tested perfectly satisfactorily by
writing a stub for EraseMatch that simply writes the number of the
match whose drawing it was supposed to erase (which does not exist).

These two kinds of testing have compensating advantages and
disadvantages. The attraction of top-down testing is that it can be done

204 PROGRAMMING USING MACINTOSH PASCAL

as early as possible, allowing mistakes and misconceptions to be
corrected before they do too much damage. The problem is that the
testing is done in an incomplete context. Sometimes it is simply not
feasible to write a stub - e.g. for a subprogram producing values that
can only be found by extensive computation. And stubs are inherently
error-prone. They are untested and untestable, and it is all too easy
for them to give erroneous results.

The obvious attraction of bottom-up testing is that there is no
need to use stubs, and that the testing is not incomplete. The problem
with relying exclusively on bottom-up testing is that it comes too late in
the programming process. What is the poor programmer to do? The
answer is as obvious as it is onerous: both types of testing.

A temptation with both ways of testing subprograms is to test in
the context of the program at hand. With bottom-up testing, this
might mean testing everything just by running the entire program;
with top-down, testing a subprogram by using an existing procedure as
the test-driver. This is almost always a mistake, and does not make for
genuine modularity. For example, it is all too easy to omit the declara­
tion of a local variable or constant, and accidentally operate on a global
one. And even if the program is correct as a whole, it may well contain
incorrect subprograms which will fail when used in another context.
With testing, as in programming in general, you get out of it what you
put into it. Does that sound familiar?

9.5.4 COPING WITH ERRORS DETECTED BY TESTING

In checking for errors of transcription (typos), look out for mistakes
such as:

• Declaring a value parameter where a variable parameter is
needed. Remember that var lasts only up to the next semicolon
(or right-bracket);

• Vice versa;
• Using the wrong actual parameters.

If the procedure calls other subprograms, carefully check the
actual-parameters of each call; make sure that they match the
corresponding formal parameters. If you are calling stubs, check that
their formal parameters are value- or var-parameters as appropriate.

If an actual output parameter receives an incorrect value, work
backwards through the procedure, carefully checking each statement
that affects this variable.

If you are unable to find anything wrong with the procedure,
you should check every precondition and postcondition contained with-

PROGRAMMING WITH PROCEDURES 205

in it: the precondition of the procedure itself (Garbage in, Garbage
Out), the precondition and postcondition of each high-level action not
refined with a procedure-statement, the preconditions required for calls
of subprograms (in terms of the actual parameters), and the postcondi­
tions just after those calls (again, in terms of the parameters).

If the precondition for a call of a subprogram is true, but the
corresponding postcondition is false, turn your attention to the subpro­
gram called. But first carefully recheck the actual parameters; since
you previously tested the subprogram, and it passed, the problem is
quite likely to concern the parameters.

Once you have found the first false condition, you know that the
statements which are supposed to make it true are faulty. This does not
mean that it is a bug that is responsible; i.e. a small isolated error or
oversight. It simply means, as in desk-checking, that the relevant re­
finements are incorrect, and need to be rethought. If you are a careful
and correctness-oriented programmer, chances are the problem is a
bug. Otherwise, it is quite possible that much of the subprogram is just
completely wrong.

If all else fails, rewrite the erroneous subprogram from scratch,
and test it. This is not as drastic a measure as it may sound. If the
subprogram is yours, it is short. Otherwise, you are trying to correct
someone else's subprogram, and there is nothing worse (unless it is
short and precisely specified, or the error is obvious). If that is your
job, ask for a raise - you are underpaid.

9.5.5 DEFENSIVE PROGRAMMING

The following simple checks have already been mentioned. They
should always be performed prior to testing by execution:

• Check that all formal parameters are var- or value-parameters as
appropriate, and that all actual parameters are appropriate.

Another worthwhile test is to:

• Check that all variables are declared. Because of Pascal's scope
rules, missing declarations need not lead to syntax errors.

9.6 Using procedures: A summary
It should now be apparent why procedures should be used:

• Procedures help in the writing and reading of large programs,

. 206 PROGRAMMING USING MACINTOSH PASCAL

because the messy details are postponed and removed from the
text, respectively.

• Procedures permit modularity: parts of a program can be
developed and tested independently, and the program can more
easily be adapted to meet new requirements.

• A procedure can be called many times in many different parts of
a program.

• Procedures developed for one program can be reused in others.
Procedure wait, for example, is reused in program Nim for
Case-study 10 in Chapter 17.

Haw procedures should be used is best learned by example and
practice. They should be used to encapsulate high-level actions. The
heading of a procedure should include a comment that specifies what
the procedure does, in terms of its parameters, if any, and what
assumptions it makes about its parameters. The meaning of each for­
mal parameter should either be apparent from this comment or be
given by a comment immediately following its declaration. A
procedure should not use non-local variables unless it is local to an en­
closing subprogram that declares them.

9.7 Further reading

(1) Hueras, J. (1984). Macintosh Pascal Technical Appendix. Apple
Product #M1507. USA and Canada: Apple Computer, Inc.
The Technical Appendix - one of the three manuals that come
with Macintosh Pascal. Describes the QuickDraw libraries for
graphics applications, and the SANE library for numeric compu­
ting.

EXERCISES
9.1 How many different points are there in QuickDraw's coordinate plane?

9.2 How many pixels will be set to black as a result of executing Line(0,2)

(a) if the pen size is 1 x 1?
(b) if the pen size is 3 x 3?

:1~
l!:J
9.3

PROGRAMMING WITH PROCEDURES 207

9.3 How many pixels are set to black by executing the following
statement-list?

PenSize(2, 1);
FrameRect(O, 0, 5, 5)

9.4 Write a procedure that draws a horizontal arrow a specified distance to
the right from the current pen location, and moves the pen to the end.
Use formal parameters to specify the length (along the shaft) and the
width (across the shaft) of the arrow-head.

9.5 Write a procedure that draws a given number of dots in a horizontal
line, as follows. The first dot should be at the current pen location, and
each successive dot should be a given distance (possibly negative) from
the previous one. The final pen location should be the top-left corner
of the last dot. You may assume that the pen size is I x I.

Hint: Line(O,O) draws a dot.

9.6 Here is an alternative way to draw and label markers m procedure
Draw Axes:

var
MarkerAt, { horizontal coordinate of next marker }
time : integer;

{ Draw and label markers for time axis }
time:= O;
MarkerAt := Left;
while MarkerAt <= MaxWidth do

begin
Draw and label next marker ;
Update time and MarkerAt

end

Complete the implementation of this action.

9.7 Write a procedure that draws a horizontal axis. The formal parameters
should specify the position of the origin of the axis, the size of its unit,
its length in units, and the gap in units between its markers.

9.8 Suppose the player who takes the last match wses the game of Mini­
Nim. Modify the program accordingly.

9.9 Use schema Check Interactive Input from Chapter 6 to ensure that the
opponent of program MiniNim always takes a permissible number of
matches.

208 PROGRAMMING USING MACINTOSH PASCAL

9.10 How big must constant Dist of program MiniNim be to guarantee that
matches do not overlap?

9.11 What is the statement-list for the body of the repeat-loop in procedure
wait?

9.12 A general way to highlight the removal of a graphical object is to make
it repeatedly disappear and reappear before erasing it for good. Modify
MiniNim to use this flash method of removing matches.

9.13 Reorganize program JobScheduler2 according to the principles used
for program MiniNim.

9.14 Use a test-driver to test procedure move from program MiniNim.
Write a stub for procedure EraseMatch.

9.15 Here is a substantial programming assignment involving graphics.
Write an interactive program that creates a histogram. First it should
request the user to type the number of columns to be displayed and the
maximum column value, after which vertical and horizontal axes are
drawn. The vertical axis should span almost the entire height of the
Drawing window; the horizontal aXis should do likewise provided there
are sufficiently many columns. The vertical axis should have suitable
labeled markers. Next the program should ask for all column values to
be entered; it may assume that none are negative. After each value is
read, a column of the appropriate height should be drawn, and labeled
at the center of its base with its number (1,2,3, ...). You might like to
paint alternate columns with contrasting patterns, but they will look
best with outlines as well.

PROGRAMMING WITH PROCEDURES 209

10 _____ _
ORDINAL TYPES
How can anyone govern a country that has 246 different kinds of
cheese?
- Charles de Gaulle

10.1 Reg,uired ordinal types
10.2 Enumerated types

10.3 Subrange ty~es
10.4 Type definitions
10.5 Two simple examples

10.5.1 Exam~le one

10.5.2 Exam~le two

10.6 Statements associated with ordinal ty~es
10.6.1 The case-statement

10.6.2 The for-statement

10.7 Case-study 5: An arithmetic tutor

10.8 Macaveats
Exercises

212

213

214

215

216

216
217

218

218

219

220

227
228

10.1 Required ordinal types
In Chapter 5 we met Pascal's four required, simple types: integer,
real, char, and Boolean. The values in each of these types are
ordered, which is to say that, given any two values x and y, precisely
one of the conditions x < y, x = y, and x > y is true.

The three types other than real share a stronger property: it is
possible to list their values in order from the minimum to the max­
imum. Any value other than the last has a successor, and any value
other than the first has a predecessor. Such types are called ordinal
types. We already know that the functions succ and pred give the
successor and predecessor respectively of a character value. They per­
form the same function for every other ordinal type. In particular, if i
is an integer value:

succ(i) gives i + 1
pred(i) gives i - 1

and, for what it is worth,

succ(false)
pred(true)

gives true
gives false

Similarly, the function ord can be applied to a value x of any
ordinal type, and satisfies the following properties:

ord(succ(x)) equals ord(x) + 1, provided x is not the last value,
ord(pred(x)) equals ord(x) "'."" 1, provided x is not the first value.

It should be no surprise that:

ord(i)
ord(false)
ord(true)

gives
gives 0
gives

212 PROGRAMMING USING MACINTOSH PASCAL

Except for integer values, ord(x) gives the position of x in the ordered
list of all values of its type, starting with position 0.

Pascal programs may introduce their own ordinal types. There
are two ways to do so, and we proceed to examine each in turn.

10.2 Enumerated types
An enumerated type is specified by listing its values in order. Here
are three typical examples:

(Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)
(Bad, Indifferent, Good)
(Male, Female)

Each value is represented by an identifier, whose appearance con­
stitutes an implicit constant definition. It follows from the scope rules
that no value may appear in more than one enumerated type in­
troduced in a particular block.

The syntax of enumerated types is as follows:

enumerated-type: (identifier-list)

Relatively little can be done with values of an enumerated type.
Since enumerated types are ordinal types, the functions succ, pred,
and ord are available. The successor of a value is the next one in the
list, the predecessor is the previous one in the list; the ordinal values
start with 0. Thus, for example:

succ(Friday)
succ(Saturday)
pred(Female)
ord(lndifferent)

gives
gives
gives
gives

Saturday
an error

Male
1

Moreover, two values from the same enumerated type may be
compared with a relational operator; the result is the same as if their
ordinal values were compared. For example:

Monday>= Friday gives false
Indifferent < Good gives true

The existence of an ordering does not imply that it need be used -
only the operators = and <> are likely to be used with values of the
type (Male, Female), for example.

ORDINAL TYPES 213

A variable with an enumerated type may be assigned a value,
but there is no provision in Standard ·Pascal for input or output of
values of an enumerated type, though there is in Macintosh Pascal (see
'Macaveats', Section 10.8). Neither is there a function like chr that
gives the value in an enumerated type with a specified ordinal value
(but see Exercise 11.3).

Despite the lack of operations available with them, enumerated
types can make a great contribution to the readability of programs, as
we shall see in Case-study 5.

10.3 Subrange types
The other kind of programmer-defined ordinal type is a subrange
type. It is defined by giving its first and last values, which must both
be in the same ordinal type, with the last being greater than or equal to
the first. The values of the type are just those in the specified range.
Here are three examples:

1 .. 10
'a' .. 'z'
Monday .. Friday

The syntax is as follows:

subrange-type: constant .. constant

A subrange type has an associated host type, which is the
largest (ordinal) type that contains its values. A variable of a subrange
type inherits all the properties of a variable of the host type, except
that its values must lie in the specified range. Suppose we are given the
variable declarations in:

var
value : integer;
grade : 0 .. 100;

Then the statement:

value : = grade { OK }

is legal (provided grade is defined), but each of the statements:

Read(grade) { needs run-time check}

grade := value { needs run-time check }

214 PROGRAMMING USING MACINTOSH PASCAL

will be legal only if the next input value is an integer between 0 and
100 inclusive, and the value of value is between 0 and 100 inclusive,
respectively. Macintosh Pascal, like all respectable Pascal systems, will
check such statements during execution.

Subrange types also can make a substantial contribution to the
readability of programs, and to their correctness too, because out-of­
range errors will be detected as soon as they occur, rather than when
their consequences become apparent (if ever). They should be
exploited as much as possible.

10.4 Type definitions
It is convenient to be able to give a name to a user-defined type, just as
the name Boolean is given to the enumerated type (false, true). It is
actually essential to be able to do this, because the types of formal
parameters are specified by type-identifiers. Pascal makes provision for
a section of type definitions just after the constant-definition-part of a
block:

block:
constant-definition-part
type-definition-part
variable-declaration-part
procedure-and-function-declaration-part

Here is an example of a type-definition-part:

type
day = (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday);
weekday= Monday .. Friday;
digit= '0' . .'9';
counter= o .. Bound;
gear= (Reverse, First, Second, Third, Fourth, Fifth);

Bound must be an integer constant. The identifiers on the left denote
their corresponding types on the right throughout their scope (which is
defined in the usual way).

The syntax is specified as follows:

type-definition-part:
type

type-definition ;

type-definition: identifier = type

ORDINAL TYPES 215

type: simple-type I type-identifier
simple-type: enumerated-type I subrange-type

Note that it is permitted to define a new name with a previously
defined one, as in:

cost = integer; { values represent numbers of cents }

When this happens, the new identifier (cost) is said to denote the
same type as the other one (integer) and all its other same types. The
main application of this definition is with var-parameters, where the
actual-variable must be of the same type as the formal parameter.

10.5 Two simple examples
Here are two easily digested examples of the use of user-defined types.

10.5.1 EXAMPLE ONE

An extract from a customized word-processing program for lawyers:

type
sex = (Male, Female);

var
SexOfClient : sex;

procedure ReadSex (vars : sex);
{ Reads one character and sets s to Male if it is 'M' or 'm', or}
{ Female if it is 'F' or 'f'. Writes error-message if other }
{ character. }

var
ch : char; { next character from input }

begin { ReadSex }
Read(ch);
if (ch = 'M') or (ch = 'm') then

s :=Male
else if (ch = 'F') or (ch = 'f') then

s :=Female
else

Writeln('ERROR in procedure ReadSex: next character ',ch,
' unexpected.')

end; { ReadSex}

procedure WritePersonalPronoun (s : sex);

216 PROGRAMMING USING MACINTOSH PASCAL

{ Writes personal pronoun for s. }
begin { WritePersonalPronoun }

If s = Female then
Write(' she')

else
Write(' he')

end; { WritePersonalPronoun}

Thus if the next character in the input data is S and:

ReadSex(SexOfClient)

is executed, variable SexOfClient will receive the value Female. Then
execution of the statement-list:

WritePersonalPronoun(SexOfClient);
Write(' emphatically denies all the allegations')

will produce the output:

she emphatically denies all the allegations

10.5.2 EXAMPLE TWO

An extract from a program that gives feedback, albeit minimal, on the
performance of students in an examination:

type
GradeRange = 0 .. 100;
CategoryType = (Bad, Indifferent, Good);

var
category: CategoryType;
grade : GradeRange;

function CategoryOf (grade: GradeRange): CategoryType;
{ Returns category of performance represented by grade. }
begin { CategoryOf }

if grade < 25 then
CategoryOf := Bad

else if grade > 75 then
CategoryOf := Good

else
CategoryOf := Indifferent

end; { CategoryOf }

Thus if the statement-list:

ORDINAL TYPES 217

Read(grade);
category := CategoryOf(grade)

were executed, and the remaining input data starts with 6 5 , grade
would receive the value 65 and category the value Indifferent.

10.6 Statements associated with
ordinal types

Pascal has two statements that may be used with arbitrary ordinal
types.

10.6.l THE CASE-STATEMENT

The first of these statements is a generalized form of conditional state­
ment called the case-statement. It specifies a statement to be executed
for each possible value (at run-time) of an expression of an ordinal
type. Its syntax is as follows:

case-statement:
case expression of I ~~e-list-element;

case-list-element ;
end -

case-list-element:
case-label-list :

statement
case-label-list: constant ... , constant

The expression and the constants that label the alternative statements
must have the same ordinal type. No constant may appear more than
once in the statement; the order of constants in a case-label-list is
immaterial.

A case-statement is executed by first evaluating the expression,
and then executing the (single) statement that is prefixed by the value
of the expression. It is an error if the value is not present. If no state­
ment should be executed for some possible values of the expression,
they should label an empty statement (which is best placed last).
Macintosh Pascal allows an extended form of case-statement - see
'Macaveats', Section 10.8.

Here is an example:

218 PROGRAMMING USING MACINTOSH PASCAL

type
Months = (January, February, March, April, May, June, July,

August, September, October, November, December);
Years = 1753 .. 9999;
Monthlengths = 28 .. 31;

function LengthOfMonth (month : Months; year : Years) :
Monthlengths;

{ Returns number of days in given month for given year. }
begin { LengthOfMonth }

case month of
January, March, May, July, August, October, December :

LengthOfMonth := 31;
April, June, September, November :

LengthOfMonth := 30;
February:

if ((year mod 4 = O) and (year mod 100 <> O)) or
(year mod 400 = O) then
LengthOfMonth := 29

else
LengthOfMonth := 28

end {case}
end; { LengthOfMonth }

Case-statements are often used in Standard Pascal to implement
a procedure that prints a string representing a given value of an enum­
erated type - see Exercise 10.6. This is unnecessary in Macintosh
Pascal (see 'Macaveats').

10.6.2 THE FOR-STATEMENT

The other statement involving values from an ordinal type is the for­
statement, which we previewed in two schemas in Chapter 6. We re­
call its syntax:

for-statement:
for variable-identifier := initial-expression to-symbol

final-expression do
statement

to-symbol: to I downto

The variable-identifier is called a control variable. It must be declared,
in the block whose statement-part contains the for-statement, to have
an ordinal type. The values of the initial- and final-expression must be
assignment-compatible with the variable-identifier's type if the body is
executed, but only compatible if it is not. This means, for example,
that the loop shown bdow is always legal, even if count gives 0.

ORDINAL TYPES 219

con st
Limit= 100;

var
count : o .. Limit;
position : 1 .. Limit;

for position := 1 to count do

Unfortunately, Macintosh Pascal treats this statement as erroneous (see
'Macaveats').

When the to-symbol is to, the control-variable is assigned each
value v in the range v 1 :s:; v :s:; v2 in increasing order, where v 1 is the
value of the initial-expression, and v2 is the value of the final­
expression, evaluation taking place before execution of the statement.
For each such value (there may be none) the component statement is
executed. On termination, the value of the control-variable is un­
defined. The same applies when the to-symbol is downto, except that
the range of values vis vl ~ v ~ v2, and they are taken on in decreas­
ing order.

The initial values of the initial- and final-expression determine
the sequence of values taken on by the control-variable. To ensure this,
it is illegal to threaten the value of the control-variable in the body of
the loop or any subprogram which could be called in it. Assignment
statements, input statements, uses as an actual variable parameter, and
uses as a control-variable of another for-loop are all threats.

Every use of a for-loop conforms to one of the two schemas
given in Chapter 6.

10.7 Case-study: 5: An arithmetic tutor
This case-study is an exercise in program reading rather than writing.
Other than simple uses of the case-statement, no new schemas or state­
ments are used. However the program makes extensive use of enum­
erated and subrange types, and it is these aspects we should concen­
trate on.

Program Arithmetic is a very modest but nevertheless illustrative
contribution to the application-area called computer-assisted teach­
ing, or CAT. It is expected to be of more use (from the user's point of
view) to the reader's kid brother or sister than it is to the reader.

The specifications of the program are given in the comments
following the program-heading. Figure 10.1 gives the state of the Text
window after a particular run of Arithmetic; input is underlined.

The program sets, corrects, and assesses performance on simple
arithmetic exercises (which it calls tests). Effort has been expended to

220 PROGRAMMING USING MACINTOSH PASCAL

D Te Ht
~elcome to the arithmetic teacher .
To answer a test , type = fol lowed by the answer .
To find out the answer , type ?
To quit the session, type q in response to a test
or question .
End each response by typing the Return-key .
Here is your first test :
8 + 6 = 14
Correc~
6 * 1 = 7
No . Oo""\jOu want to try again? yes
6 * 1 = 5
No . Oo--yQu want to try again?..\!
6 * 1 = 6
Correct!
6 - 1 = 6
No . Oo""\jOu want to try again? n
Answer: 6 - 1 = 5
g - 0 = g
Correct!
2 + 0 .9.

3 correct answer(s)
3 incorrect answer(s)

give a polished and realistic program for its limited domain. The polish
shows in one main respect: the program accepts any single line of input
in response to a test or question, and imposes a reasonable interpreta­
tion. In the former case, a line starting with = is treated as an
attempt, one starting with Q or q as a request to quit, and any other
line as a query. In the latter case, a line starting with N or n is treated
as 'no', one starting with Q or q as 'quit', and any other line, including
the empty one (when only the Return-key is hit), as 'yes' .

The realistic aspects of the program are as follows:

(l) All three components of the tests are randomly generated. Re­
running the program will produce a different sequence of tests.

(2) Whenever the user queries a test, i.e. asks for the answer, or
declines to reattempt an unsuccessfully answered test, a new test
is generated that has the same operation.

(3) The user is given the opportunity to quit the session whenever
input is required.

Despite its complications and length, program Arithmetic is not
especially difficult to understand. Two factors take most of the credit
for this. One is its use of enumerated types, which tend to produce
plain and suggestive code (an unlikely sounding combination), often
described as transparent. It is especially important to appreciate why
the enumerated type operation best represents the arithmetic opera­
tions: it is because the values are both mnemonic and abstract. The
values '+', '-', and ' * ' of type char are, for example, much inferior
alternatives. Although mnemonic, they are not abstract, and there is no
way to indicate that only these values may be taken by variables re-

Figure 10.1
The Text window after a
run of Arithmetic.

ORDINAL TYPES 221

!ilY
10.1

presenting operations. The clincher for the prosecution of these char­
acters is Exercise I 0 .10.

The other factor enhancing the readability of Arithmetic is that it
is written in terms of many short, simple, modular subprograms, some
of which, namely NewTest, PrintTest, and answer, are used in
more than one block. Each subprogram can be completely understood
in a context consisting only of the constant and type definitions in the
program-block and the headings of any subprograms that it calls. The
stepwise refinement can be deduced, as usual, from the structure and
comments of the program.

program Arithmetic (Input, Output);
{ Repeatedly generates random arithmetic tests of form n1 op n2, }
{ where n1, n2 are integers, and op is an arithmetic operation. }
{ If '='and then an integer n3 is typed in response, n3 is }
{ interpreted as the user's answer; if correct, a new test is created; }
{ if incorrect, the user is given the opportunity to try again. If it is }
{declined, the answer is revealed and a new test with the same }
{ operation is generated. A response of 'Q' or 'q' to a test or }
{ question quits the session after printing a summary of the user's }
{ performance. Any other response to a test is taken as a query; }
{ again, the answer is revealed and a new test with the same }
{operation is generated. }

con st
lower= O; {lower limit to values of operands}
upper = 1 O; { upper limit to values of operands }
OrdOflastOp = 2; {ordinal value of last operation (see below) }

type
count = o .. Maxint;
operand= lower .. upper;
response = (correct, incorrect, query, QuitSession);
ReplyType = (Yes, No, Quit);
operation = (plus, minus, times);

var
NrCorrect, { number of correct answers }
Nrlncorrect { number of incorrect answers }

: count;
a, b : operand; { operands of a test }
op : operation; { operation of a test}
outcome : response; { outcome of a test }
reply: ReplyType;

function ran (lower, upper : integer) : integer;
{ Returns a random value uniformly distributed in lower .. upper; }
{assumes lower<= upper. }
begin {ran}

ran := lower + trunc((Random + Maxint + 1) I (2 * (Maxint + 1)) *
(upper - lower + 1))

end; {ran}

222 PROGRAMMING USING MACINTOSH PASCAL

procedure ReadReply (var reply: ReplyType);
{ Reads rest of line and sets reply according to first character: }
{ if 'N', 'n': no; 'Q', 'q': quit; anything else: yes. }
var

ch : char; { first character of response }
begin { ReadReply }

If eoln then
Read(ch) { space for end-of-line marker}

else
Readln(ch);

If (ch = 'N') or (ch = 'n') then
reply:= no

else if (ch = 'Q') or (ch = 'q') then
reply := quit

else
reply:= yes

end; { ReadReply}

procedure introduce;
{ Explains to user how to interact with this program. }
begin { introduce }

Writeln('Welcome to the arithmetic teacher.');
Writeln('To answer a test, type =followed by the answer.');
Writeln('To find out the answer, type?');
Writeln('To quit the session, type q in response to a test

or question.');
Writeln('End each response by typing the Return-key.');
Writeln('Here is your first test:')

end; { introduce }

procedure NewTest (var n1 : operand;
var op : operation;
var n2 : operand);

{ Gives a new random value to each parameter. }
{Global const: lower, upper, OrdOflastOp. }
{ Global subprogram: ran. }

var
i : o .. OrdOflastOp; { N.B. o can be 1 in Standard Pascal }

begin { NewTest}
n1 := ran(lower, upper);
n2 := ran(lower; upper);

{ Set op to a random operation }
op:= plus;
for i :== 1 to ran(O, OrdOflastOp) do

op := succ(op)
end; { NewTest }

ORDINAL TYPES 223

procedure PrintTest (n1 : operand; op : operation; n2 : operand);
{ Prints test n1 op n2. }
begin { PrintTest}

Write(n1 : 1, ' ');
case op of

plus:
Write('+');

minus:
Write('-');

times:
Write('*')

end;
Write('', n2: 1, '')

end; { PrintTest }

function answer (n1 : operand; op : operation; n2 : operand) :
integer;

{ Returns the answer to the test n1 op n2. }
begin { answer }

case op of
plus:

answer := n1 + n2;
minus:

answer := n1 - n2;
times:

answer := n1 * n2
end

end; { answer }

procedure PrintAnswer (n1 : operand; op : operation; n2: operand);
{ Prints test n1 op n2 and its answer. }
{Global subprograms: PrintTest, answer. }
begin { PrintAnswer }

Write('Answer: ');
PrintTest(n1, op, n2);
Writeln('= ', answer(n1, op, n2): 1)

end; { PrintAnswer }

procedure test (n1 : operand; op : operation; n2 : operand;
var outcome: response);

{ Presents test n1 op n2, reads response, and sets }
{ outcome accordingly. }
{Global subprograms: PrintTest, answer. }

var
ch : char; { first character of response }
n3 : integer; { number typed after '=' }

begin { test }
PrintTest(n1, op, n2);

224 PROGRAMMING USING MACINTOSH PASCAL

if eoln then { treat as query }
ch:='?'

else
Read(ch);

if (ch = 'q') or (ch = 'Q') then
outcome : = QuitSession

else if ch= '='then
begin { Read answer and set outcome accordingly }

Read(n3);
If n3 = answer(n1, op, n2) then

outcome := correct
else

outcome:= incorrect
end

else {ch is none of 'q', 'Q', '=' }
outcome := query;

Read In
end; {test}

procedure EndTest (var n1 : operand;
op : operation;
var n2 : operand);

{ Reveals answer to test n1 op n2, and gets new random values }
{for n1 and n2 (but NOT op). }
{ Global subprograms: PrintAnswer, NewTest. }
begin { EndTest}

PrintAnswer(n1, op, n2);
NewTest(a, op, b) { leaves actual-parameter for op unchanged }

end; { EndTest }

begin { Arithmetic }
{ initialize counts }

NrCorrect := O;
Nrlncorrect := O;

introduce;
NewTest(a, op, b);
repeat
{ Give test and process response }

test(a, op, b, outcome);
case outcome of

correct:
begin

NrCorrect := NrCorrect + 1;
Writeln('Correct!');
NewTest(a, op, b)

end;
incorrect:

ORDINAL TYPES 225

Notes

begin
Nrlncorrect := Nrlncorrect + 1;
Write('No. Do you want to try again? ');
ReadReply(reply);
case reply of

no:
EndTest(a, op, b);

yes:
; { will repeat same test }

quit:
outcome:= QuitSession

end
end;

query:
EndTest(a, op, b);

QuitSession :
end {case}

until outcome = QuitSession;

{ Summarize user's performance}
Writeln;
Writeln(NrCorrect : 1, ' correct answer(s)');
Writeln(Nrlncorrect : 1, ' incorrect answer(s)')

end. { Arithmetic}

(1) Function ran uses the predefined QuickDraw function Random,
which returns a value in the range -Maxint-1..Maxint. (The
value depends on a global variable randSeed, which is in­
itialized to I when Macintosh Pascal is entered, and changed by
the function-call.)

(2) The condition eoln in procedure ReadReply cannot be evaluated
until some input is typed, because the next character or marker in
the input stream must be available. It is OK in this context because
input is expected in response to a question.

(3) Since there is no function that gives the value in a particular
enumerated type with a given ordinal value, procedure NewTest
picks a random operation by first picking a random ordinal
value of an operation, and then using a for-loop to find the
corresponding operation. Alternatively, a case-statement can be
used; see Exercise 10.9. For a more efficient method for large
enumerated types, see Exercise 11.3.

(4) The implementation of EndTest is a little tricky, but does high­
light the difference between value and variable parameters. You
might pref er to rewrite it more plainly.

226 PROGRAMMING USING MACINTOSH PASCAL

Principle Avoid tricks; but if you can not resist the
temptation, at least explain the trick very clearly.

(5) The case-statement that processes variable reply in the statement
with case-label incorrect could be written as a conditional state­
ment:

if reply = no then
EndTest(a, op, b)

else if reply = quit then
outcome:= QuitSession

The given code is preferable since it explicitly shows how each
possible value is treated.

(6) The loop in the statement-part of Arithmetic is representative of
an attractive style, where the body assigns a value to a variable
of an enumerated type, and the loop stops when the variable
gets a special value. This variable is called a state-variable.

10.8 Macaveats
Macintosh Pascal provides for input and output of values of any enum­
erated type. If v is a variable of an enumerated type T, then Read(v)
will skip any leading spaces or end-of-line markers, and then read
characters as long as they form part of an identifier. If a value of type
T has the identifier that is read (ignoring the case of letters), that value
is given to v; otherwise an error occurs. Macintosh Pascal 2.0 also
allows T to be a subrange of an enumerated type (although the Refer­
ence does not mention this).

This extension is less useful than it might seem, since the names
chosen for the values of an enumerated type should be as natural as
possible, for the sake of readability. When preparing input, though,
these values are likely to be represented more economically, and may
not be separated as required.

The extension to permit output of enumerated type values is
more natural and more useful. If an expression gives a value of an
enumerated type, it is treated as if it were the string corresponding to
the identifier for that value. Thus:

Write(succ(Monday) : n)

is equivalent to:

Write('Tuesday' : n)

ORDINAL TYPES 227

The Reference states that the complete identifier is always printed, but
Macintosh Pascal 2.0 prints only n characters (as for strings), which is
consistent with Standard Pascal's treatment of Boolean values. The
best way to print enumerated type values in Standard Pascal is with a
procedure built around a case-statement; see Exercise 10.6.

There is a significant problem with the Macintosh Pascal 2.0
for-statement. Its initial- and final-expression must be assignment­
compatible with the control variable. This sometimes forces us to
declare the control variable with a larger ordinal type than necessary;
such instances will be pointed out in the sequel.

Macintosh Pascal has an extended form of case-statement, which
can specify a statement to be executed when the value of the expression
does not equal one of the listed constants. The appendage is called an
otherwise-clause. It is described in the Reference.

EXERCISES
10.1 What kind of Pascal type is best suited to represent the 246 fromages

fran~ais?

10.2 Given the type definition:

Days = (Su, Mo, Tu, We, Th, Fr, Sa)

implement the following function:

function NextDay (ThisDay : Days) : Days;
{ Returns day in week following ThisDay. }

10.3 What are the best types for variables secret and guess in programs
YouGuess2 and YouGuess3?

10.4 Define a type for the variables and formal parameters in program Char­
acterSet (in Chapter 8) that represent rows or columns of the character
set table.

10.S Modify program MiniNim in Chapter 9 by adding and exploiting the
following type-definition section.

type
MatchRange = O .. StartMatches;

{ possible numbers of matches left }
TakeRange = 1 .. MaxTake;

{ possible numbers of matches to remove }

Introduce a variable to help compute the value for taken in procedure
move, so that the type of taken can be TakeRange (as it naturally
should be).

228 PROGRAMMING USING MACINTOSH PASCAL

10.6 Implement the following procedure in Standard Pascal. Hint: Use a
case-statement.

procedure PrintMonth (m : Months);
{ Prints the string corresponding to the identifier of m. }

10. 7 Give two reasons why the type of the local variable n3 of procedure
test is integer rather than operand.

10.8 Implement the following procedure and use it to avoid the three uses of
(s) at the end of program Arithmetic.

procedure Pluralize (n : count);
{ Appends 's' to output if n <> 1. }

For a better but non-Standard approach, see function plural in Chapter
14.

10.9 Complete the following partial implementation of an action in
procedure NewTest:

{ Set op to a random operation }
case ran(O, OrdOflastOp) of

10.10 Modify program Arithmetic to include the operations div and mod as
defined by Pascal. Ensure that the value of n2 is legal.

10.11 Here is a substantial programming exercise involving enumerated and
subrange types, and QuickDraw graphics. Write a program to draw a
calendar month by month, after the style of Figure 10.2. Here are
some suggestions.

• Use the type definition in Exercise 10.2, and a similar one for
months (use three-character identifiers for the months to simplify
the task of centering them).

• Use functions LengthOfMonth and NextDay from earlier in this
chapter and Exercise 10.2 respectively.

Sep 1988
Su Mo Tu We Th Fr Sa

1 2 3

8 9 10

11 12 13 14 15 17

19 20 21 22 23 24

25 26 27 28 29 30

Figure 10.2
A calendar for a particular
month.

ORDINAL TYPES 229

• Draw the entire calendar with:

procedure DrawCal (year: Years;
Jan1 : days);

{ Draws a month by month calendar for given year, with }
{ January 1st on day Jan1; waits for user to hit Return-key }
{ before printing new month. }

DrawCal(1988, Fr)

• Use the following local procedure in DrawCal.

procedure DrawMonth (month : Months;
NrDays : Monthlengths;
var FirstDay: Days);

{ Draws calendar for given month having NrDays days and }
{ first day on FirstDay; updates FirstDay to first day }
{ of next month. }

• Here is a partial implementation of DrawMonth:

var
NrRows : 1 .. 6; { number of rows in month's calendar }
day : Days; { current day }
DayNumber: 1 .. 31 ; { number of current day }

begin { DrawMonth }
NrRows := (NrDays + ord(FirstDay) + 6) div 7;
Clea:r Drawing window ;
Paint gray background for calendar;
Draw headings (month and days);
Set coordinates of box for first day ;
day:= FirstDay;
for DayNumber := 1 to NrDays do

begin
Erase box for day ;
Draw DayNumber in box;
Advance day and set coordinates of its box

end;
FirstDay := day

end; { DrawMonth}

The main idea is to calculate the coordinates of the next box from
those of the previous one. Alternatively, you might prefer to
calculate box coordinates directly from DayNumber and day.

• In Chapter 14 we will learn properly how to center strings, so do
not worry overly much about this now.

230 PROGRAMMING USING MACINTOSH PASCAL

11 _____ _
ARRAYS
A place for everything, and everything in its place.
- Samuel Smiles, Thrift

11.1 Introduction
11.2 Arrar-types

11.2.1 Another 2rogram using an arra~
11.3 Operations on an entire arrar
11.4 Linear search

11.4.1 02timistic linear search

11.4.2 Truncated safe linear search

11.4.3 Sentinel search

11.4.4 Boolean safe linear search

11.4.5 The right search for the right occasion

11.5 Sorting
11.5.l The 2roblem

11.5.2 Selection sort

11.5.3 Bubble sort

11.6 Strings in standard Pascal
11.6.l Packed arrays

11.6.2 Strings

11.7 Case-studr 6: Scheduling m
11.7.1 Setting of the Eroblem

11.7.2 S2ecifications

11.7.3 Writing the 2rogram

11.7.4 The com2lete 2rogram
11.8 Macaveats
11.9 Further reading

Exercises

232

235

236

237

238

238

239

241

244

245

246

246

246

249

250

250
252

253

253

254

254

259

264
264

264

11.1 Introduction
Consider the problem of reading a number of examination scores, each
of which is between 0 and 100 inclusive, and displaying them as a
histogram, i.e. a table or diagram that shows the frequency of each
score. Let us decide for the moment to produce output like the follow­
ing in the Text window, which shows that there were no scores of 0 or
1, 1 score of 2, no scores of 3, . . . , 2 scores of 99, and no scores of
100.

Score Frequency

0 0

1 0

2 1

3 0

99 2

100 0

Since the number of scores is unspecified, we might decide to
prompt for all the scores to be entered followed by a stopping-value of,
say, -1. The high-level solution to our problem is obtained from the
variant of schema Interactive 1/0 that uses a single, initial prompt and
Read- rather than Readln-statements. We write:

const
MaxScore = 100;

var
score : -1 .. MaxScore; { exam score or stopping-value of -1 }

Initialize ;
Writeln('Enter exam scores, separated by spaces, then -1 to end

input: ');
Read(score);

232 PROGRAMMING USING MACINTOSH PASCAL

while score > = 0 do
begin

Process score;
Read(score)

end;
Readln;
Finalize

Since the purpose of the solution is to print the table, we
proceed first by asking which part should accomplish this. Although
printing the table may well involve repetition, it cannot be
accomplished by the while-loop, because no frequencies are known un­
til all the data has been processed. The printing must be the province
of the action Finalize, but attempting to refine it reveals a major
difficulty: 101 different variables are needed, one for each of the
possible scores. We could call these:

freqO, freq1 , ... , freq99, freq100,

and go on to refine Process score with a gigantic (well, very large)
case-statement, Initialize with a sequence of 101 assignments, Finalize
with a sequence of 102 Writeln-statements, and declare all these vari­
ables. But there must be a better way!

All the variables we have used thus far have had simple types,
i.e. have been capable of containing only a single value. But Pascal also
has structured-types; variables of these types may contain a collection
of values. The kind of structured-type we need for our problem is
called an array-type. Specifically, consider the variable-declaration
below (which is preceded by some type-definitions):

type
count = O .. Maxint;
ScoreRange = 0 .. MaxScore;
histogram = array[ScoreRange] of count;

var
freq : histogram;

Variable freq has an array-type, and we say that it is an array. It con­
sists of 101 component variables, one for each value of type Score­
Range; each has the type count. Their names are:

freq[O], freq[1], ... , freq[99], freq[100]

The component variables are called the . elements of the array; the

ARRAYS 233

value of type ScoreRange that identifies a particular element is called
its index. Except for their unusual names, the elements of array freq
have the same properties as a simple variable of type count (but for
some minor restrictions mentioned later). The entire array is pictured
below; each box represents an element, and its index is shown on top.

0 1 99 100

freq ._I _ _.________..__ _ ___.__.....__~
So far, so good - we have certainly saved a lot of declarations.

But the real power of arrays stems from the ability to specify an ele­
ment during execution by evaluating an expression to get its index.
Such a name for an element is called an indexed-variable. A typical
example is:

freq[score]

where score must have a value between 0 and 100 inclusive.
We now know enough to complete our solution. Initialize is re­

placed by:

{ Zero all frequencies }
for score:= 0 to MaxScore do

freq[score] := 0

The body of this loop is executed with score taking the successive
values 0, 1, ... , 99, 100. On the first iteration, score has the value 0.
So the indexed-variable freq[score] represents freq[O], which gets the
value 0. (Like all variables, its value was initially undefined.) On the
next iteration, score has the value 1, so freq[1] gets 0, and so on, until
freq[100) gets 0 on the last iteration.

To Process score means adding 1 to the appropriate element:
the one whose index is the value of score. We need only write:·

freq[score] := freq[score] + 1

For example, if the most recently read input value was 56, score will
have that value, and each instance of freq[score] in the above assign­
ment statement will represent freq[56]. The value of the expression on
the right is thus 1 more than the number of scores of 56 previously
processed, and this becomes the new value of freq[56].

Finally, Finalize is replaced by:

{ Print histogram }
Writeln('Score Frequency');

234 PROGRAMMING USING MACINTOSH PASCAL

for score:= Oto MaxScore do
Writeln(score : 4, freq[score] : 1 O)

The Writeln-statement will be executed with score taking the
successive values 0, 1, ... , 100. Each such index is printed together
with the corresponding element of array freq.

11.2 Array-types
The syntax of array-types is as follows:

type: si.mple-type I structured-type I type-identifier
structured-type: array-type
array-type: array [index-type] of component-type
index-type: ordinal-type
component-type: type

Note that the index-type of an array can be any ordinal-type, and the
component-type any type at all (including, as we shall see in Chapter
13, another array-type). An array-type can be given a name with a
type-definition, as with type histogram above, or directly used as the
type of a variable, as in:

var
freq : array[ScoreRange] of count;

The virtue of using a type definition is that it permits formal para­
meters to have the same type as the array, so that the array can be used
as a corresponding actual parameter.

The syntax of indexed-variables is as follows:

indexed-variable: array-variable [expression]
array-variable: variable
variable: entire-variable I component-variable
entire-variable: variable-identifier
component-variable: indexed-variable

The index of an indexed-variable is sometimes called a subscript,
because the mathematical notation for Pascal's freq[O] is freq0, where 0
is called the subscript of freq. The subscript must give a value that is
assignment-compatible with the array-variable's index-type. Macintosh
Pascal will check this during execution. Suppose, for example, that two
input values in the histogram example were accidentally run together,
giving 5 6 7 4. If score was declared to have type integer, the error
message shown in Figure 11. l would appear when the statement:

ARRAYS 235

Figure 11.1
The error message for an
illegal subscript.

~ The ualue of a uariable or subeHpression is out of range for Its m intended use.

freq[score] := freq[score] + 1

was executed for this value of score.

Principle If a variable is used only as a subscript, declare it to
have the indexed-type of the array. (See Section 11.4, 'Linear
search', for a caveat.)

Our solution to the histogram problem does not violate this principle,
since score is not used only as a subscript. But the deviation is minor
and perfectly safe in its context.

Note that the syntax rules treat indexed-variables as variables,
permitting them to be used, e.g. in input-statements, as actual variable
parameters, as subscripts (exploited later in Case-study 6), and even, as
we shall see in Chapter 13, as the array-variable part of an indexed­
variable.

One should not confuse the subscript of an element with its
value. Subscripts and elements may not even have the same type, as in
the following example.

11.2.1 ANOTHER PROGRAM USING AN ARRAY

The problem here is to print the number of occurrences of each letter
that appears in the input data. The problem essentially is the same as
that of printing the histogram of scores, so its solution will take the
same form. Here a count is maintained for every lower-case letter, so
the index-type of the array will be 'a' . .'z'.

program Letters (Input, Output);
{ Prompts user to enter a sentence using only lower-case letters, }
{ and prints the letters employed together with their frequencies. }
{ N.B. assumes lower-case letters are contiguous. }

type
count = O .. Maxint;
letter = 'a' . .'z';
LetterCounts = array[letter] of count;

var
freq : LetterCounts; { freq[I] is number of letter l's read so far,

I= 'a', ... , 'z'.}
ch : char; { last character read, or control-variable }

begin { Letters }
{ Zero all letter frequencies }

236 PROGRAMMING USING MACINTOSH PASCAL

~L Te Ht
Enter a sentence: use only lower-case letters, and end with Return. !():
"this sentence contains three a's, three e's, two d's, twenty-six µ:.
e's, five f's, three g's, eight h's, thirteen i's, two l's, sixteen
n's, nine o's, six r's, twenty-seven s's, twenty-two t's, two u's,
five v's, eight w's, four x's, five y's, and only one z."
contains 3a's 3c's 2d's 26e's 5f's 3g's Sh's 13i's 21's 16n's 9o's b=;:
6r's 27s's 22t's 2u's 5v's Sw's 4x's 5y's 1z ~

for ch := 'a' to 'z' do
freq[ch] := O;

{ Prompt for input after quote }
Writeln('Enter a sentence: use only lower-case letters, and end

with Return.');
Write("");

{ Read input, count letters, and append quote }
while not eoln do

begin
Read(ch);
if ('a' <= ch) and (ch <= 'z') then

freq[ch] := freq[ch] + 1
end;

Writeln("");
{ Announce non-zero letter frequencies }

Write(' contains');
for ch := 'a' to 'z' do

if freq[ch] > O then
begin

Write(' ', freq[ch] : 1, ch);
if freq[ch] > 1 then

Write("'s')
end

end. { Letters}

The Text window after an atypical run of program Letters is
shown in Figure 11.2.

11.3 Operations on an entire array
Arrays generally are manipulated through their components. However,
there are ways to work with an entire array variable. One of these is
with an assignment statement:

A:= B

Provided array B has the same type as array A, the assignment is

Figure 11.2
The Text window after a
run of Letters.

ARRAYS 237

permitted, and assigns each element of B to the element of A with the
same index. Array assignment is relatively uncommon, both because it
is time-consuming if the arrays are large, and because it is usual to
employ only partially filled arrays.

The most important way to manipulate an entire array is to use
it as an actual parameter of a function-designator or procedure­
statement. Even though within the subprogram the array may be used
element-by-element, in the context of the call it is used as a unit.
Pascal's parameter mechanism treats arrays according to exactly the
same rules as for parameters of other types:

• Value array parameters A formal value parameter of an array­
type is treated as a local variable of that type which is assigned
the value of its corresponding actual parameter before execution
of the subprogram's block. (This is why array-assignment is
permitted!) Except in the case of strings, which we discuss later
in this chapter, the actual parameter must be an array of the
same type.

• Variable array parameters A formal variable parameter of an
array-type is treated as a local renaming of its corresponding
actual parameter, which must be an array of the same type.
Since no array-assignment is involved in this case, input para­
meters of an array type are often made variable parameters, even
though conceptually a value parameter is preferable. Note that
since there are no array expressions, the range of potential actual
parameters is not diminished. Care, however, must be taken not
to change any element of such an input array parameter.

11.4 Linear search
11.4.1 OPTIMISTIC LINEAR SEARCH

Suppose that the histogram of scores is to be printed starting with the
lowest score attained. We might decide to compute this value with the
following function:

function FirstNonZero (var h : histogram) : ScoreRange;
{ Returns the least index of a non-zero element of h; }
{ assumes at least one element is non-zero. }

Here it is sensible to make h a var-parameter, lest the function begin
by copying 101 variables of type count into a local array. We note our
obligation not to change any element of h.

The problem fits schema Sequential Search from Chapter 6: the

238 PROGRAMMING USING MACINTOSH PASCAL

sequence is that of the values in ScoreRange, in increasing order; the
property P(v) is h[v] <> 0. Using low for v, we obtain:

var
low: ScoreRange; {low<= index of first non-zero element}

begin { FirstNonZero }
low:= O;
while h[low] = 0 do

low:= low+ 1;
FirstNonZero := low

end; { FirstNonZero }

Note how informative and yet concise is the comment for low - such
comments are the most helpful to the reader.

A specialization of schema Sequential Search to the case where
each new value is the successor (or predecessor) of the previous one, is
known as linear search. Specifically, the one above is the optimistic
version, where a solution is assumed (i.e. known) to exist. In the con­
text of our histogram of examination scores the assumption is justified.
But consider the next problem.

11.4.2 TRUNCATED SAFE LINEAR SEARCH

The sentence in Figure 11.2 has the appealing property (if you like that
sort of thing) of being self-describing - it is called an autogram .
Autogramophiles are also interested in pangrams , which are sentences
that contain every letter of the alphabet. After reading a sentence as in
program Letters , therefore, a program might execute the following
assignment:

var
lsPangram : Boolean; {true iff the input sentence is a pangram }

function AllNonZero (var instances: LetterCounts) : Boolean;
{ Returns true iff all elements of instances are non-zero. }

lsPangram := AllNonZero(freq)

Our problem is to implement function AllNonZero.

Principle To evaluate functions such as AllNonZero that are true
iff all values in some range have a certain property, search for a
value that does not have the property; the result is true iff the
search is unsuccessful.

For our problem, therefore, we might decide to use a variable

ARRAYS 239

aLetter to range over the letters, and have the loop terminate when the
following condition is true:

(aletter > 'z') or (instances[aletter] = 0)

The first operand of or should be true iff the search is unsuccessful (in
finding a letter with a zero frequency); the second iff it is successful
(and aLetter is the first letter with a zero frequency). So, after nega­
ting the stopping-condition to get the condition of the while-loop, we
might write:

var
aletter: char; {BEWARE}

begin { AllNonZero }
aletter := 'a';
while (aletter <= 'z') and (instances[aletter] <> 0) do
{BEWARE}

aletter := succ(aletter);
AllNonZero := aletter > 'z'

end; { AllNonZero}

Note that we have declared aLetter to have the type char rather
than letter, because it might be assigned the value succ('z'). Un­
fortunately, the existence of such a value is not guaranteed by the
Standard. It does exist in Macintosh Pascal and all the important char­
acter sets, so we might be inclined to document our assumption and
leave it at that. But then a second problem emerges, because the condi­
tion of the loop might be evaluated by first evaluating the indexed­
variable, and instances[succ('z')] does not exist.

Principle Rather than patch a flawed solution, think again.

There is a neat solution to our problem. (One school of thought
holds that there is a neat solution to every programming problem,
a proposition that is not as Panglossian as it may seem.) The idea is
to limit the search to the letters < 'z'. If it stops because
instances[aLetter] = 0, the function should return false. Otherwise,
it stops because aLetter = 'z', and the function should return false iff
instances['z'] = 0. In either case, the result of the function is the
value of instances[aletter] <> 0. Our solution is therefore:

var
aletter : letter;

begin { AllNonZero }
aletter := 'a';
while.(aletter < 'z') and (instances[aletter] <> O) do

240 PROGRAMMING USING MACINTOSH PASCAL

aLetter := succ(aLetter);
AllNonZero := instances[aLetter] <> 0

end; { AllNonZero}

This is the simplest solution to our problem. Note that it allows
aletter to have type letter. The underlying schema is called Truncated
Safe Linear Search ('Safe' because it makes no assumption that the
search will be successful). In a given application, only the value of
NoneHaveP or of v might be of interest.

Schema Truncated Safe Linear Search:
var .

NoneHaveP : Boolean;
v: a .. b;

{ If no values in a .. b have property P, set NoneHaveP = true; else }
{ set NoneHaveP = false and v = least value in a .. b with property P; }
{assume a <= b.}

v :=a;
while (v < b) and not P(v) do

v := succ(v);
NoneHaveP := not P(v)

For another approach to testing for pangrams, see Exercise 17. 7.

11.4.3 SENTINEL SEARCH

Our next problem has the following context:

con st
Maxlndex = ... ;

type
index = 1 .. Maxlndex;
count = o .. Maxlndex;
values = array[index] of ElementType;

var
A: values;
n: count;

Suppose the elements of A with indexes from 1 up to n have
been given values.

Notation A[a .. b] denotes the section of array A consisting of the
elements A[i] with a :s:; i :s:; b. If b <a, this collection is empty.

Our problem is to remove any duplicated values from A[1 .. n], decreas-

ARRAYS 241

Figure 11.3
The general picture for the
distinct-values problem.

ing n if necessary, so that on completion A[1 .. n] contains just the dis­
tinct values originally present. For example, suppose EleiiientType is
integer, Maxlndex = 10, n = 8, and A is as shown below:

1 2 3 4 5 6 7 8 9 10

A 6 5 5 -1 6 4 0 6 ? ?

Then after execution of our solution, n must be 5, and a suitable con­
figuration for A is:

2 3 4 5 6 7 8 9 10

A 6 5 -1 4 0 ? ? ? ? ?

Let us decide to process the elements from left to right,
accumulating the distinct values on the left. Before writing, though,
we must be completely specific. A very useful technique for any array
problem is to draw a picture that is sufficiently general to represent the
situation at any point in the computation. We employ the following
variables:

var
m : count; { number of distinct values accumulated }
r : index; { index of next remaining original element }

The general picture is shown in Figure 11.3. Some of the sections
shown may be empty, e.g. if m = 0 or m = r - 1.

The general picture is called an invariant because it invariantly
is true before each iteration of the loop that is based on it. Invariants
need not have anything to do with arrays. They are invaluable for wri­
ting correct programs and solving hard problems, and are treated in
more detail in Chapter 12. To exploit our general picture, we use a
loop preceded by initialization statements.

• The initialization must make the depicted situation apply.
• The loop should terminate when the picture represents the goal.

• The body of the loop must make progress toward the goal, tak­
ing care that the picture still applies afterward.

A distinct values in
original A[1 .. r - 1]

m

? original
values

n

?

242 PROGRAMMING USING MACINTOSH PASCAL

The first requirement is met by setting m = 0 and r = 1. Our
goal is to have r = n + 1, whence all distinct values have been
accumulated, and we only need set n = m. So if we use a while-loop,
its condition will be r <= n, and r could not be declared to have type
index. A for-loop is more appropriate, though, and permits our
declaration of r to stand; however, for consistency with the invariant,
we need to regard r as equal to n + 1 on termination. Finally, we
make progress in the body of the loop by increasing r. In order to
maintain the general picture, we must add A[r] to the distinct values if
necessary. We have arrived at:

m:= O;
for r := 1 to n do

Add A[r] to the distinct values if it does not occur in A[1 .. m];
n := m

The major task for the body of the loop is to search A[1 .. m] for
A[r]. A safe linear search is needed, because it may not occur. In this
situation, there is a very neat way to avoid the complications of a safe
search and write a simple, optimistic search. It is to guarantee success
by storing A[r] in A[m + 1] and searching A[1 .. m + 1]! Since r > m, it
is perfectly safe to do this - even if r = m + 1, the assignment does
no harm. The search is successful (meaning A[r] is a duplicated value)
iff it terminates before reaching A[m + 1]. In that case, nothing more
need be done. Otherwise, we need only increment m, because the new
value is already in the correct place. We have:

var
first : index; { least index with A[first] = A[r] }

{ Add A[r] to the distinct values if it does not occur in A[1 .. m) }
begin

A[m + 1) := A[r];
{ Set first = least index with A[first] = A[r] }

first := 1;
while A[first] <> A[r] do

first := first + 1;

If first = m + 1 then
m := m + 1

end

This technique is known as sentinel search, because the value
appended to ensure success is called a sentinel. The schema is simply
that of optimistic linear search preceded by the appending of the
sentinel.

ARRAYS 243

11.4.4 BOOLEAN SAFE LINEAR SEARCH

In the context of the previous problem, suppose now that the values of
ElementType are ordered, and the problem is to test whether or not the
values in A[1 .. n] are non-decreasing, i.e. if:

A[i] ~ A[i + 1), for i = I, 2, ... , n-1.

If so, the array-section is said to be sorted in non-decreasing (or, loose­
ly speaking, increasing) order. We formulate the problem as a func­
tion:

function sorted (var A : values; n : count) : Boolean;
{ Returns true iff A[1 .. n] is sorted in non-decreasing order. }

Note again the use of a var-parameter for efficiency, even though this is
a function.
· According to our principle given earlier, we introduce a variable
i and search for a value such that A[i] > A[i + 1] gives true. The re­
sult of sorted is true iff the search is unsuccessful.

Using a sentinel would require setting A[n + 1] to a value
< A[n]. There are two problems with this: A[n + 1] may not exist,
and there may not be a value < A[n]. There is a problem also with
using a truncated search: the condition of the while-loop would be:

(i < n - 1) and (A[i] <= A[i + 1))

but it could give a subscript error at the outset if n = 0 or 1. So we
instead use a new form of safe linear search, that employs a Boolean
variable:

var
i: index;
SortedSoFar : Boolean; { true iff A[1 . .i] is sorted }

begin { sorted }
i := 1;
SortedSoFar := true;
while SortedSoFar and (i < n) do

H A[i] <= A[i + 1) then
i := i + 1

else
SortedSoFar :=false;

sorted := SortedSoFar
end; {sorted }

If an out-of-order pair is found, SortedSoFar becomes false, the loop

244 PROGRAMMING USING MACINTOSH PASCAL

stops, and the function returns false; otherwise, the loop stops when
i = n, with SortedSoFar still true, and the function returns true.

The underlying schema is formulated as schema Boolean Safe
Linear Search (which is really just a specialization of a variant of
schema Complex While Loop). This method requires succ(b) to exist.
The requirement was met in our problem because b was n - 1 . In
practice, only a single Boolean variable might be used.

Schema Boolean Safe Linear Search:
var

NoneHaveP : Boolean;
v : a type containing a .. succ(b);

{ If no values in a .. b have property P, set NoneHaveP = true; else }
{ set NoneHaveP = false and v = least value in a .. b with property P; }
{ assume succ(b) exists. }

var
NoneHavePSoFar : Boolean; {true iff no values< v have property P}

v :=a;
NoneHavePSoFar := true;
while NoneHavePSoFar and (v <= b) do
If v ho.s property P then

NoneHavePSoFar := false
else

v := succ(v);
NoneHaveP := NoneHavePSoFar

11.4.5 THE RIGHT SEARCH FOR THE RIGHT OCCASION

Assuming a linear search is indicated, we have four versions to choose
from. Each has its advantages and disadvantages. We consider them in
order of increasing complexity.

(1) Optimistic linear search should be used if the search is guar­
anteed to be successful.

(2) Sentinel search is also a simple method, and should be used
whenever it is possible to use a sentinel without undue trickery.
Some advocate declaring arrays with an extra element to make
this style of search possible.

(3) Truncated safe linear search is the method for potentially un­
successful searches where the maximum value that can be
examined has no successor, and where the desired property can
be written as a Boolean expression.

ARRAYS 245

Figure 11.4
The general picture for our
sorting algorithm.

(4) Boolean safe linear search should be used for potentially un­
successful searches over potentially empty ranges of values,
provided the maximum value that can be examined has a
successor.

None of these searches is limited to arrays, as is apparent from
the schemas. Also, each has a variation that searches a sequence of
decreasing rather than increasing values.

11.5 Sorting
11.5.l THE PROBLEM

The most important problem involving arrays is that of sorting,
because arranging information in some order enables it to be searched
more efficiently. This should be no surprise to anyone who has used a
dictionary or a telephone directory. A fast and simple method for
searching in a sorted array, called binary search, is presented in
Chapter 12.

We shall work in the context of the previous type-definitions,
assuming ElementType is an ordered type. But our algorithms can easily
be generalized to apply to arbitrary types of element, as long as a
Boolean function of two arguments is provided that defines an ordering
of the values.

The problem, then, is to implement the following procedure:

procedure sort (var A : values; n : count);
{ Sorts A[1 .. n] into non-decreasing order. }

More precisely, the values A[1 .. n] are to be rearranged so that
sorted(A,n) gives true. This is known as sorting in place, or in situ:
by changing A rather than returning the result in another array, we
halve our space requirement, and maximize the size of the arrays that
can be handled. There is an understanding, therefore, that no local
arrays be used in procedure sort.

11.5.2 SELECTION SORT

Perhaps the most straightforward approach is to find (the index of) the
largest element and swap that element with the last, then find the
next-to-largest and swap it with the next-to-last, and so on. Before
starting to write, we need to be precise, and begin by drawing the gen­
eral picture shown in Figure 11.4.

Nrleft n

A ._I ___ un_s_ort_e_d __ ..__ ___ in_fi_na_l _po_s_iti_on_s ___ __,

246 PROGRAMMING USING MACINTOSH PASCAL

We have introduced:

var
Nrleft: count; { only A[1 .. Nrleft] remains to be sorted}

Now, following our principle for exploiting invariants, we:

• make the invariant apply initially by setting Nrleft = n;
• note that the loop should stop when Nrleft = 1, because then all

of A[1 .. n] must be sorted;

• make progress in the body of the loop by finding the maximum
value in A[1 .. Nrleft], swapping it with A[Nrleft], and then
decreasing Nrleft by 1.

All of this can be done with a for-loop:

var
MaxAt : index; { A[MaxAt] is maximum value in A[1 .. Nrleft] }

begin { sort }
for Nrleft := n downto 2 do

begin
Set MaxAt so that A[MaxAt] = maximum value in A[1 .. Nrleft];
swap(A[MaxAt], A[Nrleft])

end
end; {sort}

Note that the loop stops after processing Nrleft = 2, which for the
purposes of the invariant, is equivalent to stopping when Nrleft = 1
with a while-loop.

Procedure swap is familiar, though the type of its two var­
parameters must be ElementType. Note that swap has nothing to do
with arrays: it is perfectly capable of swapping array-elements as is.
The abstract action in the body of the loop may be implemented with a
function:

function lndexOfMax (var A : values; left, right : index) : index;
{ Returns the index of the maximum element in A[left .. right]; }
{ assumes left<= right. }

MaxAt := lndexOfMax(A, 1, Nrleft)

The function may as well be made more general than necessary. We
have documented the assumption that ensures its value is well defined.

To implement the function, all elements with subscripts in the
range left .. right need to be examined. The method is to remember the

ARRAYS 247

index of the maximum value seen so far, which can be initialized to
left. The remaining indexes are processed with a for-loop:

var
i : 1 .. Maxint; { can have type index in Standard Pascal }
ind : index; { A[ind] is maximum value in A[left .. i - 1] }

begin { lndexOfMax }
ind := left;
for i := left + 1 to right do

If A[i] > A[ind] then
ind:= i;

lndexOfMax :=ind
end; { lndexOfMax}

Procedure sort is now complete. Function lndexOfMax and
procedure swap are both modular, so each can be declared either prior
to sort or as local subprograms. Also, each can and should be tested
separately. Procedure sort can be tested by a simple test-driver like the
following:

program TestSort (Input, Output);
{Tests sort procedure: Reads integers into an array, sorts them, }
{ and then prints them in sorted order. }

constants, types & subprograms (ElementType is integer)
var

list : values;
UstSize : count; { list[1 .. ListSize] contains values read }
i : count; { ranges over 1 .. ListSize }

{ N.B. can have type index in Standard Pascal }
begin { TestSort}
{ Prompt for and read list of integers }

Writeln('Enter a list of integers; hit Return immediately after last
value.');

Writeln('lntegers after the', Maxlndex: 1, "'th will be ignored.');
ListSize := O;
whlle not eoln and (ListSize < Maxlndex) do

begin
ListSize : = ListSize + 1 ;
Read(list[ListSize])

end;
Writeln;

sort(list, ListSize);
Writeln('The input values in non-decreasing order:');
for i : = 1 to ListSize do

Write(list[i])
end. { TestSort }

248 PROGRAMMING USING MACINTOSH PASCAL

The test should work if no values are input, i.e. just the Return-key is
typed.

The algorithm we have employed, which repeatedly selects the
maximum remaining value and puts it in its correct position, is called
selection sort.

11.5.3 BUBBLE SORT

Selection sort is not the only algorithm that uses the invariant in Figure
11.4: there are other ways to move the largest value in A(1 .. Nrleft] to
the end, permitting Nrleft to be decreased by 1, and thereby making
progress in the body of the loop. One of these is to compare A[1] &
A[2], A[2] & A[3], ... , A[Nrleft - 1] & A[Nrleft], swapping each pair
if it is out of order. The effect is that large values bubble up, i.e. move
to the right, and the largest will bubble all the way up to the end.
Desk-check it with a small array-section.

Let us use variable k for the lesser index of the two elements to
be compared. The bubbling step involves processing the values k = 1,
2, ... , Nrleft - 1, so is best implemented as a for-loop. The complete
procedure is as follows:

procedure sort (var A : values; n : count);
{ Sorts A[1 .. n] into non-decreasing order. }
{ Global subprogram: swap. }

var
Nrleft : count; { only A[1 .. Nrleft] remains to be sorted }

{ N.B. can have type index in Standard Pascal }
k : index; { A[k] & A[k + 1] are compared }

begin { sort }
for Nrleft := n downto 2 do

for k := 1 to Nrleft - 1 do
If A[k] > A[k + 1] then

swap(A[k], A[k + 1))
end; { sort}

This algorithm is called bubble sort. Procedure sort can, of course, be
tested with program TestSort above, since only its implementation has
changed, not its specification.

Trace the above version of bubble sort using the technique
suggested in Exercise 11.12. You will discover that except in unusual
cases, the array-section will be sorted well before the outer for-loop is
finished. Very interesting. A little thought reveals the explanation:
much more progress is made on each iteration than simply putting the
maximum remaining value in its correct place.

We can take advantage of this by making the outer loop

ARRAYS 249

terminate if it is known that the array is already sorted. And a
sufficient and easily-tested condition is that no swaps are performed in
the bubbling step! Thus the sortedness of the array will be discovered
on the iteration after the one that does the last swap. In fact, we can
make this our only termination condition, because in the unlikely event
that NrLeft reaches 1, no swaps will be performed. Since at least one
iteration will now be performed, we use a repeat-loop. Our New
Improved Bubble Sort with Early Termination is as follows:

procedure sort (var A : values; n : count);
{ Sorts A[1 .. n] into non-decreasing order. }
{ Global subprogram: swap. }

var
Nrleft : -1 .. Maxlndex; { only A[1 .. Nrleft] remains to be sorted }
k : -1 .. Maxlndex; { A[k] & A[k + 1] are compared }

{ N.B. can have type index in Standard Pascal }
KnownSorted : Boolean; {true iff (outer loop:) A[1 .. n] known to }

{ be sorted; (inner loop:) A[1 .. k] known to be sorted }
begin { sort }

Nrleft := n;
repeat

KnownSorted := true;
for k := 1 to Nrleft - 1 do

if A[k] > A[k + 1] then
begin

swap(A[k], A[k + 1]);
KnownSorted : = false

end;
Nrleft := Nrleft - 1

until KnownSorted
end; {sort}

Note how KnownSorted is used. For the inner loop, it starts out true
and only becomes false if a swap is performed. So when the condition
of the outer loop is evaluated, it is true iff A[1 .. n] is known to be
sorted.

11.6 Strings in standard Pascal
11.6.l PACKED ARRAYS

Variables of structured types can have values that require large
amounts of main memory. An array with n elements would usually be
expected to use n times as much memory as a variable of its element­
type. Thus, for example, arrays with Boolean or char elements might
be allocated one cell per element.

250 PROGRAMMING USING MACINTOSH PASCAL

Sometimes the size of mam memory constrains the size of
problems that can be solved. To help in such cases, Pascal permits
arrays (and other structured types) to be packed. This is indicated by
giving the word-symbol packed before array in a type definition or
variable declaration:

structured-type: packed unpacked-structured-type
unpacked-structured-type: array-type

The effect depends on the implementation. For example, a
packed array of 1000 Boolean elements might only use 1000 bits rather
than cells. In Macintosh Pascal 2.0, only arrays with the following
element-types are affected by packing:

char 0 .. 255 -128 .. 127

Each such element uses one byte rather than two.
Only implementations with significant main memory limitations

are likely automatically to pack arrays. The reason is that packing will
increase the time needed to handle an indexed-variable, and this is a
much more common operation than array assignment which will be
faster.

A packed array type is not the same type as its unpacked ver­
sion. A packed array therefore cannot be used where an unpacked
array is expected, and vice versa. There is another restriction: an
element of a packed array may not be used as an actual variable
parameter.

A good compromise in some situations is to use packed arrays,
unpack them into local arrays before processing them element-by­
element, and repack them afterwards if necessary. Pascal has two re­
quired procedures to facilitate this approach. Suppose the following
variables are given:

var
pA: packed array[p1 .. p2] of T;
uA: array[ulndexType] of T;

Let uindex represent an expression whose value 1s assignment­
compatible with ulndexType. Then the procedure call:

unpack(pA, uA, uindex)

copies pA[p1 .. p2] into uA starting at uA[uindex], taking elements in
order of increasing subscripts. It is an error if there are insufficient
elements in uA.

=··~ l!:J
11.1

ARRAYS 251

Similarly, the procedure call:

pack(uA, uindex, pA)

copies values from uA into pA[p1 .. p2], starting with uA[uindex]. It is an
error if there are insufficient elements to fill pA. The index-type of the
packed array need not be a subrange type - the above formulation
used one only as a convenient way of indicating the range of indexes.

11.6.2 STRINGS

A type of the form:

packed array(1 .. n] of char

where n is an integer constant ~ 2, is called a string-type, and a vari­
able of that type is called a string variable. String-variables have
special status in Pascal: they are used in a half-hearted attempt to
provide text processing operations. Unlike for any other arrays,
whether packed or not, the following provisions are made (illustrated
in the following context):

type
string10 = packed array[1 .. 10] of char;

var
s1, s2 : string1 O;
s3 : packed array[1 .. 10] of char;

• Each string type has constant values: the character strings of its
length n. Thus the following assignments are permitted:

s1 := 'Dear Sir ';
s3 := 'Dear Madam'

Note the two spaces at the end of the first string constant, which
must have length 10. Similarly, a string constant may be used as
an actual value parameter for a formal parameter of a string
type. However, a string constant may not be given for pA in a
procedure-statement for unpack.

• The assignment compatibility rules for string variables are re­
laxed: a string variable is assignment compatible with any string
type of the same length. Thus the following assignments are
permitted:

252 PROGRAMMING USING MACINTOSH PASCAL

s2 := s1; { ordinary array-assignment }
s2 := s3 {only permitted with string variables}

The second assignment is special because s2 and s3 do not have
the same type. Similarly, s3 may be used as an actual value
parameter for a formal parameter of type string10.

• String variables may appear in output statements; for example:

Write(s1 : 8, ', drop dead.')

prints:

Dear Sir, drop dead.

Input, however, has to be done character by character.

• Two string values of the same length may be compared with a re­
lational operator. They are equal if all corresponding characters
are equal; otherwise, the result is determined by the first index
at which the characters differ, and is obtained simply by
comparing the two characters. Thus, for example:

s1 < s3 gives false, since 'S' < 'M' gives false

'96' > '69' gives true, since '9' > '6' gives true

'new ' < 'news' is implementation-dependent

The last example shows that Pascal's ordering of strings may not
be the same as that in a dictionary.

Many implementations of Pascal provide extensions in this area.
Macintosh Pascal's extensions are covered in Chapter 14.

11. 7 Case-study: 6: Scheduling __ I=II......._ __ _
11. 7 .1 SETTING OF THE PROBLEM

The problem setting is as for Case-study 3 in Chapter 9, but with two
changes:

• The number of available processors is given in advance, but it is
not necessarily two.

• Jobs are not necessarily scheduled in the order they are given on
input. Instead, the jobs are to be scheduled so as to minimize
the average time at which jobs complete.

ARRAYS 253

11.7.2 SPECIFICATIONS

The input will be as for Case-study 3: a list of processing times
followed by a stopping-value ~ 0. The output should have the same
format, except that the scheduling diagram will have as many rows as
there are processors. The jobs are to be scheduled by taking them in
order of non-decreasing processing times, and assigning them cyclically
to processors, i.e. in the order 1, 2, 3, ... , n, 1, 2, 3, ... , n, ... ,
where n is the number of processors. Our friendly neighborhood opera­
tions researcher has informed us that this minimizes the average time at
which jobs complete.

The number of processors is at least one. The program may
limit the number of jobs that it can handle, in which case the limit
must be announced to the user prior to input. If it is exceeded, the
extra jobs should be ignored.

11.7.3 WRITING THE PROGRAM

Realizing that all the processing times (and the associated job numbers)
must be stored before they can be processed, we write our first refine­
ment:

begin { JobScheduler3 }
Write heading ;
Prompt for, read, count, & store job times ;
Create the job numbers corresponding to the job times ;
Sort job information into scheduling order;
Schedule all jobs, create diagram, & print statistics

end. { JobScheduler3 }

The first action is easily disposed of:

con st
NrProcessors = ... ; { >= 1; number of processors }

{ Write heading }
Writeln('SCHEDULING JOBS ON ', NrProcessors : 1,

' PROCESSORS TO MINIMIZE AVERAGE
JOB-COMPLETION TIME');

Writeln

The next action we should consider is the last, since it will
determine what job information is needed and how it should be stored
and sorted. To do the scheduling, each processing time and associated
job number must be obtained in non-decreasing order of processing
times. There are several alternatives (some of which we are not yet
aware of), but let us decide on the following. The job numbers should

254 PROGRAMMING USING MACINTOSH PASCAL

be obtained from an array in order of increasing subscripts; the
processing times are held in another array in the original input order,
enabling the processing time for a given job number to be obtained by
using the job number as an index. The attraction of this technique in
general is that only indexes rather than large elements need be sorted;
the pedagogical attraction in the current context is that it forces us to
distinguish carefully between elements and their subscripts.

tions:
We introduce, therefore, the following definitions and declara-

con st
MaxNrJobs = ... ; { maximum number of jobs that can be

scheduled}
type

JobNumber = 1 .. MaxNrJobs;
JobCount = O .. MaxNrJobs;
time = 0 .. Maxint;
JobTimes = array[JobNumber] of time;
JobNumbers = array[JobNumber] of JobNumber;

var
JobTime: JobTimes; { JobTime[i] =the processing time of}

{the i'th job in the input order. }
JobNr : JobNumbers; { the i'th job in the current order was }

{ JobNr[i)'th in the input order. }
NrJobs : JobCount; { number of jobs to be processed }

{ (1 <= i <= NrJobs, above) }

As an example, suppose the following processing times were entered in
the order shown:

3, 5, I, 2, 7, 5, 4, 2

Then before executing the final action (scheduling all jobs), NrJobs =
8, and the arrays might look as shown in Figure 11.5. The informa­
tion needed to schedule the first job is the job number JobNr[1] = 3,
and the processing time JobTime[JobNr[1]] = JobTime[3] = 1. And so
on for the remaining jobs.

2 3 4 5 6 7 8 9 10

JobNr 3 4 I 8 7 2 6 5 ? ?

2 3 4 5 6 7 8 9 10

5 2 7 5 4 2 ? ?
JobTime l ___ a_._ __ __._ __ _... __ __.. __ ___.~-------------------....... -

figure 11.5
The arrays just before
scheduling.

ARRAYS 255

We decide to implement the scheduling with a procedure­
statement:

procedure ScheduleAll (var JobNr : JobNumbers;
var JobTime: JobTimes;
count : JobCount);

{ Schedules the job with job-number JobNr[i] and processing }
{ time JobTime[JobNr[i]], for i = 1, 2, ... , count, cyclically }
{ assigning jobs to processors 1, 2, ... , NrProcessors, 1, 2, .. . ; }
{produces scheduling diagram and prints statistics. }
{ Global const: NrProcessors. }

ScheduleAll(JobNr, JobTime, NrJobs)

There is no need to retain the original description of the action as a
comment.

Now we can tackle the three remaining highest-level actions, and
decide to use a procedure-statement for each. For reading:

procedure ReadTimes (var JobTime : JobTimes;
var count : JobCount);

{ Prompts for, reads, and counts job times, storing in }
{ JobTime[1 .. count]. }

ReadTimes(JobTime, NrJobs)

For creating the job numbers:

procedure NumberJobs (var JobNr : JobNumbers;
count : JobCount);

{ Sets JobNr[1 .. count] = (1,2, ... , count). }

NumberJobs(JobNr, NrJobs)

For sorting:

procedure Sortlndexes (var index : JobNumbers;
var A : JobTimes;
n : JobCount);

{ Sorts index[1 .. n] so that for 1 <= k <= n: }
{ A[index[k]] <= A[index[k + 1]]. }

Sortlndexes(JobNr, JobTime, NrJobs)

A is a var-parameter for efficiency.
Procedure ReadTimes is obtained from our familiar schema

Interactive 110, prompting once rather than repeatedly. The schema

256 PROGRAMMING USING MACINTOSH PASCAL

needs a slight modification to handle the possibility that too many
processing times are input. This amounts to stopping the loop when
the following condition gives true:

(vis a stopping value) or (number of jobs read = MaxNrJobs)

Negating this, we obtain for the condition of the while-loop:

(v is not a stopping value) and (number of jobs read <> MaxNrJobs)

The implementation of ReadTimes can be seen below in the listing of
the complete program. It should be tested with a program that calls it
and then prints the stored values.

Procedure NumberJobs is implemented using schema For In­
creasing Values; see the complete program.

Procedure Sortlndexes can be obtained by modifying any of our
sort procedures, or, indeed, anyone else's (if you trust them). Let us
decide to work with our most efficient version: New Improved Bubble
Sort etc. The main modification concerns swaps. The condition under
which a swap is performed is the opposite of the condition that is to be
established, which is given in the specification of the procedure. It is
therefore:

A[index[k]) > A[index[k + 1))

When this condition gives true, it is not the elements of A that are to be
swapped, but rather their i'fldexes held in the array index, which
implicitly define the ordering of A[1 .. n]. The other modifications
simply concern the types of the local variables, and the types of the
formal parameters and local variable of swap.

The implementation of Sortlndexes is given below in the listing
of the complete program. Since it is modular, it is a simple matter to
test it with a small main program, which may as well take advantage of
what we have written and tested thus far, especially procedure Read­
Times. This practice is not generally recommended - see the discus­
sion on testing procedures in Chapter 9. After sorting, it makes most
sense to print with:

for k := 1 to NrJobs do
Write('#', JobNr[k]: 1, ': ', JobTime[JobNr[k]): 1,' ')

to check that the processing times are in order, and that the values are
consistent with the input data.

It remains to write procedure ScheduleAll, which has to print
the number of jobs, and also if that is greater than zero, to compute

ARRAYS 257

and print the average job completion-time and draw the scheduling dia­
gram. Two levels of uncomplicated refmements lead to:

con st
PointSize = 12; { size of text }

var
SumOfCompletionTimes : time; { of all jobs }

begin { ScheduleAll }
Writeln('There are ', count : 1, ' jobs to be scheduled.');
If count > O then

begin
TextSize(PointSize);
Draw oxes;
Schedule all jobs;
Writeln('The average time at which jobs complete = ',

SumOfCompletionTimes I count : 1 : 1)
end

end; { ScheduleAll}

The main step is Schedule all jobs, so we now tackle it. It
amounts to scheduling the job with job number JobNr[zl and process­
ing time JobTime[JobNr[zl], for i = 1, 2, ... , count. The natural re­
fmement is with a for-loop, and we use a variable JobNrlndex in place
of i above. The body of the for-loop need only call a procedure with
the same specifications as procedure schedule from Case-study 3 in
Chapter 9 (except for the changes in the types of its formal para­
meters). However, we precede the call with an assignment to simplify
some actual parameters, and follow it with one that gets the next
processor, since computing the processor directly from JobNrlndex is
less transparent. As in JobScheduler2, variables are needed to keep
track of the total time used on each processor and the sum of comple­
tion times. For the former purpose, an array is ideal.

type
ProcessorType = 1 .. NrProcessors;
TotalTimes = array[ProcessorType] of time;

var
TotalTimeOn: TotalTimes; {total processing time on each

processor so far }
JobNrlndex : JobNumber; { Index of current job, in 1 .. NrJobs }
NrJob : JobNumber;
processor : ProcessorType; { Processor number }

function next (p : ProcessorType) : ProcessorType;
{ Retums processor after processor p in cyclic order. }

258 PROGRAMMING USING MACINTOSH PASCAL

{ Schedule all jobs }
Initialize ;
for JobNrlndex := 1 to count do

begin
NrJob := JobNr[JobNrlndex];
schedule(JobTime[NrJob], processor, TotalTimeOn[processor],

NrJob, SumOfCompletionTimes);
processor:= next(processor)

end

The initialization is straightforward:

{ Initialize }
for processor:= 1 to NrProcessors do

TotalTimeOn[Processor] := O;
SumOfCompletionTimes := O;
processor : = 1

So, too, is the implementation of function next, which may be found in
the complete program below.

Since procedure schedule has exactly the same specifications as
in program JobScheduler2, exactly the same implementation will do.
This is a very telling illustration of the benefits of the following
principle:

Principle Take the little trouble required to make procedures as
general as possible.

The remaining action, Draw axes , can be implemented by the
procedure-statement DrawAxes. Again, even though the present
problem is more general, our original procedure works perfectly.

11.7.4 THE COMPLETE PROGRAM

program JobScheduler3 (Input, Output);
{ Input: prompts user to enter a sequence of processing times }
{ for jobs, which must be positive integers, followed by a-1 }
{ to end input. Jobs after the first MaxNrJobs will be ignored. }
{ Jobs are assigned to processors to minimize the average of }
{ the times at which jobs are completed. }
{ Output: the number of jobs processed; the average of the times }
{at which jobs are completed; a diagram showing the jobs}
{assigned to each processor. In the diagram, each job is}
{ specified by its position in the input sequence. }
con st

ARRAYS 259

MaxNrJobs = 20; {maximum number of jobs that can be
scheduled}

NrProcessors = 4; { >= 1; number of processors}
type

JobNumber = 1 .. MaxNrJobs;
JobCount = O .. MaxNrJobs;
time = O .. Maxint;
JobTimes = array[JobNumber] of time;
JobNumbers = array[JobNumber] of JobNumber;

var
JobTime: JobTimes; { JobTime[i] =the processing time of}

{ the i'th job in the input order. }
JobNr : JobNumbers; { the i'th job in the current order was }

{ JobNr[i]'th in the input order. }
NrJobs : JobCount; { number of jobs to be processed }

{ (1 <= i <= NrJobs, above) }

procedure ReadTimes (var JobTime : JobTimes;
var count : JobCount);

{ Prompts for, reads, and counts job times, storing in }
{ JobTime[1 .. count]. Global const: MaxNrJobs. }

var
lnValue : integer; { last input value read }

begin { ReadTimes }
Writeln('Enter processing times for jobs to be scheduled.');
Writeln('Enter 0 to terminate the list.');
Writeln('Jobs after the ', MaxNrJobs : 1, '"th will be ignored.');
Write('>>');
count:= O;
Read(lnValue);
while (lnVah.ie > 0) and (count <> MaxNrJobs) do

begin
count := count + 1;
JobTime[count] := lnValue;
Read(lnValue)

end;
Writeln

end; { ReadTimes}

procedure NumberJobs (var JobNr : JobNumbers;
count: JobCount);

{ Sets JobNr[1 .. count] = (1,2, ... , count). }
var

i : JobCount; { ranges over 1 .. count }
begin { NumberJobs}

for i := 1 to count do
JobNr[i] := i

end; { NumberJobs }

260 PROGRAMMING USING MACINTOSH PASCAL

procedure Sortlndexes (var index : JobNumbers;
var A: JobTimes;
n : JobCount);

{ Permutes index[1 .. n] so that for 1 <= k <= n: }
{ A[index[k]] <= A[index[k + 1)). }
var

NrLeft: -1 .. MaxNrJobs; {only index[1 .. NrLeft] remains to be
permuted}

k: -1 .. MaxNrJobs; { A[index[k]] & A[index[k + 1)) are compared }
{ N.B. can have type JobNumber in Standard Pascal }

KnownSorted : Boolean;
{ true iff (outer loop:) index[1 .. n] known to be properly }
{ permuted; (inner loop:) A[index[1]) <= ... <= A[index[k]] }

procedure swap (var x, y : JobNumber);
{ Exchanges values of x and y. }
as in Exercise 8.7 except temp : JobNumber

begin { Sortlndexes }
NrLeft := n;
repeat

KnownSorted :=true;
for k := 1 to NrLeft - 1 do

If A[index[k]] > A[index[k + 1]] then
begin

swap(index[k], index[k + 1]);
KnownSorted :=false

end;
NrLeft := NrLeft - 1

until KnownSorted
end; { Sortlndexes}

procedure ScheduleAll (var JobNr : JobNumbers;
var JobTime: JobTimes;
count : JobCount);

{ Schedules the job with job-number JobNr[i] and processing }
{time JobTime[JobNr[i]], for i = 1, 2, ... , count, cyclically}
{ assigning jobs to processors 1, 2, ... , NrProcessors, 1, 2, ... ; }
{ produces scheduling diagram and prints statistics. }
{ Global const: NrProcessors. }

con st
Top = 12; {top-left corner of drawing is ... }
Left = 24; { ... at (Left,Top) }
Height = 40; { height of rectangle }
Unit = 30; { size of time unit in pixels }
PointSize = 12; { size of text }

type
ProcessorType = 1 .. NrProcessors;
TotalTimes = array[ProcessorType] of time;

ARRAYS

~
11.2

261

var
TotalTimeOn: TotalTimes; {total processing time on each

processor so far }
JobNrlndex : JobNumber; { Index of current job, in 1 .. JobCount }
NrJob: JobNumber;
processor : ProcessorType; { Processor number }
SumOfCompletionTimes: time; {of all jobs}

procedure DrawAxes;
{ Draws time axis and labels processors. }
{ Global constants: NrProcessors, Top, Left, Height, Unit,

PointSize. }
as in JobScheduler2, except t : time replaces time : integer
(and t replaces time throughout) and p : ProcessorType

procedure schedule (duration : time; processor : ProcessorType;
var StartTime : time;
NrJob: JobCount;
var Sum : time);

{ Schedules job of length duration on given processor, starting }
{ at time StartTime: updates diagram of scheduling decisions, }
{ identifying job with NrJob; updates StartTime to the starting }
{ time for the next job on this processor; updates sum of }
{ completion times (sum) of all jobs. }
same as in JobScheduler2

function next (p : ProcessorType) : ProcessorType;
{ Returns processor after processor p in cyclic order. }
{ Global const: NrProcessors. }
begin { next }

If p = NrProcessors then
next := 1

else
next:= p + 1

end; {next}

begin { ScheduleAll }
Writeln('There are', count: 1, 'jobs to be scheduled.');
If count > 0 then

begin
TextSize(PointSize);
Draw Axes;

{ Schedule all jobs }
{ Initialize }
for processor := 1 to NrProcessors do

TotalTimeOn[processor] := O;
SumOfCompletionTimes := O;
processor : = 1 ;

for JobNrlndex := 1 to count do

262 PROGRAMMING USING MACINTOSH PASCAL

begin
NrJob := JobNr[JobNrlndex];
schedule(Job Time[Nr Job], processor,

TotalTimeOn[processor],
NrJob, SumOfCompletionTimes);

processor := next(processor)
end;

Writeln('The average time at which jobs complete = ',
SumOfCompletionTimes I count : 1 : 1)

end
end; { ScheduleAll }

begin { JobScheduler3 }
{ Write heading }

Writeln('SCHEDULING JOBS ON ', NrProcessors : 1,
'PROCESSORS TO MINIMIZE AVERAGE JOB­
COMPLETION TIME');

Writeln;

ReadTimes(JobTime, NrJobs);
NumberJobs(JobNr, NrJobs);
Sortlndexes(JobNr, JobTime, NrJobs) ;
ScheduleAll(JobNr, JobTime, NrJobs)

end. { JobScheduler3 }

Figure 11.6 shows the screen after a test run of JobScheduler3
with NrProcessors = 4 and MaxNrJobs = 20. A good test to include

r s File Edit Search Run Windows

-o Te Ht
SCHEDULING JOBS ON 4 PROCESSORS TO MINIMIZE AVERAGE JOB-COMPLETION TIME

Enter processing times for jobs to be scheduled ..
Enter 0 to terminate the list .
Jobs after the 20"th wi I I be ignored .
» 3 5 1275426 1 3 4 0

~ There ore 12 jobs to be scheduled .
The average time at which jobs complete = 5 .8

F3 Jill Jil2
1

li10 Jil11 Jil6
2

Iii Jif7 Jll-9

l 3'
'

1818 18112 FS l 4

0 2 ~ 6 T8 !o 1
1
2 !-t

., Figure 11.6

~
m
~llm

~ '2J

The screen after a run of
JobScheduler3.

ARRAYS 263

is one where the processing times are entered in non-decreasing order,
and NrProcessors = 2, because then the output can be compared with
that from JobScheduler2.

11.8 Macaveats
The Reference uses the term packed-string-MJe for the Standard's
string-MJe, and string-MJe for Macintosh Pascal's own string types. The
latter are much more convenient and sophisticated, and should be used
for all programs designed solely for the Macintosh.

11.9 Further reading
(1) Sallows, L. C. F. (1985). 'In quest of a pangram' Abacus 2,

22-40.
The self-describing sentence in Figure 11.2 comes from this
article. See also the follow-up article by John R. Letaw in the
same issue. For lettermen and women only.

EXERCISES
11.1 Assemble the program that prints a histogram of scores, and trace its

execution as follows. Redefine MaxScore to be 3, and enter the expres­
sions freq[O], freq[1], freq[2], freq[3], and score in the Observe
window. Make sure it is large enough to display all of them. Then
execute the program by choosing Step-Step from the Run menu.

11.2 Suppose the variables C and D 81:~ declared as follows:

var
C, D : array(1 .. 5] of integer;·

and have been given values as shown below:

2 3 4 5 I 2 3 4 5

c 3 4 2 5 I D 12 8 9 2 5

Also assume that integer variable i = 2. Evaluate the following expres­
sions, looking out for errors.

264 PROGRAMMING USING MACINTOSH PASCAL

(a) C[2 * i - 1]
(c) D[C[i]]

(b) D[(i - 1) div 2]
(d) C[2 * 0[2 * i]]

11.3 The simplest way to mimic a function that returns a value of an enum­
erated type when given its ordinal value is to use an array. Implement
the action below that creates such an array for the type operation from
program Arithmetic in Chapter 10.

con st
OrdOfLastOp = 2; { ordinal value of last operation (see below) }

type
operation = (plus, minus, times);
OrdOfOperation = O •• OrdOfLastOp;

var
OpWithOrd : array[OrdOfOperation] of operation;

{ OpWithOrd[i] = operation with ordinal value i }

Define OpWithOrd

The way to use an array like OpWithOrd is to regard it as a globally
defined function (which, conceptually, it is).

11.4 In the context of the problem of the histogram of examination scores,
implement the following procedure.

procedure PrintFrom (LowScore : ScoreRange;
var h : histogram);

{ Prints each score s and its frequency h[s], }
{ for s = LowScore, ... , MaxScore, in two headed columns. }
{ Global const: MaxScore. }

11.5 Rewrite the program for the histogram of examination scores by using
procedure PrintFrom from the previous question, and by implementing
and using the following procedures:

procedure zero (var h : histogram);
{Sets every element of h to zero. }

procedure ReadAndCompute (var h : histogram);
{ Prompts for and reads exam scores, and computes their }
{ histogram h. }

ARRAYS 265

11.6 Using function FirstNonZero from the text, modify the program for the
previous question to print the histogram from the lowest score
obtained. You may assume that at least one examination score is input.

11.7 What is the best way to modify your program for the previous question
to allow for the possibility of no examination scores?

11.8 Formulate schema Sentinel Search.

11.9 What modifications are necessary to use sentinel search to implement
function AllNonZero? Are there any problems with this approach?

11.10 Does our solution to the distinct values problem properly handle the
case n = O?

11.11 Implement the following function in the given context, in two different
ways. Which is best?

const
Length = ... ; { >= 2 }

type
index = 1 .. Length;
Extendedlndex = O •• Length;
message = packed array[index] of char;

function DifferAt (var m1, m2 : message) : Extendedlndex;
{ Returns O if m1 and m2 are identical, otherwise the least}
{index at which they differ. Global const: Length. }

For example, if Length = 7, Differ At(' Dolly ', 'Dolores') gives 4 and
DifferAt('Humbert', 'Humbert') gives 0.

11.12 Here is a nifty way to trace the execution of any sort procedure based
on swaps. First choose a small value of n - no more than 10. Choose
Stops In from the Run menu and place a STOP sign just after the call
of procedure swap. It may be necessary to enclose the call in begin
and end and place the STOP to the left of the end. Open the Observe
window, and enter all the elements of the array, in order. Also enter
the subscripts of the two indexed-variables appearing in the call of
swap. Run the test program by choosing Go-Go from the Run menu.
If it runs too quickly, run by repeatedly using the keyboard equivalent
of Go.

Do this for each of our three implementations of procedure sort, using
TestSort as the test-driver. For sorts that base a swap on a comparison
of the elements, such as both versions of bubble sort, you might also

266 PROGRAMMING USING MACINTOSH PASCAL

like to put a STOP at the left of the comparison, so that the values of
the subscripts are updated.

11.13 Why not use one of our four versions of linear search to implement
function lndexOfMax?

11.14 Does our selection sort always give arguments for function lndexOfMax
for which left :s;; right?

11.15 Modify selection sort to avoid a swap if MaxAt = Nrleft.

11.16 Given the same context as for procedure sort (except count= O .. Maxint)
implement the following function.

function NumberOflnversions (var A : values;
n : count) : count;

{ Returns the number of out-of-order pairs of elements }
{ in A[1 .. n]. }

For example, if n = 4 and A[1 .. 4] contains (4, 3, 7, 1), the collection of
all pairs of element values is (4, 3), (4, 7), (4, 1), (3, 7), (3, 1), (7, 1);
the number of inversions is 4, corresponding to the bold pairs.

11.17 Another sorting algorithm can be based on the general picture shown
in Figure 11. 7. Progress is made by inserting A[next] into A[1 .. next
-1) so that the non-decreasing order is preserved, moving larger ele­
ments one position to the right to make room.

A

The first two refinements might lead to:

var
next : count; { A[1 .. next - 1] is in non-decreasing order }
pos : index; { position to insert A[next]; in 1 .. next }
temp : ElementType; { holds A[next] }

for next := 2 to n do
begin { Insert A[next] so that A[1 .. next] is sorted }

Set pos = 1 if A[next] < A[1], otherwise set pos =maximum
index in 2 .. next such that A[pos - 1] :s;; A[next];
temp := A[next];
Move A[pos .. next - 1] to A[pos + 1 .. next];
A[pos] :=temp

end

next

in non-decreasing order in original positions

n Figure 11.7
The general picture for
insertion sort.

ARRAYS 267

(a) Use a version of linear search (with decreasing rather than increas­
ing values) to implement the first unrefined action. Hint: Sentinel
search can be used if the case pos = 1 is handled separately.

(b) Implement the other unrefined action.

Note: A very neat version of this method is possible if A[O] exists,
because it can be used in place of temp, allowing a sentinel search
to be used even if pos = 1.

11.18 Implement the following procedure.

procedure reverse (var A : values;
left, right : index);

{ Reverses the order of the values in A[left .. right]. }

Hint: Swap elements at equal distances from the ends; draw a general
picture before writing.

11.19 Implement the following procedure.

procedure ArraySwap (var V : values;
a, b, c : index);

{Swaps the array sections V[a .. b - 1) and V[b .. c]. E.g. if}
{a= 4, b = 7, c = 11, V[4 .. 11] = (2, 4, 6, 8, 10, 12, 14, 16),}
{ then after the swap V[4 .. 11] = (8, 10, 12, 14, 16, 2, 4, 6); }
{ assumes 1 <= a < b <= c <= Maxlndex. }

Hint: The problem can be solved with just three statements, each a call
of procedure reverse from the previous question. (The problem occurs
in editing, when a block of text is moved from one place to another.)

11.20 Implement the following procedure in the given context.

con st
NumberOfCards = 52; { must be even }

type
card= ... ;
number = 1 .. NumberOfCards;
deck = array[number] of card;

268 PROGRAMMING USING MACINTOSH PASCAL

procedure PerfectShuffle (var OldDeck, NewDeck : deck);
{ Sets NewDeck by splitting OldDeck exactly in half and }
{ merging the cards, alternating between one half and the }
{ other; the first card should come from the second half. }
{ E.g. if NumberOfCards = 8 and OldDeck contains }
{ (c1, c2, c3, c4, c5, c6, c7, c8), then NewDeck should be }
{ set to (c5, c1, c6, c2, c7, c3, c8, c4). }

11.21 Use the mod operation to implement function next in JobScheduler3
with a single assignment statement.

11.22 What happens if a dummy procedure Sortlndexes is used in program
JobScheduler3, i.e. a stub that does nothing. When might it make
sense to do this?

Several challenging exercises involving arrays can be found in the
exercises in Chapter 12. The following exercises are substantial pro­
gramming tasks.

11.23 Since all the input data is known before JobScheduler3 draws the
scheduling diagram, it i~ possible to adjust the time axis to suit the
data. Do so by making Unit a variable and determining its value, and
by changing DrawAxes to draw suitably spaced markers.

11.24 Add graphics output to the histogram of the examlliation scores pro­
gram, by drawing a bar chart. For each score, draw a rectangle (bar)
whose height is proportional to the frequency of that score. Arrange the
rectangles along a horizontal axis in order of increasing scores, with re­
gularly spaced labels (i.e. scores) centered beneath the bottom sides of
their corresponding rectangles. Draw a vertical axis with markers at the
left.

11.25 Extend program MiniNim in Chapter 9 to play the full game of Nim, in
which there are several piles of matches, and on each tum the player
may take arbitrarily many (but at least one) from a single pile. Have
the program play a woeful game by taking a random number of
matches from a random non-empty pile. Enjoy beating it, because in
Chapter 17 we shall develop a program that plays perfectly.

ARRAYS 269

12 _____ _
ON CORRECTNESS AND
EFFICIENCY
He who has nothing to assert has no style and can have none.
- George Bernard Shaw, Man and Superman

12.1 Programming methodology
12.2 Assertions and invariants

12.2.1 Assertions

12.2.2 SQecifications

12.2.3 ExQressing assertions

12.2.4 Proving a Qrogram correct

12.2.5 Invariants

12.2.6 Proving termination

12.2.7 Solving Qroblems with invariants

12.2.8 An exam2le of correctness-oriented Qrogramming

12.2.9 Other examQles of invariants

12.2.10 How invariants exQedite testing

12.3 Efficiencr
12.3.1 Introduction

12.3.2 Performance evaluation

12.3.3 Creating efficient Qrograms
12.4 Further reading

Exercises

272

273

273
274

274
275

275

277

278

279

282

283

284

284

284

288

292

292

12.1 Programming methodology
Programming methodology means the body of methods used in the
programming process; this process can be categorized as follows:

• Formulation of specifications;

• Stepwise refinement, including the choice of types for variables
and the decomposition of the program into subprograms;

• Testing;

• Program modification, to repair errors detected in the testing
stage (a process which is misleadingly known as debugging), to
improve the efficiency of the program, or to meet modified
specifications (a process which is known as program main­
tenance).

The progression through these stages is by no means strictly
sequential. Testing, as we have seen, need not wait until the program
is complete, and, moreover, may reveal the need for alterations to the
original specifications.

Stepwise refinement, the use of modular subprograms for pro­
gram decomposition, and the role of testing, have already been
examined in some depth, and will continue to be illustrated in the
case-studies.

This chapter discusses two other aspects of programming
methodology, viz. correctness and efficiency. It commences with a dis­
cussion of the use of assertions in program documentation, develop­
ment, and testing, emphasizing their role in the development of loops,
an appreciation of which is a sine qua non for the serious programmer.
It closes with a brief introduction to the measurement and achievement
of efficiency of programs.

272 PROGRAMMING USING MACINTOSH PASCAL

12.2 Assertions and invariants
12.2.1 ASSERTIONS

Our programming style has exploited comments (or four purposes:

(1) To stand for high-level actions, thereby documenting the step­
wise refinements which led to the solution of a programming
problem.

(2) To describe the purpose of each variable, unless this is clear
from its name or its use.

(3) To describe the assumptions and effect of each subprogram, in­
cluding the program itself, in terms of its parameters. (The para­
meters of the program are its external files.)

(4) To comment about a Pascal statement, as in these two examples
from program Arithmetic for Case-study 5. The first, from
procedure EndTest, explains a subtlety:

NewTest(a, op, b); {leaves actual-parameter for op unchanged}

The second, from procedure test, illustrates a more common
situation, where the remaining case to be treated by a nest of
conditional statements is described:

else { ch is none of 'q', 'Q', '=' }
outcome := query

Uses (3) and (4) are examples of an important notion, that of an
assertion. C:W e shall see later that the other uses can also be treated as
being in this category.) An assertion is a claim about the variables and
the parameters of a (sub)program at the point where the assertion is
made. Consider the example immediately above. The assertion:

{ch is none of 'q', 'Q', '='}

claims that whenever the hand that traces the execution of the program
reaches the line:

else {ch is none of 'q', 'Q', '=' }

then the value of ch is not any of the three values shown. This is
always the case, and we say that the assertion is valid.

ON CORRECTNESS AND EFFICIENCY 273

12.2.2 SPECIFICATIONS

As we saw in Chapter 9, comments of type (3), i.e. specifications, have
two parts: a precondition, stating the assumptions made by the subpro­
gram, and a postcondition, stating the effect of its execution (provided
the assumptions hold). Here is an example from Chapter 11:

function FirstNonZero (var h : histogram) : ScoreRange;
{ Returns the least index of a non-zero element of h; }
{ assumes at least one element is non-zero. }

The precondition is an assertion at the start of the subprogram.
In the above case, the claim is that before executing the statement-part
of FirstNonZero, at least one element of h is non-zero. The postcondi­
tion is an assertion at the end of the subprogram. In the above case,
the claim is that after execution of the statement-part, the_ pseudo­
variable FirstNonZero is the least index of a non-zero element of h.

12.2.3 EXPRESSING ASSERTIONS

Simple assertions may be written as Boolean expressions. For example,
the assertion about the value of ch may be written:

{ (ch <> 'q') and (ch <> 'Q') and (ch <> '=') }

For this assertion to be valid means that, if its value is observed when­
ever execution reaches the line containing it, the result is always true.

More complex assertions, particularly specifications, need a
more powerful language. Later on in your study of programming you
should be introduced to suitable specification-languages, which derive
from mathematical logic. The reference at the end of this chapter is a
good starting point. We shall content ourselves with precise and con­
cise technical English.

The ability to write and reason about assertions is important,
which is why formal, i.e. mathematical, methods are attractive. An
example concerning the operators mod and div is given in the next
section.

When assertions are included in the statement part of a subpro­
gram, they should be distinguished from comments describing high­
level actions. In the style advocated in this book, every high-level
action is distinguished by starting with a verb (in the imperative mood,
written with an upper-case first letter). Moreover, the refinement of a
high-level action is indented with respect to its comment whenever
possible (in Macintosh Pascal).

274 PROGRAMMING USING MACINTOSH PASCAL

12.2.4 PROVING A PROGRAM CORRECT

The main concern of a programmer should be to write correct pro­
grams. The importance of assertions is that they are the best way to
reason, i.e. think, about programs, whether that be done by formal
means or not. And a programmer must be able to do so if he or she is
confidently to create correct programs. Testing is not enough. As
pointed out by one of the most insightful thinkers about programming,
E.W. Dijkstra:

Program testing can be used to show the pre~ence of
bugs, but never to show their absence.

Assertions are used to reason about a program as follows. Every
subprogram, including the main program, is provided with specifica­
tions. The precondition of the program itself states the assumptions
made about the input data. The postcondition states what output is
produced on its external files. The programmer must write a
statement-part that produces the desired output given the expected
form of input. Wherever a subprogram is called, its precondition must
be shown to be valid just before the call (with actual parameters repla­
cing formal parameters). Provided the subprogram is correct, its post­
condition will be valid just after the call. Knowing the effect of each
statement, the programmer reasons that the desired postcondition of
the program must be valid.

The correctness of subprograms is shown in exactly the same
way. If the subprogram is modular, its correctness will not depend on
assertions about non-local objects such as global variables, which is a
great advantage, because it can then be reasoned about in isolation.

Reasoning about the effect of a simple statement is usually fairly
straightforward. And for a conditional statement, one just reasons
about each of the two possible outcomes. However, loops cause Big
Problems. It is much harder to feel confident about the effect of a
statement that may execute a component statement a great and often
unknown number of times.

Fortunately, a powerful and completely adequate technique is
known for reasoning about loops. It is based on special assertions
called invariants, which made an appearance in the previous chapter
under the guise of general pictures.

12.2.5 INVARIANTS

The while-loop is the fundamental form of repetition; it can be used to
express every other form of loop. So let us consider the generic while­
loop:

ON CORRECTNESS AND EFFICIENCY 275

while C do
s

Suppose the following two properties of a particular while-loop can be
demonstrated to hold:

(l) An assertion I just before the loop is valid, i.e. always true when.
execution reaches that point.

(2) If both I and C are true before S is executed, then I must be
true afterwards.

Then no matter how many times S is executed, the assertion I placed just
before evaluation of the condition C is valid, i.e. I is true prior to each
evaluation of C. I is called an invariant assertion (or just invariant) of the
loop.

Suppose that execution of the loop terminates. Then I must be
true, since it is always true before evaluation of C, and execution of C
cannot change any values, because we never write functions that have
side-effects. But C must be false for the loop to terminate. We there­
fore know a valid assertion for just after the loop, namely:

{I and not C}

So provided we can demonstrate that the loop terminates, we have
determined something about the effect of executing it. Let us call our
result the Invariance Theorem.

Here is a simple example of its application. Suppose the opera­
tions div and mod are not provided, so we write the following
procedure that implements both together.

procedure divide (x, y : count;
var q, r : count);

{ Sets q = x div y and r = x mod y; assumes y > O. }
begin { divide }

r := x;
q := O;
{ Invariant: (x = q * y + r) and (r >= O) }
while r >= y do

begin
r := r-y;
q := q + 1

end
end; {divide}

Note that an invariant assertion is not indented with respect to the loop
that follows it.

276 PROGRAMMING USING MACINTOSH PASCAL

Proving that divide is correct means showing the validity of the
postcondition:

{ (q = x div y) and (r = x mod y) }

assuming the validity of the precondition:

{ (x >= 0) and (y > O) }

The assumption about x is implicit in its type.
A purported invariant has been provided, so we begin by estab­

lishing its validity by showing that the two conditions of the Invariance
Theorem do indeed hold. The first is easy: after the assignments to r
and q, the invariant is indeed true, since:

(x = 0 * y + x) and (x ;;!!: 0)

Now for the second condition. We may suppose that I and Care true
before executing S, i.e. that:

(x = q * y + r) and (r ;;!!: 0) and (r ;;!!: y)

With a smidgen of algebra we obtain:

(x = (q + I) * y + (r-y)) and ((r- y) ;;!!: 0)

Executing the body of the loop, S, stores q + 1 in q and r - y in r. So
afterwards,

(x = q * y + r) and (r ;;!!: 0)

i.e. I is still true as required. So by the Invariance Theorem, when the
loop stops we have:

(x = q * y + r) and (0 :s:: r < y)

But this is equivalent to the desired postcondition (it is the definition of
div and mod). Hence procedure divide is correct, provided the loop
always terminates.

12.2.6 PROVING TERMINATION

In practice, it is usually much easier to demonstrate that a loop
terminates than it is to discover an invariant for it. In particular, the
rules of Pascal are such that for-loops always terminate, provided that

ON CORRECTNESS AND EFFICIENCY 277

execution of the body of the loop always terminates. This is the main
contribution of for-loops, and it is a very worthwhile one.

In the above example, r ~ 0 is invariantly true before evaluation
of the condition. Also, r is strictly decreased by execution of the body
of the loop, because y > 0. So the loop cannot execute forever.

This suggests a general technique for showing termination. We
find an integer expression that is always non-negative before evaluation
of the condition of the loop, and that is strictly decreased by execution
of the body of the loop. The initial value of that expression is then a
bound on the number of executions of the body of the loop. We have
seen that r is one such expression for the above example. One that
gives a tighter bound is r div y.

12.2. 7 SOLVING PROBLEMS WITH INVARIANTS

Proving the correctness of programs, whether it is carried out as for­
mally as in the above example or not, boils down to having appropriate
specifications and an invariant for each loop. For a substantial pro­
gram, it might seem like an enormous task to come up with all these
assertions as, indeed, it would be if the assertions had to be added after
the fact.

But that is no way to obtain correct programs. Correct programs
are obtained by carefully reasoning about each stage in the program­
ming process. In particular, by reasoning about each refinement made
in the process of stepwise refinement. Specifications emerge naturally
when we introduce procedures and functions to carry out certain
computations. We have already developed the habit of carefully
specifying each subprogram, yielding its precondition and postcondi­
tion.

What about invariants? Well, it turns out that the Invariance
Theorem is by far the most important tool that we have for developing
loops, which is the hardest single aspect of solving programming
problems.

Principle Writing a loop amounts to finding an invariant.

Because once the invariant I is known, the three-step process presented
in Chapter 11 can be used to develop the loop, which is guaranteed to
be correct. We recapitulate:

(1) Write initialization actions that make the invariant I true. This
corresponds to the first requirement of the Invariance Theorem.

(2) Obtain a termination condition not C that together with the in­
variant I establishes the desired result. Negate it to obtain the
condition C of the while-loop.

278 PROGRAMMING USING MACINTOSH PASCAL

(3) Write the body of the loop to make progress without disturbing
the invariant. This corresponds to the second requirement of the
Invariance Theorem. Making progress corresponds to decreasing
the non-negative integer-valued expression used to prove
termination.

If the loop is more naturally expressed as a repeat- or for-loop, we do
so. However, with repeat-loops, we must check that the original
while-loop would have executed at least once.

All right. But how are invariants found? There are several useful
techniques, but they all share the property of being goal-directed.

Principle Programming is a goal-directed activity. Create invar­
iants by generalizing the desired assertions.

One specific technique was presented in Chapter 11 - the general
picture. Many others will emerge with thoughtful experience. A very
good source is the book by David Gries mentioned at the end of this
chapter.

So the issue of correctness is not something that need raise its
ugly head after writing a (probably incorrect) program, but something
that should guide the programming process. Correct programs can be
obtained as a matter of course. We proceed to illustrate this style -
the thinking person's style! - of programming.

12.2.8 AN EXAMPLE OF CORRECTNESS-ORIENTED
PROGRAMMING

Given is an array-section L[1 .. n] of non-decreasing values. Our problem
is to find the index of a given value x, if it is present. The problem is
presented in a deliberately (and typically) vague manner. It is up to
the programmer to decide what should be done if x is not present, or
present in more than one element, and how best to package the solu-
tion.

We decide to write a subprogram, and begin by seeking a
sensible postcondition. Let us decide to find the greatest index i just
after which x can be inserted to preserve the ordering, defining i = 0 if
x < L[1]. This appeals because it finesses the question of what to do if
x is not present: x is present iff i i= 0 and x = L[z].

It is much more convenient to work with a more formal post­
condition. We might try to characterize i as follows:

L[i] ~ x < L[i + 1]

· This does not quite work, because when i = 0 it requires L[O] :::::: x,
and when i = n it requires x < L[n + 1]. Rather than complicate the

ON CORRECTNESS AND EFFICIENCY 279

formal postcondition, let us just pretend that:

L[O] = -oo < x < + oo = L[n + 1]

This is harmless provided L[O] and L[n + 1] are not referenced by our
subprogram. We have arrived at the specifications for a subprogram,
and choose a function because a single value is being returned. It is
natural to allow the case n = 0.

con st
Maxlndex = ... ; { >= 1 }

type
index = 1 .. Maxlndex;
Extendedlndex = O .. Maxlndex;
values = array[index] of ltemType;

function lndexOf (x : ItemType;
var L: values;
n: Extendedlndex) : Extendedlndex;

{ Assumes L[1 .. n] is non-decreasing; returns i such that }
{ L[i] <= x < L[i + 1], pretending L[O] < x and x < L[n + 1]. }

ltemType must be an ordinal type, real, or a Pascal- or Mac-string­
type, in order for elements to be ordered and compared.

The precondition implies, by fiat, that: ·

L[O] < x < L[n + 1]

Using a local variable i to compute the result, the postcondition is:

(L[i] ~ x < L[i + 1]) and (0 ~ i ~ n)

A suitable invariant will generalize both of these, like a general picture.
Let us decide on the following, which, roughly speaking, says that at a
general point in the computation, we know the limits of the interval
containing x:

(L[i] ~ x < L[j]) and (0 ~ i < j ~ n + 1)

A new local variable j has been introduced.
Writing the loop amounts to following the three steps given

previously. First, the initialization. This is obtained by matching the
precondition to the invariant:

i := O;
j := n + 1

280 PROGRAMMING USING MACINTOSH PASCAL

Second, the termination condition. This is obtained by matching the
postcondition to the invariant. The termination condition clearly is
j = i + 1. We negate the termination condition to obtain the cond­
ition of the while-loop: j <> i + 1.

Finally, the body of the loop must make progress without dis­
turbing the invariant. Progress is made by decreasing j - i. We could
do this by examining l[i] or L[j), but after our experience with the dic­
tionary in the first chapter, and program YouGuess3 in Chapter 3, we
decide that we should look half-way between i and j, thereby exploiting
the ordering of the array-section to speed up the search.

The index (i + j) div 2 will do, because the condition of the
loop guarantees that i + 1 < j, so this value will be strictly between i
and j. So let us set a local variable mid to this value, and examine
L[mid]. If L[mid] :=:: x, then i can be set to mid without disturbing the
invariant. Otherwise, x < L[mid], so j can be set to mid. In either
case progress is made, so we have completed the body of the loop.

The body of the function is as follows:

var
i : Extendedlndex;
j: 1 .. Maxint; {in 1 .. n + 1 }
mid : index; { = (i + j) div 2 }

begin { lndexOf }
i := O;
j := n + 1;
{ Invariant: (0 <= i < j <= n + 1) and (L[i] <= x < LU]) }
while i + 1 <> j do

begin
mid:= (i + j) div 2; { i <mid< j}
If L[mid] <= x then

i :=mid
else

j :=mid
end;

lndexOf := i
end; { lndexOf }

There is no need to prove lndexOf is correct - it was born to be
correct. Notice that the invariant is left as documentation. An assertion
to the right of a statement, such as the one about mid above, is to be
taken as applying after execution of that statement.

Principle Assertions, especially invariants, are the best form of
documentation.

It is a mechanical task for the reader familiar with the use of assertions

ON CORRECTNESS AND EFFICIENCY 281

and invariants to check the correctness of function lndexOf.
The algorithm that we have used is called binary search. Our

version is due to E.W. Dijkstra; the idea of using the phantom values
L[O] and L[n + 1] is due to David Gries.

12.2.9 OTHER EXAMPLES OF INVARIANTS

General pictures, as introduced in Chapter 11, are a helpful but
imprecise example of invariants. Pictures are incapable of representing
every possibility, especially pathological ones such as empty array­
sections. Furthermore, they are difficult to use as documentation. For
these reasons it is best to learn to express invariants in a more precise
form. For example, the general picture that describes the idea behind
both insertion sort and bubble sort may be expressed as an invariant as
follows:

{ Invariant: A[1 .. n] contains a permutation of its initial values, }
{ A[Nrleft + 1 .. n] are in their final sorted positions, }
{ and 1 <= Nrleft <= n. }

When a for-loop· is equipped with an invariant, as in this case, it
should be thought of as being placed just before the implicit check that
the tentative next value of the control variable is within the given limit.

It is possible to be more precise. For example, the second clause
in the invariant, viz.: ·

A[Nrleft + 1 .. n] are in their final sorted positions

can be expressed more formally as:

A[Nrleft + 1 .. n] is in non-decreasing order, and
no value in A[1 .. Nrleft] exceeds any value in A[Nrleft + 1 .. n].

The best level of expression for invariants is a matter of taste and judg­
ment.

Invariants for loops in program segments given earlier in this
book have often been implicit in the comments following the declara­
tion of the variables involved. (This is how comments of type (1) can
be regarded as assertions.) It is more helpful, especially in subtle cases,
to present the invariant explicitly just before the loop. Consider, for
example, function sorted from Chapter 11. The variable SortedSoFar
was declared with:

var
SortedSoFar : Boolean; { true iff A[1 . .i] is sorted }

282 PROGRAMMING USING MACINTOSH PASCAL

The condition of the while-loop is:

SortedSoFar and (i < n)

The loop can be documented with the following invariant:

{ Invariant: SortedSoFar is true iff A[1 .. i] is sorted, and i <= n }

The Invariance Theorem tells us that when the loop stops we have:

SortedSoFar is true iff A[1 .. i] is sorted, and i ~ n, and
not (SortedSoFar and (i < n))

This implies:

(not SortedSoFar and A[1 .. i] is not sorted) or
(SortedSoFar and A[1 .. n] is sorted)

Therefore A[1 .. n] is sorted iff SortedSoFar is true, as required.

12.2.10 HOW INVARIANTS EXPEDITE TESTING

The short answer to the question of how invariants expedite testing is
that, in the hands of a master at least, they rule out all but typo­
graphical errors. (See the provocative quote introducing Chapter 4.)
More realistically, they help in catching the most elusive errors, the
bane of every debugger. For suppose that extensive execution testing
shows that, at a certain stage in execution, a certain variable has an in­
correct value. Suppose further that it received that value as a result of
executing a loop. If the loop is not obviously incorrect, and the pro­
grammer cannot formulate an invariant, the tester has no way of dis­
covering why the final value is incorrect, because there is no way of re­
cognizing an incorrect intermediate value.

On the other hand, if an invariant is present as documentation,
the tester has an assertion which may be checked before each iteration
of the body of the loop, permitting the first incorrect intermediate
value to be detected.

Principle Take the trouble to give invariants for loops. Not only
will you greatly reduce the likelihood of errors, but if an error
should occur, you will have the information you need to discover
its cause. If you do not know how the loop should be working, you
can not fix it.

Some languages or implementations permit executable asser-

ON CORRECTNESS AND EFFICIENCY 283

tions; the idea is to evaluate each assertion when it is encountered, and
to stop the program if the result is false. The computer thus relieves
much of the burden of testing. A particularly useful feature of Pascal
is subrange types. Use them fanatically - they are a form of execut­
able assertion! It is much better for an error to be detected early,
rather than later when its consequences eventually become apparent or,
even worse, go undetected.

12.3 Efficiency
12.3.1 INTRODUCTION

This book concentrates on efficiency of programming rather than
efficiency of programs. Correctness and clarity must be the pro­
grammer's primary concerns. It does not matter how efficient an in­
correct program is - the minimal program is useless, but it is certainly
efficient.

Efficiency is not an important issue in many contexts. Consider
an interactive program that runs only on a single-user system such as a
Macintosh; the programs MiniNim and Arithmetic from Chapters 9 and
10 respectively are two examples. The user will be happy as long as the
dialog flows smoothly on a human time-scale. It matters not whether it
takes a millisecond or half a second to process input, although the re­
spective processing speeds differ by a factor of 500.

Inefficiency is tolerable for programs that do not consume many
resources in their lifetime, such as programs that are run only once or
twice, or very infrequently. It is not worth spending an extra five hours
on a program to decrease its total running time by 15 minutes.
Computer time and memory are becoming cheaper; programmer time
is becoming more expensive.

Nevertheless, efficiency is sometimes quite important. Programs
that simulate and predict natural phenomena such as weather had
better run appreciably faster than Father Time. Programs that run
frequently or for long periods, especially on computers which support
many users, should preferably use as few resources as possible. Speed
is critical for programs that process events in real-time; memory-space
is critical for heavily used systems programs.

We proceed to discuss the two basic aspects of efficiency, viz.
how it is measured and how it is achieved.

12.3.2 PERFORMANCE EVALUATION

The two major resources of a computer are main memory and CPU­
time. The demands of a program or subprogram on each of these re-

284 PROGRAMMING USING MACINTOSH PASCAL

sources will generally vary with the input data or input parameters re­
spectively, the computer on which it is run, and the translator (and
hence the programming language).

Let us concentrate for now on CPU-time, since it is normally
the more important factor when efficiency is important. Consider
procedure sort as implemented with the first version of bubble sort in
Chapter 11:

procedure sort (var A : values; n : count);
{ Sorts A[1 .. n] into non-decreasing order. }
{ Global subprogram: swap. }

var
Nrleft : count; { only A(1 .. Nrleft] remains to be sorted }
k : index; { A[k) & A[k + 1] are compared }

begin { sort }
for Nrleft := n downto 2 do

for k := 1 to Nrleft - 1 do
H A[k] > A[k + 1) then

swap(A[k], A[k + 1))
end; { sort}

Its running-time is a function of n. The precise function varies with the
computer and translator, but it is nevertheless possible usefully to char­
acterize it, because what is of interest is the running-time for large
values of n. Almost any algorithm will do to sort five items, but not so
for 100000 items.

Consider an execution of a particular machine-language version
of this procedure. The running time is dominated by the executions of
the if-statement (and the accompanying implicit incrementing and
comparison of k with Nrleft - 1). For a given value of Nrleft,
this happens Nrleft - 1 times. Since Nrleft takes on the values
n, n - 1, ... , 2, the total number of executions of the if-statement is
given by:

n2 -n ·
(n-1) + (n -2) + · · · + 1 =

2
The time taken to execute an instance of the if-statement depends on
whether or not a swap is done; but, for a particular machine-language
version, the time is between two (small) J'°sitive values. The total
running-time therefore grows as does n . This characterizes the
efficiency of the algorithm with respect to time; we say that its time­
complexity is order n2, or quadratic in the problem size n.

Now consider New Improved Bubble Sort With Early Termina­
tion (see Chapter 11). It sometimes executes in time proportional to n,
e.g. when A[1 .. n] is initially in sorted order. Yet there are cases in

ON CORRECTNESS AND EFFICIENCY 285

Table 12.1 Increasing
orders of complexity.

which it takes time proportional to n2, e.g. when A[1 .. n] is initially
in the reverse of sorted order. For this reason, two measures of
complexity are distinguished: worst-case and average-case. The
worst-case time-complexity of New Improved Bubble Sort is order n2.

In general, average-case complexity is much more difficult to define
and compute, because it depends on statistical distributions of the in­
put values. If all possible orderings of A[1 .. n) are assumed to be equal­
ly likely, it can be shown that the average-case time-complexity of New
Improved Bubble Sort is also order n2.

An algorithm called heapsort has a worst-case time-complexity of
order nlogn; another called quicksort has an average-case time­
complexity of order nlogn, but a worst-case time-complexity of n2.

These are regarded as more efficient with respect to time than either
version of bubble sort. To see why, suppose bubble sort executes
about Sn2 machine instructions in the worst-case, compared to 15nlog2n
for heapsort. (Here log2 denotes log to the base 2, a commonly occur­
ring function in computing.) The ratio of these numbers is:

instructions executed for bubble sort n = instructions executed for heapsort 3logn

This grows without limit with n. So even though bubble sort
actually may be slightly faster for small values of n, it is much slower
for large values. For example, with n = 215 = 32 768, bubble sort
would take over 700 times longer!

Reductions to the order of complexity are overwhelmingly more
important than reductions to the constant factor. Table 12.1 ranks
some commonly occurring orders of complexity and gives their English
terms. Complexity increases going down.

A very broad distinction can be made. Algorithms whose
time-complexity is bounded by a constant power of n are called
polynomial-time algorithms. They are regarded as useful, in that

Order Description

I constant
logn logarithmic

n linear
nlogn
nvn
n2 quadratic
n3 cubic
en exponential

286 PROGRAMMING USING MACINTOSH PASCAL

significantly bigger problems can be solved if significantly more time is
allocated, particularly as powers larger than 3 are uncommon in
practice. Algorithms that are not polynomial-time are regarded as use­
less in practice, in that the running-time grows far too quickly for
problems of significant size to be solved. The distinction is not
absolutely clear-cut. For example an algorithm whose time complexity
is n10g(logn) is 'almost polynomial', since log(logn) grows very slowly
with n. But the broad division is an important one, particularly for the
theoretical study of the complexity of algorithms.

Here are the worst-case time-complexities of some algorithms
that we have encountered:

• Naive computation of lpf(n), the least prime factor of n (Chapter
6): order lpf(n)

• Improved computation of lpf(n) (Chapter 7): order minimum of
lpf(n) and Yn

• Linear search in an array-section of n elements (Chapter 11):
order n (hence the name)

• Binary search in an ordered array-section of n elements (Chapter
12): order logn

• Selection sort with an array-section of n elements (Chapter 11):
order n2

Let us now consider the resource of main memory. The amount
of space consumed by a subprogram is that occupied by the machine­
language instructions, plus the maximum amount of space needed for
variables that come into existence when it is executed. Note that only
the formal parameters and local variables of active subprograms actu­
ally consume space (and that a variable-formal-parameter consumes
only constant space). The amount of space for the code and for simple
variables does not vary with the input values (in the absence of recur­
sion - see Chapter 18). It is the space for arrays that dominates. for
large problem sizes. Again the same principles apply. We say that the
space-complexity of an algorithm is order f(n) if the maximum amount
of space created by execution of the algorithm is proportional to f(n).
The unit may be cells or bits. The space needed for the input values is
not normally counted, being regarded as part of the problem rather
than the algorithm that solves it. Thus the space-complexity (in cells)
of each of the sorting algorithms presented in Chapter 11 is constant.
However, if function lndexOfMax declared array A as a value­
parameter, its space-complexity, and therefore that of selection sort
also, would be linear.

Many, er, complexities, have been swept under the rug in the

ON CORRECTNESS AND EFFICIENCY 287

above account. For example, the running-time or space-consumption
might vary with two or more independent quantities, which jointly
constitute the problem size. Also, special mathematical notation is
used to reason more precisely about complexities. The most important
is the notation:

f(n) = O(g(n))

which means that there is an integer n0 ~ 0 and a real number c > 0
such that f(n) ~ c g(n) for all n ~ n0, i.e. that f(n) is bounded above by
a constant multiple of g(n) for all sufficiently large values of n. Typic­
ally, f(n) is the time- or space-complexity for a problem of size n, and
g(n) a familiar function. We should read this as:

f(_n) is of order at most g(n)

Thus, for example, we can say that the time-complexity of the naive
version of function lpf is O(n).

12.3.3 CREATING EFFICIENT PROGRAMS

There are two basic ways of improving the efficiency of a solution to a
programming problem. One is to find a new solution with a lower
order of complexity. This offers by far the best chance of big gains in
efficiency, but typically demands cleverness and insight. The other is
to transform the current solution to increase its efficiency. This is usu­
ally easier, but can decrease the clarity of the solution, making it hard­
er to maintain; also, the gain is usually a reduction in the constant
factor, which is much less significant than a reduction in order.

Before embarking on either approach, you should discover
which part of the solution dominates the complexity. Usually only a
small part of a program dominates its execution time - the body of
the innermost loop - and it is not worthwhile seeking improvements
elsewhere.

Various techniques can help to improve the efficiency of an algo­
rithm. Some are a matter of habit. For instance, we always use while­
rather than for-loops for linear searches, so that they might terminate
as soon as possible; and we avoid using local arrays, even though solu­
tions employing them are often much easier to find. A good example of
the latter policy is procedure RotateAnti in the next chapter. A very
general technique is to make maximal use of previously computed
values. An example of this is the exploitation of the mathematical
notion of a recurrence. For example, in refining the action:

Set A[i] = 1 + 2 + ... + i, for i = 1, 2, ... , n,

288 PROGRAMMING USING MACINTOSH PASCAL

A[i + 1] should be computed by adding i + 1 to A[i]. Recurrences
occur frequently in numeric computation. Another instance of this
class of techniques is to avoid recomputing subexpressions, especially if
they contain function designators.

A typical transformation that improves efficiency concerns an
expression that is computed in a loop. If the value of the expression is
not changed by the body of the loop, it can safely be computed prior to
the loop. An example occurs in procedure FillCell in Case-study 7 in
the next chapter.

This is not the place to give general advice about discovering
efficient algorithms; instead the reader is referred to the further reading
list at the end of this chapter. We will confine ourselves to one
observation and one example. The observation is that efficient algo­
rithms are usually based on properties of the abstract objects being
manipulated. These may be deep mathematical results, but it is surpris­
ing how often simple insights pay big dividends. Sometimes just
expressing the specifications formally is enough. Here is an example.
Our problem is to complete the following function in the given context:

con st
Maxlndex = ... ; { >= 1 }

type
index = 1 .. Maxlndex;
values = array[index] of ElementType;

function WrongPos (var A : values; n : index) : index;
{ Returns index of first element of A[1 .. n] that would have a }
{ different value if A[1 .. n] were sorted into non-decreasing }
{ order, or n if A[1 .. n] is in non-decreasing order. }

For example, if 8[1 .. 4] contains (5, 6, 8, 7), WrongPos(8, 4) should
return 3, since if 8[1 .. 4] were sorted it would contain (5, 6, 7, 8), and
the first discrepancy is in the third position. Since this is a function, it
must not sort the array. Also, it should not use local array variables
unless absolutely necessary.

The naive solution is to check each position 1,2,3, ... in turn:

var
i: index;
lnPosition: Boolean;

begin { WrongPos }
i := 1;
lnPosition :=true;
{ Invariant: lnPosition is true iff A[1 .. i - 1] are in sorted positions,

and i <= n}
whlle lnPosition and (i < n) do

ON CORRECTNESS AND EFFICIENCY 289

Figure 12.1
Defining WrongPos
formally.

If A[i] is not in its surted position, set lnPosition = false,
otherwise increment i;

WrongPos := i
end; { WrongPos }

This uses a variant of schema Complex While Loop in which only the
part of the condition that cannot be written as a Boolean expression is
moved inside the loop.

The unrefined action amounts to searching A[i + 1 .. n] for a
value < A[i]. Searching backwards from A[n] avoids the need for a
Boolean variable:

var
j: index;

{ If A[i] is not in its sorted position, set lnPosition = false, }
{ otherwise increment i }
begin

j := n;
{ Invariant: A[i] <= all of AU + 1 .. n] }
while O > i) and (AUJ >= A[i]) do

j := j-1;
ifj>ithen

lnPosition := false
else

i := i + 1
end

You might like to compare this solution with one that uses a forward
search.

The worst-case time-complexity of this solution occurs when
A[1 .. n] is in sorted order; it is not difficult to see that it is order n2•

Our intuition tells us that we should be able to do better. Let us
start by expressing the postcondition more formally, i.e. by formally
characterizing the value of WrongPos. If inspiration is lacking, it is a
good idea to try some test cases. Figure 12.1 shows one such case, with

WrongPos

min A[i + 1 .. n]

i+1 n

3 5 10 8 0 7

290 PROGRAMMING USING MACINTOSH PASCAL

n = 7 and WrongPos = 3. After considering this and other cases, we
arrive at the following specification:

{ If A[1 .. n] is in non-decreasing order, returns n; otherwise }
{ returns the unique value i such that A[1 . .i] is in non-decreasing }
{order and A[i-1] <=minimum of A[i + 1 .. n] < A[i],}
{ regarding A[O] as -oo. }

It is preferable to deduce the specification by mathematical reasoning;
the ability to do so will grow with thoughtful experience. However, it
is still prudent to test the specification on some examples.

Principle Specifications should also be desk-checked.

It is not possible to compute the required value i directly. But
we soon realize that we need only find the maximum sorted section
starting at A[1]; let this be A[1 .. k]. For then if k = n, the result
is n; otherwise the minimum of A[i + 1 .. n] is just the minimum of
A[k + 1 .. n]. Comparing Figure 12.2 to Figure 12.1 makes this point
clear.

It is apparent that when k < n, the result is just:

lndexOf(minimum of A[k + 1 .. n], A, k) + 1.

We have arrived at the following solution:

var
k : index; { max index such that A[1 .. k] is in sorted order }
min : ElementType; { = minimum of A[k + 1 .. n) }

begin { WrongPos }
Set k = maximum value such that A[1 .. k] is in non-decreasing order;
Hk=nthen

WrongPos := n
else

begin
Set min = minimum of A[k + 1 .. n];
WrongPos := lndexOf(min, A, k) + 1

end
end; { WrongPos }

Wrong Pas

k k+1

3 5 7 10 8

min A(k+ 1..n]

n

0 7

Figure 12.2
An example of computing
Wrong Pas.

ON CORRECTNESS AND EFFICIENCY 291

Exercises 12.14 and 12.15 ask you to implement the two un­
refined actions. It is clear that the worst-case time-complexity of the
resulting function WrongPos is order n, which is a big improvement
on the naive solution.

Before embarking on a quest for increased efficiency, it is worth­
while asking whether or not our measure is appropriate. For example,
if all orderings of A[1 .. n] are equally likely, the average-case time­
complexity of the original version of WrongPos is constant! This is
because it is highly probable that a smaller value than A[1] will be
quickly found. A function like WrongPos might very well be used
where this assumption is unrealistic; but if it is justified, the original
algorithm is faster on average, because the average-case time­
complexity of the 'improved' version is order n.

It is not difficult to transform the second version of WrongPos
so·that it has the best of both worlds: a time-complexity that is linear
in the worst-case and constant in the average-case (under the above
assumption). Exercise 12.16 gives the idea behind the transformation,
but leaves the details to the reader.

12.4 Further reading
(1) Aho, A. V., Hopcroft, J.E. and Ullman, J. D. (1974). The

Design and AnaOisis of Computer Algorithms. Reading, Mass:
Addison-Wesley.
A classic advanced text on the design of efficient algorithms.

(2) Bentley, J. L. (1982). Writing Efficient Programs. Englewood
Cliffs, NJ: Prentice-Hall.
Written by the oyster of the 'Programming Pearls' column in
Communications of the ACM, which is to programming columns
in hobbyist magazines as pearls are to plastic beads.

(3) Gries, D. (1981). The Science of Programming. New York:
Springer-Verlag.
Develops the basic logical apparatus needed for writing formal
assertions, and convincingly shows how to exploit invariants in
developing solutions to programming problems. Chock-a-block
with elegant solutions to challenging problems.

EXERCISES
12.1 Write a program-segment that computes the sum of the elements in the

array-section A[1 .. n] of real values, and document it with an invariant.

292 PROGRAMMING USING MACINTOSH PASCAL

12.2 Pick one of the Linear Search schemas given in Chapter 11 and use the
Invariance Theorem to prove that it is correct. After that, you really
can use the schema with confidence.

12.3 Find another introductory programming textbook that uses Pascal - if
you haven't done so already! - and see if it presents a version of
binary search. If it doesn't, trash it. Otherwise give the invariant and
use it to prove that the version is correct (or otherwise). Demonstrate
that the loop terminates (or otherwise). Which version was easier to
understand?

12.4 Complete the following function in the given context.

con st
Maxlndex = ... ; { > = 1 }

type
index = 1 .. Maxlndex;
values = array[index] of integer;

procedure split (var A : values;
n: index);

{ Rearranges A[1 .. n] so that the negative values precede the }
{ rest. }

Use the following invariant:

{ Invariant: A[1 . .left - 1] are negative, A[right + 1 .. n] are }
{non-negative, 1 <= left, and right<= n. }

Make progress by decreasing right-left.

12.5 Define a plateau to be an array-section of equal values. Complete the
following function:

function LongestPlateau (var A : values;
n : index) : index;

{ Returns the length of the longest plateau in A[1 .. n]. }

For example, ifn = 10 and A[1 .. 10] contains (2, 9, 2, 2, 1, 2, 1, 1, 1,
- 1), the longest plateau is 1, 1, 1 which has length 3. Base your solu­
tion on the following invariant:

{ Invariant: length = length of longest plateau ending at}
{ A[pos - 1], and Maxlength = length of longest plateau in }
{ A[1 .. pos- 1]}

Make progress by increasing pos.

ON CORRECTNESS AND EFFICIENCY 293

12.6 Express the following assertions more formally:

(a) A[Nrleft + 1 .. n] is in non-decreasing order;
(b) no value in A[1 .. Nrleft] exceeds any value in

A[Nrleft + 1 .. n]

12.7 Desk-check each of the refinements used in creating each version of
function WrongPos at the end of this chapter.

12.8 What is the time-complexity of the algorithm for computing the
number of decimal digits of n? (fhe algorithm was given in Chapter 5
to illustrate a repeat-loop.)

12.9 What is the time-complexity of function lsDigit in Chapter 7?

12.10 What is the time-complexity of computing the first n Fibonacci
numbers using your solution to Exercise 6.20(b)?

12.11 Specify the time-complexity of:

(a) program JobScheduler1 in Chapter 6;
(b) program JobScheduler3 in Chapter 11 (without the graphics).

12.12 What is the best way to improve the time-complexity of program
JobScheduler3 in Chapter 11?

12.13 Consider procedure ArraySwap implemented as requested in Exercise
11.19.

(a) What is its worst-case time-complexity?
(b) Suppose ArraySwap were implemented by repeatedly shifting all

the elements in A[a .. c] one position to the left, with A[a] moving
to A[c]. What is the time-complexity of this version?

The specification for ArraySwap might have formulated the problem as
shifting an array-section a given number of places to the left, with the
leftmost element regarded as adjacent to the rightmost. This is called a
circular shift. If this were the case, it is all too easy to think of solution
(b) rather than the much more efficient original solution.

Moral Be wary of reading algorithmic information into a
specification, and thereby prejudicing its implementation.
Specifications say what to do, not how to do it.

294 PROGRAMMING USING MACINTOSH PASCAL

12.14 Implement the following action from function WrongPos in the text:

Set k = maximum value such that A[1 .. k] is in non-decreasing order

Use the following invariant:

{ Invariant: increasing = true iff A[1 .. k] are in non-decreasing }
{ order, and k <= n }

12.15 Implement the following action from function WrongPos:

Set min = minimum of A[k + 1 .. n]

Use a familiar schema. What is the invariant in this example?

12.16 Consider the computation of min in the previous question. If and as
soon as min is discovered to be < A[1], the search can stop because
WrongPos must be 1. Implement this transformation.

12.17 Here is a clever attempt at improving the efficiency of WrongPos:

var
k : index; { max index such that A[1 .. k] is in sorted order }
i: 1 .. Maxint; {in 1 .. n + 1 }
minpos : O .. Maxlndex; { in O .. k - 1 }

begin { WrongPos }
Set k = maximum value such that A[1 .. k] are in non-decreasing
order;
ifk=nthen

WrongPos := n
else

begin
i := k + 2;
minpos := lndexOf(A[k + 1], A, k);
{ Invariant: A[minpos] <= min A[k + 1 .. i - 1] < }
{ A[minpos + 1], pretending A[O] = -oo }

while (i <= n) and (minpos <> 0) do
begin

if A[i] < A[minpos] then
minpos := lndexOf(A[i], A, minpos);

i := i + 1
end;

WrongPos := minpos + 1
end

end; { WrongPos }

ON CORRECTNESS AND EFFICIENCY 295

(a) May the third actual parameter in each call of lndexOf be reduced
by l?

(b) Desk-check the above implementation with n = 11 and A[1..11]
containing (1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1).

(c) By considering the trace obtained above, deduce the worst-case
time-complexity of this version.

I Moral One can be too clever.

296 PROGRAMMING USING MACINTOSH PASCAL

13 _____ _
MULTIDIMENSIONAL
ARRAYS
I am thinking that all these tables might be calculated by machinery.
- Charles Babbage, Passages from the Life of a Philosopher

13.1 Two-dimensional arrais 298
13.1.1 Introduction 298

13.1.2 Two examEles 298
13.2 General arrais 300

13.2.1 Syntax 300
13 .2.2 Arrays of arra}'.:S 300

13.3 Two inventory eroblems 301

13.4 Two schemas for rectangular arrai-sections 303

13.5 Geometric eroblems 304

13.5.1 Problem one 304

13.5.2 Problem two 306
13.6 Case-studi 7: A random walk 308

13.6.l Setting of the Eroblem 308

13.6.2 SEecifications 309

13.6.3 Writing the Erogram 309

13.6.4 The comElete Erogram 319

13.7 Further reading 325

Exercises 326

Figure 1·3.1
Inventory for Bob and
Marge's Gift and Gun.

13 .1 Two-dimensional arrays

13.1.1 INTRODUCTION

What do the following have in common: tic-tac-toe (noughts and
crosses), chess, Scrabble, crossword puzzles, the Macintosh screen, the
bits in the Macintosh's main memory, a giant screen at a sports
stadium, a page printed by a laser printer, the seats on an airliner, a
train timetable, a spreadsheet, the game-by-game record of turnovers
by everyone who played for the New York Knicks last season, the
characters in Dallas? Right. They are all two-dimensional. More pre­
cisely, with a single forgettable exception, they all involve two­
dimensional aggregates of things of the same kind.

Two-dimensional information is ubiquitous, and a general­
purpose programming language such as Pascal must provide for its
manipulation. Pascal does so by allowing arrays to have two (or more)
dimensions, i.e. index-types. We begin our examination of them by
looking at two typical examples of their use.

13.1.2 TWO EXAMPLES

Here are two examples of two-dimensional information:

store 1 store 2 store 3

Barbie doll

Rubik's cube

Smith and Wesson revolver

AK-4 7 assault rifle

Uzi submachine-gun

800

415

0

51

5

298 PROGRAMMING USING MACINTOSH PASCAL

375 25

77 68

56 13

109 0

22 0

(1) Suppose business booms for Bob and Marge's Gift and Gun in
downtown Lafayette, Indiana, and they decide to open stores in
The Village and The Mall, and, naturally, to computerize. Their
inventory is shown in Figure 13.1. There are 375 Barbie dolls in
store 2, and store 3 has sold out of Uzis.

(2) A tic-tac-toe board, as shown in Figure 13.2. An 'O' has been
written in the third column of the second row.

In Pascal, we can represent this information as follows:

(1) const

(2)

NrStores = 3;
type

count = o .. Maxint;
StoreNumber = 1 .. NrStores;
ltemType = (Barbie, cube, SandW, AK47, Uzi);
inventory = array[ltemType, StoreNumber] of count;

var
store : StoreNumber;
item: ltemType;
stock : inventory;

An element of this 2-dimensional array can be accessed with the
indexed-variable:

stock[item, store]

For example, stock[AK47, 2] is a variable of type count whose
current value is 109.

type
mark = (Empty, 0, X);
index= 1 .. 3;
board = array[index, index] of mark;

var
square: board;
row, col : index;

MULTIDIMENSIONAL ARRAYS 299

An element of this 2-dimensional array can be accessed with the
indexed-variable:

square[row, col]

For example, square[3, 1] is a variable of type mark whose
current value is X.

It is traditional to diagram a two-dimensional array by associa­
ting its first index-type with the rows of a table, and its second index­
type with the columns. We shall stick with this convention.

13.2 General arrays
13.2.1 SYNTAX

The full syntax of Pascal's array-types is as follows:

array-type: array [index-type-list) of component-type
index-type-list: index-type ... , index-type
index-type: ordinal-type
component-type: type

And of indexed-variables:

indexed-variable: array-variable [expression-list]
array-variable: variable
expression-list: expression . . . , expression
variable: entire-variable I component-variable
entire-variable: variable-identifier
component-variable: indexed-variable

13.2.2 ARRAYS OF ARRAYS

A careful reading of the above syntax rules reveals that the array­
variable part of an indexed-variable can itself be an indexed-variable.
The reason is that Pascal treats an n -dimensional array, n > 1, as a
I-dimensional array, each of whose elements is an (n - 1)-dimensional
array (and so on for the elements if applicable). For example:

inventory= array[ltemType, StoreNumber) of count

is treated exactly the same as:

inventory = array[ltemType] of array [StoreNumber] of count

Similarly, instead of:

300 PROGRAMMING USING MACINTOSH PASCAL

stock[item, store]

we may write:

stock[item][store]

These are not the only consequences. For example, the following
is a perfectly legal way of initializing each element of stock to zero. It
is also probably the quickest, but too unnatural to be recommended.

stock[Barbie, 1] := O;
stock[Barbie, 2] := O;
stock[Barbie, 3] := O;
for item := cube to Uzi do

stock[item] := stock[Barbie]

The first three statements are assignments to variables of type count.
The body of the for-loop is an array-assignment. Each side is a variable
of the same type, viz.:

array [StoreNumber] of count

The scheme generalizes to higher-dimensional arrays: an n­
dimensional array A may have between 0 and n subscripts.

Another complication concerns the effect of packing a high­
dimensional array. The rule is that putting packed in front of an
array-type affects the types all the way down the line, even the
component-type if it is an unpacked-structured-type. For example,
writing:

packed array[ltemType, StoreNumber] of count

is equivalent to writing:

packed array[ltemType] of packed array [StoreNumber] of count

13.3 Two inventory problems
Suppose Bob and Marge have made us an offer we can not refuse, and
we agree to write some stock-control software for them. Consider the
following two problems that arise. The first is to implement the action:

Print the total number of each item

(assuming the inventory is already defined).

MULTIDIMENSIONAL ARRAYS 301

Figure 13.3
Output for first inventory
problem.

D Te Ht
Total number of Barbi es is 1200. ~
Total number of cubes is 560.
Total number of SandUs is 69. ~
Total number of AK47s is 160. ~ Total number of Uzis is 27.

Q]

This fits the familiar for-loop schema, and we write:

var
Totalltems : count; { total number of item }

{ Print the total number of each item }
for item := Barbie to Uzi do

begin
Set T otalltems = number of item;
Writeln('Total number of·, item, 'sis', Totalltems : 1, '.')

end

We have exploited Macintosh Pascal's ability to print a string for a
value of an enumerated type.

The remaining action can also be refined with a for-loop:

{ Set Totalltems = number of item }
Totalltems := O;
for store := 1 to NrStores do

Totalltems := Totalltems + stock[item, store]

The output with the inventory in Figure 13.1 is shown in Figure 13.3.
The other problem is similar; it is to print the total number of

items of all kinds held by each store. Exactly the same kind of reason­
ing leads to the following solution:

{ Print total number of items at each store }
for store := 1 to NrStores do

begin
{ Set Totalltems = total number of items in store }

Totalltems := O;
for item := Barbie to Uzi do

Totalltems := Totalltems + stock[item, store];

Writeln('Total number of items in store ', store : 1, ' is ',
Totalltems : 1 , '. ')

end

The output with the inventory in Figure 13.1 is shown in Figure 13.4.

302 PROGRAMMING USING MACINTOSH PASCAL

D Te Ht
Total number of items in store 1 is 1271.
Total number of items in store 2 is 639.
Total number of items in store 3 is 106 .

13.4 Two scheptas for rectangular
array-sections

~

~
121

Our notation for a possibly empty array-section readily generalizes to
the multidimensional case. In particular, we use the following notation:

Notation A[a .. b, c .. d] denotes the rectangular section of the two­
dimensional array A consisting of the elements A[i, j] with a ::::::; i ::::::; b
and c ::::;j::::::; d.

The solutions to the two inventory problems are typical of a large class
of algorithms for two-dimensional arrays. We generalize them to two
schemas. The first was used in the first problem (printing totals of each
item). It is given as schema Row-Major Processing, which is said to
process elements in row-major order. Sometimes there will be no
need for the initialization or finalization for each row; if neither is
needed, the compound statement can be dispensed with.

Schema Row-Major Processing:
var

A : array[IndexType1, IndexType2] of ElementType;
{ IndexType1 contains row1..row2 }
{ IndexType2 contains col1 •• col2 }

{ Process each element of A[row1 ..row2 , col1 •• col2], }
{taking rows in increasing order, and processing each }
{ row from left to right. }

var
r : a type containing row1 •• row2 ;
c : a type containing col1 •• col2 ;

for r : = row1 to row2 do
begin

Initialize for row r ;
for c := col1 to col2 do

Process A[r, c];
Finalize for row r

end

Figure 13.4
Output for second
inventory problem.

MULTIDIMENSIONAL ARRAYS 303

The second schema was used in the second problem (printing
the total number of items held by each store). It is given as schema
Column-Major Processing. It is said to process elements in column­
major order.

Schema Column-Major Processing:
var

A : array[/ndexTypei. /ndexType2] of ElementType;
{ /ndexType1 contains row1 .. row2}
{ IndexType2 contains col1 .. col2 }

{ Process each element of A[row1 .. row2 , col1 .. col2], }
{ taking columns in increasing order, and processing }
{ each column from top to bottom. }

var
r : a type containing row1 .. rowz ;
c : a type containing col1 .. col2 ;

for c := col1 to col2 do
begin

Initialize for column c ;
for r := row1 to row2 do

Process A[r, c];
Finalize for column c

end

13.5 Geometric problems
Another important class of operations on two-dimensional arrays can be
categorized as geometric . This is not intended to suggest that such algo­
rithms occur only in explicitly geometric application areas, such as
computer-aided design, but rather that the operations they perform can
be visualized in geometric terms. A notable feature of this class of algo­
rithms is subscript manipulation.

13.5.1 PROBLEM ONE

The first problem, stated geometrically, is to revolve a square array­
section 180° on its minor diagonal. The minor diagonal is the diagonal
between the top-right and bottom-left corners. As usual, we shall aim
for a solution that rearranges the original array rather than involving
another array. Figure 13.S gives before-and-after diagrams that
illustrate the effect of the operation on an array-section A[1 .. 5, 1 .. 5] of

304 PROGRAMMING USING MACINTOSH PASCAL

A 1 2 3 4 5 A 2 3 4 5

1 11 12 13 14 15 55 45 35 25 15

2 21 22 23 24 25 2 54 44 34 24 14

3 31 32 33 34 35 3 53 43 33 23 13

4 41 42 43 44 45 4 52 42 32 22 12

5 51 52 53 54 55 5 51 41 31 21 11

before after

integer elements, whose initial values encode their subscripts m an
obvious way.

We formulate the problem as a procedure that operates on a
square section of a square array:

con st
Maxlndex = ... ; { >= 1 }

type
index = 1 .. Maxlndex;
matrix = array[index, index] of ElementType;

procedure MinorFlip (var A : matrix; n : index);
{ Revolves (flips) A[1 .. n, 1 .. n] 180 degrees on its minor diagonal. }

In trying to understand how the values are rearranged, we start
by focusing on a typical element A[i, j]. Its value is exchanged with its
mirror-image on the other side of the minor diagonal, as shown in
Figure 13.6. The row of the mirror-image is the j'th counting back
from the last, i.e. n + 1 - j. Similarly, its column is the i'th counting
back from the last, i.e. n + I - i. The element is therefore A[n + 1 - j,
n + 1 - i]. As a check, we fmd that its mirror-image is A[n + 1 -
(n + 1 - i), n + 1 - (n + 1 - j)], which is A[i, j] as expected.

We now need only arrange to find a representative A[i, j] of each
pair to be swapped. Let us choose the elements on the same side of the
minor diagonal as A[1, 1]. Since there is no point in swapping the ele­
ments on the diagonal with themselves, we see that the required
elements lie in rows I to n - l; and in row i, the elements we want
are in columns 1 to n - i. For example, the representatives for the
5 x 5 case in Figure 13.5 are:

A[1, 1]
A[2, 1]
A[3, 1]
A[4, 1]

A[1, 2]
A[2, 2]
A[3, 2]

A[1, 3] A[1, 4]
A[2, 3]

Figure 13.5
Revolving A[1 .. 5, 1 .. 5) 180°
around its minor diagonal.

MULTIDIMENSIONAL ARRAYS 305

Figure 13.6
The typical pair of
elements to be swapped.

Figure 13.7
Rotating A[1 .. 4, 1 .. 4) 90"
around its center.

···· n+1-j

n+1-i

A solution is now immediate; it processes representatives row­
by-row:

var
i, j : index; { A[i, Il is to be swapped with its mirror-image }

begin { MinorFlip }
for i := 1 to n - 1 do

for j := 1 to n - i do
swap(A[i, j], A[n + 1 - j, n + 1 - i])

end; { MinorFlip}

13.5.2 PROBLEM TWO

The second problem is to rotate a square array-section 90° anticlock­
wise round its center. Figure 13. 7 illustrates the effect of this operation
on an array-section A[1 .. 4, 1 .. 4].

We again formulate the problem as a procedure that operates on
a square section of a square array:

procedure RotateAnti (var A: matrix; n : index);
{ Rotates A[1 .. n, 1 .. n] 90 degrees anticlockwise round its center. }

A 2 3 4 A 2 3 4

11 12 13 14 14 24 34 44

2 21 22 23 24 2 13 23 33 43

tffil 32 42

31 41 1

31 32 33 34

41 42 43 44 4

3 3

4

before after

306 PROGRAMMING USING MACINTOSH PASCAL

---i

v '\

1 I
~ _L__ -

We notice that the effect in Figure 13. 7 is to rotate each of the
four 2 x 2 subsections shown; i.e. the elements in the entire array­
section can be arranged into a number of circular groups of four, con­
taining one element from each subsection, such that each value simply
shifts one position. For example:

A[1, 1]
A[1, 4]
A[4, 4]
A[4, 1]

is replaced by
is replaced by
is replaced by
is replaced by

A[1, 4],
A[4, 4],
A[4, 1],
A[1, 1].

This circular shifting operation is a generalization of a swap, and can
be implemented in the same way.

Pictures can be very helpful, but they can be misleading because
they are inherently unable to represent every possibility.

Principle When using pictures as an aid to problem-solving, be
very careful not to make unjustified assumptions.

In the present context, we should consider an example with n odd,
because the previous one assumed n was even. Figure 13.8 shows what
happens in the case n = 5.

We realize that our previous analysis was correct: there are still
four subsections. However, we have discovered that the subsections are
not necessarily square. A little thought shows that the top-left subsec­
tion can be taken to be A[1 .. n div 2, 1 .. (n + 1) div 2]. Our first re­
finement is therefore:

var
i, j : index; { A[i, j] is a member of the group of 4 to be

circularly shifted }

begin { RotateAnti }
for i := 1 to n div 2 do

for j := 1 to (n + 1) div 2 do
Circularly shift the 4 members of A[i, j]'s grou,p

end; { RotateAnti }

Figure 13.8
Rotating A[1 .. 5, 1 .. 5] 90°
around its center.

MULTIDIMENSIONAL ARRAYS 307

Figure 13.9
The element that shifts to
A[i, j].

n+1-i

i··········O~~.
b····1

It remains to determine the rest of A[i, j]'s group. We determine
the element that replaces A[i, j] with the aid of Figure 13.9. It shows
that A[i, j) is replaced by AU, n + 1 - i].

There is no need to repeat the above sort of calculation to find
the remaining members of A[i, j]'s group. Our analysis did not assume
that A[i, j] was in the top-left subsection - it applies to any element.
We therefore immediately find that:

A[j, n + 1 - i] is replaced by A[n + 1 - i, n + 1 - j],

A[n + 1 - i, n + 1 - j] is replaced by A[n + 1 - j,
n + 1 - (n + 1 - i)], i.e. A[n + 1 - j, i]

Exercise 13.8 il'lvites you to check that this last member is replaced by
A[i, j].

Using a generalization of our code for swapping two elements,
we implement the body of the inner loop as follows:

var
temp : ElementType ;

begin { Circularly shift the 4 members of A[i, j)'s group }
temp := A[i, j];
A[i, j] := A[j, n + 1 - i];
A[j, n + 1 - i] := A[n + 1 - i, n + 1 - j];
A(n +1 - i, n + 1 - j] := A[n + 1 - j, i];
A(n + 1 - j, i] := temp

end

13.6 Case-study: 7: A random walk
13.6.1 SETTING OF THE PROBLEM

Random walks are used in the study of certain physical phenomena,
most notably those that involve Brownian motion. They also provide

308 PROGRAMMING USING MACINTOSH PASCAL

models of various statistical distributions. The. idea is that a particle
starts off at a known location in some space, and makes a succession of
moves. Each move involves choosing one of a number of possible dir­
ections, which have certain associated probabilities, and taking a single
step in the chosen direction.

13.6.2 SPECIFICATIONS

A program is to be written that simulates random walks on a rect­
angular grid of cells. It should begin by displaying the grid, and
prompting the user to specify the number of steps and the starting
location. Then the walk should be simulated, with the changing loca­
tion of the particle displayed.

The frequency of visits to each cell is to be recorded. On
completion of the walk, the program should display the relative
frequencies on the grid. Each cell that was visited should be filled
with a gray pattern whose darkness is proportional to the relative
frequency of its visits; only cells which were not visited should be dis­
played as white. With white included, the gray-scale should range in
uniform steps from white to black.

The possible directions for a step are to be those leading to a
neighboring cell. They are shown in Figure 13. IO(a). There will be
fewer than the eight shown if the particle is on the border of the grid.
All directions are equiprobable. It must be as simple as possible to
modify the program to experiment with different sets of directions,
such as the set shown in Figure 13.IO(b).

13.6.3 WRITING THE PROGRAM

Our highest-level solution consists of a sequence of three actions. First,
the necessary information is prompted for and read. Second, the
simulation is performed and the frequencies accumulated. Third, the
information is displayed. We decide to formulate each of these actions
with a procedure-statement. Already it is apparent that a two­
dimensional array should be used to contain the frequencies. We have
obtained:

(a) (b)

Figure 13.10
Two sets of directions for a
step.

MULTIDIMENSIONAL ARRAYS 309

con st
Maxlndex1 = 25; { number of rows in grid }
Maxlndex2 = 25; { number of columns in grid }

type
count = O .. Maxint;
index1 = 1 .. Maxlndex1 ;
index2 = 1 .. Maxlndex2;
VisitCounts = array[index1, index2] of count;

var
RequiredSteps : count; { number of steps in walk }
VisitsTo : VisitCounts; { VisitsTo[r,c] is number of times cell }

{ in row r and column c was visited }
StartRow : index1 ; { random walk starts in row Start Row . . . }
StartCol : index2; { ... and column StartCol }

procedure introduce (var row : index1 ;
var col: index2;
var NrSteps : count);

{ Draws empty grid, explains its purpose, prompts user to click }
{ in starting cell, sets row and col of starting cell, marks it, }
{ and prompts for and sets number of steps NrSteps. }

procedure simulate (StartRow : index1;
StartCol : index2;
var freq : VisitCounts;
RequiredSteps : count);

{ Simulates and displays a random walk of RequiredSteps }
{ steps, starting in cell in row StartRow and column StartCol, }
{ and records number of visits to each cell in freq. }

procedure display (var freq : VisitCounts);
{ Displays relative frequency of each element of freq, using }
{ a gray-scale; display is preceded by a description. }

begin { RandomWalk }
introduce(StartRow, StartCol, RequiredSteps);
simulate(StartRow, StartCol, VisitsTo, RequiredSteps);
display(VisitsTo)

end. { RandomWalk }

We begin the implementation of introduce with a sequence of
four actions:

begin { introduce }
Draw empty grid;
Describe grid;
Prompt for and rea.d NrSteps;
Prompt for and process click in starting cell

end; {introduce}

310 PROGRAMMING USING MACINTOSH PASCAL

We refine the first action with the procedure-statement
DrawEmptyGrid, but will implement the procedure later, together with
the other graphics operations that emerge. The fourth action involves
graphics, so its implementation is also postponed. The other two
actions are easily disposed of, and we turn next to procedure simulate,
and start its implementation with a sequence of three actions:

begin { simulate }
Zero every element of freq;
Simulate and display walk and accumulate frequencies;
Erase last mark

end; { simulate }

The first action fits each of the schemas for processing each ele­
ment of a rectangular array-section. In this case the array-section is the
entire array, and each element is processed by assigning zero to it.
When the order of processing is unimportant, as in this case, it is con­
ventional to use row-major processing (at least in cultures whose written
language is displayed in that order). The implementation is given in
the complete program. We note that simulate uses the global constants
Maxlndex1 and Maxlndex2.

We choose a for-loop for the second action, because the number
of steps is known in advance. The body of the loop first determines the
new cell to move to, and then makes the move. We provide for in­
itialization, to be determined later.

var
NrSteps : count; { number of steps in walk so far }

{ Simulate and display walk and accumulate frequencies }
Initialize ;
for NrSteps := 1 to RequiredSteps do

begin
Determine location of neighboring cell in random possible direction;
Erase previous mark, muoe to and mark new cell, and record visit

end

The body of the loop is tackled next, since it determines the in­
itialization. For the first action, we repeatedly (and at least once)
choose a random direction until the neighboring cell in that direction is
in the grid:

{ Determine location of neighboring cell in random possible direction }
repeat

Pick a random direction;
Determine location of the neighboring cell in this direction

until the neighboring cell is in grid

MULTIDIMENSIONAL ARRAYS 311

To refine deeper, we must first decide how to represent direc­
tions. One possibility is to use an enumerated type, perhaps with
compass points as identifiers, and to use a case-statement to determine
the new location. However, it is easier to choose a random integer
value, so we decide instead to use a subrange of integer. Variables are
also introduced to represen~ the current position and the position of the
neighboring cell (which can be outside the grid). The body of the
repeat-loop becomes:

con st
NrDirections = 8; { number of directions }

type
direction = 1 .. NrDirections;

var
row : index1 ;
col : index2; { (row, col) is current position }
NewRow, NewCol: integer; {tentative next position}
dir : direction; { tentative direction to move in }

function ran (lower, upper : integer) : integer;
{ Returns a random value uniformly distributed in lower .. upper; }
{assumes lower<= upper.}

dir := ran(1, NrDirections);
case dir of

1: {North}
begin NewRow := row - 1;
NewCol := col end;

2: { North-East }
begin NewRow := row - 1;
NewCol :=col+ 1 end;

end {case}

To modularize the information concerning directions, the computation
of the neighboring cell in a given direction is better expressed as a
procedure.

But there is an even better way. We observe that the value of
NewRow is that of row plus 0 or I or -1, depending only on the direc­
tion; and similarly for NewCol. So we introduce two arrays which give
the change to the row and column respectively for a move in each
possible direction. Abstractly, they are functions, because their values
never change.

Moral Sometimes functions may be better implemented with
arrays than with Pascal functions.

312 PROGRAMMING USING MACINTOSH PASCAL

type
DiffTable = array[direction] of -1 .. 1;

var
diff1, diff2 : DiffTable; { coordinate changes for a move in each

direction }

The body of the repeat-loop becomes:

dir := ran(1, NrDirections);
NewRow := row+ diff1[dir];
NewCol := col + diff2[dir]

The arrays diff1 and diff2 are initialized by a call of a special
procedure, making it easy to change to another set of directions. The
rest of the initialization is straightforward:

procedure SetUp (var diff1, diff2 : DiffTable);
{ For each direction d, sets diff1 [d] (diff2[d]) = change to }
{ row (column) to move in direction d. }

{ Initialize }
SetUp(diff1, diff2);
freq[StartRow, StartCol] := 1;
row:= StartRow;
col:= StartCol

Procedure SetUp is trivial, consisting of two assignment statements for
each direction. It is given later in the complete program.

Returning to a higher-level now, we refine the other action in
the body of the for-loop.

{ Erase previous mark, move to and mark new cell, and record visit}
Erase mark in cell (row, col);
row:= NewRow;
col := NewCol;
Draw mark in cell (row, col);
freq[row, col] := freq[row, col] + 1

We postpone implementation of the two graphics actions. The
graphics-free part of simulate is now complete, so we tackle the final
highest-level procedure, viz. display.

Our first refinement consists of a sequence of three actions. The
first describes the display; the second computes the maximum
frequency, because it must be known if relative frequencies are to be
determined; the third does the drawing. In practice, the need for the
second action might become apparent only during the refinement of the
third.

MULTIDIMENSIONAL ARRAYS 313

var
MaxFreq : count; { maximum element of freq }

begin { display }
Describe the forthcoming display;
Set MaxFreq = maximum element of freq;
Fill each cell whose corresponding frequency is non-zero

end; { display }

The maximum frequency is computed with a function call.

function max (var freq : PairCounts) : count;
{ Returns maximum element of freq. }

MaxFreq := max(freq)

Function max fits each of our schemas for processing each element
in a rectangular array-section, so its implementation is quite
straightforward.

All the remaining unrefined actions are concerned with graphics,
so we prepare the way, as usual, by defining the displays in terms of
constants. The displays of both the moving particle and the final rela­
tive frequencies of visits are based on the same rectangular grid. Figure
13 .11 determines its form.

The top edge of the last horizontal line will be at vertical co­
ordinate Offset1 + Maxlndex1 * Gap. The left edge of the last hor­
izontal line will be at horizontal coordinate Offset2 + Maxlndex2 *
Gap. The constants used are:

con st
Otfset1 = .. . ; { top-left comer of grid is .. . }
Otfset2 = ... ; { ... at (Offset2, Offset1) }
Gap = ... ; { gap between successive grid lines }

Their values can be determined later.
DrawEmptyGrid presents no new problems; it is implemented

with a sequence of two for-loops - one to draw the horizontal grid
lines, and the other to draw the vertical grid lines. We return now to
procedure introduce. Its main display-related action is refined as
follows:

var
x, y : integer; { (x, y) is a mouse position }

{ Prompt for and process click in starting cell }
Writeln('Click in starting cell to commence random walk.');
repeat

314 PROGRAMMING USING MACINTOSH PASCAL

Offset2 Offset2+Gap Offset2+2*Gap

I I I
OO.ot1 r 1----1---'-___.___._-ll----+--............... __ __.__

Gap

Offset1 +Gap-!-1---1--....... -----Ji!==="""'"O==----.......!IL--L--

Offset1 +2•Gap -1---1--....... -.----.--1--+--.---.---.--1--+--.-

Set (x, y) to position of next click
until (x, y) is in the grid;
Set (row, col) to the cell containing point (x, y);
Draw mark in cell (row, col)

A loop is used in case the user clicks outside the grid. If so, nothing
happens until the mouse is clicked in the grid; no extra prompt is
necessary as the original suffices.

To implement the first action in the loop, the program waits un­
til a click is made, and then gets the mouse's position. It does the for­
mer by repeatedly calling the predefined function Button:

function Button : Boolean;
{ Returns true iff the mouse button is being held down when }
{ Button is called. }

The body of the loop is an empty-statement. A repeat-loop reads more
naturally than a while-loop.

{ Set (x, y) to position of next click }
repeat
until Button;
GetMouse(x, y)

To determine which cell is indicated, we decide that the point
(x, y) is in a cell if the pixel below and to the right is in the interior of
the cell or in its left or top border. The region for cell (1, 2) is in-

Figure 13.11
A blow-up of the top-left
corner of the grid.

MULTIDIMENSIONAL ARRAYS 315

dicated in Figure 13.11. This prescription ensures that all the grid is
covered except for its bottom and right edge, and allows the cell in
which a click was made to be easily calculated.

In order to modularize all graphics-related information, the con­
dition

(x, y) is in the grid

is implemented with the following function-designator:

function lnGrid (x, y : integer) : Boolean;
{ Returns true iff the point (x, y) is in the grid. }

lnGrid(x, y)

The function is implemented with a single assignment.
For the same reason, the action:

Set (row, col) to the cell containing point (x, y)

is implemented with:

procedure ScreenToGrid (x, y : integer;
var row : index1 ;
var col: index2);

{Sets (row, col) to cell containing screen position (x, y); }
{ assumes (x, y) is in grid. }

ScreenToGrid(x, y, row, col)

The procedure is implemented with a sequence of two assignments.
The action Draw mark in cell (row, col) occurs in both introduce

and simulate. Actions that undo its effect occur twice in simulate. All
these actions can be regarded as painting part of a specified cell with a
particular pattern: black to make a mark, white to erase one. They are
therefore implemented with a single procedure:

procedure FillCell (row : index1 ; ·
col : index2;
pat: Pattern);

{ Fills all but outer border of interior of cell in given row and }
{ column with pat; changes pen pattern to pat. }

The type Pattern is predefined in Macintosh Pascal:

type
Pattern = packed array[O .. 7) of 0 .. 255;

316 PROGRAMMING USING MACINTOSH PASCAL

The two types of action are implemented as follows, using the pre­
declared and predefined global variables black and white:

{ Draw mark in cell (row, col) }
FillCell(row, col, black)

{ Erase mark in cell (row, col) }
FillCell(row, col, white)

The implementation of FillCell consists of a procedure-statement for
PenPat followed by one for PaintRect. The relevant coordinates are
determined with the help of Figure 13 .11.

We turn finally to the major graphics action in procedure dis­
play. It amounts to displaying each cell, which fits our schema for
rectangular array-sections. Again preferring row-major order, we write:

var
row : index1 ; { row of element of freq }
col : index2; { col of element of freq }

{ Fill each cell whose corresponding frequency is non-zero }
for row := 1 to Maxlndex1 do

for col := 1 to Maxlndex2 do
if freq[row, col] > O then

Fill cell corresponding to freq[row, col]

The body of the inner loop is refined with a sequence of three
actions:

var
t, I, b, r : integer; { top, left, bottom, right coordinates of inside

of cell}

begin { Fill cell corresponding to freq[row, col] }
Set t, I, b, r to coordinates of cell (row, col);
Pen Pat(the appropriate shade from the gray-scale);
PaintRect(t, I, b, r)

end

The coordinates are determined from Figure 13.11. Since the values of
t and b depend only on row, their calculation is moved into the outer
loop.

Determining the appropriate pattern is tricky, so we proceed
very carefully. We consider first a manageable example, where there

MULTIDIMENSIONAL ARRAYS 317

Figure 13.12
Matching the frequency­
and gray-scales. possible

frequencies

shades of
gray

shades of
frequencies

0 2.25 4.5 6.75 9

9

2 3 4

2 I 2 l2or31 3 I 3 I 4 I 4

are four shades in the gray-scale and the maximum frequency of visits
to a cell is nine. Our first task is to assign the appropriate shade to
each possible non-zero frequency. After deciding that it makes more
sense to work with intervals rather than integers, we produce the dia­
gram shown in Figure 13.12.

Frequencies of 1 and 2 should get the first (lightest) shade of
gray; frequency 3 should get the next shade because more of its inter­
val overlaps the interval of shade 2 than shade 1; and so on. It is
apparent that it is the coordinate of the midpoint of a frequency inter­
val (on the scale 0.0 to 9.0) that determines which shade it should get.
If/is the frequency, this value is/-0.S. The number of the shade is 1
more than the whole number of times 2.25 goes into this value. Gen­
eralizing, with mf for the maximum frequency, and ns for the number
of shades of gray, the shade-number s for frequency f is given by:

trunc((f- 0.5) I (mf I ns)) + 1

To define the shade of gray associated with each shade-number,
again we use an array as a function:

con st
NrShades = 4; { number of shades of gray in gray-scale }

type
ShadeNumber = 1 .. NrShades;
ShadeTable = array[ShadeNumber] of Pattern;

var
shade : ShadeTable; { shades in order of increasing darkness; }
{ if white were added, the steps are uniform from white to black }

Variable shade is an array of arrays. A procedure is defined to
initialize it:

318 PROGRAMMING USING MACINTOSH PASCAL

procedure SetUp (var shade: ShadeTable);
{ Stores patterns in shade in order of increasing darkness; if }
{ white were added, the steps are uniform from white to black. }

The Technical Appendix describes how to interpret a pattern. We can
make our own, but shall content ourselves with using the four pre­
declared and initialized pattern variables (other than white). SetUp is
thus implemented with a sequence of four array-assignments.

Meanwhile, back at the program, the action:

PenPat(the appropriate shade from the gray-scale)

is implemented with:

PenPat(shade[trunc((freq[row, col] - 0.5) * NrShades I MaxFreq) + 1])

The remaining unrefined actions are very easy going compared to the
above!

13.6.4 THE COMPLETE PROGRAM

The complete program is given below. The general-purpose function
ran is declared in the program-block. So too is function max, because
it has nothing to do with the graphical display per se , and it is designed
only for use with the main program variable freq. The constants and
subprograms concerned with the graphics display are gathered together
in the program-block.

program RandomWalk (Input, Output);
{ Simulates and displays a random walk in a rectangular grid, }
{ then displays the relative frequency of visits to each cell, }
{ using a gray scale. }
con st

Maxlndex1 = 25; { number of rows in grid }
Maxlndex2 = 25; { number of columns in grid }
Offset1 = 20; { top-left comer of grid is . .. }
Offset2 = 20; { ... at (Offset2, Offset1) }
Gap = 1 O; { gap between successive grid lines }

type
count = o .. Maxint;
index1 = 1 .. Maxlndex1 ;
index2 = 1 .. Maxlndex2;
VisitCounts = array[index1 , index2] of count;

var
RequiredSteps : count; { number of steps in walk }
VisitsTo: VisitCounts; { VisitsTo[r, c] is number of times cell}

{ in row r and column c was visited }

MULTIDIMENSIONAL ARRAYS 319

Start Row : index1 ; { random walk starts in row StartRow .. . }
StartCol : index2; { ... and column StartCol }

function ran (lower, upper : integer) : integer;
{Returns a random value uniformly distributed in lower .. upper;}
{assumes lower<= upper.}
see program Arithmetic in Chapter I 0

function max (var freq : VisitCounts) : count;
{ Returns maximum element of freq. }
{ Global consts: Maxlndex1, Maxlndex2. }
var

row : index1 ;
col : index2;
big : count; { maximum element so far }

begin {max}
big:= O;
for row:= 1 to Maxlndex1 do

for col := 1 to Maxlndex2 do
If freq[row, col]> big then

big := freq[row, col];
max:= big

end; {max}

procedure DrawEmptyGrid;
{ Draws empty grid of cells. }
{ Global consts: Gap, Offset1, Offset2, Maxlndex1, Maxlndex2. }
var

n : O .. Maxint; { number of a grid-line }
dist : integer; { constant coordinate of grid-line }

begin { DrawEmptyGrid }
{ Draw horizontal grid lines }

for n := 0 to Maxlndex1 do
begin

dist := Offset1 + n * Gap;
Drawline(Offset2, dist, Offset2 + Maxlndex2 * Gap, dist)

end;
{ Draw vertical grid lines }
for n := 0 to Maxlndex2 do

begin
dist:= Offset2 + n *Gap;
Drawline(dist, Offset1, dist, Offset1 + Maxlndex1 * Gap);

end
end; { DrawEmptyGrid }

function lnGrid (x, y: integer) : Boolean;
{ Returns true iff the point (x, y) is in the grid. }
{ Global consts: Offset1, Offset2, Gap, Maxlndex1, Maxlndex2. }

320 PROGRAMMING USING MACINTOSH PASCAL

begin { lnGrid }
lnGrid := (Offset2 <= x) and (x < Offset2 + Maxlndex2 * Gap)

and (Offset1 <= y) and (y < Offset1
+ Maxlndex1 * Gap)

end; { lnGrid }

procedure ScreenToGrid (x, y : integer;
var row : index1 ;
var col : index2);

{Sets (row, col) to cell containing screen position (x, y); }
{ assumes (x, y) is in grid. }
{ Global consts: Offset1, Offset2, Gap. }
begin { ScreenToGrid }

row := (y - Offset1) div Gap + 1;
col := (x - Offset2) div Gap + 1;

end; { ScreenToGrid}

procedure FillCell (row: index1;
col : index2;
pat: Pattern);

{ Fills all but outer border of interior of cell in given row and }
{ column with pat; changes pen pattern to pat. }
begin { FillCell }

PenPat(pat);
PaintRect(Offset1 + (row - 1) * Gap + 2, Offset2 + (col - 1) * Gap

+ 2, Offset1 + row * Gap - 1, Offset2 + col * Gap - 1)
end; { FillCell}

procedure display (var freq : VisitCounts);
{ Displays relative frequency of each element of freq, using }
{ a gray-scale; display is preceded by a description. }
{ Global consts: Offset1, Offset2, Gap, Maxlndex1 , Maxlndex2. }
{ Global subprogram: max. }

con st
NrShades = 4; { number of shades of gray in gray-scale }

type
ShadeNumber = 1 .. NrShades;
ShadeTable = array[ShadeNumber] of Pattern;

var
shade : ShadeTable; { shades in order of increasing darkness; }
{ if white were added, the steps are uniform from white to black }
MaxFreq : count; { maximum element of freq }
row : index1 ; { row of element of freq }
col : index2; { col of element of freq }
t, I, b, r : integer; { top, left, bottom, right coordinates of inside

of cell}

procedure SetUp (var shade: ShadeTable);
{ Stores patterns in shade in order of increasing darkness; if }
{ white were added, the steps are uniform from white to black. }

MULTIDIMENSIONAL ARRAYS 321

begin { Setup }
shade[1] := ltGray;
shade[2) : = Gray;
shade[3] := dkGray;
shade[4] := black

end; { SetUp }

begin { display }
Write('ln the display, the darkness of a cell is proportional ');
Writeln('to the relative frequency of its visits.');
Writeln('The gray-scale has ', NrShades : 1, ' shades of gray.');
SetUp(shade);
MaxFreq := max(freq);

{ Fill each cell whose corresponding frequency is non-zero }
for row := 1 to Maxlndex1 do

begin
{ Set t, b to top and bottom coordinates of cells in row }

b := Offset1 + row * Gap;
t := b - Gap + 1;

for col := 1 to Maxlndex2 do
If freq[row, col]> O then

end

begin { Fill cell corresponding to freq[row, col] }
{ Set I, r to left and right coordinates of cell in column }

r := Offset2 + col * Gap;
I := r - Gap + 1;

PenPat(shade[trunc((freq[row, col] - 0.5) * NrShades I
MaxFreq) + 1]);

PaintRect(t, I, b, r)
end

end; {display}

procedure introduce (var row : index1 ;
var col : index2;
var NrSteps : count);

{ Draws empty grid, explains its purpose, prompts user to click}
{ in starting cell, sets row and col of starting cell, marks it, }
{ and prompts for and sets number of steps NrSteps. }
{ Global consts: Maxlndex1, Maxlndex2. }
{Global subprograms: DrawEmptyGrid, lnGrid, ScreenToGrid,

FillCell.}
var

x, y : integer; { (x, y) is a mouse position }
begin { introduce }

DrawEmptyGrid;
{ Describe grid }

Write('This program simulates a random walk in a grid of ');

322 PROGRAMMING USING MACINTOSH PASCAL

Writeln(Maxlndex1 : 1, ' rows and ', Maxlndex2 : 1, ' columns.');
{ Prompt for and read NrSteps }

Write('Enter number of steps in walk: ');
Readln(NrSteps);

{ Prompt for and process click in starting cell }
Writeln('Click in starting cell to commence random walk.');
repeat { set (x, y) to position of next click }

repeat
until Button;
GetMouse(x, y)

until lnGrid(x, y);
ScreenToGrid(x, y, row, col);
FillCell(row, col, black)

end; { introduce }

procedure simulate (StartRow : index1;
StartCol: index2;
var freq : VisitCounts;
RequiredSteps : count);

{ Simulates and displays a random walk of RequiredSteps steps, }
{ starting in cell in row StartRow and column StartCol, and }
{ records number of visits to each cell in freq. }
{ Global consts: Maxlndex1, Maxlndex2. }
{ Global subprograms: ran, FillCell. }

con st
NrDirections = 8; { number of directions }

type
direction = 1 .. NrDirections;
DiffTable = array[direction] of -1..1;

var
row : index1;
col : index2; { (row, col) is current position }
dir : direction; { tentative direction to move in }
NewRow, NewCol : integer; { (NewRow, NewCol) is tentative

next position }
NrSteps : count; { number of steps in walk so far }
diff1, diff2 : DiffTable; { coordinate changes for a move in

each direction }

procedure Setup (var diff1, diff2 : DiffTable);
{ For each direction d, sets diff1 [d] (diff2[d]) = change to }
{ row (column) to move in direction d. }
begin { Setup }

diff1[1) := -1;
diff1[2] := -1;
diff1[3) := O;
diff1 [4) := 1;
diff1 [5) := 1 ;
diff1[6) := 1;

MULTIDIMENSIONAL ARRAYS 323

diff1 [7] := O;
diff1 [8] := -1;
diff2[1] := O;
diff2[2] : = 1 ;
diff2[3] : = 1 ;
diff2[4] := 1;
diff2[5] := O;
diff2[6] := -1;
diff2[7] := -1;
diff2[8] := -1

end; { Setup }

begin { simulate }
{ Zero every element of freq }

for row := 1 to Maxlndex1 do
for col:= 1 to Maxlndex2 do

freq[row, col] := O;
{ Simulate and display walk and accumulate frequencies }

{ Initialize }
SetUp(diff1, diff2);
freq[StartRow, StartCol] := 1;
row := StartRow;
col := StartCol;

for NrSteps := 1 to RequiredSteps do
begin
{ Determine location of neighboring cell in random

possible direction }
repeat

dir := ran(1, NrDirections);
NewRow := row+ diff1[dir];
NewCol := col + diff2[dir]

until (1 <= NewRow) and (NewRow <= Maxlndex1) and
(1 <= NewCol) and (NewCol <= Maxlndex2);

{ Erase previous mark, move to and mark new cell, and
record visit }
FillCell(row, col, white);
row := NewRow;
col:= NewCol;
FillCell(row, col, black);
freq[row, col] := freq[row, col] + 1

end;

{ Erase last mark }
FillCell(row, col, white)

end; { simulate }
begin { RandomWalk }

introduce(StartRow, StartCol, RequiredSteps);
simulate(StartRow, StartCol, VisitsTo, RequiredSteps);
display(Visits To)

end. { RandomWalk }

324 PROGRAMMING USING MACINTOSH PASCAL

r .&.. .. File Edit Search Run Windows

Drawing Te Ht
This program simulates a random
walk in a grid of 25 rows and 25
columns.
Enter number of steps in walk:
2000
Click in starting cell to
commence random walk.
In the display, the darkness of a
eel I is proportional to the
relative frequency of its visits.
The gray-scale has 4 shades of
gray.

Figure 13.13
The screen after a run of
Random Walk.

Figure 13.13 shows the results of a run consisting of 2000 steps
on a 25 x 25 grid, with the starting point in the center, and the direc­
tions as shown in Figure 13.IO(a).

See the exercises for some suggested modifications to or experi­
ments with RandomWalk.

13.7 Further reading

(1) Tufte, E. R. (1983). The Visual Display of Quantitative Informa­
tion. Connecticut: Graphics Press.
A marvelous book. Should be required reading for anyone plan­
ning to display quantitative information using the Macintosh's
graphics capabilities.

MULTIDIMENSIONAL ARRAYS 325

.,

EXERCISES
13.1 In the context of the tic-tac-toe example,

(a) Write a statement that stores X in square[row, col] if it is empty.

(b) Write a statement that initializes every position to Empty.

13.2 In the context of the inventory for Bob and Marge's Gift and Gun,
suppose the following variable is declared:

type
costs = array[ltemType] of count;

var
cost : costs; { cost[i] = cost of item i in cents }

(a) Write a function that returns the total cost of the stock held by a
given store.

(b) Using your answer to (a), implement the following action:

Print the total cost of the stock held by each store

13.3 In the context of the inventory problems, is the following legal?

var
temp : array[StoreNumber] of count;

temp := stock[cube]

If not (what a give-away!), change the type definitions to permit it.

13.4 How many elements does the rectangular array-section A[a .. b, c .. d]
contain?

13.5 On an 8 x 8 chess-board, a king protects the 9 squares in the 3 x 3
region centered on his square. (This region is reduced if the king is on
an edge.) Write a program that prompts for and reads the positions of
an arbitrary number of kings, and prints the total number of squares
protected by them.

Hint: Use extra phantom rows and columns to avoid special treatment
for kings on edges.

13.6 Implement the following procedure:

procedure transpose (var A : matrix;
n: index);

{Revolves A[1 .. n, 1 .. n] 180 degrees on its major diagonal;}
{ i.e. the i'th row becomes the i'th column, and vice versa. }

The major diagonal runs from A[1, 1] to A[n, n].

13. 7 An array section A[1 .. n, 1 .. n] is said to be symmetric iff transpose(A, n)
leaves it unchanged. Write a function that tests for this property. En­
sure that it does not do unnecessary testing if the section is found not
to be symmetric.

326 PROGRAMMING USING MACINTOSH PASCAL

13.8 With respect to procedure RotateAnti, show that the last member of
A[i, j]'s group is replaced by A[i, j].

13.9 Implement the following procedure:

procedure rotate (var A : matrix;
n : index);

{ Rotates A[1 .. n, 1 .. n] 90 degrees clockwise round its center. }

13.10 Complete the following procedure in the given context:

con st
MaxRow = ... ;
MaxCol = ... ;

type
Rowlndex = 1 .. MaxRow;
Collndex = 1 .. MaxCol;
matrix = array[Rowlndex, Collndex] of real;

procedure VFlip (var A : matrix;
rows: Rowlndex;
cols : Collndex);

{ Revolves A[1 .. rows, 1 .. cols] 180 degrees round its central }
{vertical axis, i.e., A[r, 1] is swapped with A[r, cols], }
{ A[r, 2] is swapped with A[r, cols - 1], etc. }

13.11 The fact that procedure ScreenToGrid assumes that its input para­
meters x and y represent a point in the grid is hardly satisfactory. It
could check this first by calling function lnGrid, but it would not then
be self-contained, and the problem remains as to what to do if the re­
sult of the call is false. A much better idea is for ScreenToGrid to
absorb the role of lnGrid, by changing its specifications as follows.

type
Extendedlndex1 = O .. Maxlndex1 ;
Extendedlndex2 = O .. Maxlndex2;

procedure ScreenToGrid (x, y: integer;
var row : Extendedlndex1 ;
var col : Extendedlndex2);

{ If screen position (x, y) is in grid, sets (row.col) to cell }
{containing (x, y); otherwise sets row and col to O. }

Implement this new version of ScreenToGrid, and modify the program
accordingly.

13.12 Modify program RandomWalk to use the set of directions in Figure
13.IO(b). This should be an easy exercise, because the constant NrDir­
ections and the procedure SetUp (local to simulate) encapsulate all the
information concerning directions.

13.13 Modify RandomWalk so that the walk terminates as soon as a
randomly selected direction would cause the particle to leave the grid.

MULTIDIMENSIONAL ARRAYS 327

Puzzle

Figure 13.14
Two states of the 15·
puzzle.

13.14 Modify RandomWalk so that white is included in the gray-scale. This
is the natural way to use a gray-scale to plot the relative values of a
statistic according to (often geographic) location. It will no longer be
true that a visited cell is never displayed as white, but it will remain
true that every unvisited cell is displayed as white (provided the
number of possible frequencies is not smaller than the number of gray
tones).

13.15 As it stands, procedure display mixes graphics details with high-level
actions. Use a procedure like FillCell to fix this problem.

13.16 A desk accessory called Puzzle comes with the Macintosh System Disk.
Selecting it from the apple menu produces a picture like those shown
in Figure 13.14. There are 15 squares and one free space in a 4 x 4
regular grid. Clicking on a square vertically or horizontally adjacent to
the space causes it to move into the space, leaving a space where it was.
For example, clicking on square 13 changes each of the states of the
puzzle in Figure 13.14 to the other.

This is the famous 15-puzzle - the Rubik's cube of the nineteenth
century - created by the incomparable American puzzle-maker Sam
Loyd. The idea is to make a sequence of moves that rearranges the
squares so that the numbers increase in row-major order, with the
space in the bottom-right.

Implement the 15-puzzle in Macintosh Pascal - the puzzle, not an
algorithm that solves it. This is a substantial programming exercise, but
all the important techniques occur in program RandomWalk.

Warning: Only half the possible arrangements permit a solution, so you
might want to start by displaying the desired arrangement, then having
the program mess it up by making a sequence of random moves. Dis­
playing these moves might add to the puzzle's appeal!

nifl n@ n~ ti
n tt ns a

na ~ I! w
s if! e nn

nifl n@ n~ ti
n nstt a

na ~ I! w
Sifl@nn

328 PROGRAMMING USING MACINTOSH PASCAL

14 _____ _
TEXT PROCESSING
Amend my statements last night and insert the word 'lose' where I had
the word 'win'.
- Morris Udall, referring to a premature victory speech at the

Wisconsin primary, 1976

14.1 Introduction
14.2 Text files

14.2.1 lnQUt and OutQUt as text files

14.2.2 Internal and external text files

14.2.3 Using a text file

14.2.4 The file QOSition and the file buffer

14.2.5 Writing a text file

14.2.6 Reading a text file

14.2.7 External text files in Macintosh Pascal

14.2.8 Two exam2les

14.3 Strings in Macintosh Pascal
14.3.l Syntax

14.3.2 Assignment

14.3.3 String in2utlout2ut

14.3.4 Quasi-1/0

14.3.5 Com2aring strings

14.3.6 Predefined functions for strings
14.3.7 Predefined string Qrocedures

14.3.8 Drawing strings

14.4 Case-study 8: A mail minder
14.4.1 Setting of the Qroblem

14.4.2 S2ecifications

14.4.3 Writing the Qrogram

14.4.4 The com2lete Qrogram
14.5 Macaveats

Exercises

330

330

330

331

331

331

332

333

334

335

336

336

337

339

340

341

342
345

347

348

348

348

349

352

355

355

14.1 Introduction
Computers were originally applied to large-scale scientific and
engineering calculations. The view of computers as exclusively or even
mainly number-crunchers is no longer appropriate. Even computers
that are devoted to numeric applications spend considerable time
processing text rather than numbers: the input to a programming
language translator, for example, is textual data. More generally,
almost all input data prepared directly by people is textual, no matter
what its interpretation.

Many applications do little other than process text. The text that
you are now reading, for example, was processed by an interactive
editor, and later processed by a spelling-checker and a typesetter.
Such programs spend most of their time reading, expanding, changing,
r~rranging, writing, and otherwise manipulating text. With the advent
of the automated-office and the personal computer, text processing has
become arguably the most common form of computation.

Standard Pascal provides a predefined type to represent files of
textual information, and special procedures to handle their input and
output. These are the subject of the first major section of this chapter.
However, Pascal's facilities for lower-level processing of text, called
string-processing, are rather primitive - there are fixed-length strings
in the guise of packed arrays of characters, but very few operations or
required procedures and functions to process them. Macintosh Pascal,
like many other implementations of Pascal, extends the Standard in
this area. Its facilities for string-processing are described in Section
14.3. The chapter concludes with a case-study that illustrates text­
processing in Macintosh Pascal.

14.2 Text files
14.2.1 INPUT AND OUTPUT AS TEXT FILES

It is time to reveal the identity of the identifiers Input and Output
(which have appeared in the program-heading of the programs we have

330 PROGRAMMING USING MACINTOSH PASCAL

seen thus far) - they are variables of the required structured type text,
and are implicitly declared in the program-block. Like all variables of
type text, they are called text fdes, and are used to perform input and
output.

A text file is normally associated with secondary memory, that
is, with files on a Macintosh Pascal disk, but may be associated with
input/output devices such as printers and modems. The text file Input
is associated with the standard input stream (see Chapter 5), which in
Macintosh Pascal is produced by the keyboard. Output is associated
with the standard output stream, which in Macintosh Pascal goes to the
Text window.

14.2.2 INTERNAL AND EXTERNAL TEXT FILES

Text files that exist only during execution of a program are called
internal files. A text file that exists prior to or after the execution of a
program is called an external fde; it will be represented on a [lJ D
Macintosh by an icon. The Standard requires external files that are ~
used or created by a program to be identified by listing them as the -C:.
program parameters. If either Input or Output is used, implicitly or
explicitly, it must appear in the list of program parameters. Macintosh
Pascal uses a non-Standard method that is described below - it does
not permit other program parameters.

14.2.3 USING A TEXT FILE

The value of a text file is a sequence of zero or more lines, each of
which consists of zero or more characters followed by an end-of-line
marker. A text file can be created only by appending characters or
end-of-line markers to an initially empty file. Assignment to an entire
text file is not permitted; neither is it possible directly to change a
character part way through a text file. A text file may be examined
only by reading successive characters and markers starting from the
first one. Because their components can only be accessed sequentially,
Pascal text files are called sequential files. Macintosh Pascal is more
flexible, allowing access to an arbitrary position, and permiting mixed
reading and writing; i.e. it supports random-access files - see
Chapter 16.

14.2.4 THE FILE POSITION AND THE FILE BUFFER

Each text file has a unique fde position. When a file is being read, its
file position separates the characters and markers that have been read
from those that have yet to be read. When a file is being written, its
file position is after its last character or marker.

TEXT PROCESSING 331

The declaration of a text file f automatically creates a variable f'
of type char called the file-buffer off It is used to transmit characters
to and from f, as explained below. It is classified as a new kind of
component-variable:

component-variable: indexed-variabk I fil,e-buffer
file-buffer: fik-variabk"'
file-variable: variabk

14.2.5 WRITING A TEXT FILE

The first operation on a text file f indicates whether it is to be written
or read. The procedure call:

Rewrite({)

makes f available for writing. The file becomes empty, and the file
position is at end-of-file. Accordingly, eof(f) gives true. Rewrite is
implicitly applied to Output at the outset of a program, and should not
be reapplied. The functions eof and eoln may be applied to any text
file; if the file parameter is omitted, Input is assumed. (More accur­
ately, the standard input stream is assumed, as the identifier Input may
be redefined.)

The output statements Write and Writeln may be used with any
text file f, simply by giving f as the first parameter in the list. If it is
omitted, Output (i.e. the standard output stream) is assumed. The
effects are as described in Chapter 5, except that it is f that is affected.
The file position remains at the end-of-file throughout the writing
process, and eof(f) continues to give true.

A Write-statement is actually implemented in terms of a primi­
tive output operation. The procedure call:

put({)

appends the value of the file-buffer f' to f, moves the file position to
the end, and makes f' undefined. The file-buffer may be given a value
by any means permitted for a non-simple variable of type char. If Out­
File is a variable of type text, then the output statement:

Write(OutFile, '!')

is equivalent to:

begin
OutFile"' := '!';
put(OutFile)

end

332 PROGRAMMING USING MACINTOSH PASCAL

OutFile OutFile"
initially 1 ... DHoly A text A files, A Batman t I 0

OutFile OutFile"
after OutFile" := '!' j ... DHoly A text A files, A Batman t I ~

OutFile OutFile"
after put(OutFile) j .. DHolyAtextAfiles, ABatman! ti 0

Its effect is illustrated in Figure 14.1. As in Chapter 5, D denotes an
end-of-line marker, A denotes a space character, and t denotes the
file-position.

14.2.6 READING A TEXT FILE

The procedure call:

Reset({)

makes f available for reading. The file position moves to the start and
eof(f) gives true iff the file is empty. Moreover, eoln(f) gives true iff
the file starts with an end-of-line marker. Reset is implicitly applied to
Input at the outset of a program, and should not be reapplied.

The file buffer r is defined throughout the reading process pro­
vided only that eof(f) gives false. It contains the character immedi­
ately following the file position, unless it is followed immediately
by an end-of-line marker, in which case it contains the space
character.

The input statements Read and Readln may be used with any
text file r' simply by giving f as the first parameter in the list. If it is
omitted, Input (i.e. the standard input stream) is assumed. The effects
are as described in Chapter 5, except that it is f that is affected.

A Read-statement is actually implemented in terms of a primi­
tive input operation. The procedure call:

get({)

advances the file position past the current character or marker, and

Figure 14.1
Execution of Write
(Outfile, '!').

TEXT PROCESSING 333

Figure 14.2
Execution of Read
(lnFile, ch).

lnFile lnFile" ch
initially 1 ... DGoodnessAgratcious, ... 10 C2::J

In File In File" ch
after ch:= lnFile" f .. DGoodnessAgratcious, ... 1 0 0

lnFile lnFile" ch
after get(lnFile) j ... DGoodness A grac t ious, ... 1 [!] 0

updates the value of the file-buffer ('. It is an error if the file position
is at end-of-file before the call. If lnFile is a variable of type text, and
ch is a variable of type char, then the input statement:

Read(lnFile, ch)

is equivalent to:

begin
ch := lnFileA;
get(lnFile)

end

Its effect is illustrated in Figure 14.2.
In Macintosh Pascal, execution of get(lnput) does not cause the

character or marker skipped over to be echoed in the Text window,
unlike the situation with Read and Readln.

14.2.7 EXTERNAL TEXT FILES IN MACINTOSH PASCAL

In Macintosh Pascal, a text file is associated with an external file by
naming the external file with an optional second parameter of Reset or
Rewrite, the first time one of these procedures is applied to the file.
Later calls of Reset or Rewrite should not have this second parameter.

The optional parameter is an expression that gives a string value.
A text file on a Macintosh disk is denoted by the string consisting of
the name of the disk, followed by a colon (:) and then the external
name of the file. For example, to prepare to read the file named
Errors. Text on the Macintosh Pascal Utilities disk, we might write:

var
errors : text;

Reset(errors, 'Macintosh Pascal Utilities:Errors.Text')

334 PROGRAMMING USING MACINTOSH PASCAL

It is necessary for the required disk's icon to be on the desktop.
Two very useful functions are provided for interactive programs.

The function-call:

OldFileName(prompt)

in which the expression prompt gives a string value, produces a dialog
box that displays prompt and allows the user to select an existing file
on an arbitrary disk. The result of the call is a string that names the
file in the form required by Reset and Rewrite. A typical application
of it is shown below.

var
data: text;

Reset(data, OldFileName('Please select the data file.'))

For technical reasons, do not end prompt with an asterisk (*) lest
irrelevant files be listed.

Similarly, the function call:

NewFileName(prompt)

allows the user to create and name a new empty file, and returns its
name.

14.2.8 1WO EXAMPLES

The predefined input and output procedures are normally used in pre­
ference to low-level operations with file-buffers, but there is one situa­
tion where a file-buffer is very useful. Suppose, in the context of pro­
gram Arithmetic in Chapter 10, that exercises are presented with an
equality symbol. So in response to the exercise:

8+7=

the user might type a number (such as 15) that represents an attempt,
or ? to get the answer, or q or Q to quit, or just hit Return (which is
interpreted as ?). We would like to sneak a look at the next character
in the input stream to determine whether or not to read an integer and
can do so as follows:

If eoln or (Input" = '?') then
outcome:= query

TEXT PROCESSING 335

else If (Input" = 'q') or (Input" = 'Q') then
outcome := QuitSession

else
Read answer and set outcome accordingly ;

Read In

Without using the file-buffer, we would have no alternative but to read
a character, which is most inconvenient for processing attempted
answers. We shall see later in this chapter that Macintosh Pascal
provides a more powerful method (using procedure ReadString).

Our second example is a utility-procedure.

procedure append (var extra, f : text);
{ Appends extra to f; assumes f is being written and extra has }
{ already been associated with an external file if necessary. }
begin {append}

Reset(extra);
while not eof(extra) do

begin { append next line from extra to f }
while not eoln(extra) do

begin
Read(extra, ();
put(f)

end;
Writeln(f)

end
end; { append }

Since assignment to a text file is not permitted, text file parameters
must be var-parameters.

14.3 Strings in Macintosh Pascal
14.3.1 SYNTAX

Macintosh Pascal provides special string-types that permit more elabor­
ate string-processing than do Pascal's. Mac-string-types have some of
the properties of a simple-type (such as being permitted as the result­
type of a function), and some of those of a structured-type (such as
having a component-type). Their syntax is as follows:

type: simple-type I structured-type I Mac-string-type
Mac-string-type: string [size-attribute]
size-attribute: unsigned-integer

The optional size-attribute must be between 1 and 255 inclusive.

336 PROGRAMMING USING MACINTOSH PASCAL

A value of a Mac-string-type is a sequence of characters. The
number of characters in the sequence, called its length, is constrained
to lie inclusively between 0 and the declared size-attribute, which
defaults to 255 if not given. Mac-string-types provide variable-length
strings, as compared to Pascal's fixed-length strings.

An extra constant is introduced to denote the empty string -
the unique string whose length is 0. It is written ".

Mac-character-string: character-string I empty-string
empty-string: "

The syntactic term Mac-character-string replaces character-string in
Pascal's syntax rules.

As already mentioned, a function can return a value of a Mac­
string-type, but the result-type must be specified by a type-identifier or
string. The same goes for formal parameters of functions and
procedures.

result-type: type-identifier I string
parameter-type: type-identifier I string

The rules concerning parameters are relaxed for var-parameters of type
string: a variable of any Mac-string-type is accepted as an actual­
parameter. The size-attribute of the actual parameter becomes that of
the formal parameter. This makes it possible to write perfectly general
string-processing procedures.

14.3.2 ASSIGNMENT

A variable of a Mac-string-type T may be assigned any value of type
char, any value of a Pascal string-type whose (fixed) length does not
exceed the size-attribute of T, or any value of a Mac-string-type whose
length does not exceed the size-attribute of T. The other direction is
more strict: a variable of a Pascal string-type may be assigned a value
of a Mac-string-type provided the lengths agree, and a variable of type
char may be assigned a value of a Mac-string-type provided its length
is 1. These rules simply codify the philosophy of permitting any assign­
ment that makes sense, so there is little need to worry about them.

One consequence is that a value formal parameter of a Mac­
string-type can handle any string or character value, provided only that
the value's length does not exceed the parameter's size-attribute.

Here are two simple but convenient string-processing functions.
The first can be used to avoid the three ugly uses of (s) in the output
statements at the end of program Arithmetic in Chapter 10.

TEXT PROCESSING 337

type
string1 = string[1];

function plural (n : integer) : string1 ;
{ Returns 's' if n <> 1, else the empty string. }
begin { plural }

if n <> 1 then
plural := 's'

else
plural:= "

end; { plural }

For example, the first of these output statements becomes:

Writeln(NrCorrect : 1, • correct answer', plural(NrCorrect))

If NrCorrect = 3, it prints:

3 correct answers

If NrCorrect = I, it prints:

1 correct answer

This is a much neater solution than using the procedure Pluralize
suggested in Exercise 10.8. Function plural could have been given the
result-type string, but the chosen type is more precise and economical.

A more general function can easily be written that takes care of
more complex situations involving plural forms:

function choose (SingularStr, PluralStr : string;
n : count) : string;

{ Returns SingularStr if n = 1, otherwise PluralStr. }
begin { choose }
lfn=1then

choose := SingularStr
else

choose := PluralStr
end; { choose }

The expression plural(n) is equivalent to choose(", 's', n). Pro­
gram MiniNim from Chapter 9 might use the following statement to
announce the number of matches remaining:

Writeln('There ', choose('is ', 'are ', Leftover), Leftover : 1,
• match', choose(", 'es', Leftover), · remaining.')

338 PROGRAMMING USING MACINTOSH PASCAL

If Leftover = 3, it prints:

There are 3 matches remaining.

If Leftover = 3, it prints:

There is 1 match remaining.

It is possible to access a component of a variable of a Mac­
string-type with an indexed-variable, which has type char. The sub­
script must be between 1 and the current length of the string, in­
clusive. Accessing components in this manner is recommended only in
a couple of situations (described later), because there afe higher-level
alternatives that are more general. It is not possible, for instance, to
extend a string as attempted below:

var
s: string;

s := 'Greatest Hits Vol. I'; { now length of s = 20 }
s[21] := 'I' {XXXX ERROR XXXX}

14.3.3 STRING INPUT/OUTPUT

Output of a value of a Mac-string-type works as for a corresponding
value of a Pascal string-type. We have seen two examples above, and
there are plenty more in the sequel. The details are given in Chapter 5.

The same does not hold for input. Variables of Pascal string­
types must be read character by character, but those of Mac-string­
types need not and should not be read that way. Instead, a value may
be read directly by including the variable in an input statement. If s is
a variable of a Mac-string-type, the statement:

Read(s)

reads the sequence of characters up to but not including the next end­
of-line marker, and gives the corresponding string to s. The length of s
becomes the number of characters read; it must not exceed its size­
attribute.

Consider the following program segment:

type
index= 1 .. 3;

var -
line : array[index] of string[BO];
i: index;

TEXT PROCESSING 339

for i := 1 to 3 do
Readln(line[i])

If before execution of the loop the input stream contains:

... t I' veAgotDplenty AofDD ...

then after execution

line[1] contains
line[2] contains
line[3] contains

'l"ve got'
'plenty of'

and the input position is after the last marker shown.
Because characters past a marker will not be read, strings are in­

variably read with Readln rather than Read. Schema Process Lines is
commonly used.

Another useful schema reads and processes one or more lines
until an empty line is read; it uses a repeat loop with the stopping con­
dition line = ".

Schema Process Lines:
var
f : text; { file to be processed }

{ Read and process f a line at a time up to end-of-file; }
{ assume file f is ready for reading, }
{ and has no line with more than 255 characters. }

var
line : string;

whlle not eof(f) do
begin

Readln(f, line);
Process line

end

14.3.4 QUASI-1/0

We saw earlier that we can look one character ahead in the input by
accessing the file-buffer, and use this information to determine what
kind of value to read. A much more powerful method is possible in
Macintosh Pascal. It is to read a line into a variable of a Mac-string-

340 PROGRAMMING USING MACINTOSH PASCAL

type, inspect the string (using the operators and functions described
below), and then read from the string using the predefined procedure
ReadString.

ReadString is like Read, but with two main differences. First,
its first parameter is a value of a Mac-string-type rather than a text file,
and is not optional. The other parameters are as for Read. Second, in­
formation is read and converted as necessary from the string rather
than from a text file. If a string is read, an implicit end-of-line marker
is assumed after the last character. It is an error if an attempt is made
to read beyond the last character.

For example, if n is an integer variable, and s has type string,
then after execution of:

ReadString('96 tears', n, s)

n = 96 ands= 'tears'.
When processing information that is mainly textual, it is easiest

to use the above schema, and, if necessary, apply ReadString to the
line read to convert embedded numeric or otherwise non-textual in­
formation. This technique is used later in this chapter in Case-study 9,
in procedure SkipRestOfMessage.

There is a similar facility for output. This time a fu.nction, called
StringOf, is provided. It takes exactly the same arguments as does
Write with Output implicit, field widths included, and returns the
string that Write would have appended to Output. It is an error if that
string has more than 255 characters.

For example, if NrCorrect = 3, then:

StringOf(NrCorrect : 1, ' correct answer', plural(NrCorrect))

gives the value '3 correct answers'.
StringOf is most useful for assembling textual information to be

displayed in the Drawing window, because its size can then be
calculated, allowing it to be placed precisely. See the discussion follow­
ing procedure DrawStringC later in this chapter.

14.3.5 COMPARING STRINGS
The only operators that may be used with values of Mac-string-types
are the relational operators. Any two values of Mac-string-types or
Pascal string-types or character-types may be compared - they do not
need to have the same length. The outcome for equal-length strings is
as specified by the Standard, and described in Chapter 11; otherwise, it
is as if the shorter string were padded out with copies of an imaginary

TEXT PROCESSING 341

character that precedes the first one in the ordering. This scheme is
consistent with dictionary ordering for words comprised of letters of
the same case. Only identical strings are equal.

Here are some examples:

'Blues' < 'Blues Brothers' gives true
'Pascal strings are' < 'Perfect' gives true
"< 'anything else' gives true
'99' < '100' gives false
'Zulu' < 'aardvark' gives true on the Mac

As the last example shows, the ordering is partly implementation­
dependent.

14.3.6 PREDEFINED FUNCTIONS FOR STRINGS

A number of predefined functions are provided for string-processing.
They can only be applied to values of Mac-string-types, but single
characters and character strings are treated as constants of such types.
Note that the string parameters of these functions act like neither var­
nor value-parameters.

The function-call:

length(s)

returns the length of the string s. With array line as defined earlier
(line[1] = 'I' 've got', line[2] = 'plenty of', line[3] = ") we find:

length(line[1]) gives 8
length(line[2]) gives 9
length(line[3]) gives 0
length('line[3]') gives 7
length('?') gives I

Note that, despite the last two examples, length cannot be applied to a
variable of a Pascal string-type, or a variable of type char.

A fundamental operation on strings is to join two strings
together; it is called concatenation. It is provided in Macintosh Pascal
by a function that can concatenate one or more string values. The
function-call:

returns the string obtained by concatenating the arguments in the given
order. The length of the result is the sum of the· lengths of the argu­
ments. Here are some examples:

342 PROGRAMMING USING MACINTOSH PASCAL

concat(line[1], line[2])
concat(line[1), line[2], line[3])
concat('Joliet', • ', 'Jake')
concat(' ', 'Joliet', 'Jake')

gives
gives
gives
gives

'l''ve got plenty of'
'l''ve got plenty of'
'Joliet Jake'
• JolietJake'

Consider the following program segment:

var
phrase : string;
i: 1 .. 3;

phrase := 'A rose';
for i := 1 to 3 do

phrase := concat(phrase, ' is a rose');
phrase := concat(phrase, '.');
Write(phrase)

It prints:

A rose is a rose is a rose is a rose.

Another fundamental operation, that of extracting a contiguous
part of a string, called a substring, is provided by function copy. The
function call:

copy(s, index, count)

where index and count are integer expressions, returns the substring of s
containing count characters starting at character s[index], provided this
substring exists. Otherwise, as much of the specified substring as exists
is returned. No error ever occurs. Here are some examples:

copy('abcde', 2, 3) gives 'bed'
~py('abcde', 2, O) gives
copy('abcde', O, 3) gives 'ab'
copy('abc', 2, 3) gives 'be'
copy('abc', 4, 1) gives

When index is between 1 and the length of s, copy(s, index, 1)
can and should be replaced by s[index]. The latter form documents the
assumption about index, and causes an error if it is not met. This is
much more helpful to the programmer than continued execution.

Here is a function that uses the three string-processing functions
we have met so far:

type
Stringlndex = 0 .. 255;

TEXT PROCESSING 343

function reverse (s : string) : string;
{ Returns the reverse of s. }

var
rev: string; {reverse of copy(s, 1, i - 1)}
i : Stringlndex;

begin { reverse }
rev:=";
for i := 1 to length(s) do

rev:= concat(copy(s, i, 1), rev);
reverse := rev

end; { reverse }

In this case, copy(s, i, 1) can safely be replaced by s[i].
Execution of:

Writeln(reverse('A man, a plan, a canal: Panama'))

prints:

amanaP : lanac a , nalp a , nam A

A function is provided for searching a string for a given sub­
string. The function-call:

pos(sub, s)

returns the least i ~ 1 such that:

copy(s, i, length(sub)) = sub

unless sis empty or no such i exists, in which case it returns 0. Here
are some examples:

pos('yeah', 'yeah, yeah, yeah') gives

pos('yeah', 'Yeah, yeah, yeah') gives 7
pos('he', 'shenanigans') gives 2
pos(' .', 'Help!') gives 0
pos(", 'not empty') gives

Here is a typical example of the use of pos:

var
i : Stringlndex; { position of first comma in name }
name: string;

{Assuming name has the form 'lastname, firstname', }
{ print 'firstname lastname' }

344 PROGRAMMING USING MACINTOSH PASCAL

i := pos(',', name);
Write (copy(name, i + 2, length(name)), ' ', copy(name, 1, i - 1))

For example, if name = 'Blues, Elwood', then Elwood
Blues is printed. The natural third argument of the first application
of copy is length(name) - i - 1 - function copy allows us to be a
little lazy.

Two other string-processing functions are provided. Function
omit takes the same arguments as copy, and returns the string obtained
by omitting the copied string. For example:

omit('abcde', 2, 3) gives 'ae'

Function include does the opposite. It inserts a substring into a
string at a specified position. The function call:

include(sub, s, i)

is equivalent to:

concat(copy(s, 1, i - 1), sub, copy(s, i, length(s) - i + 1))

For example,

include(' ('Fatha")', 'Earl Hines', 5) gives 'Earl ('Fatha") Hines'.

The only possible error is an attempt to create a string with more than
255 characters.

14.3.7 PREDEFINED STRING PROCEDURES

Functions omit and include have corresponding procedures which are
likely to be used more often. In each case the actual parameter s must
be a variable of a Mac-string-type, and is changed by the procedure
call. Its new value is the value returned by the corresponding function.

Procedure delete corresponds to function omit. For example, if
variables has the value 'abcde', then after execution of:

delete(s, 2, 3)

the new value of sis 'ae'.
Procedure insert corresponds to function include. For example,

if variable s has the value 'Earl Hines', then after execution of:

insert(' ('Fatha")', s, 5)

the new value of s is 'Earl ('Fatha") Hines'.

:::lY ..
L

14.1

TEXT PROCESSING 345

Here is a procedure that employs these two predefined
procedures.

procedure replace (old, new: string;
· vars : string);

{ Replaces first occurrence of old ins by new. }
var

i : Stringlndex;
begin { replace }

i := pos(old, s);
if i <> O then

begin
delete(s, i, length(old));
insert(new, s, i)

end
end; { replace}

For example, if word = 'mipselling', then after execution of:

replace('ps', 'ssp', word)

the new value of word is 'misspelling'.
Suppose now that we are asked (by Morris Udall's press

secretary perhaps) to write a procedure that replaces each occurrence of
a substring. It will not do simply to apply replace repeatedly to the
entire string, because a replacement may cause new instances of the
substring to appear. Attempting to replace each 's' with 'ss' in this
way, for instance, would hiss until an error occurs.

Our algorithm instead repeatedly peels off the replaced part of s
and appends it to an initially empty string t, so that t grows as s
shrinks. This is an efficient approach to many string-processing
problems, as it avoids repeated searches through a long string. It is
difficult to draw a general picture, but easy enough to describe the
general situation in technical English, as does the comment accompany­
ing the declaration of t.

procedure ReplaceAll (old, new: string;
vars : string);

{ Replaces all occurrences of old in s by new; assumes old <> ". }
var

t : string; {final value of s = concat(t, s-with-new-for-each-old) }
i : Stringlndex; { = pos(old, s) }

begin { ReplaceAll }
t ·= ''· . '
i := pos(old, s);
while i <> O do

begin { suppose s = ... old----- }

346 PROGRAMMING USING MACINTOSH PASCAL

t := concat(t, copy(s, 1, i -1), new); { t := t ... new}
delete(s, 1, i + length(old) - 1); { s := ----- }
i := pos(old, s)

end;
s := concat(t, s)

end; { ReplaceAll}

The comments help the reader understand the effect of the body of the
loop.

Suppose the procedure call ReplaceAll(s, 'ch', 'ch ch') is
executed, with s = 'ch changes'. The following table shows the values
of the crucial variables before each evaluation of the loop's condition.
Note that the comment fort is effectively an invariant.

s

'ch changes'
'ch ch' ' changes' 2

'ch ch ch ch' 'anges' 2

On termination of the loop, s receives the value 'ch ch ch changes',
as required.

14.3.8 DRAWING STRINGS

Subsection 9.2.4, 'Drawing text', introduced the predefined procedure
WriteDraw, which is sufficient for all displaying of text in the Drawing
window. Macintosh Pascal also provides procedures DrawChar and
Drawstring, which live up to their names but do nothing that
WriteDraw can not.

WriteDraw draws to the right of the current pen position. Since
it is the left edge of the text that is precisely positioned, the text is said
to be left-aligned. Often text should be centered, or perhaps right­
aligned. The predefined procedure StringWidth comes to the rescue. It
returns the width, in pixels, of a given string if it is drawn with the
current options in effect.

This procedure centers a string at the current pen position:

procedure DrawStringC (s : string);
{ Draws s with the center of its base line at the current pen }
{ position; leaves the pen position at the end of the string. }
begin { DrawStringC }

Move(-StringWidth(s) div 2, O);
DrawString(s)

end; { DrawStringC }

TEXT PROCESSING 347

A procedure like WriteDraw cannot be written, because it takes
the same list of arguments as does Write (with Output implicit). But
the desired effect can easily be obtained. To center the string resulting
from an output-value-list a1, •.• , an, use:

DrawStringC(StringOf(a1 I ••• I an))

For example, to center an appropriate heading for the display produced
by program JobScheduler3 in Chapter 11, we might use:

con st
ScreenWidth = 512; {width of Macintosh's screen in pixels }

MoveTo(ScreenWidth div 2, Top- (PointSize div 2));
DrawStringC(StringOf(' Job-scheduling on ', NrProcessors : 1,

• processors.'))

14.4 Case-study: 8: A mail minder
14.4.1 SETTING OF THE PROBLEM

Electronic mail can be sent between users whose computers belong to
the same network. Mail is transmitted from computer to computer in
the network, using telephone lines or other connections, along a path
that starts with the sender's computer and ends with the receiver's.
The computers are called the nodes of the network. Although messages
may be encoded for transmission, as far as the sender and receiver are
concerned, electronic mail consists entirely of textual information.

A networked computer automatically delivers mail for a given
user in a particular file. We will write a program that reads newly
arrived messages, and creates a file of replies to those messages which
have urgent priority. The file will be in the form required by the
system program that sends mail. The content of each reply is to be
read from a file prepared by the user. Before leaving for an extended
period, the user will arrange for the program to be run each night, so
that senders of urgent messages can be informed of how to contact the
user, or of whatever information the user chooses.

14.4.2 SPECIFICATIONS

Incoming mail appears in a particular external file. The file contains
zero or more messages, each consisting of a number of header lines
followed by lines containing the content of the message. No line has
more than 80 characters. Each message has the form shown in Figure
14.3. Note that the header lines of interest appear in a known order,
but may have other header lines interspersed. None of the string values
in a header line may be empty. A path consists of 1 or more node
names separated by exclamation marks. For example:

348 PROGRAMMING USING MACINTOSH PASCAL

From: sender

Date: date message was sent

Pa th : path from sender to receiver

Priority: priority of message

Lines (n1) :
n1 lines containing content of message

doc!grumpy!happy!bashful!sneezy!dopey!sleepy

An external file is to be created that contains a reply to each
message in the incoming mail that has priority of message = URGENT.
Each reply is to have the form shown in Figure 14.4.

The system mailer program will convert this information into
the appropriate form for transmission. The addressee of each reply is to
be recorded on file Output.

14.4.3 WRITING THE PROGRAM

At the highest level, the program just processes each message, but
before doing so, it must ready the three external files:

begin { MailMinder }
Prepare external files for reading or writing ;
while there are more received messages to process do

Process next received message
end. { MailMinder }

The first action is implemented with Macintosh Pascal's
extended form of Reset and Rewrite. String constants are used
prominently to display the names of the three external files, which in
this case reside on the disk named 'pp'.

con st
MailboxFile = 'pp:mbox';
MailToSendFile = 'pp:mdeliver';
lnfoFile = 'pp:info';

var
mailbox, { messages received }
MailToSend, { replies to URGENT priority messages }
info { message to send in reply }

Figure 14.3
The form of a message.

TEXT PROCESSING 349

Figure 14.4
The form of a reply.

To : sender of urgent received message
Path: path to sender of urgent received message
Re: your mail of date urgent received message was sent
copy of the external file containing the reply

: text;

Reset(mailbox, MailboxFile);
Rewrite(MailToSend, MailToSendFile);
Reset(info, lnfoFile)

The condition of the loop can now be formulated as not
eof(mailbox). To Process next received message, the relevant informa­
tion is extracted, a reply appended to file MailToSend if the message
has urgent priority, and the rest of the message skipped:

con st
MaxLineLength = 80;

type
str = strlng[MaxLineLength];

var
sender, { sender of received message }
DateSent, { date of received message }
PathToMe, { path from sender to me }
priority { of received message }

: str;

begin { Process next received message }
Set sender = sender of message;
Set DateSent = date message was sent ;
Set PathToMe =path from sender to me;
Set priority = priority of message;
if priority= 'URGENT' then

Append a reply to MailToSend;
Skip rest of message

end

The four actions that assign to variables of Mac-string-types are
understood to involve reading mailbox; they are refined with a single
procedure. The remaining actions are refined with appropriate
procedures:

procedure FindField (header : str;
var value : str);

{ Repeatedly reads lines from file mailbox until one starting }
{with header is found, then sets value to rest of line; }
{ assumes such a line will be found. Global var: mailbox. }

350 PROGRAMMING USING MACINTOSH PASCAL

procedure Sendlnfo (addressee : str;
path : string; { path to addressee }
date : str); { date of message from addressee }

{ Sends reply consisting of header lines giving the addressee, }
{ path, and a reference to date, followed by contents }
{ of global text file info; records addressee on Output. }
{ Global vars: MailToSend, info. }

procedure SkipRestOfMessage;
{ Reads remaining lines of current message; }
{ assumes line beginning 'Lines(' not yet read. }
{ Global var: mailbox. }

begin { Process next received message }
FindField('From: ·,sender);
FindField('Date: ', DateSent);
FindField('Path: ', PathToMe);
FindField('Priority: ', priority);

H priority = 'URGENT then
Sendlnfo(sender, reverse of path PathToMe, DateSent);

SkipRestOfMessage
end

Note the use of global file variables. In this problem there is little to be
gained by avoiding their use, because the procedures involved share
the same context. Also, there is a convention of doing so, albeit
implicitly, with the external text file variables Input and Output.

FindField is short and simple, though note that it relies on the
fact that the string values in header lines are non-empty. The other
procedures are also straightforward. All the procedures are given below
in the complete program.

The most interesting problem is that of computing the string
argument

reverse of path PathToMe

of procedure Sendlnfo. We decide to do so with a function:

function ReversePath (path : str) : str;
{ Returns reverse of path: If path = 'node1 !node2! ... lnoden', }
{then result = 'noden! ... !node2!node1 '. }

ReversePath(PathToMe)

The solution uses the same schema as employed in procedure
ReplaceAll earlier in the chapter, viz. accumulating the result in an in­
itially empty string variable (rev) as the parameter (path) is reduced.

TEXT PROCESSING 351

Specifically, each iteration peels off a node and the following '!', and
adds the '!' followed by the node to the front of rev. So the invariant is
that after k iterations,

and

- 'I d I I d ' rev - .no ek no e1 ,

th -' de I Id' pa - no k+1' no en.

So the loop should stop when only a single node remains, i.e. when
pos('!', path) = 0 gives true. Negating this condition gives the condi­
tion for the while-loop. A while-loop is used in preference to a repeat­
loop, because a path might consist of a single node; this would happen
if an urgent message is sent by a user of the same computer. On
termination, the result is obtained by concatenating path and rev. See
the complete program for the details.

14.4.4 THE COMPLETE PROGRAM

Once again the program consists of a number of short subprograms.
Procedures append and field could be declared by the single respective
procedures that call them, but are declared at the start of the program­
block, following our policy for subprograms of general utility.

program MailMinder (Output);
{ Reads all messages in file mailbox, and creates replies to }
{ those of urgent priority in file MailToSend; the content of }
{ each reply is read from file info. }
con st

MaxLinelength = 80;
MailboxFile = 'pp:mbox';
MailToSendFile = 'pp:mdeliver';
lnfoFile = 'pp:info';

type
str = string[MaxLinelength];
count = O .. Maxint;

var
mailbox, { messages received }
MailToSend, { replies· to URGENT priority messages }
info { message to send in reply }

: text;
sender, { sender of received message }
DateSent, { date of received message }

352 PROGRAMMING USING MACINTOSH PASCAL

PathToMe, { path from sender to me }
priority { of received message }

: str;

procedure append (var extra, f : text);
{ Appends extra to f; assumes f is being written and extra has }
{ already been associated with an external file if necessary. }
given earlier in Section 14.2.8

function field (header : str;
line : str) : str;

{ If line = concat(header, s), returns s, else empty string. }
{ Global canst: MaxlineLength. }
begin { field }

if copy(line, 1, length(header)) = header then
field := copy(line, length(header) + 1, MaxlineLength)

else
field:="

end; { field }

procedure FindField (header : str;
var value : str);

{ Repeatedly reads lines from file mailbox until one starting }
{ with header is found, then sets value to rest of line; }
{assumes such a line will be found. Global var: mailbox.}
{ Global subprogram: field. }
var

line : str; { line of received message }
begin { FindField }

value:= ";
repeat

Readln(mailbox, line);
value := field(header, line)

until value <> "
end; { FindField }

function ReversePath (path : str) : str;
{ Returns reverse of path: If path = 'node1 !node2! ... !noden', }
{ then result = 'noden! ... !node2!node1 '. }
var

rev : str; { result = concat(reverse of path, rev) }
i : 0 .. 255; { = pos('!', path); N.B. path is changed }

begin { ReversePath }
i := pos('!', path);
rev:=";
while i > o do

TEXT PROCESSING 353

begin
rev:= concat('!', copy(path, 1, i-1), rev);
delete(path, 1, i);
i := pos('!', path)

end;
ReversePath := concat(path, rev)

end; { ReversePath }

procedure SkipRestOfMessage;
{ Reads remaining lines of current message; }
{ assumes line beginning 'Lines(' not yet read. }
{ Global var: mailbox. }
{ Global subprogram: field. }
var

line : str; { rest of or complete line of received message }
Nrlines, { number of lines remaining in received message }
i: count;

begin { SkipRestOfMessage }
FindField('Lines(', line);
ReadString(line, Nrlines);
for i := 1 to Nrlines do

Readln(mailbox, line)
end; { SkipRestOfMessage}

procedure Sendlnfo (addressee: str;
path : string; { path to addressee }
date : str); {date of message from addressee }

{ Sends reply consisting of header lines giving the addressee, }
{ path, and a reference to date, followed by contents }
{of global text file info; records addressee on Output. }
{Global vars: MailToSend, info.}
{Global subprogram: append. }
begin { Sendlnfo }

Writeln(MailToSend, 'To: ',addressee);
Writeln(MailToSend, 'Path: ', path);
Writeln(MailToSend, 'Re: your mail of', date);
append(info, MailToSend);
Writeln('Notice sent to ', addressee)

end; { Sendlnfo }

begin { MailMinder }
Reset(mailbox, MailboxFile);
Rewrite(MailToSend, MailToSendFile);
Reset(info, lnfoFile);
while not eof(mailbox) do

begin { process next received message }
FindField('From: ', sender);

354 PROGRAMMING USING MACINTOSH PASCAL

FindField('Date: ', DateSent);
FindField('Path: ', PathToMe);
FindField('Priority: ', priority);
If priority = 'URGENT' then

Sendlnfo(sender, ReversePath(PathToMe), DateSent);
SkipRestOfMessage

end
end. { MailMinder }

14.5 Macaveats
Macintosh Pascal allows only Input and Output as program parameters;
its method of associating text file variables with external files is non­
Standard (though common).

Although string values of different lengths may be compared,
this is an extension rather than a violation, because the comparisons
permitted by the Standard are properly carried out.

EXERCISES
14.1 Suppose the rest of the input stream contains:

t DtheAlastAline. D

(a) What is the value of Input"?

(b) What is the value of Input" after execution of get(lnput)?

(c) What is the value of Input" after the further execution of
Readln?

14.2 What is the value of Output" after execution of:

(a) Output" := '#' (b) Write('h')

14.3 Write a program that prompts the user to select an external text file,
and prints the number of lines in the file selected. It should use Old­
FileName to select the file, and read the file using get rather than
Read or Readln.

14.4 Show what is printed by:

Writeln('I came', n: 1, 'time', choose('.', 's!', n))

(a) when n = 1 (b) when n = 3 (c) when n = 0

TEXT PROCESSING 355

14.5 With line and i as defined in the text, describe the effect of executing:

for i := 1 to 3 do
Readln(line[i])

14.6 Procedure append can be implemented by using a local variable of a
Mac-string-type to read and write a line at a time. Give such an
implementation.

14. 7 What schema did you use to solve the previous question?

14.8 A string s1 is a cyclic permutation of another string s2 iff s2 is not empty
and there are strings x and y such that s1 = concat(x, y) and s2 = con­
cat(y, x). For example, the cyclic permutations of 'abc' are 'abc',
'bca', and 'cab'.

(a) Implement the following procedure:

type
str100 = string[100];

procedure PrintCycle (s: str100);
{ Prints each of the length(s) cyclic permutations of s, }
{ one per line. }

(b) Implement the following function:

function CyclicPermutation (s1, s2 : str100) : Boolean;
{ Returns true iff s1 is a cyclic permutation of s2. }

14.9 Implement the following action:

Assuming name has the form 'firstname lastname',
print 'lastname, firstname'

14.10 Implement the following function:

function ShortForm (name : string) : string;
{ Assumes that name consists of 1 or more first names }
{ followed by a surname, with successive names separated }
{ by one space. Returns a name consisting of the initial }

356 PROGRAMMING USING MACINTOSH PASCAL

{ letters of the first names, in order, each followed by }
{ a period, then a space and the surname; e.g. if name = }
{ 'Martin Luther King', then 'M.L. King' should be returned. }

14.11 Implement the following function:

function anagram (s1, s2 : string) : Boolean;
{ Returns true iff s1 and s2 are anagrams, i.e. both contain }
{ the same characters with the same frequencies, as with }
{ 'slow' and 'owls', but not 'oops' and 'pops'. }

Hint: First check the lengths; if they are equal, attempt to take each
character in s1, locate it in s2, and remove it from s2.

14.12 Implement the following procedure:

procedure substitute (sub : string;
vars : string;
i : integer);

{ Replaces the substring of s of length length(sub) starting }
{ at position i with sub; as much of the substring as exists is }
{ replaced with an initial substring of sub of the same length, }
{ so length(s) is unchanged. }

14.13 Implement the following procedure:

procedure compress (vars : string);
{ Assumes s is a string of words separated by 1 or }
{ more blanks; removes blanks so that successive words }
{are separated by one space. }

Base the solution on the following invariant:

t = 'part1 Apart2A ... Apartk" ',
s = 'partk+ 1A ... Apartk+2/\ ... A ... A ... /\ partn', and
i = pos('" "', s)

for some k ;;:::: 0, where a part, is a string of words separated by single
spaces, " denotes a space, and. initially:

The idea is to process a part at a time, rather than a word at a time.

TEXT PROCESSING 357

14.14 Implement the following procedure:

procedure DrawStringR (s: string);
{ Draws s with the right of its base line at the current }
{ pen position; leaves the pen position unchanged. }

14.15 Use your answer to the previous question, and procedure DrawStringC
from the text, to place all textual information correctly in the diagram
drawn by program JobScheduler3 in Chapter 11.

14.16 What changes would be needed in program MailMinder if a header line
could have no characters following its first colon (:)?

14.17 Suppose, in the context of Case-study 8, that a second form of message
can occur that accommodates long paths. It differs from the form given
in Figure 14.3 in that the line beginning Path: is replaced by:

Path(nP): first part of path
nP - 1 lines containing the rest of the path

Suppose further that no path requires more than three lines (so it may
be represented by a single variable of type string), and that the system
mailer program will accept a long path in a return message (whose
form remains that given in Figure 14.4).

Modify program MailMinder so that it can handle both types of
message.

358 PROGRAMMING USING MACINTOSH PASCAL

15 _____ _
RECORDS
Life is a great bundle of little things.
--:- Oliver Wendell Holmes Sen., The Professor at the Breakfast Table

15.1 Introduction 360
15.2 Syntax 363
15.3 Some eredefmed record-types 364
15.4 The with-statement 366
15.5 lm~lementing variable-length strings 367
15.6 Abstract data types 370
15.7 Variant records 371

15.7.1 Syntax 372
15.7.2 Using variant-records 373
15.7.3 Undiscriminated variants 375
15.7.4 Restrictions concerning variant-records 377

15.8 Case-studies involving records 377
15.9 Macaveats 379
15.10 Further reading 379

Exercises 380

15.1 Introduction
Often an object to be manipulated by a program has several attributes,
and is therefore represented by several variables of appropriate types.
For example, program Arithmetic for Case-study 5 in Chapter 10 deals
mainly with arithmetic tests, which consist of a left and right operand
and an operation. So it defines the appropriate types:

con st
lower = O; { lower limit to values of operands }
upper = 1 O; { upper limit to values of operands }

type
operand = lower .. upper;
operation= (plus, minus, times);

The program-block uses a single test at a time, which it represents with
three variables:

var
a, b : operand; { operands of a test }
op : operation; { operation of a test }

Similarly, the subprograms that manipulate tests declare suitable formal
parameters. Here is one example:

procedure NewTest (var n1 : operand;
var op : operation;
var n2 : operand);

{Gives a new random value to each parameter.}

There is something unsatisfactory here. There is nothing other
than context that documents the important fact that the two operands
and the operation are aspects of a single object. That fact is unclear
particularly in the program-block, where the three variables concerned
appear together with several others.

360 PROGRAMMING USING MACINTOSH PASCAL

Fortunately, Pascal provides a means of gathering a collection of
values of possibly different types into a single, structured value called a
record. In the example at hand, we might define a type to represent
tests as follows:

type
test = record

n1, n2 : operand;
op : operation

end;

test is called a record type. A value of type test is a record consisting
of three named components, or fields, which are values of the declared
types. The field-names n1, n2, and op distinguish the components.

The program can now represent a test with a single variable:

var
t : test; { the next test to be given }

Similarly, procedure NewTest now needs only a single formal para­
meter:

procedure NewTest (var t : test);
{ Sets each component of t to a random value. }

The components of a variable of type test are themselves vari­
ables. They are named using dot notation. For example, the three
components of variable t are:

t.n1, a variable of type operand,

t.n2, a variable of type operand,

t.op, a variable of type operation.

The entire record-variable may be pictured as shown in Figure IS .1,
which shows a typical value after execution of:

NewTest(t)

We see that:

t. n 1 contains 5,

t.n2 contains 7,

t.op contains times.

There are two ways to give a value to a record-variable. One is

RECORDS 361

Figure 15.1
The record-variable t of
type test.

by operating on the individual components, as exemplified by the body
of procedure NewTest:

var
i : 0 .. 0rdOfLastOp;

begin { NewTest }
t.n1 := ran(lower, upper);
t.n2 := ran(lower, upper);

{ Set t.op to a random operation }
t.op := plus;
for i := 1 to ran(O, OrdOfLastOp) do

t.op := succ(t.op)
end; { NewTest }

Components of a record variable are just like other variables of their
respective types; they may be given values by assignment, as above, or
by execution of an input-statement. Of course, there is no compunction
to give new values to all components - a record may be selectively
updated by giving a single component a new value; the values of the
other components are unchanged.

The other way is to give a value to the entire record-variable, by
record-assignment, or, as we shall see in the next chapter, by reading
a value from a file of records. If t1 and t2 are variables of type test,
then the assignment:

t1 := t2

is equivalent to:

begin
t1 .n1 := t2.n1 ;
t1 .n2 := t2.n2;
t1 .op := t2.op

end

Clearly the first formulation is preferable. It is higher-level, more

362 PROGRAMMING USING MACINTOSH PASCAL

concise, and likely to be implemented more efficiently. Naturally, all
components of t2 must be defined.

15.2 Syntax
A record-type is a new unpacked-structured-type. The record-types
that we have met have only a fixed-part. There is provision for another
part, called a variant-part, which we will meet later.

unpacked-structured-type: array-type I file-type I record-type
record-type: record

field-list
end

field-list: I fixed-part _i_ variant-part ;
fixed-part ;
variant-part ;

fixed-part: j record-section ;

record-section
record-section: identifier-list : type

Note that the field-list may be followed by an optional semicolon, and
may even be empty (a possibility required for variant-parts). The
field-identifiers appearing in a particular record-type must be distinct.
Technically, the scopes of other identifiers do not include the field-list,
so the field-identifiers need not differ from other identifiers. However,
it is usually clearer if new names are chosen.

Record-components are a new kind of component-variable. They
have a very simple syntax:

component-variable: indexed-variable I file-buffer I jield-designa,tor
field-designator: record-variable . field-identifier
record-variable: variable
field-identifier: identifier

Some other syntactic points should be noted:

• Record-assignment is permitted only when both record-types are
the same.

• A record-type is a structured-type, and therefore cannot be the
result-type of a function.

• A component of a packed record may not be used as an actual
variable parameter.

RECORDS 363

15.3 Some predefined record-types
QuickDraw defines several record-types. The simplest is the type for
points on the coordinate plane:

type
Point = record

v, h : integer
end

A point is a record of two integer components, representing a vertical
and a horizontal coordinate. Their field-names are v and h respectively.

In this example all components of the record have the same
type.

Moral There are occasions where a record-type should be used
even though an array-type is applicable.

For instance, it can happen that the attributes of an object accidentally
have the same type, even though conceptually they are of different
kinds. In such cases, it is extremely unlikely that the ability to
compute the index of a subscripted-variable will be exploited. A record
is then the better choice because of the increased readability afforded
by field names.

The pen-position is a value of type Point. It can be ascertained
by calling the following predefined procedure:

procedure GetPen (var pt: Point);
{ Sets pt to the current pen-position. }

For an example of the use of this procedure, see program TextStyles
in Chapter 18.

A position is not the only attribute of the pen. It also has a size,
a mode, and a pattern. So the following predef~ed type is used to de­
scribe the state of the pen:

type
PenState = record

pnloc, pnSize : Point;
pnMocte : integer;
pnPat : Pattern

end

It is somewhat of a pun to use the type Point for the size of the pen -

364 PROGRAMMING USING MACINTOSH PASCAL

perhaps it is a ball-point pen. But the size does consist of a pair of in­
tegers, one a vertical dimension and the other a horizontal one. The
significance of the pnMode field is described in the Technical
Appendix.

pen:
There are predefined procedures to get and set the state of the

procedure GetPenState (var pnState : PenState);
{ Sets pnState to the state of the pen. }

procedure SetPenState (pnState : PenState);
{ Sets the state of the pen to pnState. }

These can be used to write truly independent graphics procedures, by
having them save and restore the state of the pen. For example, a
procedure that uses a square pen having a certain size, but otherwise
with the current settings, could have a body like the following:

con st
SideOfPen = ... ; { length of each side of pen }

var
OldPenState : PenState;

begin
GetPenState(OldPenState);
PenSize(SideOfPen, SideOfPen);

{ Restore previous state of pen }
PenSize(OldPenState.pnSize.h, OldPenState.pnSize.v)

end

The PenSize procedure is used to restore the previous state because it
documents the fact that only the size was changed. Also, it needs to do
less work than procedure SetPenState.

Arguments like those in the second call of PenSize can occur
when record-types contain other record-types.

OldPenState is a variable of type PenState;

OldPenState.pnSize is a variable of type Point;

OldPenState.pnSize.h is a variable of ty_pe integer.

Component-variables can get quite complex, especially when array- and
record-types are used together. They are always read from left to right.
See Exercise 15.6 for an example.

RECORDS 365

15.4 The with-statement
A localized part of a program often has several field-designators with
the same record-variable. The body of procedure NewTest, as given
earlier in this chapter, is a good example. Pascal provides a special
statement for such situations, called the with-statement. It enables the
record-variable to be specified at the outset, after which its components
need be named only by their field-names. For example, the statement­
part of NewTest may be written:

begin { NewTest }
with t do

begin
n1 := ran(lower, upper);
n2 := ran(lower, upper);

{ Set top to a random operation }
op:= plus;
for i := 1 to ran(O, OrdOflastOp) do

op := succ(op)
end {with t}

end; { NewTest }

The syntax of this new structured-statement is as follows:

structured-statement: compound-statement I repetitive-sto.tement
wnditional-statement I with-statement

with-statement: with record-variabl.e-list do
statement

record-variable-list: record-variable ... , record-variabl.e

With a single record-variable in the list, as in the example
above, a new scope is created in which the field-names of the variable's
record-type stand for the corresponding fields of the variable. There is
no confusion with variables, constants, etc. with the same names; in
the body of the with-statement, the new meanings override the old.

The full form of the with-statement permits more than one
record-variable to be specified. A with-statement of the form:

With v1 , v2 , .. ., Vn dO
s

is defined to be equivalent to:

with v1 do
with v2 do

with vn do
s

366 PROGRAMMING USING MACINTOSH PASCAL

It follows that if two or more of the record-variables v. have a field
I

with the same name, then the field is taken to belong to the rightmost
of these record-variables in the list. Such fields of the other record­
variables can still be accessed by giving their complete field­
designators, but bear in mind the following principle:

Principle Avoid multiple record-variables in a field-list if they are
the least bit confusing.

As another example of a with-statement, the last statement in the
exemplary graphics procedure given previously can be written:

with OldPenState.pnSize do
PenSize(h, v)

Note that it could have been written:

with OldPenState, pnSize do
PenSize(h, v)

because this is equivalent to:

with OldPenState do
with pnSize do

PenSize(h, v)

which in turn is equivalent to:

with OldPenState do
PenSize(pnSize.h, pnSize.v)

There is no point in doing this in the example at hand, but occasion­
ally the technique can be usefully applied to abbreviate all the lowest­
level components of a nested record variable. Connoisseurs of the cur­
ious will note that it is one of the few occasions where a significant
character may be mistyped with impunity!

15.5 Implementing variable-length strings
Truly natural string-processing demands variable-length strings and at
least the fundamental operations of creation, comparison, determination
of length, concatenation, extraction of substrings, assignment, and in-

RECORDS 367

put and output. Other operations can be expressed if needed in terms
of these fundamental ones. For example, deleting part of a string
amounts to concatenating the two remaining substrings. All of these
operations are provided in Macintosh Pascal by Mac-string-types, as
shown in Chapter 14.

However, these types are an extension to Standard Pascal, and
are not available in many, perhaps most, implementations. A pro­
grammer who wishes to do Macintosh-style string processing in
Standard Pascal should take the view that the objects to be
manipulated, viz. variable-length strings, need to be implemented with
structured types, and that a sufficient set of operations on them needs
to be implemented with subprograms. Record-types are the natural
implementation in this and the majority of like situations.

A type of variable-length strings of a specified maximum length
can be represented as follows:

con st
MaxStringlength = ... ;

type
Stringlength = O .. MaxStringlength;
Stringlndex = 1 .. MaxStringlength;
string = record

ch : packed array[Stringlndex] of char;
length : Stringlength

end;
{ represents the string ch[1], ch[2], ... , ch[length] }

The length of a string may be computed with a function:

function length (vars : string) : Stringlength;
{ Returns the length of s. }
begin { length }

length := s.length
end; { length }

It is safe to use a var-parameter here.
And here is a procedure that implements concatenation:

procedure concat (s1, s2 : string;
var result : string);

{ Sets result to s1 concatenated with s2; }
{assumes length(s1) + length(s2) <= MaxStringlength. }

var
i : Stringlndex;

begin { concat }
if s1 .length + s2.length > MaxStringlength then

368 PROGRAMMING USING MACINTOSH PASCAL

Writeln('ERROR in concat: result too long')
else

with result do
begin .

for i := 1 to s1 .length do
ch[i] := s1 .ch[i];

for i : = 1 to s2.length do
ch[s1 .length + i] := s2.ch[i];

length := s1 .length + s2.length
end { with result }

end; { concat }

Here the input parameters must be value-parameters to permit calls
such as concat(t, s, s), which is used in the example below.

The following example shows how the procedure ReplaceAll
from Chapter 14 would look when adapted to use this new type of
variable-length strings. It assumes that equivalents of Macintosh
Pascal's function pos and procedures insert and delete have been
implemented; also a procedure that mimics the function copy, and a
procedure that creates an empty string. Writing these subprograms is
left to Exercise 15.8; see Chapter 14 for their specifications.

procedure ReplaceAll (old, new: string;
vars : string);

{ Replaces all occurrences of old in s by new; }
{ assumes the result is not too long. }

var
t : string; { final value of s = t concatenated with

s-with-new-for-each-old }
i : StringLength; { = pos(old, s) }
temp : string;

begin { ReplaceAll }
MakeEmptyString(t);
i := pos(old, s);
while i <> O do

begin { suppose s = ... old--- }
{Setttot ... new}

copy(s, 1, i - 1, temp);
insert(temp, t, length(t) + 1);
insert(new, t, length(t) + 1);

delete(s, 1, i + length(old)-1); { s ·:= --- }
i := pos(old, s)

end;
concat(t, s, s)

end; { ReplaceAll}

RECORDS 369

This version is certainly more awkward than the original, mainly
because Pascal does not permit functions to have structured result­
types, but the fit is not too bad.

Besides the inability to have functions of the new type string,
the other major source of awkwardness is the inability to have con­
stants of this type.

15.6 Abstract data types
The ideas behind our implementation of variable-length strings in
Standard Pascal are very important. Increasingly, as you tackle more
complex programming problems, it will happen that the conceptual
objects of a high-level solution cannot be represented with simple
Pascal types. By far the best approach in such situations is to represent
the values of an abstract type of object with a structured type, and to
represent the abstract operations on these values with subprograms.
The benefit is that solutions to programming problems can then be for­
mulated in a language that reflects the conceptual language of the
high-level solution.

A new type implemented in this fashion, such as the type string
of variable-length strings, is called an abstract data type.

Principle The set of operations provided for an abstract data type
should be sufficiently rich that the new type can be used without
ever knowing how it is implemented.

For example, consider procedure ReplaceAll above. It is formulated
entirely in terms of abstract types (Stringlength, string) and abstract
operations (MakeEmptyString, pos, copy, length, insert, delete, con­
cat). Even if the implementation of type string were radically changed,
this procedure would need no changes.

Mac-string-types can be regarded as predefined abstract data
types. They fail in only one way in hiding the details of their
implementation from the user: in allowing individual characters in a
string to be accessed as if they were components of an array. Using s[i]
as an abbreviation for copy(s, i , 1) when 1 ~ i ~ length(s) does no
great violence to the principle of abstraction, but permitting a character
to be assigned to s[i] under the same conditions is way out of line. The
proper approach would have been to provide procedure substitute
from Exercise 14.12.

Abstract data types are easiest to employ when there is a natural,
well-defined concept of the abstract objects that a solution should be
expressed in. Not surprisingly, many useful abstract data types are
borrowed from mathematics; examples are sets with arbitrary base-

370 PROGRAMMING USING MACINTOSH PASCAL

types, relations (which are fundamental to data-base software), and
sequences.

Records play an indispensable role in implementing abstract data
types. Further examples occur in Exercises 15.10 and 15.11, and in
Chapter 20. The topic is a large one, and the reader is referred to the
further reading at the end of this chapter and also in Chapter 20. In
Chapter 20 it is noted that Macintosh Pascal permits the order of
definitions and declarations to be arranged to document better an
abstract data type.

15.7 Variant records
Suppose a program has to work with a simple English vocabulary. The
following information is to be kept about each word:

• spelling;
• a concise definition;
• syntactic category: noun, verb, adverb, or adjective;
• for a noun, its plural form;
• for a verb, its type (transitive or intransitive or both) and past

participle.

A record is the natural choice in Pascal for such a description.
There is little trouble in choosing an appropriate type for each piece of
information, but it would be wasteful and unclear to include a field for
every possibility. This is where variant-fields come to the fore, as
Pascal provides for the latter part of a record to contain a collection of
fields that depends on the value of a field in the fixed-part. For
example, a suitable type in Macintosh Pascal for words would be:

type
category = (noun, verb, adverb, adjective);
VerbType = (transitive, intransitive);
VerbTypes = set of VerbType;
word = record

spelling : strlng[20];
definition : string;
case kind : category of

noun: (
plural : string(20]
);

verb: (
VerbKinds : VerbTypes;

:::~
l!:I

15.1

RECORDS 371

PastPart : string(20]
);

adverb, adjective : ()
end

(The meaning of VerbTypes will become clear after reading Chapter
17 .) In Standard Pascal, fixed-length strings with either blank padding
or an accompanying length indicator (in a record!) could be used in
place of the Mac-strings.

The fields named spelling, definition, and kind belong to every
value of type word. However, field kind is special; it is called the tag­
field, and its value determines the remaining fields of the record. If its
value is noun, there is one more field, named plural; if verb, two more
fields named VerbTypes and VerbKinds; otherwise there are no more
fields. Figure 15.2 gives diagrammatic examples of four variables of
type word:

var
aNoun, aVerb, anAdverb, anAdjective : word;

The boxes for the entire records are the same size, to reflect the
fact that the usual implementation reserves as much memory as needed
for the largest possible variant-part. The definitions, by the way, are
from Ambrose Bierce's The Devil's Dictionary.

Another example of a record-type with a variant-part is type
Formatltem in program ldiotSheet for Case-study 9 in Section 16.4.

15.7.1 SYNTAX

Type word illustrates the general form of the variant-part. The syntax
rules are:

variant-part: case tag-field type-identifier of

I ~~riant ;

variant
tag-field: identifier :
variant: case-label-list : (

field-list

It can be seen that Macintosh Pascal is lavish with space when display­
ing record-types.

The syntax of a variant-part tends to give trouble because it is
not as similar to that for a case-statement as one might expect. Traps
for young players are:

372 PROGRAMMING USING MACINTOSH PASCAL

aNoun a Verb

spelling 'kleptomaniac' spelling 'overeat'

definition 'A rich thief.' definition 'To dine.'

kind noun kind verb

plural 'kleptomaniacs' VerbKinds [intransitive]

Past Part 'overate'

anAdverb anAdjective

spelling 'twice' spelling 'resident'

definition 'Once too often.' definition 'Unable to leave.'

kind adverb kind adjective

• There is no matching end for the reserved-word case;
• Every value of the tag-field's type, which must be an ordinal

type, must appear exactly once as a case-label;
• An empty variant is explicitly denoted by ().

Note also that the field-list of a variant may itself contain a
variant-part, making nested variants possible.

15.7.2 USING VARIANT-RECORDS

The fields in a variant-part may be accessed just like the fields in a
fixed-part, provided they exist by virtue of the tag-field having the
appropriate value. For example, since aNoun.category contains noun,
the field aNoun.plural may be used in any way permitted for a variable
of type string[20]. The output-statement:

Figure 15.2
Four variables of type
word.

RECORDS 373

Writeln('The plural of", aNoun.spelling, '"is", aNoun.plural, '".')

may be executed, and prints:

The plural of •kleptomaniac' is •kleptomaniacs' .

The tag-field must be initialized before any of its dependent
fields. The case-statement is suited perfectly to initialization and the
great majority of operations involving entire variant-parts. The follow­
ing example should suggest the idea:

procedure ReadWord (var w: word);
{ Reads the data for a word and sets the fields of w accordingly. }
{ Each word is represented in· one of the following forms, where }
{$denotes an end-of-line. The input is assumed to be error-free. }
{ a noun:spelling$definition$n plural$, }
{ a transitive verb:spelling$definition$vt past-participle$, }
{ an intransitive verb:spelling$definition$vi past-participle$, }
{ a trans. & intrans. verb:spelling$definition$vti past-participle$, }
{ an adverb:spelling$definition$adv$, }
{an adjective:spelling$definition$adj$. }

var
ch : char; { an input character }

begin { ReadWord }
with w do

begin
Readln(spelling);
Readln(definition);
Read(ch);
case ch of

'n':
begin { noun }

kind:= noun;
get(input); {skips space}
Readln(plural)

end; {noun}
'v':

begin { verb }
kind := verb;
Read(ch);
case ch of

'i' : VerbKinds := [intransitive];
't' :

begin { transitive }
VerbKinds := [transitive];
H inpu(= 'i' then

374 PROGRAMMING USING MACINTOSH PASCAL

begin { also intransitive }
VerbKinds := VerbKinds + [intransitive];
get(input) { skips 'i' }

end { also intransitive }
end { transitive }

end; { case ch }
get(input); { skips space }
Readln(PastPart)

end; { verb }
'a':

begin { adverb or adjective }
get(input); { skips 'd' }
Read(ch);
case ch of

'v' : kind := verb;
'j' : kind := adjective

end
end { adverb or adjective }

end { case ch }
end {with w}

end; { ReadWord}

In the above example the determination of the value of the tag­
field itself used a case-statement, which also processed the dependent
variants. In many cases the tag-field is determined separately (like the
fields spelling and definition), after which a case-statement takes care
of the rest of the fields.

It is perfectly possible, indeed usual, for a record-variable to
have more than one variant in its lifetime. The variant changes when­
ever the tag-field is assigned a different value, after which the previous
variant fields cease to exist, and the new ones come into existence (with
undefined values).

15.7.3 UNDISCRIMINATED VARIANTS

The syntax rules for a variant-part permit the tag-field, but not the
associated type-identifier, to be omitted. The intention is that either
context or the combined values of the fields in the fixed-part or both
are sufficient to determine which variant is in effect, and therefore
which other fields may be used. These variants are called
undiscriminated.

This is very tricky business, and best avoided. The official rules
of Standard Pascal are that a change of variant occurs when a field of a
different variant is accessed, at which time the new variant fields come
into existence with undefined values, and the previous ones disappear.
However, it is well known that very few implementations take the con­
siderable trouble necessary to enforce this rule.

RECORDS 375

Consider, for example, the predefined QuickDraw type for rect­
angles:

type
Rect = record

case integer of
0 : (

top, left, bottom, right : integer
);

1 : (

end

topleft, botRight : Point
)

This violates the Standard in that not every value of type integer
appears as a case-label. It can easily be repaired by defining a type
0 .. 1 . More serious is the stated intention in the Technical Appendix of
being conveniently able to view a variable of type Rect in either of two
ways, for example executing:

var
rec: Rect;
t, I, b, r : integer;
p: Point;

{ Initialize rec }
with rec do

begin
top:= t;
left:= I;
bottom:= b;
right:= r

end;

{ Set bottom-right corner of rec to p }
rec.botRight := p;

FrameRect(rec)

All this is very well, at least up until the last statement. It is
syntactically legal, by the way - all the procedures involving rect­
angles really have a single parameter of type Rect rather than the four
integer parameters we have used thus far; that form is provided
impurely as a convenience. The trouble is that after the penultimate
statement the second variant is in effect, but its field topleft is offici­
ally undefined. So the call of FrameRect officially has an undefined
parameter.

376 PROGRAMMING USING MACINTOSH PASCAL

The above solution works perfectly well in Macintosh Pascal,
and one suspects that undiscriminated variants were provided with just
this sort of thing in mind, even though officially it is illegal, because it
relies on implementation knowledge. The semantic pitfalls are well­
illustrated by the following predefined procedure:

procedure SetRect (var r : Rect;
left, top, right, bottom : integer);

{ Sets r to the rectangle with the given coordinates. }

Since the implementation is not given, it is impossible to know which
of the two variants it creates!

15.7.4 RESTRICTIONS CONCERNING VARIANT-RECORDS

There are two further rules concerning the use of variant records,
whether they have tag-fields or not.

(1) If a variant field is being used as an actual variable parameter,
or as the record-variable of a with-statement, its record may not
undergo a change of variant.

(2) A tag-field may not be used as an actual variable parameter.

These and the other rules concerning variants are very difficult
or inefficient to police, so most implementations do not bother. Thus
when mistakes are made, the results can be yery baffling.

Moral One cannot be too careful when using variant records.

15.8 Case-studies involving-=r~e=-co __ r;;;.;;;d=s..._ __ _
Unlike arrays, records do not introduce the need for new problem­
solving techniques; at least, not until they are used in conjunction with
pointers in Chapter 20. They are a very valuable descriptive technique,
however, and it is well worth exploiting them to recast some of the
case-studies.

Program Arithmetic for Case-study 5 in Chapter 10 can be
improved by using the record-type test, as discussed earlier in this
chapter. The new version of procedure NewTest has already been
given; Exercises 15.1 and 15.2 ask you similarly to recast the rest of
the program.

Program Scheduling3 for Case-study 6 in Chapter 11 used an
algorithm that obviated the need for records. Specifically, the process­
ing time and the job number for each job were stored in separate

RECORDS 377

arrays, because only the job numbers were sorted. An alternative solu­
tion is to store all the job information in a single array of records:

type
JobNumber = 1 .. MaxNrJobs;
JobCount = 0 .. MaxNrJobs;
job= record

JobTime : time;
JobNr : JobNumber

end;
Joblnformation = array[JobNumber] of job;

var
Joblnfo : Joblnformation; { Joblnfo[i] describes the i'th job in the

current order }
NrJobs : JobCount; { number of jobs to be processed }

{ (1 <= i <= NrJobs, above) }

Jobs are stored in array Joblnfo as they are read, with the JobNr field
set to the position of the job in the input data. Then the array is sorted
so that the JobTime fields are in non-decreasing order. This is said to
be the key field for the sort. The sort procedure will use a procedure
swap that exchanges values of type job. Exercise 1 S .13 invites you to
modify the program along these lines. The new solution will be more
natural.

If JobScheduler3 were written using an algorithm that sorted
all the information about a job, but without using records, the
phenomenon of parallel arrays would be observed. This is where two
or more arrays with the same index-type are used, such that elements
with the same indexes represent different aspects of a single object.

Principle Use a single array of records in preference to parallel
arrays.

Program RandomWalk for Case-study 7 in Chapter 13 can bene­
fit in a number of relatively minor ways by using records. A screen
location is better represented by a value of type Point than by two
separate integer variables. Similarly, the variables row and col which
together represent a position in the grid are better represented with a
record. The moving particle can then be represented with a record hav­
ing two fields: a position in the grid, and a direction. Finally, diff1 and
diff2 are parallel arrays, and come under the jurisdiction of the above
principle. Exercise 15.14 invites you to carry out these improvements.

Program MailMinder for Case-study 8 in Chapter 14 would not
benefit significantly from the use of records. Most file-processing
problems that are not concerned exclusively with text files deal with
files of records. Much data-processing activity falls into this category.

378 PROGRAMMING USING MACINTOSH PASCAL

Program ldiotSheet for Case-study 9 in the next chapter processes a
file of records.

Program Nim for Case-study 11 in Chapter 17 is an exercise in
using sets. Although it appears after this chapter, Chapter 17 was
written to be independent of it. Accordingly, program Nim does not
use records. Variables size and BinarySize are parallel arrays, and
therefore can be replaced by an array of records. But the program is
best formulated by using an abstract data type representing a collection
of piles of matches. The operations that are needed are initializing the
collection of piles, determining the number of piles, determining the
number of empty piles, determining the size of a given pile, removing
a given number of matches from a given pile, and determining the
parity of the collection of piles. The operations that create or change
the collection should be automatically reflected in the display.

Program ShowTree for Case-study 12 in Chapter 20 is an
example of the use of pointers, which are almost always used in con­
junction with records. For the record, this program is no exception.

15. 9 Macaveats
Macintosh Pascal does not support packed records.

As mentioned in the text, the intended use of undiscriminated
variants in QuickDraw type Rect is a violation of the Standard. Type
Point is also an undiscriminated variant:

type
VHSelect = (v, h);
Point = record

case integer of { should be a type-identifier for 0 .. 1 }
0: (

v, h : integer
);

1 : (
vh : array[VHSelect] of integer
)

end

15.10 Further reading
(1) Stubbs, D. F. and Webre, N. W. (1985). Data Structures and

Abstract Data Types with Pascal. Monterey, California: Brooks/
Cole.
A second-level programming text, emphasizing abstract data
types, and using Pascal.

=··~ l!:J
15.2

RECORDS 379

EXERCISES

15.1 Rewrite subprograms PrintTest, answer, PrintAnswer and EndTest
from program Arithmetic, along the lines of procedure NewTest in the
text.

Hint: In EndTest, save and restore the operation.

15.2 Rewrite the rest of program Arithmetic to use the subprograms given in
the text and the previous question.

15.3 A digital 24-hour clock displays the current hour (00 to 23), minute,
and second.

(a) Define a type for the time on such a clock.

(b) Write a procedure that advances a given time by I second.

(c) Write a function that returns a string representing the given time
in the format 'hh:mm:ssxm', where each h, m, and s is a decimal
digit, and x is either a or p. For example, if the current hour,
minute, and second are 23, 5, and 33 respectively, the result
should be '11 :05:33pm'. If you have not read about the type
string, write a procedure that prints the time instead.

15.4 A date consists of a day, a month, and a year. Assume enumerated
types day and month are defined.

(a) Define a type for dates.

(b) Write a procedure that changes a date to the following date.

(c) Write a function that returns a string representing the given date
in a suitable format. If you have not read about the type string,
write a procedure that prints the date instead.

15.5 Implement the following procedure:

procedure GetMousePt (var pt: Point);
{ Sets pt to the position of the mouse. }

Hint: Use procedure GetMouse.

15.6 Give type-definitions and variable-declarations that make the following
statements legal.

x := y;

x.a[y.d].b[y.c] := O

380 PROGRAMMING USING MACINTOSH PASCAL

15.7 Rework each previous exercise for which a with-statement was
appropriate but was not used.

15.8 Implement subprograms MakeEmptyString, pos, insert, delete, and
copy, as used in procedure ReplaceAll in the text.

15.9 Implement the following function, where type string is as defined in
the text.

type
relation = (LessThan, Equal, GreaterThan);

function relationship (var s1, s2 : string) : relation;
{ If s1 and s2 are identical, returns Equal; otherwise returns }
{ LessThan if s1 precedes s2 in dictionary order, or}
{ GreaterThan if vice versa. }

Note: Any comparison can be neatly formulated with this function,
using sets where necessary (see Chapter 17). For example, for s1 <=
s2 we write

relationship(s1, s2) in [Less Than, Equal]

15.10 A compkx number can be regarded as an ordered pair of real numbers
(x, y) subject to the following operations (among others):

(xi' y1) + (x2' y2) = (x1 + x2' Y1 + Y2)

(xi' Y1) x (x2' Y2) = (xl X2 - Y1 y2' X1 Y2 + Y1 Xz)

Begin the implementation of an abstract data-type for complex numbers
by doing each of the following.

(a) Define a type to represent complex numbers. Choose field-names
to reflect that x is called the real-part and y the imaginary part.

(b) Write procedures to implement the operations of addition and
multiplication.

(c) Write procedures to read and write complex numbers, using the
representation x + yi when y is non-negative, and x - yi when y
is negative. Skip leading spaces on input. For example, input of
"" 1. 0 - 1. Si should be treated as (1.0, - 1.5).

15.11 Implement an abstract data-type for fractions, i.e. rational numbers of
the form x I y, where both the numerator x and the denominator y are
integers, and y > 0.
Hint: Use the gcd function as implemented in Exercise 7.14 to divide
out gcd(x, y).

RECORDS 381

15.U Implement the following procedure:

procedure DragARect (DownAt : Point
var r : Rect);

{ Assumes mouse button was pressed at location DownAt, and }
{ is still down; repeatedly draws and erases the frame of the }
{ rectangle with top-left comer at DownAt and bottom-right }
{ comer at current mouse position, until the mouse button is }
{released. Only the last rectangle's frame remains;}
{ its coordinates are returned in r. }

Hint: Use the variant of type Rect that consists of two points.

15.13 Modify program JobScheduler3 as suggested in the text.

15.14 In the context of program RandomWalk for Case-study 7 in Chapter
13:
(a) Define a record-type that represents a position in the grid.
(b) Define a record-type that represents the grid-position and direc­

tion of the moving particle.

(c) Define a type to represent the change to a position when moving
in each direction.

(d) Modify the program to use the types given in parts (a)-(c).

382 PROGRAMMING USING MACINTOSH PASCAL

16 _____ _
FILES
And friend, somewhere in Washington, enshrined in some little folder,
is a study, in black and white, of my fingerprints.
- Ario Guthrie, Alice's Restaurant

16.1 Introduction 384
16.2 Se9uential files 384

16.2.1 Syntax 384
16.2.2 Writing a file 385
16.2.3 Reading a file 386
16.2.4 A sim,Qle exam,Qle: Merging 388
16.2.5 A voiding text files 389

16.3 Random-access files 390
16.3.1 A sim,Qle exam,Qle: Error messages 391

16.4 Case-study 9: An idiot sheet 393
16.4.1 Setting of the ,Qroblem 393
16.4.2 S,Qecifications 393
16.4.3 Writing the ,Qrogram 393
16.4.4 The com,Qlete ,Qrogram 397

16.5 Macaveats 401
Exercises 401

16.1 Introduction
Files address two needs:

(1) to access and/or create information that exists prior to and/or
after execution of a program;

(2) to store temporary information that may be too copious to fit
into main memory.

As we know from Chapter 14, files in the first category are called
external files, and those in the second internal files. Both are stored
in secondary memory.

A file is an arbitrarily long sequence of component values. Text
files have already been discussed in Chapter 14. Each of their
components is either a character or an end-of-line marker, and there
are special procedures to convert their information to and from values
of simple Pascal types.

Pascal permits files to have components of any type that is not
itself a file-type and does not contain a component of a file-type. Of
course, all components of a particular file have the same type. Process­
ing a general file is like processing a text file character by character.
All the relevant properties and subprograms were described in Chapter
14; the following section is content mainly to summarize them.

16.2 Sequential files
16.2.1 SYNTAX

The syntax of a file-type is as follows:

unpacked-structured-type: array-type I record-type I fil.e-type
file-type: file of component-type

The component-type may not involve a file-type.

384 PROGRAMMING USING MACINTOSH PASCAL

File-variables and formal parameters of file-types are declared in
the usual way, but the latter must be var-parameters. Associated with
each file-variable f is a file-buffer /", which is an implicitly declared
variable of f's component-type. Its role is described in the sequel.

16.2.2 WRITING A FILE

A file f is made available for writing by executing:

Rewrite({)

The file becomes empty, and its file-position is at end-of-file. In
Standard Pascal f is an external file if it appears in the program­
parameters of the program-heading, otherwise it is an internal file.

Macintosh Pascal uses a different system. It distinguishes the
first call of either Rewrite or Reset (the equivalent for reading) from
any later calls. It is said to open the file. An external file can be
opened only by giving a second actual parameter in the call - a
string-value giving the external name of the file. The user may be
prompted to select the external name by calling the function New­
FileName (or OldFileName if an existing file is to be rewritten). See
Chapter 14 for examples. If the optional second string-parameter is not
given when the file is opened, the file is internal.

Standard Pascal files are sequential files. Their components can
be processed only in strict left-to-right order. A file is written by re­
peatedly appending a value to the end. The basic way to do so is to
execute:

put({)

This appends the value of/" to file /, advances the file-position to the
new end-of-file, and makes f" undefined. The file-buffer may have
obtained its value in any way permissible for a component-variable of
its type: by execution of an assignment, an input-statement, or a
procedure-statement with the file-buffer as an actual var-parameter.

Figure 16.1 shows the effect of an execution of put(intfile),
where intfile is declared as follows:

type
lntegerFile = file of integer;

var
intfile : lntegerFile;

The file-position is indicated with an arrow.
It is very common to assign a value to the file-buffer and then

FILES 385

Figure 16.1
Execution of put(intfile).

intfile intfile"

before 9 8 I 0
t

put(intfile)
intfile intfile"

after I 1 I 9 I 8 I 7 I c=J

immediately call put to append it. Pascal accordingly provides an ab­
breviation. The procedure-statement:

Writeif, a1, ... , an)

where n;::::: 1, is equivalent (except possibly whenf is a text-file) to:

begin
['':=a,;
putif);

i.e. it appends the values in the listed order. Each value ai must be
assignment-compatible with the component-type off.

16.2.3 READING A FILE

A file f is made available for reading by executing:

Reset if)

The file-position moves to the start of the file, before the first
component if there is one. In Standard Pascal f is an external file if it
appears in the program-parameters of the program-heading, and other­
wise is an internal file.

As we have seen, in Macintosh Pascal fin the above statement is
an external file only if it has already been opened as one. If an external
file f is to be opened for reading, its external name must be given with
a string-value as the second actual parameter of Reset. Whenever a file
is to be read after it has been written, the simple form of the Reset
statement is used, because the file has already been opened.

386 PROGRAMMING USING MACINTOSH PASCAL

intfile intfile"

I 8 before 9 8 7

get(intfile)
t

intfile intfile"

after I 1 9 8 I 7 ~

A file is read by repeatedly advancing the file-position, making
successive components available in the file-buffer. The basic way to do
so is to execute:

get(/)

This advances the file position past the next component, and sets the
value off" to the component just after the new file-position. It is an
error if the file-position was at end-of-file before the call. The new
value of the file-buffer may be used in any way appropriate to a value
of its type.

Figure 16.2 shows the effect of an execution of get(intfile),
where intfile is as declared previously.

It is very common to assign the value of the file-buffer to a vari­
able immediately after the call of get. Pascal accordingly provides an
abbreviation. The procedure-statement:

where n ~ 1, is equivalent (except possibly when/ is a text-file) to:

begin
V1 :=r;
get(/);

vn :=r;
get(f)

end

i.e. it reads successive values into the variables in the listed order.
Each component off must be assignment-compatible with the type of
the variable it is assigned to.

The required function eof may be applied to any file f. If f is
being written, eof(f) gives true. If f is being read, eof(f) gives true if
and only if the file-position is after the last component, in which case f"

Figure 16.2
Execution of get(intfile).

FILES 387

is undefined. Note that eof(intfile) gives false both before and after
the call in Figure 16.2.

Schema Process File is typically used to process the components
of a file f in the order in which they appear. The action Process v
often involves writing v to another file, such as when file f is being
updated.

Schema Process File:
var
f : a file-type T;

{ Process the components off in order. }

var
v : the component-type of T;

Reset({); { add 2nd parameter if this is to open an external f}
while not eof(f) do

begin
Read(v);
Process v

end

16.2.4 A SIMPLE EXAMPLE: MERGING

A common operation involving files is that of merging two ordered
files, i.e. creating a single ordered file containing all the components of
each file (each value occurring as many times as in the two files
combined). Here is a Macintosh Pascal program that merges two files
of integers in non-decreasing order:

program MergelntFiles (Output);
{ Merges two files of integers in non-decreasing order; the user }
{ is prompted to select the two input files and the output file. }

type
lntegerFile = flle of integer;

var
infile1 , infile2, MergedFile : lntegerFile;

begin { MergelntFiles }
{ Select and open the three files }

Reset(infile1, OldFileName('Select first file to be merged.'));
Reset(infile2, OldFileName('Select second file to be merged.'));
Rewrite(MergedFile, NewFileName('Select merged file.'));

{ Merge until all components of one file have been taken }
while not (eof(infile1) or eof(infile2)) do

388 PROGRAMMING USING MACINTOSH PASCAL

If infile1A <= infile2A then
begin { Take from infile1 }

Write(MergedFile, infile1 A);
get(infile1)

end
else

begin {Take from infile2}
Write(MergedFile, infile2A);
get(infile2)

end;
{ Append any remaining components of infile1 }
while not eof(infile1) do

begin
Write(MergedFile, infile1 A);
get(infile1)

end;
{ Append any remaining components of infile2 }
while not eof(infile2) do

begin
Write(MergedFile, infile2A);
get(infile2)

end;
Writeln('Merge complete.')

end. { MergelntFiles }

Note that if both input files are non-empty then exactly one of the last
two while-loops will execute its body.

16.2.5 AVOIDING TEXT FILES

It is by no means unrealistic to choose a file of integers instead of a text
file to represent a potentially long sequence of integers. The former
choice enjoys three advantages.

(1) A conversion is avoided between the internal (probably binary)
form of integers and their textual representations, during both
input and output.

(2) In Macintosh Pascal an integer occupies two bytes; but a field­
width of at least six is needed to separate arbitrary integers
written to a text file, and each character consumes a byte.

(3) The purpose of the file is clearly documented; on the other
hand, there is no guarantee that a text file contains a sequence of
integer representations.

Both space and time are conserved by sticking to the following
principle:

FILES 389

Principle Use text files only for information that is to be read by
humans.

16.3 Random-access files
Pascal's notion of a file reflects the long tradition of using magnetic
tape as a secondary storage medium. The only way to find the n'th
component of a tape-file is to search from the start, skipping the first
n - I components. Similarly recording normally proceeds sequentially
from the start.

Macintosh Pascal takes advantage of the capabilities of the
Macintosh's disk-based file-system, and provides random-access files:

• The n'th component can be directly accessed.
• An arbitrary component can be changed without affecting other

components.
• Mixed reading and writing is possible.

This facility applies only to external files.
An external file is opened for random-access with the predefined

procedure open. The call:

open({, s)

opens file-variable/for random read/write access. The external name of
f is given by the string s, which must be present. If no file of that
name exists, an empty one is created. The file-position is at the start,
and the file-buffer is assigned the first component if any.

File f may now be written or read as in Standard Pascal, but
mixed reading and writing is also permitted. Whenever the file-position
is not at end-of-file, get{f) may be executed, and has its usual effect.
And put{f) is always permitted. If f is at end-of-file, the effect is as
usual. Otherwise, the value off" replaces the component just after the
file-position, the file-position advances past the changed component,
and r is set to the component just after the new file-position (it is un­
defined if the file-position is at end-of-file). As with files opened with
Reset or Rewrite, eof(f) returns true if there is no component follow­
ing the file-position, and false otherwise.

Random access is provided by the predefined procedure seek.
The call:

seek({, n)

where n ;::: 0 is a value of type longint, places the file-position off just

390 PROGRAMMING USING MACINTOSH PASCAL

after the n'th component, or after the last component if n exceeds the
number of components. File f must have been opened with open. Note
that:

• Seek({, 0) is equivalent to Reset(();
• No file may have more than Maxlongint components, so seek((,

Maxlongint) puts the file-position at end-of-file;
• To put the n'th component in the file-buffer, use seek((, n - 1).

Mixed reading and writing, and the procedure seek, apply only
to a file opened with open; but it does not matter how the file was
created.

A couple of extra, predefined subprograms are provided in
Macintosh Pascal. The function-call:

filepos(f)

returns the number of components off to the left of its file-position, as
a value of type longint; f may be any open file. The procedure-call:

close(()

returns the open external file f to its unopened state. This is done auto­
matically at the end off's lifetime, but the explicit form permits f to
be reopened as another file.

16.3.l A SIMPLE EXAMPLE: ERROR MESSAGES

Large programs that process large amounts of complex data may find it
necessary to have a substantial number of error messages. One example
is the Macintosh Pascal interpreter. The messages are best kept in
secondary memory. A good data structure is as follows. The messages
are numbered from 1 onwards, and stored in an external text file, as in
this example:

1: ANO" way! 02: "This" is"a" joke, Aright?D3: "···

To enable a particular message to be quickly found, the file-position at
the start of the n'th message is recorded as the n'th component of an
external file of integers. Note that the error numbers need not now be
part of the messages, but the extra space is worthwhile for the in­
creased human readability. The auxiliary file, called ErrorPosFile, will
be as follows for the above example:

ErrorPosFile

o I 11 1 37 I

FILES 391

Here are the relevant sections of the program:

program Major (Input, Output);

con st
MaxErrorNumber = ... ;

type
lntegerFile =file of integer;
ErrorNumber = 1 .. MaxErrorNumber;

var
ErrorFile : text; { error messages, in order }
ErrorPosFile: lntegerFile; {the i'th component is the file-}

{ position at the start of the i'th error message in ErrorFile. }

procedure PrintErrorMessage (n : ErrorNumber);
{Prints error message number n; assumes both files have been}
{ opened with open. Global vars: ErrorsFile, ErrorPosFile. }

var
StartPos : integer; { file-position at start of message }
Messagelength, i : 1 .. Maxint;

begin { PrintErrorMessage }
{ Define StartPos }

seek(ErrorPosFile, n - 1);
StartPos : = ErrorPosFile";

{ Define Messagelength }
get(ErrorPosFile);
If not eof(ErrorPosFile) then

Messagelength := ErrorPosFile" - StartPos
else

begin
seek(ErrorFile, Maxlongint);
Messagelength := filepos(ErrorFile) - StartPos

end;
{ Print message }

Write('ERROR ');
seek(ErrorFile, StartPos);
for i := 1 to Messagelength do

begin
If eoln(ErrorFile) then

Writeln
else

Write(ErrorFile ");
get(ErrorFile)

end
end; { PrintErrorMessage }

open(ErrorFile, 'MajorDisk:ErrorT ext');
open(ErrorPosFile, 'MajorDisk:ErrorPositions');

392 PROGRAMMING USING MACINTOSH PASCAL

PrintErrorMessage(99);

end. { Major }

16.4 Case-study: 9: An idiot sheet
16.4.1 SETTING OF THE PROBLEM

The televised fireside chat has become an institution in this age of
media politics. In order for the politician confidently to fix his or her
gaze at the viewer, and still avoid the risks attending spontaneous
speeches, he or she reads from what is called in the trade an idiot sheet
(a more colorful term than the alternative: autocue). The term comes
from film production where an off-camera stooge would hold up large
cardboard sheets of 'lines'. Nowadays the politician is likely to have a
Macintosh on the desk to promote a modern, technologically aware
image. Accordingly, the Macintosh can function as a high-tech idiot
sheet, by continuously scrolling the text of the talk, at a suitably slow
rate.

16.4.2 SPECIFICATIONS

A program is to be written that displays a nominated, external text file
line-by-line. The displayed text is to be continuously scrolled upwards,
with new lines being introduced at the bottom of the display.

Furthermore, a second external file is to be read that controls
the formatting of the text proper. This file should contain a sequence
of formatting changes. Each change should specify the line number and
character position just before which the change should take place, the
kind of change, and the parameters determining the change. The
associated file-positions of the changes must be in non-decreasing
order.

Two kinds of formatting changes are to be provided in the pre­
liminary version: to the size and style of the text. Auxiliary programs
are needed to prepare the files for a talk, but they need not be written
now.

16.4.3 WRITING THE PROGRAM

The most natural form for the statement-part of the program-block is a
loop that processes one line of the text file in each iteration. To permit
format changes, the text must be displayed in the Drawing window.
We soon arrive at the following first refinement:

FILES 393

con st
lnitialSizeOfText = ... ;

var
TheText : text; { text to be displayed line by line}

begin { ldiotSheet }
Reset the text and formatting ft,/,es ;
Make Drawing winduw active and occupying entire screen ;
TextSize(lnitialSizeOfT ext);
while not eof(TheText) do

Display new line of text and scroll screen up for next line
end. { ldiotSheet}

The first action is implemented by using Reset twice in con­
junction with function OldFileName to prompt the user for the names
of the files. Although there is no need to decide on the file-type for
the format changes at this early stage, we do so since the best choice is
clear. We use the following variables:

con st
Maxlinelength = ... ; { maximum number of characters in a line

of TheText}
type

LinePos = 1 .. Maxlinelength;
LineNumber = 1 .. Maxint;
ChangeType = (lnStyle, lnSize);
Formatltem = record

LineNr : LineNumber; { change takes effect at this line
before ... }

pos : LinePos; { ... printing character in this position }
case change: ChangeType of

lnStyle: (
NewStyle : Style
);

lnSize: (

end;

NewSize : 1 .. Maxint
)

FormatFile = file of Formatltem;
var

format : FormatFile; { formatting changes in order }

The second action is implemented with the help of two new,
predefined procedures:

procedure SetDrawingRect (r: Rect);
{ Makes the Drawing window occupy the rectangle r in the }
{screen's coordinate system (origin in top-left comer). }

394 PROGRAMMING USING MACINTOSH PASCAL

procedure ShowDrawing;
{ Makes Drawing window active (placing it on top of desktop). }

The implementation is trivial, and may be found below in the complete
solution.

Finally, to the body of the loop. It is apparent that lines must be
counted, so a counter must be initialized before the loop. We decide to
read each line into a Mac-string variable, and to call appropriate
procedures to display the line and scroll the screen:

con st
Spacing = ... ; { gap between base-lines of displayed lines }

type
str = string[Maxlinelength];

var
Nrlines : O .. Maxint; { number of lines read from TheText}
line : str; { line number Nrlines of TheText}

procedure Showline (line : str;
LineNr : LineNumber;
var format : FormatFile);

{Displays given line at bottom of Drawing window, reading and}
{ processing any associated format changes from format; ass- }
{ umes file position of format is after last item for an earlier line. }

procedure ScrollUp (section : Rect;
distance : integer);

{ Scrolls given section of Drawing window up given vertical }
{ distance, one unit at a time. }

Nrlines := O;
while not eof(TheText) do

begin { Display new line of text and scroll screen up for next }
Readln(TheText, line);
Nrlines := Nrlines + 1;
Showline(line, Nrlines, format);
ScrollUp(screen, Spacing)

end

Variable screen is the rectangle corresponding to the full Macintosh
screen; it was introduced for the second high-level action.

It remains to implement procedures ScrollUp and Showline.
The former is easily implemented using a couple of sophisticated
features of Macintosh Pascal. The implementation is given in the
complete solution. Here is a brief explanation for the incurably cur­
ious. The call:

ScrollRect(r, h, v, RH)

FILES 395

Figure 16.3
A line and its associated
format changes.

I pledge you-I pledge myself-to a new deal .

size
normal

scrolls the contents of rectangle r by h units to the right and v units
down. The vacated area is filled with the background pattern, which
by default is white. A description of the vacated region is returned in
the dynamic variable RH of type RgnHandle, which is created by the
function call NewRgn and eventually disposed of by calling procedure
DisposeRgn. Details may be found in the Technical Appendix.

Let us now consider procedure Showline. Figure 16.3 shows a
reasonably complex line: one subject to five format changes.

We decide to process a line by reading each associated format
change, printing the remaining text to the left of that change, and mak­
ing the change. This is done with a while-loop, and any remaining text
is printed afterwards. First we write:

con st
Baseline = ... ; { base line for displaying a new line }
Indent = ... ; { indent for each displayed line }

begin { Showline }
MoveTo(lndent, Baseline);
Process each format change, by printing the remaining text to its left,
making the change, and advancing past the change;
Display the rest of the line

end; { Showline }

A while-loop is chosen for the main action, because there may
be no format changes for a line:

{ Process each format change, by printing the remaining text to }
{ its left, making the change, and advancing past the change }

while there is another change for this line do
Process this format change

The loop should stop if file format is at end-of-file, or if the next
change (which is in the file-buffer) is for a later line. Because Pascal's
conditions may be evaluated in any order, and the file-buffer is un­
defined at end-of-file, the loop is recast by using a Boolean variable:

396 PROGRAMMING USING MACINTOSH PASCAL

var
done : Boolean; { true iff all changes for line have been done }

{ Process each format change, by printing the remaining text to }
{ its left, making the change, and advancing past the change }
done:= false;
while not (eof(format) or done) do

If format".UneNr = LineNr then
Process this format change

else
done:= true

This is an oft-used technique in file-processing in Pascal.
We end our discussion of the stepwise-refinement of program

ldiotSheet at this point, because the remaining refinements are un­
problematic. You may reconstruct them from the complete solution.

16.4.4 THE COMPLETE PROGRAM

The complete program utilizes a new feature of Macintosh Pascal,
called the uses-clause. It appears after the program heading, and
names those libraries whose definitions and declarations are to be in­
cluded in the declaration-section of the program-block. It is necessary
in this instance because the type RgnHandle, the function NewRgn,
and the procedures DisposeRgn and ScrollRect belong to the
QuickDraw2 library. The QuickDraw1 library is mentioned for
completeness; it is automatically included in every Macintosh Pascal
program.

The syntax of a uses-clause is as follows:

program: program-heading ;
uses-clause
program-bl.ock .

uses-clause: uses identifier-list ;

One other available library, called SANE, is described in Chapter 19.
Here is the complete program.

program ldiotSheet;
{Acts as idiot sheet for user, by displaying the text in file TheText}
{ according to the formatting information in file format; old lines }
{ scroll off the top as new lines appear at the bottom. }
{ External files: TheText, format. }

uses
QuickDraw1, QuickDraw2;

:j1tY
16.1

FILES 397

con st
MaxlineLength = 80; { maximum number of characters in a line

of TheText}
Spacing = 40; { gap between base-lines of displayed lines }
Baseline = 300; { base line for displaying a new line }
Indent = 1 O; { indent for each displayed line }
ScreenWidth = 512; {full width of Mac's screen}
ScreenDepth = 342; {full depth of Mac's screen }
lnitialSizeOfText = 18;

type
str = strlng[MaxlineLength];
LinePos = 1 .. MaxlineLength;
LineNumber = 1 .. Maxint;
ChangeType = (lnStyle, lnSize);
Formatltem = record

LineNr : LineNumber; { change takes effect at this line
before ... }

pos : LinePos; { ... printing character in this position }
case change: ChangeType of

lnStyle: (
NewStyie : Style
);

lnSize: (
NewSize : 1 .. Maxint
)

end;
FormatFile = file of Formatltem;

var
TheText: text; {text to be displayed line by line}
NrLines : o .. Maxint; { number of lines read from TheText}
line : str; { line number Nrlines of TheText}
format : FormatFile; { formatting changes in order }
screen : Rect; { location of Drawing window }

procedure ScrollUp (section : Rect;
distance : integer);

{ Scrolls given section of Drawing window given vertical }
{ distance, one unit at a time. }
var

i : integer; { number of unit scrolls so far }
dummy : RgnHandle; { used as dummy output parameter }

begin { ScrollUp }
dummy:= NewRgn;
for i := 1 to distance do

ScrollRect(section, 0, -1, dummy);
DisposeRgn(dummy)

end; { ScrollUp }

398 PROGRAMMING USING MACINTOSH PASCAL

procedure Showline (line : str;
lineNr : lineNumber;
var format : FormatFile);

{Displays given line at bottom of Drawing .window, reading and}
{ processing any associated format changes from format; ass- }
{ umes file position of format is after last item for an earlier line. }
{ Global consts: MaxlineLength, Baseline, Indent. }
var

done : Boolean; {true iff all changes for line have been done }
left : linePos; { position of leftmost character in line not yet

printed}

procedure ChangeFormat (Changelnfo : Formatltem);
{ Changes display format according to Changelnfo. }
begin { ChangeFormat }

with Changelnfo do
case change of

lnStyle:
TextFace(NewStyle);

lnSize:
TextSize(NewSize)

end {case}
end; { ChangeFormat}

begin { Showline }
MoveTo(lndent, Baseline);

{ Process each format change, by printing the remaining text to }
{ its left, making the change, and advancing past the change }

left := 1;
done:= false;
while not (eof(format) or done) do

if forma(.lineNr = lineNr then
begin { Process this format change }

DrawString(copy(line, left, forma(.pos - left));
left:= forma(.pos;
ChangeFormat(formatA);
get(format)

end
else

done := true;
{ Display the rest of the line }

DrawString(copy(line, left, MaxlineLength))
end; { Showline }

begin { ldiotSheet }
Reset(TheText, OldFileName('Open the text file.'));
Reset(format, OldFileName('Open the format file.'));

{ Make Drawing window active and occupying entire screen }

FILES 399

Figure 16.4 ,. s File Edit Search Run Windows
Two states of the display
during a run of ldiotSheet.

L.

Fr;ends, Rom.ans, country men, lend me your ears.

I come to b.tHy Caesar, not to pr .a;se Mm.

The evfl th.at men do Hves after them,

The good ;s oft ;nterred w;th the;r bones.

So let ;t be w;th Caesar. The rn.:rbA3~s

Hath told you Caesar was amb;t;ous;

If tt were so, ;t was a gr;evous fault;

,. s File Edit Search Run Windows

L.

So let ;t be w;th Caesar. The rn.:rbA3~s

Hath told you Caesar was .amb;tfous;

If it were so, ;t Was a gr;eVOUS fault;

And gr;evously hath Caesar .answered ;t.

Here, under leave of~ ad fliD IJ'Gllltt-­

F or~ ;s an lwMut":NJA3 man;

So are they a 11; a 11 honour ab le men--

400 PROGRAMMING USING MACINTOSH PASCAL

.,

.,

SetRect(screen, 0, 0, ScreenWidth, ScreenDepth);
SetDrawingRect(screen);
ShowDrawing;

T extSize(lnitialSizeOfT ext);
NrLines := O;
while not eof(TheText) do

begin { Display new line of text and scroll screen up for next }
Readln(TheText, line);
NrLines := NrLines + 1;
ShowLine(line, NrLines, format);
ScrollUp(screen, Spacing)

end
end. { ldiotSheet }

Program ldiotSheet maintains a continuously changing display,
but Figure 16.4 gives some idea of its effect. The unwanted 's' after
'Brutus' at the end of a line is due to an error in Macintosh Pascal
2.0's implementation of the copy function.

16.5 Macaveats
Macintosh Pascal does not permit packed file-types.

Macintosh Pascal 2.0 has a couple of annoying bugs concerning
files. The first is that Read((), where f is a file, is not detected as an
error. So be very careful not to write this inadvertently instead of
get(().

The other bug occurs because Macintosh Pascal is overly
diligent in checking accesses to file-buffers. It will complain about the
statement:

Readifi, f2 ")

where / 1 and / 2 are files of the same type, if / 2" is not defined. How­
ever, the express purpose of this statement is to define it!

EXERCISES
16.1 In Figure 16.2, how many more executions of get(intfile) can be done

before eof(intfile) gives true?

16.2 Implement the following procedure in the given context:

:;:~

l!:J
16.2
:;~

l!:J
16.3

FILES 401

const
MaxValue = .~.;
MaxGap = ... ; { much smaller than MaxValue }

type
FileOfValues = file of O .. MaxValue;
FileOfGaps =file of O .. MaxGap;

procedure CreateDiffFile (var ValuesFile : FileOfValues;
var GapsFile : FileOfGaps);

{ Sets the i'th component of GapsFile to the difference }
{ between the (i + 1)'th and i'th components of ValuesFile; }
{ assumes values in ValuesFile are non-decreasing. }

Hint: Use a slight modification of schema Process File.

Note: If the original file is always processed sequentially from the start,
the file of gaps can be used instead, provided the first component of
the original file is remembered. And the file of gaps may occupy much
less storage in many situations. For example, the maximum gap
between successive prime numbers less than 2614941711251 is only
602.

16.3 Desk-check program MergelntFiles. Use two small input files, and
keep track of their file-positions with an arrow as used in Figures 16. l
and 16.2.

16.4 An inventory of a large number of different items is represented by a
master file of records. There is one record for each item, containing a
number identifying the item, the quantity in stock, a reorder-point, and
a desired level. When the quantity in stock falls to or below the
reorder-point, an order needs to be placed to bring the quantity up to
the desired level. The records are kept in increasing order of their IDs.
As ordered items are received and outgoing orders are filled, a file of
transactions is prepared. Each transaction specifies the item concerned
and the change to its quantity. Periodically, the file of transactions is
sorted to put the item IDs in increasing order, and is used to update
the master file.

(a) Give a suitable type for the master file.

(b) Give a suitable type for the transaction file.

(c) Write a program that reads the master file and a sorted transaction
file, and prepares a new master file.

(d) Write a program that reads a master file and places the
appropriate orders to bring items in insufficient quantities up to
their desired levels.

402 PROGRAMMING USING MACINTOSH PASCAL

16.S Suppose intfile is currently in the second state shown in Figure 16.2,
and was opened with open. Show the state of intfile and its file-buffer,
as in Figure 16.2, after executing each of the statements in the follow­
ing sequence; i is an integer variable.

Read(intfile, i);
Write(intfile, i - 1) ;
seek(intfile, 1);
Read(intfile, i);
Write(intfile, i + 1)

16.6 Implement the following action, where n is an variable of type longint,
and intfile is a file of integers opened with open.

Add 1 to the n'th component of intfile

16. 7 What is the maximum total length assumed by program Major of all
error messages but the last?

16.8 Consider the conditional statement used in implementing the action

Define Messagelength

in program Major.

(a) Why can't it be replaced by:

Messagelength := ErrorPosFile" - StartPos

(b) What simple change to ErrorPosFile permits this replacement?

16.9 Write a program that creates ErrorPosFile given ErrorFile. It may
assume that only the first line of an error message may start with a
digit.

16.10 Modify your solution to the previous question to use the modified
scheme requested in Exercise 16.S(b).

16.11 Desk-check the execution of the first refmement of Showline on the
line shown in Figure 16.3. Six separate sections of the line should be
printed, the first five of which should be followed by a format change.

16.12 Write an interactive program that creates a file of format changes to be
used in conjunction with a given text file by program ldiotSheet. It
should display each new line of the text file, with each character posi­
tion clearly indicated, and then prompt for changes. The LineNr field
of the Formatltem for each change should be set automatically.

16.13 Modify program ldiotSheet to allow a vertical increment to be
specified, thereby permitting superscripts and subscripts as well as
variable spacing between lines.

FILES 403

17 _____ _
SETS
I don't want to belong to any club that will accept me as a member.
- Groucho Marx, attributed telegram

17.1 Introduction
17.2 Syntax of set types
17.3 Constructing sets

17.3.1 Set constructors

17.3.2 Set-valued OQerations

17.4 Boolean operations on sets
17.5 Subprograms involving sets
17.6 Binary numbers as sets

17.6.1 Binary reQresentations

17.7 Case-stud! 10: Nim
17.7.1 Setting of the Qroblem

17.7.2 SQecifications

17.7.3 Writing the Qrogram

17.7.4 The comQlete Qrogram

17.8 Macaveats
Exercises

406

407

408

408

409

410

412

412

412

415

415

416

417

420

426

426

17 .1 Introduction
QuickDraw has the ability to display text of a given size and from a
given font in many different styles. For instance, it can be displayed as
normal, or bold, or italic, or bold ad itaHc, etc. The different options
of a style, such as bold, italic, underlined, and so on, are constants of a
predefined enumerated type:

type
Styleltem = (bold, italic, underline, outline, shadow, condense,

extend);

A style is any selection of these constants. The style for text
which is both bold and italic may be written:

[bold, italic]

The ordering is of no consequence - the above style could just as well
have been written:

[italic, bold]

Here are four more styles:

[italic, shadow, extend]
[underline]
[bold, italic, underline, outline, shadow, condense, extend]
[]

The first has three options active, the second just one, the third all
seven, and the fourth none - you have grown accustomed to that
typeface.

There are 27 = 128 different styles, since each of the seven
options may be present or not independently. Figure 17 .1 gives a

406 PROGRAMMING USING MACINTOSH PASCAL

r s File Edit Search Run Windows ~ ., Figure 17.1
--------------------------- The 128 different styles of

[] lbl Iii /bi/ [yJ lbuJ .@/ .l!!.iJil ll@Il mllmll II@! (/lllJ(JJ/J M, lIDlm.!!ll].
lk!l!!I llli!l!!PJ/l lsll miliiJll lld tliJUfil/J ML ~ l'!l!!BI !lilt1mer/J
loaD lll!lt!Ji!lll ,,_, {/!J(JrJJSKJ ~ ll[hrnm!Z!U ._,, tp(lq'fl'I
[c] (be] fie/ /Ilic/ [ill;] l!!Y!;J .~/ /l!iuc/ w moomn llh«I /Jlb1ritl lUl
~ J!l!MI flitPrWl lbllJ lmJiUll fliiBll (J14rlJ ~ !lim:p!l IJts'IJ
IMrEpfl llaDlJ lEmDJ #J'llrflll} (JlOJED'J IWv!lJ Jm•mtffl
fbm;rWI Hrtl"f"d [el (be] fief /hie/ llll. [bueJ. .f/11e/ ./Piue/
llHil lllllmmll hnl ll@O(i)@I/ ~ Il[bmmmD, il!!Vilf9J !l@Qf11@@/l ls~ll
~llliiJWll 11§§1 l/lllfJ({l({l/J ~ U!hm!f!!i!R llilf¥117111 !1@1Jf1Jlillil/l
loaiaD lll!lt!Jilltall llHd m~ !mmpel ll[hf!!rrme'L
J!e!M' ~ [eel (bee] lice/ /bice/ [~) [buee] !illce/
.fbiuce/ ll®®i»Il lllllmmmll ~ {JJ;/kJJ@@// ~ UQ]mmrnrnn a_,,,
QMmnriirqlJ !lllll~ll ~llJ!iJt!IWll ~ /J1JthilflJllJ mnHell mbmfi!!!!i![

""'" UlJtJrwrtrJ/J 101111111 ll!iJt!Ji!ltltall ,,,_,., ~
mmlitp!i!!l ll!J!rnrmf!!l!!L .. ,.,,, ~·"

sample of text for each style, consisting of an abbreviated representa­
tion of the style. The abbreviation is obtained by omitting commas and
giving only the first letter of each option.

A style is an example of what mathematicians call a set, i.e. an
unordered collection of different values. Pascal has set-types. The 128
different styles of text are the values of the following predefined type:

type
Style= set of Styleltem;

17 .2 Syntax of set types
In the example above, Styleltem is called the base-type of the set-type
Style. A set-type is a structured-type. The syntax is as follows:

unpacked-structured-type: array-type I record-type I fil.e-type I

set-type: set of base-type
base-type: type

set-type

The base-type must be an ordinal-type. Implementations of
Pascal almost always either restrict the base-type to have ordinal values
between two limits, or restrict the number of values in the base-type.
Some do not even permit the type:

text.

SETS 407

set of char

which is a minimal requirement for respectability. Macintosh Pascal is
near the top of the class; its restriction is that the ordinal values of the
base-type must lie in the range -8192 .. 8191. So set of integer is not
permitted, but almost everything else is.

A set-type is an unpacked-structured-type. It may therefore be
packed, but there are few implementations in which this will save any
storage. You are recommended against using packed set-types; they
are not compatible with unpacked ones.

The rules for declaring variables or formal parameters of set­
types are the same as for any other types. Here are two declarations of
set-variables:

var
TextStyle : Style;
digits : set of 0 .. 9;

Because set-types are structured-types, their constants cannot be named
in constant-definitions, and they cannot be used as result-types of func­
tions.

17 .3 Constructing sets
17.3.1 SET CONSTRUCTORS

The basic way to construct a set is by specifying all its members by
means of a set-constructor, which is syntactically classified as a factor
of an expression:

factor: variable I unsigned-constant I ft,mction-designator
set-constnletor I (expression) I not factor

set-constructor: [element-list]
element-list: element ... , element
element: expression .. expression

[] denotes a set with no members, called the empty set. A
non-empty set is constructed by enclosing a list of one or more ele­
ments, separated by commas, in square brackets. Elements come in
two forms. One is simply an expression, in which case its value is
made a member of the set. In all the examples given above, this form
was used with a constant for the expression. The other form is two
expressions separated by .. ; in this case all values that are greater than
or equal to the value of the first expression and less than or equal to

408 PROGRAMMING USING MACINTOSH PASCAL

the value of the second are made members of the set. There may be no
such values.

All expressions in the elements of a given set-constructor must
be of the same ordinal type. The type of a set-constructor is taken to
be set of T, where T is the largest ordinal type containing the
members. The type of [] is determined by context. Thus, for example:

[bold, shadow .. extend] denotes the same set as [bold, shadow, con­
dense, extend]; its type is set of Styleltem.

[bold, extend .. shadow] denotes the same set as [bold]; its type is set
of Styleltem.

['r', 'o', 'u', 't', 'e', '6', '6'] denotes the same set as ['6', 'e', 'o', 'r', 't',
'u']; its type is set of char.

[0 .. 9) denotes the same set as [O, 1, 2, 3, 4, 5, 6,
7, 8, 9]; its type is set of integer.

[0 .. -1) denotes the empty set of type set of in­
teger.

Packing aside, a value s of set-type T1 is assignment-compatible
with a set-type T2 if the base-types have the same host-type and every
member of s is a value of the base-type of T2• For example, each of these
assignment statements is legal:

TextStyle := [bold, shadow .. extend)
TextStyle : = []
digits := [0 .. 9)
digits := [0 .. -1)

However, the following two lines are not legal assignment statements:

TextStyle := [1 .. 0) {XXXX ERROR XXXX}
digits := [1 .. 10) {XXXX ERROR XXXX}

Note that in the first case the type of the set-constructor is set of
integer.

17.3.2 SET-VALUED OPERATIONS

The operators +, *, and -, when applied to sets, represent the
mathematical operations of union, intersection, and set difference re­
spectively. In each case the base-types of the two sets involved must
have the same host-type. Lets and t represent such sets. Then:

SETS 409

s + t is the union of s and t: the set of all values that are in s, or t, or
both;

s * t is the intersection of s and t: the set of all values that are in both s
and t;

s - t is the difference of s and t: the set of all values that are in s but not

t.

Here are some examples:

[bold, italic] + [underline]
[bold, italic] + [bold]
[2, 3, 5, 7] * [1, 3, 5, 7, 9)
[0 .. 9) * [9 .. 10)
['c', 'a', 't'] - ['a' .. 'z']
['6', 'e', 'o', 'r', 't', 'u'] - ['O' .. '9']

gives
gives
gives
gives
gives
gives

[bold, italic, underline]
[bold, italic]
[3, 5, 7]
[9]
[]

Since the precedence of operators is a syntactic matter in Pascal,
these operators have the same precedence as their arithmetic counter­
parts.

17 .4 Boolean operations on sets
Four of the relational operators are applicable to sets, namely:

<> <= >=

They denote the mathematical notions of set equality, set inequality,
the subset relation, and the superset relation respectively. The base­
type of the two compared sets must have the same host-type. Let s and
t be such sets. Then:

s = t gives true iff s and t have exactly the same members.
s <> t gives true iff s = t gives false.
s <= t gives true iff every member of sis a member oft.
s >= t gives true iff every member oft is a member of s.

Here are some examples:

['A' . .'Z'] = ['a' . .'z'] gives false
[0 .. 9) = [O, 1, 2, 3, 4, 5, 6, 7, 8, 9) gives true
[O] <> [] gives true
[italic]<= [bold .. extend] gives true
[] <= [O] gives true
[0 .. 9) <= [9, 10) gives false
[9,10) >= [0 .. 9) gives false
[bold .. extend] >= ptalic, shadow] gives true

410 PROGRAMMING USING MACINTOSH PASCAL

Bear in mind the following:

• Only the relational operators associated with equality are avail­
able. The symbols < and > do not represent operations on sets
in Pascal.

• [] <= s gives true for any sets, even[] itself.
• s <= t and t <= s may both give false, unlike the situation

with any other type of values.

Pascal provides one more Boolean operation involving sets,
corresponding to what mathematicians call the membership relation
(usually written e). Let s be a set whose base-type is T, and x be a
value of the host-type of T. Then:

x ins gives true iff xis a member of s.

For example:

italic in [bold .. extend]
's' In ['a' . .'z']
10 In [0 .. 9]

gives true
gives true
gives false

Remember that the left-operand is not a set.
Boolean expressions can often be written most neatly using sets.

For example, here is a condition from program RandomWalk for
Case-study 7:

(1 <= NewRow) and (NewRow <= Maxlndex1) and
(1 <= NewCol) and (NewCol <= Maxlndex2)

It can be written more simply as:

(NewRow In [1 .. Maxlndex1]) and (NewCol In [1 .. Maxlndex2])

The condition:

(1 <= NewRow) and (NewRow <= Maxlndex) and
(1 <= NewCol) and (NewCol <= Maxlndex)

which would occur if the grid was always square, can be written as:

[NewRow, NewCol] <= [1 .. Maxlndex]

SETS 411

17 .5 Subprograms involving sets
Parameters of subprograms can have set-types. For example, the
procedure that sets the style for text displayed in the Drawing window
is predefined as follows:

procedure TextFace (face : Style);
{ Sets the style for text displayed in Drawing window to face. }

The reader might like to think now about how to produce the output
shown in Figure 17.1. A neat solution is presented in Chapter 18. It
exploits the technique of recursion that is introduced in Chapter 18
(and also uses Macintosh Pascal strings as described in Chapter 14).

As another example, suppose we need to find the symmetric
difference of two sets, which is the set of values that belong to exactly
one of the sets. This is abstractly a function, but must be implemented
in Pascal as a procedure, because functions cannot return values of
structured-types.

procedure SymmetricDifference (s, t : SetType;
var result : SetType);

{ Sets result = symmetric difference of s and t. }
begin { SymmetricDifference }

result := s + t - s * t
end; { SymmetricDifference}

Suppose, for example, that SetType is DigitSet, which is defined as
follows:

type
digit= 0 .. 9;
DigitSet = set of digit;

var
digits : DigitSet;

Then after execution of:

SymmetricDifference([2, 3, 5, 7], [1, 3, 5, 7, 9), digits)

digits contains [1, 2, 9). This procedure is employed in Case-study 10
in Section 17.7.

17 .6 Binary numbers as sets
17.6.l BINARY REPRESENTATIONS

Consider a non-negative integer x less than a limit 10n, where n ~ 1. It
has a unique decimal representation dn-Idn-Z ... d1d0, where 0 ~ di ~ 9

412 PROGRAMMING USING MACINTOSH PASCAL

for i = 0, 1, ... , n - 1. It is defined by:

x = d,._1 x 10,._1 + dn-2 x 1Qn-2 + ... + d1 x 101 + "° x 10°

Thus, for example, with x = 38 and n = 4, the decimal representation
is 0038, because

38 = 0 x 103 + 0 x 102 + 3 x 101 + 8 x 10°

Now consider a non-negative integer x less than a limit 2n,
where n ;ai: 1. It has a unique binary representation d,._1d,._2 ••• d1d0,

where 0 ~di~ 1 for i = 0, 1, ... , n - 1. It is defined by:

For example, with x = 13 and n = 4, the binary representation is
1101, because

13 = 1 x 23 + 1 x 22 + 0 x 21 + 1 x 2°

Suppose that a program needs to work with such binary re­
presentations. A suitable data structure is needed to represent them.
Perhaps the most obvious possibility is an array of binary digits. Two
others are a string of 'O' or '1' characters, and an array of Boolean
values - see Exercise 17.13. But there is yet another possible data
structure: the set of bit-positions which are 1. For the above example,
this would be [3, 2, 0], because 13 = 23 + 22 + 2°. This is likely to be
the best representation, because sets are more easily manipulated than
arrays, and because the operations on sets are more useful in this con­
text than those on strings.

Suitable type-definitions would be:

const
MaxExponent = 14; { exponent of maximum power of 2

<= Maxint}
type

count = o .. Maxint;
exponent= O .. MaxExponent;
BinaryNumber = set of exponent;

Here MaxExponent is playing the role of n above. Each value of type
count has a characteristic corresponding value of type BinaryNumber.

Operations on binary numbers would be represented in Pascal
by subprograms. We shall give two that handle conversions between
integers and their binary representations.

The first converts a binary representation to the corresponding

SETS 413

number. The idea is to compute the successive powers of 2, and add
those exponents in the given set to a cumulative sum. The comments
for the local variables amount to an invariant.

function number (bnum : BinaryNumber) : count;
{ Returns number whose binary representation is bnum. }
{ Global const: MaxExponent. }

var
i : exponent;
num : count; { sum of powers of 2 with exponents < i and in

bnum}
power : count; { = 2 to the power i }

begin { nu"1ber }
num := O;
power:= 1;
for i := 0 to MaxExponent - 1 do

begin
If i In bnum then

num := num + power;
power := power * 2

end;
If MaxExponent In bnum then

number:= num +power
else

number:= num
end; { number }

A couple of points should be noted. One is that the powers are
computed with a recurrence; it would be needlessly inefficient, and
more complicated (which is worse), to compute each from scratch. The
other is more subtle. The limit for the for-loop is one less than the
natural limit, forcing extra computation after the loop. This avoids
computing a value for power that exceeds Maxint.

The second subprogram converts in the other direction; it has to
be a procedure. The idea is explained by an explicit invariant.

procedure binary (n : count;
var BinaryOfn : BinaryNumber);

{ Sets BinaryOfn = binary representation of n. }
var

i : O .. Maxint; { in O .. MaxExponent + 1 }
begin { binary }

BinaryOfn := [];
i := O;
{ Invariant: BinaryOfn = set of dj with j < i and dj = 1, and }
{ n = dm * 2-to-the-power-(m - i) + ... + di * 2-to-the-power-O, }
{ where originally n = dm * 2-to-the-power-m + .. . + }
{ dO * 2-to-the-power-O }

414 PROGRAMMING USING MACINTOSH PASCAL

whlle n <> O do
begin

H odd(n) then
BinaryOfn := BinaryOfn + [i];

i := i + 1;
n := n div 2

end
end; { binary }

In this case the loop has not been halted prematurely, but at the
minor cost of being unable to declare i as of type exponent. This
procedure exemplifies a commonly used schema for constructing a set:
to start with the empty set and iteratively add a single member. Note
that this member must be enclosed in square brackets.

17. 7 Case-study:-=1~0-=-: .=..;N=-=im=---------
11.1.1 SETTING OF THE PROBLEM

A simple version of the game of Nim was introduced in Case-study 4.
The full game of Nim differs in having several piles of matches, rather
than just one. On each move, one or more matches must be taken from
a single pile; there is no limit on the number that may be taken. The
player who takes the last match wins the game.

The optimal strategy for Nim is more complicated than that for
MiniNim, but it is also based on a kind of invariant. Suppose there is
an assertion (about the state of the game) with the following properties.

• If the assertion is false before a player's move, he or she or it
can always move so that it is true afterwards.

• If the assertion is true before a player's move, it cannot be true
after the move.

• In the winning state the assertion is true.

Then the perfect strategy is to move so as to make the assertion true
(as soon as this is possible) and thereafter restore the invariant after
each move by the opponent.

The winning invariant for the game of MiniNim was:

number of matches left mod (max + I) = 0

where max is the agreed maximum number of matches that may be
taken on a move. It is easy to verify that it has the three required
properties.

The winning invariant for Nim is much harder to find; we shall

SETS 415

Table 17.1 Parity of each
bit-position.

Number Binary digit
-

d3 d2 d1 do

1 0 0 0 1
5 0 1 0 1
9 1 0 0 1
2 0 0 1 0
4 0 1 0 0
7 0 1 1 1

Parity odd odd even even

be content to pull it out of a hat and show that it works. It is this:
consider the binary representations of the number of matches left in
each pile. For each bit-position, add up the number of digits = 1.
Then each of these numbers is even. We say that the parity of each
bit-position must be even. For example, suppose there are six piles
and their sizes are 1, 5, 9, 2, 4, 7. Table 17.1 displays the parity of
each bit-position. It is apparent that the winning invariant is not true
in this state.

Let us check that the above assertion has the three required
properties. The third holds because if all numbers are zero then all
parities are even. The second is only slightly harder to see. For
suppose all parities are even. The next move will change at least one
binary digit of the number for the pile involved, but will not affect any
other numbers. So the parity of at least one position will become odd.

Finally, consider the first requirement. Suppose at least one
parity is odd. There must be a pile whose binary representation has a
I-digit in the highest position with odd parity. In the example above,
this is the pile with 9 matches. Change the bits which are in positions
of odd parity. In our example, these are positions 3 and 2, and the re­
sulting binary representation is 0101. This represents a smaller
number. In the example, it is 5. By moving to leave this many
matches, all parities become even. So there is only one move to make
in the state shown in the example. Take 4 matches from the pile with
9. Table 17.2 shows the resulting state.

17. 7.2 SPECIFICATIONS

A Macintosh Pascal program is to be written that plays Nim with the
user. The specifications are as in Case-study 4 for the game of Mini­
Nim, but adapted to the full game. Unlike before, the number of
matches remaining after a move need not be indicated in the Text
window (because there will be several piles with small numbers of

416 PROGRAMMING USING MACINTOSH PASCAL

Number Binary digit

d3 dz d1 do
1 0 0 0 1
5 0 1 0 1
5 0 1 0 1
2 0 0 1 0
4 0 1 0 0
7 0 1 1 1

Parity even even even even

matches). Also, if the program is not in a winning position, it should
take a random number of matches from some pile. The diagram should
label the piles so that the user can specify which pile to take from.

17.7.3 WRITING THE PROGRAM

At a high-level, this program will differ little from program MiniNim in
Chapter 9. So we will confine our attention here to procedure move,
which is where the important differences will emerge.

Move needs to have the size of each pile as both an input and
output parameter, and an input parameter that tells it whether the pro­
gram or the user is to move next. Furthermore, since the game ends
when all piles are empty, we shall provide the number of empty piles
as an input and output parameter; this is redundant, but convenient
and efficient. We choose appropriate types, and obtain the provisional
heading shown below.

const
MaxMatches = ... ; { maximum number of matches in a pile }
NrPiles = ... ; { number of piles of matches }

type
MatchCount = O .. MaxMatches; {possible numbers of matches

left in a pile }
PileCount = O .. NrPiles;
Pilelndex = 1 .. NrPiles;
PileCounts = array[Pilelndex] of MatchCount;

procedure move (var size : PileCounts; { size of each pile }
var NrEmpty : PileCount; { number of empty piles }
MacToMove: Boolean); {true iff Macintosh to move}

{ Makes move, updating size and NrEmpty; }
{ assumes NrEmpty < NrPiles. }

The first couple of refinements of the statement-part lead to:

Table 17.2 Parities after
the perfect move.

SETS 417

begin { move }
if MacToMove then

begin { Determine and report Macintosh's move}
Write('Hit Return to see my move.');
if the winning invariant is already true then

Take a random number from a non-empty pile
else

Choose a move that makes the winning invariant true ;
Read In;
Report Macintosh's move

end
else

Prompt for and read user's move;
Remove the matches, updating the appropriate variables and the display

end; {move}

The Readln has been positioned to allow the Macintosh to use the
period before the user responds to calculate its move.

A move is characterized by two values: the number of matches
to remove and the pile to take them from. Two local variables are
therefore introduced:

var
taken : MatchCount; { number of matches to take }
FromPile : Pilelndex; { pile matches are taken from }

Most of the remaining refinements are straightforward. The exceptions
are the condition:

the winning invariant is already true

and the action:

Choose a move that makes the winning invariant true

which both involve the winning strategy.
The additional information needed to implement this condition

and action is the binary representation of the size of each pile and the
parity of each bit-position. All of this information can be computed by
move from the sizes of the piles, but it is simpler and more efficient to
update it after a move (by either the Macintosh or the user), because
only one pile's binary representation is affected by a move. We there­
fore provide the information through parameters, and hand the obliga­
tion to update them after a move to the action:

Remove the matches, updating the appropriate variables and the display

418 PROGRAMMING USING MACINTOSH PASCAL

The binary versions of the pile sizes are represented with sets, as
described previously. The parity information also is represented by a
single set of the same kind; its members are the bit positions with odd
parity. The new parameters and their context are:

con st
MaxExponent = 3; {exponent of maximum power of 2

< = MaxMatches }
type

exponent = O .. MaxExponent;
BinaryNumber = set of exponent; { binary form of a MatchCount }
BinaryPileCounts = array[Pilelndex] of BinaryNumber;

procedure move (...
var BinarySize : BinaryPileCounts; { binary version of size }
var parity : BinaryNumber); { bit-positions of BinarySize with

odd parity}

The condition is implemented very simply, with:

parity= []

The first refinement of the action to choose a best move expres­
ses the method given previously:

var
BigExponent : exponent; { biggest member of parity }
NewBinary : BinaryNumber; { new value of BinarySize[FromPile] }

begin { Choose a move that makes the winning invariant true }
Set BigExponent = biggest member of parity;
Set FromPile such that BigExponent in BinarySize[FromPile];
Set NewBinary to the symmetric difference of parity and
BinarySize[FromPile];
taken := size[FromPile] - the number whose binary representation
is NewBinary

end

Let us desk-check this on the example presented in Tables 17.1 and
17.2. The state before the move is as shown in Table 17.3. We
calculate that:

BigExponent = 3
FromPile = 3
NewBinary = the symmetric difference of (3, 2] and (3, O] = (2, O]
taken= 9-S = 4

SETS 419

Table 17.3 The Pascal
version of Table 17 .1.

i size[i] BinarySize[iJ

1 1 [OJ
2 5 [2, OJ
3 9 [3, OJ
4 2 [1, OJ
5 4 [2, OJ
6 7 [2, 1, OJ

parity = [3, 2J

All is as it should be, and we proceed with the refinements. The first
two actions are standard linear searches; the others simply employ
procedure SymmetricDifference and function number developed pre­
viously. All may be found in the complete solution given later.

Finally, we turn to the part of the action:

Remove the matches, updating the appropriate variables and the display

that updates the extra parameters BinarySize and parity. Note that if
the program moved from a state with parity i= [], then the new value
of BinarySize[FromPileJ is NewBinary and the new valu~ of parity is
[]. We choose to recalculate since the code reads better and the calcula­
tion is simple. Exercise 17 .19 invites you to avoid the recalculation.

Updating BinarySize[FromPile] is trivial: procedure binary is
simply applied to the new size. Now consider parity. The symmetric
difference d of the old and new values of BinarySize[FromPile] gives
the changed bit positions. So the new value of parity is just the sym­
metric difference of the old value and d. The translation into Pascal
twice employs procedure SymmetricDifference.

Variables used as the actual parameters corresponding to parity
and BinarySize are declared in the program-block. The same names
are used. These variables need to be initialized before moves are made.
The initialization is quite straightforward.

17.7.4 THE COMPLETE PROGRAM

Here is an almost complete program. Exercise 17.20 asks you to
complete it by modifying it to check the user's input.

program Nim (Input, Output);
{ Plays a game of Nim with the user; run for instructions. }

con st
MaxMatches = 1 O; { maximum number of matches ·in a pile }

420 PROGRAMMING USING MACINTOSH PASCAL

MaxExponent = 3; { exponent of maximum power of 2
<= MaxMatches }

NrPiles = 6; { number of piles of matches }
Length = 37; { length of matchstick }
Dist = 20; { space between matches }
Width = 6; { width of matchstick }
HeadLength = 9; {length of match head}
HeadWidth = 8; {width of match head}
Overlap = 4; { overlap of head on stick }
LabelWidth = 45; { width allocated for a label for each pile }
Pointsize = 12;

type
MatchCount = O .• MaxMatches; { possible numbers of matches

left in a pile }
exponent = O .. MaxExponent;
BinaryNumber = set of exponent; { binary form of a

MatchCount }
Pilelndex = 1 .. NrPiles;
PileCount = O .. NrPiles;
PileCounts = array[Pilelndex] of MatchCount;
BinaryPileCounts = array[Pilelndex] of BinaryNumber;

var
size : PileCounts; { size[i] = number of matches in pile i }
BinarySize : BinaryPileCounts;

{ BinarySize[i] = binary representation of size[i] }
parity : BinaryNumber; { e in parity is true iff number of times }

{ e in BinarySize[i] is true is odd (i = 1, ... , NrPiles) }
EmptyPiles : PileCount; { number of empty piles }
NrPile : Pilelndex;
MacNext: Boolean; {true iff Macintosh moves next}

procedure LabelRow (row : Pilelndex);
{ Draws label for given row of display; }
{ N.B. must have width of label < LabelWidth. }
{ Global consts: Length, HeadLength, PointSize, LabelWidth. }
begin { LabelRow }

MoveTo(O, row * (Length + HeadLength) -
(Length + HeadLength - Pointsize) div 2);

DrawString(StringOf(' pile ', row : 1))
end; { LabelRow }

procedure DrawMatch (MatchNr : MatchCount;
row: Pilelndex);

{Draws match number MatchNr in given row. }
{ Global consts: Length, Dist, Width, HeadLength, HeadWidth,

Overlap, LabelWidth. }
var

base : integer;

SETS 421

begin { DrawMatch }
base := row * (Length + HeadLength);
FrameRect(base - Length,

LabelWidth + MatchNr * Dist - Width div 2,
base, LabelWidth + MatchNr *Dist+ Width div 2);

PaintOval(base - Length - HeadLength + Overlap,
LabelWidth + MatchNr * Dist - HeadWidth div 2,
base - Length + Overlap,
LabelWidth + MatchNr * Dist + HeadWidth div 2)

end; { DrawMatch }

procedure EraseMatch (MatchNr : MatchCount;
row : Pilelndex);

{ Erases drawing of match number MatchNr in given row. }
{ Global consts: Length, Dist, HeadLength, Overlap, LabelWidth. }
var

base : integer;
begin { EraseMatch }

base := row * (Length + HeadLength);
EraseRect(base - Length - HeadLength + Overlap,

LabelWidth + MatchNr * Dist - Dist div 2, base,
LabelWidth + MatchNr * Dist + Dist div 2)

end; { EraseMatch }

function ran (lower, upper : integer) : integer;
{ Retums a random value uniformly distributed in lower .. upper; }
{ assumes lower <= upper. }
as in program Arithmetic in Chapter JO

procedure SymmetricDifference (s, t : BinaryNumber;
var result: BinaryNumber);

{ Sets result = symmetric difference of s and t. }
as for procedure SymmetricDifference in text

function number (bnum : BinaryNumber) : MatchCount;
{ Retums number whose binary representation is bnum. }
as for procedure number in text, but with MatchCount
instead of count

procedure binary (n : MatchCount;
var BinaryOfn : BinaryNumber);

{ Sets BinaryOfn = binary representation of n. }
as for function binary in text

procedure introduce (var size : PileCounts); { size of each pile }
{ Explains game, and creates and draws the piles of matches. }
{ Global consts: PointSize, NrPiles, MaxMatches. }
{ Global subprograms: DrawMatch, LabelRow, ran. }

422 PROGRAMMING USING MACINTOSH PASCAL

var
Matchlndex : MatchCount; { number of match }
row : Pilelndex;

begin { introduce }
{ Explain the game }

Writeln('This is the game of NIM, in which we take tum
removing matches.');

Writeln('On each move a number of matches must be taken
from a single pile.');

Writeln('The pile is arbitrary provided at least one match is
taken from it.');

Writeln('The player who takes the last match wins.');
{ Create, draw, and label each pile of matches }

TextSize(Pointsize);
for row:= 1 to NrPiles do

begin { Create, label, and draw the pile in this row }
size[row] := ran(1, MaxMatches);
LabelRow(row);
for Matchlndex := 1 to size[row] do

DrawMatch(Matchlndex, row)
end

end; { introduce}

procedure FindOut (var lsYes: Boolean
{ true iff 'Y' or 'y' typed first }

);
{ Asks for & reads a yes/no response, & sets lsYes accordingly. }
<lS in program MiniNim in Chapter 9

procedure move (var size : PileCounts; { size of each pile }
var NrEmpty : PileCount; { number of empty piles }
MacToMove: Boolean; {true iff Macintosh to move}
var BinarySize : BinaryPileCounts; { binary version of size }
var parity : BinaryNumber); { bit-positions of BinarySize

with odd parity }
{Makes next move, updating size, BinarySize, parity, & NrEmpty;}
{assumes NrEmpty < NrPiles.}
{ Global const: MaxExponent. }
{Global subprograms: ran, SymmetricDifference, number, binary,

EraseMatch.}
var

taken : MatchCount; { number of matches to take }
OldBinary, NewBinary: BinaryNumber; {old and new values of

BinarySize[FromPile] }
BigExponent : exponent; { biggest member of parity }
FromPile, { pile matches are taken from }
pile : Pilelndex;
Matchlndex : MatchCount;
BinaryDiff : BinaryNumber;

SETS 423

begin { move }
If MacToMove then

begin {Determine and report Macintosh's move}
Write('Hit Return to see my move.');
H parity = [] then

begin { Take a random number from a non-empty pile }
{ Set FromPile = index of a non-empty pile }

FromPile := 1;
whlle size[FromPile] = O do

FromPile := FromPile + 1;

taken := ran(1, size[FromPile])
end

else
begin { Choose a move that makes parity = [] }
{ Set BigExponent = biggest member of parity }

BigExponent := MaxExponent;
while not (BigExponent In parity) do

BigExponent := BigExponent - 1;
{Set FromPile s.t. BigExponent in BinarySize[FromPile]}

FromPile := 1;
whlle not (BigExponent In BinarySize[FromPile]) do

FromPile := FromPile + 1 ;

SymmetricDifference(parity, BinarySize[FromPile],
NewBinary);

taken := size[FromPile] - number(NewBinary)
end;

Readln;
Writeln('I take ', taken : 1, ' matches from pile ', FromPile

: 1, '.')
end

else
begin { Prompt for and read user's move }

Write('What pile do you take from? ');
Readln(FromPile);
Write('How many matches do you take? ');
Readln(taken)

end;
{ Remove the matches, updating the appropriate variables and

the display }
'tor Matchlndex := size[FromPile] downto

size[FromPile] - taken + 1 do
EraseMatch(Matchlndex, FromPile);

size[FromPile] := size[FromPile] - taken;
H size[FromPile] = O then

NrEmpty := NrEmpty + 1;
{ Update BinarySize and parity }

424 PROGRAMMING USING MACINTOSH PASCAL

OldBinary := BinarySize[FromPile];
binary(size[FromPile), BinarySize[FromPile));
SymmetricDifference(BinarySize[FromPile), OldBinary,

BinaryDiff);
SymmetricDifference(BinaryDiff, parity, parity)

end; {move}

begin {Nim}
introduce(size);

{ Initialize BinarySize and parity }
parity := [];
for NrPile := 1 to NrPiles do

begin
binary(size[NrPile), BinarySize[NrPile));
SymmetricDifference(parity, BinarySize[NrPile], parity)

end;
{Make moves until all piles are empty, remembering last player}
{to move}

FindOut(MacNext);
EmptyPiles := O;
while EmptyPiles < NrPiles do

begin
move(size, EmptyPiles, MacNext, BinarySize, parity);
MacNext :=not MacNext

end;
{ Announce winner }

If MacNext then
Writeln('Congratulations, you won !')

else
Writeln('I won!')

end. {Nim}

Figure 17 .2 shows the screen at an early stage in a typical game.
The original state was as in our example, i.e. as in Tables 17 .1 and
17.3. The user blew the opportunity to win.

Most Pascal implementations would implement values of the
types MatchCount and BinaryNumber from program Nim in the same
way, i.e. as an array of bits in a byte or cell. Subprograms number and
binary simply return the same values as their arguments on such
systems! This point is elaborated briefly in Chapter 19, where it is
noted that these functions can be avoided in a lower-level Macintosh
Pascal version of Nim. The great advantage of the given version is that
it is written in Standard Pascal and is therefore portable (aside from the
graphics).

Situations where the calling (sub)program declares variables that
logically belong to the called subprogram, as with parity and Binary-

SETS 425

Figure 17.2
,. • File Edit Search Run Windows

.,
The screen during a run of
program Nim.

~
Drawing ~D

This
Te Ht

is the game of NIM, in

~ pi le 1 which we take turn removing
matches .

~ ~ ~ ~ ~
On each moue a number of matches

pile 2 must be taken from a single
pi le.

~
The pi le is ar bi trary prov ided

pile 3 at least one match is taken from
it.

~ ~
The player who takes the last

pile 4 match wins.
May I move first? no

pile 5
What pi le do you take from? 5
How many matches do you take? 4

~ ~ ~ ~ ~ ~ ~
Hit Return to see my move .

pile 6 I take 8 matches from pJ le 3 .
What pi le do you take from? ;

Size in this program, are often symptomatic of the need to use an
abstract data type. See the discussions in Chapters 15 and 20.

17 .8 Macaveats
,~ Macintosh Pascal does not permit packed sets. However this is no great
17.1 loss.

EXERCISES
17.1 How many values of type Style:

(a) contain bold?

(b) contain italic but not underline?

(c) represent different styles of text? Assume that extend cancels the
effect of condense.

17.2 Given that i = 2 and j = 4, evaluate each of the following expressions:
(a) [i..j] (b) [j .. i]
(c) [i - j .. j - i] (d) [i, i + 2, j, j+2]

(e) ['O' .. chr(ord('O') + i)] (f) ['i' .. Tl

You may assume that the lower-case letters are contiguous.

426 PROGRAMMING USING MACINTOSH PASCAL

17.3 Show how to use a set-constructor to ensure that a case-statement is not
executed if the value of the expression is not one of the case-labels.
That is, show how to get the effect of Macintosh Pascal's otherwise
clause in Standard Pascal.

17.4 Evaluate each of the following expressions:

(a) [2, 5, 8] + [O, 2, 4, 6, 8]

(c) [O, 2, 4, 6, 8] - [2, 5, 8]
(b) [2, 5, 8] - [O, 2, 4, 6, 8]

(d) [2, 5, 8] * [O, 2, 4, 6, 8]

17.S Evaluate each of the following expressions:

(a) [O, 9] <= [0 .. 9]
(c) [1, 3, 5] >= [3 .. 5]

(e) [bold, bold] = [bold]

17.6 Assume the following context:

var
TypeFace : Style;

(b) [9 .. 0] <= [0, 9]

(d) [] <> ['9' . .'0']
(f) shadow In [bold .. extend]

procedure GetTextStyle (var face: Style);
{ Sets face to the current text style (for the Drawing window). }

Implement each of the following actions:

(a) Set TypeFace to the current text s~le

(b) Add underline to the current text s~le if it is not already present

(c) Remove extend and condense from the current text s~le
if both are present in it.

17.7 Implement the following action in the given context:

var
letters : set of 'a' . .'z';
lsPangram: Boolean;

Set lsPangrarn. = true if every lower-case letter is present in letters,
otherwise false

You may assume that the lower-case letters are contiguous.

SETS 427

17 .8 Use sets to implement each of the following expressions, where ch and
b are variables of types char and 2 .. 10 respectively.

(a) ch is either 'Y' or 'y'
(b) ch is a decimal digit
(c) ch is a digit in base b
(d) ch is a control-character in Macintosh Pascal.

17.9 Write a function that returns the number of.members in a given set of
characters.

17.10 Write a program that reports each of the characters that appear in the
input data.

17.11 Suppose that the seating on an airplane consists of rows numbered
from 1 onwards, and that each row consists of six seats labeled 'A' to
'F'. Give a suitable data structure for representing whether or not each
seat has been assigned.

17.12 Suppose you are writing a program that colors each country on a map
so that two countries which share a border have different colors. The
available colors are red, blue, green and yellow. It is known that these
suffice. Give a data structure that enables the following actions to be
neatly implemented.

Initialize so that no country has a wlor
Assign a given wlor to a given country
Deassign a given color from a given country
Check whether a country sharing a border with a given country
has a given wlor

Hint: Record the countries adjacent to each country and the countries
that have been assigned each color.

17.13 Give a comment that explains this alternative implementation of a
binary number:

type
BinaryNumber = array[O .. MaxExponent] of Boolean;

17.14 Subprogram binary cannot be written as a function. Why?

428 PROGRAMMING USING MACINTOSH PASCAL

17.15 Verify that the winning invariant for the game of MiniNim has the
three required properties.

17.16 In the game of Nim, is it usually better to move first or second? Why?

17.17 Assuming that at least one bit-position has odd parity, can there ever
be more than one best move? If so, give an example.

17.18 What is the best move if the non-empty piles have sizes 8, 6, and 5?

17.19 Modify procedure move to avoid the recalculation of parity and
BinarySize[FromPile] when the program has moved to a state in
which the winning invariant is true. The argument for doing so is
that the strategy is thereby made more apparent.

17.20 Complete program Nim by having it check the user's input.

17.21 Macintosh Pascal allows SymmetricDifference and binary to be written as
functions. Do so, and modify program Nim accordingly.

SETS 429

18 _____ _
ADVANCED USE OF
SUBPROGRAMS
(Stories inside stories, movies inside movies, paintings inside paintings,
Russian dolls inside Russian dolls, (even parenthetical comments inside
parenthetical comments!) - these are just a few of the charms of
recursion.)
- Douglas R. Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid

18.1 Recursion 432
18.1.1 A recursive function 432
18.1.2 A recursive 2rocedure 433
18.1.3 Ex2loiting recursion: An exam2le 434
18.1.4 Ex2loiting recursion: The fundamental Qrinci2les 436
18.1.5 Mutual recursion 437
18.1.6 Executing recursive sub2rograms 439

18.2 Case-stud! 11: Illustrating all text styles 441

18.2.1 Setting of the Eroblem 441

18.2.2 S2ecifications 441
18.2.3 Writing the Qrogram 441

18.2.4 The com2lete Erogram 443
18.3 Subprograms as ~arameters 445

18.3.1 Exam2les 445
18.3.2 Syntax 448

18.4 Conformant arral'.s 449
18.5 Further reading 449

Exercises 449

18.1 Recursion
18.1. l A RECURSIVE FUNCTION

Exercise 6.20 was concerned with computing the Fibonacci numbers,
which were defined informally in English. The definition can be for­
malized by writing Fn for the n'th Fibonacci number, n ~ 0, and
defining it as follows:

{
O, if n =0,

Fn = 1, if n = 1,
Fn-1+Fn-2, ifn>l.

Such a definition is familiar to the mathematician. It defines the
sequence of Fibonacci numbers: the first two members are 0 and 1, and.
each successive term is the sum of the two previous ones. Exercise
6.20 required the computation of an initial segment of the sequence.

The above definition is easily recast to define the corresponding
Fibonacci function F:

{
O, if n = 0,

F(n) = 1, if n = 1,
F(n-1) + F(n-2), if n > 1.

This is called a recursive definition, meaning that the function is
defined in terms of itself. And it suggests a way of computing any
particular value of the function. For example, F(4) can be computed as
follows:

F(4) = F(3) + F(2)
= (F(2) + F(l)) + (F(l) + F(O))
= ((F(l) + F(O)) + 1) + (1 + 0)
= ((1 + 0) + 1) + 1

432 PROGRAMMING USING MACINTOSH PASCAL

= (1 + 1) + 1
= 2 + 1
=3

One might wonder whether the above definition of the Fibonacci
function can be translated into a Pascal function. The answer is yes.
The scope of a function identifier includes its own body, implying that
the function may be called in that body. The translation into Pascal is
very straightforward, yielding the following recursive function:

function Fibonacci (n : count) : count;
{ Returns the n'th Fibonacci number. }
begin { Fibonacci }

ifn=Othen
Fibonacci : = O

else if n = 1 then
Fibonacci := 1

else
Fibonacci := Fibonacci(n - 1) + Fibonacci(n - 2)

end; { Fibonacci }

The computation of a particular value of the function proceeds just as
in the example of F(4) above.

Now we can appreciate the reason for Pascal's restriction that
the name of a function acts like a variable that may only be assigned to
- it cannot be used as a variable in an expression in the function
body because such uses are reserved for recursive applications of the
function, such as Fibonacci(n - 1).

18.1.2 A RECURSIVE PROCEDURE

Pascal also permits recursive procedures. Suppose a procedure is
desired that prints out the reverse of the rest of the current input line.
A neat way to describe the process is:

• if the input position is at end-of-line, do nothing;
• otherwise, read a character, print the reverse of the rest of the

line, then print the character read.

In Pascal:

procedure PrintReverseOfline;
{ Reads rest of input line and prints it in reverse, }
{ preceded by a label. }

ADVANCED USE OF SUBPROGRAMS 433

Figure 18.1
The Text window after a
run of program test.

Te Ht
Enter a I ine: PrintReverseOfLine. LA. µ:::
Reverse of I i ne: , en i L fOesreveRtn i rP

var
ch : char; { next character of input line }

begin { PrintReverseOfline }
if eoln then

begin
Read In ;
Write('Reverse of line: ')

end
else

begin
Read(ch} ;
PrintReverseOfline;
Write(ch}

end
end; { PrintReverseOfline }

~ 121

A test reveals that this really does work (did you ever doubt it?):
Figure 18 .1 shows the result of a run of the following test-driver.

program test (Input, Output);
{ Tests procedure PrintReverseOfline. }

declaration of PrintReverseOfline
begin { test }

Write('Enter a line: ');
PrintReverseOfline

end. { test}

18 .1.3 EXPLOITING RECURSION: AN EXAMPLE

Although recursion tends to strike the novice as magical, that is not to
decry its value in problem-solving - to the contrary, magic is an
excellent way to' solve problems. Recursion very often permits simpler
and clearer solutions than are possible without it . We shall demonstrate
with two examples. One is given as Case-study 11 later in the chapter.

The other example concerns the legend of the towers of Hanoi .
An order of monks was given a task, the completion of which would
signal the end of the world. The task involved three pegs. On one
there was a pile of 64 disks whose diameter strictly increased from top
to bottom; the other two had no disks. The task was to move the disks
so that they end up in their original order on one of the two empty

434 PROGRAMMING USING MACINTOSH PASCAL

illJJlWlli
initially after

recursion
after
move

after
recursion

pegs. Only one disk could be moved at a time, from one peg to
another, provided it was not thereby placed on a smaller disk. The
monks were no fools - they sold the rights to a US toy company,
bought a Macintosh with the proceeds, and wrote a program to print
out the solution.

Let us emulate tl;iem, by writing a procedure that ·prints a
sequence of moves that solves the problem for an arbitrary number of
disks. We make the following definitions and declaration:

con st
MaxDisks = 64;

type
DiskCount = O .. MaxDisks;
peg = (left, middle, right);

procedure Hanoi (n: DiskCount); {TENTATIVE}
{ Prints a sequence of moves that move n disks from peg left to }
{ peg right, according to the rules for the towers of Hanoi. ·}

Already we have made progress: using a procedure with para­
meter n opens the possibility of recursive uses with arguments smaller
than n. Let us think. If n = 0, there is nothing to do. Otherwise, if we
can solve the problem for n - 1 disks, we can adapt it to move the top
n - 1 disks to the middle peg, then move the largest disk from the left
to the right peg, then re-adapt the solution for n - 1 disks to move the
disks from the middle to the right peg. At no stage is a larger disk
placed on a smaller one. Figure 18.2 illustrates the three-step recursive
solution for the 4-disk version.

We need to generalize our procedure so that the source and
destination pegs are parameters. Rather than compute the other peg, it
too is provided as a parameter. The solution is now easily written:

procedure Hanoi (n: DiskCount;
source, destination, other : peg);

{ Prints a sequence of moves that move n disks from the }
{ source to the destination, according to the rules for the towers }
{of Hanoi; other is the other peg. }
begin { Hanoi }

ifn>Othen

Figure 18.2
A recursive solution to the
Towers of Hanoi.

ADVANCED USE OF SUBPROGRAMS 435

Figure 18.3
The solution to the four­
disk version of Towers of
Hanoi.

begin
Hanoi(n - 1, source, other, destination);
Writeln('Move disk from the ', source, ' peg to the ',

destination, · peg.');
Hanoi(n - 1, other, destination, source)

end
end; { Hanoi}

We have taken advantage of Macintosh Pascal's ability to print values
of enumerated types directly. Figure 18.3 shows the output produced
by the procedure-call:

Hanoi(4, left, right, middle)

18.1.4 EXPLOITING RECURSION: THE FUNDAMENTAL
PRINCIPLES

The previous example illustrates the four fundamental principles of
using recursion:

(1) The specifications must be sufficiently general to permit the use
of recursive calls. Generalization is usually done by adding addi­
tional parameters (as with the three extra formal parameters of
Hanoi).

(2) There must be at least one base-case where execution of the
body of the subprogram does not involve any recursive calls.
With Hanoi, this is when n = 0.

-D Te Ht
Move d sk from the left peg to the middle peg. Q]
Move d sk from the left peg to the right peg.
Move d sk from the middle peg to the right peg.
Move d sk from the left peg to the middle peg.
Move d sk from the right peg to the left peg.
Move d sk from the right peg to the middle peg.
Move d sk from the left peg to the middle peg.
Move disk from the left peg to the right peg.
Move disk from the middle peg to the right peg.
Move disk from the middle peg to the left peg.
Move disk from the right peg to the left peg.
Move disk from the middle peg to the right peg.
Move disk from the left peg to the middle peg.
Move disk from the left peg to the right peg .
Move disk from the middle peg to the right peg . ~

436 PROGRAMMING USING MACINTOSH PASCAL

(3) The values of the actual parameters of each recursive call in the
body of the subprogram must be closer to a base-case than those
of the formal parameters. With Hanoi, n - 1 is closer to 0 than
n if n > 0.

(4) The body of the subprogram must meet the specifications,
assuming each recursive call in the body obeys the specifica­
tions. We reasoned that the body of Hanoi is correct assuming
that each recursive call acts as specified.

The first requirement permits a recursive solution; the second
and third ensure that the recursion terminates (provided the
non-recursive parts do so); the last requirement ensures that'the sub­
program is correct, a fact which may be proved by mathematical
induction.

18.1.5 MUTUAL RECURSION

A Pascal subprogram is said to be recursive if it can call itself. Recur­
sion can manifest itself indirectly. If a subprogram A calls another sub­
program B, which in turn calls A, either directly or by a chain of calls
ending in a call of A, A and Bare said to be mutually recursive.

This is a common phenomenon in certain application areas, not­
ably that of programming language translators. A natural way to write
a translator involves having a procedure for each grammatical category.
The procedure that handles a for-statement processes the body of the
for-statement by calling the procedure that handles a statement, which
in turn calls the former if the body of the for-statement is itself a for­
statement. The syntax of Pascal is inherently recursive, so this
phenomenon can arise in many different ways, some quite indirect.

The main reason for singling out mutual recursion is that it can
cause syntactic complications. If A and B are mutually recursive, then
the rule of declaration before use requires that B be declared before A
uses it, and vice versa. This is no problem if one subprogram is
declared inside the body of the other, because then both headings
(which give the necessary information) appear before any uses of the
subprograms. But if A and B are declared at the same level, there is a
problem.

The solution adopted in Pascal is to allow the heading of a sub­
program to be separated from its body. So the heading of A, say, can
be given first, then all of B, and the body of A can be given later in
the same declaration-section. A body to be given later is signaled by
forward, which is called a directive. Here is a very artificial example;
the mutually recursive subprograms are the functions gcd1 and gcd2.

ADVANCED USE OF SUBPROGRAMS 437

function gcd (x, y : count) : count;
{ Returns the greatest common divisor of x and y; }
{ assumes x and y are not both zero. }

function gcd2 (x, y : count) : count; forward;
{ Returns the greatest common divisor of x and y; }
{ assumes 0 <= x < y. }

function gcd1 (x, y : count) : count;
{ Returns the greatest common divisor of x and y; }
{ assumes o <= y <= x and x > O. }
begin { gcd1 }
lfy = Othen

gcd1 := x
else

gcd1 := gcd2(x mod y, y)
end; { gcd1 }

function gcd2; { see above for heading }
begin { gcd2 }
lfx=Othen

gcd2 := y
else

gcd2 := gcd1(x, y mod x)
end; { gcd2}

begin { gcd}
If x >= y then

gcd := gcd1 (x, y)
else

gcd := gcd2(x, y)
end; { gcd}

Notice that only the name of the subprogram is given in the heading
accompanying its body, if it has already been declared with forward.

The necessary changes to the syntax rules are as follows:

function-declaration:
function-heading ; function-body
function-heading ; directive I
function-identification ; function-body

directive: forward
function-identification: function function-identifier
function-identifier: identifier
procedure-declaration:

procedure-heading; procedure-body
procedure-heading; directive I

438 PROGRAMMING USING MACINTOSH PASCAL

procedure-identification ; procedure-body
procedure-identification: procedure procedure-identifier
procedure-identifier: identifier

18.1.6 EXECUTING RECURSIVE SUBPROGRAMS

There are only five possible reasons for wanting to know how re­
cursive subprograms are executed. And none of them has much to do
with writing recursive subprograms:

Principle You need not understand how recursive subprograms
are executed in order to use them to solve programming problems.
In fact, it is best to avoid thinking about their execution.

Recursive solutions are obtained instead py following the four prin­
ciples outlined previously.

These are the five legitimate reasons:

(1) to desk-check recursive subprograms;
(2) to understand some error-messages concerned with recursion;
(3) to determine the (time- and/or space-) complexity of a recursive

subprogram;
(4) to satisfy your intellectual curiosity;
(5) none of the above.

So, the answer is that recursive subprograms are executed in
exactly the same way as non-recursive ones. To wit: when a subpro­
gram is called, its formal value parameters act like local variables in­
itialized to the values of their corresponding expressions, its formal
var-parameters act as local names for their corresponding variables, and
its local variables are created with undefined values. Then the body of
the subprogram is executed. All information concerning parameters
and local variables is lost when execution of the body terminates. The
crucial fact concerning recursion is that each call creates a new set of
information.

For example, procedure PrintReverseOfLine stores the char­
acters in the rest of the current input line as the values of the local
variable ch for each of its calls. The number of calls is I more than the
number of characters initially in the rest of the input line, so the
space-complexity is of that order, which is the best possible. A non­
recursive solution using a string or an array needs space proportional to
the longest possible input line.

To desk-check a recursive subprogram, you must create new in­
formation for each call. For a var-parameter, use an arrow pointing to

ADVANCED USE OF SUBPROGRAMS 439

the row of successive values of the corresponding actual variable; for a
value parameter, create a new row and enter the value of the
corresponding expression; for a local variable, create a new row and
enter a ? for an undefined value. Then trace the execution of the body
as usual, repeating the process for recursive calls. On completion of
execution of the body, erase all the (ar)rows you created for the call.

The information needed to execute calls of subprograms,
whether recursive or not, is kept in an area of memory called the run­
time stack. If you get an error-message that announces that the stack
has overflowed or run out of space, it may be because too many re­
cursive calls have been executed. Perhaps you have not ensured that
each recursive call eventually leads to a non-recursive base-case; i.e.
you may have created infinite recursion.

To compute the time-complexity of a recursive subprogram, you
must work out how much time is needed to execute the statements of
the body other than the recursive calls, and how many recursive calls
will occur. Unless there are large value parameters, the overhead for
each recursive call is constant (i.e. independent of the problem-size).
To compute the space-complexity of a recursive subprogram, you must
compute the space needed for each instance, and the maximum length
of a chain of recursive calls, i.e. the maximum number of uncompleted
calls at any one time. This is called the depth of recursion.

Consider .function Fibonacci, for instance. Let en be the total
number of function calls to evaluate Fn. We see that:

1
1, ifn=O,

Cn = 1, if n = 1,
l+en-1 +en-2' ifn>l.

It follows that en = 2Fn+ 1 - 1, and, more importantly, that en is
exponential in n. Function Fibonacci therefore takes time exponential
in n, although the iterative solution based on a recurrence takes time
linear in n. In this case, the natural recursive solution is very in­
efficient. The reason is that it calculates the same function-values over
and over again.

Principle Check that a recursive solution is not needlessly in­
efficient.

A similar technique can be used to compute the total number of
calls when Hanoi(n, ...) is executed. Including the first, 2n+ 1 - 1 calls
of Hanoi are made, producing a sequence of zn - 1 moves. So the re­
cursive solution, although exponential in n, is optimal (up to a constant
factor), because the solution is unique. With n = 64, 264 - I moves are

440 PROGRAMMING USING MACINTOSH PASCAL

made, a very large number. So now the punch line of the story can be
given (with apologies to Chuck Berry): if you are asked to join an
obscure religious sect with headquarters in Hanoi, answer 'Too much
monky business for me to be involved in.'

18.2 Case-study: 11: Illustrating all text s!Y.les

18.2.1 SETTING OF THE PROBLEM

Macintosh Pascal enables the style of text in the Drawing window to be
specified by calling the predefined procedure TextFace with the
desired style as the actual value parameter. A style is a set of style
items, which are values of the predefined enumerated type Styleltem.
There are seven values of this type, and therefore 27 = 128 different
sets of style items. See the introduction to Chapter 17 for more details.

18.2.2 SPECIFICATIONS

A program is to be written that displays a sample of text in each
possible style. The samples are to be arranged in a systematic order.
The sample of text for a given style is to be an abbreviated representa­
tion of the set of style items. Specifically, it should consist of the first
letters of each of the style items present in the set, arranged in increas­
ing order of the items, and enclosed in square brackets. For example,
the style:

[underline, shadow, condense]

should be represented by the text [use] , in the appropriate style of
course. Each piece of sample text is to be separated from the next on
the same line by a fixed gap; a sample of text may not be broken at a
line boundary.

18.2.3 WRITING THE PROGRAM

The direct approach to the problem is to write seven nested loops, one
for each style item. Each loop will have two iterations, the first without
the corresponding style item in the current style, the second with it.
With just three style items, we would write something like the follow­
ing:

var
s : Style; { the style for the next sample text }
items : string[3]; { string of first letters of members of s }
iO, i1, i2 : 0 .. 1 ;

ADVANCED USE OF SUBPROGRAMS 441

s := [);
items:=";
for iO := O to 1 do

begin { iO}
If iO = 1 then

begin { add item O to current style }
s := [bold];
items:= 'b'

end;
for i1 := O to 1 do

begin { i1 }
if i1 = 1 then

begin { add item 1 to current style }
s := s + [italic];
items := concat(items, 'i')

end;
for i2 := O to 1 do

begin { i2}
if i2 = 1 then

begin { add item 2 to current style }
s := s + [underline];
items := concat(items, 'u')

end;
Display items in square brackets in style s;
if i2 = 1 then { subtract item 2 from current style }

begin
s := s - [underline];
delete(items, length(items), 1)

end
end; { i2}

if i1 = 1 then { subtract item 1 from current style } -
begin

s := s - [italic];
delete(items, length(items), 1)

end
end { i1 }

end{iO}

That is hard enough to understand, but its extension to handle
all seven style items is much worse. We're talking ugly here, as people
say who talk ugly. We might try to tidy up the solution by writing a
separate procedure for each loop, in which case we would notice that
each procedure was very similar (except the first, and only because it
has been optimized). That suggests the possibility of a recursive solu­
tion.

Principle Rather than trying to simplify a complex solution, start
over and find the simple solution directly.

442 PROGRAMMING USING MACINTOSH PASCAL

If recursion is to be exploited, we need a more general
procedure than a parameterless one that simply prints a sample of all
styles. Suppose we have a procedure that is given a set made up of
style items no greater than a given item. It can print samples of all
styles obtainable by adding items greater than the given one, by simply
printing with the given style if the given item is the last, or by making
two recursive calls otherwise: one without the next item in the set, the
other with, each with the next item as the new limit. And such a
procedure can be used to print all styles by calling it twice with the
first item as the limit, once without and once with that item in the set.

That about concludes the hard thinking. The rest is simply a
matter of translating the idea into Pascal, and tidying up loose ends.
Our solution is a minor variation that works with a lower limit rather
than an upper one, to achieve a more natural ordering of the styles:
one where all styles containing only the first n style items are printed
before any styles containing the (n + l)'th item.

18.2.4 THE COMPLETE PROGRAM

Here is the complete program. The recursive procedure ShowStyles
should be understood according to the previously enunciated
principles; i.e. you should check that its body meets its specifications
assuming that the recursive calls obey them, and show that the values
of the actual parameters of each recursive call bring it closer to a base­
case than those of the formal parameters. You should not attempt to
understand ShowStyles by mentally executing it.

program TextStyles;
{ Displays each of the 128 styles of text in the Drawing window; }
{ the sample text for each style is a shorthand form of its set. }

con st
BarSize = 15; { thickness of right & bottom bars of window }
MenuBarSize = 20; { depth of Menu bar at top of screen }
ScreenWidth = 512; {full width of Mac's screen }
ScreenDepth = 342; {full depth of Mac's screen }
LineGap = 20; { vertical distance between successive lines }
TextGap = 12; { horizontal distance between 2 sample texts }

type
str7 = string[?];

var
screen : Rect; { location of Drawing window }

ADVANCED USE OF SUBPROGRAMS 443

procedure ShowStyles (s : Style;
Firstltem : Styleltem; {sis a set of Firstltem .. extend }
items : str7); { string of first letters of members of s }

{ Displays a sample of each style of text obtainable by adding }
{ to s a set of style-items < Firstltem ; the sample text for }
{ each style is a shorthand form of its set. }
{Global consts: ScreenWidth, LineGap, TextGap.}

var
PenPos : Point; { pen position }
description : string[9]; { shorthand form of set for s }

begin { ShowStyles }
if Firstltem = bold then

begin { display text for s (on new line if necessary) }
TextFace(s);
description := concat('[', items, ']');
GetPen(PenPos);
if PenPos.h + StringWidth(description) >

ScreenWidth -TextGap div 2 then
MoveTo(TextGap div 2, PenPos.v + LineGap);

WriteDraw(description);
Move(TextGap, 0)

end
else

begin
{ Display all required styles not containing pred(Firstltem) }

ShowStyles(s, pred(Firstltem), items);
{ Display all required styles containing pred(Firstltem) }

ShowStyles(s + [pred(Firstltem)], pred(Firstltem),
concat(copy(StringOf(pred(Firstltem)), 1, 1),
items))

end
end; { ShowStyles }

begin { TextStyles}
SetRect(screen, 0, 0, ScreenWidth + BarSize,

ScreenDepth + BarSize);
SetDrawingRect(screen);
ShowDrawing;
MoveTo(TextGap div 2, MenuBarSize + LineGap);
ShowStyles([], extend, ");
ShowStyles([extend], extend, 'e')

end. { TextStyles }

Figure 17.1 (not 18.1) shows the Drawing window after running
this program.

Notice how ShowStyles differs from a general loop of the non­
recursive solution. It does not need to subtract a style item after adding
it, because the style information is carried by a value-parameter instead

444 PROGRAMMING USING MACINTOSH PASCAL

of a global variable. The latter alternative is possible, but is clumsier
and less modular than the given version, although it does decrease the
overhead for parameters.

There is a schema lurking in this program. It applies to any
problem which could in principle be solved by a bunch of nested loops
of the same form. The number of loops can be variable. Exercise
18.11 presents one such problem. The only reason that TextStyles uses
two calls of ShowStyles, which are suspiciously like the recursive calls
in the latter's body, is that Styleltem is an enumerated type, and there­
fore its biggest value has no successor. This situation usually does not
occur with subrange types, in which case this minor inelegance can be
avoided. See also Exercise 18.15 for an alternative.

Program TextStyles exploits Macintosh Pascal's predefined sub­
programs to the fullest. It chooses a Drawing window that is just large
enough for the right and bottom bars to be off-screen, thereby max­
imizing the visible area; it determines whether or not the next sample
text to be displayed will fit on the current line, by getting the pen posi­
tion and the length of the text to be displayed; and it uses Mac-strings
to manage the sample text conveniently.

Moral A comprehensive library of predefined subprograms effect­
ively increases the level of the programming language, because
stepwise refinement terminates at a higher level than it otherwise
would.

Program ShowTree for Case-study 12 in Chapter 20 contains
another example of a recursive procedure. Recursion is a very
important technique for advanced data-types, many of which are in­
herently recursive. Also, it seems likely that recursion will play a
fundamental role in programming languages of the near future, especi­
ally in the manner used in program TextStyles, where value­
parameters are used in preference to global variables. The serious pro­
grammer will study it (recursion!) thoroughly. Besides, it's fun.

18.3 Subprograms as parameters
18.3.1 EXAMPLES

Suppose a program needs to sort an array several times, using different
criteria for ordering the elements. The ordering relation between two
elements could be computed by the sort procedure, perhaps by using
an extra parameter as the expression controlling a case-statement. But
the resulting procedure would be clumsy and messy to modify if the
ordering criteria were changed.

ADV AN CED USE OF SUBPROGRAMS 445

Pascal permits a neater solution, because it permits functions
(and procedures) to be used as parameters. Using the simple version of
bubble sort as the sorting algorithm, the procedure is written as
follows:

con st
Maxlndex = ... ;

type
index = 1 .. Maxlndex;
count = o .. Maxlndex;
item= ... ;
values = array[index] of item;

procedure sort (var A : values;
n: count;
function GreaterThan (x, y : item) : Boolean);

{ Sorts A[1 .. n] into non-decreasing order; }
{ item x > item y iff GreaterThan(x, y) is true. }
{Global subprogram: swap. }

var
NrLeft : count; { only A[1 .. NrLeft] remains to be sorted }
k : index; { A[k] & A[k + 1] are compared }

begin { sort }
for NrLeft := n downto 2 do

for k := 1 to NrLeft - 1 do
if GreaterThan(A[k], A[k + 1]) then

swap(A[k], A[k + 1])
end; { sort}

GreaterThan is a formal function parameter of procedure sort.
It may be used in the body of sort just like a locally defined function
with the same heading.

In a procedure-statement for sort, the third actual parameter
must be the identifier of a function of the same kind as GreaterThan.
This means that the supplied function's heading may differ only in its
name and the names of its formal parameters. The rest of its heading
must be identical to that of GreaterThan.

For example, suppose the following definitions and declarations
are made:

type
item = record

name : string[30]; { last name, other names}
SocSecNr : longint; { social security number }

end;

446 PROGRAMMING USING MACINTOSH PASCAL

var
employee : values; { employee[1 .. NrEmployees] are ... }
NrEmployees: count; { ... the employees}

function GreaterName (item1, item2 : item) : Boolean;
{ Returns true iff the name of item1 comes after that of item2. }
begin { GreaterName }

GreaterName := item1 .name > item2.name
end; { GreaterName}

function GreaterSSN (item1, item2 : item) : Boolean;
{ Returns true iff the social security number of item1 exceeds}
{ that of item2. }
begin { GreaterSSN }

GreaterSSN := item1 .SocSecNr > item2.SocSecNr
end; { GreaterSSN}

The call:

sort(employee, NrEmployees, GreaterName)

will rearrange the elements of the array-section employee
[1 .. NrEmployees] into non-decreasing order of their names (roughly
speaking, into alphabetical order). And the call:

sort(employee, NrEmployees, GreaterSSN)

will rearrange the employees into increasing order of their social
security numbers (assuming no two have the same number).

The ability to pass functions and procedures as parameters en­
ables very high-level subprograms to be written. For example, here is a
function which forms what mathematicians call the iterated-composition
of a given function:

function compose (function f (x : real) : real;
n: count;
x : real) : real;

{ Returns the n-fold composition of f applied to x; }
{ i.e., f(f(... f(x) ...)), where there are n f's; }
{ the 0-fold composition is defined to be x. }
var

result : real;
i : O .. Maxint; { in 1 .. n }

begin { compose }
result:= x;
for i := 1 to n do

result := f(result);
compose := result

end; {compose}

ADVANCED USE OF SUBPROGRAMS 447

Pascal does not permit predefined functions and procedures to be
passed as actual function and procedure parameters, respectively. So to
supply the natural logarithm function In, for example, we must first
define an equivalent function:

function loge (x : real) : real;
{ Returns the natural logarithm of x; assumes x > 0. }
begin { loge }

loge := ln(x)
end; {loge}

Then the following statement is legal:

Writeln('log log log (Maxint) = ', compose(loge, 3, Maxint) : 1 : 6)

It prints:

log log log (Maxint) = 0. 850806

Another situation where a function parameter would be used is
in a function to compute the integral of a given function over a given
interval. Procedure parameters are used in an analogous way to func­
tion parameters. Although there are occasions where function and
procedure parameters are undoubtedly useful, they should never be
used for their own sake, because their effects can be hard to under­
stand, especially when the actual parameter subprograms access non­
local variables.

18.3.2 SYNTAX

The syntax rules for function and procedure parameters are as follows:

formal-parameter-section: value-parameter-section I
variab/.e-parameter-section
function-parameter-section
procedure-parameter-section

function-parameter-section: function-heading
procedure-parameter-section: procedure-heading

The names of the formal parameters of a formal function or procedure
parameter are required simply to avoid complicating the syntax.

Next come actual-parameters of function-designators and
procedure-statements:

448 PROGRAMMING USING MACINTOSH PASCAL

actual-parameter: actual"value I actual-variable I
actual-function I actual-procedure

actual-function: function-identifier
actual-procedure: procedure-identifier

18.4 Conformant arrays
The ISO definition of Pascal distinguishes two levels of the language:
level 0 and level 1. Level 1 differs in having an extra kind of para­
meter, called a conformant array parameter. Such a parameter does
not declare the precise index-type(s) of the array; rather, it declares
type(s) which will contain the corresponding actual parameter's index­
type(s). Thus, for example, by using the type integer in this role, a
subprogram is created that can operate on any array of elements of the
appropriate type, provided only that its index-type is a subrange of in­
teger. Formal names are declared to enable the subprogram to refer to
the least and greatest values of the index-type of the actual array
supplied in the call.

There are many complications and restrictions pertaining to this
feature. Since it is not part of (ANSI) Standard Pascal, not provided
in Macintosh Pascal (and many other implementations), and has no
place in an introduction to programming, we are content to refer the
interested reader to 'Further reading', Section 18.5.

18.5 Further reading
(1) Pritchard, P. (1988). An Introduction to Programming using

Macintosh Pascal. Reading, Mass: Addison-Wesley.
An incomparable but immodest text. Its chapter on recursion
contains an amusing example.

(2) Rohl, J. (1984). Recursion via Pascal. Cambridge: Cambridge
University Press.
The Joy of Recursion.

(3) Welsh, J. and Elder, J. (1988). Introduction to Pascal. 3rd edi­
tion. London: Prentice-Hall.
Has a comprehensive discussion of conformant array parameters.

EXERCISES
18.1 Function Fibonacci can be slightly simplified by combining the cases

n = 0,1. Do so.

ADVANCED USE OF SUBPROGRAMS 449

18.2 The factorial function can be defined as follows, where n! denotes the
value of factorial n:

{
I, ifn=O,

n! = n x (n-1)!, ifn>O.

(a) Translate this definition into a recursive Pascal function.

(b) Give an iterative (i.e. non-recursive) version.

(c) Compare the time- and space-complexity of the two solutions.

18.3 Give a recursive implementation of function reverse in Chapter 14.

18.4 Powers of a number can be computed by a function taking two argu­
ments: the number and the integer exponent of the desired power.
The nth power of x is usually written x", and may be defined as follows
for n ~ 0:

{
I, if n =O,

xn = x xxn-l, ifn is odd,

(xn div 2)2, if n > 0 and n is even.

Write a recursive function to compute a non-negative integer power of
a real number.

Hint: Use the predefined function sqr.

18.5 Give a version of Hanoi for n ~ 1 which makes exactly one move per
procedure call.

18.6 Give a simple, directly recursive implementation 0f the greatest
common divisor function.

18.7 Desk-check the procedure-call Hanoi(2, left, right, middle).

18.8 Give a recursive implementation (but still using binary search) of func­
tion lndexOf in Chapter 12.

18.9 Suppose a program deals with possibly nested boxes. The boxes are
numbered from 1 onwards, and an array around records the arrange­
ment of the boxes as follows:

450 PROGRAMMING USING MACINTOSH PASCAL

con st
MaxBoxNr = ... ;

type
BoxNr = 1 .. MaxBoxNr;

var
around : array[BoxNr] of O .. MaxBoxNr;
NrBoxes : BoxNr;

{ around[i] = 0 if no box contains box i, or j if box i is }
{ immediately contained in box j, 1 <= i <= NrBoxes. }

For example, suppose there are seven boxes, in the following arrange­
ment:

Then NrBoxes = 7, and around = (2, 0, 2, 3, 6, 2, 6).

Give a recursive implementation of the following function:

function surrounds (x, y: BoxNr) : Boolean;
{ Returns true iff box x contains boxy, not necessarily }
{ directly; Global vars: NrBoxes, around. }

For example, surrounds(2, 7) gives true and surrounds(5, 3) gives
false.

18.10 A neat recursive implementation can be given for procedure
ArraySwap specified in Exercise 11.19, which swaps two adjacent
array-sections. The idea is first to write a procedure EqualSwap that
swaps two array-sections that are of equal size but are not necessarily
adjacent. ArraySwap then works as follows. If both sections are of the
same size, it simply calls EqualSwap. Otherwise, it first calls Equal­
Swap to swap the smaller section with an equal-sized section at the
opposite end of the larger section, then makes a recursive call to
complete its task. Here is what happens in the example given in
Exercise 11.19:

A[4 .. 6] and A[7 .. 11] are to be swapped:

4 5 6 7 8 9 10 11

A 2 4 6 8 10 12 14 16

ADVANCED USE OF SUBPROGRAMS 451

after the call of EqualSwap to swap A[4 .. 6) and A[9 .. 11]:

4 5 6 7 8 9 10 11

A I 12 I 14 I 16 I 8 I 10 I 2 I 4 I 6

after the recursive call to swap A[4 .. 6] and A[7 .. 8]:

4 5 6 7 8 9 10 11

A I 8 I 10 I 12 I 14 I 16 I 2 I 4 6

Write the recursive version of procedure ArraySwap.

18.11 Implement the following procedure:

procedure powers (n : count);
{ Prints all non-negative numbers with n decimal digits }
{ that are equal to the sum of the n'th powers of their decimal }
{digits. }

You may assume the existence of the following function:

function power (a, n : count) : count;
{ Returns a to the power n. }

Hint: If n were fixed at 2, the following would do:

var
d1, dO : 0 .. 9; { tens digit, units digit }

begin { powers }
for d1 := O to 9 do

for dO := O to 9 do
if sqr(d1) + sqr(dO) = 10 * d1 + dO then

Writeln(10 * d1 + dO)
end; { powers }

18.12 Write a function that returns the sum of the values of a given function
between two given limits. Assume the given function takes a single in­
teger argument.

18.13 Around the turn of the century there was some interest in producing
space-filling curves. Perhaps the simplest is due to the great German
mathematician David Hilbert. Hilbert's curve is the limit of an infinite
sequence of curves, suitably scaled and placed to fit in a 1 x 1 square.
An arbitrary member of this sequence may be described very simply
using recursion (ignoring size and placement).

452 PROGRAMMING USING MACINTOSH PASCAL

Hilbert curve
of order 1

Hilbert curve
oforder2

The first curve, called the Hilbert curve of order 1, consists of three
sides of a square, as shown in Figure 18.4. The second is made by con­
necting four Hilben curves of order 1, suitably rotated, by three lines
of the same length as the sides of the four Hilben squares, which by
themselves would form a Hilben-curve of order 1. It is also shown in
Figure 18.4.

Since the second-order curve lies on or within the boundary of a
square, and stans and ends in the top-left and bottom-left corners, just
like the first-order curve, a third-order curve may be obtained by con­
necting four Hilben curves of order 2 in exactly the same way. More­
over, by positing an empty Hilben curve of order 0, we may use the
same general recursive construction for all the Hilbert curves. A
rotated fourth-order curve is incorporated in Figure A.3.8 (in
Appendix Section A.3).

Implement the following procedure in the given context.

type
direction = (up, down, right, left); { directions relative to

screen}
UnitMoves = array[direction] of Point;

var
vector : UnitMoves; { vector[d] is change to position to move

1 unit in direction d }

procedure Hilbert (d1, d2, d3, dOther : direction;
i : integer);

{ Draws i'th order Hilbert curve starting at current position; }
{ leaves pen at end of curve; d1 is direction of 1st connect- }
{ ing move; sim. for d2, d3; dOther is direction other than }
{ d1-3; i.e. 1st order curve is drawn with: move d1, move d2,}
{move d3.}

Hints: Define vector (which represents a function) using the following
predefined procedure of Macintosh Pascal:

Figure 18.4
The Hilbert curves of
orders I and 2.

ADVANCED USE OF SUBPROGRAMS 453

procedure SetPt (var p : Point; x, y : integer);
{ Sets p to (x, y). }

Use vector in conjunction with procedure Line to do the drawing.

18.14 Another class of curves whose limit fills a square is due to Sierpinski.
One quarter of a Sierpinski curve of order 4 is also incorporated in
Figure A.3.8. If you are a glutton for punishment, see if you can write
a procedure to draw such a segment of a Sierpinski curve of given
order and given orientation. (A sequence of four suitable calls of the
procedure, with four connecting lines, produces a closed curve which
fits in a square.)

Hints: Characterize each move by two elements of vector, whose net
effect defines the endpoints of the line drawn; use the following pre­
defined Macintosh Pascal procedure to help implement such a move:

procedure AddPt (ChangeToP : Point; var P : Point);
{Adds the coordinates of ChangeToP to those of P. }

18.15 Change the specification of procedure ShowStyles by replacing
< Firstltem by <= Firstltem, implement the new procedure and use it
to print all text styles with a single call.

454 PROGRAMMING USING MACINTOSH PASCAL

19 _____ _
NUMERIC COMPUTING
I do not mind lying, but I hate inaccuracy.
- Samuel Butler, Truth and Convenience

19.1 Re~resenting integer values
19.2 Re~resenting real numbers

19.2.1 ReQresentation roundoff error
19.3 Problems with real arithmetic

19.3.1 Overflow
19.3.2 Underflow

19.3.3 Roundoff error
19.3.4 CatastroQhic cancellation

19.4 Cautionary exam~les of numeric ~rogramming
19.4.1 ExamEle one
19.4.2 ExamEle two
19.4.3 ExamEle three
19.4.4 ExamEle four
19.4.5 Summary

19.5 Ma caveats
19.6 Further reading

Exercises

456
458

460
460

461
462
462
464

464
464

465
467
468
470

471
471
471

lia~
19.1

19 .1 Representing integer values
An integer is represented in Macintosh Pascal by a fixed number of
bytes. Type integer uses 2 bytes, type longint uses 4. Each of these
types represents a finite range of the mathematical integers:

const
Maxint = 32767; { = 2 to the power 15 - 1 }
Maxlongint = 2147483647; { = 2 to the power 31 - 1 }

type
integer = -Maxint..Maxint; { 2 bytes = 16 bits }
longint = -Maxlongint..Maxlongint; { 4 bytes = 32 bits }

Only type integer is required by the Standard.
In Pascal, it is an error if an operation gives an integer result

outside the required range. This applies to each of the intermediate
operations in an expression, not just the final result. In Macintosh
Pascal, all integer-valued operators (such as +) and predefined ar­
ithmetic functions (such as sqr) return results of type longint when
applied to integer values. Only when an attempt is made to assign an
out-of-range longint value to a variable of type integer does an error
occur. The error message is shown in Figure 19 .1.

The finite range of Pascal's integers should be kept in mind. For
example, here is a refinement given in Chapter S as an example of a
repeat-loop. All variables are of type integer.

{ Set NrDigits = number of decimal digits in numeral of n }
NrDigits := O;
RestOfn := n;
repeat

NrDigits := NrDigits + 1;
RestOfn := RestOfn div 10

until RestOfn = 0

Compare it with the following solution, taken from one of the better
textbooks on Pascal:

456 PROGRAMMING USING MACINTOSH PASCAL

~ The ualue of a uariable or subeHpression is out of range for its m intended use.

NrDigits := 1 ;
Power0f10 := 10;
while Power0f10 <= n do

begin
NrDigits := NrDigit$ + 1;
Power0f10 := Power0f10 * 10

end

This latter solution, which is meant to work only for non-negative
values of n, will fail for all values of n that have as many decimal digits
as Max.int; on the Macintosh, for 9999 < n ~ 32 767, i.e. most values
of n!

The type longint is used for systems-programming on the
Macintosh, and for this reason is treated differently from type integer.
Two important differences are:

(1)

(2)

The value -Maxlongint - 1 is permissible;
Results outside the range -Maxlongint-1 .. Maxlongint are not
detected as errors; the effect is as if the values are arranged in a
circle by defining succ(Maxlongint) = -Maxlongint - 1. For
example, Maxlongint + 4 gives the same value as does -Max­
longint + 2, viz. -2147 483 645.

Principle Because out-of-range errors in longint arithmetic are not
detected, large integers are best represented as values of the type
computational (which is described in the next section).

Unfortunately, because longint arithmetic is not secure, neither is ar­
ithmetic with integer values; see 'Macaveats', Section 19.5.

Several predefined functions work with the binary representa­
tions of longint values. They make it possible to rewrite program Nim
for Case-study 10 in Chapter 17 to dispense with several of the vari­
ables and subprograms. Procedure SymmetricDifference, for instance,
corresponds to the predefined function BitXor, which is defined along
with the others in Section 10.6.4.1 of the Reference. The resulting ver­
sion of Nim is much shorter, but also much lower-level and far less
portable, than the original.

NUMERIC COMPUTING

Figure 19.1
The error-message for an
out-of-range integer value.

:ti~
19.2

:11~

19.3

457

19.2 Representing real numbers
More concessions have to be made to represent the real numbers,
because in any range there are infinitely many. The solution is to re­
strict both the range and the precision (the number of significant
digits).

Consider the real number rt, the ratio of a circle's circumference
to its diameter. We can write it as:

+31415.926 ... x 10-4, or

+0.31415926 ... x 101, or

+3.1415926 ... x 10°,

and so forth, where the three dots stand for an infinite string of
decimal digits. In this representation, the string of digits is called the
significand (or the mantissa), and the power of 10 is called the
exponent. We do not have to use base 10; if we use base 2, with digits
0 and 1, rt can be written as:

+11.001001000011 ... x 2°, or

+ 1.1001001000011 ... x 21, etc.

For example, the first representation means:

1 x 21 + 1 x 2° + o x z-1 + o x z-2 + 1 x z-3 + ... =
1 x 2 + 1 x 1 + 0 x 0.5 + 0 x 0.25 + 1 x 0.125 + ... =

2 + 1 + 0.125 + ... =
3.125 + ...

The last member of each of the two groups of representations
above is called the normalized representation. Once we choose a base
b, we can write any real number except 0.0 as:

Here sign is + or-, each di is a digit, and d1 -:/= 0. This normalized re­
presentation is unique (if we exclude significands ending in an infinite
string of (b - 1)-digits). By convention, the normalized representation
of 0 is:

+0.000 ... x b0 •

A real number is represented in Macintosh Pascal by a fixed­
length significand and an exponent in a fixed range of the integers. The

458 PROGRAMMING USING MACINTOSH PASCAL

Type real double extended

size (bytes: bi ts) 4:32 8:64 10:80
minimum exponent -126 -1022 -16383
maximum exponent 127 1023 16384
bits in significand 24 53 64
significant decimal digits 7-8 15-16 19-20
range ±3.4 x IO 38 ±1.7 x 10308 ±I. I x 104932
smallest (positive) 1.5 x }Q-45 5.0 x }()-324 I. 9 x }Q-4951
smallest normalized 1.2 x }()-38 2.3 x }()-308 I. 7 x }Q-4932

(+ve)

base b = 2. The normalized form is used unless the number is too
small, because this maximizes the number of significant digits. This
scheme for representing real numbers is called a floating point system;
'point' refers to the decimal point. Three types of real-numbers are
provided in Macintosh Pascal; their properties are summarized in
Table 19.1. The decimal values in Table 19.1 are only approximate.
The smallest positive and negative numbers have only one significant
binary digit.

A special type called computational is provided in Macintosh
Pascal. Its values are the integers in the range -263 - 1..263 - 1, but
they are treated in some respects as real values. For example, a value
of type computational can be given a fraction-length when printed.
The effect is to move the implicit decimal point so many places to the
left. For example, execution of:

var
price : computational;

price := 19999;
Writeln('and it"s yours for a mere$', price : 1 : 2)

prints:

and it's yours for a mere $199.99

The intended use of this type is to represent so-called fixed-point real
numbers, which are regarded by the program as having an implicit
decimal point in a fixed position. Such usages are error-prone, because
it is up to the program to treat the numbers properly. The type is more
usefully applied to representing large integers, because out-of-range
errors are detected. There is a problem with output, however; see
'Macaveats', Section 19.5.

Table 19.1 Three types of
real numbers in Macintosh
Pascal.

:11iY

19.4

NUMERIC COMPUTING 459

19.2.1 REPRESENTATION ROUNDOFF ERROR

An important property of real numbers in Pascal is already apparent:
almost all real numbers are not represented exactly. For example, the pre­
defined Macintosh Pascal extended constant pi is not equal to the real
number Jt (which has an infinite significand in any base); pi exceeds Jt

by about S x 10-20• Even numbers that have simple decimal re­
presentations may have infinite binary ones; if the base for the internal
representation is a power of 2, they will not be represented exactly. For
example, 0.1 has the infinite binary representation 0.0001100110011
... ; execution of:

var
r: real;

r := 0.1;
Write(r : 1 : 25) . ·

will print:

0.1000000014901161194000000

The errors introduced by using approximate representations for real
constants and input values are called representation roundoff errors.

Macintosh Pascal 2.0 does not print more than 19 significant
decimal digits; extra ones are printed as 0. The reason is presumably
that the 20th decimal digit is not accurate. But there is an unfortunate
consequence: there are unequal numbers which cannot be dis­
tinguished by printing them. More importantly, the above example
highlights the following principle:

Principle Do not print more significant digits than are present in
the data; extra digits are at best meaningless and at worse mislead­
ing.

19.3 Problems with real arithmetic
There are no physical constants known with anywhere near the preci­
sion of extended numbers (not by earthlings, at least). But neverthe­
less there is good reason for the high precision of type extended: as we
shall see later in this section, it helps overcome the loss of precision in­
herent in real arithmetic in Pascal.

In Macintosh Pascal, all real-valued operations and predefined
arithmetic functions produce results of type extended. All values of

460 PROGRAMMING USING MACINTOSH PASCAL

types real, double, and computational are converted to extended
values before either arithmetic and relational operators or arithmetic
functions are applied. There are some unintuitive consequences. For
example, execution of the following program-segment prints False:

var
x: real;

x := 1/3;
Write(x = 1 I 3)

The reason is that the real-number 1/3 has an infinite binary
significand. Each of the expressions 1 I 3 produces an extended
approximation to 113, but only the nearest value of type real is stored
in x. It is converted to an equal extended value before the comparison,
but the extra bits appended to the significand are 0, so it is not equal
to the extended approximation to 1/3.

19.3.1 OVERFLOW

As with integer-arithmetic, real-arithmetic may produce a value that is
out of range. This happens whenever the exponent of the result
exceeds the maximum permitted for extended values, e.g. when
evaluating 1 E2500 * 1 E2500. This is a serious error, and is most like­
ly to result from either a multiplication, division or function-call. The
error-condition is called overflow; the default action is to halt the pro­
gram with the error-message shown in Figure 19.2.

The same error-condition occurs when a real-value is assigned to
a variable of a real-type with a maximum exponent that is too small, as
in:

var
r: real;

r := exp(100); {approx. 2.7E43}

A floating-point error-message, rather than that in Figure 19.1, occurs
when an attempt is made to assign an out-of-range value to a variable
of type computational.

~ Floating point arithmetic eHception: Ouerflow occurred.
Figure 19.2
The error-message for an
out-of-range real value.

NUMERIC COMPUTING 461

19.3.2 UNDERFLOW

Real-arithmetic may produce a non-zero result with an exponent that is
less than the least permitted for extended values, as when evaluating
1 E-2500 I 1 E2500. Similarly, an attempt may be made to assign a
real-value to a variable of a real-type with a minimum exponent that is
too large. In some cases, a non-zero approximation can be obtained by
using an unnormalized representation (at the cost of losing significant
digits). If this is not possible, we say that underflow occurs. As with
overflow, it is most likely owing to either a multiplication, division or
function-call.

Underflow is usually not regarded as a serious error, because it
usually suffices to approximate the offending number with zero. This
happens by default in Macintosh Pascal, and the programmer is given
no indication. However, it is possible to arrange for an error-condition
to occur, by the call:

SetHalt(underflow, true)

in which case underflow is treated in a similar manner to overflow. See
Section D of the Technical Appendix for some sketchy details.

19.3.3 ROUNDOFF ERROR

Almost all arithmetic operations on real values produce errors. If the result
of an arithmetic operation has more significant digits than can be
stored in the fixed-length significand, the extra digits are discarded,
and execution continues without warning. Some systems round the last
retained digit, some just truncate without rounding. (The default in
Macintosh Pascal is to round to the nearest representable number.) In
any case, the resulting error is called roundoff error. Roundoff error
occurs also when the significand of an extended value is reduced to
assign the value to a variable of type real or double.

Roundoff error can most easily be appreciated by doing some
calculations with a more manageable floating-point system. Let us post­
ulate a machine called a Mad Mac, whose version of Pascal provides a
single real type that uses a floating-point system with base b = 10, a
two digit significand, and an exponent in the range -9 .. 9. We shall
write a number in this system as (significand, exponent). For example,
n = 3.14159 ... x 10° would be approximated by (3.1, 0). ·

Multiplication is done by multiplying the significands and add­
ing the exponents, then normalizing if necessary. For example, con­
sider computing 3.1 * 41. This is (3.1, 0) x (4.1, 1). The exact answer
is (3.1 x 4.1, 0 + 1) = (12. 71, l); it is rounded to (13, 1) and
normalized to (1.3, 2). This exceeds the correct value by 2.9, so the
rounding error is +2.9. This is not a large error relative to the correct

462 PROGRAMMING USING MACINTOSH PASCAL

result, and this desirable property is true even of a series of multiplica­
tions (and/or divisions).

Note that (1.3, 2) I (3.1, 0) represents 130/3.1, which equals
41.9 ... , and is therefore rounded to (4.2, 1). That is in real arithmetic
in Mad Mac's Pascal, the algebraic law:

ex x y) Ix = y if x ~ o
does not always hold. The same goes for Macintosh Pascal. For
example, execution of:

Write(1.7 * 5 / 5 = 1.7)

prints False.
Floating-point addition is slightly more complicated than multi­

plication, because the exponents must be made equal before the
significands can be added. For example, consider computing (3.1, 0) +
(4.1, 1), representing 3.1 + 41. The exact answer is (0.31, 1) +
(4.1, 1) = (0.31 + 4.1, 1) = (4.41, l); it is rounded to (4.4, 1), re­
presenting 44. The rounding error is -0.1. Again, this is not a large
error relative to .the correct result. But unlike the case with multiplica­
tion, the same is not necessarily true of a series of additions (and/or
subtractions).

To see this, first consider computing (1.0, 1) + (4.9, -1), re­
presenting 10 + 0.49. The result is (1.0, 1), as it should be, since
(1.0, 1) is the nearest floating-point number to the exact answer 10.49.
It follows that the real variable sum contains (1.0, 1) after executing
the following Mad Mac Pascal program segment, no matter what the
value of n.

sum:= 10.0;
for i := 1 to n do

sum:= sum+ 0.49

So the relative error can be very large indeed! In fact, it is easy to con­
struct examples where the absolute error is an arbitrarily large percent­
age of the correct answer; see Exercise 19. 8.

There are two ways to avoid snowballing roundoff errors when
computing sums of real numbers. The first is to add the numbers in
increasing order of magnitude. This gives the smaller numbers a
chance to contribute to the final result. When it is inconvenient to do
this, the partial sums should be accumulated in a variable of a higher­
precision real-type (if such a type is provided). In Macintosh Pascal,
we should use type extended; the result can be converted to a variable
of type real if desired. Note that in Macintosh Pascal, and any other
system which does all arithmetic in extended precision, using variables
of type real instead of extended saves space, not time.

NUMERIC COMPUTING 463

19.3.4 CATASTROPHIC CANCELLATION

Catastrophic cancellation is a colorful term for the large loss of preci­
sion that can occur when a number is subtracted from another that is
equal or almost equal. This is the single most important problem to be
wary of when calculating with real numbers.

For example, consider evaluating the expression:

1 I x - 1 I (x + delta)

where real variables x and delta are non-zero, and delta is known to be
small relative to x. Suppose x contains (1.2, 1), representing 12, and
delta contains (2.5, -1), representing 0.25. Now (1.2, 1) + (2.5, -1)
gives (1.2, 1), so the result in Mad Mac's Pascal is zero. But suppose
the expression is reformulated in the algebraically identical form:

delta I (x * (x + delta))

This evaluates to (1.7, -3), representing 0.0017, the correct approx­
imation to the exact answer 0.001700680

19.4 Cautionary examples of numeric
• programming

19.4.1 EXAMPLE ONE

Suppose a, b, and c are real variables representing the lengths of the
sides of a triangle, that their values satisfy a :s:; b :s:; c, and that the
following action is to be refined:

var
RightAngled : Boolean;

Set RightAngled to true if the triangle is right-angled, otherwise false

Mathematically, the triangle is right-angled if and only if:

a2 + b2 = c2

But even if the values 0.3, 0.4, and 0.5 were read directly from ·the in­
put data into a, b, and c respectively, representation roundoff error
causes the Pascal expression:

sqr(a) + sqr(b) = sqr(c)

to give the value false (in Macintosh Pascal). Because of representation

464 PROGRAMMING USING MACINTOSH PASCAL

roundoff error and roundoff error from calculations, the following
principle should be adhered to:

Principle Avoid using the relational operators = and <> with
real-valued expressions.

In our example, and in other situations where mathematical
equa_lity is a possibility, the best we can do is test for approximate
equality:

const
tolerance = 5E-4; { maximum acceptable relative error }

{ Set RightAnglecl to true if the triangle is right-angled, }
{ otheiwise false }

RightAnglecl := abs(sqr(a) + sqr(b) - sqr(c)) I sqr(c)
<= tolerance

The above test is said to check that sqr(a) + sqr(b) and sqr(c) are
equal to within 4 signifiaznt decimal digi,ts. Error tolerances are con­
strained by the accuracy of the data, the precision of the real types,
and the accuracy of the calculations, that may influence the values to
be compared.

Incidentally, if type extended were used for a, b, and c, the
expression sqr(a) + sqr(b) = sqr(c) does give true for the above test
values. But this is just luck: the same does not happen for the values
0.003, 0.004, and 0.005.

19.4.2 EXAMPLE TWO
A quadratic equation is an equation of the form:

ax2 +bx+ c = 0

A root of the equation is a value of x that makes the equation true. A
quadratic equation normally has two (possibly equal) roots, given by
the well-known formula:

-b ±Yb2 -4ac
2a

The exceptions are if a = O and b = 0, when there are no roots, and
if a = 0 and b ':/= 0, when there is one root, namely -db. Also, if
b2 - 4ac, called the discriminant., is negative, then both roots are
complex numbers.

NUMERIC COMPUTING 465

Our task is to implement the following Standard Pascal
procedure:

type
Rootslnfo = (None, OneReal, TwoReal, Complex);

procedure roots (a, b, c: real;
var root1, root2 : real;
var outcome : Rootslnfo);

{ Sets root1 to the first real root, and root2 the second }
{ (if it exists), of the quadratic equation asqr(x) + bx + c = 0, }
{and sets outcome accordingly. }

The task is complicated by the possibility that 4 * a * c may be
very small relative to sqr(b). For then the discriminant will be almost
sqr(b), and its square-root almost abs(b). Catastrophic cancellation
will occur if this is added to -b if b is positive, or if added to b if b is
negative.

Fortunately, one of the two roots can always be calculated with­
out catastrophic cancellation, and since the product of the roots is c/a,
the other can be calculated by dividing this product by the first root.
The safe implementation is given below.

var
discriminant: real;

begin { roots }
ifa=Othen
ifb=Othen

outcome:= None
else { b <> O}

begin
root1 := -c I b;
outcome:= OneReal

end
else {a<> o}

begin
discriminant := sqr(b) - 4 * a * c;
if discriminant < O then

outcome := Complex
else { discriminant > = O }

begin
root1 := (-b - CopySign(b, sqrt(discriminant))) I (2 * a);
root2 := c I a I root1;
outcome := TwoReal

end
end

end; { roots }

466 PROGRAMMING USING MACINTOSH PASCAL

CopySign is a function from the Standard Apple Numeric En­
vironment, a library known to Macintosh Pascal as SANE. To make it
available, the program-heading must be followed by the uses-clause:

uses
SANE;

CopySign returns the absolute value of its second argument, multiplied
by -1 if the first argument is negative.

SANE makes it possible to perform real arithmetic to a smaller
precision than the default, and therefore test numeric subprograms
which are designed to be portable. The procedure call:

SetPrecision(RealPrecision)

makes all real arithmetic produce results of type real. Using it, we
execute the following test:

var
a, b, c, x1, x2 : real;
result : Rootslnfo;

SetPrecision(Real Precision);
a := 1.000E-4;
b := 1.000;
c := 1.000E-4;
roots(a, b, c, x1, x2, result);
Writeln('roots of(', a : 1 : 4, ')sqr(x) + (', b : 1 : 4, ')x + (',

c : 1 : 4, ') are:');
Writeln(x1 : 12, 'and ', x2 : 12)

The output is shown in the upper window in Figure 19.3. The roots
are correct to the four significant figures displayed. The lower window
shows the output produced by testing the naive implementation; i.e. by
computing root2 with:

root2 := (-b + CopySign(b, sqrt(discriminant))) I (2 * a)

It demonstrates clearly the effect of catastrophic cancellation. The
problem does not arise when using the normal extended precision.

19.4.3 EXAMPLE THREE

Once again, suppose we are working in real precision to develop port­
able software, and need to compute:

:i~
19.5

NUMERIC COMPUTING 467

Figure 19.3
Text windows after tests of
each version of roots

D Te Ht
roots of (O.OOOl)sqr(x) + (1 .OOOO)x + (0.0001) are:~
-1 .000e+4 and -1 .OOOe-4

0 Te Ht
roots of (O.OOOl)sqr(x) + (1 .OOOO)x + (0.0001) are: 11£1
-1 .000e+4 and -2.960e-4

Vx2+y2

where the magnitudes of x and y may both be very large or very small.
The expression:

sqrt(sqr(x) + sqr(y))

could give rise to overflow or underflow, even though the result is well
within range. This problem can be avoided by the following solution:

var
min, max : real; { minimum and maximum of abs(x), abs(y) }

min := abs(x);
max := abs(y);
if min > max then

begin
min := max;
max := abs(x)

end;
... max * sqrt(1.0 + sqr(min I max)) ...

Exercise 19 .11 invites you to verify the superior robustness of the
second version.

19.4.4 EXAMPLE FOUR

The mean (average) and variance are perhaps the most commonly
computed statistics. The mean µ and variance 02 of the values xl' x2,

... , xn are defined as:

µ=
XI + Xz + ... + Xn

n

468 PROGRAMMING USING MACINTOSH PASCAL

a2 = (x1 -µ)2 + (x2-µ)2 + · · · + (xn -µ)2

n

Using the definitions to compute the two statistics requires that
the values xi be stored, because the computation of the variance uses
both the mean and the values. However, the variance can be expressed
as:

x1 2 + x2 2 + ... + Xn2 .
02 = - µ2

n

and this permits both statistics to be computed with a single scan of the
values.

Unfortunately, the single-scan approach is much more likely to
suffer from catastrophic cancellation, as is demonstrated by the follow­
ing program.

program stats (Input, Output);
{ Prompts for and reads real numbers followed by an end-of-line, }
{ and prints their mean and variance. }
var

n : O •• Maxint; { number of input values read }
x, { last input value read }
sumx, sumx2, { sums of input values read, and their squares }
mean, variance { statistics for all input values read }

: a real-type;
begin { stats }

n := O;
sumx := 0.0;
sumx2 := 0.0;
Writeln('Enter real numbers (hit Return after last):');
while not eoln do

begin
Read(x);
n:=n+1;
sumx := sumx + x;
sumx2 := sumx2 + sqr(x)

end;
Readln;
mean := sumx I n;
variance := sumx2 I n - sqr(mean);
Writeln('mean = ', mean : 1 : 5);
Writeln('variance = ',variance : 14)

end. { stats }

The upper window in Figure 19 .4 shows the result of a run of
program stats with type real for a real-type. The value for the var-

NUMERIC COMPUTING 469

Figure 19.4
The Text window after two
runs of program stats.

0 Te Ht
Enter real numbers (hit Return after last):
1 . 00000 1 . 00010
mean = 1 . 00005
variance = -1.21716e-7

D Te Ht
Enter real numbers (hit Return after last):
1 .00000 1 .00010
mean = 1 . 00005
variance = 2.50000e-9

iance is meaningless - a variance cannot be negative! The lower
window shows the result of a run with type extended chosen instead.
The results are accurate. Exercise 19 .12 invites the reader to check that
there is no problem if the definition of the variance is used to calculate
it.

19.4.5 SUMMARY

The examples and the preceding discussion demonstrate 2. 999 999 9
facts:

• Computing with real numbers is fraught with danger.

• Inaccuracy can often be minimized by careful choice of algo­
rithm.

• Inaccuracy can be reduced significantly by exploiting extended­
precision arithmetic properly. Macintosh Pascal's use of
extended precision overcomes many of the dangers inherent in
expressions; for extensive calculations, it is safest to use
extended variables.

The study of how to solve the special programming problems
that arise when dealing with real numbers is called numerical analysis.
It has a longer history than computer science, and many powerful and
robust methods are known.

Principle Numeric programming is no job for a novice. For­
tunately, there are high-quality libraries which contain subpro­
grams for most of the tasks you are likely to want to perform. Use
them.

470 PROGRAMMING USING MACINTOSH PASCAL

19.5 Macaveats
There is a very unfortunate consequence of out-of-range errors in long­
int arithmetic not causing error conditions, and that is that some out­
of-range errors for integer assignments give spurious results. For
example, execution of the following program segment prints 0 !

var
i: integer;

i := Maxint;
i := 4-* sqr(i + 1);
Writeln(i : 1)

The Reference advertises that if a variable of type computational
is printed without an associated fraction-length, then it is treated as an
integer value. This is not the case in Macintosh Pascal 2.0. The
simplest way to print a variable of type computational without a
decimal point is probably to use the required function round.

19.6 Further reading
(1) Atkinson, L.V. and Harley, P.J. (1983). An Introduction to

Numerical Methods with Pascal. Reading, Mass: Addison­
Wesley.
An introductory numerical analysis text, with programming
examples in Pascal.

EXERCISES
19.1 What happens in Macintosh Pascal when the following statement is

executed?

var
i : integer;

i := (Maxint + Maxint) div 2

19.2 Evaluate (9.9 + 9.9) I 2.0 in Mad Mac's Pascal.

19.3 Suppose rand x are variables of types real and extended, respectively.
Is there a value of x such that executing r := x gives overflow but exec­
uting r := 1 Ix does not give underflow? Why? And what about vice
versa?

!ill
19.6

NUMERIC COMPUTING 471

19.4 Suppose the values of a real-valued function f are to be summed at
n + 1 equally spaced points from a to b, where n ~ 1. Two solutions
are given below; they share the common context:

var
sum : real; { sum of function values }
delta : real; { = (b - a) I n }
i : count; { in O .. n }

delta := (b - a) I n;
sum:= 0.0;

Which solution is preferable? Why?

(I) var
x: real;

x :=a;
for i := O to n do

begin
sum := sum + f(x);
x := x +delta

end

(II)

for i := o to n do
sum := sum + f(a + i * delta)

19.S Trace the execution of the following Mad Mac's Pascal program. Before
you do so, try to predict what happens.

var
epsilon : real;

epsilon := 1.0;
while 1.0 + epsilon > 1.0 do

epsilon := epsilon I 1.0E1

19.6 What happens when the following Mad Mac's Pascal program is
executed?

var
x: real;

x := 1.0;
while true do

x := x + 1.0

19.7 Working with real variables, calculate the sum:

1 1 1
l+-+-+···+--

22 32 10002

472 PROGRAMMING USING MACINTOSH PASCAL

by summing the values in both increasing and decreasing order. Re­
peat the process with extended variables. Explain the results.

19.8 Show by example that it is possible for a sequence of additions or sub­
tractions to produce a result with an arbitrarily large error relative to
the exact answer.

Hint: Repeatedly subtract a relatively small number.

19.9 The action:

Set RightAngled to true if the triangle is right-angled,
otherwise false

can be implemented with three applications of sqr, rather than the four
given in the text. Do so.

19.10 The quadratic equation:

x 2 + 150x + 2 = 0

has the following two roots:

xi=
-150 + V1502 - s

2

-150 - V15o2 - s
2

and

Which root would procedure roots in the text calculate first?

19.11 Consider the two versions given in the text of the calculation of

(a) Show by example that there are values of x and y such that the
direct computation produces overflow in Mad Mac's Pascal, but
the other does not.

(b) Ditto for underflow.

(c) Repeat (a) and (b) in Macintosh Pascal, but using real precision.

NUMERIC COMPUTING 473

19.12 Implement the following procedure in Standard Pascal. Since the
values are stored, it would be folly to use the one-pass method.

const
Maxlndex = ... ;

type
index = 1 .. Maxlndex;
data= array[index] of real;

procedure MeanAndVar (var x : data;
n: index;
var mean, variance: real);

{ Computes the mean and variance of the values in x[1 .. n]. }

Test the procedure on the data used in Figure 19.4.

474 PROGRAMMING USING MACINTOSH PASCAL

20 _____ _
DYNAMIC DATA
STRUCTURES
Everything in the universe goes by indirection.
- Ralph Waldo Emerson, Society and Solitude

20.l Introduction
20.2 Pointer types
20.3 The fundamentals of pointers

20.3.l The s2ecial value nil
20.3.2 Creating a dynamic variable

20.3.3 Pointer assignment

20.3.4 Com2aring QOinters

20.3.5 Dis2osing of dynamic variables

20.4 Linear structures
20.4.1 Im2lementing a stack using QOinters

20.5 Non-linear structures
20.5.1 Binary search trees

20.6 Case-study 12: Drawing a binary search tree
20.6.l Setting of the Qroblem

20.6.2 S2ecifications

20.6.3 Writing the Qrogram

20.6.4 The com2lete program

20.7 Further reading
Exercises

476

476

477

477

477

478

479

479

480

484

487

487

490

490

490

490

493

497

497

Figure 20.1
Initial values of two
pointer-variables.

20.1 Introduction
Pascal's structured types enable many common forms of information to
be represented and manipulated. But there are many occasions where
more flexibility is needed, to handle information of variable size, or
which has interrelationships among its components that are more
complex than those inherent in arrays, records, files, or Pascal's limited
form of sets.

No programming language can hope directly to provide as many
kinds of structured-types as programmers invent uses for. Pascal in­
stead provides a low-level (and hence very general) device which can
be used to construct a limitless variety of data structures, by permitting
components to be dynamically created and linked during execution.
The device is called the pointer.

A pointer is a value that points to a variable. In Pascal, each
pointer is constrained to point to a variable of a fixed type; moreover,
the variable must be created dynamically by the program, rather than
declared in a block. This allows data structures to be created which
have a lifetime unrelated to that of any instance of any particular block.
Variables and data structures that are created and destroyed under dir­
ect control of the program are called dynamic; those used heretofore
are called static.

20.2 Pointer types
Like all other values, a pointer has a fixed associated type, called a
pointer-type. A pointer-type is created by placing the symbol " in front
of the type of the dynamic variables to be pointed to, which is called

p1 p2

[2J [2J
476 PROGRAMMING USING MACINTOSH PASCAL

the domain type of the pointer-type. A pointer-type is not classed as
either a simple-type or a structured-type:

type: si.mple-type I stntctured-type I poi.nter-type I type-identifier
pointer-type: type-identifier

Like any other type, a pointer-type may be named and used to
declare static variables. For example:

type "
CharPtr = char;

var
p1, p2 : CharPtr;

They are initially undefined, as shown in Figure 20.1.

20.3 The fundamentals of pointers
20.3.1 THE SPECIAL VALUE nil

The value nil is a value of every pointer-type. (In this respect its role is
like that of the empty set [] for set-types.) A pointer-variable that has
the value nil is defined, but it does not point to anything. Continuing
with our example, after execution of:

p1 := nil

we have the situation depicted in Figure 20.2. General pointer assign­
ments are described in Subsection 20.3.3.

20.3.2 CREATING A DYNAMIC VARIABLE

A dynamic variable is created by calling the required procedure new.
If p is a variable of a pointer-type with domain-type T, then the
procedure call:

new(p)

creates an anonymous (i.e. unnamed) dynamic variable of type T with
an undefined value, and assigns a pointer to this variable to p.
Although the dynamic variable has no name, it can be accessed by the

p1 p2

0 [2J

Figure 20.2
After execution of
p1 := nll.

DYNAMIC DATA STRUCTURES 477

Figure 20.3
After execution of new(p2).

Figure 20.4
After execution of
p2A :='a',

p1 p2

0 --+---.... io~I ?

p1 p2

0 --t----JoGJ__ __
referenced-variable p" (as long as p points to it). The relevant syntax
rules are:

variable: entire-variable I component-variable I referenced-variable
referenced-variable: pointer-variable A

pointer-variable: variable

For example, after execution of:

new(p2)

we have the situation depicted in Figure 20.3.
A referenced variable can be used like any other non-entire­

variable of its type. (Not being an entire variable means, for instance,
that it cannot be used as a control-variable of a for-loop.) For example,
after execution of:

p2A :='a'

we have the situation depicted in Figure 20.4.

· 20.3.3 POINTER ASSIGNMENT

A pointer-variable may be assigned any value of the same type. To en­
sure that this stringent assignment-compatibility rule is met, obey the
following principle:

Principle Name each new pointer-type with a type-definition, and
declare pointer-variables using the type-identifier.

We have seen already that the type of nil is determined by con­
text, permitting it to be assigned to any pointer-variable. But the most
common form of pointer assignment is to assign the value of one
pointer-variable to another. After so doing, the pointer-variable on the
left of the assignment symbol points to the same dynamic variable as
does the pointer-variable on the right, or to nothing if the latter's value
is nil. For example, after executing

478 PROGRAMMING USING MACINTOSH PASCAL

p1 := p2

we have the situation depicted in Figure 20.5.
There are no operators producing values of a pointer-type, but it

is permitted for the result-type of a function to be a pointer-type. A
pointer assignment may therefore have a function-designator on the
right-hand side. The ability of Pascal functions to return pointers to
arrays, records, and sets (but only dynamically created ones) can be
exploited in the implementation of abstract data types in Pascal; refer
to the 'Further reading' section of this chapter for details.

20.3.4 COMPARING POINTERS

The only operators that may be applied to pointers are the relational
operators = and <>, which may be used to compare two pointers p
and q of the same type. The expression:

p=q

gives true if both p and q point to the same dynamic variable, or are
both nil; otherwise it gives false. The expression:

p<>q

gives the same result as does not (p = q). For example, in the situa­
tion depicted in Figure 20.5:

p1 = p2

p1 =nil

gives

gives

true

false

No other operators are applicable to pointers. Like values of
enumerated types in Standard Pascal, pointers have no external re­
presentation, and therefore cannot be read from or written to text files.

20.3.5 DISPOSING OF DYNAMIC VARIABLES
The disposal of dynamic variables (as well as their creation) is under
program control. The pointer variables p1 and p2 used in our
examples above are static variables because they are introduced by a

Figure 20.5
After execution of
p1 := p2.

DYNAMIC DATA STRUCTURES 479

variable-declaration; they are created at the start of execution of their
block, and are destroyed when execution of that block finishes.

However, a dynamic variable pointed to by a pointer-variable
does not cease to exist when the pointer-variable is destroyed. There
may, for instance, be another pointer-variable which points to it, and
which outlives the original pointer-variable. A dynamic variable con­
tinues to exist until it is explicitly disposed of with the required
procedure dispose. If p is a pointer-variable, then execution of:

dispose(p)

disposes of the dynamic variable pointed to by p, and makes p undef­
ined. It is an error if p is undefined (before the call) or contains nil.

After execution of the above call, not only is p undefined, but so
are all pointer-variables which were previously equal to p (i.e. pointed
to the recently deceased dynamic variable). Many implementations will
fail to record this fact by storing a suitable value in these other
pointer-:variables, in which case they are known as dangling refer­
ences, and can give rise to catastrophic errors. Similar disasters can
attend the disposal of a dynamic variable that is in use (as a variable
parameter, or a record-variable of a with-statement); that, of course, is
an error, but it too may go undetected.

Moral Pointers are the least secure aspect of Pascal, and must be
used with extreme caution.

20.4 Linear structures
The only reason to declare a type like CharPtr is pedagogical: it en­
ables pointers to be discussed in the simplest possible context. The
main use of pointers is to enable dynamic data structures to be created;
the way to do so is to employ dynamic variables that have pointers as
components.

The simplest kind of dynamic data structures represent
sequences of values of some type T. They may be constructed by
creating dynamic variables of a record-type with two fields, one con­
taining a value of type T, the other containing a pointer to a dynamic
variable of the same type.

For example, sequences of characters can be created by first
defining the following types:

type A

ComponentPtr = component;

480 PROGRAMMING USING MACINTOSH PASCAL

component = record
ch: char;
link : ComponentPtr

end;

tail ch c:J
link c:J

Notice that the type component is used in the definition of type
ComponentPtr before it is defined. The use of an identifier as the
domain-type of a pointer-type is permitted in a type-definition if the
identifier is defined later in the same type-definition section. This is the
only exception to Pascal's policy of definition before use.

Now suppose the following variables are declared:

var
· head, tail : ComponentPtr;

After execution of:

new(head);
tail:= head

we have the situation depicted in Figure 20.6. We note that:

tail" is a dynamic variable of type component
tail".ch is a component of type char of that dynamic variable
tail".link is a component of type ComponentPtr of that variable

The variable tail" .ch can therefore be assigned a character, and the
variable tair'.link made to point to a new dynamic variable of type
component, by executing:

taii".ch := 'c';
new(tail".link)

We now have the situation depicted in Figure 20.7. By making tail
point to the most recently created dynamic variable, and then repeating
the above step, another component can be added to the dynamic data
structure pointed to by head; and so on as long as desired. The data
structure is called a (singly) linked list.

Figure 20.6

DYNAMIC DATA STRUCTURES 481

Figure 20.7
ch ch [2J
link link [2J

Here is a procedure that uses the techniques discussed above to
create a linked list from the input data. It stores nil in the link field of
the last component, enabling the end of the list to be recognized. As an
exercise, desk-check a call of this procedure using diagrams like those
above.

procedure Readlist (var head, tail: ComponentPtr);
{ Creates a linked list of dynamic variables containing the }
{ characters in the rest of the input line in order; sets head }
{ and tail to point to the first and last components. }
begin { Readlist }

If eoln then
begin

head:= nil;
tail:= nll

end
else

begin
new(head);
tail:= head;
Read(taii".ch);
while not eoln do

begin
new(tail".link);
tail := tail".link;
Read(tail".ch)

end;
tail" .link : = nll

end;
Read In

end; { Readlist}

A sequence can be represented also by an array. The advantages
are that extra space is not needed for pointers, and that the value in a
given position can be found in constant time. The advantages of using
a linked list are that the space needed is linear in the length of the
sequence (whereas an array must be declared that is large enough for
the maximum possible sequence), and that values may be inserted and
deleted in constant time (provided the necessary pointer(s) are given).

For example, here is a procedure to insert into our sequence of
characters:

482 PROGRAMMING USING MACINTOSH PASCAL

cursor

ch G ch G
link link

(a)

ch ch G ch 0
link link link

(b)

procedure insert (ch : char;
var cursor: ComponentPtr);

{ Inserts a component containing ch after component cursor", }
{ and updates cursor to point to the inserted component; }
{ assumes cursor is not nil. }

var
TempPtr : ComponentPtr;

begin { insert }
TempPtr := cursor".link;
new(cursor".link);
cursor:= cursor".link;
cursor".ch := ch;
cursor".link := TempPtr

end; { insert }

The updating of cursor facilitates repeated insertion at the same point.
Figure 20.8 shows the situation before and after the following

procedure-call:

var
cursor : ComponentPtr; { points to a component of the linked }

{ list with first component head" }

insert ('n', cursor)

Insertion into an empty linked list, and insertion before the first
component, cannot be handled by procedure insert. For this reason
linked lists are often equipped with a dummy first component, in
which case procedure insert as written suffices in all situations.

A component can be deleted from a linked list in constant

Figure 20.8
(a) Before execution of
insert(cursor, 'n').
(b) After execution of
insert(cursor, 'n').

DYNAMIC DATA STRUCTURES 483

1f:iY
20.1

time if a pointer to the previous component is given. Writing the
corresponding procedure is left until Exercise 20.11. It can be unrea­
listic to require a pointer to the component preceding the one to be
deleted; for that and other reasons components may be given two
pointer fields, and the extra one used to point to the preceding
component (if any). The resulting dynamic data structure is called a
doubly linked list. It is still classified as linear because components can
only be accessed sequentially.

20.4.1 IMPLEMENTING A STACK USING POINTERS

Because of the low-level nature of pointers, and the insecurities inher­
ent in their use, it is advisable to avoid direct manipulation of pointers
in favor of high-level operations on the abstract objects that pointers
are used to represent. Ideally, an abstract data type should be
designed, and implemented using pointers when appropriate. A pro­
grammer should avoid thinking in terms of pointers when engaged in
high-level problem-solving.

One of the simplest and yet most common abstract data types is
the stack. A stack is a possibly empty sequence in which both inser­
tions and deletions take place at the front, called the top. It is also
called a LIFO list, because the Last value In is the First value Out.
Two examples are the stack of trays in a cafeteria, and the run-time
stack used to allocate space for executing subprograms in Pascal. The
abstract data type stack consists of a type, together with just four
associated operations: creating an empty stack, adding a value to a
stack (said to push the value onto the top of the stack), removing a value
from a stack (said to pop the top value), and testing if the stack is
empty.

A stack may be implemented as an array (as is usual for Pascal's
run-time stack) or a singly linked list. We shall choose the latter
implementation. We must provide a Pascal type stack, and a subpro­
gram for each of the four abstract operations. Macintosh Pascal relaxes
Pascal's strict order for definitions and declarations in a block, permit­
ting the following code to be retained as a unit. (A block may start
with arbitrarily many sections of definitions or declarations, in any
order, provided definition still precedes use.)

{ ADT stack: CreateEmpty, empty, push, pop.}
{ A stack is an initially empty sequence to which values may be }
{ added at the front, and from which values may be removed }
{ from the front. }

type "
StackltemPtr = Stackltem;
Stackltem = record

484 PROGRAMMING USING MACINTOSH PASCAL

value : char;
next : StackltemPtr

end;
stack = StackltemPtr;

procedure CreateEmpty (vars : stack);
{ Sets s to the empty stack. }
begin { CreateEmpty.}

s := nil
end; { CreateEmpty}

function empty (var s : stack) : Boolean;
{ Returns true if s is the empty stack, otherwise false. }
begin { empty }

empty := s = nil
end; { empty }

procedure push (ch : char; vars : stack);
{ Adds ch to the top of s. }

var
top : StackltemPtr;

begin { push }
new(top);
top".value := ch;
top".next := s;
s :=top

end; {push}

procedure pop (var s : stack;
var ch : char);

{ Removes the top value from the stack, storing it in ch; }
{ assumes s is not empty. }

var
top : StackltemPtr;

begin {pop}
top:= s;
ch := top".value;
s := top".next;
dispose(top)

end; {pop}

{ end of ADT stack }

The initial comment informs the programmer of the information avail­
able to the user of stacks (rather than the implementor): the type
stack, and the subprograms CreateEmpty, empty, push, and pop.
That comment, and the headings of each of the subprograms, are all
the user should be concerned with.

After executing:

DYNAMIC DATA STRUCTURES 485

Figure 20.9
s

valueG
---f.__,~

next

var
s: stack;

CreateEmpty(s);
push('a', s);
push('b', s);
push('c', s)

valueG

next

we have the list depicted in Figure 20. 9.

value G
next 0

We have actually implemented a stack of characters. For a stack
of values of some other type T, it is only necessary to replace each in­
stance of char by T. Since the stack is a parameter of each subpro­
gram, as many variables of type stack may be declared as desired, each
representing an independent stack.

Here is an alternative implementation of procedure Print­
ReverseOfline from Chapter 18, in which a stack is used rather than
recursion:

var
s : stack; { of characters read before last }
ch : char; { last character read }

begin { PrintReverseOfLine }
Create Empty(s);
while not eoln do

begin
Read(ch);
push(ch, s)

end;
Readln;
Write('Reverse of line: ');
while not empty(s) do

begin
pop(s, ch);
Write(ch)

end;
Write In

end; { PrintReverseOfLine}

Figure 18.1 (not 20.1) shows the Text window after a test run. Note
that there is no need to dispose of the dynamic variables at the end of

486 PROGRAMMING USING MACINTOSH PASCAL

the procedure, because each one created by calling push is disposed of
by calling pop.

20.5 Non-linear structures
By equipping dynamic variables with two or more pointers, dynamic
data structures may be created which have more complex interrelation­
ships between their components than do the linear ones met pre­
viously. We shall examine one such non-linear structure, the binary
search tree.

20.5.1 BINARY SEARCH TREES

A binary search tree is a restricted kind of binary tree. A binary tree is
an arrangement of values of some type, which either contains no
values, when it is called the empty binary tree, or consists of a dis­
tinguished value called the root, and two other binary trees, called the
left subtree and the right subtree. This is a recursive definition that
permits infinite binary trees; we are interested only in those that con­
tain finitely many values.

Trees are traditionally drawn upside down in computer science.
Figure 20.10 shows four binary trees of integers; tree (a) is the empty
tree; each of the others contains the alphabetically preceding tree as its
left subtree. The root of a tree is said to be at level 0, the roots of its
left and right subtrees at level 1, and so on. The maximum level of a
value in a tree is called its depth. Trees (b)-(d) in Figure 20.10 have
depths 0, 1, and 2, respectively.

The empty binary tree is a binary search tree. A non-empty
binary tree t is a binary search tree if and only if it has the following
properties:

(1) each value in the left subtree oft < the root oft;

(2) each value in the right subtree of t ~ the root of t;
(3) both subtrees oft are binary search trees.

(a) (c) ~

00
Figure 20.10
Four binary trees of
integers.

DYNAMIC DATA STRUCTURES 487

Figure 20.11
A binary search tree of
integers.

~·
20.2

The type of values in the binary tree must have an ordering defined on
its values.

In Figure 20.10, (a), (b), and (c) are binary search trees, but (d)
is not. Figure 20.11 shows a larger example of the species which con­
tains the same values as the tree in Figure 20. lO(d).

Binary search trees have many uses in programming. Their main
advantage over linked lists is that the time needed to insert or search
for a particular value is order the depth of the tree. A binary search
tree of depth n can have as many as 2n+I - 1 values. (Trees (b) and (c)
in Figure 20.10 are examples with n = 0, 1, respectively.) So the
time-complexity to insert or search for a value in such a tree is logar­
ithmic, as compared to the linear time needed for linked lists. It has
been shown that the average-case complexity for random binary search
trees is also logarithmic, but the worst case can be linear, because a
tree can have the form of a list.

Below is a Pascal implementation of binary search trees as an
abstract data type. Note that procedure destroy is provided to dispose
of a tree when it is no longer needed. Note also that procedures insert

·and destroy are recursive, as is natural when processing a data
structure that is recursively defined.

{ ADT BinarySearchTree: CreateEmpty, empty, insert, left, right, }
{ root, destroy }
{ A BinarySearchTree t is a binary tree such that t is empty or }
{ each value in the left subtree of t < the root of t, and }
{ each value in the right subtree of t > = the root of t, and }
{ both subtrees oft are BinarySearchTrees. }

type
BinarySearchTree ="node;
node = record

value : integer;
left, right: BinarySearchTree

end;

488 PROGRAMMING USING MACINTOSH PASCAL

procedure CreateEmpty (var t : BinarySearchTree);
{ Sets t to the empty binary search tree. }
begin { CreateEmpty }

t := nil
end; { CreateEmpty }

function empty (t: BinarySearchTree): Boolean;
{ Returns true if t is empty, otherwise false. }
begin { empty }

empty := t = nil
end; { empty }

procedure insert (val : integer;
var t: BinarySearchTree);

{ Inserts val into t; assumes tis not a subtree of a BST. }
begin { insert }

If t = nll then
begin

new(t);
with t" do

begin
value := val;
left:= nil;
right := nil

end
end

else if val< t".value then
insert(val, t".left)

else
insert(val, t".right)

end; { insert }

function left (t: BinarySearchTree) : BinarySearchTree;
{ Returns the left subtree of t; assumes t is not empty. }
begin { left }

left := t".left
end; {left}

function right (t: BinarySearchTree) : BinarySearchTree;
{ Returns the right subtree oft; assumes tis not empty. }
begin { right } ·

right := t".right
end; { right }

function root (t: BinarySearchTree) : integer;
{ Returns the root oft; assumes tis not empty. }
begin { root }

root := t".value
end; {root}

DYNAMIC DATA STRUCTURES 489

procedure destroy (var t : BinarySearchTree);
{ Disposes of t, leaving t undefined. }
begin { destroy }

If t <> nll then
begin

destroy((.left);
destroy((.right);
dispose(t)

end
end; { destroy }

{end of ADT BinarySearchTree}

Program ShowTree in our final case-study shows how this
abstract data type may be exploited. Exercise 20.20 gives a more
practical example.

20.6 Case-study 12: Drawing a binary
search tree

20.6.1 SETTING OF THE PROBLEM

We shall write a program that constructs and draws a binary search
tree. Writing the program is an exercise in using the abstract data type
BinarySearchTree, and is also our most challenging exercise in using
recursion. The program can function as a experimental means of study­
ing binary search trees.

20.6.2 SPECIFICATIONS

The program should prompt the user to type a sequence of integers
and to hit the Return-key immediately after the last integer. It should
construct a binary search tree by starting with an empty tree, and in­
serting each integer as it is read. The tree should be displayed in the
Drawing window after the last integer has been read.

With one exception, the display should be a picture in the style
of those in the text, i.e. the tree should be upside-down, values at the
same level should be drawn at the same vertical level, and values in a
left (right) subtree should appear to the left (right) of the root of that
subtree. The exception is that values are to be centered in boxes rather
than circles, with connecting lines drawn between the closest comers.
(For a sneak preview of an acceptable style, see Figure 20.12.)

20.6.3 WRITING THE PROGRAM

The first refinement is very simple:

490 PROGRAMMING USING MACINTOSH PASCAL

abstract data type BinarySearchTree as defined in the text

var
t : BinarySearchTree; { built from input values read so far}

begin { ShowTree }
CreateEmpty(t);
Prompt for input, read each input value, and insert it into t;
Draw t

end. { ShowTree }

The next refinement uses a familiar schema for processing input
values followed by an end-of-line marker:

type
lnputValue = a subrange of integer;

var
value : lnputValue; { last input value read }

{ Prompt for input, read each input value, and insert it into t }
Prompt for input values followed by a Return ;
while not eoln do

begin
Read(value);
insert(value, t)

end

We leave the option of restricting the input values so that their re­
presentations in the drawing are not too large.

We are left with the action Draw t, and prepare to refine it by
completely determining its specifications. We have some freedom in
the horizontal placement of boxes. We could place them as in Figures
20.10 and 20.11, where space is left for each possible value at the last
level. But we decide instead to draw boxes as close as possible (con­
sistent with the specifications), to enable wider trees to be drawn with-

0 2 3 4 5 6

0

2

3

Figure 20.12
A picture of a binary
search tree.

DYNAMIC DATA STRUCTURES 491

Figure 20.13
A blow-up of a box. f Box Width 1

._. f r-- ------- ---,
._rr [J

I
I
L-----------------

out clipping. The Drawing window is notionally regarded as a grid. As
shown in Figure 20.12, which corresponds to the tree given earlier in
Figure 20.11, one value appears in each successive column from the
left, and values at successive levels appear in successive rows from the
top. It is convenient for graphics calculations to number the rows and
columns of the grid from zero onwards.

The details of the placement of boxes are fleshed out by Figure
20.13 and the accompanying definition of three constants:

con st
Border = ... ; { width of border around each box }
BoxWidth = ... ;
BoxHeight = ... ;

An attractive property of the drawing scheme illustrated in
Figure 20.12 is that a subtree has the same shape as a complete tree,
with its placement depending only on the row of its root and the
column of its leftmost value. This suggests that the complete tree may
be drawn by calling a procedure which uses a recursive call to draw
each subtree. So tentatively we refine the action Draw t with:

type
count = 0 .. Maxint;

procedure DrawTree (t: BinarySearchTree;
RootRow, { row for root oft}
LeftCol : count); {column for leftmost value oft }

{ Draws t with given RootRow and LeftCol. }

DrawTree(t, 0, 0)

Let us now consider the implementation of DrawTree. We real­
ize that left(t) can be drawn first, since the row of its root and its left­
most column are both known (RootRow + 1 and LeftCol respectively).
The rightmost column used to draw left(t) determines the column for
root(t). This information therefore needs to be returned by an output

492 PROGRAMMING USING MACINTOSH PASCAL

RR

RR, RR+ 1

LC, NFC, , LC,

LC . . . RC, . . . RC . . • RC, ...
NFC,

NFC

RR,

parameter. Since left(t) may be empty, it is conceptually clearer for the
first unused column to be returned. Let us call this output parameter
NextFreeCol. So after drawing left(t), the position of the box for
root(t) is known, as are the leftmost column and the row of the root for
the drawing of right(t). But we have overlooked the links - for these
to be drawn, the columns used for the roots of the two subtrees need to
be returned. So we introduce another output parameter, RootCol.

DrawTree is now sufficiently general for it to be used recur
sively. The full heading is now:

procedure DrawTree (t: BinarySearchTree;
RootRow, { row for root oft}
LeftCol : count; { column for leftmost value of t }
var NextFreeCol, {least unused column>= LeftCol}
RootCol : count); {column of root oft (if tis not empty) }

{ Draws t with given RootRow and LeftCol, and returns }
{ NextFreeCol and RootCol (if t is not empty). }

The relevant parameters are shown in Figure 20.14 (abbreviated by
omitting their lower-case letters). Also shown are the parameters for
the recursive calls; they are in smaller type, and equipped with a sub­
script: l for left(t) and r for right(t). The broken links in the drawing
represent the paths to the leftmost and rightmost values in the two sub­
trees; they may pass through intermediate values.

Implementing DrawTree is now straightforward; the obligation
to define the two output parameters causes no difficulties. We stop the
presentation of the development of the program at this point, because
the remaining refinements concern the graphics and employ the usual
techniques.

20.6.4 THE COMPLETE PROGRAM

The comment in the heading of DrawTree is extended to define the
format of the drawing more precisely. The term in-order refers to a

Figure 20.14
Drawing a tree.

DYNAMIC DATA STRUCTURES 493

:ir;y
20.3

particular order in which to process the three components of a binary
tree. Those most commonly used are:

pre-order: root, then left-subtree, then right-subtree;

in-order: left-subtree, root, right-subtree;

post-order: left-subtree, right-subtree, root.

Procedure destroy in the abstract data type BinarySearchTree proces­
ses values in post-order.

Here is the complete program:

program ShowTree (Input, Output);
{ Prompts user to input a number of non-negative integers, then }
{ constructs and draws a binary search tree containing them. }

procedure DrawStringC (s : string);
{ Draws s with the center of its base line at the current pen }
{ position; leaves the pen position at the end of the string. }
as given in Chapter 14

abstract data type BinarySearchTree as defined in the text

con st
Limit= 999; {maximum input value}
PointSize = 12; { size of text for drawing of tree }

type
lnputValue = O .. Limit;
count = o .. Maxint;

var
value : lnputValue; { last input value read }
t: BinarySearchTree; { built from input values read so far}
dummy1, dummy2 : count;

{ dummy actual output parameters for DrawTree(...) }

procedure DrawTree (t: BinarySearchTree;
RootRow, { row for root oft}
LeftCol : count; { column for leftmost value of t }
var NextFreeCol, {least unused column>= LeftCol}
RootCol : count); { column of root oft (if tis not empty) }

{ Draws t with given RootRow and LeftCol, and returns Next- }
{ FreeCol and RootCol (if t is not empty). The Drawing window }
{ is considered as a grid, with rows and columns numbered }
{ from O onwards. The values are disposed one per column in }
{in-order. The row of a value is RootRow +its level. Each value}
{ is drawn in a box; if a value is a root (of a subtree), its box}

494 PROGRAMMING USING MACINTOSH PASCAL

{ is linked to those for the roots of its subtrees. }
{ Global ADT: BinarySearchTree. }

con st
Border = 5; { width of border around each box }
BoxWidth = 25;
BoxHeight = 15;

var
SubrootCol : count; { column of root of a subtree of t }

procedure SetTopLeft (row, col : count;
var comer: Point);

{ Sets top-left comer of box for value in given row and col. }
{ Global consts: BoxHeight, BoxWidth, Border. }
begin { SetTopLeft}

SetPt(comer, Border+ col * (BoxWidth + 2 * Border),
Border + row * (BoxHeight + 2 * Border))

end; { SetTopLeft}

procedure DrawNode (row, col: count;
int : integer);

{ Draws a box containing int at (row, col) on grid. }
{ Global consts: BoxHeight, BoxWidth, PointSize. }
{ Global subprograms: SetTopLeft, DrawStringC. }

var
corner: Point; {top-left corner of box at (row, col) }

begin { DrawNode }
SetTopLeft(row, col, comer);
FrameRect(comer.v, corner.h, corner.v + BoxHeight,

corner.h + BoxWidth);
MoveTo(corner.h + BoxWidth div 2, corner.v +

(BoxHeight + PointSize) div 2);
DrawStringC(StringOf(int: 1))

end; { DrawNode }

procedure DrawLink (row, FromCol, ToCol : count);
{ Draws a line between the closest comers of the boxes }
{ at (row, FromCol) and (row + 1, ToCol). }
{ Global consts: BoxHeight, BoxWidth. }
{Global subprogram: SetTopLeft.}

var
FromTL, ToTL : Point; { top-left comers of the boxes }

begin { DrawLink }
SetTopLeft(row, FromCol, FromTL);
SetTopLeft(row + 1, ToCol, ToTL);
H ToCol > FromCol then

begin
MoveTo(FromTL.h + BoxWidth - 1, FromTL.v

DYNAMIC DATA STRUCTURES 495

+ BoxHeight-1);
LineTo(ToTL.h, ToTL.v)

end
else

begin
MoveTo(FromTL.h, FromTL.v + BoxHeight - 1);
LineTo(ToTL.h + BoxWidth - 1, ToTL.v)

end
end; { Drawlink }

begin { DrawTree }
if empty(t) then

NextFreeCol := LeftCol
else

begin
DrawTree(left(t), RootRow + 1, LeftCol, RootCol, SubrootCol);
DrawNode(RootRow, RootCol, root(t));
if not empty(left(t)) then

Drawlink(RootRow, RootCol, SubrootCol);
DrawTree(right(t), RootRow + 1, RootCol + 1, NextFreeCol,

SubrootCol);
if not empty(right(t)) then

Drawlink(RootRow, RootCol, SubrootCol)
end

end; { DrawTree}

begin { ShowTree}
TextSize(PointSize);

CreateEmpty(t);
{ Read each input value and insert it into t }

Writeln('lnput integers in range o .. ', Limit: 1, ',then hit Return.');
while not eoln do

begin
Read(value);
insert(value, t)

end;

DrawTree(t, 0, 0, dummy1, dummy2)
end. { ShowTree }

Note that procedure TextSize is called in ShowTree rather than
DrawTree, to avoid unnecessary repeated calls when DrawTree is
called recursively.

Figure 20.15 shows the screen after a test run.

496 PROGRAMMING USING MACINTOSH PASCAL

r a File Edit Search Run Windows ~
Te Ht

Input integers in range 0 .. 999, then hit return.
9 18 19 82 8 12 19 51 12 13 }9 18 19 999
§0 Drawing

18

19

19

48

20.7 Further reading

.,

82

99

51

49

(1) Liskov, B. and Guttag, J. (1986). Abstraction and Specification in
Program Development. Cambridge, Mass: MIT Press.
A second-level text illustrating a systematic high-level approach
to program organization. Examples are in the programming­
language CLU, a more modern and higher-level language than
Pascal, but Chapter 7 shows how to adapt the techniques to
Pascal. Not easy reading.

EXERCISES
20.1 Do Exercise 20.2.

20.2

20.3

What does Exercise 20 .1 contain?

Given the following situation:
p1

~
(a) Show the effect of executing:

p1' := p2'

p2

G-G

(b) What is the value of p1 = p2 afterwards?
(c) What is the value of p1' = p2' afterwards?

DYNAMIC DATA STRUCTURES 497

Figure 20.15
The screen after a run of
program ShowTree.

20.4 One of the complications in using pointers is that aliasing of dynamic
variables is common. Give examples from three figures in the text.

20.5 In Figure 20.S(b), what is the value of:
(a) cursor".ch? (b) cursor".link".ch?

20.6 Desk-check a call of Readlist when the input stream is in the state:

... t dogD ...

20.7 What does the first procedure insert do if cursor is made a value­
parameter?
Hint: Parameters of pointer-types follow the usual rules.

20.8 Implement the following procedure:

function present (ch : char;
head : ComponentPtr) : Boolean;

{ Returns true if ch is present in a component of the chain }
{pointed to by head; otherwise returns false.}

20.9 Rewrite the first procedure CreateEmpty so that it creates a linked list
with a dummy first component.

20.10 Rewrite function present from Exercise 20.8 to apply to a linked list
with a dummy first component.

20.11 Write a procedure that is given a pointer to a component in a linked
list with a dummy first component, and deletes the following
component (which it may assume to exist).

20.12 Rewrite the first procedure CreateEmpty so that it creates a doubly
linked list from the input data. Both the forward pointer in the last
component and the backward pointer in the first component should be
set to nll.

20.13 Add an operation to the abstract data type stack that destroys a given
stack (i.e. disposes of its dynamic variables).

20.14 Desk-check a call of PrintReverseOfline when the input stream is in
the state:

... t abco ...

Figure 20.9 should apply on termination of the first loop.

20.15 A queue is a possibly empty sequence in which values are inserted at
the end and removed from the front. Its social use has been perfected
by the British.

(a) A queue is also called a FIFO list. Why?
(b) Implement a queue as an abstract data type. Provide operations

CreateEmpty, empty, enqueue (to add a value), dequeue (to re­
move a value), and destroy.

498 PROGRAMMING USING MACINTOSH PASCAL

Hint: Represent a queue by a record containing fields head and
tail that point to the first and last components respectively in a
singly linked list.

(c) Using the ADT operations onbJ, write a procedure that queues the
values in the input data in their order of appearance.

20.16 Give an example of a binary tree of depth 3 with only 4 values.

20.17 Procedure insert for the abstract data type BinarySearchTree has a
specification that is violated by the recursive calls in its body. Explain
this apparent contradiction.

20.18 Give a non-recursive implementation of procedure insert for the
abstract data type BinarySearchTree.

20.19 Add an operation to the abstract data type BinarySearchTree that re­
turns true if a given value appears in a given binary search tree, and
false otherwise.

20.20 Write a program to produce a concordance. It should read a text file,
number the lines, and produce an alphabetical listing of each word
(other than common words like 'a' and 'and') together with a list of the
line-numbers of each occurrence, in non-decreasing order.

This is a substantial programming project. You should use the follow­
ing data structures:

• a binary search tree for the set of common words which are to be
ignored;

• a binary search tree containing all the words appearing in the text
(so far) together with a queue of the line-numbers of their
occurrences.

20.21 Write a function that returns the depth of a binary search tree.

20.22 Using your answer to the previous exercise, modify program Show­
Tree so that it draws a binary search tree in the style of the trees in
Figures 20.10 and 20.11; i.e. it should reserve a column for each value
of the largest possible tree with the same depth as the given one (a so­
called complete tree, like trees (b) and (c) in Figure 20.10).

DYNAMIC DATA STRUCTURES 499

APPENDIX

A.1 The goto-statement
I became convinced that the goto statement should be abolished from
all"higher-level" languages.
- E.W. Dijkstra, letter to Communications of the ACM, March 1968

Once upon a time, programming languages did not have adequate
means for expressing conditional and repetitive execution. They relied
instead on a very low-level statement called a goto-statement, which,
in conjunction with some form of conditional statement, could be used
to control the execution of a program. Pascal has a restricted form of
goto-statement, an appendix left over from its evolution from these ear­
lier languages. In this appendix we describe it for the sake of complete­
ness of our description of Standard Pascal.

Pascal permits an arbitrary statement to be labeled with an un­
signed number between 0 and 9999, called its label Labels must be
declared like identifiers; the label-definition-part comes at the very start
of a block:

block: l.abel-declaraticm-part
constant-definition-part
type-definition-part
variabl.e-declaration-part
procedure-and-function-declaration-part
statement-part

label-declaration-part: label l.abel-list ;
label-list: l.abel . . . , l.abel
label: unsigned-integer
statement: l.abel: unlabel.ed-statement
unlabeled-statement: simpl.e-statement I structured-statement

Although a label has the same syntax as an unsigned-integer, it is not,
and may not be used as, an integer.

Labels obey the same scope rules as identifiers. Additionally,

APPENDIX 501

each label may be used to label a statement only once in its scope, and
that statement must be in the statement-part of the same block as the
label-declaration-part (not an enclosed block). For example:

label
13;

begin { of block }

13: Writeln('ERROR: ... ');

end { of block }

A goto-statement is a new kind of simple-statement:

simple-statement: empty-statement I assignment-statement
procedure-statement I goto-statement

goto-statement: goto label

The goto-statement must be in the scope of its label, though it may be
in a block enclosed in that scope. Here is an example:

If UpTheCreek then
goto 13

Informally, the effect of executing a goto-statement is to continue exe­
cution at the statement with the given label (as if execution had reached
there by normal means). So in the given example, the statement:

13: Writeln('ERROR: ... ')

would be executed, and then the statement following it, and so on.
Note that if execution reaches a labeled statement by normal means, it
is still executed, so the above example is not very realistic.

The goto-statement does not .sit well with structured statements,
and restrictions are accordingly imposed:

• a goto-statement may not transfer control into a structured­
statement, or into a component statement of a conditional­
statement or while-statement, or into the component statement­
sequence of a repeat-statement, from outside. For example:

... goto 2; { ILLEGAL }

502 PROGRAMMING USING MACINTOSH PASCAL

ifa>bthen
1 : max := a { a useless label }

else
begin

2: ... ;

... goto 3; { permitted }

... goto 1 ; { ILLEGAL }

... goto 2; { permitted }

end;
3: ...

• A goto-statement may have a non-local label only if the state­
ment with that label is at the outermost level of statement­
nesting in its block.

The effect of executing a goto-statement can be quite
complicated, especially if its label is non-local, when it may cause pre­
mature termination of several calls of subprograms. Goto-statements
also tend to undermine the programmer's firm ground; e.g. the
number of executions of a for-statement may not be the usual function
of its initial- and final-expression. For these and other reasons, goto­
statements are best avoided. Not one is used in this book outside this
appendix.

An arguably justifiable use of a goto-statement is to halt a pro­
gram prematurely on discovering an error from which it is impossible
to recover - perhaps when processing complex input data. For such
occasions a single label and special procedure suffice:

label
O; { end of program for premature halts }

procedure ErrorHalt (subprogram, ErrorMessage : string);
{ Prints an error message containing the parameters, then halts

program.}
begin { ErrorHalt }

Writeln('ERROR: program halted in subprogram ',
subprogram, ':');

Writeln(' ' : 7, ErrorMessage);
gotoo

end; { ErrorHalt}

APPENDIX 503

begin { program-identifier }

0:
end. { program-identifier }

The label is attached to an empty-statement at the end of the program­
block's statement-sequence.

Here is an example that uses this setup:

begin { Processlnput }

if (0 <= SSN) and (SSN <= 999999999) then
accept(SSN)

else
ErrorHalt('Processlnput', StringOf(SSN : 1,

' is an illegal social security number.'));

end; { Processlnput }

If SSN has the value -31766, then the program will print:

ERROR: program halted in subprogram Processinput:
-31766 is an illegal social security number.

and then halt.

A.2 Syntax diagrams
Wirth originally presented the syntax of Pascal with syntax diagrams,
and it has since become common to do so. Since the reader may come
across this syntax notation in lectures or other books, we provide here
a brief explanation.

A syntax diagram consists of a group of items with pairs of items
connected by arrows; there are unique arrows called the entrance and
the exit. Each item is a syntactic term (defined by its syntax diagram)
or a symbol. A sequence of symbols is generated by the diagram if and
only if it can be obtained by following arrows from the entrance to the
exit, accepting the symbols encountered on the way in order. If a
syntactic term is on the path, a sequence of symbols generated by its
syntax diagram must be accepted in its place.

For example, Figures A.2.1 to A.2.4 are syntax diagrams defin­
ing a movie-marathon as done in our notation in Exercise 5 .1.

504 PROGRAMMING USING MACINTOSH PASCAL

L ecky

Horror Picture Show

Godzilla versus identifier ---

1
'(J

111 original

(• Son of)

11< original numeral

)))))))))
II Ill IV V VI VII VIII IX X

l L l l l l l l l

---------...--11 movie--..-----------... (

The term identifier is defined in Figure A.3.19. Note that the syntactic
term Son-of-sequence is not used, and that no indication is given of the
preferred layout.

A.3 Syntax diagrams for Standard Pascal
Our path emerges for a while.
- Ernest Dowson, Vitae Summa Brems

Figures A.3.l-A.3.22 constitute the complete syntax of Standard
Pascal. The terms letter and digit denote the letters of the English
alphabet and the decimal digits, respectively.

Figure A.2.1
original

Figure A.2.2
movie

Figure A.2.3
numeral

Figure A.2.4
movie-marathon

APPENDIX SOS

Figure A.3.1
program

Figure A.3.2
block

-- program - identifier L (- identifier-list -) ~
(______ .. ; ___ ., block ___ .,

label ---....,.c-• unsigned-integer)

-----.~· --- •

const --,--i• identifier - = - constant - ;

type --- identifier - = - type - ;

var ___ .. identifier-list - : - type - ;

• .__,......, .. procedure-heading -----~ .. ;---------­

function-heading __ _,J

procedure - procedure-identifier ---....--• .. ;

function - function-identifier __ _,f

;--y- block

L_ directive --------------'

begin --- statement-sequmce --.. end ----

506 PROGRAMMING USING MACINTOSH PASCAL

--...--------- type-identifier ---------,.----1•

----l• identifu!r-list ----1 ...

r ___ __,.., constant - .. - constant ------i

r'------ " --------; ... type-identifier ------'I

1----- packed ---

array - [C~J] - of -- type__.,/

record field-list end -----1

, _ ____._set ----of----- type -------"•

-~-file ----of----- type -------~

~---... identifu!r-list ---...
__ __,.,.type---_..., ___,_.

case '(identifier ., : J ., · type-identifu!r - of

constant __l__ : -- (- field-list -)

- procedure - identifier L (--- formal-parameter-list ---) OL

APPENDIX

Figure A.3.3
type

Figure A.3.4
field-list

Figure A.3.5
procedure-heading

507

Figure A.3.6
function-heading

Figure A.3.7
formal-parameter-list

Figure A.3.8
statement-sequence

----. function - identifier (- formal-parameter-list -)

----- type-identifier -------

___;--~------- identifier-list -+ : -+ type-identifier --""""'"--

var

r------- procedure-heading--------•

------•function-heading --------

508 PROGRAMMING USING MACINTOSH PASCAL

------- unsigned-integer -----

•-----1~ variable • := - expression---•

function-identifier J
procedure-idenlifter (- actual-parameter-list -) ----•

begin --- stalemenl-sequence --- end -------'•

H expression then sta1enum1 else - sta1enum1

case --- expression --- of ---

constant ~ : - statement -......-;~ -""7"'i• end ---•

while - expression - do - statement -----'!

repeat - statement-seqlll!nce - until - expression ----•

for - variable-identifier - := - expression ~

((
to downto

l l • expression - do - statenuml -----•

with -....,(,.........;•~ variable --).,......-;•~ do ---- stateTMnt ----• __ _
goto -----;~ unsigned-integer ------------•

Figure A.3.9
statement

APPENDIX 509

Figure A.3.10
actual-parameter-list

Figure A.3.11
expression

Figure A.3.12
simple-expression

Figure A.3.13
term

____ (_________ ___,...,.expression--------------

r------ variable ----~

•------;~ ... function-identifier ___,

----... procedure-identifier ----"

------ simple-expression ---)......-------------_. ... (,,.....-__...(_(_(________ (-,-(J
=<><><=>=In

l......_......._l ___,.l_l~l -.Jol~l -.. simple-expression

E:3
., term-r·

Lterm
)))
+ - or

)))

..

--- factor -----.c--tac-ra-r ~-~~~-·~ --)~J ~~t~~m}~d~·~-nd __ ..
S 10 PROGRAMMING USING MACINTOSH PASCAL

ig -tnleger

igned-real

I'-------- COM ant-identifier

string

nll

variable ~

1---- function-identifier \
actual-parameter-list

7
•-------... not - factor

expression)

set

- [-......------------------~-] -
expression-------------~

.. - expression

--.....--...... ------------- unsigned-integer ---------

+ unsigned-real

constant-identifier

---------·string _________ _,

~ variable-identifier

'-- jield-idl!ntifter [r expression -y]
·-- . - field-identifier _____ ... I\------·

Figure A.3.14
factor

Figure A.3.15
set

Figure A.3.16
constant

Figure A.3.17
variable

APPENDIX 511

Figure A.3.18
identifier-list

Figure A.3.19
identifier and directive

Figure A.3.20
unsigned-integer

Figure A.3.21
unsigned-real

Figure A.3.22
string

---------(--~••went~er--~)--------~··

--~~~.~-!------

-----------.--.. digit--)~---------· .. (______ _
(.. digit

) EE ·E~3 ~ ::::::

() .. any-printable-character-except-' f .. .

A.4 EBNF syntax notation
What can we do about the unnecessary diversity of notation for syntac­
tic definitions?
- Niklaus Wirth, title of letter to Communications of the ACM, November

1977, proposing a new notation for syntactic definitions.

The Standard, Cooper's Standard Pascal User Reference Manual, the
description of SANE in the Technical Appendix, and some books on
Pascal, use a syntax notation called Extended Backus Naur Formal­
ism, or EBNF for short.

A syntax rule in EBNF is called a production, and has the
form:

syntactic-term = definition

A definition is a sequence of objects of the following forms.

512 PROGRAMMING USING MACINTOSH PASCAL

Syntactic object

"text"
syntactic-tenn

object1 I object2

[object]
{object}
(object)

Meaning

the literal sequence of symbols text
a member of this syntactic class
either object1 or object2

either object or nothing
a sequence of zero or more copies of object
object (used only to bracket alternatives)

A sequence of symbols is in the syntactic class denoted by a
syntactic term if it can be obtained from the definition of the unique
production with that term on the left-hand side. Here are EBNF
definitions equivalent to the definitions in Exercise 5.1:

original= "Rocky" ["Horror Picture Show"] I
"Godzilla versus" identifier { identifier } .

movie = Son-Of-Sequence original I original numeral .
Son-Of-Sequence = { "Son of" } .
numeral = "II" I "Ill" I "IV" I "V" I "VI" I "VII" I "VIII" I "IX" I "X" .
movie-marathon = movie { "," movie } .

A.5 Notes on Lightspeed Pascal
You ain't heard nothin' yet, folks.
- Al Jolson, in The Jazz Singer (the first talking film), 1927

Lightspeed Pascal supports a slightly extended version of the
Macintosh Pascal programming language, and a significantly enhanced
programming environment. Since every feature of Macintosh Pascal has
a counterpart in Lightspeed Pascal, what is said about the former
applies, perhaps in a modified form, also to the latter.

Wherever Lightspeed Pascal usage is at variance with that of
Macintosh Pascal as described in the text, or offers new possibilities, a
numbered canned-L icon is found in the margin of the text. The
identically numbered note in this appendix documents the Lightspeed
Pascal usage.

CHAPTER 1

1.1 The startup disk for Lightspeed Pascal is LPl.System.

APPENDIX 513

Sou re e .Options

Saue a (opy As

1.2 Double-clicking on the LPI .System icon produces a window like
that shown in Figure A.5.1. Note that neither scroll bar has a
scroll box because all icons in the window are completely vis­
ible.

1. 3 The Lightspeed Pascal programming environment is entered by
selecting the Lightspeed Pascal icon, a Lightspeed Pascal pro­
gram icon, or a Lightspeed Pascal project icon, and then open­
ing it (or by just double-clicking on the icon).

CHAPTER 2

2.1 If Lightspeed Pascal is entered by opening its icon, only its
menu bar appears. To prepare to edit a new program, choose
New from the File menu. A Pascal editing window appears
which functions like Macintosh Pascal's Program window. Do
likewise if entry was by opening a project icon. There is no need
at this stage for the Text or Drawing window.

2.2 There is no Search menu in Lightspeed Pascal: the search
commands are found in the Edit menu. Note that Find What ...
corresponds to What to find... in Macintosh Pascal.

2.3 Although editing is possible at all times, the Lightspeed Pascal
programming environment can only be controlled when a project
is open - see Note 4.1. Choosing Source Options ... from the
Project menu opens a dialog box that displays a sample of the
font in use in the editing, Instant, and Observe windows. It is
possible to cycle through the available fonts by clicking on arrow
buttons (one for each direction). The Indent and Tab Stops
values may also be changed. In order to line up comments and
statements, these two values should be the same; setting them to
the size of the font works well. Note that files with Tabs will not
be properly formatted if opened when no project is open.
The various options for the Text window can be controlled by
choosing Run Options ... from the Project menu.

2.4 Lightspeed Pascal's File menu additionally provides the
command Save A Copy As ... , which functions like Save As ...
except that the title in the active editing window does not
change, because it is not associated with the copy that has been
saved. This command is useful for making backup copies.

2.5

~ 2.6

The information in an editing window may only be saved as
Text Only or Entire Document. Only choose the latter when
you wish to remember stop marks (see Section 4.3.3 of the text).
Several editing windows may be open at any time, although only
one is active. Their titles are the names of the associated files, or

514 PROGRAMMING USING MACINTOSH PASCAL

D LP1.System
3 items 370K in disk 30K av ail ab le

~ ~ ~
Qj

. .

Lightspeed Pascal™ System Finder

QJ
Q_j_ IQ '2l

have the form Untitled followed by a number if newly created
and not yet saved. The editing windows are listed at the bottom
of the Windows menu. A diamond mark at the left of a name

Figure A.5.1

signifies that the corresponding editing window has been <>Guess 3€ 1
changed since it was last saved.

2.7 Copying between programs is easier in Lightspeed Pascal,
because it permits multiple editing windows to be open. First
ensure both the editing window containing the text to be copied,
and the one to receive it, are open. Then make the former
window active, and Copy (or Cut) the desired text from it. Fin­
ally, make the latter window active, and Paste into it. There is
little need for the Note Pad or Scrapbook desk accessory.

2.8 The user's guide for Lightspeed Pascal is the first part (Chapters
1 through 15) of the Manual: Anon. (1986). Lightspeed Pascal
User's Guide and Reference Manual Version 1, 1st edition., USA:
THINK Technologies, Inc.

2. 9 First open a new editing window.
2 .10 Since new editing windows are empty, there is no need initially

to type the Backspace-key.
2.11 The commands Find What... (corresponding to Macintosh

Pascal's What to find ...), Everywhere, Find, and Replace are
chosen from the Edit menu.

2.12 Do the following instead. First choose New Project from the
Project menu, and name the project 'temp' . Then you may
choose Source Options ... from the Project window to change the
font and set Tab Stops and Indent Width. At the end of this

step, choose Close Project from the Project window, then choose
Delete ... from the File menu to delete project 'temp'.

2.13 Open a different editing window, but do not close the current
one (YouGuess3) beforehand.

2.14 Copy a section from the newly opened editing window into
YouGuess3. Then close the newly opened editing window, and
revert to the saved version of YouGuess3.

APPENDIX 515

Figure A.5.2

iiif '·llill

Build :;tf B

:o= Generic Prnject
Ol!tions File ~by build order) Size a MacPaslib 0

Mac Traps 0

Q or lQj '21

CHAPTER 3

3.1 Running the program is not so simple in Lightspeed Pascal. See
Notes 4.1 and 4.2.

3.2 To rerun a program, you need only choose Go.
3.3 The language reference manual for Lightspeed Pascal is the

second part of the Manual (Sections 1 through 10).

CHAPTER4

4.1 In Lightspeed Pascal, an executable program is constructed in
the context of a single project, by compiling one or more editing
files (one of which is the main program), and adding libraries of
precompiled subprograms. All of the programs that we shall
create use two libraries called MacPaslib and MacTraps.
Accordingly, we can save work by first creating a generic project
containing these two libraries. To do so, enter Lightspeed
Pascal by double-clicking on its icon, and choose New Project
from the Project menu. A dialog box appears. Name the project
Generic Project, and associate it with the disk you will use to
create and store programs, by using the Eject or Drive buttons
(as described in Section 2. 7 of the text) until that disk's name
appears at the top right of the dialog box. Then click the Create
button. The Project window appears (as shown in Figure
A.5.2), and its title appears at the top of the Windows menu.

Now choose Build from the Run menu. If either library cannot
be found, a dialog box appears asking if you want to search for
the library. Click the OK button. A dialog box appears like that
for Save As ... shown in Figure 2.4. Insert the LP2.Libraries
disk, and open the library. You will be asked a question about
'SUBSEQUENT (by build order) Project entries'. Click the Yes
button. The libraries are copied into the file on your disk, and
the Project window shows the size in bytes of each library. Now

516 PROGRAMMING USING MACINTOSH PASCAL

choose Close Project from the Project menu, and Quit from the lll.Ji411'l•i[ill
File menu to leave Lightspeed Pascal.

In future, whenever you want to create a new project (i.e. exec- ~
utable program), select the Generic Project icon by clicking on it
once, choose Duplicate from the desktop's File menu, and name
the copy appropriately. Then double-click on the new project's Generic Project
icon to enter Lightspeed Pascal with the Project window dis-

4.2

4.3

4.4

played.

A program cannot be run until it is compiled and linked to the
libraries that it uses. To add the active editing window to a
project, choose Add Window from the Project menu. The con­
tents may then be compiled and added to the project file by
choosing Build from the Project menu, after which the program
may be executed by choosing Go from the Run menu. But it is
sufficient just to choose Go - if the editing window has not
been compiled, or has been changed since last compiled, Build
will be automatically chosen. Also, if Confirm Saves in the Run
menu is active (as indicated by a bullet to its left), you are given
the opportunity to save the editing window before execution.
Alternatively, you may activate either the Auto-Save or the
Don't Save option.

To halt execution of a Lightspeed Pascal program, click on the
bug spray can icon in the top right corner of the screen.

Note that the pointing hand will only enter procedures or func­
tions when the Step Into Calls option in the Debug menu is en-
abled (signified by a check mark to its left). If the Auto Show
Finger option is enabled, the editing window containing the
hand is made active, to ensure the hand is always visible. Each
of these options changes status when selected.

4.5 Step-Step is called Trace in Lightspeed Pascal.

4.6 Stops In is in the Debug menu.

4. 7 The stop feature is switched off by rechoosing Stops In.

4.8 The Do It button is active only when execution of a program
has commenced but has not yet finished (i.e. when the pointing
hand is visible, or can be made so).

4.9 We assume that program YouGuess3 is in the active editing
window, and the project has been built (and can therefore be
executed).

lil!llf Oht.MIQ

Build :~rn

Ruto-Saue
• Confirm Saues

Don't Saue

-.1step Into Calls

Auto-Show Fmget

Trace :~n

APPENDIX 517

CHAPTER 5

5.1 Lightspeed Pascal uses four additional reserved words:

unit Implementation Interface lnllne

CHAPTER 9

9.1 QuickDraw is implicitly supported by Lightspeed Pascal.
Besides SANE, other libraries provided are FixMath, for
manipulating fractional numbers, Graf3D, for 3-dimensional
graphics, Speech, for synthesized speech, and Profile, for
gathering statistics concerning the execution of a program.

9.2 Since unit is a reserved word, change Unit to TimeUnit through­
out.

9.3 QuickDraw is described in Appendix C of the Manual, and
SANE in Appendix D.

CHAPTER 10

10.1 This implementation of ran exploits the fact that integer ar­
ithmetic in Macintosh Pascal is carried out in type longint - see
Section 19 .1 of the text. This is not the case in Lightspeed
Pascal (or Standard Pascal). Accordingly, change the expression
determining the result to

lower + trunc((Random + 1.0 + Maxint) I (2 * (Maxint + 1.0)) *
(upper - lower+ 1))

CHAPTER 11

11.1 Lightspeed Pascal version 1.0 does not permit an element of a
packed array to appear in the variable-list of a Read or Readln
statement, although this is permitted by the Standard.

11.2 Since unit is a reserved word, change Unit to TimeUnit through­
out.

CHAPTER 14

14.1 There is a bug concerning procedure delete in Lightspeed
Pascal version 1. 0. A call has no effect when the string to be
deleted from is a variable formal parameter (of some subpro­
gram).

518 PROGRAMMING USING MACINTOSH PASCAL

CHAPTER 15

15.1 An abstract data type should be represented in Lightspeed
Pascal as a unit, which is a collection of strongly related defini­
tions and declarations. In order to use a unit, either a main pro­
gram or another unit must mention it in a uses-clause; see Sec­
tion 16.4.4 of the text.

An abstract data type supporting variable-length strings is
supplied by the following unit:

unit CharString;
interface
con st

MaxStringlength = ... ;
type

Stringlength = O .. MaxStringlength;
Stringlndex = 1 .. MaxStringlength;
CharString = record

ch : packed array[Stringlndex] of char;
length : Stringlength

end;
{ represents the string ch[1], ch[2], ... , ch[length] }

function length (vars : CharString) : Stringlength;
{ Returns the length of s. }
procedure concat (s1, s2 : CharString;

var result : CharString);
{ Sets result to s1 concatenated with s2; }
{assumes length(s1) + length(s2) <= MaxStringlength. }
headings of sub-programs implementing other abstract operations

implementation
function length;
begin { length }

length := s.length
end; { length }
procedure concat;

var
i : Stringlndex;

begin { concat }

end; { concat }

the remaining function and/or procedure dec/,arations
end. { CharString }

Note that the type-identifier string has been changed to CharString
because string is a reserved word in Lightspeed Pascal.

APPENDIX S 19

A unit has the following syntax:

unit:
unit-heading ;
interface-part
implementation-part
end.

unit-heading: unit unit-identifier
unit-identifier: identifier

The interface part declares those constants, types, variables, functions,
and procedures which are to be made available when a uses-clause
mentions the unit. Only the headings of procedures and functions are
given. Also, any unit used by this unit must be named in a uses­
clause; this goes for direct uses and indirect ones via the interface parts
of other units (see Section 8.5 of the Manual).

interface -part:
interface

uses-clause I :~~er/ace-declaration-part
interface-declaration-part: constant-definition-part I

type-definition-part I variable-declaration-part I
function-heading I procedure-heading

The implementation part specifies the implementation of the subpro­
grams in the interface part, omitting their formal parameter lists. To
do so, further constants, types, variables, and subprograms may be
declared (the latter in full), but they are not available to users of the
unit.

implementation-part:
Implementation I ~~plementation-declaration-part

implementation-declaration-part: constant-definition-part
type-definition-part I variable-declaration-part I
procedure-or-function-declaration

Units have some attractive properties:

• They provide a simple form of information hiding; i.e. they give
the programmer some control over which declarations are made
available to users of a unit, and which are reserved for strictly
internal use. This principle is fundamental to advanced pro­
gramming, because it enables the different 'levels of abstraction
in a program to be distinguished (and rules out many

520 PROGRAMMING USING MACINTOSH PASCAL

sources of error). Units are only partially successful in this re­
spect. For example, because type CharString must be defined in
the interface part, its implementation as a record cannot be
hidden from the user of the unit, although it is very desirable to
do so.

• They permit modular programming, in which a program is
broken up into a collection of modules (groups of strongly re­
lated declarations), the interfaces between which are carefully
controlled. This is a higher-level extension of the concept of
subprograms, and offers similar, additional, and substantial
advantages.

• They permit separate compilation. Only those modules which
have been changed since last compiled need be recompiled.

• They permit the programmer to create his or her own libraries
of precompiled subprograms. Only the interface parts of these li­
braries need be made available for use, just as the SANE unit on
LP2.Libraries does for the SANELib library. See Chapter 9 of
the Manual for the details.

Note that the order of the files in the Project Window is
important. A unit file must appear before any file which uses it.
The cursor changes into a hand when over the list of file names, O
permitting a file to be grabbed and moved elsewhere in the list.
Note also that the order of unit-names in a uses-clause obeys a
similar rule.

15.2 Lightspeed Pascal does support packed records.

CHAPTER 16

16.1 The QuickDraw2 library is implicitly but not explicitly known
to Lightspeed Pascal. Therefore the uses-clause must be deleted.

16.2 Lightspeed Pascal does support packed files.
16.3 This bug is not present in Lightspeed Pascal.

CHAPTER 17

17 .1 Lightspeed Pascal does support packed sets.

CHAPTER 19

19.1 Integer arithmetic is carried out in type integer, unless a con­
stant, variable, or function result of type longint is involved.

APPENDIX 521

The philosophy is the same as that for mixed integer and real ar­
ithmetic. Note that the required functions abs and sqr give a
result of the same type as the actual parameter. Thus, e.g.,
sqr(Maxint + 1) and sqr(600), for example, both give overflow
(the former because its argument does), but sqr(32768) and
sqr(long), where long is a longint variable with value 600, both
evaluate correctly.

There are anomalies with abs in Lightspeed Pascal version 1.0;
e.g. abs(Maxint + 1) and abs(Maxint) + 1 both give -32768.

19.2 If overflow checking is disabled, integer arithmetic also works
this way in Lightspeed Pascal. But you are urged to leave over­
flow checking enabled, as signified by the V-option (to the left
of the file name in the Project window) being boxed.

19.3 Provided the V-option is enabled, integer arithmetic in Light­
speed Pascal is secure.

19.4 This is not the case in Lightspeed Pascal version 1.0:
$19999. 00 is printed.

19.5 Before adding roots to a project, add the SANE unit and the
SANELib library (from LP2.Libraries).

19.6 Evaluation of i + 1 gives an error in Lightspeed P.ascal. But
note that zero would still be printed if i were declared to have
type longint.

CHAPTER20

20.1 Not only should it be retained as a unit, but it should be
implemented as a unit; see Note 15.1 above.

20.2 This abstract data type should also be implemented as a unit.
20.3 If the abstract data type BinarySearchTree is implemented as a

unit, instead of incorporating the code in the text in the pro­
gram, the program-heading should be followed by the following
uses-clause:

uses
BinarySearchTree;

SOLUTIONS TO SELECTED EXERCISES

S.l Since unit is a. reserved word, change Unit to UnitLength
throughout.

S.2 This gives an error in Lightspeed Pascal.

522 PROGRAMMING USING MACINTOSH PASCAL

SOLUTIONS TO
SELECTED EXERCISES
So whoever thinks up all these problems is the biggest nonghead on
the face of the earth.
- Jane Enright, letter to the Brisbane, Australia, Courier-Mail,

30 May 1986, complaining about high-school algebra.

Chapter 1

1.1 The effect of an algorithm may depend on input data.

1.2 There is an algorithm for playing tic-tac-toe that cannot lose.

1.4 Algorithm (a) is more abstract; algorithm (b) depends on a
particular representation for numbers.

1.5 1 k.

1.6 218 - 1 = 262143.

1. 7 By following the ·sequence of instructions with an instruction
that (conditionally) sets the PC to the address of the first instruc­
tion in the sequence.

Chapter 3

3.1 Yes; because 0 ==::: x mody =E::y- 1.

3.2 Execution of the statement adds 1 to the current value of
number.

3.5 program EvenOdd (Input, Output);
{ Reads a number and indicates whether it is even or odd. }

SOLUTIONS TO SELECTED EXERCISES 523

var
num, rem : integer;

begin { EvenOdd }
Readln(num);
rem := num mod 2;
if rem = 0 then

Writeln(' even')
else

Writeln('odd')
end. { EvenOdd}

Chapter 5

5.1 (a) (i), (ii), (iv), and (vii) (since Son and of are identifiers).
(b) Rocky.
(d) Yes.

5.2 (a) -2; (b) O; (c) 32 767 (in Macintosh Pascal); (d) 9.

5.4 See the solution to Exercise 5.11.

5.5 (a) 0.001; (b) 0.333 3 ... ; (c) 0.333 3 ... ; (d) 4.0; (e) 1;
(f) -1.0.

5.6 (a) 'Q'; (b) 'O'; (c) 'x'; (d) 'Z'.

Only (c)'s value is guaranteed by the Standard.

5.8 (a) const
Cost1 = 22; { cost in cents of first ounce }
CostExtra1 = 17; {cost of each additional (part) ounce}

(b) cost:= Cost1 + trunc(weight) * CostExtra1;
if weight = trunc(weight) then

cost:= cost - CostExtra1

5.10 (a) abs(x) <= abs(y)
(b) (0 <= x) and (x <= 5)
(c) (x < 0) or (x > 5)
(d) (x >= O) or (y >= 0)

5.11 (a) NrBoxes := NrWanted div 20;
NrSingles := NrWanted mod 20;
NewBoxOpened := NrSingles > Nrloose;
Nrloose := (Nrloose - NrSingles) mod 20

524 PROGRAMMING USING MACINTOSH PASCAL

(b) NrBoxes := (NrWanted - Nrloose) div 20;
if NrWanted <= Nrloose then

NrSingles := NrWanted
else

NrSingles := Nrloose + (NrWanted - Nrloose) mod 20;
NewBoxOpened := NrSingles > Nrloose;
Nrloose := (Nrloose - NrSingles) mod 20

5.12 lsEven := not odd(n)

5.14 We give only the new values of the variables.

(a) i = 215, r = -100.0, c = ' ';
(b) i = 215, r = -100.0, c = '-';
(c) i = 215, c = '-', r = 100.0;
(d) r = 215.0, i = -1, c = 'E';
(e) i = 215, r = -15.0, c = '5'.

5.15 Writeln('The speed of light is approximately ',
LightSpeed : 1 : 2,' miles per second.')

5.18 Write('$', cost I 100 : 1 : 2)

5.20 It means that the loop will execute forever (until the program is
halted manually).

5.21 Any integer > 16 384 (in Macintosh Pascal).

5.24 There would be no way of telling the last statement in the
statement-list.

s.;
while not p do

begin
SI;

s.
end

end

5.28 (b) because an underscore () cannot appear in an identifier;
(c) because a hyphen(-) cannot appear in an identifier;
(f) because a period (.) cannot appear in an identifier;
(g) because a single-quote (') cannot appear in an identifier;

SOLUTIONS TO SELECTED EXERCISES 525

(h) because downto is a reserved word.

5.29 Because the case of a letter is unimportant except in strings.

Chapter 6
6.2 var

hours12 : integer; { 12 hour clock's equivalent of hours }

{ Given time on 24·hour clock is hours:minutes, print time on }
{ 12 hour clock. E.g. for 0:00 print .,12:00am', for 9:09 print }
{ '9:09am', for 12:00 print '12:00pm', for 23:59 print '11 :59pm' }

{ Set hours12 = 12-hour version of hours }
If hours = o then

hours12 := 12
else if hours > 12 then

hours12 :=hours - 12
else

hours12 := hours;
{ Write time on 12-hour clock }
Write(hours12: 1, ':',minutes div 10: 1, minutes mod 10: 1);
if hours < 12 then

Writeln('am')
else

Writeln('pm')

6.3 (a) value<= limit

(b) value > limit

(c) (value< -2 * limit) or (value> limit)

(d) (value < -limit) or (value > limit)

6.7 (a)
V := x0 ;

repeat
Set v = the next member of the sequence (after v)

until v has property P

(b) var
m, { a number > n to be tested for primality }
d : integer; { a candidate for a divisor of m }

{ Set NextPrime = the least prime > n }
m := n;

repeat
m := m + 1;

526 PROGRAMMING USING MACINTOSH PASCAL

{ Set d = least divisor > = 2 of m }
d := 2;
while m mod d <> O do

d := d + 1
until d = m;
NextPrime := m

6.8 Mult32 := ((x + 31) div 32) * 32

6.12 for OrdOfChar :=Oto 255 do
Write(chr(OrdOfChar))

6.17 { Set sum = 1 + 2 + 3 + ... + n, given n >= 0 }
sum:= n * (n + 1)div2

6.18 var
i: integer;

{Set sum = 1 +1/2 + 1/3 + ... + 1/n, given n >= 0}
sum:= 0.0;
for i := n downto 1 do

sum:= sum + 1.0 Ii

6.19 var
ch : char;

{ Set unused to number of characters in rest of line and skip to }
{next line}

unused := O;
while not eoln do

begin
Read(ch);
unused : = unused + 1

end;
Read In

6.20 var
FibNr, NextFibNr, {two successive Fibonacci numbers}
temp : integer;

(a) { Print the Fibonacci numbers <= limit}
FibNr := O;
NextFibNr := 1;
while FibNr <= limit do

begin
Write(FibNr);
temp:= NextFibNr;
NextFibNr := NextFibNr + FibNr;
FibNr := temp

end

SOLUTIONS TO SELECTED EXERCISES 527

(b) var
i : integer;

{ Print the first n Fibonacci numbers, given n >= 0}
FibNr := O;
NextFibNr := 1;
for i := 1 to n do

begin
Write(FibNr);
temp:= NextFibNr;
NextFibNr := NextFibNr + FibNr;
FibNr := temp

end
More careful solutions are needed to avoid computing un­
necessarily large numbers.

6.21 (a) { d = least divisor >= 2 of m }

(b) { m >= 2} (from context)

Chapter 7

7 .1 function lsletter (ch : char) : Boolean;
{ Returns true if ch is a letter, otherwise false. }
{ N.B. Assumes both upper- & lower-case letters contiguous. }
begin { lsletter }

lsletter := ('a' <= ch) and (ch <= 'z') or
('A' <= ch) and (ch <= 'Z')

end; { lsletter }

7.2 (a) function even (i : integer): Boolean;
{ Returns true if i is even, otherwise false. }
begin { even }

even := not odd(i)
end; {even_}

(b) function even (i : integer) : Boolean;
{ Returns true if i is even, otherwise false. }
begin { even }

even := i mod 2 = O
end; {even}

7.9 function ForceUpper (ch : char;
upper : Boolean) : char;

{ If ch is a lower-case letter and upper is true, }
{ returns the upper-case version of ch, else returns ch. }
{ N.B. Assumes both upper- & lower-case letters contiguous. }
begin { ForceUpper }
if upper and ('a' <= ch) and (ch <= 'z') then

528 PROGRAMMING USING MACINTOSH PASCAL

ForceUpper := chr(ord(ch) + ord('A') - ord('a'))
else

ForceUpper := ch
end; { ForceUpper}

7.12 function lpf (n: integer): integer;
{Assumes n > 1;}
{ returns the least prime factor of n. }

var
d : integer; { candidate for a divisor of n }

begin { lpf}
if not odd(n) then

lpf := 2
else

begin
d := 3;
while (n mod d <> O) and (sqr(d) < n) do

d := d + 2;
ifnmodd=Othen

lpf := d
else

lpf := n
end

end; { lpf}

The efficiency of the function can be further improved by pre­
computing the square root of n and thereby avoiding the re­
peated calls of sqr.

7.13 function product (x, y : integer) : integer;
{ Returns x * y. }
var

sum, { accumulates answer }
temp : integer;

begin { product }
{Arrange x, y such that abs(x) <= abs(y)}
If abs(x) > abs(y) then

begin
temp:= x;
x := y;
y :=temp

end;
{ Adjust signs if necessary to ensure x is non-negative }
ifx < o then

begin
x := -x;
y := -y

end;

SOLUTIONS TO SELECTED EXERCISES 529

{ Set product = x * y }
lfx = o then

product:= O
else
begin

sum:= O;
while x <> 1 do

begin
If odd(x) then

sum:= sum+ y;
x := x div 2;
y := y * 2

end;
product := sum + y

end
end; { product }

7.14 Our solution extends the function to negative integers.

function gcd (x, y : integer) : integer;
{ Returns the greatest common divisor of x and y; }
{ assumes x and y are not both 0. }

var
temp : integer;

begin { gcd}
x := abs(x);
y := abs(y);
while x <> O do

begin
temp:= x;
x := y mod x;
y :=temp

end;
gcd := y

end; { gcd}

Chapter 8

8.3 The illegal calls are as follows:

(a) because '1' is not assignment-compatible with type integer;
(c) because sum is not an integer variable;
(d) because sum is not assignment-compatible with type

integer
(e) because round(sum) is not an integer variable;
(f) because 0 is not an integer variable.

530 PROGRAMMING USING MACINTOSH PASCAL

8.4 (a) 1 2
2 0
1 2

(b) 1 2
2 0
2 0

8.5 (a) NrWanted, Nrloose.
(b) Nrloose, NrSingles, NrBoxes, NewBoxOpened.
(c) Nrloose.
(d) NrWanted.
(e) Nrloose, NrSingles, NrBoxes, NewBoxOpened.

8.6 procedure WriteStats (total1, total2, sum, jobs : integer);
{Writes number of jobs Gobs); if jobs> 0, writes total time on }
{ each processor (total1, total2), and average time of job- }
{completion (sum/jobs). }
con st

start = 'The total time used on processor';
begin { WriteStats }

Writeln;
WritelnGobs : 1, ' jobs processed.');
if jobs > o then

begin
Writeln(start, ' 1 = ', total1 : 1);
Writeln(start, ' 2 = ', total2 : 1);
Writeln('The average time at which jobs complete = ',

sum I jobs : 1 : 1)
end;

end; { WriteStats}

WriteStats(TotalTime0n1, Tota1Time0n2, SumOfCompletionTimes, ·
JobCount)

8.10 a and b should be value-parameters. Better - the procedure
should be rewritten as a function.

8.11 1 is printed because band max are aliased to big.

8.13 The attempted definition of the constant pbase is in the scope of
the declaration of the integer variable base.

Chapter 9

9.1 (2 x Maxint + 1)2 = 4294836225.

SOLUTIONS TO SELECTED EXERCISES 531

9.2 Assuming all the pixels are visible: (a) 3; (b) 15.

9.3 22 (assuming all the pixels are visible).

9.5 procedure DrawDots (n, gap : integer);
{ Draws n dots in a horizontal line, separated by given gap; the }
{ pen is left at top-left corner of dot farthest from its initial }
{ position. }

var
i: integer;

begin { DrawDots }
ifn>Othen

begin
Line(O, O);
for i := 2 to n do

begin
Move(gap, O);
Line(O, 0)

end
end

end; { DrawDots}

9.6 var
MarkerAt, { horizontal coordinate of next marker }
time : integer;

{ Draw and label markers for time axis }
time:= O;
MarkerAt := Left;
while MarkerAt <= MaxWidth do

begin
{ Draw and label next marker }

MoveTo(MarkerAt, base);
Line(O, Drop);
Move(-PointSize div 2, PointSize);
WriteDraw(time : 2);

{ Update time and MarkerAt }
time := time + 2;
MarkerAt := MarkerAt + 2 * Unit

end

9.10 Dist ~ HeadWidth.

9.11 A single empty statement.

Chapter 10
10.1 An enumerated type, naturelment.

532 PROGRAMMING USING MACINTOSH PASCAL

10.2 See the solution to Exercise 10.11.

10.3 const
MaxSecret = 1 O;

var
secret : 1 .• MaxSecret; { the number to be guessed }
guess : integer;

10.4 type
index = 0 .. 15; { type of row or column of character set table }

10.6 procedure PrintMonth (m : Months);
{ Prints the string corresponding to the identifier of m. }
begin { PrintMonth }

case m of
January:

Write(' January');
etc.
December:

Write(' December')
end {case}

end; { PrintMonth}

10.7 (i) The answer to an exercise is not necessarily of type operand.
(ii) Incorrect answers may be input.

10.9 {Set op to a random operation }
case ran(O, OrdOflastOp) of

0:
op:= plus;

1 :
op:= minus;

2:
op:= times

end {case}

10.11 program Calendar (Input);
{ Draws a month by month calendar for 1988. }
{Run with Drawing window occupying the full screen;}
{ hit Return to draw each successive month. }
type

Years= 1753 .. 9999;
Months = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,

Nov, Dec);
Monthlengths = 28 .. 31;
Days = (Su, Mo, Tu, We, Th, Fr, Sa);

function NextDay (ThisDay: Days) : Days;
{Returns day after ThisDay.}

SOLUTIONS TO SELECTED EXERCISES 533

begin { NextDay}
If ThisDay = Sa then

NextDay := Su
else

NextDay := succ(ThisDay)
end; { NextDay }

function LengthOfMonth (month: Months;
year : Years) : MonthLengths;

{Returns number of days in given month for given year.}
as given in Chapter JO

procedure DrawStringC (s: string);
{ Draws s with the center of its base line at the current pen }
{position; leaves the pen position at the end of the string. }
see Chapter 14

procedure DrawCal (year: Years;
Jan1 : Days);

{ Draws a month by month calendar for given year, with }
{January 1st on day Jan1; waits for user to hit}
{ Return-key before printing new month. }
{Global subprogram: LengthOfMonth. }

var
month: Months;
FirstDay : Days; { first day in month }

procedure DrawMonth (month : Months;
NrDays : MonthLengths;
var FirstDay: Days);

{ Draws calendar for given month having NrDays days and }
{ first day on FirstDay; updates FirstDay to first day }
{of next month. }
{Global subprogram: NextDay.}

con st
Top = 32; {top left comer of rectangle for month's }
Left = 40; { calendar is at (Left.Top). }
BoxWidth = 40; { width of box for each day }
CharSize = 12; {character size in points (default: 12) }

var
NrRows : 1 .. 6; { number of rows in month's calendar }
TopBox, LeftBox : integer; {top left corner of box for day

is at (LeftBox,TopBox) }
day : Days; { current day }
DayNumber : 1 .. 31; { number of current day }

procedure DrawHeadings;
{Draws month and day headings for month's calendar.}
{ Global consts: Top, Left, BoxWidth, CharSize. }

534 PROGRAMMING USING MACINTOSH PASCAL

{ Global vars: month, year (parameters of DrawMonth). }
{Global subprogram: DrawStringC. }
var

day: Days;
begin { DrawHeadings }

MoveTo(Left + 7 * BoxWidth div 2, Top- CharSize - 5);
DrawStringC(StringOf(month, ' ',year: 1));
for day:= Su to Sa do

begin
MoveTo(Left + ord(day) * BoxWidth + BoxWidth div 2,

Top-3);
DrawStringC(StringOf(day))

end
end; { DrawHeadings }

begin { DrawMonth }
TextSize(CharSize);
NrRows := (NrDays + ord(Firstoay) + 6) div 7;

{ Clear Drawing Window }
EraseRect(O, o, Maxint, Maxint);

{ Paint gray background for calendar }
PenPat(gray);
PaintRect(Top - 1, Left - 1, Top + NrRows * BoxWidth + 1,

Left + 7 * BoxWidth + 1) ;
PenPat(black);

DrawHeadings;
{ Set coordinates of box for first day }

TopBox := Top;
LeftBox := Left + ord(FirstDay) * BoxWidth;

day:= FirstDay;
for DayNumber := 1 to NrDays do

begin
{ Erase box for day }

EraseRect(TopBox + 1, LeftBox + 1, TopBox
+ BoxWidth - 1, LeftBox + BoxWidth - 1);

{ Draw DayNumber in box }
MoveTo(LeftBox + 2, TopBox + CharSize);
WriteDraw(DayNumber: 1);

{ Advance day and set coordinates of its box }
day:= NextDay(day);
H day = Su then

begin
TopBox := TopBox + BoxWidth;
LeftBox : = Left

end
else

SOLUTIONS TO SELECTED EXERCISES 535

LeftBox : = LeftBox + BoxWidth
end;

FirstDay := day
end; { DrawMonth}

begin { DrawCal }
FirstDay := Jan1;
for month : = Jan to Dec do

begin
DrawMonth(month, LengthOfMonth(month, year), FirstDay);
Read In

end
end; { DrawCal}

begin { Calendar }
DrawCal(1988, Fr)

end. { Calendar }

Chapter 11
11.2 (a) 2; (b) error: 0 subscript is out of range; (c) 2; (d) 5.

11.3 var
op : operation;
i : 1 .. 0rdOflastOp; { = ord(op) }

{ Define OpWithOrd }
OpWithOrd[O] := plus;
op:= plus;
for i := 1 to OrdOflastOp do

begin
op := succ(op);
OpWithOrd[i] :=op

end

11.4 procedure PrintFrom (LowScore : ScoreRange;
var h : histogram);

{ Prints each scores and its frequency h[s], }
{ for s = LowScore, ... , MaxScore, in two headed columns. }
{ Global const: MaxScore. }

var
score : ScoreRange;

begin { PrintFrom }
Writeln('score frequency');
for score:= LowScore to MaxScore do

Writeln(score, h[score])
end; { PrintFrom }

11. 7 Count the examination scores, and take special action if there are

536 PROGRAMMING USING MACINTOSH PASCAL

none. This approach is best because it is simple, natural, and
efficient.

11.10 Yes.

11.11 One way is to use schema Truncated Safe Linear Search:

function DifferAt (var m1, m2 : message) : Extendedlndex;
{Returns 0 if m1 and m2 are identical, otherwise the}
{ least index at which they differ. Global const: Length. }

var
i: index;

begin { DifferAt }
i := 1;
while (i < Length) and (m1 [i] = m2[i]) do

i := i + 1;
if m1 [i] = m2[i] then
, DifferAt := 0
else

DifferAt := i
end; { DifferAt }

Another is to use schema Boolean Safe Linear Search; we prefer
the former as it avoids a Boolean variable.

11.13 Because all elements in A[left .. right] need to be examined.

11.14 Yes, because Nrleft ~ 2 in the body of the for-loop.

11.16 function NumberOflnversions (var A: values;
n : count) : count;

{ Returns the number of out-of-order pairs of elements in A[1 .. n]. }
var

i, j: index;
answer : count;

begin { Number of Inversions }
answer:= O;
for i :=1 ton - 1do

for j := i + 1 to n do
if Am < A[i] then

answer : = answer + 1 ;
. Numberoflnversions : = answer

end; { NumberOflnversions }

11.18 procedure reverse (var A: values;
left, right : index);

{ Reverses the order of the values in A[left .. right]. }
{ Global subprogram: swap. }

SOLUTIONS TO SELECTED EXERCISES 537

var
d : O .. Maxint; { A[left + d], A[right - d] are to be swapped }

begin { reverse }
ford := o to (right - left - 1) div 2 do

swap(A[left + d], A[right - d])
end; { reverse}

Another solution may be given using a while-loop that incre­
ments left and decrements right in its body.

11.19 procedure ArraySwap (var V: values;
a, b, c : index);

{ Swaps the array sections V[a .. b - 1] and V[b .. c]. E.g. if }
{a= 4, b = 7, c = 11, V[4 .. 11] = (2, 4, 6, 8, 10, 12, 14, 16),}
{after the swap V[4 .. 11] = (8, 10, 12, 14, 16, 2, 4, 6);}
{ assumes 1 <= a< b <= c <= Maxlndex. }
{ Global subprogram: reverse. }
begin { ArraySwap }

reverse(V, a, b - 1);
reverse(V, b, c);
reverse(V, a, c);

end; { ArraySwap }

11.20 procedure PerfectShuffle (var OldDeck, NewDeck: deck);
{ Sets NewDeck by splitting OldDeck exactly in half and }
{ merging the cards, alternating between one half and the }
{ other; the first card should come from the second half. }
{ E.g. if NumberOfCards = 8 and OldDeck contains }
{ (c1, c2, c3, c4, c5, c6, c7, c8), then NewDeck should be}
{ set to (c5, c1, c6, c2, c7, c3, ca, c4). }
{ Global canst: NumberOfCards. }
var
i: number;

begin { PerfectShuffle }
for i := 1 to NumberOfCards div 2 do

begin
NewDeck[2 * i - 1) := OldDeck[NumberOfCards div 2 + i];
NewDeck[2 * i] := OldDeck[i]

end
end; { PerfectShuffle}

11.22 The jobs are scheduled in input order. So the rest of the pro­
gram can be tested before procedure sort is written.

Chapter 12

12.1 { Set total = sum of elements in A[1 .. n] }

538 PROGRAMMING USING MACINTOSH PASCAL

total= 0.0;
{ Invariant: total = sum of elements in A[1 .. i - 1] }
for i := 1 to n do

total :=total + A[i]

The invariant applies just before the next value of i is compared
to n.

12.2 The invariant for Truncated Safe Linear Search is:

a ~ v ~ b, and P(x) = false for a ~ x < v.

12.3 Our version.

12.4 procedure split (var A : values;
n: index);

{ Rearranges A[1 .. n) so that the negative values precede the rest. }
{Global subprogram: swap. }
var

left, right : index;
begin { split }

right:= n;
left:= 1;
{ Invariant: A[1 .. left - 1] are negative, A[right + 1 .. n) are }
{ non-negative, 1 <= left, and right<= n. }
while right > left do

if A[left] < 0 then
left := left + 1

else if A[right] >= o then
right := right - 1

else
begin

swap(A[left], A[right]);
left := left + 1;
right:= right - 1

end
end; { split}

12.6 (a) A[i] ~ A[i + 1) for NrLeft < i < n.

(b) A[i] ~Al/] if 1 ~ i ~ NrLeft <j:::;; n.

12.8 Order logn, since a bounded number of operations is executed
for each decimal digit, and n has order logn decimal digits.

12.9 Order 1, i.e. constant.

12.11 Let n be the number of jobs in the input data.

SOLUTIONS TO SELECTED EXERCISES 539

(a) Order n, since each job is processed in a bounded number
of operations.

(b) Order n2 (in the worst-case), since the call of sort dominates
the running time.

12.12 Implement sort with a more efficient algorithm.

12.13 Let n be the number of elements in the array-section.
(a) Order n.
(b) Order n2, since the elements may be shifted order n places.

12.14 var
increasing: Boolean;

{ Set k = maximum value such that A[1 .. k] are in non­
decreasing order j
k := 1;
increasing := true;
{ Invariant: increasing = true iff A[1 .. k] are in non-decreasing

order, and k <= n }
while increasing and (k < n) do

if A[k] <= A[k + 1) then
k := k + 1

else
increasing:= false

12.17 (a) Yes.
(c) Order nlogn.

Chapter 13
13.1 (a) if square[row, col] = Empty then

square[row, col] := X

(b) for row:= 1 to 3 do
tor col := 1 to 3 do

square[row, col]:= Empty

13.2 (a) function CostOfStock (store : StoreNumber) : count;
{ Returns the total cost in cents of the stock held by the }
{ given store. Global var: cost. }

var
total : count;
item : ltemType;

begin { CostOfStock}
total:= O;
for item:= Barbie to Uzi do

total := total + stock[item, store] * cost[item];
CostOfStock :=total'

540 PROGRAMMING USING MACINTOSH PASCAL

end; { CostOfStock }

(b) { Print the total cost of the stock held by each store }
for store := 1 to NrStores do

Writeln('Total cost of stock held by store ', store : 1,
' is$', CostOfStock(store) I 100.0 : 1 : 2)

13.3 No, because temp and stock[cube] do not have the same type.
The following changes permit it:
type

ltemStock = array[StoreNumber] of count;

inventory= array[ltemType] of ltemStock;
var

temp : ltemStock;

13.4 (b - a + 1) x (d - c + 1) if a :s:: b and c :S:: d; otherwise 0.

13.6 procedure transpose (var A : matrix; n : index);
{ Revolves A[1 .. n, 1 .. n] 180 degrees round its major diagonal; }
{i.e. the i'th row becomes the i'th column, and vice versa. }
{ Global subprogram: swap. }

var
i, j : index; { A[i, j] and A[j, i] are to be swapped }

begin { transpose }
for i := 2 to n do

for j := 1 to i - 1 do
swap(A[i, j], A[j, i])

end; {transpose}

13. 7 function symmetric (var A : matrix;
n: index): Boolean;

{ Returns true if A[1 .. n, 1 .. n] is symmetric, otherwise false. }
var

i : 1 .. Maxint;
j : index; { in 1..i - 1 }
OK: Boolean; {true iff all elements before A[i, j] (in row-major}

{order) are equal to.their transposed images. }
begin { symmetric }

i := 2;
j := 1;
OK:= true;
whlle OK and (i <= n) do

if A[i, j] <> A[j, i] then
OK:= false

else
lfj<i-1 then

j := j + 1
else

SOLUTIONS TO SELECTED EXERCISES 541

begin { Set (i, j) to first element in next row }
i := i + 1;
j := 1

end;
symmetric := OK

end; {symmetric}

13.10 procedure VFlip (var A : matrix;
rows : Rowlndex;
cols: Collndex);

{ Revolves A[1..rows, 1 .. cols] 180 degrees round its central }
{ vertical axis. I.e. A[r, 1] is swapped with A[r, cols], }
{ A[r, 2] is swapped with A[r, cols - 1), etc. }
{ Global subprogram: swap. }
var

row : Rowlndex;
col : Collndex;

begin { VFlip }
for row := 1 to rows do

for col := 1 to cols div 2 do
swap(A[row, col], A[row, cols + 1 - col])

end; { VFlip}

13.11 procedure ScreenToGrid (x, y : integer;
var row : Extendedlndex1 ;
var col: Extendedlndex2);

{ If screen position (x, y) is in grid, sets (row, col) to}
{ cell containing (x, y); otherwise sets row and col to 0. }
{ Global consts: Offset1, Offset2, Maxlndex1, Maxlndex2, Gap. }
begin { ScreenToGrid }

if (Offset2 <= x) and (x < Offset2 + Maxlndex2 * Gap) and
(Offset1 <= y) and (y < Offset1 + Maxlndex1 * Gap) then
begin

row := (y - Offset1) div Gap + 1;
col:= (x- Offset2) div Gap+ 1

end
else

begin
row:= O;
col:= O

end
end; { ScreenToGrid}

13.14 Simply increase NrShades to 5, change the comments for vari­
able shade and procedure SetUp to remove the proviso about
white being added, and change the body of procedure SetUp.

542 PROGRAMMING USING MACINTOSH PASCAL

Chapter 14

14.1 (a) ' '; (b) 't'; (c) undefined.

14.2 (a) '#'; (b) undefined.

14.5 The rest of the current input line is stored in line[1], and the
next two input lines are stored in line[2] and line[3] respectively.

14.6 procedure append (var extra, f : text);
{ Appends extra to f; assumes f is being written, extra has }
{ already been associated with an external file if necessary, }
{ and no line of extra contains more than 255 characters. }

var
line : string; { a line of extra }

begin { append }
Reset(extra);
while not eof(extra) do

begin
Readln(extra, line);
Writeln(f, line)

end
end; {append}

14.7 Process Lines, hopefully.

14.8 (a) procedure PrintCycle (s: str100);
{ Prints each of the length(s) cyclic permutations of s, }
{ one per line. }

var
i: 0 .. 100;

begin { PrintCycle }
for i := 1 to length(s) do

Writeln(copy(s, i, length(s)), copy(s, 1, i - 1))
end; { PrintCycle }

(b) function CyclicPermutation (s1, s2 : str100) : Boolean;
{ Returns true iff s1 is a cyclic permutation of s2. }
begin { CyclicPermutation }

CyclicPermutation := (length(s1) = length(s2)) and
(pos(s1, concat(s2, s2)) <> 0)

end; { CyclicPermutation}

14.10 function ShortForm (name : string) : string;
{ Assumes that name consists of 1 or more first names followed }
{ by a surname, with successive names separated by one }
{ space. Returns a name consisting of the initial letters of the }
{ first names, in order, each followed by a period, then a space }

SOLUTIONS TO SELECTED EXERCISES 543

{and the surname; e.g. if name= 'Martin Luther King', then}
{ 'M.L. King' should be returned. }

var
initials : string; { initials of first names deleted from name}
i : Stringlndex; { = pos(' ', name) }

begin { ShortForm }
initials := ";
i := pos(' ', name);
while i <> 0 do

begin
initials := concat(initials, copy(name, 1, 1), • .');
delete(name, 1, i);
i := pos(' ', name)

end;
ShortForm := concat(initials, ·',name)

end; { ShortForm }

14.13 procedure compress (vars: string);
{ Assumes s is a string of words separated by 1 or }
{ more blanks; removes blanks so that successive words }
{are separated by one space. }
var
t: string;
i : Stringlndex;

begin { compress }
t ·= "· . '
i := pos(' ', s); { N.B.: 2 spaces }
{ Invariant: as given }
while i <> o do

begin
t := concat(t, copy(s, 1, i));
while s[i] = ' ' do

i := i + 1;
delete(s, 1, i - 1);
i := pos(' ', s) { NB: 2 spaces }

end;
s := concat(t, s)

end; { compress }

14.17 Replace:

FindField('Path: ', PathToMe)
with:

GetPath(PathToMe)

where GetPath is declared as follows:

procedure GetPath (var path : string);

544 PROGRAMMING USING MACINTOSH PASCAL

{ Reads lines from mailbox until one starting with 'Path' }
{ is found; if next character is ': ', sets path to rest of}
{ line; otherwise assumes '(n): 'follows, and path is}
{ assembled from rest of line and next n - 1 lines. }
{ Global var: mailbox. }
{ Global subprogram: FindField. }
var

Pathlnfo, { rest of line starting with 'Path' }
line : str; { line of received message }
LineslnPath, i : count;
ch: char;

begin { GetPath }
FindField('Path', Pathlnfo);
if Pathlnfo[1] = ':' then

path := copy(Pathlnfo, 3, length(Pathlnfo))
else

begin { assume Pathlnfo = (n): first part of path }
ReadString(Pathlnfo, ch, LineslnPath, ch, ch, ch, path);
for i := 1 to LineslnPath - 1 do

begin
Read(mailbox, line);
insert(line, path, length(path) + 1)

end
end

end; { GetPath}

Chapter 15
15.3 (a) type

time = record
hour: 0 .. 23;
minute, second : 0 .. 59

end
(b) procedure tick (var t: time);

{Advances t by 1 second. }
begin { tick }

with t do
begin

If second < 59 then
second := second + 1

else
begin { advance to next minute }

second:= O;
If minute < 59 then

minute:= minute+ 1
else

begin { advance to next hour }
minute:= O;
hour := (hour + 1) mod 24

SOLUTIONS TO SELECTED EXERCISES 545

end
end

end {with t}
end; {tick}

15.5 procedure GetMousePt (var pt: Point);
{ Sets pt to the position of the mouse. }
begin { GetMousePt }

GetMouse(pt.h, pt.v)
end; { GetMousePt}

15.6 type
bar= record

b: array['a' . .'z'] of integer;

end;
foo = array[1 .. 1 OJ of bar;
T =record

a: foo;
c: 'a' . .'.z';
d: 1 .. 10;

end;
var

X, y: T;

15.9 function relationship (var s1, s2 : string) : relation;
{ If s1 and s2 are identical, returns Equal; otherwise returns}
{ LessThan if s1 precedes s2 in dictionary order, or}
{ GreaterThan if vice versa. }

var
Minlength : Stringlength; { min of length(s1), length(s2) }
i : 1 .. Maxint; { in 1 .. MaxStringLength + 1 }
same: Boolean;

begin { relationship }
{ Set Minlength }

If s1 .length <= s2.length then
Minlength := s1. length

else
Minlength := s2. length;

{ Set i = first index at which s1 and s2 differ, or Minlength + 1 }
{ if all existing characters in matching positions are identical }

same := true;
i := 1;
while same and (i <= Minlength) do

if s1 .ch[i] = s2.ch[i] then
i := i + 1

else
same := false;

546 PROGRAMMING USING MACINTOSH PASCAL

{ Return result }
if i <= Minlength then

if s1 .ch[i] < s2.ch[i] then
relationship:= LessThan

else
relationship := GreaterThan

else
If s1 .length < s2.length then

relationship:= LessThan
else If s1 .length > s2.length then

relationship:= GreaterThan
else

relationship := Equal
end; { relationship }

15.10 See the definitions of the abstract data types stack and Binary­
SearchTree in Chapter 20 for stylistic guidelines.
(a) type

complex = record
re, im : real { real & imaginary parts }

end;

15.12 procedure DragARect (DownAt: Point;
var r : Rect);

{ Assumes mouse button was pressed at location DownAt, and }
{ is still down; repeatedly draws and erases the frame of the }
{ rectangle with top-left comer at DownAt and bottom-right }
{ comer at current mouse position, until the mouse button is }
{ released. Only the last rectangle's frame remains; }
{ its coordinates are returned in r. }
begin { DragARect }

with r do
begin

r.topleft := DownAt;
GetMouse(r .botRight.h, r.botRight. v);
FrameRect(r);
whlle button do

begin
{ Erase frame of old rectangle }

PenPat(white);
FrameRect(r);

{ Define and draw frame of new rectangle }
GetMouse(r.botRight.h, r.botRight.v);
PenPat(black);
FrameRect(r)

end
end {with r}

end; { DragARect}

SOLUTIONS TO SELECTED EXERCISES 547

548

Chapter 16

16.1 1.

16.2 procedure CreateDiffFile (var ValuesFile : FileONalues;

16.5

16.6

var GapsFile: FileOfGaps);
{ Sets i'th component of GapsFile to the difference between }
{the (i + 1)'th and i'th components of ValuesFile;}
{ assumes values in ValuesFile are non-decreasirig. }

var
old, new: O .. MaxValue; {successive components of }

{ ValuesFile }
begin { CreateDiffFile }

Reset(ValuesFile);
Rewrite(GapsFile);
If not eof(ValuesFile) then

Read(ValuesFile, old);
while not eof(ValuesFile) do

begin
Read(ValuesFile, new);
Write(GapsFile, new - old);
old:= new

end
end; { CreateDiffFile }

We show the state of the file after execution of each statement.

intfile intfile"
I 9 I 8 I 7 t Q]

intfile intfile"
I 9 I 8 I 7 6 I~ Q]

intfile intfile"

~
9 I 8 I 7 6 QJ

intfile intfile"
9 ~ s I 7 6 QJ ~nttile intfile"

I 9 I 10 ~ 7
6 QJ

I

{ Add 1 to the n'th component of intfile }
seek(intfile, n - 1);
Write(intfile, intfile" + 1)

PROGRAMMING USING MACINTOSH PASCAL

16.7 Maxint = 32767.

16.8 (a) Because ErrorPosFile" will be undefined for the last error
message.

(b) Appending a component to ErrorPosFile giving the file­
position at the end of the last error-message in ErrorFile.

Chapter 17

17.1 (a) 26 = 64; (b) 25 = 32; (c) 27 - 25 = 96.

17.2 (a) [2, 3, 4]; (b) []; (c) [-2, -1, 0, 1, 2]; (d) [2, 4, 6];
(e) ['O', '1 ', '2']; (f) ['i', 'j'].

17.4 (a) [O, 2, 4, 5, 6, 8]; (b) [5]; (c) (0, 4, 6]; (d) (2, 8].

17.5 (a) true; (b) true; (c) false; (d) false; (e) true; (f) true.

17 .6 (a) GetTextStyle(TypeFace)

(b) { Add underline to the current text style if it is not already }
{present}

GetT extStyle(TypeFace);
TextFace(TypeFace + [underline])

(c) { Remove extend and condense from the current text style}
{ if both are present in it }

GetT extStyle(TypeFace);
if [extend, condense] <= Typeface then

TextFace(TypeFace - [extend, condense])

17.7 lsPangram := letters= ('a' . .'z']

17.8 (a) ch in ('Y', 'y']
(b) ch in ('O' . .'9']
(c) ch in ('O' .. chr(ord('O') + b - 1)]
(d) ord(ch) In (0 .. 31, 127]

17.11 const
LastRow = ... ;

type
RowNumber = 1 .. LastRow;
RowAssignment = set of 'A'..'F';
assignment = array[RowNumber] of RowAssignment;

var

SOLUTIONS TO SELECTED EXERCISES 549

assigned : assignment; { assigned[r) is set of assigned seats in }
{row r}

17.13 type
BinaryNumber = array[O .. MaxExponent] of Boolean;

{ the i'th element is true iff bit i is 1 }

17.14 Because the result-type of a Pascal function cannot be a set-type.

17.16 First, because it is unlikely that the winning invariant is true in­
itially.

17.17 Yes. For example, suppose the non-empty piles have sizes 7, 4,
and 5. Then taking 6 from the pile of 7, 2 from the pile of 4, or
2 from the pile of 5 makes the winning invariant true.

17.18 Take 5 from the pile of 8.

Chapter 18

18.2 (a) function factorial (n : count) : count;
{ Returns n! }
begin { factorial }

lfn=Othen
factorial := 1

else
factorial := n * factorial(n - 1)

end; { factorial }

(b) function factorial (n : count) : count;
{ Returns n! }

var
i : O .. Maxint;
product : 1 .. Maxint;

begin { factorial }
product := 1;
for i := 1 to n do

product : = i * product;
factorial := product

end; {factorial }

(c) The time-complexity of each algorithm is order n. The
space-complexity of the recursive algorithm is order n; that
of the other is constant (order 1). These measures are not
very meaningful in this situation, because the result of the
function grows very rapidly.

550 PROGRAMMING USING MACINTOSH PASCAL

18.3 function reverse (s : string) : string;
{ Returns the reverse of s. }
begin { reverse }

H length(s) <= 1 then
reverse:= s

else
reverse := concat(reverse(omit(s, 1, 1)), copy(s, 1, 1))

end; { reverse}

18.4 function power (x : real;
n : count) : real;

{ Returns x to the power n. }
begin { power }
Hn=Othen

power:= 1
else If odd(n) then

power := x * power(x, n - 1)
else

power := sqr(power(x, n div 2))
end; { power }

18.6 function gcd (x, y : count) : count;
{ Returns the greatest common divisor of x and y; }
{ assumes x and y are not both 0. }
begin { gcd}
Hx=Othen

gcd := y
else

gcd := gcd(y mod x, x)
end; { gcd}

18.9 function surrounds (x, y: BoxNr): Boolean;
{ Returns true iff box x contains boxy, not necessarily}
{directly; assumes x, y <= NrBoxes.}
{ Global vars: NrBoxes, around. }
begin { surrounds }

H around[y] = 0 then
surrounds :=false

else If around[y) = x then
surrounds :=true

else
surrounds := surrounds(x, around[y])

end; { surrounds }

18.11 N .B. Procedure try directly references the parameter n and the
local variables digit, number, and sum of procedure powers.
Parameters could be added to avoid this, but there is little point
because try is only meant to be used by powers.

SOLUTIONS TO SELECTED EXERCISES 551

con st
MaxNrDigits = ... ; { maximum number of decimal digits }

type
size = 1 .. MaxNrDigits;
count = O .. Maxint;

procedure powers (n : size);
{ Prints all non-negative numbers with n decimal digits that are }
{equal to the sum of the n'th powers of their decimal digits. }

var
digit : array[O .. MaxNrDigits] of 0 .. 9;
{ digit[i] = chosen i'th digit (multiple of power(10, i), }
{ i = 0, 1, "' I n - 1 }
number : count; { number corresponding to chosen digits }

{ N.B. without zeros for unchosen digits }
sum : count; {sum of n'th powers of chosen digits}

procedure try (m : count); { m in O .. n - 1 }
{ Assumes digit[m + 1 .. n - 1] and corresponding number and }
{ sum defined; prints all numbers with these digits fixed that }
{are equal to the sum of the n'th powers of their digits. }
{ Global vars: n, digit, number, sum. }
{Global subprogram: power.}

var
d : 0 .. 9; { m'th digit of trial number }
dpower : count; { = d to the power n }

begin {try}
for d := o to 9 do

begin
digit[m] := d;
number := 1 O * number + d;
dpower := power(d, n);
sum := sum + dpower;
ifm=Othen

begin
If sum = number then

Writeln(number)
end

else
try(m - 1);

sum := sum - dpower;
number:= number div 10

end
end; {try}

begin { powers }
sum:= O;
number:= O;
try(n - 1)

end; { powers }

552 PROGRAMMING USING MACINTOSH PASCAL

18.13 We give a complete program.

program HilbertCurve;
{ Draws a Hilbert curve of order Order. }
const

Order = 4; { of Hilbert curve }
TopAt = 20; {Top-left point of curve ... }
LeftAt = 20; { ... is at (LeftAt,TopAt) }

type
direction = (up, down, right, left); { relative to screen }
UnitMoves = array[direction] of Point;

var
vector: UnitMoves; { vector[d] is change to position }

{ to move 1 unit in direction d }

procedure Setup (var v : UnitMoves);
{ Sets v[d] = change to position to move 1 unit in direction d. }
con st

Unit = 4; { length of unit move (unit vector) }
begin { Setup }

SetPt(v[up], 0, -Unit);
SetPt(v[down], 0, Unit);
SetPt(v[right], Unit, O);
SetPt(v[left], -Unit, 0)

end; { Setup }

procedure Hilbert (d1, d2, d3, dOther : direction;
i : integer);

{ Draws i'th order Hilbert curve starting at current position; }
{ leaves pen at end of curve; d1 is direction of 1st connecting }
{ move; sim. for d2, d3; dOther is direction other than d1-3; i.e. }
{1st order curve is drawn with: move d1, move d2, move d3.}

procedure move (dir: direction);
{ Moves and draws line one unit in given direction. }
{Global variable: vector. }
begin { move }

Line(vector[dir].h, vector[dir].v);
end; {move}

begin { Hilbert }
ifi>Othen

begin
Hilbert(d2, d1, dOther, d3, i - 1);
move(d1);
Hilbert(d1, d2, d3, dOther, i - 1);
move(d2);
Hilbert(d1, d2, d3, dOther, i - 1);
move(d3);
Hilbert(dOther, d3, d2, d1, i-1)

:taiY
S.1

SOLUTIONS TO SELECTED EXERCISES 553

end
end; { Hilbert}

begin { HilbertCurve }
SetUp(vector);
MoveTo(LeftAt, TopAt);
Hilbert(right, down, left, up, Order)

end. { HilbertCurve }

Chapter 19
:ii~ l!:I 19.1 The value Maxint is assigned to i.

S.2
19.2 (9.9,0) + (9.9,0) I (2.0,0) = (2.0, 1) I (2.0,0) = (1.0, 1), so the

result is 1.0E1 (ten).

19.3 Yes, because underflow can be avoided by keeping an un­
normalized representation. An example is x = 1 E40. The
phenomenon does not occur the other way around.

19.4 Solution (II) is preferable because it avoids the accumulated
roundoff errors occurring in (I).

19.5 The successive values of epsilon are (1.0, 0), (1.0,-1), (1.0,-2),
whereupon the loop stops.

19.6 The value of x eventually reaches (1.0, 2), representing one
hundred, and thereafter does not change.

19.9 { Set RightAngled to true if the triangle is right-angled, }
{ otherwise fal~e }

RightAngled := abs((sqr(a) + sqr(b)) I sqr(c) - 1.0) <= tolerance

19.10 x2•

Chapter 20
20.1 See the solution to Exercise 20.2.

20.2 A pointer to Exercise 20.2.

20.3 (a)

p1

G----0
(b) false.
(c) true.

554 PROGRAMMING USING MACINTOSH PASCAL

20.4 In Figure 20.5, p1'' amd p2" are different names for the same
dynamic variable. Similarly with head" and tail" in Figure 20.6,
and head".ch and tail".ch also in Figure 20.6.

20.5 (a) 'n'; (b) 'd'.

20. 7 It inserts the component correctly, but does not update the
actual variable parameter corresponding to cursor.

20.8 function present (ch : char;
head : ComponentPtr) : Boolean;

{ Returns true if ch is present in a component of the chain }
{pointed to by head; otherwise returns false. }
var

cursor : ComponentPtr;
found: Boolean;

begin { present }
cursor := head;
found := false;
while not found and (cursor<> nil) do

If cursor".ch = ch then
found := true

else
cursor:= cursor".link;

present:= found
end; { present}

20.11 procedure DeleteNext (cursor: ComponentPtr);
{ Assumes cursor points to a component in a linked-list with a }
{ dummy first component; deletes the following component }
{ (which is assumed to exist). }
var

unwanted : ComponentPtr; { pointer to unwanted component }
begin { DeleteNext }

unwanted := cursor".link;
cursor".link := unwanted".link;
dispose(unwanted)

end; { DeleteNext}

20.13 This implementation makes s undefined (unless it is initially
nil).

procedure destroy (vars : stack);
{ Disposes of s, leaving s undefined. }
var

unwanted : StackltemPtr; { points to a component of s }
begin { destroy }
Ifs<> nil then

begin

SOLUTIONS TO SELECTED EXERCISES SSS

while s"'.next <>nil do
begin

unwanted := s;
s := s"'.next;
dispose(unwanted)

end;
dispose(s)

end
end; { destroy }

20.16 The tree consisting of only the leftmost branch of the tree in
Figure 20.11.

20.17 The comment is the specification for the user of the abstract data
type, not the implementor.

20.19 function present (val : integer;
t : BinarySearchTree) : Boolean;

{ Returns true if val is present in t; otherwise returns false. }
begin {present}

if t = nil then
present : = false

else If (.value = val then
present : = true

else if val< (.value then
present:= present(val, (.left)

else
present:= present(val, (.right)

end; { present}

20.21 type
DepthValue = -1 .. Maxint;

function depth (t: BinarySearchTree) : DepthValue;
{Returns the depth oft if tis non-empty, otherwise -1. }
var

Depthleft, DepthRight : DepthValue; { depths of subtrees of t }
begin { depth }

if empty(t) then
depth:= -1

else
begin

Depthleft := depth(left(t));
DepthRight := depth(right(t));
If Depthleft > DepthRight then

depth := 1 + Depthleft
else

depth:= 1 + DepthRight
end

end; { depth }

556 PROGRAMMING USING MACINTOSH PASCAL

INDEX

Syntactic terms are printed in italics; their associated page numbers re­
fer to their definitions, the last of which is the final version; a page
number in italics refers to a syntax diagram. Reserved words are
printed in boldface Helvetica, and identifiers in Helvetica.

Absolute value, 62
Abstract data type, 370-371, 426,

484-491
BinarySearchTree, 488
stack, 484

Accumulator (AC), 4
Action

choice, 103
high-level, 41, 273
high-level, as comment, 102
repetitive, 86
sequence of actions, 101

actual-function, 449
actual-parameter, 163, 449
actual-parameter-list, 70, 510
actual-procedure, 449
actual-valW!, 70
actual-variable, 163
Ada, 7,36
adding-operator, 70
Address, 4
Algorithm, 2
Aliasing, 162, 497
All Occurrences button, 31
Alphabetic order, 67
Analog computer, 3
and, 67
ANSI (American National Standards

Institute), 36

apostrophe-image, 66
Apple menu, 24
Application, 9, 12, 27
array, 235, 251, 300
Array, 233-235

of arrays, 300, 318
conformant, parameter, 449
general, 300
multidimensional, 297, 300, 301
operations on entire, 237
packed, 250, 301
parallel, 378
section, 241, 303
two-dimensional, 298-300
type, 233
see also Index

array-type, 235, 300
array-variable, 235, 300
Assenion, 273

as documentation, 281
executable, 283
expressing an, 274
valid, 273
see also Invariant

Assignment
statement, 42, 74
symbol, 42
to pointer, 478

Assignment-compatible, 73, 219, 228,

INDEX 557

Assignment-compatible (Contd.)
235,252, 386-387,409,478

assignment-statement, 73, 142
Average, 468

b (byte), 4
base-type, 407
Basic, 37, 39
Beep, 83
begin, 39, 46, 84
Binary digit (bit), 4
Binary number as set, 412-415
Binary search, 246, 282, 287
Binary search tree, 487, 490
Binary tree, 487-488, 499
Bit: see Binary digit
Bit-mapped, 6
block, 90, 142, 155, 215, 501, 506
Block, nesting, 166
Block-structured, 166
Body of loop, 46, 86, 88
Boolean

constant, 67
expression, 67
function, 76
value, 67
see also Logical, operation

Boolean, 61, 67
Boolean-expression, 84
Brightness control, 10
Bug, 52, 275

concerning files, 401
Burning-in, 16
Byte, 4

Calling-diagram, 204
Cancel button, 27
case, 218, 371
Case Is Irrelevant button, 98
Case-label, 373
case-label-list, 218
case-list-element, 218
Case-statement, 86, 218
Case-study

number 1, 113-120
number 2, 123-125
number 3, 180-190
number 4, 190-201
number 5, 220-226

Case-study (Contd.)
number 6, 253-264
number 7, 308--325
number 8, 348--355
number 9, 393-401
number 10, 415-426
number 11, 441-445
number 12, 490-496

Cases Must Match button, 31
CAT (computer-assisted teaching), 220
Catastrophic cancellation, 464
Cell, 4
Central processing unit (CPU), 3, 6
char, 61, 65
Character, 65

apostrophe, 66
blank, 66
bracket, 42
bracket, curly, 39
colon, 27
comma, 32
constant, 66
control, 65
exclamation-mark, 74
hyphen, 525
period, 525
question-mark, 42
semicolon, 21, 32
set, 65
single quote, 40, 66, 525
space, 66
underscore, 93, 525

character-string, 66
Character-string, 92
Chip: see Silicon chip
Choose Printer: see Desk accessory
Circular shift, 294
Clicking, 10-11

double, 11, 12, 18, 22, 28
triple, 11, 22

Clipboard: see Windows menu
Close box, 14
Clover symbol: see Key
CLU, 496
Column of 2-d array, 300
Column-major order, 304
Command

dimmed, 14
keyboard equivalent of, IS

558 PROGRAMMING USING MACINTOSH PASCAL

Command (Contd.)
symbol, 14, 29

comment, 91
Comment, 39, 273

for high-level action, I02
Compatible (with type), 219, 408
Compiler, 8
Complex number, 381
Complexity (of algorithm), 286-287
Component, 361

of file, 384
variable, 233

component-type, 235, 300
Component-type of file, 384
component-variable, 235, 300, 332, 363
compound-statement, 84
Compound statement, 46, 84
computational, 459, 471
Computer, 3, 9

digital, 3
program, 3
programming language, 3
system, 9

Condition, 43, 67
of loop, 88
simplifying a, I07-I09

Condition-controlled repetition, 86
Conditional statement: see If-statement
const, 46, 71
constant, 71, 511
Constant, 71, 286

definition, 46, 72
definition, implicit, 213
Maxint, 61
Maxlongint, 456
pi, 72, 460

constant-definition, 71
constant-definition-part, 71
Constant-definition-part, 46
constant-identifier, 67, 71
Contiguous, 67
Coordinate

QuickDraw, 177
system of screen, 394
see also Origin, Point

Cosine, 64
CPU (central processing unit), 3, 6
CPU-time, 285
Cursor, 10, 44

Cursor (Contd.)
arrow, IO
dragging a, 11
I-beam, IO, 21
wrist watch, IO

Dangling reference, 480
Data structure

dynamic, 475, 476
linear, 480
non-linear, 487
static, 476

Debugging, 52, 272
Decimal

notation, 61, 63
point, 63
representation, 412, 413

Declaration, 41-42
before use, 147
before use, exception to, 481

Defensive programming, 132, 206
De Morgan's laws, I08-I09
Denominator, 116, 381
Desk accessory, 24, 28, 328

Choose Printer, 24
Note Pad, 28
Puzzle, 328
Scrapbook, 28

Desk-checking, 128-130
a procedure, 203
a recursive subprogram, 439
specifications, 291

Desktop, IO
Diagonal

major, 326
minor, 304

Dialog box, 14, 335
contents window in, 26, 27

digit, 61, 92
digit-sequence, 61
directive, 438, 512
Directive, 437
Discriminant, 465
Disk, 5

access time, 5
ejection of, 16
floppy, 9
hard, 6
icon, 12

INDEX 559

Disk (Contd.)
initializing, 26
locked, IO
transfer rate, 5

Disk-symbol, IO
Display screen, 6
div, 43, 61-62
Divisor, I04
do, 45, 86, 121, 219, 366
Document, 12
Documentation, 273, 281
Do It button, 54
downto, 122, 219
Drawing

circles, 179
lines, 178
outside the Drawing window, 184
ovals, 179
rectangles, 179
strings, 34 7
text, 180

Drawing window, 20, 44, 177
Drive button, 26

EBNF (Extended Backus Naur Formal­
ism), 58, 512

Echoing of input, 334
Edit menu, of Macintosh Pascal

Copy,22,28
Cut, 22, 28
Paste, 22-23, 28
Select All, 22

Editor, 7
Efficiency, 284-288
Eject button, 26
element, 408
element-list, 408
Element of array, 233
else, 43, 84
Empty Folder, 16, 18
empty-statement, 90
empty-string, 337
end, 39,46,84,218, 363
End-of-file, 76, 385, 391

signal, 83
End-of-line marker, 75, 77, 79, 82, 331
entire-variable, 235, 300
enumerated-type, 213
Enumerated type, 213-214

Enumerated type (Contd.)
1/0, 227

Equality, approximate, 465
Error, 52

coping with an, 130, 205-206
message, 25
out-of-range, 215, 456
representation roundoff error, 460
roundoff, 462
run-time, 42
system, 25
see also Bug, Overflow, Typo, Under­

flow
Execution, 3

stepwise, 53
stopping, 53
tracing, 54, 129-130

Exponent, 458
Exponential, 286
expression, 70, 510
Expression, 68

to evaluate an, 42
expression-list, 300

factor, 70, 140, 408, 511
Factorial function, 450
false, 43, 67
Fetch execute cycle, 5
Fibonacci

function, 432
numbers, 432

Field: see Record, field of
field-designator, 363
field-identifier, 363
field-list, 363, 507
field-width, 80
FIFO list: see Queue
file, 384
File, 7, 383

buffer, 332, 385
component of, 384
empty, 385
external, 331, 384, 385, 386
external name of, 385, 390
external text, 334
input position, 76
internal, 331, 384, 385, 386
management of, 15-16
merging, 388

560 PROGRAMMING USING MACINTOSH PASCAL

File (Contd.)
opening a, 385, 390
opening to edit, 27-28
packed, 401
position, 331, 385
random access, 390-391
reading a, 386
read/write access, 390
sequential, 331, 384-388
in Standard Pascal, 385
system, 8
variable, 385
writing a, 385
see also Text file

file-buffer, 332
File menu, of desktop, 26

Duplicate, 15, 18
New Folder, 16
Open, 14, 15, 18

File menu, of Macintosh Pascal, 26
Close, 28
Open ... , 28
Page Setup ... , 28
Print ... , 28
Quit, 15, 29
Revert, 27
Save, 26, 27
Save As ... , 26, 27

file-type, 384
file-variable, 332
final-expression, 122
Finder, 12
fixed-part, 363
Folder, 12
Font, 180

name, 24
for, 122, 219
For-loop, 277; see also For-statement
Formal parameter, 141

of file-type, 385
see also Parameter

formal-parameter-list, 144, 508
fonnal-parameter-section, 144, 163, 448
Formatting style

by hand, 133-134
indentation, 21
use of empty lines, 106
see also Indent Width, Tab Stops

for-statement, 122, 219

For-statement, 89, 122, 219-220
control variable of, 219
problem with Macintosh Pascal's,

227-228
forward, 438
Fractional part (of real number), 61
fraction-length, 80
function, 144, 438
Function, 62

applying to argument, 140
argument of, 62, 140
definition of, 142
dummy, 204
heading, 141
implementation with array, 312, 319
invocation, 145, 165
parameter, 446
testing, 152
transfer, 64, 66
user-defined, 141-143
writing a, 147

function-body, 144
function-declaration, 144, 438
Function-declaration, 142, 164
function-declaration-part, 142
Function, defined in text

AllNonZero, 239
answer, 224
CategoryOf, 217
choose, 338
compose, 447
concat, 368
CostOfStock, 540
CyclicPermutation, 543
depth, 556
DifferAt, 537
empty, 489
even,528
factorial, 550
Fibonacci, 433
field, 353
FirstNonZero, 238
ForceUpper, 144, 528
gcd, 438, 530, 551
gcd1' 438
gcd2, 438
GreaterName, 447
GreaterSSN, 447
lndexOf, 280

INDEX 561

Function, defined in text (Contd.)
lndexOfMax, 247
lnGrid, 320
lsDigit, 141
lsLetter, 528
left, 489
length, 368
LengthOfMonth, 219
loge, 448
lpf, 145, 150, 529
max, 320
next, 262
NextDay, 533
number, 414, 422
NumberOflnversions, 537
plural, 338
power, 143, 551
present, 555, 556
product, 529
ran, 222, 226, 320, 422
relationship, 546
reverse, 344, 551
ReversePath, 353
right, 489
root, 489
ShortForm, 543
sorted, 244
surrounds, 551
symmetric, 541
WrongPos, 289

function-designator, 70
Function-designator, 140, 146
function-heading, 144, 508
function-identification, 438
function-identifier, 70, 438
function-parameter-section, 448
Function, predefined, 62, 140-141

BitXor, 457
Button, 315
concat, 342
copy, 343
CopySign, 467
filepos, 391
include, 345
length, 342
NewFileName, 335, 385
NewRgn, 3%
OldFileName, 335, 385
omit, 345

Function, predefined (Contd.)
pos, 344
Random, 226
StringOf, 341
StringWidth, 347
TickCount, 196

Function, required, 62, 140
abs, 62, 64
arctan, 64
chr, 66
cos,64
dispose, 480
eof, 68, 76, 332, 333, 387, 390
eoln, 68, 77, 79, 332, 333
exp, 64
In, 64
new, 477
odd, 68
ord, 66, 212, 213
pred, 66, 212, 213
round, 64
sin, 64
sqr, 62, 64
sqrt, 64
succ, 66, 212, 213
trunc, 64

Garbage in, garbage out, 206
Gcd (greatest common divisor), 152
General picture, 242, 246, 275, 279,

280, 282; see also Invariant
Geometric problems, 304-308
Global, 169

file variable, 351
goto, 502
goto-statement, 502
Goto-statement, 501-504
Graphics, Macintosh, 176-180
Gray-scale, 309
Grid line, 177

Halt, premature, 503
Hanoi, towers of, 434
Hardware, 3
Heapsort, 286
Hexadecimal number, 93
Hilbert curve, 453
Histogram, 209, 232

562 PROGRAMMING USING MACINTOSH PASCAL

Icon, 10, 12, 331
identifier, 92, 512
Identifier, 92

region of, 167
scope of, 166

identifier-list, 72, 512
If, 43, 84
Iff (if and only if), 67
if-statement, 84
If-statement, 43, 84-86

ambiguous, 8S
Imagewriter, 6
Implemented (in Pascal), 103
in, 4ll
Indent Width, 24
Index, 234, 23S
indexed-variable, 23S, 300
Indexed-variable, 234-236
index-type, 23S, 300
index-type-list, 300
initial-expression, 122
In-order, 493, 494
Input, 7S, 330, 332, 334, 3Sl, 3SS
Input

checking, 121
with enumerated type, 227
statement, 40, 43, 7S
stream, 7S
see also Reading input values

Input/output (110), 7S
device, 3, S, 6, 7S
quasi, 340

Input/output device, 331
input-statement, 76
Insertion point, 21, 22
Instant window, 24, S4, 80, 132
Instruction register (IR), 4
integer, 41, 61, 4S6
Integer, 61

arithmetic, 4S6-4S7
arithmetic, insecurity of, 471
constant, 61
nearest, to real number, 64
part of real number, 64
representation of, 4S6

Interactive, 7, 81
110, 47, 81

Interpreter, 8
Interval of values, 109

Invariance Theorem, 276-279, 283
Invariant (assertion), 242, 249, 275-276

correctness proved with an, 276-277
testing with, 283
uses of, 346, 3S2, 3S7, 413, S38
winning, 41S
see also General picture

ISO (International Organization for
Standardization), 36

Pascal, 449

k (kilo), 4
Key

auto-repeat, 30
Backspace-key, 23, 82
Caps-Lock-key, 28-29
clover (command) symbol, 14, 28, 29
Enter-key, S4, 83, 132
Return-key, 21, 82
Shift-key, 29
space-bar, 82
Tab-key, 24

Keyboard, S, 6, 7, 331
Key field (for sort), 378

label, SOI
label, SOI
label-declaration-part, SOl
label-list, SO 1
letter, 92
Letter, 67
letter-or-digit, 92
Library, 149, 397
LIFO list: see Stack
Lightspeed Pascal, 8, Sl3-22
Line, of text file, 331
Linear search, 238, 239, 287, 420; see

also Schema
List, linked, 481-484
Loader, 8
Local, ISS

variable, 16S
Localization; 141
Location, 4
Logarithm, 64, 286
Logical

equation, 108
operation, 68, 107

longint 61, 391, 4S6

INDEX S63

longint (Contd.)
arithmetic, 457, 471

Loop, 88
choosing form of, 125
deriving condition of, 107, 278
developing a, 278
initialization for, 278
nested, 106

M (mega), 4
Mac-character-string, 337
Machine instruction, 4
Macintosh, 6, 9

System Disk, 328
Macintosh Pascal, 8, 12, 36

editor, 19
icon, 15
Program disk, 10
Program disk icon, 12
Reference Manual, 44, 48
Technical Appendix, 207
2.0 Update, 27, 29
User's Guide, 29
Utilities disk, 27, 29

Mac-string-type, 336
Mad Mac, 463
Magnetic tape, 390
Mantissa, 458
Mean, 468
Memory, 3, 4

main (primary), ~' 284, 287
secondary,~' 331

Menu, 10
bar, 14
opening a, 14

see also Apple menu, Edit menu,
File menu, Pause menu, Run
menu, Search menu, Special
menu, Windows menu

MiniNim, game of, 190
Mips, 4
Mnemonic name, 73
mod, 42, 62
Modularity, 149
Modula-2, 7, 36, 170
Moral (of programming), 31, 83, 294,

296, 312, 364, 377, 445, 480
Mouse, 6, 10, 44
msec (millisecond), 5

multiplying-operator, 70

Next button, 24
Next prime problem, 103, 111, 128,

136
nil, 477
Nim, game of, 269, 415; see also Mini-

Nim, game of
Non-local, 169
not, 67
Noughts and crosses: see Tic-tac-toe
Number-crunching, 330
Numerator, 116, 381
Numerical analysis, 470
Numeric computing, 455

0 (notation), 288
Observe window, 24, 53, 54, 132
of, 218, 235, 300, 372, 384, 407
Open button, 28
Operand, 61
Operating system, 8
Operator, 42, 61

Boolean, 67
integer, 43, 62
real, 63
relational, 43, 253, 341, 410, 479
set-valued, 409

or, 67
Order

of complexity, 285-288
of evaluation, 69
non-decreasing (increasing), 244

Ordinal
type, 212-215
value, 67

Origin (in coordinate system), 44, 177
otherwise, 93
Otherwise-clause, 228
Output, 78, 330, 331, 332, 351, 355
Output, 78

device, 6
field, 48
field width, 80
fraction length, 80
heading for, 118
parameter, 165
statement, 39, 78
stream, 75, 78

564 PROGRAMMING USING MACINTOSH PASCAL

Output (Contd.)
of string, 253
see also Writing output values

output-statement, 78
output-value, 78, 80
output-value-list, 78
Overflow, 461

packed, 251, 301
packed-string-type, 264
Paper tape reader, 5
Paradigm, programming, 109
Parameter, 44, 157

correspondence, 165
input, 164
mechanism, 163
output, 165
value, 157-159, 164
value array, 238
variable (var), 159-161, 164
variable array, 238
see also actual-parameter, Aliasing,

Formal parameter
parameter-t)!pe, 144, 337
Parity, 416
Pascal, 7, 36, 449
Pattern (predefined type), 178, 316
Pattern

background, 179, 396
predefined, 178, 316

Pause menu, of Macintosh Pascal, 53
Halt, 53

Pen, 177-178, 364
PenState (predefined type), 364
Performance evaluation, 284
Permutation, cyclic, 356
Phantom rows and columns, 326
Pixel, 6, 177
Placeholder, 39, llO
Point (predefined type), 364, 379
Point (in coordinate plane), 177, 180
Pointer, 476-480
pointer-type, 476, 477
pointer-variable, 478
Pointing with mouse, IO
Polynomial-time algorithm, 286
Pop (off stack), 484
Portability, 7
Postcondition, 128, 202, 274

Post-order, 494
Power-down, 16
Power notation, 63, 80
Power-on switch, IO
Power-up, 18
Precedence of operator, 69-70
Precondition, 128, 202, 274
Predecessor, 212
Pre-order, 494
Pressing, 11
Prev button, 24
Prime number, I03
Principle (of programming), 115, 118,

121, 126, 127, 128, 129, 131, 132,
149, 162, 164, 170, 182, 186, 192,
197, 198, 227, 236, 239, 240, 259,
278, 279, 281, 283, 291, 307, 367,
370, 378, 390, 439, 440, 442, 445,
457, 460, 465, 470, 478

Print
a program, 28
a screen image, 28

Printer, 6
dot-matrix, 6

Problem size, 285
Problem solving, IOO

goal-directed, 279
high-level solution, 102
with invariants, 278
language independent, 104
using pictures, 307

Procedural language, I04
procedure, 163,439
Procedure, 44, 153

call (invocation), 156, 161, 165
desk-checking, 203
dummy, 269
heading of, 15 5, 192
parameter, 448
parameterless, 155
precondition of, 202
postcondition of, 202
statement, 44
testing a, 203
use in programming, 206
utility, 198

procedure-and-function-declaration-part,
155

procedure-body, 163

INDEX 565

procedure-declaration, 163, 438
Procedure-declaration, 155, 164
Procedure, defined in text

append, 336, 353, 542
ArraySwap, 538
binary, 414, 422
ChangeFormat, 399
compress, 544
CreateDiffFile, 548
CreateEmpty, 485, 489
DeleteNext, 555
destroy, 490, 555
display, 321
divide, 276
DragARect, 547
DrawAxes, 187, 262
DrawCal, 534
DrawDots, 532
DrawEmptyGrid, 320
DrawHeadings, 534
DrawLink, 495
DrawMatch, 198, 421
DrawMonth, 534
DrawNode, 495
DrawRect, 188
DrawStringC, 347, 494
DrawTree, 494
empty, 485
EndTest, 225
EraseMatch, 199, 422
ErrorHalt, 503
FillCell, 321
FindField, 353
FindOut, 200, 423
getmax, 172
GetMousePt, 546
GetPath, 544
Hanoi, 435
Hilbert, 553
insert, 483, 489
introduce, 199, 223, 322 422
LabelRow, 421
MinorFlip, 305
move, 200, 423, 553
NewTest, 223, 362, 366
NumberColumns, 156
NumberJobs, 260
ParameterTest, 171

Procedure, defined in text (Contd.)
PerfectShuffle, 538
pop, 485
powers, 551
PrintAnswer, 224
PrintBoxSide, 155
PrintCharacterSet, 158
PrintCycle, 543
PrintErrorMessage, 392
PrintFrom, 536
PrintMonth, 533
PrintReverseOfLine, 433, 486
PrintRow, 157
PrintTest, 224
push, 485
ReadList, 482
ReadReply, 223
ReadSex, 216
ReadTimes, 260
ReadWord, 374
replace, 346
ReplaceAll, 346, 369
reverse, 537
roots, 466
RotateAnti, 306
schedule, 160, 188, 262
ScheduleAll, 261
ScreenToGrid, 321, 542
ScrollUp, 398
Sendlnfo, 354
SetTopleft, 495
Setup, 321, 323, 553
ShowLine, 399
ShowStyles, 444
simulate, 323
SkipRestOfMessage, 354
sort,246,249,250, 285,446
Sortlndexes, 261
split, 539
swap, 261
SymmetricDifference, 412, 422
test, 224
tick, 545
transpose, 541
try, 552
VFlip, 542
wait, 199
WritePersonalPronoun, 216
WriteStats, 531

566 PROGRAMMING USING MACINTOSH PASCAL

procedure-heading, 163, 507
procedure-identification, 439
procedure-identifier, 439
procedure-or-function-declaration, 15 5
procedure-parameter-section, 448
Procedure, predefined, 44

AddPt, 454
close, 391
delete, 345
DisposeRgn, 396
DrawChar, 347
Drawline, 179
Drawstring, 347
EraseOval, 179
EraseRect, 179
FrameOval, 179
FrameRect, 179
GetMouse, 44
GetPen, 364
GetPenState, 365
insert, 345
lnvertCircle, 179
lnvertOval, 179
lnvertRect, 179
Line, 179
LineTo, 178
Move, 178
MoveTo, 178
open, 390, 391
PaintCircle, 179
PaintOval, 179
PaintRect, 179
PenPat, 178
PenSize, 178
ReadString, 341
ScrollRect, 395
seek, 390
SetDrawingRect, 394
SetHalt, 462
SetPenState, 365
SetPrecision, 467
SetPt, 454
SetRect, 377
ShowDrawing, 395
SysBeep, 196
TextFace, 412
TextFont, 180
TextSize, 180
WriteDraw, 180, 347

Procedure, required, 44
get, 333, 387
pack, 252
put, 332, 385
Read, 43, 76, 77, 227, 333, 334,

339, 387' 401
Readln, 40, 43, 76, 77, 82, 333
Reset, 333, 386
Rewrite, 332, 385
unpack, 251
Write, 40, 46, 79, 80, 227, 332, 386
Writeln, 39, 46, 79, 332

Procedure-statement, 156, 161
program, 90
program, 90, 397, 506
Program, 3, 39, 90

decomposition, 272
execution of, 90
maintenance, 272
modification, 272
parameters, 331, 355
running a, 52
saving a, 26
schemas, 110
segment, 103
testing a, 275
transformation, 289

program-block, 90
Program counter (PC), 4
Program, defined in text

Arithmetic, 222
Calendar, 533
CharacterSet, 124, 158
EvenOdd, 523
HilbertCurve, 553
ldiotSheet, 397
JobScheduler1 , 119
JobScheduler2, 187
JobScheduler3, 259
Letters, 236
MailMinder, 352
Major, 392
MergelntFiles, 388
MiniNim, 198
Nim, 420
Primes, 148
RandomWalk, 319
ShowTree, 494

INDEX 567

Program, defined in text (Contd.)
stats, 469
test, 171, 434
TestlsDigit, 142
TestSort, 248
TextStyles, 443
WhileTest, 87
YouGuess, 38
YouGuess2, 40
YouGuess3, 45

program-heading, 90
program-identifier, 90
Programming, 6

environment, 8
language, high-level, 7
methodology, 272
style, 73
with procedures, 175
see also Defensive programming

Program-parameter, 385, 386
Program window, 20, 21, 24, 53

left margin of, 53
Prompt for input, 38, 83
Proof

of correctness, 275
of termination, 277

Push (on stack), 484

Quadratic equation, 465
Queue, 499
QuickDraw, 176, 207, 226

QuickDraw1 , 176, 397
QuickDraw2, 397

Quicksort, 286
Quotient, 61

Radians, 64
RAM (random-access memory), 5, 6
Random-access file, 331, 390-391
Random walk, 308
randSeed (predeclared variable), 226
Reading input values, 77
Readln-statement, 76
Read-statement, 76
Read/write access to file, 390
Real arithmetic, 458-464
Real constant, 63
Real number, representation of, 458
Real type (Macintosh Pascal)

Real type (Macintosh Pascal) (Contd.)
double, 63, 459
extended, 63, 459
real, 61, 62, 459

record, 363
Record, 359, 361

assignment, 362, 363
dot notation for, 361
empty variant of, 373
field of, 361
field-name of, 361
packed, 379
selective updating, 362
type, 361
types, predefined, 364

Records, case-studies involving, 377
record-section, 363
record-fJJPe, 363
record-variable, 363
Record-variable, 361
record-variable-list, 366
Rect (predefined type), 376
Recurrence, 288, 414, 440
Recursion, 432

base-case of, 436
depth of, 440
fundamental principles of, 436
infinite, 440
mutual, 437
see also Recursion

Recursive
definition, 432
function, 433
procedure, 433

Recursive subprogram, 437
desk-checking, 439
executing, 439

referenced-variable, 478
Referenced-variable, 478
Reference, the, 44, 48
Refinement, 102
Region of identifier, 166
Register, 4
relational-operator, 70
Relational operator, 43, 68, 213, 341,

479
Relative error, 463
Relatively-global, 169, 170
Remainder, 42

568 PROGRAMMING USING MACINTOSH PASCAL

repeat, 88-89
repeat-statement, 88
Repetition, 86
Reserved word, 21, 39, 92-93
Reset, first call of, 385
Resources, 284
Restart a program, 53
result-type, 144, 337, 479
Rewrite, first call of, 385
RgnHandle (predefined type), 396
ROM (read-only memory), 6
Rounding of real number, 64, 80
Row-major order, 303, 317
Row-major processing, 311
Row of 2-d array, 300
Run menu, of Macintosh Pascal, 25, 52

Check, 26, 32, 52
Go, 38, 52, 53, 54
Go-Go, 53
Reset, 53
Step, 53, 131
Step-Step, 53, 54, 131
Stops In, 53
Stops Out, 53

Run-time
check, 214
error, 42
stack, 440

Same type, 216, 251
SANE (Standard Apple Numeric Envir­

onment), 176, 207, 397, 467
Save As

Application, 27, 29
Object, 27
Text, 27

Save button, 27
scale-factor, 63
Schema, program

Boolean Safe Linear Search, 245,
246, 537

Check Interactive Input, 121, 208
Column-Major Processing, 304
Complex While Loop, 112, 245, 290
For Decreasing Values In An Inter-

val, 122, 123, 195
For Increasing Values In An Interval,

122, 124, 183, 184, 257

Interactive 1/0, 112, 116, 232, 256
for n nested loops, 445
optimistic linear search, 238, 245
Process File, 388, 402
for processing input values followed

by an end-of-line marker, 491
for processing a string, 351
Process Lines, 340, 543
for rectangular array-sections, 303,

311, 314, 317
Row-Major Processing, 303
sentinel search, 241, 244, 245
Sequential Search, 110, 238
Sequential Search After First, 136
Sequential Search With Processing,

111
for set construction, 415
Truncated Safe Linear Search, 239,

241, 245, 536, 539
Scope, 166, 366

rules, 166, 167, 501
Scroll

arrow, 13
bar, 13
box, 14

Search menu, of Macintosh Pascal, 23
Everywhere, 24, 27
Find, 23
Replace, 23
What to find ... , 23, 98

Sentinel, 243
Separate Words button, 31
Sequence of values, 480
set, 407
set, 511
Set, 405, 407

Boolean operations on, 410
construction of, 408
empty, 408
packed, 408, 426
relational operators for, 410
see also Operator, set-valued

set-constructor, 408
set-type, 407
Shift-clicking, 11, 22
Side-effect, 164, 276
Sierpinski curve, 454
sign, 61
signed-integer, 61

INDEX 569

signed-real, 63
Significand, 4S8
Significant digits, 46S
Silicon chip, 4, S
simple-expression, 70, 510
simple-statement, 90, 1S6, S02
simple-type, 216
Simple type, 233
Sine, 64
size-attribute, 336
Size box, 13
Software, 6--9
Software-hardware hierarchy, 9
Sort

bubble, 249, 2SO, 282
insertion, 282
New Improved Bubble Sort with
Early Termination, 2SO, 286
selection, 247, 249, 287

Sorting, 246, 247
Sound generator, 6
Space-complexity, 287
Space-filling curve, 4S2
Special menu, of desktop

Empty Trash, 16, 18
Shut Down, 16

special-symbol, 92
Special-symbol, 92
Specification, 272, 274

desk-checking, 291
language, 274

Spreadsheet, 9
Square, 62
Square root, 64
Stack, 484, 498; see also Pop, Push
Standard input stream, 331, 332, 333
Standard Pascal, 36
Standard, the, 36, 48
Startup disk, 10, 18
statement, 90, SOI, 509
Statement, 38
statement-list, 84
statement-part, 90
statement-sequence, 508
State-variable, 227
Stepwise refinement, 100-103, 133,

272, 273
Stop mark, S3, 132
Stopping-value, 113

string, 93, 337
string, 512
String, 2S2

assignment, 337
comparison, 2S3, 341
concatenation, 342
constant, 2S2
empty, 337
fixed-length, 330
function, 342
implementing variable-length, 367
input/output, 339
length of, 337, 368
in Macintosh Pascal, 336
output of, 2S3
processing, 330
searching a, 344
in Standard Pascal, 2SO
type, 2S2, 264
variable, 2S2, 2S3
variable-length, 337

string-character, 66
string-element, 66
string-element-sequence, 66
Stub, 20S, 269
structured-statement, 90, 366
Structured statement, 44
structured-type, 23S, 2Sl
Style (predefined type), 407
Styleltem (predefined type), 406
Subprogram, 44, 144, lSS

independent, 1S8
modular, 149
as parameter, 44S
see also Calling-diagram, Testing

subrange-type, 214
Subrange type, 214, 284
Subscript, 23S

manipulation, 304
Substring, 343
Successor, 212
Swap values, 74
Symmetric

array section, 326
difference, 412

Syntax, 21, S8
chart, S9
diagram, S9, SOS
high-level, 90

S70 PROGRAMMING USING MACINTOSH PASCAL

Syntax (Contd.)
low-level, 91

System Folder, 18
System program, 8
Tab Stops, 24
tag-field, 372
Tag-field, 372, 377
term, 70, 510
Terminating a session, 16
Test-driver, 203
Testing, 52, 127, 272

bottom-up, 204
by execution, 130
functions, 152
with invariants, 283
procedures, 202
top-down, 204

text (required type), 331
Text

alignment of, 347
editing, 23
highlighted, 22
mode, 180
processing, 329
selected, 22
style of, 180, 406

Text file, 330
avoiding, 389
parameter, 336
reading a, 333
writing a, 332

Text window, 20, 24, 38, 331
then, 43, 84
Three dots, 59
Tic-tac-toe, 17
Time-complexity, 285
Title bar, 12
to, 122, 219
Token, 91

separation of, 91, 93
Top of stack, 484
to-symbol, 122, 219
Translator, 7, 52, 437
Transparent, 221
Transportable, 36
Trash

can, 10, 12, 16, 18
folder, 16

Trick, programming, 227

true, 43, 67
type, 215
type, 216, 235, 336, 476, 507
Type, 41, 60

host, 214
structured, 233, 250
unstructured, 144

type-definition, 21 S
type-definition-part, 215
Typeface, 406
type-identifier, 144
Type size, 180
Typo(graphic error), 131

Undefined value, 42, 72
Underflow, 462
unlabeled-statement, SOI
unpacked-structured-type, 251, 363, 384,

407
unsigned-constant, 70
unsigned-integer, 61, 512
unsigned-real, 63, 512
until, 88, 89
Untitled, 20, 22, 39
Updating a value, 165
User-interface, 194
uses, 93, 397, 467
uses-clause, 397
Uses-clause, 397, 467

value-parameter-section, 144
var, 41, 72, 73, 160, 164
variabk, 76, 235,300,478,5/J
Variable, 41, 71, 73

anonymous, 477
declaration, 72
dynamic, 396, 477
initialization, 73
quasi, 145, 146

variabk-declaration, 72
variabk-declaration-part, 72
Variable-declaration-part, 41, 46
variable-identifier, 73
variabk-list, 76
variabk-parameter-section, 163
Variance, 468
variant, 372
Variant

change of, 375, 377

INDEX 571

Variant (Contd.)
nested, 373
record, 371
records, restrictions concerning, 377
undiscriminated, 375

variant-part, 372
VDU (visual display unit), 5
Vertical bar, in syntax notation, 60
VHSelect (predefined type), 379
View menu, 18

while, 45, 86
While-loop, 275
while-statement, 86
While-statement, 45, 86-88
Window, 12-14

see also Drawing window, Instant
window, Observe window,

Window (Contd.)
Program window, Text window

Windows menu, of desktop, 12, 16, 18
Windows menu, of Macintosh Pascal,

24
Clipboard, 23, 28
Font Control..., 24, 180
Instant, 54
Observe, 54
Preferences ... , 24

with, 366
with-statement, 366
With-statement, 366-367
Word, 4
word-symbol, 92
Word-symbol, 92
Writeln-statement, 78-79
Write-statement, 78-79
Writing output values, 78-81

572 PROGRAMMING USING MACINTOSH PASCAL

AN INTRODUCTION TO PROGRAMMING
USING MACINTOSH @) PASCAL
Paul Pritchard

If you have been looking for a serious book on programming which uses Macintosh Pascal or Lightspeed
Pascal, then you have found it. This book is aimed squarely at Computer Science students who are taking
an introductory course in computer programming, where the language is Pascal and the computer is the
Apple Macintosh. It provides a rigorous and comprehensive introduction to Pascal programming and will
be of interest to any serious user of the Macintosh computer.

Highlights:
• Emphasizes problem-solving and the top-down development of programs using program schemas and

invariants
• Clearly separates the concerns of learning to program, learning the Pascal language, and learning to use

the Macintosh
• Includes a complete account of ANSI Standard Pascal and shows where it differs from Macintosh Pascal

and Lightspeed Pascal
• Provides a complete coverage of string-processing and random-access files, and an extensive treatment

of graphics programming
• Written in a clear, readable style with plenty of case-studies, projects, exercises , homework problems and

selected solutions
• Assumes only high-school level mathematics and does not require previous computing experience
• Software supplements available for both Macintosh and Lightspeed Pascal.

About the author:
Paul Pritchard is a respected researcher in programming methodology. He developed this material from
the introductory programming courses he gave at Cornell University. He is currently a Senior Lecturer in
the Department of Computer Science at the University of Queensland, Australia .

David Gries of Cornell University writes:
"Ah, it's nice to see such a well-written introductory textbook! A text with such a good emphasis on
problem-solving , on methods for actually developing programs! A text with such good case-studies , and
so many well-chosen examples! A text with an enlightened and early treatment of the function and
procedure, with a solid discussion of scope issues! A text that knows how to discuss recursion! A text
with a neat chapter on programming methodology and correctness concerns! A text whose example
programs are so neat and clean! A text with a sense of humor! A text that I would have liked to write! "

.A. Addison-Wesley Publishing Company
...... ISBN 0 201 17539 8

