
Apple Guide
by Apple Computer, Inc. Gem pIe t e

Designing and
Developing
On screen
Assistance

Apple Guide Complete:
Designing and Developing
Onscreen Assistance

...
~~

Addison-Wesley Publishing Company

Reading~ Massachusetts Menlo Park, California New York
Don Mills~ Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan
Paris Seoul Milan Mexico City Taipei

• Apple Computer, Inc.
© 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
"keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
Bailon Help, Espy, ImageWriter,
LaserWriter, Macintosh, PowerBook,

ISBN 0-201-48334-3
1 2 3 4 5 6 7 8 9-MA-9998979695
First Printing, February 1995

PowerTalk, and QuickTime are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
AppleGlot, AppleScript, Chicago,
Finder, Geneva, Mac, ResEdit, and
WorldScript are trademarks of
Apple Computer, Inc.
Adobe illustrator, Adobe
Photoshop, and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered
service mark of Quantum Computer
Services, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
lTC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Optrotech is a trademark of
Orbotech Corporation.
Windows is a trademark of
Microsoft Corporation.

Simultaneously published in the
United States and Canada.

Library of Congress Cataloging-in-Publication Data

Apple guide complete : designing and developing onscreen assistance I
[Apple Computer, Inc.].

p. em.
Includes index.
ISBN 0-201-48334-3
1. Macintosh (Computer)-Programming. 2. Computer softw~

Development. 3. Apple Guide. I. Apple Computer, Inc.
QA75.8.M3A669 1995
005.265-dc205 94-48781

CIP

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manuals distributed with an Apple
product, Apple will replace the manuals
at no charge to you, provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 9o-day period
after you purchased the software. In
addition, Apple will replace damaged
manuals for as long as the software is
included in Apple's Media Exchange
program. See your authorized Apple
dealer for program coverage and details.
In some countries the replacement
period may be different; check with
your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
, manual, APPLE MAKES NO

WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD" AS
IS," AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings xiii

Preface About This Book xix

Who Should Use This Book xix
What's in This Book xx

Designing Your Guide Files xx
Building Your Guide Files xx
Integrating Your Application xxi
Using the Guide Script Commands xxi
Reference Material xxi

Conventions Used in This Book xxi
Special Fonts xxii
Command Syntax xxii
Types of Notes xxii

For More Information xxiii

Part One Designing Guide Files

Chapter 1 Introduction to Apple Guide 1-1

What Is Apple Guide? 1-3
How the User Views Apple Guide 1-5
The Many Uses of Apple Guide 1-8

A Typical Apple Guide Session 1-9

v

Chapter 2 Authoring Tips and Suggestions 2-1

vi

Designing Guide Files 2-5
Using Guide File Types 2-6
Showing Guide Files in the Help Menu 2-7
Designing About Guide Files 2-9
Designing Help Guide Files 2-10
Designing Tutorial Guide Files 2-11
Designing Shortcuts Guide Files 2-13
Designing Other Guide Files 2-14
Designing a Mixin Guide File 2-14

Designing Access Windows 2-15
Designing a Full Access Window 2-16
Designing the Application Logo or Title Area 2-18

Features for a Full Access Window With Topics Selected
Features for a Full Access Window With Index Selected
Features for a Full Access Window With Look For Selected

Designing a Single List Access Window 2-25
Designing a Simple Access Window 2-26
Designing Howdy Text on Access Windows 2-28

Designing Topic Areas and Topics 2-30
Designing Topic Areas and Topics for a Full Access Window
Designing Topics for a Single List Access Window 2-32
Designing Topics for a Simple Access Window 2-33
Designing Headings 2-33

Designing Panels 2-35
Panel Features 2-37
Designing Panel Prompts 2-39

Designing a Default Prompt Set 2-40
Overriding Default Prompts 2-42

Using the Recommended Panel Formats 2-43
Designing Your Own Panel Format 2-45
Using Graphics in Panels 2-46
Formatting Panel Text 2-47
Providing Navigation Methods on Panels 2-48

Designing Panel Types 2-50
Designing an Introductory Panel 2-51
Designing a Decision Panel 2-52

2-19
2-20

2-21

2-31

Designing an Action Panel 2-53
Designing an Information Panel 2-54
Designing a Tip Panel 2-55
Designing a Definition Panel 2-56
Designing a Related Topics Panel 2-58
Designing a Transition Panel 2-59
Designing a Closure Panel 2-60
Designing a Panel Associated With a Huh? Button 2-61
Designing an Oops Panel 2-63
Designing a Continue Panel 2-65

Designing a Sequence 2-66
Designing Branches 2-67

Designing Branches for Mutually Exclusive and Related Tasks 2-68
Designing Branches for a Specific Condition 2-69

Designing Buttons 2-70
Designing Navigation Buttons 2-71
Designing Content Area Buttons 2-72

Using Standard Buttons 2-74
Using Three-Dimensional Buttons 2-74
Using Radio Buttons and Checkboxes 2-76

Designing Hot Text, Objects, and Rectangles 2-77
Designing Coachmarks 2-79

Using Coachmark Types 2-80
Using Coachmark Styles 2-80

Using Context Checks 2-83
Comparison of Oops and Continue Panels 2-85
Analyzing a Sequence for Context Checks 2-85
Evaluation of Context Checks 2-89

Designing for Localization 2-91
Planning for Expanded Text 2-92

Translations for Apple Guide Phrases 2-92
Formats 2-93

Graphics and Buttons 2-94
Sequence Display Titles 2-94
Coachmarks 2-95
Context Checks 2-95
AppleScript 2-95

vii

Chapter 3 Planning Your Help Content 3-1

Determining and Creating Your Guide File Content 3-3
Determining Appropriate Content for Your Guide File 3-4
Creating Topic Areas and Topics 3-4
Using Flowcharts to Design Your Guide File Panels 3-7

Helping the User Search 3-12
How Apple Guide Stems 3-13
How Apple Guide Matches Search Phrases With Topics 3-15
Creating a Guide File Index and Associated Lists 3-19

Creating a Guide File Index 3-20
Invisible Index Terms 3-22
Creating an Ignore List 3-23
Creating an Exception List 3-24
Creating a Synonym List 3-24

Part Two Building Guide Files

Chapter 4 Introduction to Guide Maker 4-1

Guide Maker Overview 4-5
Which Chapter Should I Read? 4-8

Chapters Creating Your Guide File 5-1

Preparing Your Source Files 5-3
Building Your Guide File in Four Steps 5-6
Setting Compile Options 5-8
Checking the Syntax of Your Source Files 5-9
Interpreting the Compile Messages 5-10
Other Utilities 5-11

Importing and Exporting Resources 5-12
Specifying Guide File Information 5-12

Creating a Mixin for Your Guide File 5-13

viii

Chapter 6 Testing Your Guide File 6-1

Testing Your Guide File's Interface 6-3
Obtaining Navigation Information 6-5
Getting Debugging Information 6-6

Testing Your Look For Content 6-8
Generating Reports 6-13

The Scopes and Keys Report 6-13
The Names to IDs Report 6-14
The Index Sort Strings Report 6-15
The Guide File Info Report 6-16

Verifying Coachmarks, Context Checks, and Event Functions 6-18
Testing Coachmarks 6-19
Testing Context Checks 6-19
Testing Event Functions 6-19

Planning for User Testing 6-20

Chapter 7 Localizing Your Guide File 7-1

The Localizing Process 7-3
Translating Text Strings 7-6

Chapter a Converting Windows Help Files 8-1

Preparing Your Windows Help Files 8-3
Converting Your Windows Help Files in Three Steps 8-4
Creating an Interface for Your Help Content 8-8

ix

Part Three Integrating Guide Files

Chapter 9 Apple Guide API 9-1

Introduction 9-3
Determining Whether Apple Guide Is Available 9-4

Starting Up Apple Guide 9-5
Determining Which Guide Files Are Available 9-7
Opening and Closing Guide Files 9-11
Working With Open Guide Files 9-18
Getting Information About Guide Files 9-22
Installing and Removing Coachmark Handlers 9-33
Installing and Removing Context Check Handlers 9-36
Application-Defined Routines 9-38

Providing Object Locations for Coachmarks 9-38
Responding to Context Checks 9-40

Summary of Apple Guide API 9-45
Constants 9-45
Data Types 9-47
Functions 9-48
Result Codes 9-51

Part Four Scripting Guide Files

Chapter 10 Guide Script Command Reference 10-1

Guide Script Command Syntax 10-5
Guide Script Command Descriptions 10-8

Specifying Startup Information 10-8
Specifying the Startup Window 10-21
Specifying Default Settings 10-28
Creating Sequences 10-39
Creating Panels 10-52

X

Creating Buttons 10-57
Defining and Using Text Blocks 10-82
Formatting Text and Objects in a Panel 10-84
Specifying Pictures and Movies 10-94
Importing Resources 10-100
Creating Coachmarks 10-105
Creating Hot Items 10-119
Defining Topic Areas 10-124
Defining Index Terms 10-127
Defining Topics for Topic Areas and Index Terms 10-133
Specifying "Look For" Help 10-140
Specifying Conditional Execution 10-152
Defining and Using Context Checks 10-172
Specifying Events 10-177
Working With Mixin Guide Files 10-190

Appendix A Guide Script Command Abbreviations A-1

Appendix B Guide Script Commands and Parameters
Quick Reference B-1

Appendix c SurfWriter Guide and Its Source Files c-1
Getting Started C -1

SurfWriter Guide Build File C-3
Using Standard Files C-4

The Standard Setup File C-4
The Standard Resources File C-5

Customizing the Setup Information
Navigation Information and Formats
Prompt Sets C-7
Help Menu Information
Access Window Information
Finder Version Information

C-8
C-9

C-11

C-5
C-5

xi

Help Content C-11
Topic Areas and Topics C-11
Sequences C-15

The Placeholder Sequence C-15
"How do I use the tools in the toolbar?" Sequence
"How do I add a word to the dictionary?" Sequence
"How do I create a custom dictionary?" Sequence

C-15
C-16

C-17
Panels C-22

The Placeholder Panel C-22
"How do I use the tools in the toolbar?" Panels
"How do I add a word to the dictionary?" Panels
"How do I create a custom dictionary?" Panels

Coachmarks C-37
Context Checks C-38
Event Functions C-38

Index and Look For Content C -39
Index Terms C-39
The Ignore List C-44
The Exception List C-46
The Synonym List C-47

C-22
C-24

C-28

Appendix D Checklist D-1

Designing Your Guide File Content D-2
Scripting Your Source Files D-3
Building Your Guide File D-5
Testing Your Guide File D-5
Additional Guide File Tasks D-6

Glossary GL-1

Index IN-1

xii

Chapter 1

Chapter 2

Figures, Tables, and Listings

Introduction to Apple Guide 1-1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6

Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10

The Apple Guide components 1-4
A typical Apple Guide panel 1-6
A panel that is part of a sequence 1-6
The Macintosh Sound control panel circled with a coach mark
The typical steps a user takes to view an Apple Guide topic
A Help menu displaying Macintosh Guide and other guide
files 1-11
A Full Access window 1-11
A Full Access Window with a topic area selected 1-12
A Full Access Window with a topic area and topic selected
The first help panel for the selected topic 1-13

1-7
1-10

1-13

Authoring Tips and Suggestions 2-1

Figure 2-1

Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12

Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16

Figure 2-17

A Help menu showing the system software guide files and Balloon
Help 2-8
The access window for About Apple Guide 2-9
A panel in About Apple Guide 2-1 0
The Full Access window for Macintosh Guide 2-11
The Macintosh Tutorial contents 2-12
The Macintosh Shortcuts contents 2-13
A Full Access window with default features 2-17
A Full Access window with an application logo and title 2-19
A Full Access window with the Topics features selected 2-20
A Full Access window with Index features selected 2-21
A Full Access window when Look For is selected 2-22
A Full Access window with Look For features and the cursor in the
search phrase entry box 2-23
A Full Access window after a Look For search is completed 2-24
A Single Ust Access window 2-26
A Simple Access window with three-dimensional buttons 2-27
A Simple Access window that takes the user directly to the
help information 2-28
A Full Access window with howdy text 2-29

xiii

xiv

Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 2-22
Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26
Figure 2-27
Figure 2-28
Figure 2-29

Figure 2-30
Figure 2-31
Figure 2-32
Figure 2-33
Figure 2-34
Figure 2-35
Figure 2-36
Figure 2-37
Figure 2-38
Figure 2-39
Figure 2-40
Figure 2-41

Figure 2-42
Figure 2-43
Figure 2-44
Figure 2-45

Figure 2-46
Figure 2-47
Figure 2-48

Figure 2-49

Figure 2-50
Figure 2-51
Figure 2-52
Figure 2-53

A Single List Access window with howdy text 2-30
Topic headings on the Full Access window 2-34
A typical panel in Macintosh Guide 2-35
A pixel grid depiction of a panel 2-36
A minimized panel 2-37
A panel with default features 2-37
A panel design with text, graphic, and button 2-38
The default prompt for the first panel in a sequence 2-41
A decision panel 2-42
A panel with the Full format 2-44
A panel with the Tag and Body format 2-45
A panel containing a graphic centered with relative
positioning 2-47
An introductory panel 2-52
A decision panel with radio buttons 2-53
A decision panel with checkboxes 2-53
An action panel 2-54
An information panel 2-55
A tip panel 2-56
A definition panel 2-57
Some definitions in the Full Access window 2-58
A related topics panel 2-59
A transition panel 2-60
A closure panel 2-61
A panel with an active Huh? button and an explanation of the
button's associated panel 2-62
A typical panel associated with a Huh? button 2-62
An Oops panel 2-64
A Continue panel 2-65
A panel with GoStart (using the lightbulb icon) and Huh? buttons in
the navigation bar 2-72
A panel with a button centered using relative positioning 2-73
A panel containing two buttons with absolute positioning 2-73
The up and down appearance (in grayscale) of a color Continue
button 2-75
The up and down appearance of a black-and-white Continue
button 2-75
A single word of hot text on a panel 2-78
A panel associated with a single hot-text word on a panel 2-78
A panel associated with a Huh? button 2-78
A menu coach 2-79

Chapter 3

Chapter 4

Figure 2-54
Figure 2-55
Figure 2-56
Figure 2-57
Figure 2-58
Figure 2-59
Figure 2-60
Figure 2-61

Figure 2-62

Table 2-1
Table 2-2
Table 2-3
Table 2-4

A red circle coachmark 2-81
A red underline coachmark 2-82
A green X coach mark 2-82
A red arrow coachmark 2-83
The SurfWriter sequence for adding a word to the dictionary
A Continue panel for a condition in a SurfWriter sequence
An Oops panel for a condition in a SurfWriter sequence
A sequence in Macintosh Guide for changing the beep
sound 2-90
Avoiding embedding pictures inside of text 2-94

The default prompt set recommended by Apple 2-41
Override prompts by panel type 2-43

2-86
2-87

2-88

Order in which Apple Guide evaluates context checks 2-89
Common translations of Apple Guide terms 2-93

Planning Your Help Content 3-1

Figure 3-1
Figure 3-2
Figure 3-3

Figure 3-4
Figure 3-5

Table3-1
Table3-2
Table3-3
Table3-4

A flowchart that breaks topic areas into topics 3-8
A typical flowchart 3-9
A flowchart for a SurfWriter sequence on creating a custom
dictionary 3-11
An Apple Guide search in response to a search phrase 3-16
A typical Look For search 3-18

Some words stemmed by Apple Guide 3-14
Examples of index terms derived from sample topics 3-21
Example of ignore words derived from sample topics 3-23
Examples of synonyms derived from sample topics 3-26

Introduction to Guide Maker 4-1

Figure 4-1

Figure 4-2
Figure 4-3

Building, testing, localizing, and converting your online assistance
using Guide Maker 4-4
Accessing Guide Maker's utilities 4-5
Using Guide Maker's menus 4-7

XV

Chapter 5

Chapter 6

Chapter 7

xvi

Creating Your Guide File 5-1

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9

Creating a build file 5-5
Building your guide file using Guide Maker's Build utility
A successfully compiled guide file 5-7
Compile options dialog box showing default settings
Guide Maker displaying a compile error message
Guide Maker displaying a warning message 5-11
The Utilities menu 5-12
The Menu Appearance dialog box 5-13

5-8
5-10

A guide file and its guide file addition, or mixin 5-14

Testing Your Guide File 6-1

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10

The Diagnose window 6-4
The "All messages" debugging option 6-7
The Test Look For window 6-9
A parsed phrase in the Test Look For window 6-1 0
Results of a search 6-12
A Scopes and Keys report 6-14
A Names to IDs report 6-15
An Index Sort Strings report 6-16
The Options dialog box 6-17
A Guide file Info report 6-18

Localizing Your Guide File 7-1

The Localize window 7-4
The Localize window with files and folders specified 7-4
Examples of text resources 7-7

5-6

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5

Text resources for panels, index terms, and Look For content
Translating a text string 7-9

Table 7-1 The 'TEXT' resource names and the associated text strings

7-8

7-10

Chapter 8 Converting Windows Help Files 8-1

Figure 8-1 Converting your Windows Help files using Guide Maker's Convert

Figure 8-2
Figure 8-3

Figure 8-4
Figure 8-5

utility 8-5
A successfully converted Windows Help file 8-6
A Windows Help file and its converted Guide Script source
file 8-7
Creating an interface for your help content 8-8
Constructing an interface for a sample source file 8-1 0

Appendix A Guide Script Command Abbreviations A-1

Table A-1 Command abbreviations A-1

Appendix B Guide Script Commands and Parameters Quick Reference B-1

Table B-1 Commands quick reference 8-1

Appendix C SurfWriter Guide and Its Source Files C-1

Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5

Figure C-6

Figure C-7
Figure C-8
Figure C-9

The organization of the source files for SurfWriter Guide
The access window with Topics selected C-12
A panel with radio buttons C-18
"How do I add a word to the dictionary?" panels C-25
"How do I create a custom dictionary?" panels (automatic
branch} C-29
"How do I create a custom dictionary?" panels (manual
branch} C-30
The Index window C-39
Matching a search phrase C-44
Results of an intersection between two index terms C-48

A build file ("Build file SURF.src" file) C-3

C-2

Listing C-1
Listing C-2 Events, navigation buttons, and formats (from the "Setup and

Access Window.src" file} C-6
Listing C-3
Listing C-4

Prompt sets (from the "Setup and Access Window.src" file) C-7
Help menu information (from the "Setup and Access Window.src"
file} C-8

Listing C-5 Access window startup (from the "Setup and Access Window.src"
file) C-9

xvii

Listing C-6

Listing C-7
Listing C-8

Listing C-9

Listing C-1 0

Listing C-11

Listing C-12

Listing C-13
Listing C-14

Listing C-15

Listing C-16

Listing C-17
Listing C-18
Listing C-19
Listing C-20
Listing C-21

Appendix D Checklist D-1

Figure D-1

xviii

Finder version information (from the "Setup and Access Window.src"
file) C-11
Topic areas and topics ("Topic Areas and Topics.src" file)
Placeholder sequence (from the "Sequence Definitions.src"
file) C-15

C-12

Sequence for "How do I use the tools in the toolbar?" (from the
"Sequence Definitions.src" file) C-16
Sequence for "How do I add a word to the dictionary?" (from the
"Sequence Definitions.src" file) C-17
Sequence for "How do I create a custom dictionary?" (from the
"Sequence Definitions.src" file) C-19
Sequence definitions for Huh?, Definition, and Related Topics (from
the "Sequence Definitions.src" file) C-20
Placeholder panel (from the "Panel Definitions.src" file)
Panels for "How do I use the tools in the toolbar?" (from the
"Panel Definitions.src" file) C-22

C-22

Panels for "How do I add a_yyord to the dictionary?" (from the
"Panel Definitions.src" file) - C-26
Panels for "How do I create a custom dictionary?" (from the
"Panel Definitions.src" file) C-31
Coachmarks ("CoachMarks SW. src" file) C-37
Index terms ("Index Entries.src" file) C-40
Ignore words ("Ignore List.src" file) C-45
Words on the exception list ("Exception List.src" file)
Words on the synonym list ("Synonym List.src" file)

Tasks required to create a guide file 0-1

C-46
C-48

PREFACE

About This Book

This book provides all the information you need to successfully produce an
Apple Guide help system for your application. By reading it, you'llleam

• Guide Script, an authoring language for creating your help source files

• Guide Maker, the application for compiling (or building) your help source
files into Apple Guide help files (known as guide files)

• authoring tips and suggestions for designing your guide files

• the application programming interface for Apple Guide, containing the
functions used to integrate your guide files into your application

In the CD that accompanies this book, you'll find Guide Maker, a sample guide
file (SurfWriter Guide}, and a searchable command reference. It also contains
Read Me files for all specific areas.

Who Should Use This Book

This book is written for people who design and develop guide files and
integrate them into their applications. It applies to anyone who falls into one or
more of the following categories:

• For instructional designers, it helps you plan and design guide files.

• For scriptors, it provides you with the necessary instruction to begin writing
the Guide Script files that describe guide files. It shows you how to create
and test guide files using Guide Maker.

• For developers, it shows you how to integrate guide files into
general-purpose applications that run under System 7.5 and later.

This book is suitable for instructional designers who have some background in
developing reference documentation but little if any programming experience,
for scriptors who have some scripting experience but not Guide Script
experience, and for developers who have some programming experience
but not necessarily Macintosh programming experience.

xix

PREFACE

This book is most suitable for those who are familiar with the concepts and
terminology used with Macintosh computers, who have used a Macintosh
computer and a few of its applications, and who are aware of the information
described in the book Macintosh Human Interface Guidelines.

What's in This Book

XX

This book contains four parts and four appendixes. It is designed to be read
either from start to finish or in less structured ways. If you are responsible for
all tasks associated with creating a guide file (that is, designing, scripting, and
developing code), you may want to read the chapters in order. If you have
fewer tasks, you may choose to read only the information that applies to them.
You can also use this book as a reference, particularly Chapters 3 and 10 and
the appendixes.

This book is filled with screen examples that illustrate Apple Guide's features
and show how your interface should look. Some screen examples are from
the Apple guide files that come with system software: About Help, Tutorial,
Macintosh Guide, and Shortcuts. Other screen examples are from SurfWriter
Guide, a sample guide file for SurfWriter, a pseudo word-processing
application.

The next sections describe the information you'll find in each part of the book.

Designing Your Guide Files
The first part of the book introduces you to the features of Apple Guide. It
shows you how to use interface elements in your guide files and describes
strategies you can use to plan and design your guide file content before you
even begin scripting. In addition, it shows you how to create two powerful
search features for your guide files, Index and Look For.

Building Your Guide Files
The second part of the book introduces you to Guide Maker. It shows you how
to build and test guide files using Guide Maker, how to localize them, and
how to convert Windows help content into guide files.

,

PREFACE

Integrating Your Application
The third part of the book describes the Apple Guide application programming
interface (API). You can use the functions described in this chapter to integrate
your guide files into your application.

Using the Guide Script Commands
The fourth part of the book describes each Guide Script command. For each
one, it provides correct syntax, a description of its parameters, a description
of the command itself, and examples of its use.

Reference Material
The appendixes provide additional information about the topics described in
this book. Appendix A contains a list of abbreviations for all Guide Script
commands. Appendix B contains a summary list of all Guide Script commands
and their parameters. Appendix C describes SurfWriter Guide, a sample guide
file for a pseudo word-processing application, and includes many of its source
files. Appendix D contains a checklist you use to help you check off tasks as
you create, modify, and localize guide files.

The glossary, which follows the appendixes, defines all common terms that
appear in boldface in the book. At the end of the book, you'll find an index
that can help you easily locate information about particular topics of interest.

Conventions Used in This Book

This book uses various conventions to present information. Words that require
special treatment appear in specific fonts or font styles. Certain information,
such as command line options, uses special formats so that you can scan it
quickly.

xxi

xxii

PREFACE

Special Fonts
This book uses several typographical conventions. All code listings, reserved
words, and the names of actual data structures, constants, fields, parameters,
and routines are shown in Courier (this is Courier).

Words that appear in boldface are key terms or concepts and are defined in the
glossary.

Command Syntax
This book uses the following notation and font conventions to describe Guide
Script commands:

[optional] Brackets indicate that the enclosed language element or
elements are optional.

[optional]... Three points of ellipsis(...) after a group defined by brackets
indicate that you can repeat the group of elements within the
brackets 0 or more times.

language
element

placeholder

Plain computer font indicates an element that you must type
exactly as shown. If there are special symbols (for example +
or &), you must also type them exactly as shown.

Italic text indicates a placeholder that you must replace with a
real value that matches the definition of the element.

Types of Notes
This book uses two types of notes.

Note
A note like this contains information that is interesting
but possibly not essential to an understanding of the
main text. +

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. A.

PREFACE

For More Information

APDA is Apple's worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested
in developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and the
most popular third-party development tools. APDA offers convenient payment
and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box319
Buffalo, NY 14207-0319

Telephone

Fax

Apple Link

America Online

CompuServe

Internet

1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

716-871-6511

APDA

APDAorder

76666,2405

APDA@applelink.apple.com

xxiii

PART ONE

Designing Guide Files
~
~
0 z
m

CHAPTER 1

Introduction to Apple Guide I

Contents

What Is Apple Guide? 1-3
How the User Views Apple Guide 1-5
The Many Uses of Apple Guide 1-8

A Typical Apple Guide Session 1-9

Contents 1-1

CHAPTER 1

Introduction to Apple Guide

This chapter introduces you to Apple Guide, a help delivery system that
supports the development of onscreen interactive instructions for general-use
applications. You should read this chapter if you are designing or scripting
Apple Guide guide files. If you are developing code for guide files, you might
also find this information useful.

The chapter begins with an overview of the Apple Guide features. It then
explains the different ways you can use Apple Guide as a help system. It
concludes with a description of a typical help session with Apple Guide.

What Is Apple Guide?

Apple Guide is a powerful help system that supports the design and delivery
of interactive onscreen instructions. These instructions are grouped in files
(known as guide files) according to their particular focus.

For end users, Apple Guide provides quick and easy access to versatile help
resources tailored to their needs. For instructional designers, scriptors, and
developers, Guide Maker provides a tool for developing comprehensive
onscreen help.

Apple Guide consists of a system extension that delivers the help system.
Figure 1-1 shows Apple Guide and other components provided with it.

What Is Apple Guide? 1-3

• a a
a.
c
Sl
5"
::1

0
>
"0
"0 a;
G)
c c:
(I)

1-4

CHAPTER 1

Introduction to Apple Guide

Figure 1-1 The Apple Guide components

Apple Guide

System software
guide files

About Apple G~ide

~
Macintosh Guide

Tutorial

~
Shortcuts

Guide Maker

Guide Script

These components include

Additions

Video Guide

Video Player

Speech Guide

PowerBook Guide

Source files

• guide files that describe the Finder and other features of the Macintosh
Operating System. Exam ples include the following:

What Is Apple Guide?

CHAPTER 1

Introduction to Apple Guide

. , About Apple Guide describes the help system provided with the
Macintosh computer.

r: Macintosh Guide is the main guide file for system software's help system
and provides step-by-step instructions for a variety of tasks.

Tutorial provides training in basic Macintosh skills.

1 Shortcuts provides keyboard commands and tips.

• four Macintosh Guide additions guide files-Video Guide, Video Player,
Speech Guide, and PowerBook Guide-that add content to Macintosh Guide
about a specific piece of hardware attached to the Macintosh computer or
certain system software features.

• Guide Maker, a tool for building and testing your guide files.

• Guide Script, an authoring language for developing guide files for your
application.

Apple Guide is one of two help systems currently available from Apple. It joins
Balloon Help, a help system provided in System 7 and higher versions of
system software. (If you are not familiar with Balloon Help, see Inside
Macintosh: Macintosh Toolbox Essentials.) With Balloon Help, users can find out
the function or significance of virtually any object on the Macintosh screen,
such as icons, windows, and commands. Balloon Help answers the question
"What is this item?" With Apple Guide, you can take help to the next level of
user inquiry: "How do I accomplish this task?" As a result, Apple Guide does
not replace or duplicate Balloon Help but instead expands the help available
to users.

How the User Views Apple Guide

Apple Guide leads users to answers through interactive windows (known as
panels) that explain a concept or task. Apple Guide panels are movable and
float on top of other application windows. Users can therefore carry out the
help instructions they read in panels, even from within an application, as they
work on a given task. You link each of your help topics to a single panel or
panel sequence, which is a set of related panels that the user can access linearly
using left and right navigation arrows. A panel sequence can also contain
subsequences (or panel branches).

For example, Figure 1-2 shows the first panel that the user views in Macintosh
Guide after selecting the topic "How do I display colors or grays?"

What Is Apple Guide? 1-5

•

1-6

CHAPTER 1

Introduction to Apple Guide

Figure 1-2 A typical Apple Guide panel

You use the Monitors control panel to display colors or
shades of gray on your monitor.

The number of colors you can use depends on your
computer's video capability (sometimes called "bit
depth.,) and the monitor you're using.

To begin, click the right arrow.

Figure 1-3 shows the next panel in that same sequence.

Figure 1-3 A panel that is part of a sequence

Apple Guide automatically provides left and right navigation arrows on panels
so that the user can move linearly through a sequence. You can place additional
buttons on panels to provide quick access to different parts of the guide file or
your application. Along with buttons, you can also place styled text, graphics,
and QuickTime movies. To help you create a clear and consistent interface,
Apple suggests using standard panel types that apply to specific categories
of information.

To further enhance your help instructions, you can identify interface elements
to the user using special Apple Guide markers-called coachmarks-that circle
or point to items in the screen. For example, Figure 1-4 shows a coachmark that
appears in Macintosh Guide whenever a panel tells the user to open the Sound

What Is Apple Guide?

CHAPTER 1

Introduction to Apple Guide

control panel. This particular coachmark draws a red circle around the
Sound control panel.

Figure 1-4 The Macintosh Sound control panel circled with a coachmark

=[i Control Panels
40 itoms

[{I] D
Numbors PC Exchang• Powor Macintosh Card

~ l~r~·l Gb
PoworBook Scroen Serial Switch

E ~ [I]
Toxt Tokon Ring

In addition to these powerful design elements, you can have Apple Guide
present context-sensitive help. If you do, Apple Guide displays help
instructions that specifically apply to the user's needs. To provide
context-sensitive help, you use commands where programmatically possible
to verify whether the user's environment meets a specific requirement or
has changed. The functions that check the user's environment are called
context checks.

For example, you can use context checks with Guide Script commands to have
Apple Guide

• skip a panel that tells the user to perform an action when the associated
condition is already true (for example, skip a panel that tells the user to open
a folder if that folder is already open)

• display a panel that explains how to remedy an error the user made on a
previous panel (for example, if the user fails to open a folder, display a panel
that tells the user how to open it)

• display a panel only if a certain condition is true (for example, display a
panel only if the user has particular software installed)

What Is Apple Guide? 1-7

3.
0
c.
c:
~
5"
:I

0
)>
"0
"0
Cil
G)
c:
0:
(])

1-8

CHAPTER 1

Introduction to Apple Guide

If programmatically possible, you can also have Apple Guide perform certain
actions for the user (for example, use AppleScript to open a control panel for
the user). You can have Apple Guide perform a step on a panel only if the user
fails to do so or you can create an entire sequence where Apple Guide
demonstrates how to perform a task.

You can find out more about the Apple Guide features and learn how to
implement them properly in the next chapter, which provides tips and
suggestions for designing guide files.

The Many Uses of Apple Guide
Apple Guide is designed to give you flexibility in choosing the type of help you
provide. Using the design tips and suggestions in this book, you can make
certain decisions about how to organize and present your help. You can choose
the order in which users access information and the format in which the
information appears. You can use Apple Guide as the only help system for
your application, or you can use it to supplement an existing help system. You
can also integrate guide files into your application, a practice that Apple
strongly recommends.

The Apple Guide guide files can accommodate a diverse range of help
requirements. You can pick from several guide file types depending on the
form of instruction that you desire. These types include

• orientation to your entire help system

• task-oriented procedures on your application's features and use

• tutorials that guide users through a focused learning path

• advanced or specialized features required by only certain users

• tips and reference material commonly found on quick reference cards

For more about the guide file types, see the section "Designing Guide Files"
beginning on page 2-5.

In addition to creating guide files for your application, you can also use them
for internal training or as a presentation tool. For example, you can create a
guide file that shows employees how to do standard company procedures,
such as filling out benefit forms or ordering supplies. Or you can create a guide
file that describes a project or plan.

What Is Apple Guide?

CHAPTER 1

Introduction to Apple Guide

A Typical Apple Guide Session

Apple Guide is easy to use: in general, the user selects a guide file from the
Help menu to invoke an access window that presents the guide file help topics.
Typically, the user picks a topic from the access window and views the panels
associated with it.

Figure 1-5 shows the typical steps required to view help in Apple Guide.

A Typical Apple Guide Session 1-9

a a
c.
c:
~
0
:::::J

6'
)>
"0
"0
<D
G)
c:
a:
tD

1-10

CHAPTER 1

Introduction to Apple Guide

Figure 1-5 The typical steps a user takes to view an Apple Guide topic

Open application

~
D

Choose its guide file
from the Help menu

View access window

Select a topic

D
View a panel

or panel
sequence

Guide file names appear in the Help menu, along with Balloon Help and any
other help systems provided by your application. For example, Figure 1-6
shows a Help menu displaying Macintosh Guide and other guide files.
(PowerTalk Guide, a guide file for PowerTalk, appears at the bottom of
this menu.)

A Typical Apple Guide Session

C HAPTER 1

Introduction to Apple Guide

Figure 1-6 A Help menu displaying Macintosh Guide and other guide files

Rbout Rpple Guide

Show Bolloons

Tutorlol
Mocintosh Guide 3&?
Shortcuts

The user can invoke a guide file from the Help menu or from a keyboard
shortcut you assign. Each time the user invokes a guide file from the Help
menu, one of three access window types appears. For example, Figure 1-7
shows the Full Access window.

Figure 1-7 A Full Access window

I. Click a topic area:
Reviewing the Basics
Working with Programs
Files
Disks
Using DOS Files & Disks
Print ing & Fonts
Networks & Telecommunications
Setting Options
Color
Sound
Monitors
Memory

OK

One of these types, the Full Access screen (Figure 1-7) presents topics to the
user through three buttons in the upper portion of the window. Each button

A Typical Apple Guide Session 1-11

• ::J a a.
c: n. ,,.
::J

0
)>

"0
"0
m
G>
c:
a:
(1)

1-12

CHAPTER 1

Introduction to Apple Guide

provides different search features on the window to accommodate users'
varying styles of conceptualizing and searching for information. In Figure 1-7,
the Topics button is selected. Note that the left column of the Full Access
window displays a list of broad topic categories (or topic areas) similar to a table
of contents. When the user selects a topic area, a list of related topics appears in
the right column of the screen. The associated topics are organized by headings
such as "How do I". Figure 1-8 shows the user selecting the topic area "Files".

Figure 1-8 A Full Access Window with a topic area selected

Reviewing the Basics
Working with Programs

Disks
Using DOS Files & Disks
Printing & F ants
Networks & Telecommunications
Setting Options
Color
Sound
Monitors
Memor

'V How dol
open an item?
find a file or folder?
create a folder?
make an Item easy to find?
move an item?
copy an item?
throw away an item?
change the name of an item?
protect a file or disk?
f111d the original of an alias?
open an item automatically?

OK

Each topic is linked to a panel or sequence containing help information. To
view the associated panels, the user selects the topic and presses the OK button
in the lower portion of the window (or just double-clicks the topic). For
example, Figure 1-9 shows the user selecting the topic "How do I copy
an item?"

A Typical Apple Guide Session

CHAPTER 1

Introduction to Apple Guide

Figure 1-9 A Full Access Window with a topic area and topic selected

Reviewing the Basics
Working with Programs

Disks
Using DOS FUes & Disks
Printing & Fonts
Networks & Telecommunications
Setting Options
Color
Sound
Monitors
Memory

v Howdol
open an Item?
find a file or folder?
create a folder?
make an item easy to find?
move an item?

throw away ar, . em?
change the name of an item?
protect a fde or disk?
find the original of an alias?
open an item automatically?

OK

Once the user selects a topic, the related single panel (or first panel in a
sequence) appears and the access window is hidden. Each panel typically
displays one step in a procedure or one item of information. For instance, a
panel can instruct the user to open a menu and select a command. Or it can
describe a particular feature, such as an audio CD. Figure 1-10 shows the first
panel of the topic "How do I copy an item?"

Figure 1-10 The first help panel for the selected topic

0 :: 8
How do I copy an item?

You copy an item by manipulating Its Icon. You do this
type of copying when you're using the Finder (the
system software that displays the desktop and manages
tiles, folders, and disks).

For instructions on copying part of a document when
working in an application program, click Huh?below.

To begin, dick the right arrow.

A Typical Apple Guide Session 1-13

1-14

CHAPTER 1

Introduction to Apple Guide

Notice that the lower bar.of the panel (the navigation bar) contains navigation
arrows on the lower-right side and that the lower-left side contains two
buttons: GoStart (the lightbulb-shaped icon) and Huh? (the icon containing the
word "Huh?"). In this example, the right navigation arrow is active to indicate
that the user can click it to go to the next panel in the sequence. A dimmed
right arrow indicates that the user has reached the end of the sequence. At the
end of a sequence, the left arrow is generally activated, and the user can click it
to go backward through the sequence.

To return to the access window, the user can click the GoStart button. This
button should appear on all panels in your guide files and should always be
active.

If the Huh? button is active, as in Figure 1-10, the user can click it to view
another panel containing additional information.

A Typical Apple Guide Session

CHAPTER 2

Authoring Tips and Suggestions

Contents

Designing Guide Files 2-5
Using Guide File Types 2-6
Showing Guide Files in the Help Menu 2-7
Designing About Guide Files 2-9
Designing Help Guide Files 2-10
Designing Tutorial Guide Files 2-11
Designing Shortcuts Guide Files 2-13
Designing Other Guide Files 2-14
Designing a Mixin Guide File 2-14

Designing Access Windows 2-15
Designing a Full Access Window 2-16
Designing the Application Logo or Title Area 2-18

Features for a Full Access Window With Topics Selected 2-19
Features for a Full Access Window With Index Selected 2-20
Features for a Full Access Wmdow With Look For Selected 2-21

Designing a Single List Access Window 2-25
Designing a Simple Access Window 2-26
Designing Howdy Text on Access Windows 2-28

Designing Topic Areas and Topics 2-30
Designing Topic Areas and Topics for a Full Access Window 2-31
Designing Topics for a Single List Access Window 2-32
Designing Topics for a Simple Access Window 2-33
Designing Headings 2-33

Designing Panels 2-35
Panel Features 2-37
Designing Panel Prompts 2-39

Contents 2-1

CHAPTER 2

Designing a Default Prompt Set 2-40
Overriding Default Prompts 2-42

Using the Recommended Panel Formats 2-43
Designing Your Own Panel Format 2-45
Using Graphics in Panels 2-46
Formatting Panel Text 2-47
Providing Navigation Methods on Panels 2-48

Designing Panel Types 2-50
Designing an Introductory Panel 2-51
Designing a Decision Panel 2-52
Designing an Action Panel 2-53
Designing an Information Panel 2-54
Designing a Tip Panel 2-55
Designing a Definition Panel 2-56
Designing a Related Topics Panel 2-58
Designing a Transition Panel 2-59
Designing a Closure Panel 2-60
Designing a Panel Associated With a Huh? Button 2-61
Designing an Oops Panel 2-63
Designing a Continue Panel 2-65

Designing a Sequence 2-66
Designing Branches 2-67

Designing Branches for Mutually Exclusive and Related Tasks 2-68
Designing Branches for a Specific Condition 2-69

Designing Buttons 2-70
Designing Navigation Buttons 2-71
Designing Content Area Buttons 2-72

Using Standard Buttons 2-74
Using Three-Dimensional Buttons 2-74
Using Radio Buttons and Checkboxes 2-76

Designing Hot Text, Objects, and Rectangles 2-77
Designing Coachmarks 2-79

Using Coachmark Types 2-80
Using Coachmark Styles 2-80

Using Context Checks 2-83
Comparison of Oops and Continue Panels 2-85
Analyzing a Sequence for Context Checks 2-85

2-2 Contents

CHAPTER 2

Evaluation of Context Checks 2-89
Designing for Localization 2-91

Planning for Expanded Text 2-92
Translations for Apple Guide Phrases 2-92
Formats 2-93

Graphics and Buttons 2-94
Sequence Display Titles 2-94
Coachmarks 2-95
Context Checks 2-95
AppleScript 2-95

Contents 2-3

CHAPTER 2

Authoring lips and Suggestions

The best guide files are those that provide the user with a consistent and clear
interface. This chapter provides tips and suggestions on how to develop this
consistent interface in your files. You should read this chapter if you need to
plan, design, and write content for a guide file. If you are scripting a guide file
or developing code for it, you should also be familiar with this chapter.

This chapter assumes that you are familiar with the Apple Guide features
described in Chapter 1 of this book. You should also be familiar with the
general guidelines for Macintosh products as described in the Macintosh Human
Interface Guidelines.

The chapter describes the requirements for the different guide file types. It
explains how to select an access window for your guide file and how to give
it the proper look and content. It also shows how to design the guide file panels
that contain your help instructions, including how to

• add required features to panels

• format text and graphics on panels

• use standard panel types for different categories of help instructions

• design panel sequences and branches

• design button for panels

In addition, this chapter describes how to use coachmarks to lead the user's
attention to screen areas described in help instructions. It then explains how
to use context checks to display help instructions more specific to the user's
environment. Finally, it provides localization guidelines for translating your
guide file into another language.

Designing Guide Files

A guide file is a single file containing help content that conforms to one of five
guide file types supported by Apple Guide. Once you have developed a guide
file, you can create a special guide file (known as a mixin) to add to or modify
its contents.

Developing a guide file generally requires knowledge of instructional design,
scripting with Guide Script, and building and testing guide files with Guide
Maker. It also requires familiarity with the design information in this chapter.

Designing Guide Files 2-5

2-6

CHAPTER 2

Authoring Tips and Suggestions

To integrate a guide file into an application requires knowledge of the Apple
Guide application programming interface (API). You might have all the skills
and background to develop a guide file yourself, or you might work with a ·
team that includes instructional designers, scriptors, and developers.

To develop a guide file, you first design its help content in hard-copy form
using either a flowchart or a storyboard. This process includes planning the
guide file topic areas, topics, and associated panels, and determining the
required context checks, which are functions you use to have Apple Guide
display help instructions specific to the user's environment. You should always
verify as soon as possible that it is programmatically possible to create all
context checks; if not, return to your guide file design and revise any affected
panels.

Next, you describe the guide file's content in help source files-files that
contain Guide Script commands that define the look, content, and navigation
path of all panels in your guide file. You can create help source files in any
word processor that stores text as 1 TEXT 1 files (or for which you have an
XTND translator). Then you use the Guide Maker application to build-that is,
compile-the help source files into a guide file and perform testing. At this
stage, you can also have users test your guide file to verify its clarity and ease
of use. You also need to write the code for any context checks your guide file
uses. And, if you choose to integrate the guide file into your application, use
the Apple Guide API to do so.

Note
To have your guide file appear in the Help menu, place it
in the same folder as its corresponding application (or
place an alias to the guide file in the folder containing the
application). •

This section describes the content, naming, and Help menu location of each
type of guide file. It also discusses how to modify an existing guide file's
contents using a Mixin guide file. For additional details on producing guide
files, see Appendix D.

Using Guide File Types

You should create guide files that conform to Apple Guide's five guide file
types: About, Tutorial, Help, Shortcuts, and Other. Each guide file type has a
particular focus, content, naming convention, and Help menu location.

Designing Guide Files

CHAPTER 2

Authoring Tips and Suggestions

You should follow these suggestions for each guide file type's content and
name. Note that the guide file name is the item name in the Help menu.

• About. Use an About guide file to introduce users to all available help
systems in your application. Its name should include the application name
preceded by the word About and followed by the word Guide; for example,
About SurfWriter Guide.

• Tutorial. Use a Tutorial guide file to lead users through basic features of
your application. You should name it Tutorial.

• Help. Use a Help guide file to provide users main information in your help
system through a range of task-oriented information about your application.
Its name should include the application name followed by the word Guide;
for example, SurfWriter Guide.

• Shortcuts. Use a Shortcuts guide file to provide condensed reference
material similar to that found on a quick reference card. You should name
it Shortcuts.

• Other. Use an Other guide file for highly advanced or specialized
information that does not conform to the content conventions of the other
four guide types. Or, if you're not the developer of an application, use the
Other guide file to ensure that your guide file appears in the Help menu (see
the next section for details). The name you choose should indicate the type
of help your application provides; for example, SurfWriter Quick Reference.

You can use all five guide file types or only a few of them. You can also use
more than one Other guide file. For example, you might have several Other
guide files but no Shortcuts guide file. Note, however, that you should always
include an About guide file, even if you use only one other guide file type.

Showing Guide Files in the Help Menu
Each guide file type that is available to an application can appear as an item in
its Help menu, along with Show /Hide Balloons and any other application help
systems. (For information on making a guide file available to an application,
see the note on page 2-6.) For example, Figure 2-1 shows the Help menu of the
Finder displaying the system software guide files as well as the Show Balloons
menu item. Note that PowerTalk Guide is of the guide file type Other.

Designing Guide Files 2-7

•)>
c
s:
0
:::!.
::::::1
ca
=I

"C
(/)

S»
::::::1
a.
(/)
c

ca
ca
(1)

!a
5'
::::::1
(/)

2-8

CHAPTER 2

Authoring lips and Suggestions

Figure 2·1 A Help menu showing the system software guide files and Balloon Help

Show Balloons ----t-- Balloon Help

Tutorial ----+-- Tutorial guide file
Macintosh Guide Help guide file
Shortcuts Shortcuts guide file

PowerTalk Guide --11-- Other guide file
~--------------

The guide file type determines where it appears in the Help Menu, with certain
guide file types appearing closer to the top of the Help menu than others.
Specifically, the Other guide file type appears at the bottom of the Help menu
and the About guide file type appears at the top of the Help menu, followed
by Show /Hide Balloons and the Tutorial, Help, and Shortcuts guide files.

The Help menu displays only one guide file for each of the About, Tutorial,
Help, and Shortcuts types. However, there may be multiple guide files for any
of these types. When there are, the Help menu displays the guide file that
matches all conditions specified by <App Creator>, <Gestalt>, and <Mixin>
commands and that comes first alphabetically. These guide files are generally
reserved for the developer of the application.

In contrast, the Help menu alphabetically displays all guide files of type Other
that match all conditions specified by <App Creator>, <Gestalt>, and <Mixin>
commands. To ensure that the guide file appears in the Help menu, use an
Other guide file to provide help for an application that you did not develop.

Note
You can assign a keyboard shortcut to a guide file. If you
do, Apple Guide displays it next to the guide file name in
the Help menu. Guide files of type Help automatically
open if the user presses the Command-Shift-/combination
(which maps to Command-Shift-? key combination on
U.S. keyboards) or the Help key on the Apple Extended
keyboard, even if you assign no keyboard shortcuts. •

Designing Guide Files

CHAPTER 2

Authoring Tips and Suggestions

Designing About Guide Files
You should use an About guide file to describe the purpose and contents of
each help item that appears in the Help Menu-including those that are not
Apple Guide guide files-and provide general guidelines for using the help
system. The About guide file is typically the first exposure that users have to
your help system and the place they are likely to return to if they cannot find
certain help information. You can also use this guide file to acknowledge
individuals who designed or contributed to the help system. The About guide
file should not include information that pertains directly to the application
itself.

You should always include an About guide file with your guide files, even if
you create only one other guide file. If you don't include one, a default dialog
box appears instead.

An About guide file should be brief and can generally use a Simple Access
window. For more information, see ''Designing a Simple Access Window" on
page 2-26. The first panel of an About guide file should identify each guide file
in the menu as well as Balloon Help. Figure 2-2 shows the access window for
About Apple Guide.

Figure 2-2 The access window for About Apple Guide

The Guide menu contains information about using
your computer. The items in this menu include:

• About Apple Guide-the item you are reading
• Show Balloons-a description ot an item when the

pointer is on that item
• Tutorial-training in basic Macintosh skills
• Macintosh Guide-step-by-step instructions tor a
variety of tasks and other information about your
computer and its system software

• Shortcuts-keyboard commands and tips to help you
work faster and more efficiently with your Macintosh

You may see other items in the Guide menu as well.

For a picture of the Guide window, cfick the right arrow.

Designing Guide Files 2-9

I
)>
c:
:f
0
~.
::I co
::1
~
S»
::I
a.
en c:
co co
<D
2l
i5'
::I
(/)

2-10

CHAPTER 2

Authoring Tips and Suggestions

The subsequent panels in the guide file can provide detailed explanation of
each guide file and the rest of the help system. Figure 2-3 shows a panel in
About Apple Guide that describes how to use Macintosh Guide.

Figure 2-3 A panel in About Apple Guide

About Apple Gtdde

When you choose Macintosh Guide, you see a list of
topics. After you choose a topic, instructions appear in
the window below.

COck to close the
Guid~ window

Oick to go back to :
the list of topics ~

Click to show a definitkm
or other information

Click to compress
the Guide window

: Click to go to
~ nextstep

Click togo to
previous step

Designing Help Guide Files
You should use a Help guide file to provide the main information for your
help system. It should consist primarily of step-by-step instructions that guide
users through a range of tasks in your application. (Where programmatically
possible, you can also have Apple Guide perform certain tasks for the user.)
You can also use this guide file to explain key concepts, define terminology,
and address problems that users can encounter using your application. Your
Help guide file should generally answer three categories of user inquiry:

• How do I do this task? (For example, how do I save my file?)

• Why can't I do this action? (For example, why can't I print my file?)

• Define this object or conc;:ept. (For example, define dithering).

Designing Guide Files

CHAPTER 2

Authoring lips and Suggestions

For many users, the Help guide file is the one they turn to first when they
encounter a problem during their work. If an application provides a Help
guide file, it is the one that automatically appears when the user invokes
help. For example, if you use the Help key in the Finder, Macintosh Guide
automatically opens.

You should always use the Full Access window for a Help guide file. It
provides random access of information, which is more appropriate for the
extent and diversity of its topics. It also provides three powerful and varied
searching methods that meet different user needs. Figure 2-4 shows the Full
Access window for Macintosh Guide.

Figure 2-4 The Full Access window for Macintosh Guide

Reviewing the Basics
Working with Proor ams
Fijes & Disks
Using DOS Files & Disks
Printino & Fonts
Networks & Tele<ommunications
Settino Options
Color
Sound & Speech
VIdeo & Monitors
Batteries & Power
Usin Scripts for Automat ion

OK

For more information about this window and the random access method, see
"Designing Access Windows" beginning on page 2-15.

Designing Tutorial Guide Files

You should use a Tutorial guide file to lead users through basic use of your
application. It is similar to the "quick start sections" commonly found in user

Designing Guide Files 2-11

I
}>

9:
0
::::1.
::l

10

::1
"0
(I)

Ql
::l a.
C/)
c:

10
10

CD

~
0
::l
(I)

2-12

CHAPTER 2

Authoring Tips and Suggestions

documentation. Unlike the Help guide file, which addresses a diverse range
of learning goals, a Tutorial guide file should focus on bringing users to a base
level of proficiency in your application. The Tutorial guide file should therefore
not include advanced information but instead simply familiarize users with
fundamental application features. If your application is a sophisticated
publishing tool, for example, your tutorial can guide users through the
process of writing and formatting a letter.

Figure 2-5 shows the contents of the Macintosh Tutorial, a guide file that was
developed at Apple to describe basic use of a Macintosh computer.

Figure 2-5 The Macintosh Tutorial contents

Click Start Here to begin this part of your training.

+l 1 I 51atttu;re : I
I 2 1 tmn5.anet wrnctow.s~ · :: ·: ··:: I
I s 1 Opening aPlogram I
I 4! ~gaDaalrrlerit · ·f
I s I T~fdMngQasks . I
I 6 I More Text Editing· I
I 7 I SiMftg Oowmem:5. I
(a ·1 folders

Once users are more familiar with your application, they can use your Help
guide file for more complex procedures or use a more advanced tutorial
provided in an Other guide file.

Because a Tutorial guide file should lead users through a particular learning
path, you should not use the Full Access window, which allows random access
of information. You should instead use either the Simple or Single List access
windows to provide sequential access of information. For more information,
see "Designing Access Windows" beginning on page 2-15.

Designing Guide Files

CHAPTER 2

Authoring lips and Suggestions

You can enhance a Tutorial with buttons that help the user navigate through its
different parts. For example, you can provide buttons that

• lead users to panels that contain advanced information or hands-on tasks
that are not required to complete the tutorial

• take the user to the beginning of the next procedure

• launch a demomtration of the application from within the tutorial

For more information on creating buttons, see "Designing Buttons" on
page 2-70.

Designing Shortcuts Guide Files
You should use a Shortcuts guide file to provide users with quick access
to condensed information, such as command lists or syntax rules. It is
equivalent to the quick reference cards that are often included with
applications. Figure 2-6 shows a panel in Macintosh Shortcuts on how
to use icons.

Figure 2-6 The Macintosh Shortcuts contents

To open an icon

Double-click the icon

To copy an icon Into another folder (Instead of
moving it)

fiti] + drag the icon

Designing Guide Files 2-13

•)>
c::
st
0
::::!.
::::1 co
::t
"0 en
~
:::s a.
(/)
c:: co co
(1)

!e.
5"
:::s en

CHAPTER 2

Authoring Tips and Suggestions

If the guide file is brief, for example, if it gives shortcuts for a particular task,
you can use a Simple Access window. For more information, see "Designing a
Simple Access Window" on page 2-26. For larger guide files, for example, one
that gives shortcuts for a variety of features, you can use a Single List Access
window. For more information, see "Designing a Single List Access Window"
on page 2-25.

Designing Other Guide Files
You should use the Other guide file to create a guide file that does not conform
to the content guidelines for the other four Apple Guide guide files (About,
Tutorial, Help, and Shortcuts). You might also use an Other guide file to create
a version of the other four guide file types that is particularly advanced or
specialized, for example, a Tutorial that teaches high-level features of your
application. Or, if you're not the developer of an application, use the Other
guide file to ensure that your guide file appears in the Help menu (see
"Showing Guide Files in the Help Menu" on page 2-7).

Note
If you provide help for an application that you did not
develop, Apple recommends that you use an Other guide
file so that it appears in the Help menu. For more
information, see "Showing Guide Files in the Help Menu"
onpage2-7. •

If you are using the Other guide file to create a more advanced version of one
of the other four guide file types, use as similar an interface as possible.

Designing a Mixin Guide File
You should use a Mixin guide file (also called a mixin) to revise the contents
of your main guide file. A main guide file is any guide file containing help
content that you can modify using a mixin. A Mixin guide file can either add
content to a main guide file or change its content. In either case, you can use a
mixin to insert topic areas, topics, and index entries in the guide file, and to
create sequences and panels for topics that you add or modify.

Jypically, you should use a Mixin guide file to describe software and hardware
features that are specific to a certain condition or version. For example, you
should use a Mixin guide file to describe

2-14 Designing Guide Files

CHAPTER 2

Authoring lips and Suggestions

• features that are particular to a specific model of Macintosh computer
(for example, to document features that apply only to a portable Macintosh
computer)

• different software versions of the same application (for example, to expand a
guide file for an earlier version of an application)

• features that are particular to or dependent on a specific piece of hardware
attached to the Macintosh computer

• features specific to or dependent on certain system software features (for
example, QuickTrme)

IMPORTANT

You should never use a mixin to modify a guide file that
you did not develop. This includes Macintosh Guide and
any of the other guide files provided with system
software. .A.

Designing Access Windows

Every guide file must provide an access window, which appears whenever the
user selects a guide file from the Help menu. From this access window, the user
selects (or goes directly to view) help topics.

You can choose from three types of access windows: Full Access, Single List
Access, and Simple Access. The features of the windows range in complexity;
the Full Access window provides several built-in access methods, the Single
List access window provides one built-in access method, and the Simple Access
window provides only standard navigation arrows unless you add your own
access method. In general, follow these suggestions for selecting the
appropriate access window for your guide file.

• Use the Full Access window if your guide file has more than 20 topics and
must contain subtopics. You should also use it if you plan to incorporate the
Apple Guide Look For and Index features described later in this section. The
Full Access window provides three built-in buttons-Topics, Index, and
Look For-from which the user makes selections or enters a search phrase.

Designing Access Windows 2-15

I
)>
c:
g
0
:::!.
:::::1 cc
=I
"C rn
~
:::::1 a.
en
c:
cc cc
CD
sa.
()"
:::::1 rn

2-16

CHAPTER 2

Authoring Tips and Suggestions

• Use the Single List Access window if your guide file has more than 7 but
fewer than 20 topics. The Single List Access window provides a single
scrollable list of topics.

• Use the Simple Access window if your guide file has less than seven
single-level topics. The Simple Access window takes the user directly to
the help information via standard navigation arrows. Alternatively, you
can provide your own access route (for example, a set of buttons).

Note that your ability to control how the user views the guide file content
differs among the three access window types. The Full Access window
provides only random access to information-that is, users can pick help topics
in any order and skip topics of no interest. Random access is appropriate for
guide files that address diverse goals and levels of expertise (for example, the
Help guide file). With the Single List and Simple Access window types, you can
also provide sequential access to information; in other words, they present
topics to users in a structured order. Sequential access is appropriate when
you want to direct the user through a specific learning exercise, as in a Tutorial
guide file. You can enforce sequential access in the Simple Access window but
not in the Single List access window. Apple recommends that you simply
encourage sequential access rather than enforce it strictly. For example, you
can let users access the topics in any order but provide a message indicating
that they have accessed information out of order.

Each access window has certain default features, provided by the Guide Script
command that creates the access window. For example, the Full Access
window always includes the Topics, Index, and Look For buttons. You also
need to provide certain features using Guide Script commands. Optionally, you
can also include instructions about the guide file, known as howdy text. Apple
recommends that you use howdy text only under certain conditions, which are
described later in this section.

This section provides suggestions for using each of the three access window
types and for using howdy text.

Designing a Full Access Window

Of the three access window types, the Full Access window is the only one
that provides cross-referencing features as well as three search methods to
accommodate the different ways users can conceptualize help information. You
should always use the Full Access window for Help guide files and for Other
guide files resembling Help guide files in content, for example, an Other guide

Designing Access Windows

CHAPTER 2

Authoring lips and Suggestions

file containing advanced help. You should also use it for any guide file with a
large number of topics (generally over 20) that require extensive searching by
the user.

Figure 2-7 shows the default features of the Full Access window.

Figure 2-7 A Full Access window with default features

Topics, Index,
and Look For
buttons

Default - - -If
topic area r---------~ .-------------~

instructions

OK button

Note that this window automatically provides a two-column format. The left
column varies according to which three search methods, Topics, Index, or Look
For features, is selected, and the right column displays the topics derived by
that method. By default, the window also provides

• the Topics, Index, and Look For buttons in the upper-right portion of the
window (for example, Figure 2-7 shows the screen with Topics selected)

• Topic, Index, or Look For instructions, above the left and right columns of
the window, that tell the user how to use respective features

Designing Access Windows 2-17

CHAPTER 2

Authoring lips and Suggestions

• a standard OK button, in the lower-right corner, that the user clicks to
view a selected topic (alternatively, the user can view the topic by
double-clicking it)

You cannot modify any of these default features except the Topics, Index, and
Look For instructions. In general, Apple recommends that you use the default
instructions; if you replace them with your own versions, keep the text as short
as possible. Apple Guide automatically wraps the instruction text to a second
line, if necessary.

To complete the window, you must create

• an application logo (or title) in the upper-left corner of the window

• the headings and topics that appear in the right column of the window
when the Topics, Index, and Look For features are selected

• the content that appears in the left column of the window when Topics and
Index features are selected

• the strategy that Apple Guide uses to retrieve topics when the Look For
feature is selected

Optionally, you can add howdy text (for more information, see "Designing
Howdy Text on Access Windows" on page 2-28).

The next section explains how to design your application logo or title. Next
come sections that explain how the Topics, Index, and Look For searching
features work and how you need to implement them.

Designing the Application Logo or Title Area

Your application logo or title must fit in the available space of 59 by 185 pixels.
You should

• provide a leatherette background in the application logo area.

• include with your logo a small version of the Apple Guide icon (a yellow
lightbulb).

• display your application's name and the word 1/Guide" in any font. You
might prefer a font that is identified with your company or application.
For example, in Macintosh Guide, Apple displays the guide file title in
Apple Garamond.

2-18 Designing Access Windows

Application
logo or
t itle area

CHAPTER 2

Authoring lips and Suggestions

Figure 2-8 shows the Full Access screen for SurfWriter Guide with an
application logo. (SurfWriter Guide is a sample guide file that is used as
an example throughout this book.)

Figure 2-8 A Full Access window with an application logo and title

I. Click a topic area:
Copying & Pasting 0
Using the Dictionary
Fonts
Formatting
Opening & Saving Documents
Printing
Setting Preferences
Styles
ScriptinQ
Using the Toolbar
Writing Excenent Prose

~--------------~0~ ~--------------------~0~
OK

Note
Guide Maker provides a file, Standard Resources, that
contains templates (two I PICT I resources with IDs 501
and 502). You can use these templates to create your
application logo picture. +

Features for a Full Access Window With Topics Selected

When the user clicks the Topics button, the left column of the window displays
the guide file's topic areas. These are broad categories of help that subsume one
or more topics. When the user selects one, a list of related topics, organized
under headings, appears in the right column of the window. You need to
provide a list of topic areas in the left column and, for each topic area, a list of
topics in the right column, as shown in Figure 2-9. See "Designing Topic Areas
and Topics" beginning on page 2-30 for more information. You also need to
provide the headings for the topics. See "Designing Headings" on page 2-33.

Designing Access Windows 2-19

)>
c
:T
0
::::1.
:::J

<0

::1
-o
Vl
Ill
:::J
c.
en
c

<0
<0
<D
!a.
c>"
:::J
Vl

TopiC- - -<
areas

2-20

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-9 A Full Access window with the Topics features selected

Macintosh

Guide

Working with Programs
Files
Disks
Using DOS Files & Disks
Printing & Fonts
Networks & Telecommunications
Setting Options
Color
Sound
IVIonitors

Scripts for Automation

[fmjfmiD
Index Look For

fViiiiiii"iijiiJ-=======R~I-- Heading
review the basics?
use icons? Topics
use menus? associated
use window s? t----ltMt-tt-- with selected
use Macintosh Guide? topic area
turn off the computer?
Definitions --------roHt-- Heading
active w indow -------....
desktop Topics
document associated
file with selected

topic area

Features for a Full Access Window With Index Selected

When the user clicks the Index button, the left column presents a list of index
terms for the guide file. The user can select a term by scrolling through the
entire index or by using the Alpha slider above the column to view the terms
beginning with the selected letter. When the user selects a term, a list of topics
related to that particular term appears in the right column.

You need to provide a list of index terms in the left column and the headings
and topics associated with the index terms in the right column, as shown in
Figure 2-10. For more information, see "Creating a Guide File Index" beginning
on page 3-20.

Designing Access Windows

List of
index
terms

CHA PT ER 2

Authoring Tips and Suggestions

Figure 2-10 A Full Access window with Index features selected

Apple Desktop Bus (ADB) ----t-H!f-,
Why can't I
t ype on the keyboard? ------+~1+---1

move the pointer on the screen? - -1--Hf---J

OK

Features for a Full Access Window With Look For Selected

Topics
associated
with selected
index term

When the user clicks the Look For button on the Full Access window, the left
column of the Full Access window provides a search phrase entry box where
the user can enter a search phrase. Note that the search phrase entry box
first appears in dotted lines with the Search button dimmed, as shown in
Figure 2-11.

Designing Access Windows 2-21

)>
c
:T
0
::!.
:::1

(Q

::t
-o
(/)

Ill
:::1
a.
en
c:

(Q
(Q
CD
!e. cr
:::1
(/)

2-22

CHAPTER 2

Authoring lips and Suggestions

Figure 2-11 A Full Access window when Look For is selected

begin, then type one or
more words to look tor: rn r·--·-··-····-······-·······-·····················-·-·-··1

2. Click Search:

~lr[=se"""'ar"""'ch~J)

OK

When the user clicks in the search phrase entry box, its dotted lines become
solid and the Search button becomes active. The user can now enter a search
phrase, as shown in Figure 2-12.

Designing Access Windows

Search phrase
entered by user

CHAPTER 2

Authoring lips and Suggestions

Figure 2-12 A Full Access window with Look For features and the cursor in the
search phrase entry box

1. Click the arrow button to
be&:in, then type one or
more wonis to look for:

.lcolo~

2. Click Search:

n Seorch lJ

OK

(Alternatively, the user can first click the arrow to the left of the search phrase
entry box and then enter the search phrase; the cursor appears in the box.)

After the user enters a search phrase and clicks the Search button, the right
column of the window lists all help topics associated with the particular
phrase, as shown in Figure 2-13.

Designing Access Windows 2-23

> c: ::r
0
:::! .
::l
co
=f
"0
Ill
Q)
::l
a.
(/)
c:
co
co
(I)

!e. o·
::l
Ill

2-24

CHA PT E R 2

Authoring Tips and Suggestions

Figure 2-13 A Full Access window after a Look For search is completed

MaclntoSJi

Guide
I. Click the a rrow button to

begin , then type one or
more words to look tor :

rn r·································--·-·······-······-·····-]
!color
~--·-·---·--....!

2. Click Search:

~~("""s"""e"""ar"""ch~B

3. Click a phrase, then click OK:
,.. How dol

display colors or grays?
change the color of an icon?
change the colors in the Label menu?
change the hlghJight color or gray?
change the color of window borders?
change the background pattern?

OK

r--+-HII-- Topics
associated
with search
phrase

You need to determine the list of headings and topics that appear in the right
column when the user enters a search phrase in the left column. See "Helping
the User Search" on page 3-12 for complete instructions. In general, you should
design the Look For feature so that users can receive a list of topics if they enter
any of the following as a search phrase:

• multiple words

• an exact topic name

• slang, acronyms, abbreviations, or synonymous terms for a topic

Note
If you design the Look For fea ture so that it successfully
retrieves topics only if the user enters a single search word,
be sure to change the default Look For instruction to say
"Click the arrow button to begin, then type one word to
look for:" •

Designing Access Windows

CHAPTER 2

Authoring Tips and Suggestions

Designing a Single List Access Window

The Single List Access window displays a single scrollable list of topics. Unlike
the Full Access window, it does not provide topic areas or index and search
features. You should therefore use the Single List Access window for a guide
file that provides a small number of focused topics (typically between 7 and
20). Good examples are Tutorial or Shortcuts guide files.

By default, the window provides

• a scrollable list for topics

• a default topic instruction

• an application title or logo area

• an OK button that the user can click to view a selected topic

You cannot modify any of these default features except for the Topics
instruction and the application title or logo area. In general, you use the default
instruction; and if you replace it with your own version, keep the text as short
as possible. Apple Guide automatically wraps the instruction text to a second
line, if necessary. For suggestions on creating an application logo or title, see
"Designing the Application Logo or Title Area" on page 2-18.

To complete the window, you must provide the topics that appear in the
scrollable column. If your topics fall into logical groups, organize them under
headings. For more information, see "Designing Topic Areas and Topics"
beginning on page 2-30.

Optionally, you can add howdy text. For information on adding howdy text,
see "Designing Howdy Text on Access Windows" on page 2-28.

Figure 2-14 shows an example of a Single List Access window for a guide file.
In this example, the window includes an application logo.

Designing Access Windows 2-25

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-14 A Single List Access window

Application --+--£...~
logo
and title

Topics list

2-26

Click a phrase, then click OK:
"V About

PowerBook File Assistant
"V How do I

link files or folders?
link folders with different names?
set the direction of a link?
synchronize linked files or folders?
delete a link?
turn alert messages on or off?

"V Definitions
file synchronization

Default topic
instruction

Scrollable area

'---O_K _ __.J -tt--- OK button

Designing a Simple Access Window

The Simple Access window is actually a panel, which is the window type used
for all help instructions. Unlike the Full and Single List access windows, it
does not provide a built-in access route. Use it to take users directly to help
information via the standard navigation arrows or to provide an access method
yourself. Because of its simplicity, use the window for particularly brief guide
files (fewer than seven topics), such as an About or Shortcuts guide file.

By default, the window provides a title area, content area, and navigation bar.
(For more information, see "Designing Panels" beginning on page 2-35.) There
are three ways to fill in a Simple Access window. You can put in

• your own access route (for example, buttons users can press to access
topics in your guide file)

You should use three-dimensional buttons instead of radio buttons because
they are easier to read (see Figure 2-15 for an example). For more
information, see "Designing Buttons" beginning on page 2-70.

Designing Access Windows

CHAPTER 2

Authoring lips and Suggestions

• the first topic of your guide file

By placing the first help topic of your guide file in this window, you provide
help instantly, but the user must view the entire guide file to discover all its
topics (see Figure 2-16 for an example).

• a description of the topics in your guide file

By introducing your topics first, the user can instantly know the guide file
contents (for example, you can briefly describe each topic in a list).

For more information on creating topics, see "Designing Topic Areas and
Topics" beginning on page 2-30.

The Simple Access window for Macintosh Shortcuts, shown in Figure 2-15,
uses three-dimensional buttons. The user selects any of these to access a help
topic.

Figure 2-15 A Simple Access window with three-dimensional buttons

You can use keyboard commands to work quickly in the
Finder. Click a category below. (Other keyboard
commands are listed in the menus.)

Working with
Icons

l~t1t~lllli~
Working with

windows

li~JIIiil
Re1tartlng the

computer
Miscellaneous

options

In contrast, the Simple Access window for About Apple Guide, shown in
Figure 2-16, presents the user directly with help information.

Designing Access Windows 2-27

)>
c: :;:
0

s·
co
=I
"0 en
g)
::::J a.
en
c: co co
f!
(5"
::::J en

2-28

CHAPTER 2

Authoring lips and Suggestions

Figure 2-16 A Simple Access window that takes the user directly to the
help information

The Guide menu contains information about using
your computer. The items in this menu include:

• About Apple Guide-the item you are reading
• Show Balloons-a description of an item when the

pointer is on that item
• Tutorial-training in basic Macintosh skills
• Macintosh Guide-step-by-step instructions for a

variety of tasks and other information about your
computer and its system software

• Shortcuts-keyboard commands and tips to help you
work faster and more efficiently with your Macintosh

You may see other items in the Guide menu as well.

For a picture of the Guide window, cHck the right arrow.

Designing Howdy Text on Access Windows
Howdy text is text that you can place on the access window of a guide file to
describe its contents. It appears the first time the user invokes the guide file
and does not appear again unless the user restarts the computer.

Apple recommends that you use howdy text to convey only crucial
information to the user. For example, if you include both a general and an
advanced help guide with your application, you can use howdy text to indicate
the expertise level for each of them. You can also use howdy text to welcome
the user to the help guide file and give initial instructions on its use.

You use a Guide Script command to place howdy text on the Full and Single
List access windows. Although you cannot use this command to place howdy
text on a Simple Access window, you can use panel text for the same purpose.

Figure 2-17 shows howdy text that appears in the Full Access window of
SurfWriter Guide.

Designing Access Windows

Howdytext
introducing
user to
SurfWriter
Guide

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-17 A Full Access window with howdy text

,.-- !-
Welcome to personal help for
SurtWriter.

To start, click Topics, Index, or
Look For.

Topics shows a;eneral categories
and Index lists key words.
Look For lets you search for help
according to key words you type.

To learn basic skills, choose the
'- 1-Tutorial item trom the ? menu.

II §] I 1100 I I ~~~
Topics Index Look for

Q

OK

You should place howdy text in the left column of the window. If the user
clicks the Topics, Index, or Look For button, the howdy text disappears and
the window shows the features associated with the button.

Figure 2-18 shows a Single List Access window that includes howdy text.

Designing Access Windows 2-29

)>
c:
:T
Q
5 '
cc
=I
"0
(/)

Ill
::l
a.
(J)
c:
cc cc
CD
!e.
(5'
::l
(/)

Howdy text
introducing
user to
SurfWriter
Guide

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-18 A Single List Access window with howdy text

Welcome to personal, individualized
inst ruction for Surtwriter.

Click Continue to begin ...

[Continue

Notice that the window includes a logo in the title area section, howdy text
instead of a single list of topics, and a Continue button on the lower right
portion of the window. The user must click Continue to view the single list
of topics.

Designing Topic Areas and Topics

2-30

A topic area is a broad category of help that subsumes one or more topics and
that appears in the left column of the Full Access window only when Topics
features are selected. A topic is a category of help information that the user
selects from an access window. Here is the way that topic areas and topics
appear in Full Access, Single List Access, and Simple Access windows:

• In the Full Access window with Topics selected, topic areas appear in the left
column and individual topics appear in the right column (see Figure 2-9).
With Index or Look For selected, no topic areas appear in the left column but
topics appear in the right column.

Designing Topic Areas and Topics

CHAPTER 2

Authoring Tips and Suggestions

• In the Single Access window, topics appear in a single scrollable column.

• In the Simple Access window, topics can appear in an access route that you
provide, or the user can go directly to topics.

When creating topics for the Full Access window, you should organize your
topics under headings. You can also use headings in the Single List Access
window if it contains multilevel topics. For the Full Access and Single List
access windows, try to minimize the number of topics (and topic areas) so
that the user doesn't have to scroll to view an entire column.

The sections that follow explain how to create topics for each access window
type and how to use headers.

Note
If you add a Mixin guide file to your guide file, its
additional topics (and topic areas) appear among the
existing topics (and topic areas) in the guide file. You can
integrate topic areas and topics of the mixin into those of
your guide file using Guide Script commands. For more
information on the <Mixin> command, see the chapter
"Guide Script Command Reference." •

Designing Topic Areas and Topics for a Full Access Window
In the Full Access window, you must provide both topic areas (for when Topics
features are selected) and topics.

Your list of topic areas should be a logical outline of the guide file contents,
similar to the table of contents for a book. Keep topic area names short-no
more than 31 characters-and use initial capitalization for each main phrase.
For example, for a word-processing application, you could use such topic areas
as "Files" and "Fonts and Formatting". Apple Guide lists the topic areas in the
order in which they appear in your source files. You should order the topic
areas by importance, so that the more important ones appear at the top of the
column.

For your main help instructions, topic names should form a complete question
or statement from the user's point of view, for example, "How do I open my
folder?" You should therefore use the first person (for example, "I" and "my")
for topic names using this form. Use a heading to provide the standard text of
the question or statement, for example, "Why can't I" (See "Designing

Designing Topic Areas and Topics 2-31

>
~
0
:::::!.
::::s

<0

::1 -c
(/)

~ a.
CJ)
c:

<0
<0

~ cr
::::s
(/)

2-32

CHAPTER 2

Authoring Tips and Suggestions

Headings" on page 2-33 for headings recommended by Apple.) Beneath the
heading, complete the statement or question with a phrase that describes the
specific topic (for example, under the heading ''How do I", place the phrase
"change the color of my icon?"). The phrases that appear beneath the heading
should be short and begin with a lowercase letter. Note that the entire topic
name (heading and phrase) should appear in the sequence display title areas
of the associated panels, not just the topic phrase.

For less complex topics, you can use headings that do not form a complete
question or sentence. For example, use the heading "Definitions" followed by
a list of terms that begin in lowercase (such as "font").

The topic name should always focus only on the main goal that the user wants
to achieve and not on any choices associated with that goal. Choices should
instead appear on decision panels that precede branches in the sequence. For
example, with the Macintosh computer you can create your own desktop
pattern or use an existing one. To avoid a long and confusing topic name--for
example, "How do I change the desktop pattern by using an existing one or
creating one myself?" -Macintosh Guide instead uses the topic name "How
do I change the desktop pattern?" After selecting the topic, the user can choose
one of two branches from a decision panel: one branch for creating a unique
desktop pattern and the other branch for choosing an existing pattern. For
more information, see "Designing Branches" beginning on page 2-67.

Apple Guide lists the topics in the order in which they appear in your guide
files. In contrast to topic areas, you should order topics by frequency of use
rather than importance, so that the more frequently used topics appear at the
top of the column.

Designing Topics for a Single List Access Window
You should keep topic names in a Single List Access window short and direct,
just as you do in a Full Access window. If your topics are multilevel, you can
organize them as questions or statements under headings so that they resemble
the right column of the Full Access window. For guidelines on forming topic
names with headings, see the previous section. If you list topics with no
headings, begin each topic with an uppercase letter (for example,
"Formatting"). You can also add a number listing as part of the topic name,
for example, for a Tutorial guide file, you can number each tutorial procedure
to encourage sequential access).

Designing Topic Areas and Topics

CHAPTER 2

Authoring Tips and Suggestions

Apple Guide lists the topics in the order in which they appear in your guide
files. If you present your topics with headings, put the most frequently used
topics at the top of the column. If you are not presenting topics this way, order
them alphabetically. If you use numbers, order the topics sequentially.

Designing Topics for a Simple Access Window
If you create your own access route for a Simple Access window using buttons,
you should use topic names that fit in the space allocated for a three
dimensional button, which is the button type that Apple recommends for this
purpose. The graphics you place in the buttons should clearly convey the topic
content and should be easily distinguished from one another. (For an example,
see Figure 2-15.) If your topics require longer names for clarity, you can instead
use radio buttons, whose titles accommodate more characters. For guidelines
on both button types, see "Designing Content Area Buttons" on page 2-72.

If you take the user directly to the help instructions by using the navigation
arrows, you can describe the guide file topics by placing panel text on the
Simple Access window. This way, the user does not have to navigate through
the entire guide file to determine its content. Alternatively, you can design the
window as a standard help panel, in which case it contains the first topic in
the guide file.

Designing Headings
For the Full Access window, organize your topics under headings. You can also
use headings for a Single List Access window if it contains multilevel topics.
For the Full Access window, Apple recommends these headings: How do I,
Why can't I, and Definitions.

• Use the How do I heading for topics that show the user how to accomplish
a task (for example, "How do I create a custom dictionary?").

• Use the Why can't I heading for topics that explain why the user cannot
perform a certain action (for example, "Why can't I print a file?").

• Use the Definitions heading to define terms that relate directly to the
selected topic area (for example, if the user selects the topic area "Using
the Dictionary", the term "custom dictionary" could appear under the
"Definitions" heading). You can also provide definitions in your guide file
that do not directly relate to a particular topic area; in this case, they should

Designing Topic Areas and Topics 2-33

> c:
st
Q
:r

<C

::t
"C
fJ)

I»
:::::1 c.
en
c:

<C
<C

~
0
:::::J
fJ)

2-34

CHAPTER 2

Authoring Tips and Suggestions

not appear under the "Definitions" heading. For more information, see
"Designing a Definition Panel" on page 2-56.

For example, Figure 2-19 shows the Full Access window for Macintosh Guide,
with some of these headings appearing in the right column.

Figure 2-19 Topic headings on the Full Access window

"'R,-ev....,ie- w"""i,...ng-..,..,.th_;_e-=Bc-as...,.ic-s----T'£'1 ~lfc~To't:~~~~~~~=::'l~~- Heading
Working with Programs
Files
Disks
Using DOS Files & Disks
Printing & Fonts
Networks & Telecommunications
Setting Options

Sound
Monitors
Memory

display colors or grays?
change the highlight color or gray?
change the color of window borders?
change the color of an icon?
change the colors In the Label menu?
change the background pattern?

v Why can't I ----- ---t-11#-- Heading
display color on the screen?

v Definitions Heading
background pattern
control

OK

Except for the heading "Definitions", these headings provide the standard text
for a question or statement from the user's point of view. You can complete the
statement or question with a phrase that describes the specific topic. (For more
information, see "Designing Topic Areas and Topics for a Full Access Window"
on page 2-31.) If you create your own headings, you should follow this same
convention for your topic names.

You should place all topics under headings, even if some headings contain only
a single topic. For example, do not use the "How do I" heading for your
task-oriented instructions and then omit the "Definitions" heading for your
definitions; otherwise, the user might not easily identify the category of help
provided by each topic. If you create a heading but place no topics under it,
Guide Maker automatically eliminates it when you build a file.

Designing Topic Areas and Topics

CHAPTER 2

Authoring lips and Suggestions

H possible, at least one heading should be visible in the topics column at
all times.

Designing Panels

Whenever the user selects a topic from an access window, a presentation panel
appears containing a help instruction. A presentation panel is an Apple Guide
help window you use to describe a single concept or step. It is referred to here
as a panel.

Figure 2-20 shows a typical panel in Macintosh Guide.

Figure 2-20 A typical panel in Macintosh Guide

Notice that the panel focuses on only one issue and includes no actions or
additional details about a related topic.

When you create a panel, it automatically comes with several features,
including navigation arrows; a panel number; and reserved areas for the panel
title, help instructions, prompt, and additional controls. You complete the
reserved areas and add your own features to the panel following the guidelines
in this chapter. The panel has a default layout and text format; you can,
however, override these default settings, if necessary.

When you design a panel, it should conform to one of the standard panel types
recommended by Apple. Each of these types applies to a different category of
help instruction. For example, Figure 2-20 shows an action panel, which is the
panel type you use to show a step in a procedure.

Designing Panels 2-35

I
)>

g
0
::::!.
:::J
co
=I
"0
en
~
:::J
a.
en
c:
co
co

~
()"
:::J
en

2-36

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-21 shows a panel with a pixel grid that is 341 pixels wide. Each box
represents a 10-by-10 pixel square, and a filled box appears every 100 pixels.

Figure 2-21 A pixel grid depiction of a panel

o ;::m::::::::;;;;;;;;;;;mmm;;;::;;; SJ

How do I remove a word from the dictionary?

Height-·
l

~~ Huh?

1-.- ----- Width _______ .,
The total width of the panel, including the window frame for a System 7.5
window, is 344 pixels, and the panel width within the window frame is
341 pixels. The panel width is a fixed measurement of 344 pixels, which you
cannot change using Guide Script commands. The panel height is the distance
between the title area (the top bar on the panel) and the navigation bar (the
lower bar on the panel). Apple Guide automatically resizes the panel height to
accommodate the information that you place in it according to limits that you
set with Guide Script commands. You should try to keep the height of each
panel as short as possible so that the user can easily keep it onscreen while
performing a task.

By default, a panel always first appears in the lower-right portion of the screen.
Because panels are movable and float on top of other application windows,
users can easily view them while they carry out help instructions. A user can
also minimize the panel to make it take less room on the screen. If minimized,
the panel height becomes 0, as shown in Figure 2-22.

Designing Panels

CHAPTER 2

Authoring lips and Suggestions

Figure 2-22 A minimized panel

o :: e
How do I save my work?

Note
If a topic consists of more than one action or concept, you
should generally create additional panels; do not place
excessive information on a single panel. For more
information, see "Designing a Sequence" beginning on
page 2-66. You should place more than one concept or
action on a single panel under only two circumstances: to
tell the user to perform several actions in the same place
or to present an alternative way of doing the same task. +

The next section describes the panel features that Apple Guide provides.
It shows how you can create your own designs and also explains different
navigation methods you can provide on your panels.

Panel Features
By default, panels have the features shown in Figure 2-23.

Figure 2-23 A panel with default features

Navigation bar

Designing Panels 2-37

I
)>
c:
:T
Q
:;·
(0

::t
-o en
II>
:::J
a.
en
c:
(0
(0
(1)

!!l. o·
:::J
en

2-38

CHAPTER 2

Authoring lips and Suggestions

These features include a title area, a content area, and a navigation bar, all
of which you need to complete. In addition, you can place on a panel text and
objects, including styled or plain text, control features (such as standard and
three-dimensional buttons, radio buttons, and checkboxes), PICT graphics,
and QuickTrme movies, as shown in Figure 2-24.

Figure 2-24 A panel design with text, graphic, and button

Text

------------------------------ ...

Graphic
I

I -------------- ... --------------- _,
Button - - - - '

:-_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -~~~i!t-pt_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -~

You should design your panels to adhere to certain types designed by Apple.
For more information, see "Designing Panel Types" on page 2-50.

The sequence display title area is the bar, in the upper portion of the panel,
that contains the panel title. The title should match the corresponding topic
that appears in the access window. The title of panels should not change within
a sequence. In Macintosh Guide, for example, all panels in the sequence
associated with the topic "How do I display colors or grays?" use that topic
name in their title area. You should always use the full form of the topic for the
panel title, regardless of its length. Apple Guide wraps the title text if it is more
than a single line.

The content area is the part of the panel between the sequence display title area
and the navigation bar (described next) where you place help instructions. This
can include text and objects. By default, Apple Guide places the text in the
content area in one column. For certain panel types, you override the default
format with Guide Script commands and create a two column format; for more

Designing Panels

CHAPTER 2

Authoring lips and Suggestions

information, see "Formatting Panel Text" on page 2-47. To place buttons on the
content area, see "Designing Content Area Buttons" on page 2-72. To place
graphics on the content area, see "Using Graphics in Panels" on page 2-46.

You should use active voice for all help instructions and keep them as concise
as possible. Where possible, you should also keep panels in the same sequence
close to the same size by using a similar amount of information on each one; in
this way, the window size does not excessively shrink or expand as the user
moves through the sequence.

By default, Guide Maker also allocates space in the content area for you to
provide a prompt, which provides navigation and other instructions for the
user. For more information, see "Designing Panel Prompts" on page 2-39.

The navigation bar is the bar, on the lower portion of the panel, that always
displays the left and right navigation arrows the user clicks to move between
panels. For each panel, Apple Guide makes the right navigation arrow active
or dimmed according to whether the user can navigate to the following panel.
Apple Guide makes the left navigation arrow active or dimmed according to
whether the user can navigate to the previous panel. Guide Maker
automatically assigns a number to each panel (the panel number) in a dynamic
sequence. This number appears between the left and right navigation arrows.

You can add up to three additional navigation buttons to the navigation bar.
You should always place the GoStart button on the navigation bar of all panels
in your guide files. For more information on adding navigation buttons, see
"Using Context Checks" on page 2-83.

Designing Panel Prompts
A prompt is the panel text that tells the user what to do (for example, pick an
option) and where to go (for example, click a navigation arrow to continue).

You should assign a prompt to virtually all panels in your guide file, including
the first, middle, and last panels in a sequence, as well as the panels that
contain control features (for example, a panel with radio buttons, checkboxes,
or standard buttons). These prompts should tell the user what to do and where
to go (for example, "Do this step, then you're done"). When you need the full
content area of a panel (for example, to include a full-size graphic that takes up
the entire content area), you should use a Guide Script command to tell Guide
Maker not to allocate prompt space for that panel. If you deallocate the prompt
space, you should not place a prompt on the panel.

Designing Panels 2-39

)>

~
0

s·
(Q

::1
"'0 rn
ll)
:J c.
(J)
c::

(Q
(Q
<D sa a·
:J rn

2-40

CHAPTER 2

Authoring Tips and Suggestions

You specify prompts by defining them in a prompt set, a collection of four
prompts that Apple Guide chooses to display based on whether a panel in
the sequence is the first, middle, or last, or whether it contains controls (radio
buttons, checkboxes, or standard buttons). You can associate a prompt set with

• all panels in all sequences

• all panels in a specific sequence

• one specific panel in a sequence

You can designate a particular prompt set as the default prompt set. If you do,
Guide Maker uses this prompt set for all panels in all sequences by default. You
can override the default on a sequence or panel-by-panel basis.

To provide the user with clear and consistent instructions throughout your
guide file, you should create one or more prompt sets as needed for each type
of panel or sequence. Typically, you create a prompt set that works for most
of your sequences, and then create other prompt sets to work for panels or
sequences with special requirements. You usually specify the most-used
prompts as the default prompt set and then override it as needed.

You can use up to 255 characters for a single prompt. Apple Guide places the
prompt in attributes 10-point Espy Sans plain and automatically wraps to a
second line, generally aligning it with the left margin. If your panel uses the
Tag and Body format, described in "Using the Recommended Panel Formats"
on page 2-43, Apple Guide aligns the prompt with the Body text.

Designing a Default Prompt Set

If possible, use one prompt set throughout your guide file and make it the
default prompt set. Sometimes, however, you need to override the default
prompts for an entire sequence or for a particular panel. See the next section
for details.

Table 2-1 shows a prompt set that Apple has defined for the first, middle, and
last panels. This definition assumes that panels might contain standard controls

Designing Panels

CHAPTER 2

Authoring lips and Suggestions

such as checkboxes or radio or standard buttons. Where applicable, you should
use this prompt set in your guide file.

Table 2·1

Panel

First

Middle

Last

Controls

Note

The default prompt set recommended by Apple

Prompt

To begin, click the right arrow.

Do this step, then click the right arrow.

Do this step, then you're done.

Make your choice, then click the right arrow.

In certain cases, you need to override the default panels.
See the next section for details. •

Figure 2-25 shows the prompt for the first panel in a sequence that uses the
prompt set in Table 2-1. Here, the user clicks the right arrow to begin.

Figure 2·25 The default prompt for the first panel in a sequence

----------1-- Prompt for
first panel

In contrast, Figure 2-26 shows the recommended prompt for a panel with
controls. Note the instructions that precede the radio buttons. You should
always include these additional instructions for any panel that contains
radio buttons or checkboxes.

Designing Panels 2-41

)>
c:
:;:
0
:::!.
::I

<0

::1
"C
(/)

I»
:::::1 c.
en c:

<0
<0
CD
(/)

g:
::I
(/)

2-42

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-26 A decision panel

• :: •
How do I adjust the speaker volume?

You can set the volume of your computer's built-in
speaker, or of speakers or other sound devices connected
to your computer, in the Sound control panel.

Which do you want to change? Click one:

®adjust the computer's speaker volume

-----t-- Instruction to
make choice

0 adjust the volume of an external sound device

Make your choice, then click the right arrow.

Overriding Default Prompts

If, for a particular sequence, the control features or content varies significantly,
you should override the default prompt set for that sequence and use a prompt
set that is more applicable. For example, if your guide file contains some
sequences that describe only tasks and other sequences that describe only
concepts, you need two prompt sets: one that tells the user to do actions and
the other that tells the user to read information. Similarly, if your guide file
contains a sequence that uses special navigation buttons rather than the
standard navigation arrows, you need to use a prompt set that tells the user
to click buttons rather than arrows.

You should also override a default prompt that does not apply to the control
feature of a particular panel in a sequence; for example, if a panel in a sequence
uses special navigation buttons that do not appear on other panels in that
sequence, it requires a unique prompt.

Designing Panels

CHAPTER 2

Authoring Tips and Suggestions

Certain panel types recommended by Apple require that you override the
recommended prompt set and use a more applicable prompt, as shown in
Table 2-2.

Table 2·2 Override prompts by panel type

Panel type

Continue

Panel associated with a
Huh? button+

Definition

Tip

Related topics

Closure panel that does
not contain a final step

Override prompt

After the action occurs, click Continue ...

Read this information, then you're done.

Read this information, then you're done.

Read this information, then you're done.

Read this information, then you're done.

That's all, you're done.

,. Replace the italic text in the prompt with text specific to the action being performed.
t Use only for panels that you specifically create for and associate with a Huh? button. Do not use

for existing panels in the guide file that you associated with a Huh? button and that already have
an assigned prompt.

For more information on these panel types, see "Designing Panel Types"
beginning on page 2-50.

Using the Recommended Panel Formats
To format your panels, Apple recommends that you use either the Full format or
the Tag and Body format. In general, you should use the Full format for panels
unless they describe an action or contain lengthy introduction text, in which
case, you should override it and use the Tag and Body format. (For more
information, see "Designing an Action Panel" on page 2-53 and ~~Designing an
Introductory Panel" on page 2-51.) If necessary, you can also devise and apply
your own format using Guide Script commands. See the next section for details.

Figure 2-27 shows a panel with the Full format.

Designing Panels 2-43

)>
c s:
0
::::!.
::::J

(Q

::1
"C
rJJ
S»
::::J a.
en
c
cc
cc
<D
!2. c;·
::::J
rJJ

2-44

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-27 A panel with the Full format

The Full format provides the full-panel width-less an 11-pixel margin at each
side-as a single column. In addition, it places the prompt just above the
navigation bar and aligns it with the left edge of the leftmost format; that is, the
text-column or full-panel width (less 11 pixels). It also applies the Apple Guide
font-10-point Espy Serif Plain Black-to any text you place on the content
area of the panel except text for radio buttons, checkboxes, and standard
buttons, which by default appear in the system font. You should use Guide
Script commands to specify that these button types instead use the Apple
Guide font.

The Tag and Body format refers to using two formats-the Tag format and
Body format-together. The Tag format provides a left column that you can use
to format tags. A tag is a bold phrase (for example, "Do This" or "Oops11

) that
describes text in the Body format. The Body format provides a right column for
text. The Tag and Body format thus divides the panel into two columns, in
which the text in the left column uses the Tag format and the text in the right
column uses the Body format. Figure 2-28 shows the Tag and Body format for
an action panel.

Designing Panels

CHAPTER 2

Authoring Tips and Suggestions

Figure2-28 A panel with the Tag and Body format

Tag format Text in Body format

Two-column layout

Designing Your Own Panel Format
You can apply your own panel layout and formatting using Guide Script
commands. Apple recommends that you use the Full format and Tag and Body
format wherever possible in your guide files. In general, you should create
your own panel designs only for categories of help instructions that do not use
one of the standard panel types recommended by Apple (see 11Designing Panel
Types" on page 2-50).

To provide the user with a consistent and clear panel design, you should use

• simple designs, so that the user can focus on the panel's information rather
than on its appearance

• the same design for all panels of the same type

• only a small number of designs, so that the interface appears simple and
consistent

• a design that will not significantly increase the panel height, to avoid
excessive shrinking or expansion of the window size as the user moves
through sequences

You can create a column with certain attributes and then use them to simplify
the layout of your panel objects. You can then use formats to control the
placement of most panel objects, including text paragraphs, checkboxes, and
radio buttons; PICT graphics and QuickTime movies; and labels for graphics.
Guide Maker places panel text formatted this way inline in the boundaries
specified by the format's column and according to the format's attributes.

Designing Panels 2-45

CHAPTER 2

Authoring lips and Suggestions

For example, you can define a format whose bounds are defined by a column
beginning with a top coordinate of 50 and a left coordinate of 75 that extends
horizontally for 100 pixels. If you then specify centering a radio button in this
column, it appears in the center of the column and not in the center of the panel.

You can also apply a format to Guide Maker commands that place text and
objects in that panel. When you do, the format overrides all other previously
specified formats, including the Full format. Guide Maker places inline the
panel objects that follow the specified format in the boundaries specified by the
format's column coordinates. Guide Maker also refers to this format to assign
panel text attributes and to align prompts.

Using Graphics in Panels
Graphics increase the size of your guide files and should therefore be used
sparingly. In general, you should use them only to describe an application
feature that you cannot access using a coachmark. For more information on
using coachmarks, see "Designing Coachmarks" beginning on page 2-79. You
can also occasionally use a graphic to illustrate a concept (for example, to show
relationships between several application features).

If you use a graphic to depict an onscreen item that the user can normally click
or move (for example, an icon), you should indicate that the item is a graphic
and not the actual item. For example, enclose the item in a box or place shading
behind it (for an example, see Figure 2-34 on page 2-55).

To specify a picture in a panel, you must place it in a resource file or PICT
format file and identify it to Guide Maker with its resource ID, resource name,
or filename. You must also specify a replacement picture that is used only if the
bit depth of the user's monitor is set to 4 bits or fewer. You should use the same
size for both pictures. You can specify the picture's general location to be left,
right, or center. When you do, Guide Maker places the picture justified within
the current format.

You can have Apple Guide place the graphic inline with the surrounding text
and justify it within the current format (relative positioning) or you can specify
the button's location relative to the current pen position by specifying a specific
point (absolute positioning).

2-46 Designing Panels

CHAPTER 2

Authoring lips and Suggestions

IMPORTANT

The pen location is the place where Apple Guide returns to
place an object. The current pen location is not reset after
you place an object with absolute positioning. .&

For example, Figure 2-29 shows a Macintosh Guide panel containing a graphic
centered with relative positioning.

Figure 2-29 A panel containing a graphic centered with relative positioning

13:::;:::::::::::::::: 13
How do I use Icons?

An icon is a small picture that represents a disk. folder,
program, or document. You work with these items (for
example, open, copy, or move them) by manipulating
their icons ... __...,,_

To begin, cick the right arrow.

(Topics J

For optimal localization, Apple recommends that you use relative rather than
absolute positioning of objects on the panel. (When translated into another
language, panel text can increase and possibly overflow onto a panel object.) To
create a graphic that contains hot rectangles, however, use absolute positioning.
For more information about hot rectangles, see "Designing Hot Text, Objects,
and Rectangles" on page 2-77.

Formatting Panel Text

All panel text follows certain attributes. In general, almost all text that you
place in the content area of a panel appears in the Apple Guide font-10-point
Espy Serif Plain Black-by default. Apple Guide also automatically applies the
text font, type size, and attributes to the panel title and prompt; the title bar is
10-point Espy Sans Bold and the prompt is Espy Sans 10 Plain. In addition,
Apple Guide places all tags in attributes 10-point Espy Sans Bold.

Designing Panels 2-47

)>
c
:T
0
::l.
:l
co
=I
'0
(/)

Ill
:::1
a.
(/)
c
co
co
<D
!!!. ,,.
::1
(/)

2-48

CHAPTER 2

Authoring Tips and Suggestions

Note
By default, text associated with radio buttons, checkboxes,
and standard buttons uses the system font. You should use
Guide Script commands to specify that these button types
instead use the Apple Guide font, so that they match the
other text on the panel. •

You can apply any formatting attributes to the Apple Guide font. When you
format text yourself, use consistent styling conventions that enhance the clarity
of your help instructions. Here are some suggestions:

• Use an underscore to indicate hot text.

• Use boldface type sparingly so that it effectively calls out crucial information
to the user (for example, do not use boldface type to simply introduce a
section of information on a panel but do use it to lead the user's attention to
a warning or important note).

• Use text attributes that are easy to read. For example, some users find it
difficult to read italic type. Apple therefore recommends that you instead
use quotes for emphasis.

• Use the same formatting conventions throughout your guide files. For
example, if you use quotes to enclose book title names on a panel, follow
that same convention throughout.

If you plan to localize your guide files, you need to be aware of possible side
effects of using styled text. For more information, see "Designing for
Localization" on page 2-91.

Providing Navigation Methods on Panels

The user can navigate through panels using the left and right arrow buttons,
other navigation buttons, content area buttons, and hot areas (including hot
text, hot objects, and hot rectangles).

• With the navigation arrows, the user can move backwards and forwards
through a sequence, panel by panel.

• With navigation and content area buttons, the user can go to a panel in the
same sequence or in another, or can go to the application itself.

• With all three hot types, the user can go to a panel that contains useful but
optional information for understanding the original panel.

Designing Panels

CHAPTER 2

Authoring Tips and Suggestions

Apple Guide always displays left and right navigation arrows in the navigation
bar of each panel. These arrows are described in "Panel Features" beginning on
page 2-37. For most panels, you must specify a navigation prompt that tells the
user where to go, for example, "Click the right arrow to continue". (Certain
panels instead require a prompt that tells the user what to do, for example,
"Read this panel, then you're done.") For guidelines on creating prompts, see
"Designing Panel Prompts" beginning on page 2-39.

If a required condition is not true and the user clicks the right arrow button on
a panel, you should force the user to go to an Oops or Continue panel instead
of the next panel. For more information, see "Using Context Checks" beginning
on page 2-83.

You can add up to three buttons in the navigation bar of a panel to supplement
the default navigation arrows. (The default navigation arrows still appear on
the navigation bar, even if a panel does not use them.)You should use the same
navigation bar buttons consistently throughout a sequence and, if possible,
throughout your entire guide file. You should always add to the navigation bar
of each panel a GoStart button, which takes the user back to the access screen.
You can also add a Huh? button, which, if active, will take the user to another
panel containing crucial information. The panel associated with the Huh? panel
opens on top of the original panel, allowing the user to read its information
and return easily to the original panel.

You can also add buttons to the content area of a panel if you want to provide
a navigation route specific to a particular panel. For example, you can add a
button that takes the user to a QuickTrme movie applying only to that panel.

For complete guidelines on creating navigation and content area buttons, see
"Designing Buttons" beginning on page 2-70.

You should use hot text, objects, and rectangles to provide the user with
information that is useful but not crucial. You can take the user to a panel
you created specifically for the hot type or to a panel that exists in another
sequence. Like the Huh? panel, the panel associated with a hot area opens up
on top of the original panel. For more information, see "Designing Hot Text,
Objects, and Rectangles" on page 2-77.

Designing Panels 2-49

CHAPTER 2

Authoring lips and Suggestions

Designing Panel Types

The panels in your guide file present different types of help instructions. For
example, a panel can present a step for the user to do, define terminology, or
explain a concept. To ensure that your users can identify information in your
guide files rapidly and easily, you should use standard panel types, which
are panel designs that apply to specific categories of help information. For
example, you should use the same panel type for all panels that give a tip.

Apple has designed a set of twelve standard panel types that you should use
consistently throughout your guide files. Nine of these panels apply to basic
help instructions that you typically use in your guide files: introductory,
decision, action, information, tip, definition, related topics, transition, and
closure. The three additional panels apply to Apple Guide features that can
increase the scope and sophistication of your guide files: a panel associated
with a Huh? button and Oops and Continue panels. Note that your guide files
might not necessarily require all the Apple standard panel types.

Note
You should create your own panel design only if no Apple
standard panel type is appropriate for a particular
category of information in your guide file. If you do, be
sure to follow the guidelines in this chapter for presenting
help information. •

This section describes each panel type in detail. Most panels use the same title
as the one for the associated topic. Therefore, the following paragraphs discuss
panel titles only when they require a different convention. This section does
not explain how to design a sequence using standard panel types. For this
information, see ~'~Designing a Sequence" beginning on page 2-66.

Note that all but two of these panel types use the Full format, which
Apple Guide applies by default. Two panels, the action panel and lengthy
introductory panel, use the Tag and Body format. For more information
on both formats, see "Using the Recommended Panel Formats" beginning on
page 2-43.

2-50 Designing Panel Types

CHAPTER 2

Authoring lips and Suggestions

Designing an Introductory Panel
You should use an introductory panel at the beginning of each sequence for
topics under the "How do I" or "Why can't I" headings to describe its contents.
If a sequence describes a task, the introductory panel should describe the
required action. For example, if the sequence describes choosing a paintbrush
from a toolbar, the introductory panel should briefly describe how to find the
paintbrush and how to select it. This description prepares new users for the
task and may even give experienced users enough information so that they can
skip the rest of the sequence.

If the first panel of a sequence precedes a branch, you should use a decision
panel with introductory text. Alternatively, you can use both an introductory
panel and a decision panel. For more information, see "Designing a Decision
Panel" on page 2-52.

Because the introductory panel is the first panel the user views after selecting
a topic, the user can assume it contains instructions to perform an action. To
avoid confusion, use the Full format for introductory panels and the Tag and
Body format for panels containing an action. (For more information, see
"Designing an Action Panel" on page 2-53.) For particularly long introduction
panels, however, you can use the Tag and Body format to distinguish key
points.

Use the prompt "To begin, click the right arrow."

Figure 2-30 shows the introductory panel for a Macintosh Guide sequence on
how to tum off the computer. Notice that the panel summarizes the steps that
make up the task.

Designing Panel Types 2-51

~
0
::::!.
:l

(Q

::t
i
A)
:l a.
en
c:

(Q
(Q
(J)

!!1. a·
:l
en

2-52

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-30 An introductory panel

The best way to turn off your computer is to open the
Special menu and choose the Shut Down command.

The Shut Down command either turns off the
computer automatically, or displays a message that you
can safely turn off the power switch. See the manual
that came with your computer for the location of the
power switch. In an emergency, you can use the power
switch to turn off the computer.

For instructions, dick the right arrow.

Designing a Decision Panel
You should use a decision panel to let the user view one or more branches.
Create a decision panel using either radio buttons or checkboxes. To give the
user only one option, use radio buttons; to give the user one or more options,
use checkboxes.

To create a decision panel, do all of the following:

• Use the Full format.

• Follow the Apple guidelines for using radio buttons and checkboxes (see
"Using Radio Buttons and Checkboxes" on page 2-76).

• Use the prompt "Make your choice, then click the right arrow."

• Precede the radio buttons or checkboxes with an instruction that tells
the user what to do. For radio buttons, use the instruction "Which do you
want to do? Click one." For checkboxes, use the instruction "Which do
you want to do? Click one or both." (This instruction is in addition to
the prompt.)

For example, Figure 2-31 shows a panel that asks the user to choose, using
radio buttons, one of two methods for doing the same task.

Designing Panel Types

CHAPTER 2

Authoring Ttps and Suggestions

Figure 2-31 A decision panel with radio buttons

Which do you want to do? Click one:

0 manually create a custom dictionary
® automatically create a custom dictionary

Make your choice, then click the right arrow.

In contrast, Figure 2-32 shows a panel that asks the user to choose, using
checkboxes, one or more tasks.

Figure 2-32 A decision panel with checkboxes

You change time and date formats in the Date & Time
control panel. (You can also use the control panel to set
the current time and date.)

What do you want to do? Click one or both:
0 change time format
0 change date format

Make your choice, then dick the right arrow.

Designing an Action Panel
You should use an action panel to present a single step in a procedure (for
example, to tell the user to open a menu). You should present more than one
step on an action panel only if there are several ways to perform the same
action or several actions that occur in the same place.

Designing Panel Types 2-53

2-54

CHAPTER 2

Authoring lips and Suggestions

To create an action panel, do all of the following:

• Use the Tag and Body format to effectively lead the user's attention to the
required action. The Tag should tell the user to do the action described on
the panel (for example, Macintosh Guide uses the Tag "Do This") and the
Body text should describe the actual action. For instructions that require
lengthier text (for example, panels that contain multiple steps), place the
Tag on the line above the text describing the action.

• Use a consistent Tag phrase for all action panels in your guide files.

• Use terse instructions to keep the panel size small. (The user is likely to keep
the panel onscreen while performing the associated action).

• Use the prompt "Do this step, then click the right arrow."

Figure 2-33 shows a SurfWriter Guide panel that tells the user to open a script.

Figure 2-33 An action panel

Designing an Information Panel
You should use an information panel to provide brief conceptual explanations.
You typically use an information panel in a sequence or branch that explains a
concept.

Note
You can use an information panel in a sequence that
explains a task, but it might be more appropriate to
place the information in a Huh? or Tip panel. For more
information, see "Designing a Tip Panel" beginning on
page 2-55 and ~~Designing a Panel Associated With a Huh?
Button" beginning on page 2-61. •

Designing Panel Types

CHAPTER 2

Authoring Tips and Suggestions

To create an information panel

• use the Full format

• use the prompt "Read this information, then click the right arrow."

Consider including a content area button that takes the user to the part of the
application that the panel describes. For more information, see "Designing
Content Area Buttons" beginning on page 2-72.

For example, Figure 2-34 shows an information panel (from Macintosh Guide)
that uses both text and graphics to explain how to use an icon.

Figure 2-34 An information panel

1111 "'"'"""'''''""""""""'''""'""'''""'""'"'"'""'""''''''""""'"'"""""'" liJ
How do I use Icons?

You select the icon you want to use by clicldni it .

You can select several icons in a window by clickin~~:
them while you hold down the Shift key.

It the icons are next to each other, you can select them
bydrall:~tln~t across them .

...
Re11d this lnformlltion, then click the right 11rrow.

Designing a Tip Panel

You should use a tip panel to give the user a hint about how to perform an
action or use an application feature (for example, to tell the user that a script
is available for a particular task). The user should access the panel through
a button or hot text. See "Designing Buttons" beginning on page 2-70 and
"Designing Hot Text, Objects, and Rectangles" on page 2-77 for more
information.

Designing Panel Types 2-55

:l>
c:
:Y
Q
s·

10

::1
'0
(J)

Ill
:J
a.
(/)
c:

10
10
CD
!e.
(5'
:J
(J)

2-56

CHAPTER 2

Authoring lips and Suggestions

To create a Tip panel, do all of the following:

• Use the Full format.

• Place the word "Tip:" followed by the panel title in the panel tile area.

• Use the prompt "Read this information, then you're done."

For example, Figure 2-35 shows a SurfWriter Guide panel that gives a shortcut
for adding a word to the dictionary.

Figure 2·35 A tip panel

Note
You can instead place a tip on the panel that contains the
associated action or concept, as long as it does not greatly
increase the panel size or significantly distract from the
focus of the help instruction. If you do so, use a Tag (such
as "Tip") to indicate it to the user. Be sure to use the same
Tag phrase for tips throughout your guide files. +

Designing a Definition Panel
You should use a definition panel to define key terminology that appears in
a panel. Your guide file definitions should use different wording from the
definitions provided by help balloons, which define such objects on the
Macintosh screen as icons, windows, and commands.

Always use a separate panel for a definition rather than placing it on the panel
that contains the associated term. The user should access the panel through hot
text. See "Designing Hot Text, Objects, and Rectangles" on page 2-77 for more
information.

Designing Panel Types

CHAPTER 2

Authoring lips and Suggestions

To create a definition panel

• use the Full format

• place the word "Definition:" followed by the definition term in the panel
title area

• use the prompt "Read this information, then you're done."

For example, Figure 2-36 shows a definition panel (in SurfWriter Guide) that
defines the term" AppleScript."

Figure 2-36 A definition panel

If a definition applies directly to a topic area, you should make it a topic in the
Full Access window under the heading "Definitions." For example, Figure 2-37
shows the terms that appear under the "Definitions" heading when you select
the Setting Options topic area in Macintosh Guide.

Designing Panel Types 2-57

)>
c :;:
0
:::!.
:::::J

(Q

=I
"0
(/)

~
a.
en c

(Q
(Q
CD
~ a·
:::::J
(/)

2-58

CHAPTER 2

Authoring lips and Suggestions

Figure 2-37 Some definitions in the Full Access window

Reviewing the Basics
Working with Programs
Files
Disks
Using DOS Files & Disks
Printing & Fonts
Netw orks & Telecommunications

Color
Sound
Monitors
Memory

~roup items in the Launcher?
adjust window shrinking?
instal system software components?
manage System Folder extensions?
turn off the computer automaticany?
cfsable buttons on the computer's front?
Definitions
control panel -------
desktop pattern
keyboard layout

OK

Designing a Related Topics Panel

Definitions

You should use a related topics panel to refer the user to other guide file topics
that pertain to a specific panel or sequence. You can have the user access a
related topics panel using a button in the content area or navigation bar, or
using hot text. Where you place the button or hot text depends on the content
of the related panel that it calls.

• To call a panel that lists topics pertaining to an entire sequence, place the
Related Topics button or hot text in the content area of the closure panel of
that sequence. Alternatively, you can place the Related Topics button in the
navigation bar of all panels in that sequence.

• To call a panel that lists topics pertaining to a specific panel in a sequence
(except the closure panel), p lace the Related Topics button or hot text in the
content area of that panel.

To create a related topics panel

• use the Full format

• place the words "Related Topics:" in the panel title area, followed by the
user sequence title

Designing Panel Types

CHAPTER 2

Authoring Tips and Suggestions

• distinguish the related topics (and topic areas) from other text on the panel;
for example, place them in a list or use styled text

• list the exact topic or topic area name that appears on the access window

• use the prompt "Read this information, then you're done."

For example, Figure 2-38 shows a related topic panel that appears in SurfWriter
Guide when the user clicks a Related Topics button on the closure panel of a
sequence.

Figure 2-38 A related topics panel

Designing a Transition Panel
You should use a transition panel to connect parts of multipart sequences. That
is, use it if the user can consecutively view several branches in a sequence (for
example, if the user can select checkboxes on a decision panel). The transition
panel must always let the user know that one branch has ended and another
is beginning.

You should also use a transition panel between the panel that ends a procedure
and subsequent panels that provide optional information pertaining to that
procedure. Here, the transition panel should let the user know that the required
actions are complete and that the remaining panels contain only helpful
information.

Designing Panel Types 2-59

> s:::
:r
0
::l.
:::::J

(Q

::t
"'C
C/)

D>
:::::J
a.
en
s:::

(Q
(Q
Q)

!!1. c;·
:::::J
C/)

2-60

CHAPTER 2

Authoring lips and Suggestions

To create a transition panel

• use the Full format

• use the prompt "Click the right arrow to continue."

For example, Macintosh Guide contains the topic "How do I change time and
date formats?" This topic contains two branches: one for changing the time
format and the other for changing the date format. Figure 2-39 shows the
transition panel that takes the user from the time format branch to the date
format branch.

Figure 2-39 A transition panel

Designing a Closure Panel
You should use a closure panel at the end of a sequence to summarize the
information covered by that sequence. The text on the panel should focus only
on the help topic rather than repeating navigation information covered by the
prompt text.

To create the panel

• use the Full format

• use the prompt "That's all, you're done."

For example, Figure 2-40 shows the closure panel (in SurfWriter Guide) for the
sequence "How do I create a custom dictionary?"

Designing Panel Types

CHAPTER 2

Authoring lips and Suggestions

Figure 2-40 A closure panel

Designing a Panel Associated With a Huh? Button

A panel associated with a Huh? button appears when the user clicks an active
Huh? button. The associated panel it calls up provides information crucial to
understanding the original panel. The Huh? button must be active in the
navigation bar of all panels in a sequence that has an associated panel. Its
associated panel can already exist in the guide file, or it can be one created
specifically for this button. When the user clicks the active button, the
associated panel opens up on top of the original one. If you haven't associated
a panel with a Huh? button, it is dimmed. For information on creating a Huh?
button, see "Designing Navigation Buttons" on page 2-71.

If a panel contains an active Huh? button, always explain the contents of the
button's associated panel, so that the user can decide whether to view it. And
if you specifically create an associated panel, use the prompt "Read this
information, then you're done."

Figure 2-41 shows a panel from SurfWriter Guide that contains an active Huh?
button. Notice the text explaining the contents of the button's associated panel.

Designing Panel Types 2-61

2-62

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-41 A panel with an active Huh? button and an explanation of the button's
associated panel

Do This Open the Surtwriter Scripts folder. For
information about this folder, click. Huh?
below.

(Related Topics)

Do this step, then click the right arrow.

Figure 2-42 shows the panel associated with the Huh? button on the previous
panel (Figure 2-41).

Figure 2-42 A typical panel associated with a Huh? button

In general, you should not associate more than one panel with a Huh? button.
If the information exceeds one panel, consider using a related topics panel or
creating a topic or branch.

• For information that appears in another sequence in the guide file, use a
related topics panel to point the user to the sequence. For more information,
see "Designing a Related Topics Panel" on page 2-58.

Designing Panel Types

CHAPTER 2

Authoring lips and Suggestions

• For information that you create specifically for the panel, make it a new
topic on the access window or in a branch in the sequence. For more
information, see "Designing Topic Areas and Topics" on page 2-30 and
"Designing Branches" on page 2-67.

You can occasionally associate a sequence of panels with a Huh? button for
information that is not suitable as either a topic or a branch, for example,
information that the user typically reads only once or that applies to only a
limited number of users. As with a single panel associated with a Huh? button,
the sequence can be another sequence in the guide file or one that you create
specifically for the panel.

Designing an Oops Panel
You should use an Oops panel to tell the user that a condition specified on a
previous panel (for example, opening a control panel) was not met and that it
must be met to continue to the next panel. The Oops panel should appear only
when the user does not complete an instruction and then clicks the right arrow
to continue to the next panel in the sequence; for example, the user does not
follow a panel's instructions to open a control panel and then tries to move to
the next panel. Use the <Make Sure> command to include an Oops panel in a
sequence. For more information, see "Using Context Checks" beginning on
page 2-83.

An Oops panel should contain an OK button, a description of how to correct
the condition, and instructions to correct the condition or press the OK button.
If the user makes the condition true and clicks the OK button, Apple Guide
takes the user to the next panel in the sequence. If the user does not make the
condition true and clicks the OK button, Apple Guide closes the Oops panel
and returns the user to the first previous panel that either does not have a
<Make Sure> command specified for it or that has a <Make Sure> command
whose condition evaluates true.

For example, Figure 2-43 shows an Oops panel (from Macintosh Guide) that
appears if the user failed to follow instructions to open the File Assistant
application.

Designing Panel Types 2-63

)>
r:::
:f
0
:::3.
:::s

(Q

=I
"0
rn
£1)
:::s a.
C/)
r:::

<C
<C
CD
~
()"
:::s
rn

2-64

CHAPTER 2

Authoring lips and Suggestions

Figure 2-43 An Oops panel

Oops You're not working in the File Assistant
program. Choose File Assistant from the
application menu (in the upper right comer
of your screen}.

OK)

Do this step, then dick OK.

To create an Oops panel, do all of the following:

• In its sequence display title area, place the same title used by the sequence.

• Use the Tag and Body format so that the user can easily discern the required
action.

• Use the tag "Oops" (or its localized equivalent).

• Place the OK button in the center of the panel. For more information, see
"Using Standard Buttons" on page 2-74.

• Use the standard text to describe the Oops condition and tell the user what
to do: "The condition is not true. Click OK for instructions (or make condition
true, then click OK)." Replace the italic text with text specific to the condition
that is not true.

• Avoid using a prompt in this panel.

If possible, use only one panel to describe the Oops information. If you use
multiple panels in an Oops sequence, the right arrow button on the first panel
and the left arrow button on the last panel must be dimmed. For panels in an
Oops sequence, you can specify the <Skip If> and < If> commands but not the
<Make Sure> command. For more information, see "Using Context Checks"
beginning on page 2-83.

If you specify that the Oops panel appear if a certain condition is not true on
a panel-for example, the condition is not true if a particular control panel is
not open-you should specify it for all other panels in that sequence that
contain the same condition.

Designing Panel Types

CHAPTER 2

Authoring Tips and Suggestions

You should also verify whether it would be better to use a Continue panel,
which is described in the next section. You should not mix use of the Continue
and Oops panels for the same condition.

Designing a Continue Panel
You should use a Continue panel to have Apple Guide offer to complete for
the user the condition that hasn't been met (for example, opening a control
panel). The panel appears only if the condition on a panel is not true when
the user clicks the right arrow to continue to that panel in the sequence. For
example, if the user does not follow a panel's instructions to open a control
panel and then tries to move to the next panel, a Continue panel appears. You
include a Continue panel in a sequence using the <Make Sure> command. For
more information, see "Using Context Checks" beginning on page 2-83.

A Continue panel should tell the user to wait for Apple Guide to perform the
condition and then click the Continue button on the panel.

Figure 2-44 shows a Continue panel that appears in SurfWriter Guide.

Figure 2-44 A Continue panel

Please wait a moment. Apple Guicle is assisting you by
opening the Surtwriter Scripts folcler.

I a.ntanue I
After the dictionary opens, click Continue.

To create a Continue panel, do all of the following:

• Place in the sequence display title area the same title used by the sequence.

• Use the standard text to tell the user what Apple Guide is doing:
"Please wait a moment. Apple Guide is assisting you by condition being
performed." Replace the italic text with text specific to the condition
being performed.

Designing Panel Types 2-65

)>
c: g
0
::::!.
:::::1

(Q

::t
"C
fJ)

Q)
:::::1
a.
en
c:
(Q
(Q
CD
!e. cr
:::::1
fJ)

CHAPTER 2

Authoring lips and Suggestions

• Place the Continue button in the center of the panel. For more information,
see "Using Three-Dimensional Buttons" on page 2-74.

• Use the prompt "After the action occurs, click Continue." (Replace the italic
text with text specific to the action being performed.)

Before specifying a Continue panel, you must first see if it is programmatically
possible to perform the given condition. For example, you can use AppleScript
to perform the task for the user. If it is not programmatically possible to use a
Continue panel, use an Oops panel instead (described in the previous section).

If you specify that the Continue panel appear if a certain condition is not true
on a panel-for example, the condition is not true if a particular control panel
is not open-you should specify it for all other panels in that sequence that
contain the same condition. You should not mix use of the Continue and Oops
panels for the same condition.

Designing a Sequence

2-66

When you create a guide file-particularly of the types Help and Tutorial-you
typically encounter topics that require a panel sequence rather than just one
panel. A panel sequence (referred to here as a sequence) is a set of related
panels that the user can access linearly using left and right navigation arrows.
A sequence can also contain subsequences (or branches). To create a sequence,
you first break the associated topic into a series of user tasks or concepts and
then create a panel for each task or concept. Plan your sequences in hard copy
form before creating your help source files (see Chapter 3). Where possible, you
should use context checks so that your sequences provide information specific
to the user's needs. See ~~using Context Checks" on page 2-83 for more
information.

To design a sequence, you should be familiar with the standard panel types,
described in the previous section. Then design the sequence with two levels.

The first-level panels should directly lead the user through the task or concept
of the associated topic. If the sequence describes a task, these panels typically
consist of an introductory panel that describes the sequence, one or more action
panels that lead the user through the task, and a closure panel that sums up the
task. If the sequence describes a concept, these panels typically consist of an
introductory panel and one or more information panels containing explanatory

Designing a Sequence

CHAPTER 2

Authoring Tips and Suggestions

text. H the sequence includes branches, you design each branch following these
same guidelines. If you want the user to view one or more branches, precede
the branches by a decision panel. See the next section for information on when
to create a branch.

The second-level panels should consist of supplemental help panels, which the
user chooses to view, and Oops and Continue panels, which Apple Guide
automatically presents to the user under certain conditions. Supplemental help
panels should contain additional information that the user can access by
clicking a button or hot area on a first-level panel. These panels can include a
panel associated with a Huh? button or hot text, or definition, tip, and related
topics panels. You specify Oops and Continue panels with the <Make Sure>
command, which specifies a condition that must be true before Apple Guide
shows a panel to the user. For more information, see "Comparison of Oops and
Continue Panels" on page 2-85.

You should not exceed certain quantities of panels and branches in a single
sequence. Do not exceed

• 15 panels in a branch

• 32 panels in a single sequence, including all branch panels

• 10 branches in a single sequence

Designing Branches

A panel branch (known here as a branch) is a sequence within another
sequence. With branches, you can effectively present choices or context-specific
instructions to the user under a single topic with a short direct name. You
should always use branches to let the user

• choose one of several help instruction options that are mutually exclusive

• choose one or more help instruction options for information that is parallel
or highly related

• automatically receive help instructions about a specific condition that you
can verify with context checking

• choose to view help instructions about a specific condition that you cannot
verify

Designing Branches 2-67

)>

§:
0
:::::!.
:::J

(Q

::t
"'0 rn
Ell
:::1
a.
en c:

(Q
(Q

~
0
:::J rn

2-68

CHAPTER 2

Authoring Tips and Suggestions

When designing your help, reduce the number of topics in the access window,
keep topic names short and direct, and provide help that is specific to the
user's context. Avoid creating separate topics for tasks that are highly related
to the same goal or feature. And don't create a sequence that describes several
separate tasks sequentially. If you do, you force the user to navigate through
panels to reach panels of interest. If the length and style of your topic name
don't conform to the suggested style in this chapter, your sequence might
require a branch or you might be describing the branch in the topic name
rather than only the topic goal. For more information, see "Designing Topic
Areas and Topics" beginning on page 2-30.

You can have Apple Guide display a branch to the user automatically, or you
can have the user enter the branch from a button linked to a built-in function
or from a decision panel using checkboxes or radio buttons. (For more
information on decision panels, see "Designing a Decision Panel" on page 2-52.)

IMPORTANT

The Guide Script commands used to create a branch
determine whether the user can return to the original
sequence or to the access window. Wherever possible,
create a branch from which the user can return to the
original sequence. See the chapter "Guide Script
Command Reference" for more information. .A

The rest of this section provides details on creating branches.

Designing Branches for Mutually Exclusive and Related
Tasks
A guide file topic can contain instructions that are mutually exclusive (for
example, several tasks that accomplish the same goal) or that are highly related
to each other (for example, parallel tasks or tasks that occur in the same place).
For both kinds of tasks, you should create a branch that the user accesses
through a decision panel. Use radio buttons to give the user only one choice
among several options and use checkboxes to give the user the choice of one
or more options.

The following example calls for radio buttons. The SurfWriter application lets
the user enter a word in the dictionary using either menu commands or a
script. Rather than presenting a separate topic for each method (for example,
11How do I enter a word in the dictionary using menu commands?" and

Designing Branches

CHAPTER 2

Authoring lips and Suggestions

"How do I enter a word in the dictionary using a script?"}, the guide file
instead uses a topic name that describes the main goal ("How do I enter a word
in the dictionary?") and creates a branch for each method. Because both
branches accomplish the same goal, the user selects only one of the branches
from a decision panel with radio buttons.

This next example calls for checkboxes. Macintosh Guide uses a single topic for
the question "How do I change the time and date formats?" because both of
these tasks are accomplished in the same place, the Date & Time control panel.
The sequence contains a separate branch for each task. Unlike the previous
example, these tasks are not mutually exclusive; the user might want to change
only the date format, only the time format, or both. Therefore, the user can
select one or both branches from a decision panel with checkboxes.
For more information, see 11Using Radio Buttons and Checkboxes" on
page 2-76.

Designing Branches for a Specific Condition
A guide file topic can include information that specifically applies to a
condition of the user's environment or context (for example, information that
applies only if particular software is installed on the user's computer).

For this specific information, you can create a branch that the user selects
or one that is provided automatically. If you can check the condition
programmatically, you should use the <If> and <Else> commands or the
<Skip If> command to have Apple Guide automatically show the appropriate
branch to the user. Otherwise, you should have the user choose the
appropriate branch from a decision panel.

For example, assume that your application provides two methods for checking
the spelling of a document: one uses the standard dictionary and special
thesaurus, and the other uses only the standard dictionary. Because you can
verify whether the user has installed the thesaurus, you can create a branch for
each method using the <If> and <Else> commands. In this way, Apple Guide
verifies whether the thesaurus is installed and automatically presents the
appropriate branch to the user.

In contrast, assume that your guide file contains the sequence "How do I print
a document?" Your users need to view only those panels that apply to their
particular printer type-in this case, a LaserWriter or Image Writer. You create a
branch for each printer type. And because you cannot use context checking to

Designing Branches 2-69

•)>
c:
~
0
::::!.
::J cc
=I
'0
(/)

s:»
::l
c.
CJ)
c: cc cc
<D
!a a·
::J
(/)

CHAPTER 2

Authoring lips and Suggestions

verify the printer type, you provide a decision panel from which the user can
choose the appropriate branch.

Designing Buttons

2-70

This section contains guidelines for creating buttons for your panels. For more
information on button alignment, see 11Designing Your Own Panel Format" on
page 2-45. Also see the guidelines on standard toolbox controls in the Macintosh
Human Interface Guidelines.

You can add two types of buttons to your panels: navigation and content area.

• A navigation button always appears in the navigation bar of a panel and
takes the user to different parts of the guide file (for example, a navigation
button can take the user back to the access window).

• A content area button appears in the content area of a panel and is generally
associated with an event or navigation route specific to that panel. You can
add these types of buttons to a content area: radio buttons, checkboxes,
standard, and three-dimensional. They are described here.

lc::_ Radio buttons and checkboxes both take the user to a single branch in the
sequence; the user can select only one radio button at a time and select
one or more checkboxes at time.

~ A standard button is a two-dimensional button, drawn by the Macintosh
toolbox, that has an event associated with it (for example, a Cancel
button, which dismisses the operation the user started).

c A three-dimensional button can perform as either a navigation button
or a standard button (for example, a three-dimensional button that takes
the user to a related sequence). It has two states to indicate its current
behavior-up and down-and contains a graphic inside it.

Note
You cannot use more than 50 user control features-that is,
buttons and checkboxes-for any single sequence. +

Designing Buttons

CHAPTER 2

Authoring lips and Suggestions

Designing Navigation Buttons

In the navigation bar, you can add from one to three buttons to supplement
the default navigation arrows. (If a panel does not use the default navigation
arrows, they appear dimmed on the navigation bar.) For any navigation bar
button, you should use a height of 18 pixels and include a gray pixel (Ievell
or 2) in its corners so that it blends into the panel background.

If possible, use the same set of navigation bar buttons throughout your guide
file. If a panel in a sequence requires a button that is unique to it (for example,
a button that launches a demonstration that is specific to that panel), do not use
a navigation button. Instead, use a content area button. See the next section for
details.

On the navigation bar of each panel, provide a GoStart button to take the user
back to the access screen. The GoStart button contains the Apple Guide icon,
or lightbulb, and should appear in the lower-left corner of each panel. (In
some system software versions, the GoStart button instead contains the
word "Topics".)

Another useful button to place on the navigation bar is the Huh? button,
because you can use it to take the user to a place that expands the information
on a panel. The Huh? button contains the word "Huh?" (or its localized
equivalent); it should appear on all panels in the sequence. The Huh? button
should appear active on the panel only if you associate it with another panel.
Then if the user clicks the Huh? button, the panel associated with it opens on
top of the original panel. If you do not associate a panel with this button, it will
appear dimmed. For more information, see "Designing a Panel Associated
With a Huh? Button" on page 2-61.

Figure 2-45 shows a panel that contains GoStart and Huh? buttons in the
navigation bar.

Designing Buttons 2-71

)>
c: s:
0
::l.
::3

(Q

::1
"C
fJ)

Q)
::3 a.
CIJ
c:
(Q
(Q
CD
S2. c:r
::3
fJ)

2-72

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-45

Note

A panel with GoStart (using the lightbulb icon) and Huh? buttons in the
navigation bar

Guide Maker provides the files needed to create the
GoStart and Huh? buttons. +

A guide file can contain only one dimmed navigation button at a time (that is,
a navigation button that is inactive). Apple recommends that you provide
dimmable functionality to the Huh? button.

Designing Content Area Buttons
Apple Guide imposes no limit on the number of buttons that you can add to
the content area of a panel. Apple, however, sets a specific limit for radio
buttons and checkboxes and recommends that you avoid placing an excessive
number of standard and three-dimensional buttons; otherwise, your panel
design can become confusing and cluttered. Also remember that Apple Guide
imposes a maximum number of 50 control features per sequence, as described
earlier in this section.

By default, radio buttons, checkboxes, and standard buttons use the system
font. You should use Guide Script commands to specify that these button types
instead use the Apple Guide font.

You can have Apple Guide place the button inline with the surrounding text
and justify it within the current format, or you can specify the button's location
relative to the current pen position by specifying a specific point. To make
localization easier, Apple recommends that you use relative rather than
absolute positioning of buttons on the panel. (When translated into another
language, panel text can increase and possibly overflow onto a panel button.)

Designing Buttons

CHAPTER 2

Authoring lips and Suggestions

Figure 2-29 shows a panel with a button centered with relative positioning.

Figure 2-46 A panel with a button centered using relative positioning

This particular panel uses the Tag and Body format. Notice that Guide Maker
centers the button on the Body format. By default, Apple Guide places the
button just under the panel text. You specify left, center, or right justification
within the current format. If you prefer more white space between the panel
text and button, add a carriage return after the button, as shown in Figure 2-29.

In contrast, Figure 2-47 shows a panel containing two buttons, each with
absolute positioning.

Figure 2-47 A panel containing two buttons with absolute positioning

m::m::::::::m::::::::m::;:::~::mmm:mmi:::::::::::::::::H::::::::H::::::mm:::m:::: II
How do I use the tools in the tool>ar?

Tho Surtwrlter toolbar contains tools t hat you u se to
create and manipulate a:raphics.

For an avervlow ot each tool in t he tool"9ar • .cHck T0oib~; .
Tour. For back&round lntQrmaddl\ "on a:raphics, click
Oes!iJlfn(Graphics: • •

(Toolbar Tour]

(Designing Graphics J.

Current
pen
location"""' esie:ning Graphics.

po
80

Tool bar Tour J

To begin, cid< the ri<;;lt lltrow.

50 Designing Graphics J

Designing Buttons 2-73

)>
c
5
0
::l.
::J

<C

::1
-c en
Dl
::J
Cl.

CJJ
c

<C
<C
CD
!'e. o·
::J
en

CHAPTER 2

Authoring Tips and Suggestions

This panel uses the Full format. Notice that the location of the first button
is specified as Point (50, 2 0), and the location of the second button as
Point (50, 80). Guide Maker places the first button 50 pixels to the right of
and 20 pixels down from the current pen location and places the second button
50 pixels to the right of and 80 pixels down from the current pen location.

IMPORTANT

If you place a button with absolute positioning, the current
pen location is not reset (it remains at its current location
until you place an object with relative positioning). &

If you use a particular type of button on more than one panel, it should appear
in the same location for all panels that use it throughout your guide files. For
example, you might place all Tip buttons on the lower-right side of the panel
content area.

The rest of this section contains guidelines specific to creating standard and
three-dimensional buttons, as well as radio buttons and checkboxes.

Using Standard Buttons

Standard buttons are a set height of 20 pixels with a minimum width of
59 pixels (the width of a standard OK button). Apple Guide automatically

• adjusts the button width to accommodate the button title (the width of the
text plus 10 pixels on each side)

• highlights the button in response to the user's actions

• places the button inline with the surrounding text and justifies it within
the current format

You can specify the button's general location (left, right, or center) or its
location relative to the current pen position by specifying a specific point.

You must specify the button's title, the button's location on the panel, and the
event function (typically an Apple event) that Apple Guide calls when the user
clicks the button.

Using Three-Dimensional Buttons

You create a three-dimensional button of any size. You must provide the color
pictures that describe the button's appearance when it's selected (up) and not
selected (down). You should also provide an additional set of black-and-white

2-74 Designing Buttons

CHAPTER 2

Authoring Tips and Suggestions

pictures, which Apple Guide uses according to the bit depth of the user's
monitor. Be sure to use the same size for both pictures.

You must also provide the button's location on the panel and the event
function that Apple Guide calls when the user clicks the button.

One of the recommended panel types, Continue, uses a three-dimensional
button. Figure 2-48 shows the up and down appearance, in grayscale, of a
color Continue button.

Figure 2-48 The up and down appearance (in grayscale) of a color Continue button

Continue) __________]

Up Down

In contrast, Figure 2-49 shows the up and down appearance of a black-and
white Continue button.

Figure 2-49 The up and down appearance of a black-and-white Continue button

L.. ... ~ntinue
I

Up Down

For more information on the Continue panel, see "Designing a Continue Panel"
on page 2-65.

Apple Guide places the button inline with the surrounding text and justifies it
within the current format. You can specify the button's general location (left,
right, or center) or its location relative to the current pen position by specifying
a specific point. For example, if you specify the button location as Point
(50, 10 0), Guide Maker places the button 50 pixels to the right and 100 pixels
down from the current pen location. For more information on placing buttons

Designing Buttons 2-75

2-76

CHAPTER 2

Authoring lips and Suggestions

at specific coordinates, see the previous section. If you create a three
dimensional button that resembles an icon, you should also provide a label that
tells the user what to do.

Using Radio Buttons and Checkboxes

Use radio buttons or checkboxes to have the user select branches in a sequence,
following these guidelines:

• Use radio buttons to let the user choose only one of several branches that
are mutually exclusive (for example, for branches that describe different
methods to achieve the same goal).

• Use checkboxes to let the user choose one or more branches of related
information (for example, for branches that describe parallel tasks or tasks
that occur in the same place).

• Do not exceed four radio buttons or checkboxes on the content area of a
single panel.

• Do not use radio buttons and checkboxes on the same panel.

• Specify the default state (on or off) of each radio button and checkbox.

• Provide each radio button or checkbox with a title that clearly identifies the
choice it offers.

o Place the title in the Apple Guide font without boldface.

~ Keep the title as short as possible. Brevity is particularly crucial for
successful localization; if a title expands in size when translated into
another language, it can overflow to other text or objects on the panel.

c Use a unique name for each title in a single sequence. Apple Guide cannot
distinguish between two radio buttons or checkboxes with the same title
on different panels in the same sequence.

o Make sure that checkbox titles reflect clearly different states.

• Use the default formatting that Apple Guide provides for radio buttons and
checkboxes, where the radio button or checkbox appears inline with the
surrounding text and is justified within the current panel format. Be sure,
however, to change the default font to the Apple Guide font.

You should use a prompt that tells the user how to select the radio button or
checkboxes: for example, "Make your choice, then click the right arrow." Above
the radio buttons or checkboxes, you should include an instruction that tells

Designing Buttons

CHAPTER 2

Authoring Tips and Suggestions

the user what to do. For example, the instructions for radio buttons can
say "Which do you want to do? Click one." In contrast, the instruction
for checkboxes can say, "What do you want to do? Click one or both." For
examples of such instructions, see "Designing Panel Prompts" on page 2-39.

Designing Hot Text, Objects, and Rectangles

You can use hot text, objects, and rectangles to provide information that is
useful but not crucial to completing the particular task on a panel. Each of
these types creates a hot (or active) area on the panel. When the user clicks
a hot area, Apple Guide performs the action associated with the area, for
example, it opens another panel that contains related information. This panel
can be one that you specifically create for the hot area or another existing panel
in the guide file. Do not confuse the information provided by hot types with
information that belongs on a panel associated with a Huh? button. For
more information, see "Designing a Panel Associated With a Huh? Button" on
page 2-61.

You should follow these guidelines for using each of the hot types:

• Use hot text to specify certain text on the panel as a hot area. For example,
you can use hot text to make the word "dictionary" a hot area on a panel.

• Use a hot object to specify a hot area using the rectangle of the next object
(either text or a graphic) specified in the panel definition. For example, you
can create hot objects out of 'PICT' graphics (for example, an icon).

• Use a hot rectangle to make a specific rectangle on the panel a hot area.
Creating a hot rectangle provides more precise control over the placement
of the hot rectangle than creating a hot object, which assumes only the
rectangle of the following object. Be aware, however, that this positioning
might create unwanted side effects during localization. See "Designing for
Localization" on page 2-91.

You should use an underscore to identify hot text to the user, for example,
dictionary.

The appearance of a graphic or hot rectangle designated as a hot type does not
change, so you should use text to indicate that it's a hot area. For example, for a
hot graphic, provide the instruction "Click this graphic for more details."

Designing Hot Text, Objects, and Rectangles 2-77

)>
c:
g
0
::::!.
::::!

<C

::1
"0
en
jl)
::::!
a.
(J)
c:

<C
<C

!.
0
::I en

2-78

CHAPTER 2

Authoring lips and Suggestions

Figure 2-50 shows a panel that contains a single word of hot text, indicated
with an underscore. This panel also contains an active Huh? button. Therefore
two panels are associated with it, one (Figure 2-51) for the hot text and one
(Figure 2-52) for the Huh? button.

Figure 2-50 A single word of hot text on a panel

Figure 2-51 A panel associated with a single hot-text word on a panel

Figure 2-52 A panel associated with a Huh? button

You can create a custom dictionary by individually
entering each word yourself or by using a script that
searches an open document for tagged words and
places them in the dictionary for you.

Designing Hot Text, Objects, and Rectangles

CHAPTER 2

Authoring lips and Suggestions

Figure 2-52 compares two methods for creating a custom dictionary that are
referred to by the original panel (Figure 2-50).

Designing Coachmarks

A coachmark is an onscreen graphic that circles or points to an item on the
screen. Use coachmarks to guide the user's attention to screen areas described
in a help instruction, typically if the user needs to perform an action (for
example, to open a menu or type information). Figure 2-53 shows a coachmark
circling a menu that the user needs to open.

Figure 2·53 A menu coach

Edit Uie1

The coachmark remains visible until system software processes the next system
event or user event in the application or panel.

You can assign only one coachmark per panel, and one is sufficient if you
present only one action or concept per panel. Once you assign a coachmark
to a particular panel, it appears each time the user opens that panel.

IMPORTANT

You should use coachmarks only for those elements of the
user interface whose location or software condition you
can verify; otherwise, you can inadvertently create a
coachmark that appears at a random location on the
screen . .A

Apple provides five types of coachmarks and several built-in coachmark styles.
These are described next.

Designing Coachmarks 2-79

)>
c:
:T
Q
s·

<0

::i
"0
(/)

Ill
::l
a.
(/)
c:

<0
<0
CD
!e.
5"
:::J
(/)

2-80

CHAPTER 2

Authoring lips and Suggestions

Using Coach mark Types
There are five coachmark types: menu, item, object, window, and AppleScript.

A menu coach is a coachmark for a specific menu or menu item. When the user
opens a panel with a menu coach, Apple Guide uses that coach style and coach
color to draw a coachmark for the specified menu and menu item. When the
user pulls down that menu, Apple Guide uses the specified color and text style
for the specified menu item.

An item coach is a coachmark for an item in a dialog box or other interface
element in a window (or dialog box). When the user opens a panel that
includes a command with an item coach, Apple Guide uses the specified coach
style to draw a coachmark for the specified item.

An object coach is a coachmark for an object based on a rectangle that your
application returns for the named object. When the user opens a panel that
includes a command that names a defined object coach, it sends an Apple event
to your application that requests it to return a rectangle for the named object.
When Apple Guide receives the rectangle for the object, Apple Guide draws
the coachmark.

A window coach is a coachmark for a specific area of a window. When the user
opens a panel that includes a command that names a defined window coach,
Apple Guide uses the specified coach style to draw a coachmark based on the
location of the coachmark, as specified by the command.

An AppleScript coach is a coachmark that uses AppleScript to determine the
object to mark. When the user opens a panel that includes a command that
names a defined AppleScript coach, Apple Guide executes the specified script.
Once the script returns a rectangle for the object, Apple Guide draws the
coachmark.

For more information on creating these coachmark types, see the chapter
"Guide Script Command Reference."

Using Coachmark Styles
Apple Guide provides four built-in coachmark styles: a red circle, a red
underline, a red arrow, and a green "X" character.

• Use the red circle coachmark for a menu coach or to tell the user where to
click in a limited or enclosed area.

Designing Coachmarks

CHAPTER 2

Authoring lips and Suggestions

• Use the red underline coachmark to indicate an item in a menu or to tell the
user where to type information.

• Use the red arrow to point to an area on the screen. It is particularly effective
for pointing to the target of a drag.

• Use the green "X" character to mark where the user needs to type
information or to mark a large region.

For example, Figure 2-54 shows a red circle coachmark around the Macintosh
Chooser icons.

Figure 2-54 A red circle coachmark

RDS/1
RDS/ 1 - Kabuki Theatre
RDS/ 1 - Paramount 1:~11· RDS/2
RDS/3 r;;·
RDS/ 4 ~ @Active

,_R_D_6_1 _1 --------'"~'"' AppleTalk 0 Inactive
7.4(1

Figure 2-55 shows a red underline coachrnark indicating the Find What field
where the user needs to type text.

Designing Coachmarks 2-81

)>
c
:T
Q
::;·
co
::i
"0
(/)

Col
:::J
a.
en
c
co
co
(!)

~
5"
:::J
(/)

2-82

CHAPTER 2

Authoring Tips and Suggestions

Figure 2-55 A red underline coachmark

Find What:

Change To:

Stop J ((ChangeD

Similarly, you can use the green X to point to an area on the screen. For
example, Figure 2-56 shows the green X pointing to the Change To field, where
the user needs to type text.

Figure 2-56 A green X coachmark

Global Changes

Find What: I blueberries I
Change To: JF'~erries I

_. ~ Stop J ((ChangeD

The red arrow is particularly effective for pointing to the target of a drag. For
example, Figure 2-57 shows the red arrow demonstrating how to drag the
SurfWriter dictionary to the SurfWriter application.

Designing Coachmarks

CHAPTER 2

Authoring lips and Suggestions

Figure 2-57 A red arrow coachmark

~~ SurfWrlter folder· IM~
2 it.ms 70MB in disk 13.3 MBava

Q

~~
Surl'Yirittr

•

b-
<0-

¢1 ..•• 1¢ ra

Using Context Checks

Context checks are functions that verify certain conditions of the user's
environment so that Apple Guide can dynamically skip or show certain panels
to the user based on their appropriateness. These conditions can be tasks that
the user needs to perform or conditions based on the user's environment, for
example, whether a folder is open or a file is present. In either case, if a panel
specifies that a certain condition must be true, you need to determine whether
you can perform context checks on that condition.

For example, your sequence can contain panels that instruct the user to open
a window or click an item. If the user has already performed the task specified
by a panel, there is no need for the user to view that panel. For each panel,
therefore, you should use the <Skip If> command to verify whether the
specified condition is true and if so, to tell Apple Guide to skip the panel.
Similarly, your sequence can contain a branch that applies only to a specific
condition that you can programmatically verify. When it does, you can use the
<If> command to show the user that branch only if the specific condition is
true. For more information, see ~~Designing Branches for a Specific Condition"
on page 2-69.

Using Context Checks 2-83

)>
c:
st
0
5'

<C

::t
"C
en
S»
::l a.
CJ)
c:

<C co
CD
sa.
()"
::l
en

2-84

CHAPTER 2

Authoring lips and Suggestions

Your sequence can also contain panels that you do not want the user to view
unless a certain condition is true (for example, certain panels can require that
a specific folder be open). For these panels, you should use the <Make Sure>
command to verify that the specified condition is true before Apple Guide
shows the associated panel to the user. If the condition is not true, you can
specify that one of two panel types appear-an Oops or Continue panel-that
work in different ways to make the condition true. These panels are described
later in this section. For additional guidelines on creating these panels, see
"Designing an Oops Panel" on page 2-63 and "Designing a Continue Panel" on
page 2-65.

Apple recommends that you use context checks in your guide files wherever
possible. Specifying context checks in your guide file generally occurs in four
stages. You might have the skills and background to do this work yourself, or
you might work with a team that includes instructional designers, scriptors,
and developers. Here are the tasks you or your team need to accomplish:

1. Determine those panels that require context checks in the early stages of
designing your guide file.

2. Determine whether panels with a context check are associated with an Oops
or Continue panel. For Continue panels, you must also determine whether it
is programmatically possible to perform the given task for the user.

3. Create the code that checks the condition specified by the context check.

4. Test whether the context checks for any user action (for example, selecting
a menu command) still work properly if the user performs the action in the
wrong order in the sequence.

Note
Guide Maker provides a file, Standard Setup, that contains
built-in context checks. •

This section explains how to analyze your panels to determine whether they
require <Make Sure> and <Skip If> commands. It also describes how to design
Oops and Continue panels. It then describes the order Apple Guides uses to
evaluate context checks. For complete descriptions of all context checking
commands, see the chapter "Guide Script Command Reference."

Using Context Checks

CHAPTER 2

Authoring lips and Suggestions

Comparison of Oops and Continue Panels
When the user clicks the right arrow to move to the next panel and the next
panel is preceded by a <Make Sure> command, Apple Guide checks the
condition associated with the <Make Sure> command before displaying the
next panel. If the condition is false, you can specify that an Oops or Continue
panel appear.

An Oops panel tells the user that the condition (typically an action described
on a previous panel) must be true for the user to continue to the next panel. A
Continue panel offers to have Apple Guide do the condition that must be true
before the user can go to the next panel; that is, do the action for the user. You
can therefore use a Continue panel only if it is programmatically possible to
perform the required action that makes the condition true. For guidelines, see
"Designing an Oops Panel" on page 2-63 and "Designing a Continue Panel" on
page 2-65.

Note
If you specify that a Continue or Oops panel appear for a
certain condition-for example, the condition is false if a
particular control panel is closed-you should specify the
same result for all other panels in that sequence that
contain the same condition. Also, you should not mix use
of the Continue or Oops panels for the same condition. •

Analyzing a Sequence for Context Checks

To determine the context checks for your guide file, go through each sequence,
panel by panel, and consider these issues:

• Does the panel tell the user to perform an action? Can you programmatically
check whether the condition that results from this action is true? (For
example, can you check whether a control panel is open?) If so, specify a
<Skip If> command for that panel.

• Does that panel set up a condition that must be true for the user to use
subsequent panels in the sequence? Can you programmatically check
whether this condition is true? If so, specify a <Make Sure> command
for that condition.

Using Context Checks 2-85

)>
c:
:T
0
:::!.
::::J

co
::1
'0
fJ)

0)
::::J a.
(JJ
c:

co
co

~
0
::::J
fJ)

Panel1

Panel3

CHAPTER 2

Authoring Tips and Suggestions

For example, assume you want to determine the context checks sequence
for the SurfWriter topic "How do I add words to the dictionary?" shown
in Figure 2-58.

Figure 2-58 The SurfWriter sequence for adding a word to the dictionary

Panel2
s:::m::m::m:m:m::il!!iii:Hl!!i!i!lll!!lillllm:mm:::m::::mlll!!!!!l:!!ii!l!:!l!l!!i!!IB
HoW doladd a word to the dlctlonmy?

Do This Chooso Dictionary from tho Utilities menu to
open tho Dictionary window.

Do this step, then clck the riglt arrow.

Panel4
c:m::m::::::::::::::::::mm::::::::::m::::::::::::::::::::::mmm::::::::::::m::::::::::::l!l
How do I add a word to the dlcdanary?

s::mm:::m:::;;;m::::i:::::u::::mE:m:::muu::uu:m:::mm::mnmmmm:m::::a
How do I add words to the dic1ionary1

Do This Typo your word to add to tho dictionary in the
New Word teKt box.

Your word is now part ot the SurtWriter dictionary.

That's aD, you're done.

2-86

Do this step, then didl the right arrow.

This sequence contains the typical panels for a topic that describes a task.

• Panell is an introductory panel that describes the purpose of the sequence
-adding a word to the dictionary-to the user.

• Panels 2 and 3 are action panels that each contain a step that the user should
perform to accomplish the task:

o Panel 2 instructs the user to open the SurfWriter dictionary.
G Panel 3 asks the user to type a word.

• Panel 4 is a closure panel that tells the user the task is done.

First, consider panell. Apple Guide should not skip an introductory panel in
a sequence, because it prepares the user for the task ahead. This panel does not
require a <Skip If> statement. Furthermore, you should not specify a <Make
Sure> for the first panel of a sequence. Panell, therefore, requires no context
checks.

Using Context Checks

CHAPTER 2

Authoring Tips and Suggestions

In contrast, panel2 sets up a condition by telling the user to do an action (open
the SurfWriter dictionary). You can verify whether this condition is true. You
should therefore specify a <Skip If> command so that Apple Guide skips this
panel if the SurfWriter dictionary is already open and then displays panel 3.

Panel3 also tells the user to perform an action (type a word in the dictionary);
here, a specific condition must be true (the SurfWriter dictionary must be open)
for the user to perform this action. You should therefore specify a <Make Sure>
command to verify that the SurfWriter dictionary is open before Apple Guide
displays this panel. You can also specify a Continue panel if the <Make Sure>
command results in a false condition. For example, Figure 2-59 shows the
Continue panel that would appear if the user pressed the right navigation
arrow on panel2 without opening the SurfWriter dictionary.

Figure 2-59 A Continue panel for a condition in a SurtWriter sequence

Please wait a moment. Apple Guide is assisting you by
opening the dictionary.

(:···Cf)~e;,;.l

After the dictionary opens, cUck Continue.

(Notice that the Continue panel tells the user to wait until Apple Guide opens
the SurfWriter dictionary.) This panel is associated with code (for example, an
AppleScript command) that automatically opens the dictionary. After the user
clicks the Continue button, Apple Guide then advances to panel3 because the
condition associated with the <Make Sure> command is true.

Alternatively, you can specify an Oops panel with the <Make Sure> command.
For example, Figure 2-60 shows the Oops panel that would appear for the same
condition.

Using Context Checks 2-87

2-88

CHAPTER 2

Authoring lips and Suggestions

Figure 2-60 An Oops panel for a condition in a SurfWriter sequence

If the user clicks OK without performing any other action, Apple Guide returns
to panel 2, the first previous panel shown before the condition specified by the
<Make Sure> command failed. If the user opens the SurfWriter dictionary and
clicks OK, Apple Guide displays the next panel in the sequence.

Panel4 does not depend on a condition being true and therefore requires no
<Make Sure> command. In addition, Apple Guide should not skip a closure
panel in a sequence, because it summarizes the task accomplished by the user.
You should therefore not specify a <Skip If> statement for this panel. This
panel therefore requires no context checks.

Using Context Checks

CHAPTER 2

Authoring Tips and Suggestions

Evaluation of Context Checks
Apple Guide always evaluates context checks in a certain order, as shown in
Table 2-3.

Table 2-3 Order in which Apple Guide evaluates context checks

Apple Guide
movement

Button pressed through panels <Skip If> <Make Sure>

Right arrow Normal forward Evaluated Evaluated
after <Skip If>

Left arrow Nornrralbackward Not evaluated Not evaluated

Right arrow Forward on Evaluated Not allowed
Oops panel

Left arrow Backward on Not evaluated Not allowed
Oops panel

OK on Oops Backward search Not evaluated Evaluated
panel without
user nrraking
condition true

If Apple Guide is nrroving forward through a sequence because the user clicks
the right arrow, it evaluates <Skip If> conrrnrrands before <Make Sure>
conrrnrrands. If Apple Guide is nrroving backward through a sequence (because
the user is using the left arrow), Apple Guide ignores the <Skip If> and <Make
Sure> conrrnrrands and nrroves backward through panels regardless of their
context checks. If the user clicks the OK button on an Oops panel without
correcting the specified condition, Apple Guide returns the user to the first
previous panel in the sequence. This panel is the first panel that Apple Guide
finds, searching backward through the sequence, that nrreets one of two criteria:
it does not have a <Make Sure> conunand specified for it, or it has a <Make
Sure> conrrnrrand whose condition evaluates to true.

To find the first previous panel, Apple Guide searches backward through
the sequence and checks each panel to see if it has <Make Sure> conrrnrrands
associated with it. If a panel does not have any <Make Sure> comnrrands
specified, Apple Guide displays the panel. If the panel does have <Make Sure>

Using Context Checks 2-89

)>
c:
g.
0
::!.
:::l co
::t
"0
en
Q)
:::l
a.
CJ)
c: co co
<D
~ a·
:::l
en

Introductory
panel

2-90

CHAPTER 2

Authoring Tips and Suggestions

commands specified, Apple Guide evaluates whether each condition verified
by the <Make Sure> command is true or false. If the conditions are all true,
Apple Guide displays the panel. If the conditions are false, Apple Guide moves
backward to the next panel. Apple Guide repeats this process until it finds a
panel where one of the following conditions is true:

• The panel has no <Make Sure> commands specified.

• The conditions specified by the <Make Sure> command are all true for the
panel.

• Apple Guide has reached the first panel of the sequence.

Apple Guide displays the first panel that meets one of these conditions to the
user.

Figure 2-61 indicates the context checks for a Macintosh Guide sequence that
describes how to change the sound on a Macintosh computer.

Figure 2·61 A sequence in Macintosh Guide for changing the beep sound

<Skip If> Control Panels folder is already open
or Sound control panel is open

<Make Sure> Sound control panel is open

!J ::m:mmmm:mm:::m:::::mm:mmm:m::m:::::mmmmmm:m::mmm::m ID
How do I mange the beep sound?

Do This Open the pop-up menu and chOClSe Alert
Sounds (it neceuam.
Do this step, then clck the right arrow.

<Skip If> Sound control panel is open
<Make Sure> Control Panels folder is already open

<Make Sure> Sound control panel is open

Do This Click the name of the sound you want.

Do this step, then you're done.

For this sequence, a Continue panel rather than an Oops panel appears
whenever the user clicks the right arrow button on a panel where the specified
condition is not true.

Using Context Checks

CHAPTER 2

Authoring lips and Suggestions

The introduction panel is the first panel in the sequence. Note that the third,
fourth, and fifth panels all have a <Make Sure> command: the <Make Sure>
command for the third panel specifies that the Control Panels folder be open
and the <Make Sure> command for the fourth and fifth panels specifies that
the Sound control panel be open.

Suppose that the user moves successfully through the first four panels without
receiving an Oops panel; that is, the user opens the Control Panels folder and
Sound control panel so that the conditions on the third and fourth panels are
true. Now assume that, while viewing the fourth panel, the user closes the
Control Panels folder and Sound control panel and then clicks the right
navigation arrow. Because the next panel contains a <Make Sure> command
that specifies that the Sound control panel should be open, Apple Guide
displays an Oops panel. Assume that the user still does not open the Sound
control panel but clicks the OK button on the Oops panel. Apple Guide now
searches backward for the first previous panel in the sequence that either does
not have a <Make Sure> command specified for it or that has a <Make Sure>
command whose condition evaluates to true.

Apple Guide first goes back to the fourth panel, which contains a <Make Sure>
command to specify that the Sound control panel be open. Because this
condition is false, Apple Guide goes back to the third panel, which contains
a <Make Sure> command to specify that the Control Panels folder be open.
Because this condition is also false, Apple Guide goes back to the second panel.
This panel does not contain a <Make Sure> command and is therefore the first
previous panel that Apple Guide returns to.

Designing for Localization

By planning for localization as you design your guide file, you can more
readily prepare your software for worldwide markets. In general, localization
issues revolve around planning for

• cultural differences (such as the cultural significance of the images that you
use for graphics or three-dimensional buttons)

• text that expands when translated to other languages

• specific elements (such as dialog items or folders) whose location or name
changes based on the script in use

Designing for Localization 2-91

I
)>
c:
:T
0
::::!.
:::J

(Q

::1
'0 en
ll)
:::J a.
en
c:

(Q
(Q

CD
21. c;·
:::J en

CHAPTER 2

Authoring Tips and Suggestions

For specific information on various cultural values and loca~ation principles,
see the Macintosh Human Interface Guidelines. This section discusses issues you
should take into account as you design your panels and implement features of
your guide file.

Planning for Expanded Text
When writing your text, consider that U.S. English text can become up to
50 percent longer when translated into another language. Because you want
your panels to remain small and easy to read, keep your panel text as terse as
possible. To avoid expanded text overflowing onto graphics, use relative rather
than absolute positioning when placing objects or graphics on a panel.
(Remember that, by default, Apple Guide wraps the text around graphics
and objects for you.)

Translations for Apple Guide Phrases

Once you design a guide file, part of the localization process involves
translating all the text in your help content. This includes text in panels, text in
radio buttons and checkboxes, topic areas and topics, and index terms. Guide
Maker provides a Localize utility to help you with this process. For information
on using the Localize utility, see the chapter "Localizing Your Guide File." For
information on specific Guide Script commands, see the chapter "Guide Script
Command Reference."

Part of localizing your content for a specific region includes localizing tags
and button text. Table 2-4 shows common translations for Oops, Huh?, Tip, and
Do This.

2-92 Designing for Localization

CHAPTER 2

Authoring Tips and Suggestions

Table2-4 Common translations of Apple Guide terms

Language Oops Huh? Tip Do This
Arobic ~I "l~l.o ~ v.l~l .iA.i

Brazilian Portuguese Oops Hetn? Olea Faca lsto

Bulgarian On a KBo? CbBeT Hanpaeere CAeAHOTO

Croattan Jao! Hm ... Trik Postupak

Czech No tohle Coie Tip Proved'te

Danish Hov Mere Tip Sad an

Dutch Let op He? Tip Doe dit

Finnish Oho Mite? Vinkki Tee nein

French Attention lnfos Conseil Action

German Htnweis Noch Fragen? Ttp Aktion

Hungarian Hopp Tessek Otlet Tegye ezt

Icelandic Ups Ha A bending Gerta j:)etta

Italian Ops Come? Consiglt Fai cosi

Japanese (.,*~tc:~ ~~? l:::,il- Jfd~

Korean Ot:t:t :1~ 1t? HI] 01~1{1

Norwegian ,8, ne1! Hva? Tips Gjsr dette

Polish Bhtd Co? Wskaz6wka Zr6b tak

Romanian Opa Ha Sf at Fa Asta

Russian BHMMaHMe KBK CoseT BbtnO/lHHTe

Spanish IOjo! '-Cue? Consejo Haga esto

Swedish ojda! Mer Tips: Gor sa hiir:

Turkish Our Ne lpucu l~unu Vepm

Formats

Specify font information using <Define Format> commands rather than
embedding font and style information within your source files. When you
export and merge text strings (using Guide Maker's Localize utility) all style
information is lost and any style information directly specified in the source file
must be reapplied.

In general, try to use a small number of formats, such as Tag, Body, and Full.
Using a large number of formats in a panel typically requires that the localizer
readjust the formats to fit expanded text.

Avoid using multiple tags (for example, two Do This tags) on a panel. Using
multiple tags often requires that the localizer line up the translated body text
with the tags.

Designing for Localization 2-93

I
)>
c:
g
0
:::!.
:::J co
=I
i
S»
:::J a.
en
c: co co
CD
~
0
:::J
C/)

2-94

CHAPTER 2

Authoring lips and Suggestions

Graphics and Buttons

Always use relative positioning of graphics, checkboxes, and buttons on
panels; otherwise, translated text can expand and overflow the object.

Do not embed pictures inside a line of text, because if the text grows during
localization, you will have to adjust the placement of the pictures. Figure 2-62
shows an example of a graphic with embedded text that was redesigned for
better localization.

Figure 2-62 Avoiding embedding pictures inside of text

Original Design

To rebuild the Desktop file

Redesign

Hold down ~- rBJ while computer
starts up

To rebuild the Desktop file

Hold down

while computer starts up

Sequence Display Titles

When defining a sequence with the <Define Sequence> command, you must
specify the optional second parameter. If you don't, Guide Maker's Localize
utility won't extract the text string of the sequence display title (and your
localized panels will have the same sequence display title as your original
panels).

Designing for Localization

CHAPTER 2

Authoring Tips and Suggestions

Coach marks
Give your coachmarks meaningful names and include comments in the source
file describing the object being coached. When defining item coachmarks in
dialog boxes, use the DialogiD function rather than specifying a fixed
rectangle coordinate because the item's location might change if the dialog box
is localized.

Context Checks
When using the <Define Context Check> command, always define strings that
need to be translated as having the data type LPSTRING, not PSTRING. Guide
Maker's Localize utility extracts strings that are specified by the type
LPSTRING but not strings specified by the type PSTRING. Don't hard code any
strings in external code modules. Instead, specify the string (with data type
LPSTRING) in the <Define Context Check> command line.

AppleScript
When writing scripts (for use with AppleScript or other scripting languages)
that reference special folders (such as the System Folder, Extensions, or Control
Panels), you don't need to use a path reference to the folder name. Instead, use
the built-in folder constants (extensions folder, control panels
folder, or system folder). See the AppleScript Finder Guide for more
information on these and other folder names.

Designing for Localization 2-95

)>
c:
st
0
::::!.
::::1 co
=I

"C
(JJ

Q)
:::J a.
en
c: co co
<D
!'! s·
::::1
(JJ

CHAPTER 3

Planning Your Help Content

Contents

Determining and Creating Your Guide File Content 3-3
Determining Appropriate Content for Your Guide File 3-4
Creating Topic Areas and Topics 3-4
Using Flowcharts to Design Your Guide File Panels 3-7

Helping the User Search 3-12
How Apple Guide Stems 3-13
How Apple Guide Matches Search Phrases With Topics 3-15
Creating a Guide File Index and Associated Lists 3-19

Creating a Guide File Index 3-20
Invisible Index Terms 3-22
Creating an Ignore List 3-23
Creating an Exception List 3-24
Creating a Synonym List 3-24

Contents 3-1

CHAPTER 3

Planning Your Help Content

You'll find developing your help system much easier if you plan the content
and organization of each guide file before you prepare it with Guide Script.
First, include time in your online development schedule to determine your
guide file topic areas and topics, to break them into panels and sequences, and
to design your help instructions. Then develop your guide file in a hard copy
format-for example, a series of flow charts or story boards-that can serve as
your road map during the scripting phase. If you create a guide file using the
Full Access window, you also need to plan and create Index and Look For
content.

This chapter helps you with all of these tasks. It describes the type of content
that is best suited for your guide files. It then explains how to derive topic areas
and topics from existing reference documentation. Next, it shows how to break
these topic areas and topics into panels and sequences using flowcharts. It
concludes with information on creating a guide file index and Look For
features. This information includes a description of how Apple Guide matches
user search phrases to topics using the guide file index, three additional lists of
terms, and a process called stemming.

You should read this chapter if you are designing or scripting a guide file.

Determining and Creating Your Guide File Content

The first step in developing a guide file is to determine its content. This section
suggests a two-part approach to that task. First, determine the content that
your guide files should contain. Next, if possible, analyze a list of headings
derived from existing reference documentation to determine topic areas and
topics.

Note
The help focus and content differ for each of the five guide
file types-About, Tutorial, Help, Shortcuts, and Other
supported by Apple Guide. For example, the About,
Shortcuts, and Tutorial guide files generally contain a
small number of one-level topics, whereas the Help guide
file contains an extensive number of multilevel topics. If
you are not already familiar with the content requirements
for each guide file, see Chapter 2. •

Determining and Creating Your Guide File Content 3-3

3-4

CHAPTER 3

Planning Your Help Content

Determining Appropriate Content for Your Guide File
Remember that not all material is appropriate for your guide files. In general,
place in your guide files any information that answers these questions:

How do I accomplish this task?

Why can't I accomplish this task?

What is the meaning of this term?

Other information is usually better presented in reference documentation. This
information includes instructions that the user needs when the computer is not
turned on or working properly, or overly complex material. For example, do
not include in your guide files

• installation instructions (for example, how to install your application or any
other application used with it)

• extensive reference material (for example, a complete programming
language reference)

• safety information (for example, how to avoid injury)

Creating Topic Areas and Topics
If you have reference documentation for your application, you can use its
headings to create your topic areas and topics. Here is an example of the table
of contents from the documentation describing the SurfWriter application:

Copying Text

Pasting Text

Opening a File

Saving a File

Selecting Different Styles for Your Text

Changing Your Default Preferences

Using Dictionaries

Getting Started With SurfWriter

Introducing the Menus

Determining and Creating Your Guide File Content

CHAPTER 3

Planning Your Help Content

Introducing the Toolbar

Introducing Icons

Introducing the Windows

Creating Your First Document

Command Keyboard Equivalents

The first seven headings describe tasks that many users might want to know
about and that would be appropriate content for a guide file of type Help,
which uses the Full Access window. Remember that with Topics selected, the
left column of the window shows topic areas. You therefore need to break the
headings into topic areas, and then topics. For example, you might derive from
those headings the following five topic areas:

Copying & Pasting

Opening & Saving Documents

Styles

Setting Preferences

Using the Dictionary

Notice that in the first two, two headings were combined to make a single topic
area.

You can now break the topic areas into one topic or several topics. For example,
you might break the topic area "Using the Dictionary" into the following topics:

How do I add a word to the dictionary?

How do I look up a word?

How do I create a custom dictionary?

How do I add or remove a dictionary?

In contrast, the eighth heading of the SurfWriter manual- "Getting Started
With SurfWriter"- and its five subheadings-"Introducing the Menu,"
"Introducing the Toolbar," "Introducing Icons," "Introducing the Windows,"
and "Creating Your First Document" -contain information that introduces
users to basic features of the application. It is therefore more appropriate
information for a Tutorial guide file than for a Help guide file. Here, you
typically use a Single List Access window, which presents a small number of

Determining and Creating Your Guide File Content 3-5

3-6

CHAPTER 3

Planning Your Help Content

focused topics. For example, from the five subheadings you can create a
Tutorial with these topics:

Using Menus

Using the Toolbar

Using Icons and Windows

Creating a Document

Finally, the ninth heading- "Command Keyboard Equivalents" -contains
a list of keyboard commands for various application features. Such quick
reference information belongs in a Shortcuts guide file, using either a Single
List or Simple Access window. You can create, for example, a Simple Access
window with three-dimensional buttons that lead to the following topics:

Working with Menus

Working with the Toolbar

Working with Icons

Working with Windows

Editing Your Document

Note
If possible, minimize the number of topic areas and topics
in the access window so that the user does not have to
scroll the columns to view them. +

Determining and Creating Your Guide File Content

CHAPTER 3

Planning Your Help Content

Using Flowcharts to Design Your Guide File Panels
One way to plan your guide file content is to create a flowchart, in which guide
file components are represented by graphic elements (for example, a topic is a
circle shape, a related panel is a rectangle shape, and a branch point is a
diamond). With a flowchart, you can easily view the organization of your
guide file, including the topics under each topic area, the tasks under each
topic, the branches in a single sequence of panels, and the panels shared among
different sequences.

To create a flowchart, you should know how to

• design a sequence

For example, you should know the difference between the first and second
levels of panels in a sequence. For more information, see "Designing a
Sequence" beginning on page 2-66.

• use the panel types recommended by Apple for different categories of
help instructions

For example, you should know when to use an action panel. For more
information, see "Designing Panel Types" on page 2-50.

• determine context checks

For example, you should be able to determine whether Apple Guide should
skip a panel if the condition on it is true. For more information, see "Using
Context Checks" on page 2-83.

If your guide file uses a Single List or Simple Access window, you need to
create flowcharts that show each topic and its related panels. If your guide file
uses a Full Access window, you need to create flowcharts that also break topic
areas into topics. Figure 3-1 contains a flowchart for the topic area "Setting
Preferences," which appears in the SurfWriter Full Access window.

Determining and Creating Your Guide File Content 3-7

3-8

CHAPTER 3

Planning Your Help Content

Figure 3-1 A flowchart that breaks topic areas into topics

Using the
dictionary

The flowchart breaks the topic into four separate topics, with a circle
representing each one. This flowchart is simple and therefore requires few
graphical elements. To break each of these topics into a sequence requires more
complex elements, as shown in Figure 3-2.

Determining and Creating Your Guide File Content

CHAPTER 3

Planning Your Help Content

Figure 3-2 A typical flowchart

I Topic

Additional
Introductory panel

~ information
Hot text Definition

I
<.=j=_Huh?)

D
Branch Branch

Additional Context check _L <==:J Decision panel c=:) I Context check

information Action panel
~ Related topics

T Action panel

Additional ¢=X Huh?)
Information

(Continue) v
(Continue) k== Context check I I Context check b "

ll Action panel Action panel
J)

I

I Context check t=:>
(Continue)

Action panel J)
(TiP) ~ ~ Additional

Information

Key

0 First level Closure panel

I D Second level

Determining and Creating Your Guide File Content 3-9

3-10

CHAPTER 3

Planning Your Help Content

One of the topics shown in Figure 3-1- "How do I create a custom
dictionary" -is broken into a sequence that contains two branches,
shown in Figure 3-3.

Determining and Creating Your Guide File Content

CHAPTER 3

Planning Your Help Content

Figure 3-3 A flowchart for a SurfWriter sequence on creating a custom dictionary

ftei•E'.d •ppi~ittPW~· How do I create •••

Key

D First level

[j Second level

Do This Open folder
Related topics

How do I create •••

Do This Double-click
the script. ..

How do I create •••

Custom dictionary
completed

Manual

<Skip If>
dictionary
window is active

How do I create •••

Do This Choose
dictionary

How do I create •••

Determining and Creating Your Guide File Content 3-11

CHAPTER 3

Planning Your Help Content

In this example, one branch shows the user how to create a custom dictionary
manually, and the other branch shows the user how to create a custom
dictionary using a script. Notice that the first two panels in the sequence-the
introductory and decision panels-are shared because they apply to both
branches in the sequence. The introductory panel introduces the user to
the topic, and the decision panel presents the user the choice of creating the
dictionary using either the menu command or the script method. Until the last
panel is reached, the next panels for each branch contain information specific
to each branch and are therefore not shared. The last panel tells the user
information that applies to both branches-specifically, that the dictionary
contains the new word-and is therefore shared.

The flowchart also shows the required context checks. Notice that the two
Continue panels on the right are for the same condition and could therefore
be a shared panel. For more information on specifying context checks, see
Chapter2.

Helping the User Search

3-12

The Look For feature provides a powerful search facility that, in combination
with information you provide, allows the user to enter one or more words
even a complete sentence-and obtain a list of topics related to a given search
phrase. For example, when a guide file contains an index and Look For content,
the user can give Apple Guide a phrase such as "print", "printing documents",
or "How do I print my documents", and receive a list of topics related to that
task.

With Look For features selected in the Full Access window, the user can enter
a search phrase in a search phrase entry box located in the left column of the
window. After receiving the search phrase, Apple Guide searches the guide file
index for one or more matching entries. (The guide file index contains entries
that point to each guide file topic and is the same one you must create to
appear in the left column of the Full Access screen when the user selects Index
features.) If found, Apple Guide displays the associated topics in the right
column of the window.

Apple Guide automatically reduces common word variations in search phrases
to their root words. For example, Apple Guide reduces the word "copying" to
II copy". This process is known as stemming. To further enhance the

Helping the User Search

CHAPTER 3

Planning Your Help Content

effectiveness of the Look For feature, you should provide Apple Guide with
three lists: ignore, exception, and synonym. With these lists, you can control
whether Apple Guide stems certain user search phrases and ensure that Apple
Guide finds matches for search phrases containing terms not found in the
index.

• The ignore list contains words that Apple Guide should remove if they
appear in the user search phrase. For example, you can tell Apple Guide to
remove from the search phrase the words "How", "do", and "1", which
appear in the topic headings recommended by Apple.

• The exception list contains words that you do not want stemmed and words
whose stemmed version matches another index term.

• The synonym list contains words that have identical meaning to index
terms but that do not appear in the index. For example, you can make the
word "clone" a synonym for the index term "copying".

You need to create your guide file index in a way that best accommodates the
use of these lists. In addition, you can also create invisible index terms. Apple
Guide uses these terms to match search phrases with topics that do not appear
in Apple Guide's visible index.

If you do not create your index properly or create the associated lists, your
users are likely to encounter significantly more failed searches.

How Apple Guide Stems
Apple Guide stems the user's search phrases by removing suffixes from words.
These suffixes include "ion", "al", "s", "ies", "ing", "ed", "ize", and double
occurrences of the same letter, for example, "ll". In some cases, Apple Guide
automatically adds an "e" to the end of the stemmed word. For example, Apple
Guide stems "filing" by removing the "ing" but then adds an "e" to the result
("fil") to create the word "file".

Apple Guide also automatically stems punctuation for the user's search phrase.
For example, "random-access memory" becomes "random access memory".

Helping the User Search 3-13

CHAPTER 3

Planning Your Help Content

Table 3-1 shows some words that Apple Guide stemmed. You can also use
Guide Maker's Test Look For utility to see how Apple Guide stems words and
parses phrases.

Table 3-1 Some words stemmed by Apple Guide

Stemmed suffix Search word Stemmed word

ion Definition Definit

al Retrieval Retriev

s Privileges Privilege

ies Utilities Util

ing Removing Remov

ing, 11 e" added Typing Type

ing, 11 e" not added Pasting Past

double letters Trackball Trackbal

ed Shared Share

er + ing Recovering Recover

ize Organize organ

IMPORTANT

Apple Guide uses the stemming methods described
here only for guide files that specify the command
<WorldScript> 0,0. By default, Apple Guide does not
perform stemming for non-Roman and non-U.S. scripts.
For additional information on localization, see "Designing
for Localization" beginning on page 2-91. .&

3-14 Helping the User Search

CHAPTER 3

Planning Your Help Content

How Apple Guide Matches Search Phrases With Topics
After Apple Guide receives a search phrase from the user, it tries to find a
match by looking in the index and in the associated ignore, exception, and
synonym lists. Figure 3-4 shows the actions Apple Guide typically performs
after receiving a search phrase.

Helping the User Search 3-15

CHAPTER 3

Planning Your Help Content

Figure 3·4 An Apple Guide search in response to a search phrase

:·;=======;;.;;· ··;.;;··-;;.;;;···;.;;····=-····=····=··-,· •........ ·······-····-···············-···--····-····-···----····--·--·--··--······-······· ················-·-··--···-·-·-·. ··-·······-

•

. User enters a phrase

~--------------

Ill;~~~~------------~ Removes words on
ignore list (if any)
and returns
resulting phrase

xceptlon list

~~-----------,
- Stems words not found
_ on exception list and
_ returns resulting phrase

Synonym list

~~------------~
"¢

Replaces phrase
with synonymous
phrase (if any)

Index I Match not Match
I> ~..,_,f:.:;ou::.:.n.:.:d.__-+-.....::f....,ou::.:.n ... d_-t.

~ Checks
-- indexfor ---- phrase

Displays
topics

Synonym list

~~----------~
~

Replaces each word
with its synonymous
term (if any)

Index I Match not Match
~.1 found found k!> ...,.._:C~he=c..:.::ks:...._--+-.....:..:;='---t.

Displays
===-- index for topics
-- phrase

Index M h
• ~JL.:.:~:.:~::..:.~d:..h_n_ot-+1:.:;0.::;~~~cd=--__.

3-16 Helping the User Search

'\;~ Checks
"""V' index for

each word

Displays
topics

CHAPTER 3

Planning Your Help Content

Notice that Apple Guide first checks the ignore list and removes designated
ignore words, if any, from the search phrase. Next, Apple Guide checks the
exception list to see which words it should not stem in the resulting phrase.
Apple Guide then stems other words in the phrase, if appropriate.

Now Apple Guide searches the synonym list for the phrase. If it finds a
synonym, it replaces the phrase with the equivalent phrase and searches the
index for a match. If Apple Guide finds a match for the entire phrase, it
displays the associated topics; otherwise, it searches the synonym list for each
word in the phrase and replaces each one with its index term equivalent. It
then searches the index for the phrase and, if found, displays topics. If not
found, it creates a list of topics for each word in the phrase, and displays the
intersection of these lists.

If Apple Guide cannot find a match for one word in a multiple word search
phrase, the entire search fails, and it displays a message telling the user to try
again. Apple Guide's success matching multiple word search phrases depends
on how effectively you use the synonym list.

For example, suppose that you have provided Apple Guide with these ignore
and synonym words:

Ignore words

how

do

I

my

Synonym words

print = printing

file = documents

Now suppose that the user enters the search phrase "How do I print my files?"
Figure 3-5 shows how Apple Guide searches for topics to match this phrase.

Helping the User Search 3-17

~
<D -o
("')
0
3.
<D
3.

CHAPTER 3

Planning Your Help Content

Figure 3-5 A typical Look For search

How do I print my files?

Ignore list

~~------------~

'~- "print files"

3-18

Exception list I Stems words
- u

~ __ "print file"

I
No match found I

Synonym list for phrase
-~-_.----~----~

~tv "print file"

J No match found I Index
1' r-----to.. for phrase
~ u~--------~----~

~ "print file"

I
Checks for

.: Sy~lst eachword J ':, -~

\.~ "printing" "documents"

Index I Checks index I
-~--~--~ro~rp~h~m~s~e--~

~- ''printing documents"

Index

urv--R-e-tu_m_s-in-t-ers_ect __ i_on--of....,

l~ "printing"and
'-'V -- "documents"

Helping the User Search

CHAPTER 3

Planning Your Help Content

For this example, Apple Guide performs the following steps:

1. Apple Guide removes from the search phrase the four words specified in the
ignore list ("how", lido", "I", and 11my"). The resulting phrase is "print files".

2. Apple Guide checks the exception list to verify which words in the phrase
"print files" it should not stem. The phrase contains no exception words.

3. Apple Guide stems the word "files" to "file". The resulting phrase is "print
file".

4. Apple Guide searches the synonym list for the entire phrase "print file" and
finds no synonyms. The phrase remains "print file".

5. Apple Guide searches the index for the phrase "print file".

6. Apple Guide searches the synonym list to match each word in the phrase. As
a result, it replaces the word "print" with "printing", and replaces the word
"file" with "documents".

7. Apple Guide searches the index for a match for the entire phrase, "printing
documents", but doesn't find it.

8. Apple Guide searches the index for each word in the phrase "printing
documents" (that is, "printing" and "documents") and finds matching index
terms.

9. Apple Guide displays the intersection of these topics.

The rest of this section gives you guidelines for creating an index and the three
associated lists. Apple strongly recommends that you also use the Look For
feature in Guide Maker to test and develop your Look For content. For more
information, see Chapter 6 in Part 2.

Creating a Guide File Index and Associated Lists
Your guide file index completes two features of the Full Access screen; it
appears in the left column of the screen when Index features are selected, and
Apple Guide uses it to associate user search phrases with topics when Look For
features are selected. When you create a guide file index, you need to consider
both these uses. For the Index feature, you should create index terms that
correspond appropriately to your guide file content. For the Look For feature,
you should determine the effects of Apple guide stemming and the interaction
of the three associated lists-ignore, exception, and synonym-on the index

Helping the User Search 3-19

3-20

CHAPTER 3

Planning Your Help Content

terms. If you do not understand all these components, you will get unexpected
or erroneous results.

The rest of this section provides guidelines for creating a guide file index,
including the use of invisible index terms. It then describes each of the
associated lists.

Creating a Guide File Index

To retrieve topics for the user when Look For or Index features are selected in
the Full Access screen, Apple Guide uses a guide file index. A guide file index
is a list of terms you create that point to the topics appearing in the right
column of the Full Access window.

If you have created an index for reference documentation, you are probably
familiar with common indexing conventions. You generally create an index
entry for all nouns or noun phrases that name a topic, and use conjunctions
and prepositions only to clarify the relationship between a main entry and
subentry. For example, to create an index entry for the section "Files and
Folders", you ignore the word "and" and create a separate index entry for the
words "files" and "folders". Your index typically includes entries for incorrect
terms with a reference to the correct index term. For example, an index can
include an entry that says "site dictionary, see dictionary."

In contrast, your guide file index consists of only main index terms and no
subentries, a practice that virtually eliminates the use of conjunctions and
prepositions. In addition, you generally create index terms only for words that
actually appear in your topics. To accommodate user search phrases containing
terms that do not appear in the index, you generally create synonyms. For
more information, see "Creating a Synonym List" beginning on page 3-24.

You create guide file index terms using nouns, noun phrases, and verbs that
name topics. In general, use the plural form of the noun, even if it does not
appear in the topic name. For example, for the topic "How do I save a memo?",
use the plural form "memos" for the index term. Similarly, use the form of the
verb that ends with "ing", even if it does not appear in the topic name. For
example, for the topics "How do I save my files?" and "How do I open a file?",
use the forms "saving" and "opening" for index terms.

Helping the User Search

CHAPTER 3

Planning Your Help Content

Table 3-2 shows some sample topics and their associated index terms.

Table 3-2 Examples of index terms derived from sample topics

Topic

How do I save my document?

How do I add a word to the dictionary?

How do I create a memo?

How do I edit my files?

How do I copy my files?

How do I set the default margins?

How do I set the page number prefix?

How do I set default footer text?

How do I set automatic page breaks?

How do I print my document?

Index terms

saving, documents

dictionary

memos

editing, documents

copying, documents

margins

page numbers

footers

page breaks

printing, documents

As you create your index, you need to answer the following questions:

• Does Apple Guide stem the term?

• Does the term have other forms? If so, are the stemmed versions of these
forms inappropriate?

• Does the term have a plural form?

• Is there an alternative word, spelling, abbreviation, or acronym for the term?

If the answer to any of these questions is yes, then create a synonym for the
word. (You can also use the exception list or invisible index term.) For example,
consider the index term "printing". Apple Guide stems this term to "print".
The term "printing" has other forms, "print" and "prints", which Apple Guide
also stems to "print". To match these words to the appropriate index term, you
can specify that "print" is a synonym for "printing".

Alternative words or phrases that the user might enter for "printing" include
"print command", "printer", and "spool". By specifying each of these words as

Helping the User Search 3-21

3-22

CHAPTER 3

Planning Your Help Content

synonyms for the index term "printing", you can allow the user greater
flexibility in entering search phrases and increase Apple Guide's ability to
provide a successful match.

For complete information, see "Creating a Synonym List" beginning on
page 3-24, as well as the next section.

Invisible Index Terms

When users view the guide file index in the left column of the Full Access
window with Index features selected, they should see only index terms that
correspond to the terms used in the guide file topics. The terms in the left
column are visible index terms. To accommodate Look For search phrases that
do not correspond to actual index terms, use invisible index terms. Although
an invisible index term does not appear in the left column of the Full Index
screen with Index selected, Apple Guide uses the term to match a search phrase
with guide file topics.

You should use invisible index terms to have Apple Guide provide results that
it cannot derive from the synonym list or through normal intersections of
topics. For example, you should create an invisible index term to have Apple
Guide

• Accommodate search phrases that the user is likely to enter but that have
no corresponding index term or appropriate synonyms. For example, if the
word "customizing" is not synonymous with any index terms and Apple
Guide cannot retrieve any of its associated topics through an intersection
of other words, make it an invisible index term.

• Provide logical topic groupings that Apple Guide cannot derive from
intersections. For example, suppose you specify "bitmap font" as a synonym
for "fonts" and "bitmap graphic" as a synonym for "graphics", and the
index terms have no topics in common. In this case, you can create an
invisible index term for "bitmap" that includes relevant topics from the
index terms "fonts" and "graphics".

• Provide topics if the user enters a search phrase that describes topics by class
rather than by their specific names. For example, if the user enters the search
word "tips", you would provide all tip sequences in the guide file.

Helping the User Search

CHAPTER 3

Planning Your Help Content

Creating an Ignore List

You should place in the ignore list words that you want Apple Guide to remove
if they appear in the user search phrase. In general, these words should be ones
that the user is likely to enter as a search phrase but that are inappropriate as
index terms and do not warrant synonyms. The list should generally include

• all words from the phrases in your topic headings (for example, ''how",
"do", and "I")

• other words commonly used in search phrases

• contractions ("didn't", "doesn't", "don't")

• prepositions ("of", "with", "in", "on", "without", "during", "except", "for",
"from")

• adverbs ("especially", "exactly", "frequently", "forward")

• articles ("a", "an", "the")

• adjectives ("each", "entire", "few", "fewer", "first")

• conjunctions ("and", ''but", "than")

• pronouns ("everything", "each", "my", "that", "those", "their", "these",
"your", 11its")

Note
Apple Guide automatically ignores numerals. +

For example, Table 3-3 shows the ignore words for some sample guide file
topics.

Table 3-3 Example of ignore words derived from sample topics

Topic

How do I save my document?

How do I add a word to the dictionary?

How do I create a memo?

How do I edit my files?

Ignore word candidates

How, do, I, my

How, do, I, a, to, the,

How, do, I, a

How, do, I, my

continued

Helping the User Search 3-23

3-24

CHAPTER 3

Planning Your Help Content

Table 3-3 Example of ignore words derived from sample topics (continued)

Topic

How do I set the default margins?

How do I set the page number prefix?

How do I set default footer text?

How do I set automatic page breaks?

How do I print my document?

Creating an Exception List

Ignore word candidates

How, do, I, set, the

How, do, I, set, the

How, do, I, set

How, do, I, set

How, do, I, my

In the exception list, you should place only words that you do not want
stemmed and for which the stemmed version matches another index term. For
example, assume that you specify 11 custom" as a visible index term and
11 customizing" as an invisible index term, with different topics associated with
each index term. To prevent Apple Guide from stemming II customizing" to
11 custom", you should place 11 customizing" on the exception list.

You should use the exception list for no other reason. To handle unwanted
effects of stemming, you generally should use the synonym list (described
next). By default, Apple Guide does not use the exception list for non-Roman
and non-U.S. script systems.

Creating a Synonym List

In the synonym list, you should place words that have identical meaning
to index terms but that do not appear in the index. You generally use the
synonym list more than the exception list or invisible index terms. It provides
the most efficient method for handling unwanted effects of stemming and
incorrect usage in search phrases.

You can create a synonym for regular and invisible index terms. You can also
create a multiword synonym for an index term that is a compound phrase.
When you do, however, the search obtains the expected result only if the user
search phrase is the exact multiword synonym, with no other words.
You should use these guidelines to create a synonym:

• For an index term that Apple Guide stems, specify its stemmed version as a
synonym to that index term. For example, Apple Guide stems the term

Helping the User Search

CHAPTER 3

Planning Your Help Content

"editing" for "edit". You therefore specify the word "edit" as a synonym
to ''editing". This convention applies to all plural forms of index terms,
which Apple Guide stems to the root word. For example, Apple Guide stems
the term "formats" to "format". You therefore specify "format" as a
synonym for "formats". (Optionally, you can place a plural form of the index
term on the exception list or create an invisible index term for the stemmed
version.) Follow this convention even if the stemmed version of the index
term is not an actual word. For example, Apple Guide stems the word
"searching", to "searche". You should therefore specify "searche" as the
synonym for "searching", even though it is an incorrect spelling.

• For an index term that has other forms that do not stem appropriately or
match the term, specify these forms as synonyms for that index term. For
example, the index term "retrieving" uses the forms "retrieve", "retrieves",
and "retrieval". Apple Guide stems "retrieving" to "retreiv", "retrieval" to
"retreiv", and "retrieves" to "retrieve", but it does not stem the word
"retreive". To ensure that Apple Guide finds a match if the user enters any
of these three forms as search phrase, specify "retriev" and "retrieve" as
synonyms for "retrieving." In some cases, you need only one synonym to
cover several forms. For example, Apple Guide stems both "printing" and
"prints" to "print". You can therefore cover all forms of "printing" by
specifying "print" as its synonym.

• For an index term that has the same meaning as other words not included
in the index, specify the other words as synonyms to that index term. For
example, a user might enter the search phrase "duplicate" instead of the
index term "copying". Note that "duplicate" is itself stemmed to II duplic";
therefore specify "duplic" as a synonym for "copying".

• For an index term that has alternative wordings or spellings, specify these
as synonyms for the correct term. For example, specify "catalogue" as a
synonym for "catalog" and specify "tool bar" as a synonym for "toolbar". If
Apple Guide does not appropriately stem the alternative word, specify a
synonym for this stemmed version.

• For an index term that has an abbreviated version, make it a synonym for
the index term. For example, specify "info" as a synonym for "information".

• For an index term that has a foreign word with the same meaning, make the
foreign word a synonym.

Helping the User Search 3-25

3-26

CHAPTER 3

Planning Your Help Content

• For an index term that has an acronym, specify the acronym as a synonym
for the spelled out version. For example, specify "RAM" as a synonym for
"random access memory".

• For an index word that has a slang word with the same meaning, make the
slang word a synonym for the index term. For example, specify "crash" as a
synonym for "system failure".

Table 3-4 shows synonyms derived from sample topics.

Table 3-4 Examples of synonyms derived from sample topics

Topic Index terms Synonyms

How do I save my document? saving save

How do I add a word to the site dictionary site dictionary
dictionary?

How do I create a memo? memos memo

How do I edit files? editing edit

How do I set the default margins? margins margin

How do I set the page number prefix? page numbers page numbers

How do I set default footer text? footers footer

How do I set automatic page breaks? page breaks page breaks

How do I print my document? printing print

Helping the User Search

PART TWO

Building Guide Files

CHAPTER 4

Introduction to Guide Maker

Contents

Guide Maker Overview 4-5
Which Chapter Should I Read? 4-8

Contents 4-1

CHAPTER 4

Introduction to Guide Maker

In Part 1 of this book, you learned about Apple Guide and about designing
your Apple Guide online assistance. This part of the book describes how to

• create your online assistance (build your guide file)

• ensure that your online assistance works as you expect (test your guide file)

• get your online assistance ready for the global market (localize your guide
file)

• make your Windows help files available for the Mac OS (convert to Guide
Script files)

The CD-ROM accompanying this book contains an application, called
Guide Maker, that you can use to build, test, localize, and convert your online
assistance. (You can find Guide Maker in the Apple Guide:Authoring folder.)
Figure 4-1 illustrates these four tasks and shows the role Guide Maker plays
in accomplishing them.

4-3

4-4

CHAPTER 4

Introduction to Guide Maker

Figure 4-1

Script

~
Untested
guide file

Local

Windows help fi le

Building, testing, localizing, and converting your online assistance using
Guide Maker

Build Guide file

[I
Test Guide file

q ~
Localize

Global

..

~·
Convert

•
Guide file

The next section gives an overview of Guide Maker.

CHAPTER 4

Introduction to Guide Maker

Guide Maker Overview

When you launch Guide Maker, besides the menus, you see a palette with five
buttons. This palette represents the Utilities menu graphically and gives you
another way of selecting that menu's utilities. To access a utility, you can click
the button that represents it in the palette or choose it from the menu itself (see
Figure 4-2).

Figure 4-2 Accessing Guide Maker's utilities

• File Edit Reports
Build
Test look For
Diognose
Conuert
locolize

Build [ll] Import Resource~ ...
E11port Guide file •..
Menu Rppeoronce ...

Test Look For ·~ Hide Polette

Diagnose ~
Convert ~
Localize ~

Guide Maker Overview 4-5

4-6

CHAPTER 4

Introduction to Guide Maker

Here's how your four tasks correspond to the five Guide Maker buttons:

• To build your ~ide file, use the Build utility.

• To test your guide file, use the Test Look For or the Diagnose utility (the
difference between these two utilities is described in the chapter "Testing
Your Guide File").

• To localize your guide file, use the Localize utility.

• To convert a Windows help file to a Guide Script file, use the Convert utility.

When you select a utility, Guide Maker displays a window specific to this
utility and adds a corresponding menu to the menu bar. For example, if you
choose the Build utility, Guide Maker displays the Build window and adds the
Build menu to the menu bar. To accomplish your building tasks, you can use
either the commands in the Build menu or the buttons in the Build window.
Figure 4-3 illustrates the menus associated with Guide Maker's utilities.

Guide Maker Overview

CHAPTER 4

Introduction to Guide Maker

Figure 4-3 Using Guide Maker's menus

Compile... 3€K
Compile Check SynhiH Only ...

Set Compile Options ...

Go Ponel ...
Go Sequence ...

Preu Ponel 3€<
NeHt Ponel 3€>

I o

II

Seorch

Log Results

Select Windows Help File ...
Select Script File ...

Conuert

Select Script Source File ...
Select TeHt Resources Folder ...
Select Librory File ...
Select Merge Folder ...

EHtroct
Merge

I "II

Scopes & Keys
Nomes to IDs
I ndeH Sort Strings

Guide File Info ...

(Not associated with the
Guide Maker palette)

Note that the Reports menu, shown to the right in Figure 4-3, is not directly
associated with any of the utilities. It is, unlike the other menus, always visible
in the menu bar. (The Reports menu is discussed in the chapter "Testing Your
Guide File.")

Guide Maker Overview 4-7

•

CHAPTER 4

Introduction to Guide Maker

Which Chapter Should I Read?

4-8

You are now ready to read the rest of Part 2.

• If you have designed and described your online assistance and want to build
a guide file, see the chapter "Creating Your Guide File."

• If you have created a guide file and you want to test its operation, see the
chapter "Testing Your Guide File."

• If you have built a guide file and want to make it available in another
language, see the chapter "Localizing Your Guide File."

• If you have created online help for Windows and want to make it available
for the Mac OS, read the chapter "Converting Wmdows Help Files."

Which Chapter Should I Read?

CHAPTER 5

Creating Your Guide File

• Contents

Preparing Your Source Files 5-3
Building Your Guide File in Four Steps 5-6
Setting Compile Options 5-8
Checking the Syntax of Your Source Files 5-9
Interpreting the Compile Messages 5-10
Other Utilities 5-11

Importing and Exporting Resources 5-12
Specifying Guide File Information 5-12

Creating a Mixin for Your Guide File 5-13

Contents 5-1

CHAPTER 5

Creating Your Guide File

Once you have designed and scripted your online assistance, you are ready
to create your guide file. This chapter tells you how.

It describes how to

• prepare your source files

• build your guide file (that is, compile your source files into a guide file)

• set compile options

• interpret compile messages

This chapter also describes how you can create a mixin for an existing guide
file.

To get the most out of this chapter, you should have a basic understanding of
Apple Guide, know how to script a Guide Script source file, and be familiar
with the Guide Maker application. For more information on these subjects,
see Part 1, Part 4, and the first chapter of Part 2, respectively.

Preparing Your Source Files

If your help content contains more than one panel sequence, you have most
likely described it in multiple source files. For example, you might have a
couple of source files that describe the panels and sequences, and a resource file
that contains pictures for your panels. If you have divided your help content
into multiple files, you need to merge the content together when you build
your guide file.

Note
If your help content is in only one source file, you do not
need to read this section. Instead, you can proceed to the
next section; it describes how to build your guide file. +

To combine the help content together you need to create a fil~alled a build
file-that merges together all of your source files. A build file is a source file
that contains only <Include> and <Resource> commands. You use the
<Include> command to specify your source files and the <Resource> command
to specify a file containing resources for your guide file. (For more information
on these commands, see the chapter ~~Guide Script Command Reference" in
Part 4 of this book.)

Preparing Your Source Files 5-3

(')

<D a :r
co

~
c:: ..,

5-4

CHAPTER s·

Cireating Your Guide File

For example, if you split your help content into two source files, you need
to create a build file that specifies both of these files. Figure 5-1 illustrates a
working example of a build file and its accompanying source files. This build
file specifies five source files that describe

• the topic areas and topics of the guide file

• the panels and sequences for the guide file

• the index terms of the guide file

• the basic setup information for the guide file (the Standard Setup file)

• the resources used by the guide file.(the Standard Resources file)

The two standard files, Standard Setup and Standard Resources, are provided
with Guide Maker. The Standard Setup file contains the Guide Script
commands that give basic information about a guide file, such as prompt
set definitions, navigation bar button definitions, and format definitions for
placing objects and text in your panels. The Standard Resources file contains
the 1 PICT I resources that describe the GoStart and Huh? buttons, and a
sample application logo. The file also contains external modules for context
checks. If you include the Standard Setup and Standard Resources files in your
build file, you can automatically use these definitions and graphics in your
guide file. For more information on these two files, see Appendix C.

Note
When you build your guide file, you must place any files
referenced by <Include> or <Resource> commands in the
same folder as your build file. If the files (or an alias to
each of the files) are not in the same folder, you will not
be able to build your guide file. •

The next section describes how to build your guide file.

Preparing Your Source Files

CHAPTER 5

Creating Your Guide File

Figure 5-1 Creating a build file

Build file

#Build file
<Include> "Topic Areas source file"
<Inc 1 ude> 11 Panel & Sequence source f i 1 e" -11------1---....,

<Include> "Index terms source file"
_r-r <Include> "Standard Setup"

/'r <Resource> "Standard Resources", All

Topic Areas source file

#Topic Areas source file
<Topic Area> "Sample topic area"

<Header> "How do I"
<Topic> 11 dO some task?", "Task"

Panel & Sequence source file

#Main source file
<Help Menu> 11 MySample Guide", HELP, "?"
<Startup Window> FULL, TOPICS

<Define Panel> "My Panel"
Here is some text for My Panel.
<End Panel>

<Define Sequence> "Taskn, "Sequence title"
<Seq Nav Button Set> "GoStart Only"

<Panel> "My Panel"
<End Sequence>

Standard files

Preparing Your Source Files

Index terms source file

#Index terms
<Index> "Sample index term"

<Header> "How do I"
<Topic> "do some task?", "Task"

5-5

(j)
r:::
a:
CD

!! co

CHAPTER 5

Creating Your Guide File

Building Your Guide File in Four Steps

Build

5-6

To build a guide file is a four-step process using Guide Maker's Build utility.
Figure 5-2 illus trates the Build window (Guide Maker's building interface).
Note that the steps in the illustra tion refer to the first three steps of the build
process.

Figure 5-2 Building your guide file using Guide Maker's Build utility

Step 1

I
Build

Saurlefle: I Guide fie:

I

I
...

I y

Step3

To build your guide file, follow these four steps:

1. Select the source file to compile.

Building Your Guide File in Four Steps

Step2

I

I
I

~

~

CHAPTER 5

Creating Your Guide File

Click in the Source File area of the Build window (see Figure 5-2); a standard
file dialog box appears, requesting that you select the source file to compile.
Select your build file. When you compile your build file, Guide Maker
merges all of your help content together and writes it to your guide file. If
you don' t have a build file (that is, if your help content is described in only
one source file) then select that source file as the file to compile.

2. Select the guide file.

Click in the Guide File area of the Build window (see Figure 5-2); a dialog
box appears, requesting that you create a new guide file or select an existing
one.

If you have never built a guide file before, or if you want to build another
version of your guide file, click the "Create a new guide file" radio button
and then name the new guide file. A new guide file is empty, meaning that
it does not contain any help content. When you build with a new guide file,
you simply add your help content to this previously empty guide file.

If you want to override the help content in an existing guide file, click the
"Open an existing guide file" radio button and then select the guide file.
When you build with an existing guide file, you override the previous
content in the guide file with the content specified in the current source files.

3. Click the Compile arrow.

Guide Maker qegins to compile your source files, reporting status and error
messages in the status area of the Build window. Figure 5-3 shows the
messages reported by Guide Maker after a successful compile.

Figure 5-3 A successfully compiled guide file
-------------=--

BegiMing compilation of " Build file • into guide file on 10/12/ 94 at 11 :31 AM.
Compilation of "Build file • successful on 10/ 12/94 at 11 :3 1 AM.

Building Your Guide File in Four Steps 5-7

•
G)
c
0:
ro
::!1
ro

CHAPTER 5

Creating Your Guide File

4. Save the guide file.

After you have successfully compiled your source files into a guide file,
choose Save from the File menu to .save it. (To automate this step, see the
next section.)

"Congratulations! By following the build steps, you have just created a guide
file. To make the created guide file available for your application, place it (or
an alias to it) in the same folder as the application.

Setting Compile Options

5-8

By specifying compile options, you can adjust the compile process to fit your
needs. For example, you can specify when you want Guide Maker to save your
guide file-whether you want it to save it immediately after your guide file has
finished compiling or when you choose Save from the File menu.

To set compile options, select the Set Compile Options command from the
Build menu; Guide Maker displays the compile options dialog box shown in
Figure S-4.

Figure 5-4 Compile options dialog box showing default settings

Set Compile Options:

181 Create symbols file

D Rutosaue guide file after compile

D Warn when panels are split

181 Remember last source and guide file used

[Cancel) ([OK Jl

Figure 5-4 illustrates the default compile settings. Depending on your compile
needs, you can select and deselect any of these compile settings.

Setting Compile Options

CHAPTER 5

Creating Your Guide File

• Create symbols file. A symbols file contains symbolic information that
you use when you test your guide file. If you don't create a symbols file, you
won't be able to generate the test reports-Names to IDs and Guide File
Info-when you test your guide file. For information on these reports, see
the chapter "Testing Your Guide File." You should not include the symbols
file when you distribute your guide file. Guide Maker automatically
generates a symbols file. If you don't want it to, then deselect this
compile option.

• Autosave guide file after compile. To spare yourself the last step in the
compiling process (step 4, saving your guide file), you can, by checking this
compile option, have Guide Maker automatically save your guide file.

• Warn when panels are split. If the content of one of your panels is
larger than the panel itself, Guide Maker splits the panel into several to
accommodate it. Guide Maker does not warn you when it does this. If you
would like to receive a warning, select this compile option. (For information
on how to extend the maximum height of a panel, see the chapter "Guide
Script Command Reference.")

• Remember last source and guide file used. Guide Maker keeps track of the
last files you used in the compile process. Thus, once you've specified your
build file and guide file, you needn't select them every time you open Guide
Maker. If you don't want Guide Maker to remember the last files used, then
deselect this option.

Checking the Syntax of Your Source Files

When you compile your source files, Guide Maker performs both a syntax
check and a full compilation. To perform a syntax check without a full
compilation, choose the Compile Check Syntax Only command from the
Build menu.

Guide Maker doesn't write information to the guide file or symbols file when
performing a syntax check. Thus, a syntax check is noticeably faster than a full
compile, especially for large guide files. Use the Compile Check Syntax Only
command if you are making small, incremental changes to your source files.
You can quickly verify the syntax of your changes without having to perform
a full compilation. When you are ready to build your guide file, use the

Checking the Syntax of Your Source Files 5-9

(')
(i)
a :r

co
~
c: ..,
G)
c: a:
(1)

!!
(i)

CHAPTER 5

Creating Your Guide File

Compile command, as described in "Building Your Guide File in Four Steps"
on page 5-6.

Interpreting the Compile Messages

5-10

When you compile your source files, you might get messages indicating that
the compile process didn't go as you expected. There are two types of compile
messages--error messages and warning messages.

If you get an error message, it means that Guide Maker was unable to compile
your source files and you must correct the error before you complete the
compile process. For example, if you accidentally leave out an <End Panel>
command in one of your source files, you get an error message. Figure 5-5
illustrates this type of error message.

Figure 5-5 Guide Maker displaying a compile error message

iD Build I:!F
Source File: Guide File:

EJ D~ J ~ -
Build file My Guide File

Beginning compilation of " Build file " into guide file on 10/12/94 at 11 :57 AM.
~

Compile error related to line • <Dtfint Panel> "My Panel" • in file " Panels & Stqutncts
sourct fil~ N :

This pantl is dtfintd incorreoctltJ . A non-panel reolattd <Otfint Stquence> command was
found before an <End Panel> command.

0 Compilation of "Build file • falltd on 10/12/94 at 11 :57 AM. Guide file is unchangtd.

~

Note
If you get a compile error, your gujde file does not change;
it is updated only after you successfully compile it and
save it. +

Interpreting the Compile Messages

CHAPTER 5

Creating Your Guide File

If you get a warning message, it indicates that Guide Maker found a potential
problem w ith your guide file. It is a good idea to investigate the problem, even
though it has not caused compilation to fail. For example, if the content of one
of your panels is larger than the panel itself and you have selected the "Warn
when panels are split" compile option, you get a warning message. Figure 5-6
illustrates this type of warning message.

Figure 5-6 Guide Maker displaying a warning message

:o Build

Source FHe:

Build file My Guide File

Beginning compilation of " Build file • into guide file on 10/ 12/ 94 at 12 :01 PM.
Compile error rtlat•d to lint "'tex t , text~ ttxt , tex t , ttxt, ttxt, tex t" te-xt , 111 in fileo
,...Pintls & Sequencts sol.l"ot file"" :
\ol ARNING! The panel " My Panel " is being split.
Compllationof " Buildfilt" s uccess ful on 10/ 12/ 94at 12 :01 PM.

To keep a record of your error and warning messages, save and print them
using the Save Text and Print Text commands of the File menu.

Other Utilities

When you create or open a guide file, three menu items-Import Resources,
Export Guide File, and Menu Appearance- become available in the Utilities
menu (see Figure S-7).

Other Utilities 5-11

()
(j)
!!!. s·
co
a-
c ...

5-12

CHAPTER 5

Creating Your Guide File

Figure 5-7

Build
Test Look For
Diagnose
Conuert
Localize

The Utilities menu

Import Resources •••
EHport Guide File •••
Menu Appearance .••

Hide Palette

Importing and Exporting Resources
You can use the Import Resources command to add resources to your guide
file, and you can use the Export Guide File command to export the resources in
your guide file. These two menu items are especially helpful when you debug
your guide file. For example, you usually import resources using the
<Resource> command, but to reimport resources quickly without compiling
again, use the Import Resources command.

Specifying Guide File Information

You can use the Menu Appearance command to modify information about
your guide file that you usually set in your source file using Guide Script
commands. The Menu Appearance command displays a dialog box (see
Figure 5-8) which you can use to

• modify the attributes that determine how your guide file appears in the
Help menu

• change the WorldScript, Gestalt, and mixin information in your guide file

Other Utilities

CHAPTER 5

Creating Your Guide File

Figure 5-8 The Menu Appearance dialog box

Menu Appearance

r He:: --:-:·i-:,----=~:dl
L. .. -~------~---·-····-···--··-··-~····-····~····~···~-----··--·-·--·--··----..... _,,, _,,,, _________ ,, __ ,,,J

(Cancel) ([OK)]

Usually you define these settings in your source files using the <Help Menu>,
<World Script>, <Gestalt>, and <Mixin> Guide Script commands. If you don't,
or if you want to modify the settings you specified in your source files, use the
Menu Appearance command. (For information about these commands, see the
chapter "Guide Script Command Reference.")

To override information that already exists in your guide file, type in the new
information in the Menu Appearance dialog box and click the OK button. To
add new information to your guide file, type in the new setting in the Menu
Appearance dialog box and click the OK button. To apply these settings to your
open guide file, choose Save from the File menu.

If you recompile the guide file, the settings in the Menu Appearance dialog box
are updated with the settings specified in your source files. If your source files
do not specify settings for the Help menu, WorldScript, Gestalt, or mixin
attributes, the settings in the Menu Appearance dialog box remain as
previously set.

Creating a Mixin for Your Guide File

If, after distributing a guide file, you need to add to or modify its content, you
can create a Mixin guide file (also known as a guide file addition, or mixin).

Creating a Mixin for Your Guide File 5-13

•

CHAPTER 5

Creating Your Guide File

This section gives information on how to create a Mixin guide file that revises
the contents of an existing guide file.

Creating a Mixin guide file is much like creating any guide file: first you
describe the help content in source files and then you compile the source files
into a Mixin guide file (that is, you build your mixin). To specify that you want
Guide Maker to create a Mixin guide file, use the <Mixin> command. You also
specify the guide file you wish to mix information into using this command.
(For information on how to use the <Mixin> command and for descriptions of
the commands you can use in your mixin source file to replace, delete, or add
content to a main guide file, see the chapter "Guide Script Command
Reference.")

Once you have created your source files, build your Mixin guide file using
Guide Maker's Build utility. For information on how to build a guide file, see
the section "Building Your Guide File in Four Steps" beginning on page 5-6.
Note that when you build your Mixin guide file, you typically give it the name
of your guide file and append the word "Addition". Figure 5-9 shows an icon
for a guide file and one for its accompanying mixin. Note that the icon of a
Mixin guide file has a plus (+) symbol.

Figure 5-9 A guide file and its guide file addition, or mixin
------=----

5-14

My Sample Gu;de My Sample Gu;de AddUion

A Mixin guide file contains additional information that Guide Maker
automatically mixes into an existing guide file. You can restrict which mixins
mix into a main guide file by using the <Mixin Match> command; for
information on this command, see the chapter "Guide Script Command
Reference." A mixin and the guide file it mixes into must be kept in the same
folder for the help information to appear in the application. Note that the mixin
does not appear in the Help menu; the user sees only the name of the guide file.

Creating a Mixin for Your Guide File

CHAPTER 6

Testing Your Guide File

Contents

Testing Your Guide File's Interface
Obtaining Navigation Information
Getting Debugging Information

Testing Your Look For Content 6-8
Generating Reports 6-13

6-3
6-5

6-6

The Scopes and Keys Report 6-13
The Names to IDs Report 6-14
The Index Sort Strings Report 6-15
The Guide File Info Report 6-16

Verifying Coachmarks, Context Checks, and Event Functions
Testing Coachmarks 6-19
Testing Context Checks 6-19
Testing Event Functions 6-19

Planning for User Testing 6-20

Contents

6-18

6-1

CHAPTER 6

Testing Your Guide File

By now you have created your guide file, and you are ready to test it to see if
it performs as you expect. You have designed the content of your guide file,
described the design in Guide Script source files, and compiled these source
files into a guide file. This chapter describes how you can test your guide file
to make sure that it works as you expect.

The type of testing you should perform on your guide file includes:

• interface testing-checking that all topic areas appear in the access window,
that the appropriate topics are associated with each topic area, that each
topic brings up its associated sequence of panels, that the user can navigate
from panel to panel in the order you intended, that buttons perform the
expected action, and that panel content appears as you intended

• Look For testing-checking that user search phrases are correctly parsed and
matched to the appropriate topics

• coachmark testing-verifying that coachmarks mark the item in the interface
that you intended to coach

• context check testing-verifying that context checks perform as expected

• event function testing-verifying that actions that your guide file performs
for the user work as expected

• user testing-observing users as they use your guide file

This chapter discusses each of these areas of testing. Note however, that it does
not provide in-depth information on software testing methodology.

This chapter also includes information on how to use Guide Maker's Reports
menu.

Once you test your guide file, if you find that it needs redesign, see the chapter
11Designing Your Help Content." After testing your guide file, if you want to
localize your guide file, see the chapter 11Localizing Your Guide File."

Testing Your Guide File's Interface

By navigating through your guide file, you can test its interface. For example,
by navigating through the various panels in your guide file, you can determine
whether they appear in the order you intended, whether the art on the panels

Testing Your Guide File's Interface 6-3

CHAPTER 6

Testing Your Guide File

looks OK, and so on. To test your guide file's interface, use Guide Maker's
Diagnose utility. Figure 6-1 shows the Diagnose window.

Figure 6-1 The Diagnose window

~
M

Diagnose - I RifJ I

•· §1!1

(StmUp)

Show: I Only requested info

---.-~

- ---

n Get Info

6-4

[~J
~

To navigate through your guide file, use the five buttons located on the top of
the Diagnose window.

• Start Up. If you have just created a new guide file, it's a good idea to
examine all of its help content. To do so, start up your guide file and
navigate through it, just as if you were the user. To display your guide file's
startup window, click the Start Up button. Once your guide file is active
(that is, its startup window is showing), you can then navigate through all
of its sequences by selecting, one-by-one, all of your topics and index terms.

• Go Panel. lf you have modified or added content to just one panel in your
guide file, you might want to examine that one only (and not the whole
sequence it belongs to). To navigate to a specific panel in your guide file,
click the Go Panel button. The Go Panel command displays a list of all the

Testing Your Guide File's Interface

CHAPTER 6

Testing Your Guide File

panels in your guide file; from this list you can select the panel you want to
examine. Note that the panels are listed by their names and IDs if you have
the guide file's symbol file in the same folder as the guide file; otherwise,
only the IDs are shown. You can obtain a mapping of panel IDs to panel
names by generating a Names to IDs report. For more information on the
Names to IDs report, see the section "Generating Reports" on page 6-13.

Note that when you view a panel using the Go Panel command, Guide
Maker does not display the panel's sequence display title, its prompt, or its
navigation bar buttons; this is because the panel might belong to more than
one sequence.

• Go Sequence. If you have modified or added content to several panels in
a sequence, it is a good idea to examine the entire sequence. To invoke the
beginning of a specific sequence, click the Go Sequence button. The Go
Sequence command displays a list of all the sequences in your guide file;
from this list you can select the sequence you want to examine. Note that the
sequences, just like the panels, are listed by their names and IDs if you have
the guide file's symbol file in the same folder as the guide file; otherwise,
only the IDs are shown. You can obtain a mapping of sequence IDs to
sequence names by generating a Names to IDs report. For more information
on the Names to IDs report, see the section "Generating Reports" on
page 6-13.

• Prev Panel. If you are examining a panel and would like to look at the panel
that comes before it without invoking any context checks, click the Prev
Panel button.

• Next Panel. If you are examining a panel and would like to look at the one
that comes after it without invoking any context checks, click the Next Panel
button.

Obtaining Navigation lnf~rmation

When you navigate through your guide file, you might want to get a quick
update on exactly where in the guide file you are. For example, you might
want to know the name and ID of the panel you are currently looking at, so
that you can revisit it later in your testing phase. To get this type of
information, click the Get Info button in the Diagnose window.

Testing Your Guide File's Interface 6-5

•
Ci)
c:
0:
CD

:I!
ar

6-6

CHAPTER 6

Testing Your Guide File

The Get Info command displays, in the status area of the Diagnose window, the
exact position of your guide file. Here's an example of the information you can
obtain by clicking the Get Info button:

Sequence "MySequence" (#2001) Panel "MyPanel" (2004) (2of3)

From this example you can tell that the current panel is My Panel. Its panel
ID is 2004, it is the second of three panels, and it belongs to the sequence
MySequence (which has the sequence ID 2001). The next section describes
how to get additional debugging information about your guide file.

Getting Debugging Information
To obtain even more information about your guide file as you navigate through
it, install the Apple Guide Debug extension. This extension gives you the
option of using the II All messages" command in the Show pop-up menu of
the Diagnose window.

IMPORTANT

To install the Apple Guide Debug extension, first remove
the Apple Guide extension from your Extensions folder;
then install the Apple Guide Debug extension and reboot.
Do not install both extensions. •

If the Apple Guide Debug extension is installed and you select the 11 All
messages" option from the Show pop-up menu, Guide Maker displays running
in-depth information about your guide file as you navigate through it. Guide
Maker displays this information in the status area of the Diagnose window.
This feature is useful for debugging context checks or event functions that use
AppleScript. For example, when II All messages" is selected, Guide Maker
provides information about the number of external modules in the guide file,
reports when a context check is invoked for a panel, and reports any errors
related to context checks, Apple events, or AppleScript processing.

Note
You can also click the Get Info button at any time, to record
the current sequence ID and panel ID. •

Figure 6-2 shows messages displayed by Guide Maker when the ''All
messages" option is selected. This figure shows the navigation through four

Testing Your Guide File's Interface

CHAPTER 6

Testing Your Guide File

panels of a sequence of a specific guide file, beginning with the first panel
(panel ID 2007). The second panel (panel ID 2008) and third panel (panel ID
2009) both have two context checks associated with them, and the fourth panel
(panel ID 2011) has one context check associated with it. This display shows
how Apple Guide looks ahead to the next panel, invoking any context checks
for that panel, to determine whether the next panel should be displayed.
For example, because the second panel contains a <Skip If> command that
evaluates to true, the second panel is skipped. The context checks for the third
and four th panels evaluate to true; so these panels are displayed as the user
navigates to them.

Figure 6-2 The "All messages" debugging option

Show: I All m essages n Get Info 11

No. of txttrnal modulos found and loadtd = 7
Durotion for databast and docs = 23
Using topic script rosourct (acPT) lD = 2001
Numbtr of script tntrits = 1 2
Numbor of pantls dtfintd = 4
Script procusing compltttd succ•ssfull~.
ld of ittm addtd to usor action list = 301
Pushing Topio (pantl num, topic id, pant I id, pan• I indtx): 1, 2001,2007,0
Look- ahud at pant I 2008
Chtck oontoxt 2000
kl of ittm addtd to ustr action list = 2000
Chock conttxt 2001
ld of ittm addtd to unr action list = 2001
Duration for topic and p•nols = 282
Applo Guidt is installod and activo.
Soqutnco "Stquonct AddWords • (•2001) Pant I • AddWords1 • (• 2007) (1 of 4)
Look· •ht•d at pant! 2008
Chtck conttxt 2000
Chtck contoxt 2001
Look·aht•d at pant l 2008
Chock conttxt 2000
Chtck conttxt 2003
Applt Guido is installtd and activt.
Stqutntt "StquonctAddWords • (•2001) P•ntl • AddWords3 • (•2009) (3 of 4)
Chock conttxt 2003
Chtck conttxt 2003
Chock conttxt 2003
Applt Guidt is installtd and activt.
Stquonct "StqutnctAddWords • (•2001) Pant1 • AddWords4 • (•201 1) (4 of 4)

Testing Your Guide File's Interface

i'.

6-7

G)
c
c:
CD

:::n
ro

CHAPTER 6

Testing Your Guide File

You can keep a record of the information reported in the status area by using
the Save Text and Print Text commands of the File menu.

Testing Your Look For Content

6-8

When a user enters a search phrase in the Look For window and clicks Search,
Apple Guide parses this phrase and tries to match it with an index term in the
guide file. To enhance Apple Guide's searching facility, in addition to index
terms you can provide Look For content that Apple Guide uses as it parses the
phrase. This section describes how you can test whether a search phrase
matches up with the appropriate index term in your guide file.

For information on how to design your Look For content, see the chapter
"Planning Your Help Content."

To test a guide file's Look For content, use Guide Maker's Test Look For utility.
Figure 6-3 shows the Test Look For window.

Testing Your Look For Content

Test
Look
For

CHAPTER 6

Testing Your Guide File

Figure 6-3 The Test Look For window

Test Look For

ii£,ii:::;::::m::~~:m::~ I! Selii'Ch II
Word Ignore Except Stom Synonym Rt duced Word Hits

0

~1
~ Reduced Pbn se:

~- Items Found Ale

~ g Show: AU Se.uches ... I

Enter the phrase to search for in the Enter Phrase text box and then either click
the Search button or press the Enter key. Figure 6-4 shows the results of
entering a phrase in the Test Look For window.

Testing Your Look For Content 6-9

I

G)
c
a:
CD

!1
ro

6-10

CHAPTER 6

Testing Your Guide File

Figure 6-4 A parsed phrase in the Test Look For window

Test Loolc For

Enter PIII'Me: I why can't I open the dictionary?

Word Ignore Except Stem Synonym Reduced Word Hits
why .f
cln•t .f
I .f
open .f I oponin<J 4
the .f
dictionary .f dictionary 10

I educed Phr asr. oponin<J dktionory

lteas r-d Rle

Why con't I (HDR) SurfWriler Guide
open the diction•ry? SurfWriter Guido

All Searches

Starching on • 'Why c.1n 't I optn tt.. dictionary? • roducts to • o.,.ning dfctlonory • 'With 2 0
hits.

As you can see from Figure 6-4, Guide Maker reports the following for each
word:

• Whether it is on the ignore list. (If so, it puts a check in the Ignore column.)

• Whether it is on the exception list. (If so, it puts a check in the Except
column.)

• Whether it is eligible for stemming. (If so, it puts a check in the Stem
column.) Note that a check in the Stem column does not necessarily mean
the word was stemmed.

Guide Maker then checks whether the phrase as parsed so far is a synonym,
and if so, it puts a check in the Synonym column and also puts the associated
word or phrase in the Reduced Word column. Using the example shown in
Figure 6-4, the phrase as parsed at this point is "open dictionary". This phrase
is not in the synonym list. (If the phrase is in the synonym list, Guide Maker

Testing Your Look For Content

CHAPTER 6

Testing Your Guide File

checks the index for the parsed phrase and, if it finds a matching index term,
displays the results in the Items Found column and displays "n/ a" in the Hits
column [see Figure 6-5].)

If Guide Maker does not find the initial parsed phrase in the synonym list, it
reports the following for each word:

• Whether it is a synonym for another word or phrase. (If so, it puts a check in
the Synonym column.)

• The resulting word after it was parsed. (It displays it in the Reduced Word
column.)

Guide Maker displays the resulting phrase in the Reduced Phrase area, checks
the index for this phrase ("opening dictionary" in this example}, and displays
the results in the Items Found column. If it doesn't find the reduced phrase in
the index, it also reports the following for each word:

• Whether the index contains a matching index term for the word. (If so, it
displays the number of headers and topics associated with the matched
index term in the Hits column.)

Guide Maker then displays in the Items Found column the intersection of the
words in the reduced phrase. In the example shown in Figure 6-4, Guide Maker
displays the intersection of "opening" and "dictionary".

Figure 6-5 shows another example of how Guide Maker parses a search phrase.
As shown in this example, "site dictionary" is a synonym for "dictionary".
"Dictionary" is an index term, and thus Guide Maker displays in the Items
Found column all the topics associated with the index term. Guide Maker
also displays "n/ a" in the Hits column when it finds a synonym for an
entire phrase.

Testing Your Look For Content 6-11

•
G)
c:
a:
<D

!!
m

6-12

CHAPTER 6

Testing Your Guide File

Figure 6-5 Results of a search

All Surches

SurfWriter Guide
SurfWriter Guido
SurfWriter Guide
SurfWriter Guido
SurfWriter Guldt
SurfWriter Guide
SurfWriter Guido
SurfWriter Guide
SurfWriter Guido
SurfWriter Guido

--=----=-~ ~ .. c:=-__ -=-- ~-- --- ~

Seorching on • silt diction•ry • rtduets to • dictionory • with 10 hitsl

Guide Maker gives a summary of the search results in the Log Results area (the
scrollable area near the bottom of the Test Look For window). If you select All
Searches from the Show pop-up menu, Guide Maker gives a summary of the
current search each time you perform a search. If you want Guide Maker to
report on only selected searches, choose "Only requested searches" from the
Show pop-up menu. If you choose this item, then you must click the "Log
results" button when you want Guide Maker to report the summary results
of a search.

As you develop and test your Look For content, if you get unexpected results,
you might find it helpful to create a guide file with only a single index term in
it. You can then use this guide file to determine how a word stems by default.
By comparing this with the search results from the Look For content of your
guide file, you may be able to more quickly troubleshoot how the search phrase
is parsing.

Testing Your Look For Content

CHAPTER 6

Testing Your Guide File

Generating Reports

By using Guide Maker's Reports menu, you can get a quick, in-depth look at
your guide file. You can

• get a list of all topics and their associated sequence IDs (Scopes and Keys
report)

• get a list of each panel's or sequence's name and ID (Names to IDs report)

• verify that index terms are correctly displayed (Index Sort Strings report)

• get a printout of your guide file (Guide File Info report)

The Scopes and Keys, Names to IDs, and Index Sort Strings reports appear in
a new window. You can save or print this information using the Save Text or
Print Text commands from the File menu. The Guide File Info report is written
to a file that you name before generating the report.

Note
To create a Names to IDs report or a Guide File Info report,
the guide file and its symbol file must be located in the
same folder. +

The Scopes and Keys Report
A Scopes and Keys report contains a complete list of the headers and topics for
each topic area and each index term in a guide file and gives information about
each associated sequence. A Scopes and Keys report also lists the words
specified by the Guide Script commands <Exception>, <Ignore>, and
<Synonym>. Figure 6-6 shows excerpts from a Scopes and Keys report for
SurfWriter Guide. This excerpt shows information about the topic areas
"Copying & Pasting", "Using the Dictionary", and "Using the Toolbar". It also
shows information about the index terms II Apple menu" and "dictionary".
Note that the number following the text "PresiD:" is the sequence ID associated
with the topic.

Generating Reports 6-13

C HAP TER 6

Testing Your Guide File

Figure 6-6 A Scopes and Keys report

Du•p of Scopes & Keys for SurfUriter Guide:

Copying & Pas ting
Ho• do I
ploceho l de~ fo~ topic?
anothe~ pI aceho I de~ fo~ topIc?

Using the Dictionary
Ho• do I

add o wo~d to the d i c ti ona~y?
look up a wo~d in the di ctiona~y?
c~eate a custo~ dictiono~y?
add o~ ~amove a dictiono~y?

llhy c an •t I
open the dictiona~y?

Defi nitions
custom dictionary
standa~d dictiona~y

Using the Toolbar
Ho• do I

use the too Is in the too I ba~?

Apple •enu
Ho• do I

pl oceholde~ fo~ topic?

dictionary
Ho• do I

odd a w~d to the dictlono~y?
look up a wo~d in the d icliona~y?
c~eote a custom dictiono~y?
odd or remove a d i c l i onary?

llhy can•t I

Scope: T(?8 Key: HABA (TA) in Surflrtte r Guide
Key : ABA <HDA> in Surfllrlte r Guide
P~es i O : 2000 Key : ABB <TPC> in SurfU~ite~ Guide
P~esiO : 2000 Key : ABC <TPC) in Su~fU~Ite~ Guide

Scope: T(?l Key: HABB (TA) in Surflriter Guide
Key : ABA <HDR > in Surfllr l ter Guide
P~es i O : 2001 Key: ABB <TPC> In Su~fU~ite~ Gu ida
P~es i O : 2000 Kay: ABC <TPC> In Su~fU~Ite~ Guide
PNSIO: 2003 Key: ABO <TPC > in SurfU~i te~ Guide
~esiO: 2000 Key: ABE <TPC> in SurfU~i te~ Gu ide

Key : ABF <HDR> in Surfllrite r Guide
P~es I 0 : 2000 Key: ABG < TPC) In SurfU~ I te~ GuIde

Key : ABH <HDR> i n Surfllriter Guide
P~es i O : 2007 Key: ABI <TPC> In Su~fU~ite~ Guida
P~es I 0 : 2008 Key : ABJ < TPC) I n SurfU~ I te~ Gu I de

Scope: T(?9 Key: HABJ (TA) in Surflriter Guide
Key : ABA <HDR > in Surfllri ter Guide
P~esiO : 2009 Ke.., : ABB <TPC > In Su~fUri te~ Guide

Scope:I(?D Key: Apple •enu (Inde1) in Surflriter
Key : ABR <HDR> in Surfllriter Guide
P~es iO : 2000 Key: ABB <TPC > in Su~fU~Ite~ Guide

Scope:I(?8 Key : dictionary (Inde1) in Surflriter
Key : RBR <HDR> in Surfllrlter Guide
P~esiO : 2001 Key: ABB <TPC > in Su~furite~ Guide
P~esiO : 2000 Key: ABC <TPC> in Su~furite~ Guide
P~esiO: 2003 Key: ABO <TPC> in Su~furite~ Guida
P~esiO: 2000 Key : ABE <TPC) In Su~furite~ Gu ide

: RBF <HDR> in Surfllriter Guide
I ABG

The Names to IDs Report

. !

A Names to IDs report contains mappings of all panel IDs to their panel names,
all sequence IDs to their sequence names, and aU text block IDs to their text
block names. Figure 6-7 shows a sample of a generated Names to IDs report.

6-14 Generating Reports

CHAPTER 6

Testing Your Guide File

Figure 6-7 A Names to IDs report

Names to I.Ds Report

No•e To ID loppings for Surflriter Guide:

Panel Mappings:

2000 - > Pane I Gener i c
2001 -> Use Tools
2002 -> Too ls 2
2003 - > Too ls 3
2004 ->Too ls with Tip
200~ - > Toolbar Tip
2006 - > Tools 4
2007 -> AddUordsl
2008 - > AddUords2
2009 -> AddUords3
2010 - > SWContinuePane l
2011 -> AddWords4
2012 - > SWOopsPane l
2013 - > CreateCustomlntro
2014 - > HolT AppleScript
20 15 - > CompareManuaiAndAuto
2016 - > Cr eateCustomDecision
20 17 - > Crea teCus tomManua I 1
2018 - > SWContinuePane iCustomManual I
20 10 - > Crea teCus tomManua 12
2020 - > Crea teCus tomManua 13
202 1 - > T i pF orCus tomD i c ti onary

Sequence Mappings :

2000 - > SequenceGener i c
200 I - > SequenceAddWords
2003 - > SequenceCreateCustomDict ionary
2007 - > SequenceDefnCustomOictionar y
2008 -> SequenceOefnS tdDict lonar\1
2009 - > Too lbar
20 10 - > HuhCompareManua lAndAu to
2011 - > HuhScriptsFolder
¢1

The Index Sort Strings Report
An Index Sort Strings report contains a list of all the index terms in a guide file
and each index term 's sort key. Figure 6-8 shows part of a generated Index Sort
Strings report.

You can specify in your source file how you want Apple Guide to sort your
index terms. For information about sorting index terms, see the chapter
"Guide Script Command Reference," in Part 4.

Generating Reports 6-15

G)
c
a:
(I)

:::n
iD

6-16

CHAPTER 6

Testing Your Guide File

Figure 6-8 An Index Sort Strings report

lndeH Sort Strings Report

Index Sort Strings for SurfUri ter Guide:
'Apple menu' (displayed term) -> 'Apple menu' (sort key)
'bitmap' (displayed term) -> 'bitmap ' (sort key)
'clipboard' (displayed term)-> 'clipboard' (sort key)
'closing' (displayed term) -> 'closing ' (sort key)
'copying' (displayed term) -> 'copying' (sort key)
' custom ' (displayed term) -> 'custom ' (sort key)
' customizing' (displayed term) -> 'customizing' (sort key)
'definitions ' (displayed term) -> 'definitions' (sort key)
'deleting' (displayed term) -> 'deleting' (sort key)
'dictionary ' (displayed term) -> 'dictionary' (sort key)
'documents ' (displayed term) -> 'documents' (sort key)
'fonts' (displayed term) -> 'fonts' (sort key)
'formats' (displayed term) -> 'formats ' (sort key)
'graphics ' (displayed term) -> 'graphics ' (sor t key)
' hammer ' (displayed term) -> 'hammer ' (sort key)
' opening ' (displayed term) -> 'opening ' (sort key)
'pasting' (displayed term) -> 'pasting' (sort key)
'pencil' (displayed term)-> 'pencil • (sort key)
'preferences' (displayed term) -> 'preferences' (sort key)
'printing' (displayed term) -> 'printing' (sort key)
'replacing' (displayed term) -> ' replacing' (sort key)
' saving' (displayed term) -> 'saving ' (sort key)
' searching ' (displayed term) -> 'searching ' (sort key)
' selecting ' (displayed term) -> 'selecting' (sort key)
' spell ' (displayed term) -> 'spet I ' (sort key)
' standard' (displayed term) -> 'standard ' (sort key)
'styles' (displayed term) -> 'styles' (sort key)
'tootbar' (displayed term)-> 'toolbor' (sort key)
'tools' (disp layed term)-> 'toots ' (sort key)
' Uti I i ties menu • (displayed term) -> 'Uti I i ties menu • (sort key)

The Guide File Info Report

You can generate a complete report on your guide file by choosing the Guide
File Info command from the Reports menu. The generated report includes
sequence definitions, panel definitions, and pictures of the panels as they will
appear onscreen.

After you choose the Guide File Info command, Guide Maker displays a dialog
box asking you to specify your main source file (select your build file if you
have multiple source files). It then displays another dialog box, asking you to
choose a p lace to save the file and to choose a file format for the file. Next, it
displays the Options dialog box. In it, you can specify the information you
want your guide file report to contain. Figure 6-9 shows the Options dialog box.

Generating Reports

CHAPTER 6

Testing Your Guide File

Figure6-9 The Options dialog box

Please choose your report options and click OK:

Scope

0 Entire guide file

@ Sele<ted items

I Topic Ar ... •I
Copyin<J & PastinQ :.

Fonts
Formatting
Opening & Sa'Ying Documents
Printing
Setting Preferences
Styles
Scripting
Using the Toolbar

Options

Panels:
1:8llnclude panel pictures

0 Include script for panels

Sequence Filtering:
0 All instances

@First appearance only

Embedded Sequences:

Qlnline

@After

t8]1nclude event-driven sequences:

[Cancel J n OK Jl

You can choose to generate a report on your entire guide file or only selected
items, such as a specific topic area, index term, or sequence. You can request
that Guide Maker include the panel pictures as well as the panel definitions in
the report. Generating a report like this can be a convenient way to review the
content of your guide file.

Note

To create a Guide File Info report, you must have XTND
translators installed on your system. +

Figure 6-10 illustrates a sample guide file report, saved in TeachText format. As
shown in this report, a sequence definition is followed by pictures of the panels
in the sequence.

Generating Reports 6-17

•
G>
c
0:
(!)

::!!
(D

CHAPTER 6

Testing Your Guide File

Figure 6-10 A Guide file Info report

SurfWrlter Guide Report4 - A

Sequence: SequenceAddWords
<SNBS> "Sld nov bor·

<Penel> 'AddWords 1 ·
<Ski p If> OpenWindow(' tlxt', "Dictionery")

<Penal> 'AddWords2'
<Meke sure> OpenWi ndow('t t xt', "01 c t1 onery"), "SWConti nuePene I Seq·

<Pone I> · AddWords3'
<Meke Sure> OpenWi ndow('ttxt', "01 eli onery"), ·swconti nuePonel Seq·

<Pone I> · AddWords4'

Penels for Sequence: SequenceAddWords

Apple Guide

SurfWriter comes with the Sur fWrlter clictlonary,
which you can use to check the spellin& In your
clocuments.

~ ITI 1 rn
Apple Guide

Do This Choose Dictionary from the Utilities m enu to
open the Dictionary wind. ow,

Verifying Coachmarks, Context Checks, and Event
Functions

6-18

To make sure your guide file works as expected, you need to verify that
coachmarks, context checks, and event functions perform as you intended
under a variety of conditions.

When testing coachmarks, context checks, and event functions, have several
applications open at once and switch between them often to verify that your
guide file works as expected. Your user might perform steps out of order, and

Verifying Coachmarks, Context Checks, and Event Functions

CHAPTER 6

Testing Your Guide File

you need to allow for this possibility when you define your context checks for
each panel.

Testing Coachmarks
H your guide file uses coachmarks, you need to verify, for each panel that
specifies a coachmark, that the coachmark marks the desired item.

To begin, verify that the coachmark is directed to the correct application. For
example, a menu coach designed to coachmark the File menu of your
application should not coachmark the File menu of any other application.

Next, verify that the coachmark marks the desired item. For example, an
item coach for an editable text item in a Global Changes dialog box should
coachmark only that item. Verify that the coachmark marks the desired item
when the dialog box is active, and verify that the coachmark isn't drawn when
another window or dialog box is active.

Testing Context Checks
H your guide file uses context checks, you need to verify that the context checks
work in any given condition of the user's environment. For example, if you
define a context check that determines whether the user's dictionary is open,
you need to test that the correct result is returned (and thus the appropriate
panel displayed) when the dictionary is open and when it is closed.

Testing Event Functions
H your guide file uses event functions to perform an action for the user, you
need to verify that the expected action occurs. For example, an event function
that opens a dictionary for the user should both open the dictionary and make
it the active document. By testing your event functions, you can also determine
whether you have made an assumption that might not be valid given a
particular user's environment.

Verifying Coachmarks, Context Checks, and Event Functions 6-19

•
Ci)
1:
c:
<D

:!!
CD'

CHAPTER 6

Testing Your Guide File

Planning for User Testing

6-20

As with any product, you should plan for and conduct user testing of your
guide file. Users can give valuable feedback as to the usefulness of your guide
file. For example, you can ask users the following:

• Are the topic areas relevant and complete?

• Are the topics you are looking for available from the access window?

• Is the level of instruction appropriate?

• Are instructions clear and easy to follow?

• Is the use of navigation buttons and content area buttons clear and
consistent?

• Did the guide file help you perform a task? H not, why not?

• Is the index complete?

• Do searches give the expected result?

• Are any topic areas or topics not covered?

You should plan to do user testing early enough in your design process so that
you can incorporate feedback. For additional information on conducting user
testing, see the Macintosh Human Interface Guidelines.

Planning for User Testing

CHAPTER 7

Localizing Your Guide File

Contents

The Localizing Process 7-3
Translating Text Strings 7-6

CHAPTER 7

Localizing Your Guide File

By now you have created and tested your guide file, and are ready to create
localized versions of it. This chapter describes how you can localize your
guide file for other regions.

It tells you how to

• extract language-specific text strings from your source files

• translate the text strings using various tools

• merge the translated text strings back into your source files

• localize any other elements of your guide file, such as pictures, as necessary

Once you have localized your source files, you can use these files to build a
new, localized version of your guide file.

For information on designing your guide file so that it can be more easily
localized, see the chapter 11 Authoring Tips and Suggestions" in Part 1. For
additional design and localization issues, see the Macintosh Human Interface
Guidelines.

The Localizing Process

You need to localize all elements of your guide file that are language-specific,
such as text strings and pictures. These include, for example, the name of your
guide file (as it appears in the Help menu), topic areas and topics, titles of
panels, text in panels, objects to coach (for example, the names of folders,
menus, and menu items), button labels, index terms, and Look For content.
Fortunately, Guide Maker provides the Localize utility to help you accomplish
these tasks. Figure 7-1 shows the Localize window.

The Localizing Process 7-3

G>
r::: a:
CD

:!!
(j)

Localize

7-4

CHAPTER 7

Localizing Your Guide File

Figure 7-1 The Localize window

Mertle
folder:

Figure 7-2 shows the Localize window after specifying everything you need to.

Figure 7-2 The Localize window with files and folders specified

lil Localize

;'S«ipt ~rce ren R$f!.rh:ary Mer-'!!' di
.~

liiJc!: ' folder: : 1' FotdeH#llh;
.,,ill

B
,,.

B tl~r ~ :~; ~
.

.

Build file SurfText Loc Lib Rle Surf NEW
SURF.src Resources Localized

~

~
1li

The Localizing Process

CHAPTER 7

Localizing Your Guide File

To localize your guide file, open the Localize window and follow these 10 steps:

1. Select the source file to extract text strings from.

Click in the Script Source File area of the Localize window. Guide Maker
displays a dialog box from which you can select your source file. You can
select a single source file, or you can select your build file to extract text
strings from all source files at once.

2. Select the folder to hold the files containing the extracted text strings.

Click in the Text Rsrc's Folder area. Guide Maker displays a dialog box from
which you can select a folder to hold the extracted text resources. Guide
Maker creates a resource file for each source file you localize; it places all
of the resource files in the text resources folder that you specify.

3. Create a localization library file.

Click in the Library File area of the Localize window. Guide Maker displays
a dialog box, in which you indicate whether you want to create a new
localization library file or use an existing one. After you choose, Guide
Maker prompts you to either name the new library file or select an existing
library file.

The localization library file contains information about the position of the
extracted text strings in the source files. When you merge the localization
library file and the localized text strings, Guide Maker uses the information
in the library file to make sure that the text strings are placed into the proper
place in the localized script source file.

4. Extract the text strings.

Click the Extract arrow in the Localize window. Guide Maker begins
extracting text strings from all source files listed in the build file. It creates
a file for each source file, appending • RSRC to each of these filenames. It
places these files in the text resources folder that you specified in step 2.

5. Translate the extracted text strings.

Use a resource editor such as ResEdit or AppleGlot to translate the extracted
text strings in the • RSRC files.

Guide Maker stores the extracted text strings as resources of type I TEXT 1

with resource names that give information about the text string. By looking
at a resource name, you can determine the Guide Script command
associated with the text string, and from that information you can induce
the structure of the text string. See the section "Translating Text Strings" for
additional information on translating these text strings.

The Localizing Process 7-5

CHAPTER 7

Localizing Your Guide File

6. Select the folder to hold the localized source files.

After you localize the extracted text strings, you can merge the translated
text back into your source files. To do this, click the Merge Folder area of the
Localize window. Guide Maker displays a dialog box from which you can
select a folder to hold the new localized source files.

7. Merge the translated strings and localization library file.

Click the Merge arrow in the Localize window. Guide Maker begins merging
the text strings from the • RSRC files back into the source files. It places the
new localized source files in the folder you selected in step 6.

8. Localize any 'PICT' resources

For example, if your application logo contains text, you should localize the
text using a graphics application.

9. Make any additional localization changes to your source files as needed.

For example, you might need to adjust formats or localize a QuickTune
movie.

10. Build a guide file with the localized source files.

Build a new guide file (using the process described in the chapter "Creating
Your Guide File"), only specify the build file that Guide Maker placed in the
Merge folder. You must also copy any auxiliary files used by your source file
(such as 'PICT ' resources or scripts) into the Merge folder before compiling.

Congratulations, your guide file is now localized! After creating your localized
guide file, you should test it, as described in the chapter "Testing Your
Guide File."

Translating Text Strings

7-6

When you extract text from source files, Guide Maker stores each text string as
a resource of type 'TEXT' and gives it a descriptive resource name (so that you
can determine the origin of the text string) and a unique resource ID. For
example, a text string that specifies an index term has the resource name
<Index> and has a unique resource ID to distinugish it from other resources
with the same resource name. Table 7-1 beginning on page 7-10 lists all of the
possible resource names and gives a description of the text string contents you
can expect to be associated with it.

Translating Text Strings

CHAPTER 7

Localizing Your Guide File

Figure 7-3 and Figure 7-4 show examples (from the SurfWriter Guide source
files) of various text resources that Guide Maker extracts. Figure 7-3 shows the
ResEdit window of text resources associated with setup information (such as.
prompt sets and Help menu information), topic areas, and sequences.

Figure 7-3 Examples of text resources

~ii~.TEIIls<from·£tiampte1 TektRPources:: · lm~
ID Sizt Namt

1000 32 "<Def1ne Prompt Set> " ~
1001 41 "<Deftne Prompt Set> "
1002 31 "<Def1ne Prompt Set> "

t;:' 1003 45 "<Define Prompt Set> "
'·

1036 16 "<Help Menu> "
1037 1 "<Help Menu> "
1038 99 "<Balloon Menu Text>"
1039 282 "Text Block: Howdy Text"
1040 42 "<Version>"

,,
1041 3 "<Verst on> "
1042 17 "<Topic Area>"
1043 8 "<Header>"
1044 22 "<Topic>"

I<: 1045 30 "<Topic>"
1046 20 "<Toptc Area> II

1047 8 "<Header>"
,:

1048 29 "<Topic>"
1052 11 "<Header> II

,.

1053 17 "<Topic>" ..
1082 38 "<Deft ne Sequence> "
1083 10 "<Sktp If>"
1084 10 "<Make Sure>"
1085 4 "<Defl ne Sequence> "
1086 42 "<Define Sequence>" ~

Translating Text Strings 7-7

7-8

CHAPTER 7

Localizing Your Guide File

Figure 7-4 shows the ResEdit window of text resources associated with panels,
index terms, and Look For content.

Figure 7-4 Text resources for panels, index terms, and Look For content

~0~ TEHTs from EH11mple2 TeHt Resources ~0~
ID

100 1
1002
1003
1004
1014

Sizt Nam~

217 " Panel : Use Tools"
12 " <Standard But ton> "
18 " <Stondard Button> "
7 "Panel : Tools 2"

1 07 " Pane 1: AddWords 1"

.. ~1~0~1~6IIIIIII7~2~~~"P~e~n~e~l:~A~d~d~W~olrd~s~2~"llllllllll ..
10 17 7 " Panel : AddWords3"
10 18 65 " Panel : AddWords3"
10 19 78 " Panel : SWContinuePonel "
1 020 51 " Pane 1: AddWords4"
1023 2 " <Standard Button> "
1024 55 " Panel : CreateCustomlntro"
1025 11 "<Hot Text> "
1026 12 "Ponel: CreeteCustomlnt r o"
1027 29 " Panel: CreateCustomlntro"
1031 36 " Panel: CreoteCustomDecisi on"
1 032 35 " <Radio Button> "
1 033 40 "<Radi o Button> "
11 00 10
11 01 8
11 02 29
1120 2
1121 2
11 22 2
11 25 9
11 29 5
1130 4
1143 4
1144 12
1145 12

" <Index> "
"<Header> "
" <Topic> "
"< Ignore> "
"< Ignore> "
"< Ignore> "
" <Exception> "
" <syn> "documents", "do cum""
" <syn> "documents", "file""
"<syn> "opening","open""

jl}
:;;::·

!Iii!!

1!11\1 1152 5
1153 13
1154 7

" <syn> "opening", "open commend""
" <syn> "opening·, "double cl ick""
" <syn> "pri nting·, "print""
"<syn> "pri nting", "prin t command"" ~
"<syn> "pri nti ng·, "pri nter"" 12:1

Translating Text Strings

CHAPTER 7

Localizing Your Guide File

To begin translating text, follow these steps.

1. Open one of your .RSRC files using a resource editor (such as Res Edit).

ResEdit displays the resource ID, size, and resource name of each text string
in a window (see Figure 7-4).

2. Select the text string to translate.

ResEdit opens a window containing the text that needs translation. Translate
the text and then close the window. Repeat this process for all text strings.

Figure 7-5 shows a ResEdit window for a text resource as it appears before
and after the text is translated. This example shows the text string of the text
resource with resource ID 1015 and resource name "Panel: AddWords2". The
string represents panel text, in this case, the tag "Do This", which is
translated to "Sadan".

Figure 7-5 Translating a text string

I " Ponel: RddWords2" 10 • 1015

3. Save the .RSRC file containing the translated text strings.

Repeat steps 1 through 3 for all of your . RSRC files.

Translating Text Strings 7-9

b
0
~ N.
:r
<0

a-
c
(j)
c
c:
<D

:::!.1
(i)

CHAPTER 7

Localizing Your Guide File

Table 7-llists the typical 'TEXT' resource names (in alphabetical order) and
gives a description of the associated text strings.

Table 7-1

Text resource name

<Balloon Menu Text>

<Checkbox>

<Define Context Check>

<Define Item Coach>

<Define Menu Coach>

<Define Prompt Set>

<Define Sequence>

<Define Window Coach>

The 'TEXT' resource names and the associated text strings

Description of the associated text string

Specifies the text for the help balloon associated with your
guide file's menu item name in your application's Help menu.

Specifies a label for a checkbox.

Specifies an additional parameter in a context check and
indicates a text string of type LPSTRING. The text string
specifies a default value.

You must translate this text string to match the corresponding
default value as it exists in the localized application.

Specifies the item that is highlighted by a coachmark. You
should translate the text string to match the corresponding item
as it exists in the localized application.

Specifies the menu name or menu item that is highlighted by
a coachmark. You should translate the text string to match the
corresponding menu name or menu item as it exists in the
localized application.

The text resource file does not list the menu name and its menu
items in consecutive order.

Specifies a navigation prompt that appears on the bottom of a
panel. A prompt set consists of four navigation prompts;
Guide Maker creates a text resource for each of these prompts.

Specifies a sequence display title. This text appears in the title
bars of all panels of the sequence.

Specifies a window in which a coachmark is drawn. You should
translate the text string to match the corresponding window
name as it exists in the localized application.

7-10 Translating Text Strings

CHAPTER 7

Localizing Your Guide File

Table 7-1 The 'TEXT' resource names and the associated text strings (continued)

Text resource name

<Exception>

Description of the associated text string

Specifies a word that should not be stemmed when Apple
Guide parses a search phrase. To get a complete list of all
exception words, create a Scopes and Keys report, as described
in the chapter "Testing Your Guide File."

<Header>

<Help Menu>

<Hot Text>

<If>

<Ignore>

Apple Guide performs stemming and uses the exception list
only for guide files that specify the command <World
Script> 0, 0. Thus, when translating to other languages, you
do not need to translate exception words. So you should delete
<Exception> commands from your localized source files.

Specifies a header associated with a particular topic area or
index term. This text appears in the right column of the access
window.

Specifies the name of a guide file or the Command key shortcut.
Guide Maker creates a text resource for the guide file name and
one for the Command key shortcut. The guide file name and its
shortcut are displayed in the Help menu.

Specifies hot text in a panel. You should translate this text string
to match the corresponding text string as it appears in the
localized panel.

Specifies text (with data type LPSTRING) that is part of a
condition. If the condition statement contains more than one
LPSTRING, Guide Maker creates a text resource for each one.
If the condition is part of a compound condition statement,
Guide Maker creates one text resource for each LPSTRING in
the compound condition.

In some cases, the text string specifies a label of a radio button
or checkbox.

You must translate this text string to match the corresponding
text string as it exists in the localized application.

Specifies a word or phrase that Apple Guide ignores when
parsing a search phrase. To get a list of these words and phrases,
create a Scopes and Keys report, as described in the chapter
"Testing Your Guide File."

continued

Translating Text Strings 7-11

CHAPTER 7

Localizing Your Guide File

Table 7-1

Text resource name

<Index>

<Look For Instruction>

<Look For Results
Instruction>

<Look For Search Btn
Instruction>

<Look For String>

<Make Sure>

Panel: panel name

<Radio Button>

The •TExT• resource names and the associated text strings (continued)

Description of the associated text string

Specifies an index term. The index term appears in the left
coltqllll when Index is the active list.

Specifies an instruction that appears above the search phrase
entry box in the Full Access window when Look For is the
active list.

Specifies an instruction that appears above the list of topics in
the Full Access window when Look For is the active list and the
user has performed a successful search.

Specifies an instruction that appears above the Search button in
the Full Access window when Look For is the active list.

Specifies text that appears in the search phrase entry box in the
Full Access window when Look For is the active list.

Specifies text (with data type LPSTRING) that is part of a
condition. The evaluated condition determines whether the next
panel should be displayed. If the condition statement contains
more than one LPSTRING, Guide Maker creates a text resource
for each of these. If the condition is part of a compound
condition statement, Guide Maker creates one text resource for
each LPSTRING in the compound condition.

In some cases, the text string specifies a label of a radio button
or checkbox.

You must translate this text string to match the corresponding
one as it exists in the localized application.

Specifies the body text to be displayed in the panel specified by
the panel name. If the text in the panel is divided into multiple
pieces (for example, the text is split between a picture, a
QuickTrme movie, or a button, or the text uses more than one
format), Guide Maker creates a text resource for each of the text
parts. The created text resources have identical text resource
names but different resource IDs.

Specifies a label for a radio button.

7-12 Translating Text Strings

CHAPTER 7

Localizing Your Guide File

Table 7·1

Text resource name

<Skip If>

<Standard Button>

<Synonym> index term,
synonymous term

Text Block: text block name

<Topic>

<Topic Area>

The 1TEXT1 resource names and the associated text strings (continued)

Description of the associated text string

Specifies text (with data type LPSTRING) that is part of a
condition. The evaluated condition determines whether the next
panel should be displayed. If the condition statement contains
more than one LPSTRING, Guide Maker creates a text resource
for each of these. If the condition is part of a compound
condition statement, Guide Maker creates one text resource for
each LPSTRING in the compound condition.

In some cases, the text string specifies a label of a radio button
or checkbox.

You must translate this text string to match the corresponding
text string as it exists in the localized application.

Specifies a label for a standard button.

Specifies a synonymous term for the index term specified in the
text resource name. If an index term has more than one
synonym, Guide Maker creates a text resource for each of these.
Note that the text resource file does not group an index term
and its synonyms together (unless they're grouped together
in the source file). To get a complete list of all index terms and
their synonyms, create a Scopes and Keys report, as described
in the chapter ~'Testing Your Guide File."

Specifies a block of text. This block of text typically appears in
the body text of a howdy window.

Specifies a topic. This text string appears in the right column of
the access window.

Specifies a topic area. This text appears in the left column of the
Topics screen in the access window. Note that you are limited to
31 one-byte characters.

continued

Translating Text Strings 7-13

b
~
;;;:;·
:r

(Q

c§
r:: ...,
G>
c: a:
CD

:n
m

CHAPTER 7

Localizing Your Guide Rle

Table 7-1

Text resource name

<Topic Areas
Instruction>

<Topics Instructions>

<Version>

The 'TEXT' resource names and the associated text strings (continued)

Description of the associated text string

Specifies an instruction or a label. This text appears above the
list of topic areas in the Full Access window when Topics is the
active list.

Specifies an instruction that appears above the list of topics in
the Full Access window when Topics or Index is the active list.

Specifies version information for the guide file. Guide Maker
creates a text resource for both the long and short version
information strings.

7-14 Translating Text Strings

CHAPTER 8

Converting Windows Help Files

Contents

Preparing Your Windows Help Files 8-3
Converting Your Windows Help Files in Three Steps 8-4
Creating an Interface for Your Help Content 8-8

Contents 8-1

CHAPTER 8

Converting Windows Help Files

If you have created online help for Windows and you want to make it available
for the Mac OS, read this chapter. It describes how to

• prepare your Windows Help files for conversion

• convert them into Guide Script source files

• create an access window, so that your users can access the converted help

To get the most out of this chapter, you should have a good understanding of
Apple Guide, know how to script a Guide Script source file, and be familiar
with the Guide Maker application. For more information on these subjects, see
Part 1, Part 4, and the introduction to Part 2, respectively.

This chapter does not describe how to compile the created Guide Script source
files into a guide file. For information on compiling a guide file, see the chapter
11Creating Your Guide File."

Preparing Your Windows Help Files

Before you convert your Windows Help files to Guide Script source files, make
sure that your Windows Help files meet two conditions:

• Your Windows Help files must be RTF files of type 'TEXT'. Guide Maker (the
application you use to convert your files) cannot convert files that aren't
WinHelp RTF files. Check that the file type for all the RTF files you are
converting are 'TEXT'; if the type isn't 'TEXT', Guide Maker isn't able to see
them. You can set the file type (to 'TEXT') using the ResEdit application or
another file editing tool.

• Your Windows Help files cannot contain underlined hidden text. If any
underlined hidden text exists, remove the underline before converting the
files.

In addition to these two requirements, you should note that the current version
of Guide Maker

• removes page breaks from the Windows Help files

• ignores any tables in the Windows Help files

• removes occurrences of the text 11> List" in Windows Help files

Preparing Your Windows Help Files 8-3

CHAPTER 8

Converting Windows Help Files

• assumes that a Windows Help file topic, which is equivalent to a panel
sequence in a Guide Script source file, begins with the footnote '#' and ends
at the next '#' footnote

• requires the footnotes'#' and'$' for every help topic

• ignores the footnotes'!' and'+'

• uses the footnote 'K' to create index terms

• converts the command bmc (the command to place bitmaps in Windows) to
the commented out Guide Script command

#<PICT> "NameOfPicture", CENTER

The Guide Script command is commented out because Apple Guide isn't
able to display your Windows Help bitmaps. Before you remove the
comment sign (the #sign), convert your bitmaps to PICT files.

Note
All footnotes must appear on the same line. All other text
and bitmaps on the first line are ignored and removed by
Guide Maker. +

Once you have prepared your Windows Help files, you are ready to convert
them, as described in the next section.

Converting Your Windows Help Files in Three Steps

8-4

Converting a Windows Help file to a Guide Script source file is a three-step
process using Guide Maker's Convert utility. Figure 8-1 illustrates the Convert
window (Guide Maker's converting interface). Note that the steps in the
illustration refer to the three steps of the conversion process.

Converting Your Windows Help Files in Three Steps

Convert

CHAPTER 8

Converting Windows Help Files

Figure 8-1 Converting your Windows Help files using Guide Maker's Convert utility

Step 1 Step 3 Step 2

Windows File: Saipt Source File:

To convert your Windows Help files, follow these three steps:

1. Select the Windows Help file to convert.

To select the Windows Help file, click in the Windows Help File area of the
Convert window (see Figure 8-1); a standard file dialog box appears,
requesting that you select the Windows Help file to convert. Select the file
you want to convert.

2. Select a name for the converted source file.

To name the converted source file, click in the Script Source File area of the
Convert window (see Figure 8-1); a dialog box appears, requesting that you
name the converted file. Typically, you give the converted source file the
name of your Windows Help file and end the name in . GS (for Guide Script).

Converting Your Windows Help Files in Three Steps 8-5

8-6

CHAPTER 8

Converting Windows Help Files

3. Click the Convert arrow.

Guide Maker begins to convert your Windows Help file, reporting status
and error messages in the status area of the Convert window. Figure 8-2
shows the messages reported by Guide Maker after a successful conversion.

Figure 8-2 A successfully converted Windows Help file

~0 Conuert - ------
--- - ==-----=-=-=

Windows Help FBe: Script Source File:

CONT£NTS.RTF CONT£NTS.RTF.GS

B•ginning WinH•lp to Guid• Makor script convorsion of "CONT£NTS.RTF • on 11/30/94
at 2 :52PM.
VinH•lp to Guid• Makor script conv•rsion of "CONTENTS RTF• succ .. sful on 11 /30/94
at 2:52PM.

Congratulations! By following the conversion steps, you have converted
a Windows Help file into a Guide Script source file. To convert all of your
Windows Help files, repeat these three steps.

Figure 8-3 illustrates a sample Windows Help file and its converted Guide
Script source file. Note that the hot text-Fancy Fonts-has been successfully
converted; Guide Maker converts automatically all references to hot text and
hot objects.

Converting Your Windows Help Files in Three Steps

CHAPTER 8

Converting Windows Help Files

Figure 8-3 A Windows Help file and its converted Guide Script source file

I

Windows Help file

#$ Work with fonts
1. Select a font type

{bmc FONT.BMP}
2. Modify the font size

Fancy Fonts

FONTS
$ Work with fonts

;

_:

• Convert

~..,....,.....,.D Guide Script source file (~'""'·:..;.;.:;·=·, ·=·;.;.._....__ ___.._

<Define Sequence> "FONTS", "Work with fonts"
<Define Panel> "Panel 1"
1. Select a font type

#<PICT> "FONT.BMP", CENTER
2. Modify the font size

<Hot Text> "Fancy Fonts", ALL,-,
LaunchNewSequenceNewWindow(H_Font)

Fancy Fonts
<End Panel>
<End Sequence>

When all of your Windows Help files are converted to Guide Script source files,
you need to create an interface for your help content; see the next section for
more information on this topic.

Converting Your Windows Help Files in Three Steps 8-7

CHAPTER 8

Converting Windows Help Rles

Creating an Interface for Your Help Content

8-8

Once you have converted all of your Windows Help files, you need to construct
an interface (that is, an access window) so that your users can access your help
content. Figure 8-4 shows a typical guide file interface, a Full Access window.

Figure 8-4 Creating an interface for your help content

Reviewing the Basics
Working with Programs
Files
Disks
Using DOS Files & Disks
Printing & Fonts
Networks & Telecommunications
Setting Options
Color

Monitors
Memory

..,. How do I
adjust the speaker volume?
change the beep sound?
install or remove a sound?

play a CD audio disc?
play a CD au<f10 disc repeatedly?
select tracks to play on an audio CD?
use a CD·ROM disc? •/
disable buttons on the computer's front? !;;:!•

..,. Why can't 1 '···
record a sound?

OK

To create an access window, first specify the type of window you want, using
the <Startup Window> command. You can choose from three types of access
windows: Full Access, Single List Access, and Simple Access. For information
on these windows see the chapter "Authoring Tips and Suggestions" in Part 1.

Note
For information on the Guide Script commands used in
this section, see the chapter "Guide Script Command
Reference" in Part 4. •

Creating an Interface for Your Help Content

CHAPTER 8

Converting Windows Help Files

Once you have specified which type of access window you want, you need to
define the topic areas, headers, and topics that are visible in the access window.

• For topic areas, use the <Topic Area> command.

• For headers, use the <Header> command.

• For the topics for the headers, use the <Topic> command.

For example, if you have converted a panel sequence that describes how to
record a sound, you might want to define a topic area called "Sound", a header
called "How do 1", and a topic called "record a sound?" (as illustrated in the
Full Access window in Figure 8-4).

In addition to creating the access window, you need to

• name your guide file, using the <Help Menu> command

The guide file name appears in the Help menu whenever your guide file is
available.

• convert your bitmaps to PICT files and remove the comment (#) sign from
the <PICT> command

• add navigation buttons to your panels

• create an index for your help content, using the <Index>, <Header>, and
<Topic> commands

Note that if your Windows Help file contains index terms (they are specified
by the 'K' footnote), Guide Maker converts these automatically. The
converted index terms do not, however, include titles for the <Header>
command; you must provide these. For information on how to design an
index, see the chapter "Planning Your Help Content" in Part 1.

Figure 8-5 illustrates a sample source file with its interface commands.

Creating an Interface for Your Help Content 8-9

CHAPTER 8

Converting Windows Help Files

Figure 8-5 Constructing an interface for a sample source file

Guide Script source file

8-10

<Help Menu> "My Font Guide", Help, "?"
<Startup Window> FULL, TOPICS
<Topic Area> "Font Topic"

<Header> "How do I"
<Topics> "work with fonts?'', "FONTS" ------11-/

1-- Create the interface for
your converted help
content

<Define Sequence> "FONTS", "Work with fonts"
<Define Panel> ''Panel 1"
1. Select a font type

<PICT> "FONT.PICT", CENTER
2. Modify the font size

<Hot Text> "Fancy Fonts", ALL,,
LaunchNewSequenceNeWWindow(H_FONT}

Fancy Fonts
<End Panel>
<End Sequence>

<Index> "Fonts" 'L
<Header> "How do I"

1

<Topics> "work with fonts?", "FONTS:__'_' -----ll-/;
#add a return!

Convert the bitmaps to
PICT files and remove
the# sign

Create index terms

Add a return to the
end of the file

When you have constructed the interface, converted your bitmaps to PICT files,
and created an index, you are ready to compile your source files into a guide
file (this step is known as building your guide file). For information on how to
build your guide file, see the chapter "Creating Your Guide File."

Creating an Interface for Your Help Content

PART THREE

Integrating Guide Files

CHAPTER 9

Apple Guide API I

Contents

Introduction 9-3
Determining Whether Apple Guide Is Available 9-4

Starting Up Apple Guide 9-5
AGStart 9-5
AGQuit 9-6
AGGetStatus 9-6

Determining Which Guide Files Are Available 9-7
AGGetAvailableDBTypes 9-7
AGFileGetDBCount 9-9
AGFileGetindDB 9-10

Opening and Closing Guide Files 9-11
AGOpen 9-12
AGOpenWi thView 9-13
AGOpenWithSearch 9-14
AGOpenWi thSequence 9-16
AGClose 9-17

Working With Open Guide Files 9-18
AGisDatabaseOpen 9-18
AGGetFrontWindowKind 9-19
AGGeneral 9-20
AGGetFSSpec 9-22

Getting Information About Guide Files 9-22
AGFileGetDBMenuName 9-23
AGFileGetHelpBalloonText 9-24
AGFileGetHelpMenuAppCreator 9-25
AGF ileGetDBType 9-26

Contents 9-1

CHAPTER 9

AGF ileGetDBCountry 9-28
AGFileGetDBVersion 9-29
AGF ileGetSelectorCount 9-30
AGFileGetSelector 9-31
AGFileisMixin 9-32
AGFileGetMixinMatchSelector 9-32

Installing and Removing Coachmark Handlers 9-33
AGinstallCoachHandler 9-34
AGRemoveCoachHandler 9-35

Installing and Removing Context Check Handlers 9-36
AGinstallContextHandler 9-36
AGRemoveContextHandler 9-38

Application-Defined Routines 9-38
Providing Object Locations for Coachmarks 9-38

MyCoachReplyProc 9-39
Responding to Context Checks 9-40

MyContextReplyProc 9-40
Summary of Apple Guide API 9-45

9-2 Contents

CHAPTER 9

Apple Guide API

You can provide the user with context-sensitive help from within your
application by using the Apple Guide application programming interface
(API). This application programming interface is a set of functions that allow
you to start up Apple Guide, access and work with guide files-all from within
your application. An additional set of functions is provided in the AGFile
library; you can use these functions to get information about guide files.
You should read this chapter if you are a developer who wants to integrate
Apple Guide with your application.

Usually the user controls when help is displayed by choosing a guide file from
the Help menu. However, using the Apple Guide API, you can make help
available from a button in a dialog box or offer to provide help to the user if
the user repeatedly makes a mistake. For example, you can display to the user
a sequence that is directly related to the task the user is performing.

This chapter begins by introducing you to the types of tasks your application
can accomplish using the Apple Guide API and AGFile library. Then it gives a
complete description of all of their functions.

Introduction

This chapter describes two sets of routines: those in the Apple Guide API and
those in the AGFile library. The routines in the Apple Guide API are available
in System 7.5 or later. The routines prefixed with "AGFile" are not included in
System 7.5 but are part of the AGFile library; to use these routines you must
link the AGFile library with your application when you build it.

You can use functions in the Apple Guide API and AGFile library to

• start up Apple Guide and get information about its status

• get the number and type of guide files available

• open and close guide files

• work with open guide files

• get information about guide files

• provide object location for coachmarks

• respond to context checks

Introduction 9-3

CHAPTER 9

Apple Guide API

Determining Whether Apple Guide Is Available
To determine whether Apple Guide is available, call the Gestalt
function with the gestaltHelpMgrAttr selector and check the value
of the response parameter. If the bit indicated by the constant
gestal tAppleGuidePresent is set, then Apple Guide (and its API) is
available. If the bit indicated by the constant gestaltAppleGuideisDebug
is set, then the Apple Guide Debug extension is installed (you use the Apple
Guide Debug extension only for debugging your guide file).

enum {

};

9-4

gestaltHelpMtrAttr 'help'

gestaltAppleGuidePresent 31,
gestaltAppleGuideisDebug 30

/*Gestalt selector for Help Mgr */
I* and Apple Guide*/
/*Apple Guide API is available*/
/*Apple Guide Debug extension *I
I* is installed*/

For example, this code determines whether Apple Guide is available:

long response = 0;
OSErr err;

err= Gestalt(gestaltHelpMgrAttr, &response);
if (err== noErr && (response & (1 << gestaltAppleGuidePresent)))

/*Apple Guide is available*/
kAppleGuideAvailable = 1

else
/*Apple Guide is not available*/
kAppleGuideAvailable = 0;

For information on the Gestalt function, see the chapter "Gestalt Manager"
in Inside Macintosh: Operating System Utilities.

Introduction

CHAPTER 9

Apple Guide API

Starting Up Apple Guide

AGStart

DESCRIPTION

You can use three functions-AGStart, AGQui t, and AGGetStatus-to start
up, stop, and determine the status of Apple Guide. Apple Guide contains
two components: a stay-resident portion that is always in memory and an
application portion that is required to be in memory only while a guide file
is open. The application portion is launched in its own heap as a faceless,
background application. If it is not already in memory, it is automatically
launched when your application opens a guide file. Thus, your application
doesn't usually need to call AGStart. However, if your application opens a
guide file, it should always close the guide file and call AGQui t before quitting.

Use the AGStart function to start up Apple Guide.

AGErr AGStart(void);

The AGStart function launches the application portion of Apple Guide. If it is
successfully launched or already in memory, the AGStart function returns the
noErr result code.

SPECIAL CONSIDERATIONS

The Apple Guide functions that open guide files automatically call AGStart.

RESULT CODES

noErr 0 No error

Starting Up Apple Guide 9-5

)>
"'C
"'C ar
Ci)
c:::
0:
CD
)>

::2

AGQuit

DESCRIPTION

CHAPTER 9

Apple Guide API

Use the AGQui t function to quit Apple Guide.

AGErr AGQuit(void);

The AGQui t function checks to see if any guide files are open. If it finds one
open, it does not quit Apple Guide. If no guide files are open, it quits the
application portion of Apple Guide.

If your application opens a guide file, it should always close the guide file and
call AGQui t before quitting. Otherwise, if the application portion of Apple
Guide is active or sleeping, it remains in memory.

SPECIAL CONSIDERATIONS

RESULT CODES

Don't force Apple Guide to quit when your application goes to the
background. If your application has opened a guide file and the user switches
to another application, your guide file should remain open until the user closes
it, opens another guide file, or quits your application.

noErr
kAGErrDatabaseOpen

0
-2961

No error
No open guide file

AGGetStatus

Use the AGGetStatus function to determine the status of Apple Guide.

AGStatus AGGetStatus(void);

9-6 Starting Up Apple Guide

DESCRIPTION

SEE ALSO

CHAPTER 9

Apple Guide API

The AGGetStatus function determines whether Apple Guide is active,
sleeping, or not running by returning one of the following constants:

• kAGisActive, if the application portion of Apple Guide is in memory and
a guide file is open

• kAGisSleeping, if the application portion of Apple Guide is in memory
but no guide files are open

• kAGisNotRunning, if the application portion of Apple Guide is not in
memory

To determine whether the Apple Guide API is available, use the Gestalt
Manager, as described in "Determining Whether Apple Guide Is Available" on
page 9-4.

Determining Which Guide Files Are Available

To determine the number and types of guide files that are available, use the
routines described in this section. After finding the desired guide file, you can
obtain its file system specification record (you must provide a file system
specification record to the Apple Guide functions that open guide files).

AGGetAvailableDBTypes

Use the AGGetAvailableDBTypes function to determine the types of guide
files that are available in the current application's Help menu.

Uint32 AGGetAvailableDBTypes(void);

Determining Which Guide Files Are Available 9-7

)>
"0
"0
m
G)
I:
0:
CD
)>

:2

DESCRIPTION

SEE ALSO

9-8

CHAPTER 9

Apple Guide API

The AGGetAvailableDBTypes function returns a collection of bit flags that
indicate the types of guide files that are available in the current application's
Help menu:

enum AGDBTypeBit
{

} ;

kAGDBBitAny OxOOOOOOOl,/*one or more guide *I
I* files are present*/

kAGDBTypeBitHelp = Ox00000002,/*Help guide file*/

kAGDBTypeBitTutorial /*Tutorial guide *I
Ox00000004,/* file*/

kAGDBTypeBitShortcuts /*Shortcuts guide */

Ox00000008,/* file*/
kAGDBTypeBitAbout OxOOOOOOlO,/*About guide file*/

kAGDBTypeBitOther Ox00000080/*0ther guide file*/

The AGGetAvailableDBTypes function returns

• kAGDBBi tAny if one or more guide files are present

• kAGDBTypeBi tHelp if a Help guide file is present

• kAGDBTypeBitTutorial if a Tutorial guide file is present

• kAGDBTypeBi tShortcuts if a Shortcuts guide file is present

• kAGDBTypeBi tAbout if an About guide file is present

• kAGDBTypeBi tOt her if an Other guide file is present

• 0 if no guide files are present

To count the number of guide files of a particular type, use the
AGF ileGetDBCount function, described next. To get the file system
specification record for a guide file, use the AGFileGetindDB function,
as described on page 9-10.

Determining Which Guide Files Are Available

CHAPTER 9

Apple Guide API

AGFileGetDBCount

DESCRIPTION

Use the AGF ileGetDBCount function to count the number of guide files in a
specified folder.

AGFileCountType AGFileGetDBCount
(short vRefNum, long diriD,
AGFileDBType databaseType,
Boolean wantMixin);

vrRefNum The volume reference of the volume on which the guide file is
located.

diriD The directory ID of the directory where the guide file is located.

databaseType
The guide file type. Use these constants to specify the type of
guide file:

enum {
kAGFileDBTypeAny
kAGFileDBTypeHelp
kAGFileDBTypeTutorial
kAGFileDBTypeShortcuts
kAGFileDBTypeAbout
kAGFileDBTypeOther

};

0,/*all types*/
1,/*Help*/
2,/*Tutorial*/
3,/*Shortcuts*/
4,/*About*/
8 /*Other*/

wantMixin A flag. Set to TRUE if you want to count the number of main
guide files and Mixin guide files. Set to FALSE if you want to
count only the number of main guide files.

The AGFileGetDBCount function returns the number of guide files available
in the folder specified by the vrRefNum and diriD parameters. This function
counts only the guide files of the type specified in the databaseType
parameter.

Determining Which Guide Files Are Available 9-9

)>
"'0
"'0
CD'
Ci)
s:: c:
Q)

)>

::B

CHAPTER 9

Apple Guide API

AGFileGetlndDB

9-10

Use the AGFileGetindDB function to obtain the file system specification
record of a guide file located in a specified folder.

OSErr AGFileGetindDB

vRefNum

diriD

(short vRefNum, long diriD,
AGFileDType databaseType,
Boolean wantMixin,
short dbindex, FSSpecType *fileSpec);

The volume reference number of the volume on which the guide
file is located.

The directory ID of the directory where the guide file is located.

databaseType
The guide file type. Use these constants to specify the type of
guide file:

enum {
kAGFileDBTypeAny
kAGFileDBTypeHelp
kAGFileDBTypeTutorial
kAGFileDBTypeShortcuts
kAGFileDBTypeAbout
kAGFileDBTypeOther

} ;

0,/*any guide file*/
1,/*Help*/
2,/*Tutorial*/
3,/*Shortcuts*/
4,/*About*/
8 /*Other*/

wantMixin A flag. Specify TRUE if the desired guide file is a Mixin guide
file. Specify FALSE if the guide file is not a Mixin guide file.

db Index A number representing the guide file index. To access the first
guide file of the specified type in the folder, set this parameter
to 1. To access the second guide file of this type, specify 2, and
soon.

fileSpec A pointer to a file system specification record. On return, this
parameter refers to the file system specification record for the
guide file.

Determining Which Guide Files Are Available

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 9

Apple Guide API

The AGFileGetindDB function returns, through its fileSpec parameter,
the file system specification record for the specified guide file. You can call
AGFileGetindDB repetitively to access the file system specification record for
all of the guide files in a folder. To access all of the guide files, increment the
db Index parameter by 1, until the value of the db Index parameter is equal
to the number of guide files of the requested type in the folder, or until the
function result is nonzero.

noErr
dirNFEr:r;
nsvErr

0
-12
-35

No error
Directory not found or incomplete pathname
Volume doesn't exist

After obtaining a guide file's file system specification record, you can get
information about the guide file by using the functions described in "Getting
Information About Guide Files" beginning on page 9-22. You can also open a
guide file, as described next.

Opening and Closing Guide Files

This section describes the functions you can use to open and close guide files.
You can use these functions to

• open a guide file in its default active list (Topics, Index, Look For, or Howdy)

• open a guide file and specify which list the guide file should open in (Topics,
Index, Look For, or Howdy)

• open a guide file and specify the sequence to display

• open a guide file with Look For active and immediately perform a search

• close a guide file

Opening and Closing Guide Files 9-11

•

AGOpen

DESCRIPTION

RESULT CODES

9-12

CHAPTER 9

Apple Guide API

Use the AGOpen function to open a guide file in its default active list. You can
use this function to open any guide file.

AGErr AGOpen(FSSpec *fileSpec, Uint32 flags,
Handle mixinControl,

fileSpec

flags

AGRefNum *resultRefNum);

A pointer to the file system specification record of the guide file
you wish to open. Specify NIL to open the first guide file of type
Help that is available to the application.

Reserved. Specify 0 in this parameter.

mixinControl
Reserved. Specify NIL in this parameter.

resultRefNum
An address through which AGOpen returns a reference number
for the guide file specified in the fileSpec parameter. You use
this reference number to refer to the guide file in other Apple
Guide functions.

The AGOpen function opens the guide file specified in the fileSpec
parameter. It opens the guide file in its default active list. (For a Full Access
window, Topics, Index, Look For, or Howdy; for a Single List Access window,
Topics or Howdy; for a Simple access window, the first panel of its sequence.)
If the application portion of Apple Guide is not in memory, AGOpen calls
AGStart to start up Apple Guide before it opens the specified guide file.

noErr
kAGErrCannotOpenAliasFile
kAGErrDatabaseNotAvailable
kAGErrinsufficientMemory

Opening and Closing Guide Files

0
-2954
-2956
-2962

No error
Unable to open alias
Guide file is not available
Not enough memory

CHAPTER 9

Apple Guide API

SEE ALSO

For a description of the AGStart function, see page 9-5.

AGOpenWithView

Use the AGOpenWi thView function to open a guide file and specify its initial
active list. You can use this function to open a guide file that uses a Full Access
window or Single List access window.

AGErr AGOpenWithView (FSSpec *fileSpec, Uint32 flags,
Handle mixinControl,
short viewNum,
AGRefNum *resultRefNum);

fileSpec A pointer to the file system specification record for the guide file
you wish to open. Specify NIL to open the first guide file of type
Help that is available to the application.

flags Reserved. Specify 0 in this parameter.

mixinControl
Reserved. Specify NIL in this parameter.

viewNum A value that indicates which list to display. You can use these
constants to specify which list should be initially active:

enum {
kAGViewFullHowdy 1, /*full howdy*/
kAGViewTopicAreas 2, /*Topic Area*/
kAGViewindex ::= 3, /*Index*/
kAGViewLookFor 4, /*Look For*/
kAGViewSingleHowdy 5, /*Single List *

I* howdy*/
kAGViewSingleTopics 6 /*Single List *I

I* topics*/
};

Opening and Closing Guide Files 9-13

•)>
"0
"0
(i)
G)
c:
a:
C1)

)>

3!

DESCRIPTION

RESULT CODES

CHAPTER 9

Apple Guide API

resultRefNum
An address through which AGOpenWi thView returns a
reference number for the guide file specified in the fileSpec
parameter. You use this reference number to refer to the guide
file in other Apple Guide functions.

The AGOpenWi thView function opens the guide file specified in
the fileSpec parameter, and displays the active list specified in the
viewNum parameter. If the application portion of Apple Guide is not in
memory, AGOpenWi thView calls AGStart to start up Apple Guide before
it opens the specified guide file.

noErr
kAGErrCannotOpenAliasFile
kAGErrNoAliasResource
kAGErrDatabaseNotAvailable
kAGErrinsufficientMemory

0
-2954
-2955
-2956
-2962

No error
Unable to open alias
Unable to open resource alias
Guide file is not available
Not enough memory

AGOpen WithSearch

9-14

Use the AGOpenWi thSearch function to open a guide file and immediately
start a search on a specified search phrase. You can use this function to open
a guide file that uses a Full Access window.

AGErr AGOpenWithSearch(FSSpec *fileSpec, Uint32 flags,
Handle mixinControl,
ConstStr255Param searchString,
AGRefNum *resultRefNum);

fileSpec

flags

A pointer to the file system specification record for the guide file
you wish to open. Specify NIL to open the first guide file of type
Help that is available to the application.

Reserved. Specify 0 in this parameter.

Opening and Closing Guide Files

DESCRIPTION

RESULT CODES

CHAPTER 9

Apple Guide API

mixinControl
Reserved. Specify NIL in this parameter.

searchString
The search phrase to place in the search phrase entry box. When
the guide file (specified in the fileSpec parameter) opens up,
Apple Guide searches on this phrase.

resultRefNum
An address through which AGOpenWi thSearch returns a
reference number for the guide file specified in the fileSpec
parameter. You use this reference number to refer to the guide
file in other Apple Guide functions.

The AGOpenWi thSearch function opens the guide file, specified in the
fileSpec parameter, in a Full Access window with Look For active. After
the guide file opens, Apple Guide immediately starts to search the open guide
file for any occurrences of the search phrase specified in the searchString
parameter. If the application portion of Apple Guide is not in memory,
AGOpenWi thSearch first calls the AGStart function to start up Apple Guide
before it opens the specified guide file.

noErr
kAGErrCannotOpenAliasFile
kAGErrNoAliasResource
kAGErrDatabaseNotAvailable
kAGErrinsufficientMemory

Opening and Closing Guide Files

0
-2954
-2955
-2956
-2962

No error
Unable to open alias
Unable to open resource alias
Guide file is not available
Not enough memory

9-15

)>
"C
"C
(i)
G)
c:
a:
CD
)>

::!!

CHAPTER 9

Apple Guide API

AGOpen WithSequence

DESCRIPTION

9-16

Use the AGOpenWi thSequence function to open a guide file and immediately
display a panel sequence. You can use this function to open any guide file.

AGErr AGOpenWithSequence(FSSpec *fileSpec, Uint32 flags,
Handle mixincontrol,

fileSpec

flags

short sequenceiD,
AGRefNum *resultRefNum);

A pointer to the file system specification record for the guide file
you wish to open. Specify NIL to open the first guide file of type
Help that is available to the application.

Reserved. Specify 0 in this parameter.

mixinControl

sequenceiD

Reserved. Specify NIL in this parameter.

The sequence ID of the sequence to display. Guide Maker
assigns sequence IDs to sequences when it compiles a guide file.
You can obtain a list of all the sequence IDs in a guide file, by
generating a Names to IDs report. For more information on how
to generate a Names to IDs report, see the chapter "Testing Your
Guide File" in Part 2.

resultRefNum
An address through which AGOpenWi thSequence returns a
reference number for the guide file specified in the fileSpec
parameter. You use this reference number to refer to the guide
file in other Apple Guide functions.

The AGOpenWi thSequence function opens the guide file specified in the
fileSpec parameter and immediately displays the first panel of the sequence
specified in the sequenceiD parameter. If the application portion of Apple
Guide is not in memory, AGOpenWithSequence first calls AGStart to start
up Apple Guide before it opens the specified guide file.

Opening and Closing Guide Files

RESULT CODES

AGClose

DESCRIPTION

CHAPTER 9

Apple Guide API

noErr
kAGErrCannotOpenAliasFile
kAGErrNoAliasResource
kAGErrDatabaseNotAvailable
kAGErrinsufficientMemory

0
-2954
-2955
-2956
-2962

No error
Unable to open alias
Unable to open resource alias
Guide file is not available
Not enough memory

Use the AGClose function to close a specified guide file.

AGErr AGClose(AGRefNum *resultRefNum);

resultRefNum
A pointer to the reference number for the guide file you wish to
close.

The AGClose function closes the guide file specified in the resul tRefNum
parameter. You use AGClose to close a guide file that was opened by
your application. If you attempt to close a guide file that was opened by
another application, the AGClose function returns a nonzero result code.
Note that a call to AGClose does not quit Apple Guide; it continues to run
in the background.

If your application opens a guide file, it should always close the guide file
and call AGQuit before quitting. Otherwise, if the application portion of
Apple Guide is active or sleeping, it remains in memory.

SPECIAL CONSIDERATIONS

Don't close an open guide file or force Apple Guide to quit when your
application goes to the background. If your application has opened a guide file
and the user switches to another application, your guide file should remain
open until the user closes it, opens another guide file, or quits your application.

Opening and Closing Guide Files 9-17

RESULT CODES

SEE ALSO

CHAPTER 9

Apple Guide API

noErr
kAGErrDatabaseNotOpen
kAGErrinvalidRefNum

0
-2957
-2960

No error
Guide file is not open
The guide file was opened by
another application

For a description of the AGQui t function, see page 9-6.

Working With Open Guide Files

This section describes how to work with open guide files. Its four functions
AGisDatabaseOpen,AGGetFrontWindowKind,AGGeneral,and
AGGetFSSpec-describe, for any specified open guide file, how to

• verify that it is still open

• determine whether its access window or one of its panels is showing

• request Apple Guide to perform an action related to its display (such as
showing the next panel)

• get its file system specification record

AGisDatabaseOpen

Use the AGisDatabaseOpen function to verify that a guide file is still open.

Boolean AGisDatabaseOpen(AGRefNum refNum);

refNum The reference number for the guide file.

9-18 Working With Open Guide Files

DESCRIPTION

SEE ALSO

CHAPTER 9

Apple Guide API

If the guide file (specified in the refNum parameter) is open,
AGisDatabaseOpen returns TRUE, and if the guide file is closed,
AGisDatabaseOpen returns FALS.E.

The user or another application can close a guide file that your application
explicitly opens. A user can directly close your guide file by clicking in its close
box. The user or another application can indirectly close your guide file by
opening another guide file. (Before opening a guide file, Apple Guide closes the
active guide file, if any.) Therefore, when your application switches from the
background to the foreground, you should call AGisDatabaseOpen to verify
that your guide file is still open.

You can also verify that a guide file is open by using the function
AGGetFrontWindowKindbufiction.TheAGGetFrontWindowKind
function (described next) returns additional information about a guide file.

AGGetFrontWindowKind

DESCRIPTION

Use the AGGetFrontWindowKind function to determine, for a specified open
guide file, the type of window that is currently being displayed.

AGWindowKind AGGetFrontWindowKind(AGRefNum refNum);

refNum A reference number for a guide file or the constant
kAGFrontDatabase to specify the active guide file.

The AGGetFrontWindowKind function returns information indicating
whether the access window or a presentation window of the specified guide
file is currently showing. It also indicates whether the guide file is open.

Working With Open Guide Files 9-19

•

AGGeneral

9-20

CHAPTER 9

Apple Guide API

The AGGetFrontWindowKind function returns

• kAGAccessWindow if the guide file's access window is showing

• kAGPresentationWindow if a presentation window (panel) of the guide
file is showing

• kAGNoWindow if the specified guide file is not open (which indicates that
the application portion of Apple Guide is either sleeping or not running)

Use the AGGeneral function to perform actions on an open guide file.

AGErr AGGeneral (AGRefNum refNum, AGEvent theEvent);

refNum

theEvent

A reference number of an open guide file.

A four-character sequence that indicates the action to perform.
(These actions correspond to Apple Guide Apple events.) You
specify the action using one of these constants:

enum {
/*Apple Guide Apple events for guide files*/

};

kAGEventDoCoach 'doco', /*coachmark*/

kAGEventDoHuh 'dhuh', /*Huh? topic*/

kAGEventGoNext 'gonp', /*go next*/

kAGEventGoPrev 'gopp', /*go previous*

kAGEventHidePanel 'pahi', /*hide panel*/

kAGEventReturnBack= 'gobk', /*return back*/
kAGEventShowPanel = 'pash', /*show panel*/
kAGEventTogglePanel= 'patg' /*toggle panel*/

Working With Open Guide Files

DESCRIPTION

RESULT CODES

CHAPTER 9

Apple Guide API

The AGGeneral function sends an Apple event to Apple Guide, which then
performs the requested action on the guide file specified in the refNum
parameter.

The parameter theEvent specifies the action to perform, as indicated by the
particular Apple event constant. You can specify any of these seven types of
Apple events to perform the corresponding action related to an open guide file:

• kAGEventDoCoach, to draw a coachmark that exists for the active panel
of the open guide file

• kAGEventDoHuh, to open a Huh? topic that belongs to the active panel of
the open guide file

• kAGEventGoNext, to go to the next panel

• kAGEventGoPrev, to go to the previous panel

• kAGEventShowPanel, to expand the active panel

• kAGEventTogglePanel, to collapse or expand panel

• kAGEventReturnBack, to return from an Oops panel

You can direct Apple events only to a guide file that was opened by your
application. If you attempt to direct an event to a guide file that was not
opened by your application, the AGGeneral function returns a nonzero result
code.

noErr
kAGErrDatabaseNotOpen
kAGErrinvalidRefNum

Working With Open Guide Files

0
-2957
-2960

No error
Guide file is not open
The guide file was opened by
another application

9-21

~
"0
Ci
G)
c: a:
CD
)>

J2

CHAPTER 9

Apple Guide API

AGGetFSSpec

DESCRIPTION

RESULT CODES

SEE ALSO

Use the AGGetFSSpec function to access the file system specification record of
an open guide file.

AGErr AGGetFSSpec(AGRefNum refNum, FSSpec *fileSpec);

refNum

fileSpec

The reference number for a guide file or the constant
kAGFrontDatabase to specify the active guide file.

A pointer to a file system specification record. The
AGGetFSSpec function returns, through this parameter, the
guide file's file system specification record.

The AGGetFSSpec function returns (through the fileSpec parameter) the
file system specification record for the guide file specified in the refNum
parameter.

noErr
kAGErrDatabaseNotOpen

0
-2957

No error
Guide file is not open

To get the file system specification record for any guide file, use the
AGFileGetindDB function, as described on page 9-10.

Getting Information About Guide Files

This section describes how to get information about a guide file-how to

• find its Help menu item name

• get its associated help balloon text

• determine its creator

9-22 Getting Information About Guide Files

CHAPTER 9

Apple Guide API

• determine its type

• get its script and region codes

• get its version

• get the number of its gestalt selectors

• access its gestalt selectors

• determine whether it's a Mixin guide file

• determine whether a Mixin guide file can be mixed with it

These functions require that you specify the file system specification record of
the guide file you desire information about. To get a guide file's file system
specification record, use the AGFileGetindDB function (described on
page 9-10).

The functions in this section do not require that the Apple Guide extension be
installed; however, they do require that the application using them be built
with the AGFile library.

AGFileGetDBMenuName

Use the AGFileGetDBMenuName function to obtain, for a specific guide file,
the text that Apple Guide displays in an application's Help menu when the
guide file is available.

OSErr AGFileGetDBMenuName

fileSpec

(AGFileFSSpecType *fileSpec,
AGFileDBMenuNamePtr menuitemNameStr);

A pointer to the file system specification record for the guide file.

menuitemNameStr
A pointer to a text string. The AGFileGetDBMenuName
function returns, through this parameter, the guide file's Help
menu name.

Getting Information About Guide Files 9-23

DESCRIPTION

RESULT CODES

CHAPTER 9

Apple Guide API

The AGFileGetDBMenuName function returns, in the menuitemNameStr
parameter, the guide file's Help menu name.

noErr
nsvErr
ioErr
fnOpnErr
fnfErr
fLckdErr
rfNumErr
dirNFErr

afpAccessDenied

0
-35
-36
-38
-43
-45
-51

-120

-5000

No error
Volume doesn't exist
1/0 error
File not open
File or directory does not exist
File is locked
Bad reference number
Directory not found or incomplete
pathname
User does not have the correct access to the
file

AGFileGetHelpBalloonText

9-24

Use the AGFileGetHelpBalloonText function to obtain the help balloon
text associated with a guide file.

OSErr AGFileGetHelpBalloonText

fileSpec

(AGFileFSSpecType *fileSpec,
Str255 helpMenuBalloonString);

A pointer to the file system specification record for the guide file.

helpMenuBalloonString
A text string. The AGFileGetHelpBalloonText function
returns, in this parameter, the help balloon text for the guide file.

Getting Information About Guide Files

DESCRIPTION

RESULT CODES

CHAPTER 9

Apple Guide API

The AGFileGetHelpBalloonText function returns, in its
helpMenuBalloonString parameter, the help balloon text associated
with the guide file. Apple Guide displays this text in a help balloon
when Balloon Help is on and the cursor is in the guide file's menu item
in the Help menu.

noErr
nsvErr
ioErr
fnOpnErr
fnfErr
fLckdErr
rfNumErr
dirNFErr

afpAccessDenied

0
-35
-36
-38
-43
-45
-51

-120

-5000

No error
Volume doesn't exist
l/0 error
File not open
File or directory does not exist
File is locked
Bad reference number
Directory not found or incomplete
pathname
User does not have the correct access to the
file

AGFileGetHelpMenuAppCreator

Use the AGFileGetHelpMenuAppCreator function to retrieve the
four-character value that specifies the application associated with this guide file.

OSErr AGFileGetHelpMenuAppCreator
(AGFileFSSpecType *fileSpec,
OSType *helpMenuAppCreator);

fileSpec A pointer to the file system specification record for the guide file.

helpMenuAppCreator
The AGFileGetHelpMenuAppCreator function returns,
through this parameter, the four-character value that specifies
the application associated with this guide file.

Getting Information About Guide Files 9-25

DESCRIPTION

RESULT CODES

CHAPTER 9

Apple Guide API

The AGFileGetHelpMenuAppCreator function returns, through its
helpMenuAppCreator parameter, the signature of the application that
is associated with the guide file specified in the fileSpec parameter.

If a guide file specifies the application associated with it, then the value
returned in the helpMenuAppCreator parameter must match the signature
of the application for the guide file to appear in the application's Help menu.
If the guide file does not specify the application that is associated with it, the
helpMenuAppCreator parameter returns NIL.

noErr
nsvErr
ioErr
fnOpnErr
fnfErr
fLckdErr
rfNumErr
dirNFErr

afpAccessDenied

0
-35
-36
-38
-43
-45
-51

-120

-5000

No error
Volume doesn't exist
I/O error
File not open
File or directory does not exist
File is locked
Bad reference number
Directory not found or incomplete
pathname
User does not have the correct access to the
file

AGFileGetDBType

9-26

Use the AGFileGetDBType function to determine the type of a guide file.

OSErr AGFileGetDBType

fileSpec

(AGFileFSSpecType *fileSpec,
AGFileDBType *databaseType);

A pointer to the file system specification record for the guide file.

Getting Information About Guide Files

DESCRIPTION

RESULT CODES

CHAPTER 9

Apple Guide API

databaseType
A pointer to the type of the guide file. The AGFileGetDBType
functions returns, through this parameter, a value that indicates
the guide file type. The guide file type is indicated by one of
these constants:

enum {
kAGFileDBTypeHelp
kAGFileDBTypeTutorial
kAGFileDBTypeShortcuts
kAGFileDBTypeAbout
kAGFileDBTypeOther

} ;

1,/*Help*/
2,/*Tutorial*/
3,/*Shortcuts*/
4,/*About*/
8 /*Other*/

The AGFileGetDBType function returns, in its databaseType parameter, the
type of the specified guide file.

no Err
nsvErr
ioErr
fnOpnErr
fnfErr
fLckdErr
rfNumErr
dirNFErr

afpAccessDenied

0
-35
-36
-38
-43
-45
-51

-120

-5000

Getting Information About Guide Files

No error
Volume doesn't exist
l/0 error
File not open
File or directory does not exist
File is locked
Bad reference number
Directory not found or incomplete
pathname
User does not have the correct access to the
file

9-27

CHAPTER 9

Apple Guide API

AGFileGetDBCountry

DESCRIPTION

RESULT CODES

9-28

Use the AGFileGetDBCountry function to obtain the script and region codes
for a guide file.

OSErr AGFileGetDBCountry

fileSpec

script

region

(AGFileFSSpecType *fileSpec,
AGFileDBScriptType *script,
AGFileDBRegionType *region);

A pointer to the file system specification record for the guide file.

A pointer to a short integer. On return, this parameter refers to
the script code for the guide file specified in the fileSpec
parameter.

A pointer to a short integer. On return, this parameter refers to
the region code for the guide file specified in the fileSpec
parameter.

The AGFileGetDBCountry function returns, in the script and region
parameters, the script and region code for a guide file. The guide file is
specified in the fileSpec parameter.

noErr
nsvErr
ioErr
fnOpnErr
fnfErr
fLckdErr
rfNumErr
dirNFErr

afpAccessDenied

0
-35
-36
-38
-43
-45
-51
-12

-5000

Getting Information About Guide Files

No error
Volume doesn't exist
l/0 error
File not open
File or directory does not exist
File is locked
Bad reference number
Directory not found or incomplete
pathname
User does not have the correct access to the
file

SEE ALSO

CHAPTER 9

Apple Guide API

See the chapter "Script Manager" in Inside Macintosh: Text for a complete list of
script codes and region codes.

AGFileGetDBVersion

DESCRIPTION

Use the AGFileGetDBVersion function to obtain the version information of a
guide file.

OSErr AGFileGetDBVersion

fileSpec

majorRev

minorRev

(AGFileFSSpecType *fileSpec,
AGFileMajorRevType *majorRev,
AGFileMinorRevType *minorRev);

A pointer to the file system specification record for the guide file.

A pointer to a short integer. On return, this parameter refers to
the major version designation for the guide file specified in the
fileSpec parameter.

A pointer to a short integer. On return, this parameter refers to
the minor version designation for the guide file specified in the
fileSpec parameter.

The AGFileGetDBVersion function returns in its parameters-majorRev
and minorRev-the major and minor versions of the guide file.

Getting Information About Guide Files 9-29

I

RESULT CODES

CHAPTER 9

Apple Guide API

noErr
nsvErr
ioErr
fnOpnErr
fnfErr
fLckdErr
rfNumErr
dirNFErr

afpAccessDenied

0
-35
-36
-38
-43
-45
-51

-120

-5000

No error
Volume doesn't exist
1/0 error
File not open
File or directory does not exist
File is locked
Bad reference number
Directory not found or incomplete
pathname
User does not have the correct access to the
file

AGFileGetSelectorCount

DESCRIPTION

9-30

Use the AGFileGetSelectorCount function to obtain the number of gestalt
selectors for a guide file.

AGFileSelectorCountType AGFileGetDBSelectorCount
(AGFileFSSpecType *fileSpec);

fileSpec A pointer to the file system specification record for the guide file.

The AGFileGetSelectorCount function returns the number of gestalt
selectors for the guide file specified in the fileSpec parameter. This number
corresponds to the number of <Gestalt> commands in the guide file's source
files. A guide file can have at most three gestalt selectors.

Getting Information About Guide Files

CHAPTER 9

Apple Guide API

AGFileGetSelector

DESCRIPTION

SEE ALSO

Use the AGFileGetSelector function to access a guide file's gestalt selector
and its associated value.

OSErr AGFileGetSelector

fileSpec

(AGFileFSSpecType *fileSpec,
AGFileSelectorindexType selectorNumber,
AGFileSelectorType *selector,
AGFileSelectorValueType *value);

A pointer to the file system specification record for the guide file.

selectorNumber

A selector index number. To access the first gestalt selector,
specify 1; to access the second gestalt selector, specify 2; and to
access the third gestalt selector, specify 3.

selector The AGFileGetSelector function returns, through this
parameter, a four-character value gestalt selector for the gestalt
selector specified by the selectorNumber parameter.

value The AGFileGetSelector function returns, through this
parameter, a long integer associated with the gestalt selector
returned in the selector parameter.

The AGFileGetSelector function returns, in its selector and value
parameters, the gestalt selector and its required value for the guide file
specified in the fileSpec parameter. The gestalt selector and value
correspond to those specified by a <Gestalt> command in the guide file's
source files.

For a complete list of Gestalt selector codes, see the chapter "Gestalt Manager"
in Inside Macintosh: Operating System Utilities.

Getting Information About Guide Files 9-31

)>
"0
"0
(i)
G)
c: a:
(1)

)>

::2

CHAPTER 9

Apple Guide API

AGFilelsMixin

DESCRIPTION

Use the AGFileisMixin function to determine if a guide file is a Mixin guide
file, that is, whether it is used to add or modify content in a main guide file.

Boolean AGFileisMixin

fileSpec

(AGFileFSSpecType *fileSpec,
AGFileDBMenuNamePtr menuitemNameStr);

A pointer to the file specification record for the guide file.

menuitemNameStr
If the file is a mixin, AGFileisMixin returns, through this
parameter, the name of the main guide file associated with it.

The AGFileisMixin function returns TRUE if the guide file (specified in the
fileSpec parameter) is a mixin and FALSE if it isn't.

AGFileGetMixinMatchSelector

9-32

Use the AGFileGetMixinMatchSelector function to determine if a Mixin
guide file can be mixed in with a main guide file.

OSErr AGFileGetMixinMatchSelector
(AGFileFSSpecType *fileSpec,
OSType *mixinMatchSelector);

fileSpec A pointer to the file system specification record for the guide file.

mixinMatchSelector
The AGFileGetMixinMatchSelector function returns,
through this parameter, a four-character value that usually
corresponds to the signature of the application associated with
this guide file.

Getting Information About Guide Files

DESCRIFfiON

RESULT CODES

CHAPTER 9

Apple Guide API

The AGFileGetMixinMatchSelector function returns, through its
mixinMatchSelector parameter, a four-character value corresponding to
the value specified by a <Mixin Match> command in the guide file's source
files. A Mixin guide file can mix in with a main guide file if their four-character
values (specified by <Mixin Match> commands) match.

In addition, if the value returned in the mixinMatchSelector parameter is
1 **** 1

, the Mixin guide file can mix with any main guide file.

noErr
nsvErr
ioErr
fnOpnErr
fnfErr
fLckdErr
rfNumErr
dirNFErr

afpAccessDenied

0
-35
-36
-38
-43
-45
-51

-120

-5000

No error
Volume doesn't exist
I/O error
File not open
File or directory does not exist
File is locked
Bad reference number
Directory not found or incomplete
pathname
User does not have the correct access to the
file

Installing and Removing Coachmark Handlers

This section describes how to install and remove coachmark handlers using
two functions, AGinstallCoachHandler and AGRemoveCoachHandler.

Installing and Removing Coachmark Handlers 9-33

)>
'C
'C
ii)

G>
c
0:
CD
)>

::2

CHAPTER 9

Apple Guide API

AGinstallCoachHandler

DESCRIPTION

Use the AGinstallCoachHandler function to install a coachmark handler.

OSErr AGinstallCoachHandler
(CoachReplyProcPtr CoachReplyProc,
long refCon,
AGCoachRefNum *resultRefNum);

CoachReplyProc

ref Con

A pointer to your coachmark handler function. This
application-defined function provides the location of the
object to coachmark.

An optional reference constant that your application can
provide. Apple Guide passes this as a parameter to your
coachmark handler.

resultRefNum
A reference number. The AGinstallCoachHandler function
returns, through this parameter, a number that refers to the
coachmark handler.

The AGinstallCoachHandler function installs the coachmark handler and
returns in the resultRefNum parameter a reference to it. Once a coachmark
handler is installed, Apple Guide calls it in response to any panels that use an
object coach. (The object coach must be one that specifies your application as a
target in the <Define Object Coach> command.)

SPECIAL CONSIDERATIONS

9-34

Install only one coachmark handler for your application.

Your application should always remove any coachmark handler (using
AGRemoveCoachHandler) it has installed before quitting.

Installing and Removing Coachmark Handlers

RESULT CODES

SEE ALSO

CHAPTER 9

Apple Guide API

noErr
kAGErrCannotinitCoach

0
-2952

No error
Unable to initialize coach handler

For information on writing a coachmark handler, see "Providing Object
Locations for Coachmarks" on page 9-38. For information on the <Define
Object Coach> command, see the chapter "Guide Script Command Reference."

AGRemoveCoachHandler

DESCRIPTION

RESULT CODES

Use the AGRemovecoachHandler function to remove an installed coachmark
handler.

OSErr AGRemoveCoachHandler
(AGCoachRefNum *theRefNum);

theRefNum
A pointer to the reference number of the coachmark handler.

The AGRemoveCoachHandler function removes the coachmark handler,
specified by the theRefNum para_meter.

noErr 0 No error

Installing and Removing Coachmark Handlers 9-35

CHAPTER 9

Apple Guide API

Installing and Removing Context Check Handlers

This section describes how to install and remove context check handlers using
two functions, AGinstallContextHandler and
AGRemoveContextHandler.

AGinstallContextHandler

9-36

Use the AGinstallContextHandler function to install a context check
handler.

OSErr AGinstallContextHandler
(ContextReplyProcPtr ContextReplyProc,
AEEventiD eventiD,long refCon,
AGContextRefNum *resultRefNum);

ContextReplyProc
A reference to the function called by Apple Guide in response to
a context check specified in a guide file.

even tiD A four-character value that should match the value of the
codeResSpec parameter in the <Define Context Check> command
for this context check.

ref Con An optional reference constant that your application can
provide. Apple Guide passes this as a parameter to your context
check handler.

resultRefNum
A reference number. The AGinstallContextHandler
function returns, through this parameter, a number that refers
to the context handler.

Installing and Removing Context Check Handlers

DESCRIPTION

CHAPTER 9

Apple Guide API

The AGinstallContextHandler function installs the context handler
specified in the ContextReplyProc parameter and returns in the
resultRefNum parameter a reference to it. Once a context check handler
is installed, Apple Guide calls it in response to any context checks that specify
your application as a target in the <Define Context Check> command.
Apple Guide calls the context check handler only if the value specified in
the command's codeResSpec parameter matches the value specified in the
eventiD parameter.

SPECIAL CONSIDERATIONS

RESULT CODES.

SEE ALSO

Before quitting, your application should always remove any context check
handlers (using AGRemoveContextHandler) that it has installed.

no Err
kAGErrCannotinitContext

kAGErrMissingAppinfoHdl

kAGErrMissingContextObject

0
-2953

-2958

-2959

No error
Unable to initialize context
handler
No application information
handler
No context object

For information on writing a context check handler, see "Responding to
Context Checks" on page 9-40. For information on the <Define Context Check>
command, see the chapter "Guide Script Command Reference."

AGRemoveContextHandler

Use the AGRemoveContextHandler function to remove an installed context
handler.

OSErr AGRemoveContextHandler
(AGContextRefNum *resultRefNum);

Installing and Removing Context Check Handlers 9-37

)>
"0
"0
(j)

G>
c: a:
CD
)>
J;!

DESCRIPTION

RESULT CODES

CHAPTER 9

Apple Guide API

resultRefNum
A pointer to the reference number for the context handler.

The AGRemoveContextHandler function removes the context handler
specified by the resul tRefNum parameter.

noErr 0 No error

Application-Defined Routines

9-38

This section describes two routines, a coachmark handler and context check
handler, that you can provide for your application.

Providing Object Locations for Coachmarks
This section gives information on how to provide a coachmark handler
function. Apple Guide can automatically draw coachmarks for menus, items
in dialog boxes, and certain parts of a window, without assistance from your
application. For those objects that require your application to explicitly specify
the coordinates of a rectangle marking the coachmark's location, you can
provide a coachmark handler function to do so.

You define coachmarks for these types of objects using the <Define Object
Coach> command. You associate an object coach with a particular panel using
the <Coach Mark> command.

When Apple Guide opens a panel that includes a <Coach Mark> command
naming a defined object coach and that specifies your application as the target
application, Apple Guide requests that your application return a rectangle for
the named object. (You specify the name of the object to mark and your
application's signature as parameters to the <Define Object Coach> command.)
Once your application returns a rectangle for the object, Apple Guide draws
the coachmark.

Application-Defined Routines

CHAPTER 9

Apple Guide API

Your application handles object-location coachmark requests from Apple Guide
by installing a coachmark handler function. Apple Guide calls your coachmark
handler whenever it needs to coachmark an object in your application that is
specified by a <Define Object Coach> command.

MyCoachReplyProc

DESCRIPTION

RESULT CODES

SEE ALSO

A coachmark handler function should find and return the rectangle for a
named object. Here is the syntax of a coachmark handler function:

pascal OSErr MyCoachReplyProc
(Rect *pRect, Ptr name, long refCon);

pRect

name

An address through which your coachmark handler should
return the rectangle of the object to coachmark, in global
coordinates.

The name of the object to coachmark. The name is stored as a
NULL-terminated string.

ref Con A reference constant, which your application sets when it
installs the coachmark handler. Your coachmark handler can use
this reference constant for any purpose.

A coachmark reply function should return, through the pRect parameter, the
global coordinates of the object to coachmark.

The MyCoachReplyProc function should return noErr if successful or an
appropriate result code otherwise.

For information on installing a coachmark handler, see page 9-33.

Application-Defined Routines 9-39

)>
"0
"0
Cir
G>
c: a:
CD
)>
::Q

CHAPTER 9

Apple Guide API

Responding to Context Checks

This section gives information on how to provide a context check handler.

You can implement context checks using one of two methods. You can provide
the code for a context check in an external module that you include as a
resource in your guide file (this is the more typical method of providing
a context check handler). Alternatively, you can provide the code in your
application and make your context check handler available to Apple Guide
using the AGinstallContextHandler function. Regardless of which
method you use, a context check handler follows a specific syntax, as
described next.

MyContextReplyProc

9-40

A context check handler checks the condition associated with a context check
and returns the result.

Here is the syntax of a context check handler function:

pascal OSErr MyContextReplyProc

pinputData

(Ptr pinputData, Size inputDataSize,
Ptr *ppOutputData,
Size *pOutputDataSize,
AGAppinfoHdl hAppinfo);

A pointer to the input data. Apple Guide places any parameters
specified by the context check in the data area pointed to by this
parameter. Apple Guide concatenates the parameters in a byte
array (word-aligned); your context check handler function
retrieves the data through this parameter. You can cast
pinputData to a pointer to a data structure that describes
the parameters specified by your <Define Context Check>
command.

inputDataSize
The size of the input data in bytes.

Application-Defined Routines

DESCRIPTION

EXAMPLES

CHAPTER 9

Apple Guide API

ppOutputData
Your context check handler function should return, through this
parameter, a pointer to a short integer. The short integer should
contain the result of the context check, 1 for true and 0 for false.

pOutputDataSize

hAppinfo

Your context check handler function should return, through this
parameter, the size of the output data in bytes, usually
sizeof (short).

A handle to a structure of type AGAppinfo.

typedef struct AGAppinfo
{

}

AEEventiD
long
void

eventid;
refCon;
*contextObj;

/*event ID*/
/*app's refCon*/
/*private*/

Apple Guide places the event ID and reference constant
(specified in the call to AGinstallContextHandler) into
the even tid and refCon fields of this structure. The even tid
field corresponds to the value of the codeResSpec parameter
in the <Define Context Check> command for this context
check. You can use the ref Con field for any purpose. The
contextObj field is used by Apple Guide and your application
should not use or change this field.

Your MyContextReplyProc function should perform the context check and
return the result of the context check through the ppOutputData parameter.

Here's an example of a context check installed by the SurfWriter application.
The SurfWriter application defines these context checks in its guide file using
the <Define Context Check> command:

<DCC> "SWDictionarylsOpen", 'SWdd', 'WAVE', short:l, LPSTRING
<DCC> "SWThesauruslsOpen", 'SWdd', 'WAVE', short:2, LPSTRING

Application-Defined Routines 9-41

CHAPTER 9

Apple Guide API

Here's how SurfWriter Guide uses one of these context checks to dynamically
adjust the display of its panels:

<Panel> "Dictionary:intro"
<Skip If> SWDictionaryisOpen("Standard")

<Panel> "Dictionary:openlt
<Panel> 11Dictionary:lookup Word"

The SurfWriter application installs its context check handler using the
AGinstallContextHandlerfunction.

/*gEventiD ; 'SWdd'*/
myErr ; AGinstallContextHandler(SWisOpenContextCheck,

gEventiD,
&gRefCon, &gResultRefNum);

This is how it defines its context check handler function. (A context check in
an external module receives the same parameters, but it has a single entry
point, main.)

pascal OSErr SWisOpenContextCheck

{

(Ptr inputDataPtr, Size inputDataSize,
Ptr *ppOutputData, Size *pOutputSize,
AGAppinfoHdl hApplnfo)

Boolean isOpen false;
OSErr myErr noErr;
/*app-defined structure contains two fields, a short and a string*/
MyContextCheckParams myCCParams;

myCCParams = *((MyContextCheckParams *) inputDataPtr);

switch (myCCParams.selector)
{

case 1:

is Open
break;

/*check whether a specified dictionary is open*/
MyCheckDictionary(myCCParams);

case 2: /*check whether a specified thesaurus is open*/

9-42 Application-Defined Routines

}

CHAPTER 9

Apple Guide API

is Open
break;

default:
break;

}

MyCheckThesaurus(myCCParams);

/*return result of context check (true or false) in the */
I* ppOutputData parameter*/
myErr = MySetContextResult(&isOpen, sizeof(Boolean),

ppOutputData, pOutputSize);
/*if error occurs, return appropriate function result */
I* indicating error*/
return(myErr);

OSErr MySetContextResult(void *theData, Size theSize,
Ptr *outMessage, Size *outSize)

{

Ptr p;

/*the context check routine must return a pointer to a short *I
I* in the ppOutputData parameter */
I* (Apple Guide will dispose of the pointer on return)*/
/*(1 = true, 0 = false) indicates the result of the context check*/
/*The routine must also return the size of the ppOutputData */
I* in the pOutputSize parameter*/

}

if (p = NewPtr(theSize))
{

}

BlockMove(theData, p, theSize);
*outSize = theSize;
*outMessage = p;
return(noErr);

else
return(MemError());

Application-Defined Routines 9-43

)>
"'C
"'C m
Ci)
r::: a:
<D
)>

3!

RESULT CODES

CHAPTER 9

Apple Guide API

The MyContextReplyProc function should return noErr if successful, or an
appropriate result code otherwise.

CHAPTER 9

Apple Guide API

Summary of Apple Guide API

Constants

enum {
gestaltHelpMtrAttr 'help' /*Gestalt selector for Help Mgr *I

I* and Apple Guide*/

};

gestaltAppleGuidePresent= 31,

gestaltAppleGuideisDebug= 30

/*Apple Guide API is available*/

/*Apple Guide Debug extension */

I* is installed*/

enum {

} ;

/*guide file active list types*/
kAGViewFullHowdy 1, /*full howdy*/
kAGViewTopicAreas 2, /*Topic Area*/
kAGViewindex 3, /*Index*/

kAGViewLookFor
kAGViewSingleHowdy

kAGViewSingleTopics

4, /*Look For*/
5, /*Single List howdy*/

6 /*Single List topics*/

enum AGDBTypeBit
{ /*guide file types returned by AGGetAvailableDBTypes*/

kAGDBBitAny OxOOOOOOOl,/*one or more guide *I
I* files are present*/

kAGDBTypeBitHelp Ox00000002,/*Help guide file*/

kAGDBTypeBitTutorial /*Tutorial guide *I
Ox00000004,/* file*/

kAGDBTypeBitShortcuts /*Shortcuts guide */
OxOOOOOOOB,/* file*/

Summary of Apple Guide API 9-45

)>
"0
"0 m
G)
c:
a:
CD
)>

:B

} ;

CHAPTER 9

Apple Guide API

kAGDBTypeBitAbout

kAGDBTypeBitOther

Ox00000010 1

Ox00000080

/*About guide file*/

/*Other guide file*/

enum {

};

I* Apple Guide Apple events*/

kAGEventDoCoach

kAGEventDoHuh

kAGEventGoNext

kAGEventGoPrev

kAGEventHidePanel

kAGEventReturnBack

kAGEventShowPanel

kAGEventTogglePanel

'dace' 1 /*coachmark event*/

'dhuh' 1 /*huh event*/

'gonp' 1 /*go next event*/

'gopp' 1 /*go previous event*/

'pahi' 1 /*hide panel event*/

'gobk' 1 /*return back event*/

'pash' 1 /*show panel event*/

'patg' /*toggle panel event*/

enum {

kAGFrontDatabase 1 /*refers to active guide file*/

} ;

enum {

/*values returned by AGGetFrontWindowKind*/

kAGNoWindow 1 /*guide file isn't open*/

kAGAccessWindow 1 /*access window is showing*/

kAGPresentationWindow /*panel is showing*/
} ;

enum {

} ;

9-46

/*values returned by AGGetStatus*/
kAGisNotRunning, /*app portion of AG not in memory*/
kAGisSleeping, /*app portion of AG in memory but */

I* no guide file is open*/
kAGisActive /*app portion of AG in memory *I

I* and a guide file is open*/

Summary of Apple Guide API

CHAPTER 9

Apple Guide API

enum {
/*guide file types, used
I* and AGFileGetDBCount,
kAGFileDBTypeAny
kAGFileDBTypeHelp
kAGFileDBTypeTutorial
kAGFileDBTypeShortcuts
kAGFileDBTypeAbout
kAGFileDBTypeOther

by the functions AGFileGetindDB */
from AGFile*/

} ;

Data Types

typedef unsigned long Uint32;
typedef unsigned short Uintl6;
typedef signed short Sintl6;

typedef Uint32 AGRefNum;
typedef Uint32 AGCoachRefNum;

= 0, /*any or all guide files*/
= 1, /*Help guide file*/

2, /*Tutorial guide file*/
3, /*Shortcuts guide file*/

= 4, /*About guide file*/
= 8 /*Other guide file*/

typedef Uint32 AGContextRefNum;
typedef Uintl6
typedef Uintl6
typedef Uint32

typedef Sintl6

typedef struct
{

AEEventiD
long
void

}

AGStatus;
AGWindowKind;
AGEvent;

AGErr;

AGAppinfo

eventid;
refCon;
*contextObj;

/*event ID*/
/*reference constant*/
/*private*/

typedef struct AGAppinfo, *AGAppinfoPtr, **AGAppinfoHdl;

Summary of Apple Guide API

•

9-47

CHAPTER 9

Apple Guide API

typedef pascal OSErr (*CoachReplyProcPtr)(Rect *pRect, Ptr name,
long refCon);

typedef pascal OSErr (*ContextReplyProcPtr)

/*typedefs from AGFile*/
typedef FSSpec
typedef short
typedef short
typedef OSType
typedef long
typedef short
typedef ConstStr63Param
typedef short
typedef short
typedef short
typedef short
typedef short

Functions

Starting Up Apple Guide

AGErr AGStart(void);

(Ptr pinputData, Size inputDataSize,
Ptr *ppOutputData, Size *pOutputDataSize,
AGAppinfoHdl hAppinfo);

AGFileFSSpecType;
AGFileSelectorCountType;
AGFileSelectorindexType;
AGFileSelectorType;
AGFileSelectorValueType;
AGFileDBType;
AGFileDBMenuNamePtr;
AGFileDBScriptType;
AGFileDBRegionType;
AGFileMajorRevType;
AGFileMinorRevType;
AGFileCountType;

AGErr AGQuit(void);

AGStatus AGGetStatus(void);

Determining Which Guide Files Are Available

Uint32 AGGetAvailableDBTypes (void);

9-48 Summary of Apple Guide API

CHAPTER 9

Apple Guide API

AGFileCountType AGFileGetDBCount

OSErr AGFileGetindDB

Opening and Closing Guide Files

AGErr AGOpen

AGErr AGOpenWithView

AGErr AGOpenWithSearch

AGErr AGOpenWithSequence

AGErr AGClose

Working With Open Guide Files

Boolean AGisDatabaseOpen

(short vRefNum, long diriD,
AGFileDBType databaseType,
Boolean wantMixin);

(short vRefNum, long diriD,
AGFileDType databaseType,
Boolean wantMixin,
short dbindex, FSSpecType *fileSpec);

(FSSpec *fileSpec, Uint32 flags,
Handle mixinControl,
AGRefNum *resultRefNum);

(FSSpec *fileSpec, Uint32 flags,
Handle mixinControl,
short viewNum,
AGRefNum *resultRefNum);

(FSSpec *fileSpec, Uint32 flags,
Handle mixinControl,
ConstStr255Param searchString,
AGRefNum *resultRefNum);

(FSSpec *fileSpec, Uint32 flags,
Handle mixinControl,
short sequenceiD,
AGRefNum *resultRefNum);

(AGRefNum *resultRefNum);

(AGRefNum refNum);

AGWindowKind AGGetFrontWindowKind
(AGRefNum refNum);

AGErr AGGeneral (AGRefNum refNum, AGEvent theEvent);

AGErrAGGetFSSpec (AGRefNum refNum, FSSpec *fileSpec);

Summary of Apple Guide API 9-49

)>
"0
"0
Cii"
Ci)
c: a:
(1)

)>
]!

CHAPTER 9

Apple Guide API

Getting Information About Guide Files

OSErr AGFileGetDBMenuName (AGFileFSSpecType *fileSpec,
AGFileDBMenuNamePtr menuitemNameStr);

OSErr AGFileGetHelpBalloonText
(AGFileFSSpecType *fileSpec,
Str255 helpMenuBalloonString);

OSErr AGFileGetHelpMenuAppCreator

OSErr AGFileGetDBType

OSErr AGFileGetDBCountry

OSErr AGFileGetDBVersion

AGFileSelectorCountType

OSErr AGFileGetSelector

Boolean AGFileisMixin

(AGFileFSSpecType *fileSpec,
OSType *helpMenuAppCreator);

(AGFileFSSpecType *fileSpec,
AGFileDBType *databaseType);

(AGFileFSSpecType *fileSpec,
AGFileDBScriptType *script,
AGFileDBRegionType *region);

(AGFileFSSpecType *fileSpec,
AGFileMajorRevType *majorRev,
AGFileMinorRevType *minorRev);

AGFileGetDBSelectorCount
(AGFileFSSpecType *fileSpec);

(AGFileFSSpecType *fileSpec,
AGFileSelectorindexType selectorNumber,
AGFileSelectorType *selector,
AGFileSelectorValueType *value);

(AGFileFSSpecType *fileSpec,
AGFileDBMenuNamePtr menuitemNameStr);

OSErr AGFileGetMixinMatchSelector
(AGFileFSSpecType *fileSpec,
OSType *mixinMatchSelector);

Installing and Removing Coachmark Handlers

OSErr AGinstallCoachHandler (CoachReplyProcPtr CoachReplyProc,
long refCon,
AGCoachRefNum *resultRefNum);

9-50 Summary of Apple Guide API

CHAPTER 9

Apple Guide API

OSErr AGRemoveCoachHandler (AGCoachRefNum *theRefNum);

Installing and Removing Context Check Handlers

OSErr AGinstallContextHandler
(ContextReplyProcPtr ContextReplyProc,
AEEventiD eventiD, long refCon,
AGContextRefNum *resultRefNum);

OSErrAGRemoveContextHandler (AGContextRefNum *resultRefNum);

Providing Object Locations for Coachmarks

pascal OSErr MyCoachReplyProc
(Rect *pRect, Ptr name, long refCon);

Responding to Context Checks

pascal OSErr MyContextReplyProc

Result Codes

no Err
dirNFErr

nsvErr
ioErr
fnOpnErr
fnfErr

fLckdErr
rfNumErr
dirNFErr

(Ptr pinputData, Size inputDataSize,
Ptr *ppOutputData,
Size *pOutputDataSize,
AGAppinfoHdl hAppinfo);

0
-12

-35
-36
-38
--43

--45
-51

-120

No error
Directory not found or
incomplete pathname
Volume doesn't exist
1/0 error
File not open
File or directory does not
exist
File is locked

kAGErrCannotinitCoach -2952

Bad reference number
Directory not found or
incomplete pathname
Unable to initialize coach
handler

Summary of Apple Guide API 9-51

•)>
"'C
"'C
a>
G>
c:
0:
CD
)>

3!

9-52

CHAPTER 9

kAGErrCannotinitContext

kAGErrCannotOpenAliasFile
kAGErrNoAliasResource
kAGErrDatabaseNotAvailable
kAGErrDatabaseNotOpen
kAGErrMissingAppinfoHdl

kAGErrMissingContextObejct
kAGErrinvalidRefNum

kAGErrDatabaseOpen
kAGErrinsufficientMemory
afpAccessDenied

Summary of Apple Guide API

-2953

-2954
-2955
-2956
-2957
-2958

-2959
-2960

-2961
-2962
-5000

Unable to initialize context
handler
Unable to open alias
Unable to open resource alias
Guide me is not available
Guide me is not open
No application information
handler
No context object
The guide me was opened
by another application
No open guide file
Not enough memory
User does not have the
correct access to the me

PART FOUR

Scripting Guide Files

CHAPTER 10

Guide Script Command
Reference

Contents

Guide Script Command Syntax 10-5
Guide Script Command Descriptions 10-8

Specifying Startup Information 10-8
<App Creator> 10-8
<Gestalt> 10-10
<Version> 10-11
<World Script> 10-13
<Help Menu> 10-14
<Balloon Menu Text> 10-16
<Comment> 10-17
<Include> 10-18
<Mixin> 10-19
<Mixin Match> 10-20

Specifying the Startup Wmdow 10-21
<Startup Window> 10-21
<Howdy> 10-24
<App Logo> 10-25
<App Text> 10-27

Specifying Default Settings 10-28
<Max Height> 10-28
<Min Height> 10-29
<Default Format> 10-30
<Default Nav Button Set> 10-32
<Allow Prompts> 10-34
<Default Prompt Set> 10-35
<Define Prompt Set> 10-37

Contents

•

10-1

CHAPTER 10

10-39 Creating Sequences
<Define Sequence>
<Sequence Prompt Set>
<Seq Nav Button Set>

10-39
10-42

10-43
<Panel> 10-45
<Insert Sequence> 10-46
<Jump Sequence> 10-47
<Launch New Sequence> 10-49
<Build Sequence> 10-50
<End Sequence> 10-51

Creating Panels 10-52
<Define Panel> 10-52
<Panel Prompt> 10-55
<End Panel> 10-56

Creating Buttons 10-57
<Standard Button> 10-57
<3D Button> 10-60
<Radio Button> 10-64
<Radio Button Launch New Seq> 10-66
<Checkbox> 10-69
<Define Nav Button>
<Dimmable Button Data>

10-71
10-78

10-80 <Define Nav Button Set>
Defining and Using Text Blocks 10-82

<Define Text Block> 10-82
<End Text Block> 10-83

Formatting Text ~nd Objects in a Panel 10-84
<Define Format> 10-85
<Define Transparent Format> 10-91
<Format> 10-93

Specifying Pictures and Movies 10-94
<PICT> 10-95
<QuickTime> 10-98

Importing Resources 10-100
<Resource> 10-101
<Starting Res Number> 10-103

10-2 Contents

CHAPTER 10

Creating CoachMarks 10-105
10-105

10-108
<Define Menu Coach>
<Define Item Coach>
<Define Object Coach>
<Define Window Coach>
<Define AppleScript Coach>

10-111

<Coach Mark> 10-118
Creating Hot Items 10-119

<Hot Object> 10-119
<Hot Rectangle> 10-120
<Hot Text> 10-122

Defining Topic Areas 10-124
<Topic Areas Instruction>
<Topic Area> 10-125

Defining Index Terms 10-127

10-113
10-116

10-124

<Index Instruction> 10-127
<Index> 10-128
<Sorting> 10-130
<Index Sorting> 10-132

Defining Topics for Topic Areas and Index Terms
<Topics Instruction> 10-134
<Header> 10-135
<Topic> 10-137

Specifying "Look For" Help 10-140
<Look For Instruction> 10-141
<Look For String> 10-143
<Look For Search Btn Instruction>
<Look For Results Instruction>
<Ignore> 10-145
<Exception> 10-147
<Synonym> 10-149

Specifying Conditional Execution
<If> 10-153
<Else> 10-156

10-158
10-160

<End If>
<Skip If>
<Make Sure> 10-162

Contents

10-143
10-144

10-152

•

10-133

10-3

CHAPTER 10

<Start Making Sure> 10-168
<End Making Sure> 10-171

Defining and Using Context Checks 10-172
<Define Context Check> 10-172
checkBoxState 10-175
radioButtonState

Specifying Events
<Define Event>

10-176
10-177
10-178

<Define Event List>
<On Panel Create>
<On Panel Destroy>
<On Panel Show>
<On Panel Hide>

10-181
10-183

10-184
10-185

10-187
Built-in Event Functions 10-188

Working With Mixin Guide Files 10-190
<Replace Sequence> 10-190
<Insert Topic Area Header> 10-192
<Insert Topic Area Topic> 10-193
<Insert Index Header> 10-195
<Insert Index Topic> 10-196
<Delete Topic Area> 10-198
<Delete Topic Area Header>
<Delete Topic Area Topic>
<Delete Index> 10-201

10-199
10-200

<Delete Index Header> 10-202
<Delete Index Topic> 10-203

10-4 Contents

CHAPTER 10

Guide Script Command Reference

This chapter describes Guide Script commands. You can use these commands
to specify the content of your guide file. For example, using these commands
you can specify startup information, create panels and panel objects (such as
buttons, text, and pictures), align panel objects on a panel, set prompt values,
and define topic area information and index information. Each command
description in this chapter provides the command syntax, a description of the
command parameters, a description of the command itself, and examples of
the use of the command.

Some Guide Script commands can be referenced using an abbreviated spelling
in addition to the command's full name (<QT> for <QuickTime>, for example).
For a list of abbreviations for all commands, see 11 Appendix A: Guide Script
Command Abbreviations."

This chapter first gives a brief overview of the syntax governing all commands,
then presents the command descriptions. A summary list of all commands and
their parameters is given in "Appendix B: Guide Script Commands and
Parameters Quick Reference."

Guide Script Command Syntax

A Guide Script command line begins with a command, comment, or text that is
part of a text block or panel definition, and is terminated by a carriage return.
Any number of blank spaces or tabs can precede a command or comment.

Guide Script commands are named keywords that are enclosed in angle
brackets (< >). Command keywords are case-insensitive, although
headline-style capitalization is used in this book. Most Guide Script commands
are followed by a series of parameters, separated by commas. Parameters must
be included on the same line as the Guide Script command; however, with
some word processors you can use a soft return (Option-Return) to break
parameters across lines when necessary. In this chapter, the character....., is used
to indicate a line that does not contain a hard return; you must either wrap
these lines or use a soft return, depending on your word processor. You can
also include any number of spaces or tabs between parameters to make
command lines easier to read.

This chapter describes Guide Script commands in this format:

<Command Name> parameter1, parameter2 (, optiona1Parameter1]

Guide Script Command Syntax 10-5

I
(j)
c:::::
a:
CD
en
0
::::!.
"9.
(')
0
3
3
I»
:::J
a.
:IJ
~
CD
m
:::J
0
CD

10-6

CHAPTER 10

Guide Script Command Reference

Here's a specific example:

<Help Menu> itemString 1 helpType [1 helpCmdKey]

In this example, the command <Help Menu> indicates the Guide Script
command. (You don't have to use this sequence of uppercase and lowercase
characters. For example, you can use <help menu> if you prefer.) Parameters
are shown in italicized words following the command name. Brackets ([]) are
used to show optional parameters. In this example, itemString and helpType are
required parameters, and helpCmdKey is an optional parameter.

You can omit optional parameters. If you do so and the optional parameter is
followed by another parameter that you do specify, then you must include a
comma for each parameter that you omit. For example:

<Define Item Coach> coachMarkName [1 targetApp] [, coachStyle]
[I target Window] 1 target! tern
[1 itemRectangle]

For the <Define Item Coach> command just shown, you must specify the
coachMarkName parameter and targetltem parameter, but all other parameters
are optional. To specify the coachMarkName and coachStyle and targetltem
parameters (omitting the targetApp, target Window, and itemRectangle
parameters), you could specify the command in this format:

<Define Item Coach> "coachName" 1 , REDCIRCLE, 1 DialogiD(2)

Parameters are one of the following types:

• Strings. Any string of characters enclosed by straight double quotes (" ").
Curly double quotes (" ") are not valid as string delimiters; they are
considered part of the text string if used. To include a line feed in a string,
use the carriage return character between the string delimiters. Do not
specify an empty string for a parameter; instead, specify at least one blank
space in the string, such as " ".

• Constants. Values represented by constant names that are defined by Guide
Maker for a particular parameter. For example, LEFT, CENTER, RIGHT,
TRUE, or FALSE. All Guide Script constants are defined as single words (no
spaces), and are case insensitive (for example, LEFT, Left, and left are all
valid constants).

Guide Script Command Syntax

CHAPTER 10

Guide Script Command Reference

• Four-character values (also sometimes called OS Type or Res Type). A
four-character value must be enclosed by straight single quotes (' '). For
example, 'MACS ', 'WAVE'.

• Numbers. Short, long, or unsigned integers. Each parameter description
gives information on the specific type. You can specify numbers using either
decimal or hexadecimal form (precede hexadecimal numbers by Ox).

• Structures. Groups of related values that are linked together according to a
defined Guide Script convention. For example, you can specify a point,
rectangle, column location, or RGB color using these conventions:
Point (x, y); RECT (top, left, bottom, right); Column (top, left, right); and
RGBColor (integer, integer, integer). Note that no space is allowed between
the name and the first parenthesis.

• Event functions. You can specify event functions in conjunction with the
<Standard Button>, <3D Button>, <Define Nav Button>, <On Panel Create>,
<On Panel Destroy>, <On Panel Show>, and <On Panel Hide> commands.
Guide Maker provides the following built-in event functions: DoScript,
GoPanel,LaunchNewSequence,LaunchNewSequenceNewWindo~

PlaySound, QuitTopicOops, and StartTopicOops. In addition, you can
create your own event functions using the <Define Event> command. When
you specify an event function, you must also specify within parentheses all
parameters required by that event function.

• Condition functions. You can specify condition functions in conjunction
with the <If>, <Skip If>, <Make Sure>, and <Start Making Sure> commands.
You define condition functions using the <Define Context Check> command.

You use the #character to indicate that the text that follows, up to the carriage
return, should be treated as a comment. You can start a comment at the
beginning or at the end of a command line, for example:

#here's a comment
<App Text> "SurfWriter Guide" #here's another comment

To use the"#" character as the first character on a line of panel text, use"##".
To use the 11 <" character as the first character on a line of panel text use II<<".

Guide Script Command Syntax 10-7

(j)
c: a:
CD
en
n
::l.
'9.
()
0
3
3
Q)
:::l a.
:II

~
m
:::l
n
CD

CHAPTER 10

Guide Script Command Reference

Guide Script Command Descriptions

The rest of this chapter presents the command descriptions for Guide Script
commands, arranged by function.

Specifying Startup Information

This section describes the commands that determine whether Apple Guide lists
your guide file in an application's Help menu and whether Apple Guide
considers your guide file a main or mixin guide file. It also describes other
commands that provide basic information about your guide file, such as your
guide file's menu item text and command key in the Help menu.

<App Creator>

DESCRIPTION

You can use the <App Creator> command to specify the application that is
associated with this guide file.

<App Creator> creator

creator A four-character value that specifies the creator of the guide file.
This value should correspond to the signature of the application
associated with this guide file.

When the user launches an application, Apple Guide searches for any guide
files in the same folder as the application file. Apple Guide determines which
guide files (if any) to put in the application's Help menu according to the
criteria summarized next.

If a single guide file exists in the same folder and does not contain an <App
Creator> command, Apple Guide includes that guide file as an item in the
Help menu. If multiple guide files, each of differing types, exist in the same

10-8 Specifying Startup Information

CHAPTER 10

Guide Script Command Reference

folder, Apple Guide includes each guide file in the Help menu (except for any
guide file whose creator parameter does not match the application's signature).

If multiple guide files of type OTHER exist in the same folder, Apple Guide
includes each OTHER guide file in the Help menu (except for any OTHER guide
file whose creator parameter does not match the application's signature).

For guide files of type ABOUT, SHORTCUTS, HELP, or TUTORIAL, Apple Guide
includes at most one guide file of the same type, even if multiple guide files of
the same type exist. If multiple guide files of one of these types exist, Apple
Guide first determines which guide file's creator parameter (specified in the
<App Creator> command) matches the application's signature (it also checks
gestalt conditions). If more than one guide file of the same type exists in the
same folder and meets these requirements, Apple Guide includes as an ib~m in
the Help menu the guide file whose filename appears first alphabetically.

Apple Guide also checks any conditions specified by <Gestalt> commands in
the guide file before adding it to an application's Help menu. Apple Guide
does not add a guide file to the Help menu if the conditions specified by the
guide file's <Gestalt> commands are not met.

SPECIAL CONSIDERATIONS

EXAMPLES

The <App Creator> command should appear once at most in your source files
for a specific guide file. If you omit this command, Apple Guide includes your
guide file as an item in the Help menu only if it is in the same folder as the
launched application and only if it is the only guide file of a specific type
(except for OTHER) in that folder.

#this guide file is associated with the SurfWriter app

<App Creator> 'WAVE' #SurfWriter's signature is 'WAVE'

Specifying Startup Information 10-9

G>
c:
a:
(1)

en
(")
::::!. -g.
0
0
3
3
~
::J
c.
J:J

m-
;
::J
0
(1)

<Gestalt>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use the <Gestalt> command to define the conditions Apple Guide uses
to determine whether your guide file can run and therefore whether your
guide file should be added to the Help menu.

<Gestalt> selector, requiredValue

selector A four-character code representing a gestalt selector code.

requiredValue A value that indicates whether your guide file should run. H this
value matches the value returned by the Gestalt function in
its response parameter, Apple Guide includes your guide file
as an item in the Help menu. If this value does not match and if
other <Gestalt> commands also do not match, Apple Guide
does not include your guide file as an item in the Help menu.

Before adding your guide file to the Help menu, Apple Guide calls the
Gestalt function with the selector code specified by a <Gestalt> command
and checks the response parameter against the value specified by the
requiredValue parameter. If these values match (and if the creator specified by
the <App Creator> command also matches), Apple Guide adds your guide file
to the Help menu. You can specify additional <Gestalt> commands. If you do,
Apple Guide performs an OR operation on any conditions specified by
<Gestalt> commands in your guide file. If any one of the specified conditions is
true, Apple Guide adds your guide file to the menu. If none of the conditions
are true, Apple Guide does not add your guide file to the Help menu.

SPECIAL CONSIDERATIONS

You can specify up to three <Gestalt> commands in your help source files.

EXAMPLES

#specify conditions that must be true to run this guide
file; if any of these are true, then add this guide file

10-10 Specifying Startup Information

SEE ALSO

<Version>

CHAPTER 10

Guide Script Command Reference

#the Gestalt selector 'snd ' returns attributes related to
sound and a value of 16 indicates a sound input device
is present
<Gestalt> 'snd ', 16
#specify conditions related to sound input & speech mgr
<Gestalt> 'snd ', 16
<Gestalt> 'ttsc', 0

For a complete list of Gestalt selector codes, see the chapter "Gestalt Manager"
in Inside Macintosh: Operating System Utilities.

You can use the <Version> command to specify values for the version resources
of your guide file.

<Version> longVers1Bottom0fGetlnfo, shortVerslForFinderListViews
[, longVers2Top0fGetlnfo}

long V ers1BottomOfGetlnfo
A string containing the information for your guide file's long
version message in its version resource with resource ID 1.
When the user selects your guide file and then chooses Get Info
from the File menu of the Finder, the Finder displays
information from your long version resource in the version field
at the bottom of the information window.

You typically provide the file version number of your guide file
and your company's copyright information in this parameter.

shortVers1ForFinderListViews
A string containing the information for your guide file's version
number for its version resource with resource ID 1. The Finder
displays information from this short version resource when it
shows files in list view.

Specifying Startup Information 10-11

I

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

longVers2TopOJGetlnfo
A string containing the information for your guide file's long
version message in its version resource with resource ID 2. The
Finder displays, near the top of the information window
(beneath your guide file's name and next to its icon),
information from this version resource. You typically provide
the version number of your guide file in this parameter, or, if
your guide file is part of a set of guide files that you distribute,
you provide the version number of the superset of files that it
belongs to in this parameter. This parameter is optional.

The <Version> command sets the guide file's version resources to the specified
values. Providing this information helps the user distinguish between different
versions of your guide file.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <Version> command should appear no more than once in your source files.

<Version> "1.0 (US), ©Apple Computer, Inc. 1994", "1.0",-,
"(for·surfWriter 3.0)"

For information on the version resources, see the chapter ~~Finder Interface~~ in
Inside Macintosh: Macintosh Toolbox Essentials.

You can also specify script and region information for your guide file, using the
<World Script> command, described next.

10-12 Specifying Startup Information

CHAPTER 10

Guide Script Command Reference

<World Script>

DESCRIPTION

You can use the <World Script> command to specify script and region
information for your guide file.

<World Script> scriptCode, regionCode

scriptCode

region Code

An integer specifying the script code for your guide file. This
value identifies the script system your guide file is intended for.

An integer specifying the region code for your guide file. This
value identifies the region your guide file is intended for.

The <World Script> command sets the guide file's script code and region code
to the values specified by the scriptCode and regionCode parameters. Apple
Guide displays only guide files whose script codes match the script system
currently in use.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <World Script> command should appear no more than once in your source
files. If you omit this command, Guide Maker assigns your guide file a script
code of 0 (Roman) and a region code of 0 (U.S.).

#specify Roman script system, u.s. region
<World Script> 0, 0

See the chapter uScript Manager" in Inside Macintosh: Text for a complete list of
script codes and region codes.

Specifying Startup Information to-13

•

CHAPTER 10

Guide Script Command Reference

<Help Menu>

DESCRIPTION

You can use the <Help Menu> command to define the item text that Apple
Guide displays in your application's Help menu when your application's guide
file is available.

<Help Menu> item String 1 help Type [1 helpCmdKey]

itemString

help Type

A text string specifying the text of the menu item as it should
appear in the application's Help menu. Do not specify any of
these characters in your text string: ";", "1"', "! ", "<", 11 I", "-",
"(", ")",",",or 11 &".

A value indicating the type of help that this guide file provides
or a value indicating the position of the menu item in the Help
menu. You can specify any of these constants to indicate the
help type:
ABOUT
TUTORIAL
HELP
SHORTCUTS
OTHER

If you specify a value other than these five constants, Apple
Guide uses the specified value to determine the position of the
menu item in the Help menu.

helpCmdKey A one-character string that identifies the Command-key
equivalent that the user can use to invoke this guide file. This
parameter is optional. However, note that Apple Guide always
invokes a guide file of type HELP (if one is available) when the
user presses Command-Shift-/ (which maps to
Command-Shift-? on U.S. keyboards). For guide files of type
HELP, you should always specify II ? II in this parameter. You
cannot assign a Command-key equivalent for guide files of type
ABOUT.

Apple Guide displays in the application's Help menu the string defined by the
itemString parameter. (Apple Guide displays the string only if your guide file is

10-14 Specifying Startup Information

CHAPTER 10

Guide Script Command Reference

available to the application.) In addition, if you specify the helpCmdKey
parameter, Apple Guide displays the Command-key symbol in the menu item
followed by the character specified in the helpCmdKey parameter. Apple Guide
invokes a guide file of type HELP when the user presses Command-Shift-?
(regardless of the contents of the helpCmdKey parameter). If you provide a
character in the helpCmdKey parameter for a guide file of type HELP, Apple
Guide also invokes the guide file when the user presses Command and the
specified character.

Four special positions are reserved near the top of the Help menu for guide
files of type ABOUT, TUTORIAL, HELP, and SHORTCUTS. Only one of each of
these types of guide files is displayed in the Help menu. However, you can
have as many guide files of type OTHER as you choose. Apple Guide displays
menu items for guide files of type OTHER in alphabetical order at the bottom of
the Help menu.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Help Menu> command should appear once at most in your source files
for a specific guide file. If you omit this command when you compile a new
guide file, Guide Maker assigns your guide file the type HELP and the name
"Application Guide" as the menu item text and does not display the
Command-key symbol or"?". If you omit this command when recompiling a
guide file, Guide Maker preserves any existing type or item text information.

#define menu item text for guide file of type HELP and
specify the Command-key equivalent that appears in the
Help menu for this guide file
<Help Menu> "SurfWriter Guide", HELP, "?"

#define menu item text for guide file of type TUTORIAL
<Help Menu> "SurfWriter Tutorial", TUTORIAL

#define menu item text for guide file of type OTHER
<Help Menu> "SurfWriter Write It For Me", OTHER

Specifying Startup Information 10-15

• G)
c:
0:
CD
C/J
(')
::::3. -g,
()
0
3
3
~ a.
:II
CD
CD' a
:::3
(')
CD

SEE ALSO

CHAPTER 10

Guide Script Command Reference

To specify balloon text for your guide file's menu item, use the <Balloon Menu
Text> command, as described next.

<Balloon Menu Text>

DESCRIPTION

You can use the <Balloon Menu Text> command to define the text for the help
balloon that is displayed when Balloon Help is on and the cursor is in your
guide file's menu item in your application's Help menu.

<Balloon Menu Text> balloonText

balloon Text A text string specifying the text for the balloon associated with
your guide file's menu item in the application's Help menu.

When Balloon Help is on and the cursor is in a guide file's menu item in the
application's Help menu, Apple Guide displays in a help balloon the string
defined by the balloonText parameter.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Balloon Menu Text> command should appear once at most in your
source files for a specific guide file. If you omit this command when you
compile a new guide file, Apple Guide will not display a help balloon for your
guide file's menu item.

#define the balloon text for the guide file's menu item
in the Help menu
<Balloon Menu Text> ~
"Select this item to get information about how to use
SurfWriter"

10-16 Specifying Startup Information

<Comment>

DESCRIPTION

EXAMPLES

CHAPTER 10

Guide Script Command Reference

You can use the <Comment> command (or"#") to indicate a comment in your
source files.

<Comment> or #

When Guide Maker encounters a <Comment> command (or"#") it ignores the
following text until the next carriage return. Comments specified with the
<Comment> command must appear at the beginning of the line. Comments
specified with the 11#" character can begin a line or appear at the end of a
command line. You cannot specify a comment in the middle of a command line.

Guide Maker interprets the 11#" character as a comment if it appears as the first
nonblank space on a line. To use the 11#'' character as the first character on a line
of panel text, use 11##". Guide Maker does not treat the 11#'' character as a
special character if it appears within panel text.

<Comment> This is a comment
#here's a comment

#this is also a comment
<App Text> 11 SurfWriter Guide 11 #here's another comment
<Define Panel> 11 Some panel .. #a comment at end of command line

Text goes here. #This is not a comment here, it's panel text.
##this is not a comment, it's panel text.
<Standard Button> "My Button", #illegal comment

LEFT, doAction() #legal comment
<Standard Button> .. My Button", LEFT, doAction() #ok comment

<End Panel>

Specifying Startup Information 10-17

G>
c: a:
CD
CJ)
()
:::l.

'S
g>
3
3
OJ
:::l c.
:IJ

m-
m
:::l
()
CD

<Include>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use the <Include> command to specify a source file that contains the
Guide Script commands used to generate your guide file.

<Include> sourceFileName

sourceFileName
A filename of a file containing Guide Script commands for your
guide file. This file must be located in the same folder as the file
that specifies the <Include> command.

You can specify the Guide Script commands that define your guide file in
multiple source files. If you do this, you must create a build file and use the
<Include> command to specify each source file. A build file is a file that
contains only <Include> and <Resource> commands. When you compile your
guide file, you specify your build file as the file to compile. All files referenced
by <Include> commands must be located in the same folder as your build file.

SPECIAL CONSIDERATIONS

EXAMPLES

If you use an <Include> command, it must appear in a separate build file that
contains only <Include> and <Resource> commands.

#build file for SurfWriter guide file
<Include> "Standard Setup"
<Include> "Panel definitions"
<Include> "Sequence definitions"
<Include> "Topic Areas definitions"
<Include> "Index definitions"
<Resource> "Standard Resources", ALL

10-18 Specifying Startup Information

SEE ALSO

<Mixin>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

For information on the <Resource> command, see page 10-101.

You can use the <Mixin> command to specify whether the guide file generated
by your source files is a Mixin guide file.

<Mixin> symNameOrStartResNum

symNameOrStartResNum
A text string supplying the name of the SYM file for the main
guide file, or an integer that specifies the starting resource
number.

The <Mixin> command provides you with a method of modifying or adding
content to an already existing guide file. If you do not specify a SYM file, you
are limited to appending content to the end of a main guide file. If you specify
a SYM file, you can use additional mixin-specific c.ommands to change the
behavior of the existing guide file. You also have the option of specifying a
starting resource number instead of a SYM file. If you specify a starting
resource number, then for resources that Guide Maker creates, it begins
numbering them with the specified resource ID.

SPECIAL CONSIDERATIONS

If you use the <Mixin> command, it must be the first command in a source file.
If you omit the <Mixin> command, Guide Maker assumes that the guide file is
not a Mixin guide file. If you specify a starting resource number, the number
must be between 2000 and 20,000.

Specifying Startup Information 10-19

CHAPTER 10

Guide Script Command Reference

EXAMPLES

#this is a Mixin guide file, and specify the main guide file .SYM file
<Mixin> "Master GF.SYM"
#this is a Mixin guide file, and specify a starting resource number
<Mixin> 8123

SEE ALSO

To modify or add content to an existing guide file, you can use the commands
<Insert Topic Area Header>, <Insert Topic Area Topic>, <Insert Index Header>,
and <Insert Index Topic>, as described on page 10-192, page 10-193,
page 10-195, and page 10-196, respectively. You can also use other Guide Script
commands to create sequences and panels for any topics that you add or
modify.

<Mixin Match>

DESCRIPTION

You can use the <Mixin Match> command to specify a creator for the Mixin
guide file so that you can match Mixin guide files with a main guide file
without conflict.

<Mix in Match> matchingCreator

matchingCreator
A four-character value that typically specifies the creator of the
guide file. This usually corresponds to the signature of the
application associated with this guide file. The special wild
character sequence I * * * * I indicates that this mixin file can
match all guide files that meet all other required criteria
(specified in the <App Creator> and <Gestalt> commands).

The <Mixin Match> command provides you with a method of matching a
Mixin guide file with one or more other guide files. You must specify the
<Mixin Match> command in both the main guide file and the Mixin guide file.

lG-20 Specifying Startup Information

CHAPTER 10

Guide Script Command Reference

If the values specified in each guide file's matchingCreator parameter match,
and if both guide files satisfy other required criteria (as specified in the <App
Creator> and <Gestalt> commands and if both are in the same folder}, then the
Mixin guide file is mixed in with the main guide file.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Mixin Match> command should appear no more than once in your
source files. If you omit the <Mixin Match> command, the Mixin guide file
matches only those main guide files that also omit the <Mixin Match>
command (and that satisfy the required criteria).

#specified in main guide file for SurfWriter Guide
<Mixin Match> 'WAVE' #SurfWriter's signature

#specified in a Mixin guide file for SurfWriter
<Mixin Match> 'WAVE' #SurfWriter's signature

Specifying the Startup Window

You define the appearance of your access window by using the commands
described in this section.

<Startup Window>

You can use the <Startup Window> command to specify the type of window
that Apple Guide should display when your guide file is first opened.

<Startup Window> windowType, accessScreenOptions

windowType A value that indicates whether the access window uses the full,
single, or simple (presentation) access method.

Specifying the Startup Window 10-21

• G>
c:
a:
CD
en
0
::::!.
'E.
0
0
3
3
~ a.
::D

~
m
:l
0
CD

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use one of these constants in the windowType parameter:
FULL
SINGLE
PRESENTATION

The value you choose for this parameter determines the options
that can be specified with the next parameter.

accessScreenOptions
A value that specifies the access screen options for the specified
window type.

Full Access windows have options that you specify using these
constants:
HOWDY
TOPICS
INDEX
LOOKFOR

Single List Access windows have options that you specify using
these constants:
HOWDY
TOPICS

Simple Access windows (also called presentation windows)
have no other options, although you must specify a string
containing the presentation window's sequence name. For
example:
"SurfWriter Command-Key Shortcuts Sequence"

When a user opens a guide file, Apple Guide displays the access window of the
indicated type and with the specified options, as defined by the guide file's
<Startup Window> command.

If your guide file defines Topics, Index, and Look For help, use a Full Access
window as your startup window. If you want to present the user with
introductory or welcoming text (howdy text), then specify the constant HOWDY.
If you specify howdy text, the user can dismiss the howdy text by clicking the
Topics, Index, or Look For button. If you do not provide howdy text, then you
can specify which help (Topics, Index, or Look For) should initially be active
(that is, the text initially displayed in the left column) by using the
corresponding constant in the second parameter. Often, you'll want the Topics

10-22 Specifying the Startup Window

CHAPTER 10

Guide Script Command Reference

help to be initially active (so that the text specified by <Topic Area> commands
appears in the left column).

If your guide file provides only Topics help, use a Single List Access window as
your startup window. If you want to present the user with introductory or
welcoming text (howdy text), then specify the constant HOWDY.

If your guide file does not provide Topics, Index, or Look For help, then specify
the sequence name of your help content. Apple Guide displays this type of
help in a Simple Access (presentation) window.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <Startup Window> command should appear once at most in your source
files for a specific guide file. If you omit this command, Apple Guide displays a
Full Access window with space for howdy text.

#specifies a Full Access window, no howdy text, and
with Topics initially active
<Startup Window> FULL, TOPICS

#specifies a Single List Access window with howdy text
<Startup Window> SINGLE, HOWDY

#specifies a presentation window and its sequence name
<Startup Window> PRESENTATION, "SurfWriter ShortCuts
Sequence"

The <Howdy> command is described next.

Specifying the Startup Window 10-23

• Ci)
c: a:
<D
CJ)
0
::!.
"S
()
0
3
3
D)
::!
0.

:JJ

m-
;
::!
0
<D

<Howdy>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use the <Howdy> command to specify the text block that Apple Guide
displays for your guide file's howdy text.

<Howdy> howdyTextBlockName

howdyTextBlockName
A string identifying the name of a previously defined text block.
(You use the <Define Text Block> and <End Text Block>
commands to define and name a text block.)

When a user opens a guide file, if you specified a Full or Single Access window
and also specified the constant HOWDY (in the <Startup Window> command),
Apple Guide displays the text defined by the <Howdy> command.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Howdy> command should appear once at most in your source files for a
specific guide file.

#specifies a Full Access window with howdy text
<Startup Window> FULL, HOWDY

#define howdy text block and give it a name
<Define Text Block> "Howdy Text"

Welcome to personal help for SurfWriter.

To start, click Topics, Index, or Look For.

Topics shows general categories,
and Index lists key words.

10-24 Specifying the Startup Window

SEE ALSO

<AppLogo>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

Look For lets you search for help
according to key words you type.

<End Text Block>

#specify name of the text block that defines the howdy text
<Howdy> 11 Howdy Text 11

For information on the <Define Text Block> and <End Text Block> commands,
see page 10-82 and page 10-83, respectively.

You can use the <App Logo> command to specify a file containing a picture
that Apple Guide displays in the upper-left corner of a Full Access window.

<App Logo> colorLogo [, B&WLogo]

color Logo

B&WLogo

The name of a file containing a color 1 PICT I graphic; this
graphic should help identify this guide file (for example, the
application's logo) to the user.

The name of a file containing a black-and-white 1 PICT I

graphic; this graphic should help identify this guide file (for
example, the application's logo) to the user. This parameter is
optional.

Guide Maker imports the I PICT 1 resource from the file referenced by the
parameter color Logo and assigns it the resource ID 501, which is the resource ID
reserved for this special graphic. If provided, Guide Maker also imports the
1 PICT I resource from the file referenced by the parameter B&WLogo and
assigns it the resource ID 502, which is the resource ID reserved for this special
graphic. Note that the files containing the graphics should be located in the
same folder as your help sources.

Specifying the Startup Window 10-25

CHAPTER 10

Guide Script Command Reference

As an alternative to using the <App Logo> command, you can assign your
application's logos resource IDs of 501 and 502 and then import them using the
<Resource> command.

The file Standard Resources is provided with Guide Maker. This file contains
templates (two 1 PICT 1 resources with IDs 501 and 502) that you can use to
create your application logo picture. You should incorporate the lightbulb icon
with your application logo and also use your application's name followed by
the word Guide, as shown in Macintosh Guide and SurfWriter Guide.

Apple Guide displays the graphic defined by the <App Logo> command in the
upper-left comer of a Full Access window. Note that you can include text in the
graphic you provide for the <App Logo> command. The graphic should be at
most 59 by 185 pixels. If both a color picture and black-and-white picture are
provided, Apple Guide displays the color picture unless the monitor's bit
depth is set to 4 bits or less.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <App Logo> command should appear once at most in your source files for
a specific guide file. If you omit this command (and the <App Text>
command), Apple Guide displays the default access window background in
the upper-left comer of the Full Access window.

You should specify either the <App Logo> or <App Text> command for your
guide file, but not both.

#directly specify your application logo
<App Logo> "SurfWriter ColorLogo", "SurfWriter B&WLogo"
#or, import PICT resources with resource IDs 501 & 502

<Resource> "Standard Resources", ALL

For information on the <Resource> command, see page 10-101. The <App
Text> command is described next.

10-26 Specifying the Startup Window

<App Text>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use the <App Text> command to specify a text string that Apple Guide
displays in the upper-left comer of a Full Access window.

<App Text> string

string A text string, no longer than 64 characters, that helps identify
this guide file (for example, the application's name) to the user.

Apple Guide displays the string defined by the <App Text> command in the
upper-left comer of a Full Access window. It displays this string in 16-point
Espy Serif Bold; no other font or style options are available. You typically use
this command only if you do not want to provide a graphic of your
application's logo.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <App Text> command should appear once at most in your source files for
a specific guide file. If you omit this command (and the <App Logo>
command), Apple Guide displays the default access window background in
the upper-left comer of the Full Access window.

You should specify either the <App Logo> or <App Text> command for your
guide file, but not both.

<App Text> "SurfWriter Guide"

For information on the <App Logo> command, see page 10-25.

Specifying the Startup Window 10-27

Ci)
c: a:
CD
en
(')
::::!.
"S
(')
0
3
3
Q)
::::! a.
:::0

m-
e»
::J
(')
CD

CHAPTER 10

Guide Script Command Reference

Specifying Default Settings

You can specify default settings for your guide file by using the commands
described in this section. For example, you can specify the default maximum
and minimum height of a panel, defaults for the font, style, size, and color of
text in a panel, default navigation buttons, and a default prompt set.

<Max Height>

DESCRIPTION

You can use the <Max Height> command to specify the maximum allowable
panel height.

<Max Height> height

height A short integer specifying the maximum panel height in pixels.

Apple Guide automatically sizes each panel to a height that is within the range
specified by the <Max Height> and <Min Height> commands. If you omit the
<Max Height> command, Apple Guide uses a default maximum panel height
of 250 pixels.

If the contents of a panel exceeds the maximum specified by the <Max Height>
command or exceeds the default maximum, Apple Guide splits the panel into
multiple panels to accommodate all the panel objects.

To specify a fixed panel size for all panels in the guide file regardless of content,
set the maximum height and minimum height to the same value.

SPECIAL CONSIDERATIONS

The <Max Height> command should appear only once in your source files.

10-28 Specifying Default Settings

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#set the maximum height allowed to 350 pixels
<Max Height> 350

#set all panels to a fixed height of 300 pixels
<Max Height> 300
<Min Height> 300

The <Min Height> command is described next.

<Min Height>

DESCRIPTION

You can use the <Min Height> command to specify the minimum allowable
panel height.

<Min Height> hdght

height A short integer specifying the minimum panel height in pixels.

Apple Guide automatically sizes each panel to a height that is within the range
specified by the <Max Height> and <Min Height> commands. If you omit the
<Min Height> command, Apple Guide uses a default minimum panel height of
0 pixels.

If the contents of a panel requires less space than the amount specified by the
<Min Height> command, Apple Guide allocates the minimum height for the
panel.

To specify a fixed panel size for all panels in the guide file regardless of content,
set the maximum height and minimum height to the same value.

Specifying Default Settings 10-29

•

CHAPTER 10

Guide Script Command Reference

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <Min Height> command should appear only once in your source files.

#set the minimum height of a panel to 100 pixels
<Min Height> 100

For information on the <Max Height> command, see page 10-28.

<Default Format>

DESCRIPTION

You can use the <Default Format> command to specify a defined format or
transparent format that Guide Maker uses by default when placing text and
objects in a panel.

<Default Format> formatName

formatName A text string specifying the name of the format or transparent
format to use as the default format.

A <Default Format> command specifies the default format that Guide Maker
applies when placing text and objects in a panel. You can override the default
format on a panel-by-panel basis by using a <Format> command in the panel's
panel definition.

Any panel text or objects that appear before a <Default Format> command are
aligned according to Guide Maker's default full-width panel format.

When Guide Maker encounters a <Default Format> command, it uses the
format defined by formatName as the default format. Guide Maker uses the
default format in a panel until encountering a <Format> command for that
panel. It then uses the specified format to place all following text and objects in

10-30 Specifying Default Settings

CHAPTER 10

Guide Script Command Reference

that panel until another <Format> command is encountered or until an <End
Panel> command is encountered. Guide Maker resets the format to the default
format upon encountering an <End Panel> command.

Panel objects aligned according to the default format specified in a <Default
Format> command are placed inline within the bounds specified by the
format's column coordinates. Any text attributes specified by the format are
applied to panel text, and any prompts are aligned according to the specified
format.

You define formats that can be used by a <Default Format> command using the
<Define Format> or <Define Transparent Format> commands.

The file Standard Setup is provided with Guide Maker. This file defines four
formats:

• Tag. A format that provides a left column that you can use to format tags,
that is, text such as "Do This" or "Oops".

• Body. A format that provides a right column and that is designed for use
with the Tag format. Use the Body format to provide the information that
goes in the right column of a panel that also has a tag in it.

• Full. A format that provides a full column. Use this format if your panel text
requires a full-column width.

• ResetPen. A format that resets the format to a default format.

If you include the Standard Setup file in your build file, you can automatically
use these formats as needed in your source files.

SPECIAL CONSIDERATIONS

The <Default Format> command should appear once at most in your source
files.

EXAMPLES

#use the format with format name "Full" as the default format
(the "Full" format is defined in the Standard Setup file)

Specifying Default Settings 10-31

• G>
c: a:
CD
en
0
::::J.
~
(")
0
3
3
~
0.

:II

m-
(i)
::::J

~

CHAPTER 10

Guide Script Command Reference

the "Full" format specifies a format with column coordinates of
top = 6, left = 11, and right = 330
and text attributes of Espy Serif, 10 point,
plain text style, black text color, left aligned,
and does not override the default alignment of the prompt.
<Define Format> "Full", Column(6, 11, 330), "Espy Serif", 10, ..,

PLAIN, , LEFT, FALSE
<Default Format> "Full"

SEE ALSO

For information on the <Define Format> and <Define Transparent Format>
commands, see page 10-85 and page 10-91. For information on the <Format>
command, see page 10-93.

<Default Nav Butlon Set>

DESCRIPTION

You can use the <Default Nav Button Set> command to specify a default
navigation button set that Apple Guide uses for all sequences in your guide file
unless you override the default by using a <Seq Nav Button Set> command.

<Default Nav Button Set> navButtonSetName

navButtonSetName
A string specifying the name of the navigation button set to use
as the default. You can use the constant NONE to indicate that
Apple Guide should display no navigation buttons (other than
the navigation arrows) by default.

The <Default Nav Button Set> command defines the default set of navigation
buttons (in addition to the navigation arrows) that Apple Guide displays for
your guide file. You can define a navigation button set for specification in the
navButtonSetName parameter using a <Define Nav Button Set> command.

10-32 Specifying Default Settings

CHAPTER 10

Guide Script Command Reference

Note that any navigation buttons that you define using a <Define Nav Button
Set> command appear to the left of the navigation arrows. Apple Guide always
displays the navigation arrows on each panel. For each panel, Apple Guide
makes the right navigation arrow active or inactive according to whether the
user can navigate to a following panel. Apple Guide makes the left navigation
arrow active or inactive according to whether the user can navigate to a
previous panel. Apple Guide also displays the panel number (as it appears in a
sequence) between the left and right navigation arrows.

The file Standard Setup is provided with Guide Maker. This file contains
descriptions of the Huh? and GoStart navigation buttons, and defines three
navigation button sets:

•
11Standard Nav Bar". A navigation button set that specifies the GoStart and
Huh? navigation buttons as buttons in the navigation bar.

•
11GoStart Only'. A navigation button set that specifies only the GoStart
navigation button as a button in the navigation bar. The GoStart button
resembles a lightbulb.

•
11Huh? Only". A navigation button set that specifies only the Huh?
navigation button as a button in the navigation bar.

The Standard Setup file also defines the "Standard Nav Bar" button set as the
default navigation button set. If you include the Standard Setup file in your
build file, you can automatically use these three navigation button sets as
needed in your source files.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Default Nav Button Set> command should appear only once in your
source files. If you omit this command (or provide the constant NONE as a
parameter), Apple Guide by default displays no navigation buttons for your
guide file (but does display the left and right navigation arrows).

#use GoStart Only as default
<Default Nav Button Set> "GoStart Only"
#or use Huh? Only as default
<Default Nav Button Set> "Huh? Only"

Specifying Default Settings 10-33

G)
c:
a:
CD

g>
::::1.

"9.
0
0
3
3
Q)
:::::J
0.
:D

~
i
:::::J
(')
CD

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#or use both GoStart and Huh? as default
<Default Nav Button Set> .. Standard Nav Bar ..

#or use no nav buttons by default
<Default Nav Button Set> NONE
#or use your own default navigation button set
<Default Nav Button Set> .. my default nav buttons ..

For information on the <Define Nav Button Set> and <Seq Nav Button Set>
commands, see page 10-80, and page 10-43, respectively.

<Allow Prompts>

DESCRIPTION

You can use the <Allow Prompts> command to specify whether Guide Maker
should include space for prompts when it creates panels.

<Allow Prompts> allow

allow A Boolean value indicating whether Guide Maker should
include space for prompts when determining the size of panels.
Specify TRUE if you want Guide Maker to include space for
prompts on your panels; specify FALSE otherwise. By default,
Guide Maker includes space for prompts when determining the
size of panels.

When Guide Maker encounters the <Allow Prompts> command with allow set
to FALSE, it does not include space for prompts when determining the size of
any panel definitions following this command. For example, you might use this
command if all your panels have full-size graphics.

10-34 Specifying Default Settings

CHAPTER 10

Guide Script Command Reference

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

If you use the <Allow Prompts> command and set allow to FALSE, you should
not use any other prompt-related command. If you do so, Guide Maker
generates an error relating to this condition when compiling your source file.

If you omit the <Allow Prompts> command, Guide Maker includes space for
prompts when determining the size of panels.

<Allow Prompts> FALSE

For information on the <Define Prompt Set> command, see page 10-37. For
information on setting the prompt for a sequence or a particular panel, see the
description of the <Sequence Prompt Set> and <Panel Prompt> commands on
page 10-42 and page 10-55. The <Default Prompt Set> command is described
next.

<Default Prompt Set>

You can use the <Default Prompt Set> command to specify a default set of
navigation prompts that Apple Guide uses for all panels in all sequences in
your guide file unless you override the default by using a <Sequence Prompt
Set> or <Panel Prompt> command.

<Default Prompt Set> promptSetName

promptSetName
A string specifying the name of the navigation prompt set to use
as the default. You can use the constant NONE to indicate that
Apple Guide by default should display no navigation prompts.

Specifying Default Settings 10-35

I
(j)
c
a:
CD
en
0
::::!.

"9.
(")
0
3
3
ll>
:J a.
::D

*' @
~
0
CD

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

The <Default Prompt Set> command defines the default set of navigation
prompts that Apple Guide displays for your guide file. You define the
navigation prompt set (for specification in the promptSetName parameter) using
a <Define Prompt Set> command. If you specify the constant NONE (indicating
that panels don't use prompts by default), Guide Maker doesn't include space
for prompts when it compiles panels, unless you override the default using the
<Sequence Prompt Set> or <Panel Prompt> command.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Default Prompt Set> command should appear only once in your source
files. If you omit this command (or provide the constant NONE as a parameter),
Guide Maker by default allocates no space for navigation prompts for your
guide file.

#first define a prompt set
<Define Prompt Set> "default navigation prompts",-,

"To begin, click the right arrow.", ..,
"Click the left arrow to go back or the right arrow to continue.",-,
"That's all, you're done!", ..,
"Make your choice, then click the right arrow."

#use this prompt set as the default
<Default Prompt Set> "default navigation prompts"

SEE ALSO

For information on the <Allow Prompts> command, see page 10-34. For
information on the <Sequence Prompt Set> and <Panel Prompt> commands,
see page 10-42 and page 10-55, respectively. The <Define Prompt Set>
command is described next.

10-36 Specifying Default Settings

CHAPTER 10

Guide Script Command Reference

<Define Prompt Set>

DESCRIPTION

You can use the <Define Prompt Set> command to specify a set of prompts that
can appear as navigation prompts on panels.

<Define Prompt Set> promptSetName, promptFirstPanel,
promptMiddlePanel, promptLastPanel,
prompt For Panels WithControls

promptSetName
A string specifying the name of this navigation prompt set. This
name must be unique from all other navigation prompt sets that
you define.

promptFirstPanel
A string specifying the text for use as the navigation prompt of
the first panel in a sequence.

promptMiddlePanel
A string specifying the text for use as the navigation prompt of
the middle panel in a sequence.

prompt Last Panel
A string specifying the text for use as the navigation prompt of
the last panel in a sequence.

promptFor Panels WithControls
A string specifying the text for use as the navigation prompt of
panels containing any of these controls: checkboxes, radio
buttons, or standard buttons.

The <Define Prompt Set> command defines a set of navigation prompts. You
can use this prompt set in panels and can control on which panels the prompts
appear by using these commands:

• <Default Prompt Set>, to associate the prompt set with all panels in all
sequences

• <Sequence Prompt Set>, to associate the prompt set with all panels in a
specific sequence

Specifying Default Settings 10-37

• G>
c:
c:
CD
en
0
:::!.
"9.
0
0
3
3
Q)
:3 a.
:0

~
m
:3

£

EXAMPLES

CHAPTER 10

Guide Script Command Reference

• <Panel Prompt>, to associate the prompt set with only one specific panel in a
sequence

If you provide a <Default Prompt Set> command that specifies a prompt set
(other than NONE), Guide Maker allocates space for prompts on all panels and
uses the specified prompt strings for each panel by default. You can override
the default on a sequence or panel-by-panel basis.

If a sequence definition includes a <Sequence Prompt Set> command that
specifies a prompt set (other than NONE), Guide Maker allocates space for
prompts on all panels in that sequence by default, and uses the specified
prompt strings for each panel in the sequence.

If a panel definition includes a <Panel Prompt> command that specifies a
prompt set (other than NONE), Guide Maker allocates space for prompts on that
panel and uses the specified prompt strings for that panel.

To specify that Guide Maker should not allocate space for panels, specify NONE
as a parameter to the <Default Prompt Set>, <Sequence Prompt Set>, or <Panel
Prompt> commands. If you want Guide Maker to allocate space for a prompt
on a panel but do not want to provide text in the prompt string, specify the
prompt string with at least one blank character, for example, " "; do not
specify an empty string.

<Define Prompt Set> "special promptsn,
"Click the right arrow to continue.",
nclick the left arrow to go back or the right arrow to continue.",
"That's all, you're done!",
II II

<Define Panel> "Example Panel 1"
#this panel doesn't use a prompt set
<Panel Prompt> NONE

<End Panel>

<Define Panel> 11 Example Panel 2"
<End Panel>

10-38 Specifying Default Settings

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "Example Sequence 2"
#this sequence uses the prompt set
defined by "special prompts"
<Sequence Prompt Set> "special prompts"
<Panel> "Example Panel 1" #overrides sequence prompt set
<Panel> "Example Panel 2" #uses sequence prompt set

<End Sequence>

SEE ALSO

For a description of the <Default Prompt Set>, <Sequence Prompt Set>, and
<Panel Prompt> commands, see page 10-35, page 10-42, and page 10-55,
respectively.

Creating Sequences

You can define a sequence-which specifies a set of panels and determines
their order of display-by using the commands described in this section.

<Define Sequence>

You use the <Define Sequence> command to mark the beginning of a sequence
definition. A sequence definition typically contains commands that specify the
panels of the sequence and the conditions that control their order of display.
Apple Guide displays a sequence when the user selects the sequence's
associated topic from an access window.

<Define Sequence> sequenceName [, seqDisplayTitle]

sequenceName A text string specifying the name of the sequence. The sequence
name can be up to 255 characters long, and the first 63
characters must be unique from all other sequence names in
your file. If you do not specify the seqDisplayTitle parameter,
Apple Guide uses the sequence name as the sequence display
title, which appears in the title bar of the sequence's
presentation window.

Creating Sequences 10-39

• G>
c: a:
m
en
Q
"§:
(')
0
3
3
g)
::::J
a.
JJ

m-
<D
::::J
(')
m

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

seqDisplayTitle
A text string specifying the display title of the sequence. The
sequence display title can be up to 255 characters long and does
not have to be unique. This parameter is optional. However, you
must specify this parameter if you intend to localize your guide
file using Guide Maker's localize feature.

If you specify this parameter, Apple Guide uses this string
rather than the sequence name as the sequence display title. The
sequence display title appears in the title bar of the sequence's
presentation window.

To build a sequence, Guide Maker collects all the commands between a
<Define Sequence> and <End Sequence> command. Each sequence must have
a unique sequence name. A sequence also has a sequence display title, which
Apple Guide displays in the title bar of the sequence's presentation window. If
you don't specify a sequence title in the second parameter of the <Define
Sequence> command, Apple Guide uses the sequence name as the sequence
display title. Apple Guide always displays a sequence title for a sequence,
except in these two cases:

• Apple Guide does not display the sequence title of a subsequence. Instead,
Apple Guide continues to display the main sequence title.

• Apple Guide does not display the sequence title of an Oops or Continue
sequence. Instead, Apple Guide continues to display the main sequence title.

To include panels in a sequence, either use the <Panel> command (which
references a defined panel) or define the panel within the sequence by placing
the <Define Panel> and <End Panel> commands directly within the sequence
itself. Either method works equally well; if you often reuse panels or want to
see a quick synopsis of a sequence, use <Panel> commands. If you prefer to
keep the definition of a panel with its sequence, define the panel directly within
the sequence.

You can also specify conditional display of panels, using the <If>, <Else>, <End
If>, <Skip If>, <Make Sure>, <Start Making Sure>, and <End Making Sure>
commands.

10-40 Creating Sequences

CHAPTER 10

Guide Script Command Reference

SPECIAL CONSIDERATIONS

EXAMPLES

A sequence can have at most 32 panels, except for any panels added using the
<Jump Sequence> command.

#sequence name and sequence title are different
<Define Sequence> "SequenceChangeWordFont", .,

"How do I change the font of a word?" #seqTitle
<End Sequence>

#sequence name and sequence title are the same
<Define Sequence> "How do I open a file?"
<End Sequence>

#sequence name and sequence title are the same but both are
specified for ease of localization
<Define Sequence> "How do I close a file?", .,

"How do I close a file?"
<End Sequence>

#sequence with panels referenced by <Panel> commands
<Define Sequence> "How do I create index markers?"

<Panel> "index intro"
<Panel> "index tool"
<Panel> "create index"

<End Sequence>

#sequence with panels defined within
<Define Sequence> "How do I create index markers?"

<Define Panel> "creating index markers"
To create index markers, select the index tool.
#More text and commands for this panel here

<End Panel>
<End Sequence>

Creating Sequences 10-41

I

SEE ALSO

CHAPTER 10

Guide Script Command Reference

For information on the <Panel>, <Define Panel>, and <End Panel> commands,
see page 10-45, page 10-52, and page 10-56, respectively. For information on the
conditional display of panels, see "Specifying Conditional Execution"
beginning on page 10-152.

<Sequence Prompt Set>

DESCRIPTION

You can use the <Sequence Prompt Set> command to specify a set of
navigation prompt strings for all panels in a sequence.

<Sequence Prompt Set> promptSetName

prompt Set Name
The name of a defined prompt set, or the constant NONE to
indicate that the sequence doesn't require prompts.

The <Sequence Prompt Set> command overrides the default navigation
prompt set (you specify a default navigation prompt set using the <Default
Prompt Set> command). When a sequence includes a <Sequence Prompt Set>
command, Apple Guide uses the specified prompts for all panels in the
sequence, except for panels that use a <Panel Prompt> command to override
the sequence prompt set.

If you specify the constant NONE (indicating that prompts are not required by
default for any panels in the sequence), Guide Maker doesn't include space for
prompts when it compiles panels in the sequence, unless you override the
sequence prompt set for a particular panel using the <Panel Prompt>
command.

SPECIAL CONSIDERATIONS

A sequence can have only one sequence prompt set associated with it. If you
omit this command, Apple Guide uses the default prompt set. If Guide Maker
encounters more than one <Sequence Prompt Set> command for a single
sequence, it uses the last one encountered for that sequence.

10-42 Creating Sequences

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

If you use the <Sequence Prompt Set> command, it must always appear
between the <Define Sequence> and <End Sequence> commands.

<Define Prompt Set> "prompts for special sequence", ...,
"Click the right arrow to begin.", ...,
" ", "That's all, you're done!", " "

<Define Sequence> "Example Sequence"
#this sequence uses the prompt set defined
by "prompts for special sequence"
<Sequence Prompt Set> "prompts for special sequencen
<Panel> "Example panel 1"
<Panel> "Example panel 2"

<End Sequence>

For a description of the <Define Prompt Set> command, see page 10-37.

<Seq Nav Button Set>

You can use the <Seq Nav Button Set> command to specify a navigation button
set that Apple Guide uses for a particular sequence in your guide file. This
command overrides any default set by a <Default Nav Button Set> command.

<Seq Nav Button Set> navButtonSetName

navButtonSetName
A string specifying the name of the navigation button set to use
for this sequence. You can use the constant NONE to indicate that
Apple Guide should display no navigation buttons (other than
the navigation arrows) for this sequence.

Creating Sequences 10-43

• (j)
c::
0:
<D
en
0
::!.

"S
()
0
3
3
~
::l
0.
]J

~
m
::l

£

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

The <Seq Nav Button Set> command defines the set of navigation buttons that
Apple Guide displays for a particular sequence. You define a navigation button
set (for specification in the navButtonSetName parameter) using the <Define
Nav Button Set> command.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

If you use the <Seq Nav Button Set> command, it must always appear between
the <Define Sequence> and <End Sequence> commands.

#specify navigation buttons to use as a default
<Default Nav Button Set> "default navigation buttons ..

<Define Sequence> "Example Sequence ..
#this sequence uses the default navigation buttons

<End Sequence>

<Define Sequence> "How do I spell-check a document?"
#this sequence overrides the default navigation buttons
<Seq Nav Button Set> "special sequence nav buttons"
<Panel> "automatic spell-checking"

<End Sequence>

For information on the <Define Nav Button Set> and <Default Nav Button Set>
commands, see page 10-80, and page 10-32, respectively.

10-44 Creating Sequences

<Panel>

DESCRIPTION

EXAMPLES

CHAPTER 10

Guide Script Command Reference

You can use the <Panel> command to associate a panel with a particular
sequence.

<Panel> panelName

panelName A text string specifying the name of a defined panel.

A sequence definition consists of commands that reference one or more panels.
Apple Guide displays panels according to the order in which the panels appear
in a sequence definition and according to any conditions attached to each panel.

Note that Apple Guide uses the sequence name (or the optional sequence
display title) as the panel's display title, not the string in the panelName
parameter.

The panelName parameter must reference a named panel, that is, a panel
defined with the <Define Panel> and <End Panel> commands. You can also
directly place a panel definition within a sequence definition by using the
<Define Panel> and <End Panel> commands. If you often reuse panels or want
to see a quick synopsis of a sequence, use <Panel> commands in your sequence
definitions. If you prefer to keep the definition of a panel with its sequence,
define the panel directly within the sequence.

Note that panel definitions do not have to precede their use in a <Panel>
command; they must simply appear somewhere within your source files.

#sequence with panels referenced by <Panel> commands
<Define Sequence> "How do I create index markers?"

<Panel> "index intra"
<Panel> "index tool"
<Panel> "create index"

<End Sequence>

Creating Sequences 10-45

G>
c:
c:
CD
(J)
()
::!.

'S
0
0
3
3
p)
::::J c.
::0

m-
(j)
::::J
()
CD

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#sequence with panels defined within
<Define Sequence> 11 How do I create index markers? ..

<Define Panel> .. creating index markers ..
To create index markers, select the index tool.
#more text and commands for this panel here

<End Panel>
<End Sequence>

For information on the <Define Panel> and <End Panel> commands see
page 10-52 and page 10-56, respectively.

<Insert Sequence>

DESCRIPTION

You can use the <Insert Sequence> command to include the commands from
another sequence into the current sequence.

<Insert Sequence> sequenceName

sequenceName
A text string specifying the name of a sequence.

The <Insert Sequence> command copies the information from the named
sequence into the current sequence's definition. You can use this command to
reuse sequences common to one or more help topics.

SPECIAL CONSIDERATIONS

Any panels inserted by an <Insert Sequence> command apply toward a
sequence's 32-panellimit.

10-46 Creating Sequences

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#sequence that is reused often
<Define Sequence> "How do I use the tool bar?"

<Panel> "intro tool bar"
<Panel> "tools"

<End Sequence>

#sequence that reuses another sequence
<Define Sequence> "How do I create footnotes?"

<Panel> "intra footnotes"
<Insert Sequence> "How do I use the tool bar?"
<Panel> "editing footnotes"

<End Sequence>

The <Jump Sequence> command is described next.

<Jump Sequence>

DESCRIPTION

You can use the <Jump Sequence> command to jump to another sequence from
the current sequence.

<Jump Sequence> sequenceName

sequenceName
A text string specifying the name of the sequence to jump to.

Unlike the <Insert Sequence> command, the <Jump Sequence> command
jumps directly to the named sequence. The jumped-to sequence is treated as a
separate entity in the guide file and is jumped to and returned from at the
appropriate times in the calling sequence. Like the <Insert Sequence>
command, the <Jump Sequence> command lets you reuse sequences that are

Creating Sequences 10-47

•

CHAPTER 10

Guide Script Command Reference

common to one or more help topics. You also might use <Jump Sequence>
commands within <If> and <End If> commands.

SPECIAL CONSIDERATIONS

EXAMPLES

Any sequence that uses <Jump Sequence> commands must have at least one
panel that is guaranteed to be shown before the first <Jump Sequence>
command. You should also show at least one panel between <Jump Sequence>
commands.

Any panels inserted by a <Jump Sequence> command do not apply toward a
sequence's 32-panellimit.

You can use the <Jump Sequence> command if Guide Maker informs you that
the current sequence exceeds limitations.

#sequence that is reused often
<Define Sequence> "How do I use the tool bar?"

<Panel> "tool bar:intro"
<Panel> "tool bar:tools"

<End Sequence>

#sequence that jumps to another sequence
<Define Sequence> "How do I create footnotes?"

<Panel> "footnotes:intro"
<Jump Sequence> "How do I use the tool bar?"
<Panel> "footnotes:editing"

<End Sequence>

#sequence that jumps to a sequence depending on a condition
<Define Sequence> "How do I spell-check a document?"

<Panel> "spell-checking:intro"
<If> NOT isDictionaryOpen()

<Jump Sequence> "How do I open the dictionary?"
<End If>

10-48 Creating Sequences

SEE ALSO

CHAPTER 10

Guide Script Command Reference

<Panel> "spell-checking:options"
<End Sequence>

For information on the <Insert Sequence> command, see page 10-46. The
<Launch New Sequence> command is described next.

<Launch New Sequence>

DESCRIPTION

You can use the <Launch New Sequence> command if you need to break
complex sequences into smaller subsequences.

<Launch New Sequence> sequenceName

sequenceName
A text string specifying the name of the new sequence.

The <Launch New Sequence> command displays the named sequence in the
same window as the current sequence, and the user navigates to it using the
right arrow button. However, the user cannot navigate back to the original
sequence using the left arrow button after beginning the new sequence.

If you use the <Launch New Sequence> command, you usually specify it as the
last command in the current sequence definition.

You can also use the <Radio Button Launch New Seq> command to launch
new sequences in response to the user choosing a radio button. Alternatively,
you can launch a new sequence as a result of the user choosing a button by
linking the button to the built-in function LaunchNewSequence.

SPECIAL CONSIDERATIONS

Use the <Launch New Sequence> command only if Guide Maker informs you
that the current sequence exceeds limitations.

Creating Sequences 10-49

• (j)
c:
c:
<D
en
0
::::!.
-g
()
0
3
3
Dl
:::l a.
:IJ
<D
CD' a
:::l
0
<D

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#sequence to launch to
<Define Sequence> "How do I make a multibook index?"

<Panel> "multibook setup"
<Panel> "multibook combine ..
<Panel> "multibook generate"

<End Sequence>

#sequence that launches another sequence
<Define Sequence> "How do I create an index?"

<Panel> "index techniques ..
<Panel> "editing index entries"
<Launch New Sequence> .. How do I make a multibook index?"

<End Sequence>

For information on the <Insert Sequence> and <Jump Sequence> commands,
see page 10-46 and page 10-47, respectively. For information on the
<Radio Button Launch New Seq> command, see page 10-66. For
information on the built-in event functions LaunchNewSequence
and LaunchNewSequenceNewWindow, see page 10-188.

<Build Sequence>

You can use the <Build Sequence> command to build a sequence that isn't
accessed from another panel or whose topic doesn't appear in an access
window, such as a help sequence called directly by your application to provide
context-sensitive help.

10-50 Creating Sequences

DESCRIPTION

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

<Build Sequence> sequenceName, [seqReslD 1

sequenceName

seqReslD

A string identifying the name of a defined sequence (that is, a
sequence defined with the <Define Sequence> and <End
Sequence> commands).

A resource ID to be assigned to this sequence. Use a resource ID
greater than 2000. This parameter is optional and, if it's not
provided, Guide Maker assigns a resource ID to the sequence.

The <Build Sequence> command compiles the specified sequence and stores it
as a resource in the guide file. Your application can directly invoke a sequence
built by the <Build Sequence> command by specifying its resource ID in the
sequenceiD parameter of the AGOpenWithSequence function.

<Build Sequence> "name of sequence", 2001

For information on the <Define Sequence> and <End Sequence> commands,
see page 10-39 and page 10-51, respectively.

<End Sequence>

You can use the <End Sequence> command to mark the end of a sequence
definition.

<End Sequence>

Creating Sequences 10-51

•

DESCRIPTION

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

Guide Maker collects all the commands between a <Define Sequence> and
<End Sequence> command to build a sequence.

#sequence with panels referenced by <Panel> commands
<Define Sequence> "How do I create index markers?"

<Panel> "index intro ..
<Panel> "index tool ..
<Panel> "create index"

<End Sequence>

For information on the <Define Sequence> command, see page 10-39.

Creating Panels

You can define a panel and the prompt for a specific panel by using the
commands described in this section.

<Define Panel>

You can use the <Define Panel> command to mark the beginning of a panel
definition. A panel definition typically contains commands that specify the
objects to be displayed on the panel.

<Define Panel> pane/Name

pane/Name

10-52 Creating Panels

A text string specifying the name of the panel. The panel name
can be up to 255 characters long, and the first 63 characters must
be unique from all other panel names that you define. Apple
Guide never displays the panel name to the user, so you should
specify the panel name in a way that is most useful to you.

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

To build a panel, Guide Maker collects all the commands between a <Define
Panel> and <End Panel> command. A panel that you have defined with these
two commands can be included in a sequence simply by referencing the panel
name using the <Panel> command. Alternatively, you can directly define the
panel within a sequence.

You can provide the content of a panel, for example, graphics, buttons, or a
QuickTrme movie, using Guide Script commands such as <PICT>, <Standard
Button>, <3D Button>, and <QuickTrme>. You specify text in a panel by
placing it directly within the panel definition. Guide Maker treats any line in a
panel definition that doesn't begin with a command or comment as panel text.
(Specifically, Guide Maker scans for the first "nonblank" character, that is, a
character other than a space or tab, and if this character is anything other than
"<"or"#", it is considered panel text.) Guide Maker formats panel text
according to the format specified by the default format or the format specified
by a <Format> command.

You can allow Guide Maker to automatically place panel text and objects in the
panel, or you can specifically place text and objects yourself using <Format>
commands and by providing placement information in Guide Script
commands that place objects.

SPECIAL CONSIDERATIONS

EXAMPLES

Your panel definitions do not have to precede your sequence definitions in
your source file. Thus, a sequence can reference any panel name, as long as that
panel is defined somewhere in your source files.

#panel definition defined outside of a sequence
<Define Panel> "index intro"

#text and commands that specify content of panel here
<End Panel>

Creating Panels to-53

• G>
c c:
CD

g>
::::!. -g.
0
0
3
3
s:»
:::J
0.

:D

m-
(D
:::J
(')
CD

SEE ALSO

10-54

CHAPTER 10

Guide Script Command Reference

#sequence with panels referenced by <Panel> commands
<Define Sequence> "How do I create index markers?"

<Panel> "index intro"
<Panel> "index tool"
<Panel> "create index"

<End Sequence>

#panel definition that uses various commands to
create panel content
<Define Panel> "creating footnotes"

#text formatted by Guide Maker and using default format
To create footnotes, select the Footnote tool.
#Here's a graphic
<PICT> "ColorPicl File", CENTER, "B&WPicl File"
#text placed using a specific format
<Format> "special format"
Here's some more text.
#Here's a button
<Standard Button> "Display Footnotes", CENTER, ...,

doButton2Action()
#More text and commands for this panel here

<End Panel>

For information on the <Panel> and <End Panel> commands, see page 10-45
and page 10-56, respectively. For more information on placing buttons,
graphics, and objects in your panels, see "Creating Buttons" beginning on
page 10-57, "Specifying Pictures and Movies" beginning on page 10-94, and
"Creating Hot Items" beginning on page 10-119. For information on using
formats in panels, see "Formatting Text and Objects in a Panel" beginning on
page 10-84.

Creating Panels

CHAPTER 10

Guide Script Command Reference

<Panel Prompt>

DESCRIPTION

You can use the <Panel Prompt> command to specify a set of navigation
prompt strings for the current panel.

<Panel Prompt> promptSetName

promptSetName
The name of a defined prompt set, or the constant NONE to
indicate that the panel doesn't require prompts.

The <Panel Prompt> command overrides the default navigation prompt set
(the default for all panels in all sequences) and the default sequence prompt
set (the default for all panels in a sequence). You define a navigation prompt set
(for specification in the promptSetName parameter) using the <Define Prompt
Set> command. If you indicate that the panel doesn't require prompts, Guide
Maker allocates no space for prompts when it compiles the panel.

SPECIAL CONSIDERATIONS

EXAMPLES

A panel can have only one panel prompt set associated with it. If Guide Maker
encounters more than one <Panel Prompt> command for a single panel, it uses
the last one encountered for that panel.

If you use the <Panel Prompt> command, it must always appear between the
<Define Panel> and <End Panel> commands.

<Define Prompt Set> "special prompts" ..,
"Click the right arrow to continue.", ..,

"Click the left arrow to go back or the right arrow to go on.", ..,
"That's all, you're done!", ..,

"Select one, then click the right arrow to continue."

Creating Panels 10-55

• G)
c: c:
(!)

en
(')
:::!.

"E.
0
0
3
3
D)
::::J a.
:D

~
(il
::::J
(')
(!)

CHAPTER 10

Guide Script Command Reference

<Define Panel> "Example Panel 1"
#this panel uses the prompt set defined by "my panel prompts"
<Panel Prompt> "my panel prompts"

<End Panel>

<Define Panel> "Example Panel 2"
<Panel Prompt> NONE #this panel doesn't require prompts

<End Panel>

<Define Panel> "Example Panel 3"
#this panel uses sequence prompts

<End Panel>

<Define Sequence> "Example Sequence 3"
#this sequence uses the prompt set defined by "special prompts"
<Sequence Prompt Set> "special prompts"
<Panel> "Example Panel 1" #overrides sequence prompt set
<Panel> "Example Panel 2" #uses no prompts
<Panel> "Example Panel 3" #uses sequence prompt set

<End Sequence>

SEE ALSO

For a description of the <Define Prompt Set> command, see page 10-37.

<End Panel>

You can use the <End Panel> command to mark the end of a panel definition.

<End Panel>

10-56 Creating Panels

DESCRIPTION

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

Guide Maker collects all the commands between a <Define Panel> and <End
Panel> command to build a panel.

#panel definition for use in a sequence
<Define Panel> .. index intro ..

#text and commands that specify content of panel here
<End Panel>

For information on the <Define Panel> command, see page 10-52.

Creating Buttons

You can create standard buttons, three-dimensional buttons, radio buttons, and
checkboxes in the content area of panels, as well as navigation buttons in the
navigation bar, by using the commands described in this section.

<Standard BuHon>

You can use the <Standard Button> command to place a standard 20 button on
a panel. You must specify the button's title, its location on the panel, and the
event function that Apple Guide calls when the user clicks the button.

<Standard Button> button Title, buttonLoc, buttonEvent [, buttonFont]

button Title

buttonLoc

A string specifying the button's title.

A constant specifying either the button's general location or its
coordinates relative to the current pen location.

Creating Buttons 10-57

Ci)
c: a:
CD
en
0
:3.
"S
0
0
3
3
I»
:J a.
:::0

m-
Cil
:J

~

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

To describe a button's coordinates, use the Point function. The
current pen location's horizontal coordinate is the left edge of
the current format; its vertical coordinate corresponds to the
bottom edge of the last object not specifically placed using
coordinates.

You can also use these constants to describe the button location:
LEFT
CENTER
RIGHT

If you specify one of these constants, Guide Maker justifies the
button accordingly within the current format.

button Event A name of an event function or event list. Include any
parameters expected by the function in parentheses following its
name. You define event functions using the <Define Event> or
<Define Event List> command. Guide Maker also provides
built-in functions that you can specify in this parameter. When
the user clicks the button, Apple Guide calls the function
defined by this parameter; usually such a function is used to
send a specific Apple event.

buttonFont A constant specifying the font of the button's title. You can use
either of these constants to specify the corresponding font:

APPLEGUIDE Specifies 10-point Espy Serif.

SYSTEM Specifies the system font of the current script
system. For example, for Roman script systems,
indicates 12-point Chicago.

This parameter is optional; if you omit this parameter Apple
Guide displays the button title in the font of the current script
system.

The <Standard Button> command places a button with the specified title on a
panel. Apple Guide performs the action indicated by the buttonEvent parameter
when the user clicks the button. When you specify a button using the
<Standard Button> command, Guide Maker creates a button that is 20 pixels
high with a minimum width of 59 pixels (the width of a standard OK button).
Guide Maker sizes the button to fit the button's title (the width of the text plus
10 pixels on each side).

10-58 Creating Buttons

CHAPTER 10

Guide Script Command Reference

Buttons appear inline with the surrounding text and are positioned within the
current format. You can specify the button's location generally, using the
constants LEFT, CENTER, or RIGHT. If you specify one of these constants, Guide
Maker positions the button in the current format, and left-justifies,
right-justifies, or centers the button, accordingly. You can also specify the
button's location relative to the current pen position by specifying a specific
point. For example, if you specify the button location as Point (50 , 1 0 0) ,
Guide Maker positions the button 50 pixels to the right and 100 pixels down
from the current pen location.

EXAMPLES

#define doButton1Action as an event function that sends to
the app with signature 'WAVE' (SurfWriter) the Apple event
#defined by event class 'sfwr' and event ID 'act1'
<Define Event> "doButton1Action", 'WAVE', 'sfwr', 'act1'

#define doButton2Action as an event function
<Define Event> "doButton2Action", 'WAVE', 'sfwr', 'act2'

<Define Panel> "Example Panel"

#place "Create Book Index" button right-justified on panel
<Standard Button> "Create Book Index", RIGHT, doButton1Action()

#place "Create Chapter Index" button relative to the current
pen location, that is,
50 pixels to the right, 100 pixels down
<Standard Button> "Create Chapter Index", Point(50,100), ...,

doButton2Action()
<End Panel>

SEE ALSO

For information on using formats when placing buttons, see "Formatting Text
and Objects in a Panel" beginning on page 10-84. For information on the

Creating Buttons 10-59

Ci)
c: a:
(1)

(J)
0
::!.
-g
0
0
3
3
Pl
:l a.
JJ

~
;
:l
0
(1)

<3D Button>

CHAPTER 10

Guide Script Command Reference

<Define Event> and <Define Event List> commands, see page 10-178 and
page 10-181, respectively. For information on creating radio buttons and
checkboxes, see the descriptions of the <Radio Button> and <CheckBox>
commands on page 10-64 and page 10-69, respectively. The <3D Button>
command is described next.

You can use the <3D Button> command to place a 3D button on a panel. You
must specify the graphic associated with this button, the location of the button
on the panel, and an event function that Apple Guide calls when the user clicks
the button.

<3D Button> buttonUpPict, buttonDownPict, buttonLoc, buttonEvent
[, b&wUp] [, b&wDown]

buttonUpPict A resource ID, resource name, or filename that identifies the
picture that defines the appearance of the button in its normal
state (that is, when the button is not pressed). If you specify a
resource ID or resource name, you must make the resource
available to Guide Maker using the <Resource> command. If
you specify a filename, the file must be in the same folder as
your source files in order for Guide Maker to find the file.

buttonDownPict

buttonLoc

A resource ID, resource name, or filename that identifies the
picture that defines the appearance of the button when the
cursor is in the button and the user presses the mouse button. If
you specify a resource ID or resource name, you must make the
resource available to Guide Maker using the <Resource>
command. If you specify a filename, the file must be in the same
folder as your source files in order for Guide Maker to find the
file.

A constant specifying either the button's general location or its
coordinates relative to the current pen location.

10-60 Creating Buttons

CHAPTER 10

Guide Script Command Reference

To describe the button's coordinates, use the Point function .
The current pen location's horizontal coordinate is the left edge
of the current format; the vertical coordinate corresponds to the
bottom edge of the last object not specifically placed using
coordinates.

You can also use these constants to describe the button location:
LEFT
CENTER
RIGHT

If you specify one of these constants, Guide Maker justifies the
button accordingly within the current format.

buttonEvent A name of an event function or event list. Include any
parameters expected by the function in parentheses following its
name. You define event functions using the <Define Event> or
<Define Event List> command. Guide Maker also provides
built-in functions that you can specify in this parameter. When
the user clicks the button, Apple Guide calls the function
defined by this parameter; usually such a function is used to

b&wUp

b&wDown

send a specific Apple event.

A filename that, if provided, Apple Guide uses in place of the
button appearance described by the buttonUpPict parameter
only if the bit depth of the user's monitor is set to 4 bits or less.
This parameter is optional and can be used only if you also
specified a filename for the buttonUpPict parameter. However, if
you specify a resource ID or resource name in the buttonUpPict
parameter, you can still provide a black-and-white picture by
importing a 1 PICT I graphic whose resource ID is one greater
than the resource ID of the color graphic. ·

A filename that, if provided, Apple Guide uses in place of the
button appearance described by the buttonDownPict parameter
only if the bit depth of the user's monitor is set to 4 bits or less.
This parameter is optional and can be used only if you also
specified a filename for the buttonDownPict parameter.
However, if you specify a resource ID or resource name in
the buttonDownPict parameter, you can still provide a
black-and-white picture by importing a I PICT I graphic
whose resource ID is one greater than the resource ID of
the color graphic.

Creating Buttons 10-61

• G>
c:: a:
CD
en
0
::::!.
"9.
0
0
3
3
Dl
:l a.
:D

m-
(j)
:l

2

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

The <3D Button> command places a button on a panel and specifies an event
function that Apple Guide calls when the user clicks the button. The button's
appearance is determined by the buttonUpPict and buttonDownPict parameters.
In addition, you can specify replacement pictures using the b&wUp, and
b&wDown parameters, which Apple Guide uses according to the bit depth of
the user's monitor. All pictures describing the button's appearance should have
the exact same size. Note that if Apple Guide displays a black-and-white
button, it uses the frame created for the color button. In general, you should
always provide both a color and black-and-white version of the button.

Buttons appear inline with the surrounding text. If you specify the button's
location using the constants LEFT, CENTER, or RIGHT, Guide Maker positions
the button in the current format, and left-justifies, right-justifies, or centers the
button, accordingly. You can also specify the button's location relative to the
current pen position by specifying a specific point. For example, if you specify
the button location as Point (50, 10 0) , Guide Maker positions the button 50
pixels to the right and 100 pixels down from the current pen location.

SPECIAL CONSIDERATIONS

EXAMPLES

If you use the <3D Button> command, it must always appear between the
<Define Panel> and <End Panel> commands.

If you do not explicitly specify a black-and-white picture for the button's up or
down appearance and the guide file happens to contain a • PICT • graphic
whose resource ID is one greater than one of the button's color • PICT •
graphics, Apple Guide uses this • PICT • graphic as the button's
black-and-white picture.

#define doButtonlAction as an event function that sends to
the app with signature 'WAVE' (SurfWriter) the Apple event
#defined by event class 'sfwr' and event ID 'actl'
<Define Event> "doButtonlAction", 'WAVE', 'sfwr', 'actl'

#define doButton2Action as an event function
<Define Event> "doButton2Action, 'WAVE', 'sfwr', 'act2'

10-62 Creating Buttons

CHAPTER 10

Guide Script Command Reference

<Define Panel> "Example Panel"
To accomplish this task, do this:

Very informative instructions here.

#place Button1 right-justified on panel
<3D Button> "Button1UpPict", "Button1DownPict", RIGHT, ...,

doButton1Action(), ...,
"Button1B&WUpPict", "Button1B&WDownPict"

#Button2's appearance is defined by:
the 'PICT' w/ resource ID 2010 the color buttonUpPict
the 'PICT' w/ resource ID 2012 the color buttonDownPict
#Guide Maker automatically looks in the guide file for 'PICT's
#with resource ID's one greater than the specified color 'PICT's;
in this case, it looks for resource IDs of 2011 for the b&wUp
and 2013 for b&wDown and uses these as the black & white 'PICT's
#place Button2 relative to the current pen location, that is,
50 pixels to the right, 100 pixels down
<3D Button> 2010, 2012, Point(SO,lOO), doButton2Action()

<End Panel>

#define doOpenDocmt as an event function that sends to
the app with signature 'WAVE' (SurfWriter) the
Open Documents event. Note that when doOpenDocmt is called
it expects a parameter (the name of the file to open)
<Define Event> "doOpenDocmt", 'WAVE', 'aevt', 'odoc',, '----'

<Define Panel> "Example Panel 3"
To accomplish this task, do this:

#place Open button left-justified on panel
<3D Button> "OpenButtonUpPict", "OpenButtonDownPict", LEFT, ...,

doOpenDocmt("HD:SurfWriter folder:SampleReport"),...,
"OpenButtonB&WUpPict", "OpenButtonB&WDownPict"

<End Panel>

Creating Buttons 10-63

G)
c: a:
(1)

en
(')
::::J.

"S
(")
0
3
3
P>
::J a.
::0

m-
<D
::J

~

SEE ALSO

CHAPTER 10

Guide Script Command Reference

For information on using formats when placing buttons, see ~~Formatting Text
and Objects in a Panel" beginning on page 10-84. For information on the
<Define Event> and <Define Event List> commands, see page 10-178 and
page 10-181, respectively.

<Radio Button>

You can use the <Radio Button> command to place a radio button on a panel.
You must specify the button's title and its default state (on or off). You can
optionally specify a sequence to insert into the existing sequence based on the
radio button's state. You can also specify an anchor point for the radio button
and the font of the button title.

<Radio But ton> buttonTitle 1 buttonS tate [1 seq True] [1 seqFalse]
[1 buttonAnchor] [1 buttonFont]

button Title A string specifying the radio button's title.

buttonS tate A Boolean constant indicating the default state of the radio
button. Specify TRUE to set the radio button to on, specify
FALSE to set the radio button to off. Only one radio button in a
set can have its default state set to TRUE.

seqTrue The name of the sequence to insert if the radio button is on
(TRUE). If you specify a sequence name in this parameter, you
should omit the seqFalse parameter. This parameter is optional.

seqFalse The name of the sequence to insert if the radio button is off
(FALSE). You usually insert a sequence only if the state of the
radio button is true, thus you typically do not specify the
seq False parameter. If you do specify this parameter, you should
omit the seq True parameter. This parameter is optional.

buttonAnchor A point that indicates the anchor point of the radio button. To
describe a specific point, use the Point function. This
parameter is optional.

buttonFont A constant specifying the font of the button's title. You can use
either of these constants to specify the corresponding font:

10-64 Creating Buttons

DESCRIPTION

EXAMPLES

CHAPTER 10

Guide Script Command Reference

APPLEGUIDE Specifies 10-point Espy Serif.

SYSTEM Specifies the system font of the current script
system. For example, for Roman script systems,
indicates 12-point Chicago.

This parameter is optional; if you omit this parameter Apple
Guide displays the button title in the system font.

The <Radio Button> command places a radio button with the specified title on
a panel. If you specify the seqTrue or seq False parameter, Apple Guide inserts
the specified sequence into the current sequence, according to the setting of the
radio button. This lets you easily accomplish sequence branching. When you
use this method, Apple Guide displays the panel containing the radio buttons;
when the user navigates to another panel, Apple Guide inserts the named
sequence according to the current setting of the radio buttons. Alternatively,
you can explicitly check the radio button settings yourself, using the <If>
command and the built-in function radioButtonState.

Radio buttons appear inline with the surrounding text and are justified within
the current format unless you specify an optional anchor point.

Always provide in your panel a label identifying the group of choices that your
radio buttons offer. You can place this label on the panel and then use the
<Radio Button> command to place your radio buttons.

<Define Panel> 11 Index Choicesn
#label for this group of radio buttons
What type of index do you want to create?

<Radio Button> "Book Indexn, TRUE, ..,
"How do I create a book index?" ..,
, , , APPLEGUIDE

<Radio Button> "Chapter Index", FALSE, ..,

Creating Buttons

"How do I create a chapter index?"..,
, , , APPLEGUIDE

10-65

•

SEE ALSO

CHAPTER 10

Guide Script Command Reference

<End Panel>

#alternative method of checking settings of radio buttons
<Define Panel> "Index Choices 2"

#label for this group of radio buttons
What type of index do you want to create?

<Radio Button> 11 Book Index", TRUE, ,,, APPLEGUIDE
<Radio Button> "Chapter Indexu, FALSE, ,,, APPLEGUIDE

<End Panel>

<Define Sequence> "How do I create an index?"
<Panel> "Index Choices 2"
<If> radioButtonState("Book Index 11

, "Index Choices.2")
<Panel> "How do I create a book index?"

<Else>
<Panel> "How do I create a chapter index?"

<End if>
<End Sequence>

For information on creating checkboxes, see the description of the <CheckBox>
command on page 10-69. For information on other buttons, see the description
of the <Standard Button> and <3D Button> commands on page 10-57 and
page 10-60, respectively.

<Radio Button Launch New Seq>

You can use the <Radio Button Launch New Seq> command to place a radio
button on a panel and to launch a new sequence according to the settings of the

10-66 Creating Buttons

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

radio buttons. You should usually use the <Radio Button> command instead of
the <Radio Button Launch New Seq> command.

<Radio Button Launch New Seq> buttonTitle, buttonState

button Title

buttonS tate

seq True

[, seq True] [, seq False]
[, buttonAnchor] [, buttonFont]

A string specifying the radio button's title.

A Boolean constant indicating the default state of the radio
button. Specify TRUE to set the radio button to on, specify
FALSE to set the radio button to off. Only one radio button in a
set can have its default state set to TRUE.

The name of the sequence to launch if the radio button is on
(TRUE). If you specify a sequence name in this parameter, you
should omit the seq False parameter. This parameter is optional.

seqFalse The name of the sequence to launch if the radio button is off
(FALSE}. You usually do not specify this parameter, but if you
do, you should omit the seqTrue parameter. This parameter is
optional.

buttonAnchor A point that indicates the anchor point of the radio button. To
describe a specific point, use the Point function. This
parameter is optional.

buttonfont A constant specifying the font of the button's title. You can use
either of these constants to specify the corresponding font:

APPLEGUIDE Specifies 10-point Espy Serif.

SYSTEM Specifies the system font of the current script
system. For example, for Roman script systems,
indicates 12-point Chicago.

This parameter is optional; if you omit this parameter Apple
Guide displays the button title in the system font.

The <Radio Button Launch New Seq> command places a radio button with the
specified title on a panel. If you specify the seqTrue or seqFalse parameter, Apple
Guide inserts the specified sequence into the current sequence, according to the
setting of the radio button.

Creating Buttons 10-67

(j)
c:
a:
CD
(J)
0
::::!.
"9.
0
0
3
3
Dl
::I a.
JJ

m-
CD
::I
0
CD

CHAPTER 10

Guide Script Command Reference

The <Radio Button Launch New Seq> command displays the named sequence
in the same window as the current sequence, and the user navigates to it using
the right arrow. However, the user cannot navigate back to the original
sequence using the left arrow after beginning the new sequence.

Radio buttons appear inline with the surrounding text and are justified within
the current format unless you specify an optional anchor point.

Always provide in your panel a label identifying the group of choices that your
radio buttons offer. You can place this label on the panel and then use the
<Radio Button Launch New Seq> command to place your radio buttons.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

Use the <Radio Button Launch New Seq> command only if Guide Maker
informs you that the current sequence exceeds limitations.

<Define Panel> "Index Choices"
#label for this group of radio buttons
What type of index do you want to create?

#similar to <Radio Button> command, only sequences are
#launched (user can't go back to original sequence)
rather than inserted
<Radio Button Launch New Seq> "Book Index", TRUE, ..,

"How do I create a book index?"
<Radio Button Launch New Seq> "Chapter Index", FALSE, ..,

"How do I create a chapter index?"
<End Panel>

For information on the <Radio Button> command, see page 10-64. For
information on the <Launch New Sequence> command, see page 10-49.

10-68 Creating Buttons

<Checkbox>

CHAPTER 10

Guide Script Command Reference

You can use the <Checkbox> command to place a checkbox on a panel. You
must specify the button's title and its default state (on or off). You can
optionally specify a sequence to insert into the new sequence, based on the
checkbox's state. You can also specify an anchor point for the checkbox and its
title font.

<Checkbox> checkBoxTitle, checkBoxState [, seqTrue] [, seq false]
(, checkBoxAnchor] [, checkBoxFont]

checkBoxTitle A string specifying the checkbox's title.

checkBoxState A Boolean constant indicating the default state of the checkbox.

seq True

Specify TRUE to set the checkbox to on, specify FALSE to set the
checkbox to off. Any number of checkboxes in a set can have
their default state set to TRUE.

The name of the sequence to insert if the checkbox is on (TRUE).
This parameter is optional.

seqfalse The name of the sequence to insert if the checkbox is off
(FALSE). You usually do not provide this parameter if you
provide the seqTrue parameter. This parameter is optional.

checkBoxAnchor
A point that indicates the anchor point of the checkbox. To
describe a specific point, use the Point function. This
parameter is optional.

checkBoxFont A constant specifying the font of the checkbox's title. You can
use either of these constants to specify the corresponding font:

APPLEGUIDE Specifies 10-point Espy Serif.

SYSTEM Specifies the system font of the current script
system. For example, for Roman script systems,
indicates 12-point Chicago.

This parameter is optional; if you omit this parameter, Apple
Guide displays the checkbox title in the system font.

Creating Buttons 10-69

• G>
c a:
CD
en
Q
"§:
0
0
3
3
S»
:J a.
JJ

~
(j)
:J
(')
CD

DESCRIPTION

EXAMPLES

CHAPTER 10

Guide Script Command Reference

The <Checkbox> command places a checkbox with the specified title on a
panel. If you specify the seqTrue or seq False parameter, Apple Guide inserts the
specified sequence into the current sequence, according to the setting of the
checkbox. You can easily accomplish sequence branching by using these two
parameters. When you use this method, Apple Guide displays the panel
containing any checkboxes; when the user navigates to another panel, Apple
Guide inserts one or more named sequences according to the current setting of
the checkboxes. Alternatively, you can explicitly check the settings of the
checkboxes yourself, using the <If> command and the built-in function
checkBoxState.

Checkboxes appear inline with the surrounding text and are justified within
the current format unless you specify an optional anchor point.

Note that the titles of checkboxes should reflect two clearly opposite states,
because a checkbox should allow a user to tum a particular setting on or off.

<Define Panel> "Index Choices"
Index choices:

<Checkbox> "Include See Also entries", TRUE, ..,

"How do I create See Also entries?"
<Checkbox> "Include starting and ending page ranges",

"How do I create page ranges for an index
<End Panel>

#alternative method of checking settings of checkboxes
<Define Panel> "Index Choices 2"

Index choices:

<Checkbox> "Include See Also entries", TRUE

FALSE,
entry?"

<Checkbox> 11 Include starting and ending page ranges", FALSE
<End Panel>

10-70 Creating Buttons

..,

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "How do I create an index?"
<Panel> "Index Choices 2"
<If> checkBoxState("Include See Also entries", ~

"Index Choices 2")
<Panel> "How do I create See Also entries?"

<End if>
<If> checkBoxState("Include starting and ending page ranges", ~

"Index Choices 2")
<Panel> "How do I create page ranges for an index entry?"

<End if>
<End Sequence>

SEE ALSO

For information on creating radio buttons, see the description of the
<Radio Button> command on page 10-64. For information on other buttons, see
the description of the <Standard Button> and <3D Button> commands on
page 10-57 and page 10-60, respectively.

<Define Nav Button>

You can use the <Define Nav Button> command to define a navigation button
and to specify an event function that Apple Guide calls when the user clicks the
button.

<Define Nav Button> buttonName, buttonUpPict, buttonDownPict ,
dimmedButtonPict, buttonEvent
[, b&wUp] [, b&wDown] [, b&wDimmed]

buttonName A text string specifying the name to associate with this button.
Note that this name is not used by Apple Guide; you provide a
button name only so that you can reference this button
definition in the <Default Nav Button Set> or <Seq Nav Button
Set> commands.

Creating Buttons 10-71

G>
c:: c:
CD
CJ)
0
::::!.
'9.
()
0
3
3
S»
::J
0.
:0

m-
;
::J s

CHAPTER 10

Guide Script Command Reference

buttonUpPict A resource ID, resource name, or filename that identifies the
picture that defines the appearance of the navigation button in
its active state (when the button is active and is not pressed). If
you specify a resource ID or resource name, you must make the
resource available to Guide Maker using the <Resource>
command. If you specify a filename, the file must be in the same
folder as your source files in order for Guide Maker to find the
file.

buttonDownPict
A resource ID, resource name, or filename that identifies the
picture that defines the appearance of the navigation button
when the button is active, the cursor is in the button, and the
user presses the mouse button. If you specify a resource ID or
resource name, you must make the resource available to Guide
Maker using the <Resource> command. If you specify a
filename, the file must be in the same folder as your source files
in order for Guide Maker to find the file.

dimmedButtonPict
A resource ID, resource name, or filename that identifies the
picture that defines the appearance of the navigation button
when the button is inactive (dimmed). Only navigation buttons
that specify the constant DIMMABLE (rather than an event
function) in the buttonEvent parameter are dimmable. Dimmable
navigation buttons are inactive by default. To make a dimmable
navigation button active on a specific panel, use the
<Dimmable Button Data> command in the panel's definition.

If you specify a resource ID or resource name, you must make
the resource available to Guide Maker using the <Resource>
command. If you specify a filename, the file must be in the same
folder as your source files in order for Guide Maker to find it.

buttonEvent A name of an event function, event list, or a constant. Include
any parameters expected by the function in parentheses
following its name. You define event functions using the
<Define Event> or <Define Event List> command. Guide Maker
also provides built-in functions that you can specify in this
parameter. When the user clicks the button, Apple Guide calls
the function defined by this parameter; usually such a function
is used to send a specific Apple event.

10-72 Creating Buttons

CHAPTER 10

Guide Script Command Reference

b&wUp

Rather than specifying an event function or event list, you can
use the constant DIMMABLE in this parameter. Use the constant
DIMMABLE to indicate that Apple Guide should launch a new
sequence (as specified in a subsequent <Dimmable Button
Data> command) when this button is active and the user clicks
the button. You can specify only one dimmable navigation
button per guide file. A navigation button that is defined using
the constant DIMMABLE is called a dimmable navigation button.

A filename that, if provided, Apple Guide uses in place of the
button appearance described by the buttonUpPict parameter
only if the bit depth of the user's monitor is set to 4 bits or less.
This parameter is optional and can be used only if you also
specified a filename for the buttonUpPict parameter. However, if
you specify a resource ID or resource name in the buttonUpPict
parameter, you can still provide a black-and-white picture by
importing a I PICT I graphic whose resource ID is one greater
than the resource ID of the color graphic.

b&wDown A filename that, if provided, Apple Guide uses in place of the
button appearance described by the buttonDownPict parameter
only if the bit depth of the user's monitor is set to 4 bits or less.
This parameter is optional and can be used only if you also
specified a filename for the buttonDownPict parameter. However,
if you specify a resource ID or resource name in the
buttonDownPict parameter, you can still provide a
black-and-white picture by importing a I PICT 1 graphic whose
resource ID is one greater than the resource ID of the color
graphic.

b&wDimmed A filename that, if provided, Apple Guide uses in place of the
button appearance described by the dimmedButtonPict parameter
only if the bit depth of the user's monitor is set to 4 bits or less.
This parameter is optional and can be used only if you also
specified a filename for the dimmedButtonPict parameter.
However, if you specify a resource ID or resource name in the
dimmedButtonPict parameter, you can still provide a
black-and-white picture by importing a I PICT I graphic whose
resource ID is one greater than the resource ID of the color
graphic.

Creating Buttons 10-73

I
Ci)
c: a:
<D
en
0
::!.

"E.
(")
0
3
3
Ill
:::1
a.
JJ
<D
a;
co
:::1
0
<D

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

The <Define Nav Button> command defines a navigation button that you can
later associate with a sequence. To do this, after defining the navigation button,
you must define a navigation button set by using the <Define Nav Button Set>
command and then associate this navigation button set with a specific
sequence using the <Default Nav Button Set> or <Seq Nav Button Set>
commands.

The appearance of the button is determined by the buttonUpPict,
buttonDownPict, and dimmedButtonPict parameters. In addition, you can specify
replacement pictures using the b&wUp, b&wDown, and b&wDimmed
parameters, which Apple Guide uses according to the bit depth of the user's
monitor. Note that if Apple Guide displays a black-and-white button, it uses
the frame created for the color button. All pictures describing the button's
appearance should have the exact same size. Because the navigation bar is a
fixed height and because navigation buttons should use the Apple Guide font,
the navigation buttons you define should have a height of 18 pixels. The
navigation bar has a fixed width and height, and the navigation arrows always
appear on the right; therefore you should size and design your buttons to fit
within this area. You should use 10-point Espy Serif font for any text in
navigation buttons (for Roman script systems).

When creating a navigation button in a graphics application, make sure your
button graphic doesn't contain any extra white space around the edges (such as
a bounding box); that is, when the button is copied, the graphic should
represent its precise shape. When Guide Maker places a button graphic in the
navigation bar, it places the graphic and then fills the remaining area with the
navigation bar background pattern.

Navigation buttons are always associated with a sequence and are displayed
on every panel in the sequence.

For buttons that specify the DIMMABLE constant in the buttonEvent parameter,
Apple Guide displays the navigation button in its inactive state. Therefore, for
each panel definition that uses this kind of navigation button, you must include
a <Dimmable Button Data> command on those panels in which the navigation
button is active. Navigation buttons such as the Huh? button typically specify
the DIMMABLE constant, as the Huh? button is often active on only a subset of
panels in a sequence.

For buttons that specify event functions or event lists in the buttonEvent
parameter, Apple Guide displays the navigation button in its active state by
default. Therefore, for each panel definition that uses this kind of navigation

10-74 Creating Buttons

CHAPTER 10

Guide Script Command Reference

button, the button must always be active. Navigation buttons such as the
GoStart button are typically always active.

Navigation buttons appear in the navigation bar, in the location determined by
the <Define Nav Button Set> conunand.

The file Standard Setup is provided with Guide Maker. This file contains
descriptions of the Huh? and GoStart navigation buttons, and defines three
navigation button sets. If you include the Standard Setup file in your build file,
you can automatically use these two navigation buttons or any of the three
navigation button sets, as needed in your source files.

SPECIAL CONSIDERATIONS

If you do not explicitly specify a black-and-white picture for the button's up,
down, or dimmed appearance, and the guide file contains a I PICT 1 graphic
whose resource ID is one greater than one of the button's color I PICT I

graphics, Apple Guide uses this I PICT I graphic as the button's
black-and-white picture.

EXAMPLES

#example that uses the Huh? button.
The Huh? button is defined in the Standard Setup file as:
(Standard Setup also contains the black-and-white versions for
the button in 1 PICT 1 resources with resource IDs 1102, 1112, 1122)
#<Define Nav Button> "Huh?", 1101, 1111, 1121, DIMMABLE

<Define Panel> "Panel 2"
#the Huh? button should be active on this panel,
so use the <Dimmable Button Data> command
(when this navigation button is active and the user clicks
this button, Apple Guide launches a new sequence in a new window)

<Dimmable Button Data> "Huh?", "Name of sequence to launch"
<End Panel>

Creating Buttons 10-75

I
G)
c:
c:
CD
en
0
::::!.

"S
()
0
3
3
~
:::J a.
::D

~
C»
:::J
0
CD

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "Sequence with Huh? button"
#use this nav button set for this sequence
<Seq Nav Button Set>
<Panel> "Panel 1"
<Panel> "Panel 2"
<Panel> "Panel 3"

<End Sequence>

"Huh?
#Huh?
#Huh?
#Huh?

Only.,

button inactive
button active
button inactive

#example of a navigation button that uses the DIMMABLE constant
(this kind of navigation button is inactive by default)
<Define Nav Button> "Why?", "upWhyPict.,, 11 downWhyPict", -,

"dimmedWhyPict", DIMMABLE, -,
"b&wUpWhyPict", 11 b&wDownWhyPict", -,
"b&wDimmedWhyPict"

#define a nav button set that uses the Why? button and
specify the Why? button as the middle navigation button
<Define Nav Button Set> 11 Why Nav Button Set", -,

"GoStart", "Why?"
<Define Panel> "Panel 2"
#the Why? button should be active on this panel,
so use the <Dimmable Button Data> command
(when this navigation button is active and the user clicks
this button, Apple Guide launches the sequence in a new window)

<Dimmable Button Data> "Why?", "sequence to launch"
<End Panel>

#Another example of a navigation button
This button uses an event function.
This kind of button is always active.
The GoStart button is defined in Standard Setup file as:
#<Define Nav Button> "GoStart", 1103, 1113, 1123, GoStart()
the GoStart function is also defined in Standard Setup as:
#<Define Event> "GoStart", 's***', 'help', 'stac'

10-76 Creating Buttons

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "Sequence with GoStart button"
#use the GoStart Only nav button set for this sequence
<Seq Nav Button Set> "GoStart Only"
<Panel> "Panel A.. #GoStart button always active
<Panel> 11 Panel B.. #GoStart button always active

<End Sequence>

#Another example of a navigation button.
#This button uses an event function,
this kind of button is always active.
<Define Nav Button> "Other", "upOtherPict","downOtherPict",...,

"dimmedOtherPict", DoOther(), ...,
"b&wUpOtherPict", "b&wDownOtherPict",...,
"b&wDimmedOtherPict ..

#define nav button set that uses an Other button
<Define Nav Button Set> 11 0ther Nav Button Set", ...,

"Other"

<Define Sequence> "Sequence with Other button"
#use this nav button set for this sequence
<Seq Nav Button Set> "Other Nav Button Set"
<Panel> "Panel A" #Other button always active
<Panel> "Panel B" #Other button always active

<End Sequence>

SEE ALSO

For information on <Define Nav Button Set>, <Default Nav Button Set>, or
<Seq Nav Button Set> commands, see page 10-80, page 10-32, and page 10-43,
respectively.

For information on the <Define Event> and <Define Event List> commands,
see page 10-178 and page 10-181, respectively.

The <Dimmable Button Data> command is described next.

Creating Buttons 10-77

• G)
c:::
c.:
CD
C/)
(')
:::!.
"9.
("')
0
3
3
g)
::J a.
:D ;.
a;
::J
0
CD

CHAPTER 10

Guide Script Command Reference

<Dimmable Button Data>

DESCRIPTION

EXAMPLES

You can use the <Dimmable Button Data> command to specify that a
dimmable navigation button should be active on a particular panel.

<Dinunable Button Data> buttonName, sequenceName

buttonName A string specifying the navigation button's name.

sequenceName The name of the sequence to launch when the user clicks the
button defined by the buttonName parameter.

The <Dimmable Button Data> command makes the navigation button
specified by the buttonName parameter active. The navigation button is active
only for a panel definition that includes this command.

You must first define the navigation button using the <Define Nav Button>
command and specify the constant DIMMABLE in the buttonEvent parameter.
You then associate the navigation button with a sequence using the <Default
Nav Button Set> or <Seq Nav Button Set> commands.

#example that uses the Huh? button.
The Huh? button is defined in the Standard Setup file as:
#<Define Nav Button> "Huh?", 1101, 1111, 1121, DIMMABLE

<Define Panel> "Panel 2"
#the Huh? button should be active on this panel,
so use the <Dimmable Button Data> command
(when this navigation button is active and the user clicks
this button, Apple Guide launches a new sequence in a new window)

<Dimmable Button Data> "Huh?", "Name of sequence to launch"
<End Panel>

10-78 Creating Buttons

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "Sequence with Huh? button"
#use this nav button set for this sequence
<Seq Nav Button Set> "Huh? Only"
<Panel> "Panel 1 11 #Huh? button inactive
<Panel> 11 Panel 2" #Huh? button active
<Panel> "Panel 3" #Huh? button inactive

<End Sequence>

#example of a navigation button that uses the DIMMABLE constant
(this kind of navigation button is inactive by default)
<Define Nav Button> "Why?n, "upWhyPict", "downWhyPict", ..,

"dimmedWhyPict", DIMMABLE, ..,
"b&wUpWhyPict", "b&wDownWhyPict", ..,
"b&wDimmedWhyPict"

#define a nav button set that uses the Why? button and
specify the Why? button as the middle navigation button
<Define Nav Button Set> "Why Nav Button Set", ..,

"GoStart", "Why?"
<Define Sequence> "Sequence with Why? button"

<Seq Nav Button Set> 11 Why Nav Button Set"
<Define Panel> "Panel 2"

#the Why? button should be active on this panel,
so use the <Dimmable Button Data> command
(when this navigation button is active and the user clicks
this button, Apple Guide launches the specified sequence
in a new window)
<Dimmable Button Data> "Why?", "sequence name to launch"

<End Panel>
<End Sequence>

SEE ALSO

For information on creating other buttons, such as standard buttons, radio
buttons, or checkboxes, see "Creating Buttons" beginning on page 10-57.

Creating Buttons 10-79

• G>
c a:
CD
en
0
::!.
"9.
0
0
3
3
Sll
:::::J a.
::c
CD a;
m
:::::J

~

CHAPTER 10

Guide Script Command Reference

<Define Nav Button Set>

DESCRIPTION

You can use the <Define Nav Button Set> command to specify a set of up to
three navigation buttons that can appear together in the navigation bar of each
panel in a sequence.

<Define Nav Button Set> navButtonSetName
[, leftNavButton 1 [, midNavButton 1
(, rightNavButton 1

navButtonSetName
A string specifying the name of this navigation button set. This
name must be unique from all other navigation button sets that
you define.

leftNavButton A string specifying the name of the navigation button to place in
the left position of the navigation bar. This parameter is required
if you provide the midNavButton parameter.

midNavButton A string specifying the name of the navigation button to place in
the middle position of the navigation bar. This parameter is
required if you provide the rightNavButton parameter.

rightNavButton
A string specifying the name of the navigation button to place in
the right position of the navigation bar (but to the left of the
navigation arrows). This parameter is optional.

The <Define Nav Button Set> command defines a set of navigation buttons and
specifies their placement in the navigation bar. A navigation button can be
placed in the left, middle, or right positions of the navigation bar. You use the
<Define Nav Button> command to define the navigation buttons that you
specify in the leftNavButton, midNavButton, and rightNavButton parameters.

To associate this navigation button set with a specific sequence, use the
<Default Nav Button Set> or <Seq Nav Button Set> commands.

Note that any navigation buttons that you define using a <Define Nav Button
Set> command appear to the left of the navigation arrows. Apple Guide always
displays the navigation arrows on each panel. For each panel, Apple Guide

10-80 Creating Buttons

EXAMPLES

CHAPTER 10

Guide Script Command Reference

makes the right navigation arrow active or inactive according to whether the
user can navigate to a following panel. Apple Guide makes the left navigation
arrow active or inactive according to whether the user can navigate to a
previous panel. Apple Guide also displays the panel number (as it appears in a
sequence) between the left and right navigation arrows.

Because the navigation bar is a fixed height and because navigation buttons
should use the Apple Guide font, the navigation buttons you define (in <Define
Nav Button> commands) should have a height of 18 pixels. The navigation bar
has a fixed width and height, and the navigation arrows always appear on the
right; therefore you should size and design your buttons to fit within this area.

The file Standard Setup is provided with Guide Maker. This file contains
descriptions of the Huh? and GoStart navigation buttons, and defines three
navigation button sets:

• "Standard Nav Bar''. A navigation set that specifies the GoStart and Huh?
navigation buttons as buttons in the navigation bar.

• "GoStart Only''. A navigation set that specifies only the GoStart navigation
button as a button in the navigation bar.

• "Huh? Only''. A navigation set that specifies only the Huh? navigation
button as a button in the navigation bar.

The Standard Setup file also defines the "Standard Nav Bar" button set as the
default navigation button set. If you include the Standard Setup file in your
build file, you can automatically use these two navigation buttons or any of the
three navigation button sets as needed in your source files.

The Huh? button is defined in the Standard Setup file as:
#<Define Nav Button> "Huh?", 1101, 1111, 1121, DIMMABLE
The GoStart button is defined in the Standard Setup file as:
#<Define Nav Button> "GoStart", 1103, 1113, 1123, GoStart()
#define another nav button specific to this guide file
<Define Nav Button> "Another Nav Button", 2210, 2220, ...,

2230, DoNav()

Creating Buttons 10-81

• G>
c: a:
<D
en
0
~.

'S
0
0
3
3
§
a.
:::0

~
(jJ
::::s

2

CHAPTER 10

Guide Script Command Reference

#define a navigation button set with three nav buttons
<Define Nav Button Set> "My Nav Bar", ..,

SEE ALSO

"GoStart", "Huh?", "Another Nav Button"

For information on the <Define Nav Button>, <Default Nav Button Set>, and
<Seq Nav Button Set> commands, see page 10-71, page 10-32, and page 10-43,
respectively.

Defining and Using Text Blocks

You can define text used with the <Howdy> command by using the commands
described in this section.

<Define Text Block>

DESCRIPTION

You can use the <Define Text Block> command to mark the beginning of a
named block of text.

<Define Text Block> textBlockName

textBlockName
A string assigning the name of this text block. Each text block
name must be unique from all other text block names that you
define.

The <Define Text Block> command defines the beginning of a named block
of text. You indicate the end of the text block using the <End Text Block>
command. After defining a text block with the <Define Text Block> and
<End Text Block> commands, you can later reference this text block in those
commands that accept named text blocks as parameters. For example, the
<Howdy> command requires a named text block as a parameter.

10-82 Defining and Using Text Blocks

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#define a text block and give it a name
<Define Text Block> "Howdy Text"

To start, click Topics, Index, or Look For.

Topics shows general categories, ~

and Index lists key words. ~

Look For lets you search for help ~
according to key words you type.

To learn basic skills, choose Tutorial from the ? menu.
<End Text Block>

#specify name of the text block that defines the Howdy text
<Howdy> "Howdy Text"

For information on the <Howdy> command, see page 10-24. The <End Text
Block> command is described next.

<End Text Block>

DESCRIPTION

You can use the <End Text Block> command to mark the end of a named block
of text.

<End Text Block>

The <End Text Block> command marks the end of a text block definition. You
mark the beginning of a named text block using the <Define Text Block>
command. After defining a text block with the <Define Text Block> and <End
Text Block> commands, you can later reference this text block in those

Defining and Using Text Blocks 10-83

• G)
c a:
(t)

en
(')
:::3. -g
(')
0
3
3
g)
:::3 a.
:II

~
<»
:l
(')
CD

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

commands that accept named text blocks as parameters. For example, the
<Howdy> command requires a named text block as a parameter.

#define a text block and give it a name
<Define Text Block> "Howdy Text"

To start, click Topics, Index, or Look For.

Topics shows general categories, ~
and Index lists key words. ~
Look For lets you search for help •
according to key words you type.

<End Text Block>

#specify name of the text block that defines the Howdy text
<Howdy> "Howdy Text"

For information on the <Howdy> command, see page 10-24. The <Define Text
Block> command is described on page 10-82.

Formatting Text and Objects in a Panel

If you don't use the <Default Format> or <Define Format> commands to
specify one or more formats, Guide Maker applies its own default formatting
when placing objects within panels. Guide Maker applies full-width panel
formatting by default. This built-in default format uses the full panel width
(less an 11-pixel margin at each side) as a single column. It uses the default text
attributes 10-point Espy Serif plain, black. Guide Maker also aligns the prompt
on a panel with the left edge of the text object that appears first in the panel
definition; so by default, the prompt is aligned to the panel's left edge (less 11
pixels). Guide Maker uses these defaults as the panel's format for any panel
text or objects that appear before a <Default Format> or <Format> command in
your source file.

10-84 Formatting Text and Objects in a Panel

CHAPTER 10

Guide Script Command Reference

<Define Format>

You can use the <Define Format> command to define a format for either
immediate or later use to place text and objects in a panel.

<Define Format> formatName, columnCoords [, txFnt] [, txSize]
(, txStyle] [, txColor] [, txAlign] [, alignPrompt]

formatName A text string specifying the name of this format. Each format
name must be unique from all other format names that you
define.

columnCoords

txFnt

txSize

txStyle

A column specifier giving the top, left, and right coordinates
that define the bounds for this format. All objects placed using a
specific format are placed relative to the bounds of that format.
For example, Column(50,75, 275) defines a format whose
bounds are defined by the column beginning with a top
coordinate of 50 and a left coordinate of 75 that extends
horizontally for 200 pixels. You don't need to specify the bottom
coordinate, because Guide Maker automatically extends the
bottom as you place objects on a panel. Any objects placed using
this format are aligned within the defined bounds.

A text string that specifies a font name (such as "Palatino" or
"Geneva"). This parameter is optional; provide this parameter
only when you want to override the text font specified by text
attributes of your source files.

A short integer specifying the font size. This parameter is
optional; provide this parameter only when you want to
override the text size specified by text attributes of your source
files.

A constant specifying the text style. You can specify only one of
these constants:
PLAIN
BOLD
ITALIC
UNDERLINE
OUTLINE

Formatting Text and Objects in a Panel 10-85

• Ci)
c: a:
CD

w
~.

'9.
()
0
3
3
~
:J a.
JJ

~
CiJ
:J
()
CD

CHAPTER 10

Guide Script Command Reference

txColor

txAlign

SHADOW
CONDENSE
EXTEND

This parameter is optional; provide this parameter only when
you want to override the text style specified by text attributes of
your source files.

A constant or RGB specifier describing the text color. You can
specify only one of these constants:
BLACK
YELLOW
MAGENTA
RED
CYAN
GREEN
BLUE
WHITE

To specify the color using RGB values, use the form
RGBColor (red, green, blue); for example: RGBColor (3 0 0 0 0 1

30000130000) •

This parameter is optional; provide this parameter only when
you want to override the text color specified by text attributes of
your source files.

A constant that specifies the text alignment. You can specify
only one of these constants:
LEFT
CENTER
RIGHT
SYSTEM

This parameter is optional; provide this parameter only when
you want to override the text alignment specified by the default
format.

alignPrompt A Boolean constant {TRUE or FALSE) that specifies whether the
prompt should be aligned to this format. This parameter is
optional; provide this parameter only when you want to
override the alignment of the prompt as specified by the default
format.

10-86 Formatting Text and Objects in a Panel

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

The <Define Format> command creates a column with certain attributes, which
you can use to simplify the layout of your panel objects. You can use formats to
control the placement of most panel objects:

• paragraphs of text

• checkboxes and radio buttons

• I PICT I graphics and QuickTime movies

• labels for graphics

You can specify a format that you define with the <Define Format> command
in a <Format> or <Default Format> command.

Panel text objects that follow a <Format> command are placed inline within the
bounds specified by the format's column and according to the format's
attributes. For example, a <PICT> command that uses LEFT as the picture's
location is aligned at the left edge of the format's column, not at the left edge of
the panel. Text placed after a <Format> command uses the text attributes
defined by the specified format. Any text attributes specified in a <Define
Format> command and then used by a <Format> command override Guide
Maker's default formatting or any default formatting you previously described
with the <Default Format> command.

If your source file is plain text and you don't specify a default format, or if you
define a default format (using the <Default Format> command) that doesn't
specify a particular text attribute, Guide Maker uses its own default for that
text attribute unless you override the default using a <Define Format>
command. If you omit any of the txFnt, txSize, txStyle, or txColor parameters in
a <Define Format> command (and your source file is plain text), Guide Maker
uses default text attributes of Espy Serif, 10-point, plain, and black, accordingly.

If your source file is styled text, by default Guide Maker uses the font, size,
style, and color of the text as it appears in the source file. However, when you
define a format you can override one or more of these text attributes. If a
format specifies a text attribute, Guide Maker uses that text attribute rather
than the one specified in your source files. For example, if a format specifies the
font size as 10 and the style as bold, then all text that uses that format will
appear with a size of 10 and in the bold style, regardless of the size and style of
the text in the source file. That same text retains its font and color from the
source file.

Formatting Text and Objects in a Panel 10-87

• G)
c
a:
<D
(J)
()
::1.

"9.
0
0
3
3
D)
::1
a.
::0

m-
(j)
::1

~

CHAPTER 10

Guide Script Command Reference

By default, Apple Guide aligns the prompt on a panel with the left edge of the
text object that appears first in the panel definition. To align the prompt with
another text object, specify TRUE in the alignPrompt parameter of the <Define
Format> command for the format used by that text object. If more than one
format on a panel has its alignPrompt parameter set to TRUE, Guide Maker
reports an error. If a panel does not contain a text object, Apple Guide aligns
the prompt to Guide Maker's default format (11 pixels in from the left edge of
the panel).

Some Guide Script commands allow you to specifically place an object by
specifying a coordinate location using the Point function. When you
specifically place an object in this way, specify the object's location relative to
the current pen location. The current pen location's horizontal coordinate is the
left edge of the current format; its vertical coordinate corresponds to the
bottom edge of the last object not specifically placed using coordinates. For
example, to place a button 50 pixels to the right and 20 pixels down from the
current pen location, specify Point (50, 2 0) as a parameter to the <Standard
Button> command. Guide Maker does not reset the current pen location after
placing an object that specified coordinates. This feature allows you to place
objects relative to a known location (the current pen location). Guide Maker
does change the current pen location as it places objects that don't specify
coordinates; however, note that the horizontal coordinate of the current pen
location always refers to the left edge of the current format.

The file Standard Setup is provided with Guide Maker. This file defines four
formats:

• Tag. A format that provides a left column that you can use to format tags,
that is, text such as "Do This" or "Oops".

• Body. A format that provides a right column and that is designed for use
with the Tag format. Use the Body format to provide the information that
goes in the right column of a panel that also has a tag in it.

• Full. A format that provides a full column. Use this format if your panel text
requires a full-column width.

• ResetPen. A format that resets the format to a default format.

If you include the Standard Setup file in your build file, you can automatically
use these formats as needed in your source files.

10-88 Formatting Text and Objects in a Panel

CHAPTER 10

Guide Script Command Reference

EXAMPLES

#specifies a format with column coordinates of
top ; 6, left = 0, and right = 54
and text attributes of Espy Sans Bold, 10 point, Plain,
default text color, and right aligned.
And does not override the default alignment of the prompt.
(the "Tag" format is defined in the Standard Setup file)
<Define Format> "Tag", Column(6, 0, 54), "Espy Sans Bold", 10, ...,

PLAIN, , RIGHT, FALSE

#specifies a format with column coordinates of
top = 6, left = 65, and right = 330
and text attributes of Espy Serif, 10 point, Plain,
default text color, and left aligned.
And the prompt should be aligned to leftmost edge of this format.
(the "Body" format is defined in the Standard Setup file)
<Define Format> "Body", Column(6, 65, 330), "Espy Serif", 10, ...,

PLAIN, 1 LEFT, TRUE
#use the "Tag" and "Body" formats in a panel
<Define Panel> "Some Panel"

<Format> .. Tag ..
Do This
<Format> "Body ..
Give instruction here.

<End Panel>

#specifies a format with column coordinates of
top ; 0, left = 0, and right = 250
and default text attributes (Espy Serif, 10 point, Plain, Black)
and default alignments
<Define Format> "Reset", Column(O, 0, 250)

Formatting Text and Objects in a Panel 10-89

•

CHAPTER 10

Guide Script Command Reference

#specifies a format with
text attributes of Palatine, 12 point, Bold, Red text color,
and left aligned. The prompt should be aligned to the
#leftmost edge of this format (aligned to pixel 50).
<Define Format> .. Left .. , Column(50, 50, 125), "Palatine", 12,...,

BOLD, RED, LEFT, TRUE

#specifies a format with
text attributes of Palatine, 12 point, Bold, default text color,
and right aligned.
<Define Format> "Right .. , Column(50, 150, 330), "Palatine", 12, ...,

BOLD, , RIGHT, FALSE

#specifies a format with
text attributes of Palatine, 12 point, Bold, RGB values
for the text color, and right aligned.
<Define Format> "Right2", Column(50, 150, 330), "Palatino",12, .,

BOLD, RGBColor(30000,30000,30000), RIGHT, FALSE

<Define Panel> "An example panel with buttonsu
<Format> "Tag"
Do This
<Format> "Body"
Give instruction here.
#the current pen location at this point is
for the x coordinate the left edge of the .. Body" format
and for the y coordinate the bottom of the last placed text
this button is placed 50 pixels to the right and 20 pixels
down of the current pen location
<Standard Button> "Some button", Point(50,20), doAction()
#the current pen location is not reset
the next button is placed 50 pixels to the right and 80 pixels
down of the current pen location
<Standard Button> "Another button .. , Point(50,80), doAction2()
#the current pen location is not reset

10-90 Formatting Text and Objects in a Panel

CHAPTER 10

Guide Script Command Reference

Here's some more instruction for the panel.
This text appears starting from the current pen location,
so it could potentially overlap "Some button"
#now the vertical pen location has changed to account for
the just placed text
#the last button is placed using Guide Maker's formatting,
requesting the button be placed on the right in the
current format
<Standard Button> "Last button", RIGHT, doAction3()

<End Panel>

SEE ALSO

For information on the <Default Format> command, see page 10-30. For
information on the <Format> command, see page 10-93.

<Define Transparent Format>

You can use the <Define Transparent Format> command to define a
transparent format for either immediate or later use to place text and objects in
a panel.

<Define Transparent Format> JormatName, columnCoords
[, txFnt] [, txSize) [, txStyle]
[, txColor] [, txAlign 1
[, alignPrompt]

The parameters of the <Define Transparent Format> command are identical to
those of the <Define Format> command. See the <Define Format> command
beginning on page 10-85 for a complete description of the command
parameters.

Formatting Text and Objects in a Panel 10-91

• G)
t: a:
CD

g>
::::!.
'S
()
0
3
3
I»
::J
0.
::D
CD
<D
OJ
::J
(')
CD

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

The <Define Transparent Format> command provides one more feature than
the <Define Format> command. Panel text formatted according to a format
defined by a <Define Transparent Format> command can overlap other panel
contents; if the text does overlap, the part of its background that overlaps
appears transparent.

You can specify a transparent format that you define with the <Define
Transparent Format> command in a <Format> or <Default Format> command.

SPECIAL CONSIDERATIONS

EXAMPLES

If your panel definition contains multiple formats and multiple text objects and
you use a transparent format that specifies TRUE in the alignPrompt parameter,
the text object using this format might not appear to be transparent. In this
case, rewrite your panel content so that the transparent text object appears as
the first text object in the panel definition.

#specifies a transparent format (text can overlap format bounds)
and text attributes of Palatine, 12 point, Bold, Red text color,
and centered
<Define Transparent Format> "PicTitle", Column(SO, 50, 125), -,

"Palatine", 12, BOLD, ..,
RED, CENTER, FALSE

<Define Panel> "Another example panel"
<PICT> 2528, CENTER
<Format> "PicTitle"
Figure caption

<End Panel>

SEE ALSO

For information on the <Define Format> command, see page 10-85. For
information on the <Default Format> command, see page 10-30. The <Format>
command is described next.

10-92 Formatting Text and Objects in a Panel

<Format>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use the <Format> command to apply a specific format to any
commands following it that place text and objects in a panel. The specified
format applies until the next <Format> or <End Panel> command.

<Format> formatName

formatName A text string specifying the name of the format or transparent
format to apply to any commands that follow the <Format>
command and place text and objects in a panel.

When Guide Maker encounters a <Format> command, it applies the format
defined by formatName to any commands following it that place text and
objects in a panel until the next <Format> or <End Panel> command is
encountered. The format specified by a <Format> command overrides all other
defined formats, including any format specified by the <Default Format>
command.

Panel objects that follow a <Format> command are placed inline within the
bounds specified by the format's column coordinates. Any text attributes
specified by the format are applied to panel text, and any prompts are aligned
according to the specified format.

Any panel text or objects that appear before a <Format> command are aligned
according to the format specified by a <Default Format> command or previous
<Format> command. If a <Default Format> or <Format> command has not
been specified, then panel text and objects are aligned according to Guide
Maker's default full-width panel format.

Once Guide Maker encounters a <Format> command, the new format is
applied to all following panel text and objects in that panel, until another
<Format> command or <End Panel> command is encountered. Guide Maker
resets the format to the default format upon encountering an <End Panel>
command.

Thus, you can use the <Default Format> command to specify a format that
Guide Maker uses as a default for all panels, and then you can override the
default format for a specific panel as needed by using the <Format> command.

Formatting Text and Objects in a Panel 10-93

• G)
r:: a:
CD
en
()
~.

'2.
0
0
3
3
p)
::l
a.
:II

~
Ci1
::l

2

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

<Define Panel> "Example panel"
<Format> "Columnl"
Text that is formatted according to "Columnl" format.
<Format> "Column2"
Text that is formatted according to "Column2" format.

<End Panel>

<Define Panel> "Example panel 2"
Text that is formatted using the default format.

<End Panel>

<Define Panel> "Example panel 3"
#panel that uses the "tag" and "body" formats
<Format> "Tag"
Do This
<Format> .. Body ..
Give instruction here.

<End Panel>

For information on the <Define Format> command, see page 10-85. For
information on the <Default Format> command, see page 10-30.

Specifying Pictures and Movies

You can place pictures and movies in the content area of a panel by using the
commands described in this section.

10-94 Specifying Pictures and Movies

<PICT>

CHAPTER 10

Guide Script Command Reference

You can use the <PICT> command to specify a picture in a panel.

<PICT> pictGraphic, location [, b&wPict)

pictGraphic

location

b&wPict

A resource ID, resource name, or filename that identifies the
picture to place on the panel. If you specify the picture by
resource ID or resource name, you must make the resource
available to Guide Maker using the <Resource> command. If
you specify a filename, the file must be in the same folder as
your source files in order for Guide Maker to find it.

A constant specifying the general location of the picture or a
specific point describing the coordinates of the picture relative
to the current pen location.

To specify a specific point (relative to the current pen location),
use the Point function. The current pen location's horizontal
coordinate is the left edge of the current format; its vertical
coordinate corresponds to the bottom edge of the last object not
specifically placed using coordinates.

You can use these constants to describe the picture location:
LEFT
CENTER
RIGHT

If you specify one of these constants, Guide Maker justifies the
picture accordingly within the current format.

A filename that, if provided, Apple Guide uses in place of the
'PICT' graphic described by the pictGraphic parameter only if
the bit depth of the user's monitor is set to 4 bits or less. If you
provide a black-and-white picture, be sure that it does not
contain any color information. This parameter is optional and
can be used only if you also specified a filename for the
pictGraphic parameter. However, if you specify a resource ID or
resource name in the pictGraphic parameter, you can still provide
a black-and-white picture by importing a 'PICT' graphic
whose resource 10 is one greater than the resource 10 of the
color graphic.

Specifying Pictures and Movies 10-95

• G>
c:
a:
CD
en
0
~-

"E.
&>
3
3
g)
::::J a.
:::0

m-a;
::::J
0
CD

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

The <PICT> command places a picture on a panel. The picture's appearance is
determined by the pictGraphic and location parameters. In addition, you can
specify a replacement picture using the b&wPict parameter, which Apple Guide
uses according to the bit depth of the user's monitor. All pictures describing the
graphic's appearance should have the exact same size. Note that if Apple
Guide displays a black-and-white picture, it uses the frame created for the color
picture. In general, you should always provide both a color and
black-and-white version of the picture.

The picture appears inline with the surrounding text. To specify the picture's
general location use the constants LEFT, CENTER, or RIGHT. If you do this,
Guide Maker justifies the picture according to the current format. You can also
specify the picture's location relative to the current pen position by specifying a
specific point. For example, if you specify the picture location as Point (50,
10 0) , Guide Maker positions the picture 50 pixels to the right and 100 pixels
down from the current pen location.

Note that Guide Maker does not change the current pen position if you place
an object using a point specifier. For example, if the current pen location is at
(25, 25) (indicating the left edge of the current format and the bottom edge of
the last object that was not specifically placed), and you specify the picture's
location as Point (50, 10 0), Guide Maker places the picture as just
described. If you then place text, the text appears starting at location (25, 25);
after placing the text, Guide Maker updates the pen location to account for the
placed text.

Guide Maker searches for the resource specified by the pictGraphic parameter in
this manner. If the pictGraphic parameter contains a number, Guide Maker
searches for a resource with the specified resource ID. If the parameter contains
a name, Guide Maker looks first for a resource using the specified string as the
resource name. If it fails to find such a resource, it then looks for a file using the
specified string as the filename.

If the resource is contained in a file, Guide Maker imports the 1 PICT I resource
from the file referenced by the parameter pictGraphic and assigns it a resource
ID. If provided, Guide Maker also imports the I PICT 1 resource from the file
referenced by the parameter b&wPict and assigns it a sequential resource ID.
Note that the files containing the graphics should be located in the same folder
as your help sources.

If you specify a color I PICT I by resource ID or resource name, use a resource
editor to assign it a resource ID greater than 2000 and also mark the resource as

10-96 Specifying Pictures and Movies

CHAPTER 10

Guide Script Command Reference

purgeable, then import it using the <Resource> command. Apple Guide
reserves the use of 1 PICT 1 resources with resource IDs less than 2000.

SPECIAL CONSIDERATIONS

Resource IDs 501 and 502 are reserved (for the application's color logo and
black-and-white logo, respectively).

In general, in addition to a color picture you should always explicitly specify a
black-and-white picture (by filename or by importing a 1 PICT I graphic whose
resource ID is one greater than the color I PICT 1 graphic). If you do not
explicitly specify a black-and-white picture and the guide file happens to
contain a 1 PICT I graphic whose resource ID is one greater than the color

EXAMPLES

1 PICT 1 graphic, Apple Guide uses this 1 PICT 1 graphic as the
black-and-white picture.

#import resources used in this panel
<Resource> "MyResources", 1 PICT 1

<Resource> 11 MyResources2", 1 PICT 1
, 2528

<Define Panel> "Example Panel"
To accomplish this task, do this:
#very informative instructions here
#place a picture on the panel (specified by filename)
and also include B&WPICT filename
.<PICT> "ColorPicl File", CENTER, "B&WPicl File"

#place another picture on the panel (specified by res name)
<PICT> "ColorPic2Resource", CENTER
#place a picture on the panel (specified by resource ID)
<PICT> 2528, CENTER
#place a picture on the panel (specified by resource ID), and
specify its placement relative to the current pen location
as 75 pixels to the right, 30 pixels down
<PICT> 2530, Point(75, 30)

<End Panel>

Specifying Pictures and Movies 10-97

• (j)
c: a:
CD

g>
::::!.
"9.
0
0
3
3 su
:::J c.

~ a;
:::J

2

CHAPTER 10

Guide Script Command Reference

SEE ALSO

For information on the <Resource> command, see page 10-101.

<QuickTime>

You can use the <QuickTime> command to specify a QuickTime movie in a
panel.

<QuickT ime> QTMovie 1 location 1 QTcontroller [1 moviePict]

QTMovie

location

A filename of the file containing the movie to place on the panel.
This file must be located in the same folder as your source files
when you compile your guide file. A guide file and any movies
used by the guide file must reside in the same folder.

A constant specifying the general location of the movie or a
specific point describing the coordinates of the movie relative to
the current pen location.

To describe a specific point (relative to the current pen location),
use the Point function. The current pen location's horizontal
coordinate is the left edge of the current format; its vertical
coordinate corresponds to the bottom edge of the last object not
specifically placed using coordinates.

You can use these constants to describe the movie location:
LEFT
CENTER
RIGHT

If you specify one of these constants, Guide Maker justifies the
movie accordingly within the current format.

QTcontroller A constant specifying the type of controller to use with the
QuickTrme movie. You can use these constants to describe the
type of controller:
CONTROL
BADGE
PLAIN

10-98 Specifying Pictures and Movies

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

moviePict

Use the CONTROL constant to display the standard movie
controller with the movie. The user can use the elements in the
movie controller to control the playback of the movie. Use the
BADGE constant to display a badge, a visual element that
appears on the movie when the controller is not showing or the
movie is not playing. When the user double-clicks a badge, a
controller appears. Use the PLAIN constant if you do not want
to provide a controller or a badge with the movie. Regardless of
which constant you specify, the user can double-dick the movie
to play the movie, and click again to stop playing the movie.

A resource ID or resource name of a I PICT 1 graphic, or a
filename of a file containing a 1 PICT 1 graphic, that Apple
Guide uses in place of the QuickTrme movie described by the
QTMovie parameter only if QuickTime is not loaded or the
movie file cannot be found. The replacement picture should
have the same size as the QuickTrme movie. This parameter is
optional.

If you specify the picture by resource ID or resource name, you
must make the resource available to Guide Maker using the
<Resource> command. If you specify a filename, the file must be
in the same folder as your source files in order for Guide Maker
to find the file.

The <QuickTime> command places a QuickTime movie on a panel.

The movie appears inline with the surrounding text. To specify the movie's
general location use the constants LEFT, CENTER, or RIGHT. If you do this,
Guide Maker justifies the movie according to the current format. You can also
specify the movie's location relative to the current pen position by specifying a
specific point. For example, if you specify the movie location as Point(50,
10 0) , Guide Maker positions the movie 50 pixels to the right and 100 pixels
down from the current pen location.

SPECIAL CONSIDERATIONS

You can use only one QuickTune movie per panel. In Apple Guide, the amount
of memory available for a QuickTime movie is limited; large movies might
exceed the limit.

Specifying Pictures and Movies 10-99

•

CHAPTER 10

Guide Script Command Reference

EXAMPLES

<Define Panel> "Example Panel With Movie 1"
#place a QuickTime movie on the panel (specified by filename},
centered in current format, display badge,
and specify replacement picture by filename
<QuickTime> "My QT Movie", CENTER, BADGE, "My Movie PICT"

<End Panel>

<Resource> "My Movie Pict 2", 'PICT', "Movie Pict"
<Define Panel> "Example Panel With Movie 2"

#place a QuickTime movie on the panel (specified by filename},
centered in current format, display controller,
and specify replacement picture by resource name
<QuickTime> "My QT Movie", CENTER, BADGE, "Movie Pict"

<End Panel>

<Resource> "My Pict for Movie", 'PICT', 2228
<Define Panel> "Example Panel With Movie 3"

#place a QuickTime movie on the panel (specified by filename},
centered in current format, no controller and no badge,
and specify replacement picture as resource w/ res ID 2228
<QuickTime> "My QT Movie", CENTER, PLAIN, 2228

<End Panel>

SEE ALSO

The <Resource> command is described in the next section.

Importing Resources

10-100

You can import resources such as pictures, movies, and external modules into
your guide file by using the commands described in this section. Guide Maker
makes the resources that you import available for use by other Guide Script
commands.

Importing Resources

<Resource>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use the <Resource> command to specify a file containing one or more
resources to be included in your guide file. Use this command to include all
resources in a file, all resources of a given resource type, all resources with a
given resource ID or resource name, or a single resource.

<Resource> fileName, res Type [, whichResource]

fileName

res Type

A filename of the file containing the resource to import. This file
must be located in the same folder as your source files when you
compile your guide file. A guide file and any resources used by
the guide file must reside in the same folder.

A four-character value specifying the resource type or the
constant ALL. Use the constant ALL to include all resources in
the file in your guide file. Specify a specific resource type to
include only resources of that type.

whichResource A resource 10 or resource name of a resource. The resource
included depends on the value that you specify in the resType
parameter. To include a single resource, specify the resource's
resource type in the resType parameter and the resource ID or
resource name of the specific resource in the whichResource
parameter. If you specify the resource's resource type in the
resType parameter and omit the whichResource parameter, all
resources of that type are included. This parameter is optional.

When Guide Maker encounters a <Resource> command, it opens the file
referenced by the fileName parameter and reads in the resources described by
the resType and whichResource parameters. These resources are then compiled
into the guide file and are available for use by other Guide Script commands,
such as the <PICT> and <QuickTime> commands.

The file Standard Resources is provided with Guide Maker. This file contains
I PICT I resources that define the Continue, Huh?, and GoStart buttons and
provides templates (the I PICT I resources with IDs 501 and 502) that you can
use to create your application logo picture. It also contains I extm 1 resources;
these are external modules (the Standard Setup file contains corresponding

Importing Resources 10-101

• G>
c:
a:
CD
en
Q
-g
()
0
3
3
0>
~ c.
]J

~
m
~
()
CD

CHAPTER 10

Guide Script Command Reference

<Define Context Check> commands for each external module). External
modules referenced through a <Define Context Check> command can be used
to specify a condition in <Make Sure> and other commands.

SPECIAL CONSIDERATIONS

EXAMPLES

For the resources that you plan to use in your guide file, you should assign
each resource a resource ID between 2000 and 20,000. Apple Guide reserves the
use of resource IDs less than 2000.

If you specify a <Resource> command, it must appear outside of any sequence
or panel definitions.

For I PICT I resources, you can provide a color version and a black-and-white
version. You should assign the black-and-white I PICT I a resource ID that is
one greater than the resource ID of its corresponding color graphic.

#read in all resources of type 1 PICT 1 in the file "All My Picts"
<Resource> "All My Picts", 1 PICT 1

#read in the 1 PICT 1 resource with resource ID 2218

<Resource> "My Picture", 1 PICT 1
, 2218

#read in all resources from the file "Lots of Resources"
<Resource> "Lots of Resources", ALL

#read in the 1 PICT 1 resource with resource ID 2228

from the file "My Pict for Movie"
<Resource> "My Pict for Movie", 1 PICT 1

, 2228

#this 1 PICT 1 resource is now available for use
<Define Panel> "Example Panel With Movie 3"

#place a QuickTime movie on the panel and specify
replacement picture as 1 PICT 1 resource with res ID 2228

<QuickTime> "My QT Movie", CENTER, PLAIN, 2228

<End Panel>

10-102 Importing Resources

CHAPTER 10

Guide Script Command Reference

#read in resources from the file "Standard Resources"
<Resource> "Standard Resources", ALL

SEE ALSO

For information on the <PICT> command, see page 10-95. For information on
the <QuickTime> command, see page 10-98.

<Starting Res Number>

DESCRIPTION

You can use the <Starting Res Number> command to specify the beginning
resource number that Guide Maker should use when numbering any resources
that it creates.

<Starting Res Number> resiD

resiD A short integer specifying the beginning resource ID that Guide
Maker should use for resources that it creates for your guide file.
This number must be between 2000 and 20,000.

If you specify a <Starting Res Number> command, then for resources that
Guide Maker creates, it begins numbering them using the specified resource ID.

For resources specified by filename in all Guide Script commands except the
<Resource> command, Guide Maker reads the resource and assigns it a new
resource ID, based on the value you specify in the <Starting Res Number>
command.

For resources that you import in a <Resource> command or for resources that
you specify by resource ID or resource name in other Guide Script commands,
Guide Maker does not assign the resource a new resource ID. When Guide
Maker encounters a <Resource> command, it opens the file referenced by the
fileName parameter and reads in the resources described by the resType and
whichResource parameters. It uses the resource's assigned resource ID and does
not change or reassign it. These resources are then compiled into the guide file

Importing Resources 10-103

• G)
c:
0:
CD
CJ)
0
:::!.

'9.
0
0
3
3
Q)
::l
Q.

::D

~
<D
::l
0
CD

CHAPTER 10

Guide Script Command Reference

and are available for use by other Guide Script commands, such as the <PICT>
and <QuickTrme> commands.

Using a <Starting Res Number> command can be useful when your guide file
includes a Mixin guide file; using this command can help prevent resource ID
conflicts between resources created by Guide Maker for your main guide file
and resources created when you compile a Mixin guide file.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Starting Res Number> command should appear once at most in your
source files for a specific guide file. If you use this command, it must appear as
the first command specified in the first file referenced by your build file. The
<Starting Res Number> command is valid only for main guide files.

#Build file for SurfWriter guide file
<Include> "Initial Setup"
<Include> "Panel and Sequence definitions"
#End of Build file for SurfWriter guide file

#In the file named "Initial Setup"
#for resources specified by filename, assign resource IDs
beginning with 3000
<Starting Res Number> 3000
#read in the 'PICT' resource with resource ID 2228
from the file "My Pict for Movien
<Resource> "My Pict for Movie", 'PICT', 2228
#End of 11 Initial Setup 11

#In the file named 11 Panel and Sequence definitions"
<Define Panel> 11 Example Panel With Movie 3"

#place a QuickTime movie on the panel and specify
replacement picture as 'PICT' resource with res ID 2228
<QuickTime> "My QT Movie", CENTER, PLAIN, 2228

10-104 Importing Resources

CHAPTER 10

Guide Script Command Reference

#place a picture on the panel (specified by filename)
#Guide Maker gets the color pict from the file and
assigns it a new resource ID; it assigns the b&w pict
the next sequential resource ID
<PICT> "ColorPicl File", CENTER, "B&WPicl File"

<End Panel>

SEE ALSO

For information on the <Resource> command, see page 10-101. For information
on specifying a starting resource number for a Mixin guide file, see the
description of the <Mixin> command, on page 10-19.

Creating Coachmarks

You can define coachmarks for menus, dialog items, and objects in a window
by using the commands described in this section.

<Define Menu Coach>

You can use the <Define Menu Coach> command to define a menu coach for a
specific menu and menu item.

<De£ ine Menu Coach> coachMarkName [, targetApp] (, coachStyle]
, targetMenu [, target Item]
(, itemCoachColor] [, itemCoachStyle]

coachMark~ame
A text string specifying the name of this menu coach.

targetApp A four-character sequence specifying the signature of the target
application or the constant FRONT to specify the frontmost
application. This parameter is not required. If you omit this
parameter, Apple Guide uses FRONT as the default.

Creating Coachmarks 10-105

• Ci)
c:
a:
CD

w
::::!.
-g
0
0
3
3
s:u
::l
a.
:D

*' a
::l
(')
CD

10-106

CHAPTER 10

Guide Script Command Reference

coachStyle

targetMenu

A value indicating the coach style to use for the menu. You
specify how Apple Guide should draw the coachmark for the
menu using the constant REDCIRCLE or REDUNDERLINE. The
coachStyle parameter is optional. If you omit this parameter,
Apple Guide uses REDCIRCLE as the default.

The menu title or number of the menu associated with this
coachmark. Apple Guide numbers the menus from left to right,
beginning with the Apple menu which has a number of 1.

targetltem The menu item name or number of the menu item associated
with this coachmark. Menu items are numbered beginning with
1 for the first menu item. This parameter is optional. If you omit
this parameter, Apple Guide draws a coachmark for the menu
specified in the targetMenu parameter but does not use a
coachmark for any menu item.

itemCoachColor

itemCoachStyle

A constant that specifies a color for the menu item coach. You
can use one of these constants to specify the corresponding color:
BLACK
BLUE
CYAN
GREEN
MAGENTA
RED
WHITE
YELLOW

The itemCoachColor parameter is optional. If you omit this
parameter and specify a menu item coach in the targetltem
parameter, Apple Guide uses a default of RED.

A constant that specifies a text style for the menu item coach.
You can use one of these constants to specify the corresponding
text style:
PLAIN
BOLD
CONDENSE
EXTEND
ITALIC

Creating Coachmarks

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

OUTLINE
SHADOW
UNDERLINE

The itemCoachStyle parameter is optional. If you omit this
parameter and specify a menu item coach in the targetltem
parameter, Apple Guide uses a default of PLAIN.

The <Define Menu Coach> command defines a menu coach. You associate a
menu coach with a particular panel using the <Coach Mark> command. When
Apple Guide opens a panel that includes a <Coach Mark> command that
names a defined menu coach, Apple Guide uses the specified coach style and
coach color to draw a coachmark for the specified menu. When the user pulls
down the menu, Apple Guide uses the specified color and text style for the
specified menu item.

SPECIAL CONSIDERATIONS

EXAMPLES

The display of menu coaches can be unpredictable if additional, unexpected
menus have been inserted into the menu bar by system extensions, especially if
the menu is referenced by number rather than by name.

Apple Guide may not be able to display menu coaches for applications that use
custom menu definition procedures or a custom menu bar definition function.

Menu coaches do not appear if the target application is not active.

#define a menu coach for the Close command in the File menu
<Define Menu Coach> "FileCloseCoach", 'WAVE', REDCIRCLE, ..,

"File", "Close", RED, UNDERLINE
<Define Panel> "closing documents"

<Coach Mark> "FileCloseCoach"
To close a document, select Close from the File menu.

<End Panel>

Creating Coachmarks 10-107

I
Ci)
s:::
0.:
CD

g>
::::!.

"E.
0
0
3
3
0>
::::J a.
:::0
CD
CD' a
::::J

~

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#define a menu coach for the Open command in the File menu
#to specify an item with ellipsis, use Option-semicolon
<Define Menu Coach> 11 FileOpenCoach", 'WAVE', REDCIRCLE,-,

"File" , "Open ... " , RED, UNDERLINE
<Define Panel> "opening documents"

<Coach Mark> "FileOpenCoach"
To open a document, select Open ... from the File menu.

<End Panel>

For information on the <Coach Mark> command, see page 10-118.

<Define Item Coach>

10-108

You can use the <Define Item Coach> command to define a coachmark for an
item in a dialog box or for some other interface element that can be described
by a help balloon rectangle.

<Define Item Coach> coachMarkName [, targetApp] (, coachStyle]
[, target Window] , targetltem
[, itemRectangle]

coachMarkName

targetApp

coachStyle

A text string specifying the name of this item coach.

A four-character sequence specifying the signature of the target
application or the constant FRONT to specify the frontmost
application. In general, you should always specify the signature
of the target application to ensure that the coachmark is directed
to the correct application. This parameter is optional. If you omit
this parameter, Apple Guide uses FRONT as the default.

A value indicating the coach style to use for the item. You
specify how Apple Guide should draw the coachmark for the
item using a constant or red arrow specifier:

Creating Coachmarks

CHAPTER 10

Guide Script Command Reference

Constant
REDCIRCLE,REDUNDERLINE,orGREENX

Red arrow specifier
RedArrow(start, end)
Use the RedArrow function to draw a red arrow
beginning at a location specified by start and
ending at a location specified by end. The values
for start and end are integers 1 through 8, where
each value indicates a general location in a
rectangle:

Location
Top left
Top center
Top right
Middle right
Bottom right
Bottom center
Bottom left
Middle left

Value
1
2
3
4
5
6
7
8

These values indicate the eight possible points
for the start and end of the arrow. These locations
can be interpreted as:

1 2 3

8 4

7 6 5

The coachStyle parameter is optional. If you omit this parameter,
Apple Guide uses REDCIRCLE as the default.

target Window The window associated with this coachmark. For dialog items,
you can specify the window's title, the constant FRONTWINDOW,
or the constant DESKTOP. For items associated with help-balloon
rectangles, if you provide this parameter you must specify the
constant FRONTWINDOW. This parameter is optional. If you omit
this parameter, Apple Guide uses FRONTWINDOW as the default.

targetltem An item specifier for an item in a dialog box or an ID specifier
for a help balloon. You must provide the targetltem parameter.

Creating Coachmarks 10-109

G>
c: a:
CD

w
~.

"'S
(')
0
3
3
$l)
::::J a.
:0

~
m
::::J

£

DESCRIPTION

EXAMPLES

10-110

CHAPTER 10

Guide Script Command Reference

itemRectangle

To specify the rectangle of an item in a dialog box, use the
built-in function DialogiD (itemNo) .To specify the rectangle of
an item that has a help balloon, use the built-in function
BallooniD (balloonNo).

A subrectangle, relative to the upper-left of the item's rectangle,
that further specifies the area in which the coachmark should be
drawn. This parameter is optional. If you omit this parameter,
Apple Guide draws the coachmark according to the item's
rectangle.

The <Define Item Coach> command defines an item coach for an item in a
dialog box or an interface element in a window (or dialog box) that already has
a help balloon associated with it. You associate an item coach with a particular
panel using the <Coach Mark> command. When Apple Guide opens a panel
that includes a <Coach Mark> command naming a defined item coach, Apple
Guide uses the specified coach style to draw a coachmark for the specified item.

To provide a coachmark for an item in a dialog box, use the DialogiD
function to specify the item's item number in the targetltem parameter. (You can
determine an item's item number using a resource editor, such as ResEdit.)

To provide a coachmark for an element in a window or dialog box that already
has a help balloon associated with it, use the BallooniD function to specify
the index number of the help balloon (corresponding to its position in the help
resource) in the targetltem parameter.

Both an item in a dialog box and a help balloon for an interface element have
rectangles that define the item or element's location. Usually this rectangle
should suffice as the rectangle that defines where the coachmark should be
drawn. However, you can further specify the rectangle in which Apple Guide
draws the coachmark by providing information in the itemRectangle parameter.

#define an item coach for item (item no.7) in a dialog box
<Define Item Coach> "SpellCheckCoach", 'WAVE', REDCIRCLE,..,

"Spell Check Options", DialogiD(7)

Creating Coachmarks

SEE ALSO

CHAPTER 10

Guide Script Command Reference

<Define Panel> "spell-checking dialog box"
<Coach Mark> "SpellCheckCoach"
To spell-check a document and ignore valley slang,
click the Ignore valley slang checkbox.

<End Panel>

#define an item coach based on a help balloon
<Define Item Coach> "page number balloon .. , 'WAVE', ..,

REDCIRCLE, FRONTWINDOW, BallooniD(S)

#define another item coach based on a help balloon
<Define Item Coach> "current style balloon", 'WAVE',..,

RedArrow(l,7), ..,
FRONTWINDOW, BallooniD(4)

#define an item coach for item (item no.5) in a dialog box
and specify a subrectangle for the coachmark
<Define Item Coach> "SlangCheckCoach", 'WAVE', REDCIRCLE,..,

"Spell Check Options", DialogiD(5), ..,
Rect(20,20,70,70)

For information on the <Coach Mark> command, see page 10-118. For
information on help resources, see the chapter 11Help Manager" in Inside
Macintosh: More Macintosh Toolbox.

<Define Object Coach>

You can use the <Define Object Coach> command to define a coachmark for an
object, based on a rectangle that your application returns for the named object.

<Define Object Coach> coachMarkName, targetApp [, coachStyle 1
(, objectName 1

Creating Coachmarks 10-111

Ci)
c:: c:
CD
(/)

Q
-s
(')
0
3
3
S»
::I a.
::0

~
(i)
::I

~

DESCRIPTION

10-112

CHAPTER 10

Guide Script Command Reference

coachMarkName

targetApp

coachStyle

objectName

A text string specifying the name of this object coach.

A four-character sequence specifying the signature of the target
application.

A value indicating the coach style to use for the item. You
specify how Apple Guide should draw the coachmark for the
item using a constant or red arrow specifier:

Constant
REDCIRCLE,REDUNDERLINE,orGREENX

Red arrow specifier
RedArrow(start, end)
Use the RedArrow function to draw a red arrow
beginning at a location specified by start and
ending at a location specified by end. The values
for start and end are integers 1 through 8, where
each value indicates a general location in a
rectangle:

Location
Top left
Top center
Top right
Middle right
Bottom right
Bottom center
Bottom left
Middle left

Value
1
2
3
4
5
6
7
8

These values indicate the eight possible points
for the start and end of the arrow.

The coach Style parameter is optional. If you omit. this parameter,
Apple Guide uses REDCIRCLE as the default.

The object associated with this coachmark.

The <Define Object Coach> command defines an object coach. You associate an
object coach with a particular panel using the <Coach Mark> command. When
Apple Guide opens a panel that includes a <Coach Mark> command naming a

Creating Coachmarks

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

defined object coach, Apple Guide sends an Apple event to your application,
requesting it to return a rectangle for the named object. Once your application
returns a rectangle for the object, Apple Guide draws the coachmark.

#define an object coach
<Define Object Coach> "InfoButtonCoach", 'WAVE',

REDCIRCLE, "infoBox"
<Define Panel> "the info button"

<Coach Mark> "InfoButtonCoachu
<End Panel>

For information on the <Coach Mark> command, see page 10-118.

<Define Window Coach>

You can use the <Define Window Coach> command to define a coachmark for
a specific area of a window.

<Define Window Coach> coachMarkName [, targetApp] [, coachStyle]
[, targetWindow]
, window Rectangle [, rectOrigin]

coach~ark~ame

targetApp

coach Style

A text string specifying the name of this window coach.

A four-character sequence specifying the signature of the target
application or the constant FRONT to specify the frontmost
application. This parameter is optional. If you omit this
parameter, Apple Guide uses FRONT as the default.

A value indicating the coach style to use for the item. You
specify how Apple Guide should draw the coachmark for the
item using a constant or red arrow specifier:

Creating Coachmarks 10-113

• G>
c: a:
CD

g>
:::::!.

"9.
()
0
3
3
s:u
:::J a.
:::0

~ a;
:::J
(')
CD

10-114

CHAPTER 10

Guide Script Command Reference

Constant
REDCIRCLE,REDUNDERLINE,orGREENX

Red arrow specifier
RedArrow(start, end)
Use the RedArrow function to draw a red arrow
beginning at a location specified by start and
ending at a location specified by end. The values
for start and end are integers 1 through 8, where
each value indicates a general location in a
rectangle:

Location
Top left
Top center
Top right
Middle right
Bottom right
Bottom center
Bottom left
Middle left

Value
1
2
3
4
5
6
7
8

These values indicate the eight possible points
for the start and end of the arrow.

The coachStyle parameter is optional. If you omit this parameter,
Apple Guide uses REDCIRCLE as the default.

target Window The window associated with this coachmark. You can specify
the window's title, the constant FRONTWINDOW, or the constant
DESKTOP. This parameter is optional. If omitted, Apple Guide
uses FRONTWINDOW as the default.

window Rectangle
A subrectangle that further specifies the area in which the
coachmark should be drawn. You can specify a rectangle using
Rect (top 1 left 1 bottom I right). You can also use these constants
to specify a specific element of a window:
GROWBOX
ZOOMBOX
CLOSE BOX
TITLE BAR

Creating Coachmarks

DESCRIPTION

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

You can use the constant BOOTDISK to specify a coachmark for
the startup disk (use this constant only if you also specify the
Finder as the target application).

rectOrigin A constant that gives the origin for the subrectangle. You can
use one of these constants to specify the origin for the
sub rectangle:
TOP LEFT
TOPRIGHT
BOTTOMLEFT
BOTTOMRIGHT

The rectOrigin parameter is optional. If you omit this parameter,
Apple Guide uses a default of TOPLEFT.

The <Define Wmdow Coach> command defines a window coach. You associate
a window coach with a particular panel using the <Coach Mark> command.
When Apple Guide opens a panel that includes a <Coach Mark> command
naming a defined window coach, Apple Guide uses the specified coach style to
draw a coachmark based on the location of the coachmark, as provided in the
window Rectangle parameter.

#define a window coach for an area in a window
<Define Window Coach> "RulerTabCoach", 'WAVE', REDCIRCLE, -.

FRONTWINDOW, Rect(30, 30, 50, 50)
<Define Panel> "using the ruler"

<Coach Mark> "RulerTabCoach"
To set a tab in your document,
click the tab tool in the ruler bar.

<End Panel>

For information on the <Coach Mark> command, see page 10-118.

Creating Coachmarks 10-115

• G)
c::
a:
(I)

en
0
:::l.

'S
(')
0
3
3
D)
::::J a.
:rJ

~
(i)
::::J
0
CD

CHAPTER 10

Guide Script Command Reference

<Define AppleScript Coach>

10-116

You can use the <Define AppleScript Coach> command to define a coachmark
that uses an AppleScript script to determine the object to mark.

<Define AppleScript Coach> coachMarkName [1 coachStyle]
1 AppleScriptiD

coachMarkName

coach Style

A text string specifying the name of this AppleScript coach.

A value that indicates the coach style to use for the item. You
specify how Apple Guide should draw the coachmark for the
item using a constant or red arrow specifier:

Constant
REDCIRCLE,REDUNDERLINE,orGREENX

Red arrow specifier
RedArrow(start, end)
Use the RedArrow function to draw a red arrow
beginning at a location specified by start and
ending at a location specified by end. The values
for start and end are integers 1 through 8, where
each value indicates a general location in a
rectangle:

Location
Top left
Top center
Top right
Middle right
Bottom right
Bottom center
Bottom left
Middle left

Value
1
2
3
4
5
6
7
8

These values indicate the eight possible points
for the start and end of the arrow.

The coachStyle parameter is optional. If you omit this parameter,
Apple Guide uses REDCIRCLE as the default.

Creating Coachmarks

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

AppleScriptiD The resource ID of a script or the name of a script file. You can
specify a filename in the same folder as your source files or you
can specify the file and its pathname, relative to the folder
containing Guide Maker (for example, ":My Scripts:Some Coach
Script"). The script that you specify should return a rectangle
identifying the location for the coachmark.

The <Pefine AppleScript Coach> command defines an AppleScript coach. You
associate an AppleScript coach with a particular panel using the <Coach Mark>
command. When Apple Guide opens a panel that includes a <Coach Mark>
command naming a defined AppleScript coach, Apple Guide executes the
specified script. Once the script returns a rectangle for the object, Apple Guide
draws the coachmark.

If you specify a script by resource ID, you must make it available to Guide
Maker by using a <Resource> command.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

If AppleScript is not installed on the user's system, Apple Guide does not
attempt to execute the script and thus no coachmark will be drawn.

#define an AppleScript coach
<Define AppleScript Coach> "PageNumber .. , REDCIRCLE, ..,

":My Scripts:Find Rect for PageNo"
<Define Panel> "page number info"

<Coach Mark> "PageNumber"
<End Panel>

The <Coach Mark> command is described next.

Creating Coachmarks 10-117

• G>
r::::::

a:
CD
en
0
:::!.

"E.
()
0
3
3
D)
:::::J c.
JJ

m-
m
:::::J
0
CD

CHAPTER 10

Guide Script Command Reference

<Coach Mark>

DESCRIPTION

You can use the <Coach Mark> command to associate a coachmark for display
with a particular panel.

<Coach Mark> coachMarkName

coachMarkName
A text string specifying the name of a defined coachmark.

The <Coach Mark> command associates a coachmark with a particular panel.
Apple Guide displays this coachmark when it opens the panel.

The coachMarkName parameter must reference a defined coachmark, that is, a
coachmark defined with these commands: <Define Menu Coach>, <Define
Item Coach>, <Define Object Coach>, <Define Window Coach>, and <Define
AppleScript Coach>.

SPECIAL CONSIDERATIONS

EXAMPLES

10-118

If you use the <Coach Mark> command, it must always appear between the
<Define Panel> and <End Panel> commands.

You can associate one coachmark per panel; if more than one <Coach Mark>
command appears in a panel definition, Apple Guide uses the last one
encountered.

<Define Panel> "creating index markers"
<Coach Mark> "CoachindexTool"
To create index markers, select the index tool.

<End Panel>

Creating Coachmarks

SEE ALSO

CHAPTER 10

Guide Script Command Reference

For information on <Define Menu Coach>, <Define Item Coach>, <Define
Object Coach>, <Define Window Coach>, and <Define AppleScript Coach>
commands, see page 10-105, page 10-108, page 10-111, page 10-113, and
page 10-116, respectively.

Creating Hot Items

You can specify as "hot" a particular object, rectangle, or text in the content
area of a panel by using the commands described in this section. A "hot" item
is an item in a panel that has the properties of a button; that is, when the user
clicks this area it is highlighted and a specified action occurs.

<Hot Object>

DESCRIPTION

You can use the <Hot Object> command to create a hot button on a panel.

<Hot Object> eventFunction

eventFunction
A name of an event function or event list. You must also include
any parameters expected by the function in parentheses
following the event function name. You define event functions
using the <Define Event> or <Define Event List> command.
Guide Maker also provides built-in functions that you can
specify in this parameter.

The <Hot Object> command creates a hot button using the rectangle of the next
object (text or graphic) specified in the panel definition. The area encompassing
this rectangle acts as a "hot" button; that is, when the user clicks in this
rectangle, Apple Guide calls the function defined by the eventFunction
parameter. Usually such a function is used to send a specific Apple event.

Creating Hot Items 10-119

•

CHAPTER 10

Guide Script Command Reference

EXAMPLES

<Define Panel> "spell-checking a document"
Select a dictionary to open:

<Hot Object> openDictionary("Sharon's Super Dictionary")
Sharon's Super Dictionary

<Hot Object> openDictionary("Daphne's Fantastic Dictionary")
Daphne's Fantastic Dictionary

<End Panel>

SEE ALSO

For information on creating a hot rectangle or hot text, see the descriptions of
the <Hot Rectangle> and <Hot Text> commands. For information on event
functions, see ~~specifying Events" beginning on page 10-177.

<Hot Rectangle>

10-120

You can use the <Hot Rectangle> command to create a hot rectangle on a panel.

<Hot Rectangle> hotRect, eventFunction

hotRect

eventFunction

The coordinates of a rectangle, relative to the current pen
location, that define the hot rectangle. The top of the coordinate
system is defined by the bottom of the immediately preceding
text, and the left edge of the coordinate system is defined by the
left edge of the current format.

A name of an event function or event list. You must also include
any parameters expected by the function in parentheses
following the event function name. You define event functions

Creating Hot Items

CHAPTER 10

Guide Script Command Reference

using the <Define Event> or <Define Event List> command .
Guide Maker also provides built-in functions that you can
specify in this parameter.

DESCRIPTION

The <Hot Rectangle> command creates a hot rectangle using the rectangle
specified in the hotRect parameter. The area encompassing this rectangle acts as
a "hot" area; that is, when the user clicks in this rectangle, Apple Guide calls
the function defined by the eventFunction parameter. Usually such a function is
used to send a specific Apple event.

The <Hot Rectangle> command provides more precise control over placement
of the rectangle than the <Hot Object> command, which assumes the rectangle
of the following object.

EXAMPLES

<Define Panel> "spell-checking a document ..
Select a dictionary to open:

#use rectangle coordinates relative to the current pen location
<Hot Rectangle> Rect(O, 0, 12, 180), ~

openDictionary(.. Sharon's Super Dictionary ..)
Sharon's Super Dictionary

<Hot Rectangle> Rect(O, 0, 12, 180), ~
openDictionary(.. Daphne's Fantastic Dictionary ..)

Daphne's Fantastic Dictionary

<Hot Rectangle> Rect(O, 0, 52, 180), ~
openDictionary("Any ..)

<PICT> "GenericDictionaryPict .. , LEFT
Choose another dictionary

<End Panel>

Creating Hot Items 10-121

• G>
c: a:
CD
en
(')
:::!.
"9.
0
0
3
3
I»
::J c.
::D

m-
ea
::J
(')
CD

SEE ALSO

<Hot Text>

DESCRIPTION

10-122

CHAPTER 10

Guide Script Command Reference

For information on creating a hot object or hot text, see the descriptions of the
<Hot Object> command on page 10-119 and the <Hot Text> command,
described next.

You can use the <Hot Text> command to create a hot button around specified
text on a panel.

<Hot Text> hot Text 1 which Occurrence 1 eventFunction

hot Text A string specifying the hot text.

which Occurrence

eventFunction

A value identifying which occurrence of the text specified
in the hotText parameter should be considered hot. You can
use the constants FIRST, LAST, and ALL in this parameter.
The occurrence of the hot text applies only to the text in the
immediately following text object, not all text objects on
the panel.

A name of an event function or event list. You must also include
any parameters expected by the function in parentheses
following the event function name. You define event functions
using the <Define Event> or <Define Event Ust> command.
Guide Maker also provides built-in functions that you can
specify in this parameter.

The <Hot Text> command creates a hot button for the text specified in the
hotText parameter. The area encompassing this rectangle acts as a 11hot" area;
that is, when the user clicks in the rectangle surrounding this text, Apple Guide
calls the function defined by the eventFunction parameter. Usually such a
function is used to send a specific Apple event.

Creating Hot Items

CHAPTER 10

Guide Script Command Reference

The <Hot Text> command provides a method of specifying particular text and
a specific occurrence of this text, such as all occurrences of the text within the
text object, as hot text, as opposed to the <Hot Rectangle> command, which
assumes the rectangle of the following object. Note that the hot text applies
only to strings within the following text object (a string of text ended by a
carriage return) not to all text in the panel.

EXAMPLES

<Define Panel> 11 Spell-checking a document"
#define hot text, and specify that every occurrence
of the text in the following text object is hot
<Hot Text> 11 Sharon's Super Dictionaryu, ALL, -,

openDictionary("Sharon's Super Dictionary")
This panel provides information on Sharon's Super Dictionary.
<Pict> "Super Dictionary Pict", CENTER, "B&WPic File"

<Hot Text> 11 Sharon's Super Dictionary", ALL, -,
openDictionary("Sharon's Super Dictionary 11

)

Sharon's Super Dictionary is a super dictionary. _,
It provides lightning fast checking of all text in a document. _,
In addition, Sharon's Super Dictionary supports WorldScript, ~
and can spell-check a document in over 20 different scripts.

<End Panel>

SEE ALSO

For information on creating a hot object or hot text, see the descriptions
of the <Hot Object> and <Hot Rectangle> commands on page 10-119 and
page 10-120, respectively. For information on event functions, see "Specifying
Events" beginning on page 10-177.

Creating Hot Items 10-123

Cj)
c:
0:
<D
en
(')
:J. -g.
()
0
3
3
~ a.
::0

m-
CD
:J

2

CHAPTER 10

Guide Script Command Reference

Defining Topic Areas

You can define topic areas and a topic areas instruction for an access window
by using the commands described in this section.

<Topic Areas Instruction>

DESCRIPTION

You can use the <Topic Areas Instruction> command to specify a phrase that
appears above the list of topic areas in the Full Access window when Topics is
the active list.

<Topic Areas Instruction> topicArealnstruction

topicArealnstruction
A text string that specifies a phrase to display above the list of
topic areas.

Apple Guide displays, above the list of topic areas, the phrase defined in the
topicArealnstruction parameter. This command is optional. If you omit this
parameter, Apple Guide displays the phrase, "1. Click a topic area:" above the
list of topic areas.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Topic Areas Instruction> command should appear once at most in your
source files for a specific guide file.

#specify a topic areas instruction
<Topic Areas Instruction> "!.Click a topic area of interest:"

10-124 Defining Topic Areas

CHAPTER 10

Guide Script Command Reference

<Topic Area>

DESCRIPTION

You can use the <Topic Area> command to specify a phrase that appears in the
left column (the topic area column) in the Full Access window when Topics is
the active list.

<Topic Area> topicAreaPhrase [, mixinOrder 1

topicAreaPhrase
A text string that specifies a phrase to display in the list of topic
areas.

mixinOrder You use this parameter only for Mixin guide files to specify the
sort order for this topic area after it is mixed in. You can either
specify the name of a topic area in the main guide file that this
topic area should follow or you can specify the constant FIRST
or LAST to insert the topic area at the beginning or end of the
main guide file's topic areas.

Apple Guide displays, in the list of topic areas, the phrase defined in the
topicAreaPhrase parameter. When the user clicks the Topics button, Apple Guide
displays the phrases defined by <Topic Area> commands. When the user
selects a particular topic area, Apple Guide displays the topics and any headers
associated with the selected topic area. You associate topics and headers with a
particular topic area by following a <Topic Area> command by <Header> and
<Topic> commands.

Apple Guide displays topic areas in the same order as they are defined in your
help source files.

SPECIAL CONSIDERATIONS

A <Topic Area> command must be followed by at least one <Header> or
<Topic> command.

A Single List Access window contains topics and (optionally) headers.
Although Apple Guide does not display topic areas for a Single List Access
window, you must include one <Topic Area> command (followed by the
<Header> and <Topic> commands) for your Single List Access guide file.

Defining Topic Areas 10-125

• G)
c:
a:
<D
en
()
:::!.
-g.
0
0
3
3
D>
~ a.
:::0

*' a
~

~

CHAPTER 10

Guide Script Command Reference

EXAMPLES

#specify a topic area
<Topic Area> "Fonts"

#specify header and topics for this topic area
<Header> .. How do I"

<Topic> 11 Change the font of a word?", "SeqFont1 11

<Topic> "change the font of a paragraph? .. , "SeqFont2 11

<Topic> "change the font of a document?", "SeqFont3"
<Topic> "change the default font?", "SeqFont4"

#specify a topic area
<Topic Area> "Styles"

#specify headers and topics for this topic area
<Header> "How do I"

<Topic> "change the style of a word?", "SeqStylel"
<Topic> "change the style of a paragraph?", "SeqStyle2"
<Topic> "change the style of a document?", "SeqStyle3"
<Topic> "change the default style?", "SeqStyle4"

<Header> "Definitions"
<Topic> "style", "DefnsStyle"

#specify a topic area
<Topic Area> "Index markers"

#specify header and topics for this topic area
<Header> "How do I"

<Topic> "create an index marker?", "CreateindexMarkerSeq"
<Topic> "select an index marker?", "SelectindexMarkerSeq"
<Topic> "remove an index marker?", "RemoveindexMarkerSeq"
<Topic> "generate an index?", "GenerateindexSequence"

SEE ALSO

10-126

For information on the <Header> and <Topic> commands, see page 10-135 and
page 10-137, respectively.

Defining Topic Areas

CHAPTER 10

Guide Script Command Reference

Defining Index Terms

You can define index terms and specify sorting order information of index
terms by using the commands described in this section.

<lndexlnshuction>

DESCRIPTION

You can use the <Index Instruction> command to specify a phrase that appears
above the list of index terms in the Full Access window when Index is the
active list.

<Index Instruction> indexlnstruction

indexlnstruction
A text string that specifies a phrase to display above the list of
index terms.

Apple Guide displays, above the list of index terms, the phrase defined in the
indexlnstruction parameter.

This command is optional. If you omit this command, Apple Guide displays
the phrase, "1. Click an index entry:" above the list of index terms.

To define a phrase that Apple Guide displays above the right column, use the
<Topics Instruction> command. You use this command to specify a phrase that
appears above the list of topics regardless of whether Topics, Index, or Look
For is active.

SPECIAL CONSIDERATIONS

The <Index Instruction> command should appear once at most in your source
files for a specific guide file.

Defining Index Terms 10-127

•

EXAMPLES

SEE ALSO

<Index>

DESCRIPTION

10-128

CHAPTER 10

Guide Script Command Reference

#specify an index instruction
<Index Instruction> "1. Click an index term:"

For information on the <Topics Instruction> command, see page 10-134.

You can use the <Index> command to specify a phrase that appears in the left
column (the index column) in the Full Access window when Index is the active
list.

<Index> indexTerm [, visible] [, key]

index Term

visible

key

A text string that specifies an index term for display in the list of
index terms.

A Boolean constant that indicates whether the index term is
visible (TRUE) or invisible (FALSE). This parameter is optional.
If you omit this parameter, Apple Guide uses TRUE as the
default.

A text string that specifies a key that Apple Guide should use
when sorting this index term among other index terms. This
parameter is optional and should be supplied only if you also
specify an <Index Sorting> command.

Apple Guide displays, in the list of index terms, the phrase defined in the
indexTerm parameter. When the user clicks the Index button, Apple Guide
displays the index terms defined by <Index> commands. When the user selects
a particular index term, Apple Guide displays the topics and any headers
associated with the selected index term. You associate topics and headers with

Defining Index Terms

CHAPTER 10

Guide Script Command Reference

a particular index term by following an <Index> command by <Header> and
<Topic> commands.

The visible parameter determines whether the index term is visible or invisible.
Apple Guide displays visible index terms in the list of index terms. Apple
Guide does not display invisible index terms in the list of index terms; but
when a user uses the Look For facility to search for an index term, Apple Guide
searches both visible and invisible index terms. Invisible index terms allow you
to specify key phrases that you want the user to be able to search for but that
you do not want included in the list of displayed index terms.

By default, Apple Guide displays index terms in alphabetical order regardless
of the order in which they appear in your help source files. To specify that
Apple Guide should display terms in the order they appear in your source files
or to indicate that you are providing keys for each index term, use the <Index
Sorting> command.

SPECIAL CONSIDERATIONS

An <Index> command must be followed by at least one <Header> or <Topic>
command. You must define at least one index term if you use the Full Access
window for your guide file.

EXAMPLES

#specify index term, then header and topics
<Index> "Page width"

#specify header and topics for this index term
<Header> "How do I"

<Topic> "change the default page width?", ...,
"How do I change the default page width?"

<Topic> "give each page a different page width?", ..,
"How do I give each page a different page width?"

#specify index term then header and topics
<Index> "Fonts"

#specify header and topics for this index term
<Header> "How do I"

Defining Index Terms 10-129

• G>
c:: a:
CD
en
()
:::::!.

'S

~
3
3
I»
:::::! a.
:D

~
@
:::::!
()
CD

CHAPTER 10

Guide Script Command Reference

<Topic> "change the default font?", ...,
"How do I change the default font?"

<Topic> "increase the size of a font?", ...,
"How do I increase the size of a font?"

#specify invisible index term then header and topics
<Index> "Setting page width", FALSE

#specify header and topics for this invisible index term
<Header> "How do I"

<Topic> "change the default page width?", ...,
"How do I change the default page width?"

<Topic> "give each page a different page width?", ...,
"How do I give each page a different page width?"

SEE ALSO

<Sorting>

10-130

For information on the <Header> and <Topic> commands, see page 10-135 and
page 10-137, respectively. For information on specifying index information for
Mixin guide files, see the descriptions of the <Insert Index Header> and <Insert
Index Topic> commands on page 10-195 and page 10-196, respectively. To
provide more control over the sorting and sorting order of index terms, use the
<Sorting> command (described next) and the <Index Sorting> command
(described on page 10-132).

You can use the <Sorting> command to specify the method Apple Guide
should use when sorting index terms in your guide file.

<Sorting> method

indexTerm A constant, either SCRIPTSORT or USASCIISORT, indicating
the sorting method. If you specify SCRIPT SORT, Apple Guide
sorts index terms according to the international sorting method

Defining Index Terms

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

for the script specified by the <World Script> command. If you
specify USASCIISORT, Apple Guide sorts index terms using a
fast, case-insensitive ASCII comparison routine.

Apple Guide sorts index terms before displaying them. Apple Guide sorts
these terms according to the sorting method specified by the <Sorting>
command.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <Sorting> command is optional. If you omit it, Apple Guide uses
SCRIPTSORT as the default. Apple Guide retrieves information much more
quickly from your guide file if you specify the USASCIISORT sorting method,
especially for non-Roman script systems. However, if you specify
USASCIISORT you should provide hidden keys for your index terms to obtain
best results. You may also need to customize the sliding letter bar that appears
above the list of index terms.

#sort index terms according to the sorting method of the
script specified by the World Script command
<Sorting> SCRIPTSORT
#sort index terms using the fast, case-insensitive
sorting method
<Sorting> USASCIISORT

You can also specify the order in which index terms appear in the displayed list
of index terms by using the <Index Sorting> command, described next.

Defining Index Terms 10-131

• G>
t:: a:
CD

g>
::::!.
'E.
0
0
3
3
Sl>
::I
0.

:D

m-
m
::I
()
CD

CHAPTER 10

Guide Script Command Reference

<Index Sorting>

DESCRIPTION

10-132

You can use the <Index Sorting> command to specify how Apple Guide should
order your index terms.

<Index Sorting> orderingKey

ordering Key A constant that specifies how Apple Guide should order index
terms when it sorts them for display. You can specify one of four
possible constants: USEDISPLAYEDTERM, NONE,
USEHIDDENKEY, or USEHIDDENKEYWITHOUTIGNORE.

Apple Guide displays index terms in alphabetical order regardless of the order
in which they appear in your help source files, unless you specify the <Index
Sorting> command. Using this command, you can more directly control the
order in which index terms appear in the list.

If you specify the constant USEDISPLAYEDTERM, Apple Guide displays index
terms in alphabetical order regardless of the order in which they appear in
your help source files. Apple Guide uses this as a default if you do not provide
an <Index Sorting> command in your source files.

If you specify the constant NONE, Apple Guide displays index terms in the
order in which they appear in your help source files.

If you specify the constant USEHIDDENKEY or
USEHIDDENKEYWITHOUTIGNORE, you must also specify the third parameter of
all <Index> commands. You can use the third parameter of the <Index>
command to specify a key that Apple Guide uses as that term's key when
sorting index terms. Note that the key does not appear in the list of index terms.

When you use the constant USEHIDDENKEY, the key is used for sorting
purposes only and is not searchable by the user. In this case, the user can find
the index term by entering it as a search phrase but the user cannot find the
index term by entering the index term's key as a search phrase. When you use
the constant USEHIDDENKEYWITHOUTIGNORE, the user can find the index
term by entering either the index term or the key as a search phrase.

Defining Index Terms

CHAPTER 10

Guide Script Command Reference

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <Index Sorting> command is optional. If you omit this command, Apple
Guide uses USEDISPLAYEDTERM as the default. If you specify this command,
it should appear before any of your index terms and should appear near the
beginning of your source file. You typically use this command only for
non-Roman script systems when you need direct control over the sorting order.

#specify that all index terms include a key
<Index Sorting> USEHIDDENKEY
#specify index term with a key that determines sort order
<Index> "32-bit addressing",,"Thirty-two bit addressingn

#specify header and topics for this index term
<Header> 11 How do I"

<Topic> "set 32-bit addressing?", ~

"How do I set 32-bit addressing? ..
#specify index term with a key that determines sort order
<Index> "24-bit addressing",,"Twenty-four bit addressing"

#specify header and topics for this index term
<Header> "How do I"

<Topic> "set 24-bit addressing?", ~

"How do I set 24-bit addressing?"

For information on the <Index> and <Sorting> commands, see page 10-128 and
page 10-130, respectively.

Defining Topics for Topic Areas and Index Terms

You can define topics and headers for topic areas and index terms by using the
commands described in this section.

Definin.Q Topics for Topic Areas and Index Terms 10-133

• (j)
c:
a::
CD
en
Q
"[
()
0
3
3
Jl)
::J a.
JJ

~
m
::J
g

CHAPTER 10

Guide Script Command Reference

<Topics Instruction>

DESCRIPTION

You can use the <Topics Instruction> command to specify a phrase that
appears above the list of topics in the Full Access window when Topics or
Index is the active list.

<Topics Instruction> topicslnstruction

topicslnstruction
A text string that specifies a phrase to display above the list of
topics.

Apple Guide displays, above the list of topics, the phrase defined in the
topicslnstruction parameter.

This command is optional. If you omit this command, Apple Guide displays
the phrase "2. Click a phrase, then click OK:" above the list of topics when
Topics or Index is the active list.

SPECIAL CONSIDERATIONS

EXAMPLES

10-134

The <Topics Instruction> command should appear once at most in your source
files for a specific guide file.

Note that when Look For is the active list and the user has performed a
successful search, Apple Guide displays the phrase "3. Click a phrase, then
click OK:" above the list of topics; you can change this text using the <Look For
Results Instruction> command.

#specify a topics instruction
<Topics Instruction> 11 2. Click an item, then click OK ...

Defining Topics for Topic Areas and Index Terms

SEE ALSO

<Header>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

For information on specifying the instruction that appears above the list of
topic areas, see the description of the <Topic Areas Instruction> command on
page 10-124. For information on specifying the instruction that appears above
the list of index terms, see the description of the <Index Instruction> command
on page 10-127.

You can use the <Header> command to specify a phrase that appears in the
right column (the help topics column) in the Full Access window when Topics
or Index is the active list and the user selects the header's associated topic area
or index term. You can also use the <Header> command for a Single List
Access window.

<Header> headerPhrase

header Phrase A text string that specifies a header to display in the list of
topics. Apple Guide displays headers in bold.

Apple Guide displays, in the list of topics, the phrase defined in the
header Phrase parameter. When the user clicks the Topics button, Apple Guide
displays the phrases defined by <Topic Area> commands. When the user clicks
the Index button, Apple Guide displays in the index terms area the phrases
defined by <Index> commands. When the user selects a particular topic area or
index term, Apple Guide displays any headers (and topics) associated with the
selected topic area or index term. You associate a header with a particular topic
area by following either a <Topic Area> or an <Index> command with a
<Header> command.

The text specified in the header Phrase parameter is typically a general header
that groups several related topics or that provides a question prefix for several
related topics, such as "How do I" or "Why can't I".

Headers are not required. However, if you do define a header for a topic area
or index term, all topics for that topic area or index term must be grouped by

Defining Topics for Topic Areas and Index Terms 10-135

• G')
c
a:
CD

w
::::!.
'9.
()
0
3
3
0>
:l a.

i
i
:l
0
CD

CHAPTER 10

Guide Script Command Reference

headers. Alternatively, a topic area or index term can have all single topics
associated with it.

Apple Guide places an animated triangle next to any header. When the user
clicks the triangle, Apple Guide animates it and expands or compacts the topics
under the header.

SPECIAL CONSIDERATIONS

If you define a header for a topic area or index term, all topics for that topic
area or index term must be grouped by headers.

EXAMPLES

#specify a topic area
<Topic Area> "Fonts"

#specify header and topics for this topic area
<Header> "How do I 11

<Topic> .. change the font of a word? .. , 11 SeqFont1 11

<Topic> "change the font of a paragraph? .. , "SeqFont2"
<Topic> "change the font of a document?" , "SeqFont3"
<Topic> .. change the default font?", "SeqFont4"

<Header> .. Definitions ..
<Topic> .. fonts .. , "DefnsFontsSequence"

#specify a topic area
<Topic Area> 11 Index markers ..

#specify header and topics for this topic area
<Header> 11 How do I 11

10-136

<Topic> .. create an index marker? .. , 11 CreateindexMarkerSeq 11

<Topic> .. select an index marker?", 11 SelectindexMarkerSeq 11

<Topic> .. remove an index marker? .. , .. RemoveindexMarkerSeq ..
<Topic> .. generate an index? .. , "GenerateindexSequence ..

Defining Topics for Topic Areas and Index Terms

SEE ALSO

<Topic>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

For information on the <Index> command, see page 10-128.

You can use the <Topic> command to specify a phrase that appears in the right
column (the topics column) in the Full Access window when Topics or Index is
the active list and the user selects the header's associated topic area or index
term. You can also use the <Topic> command for a Single List Access window.

<Topic> topicPhrase, sequenceName

topicPhrase

sequence Name

A text string that specifies a topic to display in the list of topics.
The topic phrase must not be greater than 63 characters. The
actual number of characters displayed depends on the font and
the available width of the topics column.

A text string that specifies a sequence for Apple Guide to
display when the user chooses the topic specified by the
topicPhrase parameter. The sequence name must not be greater
than 255 characters and must be unique within the first 63
characters.

Apple Guide displays, in the list of topics, the phrase defined in the topicPhrase
parameter. Apple Guide displays the topic under its associated header, if any.
When the user clicks the Topics button, Apple Guide displays the phrases
defined by <Topic Area> commands. When the user clicks the Index button,
Apple Guide displays in the index terms area the phrases defined by <Index>
commands. When the user selects a particular topic area or index term, Apple
Guide displays any headers {and topics) associated with the selected topic area
or index term. You associate a topic with a topic area or index term by
following a <Topic Area> or <Index> command by a <Topic> command; or
you can associate a topic with a particular header by following a <Header>
command by a <Topic> command.

Defining Topics for Topic Areas and Index Terms 10-137

I
G)
c:
c:
CD
en
0
::::!.

-g.
()
0
3
3
S»
::::::J c.
JJ
CD a;
<D
::::::J
0
CD

CHAPTER 10

Guide Script Command Reference

The text specified in the topicPhrase parameter is typically a specific topic or a
question suffix that follows a header. For example, if a <Header> command
specifies the text "How do I", a <Topic> command might specify the text
"change the font?".

Headers are not required. However, if you do define a header for a topic area
or index term, all topics for that topic area or index term must be grouped by
headers. Alternatively, a topic area or index term can have all single topics
associated with it.

Apple Guide places an animated triangle next to any header. When the user
clicks the triangle, Apple Guide animates it and expands or compacts the topics
under the header.

SPECIAL CONSIDERATIONS

A <Topic> command must be preceded by a <Topic Area>, <Index>, or
<Header> command. If you define a header for a topic area or index term, all
topics for that topic area or index term must be grouped by headers.

EXAMPLES

#specify a topic area with headers and topics
<Topic Area> "Settings"

#specify header and topics for this topic area
<Header> "How do I"

#specify topic phrase and sequence name
<Topic> "change the default page width?", "SeqDefaultWidth"
#specify topic phrase and sequence name
<Topic> "change the default font?", ...,

"How do I change the default font?"
#specify topic phrase and sequence name
<Topic> "change the default tabs?", ...,

"How do I change the default tabs?"
<Header> "Why can't I"

10-138

<Topic> "remove a tab?", "Why can't I remove a tab?"
<Topic> "use smart tabs?", "Why can't I use smart tabs?"

Defining Topics for Topic Areas and Index Terms

CHAPTER 10

Guide Script Command Reference

#specify index term then header and topics
<Index> "Page width"

#specify header and topics for this index term
<Header> "How do I"

<Topic> "change the default page width?", "SeqDefaultWidth"
<Topic> "give each page a different page width?", "SeqPageWidth"

#specify index term then header and topics
<Index> "Fonts"

#specify header and topics for this index term
<Header> "How do I"

<Topic> "change the default font?", ..,
"Bow do I change the default font?"

<Topic> "increase the size of a font?", ..,
"Bow do I increase the size of a font?"

#specify a topic area with topics only (no headers)
<Topic Area> "Settings"

#specify topics for this topic area
<Topic> "How do I change the default settings?", ..,

"Bow do I change the default settings?"
<Topic> "Bow do I apply settings from another document?", ..,

"Bow do I apply settings from another document?"
<Topic> "How do I save settings for a document?", ..,

"How do I save settings for a document?"

SEE ALSO

For information on the <Topic Area>, <Header>, and <Index> commands, see
page 10-125, page 10-135, and page 10-128, respectively. For information on
specifying topics for index terms and topic areas for Mixin guide files, see the
descriptions of the <Insert Index Header>, <Insert Index Topic>, <Insert Topic
Area Header>, and <Insert Topic Area Topic> commands on page 10-195,
page 10-196, page 10-192, and page 10-193, respectively.

Defining Topics for Topic Areas and Index Terms 10-139

I
(j)
c: c:
CD

g>
:::::!.

"C -

CHAPTER 10

Guide Script Command Reference

Specifying "Look For" Help

10-140

You can specify the text that appears above the search phrase entry box in the
Full Access window and the search string using the <Look For Instruction>
and <Look For String> commands. You can also specify text instructing the
user to click the Search button and to select a topic using the <Look For Search
Btn Instruction> and <Look For Results Instruction> commands.

You can use the <Ignore>, <Exception>, and <Synonym> commands to control
how Apple Guide searches your index terms when the user directs it to. When
the user enters text in the search phrase entry box and then clicks Search, Apple
Guide searches your index terms for a matching entry. You can optionally
provide a list of words that Apple Guide should ignore (remove from the
user's entered text string) when searching, a list of words that Apple Guide
should not stem, and a list of words that are synonymous with another word.

In general, Apple Guide first

• removes from the string words that are specified in the ignore list.

• stems the remaining words, except for words on the exception list.

• searches the list of synonyms for the parsed phrase and, if it is found,
replaces it with the equivalent index term and searches the index for this
phrase. If it finds the phrase in the index, Apple Guide displays the topics
associated with the matched index term.

If Apple Guide does not find the phrase in the synonym list, then Apple Guide

• searches the list of synonyms again, this time for each word in the parsed
phrase. If it finds a word on the synonym list, it replaces the synonym with
its equivalent index term.

• searches the index for the entire phrase (with synonyms for individual words
replaced by their equivalent index term). If it finds this phrase in the index,
Apple Guide displays the topics associated with the index term.

• searches for each word in the list of index terms. If Apple Guide finds a
matching index term for more than one word in the phrase, Apple Guide
intersects the results and displays any topics that are common to all words
in the phrase.

Specifying "Look For" Help

CHAPTER 10

Guide Script Command Reference

For example, consider the phrase /iHow do I view files?"

liHow do I Original phrase entered by user
view files?"

/iview files"

uview file"

11View file"

Apple Guide removes words on ignore list (assuming uhow",
lido", and Iii" are on ignore list)

Apple Guide stems words (does not stem words on exception
list)

Apple Guide looks for phrase in synonym list and replaces
with its index term if found (in this case, /iview file" is not in
the synonym list)

If the phrase is found in the synonym list, Apple Guide looks in the index for a
matching index term and displays the topics associated with the phrase.

If the phrase is not found in the synonym list, Apple Guide searches again.

u open" li file"

/iopen file"

110pen"
11file"

Apple Guide looks for synonyms

Apple Guide replaces each word with its index term if the
word is a synonym (assuming "view" is a synonym for
"open")

Apple Guide looks for /iopen file" in list of index terms; if it
doesn't find this term, Apple Guide continues searching

Apple Guide looks for "open" in list of index terms

Apple Guide looks for "file" in list of index terms

If more than one word has a matching index term, Apple Guide displays the
intersection of topics (if any). If Apple Guide finds a match for only one word,
it displays a message indicating that it couldn't find an intersection for the
word that didn't match and instructs the user to narrow the search phrase.

<Look For Instruction>

You can use the <Look For Instruction> command to specify a phrase that
appears above the search phrase entry box in the Full Access window when
Look For is active.

<Look For Instruction> lookForlnstruction

Specifying "Look For'' Help 10-141

• G>
c: a:
CD
en
()
::3.
"9.
0
0
3
3
~
a.
:D ;.
<»
:::J
g

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

lookF or Instruction
A text string that specifies a phrase to display above the search
phrase entry box.

Apple Guide displays, above the search phrase entry box, the phrase defined in
the lookForlnstruction parameter. Two lines of space are available for the Look
For instruction; Apple Guide automatically wraps the text to fit. You can
include a return character in the Look For instruction if you want to wrap the
text at a specific location. If you specify an empty string, Apple Guide does not
display a Look For instruction.

This command is optional. If you omit this command, Apple Guide displays
the phrase, 111. Click the arrow button to begin, then type one or more words to
search for:" above the search phrase entry box.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

10-142

The <Look For Instruction> command should appear once at most in your
source files for a specific guide file.

#specify a look for instruction
<Look For Instruction> "1. Click the arrow button, then ~
enter a search phrase:"

For information on specifying instructions for the Search button and the list of
topics that appear in the Look For window, see the descriptions of the <Look
For Search Btn Instruction> and <Look For Results Instruction> commands, on
page 10-143 and page 10-144, respectively.

Specifying "Look For'' Help

CHAPTER 10

Guide Script Command Reference

<Look For String>

DESCRIPTION

EXAMPLES

You can use the <Look For String> command to specify the default search
phrase that appears in the search phrase entry box in the Full Access window
when Look For is active.

<Look For String> searchPhrase

searchPhrase A text string that specifies a phrase to display in the search
phrase entry box.

Apple Guide displays, in the search phrase entry box, the phrase defined in the
searchPhrase parameter.

This command is optional. If you omit this command, Apple Guide does not
display any text in the search phrase entry box.

#specify a default search phrase
<Look For String> .. Enter string to search for here ..

<Look For Search Btn Instruction>

You can use the <Look For Search Btn Instruction> command to specify the
default instruction that appears above the Search button in the Full Access
window when Look For is active.

<Look For Search Btn Instruction> buttonlnstruction

buttonlnstruction
A text string that specifies a phrase to display above the Search
button.

Specifying "Look For'' Help 10-143

DESCRIPTION

EXAMPLES

CHAPTER 10

Guide Script Command Reference

Apple Guide displays, above the Search button, the phrase defined in the
buttonlnstruction parameter.

This command is optional. If you omit this command, Apple Guide displays
the phrase "2. Click Search:" above the Search button.

#specify a default instruction for the Search button
<Look For Search Btn Instruction> "2. Click the Search button"

<Look For Results Instruction>

DESCRIPTION

You can use the <Look For Results Instruction> command to specify a phrase
that appears above the list of topics in the Full Access window when Look For
is the active list and the user has performed a successful search.

<Look For Results Instruction> resultslnstruction

resultslnstruction
A text string that specifies a phrase to display above the list of
topics.

Apple Guide displays, above the list of topics, the phrase defined in the
resultslnstruction parameter.

This command is optional. If you omit this command, Apple Guide displays
the phrase 113. Click a phrase, then click OK:" above the list of topics when
Look For is the active list.

SPECIAL CONSIDERATIONS

10-144

The <Look For Results Instruction> command should appear once at most in
your source files for a specific guide file.

Specifying "Look For'' Help

CHAPTER 10

Guide Script Command Reference

EXAMPLES

#specify an instruction above list of topics in Look For
<Look For Results Instruction> 11 3. Click an item, then click OK ...

SEE ALSO

<Ignore>

DESCRIPTION

For information on specifying the instruction that appears above the search
phrase entry box, see the description of the <Look For Instruction> command
on page 10-141. For information on specifying the instruction that appears
above the Search button, see the description of the <Look For Search Btn
Instruction> command on page 10-143.

You can use the <Ignore> command to specify a word or phrase that Apple
Guide should ignore when parsing a search phrase entered by the user when
Look For is active.

<Ignore> ignoreWord

ignore Word A text string that specifies a word or phrase to ignore when
parsing the phrase entered by the user in the search phrase
entry box.

When a user enters a phrase in the search phrase entry box and then clicks
Search, Apple Guide parses the entered phrase, removing any words specified
by <Ignore> commands. (Then it stems common word variations to a root
word; see the <Exception> command, described next, for more details.) Apple
Guide also searches the list of synonyms and finally the list of index terms for
an index term matching the parsed phrase. For example, if the user enters
"How do I view files" and "How", "do", and "I" are on the ignore list
(specified by <Ignore> commands), Apple Guide parses these words from the
entered text, resulting in a search phrase "view files". Apple Guide then stems
words (except for words in the exception list) in the phrase (resulting in "view

Specifying "Look For" Help 10-145

• G)
c::
a:
CD

g>
::::!.
"9.
()
0
3
3
Q)
:J a.
::D

m-
<D
:J
(')
CD

EXAMPLES

10-146

CHAPTER 10

Guide Script Command Reference

file"}, and looks for this phrase in the synonym list. If Apple Guide doesn't find
the phrase in the synonym list, it continues the search process, as described
earlier.

Apple Guide automatically ignores (removes from the search phrase) numerals
and punctuation marks. Using the previous example, Apple Guide parses the
similar phrase "How, do I view 3 files?" to "view file".

#specify words to ignore when parsing the phrase entered
by the user in the search phrase entry box
<Ignore> "a"
<Ignore> "how"
<Ignore> "do"
<Ignore> "I"
<Ignore> "am"
<Ignore> "an"
<Ignore> "are"
<Ignore> "aren't"
<Ignore> "aren't"
<Ignore> "at"
<Ignore> "be"
<Ignore> "cann
<Ignore> "cannot"
<Ignore> "can't"
<Ignore> "can't"
<Ignore> "did"
<Ignore> "for"
<Ignore> "in"
<Ignore> "it"
<Ignore> "its"
<Ignore> "it's"
<Ignore> "it'S 11

<Ignore> "like"
<Ignore> "of"

Specifying "Look For" Help

<Exception>

DESCRIPTION

CHAPTER 1 0

Guide Script Command Reference

<Ignore> "on"
<Ignore> "or"
<Ignore> "not"
<Ignore> "real"
<Ignore> "really"
<Ignore> "that"
<Ignore> "the"
<Ignore> "this"
<Ignore> "to"
<Ignore> "what"
<Ignore> "why"

You can use the <Exception> command to specify a word that should not be
stemmed when Apple Guide parses a search phrase. You typically place a word
on the exception list only if the stemmed form of the word matches an existing
index term.

<Exception> exception Word

exception Word
A text string that specifies a word that should not be stemmed
when Apple Guide parses the search phrase.

After a user enters a phrase in the search phrase entry box and then clicks
Search, Apple Guide parses it. After removing any words specified by
<Ignore> commands, Apple Guide parses the remaining string. When parsing,
Apple Guide parses common word variations to a root word. If Apple Guide
incorrectly stems a word, you usually specify the incorrectly stemmed word as
a synonym for the index term. For example, Apple Guide stems 11 documents"
to II docum", so you typically specify 11 docum" as a synonym for II documents /I
using the <Synonym> command. Alternatively, you could prevent

Specifying "Look For'' Help 10-147

• Ci)
c: a:
CD
en
0
::::!.
"E.
0
0
3
3
P>
:J a.
:D
!.
CD a
:J
0
(1)

CHAPTER 10

Guide Script Command Reference

Apple Guide from stemming the word udocuments" by placing it on the
exception list. But it is usually more convenient to use synonyms.

Thus, you typically use the <Exception> command only if the stemmed form of
the word matches an existing index term. For example, assume ucustom" and
"customizing" are defined as two separate index terms. To prevent Apple
Guide from stemming "customizing" to its root form e~custom"), you can
include "customizing" on the exception list. Thus, if the user enters
"customizing" as a search phrase Apple Guide reports the correct matching
index term.

Also note that if a word or phrase in the exception list is a synonym (that you
have specified using the <Synonym> command), Apple Guide replaces it with
its equivalent index term when parsing. For example, if you have specified the
word 11 editing" in an <Exception> command and also specified in a
<Synonym> command that II editing" is synonymous with 11 copy editing",
when the user enters "editing" in the search phrase, Apple Guide does not

. stem "editing" but does replace it in the search phrase with "copy editing".
Apple Guide then looks for an index term matching u copy editing".

If Apple Guide finds a match, it displays the topics associated with the index
term.

SPECIAL CONSIDERATIONS

EXAMPLES

10-148

Apple Guide performs stemming and uses the exception list only for guide
files that specify the command <World Script> 0, 0.

#specify exception words (word that shouldn't be stemmed)
#you usually place an index term on the exception list
ONLY when the term would otherwise stem to another
index term or whose root form has an alternate meaning
<Exception> "customizing"
<Exception> "customize"
<Exception> "editing"
<Exception> "edition"
<Exception> "editions"

Specifying "Look For" Help

<Synonym>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use the <Synonym> command to specify a synonymous term for an
existing index term. Apple Guide uses the synonym list when parsing a search
phrase.

<Synonym> indexTerm, synonym

index Term

synonym

A text string that specifies an existing index term.

A text string specifying a word or phrase that is synonymous
with the index term specified in the indexTenn parameter.

After a user enters a phrase in the search phrase entry box and clicks Search,
Apple Guide parses it. After removing any words specified by <Ignore>
commands and, except for words on the exception list, stemming common
word variations to a root word, Apple Guide examines the list of synonyms for
the phrase. If the phrase is a synonym specified by a <Synonym> command,
Apple Guide replaces the synonym with its equivalent index term and searches
for the phrase in the list of index terms. (Note that at this point in the search,
Apple Guide searches the list of index terms only if it found the phrase on the
synonym list.)

If Apple Guide does not find the phrase in the synonym list, then Apple Guide
looks in the synonym list again, this time for each word in the parsed phrase. If
Apple Guide finds a word on the synonym list, it replaces the word in the
phrase with its equivalent index term. Apple Guide then looks in the index for
a term matching the parsed phrase (this time any words that are synonyms
have been replaced by their equivalent index terms). If Apple Guide finds a
match for the phrase, Apple Guide displays the topics for the index term. If it
does not find the phrase in the index, Apple Guide searches the list of index
terms for each word. If Apple Guide finds a matching index term for more than
one word in the phrase, Apple Guide intersects the results and displays any
topics that are common to both words.

By using <Synonym> commands, you can increase the likelihood that the
search phrase entered by the user will match an index term. For example, you
can use a <Synonym> command to specify that the index term "copying" has a
synonym II duplic" (which is the stemmed form of the word II duplicate"). In

Specifying "Look For" Help 10-149

•

CHAPTER 10

Guide Script Command Reference

this case, when the user enters the search phrase "duplicate" Apple Guide
stems the word to "duplic", finds Jlduplic" on the synonym list and replaces it
with "copying", then looks in the index for a term matching "copying".

If Apple Guide finds a match, it displays the topics associated with the index
term.

SPECIAL CONSIDERATIONS

10-150

Apple Guide first looks in the synonym list for the reduced phrase, and only
later (if necessary) looks for each word in the synonym list. For example, using
the synonym list shown in Examples, if the user enters the phrase 11How do I
open a file and print it?", Apple Guide parses this search phrase to "open file
print" and looks for this phrase in the synonym list. Apple Guide does not find
this phrase in the synonym list. Note that in this case Apple Guide does not
replace "open file" with "opening" because Apple Guide looks in the synonym
list for the entire phrase, not for phrases within the phrase.

Because the phrase "open file print" isn't in the synonym list, Apple Guide
looks in the list again, this time for each word ("open", "file", and "print").
The word 110pen" is a synonym (for "opening"), "file" is a synonym (for
11documents"), and 11print" is a synonym (for 11printing"). Mter replacing each
word with its equivalent index term (if any), the parsed phrase becomes
"opening documents printing". Apple Guide looks in the index for this phrase,
and in this example, does not find an index term for the phrase. So Apple
Guide looks in the index for each word in the phrase and displays the
intersection of the result.

If no topics are common to both words, Apple Guide instructs the user to
narrow the search. For example, the user might narrow the search to "How do
I open a file?" In this case, Apple Guide reduces the phrase to "open file" and
does replace the phrase with its equivalent index term, 11 opening".

Note that for a multi-word index term that contains one or more words that are
synonyms, you need to create a synonym which is an exact equivalent of the
index term. For example, assume the synonym list is as shown in Examples.
Because this list doesn't include a synonym for the index term 11 file server",
when the user enters this phrase Apple Guide looks in the synonym list for
the entire phrase. If it fails to find a synonym for the entire phrase, it looks
in the synonym list for each word, replacing "file" with "documents". Apple
Guide then looks in the index for the phrase "documents server". If it fails to
find the phrase in the index, it then looks in the index for each word and

Specifying "Look ForSI Help

EXAMPLES

CHAPTER 10

Guide Script Command Reference

intersects the results. Thus, as demonstrated in this example, Apple Guide will
not report a successful search for the phrase "file server". Therefore, you must
create a synonym which is an exact equivalent of the index term

<Synonym> "file server", "file server"

In summary, you only need to create a synonym that is an exact equivalent of
the index term if the index term contains multiple words, and one or more
words in the phrase are synonyms for other index terms.

#specify words that are synonymous with existing index term
#specify an existing index term, then the synonym
<Synonym> "copying", "clone"
<Synonym> "copying", "duplic"
<Synonym> "copying", "copy"
<Synonym> "copying", "Copy command"
<Synonym> "deleting", "Clear command"
<Synonym> "deleting", "cut"
<Synonym> "deleting", "Cut command"
<Synonym> "deleting", "delet"
<Synonym> "deleting" , "delete"
<Synonym> "deleting", "get rid"
<Synonym> "documents", "docum"
<Synonym> "documents", "file"
<Synonym> "memory", "RAM"
<Synonym> "memory", "memory available 11

<Synonym> "opening", "double click"
<Synonym> "opening", "open"
<Synonym> "opening", "Open command 11

<Synonym> "opening", "open file"
<Synonym> "openingn, "execute"
<Synonym> "opening", 11 run"

Specifying "Look For" Help 10-151

• G>
c: c:
CD
en
n
::::!.

"2
0
0
3
3
I»
::::! a.
:D

m-
CiJ
::::!

~

CHAPTER 10

Guide Script Command Reference

<Synonym> .. Page Setup", .. landscape ..
<Synonym> .. Page Setup", .. landscape print"
<Synonym> .. Page Setup", "page format"
<Synonym> "Page Setup", "Page Setup command"
<Synonym> "Page Setup", "paper size ..
<Synonym> "Page Setup", "portrait ..
<Synonym> 11 Page Setup", .. printer choice ..
<Synonym> .. Page Setup", "printer option ..
<Synonym> 11 Page Setup", "print choice"
<Synonym> 11 Page Setup", "print option"
<Synonym> .. pop-up menu", .. pop up"
<Synonym> 11 pop-up menu", .. pop up menu"
<Synonym> 11 pop-up menu", .. popup"
<Synonym> 11 pop-up menu", "popup menu"
<Synonym> .. printer drivers .. , .. print driver"
<Synonym> "printer drivers .. , .. print software ..
<Synonym> "printer drivers .. , "printer driver ..
<Synonym> "printer drivers", "printer software"
<Synonym> "printing .. , "print"
<Synonym> "printing .. , "printer ..
<Synonym> "printing", "print file"
<Synonym> 11 printing .. , "print window"
<Synonym> "printing", "Print command"
<Synonym> .. printing", "ImageWrit"
<Synonym> "printing", "LaserWrit"
<Synonym> .. printing", "spool"

Specifying Conditional Execution

10-152

You can dynamically adjust the display of panels according to conditions that
you specify by using the commands described in this section. For these
commands (<If>, <Skip ff>, <Make Sure>, and <Start Making Sure>), you can
specify as a condition function any condition defined with the <Define Context
Check> command as well as Guide Maker's two built-in condition functions,
checkBoxState and radioButtonState.

Specifying Conditional Execution

<If>

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

You can use the <If> command to specify a condition that determines whether
statements that follow it are executed.

<If> condition

condition A condition function, either single or compound, that returns a
Boolean value. Guide Script provides several built-in condition
functions, such as radioButtonState and checkBoxState.
You can also define your own condition functions using the
<Define Context Check> command.

You can use the <If> command, in combination with the <End If> command, to
specify conditional execution of one or more commands. You can also use an
<Else> command with an <If> command. Apple Guide executes the statements
between an <If> command and an <End If> (or <Else>) command only if the
condition evaluates to TRUE. Apple Guide executes the statements between an
<Else> command and an <End If> command only if the condition evaluates to
FALSE.

This is the general structure of conditional execution:

<If> condition
statement(s)

<Else>
statement(s)

<End if>

#executed if true

#executed if false

You typically use conditional statements to dynamically adjust the sequence of
panels presented to the user by specifying conditions that check the current
state of user settings (such as radio buttons or checkboxes), other settings (such
as the current date), or the state of the user's environment (such as whether a
particular folder is open).

You can specify a single condition function or combine several condition
functions into a compound condition using Guide Script's built-in compound

Specifying Conditional Execution 10-153

• Ci)
c: a:
CD
(J)
0
::::!.
"9.
0
0
3
3
S»
:J
a.
::D

m-
(D
:J

~

CHAPTER 10

Guide Script Command Reference

operators AND, OR, and NOT; you can also use parentheses to further qualify the
condition. For example:

#example of AND functionA () AND functionS()
#example of OR functionA () OR functions ()
#example of NOT functionA () AND NOT(functionB())
#example of all

functionA() AND (NOT(functionB()) OR functionC())

The Standard Setup file defines various context checks (such as OpenWindow,
InSystemFolder, and ControlPanelWinActi ve) that you can use to
specify a condition in the <If> command (and also in the <Skip If>, <Make
Sure>, and <Start Making Sure> commands).

SPECIAL CONSIDERATIONS

EXAMPLES

Every <If> command must be balanced with a corresponding <End If>
command. You cannot nest <If> commands more than four levels deep.

<Define Sequence> "How do I create an index?"
<Panel> "1st panel always display"
<If> radioButtonState("Sook Index", "1st panel always display")

<Panel> "Panel 2 if true"
<Panel> "Panel 3 if true"

<Else>
<Panel> "Panel 2 if false"
<Panel> "Panel 3 if false"

<End if>
<Panel> "last panel always display"

<End Sequence>

10-154 Specifying Conditional Execution

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "How do I create an index?"
<Panel> "Index Choices 2"
<If> radioButtonState("Book Index", "Index Choices 2")

<Panel> "How do I create a book index?"
<Else>

<Panel> "How do I create a chapter index?"
<End if>

<End Sequence>

<Define Sequence> "How do I create an index example 2?"
<Panel> "Index Choices 2"
<If> radioButtonState("Book Index", "Index Choices 2")

<Panel> "Book index:intro"
<Skip If> myCheckTemplateisOpen("index")

<Panel> "index template:open"
<Panel> "Book index:create"

<End if>
<End Sequence>

<Define Sequence> "How do I create an index example 3?"
<Panel> "Index Choices 2"
<If> radioButtonState("Book Index", "Index Choices 2")

<Panel> "Book index:intro"
<If> NOT myCheckTemplateisOpen("index")

<Panel> "index template:open"
<Panel> "index template:create new"

<End if>
<Panel> "Book index:create"

<End if>
<End Sequence>

Specifying Conditional Execution 10-155

Ci)
c a:
CD
en
0
:::l.

"S
()
0
3
3
Q)
:::::J
0.

::IJ
!2.
CD
<D
:::::J

~

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "How do I add a word to the dictionary?"
<Panel> "AddWords intro"
#OpenWindow is a context check defined in Standard Setup file
<If> NOT OpenWindow('WAVE', "Dictionary")

<Panel> "AddWords open dictionary"
<End if>
<Make Sure> OpenWindow('WAVE', "Dictionary"), "SwContinueSeq"

<Panel> "AddWords summary"
<End Sequence>

SEE ALSO

<Else>

DESCRIPTION

10-156

For information on the <Define Context Check> command, see page 10-172.
For information on the <End If> command, see page 10-158. The <Else>
command is described next.

You can use the <Else> command to specify statements to execute when a
condition specified by a previous <If> command evaluates to FALSE.

<Else>

You can use the <Else> command, preceded by an <If> command, to specify
conditional execution of one or more commands. Use the <End If> command
to signal the end of the conditional execution of the <Else> branch of the
condition. Apple Guide executes the statements between an <If> command and
an <Else> command only if the condition evaluates to TRUE. Apple Guide
executes the statements between an <Else> command and an <End If>
command only if the condition evaluates to FALSE.

This is the general structure of conditional execution:

Specifying Conditional Execution

CHAPTER 10

Guide Script Command Reference

<If> condition
statement(s)

<Else>
statement(s)

<End if>

#executed if true

#executed if false

You typically use conditional statements to dynamically adjust the sequence of
panels presented to the user by specifying conditions that check the current
state of user settings (such as radio buttons or checkboxes), other settings (such
as the current date), or the state of the user's environment (such as whether a
particular folder is open).

SPECIAL CONSIDERATIONS

EXAMPLES

Every <Else> command must be preceded with a corresponding <If>
command and followed by an <End If> command.

<Define Sequence> "How do I create an index?"
<Panel> "1st panel always display"
<If> radioButtonState("Book Index", "1st panel always display")

<Panel> "Panel 2 if true"
<Panel> "Panel 3 if true"

<Else>
<Panel> "Panel 2 if false"
<Panel> "Panel 3 if false"

<End if>
<Panel> "last panel always display"

<End Sequence>

Specifying Conditional Execution 10-157

• Ci)
c
0:
(1)

en
0
~.

"9.
(')
0
3
3
~ a.
:IJ

m-
(13
:l
0
(1)

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "How do I create an index?"
<Panel> "Index Choices 2"
<If> radioButtonState("Book Index", "Index Choices 2")

<Sequence> "How do I create a book index?"
<Else>

<Sequence> "How do I create a chapter index?"
<End if>

<End Sequence>

SEE ALSO

<End If>

DESCRIPTION

10-158

For information on the <Define Context Check> command, see
page 10-172. For information on the <If> command, see page 10-153.

You use the <End If> command to specify the end of a sequence of commands
in a conditional execution.

<End If>

You can use the <End If> command, in combination with an <If> command, to
specify conditional execution of one or more commands. You can also use an
<Else> command with an <If> command. Apple Guide executes the statements
between an <If> command and an <End If> (or <Else>) command only if the
condition evaluates to TRUE. Apple Guide executes the statements between an
<Else> command and an <End If> command only if the condition evaluates to
FALSE.

This is the general structure of conditional execution:

Specifying Conditional Execution

CHAPTER 10

Guide Script Command Reference

<If> condition
statement(s)

<Else>
statement(s)

<End if>

#executed if true

#executed if false

SPECIAL CONSIDERATIONS

EXAMPLES

Every <If> command must be balanced with a corresponding <End If>
command. You cannot nest <If> commands more than four levels deep.

<Define Sequence> "How do I create an index?"
<Panel> "1st panel always display"
<If> radioButtonState("Book Index", "1st panel always display")

<Panel> "Panel 2 if true"
<Panel> "Panel 3 if true"

<Else>
<Panel> "Panel 2 if false"
<Panel> "Panel 3 if false"

<End if>
<Panel> "last panel always display"

<End Sequence>

<Define Sequence> "How do I create an index?"
<Panel> "Index Choices 2"
<If> radioButtonState("Book Index", "Index Choices 2")

<Sequence> "How do I create a book index?"
<Else>

<Sequence> "How do I create a chapter index?"
<End if>

<End Sequence>

Specifying Conditional Execution 10-159

• G>
c: a:
<D
en
()
::!.
'9.
()
0
3
3
s:u
:;,
a.
JJ

~ a
:;,

fa

SEE ALSO

<Skip If>

DESCRIPTION

10-160

CHAPTER 10

Guide Script Command Reference

For information on the and <Else> commands, see page 10-153 and
page 10-156, respectively.

You can use the <Skip If> command to specify a condition that determines
whether the next panel should be displayed.

<Skip If> condition

condition A condition function, either single or compound, that returns a
Boolean value. Guide Script provides several built-in condition
functions, such as radioButtonState and checkBoxState.
You can also define your own condition functions using the
<Define Context Check> command.

You can use the <Skip li> command to specify conditional display of the panel
specified in the following <Panel> command. Apple Guide skips the panel
(does not display it) only if the condition evaluates to TRUE. Apple Guide
displays the panel if the condition evaluates to FALSE.

This is the general structure of conditional display of a panel:

<Skip If> condition
#skip this panel if condition is true, display if false

<Panel> "skip panel if condition true"
#continue with other commands
#always show this panel
<Panel> "example panel"

You typically use conditional statements to dynamically adjust the sequence of
panels presented to the user by specifying conditions that check the current
state of user settings (such as radio buttons or checkboxes), other settings (such

Specifying Conditional Execution

CHAPTER 10

Guide Script Command Reference

as the current date), or the state of the user's environment (such as whether a
particular folder is open).

You can specify a single condition function or combine several condition
functions into a compound condition using Guide Script's built-in compound
operators AND, OR, and NOT; you can also use parentheses to further qualify the
condition. For example:

#example of AND functionA () AND functionS()
#example of OR functionA () OR functionS()
#example of NOT functionA () AND NOT(functionS())
#example of all

functionA () AND (NOT(functionS()) OR functionC())

SPECIAL CONSIDERATIONS

If a <Skip If> command immediately precedes a <Make Sure> command, the
<Make Sure> command is not evaluated if the <Skip If> condition is true. For
example:

<Skip If> condition
#skip this panel (and any <Make Sure> commands) if condition is
true; if false, evaluate <Make Sure> commands
<Make Sure> makeSureCondition, oopsSeq #eval if condition false
<Make Sure> makeSureCondition2, oopsSeq #eval if condition false

<Panel> "skip panel if condition true"
#continue with other commands
#always show this panel
<Panel> "example panel"

EXAMPLES

<Define Sequence> "How do I use the dictionary?"
#check whether the dictionary file is already open -
#if it isn't open, tell the user how to open it
#(isDictionaryOpen is application-defined context check)

Specifying Conditional Execution 10-161

• Ci)
c c:
CD

w
::::!.
-g
()
0
3
3
S»
::l
a.
:D ;.
a;
::l
()
CD

CHAPTER 10

Guide Script Command Reference

<Skip If> isDictionaryOpen("SurfWriter Dictionary")
<Panel> "instruct user how to open dictionary"

<Make Sure> isDictionaryOpen("SurfWriter Dictionary"), "SwContSeq"
<Panel> "how to use the dictionary"

<End Sequence>

<Define Sequence> "How do I add a word to the thesaurus?"
<Panel> "AddWords intro"
#OpenWindow is a context check defined in Standard Setup file
<Skip If> OpenWindow('WAVE', "Thesaurus")

<Panel> "AddWords open thesaurus"
<Make Sure> OpenWindow('WAVE', "Thesaurus"), "SwContinueSeq"

<Panel> "AddWords summary"
<End Sequence>

SEE ALSO

For information on the <Define Context Check> command, see page 10-172.

<Make Sure>

10-162

You can use the <Make Sure> command to specify a condition that must be
true in order for the next panel to be displayed and to specify a sequence to
display (the sequence to display is referred to as an Oops or Continue
sequence) if the condition isn't true.

<Make Sure> condition, oopsOrContinueSequenceName

condition A condition function, either single or compound, that returns a
Boolean value. Guide Script provides several built-in condition
functions, such as radioButtonState and checkBoxState.
You can also define your own condition functions using the
<Define Context Check> command.

Specifying Conditional Execution

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

oopsOrContinueSequenceName
A text string specifying the sequence name of the sequence to
display if the condition evaluates to FALSE.

You can use the <Make Sure> command to specify conditional display of the
panel specified in the <Panel> command that follows it. Apple Guide displays
the panel only if the condition evaluates to TRUE. Apple Guide displays the
specified sequence if the condition evaluates to FALSE.

If the condition is false, the sequence Apple Guide displays is referred to as an
Oops sequence (if the sequence instructs the user to correct the problem) or a
Continue sequence (if the sequence performs the task for the user). Note that
Apple Guide does not display the sequence title of an Oops or Continue
sequence. Instead, Apple Guide displays the main sequence title as the Oops or
Continue sequence title.

Oops sequences should follow special rules. An Oops sequence should
generally consist of one panel, giving the user information on how to correct
the problem. Use a tag and indented body format for panels in an Oops
sequence. Use the tag "Oops" or its localized equivalent. You should also
provide an OK button centered under the panel text. You should provide a
function that, when the user clicks the OK button in a panel of an Oops
sequence, either returns the user to a previous panel giving instructions on
how to correct the problem, or closes the Oops sequence and returns the user to
the next panel in the original sequence. You can use the GoBack event function
to do this.

Continue sequences should also follow special rules. A Continue sequence
should consist of one panel, telling the user that Apple Guide is performing the
task for them. Use the full format for panel text and provide a Continue button
centered under the panel text. To perform the task for the user, your panel
definition typically includes an <On Panel Show> command. When Apple
Guide displays a Continue panel with this command, it executes the specified
event function, which should perform the task for the user. For example, an
event function might send one or more Apple events to direct the target
application to accomplish the task. You should also provide a function that
closes the Continue sequence and returns the user to the next panel in the
original sequence when the user clicks the Continue button in a panel of a
Continue sequence. You can use the GoBack event function to do this.

Specifying Conditional Execution 10-163

• G')
c: c:
<D
en
0
::1.
"S
0
0
3
3
S»
::J a.
:D

m-
(i)
::J

£

10-164

CHAPTER 10

Guide Script Command Reference

This is the general structure of conditional display of a panel using the <Make
Sure> command:

<Make Sure> condition, oopsOrContinueSequenceName
#(if condition is false,
display the oopsOrContinueSequenceName sequence)
if condition is true, display this panel

<Panel> "show panel if condition true"
#continue with other commands
#always show this panel
<Panel> "example panel"

You typically use the <Make Sure> command to ensure that a particular
condition is true before allowing the user to continue. You define an Oops
sequence to guide the user toward correcting the problem and a Continue
sequence if you can perform the task for the user. For example, if a panel
requires that a particular window be open, you can use a <Make Sure>
command with a condition function that tests whether the window is open.
If so, the user can continue with the next panel. Otherwise, you can either
provide an Oops sequence that instructs the user to open the window before
continuing or provide a Continue sequence that opens the window for the user.

The <Make Sure> command applies only to the next panel in the sequence
(however, the GoBack function may update the condition, as explained in the
following paragraphs). You can combine <Make Sure> and <Skip If>
commands and apply them to a single panel. You should not compound
functions in the condition parameter for the <Make Sure> command. Instead,
if needed you can apply several <Make Sure> conditions, each with their own
Oops or Continue sequence, to a single panel.

To apply a Make Sure condition to several panels, use the <Start Making Sure>
and <End Making Sure> commands.

When the user clicks a navigation arrow to move to the next panel and the next
panel is preceded by a <Make Sure> command, Apple Guide checks the
condition associated with the <Make Sure> command before displaying the
next panel. If the condition is false, Apple Guide displays the associated Oops
or Continue sequence. If you use the GoBack event function, when the user
clicks OK in the Oops sequence or Continue in the Continue sequence the
GoBack function determines whether the condition has been met. If so, the
GoBack function returns the user to the next panel in the original sequence.

Specifying Conditional Execution

CHAPTER 10

Guide Script Command Reference

If the condition has not been met, then the GoBack function works backwards
from the original panel until it finds a panel that it can show.

For example, consider a sequence that contains these statements:

<Panel> "first panel"
<Make Sure> conditionl, oopsSequenceName
if condition! is true, display this panel

<Panel> "show panel if condition true"
#continue with other commands
<Panel> 11 Some panel"
<Make Sure> condition2, oops2SequenceName
if condition2 is true, display this panel

<Panel> "example panel"

If the condition specified by condition1 is true, Apple Guide displays the
following panel and other panels as the user navigates through them. If the
user is viewing the panel named "some panel" in this example and then clicks
the right arrow to navigate to the panel named "example panel", Apple Guide
evaluates the condition specified by condition2. If the condition is true, Apple
Guide displays the next panel ("example panel"). If the condition isn't true,
Apple Guide displays the sequence named oops 2 SequenceName and allows
the user to correct the problem. If the user fixes the problem and then clicks
OK, the GoBack function proceeds to the next panel ("example panel"). If the
user clicks OK but has not fixed the problem, the GoBack function returns to
"some panel".

The Oops sequence should tell the user how to correct the problem associated
with the condition. Apple Guide hides the current panel while the Oops
sequence is displayed. Once the user satisfies the condition specified in the
<Make Sure> command, you can close the Oops sequence and return to the
original sequence (the panel following the <Make Sure> command).

The Continue sequence should inform the user that Apple Guide is performing
the task for the user. Note that if the user clicks the Continue button before the
task completes, Apple Guide may return the user to a previous panel rather
than the next panel in the sequence. Thus, your Continue panel should always
instruct the user to wait until the task completes before clicking the Continue
button. Once the task is complete and the user clicks Continue, you can close

Specifying Conditional Execution 10-165

Ci)
c: a:
<1>
C/)
0
::l.

'2.
(')
0
3
3
~ a.
ll

m-
@
::J
0
<1>

CHAPTER 10

Guide Script Command Reference

the Continue sequence and return to the original sequence (the panel following
the <Make Sure> command).

The file Standard Setup is provided with Guide Maker. This file defines the
GoBack function. If you include the Standard Setup file in your build file, you
can automatically use the GoBack function as needed in your source files.

The Standard Setup file also defines various context checks (such as
OpenWindow, InSystemFolder, and ControlPanelWinActive) that you
can use to specify a condition in the <Make Sure> command (and also in the
<If>, <Skip If>, and <Start Making Sure> commands).

SPECIAL CONSIDERATIONS

EXAMPLES

10-166

You cannot apply a <Make Sure> condition to the first panel in a <Jump>
sequence. For this reason, be careful when applying <Skip If> and <Make
Sure> commands to introductory panels because the restriction on the <Make
Sure> command applies to any panel that may appear first.

If you specify more than one <Make Sure> command for a panel, Apple Guide
evaluates the conditions in the reverse order from the way they appear in your
source file. That is, the <Make Sure> command closest to the <Panel>
command is evaluated first.

#sequence definition for an Oops sequence
<Define Sequence> "instruct user to open dictionary"

<Sequence Prompt Set> NONE
<Define Panel> "Oops panel: Open dictionary ..

<Format> 11 0opsTag" #a defined format
Oops

<Format> 11 00psTextn #a defined format
You need to open the SurfWriter Dictionary.
Click OK for instructions (or open the
dictionary, then click OK).

<Standard Button> .. OK .. , Center, GoBack()
<End Panel>

<End Sequence>

Specifying Conditional Execution

CHAPTER 10

Guide Script Command Reference

#sequence definition that uses <Make Sure> and Oops
<Define Sequence> "How do I use the dictionary?"

<Panel> "intro to dictionary"
#now make sure that the dictionary file is open before
allowing the user to go to the next panel;
if it isn't open, tell the user how to open it
by providing an Oops sequence
#(isDictionaryOpen is application-defined context check)
<Make Sure> isDictionaryOpen(11 SurfWriter Dictionary~~),

"instruct user to open dictionary" #oops seq.
<Panel> 11 finding a word in the dictionary"

<Panel> 11 Special dictionaries"
<End Sequence>

#sequence definition for a Continue sequence
<Define Sequence> "open dictionary for the user"

<Seq Nav Button Set> NONE
<Define Panel> "Continue panel: Opening dictionary"

<Format> 11 Full" #a defined format
Please wait a moment. Apple Guide is assisting you by
opening the SurfWriter dictionary.

#this 3D button (Continue) is in Standard Resources
<3D Button> 1070, 1072, Center, GoBack()
#use prompt text: 11 Wait until the dictionary is open,
#then click Continue."
<Panel Prompt> "Wait while AG opens dictionary"
#specify event function that Apple Guide executes
upon showing the panel; specify your own event
function or a built-in event function
<On Panel Show> DoScript("openSWDictionary 11

)

<End Panel>
<End Sequence>

Specifying Conditional Execution 10-167

• G)
c:
a:
(I)

(/)
0
~.
-g.
(")
0
3
3
I»
::J a.
::D

~
<D
::J

~

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#sequence definition that uses <Make Sure> and Continue
<Define Sequence> "How do I use the dictionary?"

<Panel> "intra to dictionary"
#now make sure that the dictionary file is open before
allowing the user to go to the next panel;
if it isn't open, open it for the user
by providing a Continue sequence
#(isDictionaryOpen is application-defined context check)
<Make Sure> isDictionaryOpen("SurfWriter Dictionary"),

"open dictionary for the user" #continue seq.
<Panel> "finding a word in the dictionary"
<Panel> "special dictionaries"

<End Sequence>

For information on the <Define Context Check>, <Define Event>, and <On
Panel Show> commands, see page 10-172, page 10-178, and page 10-185.

<Start Making Sure>

10-168

You can use the <Start Making Sure> command to specify a condition that
must be true for all panels preceding the next <End Making Sure> command in
order for each panel to be displayed. Like the <Make Sure> command, you also
specify an Oops or Continue sequence to display if the condition isn't true.

<Start Making Sure> condition, oopsOrContinueSequenceName

condition A condition function, either single or compound, that returns a
Boolean value. Guide Script provides several built-in condition
functions, such as radioButtonState and checkBoxState.
You can also define your own condition functions using the
<Define Context Check> command.

Specifying Conditional Execution

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

oopsOrContinueSequenceName
A text string specifying the sequence name of the sequence to
display.

You can use the <Start Making Sure> command to specify conditional display
of all panels that precede the next <End Making Sure> command. Apple Guide
displays a panel only if the condition evaluates to TRUE. Apple Guide displays
the specified sequence if the condition evaluates to FALSE.

This is the general structure of conditional display of a panel using the <Make
Sure> command:

#specify a condition that must be true for all panels
between <Start Making Sure> and <End Making Sure>
<Start Making Sure> condition, oopsOrContinueSequenceName
#for each panel, display the panel if the condition is true
(if condition is false, display oopsOrContinueSequenceName seq.)

<Panel> "show panel 1 if condition true ..
<Panel> "show panel 2 if condition still true ..
<Panel> "show panel 3 if condition still true"

<End Making Sure>
#always show this panel
<Panel> .. example panel ..

You typically use the <Start Making Sure> command to ensure that a particular
condition is true for a series of panels. You define an Oops sequence to guide
the user toward correcting the problem before allowing the user to continue.
You define a Continue sequence to perform the task for the user. For example,
if all panels in a series require that a particular window remain open, you can
use a <Start Making Sure> command with a condition function that tests
whether the window is open. If it is, the user can continue with the next panel.
Otherwise, you can either provide an Oops sequence that instructs the user to
open the window before continuing or provide a Continue sequence that opens
the window for the user.

The <Start Making Sure> command applies to all panels preceding an <End
Making Sure> command. You can also apply <Make Sure>, <If>, and <Skip If>

Specifying Conditional Execution 10-169

I
G>
c:
0:
(1)

en
Q
"§:
0
0
3
3
Dl
::I
a.
JJ
~
(1)

a;
::I
C)
(1)

CHAPTER 10

Guide Script Command Reference

commands to any panel in the sequence. You should not compound functions
in the condition parameter for the <Start Making Sure> command. Instead, if
needed you can apply several <Start Making Sure> conditions, each with their
own Oops or Continue sequence, to a single panel.

Apple Guide continues to update conditions specified in <Start Making Sure>
commands as the user moves through a sequence.

Apple Guide hides the current panel while the Oops or Continue sequence is
displayed. Once the condition specified in the <Start Making Sure> command
is performed and the user clicks OK or Continue, you can close the Oops or
Continue sequence and return the user to the original sequence (the panel
following the <Make Sure> command).

SPECIAL CONSIDERATIONS

You cannot apply a <Start Making Sure> condition to the first panel in a
<Jump> sequence. Be careful when applying <Skip If> commands and <Start
Making Sure> commands to introductory panels; the restriction on the
<Start Making Sure> command applies to any panel that may appear first.

A <Start Making Sure> command must always be matched by a following
<End Making Sure> command.

If you specify a series of commands that includes a <Start Making Sure>
command, a <Jump Sequence> command, and an <End Making Sure>
command, the <Start Making Sure> condition will not apply to any panels
referenced through the <Jump Sequence> command.

EXAMPLES

<Define Sequence> "How do I use the dictionary?"
<Panel> "intra to dictionary"
#specify a condition that must be true for all panels
between <Start Making Sure> and <End Making Sure>
#(isDictionaryOpen is an application-defined context check)
<Start Making Sure> isDictionaryOpen("SurfWriter Dictionary"),

10-170

"instruct user to open dictionary" #oops
<Panel> "finding a word in the dictionary"
<Panel> "finding synonyms in the dictionary"

Specifying Conditional Execution

CHAPTER 10

Guide Script Command Reference

<Panel> "getting a list of adverbs from the dictionary"
<End Making Sure>

<End Sequence>

SEE ALSO

For information on the <Define Context Check> command, see page 10-172.

<End Making Sure>

DESCRIPTION

You can use the <End Making Sure> command to end the condition checking
specified in a previous <Start Making Sure> command.

<End Making Sure>

The <End Making Sure> command specifies the end of condition checking
begun by a previous <Start Making Sure> command. Apple Guide stops
evaluating the condition specified by a <Start Making Sure> command when it
encounters an <End Making Sure> command.

SPECIAL CONSIDERATIONS

A <Start Making Sure> command must always be matched by a following
<End Making Sure> command.

EXAMPLES

<Define Sequence> "How do I use the dictionary?"
<Panel> "intro to dictionary"
#specify a condition that must be true for all panels
between <Start Making Sure> and <End Making Sure>
#(isDictionaryOpen is an application-defined context check)

Specifying Conditional Execution 10-171

Ci)
c:
0:
(I)

en
(')
::::!.
"E.
()
0
3
3
p)
~ a.
:D ;.
m
:::1
(')
(I)

CHAPTER 10

Guide Script Command Reference

<Start Making Sure> isDictionaryOpen("SurfWriter Dictionary"),
"instruct user how to open dictionary" #oops

<Panel> "finding a word in the dictionary"
<Panel> "finding synonyms in the dictionary"
<Panel> "getting a list of adverbs from the dictionary"

<End Making Sure>
<End Sequence>

SEE ALSO

For information on the <Start Making Sure> command, see page 10-168.

Defining and Using Context Checks

You can define your own condition functions (context checks) using the
<Define Context Check> command. In addition, Guide Maker provides two
built-in condition functions, checkBoxState and radioButtonState. You
can specify condition functions in the <If>, <Skip If>, <Make Sure>, and <Start
Making Sure> commands.

<Define Context Check>

10-172

You can use the <Define Context Check> command to define a context check
that you can use in later commands to dynamically adjust the display of panels.

<Define Context Check> contextCheckName, codeResSpec [, targetApp)
[, additionalParam] [, additionalParam]
[, ...]

contextCheckName
A text string specifying the name of this context check. The
name must be a single-word string (no spaces) and should be as
descriptive as possible.

Defining and Using Context Checks

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

codeResSpec A four-character sequence specifying the resource name of an
external code module that contains the code that performs the
context check. (An external module must have a four-character
resource name, a resource type of I extm I , and a resource 10
greater than 2000.)

targetApp A four-character sequence specifying the signature of the target
application or the constant FRONT. This parameter is optional. If
it is omitted, Apple Guide uses FRONT as the default.

additionalParam
One or more additional parameters, of the form

data type [:default value]

where data type is a constant with an optional default value. To
specify the data type, use one of these constants:
SHORT
LONG
PSTRING
LPSTRING
OS TYPE

To specify a default value, include a colon followed by the value
after the data type. By default, if you specify a value as SHORT
or LONG, the value is treated as a decimal number. To specify a
hexadecimal number, precede the number by Ox. If you provide
a default value for a parameter, then the caller does not specify
this parameter when the context check is used in another
command.

For strings, you should specify LPSTRING if you intend for the
string to be localized. Guide Maker's Localize utility extracts
from the <Define Context Check> command strings that are
specified by LPSTRING but not strings specified by PSTRING.

Avoid providing a default value if you specify LPSTRING or
PSTRING as the data type of the additional parameter. Instead,
require that the caller of the context check provide this
information.

The <Define Context Check> command defines a context check. You typically
use a context check to dynamically adjust the display of panels based on

Defining and Using Context Checks 10-173

• G>
c a:
<D
en
0
::::!.
"9.
(')
0
3
3
Q)
:::l a.
:0

m-
<D
:::l
0
<D

EXAMPLES

10-174

CHAPTER 10

Guide Script Command Reference

conditions that Apple Guide or your context check can detect. For example,
Guide Maker provides two built-in context checks, checkBoxState and
radioButtonState, that return the state of a checkbox or radio button.

After defining a context check, you can reference the context check in <If>,
<Skip If>, <Make Sure>, and <Start Making Sure> commands.

Apple Guide passes parameters specified in additionalParam and following
parameters to the context check. The context check should take the appropriate
action and then return a value of TRUE or FALSE.

The file Standard Resources is provided with Guide Maker. This file contains
external code modules, defined as resources of type ' extm' . The Standard
Setup file contains <Define Context Check> commands that reference each
external module. The context checks defined by these commands can be used
to specify a condition in <If>, <Skip If>, <Make Sure>, and <Start Making
Sure> commands.

#define a context check called "isSomethingActive"
#(with resource name 'MyEM')
that has 3 parameters: the first (short) and
third (long) are specified by the context check to have
default values of 10 and 30
the second parameter is of type LPSTRING and the caller
is required to provide this value
<Define Context Check> "isSomethingActive", 'MyEM', 'WAVE',

SHORT:lO, LPSTRING, LONG:30
<Define Sequence> "using the ruler"

<If> isSomethingActive("Objectl")
<Panel> "Panel to display if context check is true"

<Else>
<Panel> "Panel to display if context check is false"

<End If>
<End Sequence>

Defining and Using Context Checks

SEE ALSO

CHAPTER 10

Guide Script Command Reference

For information on the <If>, <Skip If>, <Make Sure>, and <Start Making Sure>
commands, see page 10-153, page 10-160, page 10-162, and page 10-168,
respectively.

checkBoxState

DESCRIPTION

You can use Guide Maker's built-in context check for checkboxes,
checkBoxState, to determine the state of a checkbox.

checkBoxState (button Title, panelName)

button Title

panelName

A string specifying the checkbox's title, as defined in a
<Checkbox> command.

A string specifying on which panel the checkbox appears.

The checkBoxState context check returns the state of the specified checkbox.
It returns TRUE if the checkbox state is on, FALSE if the checkbox is off. You
usually use the checkBoxState context check in conjunction with <If>,
<Else>, or <Skip If> commands.

EXAMPLES

<Define Panel> "Index Choices 2"

Index choices:

<Checkbox> "Include See Also entries", TRUE
<Checkbox> "Include starting and ending page ranges", FALSE

<End Panel>

Defining and Using Context Checks 10-175

•

CHAPTER 10

Guide Script Command Reference

<Define Sequence> "How do I create an index?"
<Panel> "Index Choices 2"
<If> checkBoxState("Include See Also entries", ~

"Index Choices 2")
<Panel> "How do I create See Also entries?")

<End if>
<If> checkBoxState("Include starting and ending page ranges", ~

"Index Choices 2")
<Panel> "How do I create page ranges for an index entry?"

<End if>
<End Sequence>

SEE ALSO

For information on the <If>, <Else>, and <Skip ff> commands, see page 10-153,
page 10-156, and page 10-160, respectively. For information on the <Checkbox>
command, see page 10-69.

radioButtonState

DESCRIPTION

10-176

You can use Guide Maker's built-in context check for radio buttons,
radioButtonState, to determine the state of a radio button.

radioButtonState (buttonTitle, panelName)

button Title

pane/Name

A string specifying the radio button's title, as defined in a
<Radio Button> command.

A string specifying on which panel the radio button appears.

The radioButtonState context check returns the state of the specified radio
button. It returns TRUE if the radio button is on, FALSE if the radio button is
off. You usually use the radioButtonState context check in conjunction
with <If>, <Else>, or <Skip If> commands.

Defining and Using Context Checks

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

<Define Panel> "Index Choices 2 ..
#Label for this group of radio buttons
What type of index do you want to create?

<Radio Button> "Book Index .. , TRUE
<Radio Button> "Chapter Index", FALSE

<End Panel>

<Define Sequence> "How do I create an index? ..
<Panel> .. Index Choices 2 ..
<If> radioButtonState(.. Book Index .. , .. Index Choices 2 11

)

<Panel> .. How do I create a book index? ..
<Else>

<Panel> .. How do I create a chapter index?"
<End if>

<End Sequence>

For information on the <If>, <Else>, and <Skip If> commands, see page 10-153,
page 10-156, and page 10-160, respectively. For information on the <Radio
Button> command, see page 10-64.

Specifying Events

You can specify an event function and associate it with a particular panel by
using the commands described in this section. This section also describes
Guide Maker's built-in event functions.

Specifying Events 10-177

• G>
c:
c:
(1)

en
(')
::::!.

"S
0
0
3
3
p)
:::J c.
:D

~
<D
:::J
(')
(1)

CHAPTER 10

Guide Script Command Reference

<Define Event>

DESCRIPTION

10-178

You can use the <Define Event> command to define an event function for use
with the following commands: <Standard Button>, <3D Button>, <Define Nav
Button>, <Hot Text>, <Hot Rectangle>, <Hot Object>, <On Panel Create>, <On
Panel Destroy>, <On Panel Show>, and <On Panel Hide>.

<Define Event> event Name, targetApp, eventClass, even tiD
[, IOPTData 1 [, optKey] [, opt Data]

event Name

targetApp

event Class

even tiD

IOPTData

opt Key

opt Data

A text string specifying the name of this event function.

A four-character sequence specifying the signature of the target
application or the constant FRONT. You can use the constant
FRONT to specify the frontmost application. You can use the
signature 1 s * * * I to send an Apple event to Apple Guide.

A four-character sequence that identifies the event class.

A four-character sequence that identifies the event ID.

A short integer that provides data for the I IOPT I keyword.
This parameter is optional. If you provide it, Guide Maker adds
to the Apple event a parameter whose keyword is I IOPT I and
whose data contains the value you specify in the IOPTData
parameter.

A four-character sequence that identifies an additional keyword
for the event. This parameter is optional.

A string providing additional data for the Apple event
parameter whose keyword is specified by optKey. This
parameter is optional. If you provide the opt Key and opt Data
parameters, Guide Maker adds to the Apple event a parameter
whose keyword is specified by optKey and whose data contains
the value you specify in the optData parameter.

The <Define Event> command defines an event function. You typically
associate an event function with another button-defining command, such as
<Standard Button> or <3D Button>. Event functions are used to send an Apple
event to a target application, requesting it to perform some action. When the

Specifying Events

EXAMPLES

CHAPTER 10

Guide Script Command Reference

user clicks a button, Apple Guide calls the event function associated with that
particular button and then sends the event to the specified target application.

In addition to specifying the event class and event ID, you can add two Apple
event parameters to the event you send by using the IOPTData, optKey, and
optData parameters. One parameter is identified by the ' !OPT' keyword, and
you provide data for this Apple event parameter in the IOPTData parameter. In
the optKey parameter, you provide the keyword for the second parameter and
in the optData parameter you provide data for this Apple event parameter.

For example, if an event requires a direct object, specify the keyword for the
direct object in the optKey parameter and specify its data in the optData
parameter. Optionally, you can allow the caller of the event function to provide
the data for the opt Data parameter. If you do this, the event definition must
leave the opt Data parameter blank, and the caller must provide a string
surrounded by quotes inside of the parentheses of the event function. As an
example, for an event function called doOpenDocmt, the caller specifies the
data for the direct object like this: doOpenDocmt ("HD: Reports
folder: Quarter 1 Report") .

Guide Maker provides the following built-in event functions: DoScript,
GoPanel,LaunchNewSequence,LaunchNewSequenceNewWindo~

PlaySound, QuitTopicOops, and StartTopicOops. Each built-in event
function corresponds to a specific Apple event that is directed to Apple Guide.

Apple Guide also supports a number of other events. These events are defined
in the Standard Setup file. If your build file includes the Standard Setup file,
then you can specify any of the events defined in that file.

#define doButtonlAction as an event function that sends to
the app with signature 'WAVE' (SurfWriter) the Apple event
#defined by event class 'sfwr' and event ID 'actl'
<Define Event> "doButtonlAction", 'WAVE', 'sfwr', 'actl'

<Define Panel> "Example Panel"
<Standard Button> "Create Chapter Index", Point(SO,lOO),

doButtonlAction()
<End Panel>

Specifying Events 10-179

• G)
c:
a:
CD
en
Q
~
0
0
3
3
p)
::s a.
JJ

~
(il
::s
(')
CD

CHAPTER 10

Guide Script Command Reference

#define doOpenDocmt as an event function that sends to
the app with signature 'WAVE' (SurfWriter) the
Open Documents event. Note that the Open Documents event
expects a direct object (the name of the file to open)
as a parameter. This event definition specifies the keyword of the
direct object and the caller specifies its data.
<Define Event> "doOpenDocmt", 'WAVE', 'aevt', 'odoc' ,,'----'

<Define Panel> "Example Panel 3"
To accomplish this task, do this:
Very informative instructions here.

#place Open button left-justified on panel
<3D Button> "OpenButtonUpPict", "OpenButtonDownPict", LEFT, .,

doOpenDocmt("HD:SurfWriter folder:SampleReport 11
)

<End Panel>

#define an event function that sends to
the app with signature 'WAVE' (SurfWriter) the Apple event
#defined by event class 'sfwr' and event ID 'act2'
This event expects two parameters: the number 2530 is the
#data for the 'IOPT' keyword; the other additional parameter has
the keyword 'kysf' and "info for kysf parameter" as data.
<Define Event> "doButton2Action", 'WAVE', 'sfwr', 'act2', .,

2530, .,
'kysf', "info for kysf parameter"

<Define Panel> "Example Panel"
<Standard Button> "Create Chapter Index", Point(50,100),.,

doButton2Action()
<End Panel>

10-180 Specifying Events

SEE ALSO

CHAPTER 10

Guide Script Command Reference

For information on Guide Maker's built-in event functions, see "Built-in Event
Functions" on page 10-188. For information on the <Standard Button> and
<3D Button> commands, see page 10-57 and page 10-60, respectively. For
information on specifying event functions for hot objects, see "Creating Hot
Items" beginning on page 10-119. For information on specifying event
functions for the <On Panel Create> and related commands, see page 10-183.

<Define Event List>

DESCRIPTION

You can use the <Define Event List> command to specify a sequence of events
(an event list). You can use an event list as a parameter for the
<Standard Button>, <3D Button>, <Define Nav Button>, and
<On Panel Create> commands.

<Define Event List> eventListName 1 event1 [1 event2] [1 event3]
[I event4] [1 eventS] [1 event6]

eventListName A text string specifying the name of this event list.

event1 A name of an event function. Include any parameters expected
by the function in parentheses following its name.

event2 -event6
The parameters event2 through event6 can each specify the name
of an event function (and any parameters expected by the
function in parentheses following its name). These parameters
are optional.

The <Define Event List> command specifies one or more event functions. You
typically associate an event list with another button-defining command, such
as <Standard Button> or <3D Button>. When the user clicks a button, Apple
Guide calls the event function or event list associated with that particular
button. Event lists are usually used to perform a series of actions, such as
sending one or more Apple events to a target application, requesting it to
perform various actions.

Specifying Events 10-181

G>
I:
a:
CD
en
0
::!.
'E.
0
0
3
3
I»
:::::1 c.
:0

m-
(j)
:::::1

~

CHAPTER 10

Guide Script Command Reference

You can specify up to six event functions in an event list. All events in an event
list must be static, that is, they cannot require any parameters from the caller
(other than the parameters already provided in the specification of the event in
the event list).

Guide Maker provides these built-in event functions: DoScript, GoPanel,
LaunchNewSequence,LaunchNewSequenceNewWindo~PlaySound,

StartTopicOops, and Qui tTopicOops.

Apple Guide also supports a number of other events, defined in the Standard
Setup file. If your build file includes the Standard Setup file, then you can
specify any of the events defined in that file.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

10-182

Any event functions specified in parameters eventl through event6 must refer to
a event function defined with the <Define Event> command or to one of Guide
Maker's built-in event functions.

#an event list specifying a series of event functions
<Define Event List> "ClickAndGo", PlaySound(lOOO),

LaunchNewSequence("My sequence name"),
doMyButtonAction(),
DoScript("AppleScriptOne 11

)

<Define Panel> "Example Panel"
<Standard Button> "Create Chapter Index", Point(SO,lOO),

ClickAndGo()
<End Panel>

For information on Guide Maker's built-in event functions, see ~~Built-in Event
Functions" on page 10-188. For information on the <Standard Button> and <30
Button> commands, see page 10-57 and page 10-60, respectively.

Specifying Events

CHAPTER 10

Guide Script Command Reference

<On Panel Create>

DESCRimON

EXAMPLES

You can use the <On Panel Create> command to define an event function that
Apple Guide executes before displaying a panel.

<On Panel Create> eventFunction

eventFunction An event function or event list.

The <On Panel Create> command defines an event function or event list for a
panel. Apple Guide executes the event function when Apple Guide creates the
panel to which it is attached. Apple Guide executes the event function before
displaying the panel on the screen. Event functions are usually used to send an
Apple event to a target application, requesting it to perform some action.

You can use multiple <On Panel Create> commands per panel. Apple Guide
executes any event functions in the order in which the <On Panel Create>
command appears in your panel definition.

#define doExamplePanelAction as an event function that sends to
#the app with signature 'WAVE' (SurfWriter) the Apple event
#defined by event class 'sfwr' and event ID 'actl'
<Define Event> "doExamplePanelAction", 'WAVE', 'sfwr', 'actl'

<Define Panel> "Example Panel"
<On Panel Create> doExamplePanelAction()
<On Panel Create> PlaySound(lOOO)

<End Panel>

Specifying Events 10-183

G>
c:: c:
CD
en
n
:::!.
-g
0
0
3
3
S»
:::! a.
:IJ

~
ca
:::!
n
CD

SEE ALSO

CHAPTER 10

Guide Script Command Reference

For information on Guide Maker's built-in event functions, see 1/Built-in Event
Functions" on page 10-188. For information on the <Define Event> and <Define
Event List> commands, see page 10-178 and page 10-181, respectively.

<On Panel Destroy>

DESCRIPTION

EXAMPLES

You can use the <On Panel Destroy> command to define an event function that
Apple Guide executes when destroying a panel. It executes the event after
removing the panel from the screen.

<On Panel Destroy> eventFunction

eventFunction An event function or event list.

The <On Panel Destroy> command defines an event function or event list for a
panel. Event functions are usually used to send an Apple event to a target
application, requesting it to perform some action. Apple Guide executes the
event function when Apple Guide destroys the panel to which it is attached.

You can use multiple <On Panel Destroy> commands per panel. Apple Guide
executes any event functions in the order in which the <On Panel Destroy>
command appears in your panel definition.

#define doExamplePanelAction as an event function that sends to
#the app with signature 'WAVE' (SurfWriter) the Apple event
#defined by event class 'sfwr' and event ID 'actl'
<Define Event> "doExamplePanelAction" 1 'WAVE' 1 'sfwr' 1 'actl'
<Define Panel> "Example Panel"

<On Panel Destroy> doExamplePanelAction()
<On Panel Destroy> PlaySound(lOOO)

<End Panel>

10-184 Specifying Events

SEE ALSO

CHAPTER 10

Guide Script Command Reference

For information on Guide Maker's built-in event functions, see "Built-in Event
Functions" on page 10-188. For information on the <Define Event> and <Define
Event List> commands, see page 10-178 and page 10-181, respectively.

<On Panel Show>

DESCRIPTION

You can use the <On Panel Show> command to define an event function that
Apple Guide executes when opening a panel and when expanding a panel.

<On Panel Show> eventFunction [, firstOrAlways]

eventFunction An event function or event list.

firs tOr Always A constant that indicates whether Apple Guide should execute
the event function only when it first shows the panel (FIRST) or
both when it first shows the panel and whenever the panel is
expanded (ALWAYS). This parameter is optional. If you omit this
parameter, Apple Guide uses ALWAYS as the default.

The <On Panel Show> command defines an event function or event list for a
panel. Apple Guide executes the event function, based on the first Or Always
parameter, when Apple Guide shows or expands the panel to which it is
attached. Event functions are usually used to send an Apple event to a target
application, requesting it to perform some action.

You can use multiple <On Panel Show> commands per panel. Apple Guide
executes event functions in the order in which the <On Panel Show> command
appears in your panel definition.

You typically use the <On Panel Show> command to perform a task that is
required by a Continue panel. One of the parameters to the <Make Sure>
command is the sequence to display if the specified condition isn't true. In this
case, Apple Guide displays the sequence, showing the first panel in the
sequence. If you include an <On Panel Show> command in this panel
definition, Apple Guide executes the specified event function. This event
function should perform the task for the user.

Specifying Events 10-185

G>
c a:
(J)

en
0
"§:
0
0
3
3
I»
~ a.
:::IJ
!.
(J)

ca
~

£

EXAMPLES

10-186

CHAPTER 10

Guide Script Command Reference

#simple panel that plays a sound when opened or expanded
<Define Panel> "Example Panel"

#always play a sound when panel is opened and also
when it is expanded
<On Panel Show> PlaySound(1000), ALWAYS

<End Panel>

#sequence definition for a Continue sequence
<Define Sequence> "open dictionary for the user"

<Seq Nav Button Set> NONE
<Define Panel> "Continue panel: Opening dictionary"

<Format> "Full" #a defined format
Please wait a moment. Apple Guide is assisting you by
opening the SurfWriter dictionary.

#this 3D button (Continue) is in Standard Resources
<3D Button> 1070, 1072, Center, GoBack()
#use prompt text: "Wait until the dictionary is open,
#then click Continue."
<Panel Prompt> "Wait while AG opens dictionary"
#specify event function that Apple Guide executes
upon showing the panel; specify your own event
function or a built-in event function
<On Panel Show> DoScript("openSWDictionary 11

)

<End Panel>
<End Sequence>

#sequence definition that uses <Make sure> and Continue
<Define Sequence> "How do I use the dictionary?"

<Panel> "intra to dictionary~~
#now make sure that the dictionary file is open before
allowing the user to go to the next panel
#if it isn't open, open it for the user

Specifying Events

SEE ALSO

CHAPTER 10

Guide Script Command Reference

by providing a Continue sequence
#(isDictionaryOpen is application-defined context check)
<Make Sure> isDictionaryOpen("SurfWriter Dictionary"),

"open dictionary for the user" #continue seq.
<Panel> "finding a word in the dictionary ..

<Panel> .. special dictionaries"
<End Sequence>

For information on Guide Maker's built-in event functions, see 1/Built-in Event
Functions" on page 10-188. For information on the <Define Event> and <Define
Event List> commands, see page 10-178 and page 10-181, respectively. For
information on the <Make Sure> command, see page 10-162.

<On Panel Hide>

DESCRIPTION

You can use the <On Panel Hide> command to define an event function that
Apple Guide executes when hiding a panel.

<On Panel Hide> eventfunction [, firstOrAlways]

eventFunction An event function or event list.

firs tOr Always A constant that indicates whether Apple Guide should execute
the event function only when it first hides the panel (FIRST) or
both when it first hides the panel and whenever the panel is
minimized (ALWAYS). This parameter is optional. If you omit
this parameter, Apple Guide uses ALWAYS as the default.

The <On Panel Hide> command defines an event function or event list for a
panel. Apple Guide executes the event function, based on thefirstOrAlways
parameter, when Apple Guide hides the panel to which it is attached. Hiding a
panel refers to Apple Guide either closing the panel or minimizing the panel.

Specifying Events 10-187

• (j)
1:: a:
CD
en
0

-s:
()
0
3
3
Q)
:J
a.
:D

~
co
:J
0
<D

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

Event functions are usually used to send an Apple event to a target application,
requesting it to perform some action.

You can use multiple <On Panel Hide> commands per panel. Apple Guide
executes event functions in the order in which the <On Panel Hide> command
appears in your panel definition.

<Define Panel> "Example Panel"
#play a sound the first time Apple Guide hides the panel
<On Panel Hide> PlaySound(lOOO), FIRST

<End Panel>

For information on the <Define Event> and <Define Event List> commands,
see page 10-178 and page 10-181, respectively. Guide Maker's built-in event
functions are described next.

Built-in Event Functions

10-188

Guide Maker provides the following built-in event functions: DoScript,
GoPanel,LaunchNewSequence,LaunchNewSequenceNewWindo~

PlaySound, StartTopicOops, and Qui tTopicOops.

Apple Guide also supports a number of other events, defined in the Standard
Setup file. H your build file includes the Standard Setup file, then you can
specify any of the events defined in that file.

You can specify an event function when using the following commands:
<Standard Button>, <3D Button>, <Define Nav Button>, <Hot Text>, <Hot
Rectangle>, <Hot Object>, <On Panel Create>, <On Panel Destroy>, <On Panel
Show>, and <On Panel Hide>.

The built-in event functions and their parameters are described here.

Specifying Events

CHAPTER 10

Guide Script Command Reference

DoSeript(scriptResource)

scriptResource A resource ID of a 1 sept 1 resource previously specified in a
<Resource> command or the filename of a compiled script that
resides in the same folder as the help source files. Apple Guide
runs the referenced script when it invokes the DoSeript event
function. The DoSer ipt event function can also be accessed
using the name DoAppleSeript.

GoPanel(panelNumber)

panelNumber A panel number identifying a panel in a sequence. Panels are
numbered beginning with 1 for the first panel in a sequence, 2
for the second panel, and so on. Apple Guide displays the panel.

LaunehNewSequenee(sequenceName)

sequenceName A text string specifying the sequence to launch. Apple Guide
closes the current topic, if any, and continues with the named
sequence. Calling this event function closes the current access
window or panel and opens a new one. The guide file of the
target application must already be open before calling this event
function.

LaunehNewSequeneeNewWindow(sequenceName)

sequenceName A text string specifying the sequence to launch. Apple Guide
does not close the current topic but instead opens a new
window. The guide file of the target application must already be
open before calling this event function.

PlaySound(soundResource)

soundResource A resource ID or resource name of a 1 snd 1 resource
previously specified in a <Resource> command, or the filename
of a System 7 sound file that is in the same folder as your help
source files. Apple Guide plays the sound resource
asynchronously when it invokes the Playsound event function.

Specifying Events 10-189

• G>
c a:
CD
(/)
(')
"§:
0
0
3
3
g)
:::::J a.

~
ca
:::::J
(')
<D

CHAPTER 10

Guide Script Command Reference

StartTopicOops(sequenceName)

sequenceName A text string specifying the Oops sequence to launch. Apple
Guide hides the current topic and opens the Oops sequence in a
new window. The guide file of the target application must
already be open before calling this event function.

Qui tTopicOops([pane/Number])

pane/Number A panel number identifying a panel in a sequence. Panels are
numbered beginning with 1 for the first panel in a sequence, 2
for the second panel, and so on. The pane/Number parameter is
optional. If it is provided, Apple Guide closes the Oops topic
and returns to the specified panel. If it is omitted, Apple Guide
closes the Oops topic and returns to the parent topic.

Working With Mixin Guide Files

You can modify or add content to an already existing guide file by creating a
Mixin guide file. The source file for a Mixin guide file must contain a <Mixin>
command and optionally, a <Mixin Match> command. A main guide file may
also contain a <Mixin Match> command to specify which Mixin guide files can
be mixed in with it.

This section describes the commands you can use in your Mixin source file to
replace, delete, or add content to a main guide file.

<Replace Sequence>

10-190

You can use the <Replace Sequence> command to specify a sequence in a main
guide file that is to be replaced by a new sequence in a Mixin guide file.

<Replace Sequence> oldSequenceName, newSequenceName

oldSequenceName
A text string specifying the name of the sequence in the main
guide file.

Working With Mixin Guide Files

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

newSequenceName
A text string specifying the name of the sequence in the Mixin
guide file.

When Guide Maker compiles a source file for a Mixin guide file and encounters
a <Replace Sequence> command, it looks for a sequence specified by the
oldSequenceName parameter in the main guide file. If it finds the sequence, it
replaces it with the sequence specified by the newSequenceName parameter.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <Replace Sequence> command can be used only in the source file for a
Mixin guide file that also includes the <Mixin> command. To use the <Replace
Sequence> command, you must specify a SYM file in the symName parameter
of the <Mixin> command.

<Replace Sequence> "creating index markers", -.
"New creating index markers ..

For information on the <Mixin> command, see page 10-19. To modify or add
new topic areas, topics, or index entries to an existing guide file, you can use
the commands <Insert Topic Area Header>, <Insert Topic Area Topic>, <Insert
Index Header>, and <Insert Index Topic>, as described on page 10-192,
page 10-193, page 10-195, and page 10-196, respectively.

Working With Mixin Guide Files 10-191

G')
c: a:
CD
en
0
::::!.
'S
C">
0
3
3
D)
:::J c.
JJ

m-
m
:::J

~

CHAPTER 10

Guide Script Command Reference

<Insert Topic Area Header>

DESCRIPTION

You can use the <Insert Topic Area Header> command to insert a header from
a Mixin guide file and associate this new header with an existing topic area in a
main guide file.

<Insert Topic Area Header> header 1 topicArea [1 sortOrder]

header

topicArea

sortOrder

A text string specifying a new header.

A text string specifying the topic area in a main guide file. Apple
Guide associates the new header with the specified topic area.

A value specifying where the new header should appear in the
list of headers for the specified topic area. You can use the
constant FIRST or LAST to sort the header at the beginning or
end of existing headers for the specified topic area. You can also
specify in this parameter a text string of the header that should
immediately precede the new header. This parameter is
optional. If you omit it, Apple Guide uses LAST as the default.

When Guide Maker compiles a source file for a Mixin guide file and encounters
an <Insert Topic Area Header> command, it looks for a topic area specified by
the topicArea parameter in the main guide file. If it finds the topic area, it
associates the new header with it and inserts the header into the list of headers
according to the sort order specified by the sortOrder parameter.

To define the topics for a new header, use the <Insert Topic Area Topic>
command.

SPECIAL CONSIDERATIONS

10-192

The <Insert Topic Area Header> command can be used only in the source file
for a Mixin guide file that also includes the <Mixin> command. To use the
<Insert Topic Area Header> command, you must specify a SYM file in the
symName parameter of the <Mixin> command.

Working With Mixin Guide Files

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#in a Mixin guide file, specify a new header for an
existing topic area in a main guide file
<Insert Topic Area Header> 11 When should I", ..,

"Setting Options", FIRST

For information on the <Mixin> command, see page 10-19. For information on
the <Topic Area>, <Header>, and <Topic> commands, see page 10-125,
page 10-135, and page 10-137, respectively.

<Insert Topic Area Topic>

You can use the <Insert Topic Area Topic> command to insert a topic from a
Mixin guide file and associate this new topic with an existing topic area in a
main guide file.

<Insert Topic Area Topic> topic, seq Name, topicArea [, sortOrder]

topic

seq Name

topicArea

sort Order

A text string specifying a new topic.

A text string specifying the sequence name associated with the
new topic.

A text string specifying the topic area in a main guide file. Apple
Guide associates the new topic with the specified topic area.

A value specifying where the new topic should appear in the list
of topics for the specified topic area. You can use the constant
FIRST or LAST to sort the topic at the beginning or end of
existing topics for the specified topic area. You can also specify
in this parameter a text string of the topic that should
immediately precede the new topic. This parameter is optional.
If you omit it, Apple Guide uses LAST as the default.

Working With Mixin Guide Files 10-193

• Ci)
c
a:
CD
(J)
(')
::!.
"E.
0
0
3
3
Q)
::3 a.
JJ

~
a;
::3
(')
CD

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

When Guide Maker compiles a source file for a Mixin guide file and encounters
an <Insert Topic Area Topic> command, it looks for a topic area specified by
the topicArea parameter in the main guide file. If it finds the topic area, it
associates the new topic with it and inserts the topic into the list of topics,
according to the sort order specified by the sortOrder parameter.

To define a header for a new topic, use the <Insert Topic Area Header>
command.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

10-194

The <Insert Topic Area Topic> command can be used only in the source file for
a Mixin guide file that also includes the <Mixin> command. To use the <Insert
Topic Area Topic> command, you must specify a SYM file in the symName
parameter of the <Mixin> command.

#in a Mixin guide file, specify a new topic for an
existing topic area in a main guide file
<Insert Topic Area Topic> "change the default font?", -.

"How do I change the default font?", -.
"Setting Options", -.
.. change the standard footer?"

For information on the <Mixin> command, see page 10-19. For information on
the <Topic Area>, <Header>, and <Topic> commands, see page 10-125,
page 10-135, and page 10-137, respectively.

Working With Mixin Guide Files

CHAPTER 10

Guide Script Command Reference

<Insert Index Header>

DESCRIPTION

You can use the <Insert Index Header> command to insert a header from a
Mixin guide file and associate this new header with an existing index term in a
main guide file.

<Insert Index Header> header, indexTerm [, sortOrder]

header

indexTerm

sort Order

A text string specifying a new header.

A text string specifying the index term in a main guide file.
Apple Guide associates the new header with the specified index
term.

A value specifying where the new header should appear in the
list of headers for the specified index term. You can use the
constant FIRST or LAST to sort the header at the beginning or
end of existing headers for the specified index term. You can
also specify in this parameter a text string of the header that
should immediately precede the new header. This parameter is
optional. If you omit it, Apple Guide uses LAST as the default.

When Guide Maker compiles a source file for a Mixin guide file and encounters
an <Insert Index Header> command, it looks for an index term specified by the
indexTerm parameter in the main guide file. If it finds the index term, it
associates the new header with it and inserts the header into the list of headers,
according to the sort order specified by the sortOrder parameter.

To define the topics for a new header, use the <Insert Index Topic> command.

SPECIAL CONSIDERATIONS

The <Insert Index Header> command can be used only in the source file for a
Mixin guide file that also includes the <Mixin> command. To use the <Insert
Index Header> command, you must specify a SYM file in the symName
parameter of the <Mixin> command.

Working With Mixin Guide Files 10-195

• G>
c
a:
CD
en
0
::::!.
"9.
(')
0
3
3
~
0.

:II

m-
(j)
::l

~

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#in a Mixin guide file, specify a new header for an
existing index term in a main guide file
<Insert Index Header> "When should I", ~

"Math operations", FIRST

For information on the <Mixin> command, see page 10-19. For information on
the <Index>, <Header>, and <Topic> commands, see page 10-128, page 10-135,
and page 10-137, respectively.

<Insert Index Topic>

10-196

You can use the <Insert Index Topic> command to insert a topic from a Mixin
guide file and associate this new topic with an existing topic area in a main
guide file.

<Insert Index Topic> topic, seqName, indexTerm [, sortOrder]

topic

seq Name

indexTerm

sortOrder

A text string specifying a new topic.

A text string specifying the sequence name associated with the
new topic.

A text string specifying the index term in a main guide file.
Apple Guide associates the new topic with the specified index
term.

A value specifying where the new topic should appear in the list
of topics for the specified topic area. You can use the constant
FIRST or LAST to sort the topic at the beginning or end of
existing topics for the specified topic area. You can also specify
in this parameter a text string of the topic that should
immediately precede the new topic. This parameter is optional.
If you omit it, Apple Guide uses LAST as the default.

Working With Mixin Guide Files

DESCRIPTION

CHAPTER 10

Guide Script Command Reference

When Guide Maker compiles a source file for a Mixin guide file and encounters
an <Insert Index Topic> command, it looks for an index term specified by the
indexTerm parameter in the main guide file. If it finds the index term, it
associates the new topic with it and inserts the topic into the list of topics,
according to the sort order specified by the sortOrder parameter.

To define a header for a new topic, use the <Insert Index Header> command.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <Insert Index Topic> command can be used only in the source file for a
Mixin guide file that also includes the <Mixin> command. To use the <Insert
Index Topic> command, you must specify a SYM file in the symName
parameter of the <Mixin> command.

#in a Mixin guide file, specify a new topic for an
existing index term in a main guide file
<Insert Index Topic> "use hexadecimal numbers?", ...,

"When should I use hexadecimal numbers?", ..,
"Math operations", FIRST

For information on the <Mixin> command, see page 10-19. For information on
the <Index>, <Header>, and <Topic> commands, see page 10-128, page 10-135,
and page 10-137, respectively.

Working With Mixin Guide Files 10-197

G)
c: a:
CD
en
()
::::!.

"'9.
0
0
3
3
D>
:J a.
:D

m-
m
:J
0
CD

CHAPTER 10

Guide Script Command Reference

<Delete Topic Area>

DESCRIPTION

You can use the <Delete Topic Area> command to specify that a topic area
defined in a main guide file should not be displayed if the main guide file is
mixed in with your Mixin guide file.

<Delete Topic Area> topicArea

topicArea A text string specifying the topic area that should not be
displayed when the mixin is mixed in with the main guide file.

If a Mixin guide file includes a <Delete Topic Area> command, when Apple
Guide mixes in the main guide file with the Mixin, the topic area specified by
the topicArea parameter will not be shown in the list of topic areas when Topics
is active. If the main guide file is not mixed in with the Mixin guide file, the
topic area is shown in the list.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

10-198

The <Delete Topic Area> command can be used only in the source file for a
Mixin guide file that also includes the <Mixin> command. To use the <Delete
Topic Area> command, you must specify a SYM file in the symName parameter
of the <Mixin> command.

#do not show this topic area if the main guide file is
mixed in with this guide file
<Delete Topic Area> "Printing"

For information on the <Mixin> command, see page 10-19. For information on
the <Topic Area>, <Header>, and <Topic> commands, see page 10-125,
page 10-135, and page 10-137, respectively.

Working With Mixin Guide Files

CHAPTER 10

Guide Script Command Reference

<Delete Topic Area Header>

DESCRIPTION

You can use the <Delete Topic Area Header> command to specify that a header
associated with a topic area defined in a main guide file should not be
displayed if the main guide file is mixed in with your Mixin guide file.

<Delete Topic Area Header> topicArea, topicAreaHeader

topicArea A text string specifying the topic area associated with the header.

topicAreaHeader
A text string specifying the header that should not be displayed
when the Mixin guide file is mixed in with the main guide'file.

If a Mixin guide file includes a <Delete Topic Area Header> command, when
Apple Guide mixes in the main guide file with the Mixin guide file, the topic
area header specified by the topicAreaHeader parameter will not be displayed. If
the main guide file is not mixed in with the Mixin guide file, the topic area
header is displayed.

SPECIAL CONSIDERATIONS

EXAMPLES

The <Delete Topic Area Header> command can be used only in the source file
for a Mixin guide file that also includes the <Mixin> command. To use the
<Delete Topic Area Header> command, you must specify a SYM file in the
symName parameter of the <Mixin> command.

#do not show this header if the main guide file is mixed in
with this guide file
<Delete Topic Area Header> "Printing", "How do I"

Working With Mixin Guide Files 10-199

I
G>
1::
0.:
<D
en
()
::::!.

"9.
(")
0
3
3
D)
::l
a.
JJ

~
<D
:J
()
CD

SEE ALSO

CHAPTER 10

Guide Script Command Reference

For information on the <Mixin> command, see page 10-19. For information on
the <Topic Area>, <Header>, and <Topic> commands, see page 10-125,
page 10-135, and page 10-137, respectively.

<Delete Topic Area Topic>

DESCRIPTION

You can use the <Delete Topic Area Topic> command to specify that a topic
associated with a topic area defined in a main guide file should not be
displayed if the main guide file is mixed in with your Mixin guide file.

<Delete Topic Area Topic> topicArea, topicAreaTopic

topicArea A text string specifying the topic area associated with the topic.

topicAreaTopic
A text string specifying the topic that should not be displayed
when the Mixin guide file is mixed in with the main guide file.

If a Mixin guide file includes a <Delete Topic Area Topic> command, when
Apple Guide mixes in the main guide file with the Mixin guide file, the topic
specified by the topicAreaTopic parameter will not be displayed. If the main
guide file is not mixed in with the Mixin guide file, the topic is displayed.

SPECIAL CONSIDERATIONS

10-200

The <Delete Topic Area Topic> command can be used only in the source file for
a Mixin guide file that also includes the <Mixin> command. To use the <Delete
Topic Area Topic> command, you must specify a SYM file in the symName
parameter of the <Mixin> command.

Working With Mixin Guide Files

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#do not show this topic if the main guide file is mixed in
with this guide file
<Delete Topic Area Topic> "Printing", "select a printer? 11

For information on the <Mixin> command, see page 10-19. For information on
the <Topic Area>, <Header>, and <Topic> commands, see page 10-125,
page 10-135, and page 10-137, respectively.

<Delete Index>

DESCRIPTION

You can use the <Delete Index> command to specify that an index term defined
in a main guide file should not be displayed if the main guide file is mixed in
with your Mixin guide file.

<Delete Index> indexTerm

indexTerm A text string specifying the index term that should not be
displayed when the mixin is mixed in with the main guide file.

If a Mixin guide file includes a <Delete Index> command, when Apple Guide
mixes in the main guide file with the mixin, the index term specified by the
indexTerm parameter will not be shown in the list of index terms when Index is
active. If the main guide file is not mixed in with the Mixin guide file, the index
term is shown in the list.

SPECIAL CONSIDERATIONS

The <Delete Index> command can be used only in the source file for a Mixin
guide file that also includes the <Mixin> command. To use the <Delete Index>
command, you must specify a SYM file in the symName parameter of the
<Mixin> command.

Working With Mixin Guide Files 10-201

I
Ci)
c::::
c:
CD
(J)
0
:::!.
"2.
()
0
3
3
g)
::::J
0.

JJ
~
CD
a;
::::J
0
CD

EXAMPLES

SEE ALSO

CHAPTER 10

Guide Script Command Reference

#do not show this index term if the main guide file is
mixed in with this guide file
<Delete Index> "printer drivers"

For information on the <Mixin> command, see page 10-19. For information on
the <Topic Area>, <Header>, and <Topic> commands, see page 10-125,
page 10-135, and page 10-137, respectively.

<Delete Index Header>

DESCRIPTION

10-202

You can use the <Delete Index Header> command to specify that a header
associated with an index term in a main guide file should not be displayed if
the main guide file is mixed in with your Mixin guide file.

<Delete Index Header> indexTerm, indexHeader

indexTerm A text string specifying the index term associated with the
header.

indexHeader A text string specifying the header that should not be displayed
when the mixin is mixed in with the main guide file.

If a Mixin guide file includes a <Delete Index Header> command, when Apple
Guide mixes in the main guide file with the mixin, the header specified by the
indexHeader parameter will not be shown in the list of headers for the specified
index term. If the main guide file is not mixed in with the Mixin guide file, the
header is shown in the list.

Working With Mixin Guide Files

CHAPTER 10

Guide Script Command Reference

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

The <Delete Index Header> command can be used only in the source file for a
Mixin guide file that also includes the <Mixin> command. To use the <Delete
Index Header> command, you must specify a SYM file in the symName
parameter of the <Mixin> command.

#do not show this index term if the main guide file is
mixed in with this guide file
<Delete Index Header> .. printer drivers", "Bow do I"

For information on the <Mixin> command, see page 10-19. For information on
the <Topic Area>, <Header>, and <Topic> commands, see page 10-125,
page 10-135, and page 10-137, respectively.

<Delete Index Topic>

DESCRIPTION

You can use the <Delete Index Topic> command to specify that a topic
associated with an index term in a main guide file should not be displayed if
the main guide file is mixed in with your Mixin guide file.

<Delete Index Topic> indexTerm, indexTopic

indexTerm

indexTopic

A text string specifying the index term associated with the topic.

A text string specifying the topic that should not be displayed
when the mixin is mixed in with the main guide file.

If a Mixin guide file includes a <Delete Index Topic> command, when Apple
Guide mixes in the main guide file with the mixin, the topic specified by the
indexTopic parameter will not be shown in the list of topics for the specified

Working With Mixin Guide Files 10-203

I

CHAPTER 10

Guide Script Command Reference

index term. If the main guide file is not mixed in with the Mixin guide file, the
topic is shown.

SPECIAL CONSIDERATIONS

EXAMPLES

SEE ALSO

10-204

The <Delete Index Topic> command can be used only in the source file for a
Mixin guide file that also includes the <Mixin> command. To use the <Delete
Index Topic> command, you must specify a SYM file in the symName
parameter of the <Mixin> command.

#do not show this index term if the main guide file is
mixed in with this guide file
<Delete Index Topic> "printer drivers", "choose a printer"

For information on the <Mixin> command, see page 10-19. For information on
the <Topic Area>, <Header>, and <Topic> commands, see page 10-125,
page 10-135, and page 10-137, respectively.

Working With Mixin Guide Files

Appendixes
)>
"'0
"'0 m z
0 x
m
(/J

APPENDIX A

Guide Script
Com.m.and Abbreviations

Most Guide Script commands can be specified by their full name or an
abbreviation. Abbreviations for all Guide Script commands are shown here, in
alphabetical order of the full command name.

Table A-1 Command abbreviations

Full command name

<3D Button>

<Allow Prompts>

<App Creator>

<AppLogo>

<AppText>

<Balloon Menu Text>

<Build Sequence>

<Checkbox>

<Coach Mark>

<Comment>

<Default Format>

<Default Nav Button Set>

<Default Prompt Set>

<Define AppleScript Coach>

<Define Context Check>

Abbreviated
command name

<3DB>

<AP>

<AC>

<AL>

<AT>

<BMT>

<BS>

<CB>

<CM>

<DefaultNBS>

<DefaultPS>

<DAC>

<DCC>

continued

A-1

APPENDIX A

Guide Script Command Abbreviations

Table A-1 Command abbreviations (continued)

Abbreviated
Full command name command name

<Define Event> <DE>

<Define Event List>

<Define Format> <DF>

<Define Item Coach> <DIC>

<Define Menu Coach> <DMC>

<Define Nav Button> <DNB>

<Define Nav Button Set> <DNBS>

<Define Object Coach> <DOC>

<Define Panel> <DP>

<Define Prompt Set> <DPS>

<Define Sequence> <DS>

<Define Text Block> <DTB>

<Define Transparent Format> <DTF>

<Define Window Coach> <DWC>

<Delete Index> <DI>

<Delete Index Header> <DIH>

<Delete Index Topic> <DIT>

<Delete Topic Area> <DTA>

<Delete Topic Area Header> <DTAH>

<Delete Topic Area Topic> <DTAT>

<Dimmable Button Data> <DBD>

<Else>

<End If> <EI>

<End Making Sure> <EMS>

A-2

APPENDIX A

Guide Script Command Abbreviations

TableA-1 Command abbreviations (continued)

Full command name

<End Panel>

<End Sequence>

<End Text Block>

<Exception>

<Format>

<Gestalt>

<Header>

<Help Menu>

<Hot Object>

<Hot Rectangle>

<Hot Text>

<Howdy>

<If>

<Ignore>

<Include>

<Index>

<Index Instruction>

<Index Sorting>

<Insert Index Header>

<Insert Index Topic>

<Insert Sequence>

<Insert Topic Area Header>

<Insert Topic Area Topic>

Abbreviated
command name

<EP>

<ES>

<ETB>

<EXC>

<HM>

<HO>

<HR>

<HT>

<IGN>

<II>

<IS>

<IIH>

<liT>

<IS>

<ITAH>

<IT AT>

continued

A-3

Ci)
c: a:
CD
en
0
::l.
"E.
0
0
3
3
Ill
::l c.
)>
C"
C"

~
~
0
::l
en

A-4

APPENDIX A

Guide Script Command Abbreviations

Table A-1 Command abbreviations (continued)

Full command name

<Jump Sequence>

<Launch New Sequence>

<Look For Instruction>

<Look For Results Instruction>

<Look For Search Btn Instruction>

<Look For String>

<Make Sure>

<Max Height>

<Min Height>

<Mixin>

<Mixin Match>

<On Panel Create>

<On Panel Destroy>

<On Panel Hide>

<On Panel Show>

<Panel>

<Panel Prompt>

<PICT>

<Quick Time>

<Radio Button>

<Radio Button Launch New Seq>

<Replace Sequence>

<Resource>

<Seq Nav Button Set>

Abbreviated
command name

<JS>

<LNS>

<LFI>

<LFRI>

<LFSBI>

<LFS>

<MS>

<MM>

<OPC>

<OPD>

<OPH>

<OPS>

<PP>

<QT>

<RB>

<RBLNS>

<RS>

<SNBS>

APPENDIX A

Guide Script Command Abbreviations

Table A-1 Command abbreviations (continued) • Abbreviated
Full command name command name

<Sequence Prompt Set> <SPS>

<Skip If> <51>

<Sorting>

<Standard Button> <SB>

<Starting Res Number> <SRN>

<Start Making Sure> <SMS>

<Startup Window> <SW>

<Synonym> <SYN>

<Topic>

<Topic Area> <TA>

<Topic Areas Instruction> <TAl>

<Topics Instruction> <Tl>

<Version>

<World Script> <WS>

A-5

APPENDIX B

Guide Script Conunands and
Param.eters Quick Reference

A summary of all Guide Script commands and their parameters, in
alphabetical order, follows.

Table B-1 Commands quick reference

Command

<3D Button>

<Allow Prompts>

<App Creator>

<App Logo>

<App Text>

<Balloon Menu Text>

<Build Sequence>

<Checkbox>

<Coach Mark>

<Conunent> or #

<Default Format>

<Default Nav Button Set>

<Default Prompt Set>

Parameters

buttonUpPict 1 buttonDownPict 1

buttonLoc 1 buttonEvent
[1 b&wUp] [1 b&wDown]

allow

creator

colorLogo [1 B&WLogo]

string

balloon Text

sequenceName 1 seqResiD

checkBoxTitle 1 checkBox State
[1 seqTrue] [1 seqFalse]
[1 checkBoxAnchor]
[, checkBoxFont]

coach~rkName

format Name

navButtonSetName

promptSetName

continued

B-1

•

B-2

APPENDIX B

Guide Script Commands and Parameters Quick Reference

Table B-1 Commands quick reference (continued)

Command

<Define AppleScript Coach>

<Define Context Check>

<Define Event>

<Define Event List>

<Define Format>

<Define Item Coach>

<Define Menu Coach>

<Define Nav Button>

<Define Nav Button Set>

Parameters

coachMarkName [, coachStyle]
, AppleScriptiD

contextCheckName, codeResSpec
[, targetApp] [, additionalParam]
[, additionalParam] [, . ..]

event Name, targetApp,
eventClass, eventiD
[, IOPTData] [, optKey]
[, opt Data]

eventListName, eventl
[, event2] [, event3]
[, event4] [, eventS]
[, event6]

formatName, columnCoords
[, txFnt] [, txSize]
[, txStyle]
[, txColor] [, txAlign]
[, alignPrompt]

coachMarkName [, targetApp]
[, coachStyle]
[, target Window] , target/tern
[, iternRectangle]

coachMarkName [, targetApp]
[, coachStyle] , targetMenu
[, target/tern]
[, iternCoachColor]
[, iternCoachStyle]

buttonName, buttonUpPict,
buttonDownPict, dimmedButtonPict,
buttonEvent [, b&wUp]
[, b&wDown] [, b&wDimmed]

navButtonSetName
[, leftNavButton]
[, midNavButton]
[, rightNavButton]

APPENDIX B

Guide Script Commands and Parameters Quick Reference

Table B-1 Commands quick reference (continued)

Command

<Define Object Coach>

<Define Panel>

<Define Prompt Set>

<Define Sequence>

<Define Text Block>

<Define Transparent Format>

<Define Window Coach>

<Delete Index>

<Delete Index Header>

<Delete Index Topic>

<Delete Topic Area>

<Delete Topic Area Header>

<Delete Topic Area Topic>

<Dimmable Button Data>

<Else>

<End If>

<End Making Sure>

<End Panel>

Parameters

coachMarkName 1 targetApp
[1 coachStyle 1 [1 objectName 1

panelName

promptSetName I
promptFirstPanel 1

promptMiddlePanel 1

promptLastPanel 1

promptForPanels With Controls

sequenceName [1 seqDisplayTitle 1

textBlockName

JormatName 1 columnCoords
[1 txFnt] [1 txSize 1
[1 txStyle 1 [1 txColor]
[1 txAlign 1 [1 alignPrompt 1

coachMarkName [I targetApp 1
[1 coachStyle 1 [, target Window 1
1 window Rectangle [1 rectOrigin]

index Term

indexTerm 1 indexHeader

indexTerm 1 indexTopic

topicArea

topicArea, topicAreaHeader

topicArea, topicAreaTopic

buttonName I sequenceName

continued

B-3

G)
c
0:
CD
en
()
~.
-g.
0
0
3
3
I»
~ a.
en
I»
::J
a.
"tJ
I»
iiJ
3
~
aJ
0
c c:r
" :0

m-a
::J

~

B-4

APPENDIX B

Guide Script Commands and Parameters Quick Reference

Table B-1 Commands quick reference (continued)

Command

<End Sequence>

<End Text Block>

<Exception>

<Format>

<Gestalt>

<Header>

<Help Menu>

<Hot Object>

<Hot Rectangle>

<Hot Text>

<Howdy>

<If>

<Ignore>

<Include>

<Index>

<Index Instruction>

<Index Sorting>

<Insert Index Header>

<Insert Index Topic>

<Insert Sequence>

<Insert Topic Area Header>

<Insert Topic Area Topic>

Parameters

exception Word

format Name

selector, requiredValue

header Phrase

itemString, helpType
[, helpCmdKey]

event Function

hotRect, eventFunction

hot Text, whichOccurrence,
eventFunction

howdyTextBlockName

condition

ignore Word

sourceFileName

indexTerm [, visible 1 [1 key 1

indexlnstruction

ordering Key

header, indexTerm [, sortOrder 1

topic I seq Name, indexTerm
[, sortOrder 1

sequenceName

header, topicArea [, sortOrder1

topic, seq Name, topicArea
[1 sortOrder 1

APPENDIX 8

Guide Script Commands and Parameters Quick Reference

Table B-1 Commands quick reference (continued)

Command

<Jump Sequence>

<Launch New Sequence>

<Look For Instruction>

<Look For Results
Instruction>

<Look For Search Btn
Instruction>

<Look For String>

<Make Sure>

<Max Height>

<Min Height>

<Mix in>

<Mixin Match>

<On Panel Create>

<On Panel Destroy>

<On Panel Hide>

<On Panel Show>

<Panel>

<Panel Prompt>

<PICT>

<QuickTime>

<Radio Button>

Parameters

sequence Name

sequence Name

look.Forlnstruction

resultslnstruction

buttonlnstruction

searchPhrase

condition,
oopsOrContinueSequenceName

height

height

symNameOrStartResNum

matchingCreator

event Function

eventFunction

eventFunction [, firstOr Always]

eventFunction [, .firstOrAlways]

panel Name

promptSetName

pictGraphic, location [, b&wPict]

QTMovie, location, QTcontroller
[, moviePict]

buttonTitle, buttonS tate
[, seqTrue] [, seq False]
(, buttonAnchor] [, buttonFont]

continued

B-5

G>
c a:
CD
(J'J
0
::::!.
"9.
0
0
3
3
g)
:::J a.
(/)

g)
:::J a. ,
g)

;
3
~
aJ
0
c cr
;:II;"

:D

~ a;
:::J
0
CD

B-6

APPENDIX 8

Guide Script Commands and Parameters Quick Reference

Table B-1 Commands quick reference (continued)

Command

<Radio Button Launch New Seq>

<Replace Sequence>

<Resource>

<Seq Nav Button Set>

<Sequence Prompt Set>

<Skip If>

<Sorting>

<Standard Button>

<Starting Res Number>

<Start Making Sure>

<Startup Window>

<Synonym>

<Topic>

<Topic Area>

<Topic Areas Instruction>

<Topics Instruction>

<Version>

<World Script>

Parameters

button Title, buttonS tate
[, seqTrue 1 [, seqFalse 1
[, buttonAnchor 1 [, buttonFont 1

oldSequenceName,
newSequenceName

fileName, res Type
[, whichResource 1

navButtonSetName

promptSetName

condition

method

button Title, buttonLoc,
buttonEvent [, buttonFont 1

resiD

condition,
oopsOrContinueSequenceName

window Type, accessScreenOptions

indexTerm, synonym

topicPhrase, sequenceName

topicAreaPhrase [, mixinOrder 1

topicArealnstruction

topicslnstruction

long V ers1 BottomOfGetlnfo,
shortVers1ForFinderListViews
[, longVers2TopOfGetlnfo1

scriptCode, regionCode

APPENDIX C

SurfWriter Guide and Its Source Files

This appendix provides a specific example-using SurfWriter Guide-to help
guide you through the process of scripting your source files. This appendix
integrates much of the information provided up to now, by showing a specific
implementation of a guide file. Read this appendix when you're ready to start
scripting your source files.

This appendix shows the guide file for the SurfWriter application and includes
the source files containing the Guide Script commands used to create this guide
file. It takes you through each source file used to create SurfWriter Guide,
giving explanatory text where necessary.

The source files used in this example are also provided online on the CD-ROM
accompanying this book, in the folder Apple Guide:Authoring:Documentation:
Example Source Files Appdx C. You can find the compiled guide file in the
folder Apple Guide:Authoring:Documentation:Example Guide.

Getting Started

Figure C-1 illustrates the structure of the source files for SurfWriter Guide.
These source files can be grouped into three distinct areas: files that specify
setup information, files that provide help content, and files that provide Index
and Look For content.

Getting Started C-1

•

C-2

APPENDIX C

SurfWriter Guide and Its Source Files

Figure C-1 The organization of the source files for SurfWriter Guide

SurfWriter
Guide build file

0

Setup information

"Setup and Access Window.src"
"Standard Setup DCCs.src"

Help content

"Topic Areas and Topics.src"
"Sequence Definitions.src"
"Panel Definitions.src"
"DCC SW.src"
"Event functions SW.src"
"CoachMarks SW.src"

Index and Look For content

"Index entries.src"
"Ignore List.src"
"Exception List.src"
"Synonym List.src"

The rest of this section describes the files used to specify the initial setup
information and gives explanatory text where necessary. "Help Content"
beginning on page C -11 and "Index and Look For Content" beginning on
page C-39 describe other files used to create SurfWriter Guide and give

Getting Started

APPENDIX C

SurfWrtter Guide and Its Source Files

additional information related to the specific commands specified in the
source files.

SurfWriter Guide Build File
The source files for SurfWriter Guide are organized in small sections, to make
the files convenient to use and easier to manage. For example, separate files
are used for SurfWriter Guide's index terms, synonym list, ignore list, and
exception list. Similarly, the source files containing sequence and panel
definitions are organized so that their information can be readily accessed.

The build file for SurfWriter Guide is shown in Listing C-1. The rest of the
sections in this appendix elaborate on these files.

Listing C-1 A build file ("Build file SURF.src" file)

#the following file specifies event, nav button, & format definitions
plus prompts, coachmarks, Help menu info, and
the type of access window
<Include> "Setup and Access Window.src"
#the following file specifies the standard context checks
<Include> "Standard Setup DCCs.src"
#the following file specifies application-defined context checks
<Include> "DCC SW.src"
#the following file specifies application-defined event functions
<Include> "Event functions SW.src"
#the following file specifies coachmarks
<Include> "CoachMarks SW.src"
#the following files specify the guide file content
<Include> "Topic Areas and Topics.src"
<Include> "Sequence Definitions.src"
<Include> "Panel Definitions.src"
#use the following file only if you have an XTND translator installed
#<Include> "Panels with Styleinfo.src"
#the following files specify the guide file index and Look For content
<Include> "Index entries.src"

Getting Started C-3

• en
c:

~ a; ...
G)
c:
a:
<D
S»
:l a.
~
en
0
c:
0
<D

!I
CD'
en

APPENDIX C

SurfWriter Guide and Its Source Files

<Include> "Ignore List.src"
<Include> "Exception List.src"
<Include> "Synonym List.src"

C-4

Using Standard Files
Included on the CD-ROM that accompanies this book are two files that are
separate from the SurfWriter Guide source files but that are commonly used
in creating guide files. These two files, Standard Setup and Standard Resources,
are in the Standard Includes folder, which is located in the Apple
Guide:Authoring folder. These two standard files are typically used as
templates. For example, SurfWriter Guide uses information from these
two files and customizes the information when necessary, as described in
"Customizing the Setup Information" beginning on page C-5.

The Standard Setup File

The Standard Setup file contains the Guide Script commands that give basic
information about a guide file, such as

• the name of the guide file as it appears in the Help menu

• the balloon text for the guide file's menu item

• the application associated with the guide file

• the type of access window (full, single, or simple) and the access screen that
is initially active (howdy, Topics, Index, or Look for)

• howdy text for the initial access window

• application logo information for the access window

• Finder version resources (to display in the Get Info box of the guide file)

• prompt set definitions, including the default prompt set

• navigation bar button definitions, including the Huh? and GoStart buttons,
as well as the default navigation bar button set

• format definitions, including the Full, Tag, and Body formats

• specifications of the maximum and minimum height allowed for a panel

Getting Started

APPENDIX C

SurtWriter Guide and Its Source Files

• event definitions for the Huh? button ("DoHuh"), the GoStart button
("GoStart"), and the Continue or OK buttons in Continue and Oops panels
("GoBack")

• context check definitions for the external modules provided in the Standard
Resources file

By editing the Standard Setup file, you can quickly create a guide file that
already has standard elements (such as the Huh? and GoStart buttons)
defined and customize specific elements (such as your guide file's menu item,
application logo, howdy text, and type of access window) as appropriate for
your guide file.

The Standard Resources File

The Standard Resources file contains:

• I PICT I resources for the Continue, Huh?, and GoStart buttons

• templates of 1 PICT 1 resources for an application logo

•
1 extm 1 resources (external modules) containing the code for the context
checks defined in the Standard Setup file

Customizing the Setup Information
The file "Setup and Access Window.src" specifies the basic setup information
for SurfWriter Guide. It is based on the Standard Setup file, with additions that
are specific for this guide file. Note that the file "Standard Setup OCCs.src"
contains the context check definitions from the Standard Setup file.

Listing C-2 through Listing C-6 show the "Setup and Access Window.src" file.

Navigation Information and Formats

As shown in Listing C-2, the "Setup and Access Window.src" file first imports
the resources from the Standard Resources file, then defines the same events,
navigation buttons, and formats as the Standard Setup file. It also defines
additional formats specific to SurfWriter Guide.

Getting Started C-5

G)
c: a:
(1)

I»
::::::J a.
&f
(/)
0 c: a
(1)

:n
(i)
rn

APPENDIX C

SurfWriter Guide and Its Source Files

Listing C-2 Events, navigation buttons, and formats (from the "Setup and Access
Window.src" file)

<Resource> "Standard Resources", ALL

#these events & definitions are also defined in "Standard Setup"
<Define Event> "DoHuh", 's***', 'help', 'dhuh'
<Define Event> "GoStart", 's***', 'help', 'stac'
<Define Event> "GoBack", 's***', 'help', 'gobk'

<Define Nav Button> "Huh?", 1101, 1111, 1121, DIMMABLE
<Define Nav Button> "GoStart", 1103, 1113, 1123, GoStart()
<Define Nav Button Set> "Std nav bar", "GoStart", "Huh?"

<Define Format> "Tag", Column(6,0,54),"Espy Sans Bold",10,plain,,
right, false
<Define Format> "Body", Column(6,65,330),"Espy Serif",10,plain,,
left, true
<Define Format> "Full", Column(6,11,330), 11 Espy Serif",10,plain,,Left,
false
#if you use styles in your help content and your source files are
styled text, omit "plain" from format
<Define Format> "Full2",Column(6,11,330),"Espy Serif",10,,,Left,false
<Default Format> "Full"
#define other formats that specify style information (if your
source files are plain text rather than styled text)
(these formats are used only with the "CreateCustomintro" panel)
<Define Format> "PlainText", Column(6,7,330),"Espy Serif",
10,plain,,,false
<Define Format> "UnderlineText", Column(20,41,11S),"Espy Sans Bold",
10,underline,,,false
<Define Format> "PlainTextReset", Column(20,116,330),"Espy Serif",
lO,plain,,,false
<Define Format> "PlainTextNormal", Column(34,7,330),"Espy Serif",
10,plain,,,false

C-6 Getting Started

APPENDIX C

SurfWriter Guide and Its Source Files

Prompt Sets

Listing C-3 defines the prompt sets used by SurfWriter Guide.

Listing C-3 Prompt sets (from the "Setup and Access Window.src" file)

#Define your prompt sets.
#Provide four strings to <Define Prompt Set>; the strings specify
prompts for:
1. the first panel in a sequence
2. any middle panel in a sequence that does not have
radio buttons, checkboxes, or standard buttons
3. the last panel in a sequence
4. any panel with controls (radio buttons, checkboxes,
or standard buttons)

<Define Prompt Set> "standard" , "To begin, click the right arrow.",
"Do this step, then click the right arrow.", "Do this step, then
you're done.", "Make your choice, then click the right arrow."

<Define Prompt Set> "standard2" , "To begin, click the right arrow.",
"Click the left arrow to go back or the right arrow to continue.",
"That's all, you're done!", "Make your choice, then click the right
arrow."

<Default Prompt Set> "standard2"

<Define Prompt Set> "introprompts" , "To begin, click the right
arrow • II I II II I II II I II II

<Define Prompt Set> "doThisprompt" , "Do this step, then click the
right arrow.", "Do this step, then click the right arrow.", " ", "Do
this step, then click the right arrow."

Getting Started C-7

(j)
c
0:
(1)

£1)
:J
a.

it
en
0
c
0
(1)

:::!!
m
en

APPENDIX C

SurfWriter Guide and Its Source Files

<Define Prompt Set> "YouAreDone" , II II " ","That's all, you're
done.", II II

<Define Prompt Set> "YouAreDone2" ,
done.", "That's all, you're done."

II II II II "That's all, you're

<Define Prompt Set> "continuePrompt" , "After the dictionary opens,
click Continue.", "After the dictionary opens, click Continue.",
"After the dictionary opens, click Continue.", " "

<Define Prompt Set> "Defn&HuhPrompts" , "Read this information, then
you're done.", "Read this information, then you're done.", "Read this
information, then you're done.", II II

Help Menu Information

Listing C-4 defines the information specific to SurfWriter's Help menu (the
menu item text and balloon text for the guide file).

Listing C-4 Help menu information (from the "Setup and Access Window.src" file)

*************** Help menu information *************************
#define how the name of this guide file should appear in
SurfWriter's Help menu
#the menu item name is "SurfWriter Guide"
#the guide file for this menu item is of type HELP
#if you use the cmd like this, it does NOT give you Cmd-Key symbol
or ? in the Help menu
#<Help Menu> "SurfWriter Guide", HELP
#therefore, specify the command like this
<Help Menu> "SurfWriter Guide", HELP, "?"

#use this command to specify the text that appears for this guide file
#in your application's Help menu; that is, when the cursor is in
the SurfWriter Guide menu item and Balloon Help is on,

C-8 Getting Started

APPENDIX C

SurtWriter Guide and Its Source Files

the Finder displays this text in a help balloon
<Balloon Menu Text> 11 Provides information and instructions to assist
you in accomplishing specific tasks with SurfWriter"

#To specify that your guide file appear only in the Help menu
#of your application, use this command and specify your application's
creator, for example:
<App Creator> 'WAVE'

Access Window Information

Listing C-5 defines the access window information for SurfWriter Guide. Note
that because this source file specifies the <App Logo> command, the Standard
Resources file must not contain 'PICT' resources with resource IDs 501 and
502 (these resources have been removed from the Standard Resources file
provided in the Example Source Files Appdx C folder). This guide file uses a
Full Access window with howdy text initially active, as shown by the <Startup
Window> command.

Listing C-5 Access window startup (from the "Setup and Access Window.src" file)

***********Access window startup information****************
#Define either SurfWriter app logo or app text.
#Apple Guide displays the app logo or app text
in the upper-left corner of SurfWriter Guide's Full Access window.
#<App Text> 11 SurfWriter Guide 11

#if you choose to use app logo instead,
#define the filename that contains a PICT of your app's logo
#for example, <App Logo> "MyAppLogoPict", "MyAppLogoB&WPict"
#(Note that the file "Standard Resources" contains templates with
PICT resource IDs 501 and 502 that you can modify appropriately and
#use as the application logo picture associated with your guide).
#If you modify the PICT resources with IDs 501 and 502 then import the
"Standard Resources" file, you can omit the <App Logo> command.
#If you store your app logo in a separate file,

Getting Started C-9

APPENDIX C

SurfWriter Guide and Its Source Files

then remove the PICT resources with resource IDs 501 and 502
from the "Standard Resources .. file.

<App Logo> "SurfWriter App Color Logo", 11 SurfWriter App B&W Logon

#define startup window, this is the window that Apple Guide
first displays when the user chooses the menu item SurfWriter Guide
If you specify a full access window, you can display HOWDY info
OR you can specify which of the three buttons is initially active
this example specifies HOWDY
<Startup Window> FULL, HOWDY

#You can choose FULL, SINGLE, or PRESENTATION as the startup window
#Full access windows allow topics, index, and look for, and Howdy
#Single access windows allow only topics and howdy
#Presentation allows a single sequence only

#define the text for the Howdy screen
<Define Text Block> "Howdy Text ..
Welcome to personal help for SurfWriter.

To start, click Topics, Index, or Look For.

Topics shows general categories and Index lists key words.
Look For lets you search for help according to key words you type.

To learn basic skills, choose the
Tutorial item from the ? menu.
<End Text Block>

#now specify the defined howdy text
<Howdy> 11 Howdy Text"

C-10 Getting Started

APPENDIX C

SurtWriter Guide and Its Source Files

Finder Version Information

Listing C-6 provides customized strings for the Finder version resources.

Listing C-6 Finder version information (from the "Setup and Access Window.src"
file)

*****************Finder file information*********
#Specify the version strings that appear in the Finder Get Info window
for your guide file
<Version> "SurfWriter Guide 1.0 ©Apple Computer, Inc.", "1.0"

Help Content

This section focuses on SurfWriter Guide by describing its source files for topic
areas and topics, sequences, panels, coachmarks, context checks, and event
functions. illustrations of SurfWriter Guide's access window and panels are
also shown, so that you can map this onscreen help to SurfWriter Guide's
source file content.

Topic Areas and Topics
The file "Topic Areas and Topics.src" specifies the topic areas and topics for
SurfWriter Guide. Figure C-2 shows these topic areas and shows the topics
for one specific topic area, "Using the Dictionary".

Help Content C-11

AP PENDIX C

SurfWriter Guide and Its Source Files

Figure C-2 The access window with Topics selected

1. Click a topic ar ea: 2. Click a phrase. then click OK:

Copying & Pastin {} v How do I plliiriiiiiiilil••••fl add a word to the dictionary?
Fonts look up a word in the aJCtionary?
Format ting create a custom dictionary?
Opening & Savini! Documents add or remove a dictionary?
Printing v Why can't I
Setting Preferences open the dictionary?
Styles v Definitions
Scripting custom dictionary
Using the Tooibar standard dict ionary
Writing Excellent Prose

OK

The Guide Script commands that define the topic areas for SurfWriter Guide's
access window are shown in Listing C-7. For each topic area, the associated
headers and topics are also defined. SurfWriter Guide provides two complete
topic areas, "Using the Dictionary" and "Using the Toolbar". Other topic areas
use placeholders for topics, so that the source file is easier to follow.

Listing C-7 Topic areas and topics ("Topic Areas and Topics.src" file)

#define topic areas when the user chooses the Topics button,

Apple Guide displays t h e topic areas define d

by <Topic Area> commands

#Apple Guide displays topic areas on t he left side of a full

access screen

Topic areas are often followed by <Header> commands

and <Topic> commands

You use header commands to group one or more topics

in the same category

C-12 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

#Headers are not required --
you can choose to have all topics with no groupings by headers
or you can have headers with each topic grouped with a header
#Note that a topic area MUST have at least 1 topic associated with it

A header command defines the bold headers that Apple Guide displays
in the right column when the user selects its associated topic area

A topic command defines a topic that Apple Guide displays
in the right column; the topic can either appear by itself or
have a header associated with it
#Note that you should either have all single topics or
have all topics grouped with headers
#Apple Guide expands and compresses the topics under a header
when the user clicks the triangle to the left of the header

#topic areas are displayed in the same order as they appear
in the source file

#Tip: You can use style or color information in Guide Script
commands to make your source files easier to read

<Topic Area> "Copying & Pasting" #topic area on left column of screen
<Header> 11 How do I" #header for right column when user

chooses "Copying & Pasting"
#topics displayed/expanded/etc with "Copying & Pasting"

<Topic> "placeholder for topic?","SequenceGeneric"
<Topic> "another placeholder for topic?","SequenceGeneric"

Help Content C-13

I
en
c

~
~.

<D ..,
(j)
c
a:
(J)

$»
:::J c.
iif
en
0 c
a
CD

::!!
<D
(/)

APPENDIX C

SurtWriter Guide and Its Source Files

<Topic Area> "Using the Dictionary"
<Header> "How do I"

<Topic> "add a word to the dictionary?","SequenceAddWords"
<Topic> 11 look up a word in the dictionary?","SequenceGeneric"
<Topic> "create a custom dictionary?",

11 SequenceCreateCustomDictionary"
<Topic> "add or remove a dictionary?","SequenceGeneric"

<Header> "Why can't I"
<Topic> "open the dictionary?","SequenceGeneric"

<Header> "Definitions"
<Topic> 11 Custom dictionary","SequenceDefnCustomDictionary"

<Topic> "standard dictionary","SequenceDefnStdDictionary"

<Topic Area> "Fonts"
<Header> "How do I"

<Topic> "placeholder for topic?","SequenceGeneric"
<Topic Area> "Formatting"

<Header> "How do I"
<Topic> "placeholder for topic?","SequenceGeneric"

<Topic Area> "Opening & Saving Documents"
<Header> "How do I"

<Topic> "placeholder for topic?","SequenceGeneric"
<Topic Area> "Printing"

<Header> "How do I"
<Topic> "placeholder for topic?","SequenceGeneric"

<Topic Area> "Setting Preferences"
<Header> "How do I"

<Topic> "placeholder for topic?","SequenceGeneric"
<Topic Area> "Styles"

<Header> "How do I"
<Topic> "placeholder for topic?","SequenceGeneric"

<Topic Area> "Scripting"
<Header> "How do I"

<Topic> "placeholder for topic?","SequenceGeneric"

C-14 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

<Topic Area> "Using the Toolbar"
<Header> "How do I"

<Topic> "use the tools in the toolbar?","Toolbar"
<Topic Area> "Writing Excellent Prose"

<Header> "How do I"
<Topic> "placeholder for topic?","SequenceGenericu

Sequences
This section focuses on the file "Sequence Definitions.src", which specifies the
sequences for each topic in SurfWriter Guide. The main sequences for each
topic area are shown in Listing C-8 through Listing C-12.

The Placeholder Sequence

SurfWriter Guide uses the placeholder sequence shown in Listing C-8 for all
topics other than those associated with "Using the Dictionary" and "Using the
Toolbar". Thus, the guide file displays all topic areas and topics, while allowing
the actual sequences to be added incrementally.

Listing C-8 Placeholder sequence (from the "Sequence Definitions.src" file)

#Here's a sequence definition used as a placeholder
<Define sequence> "SequenceGeneric", 11 How do I *do this task*?"
<SNBS> "Std nav bar"

<Panel> "PanelGeneric"
<End sequence>

"How do I use the tools in the toolbar?" Sequence

The sequence definition shown in Listing C-9 specifies the navigation button
set for the sequence and then lists all the panels that are part of the sequence.
This sequence has one panel ("Tools with Tip") that launches another sequence
if the user clicks the panel's Tip button. The sequence "Toolbar TipSeq" shows
the sequence for the Tip panel.

Help Content C-15

I

APPENDIX C

SurtWriter Guide and Its Source Files

Listing C-9 Sequence for "How do I use the tools in the toolbar?" (from the
"Sequence Definitions.src" file)

#A sequence defn for a topic of the topic area "Using the Toolbar"
<Define sequence> 11 Toolbar", "How do I use the tools in the toolbar?"

<SNBS> "Std nav bar"
<Panel> "Use Tools"
<Panel> "Tools 2"

<Panel> "Tools 3"

<Panel> "Tools with Tip"
<Panel> 11 Tools 411

<End sequence>

#A sequence defn for a Tip of "How do I use the tools in the toolbar?"
<Define sequence> "Toolbar TipSeq", "Tip: How do I use the tools in
the toolbar?"

<SNBS> "Std nav bar"
<Panel> "Toolbar Tip"

<End sequence>

"How do I add a word to the dictionary?" Sequence

The sequence definition shown in Listing C-10 includes one <Skip If>
command and three <Make Sure> commands. The second panel in the
sequence is skipped if the condition specified in the command is true. This
sequence uses Continue panels, as shown by the <Make Sure> commands. If
the condition specified in the <Make Sure> command is not true, a Continue
panel is displayed. (See the source file on the CD-ROM for an example of a
sequence that uses an Oops panel.) See Figure C-4 on page C-25 for an
illustration of the panels in this sequence.

C-16 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

Listing C-10 Sequence for "How do I add a word to the dictionary?" (from the
----------=- "Sequence Definitions.src" file)

#A sequence defn for a topic of the topic area "Using the Dictionary"
<Define sequence> "SequenceAddWords", "How do I add a word to the
dictionary?"

<SNBS> "Std nav bar"
<Panel> "AddWordsl"

<Skip If> ActiveWindow(I ttxt I, "Dictionary") AND ActiveAppis (I ttxt I)
<Panel> "AddWords2"

<Make Sure> ActiveAppis(1 ttxt 1
), "SWContinuePanelSeq"

<Make Sure> ActiveWindow(1 ttxt 1
, "Dictionary"), "SWContinuePanelSeq"

<Panel> "AddWords3"
<Make Sure> ActiveWindow(1 ttxt 1

, "Dictionary"), "SWContinuePanelSeq"
<Panel> "AddWords4"

<End sequence>
#*******************Example of a Continue sequence***************
#A sequence definition for a Continue sequence in the above topic,
"How do I add a word to the dictionary?"
<Define Sequence> "SWContinuePanelSeq", "Oops"

<Panel> "SWContinuePanel"
<End Sequence>

"How do I create a custom dictionary?" Sequence

SurfWriter Guide includes the topic "How do I create a custom dictionary?"
The sequence for this topic includes a panel containing radio buttons, as shown
in Figure C-3.

Help Content C-17

I
(j)
c
a:
CD
D>
::::J
a.
ii
en
0
c
a
CD

:n m
en

APPENDIX C

SurfWriter Guide and Its Source Files

Figure C-3 A panel with radio buttons

s::ts
How do I create a custom dictionary?

Which do you want to do? Click one:

0 manually create a custom dictionary
® automatically create a custom dictionary

Make your choice, then click the right arrow.

SurfWriter Guide allows the user to create a custom dictionary either
automatically or manually. To implement this, a panel with radio buttons
is used and the sequence definition (shown in Listing C-11) includes an <ll>
command that tests the state of a radio button and then branches accordingly.

When using SurfWriter Guide, if the user chooses to create a custom dictionary
automatically (by clicking the appropriate radio button then clicking the right
arrow button), the <ll> command and the statements immediately following
the <If> command are executed (see Listing C-11). Note that the panels in this
branch include <Skip ll> and <Make Sure> commands. This source file uses
the Activewindow, OpenWindow, and ActiveAppis condition functions
(these context checks are defined in the Standard Setup file) to determine
whether the folder is active and if not, it automatically activates or opens
the folder for the user.

The panels corresponding to the user choosing the manual method follow the
<Else> command. The ActiveWindow and ActiveAppis condition functions
are also used in this branch to determine whether a particular window is active
and open. Both branches use Continue panels if Acti veWindow returns false.
Note that it's important that SurfWriter Guide determine not only whether
a window is open but also whether it is active, especially when using
coachmarks for a window. Otherwise, the coachmark may be drawn in
an inappropriate window.

Finally, Listing C-11 shows that the sequence uses a common closure panel,
which is presented to the user no matter which branch they chose. See
Figure C-5 on page C-29 and Figure C-6 on page C-30 for illustrations of
the panels in this sequence.

C-18 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

Listing C-11 Sequence for "How do I create a custom dictionary?" (from the
---------=- "Sequence Definitions.src" file)

#A sequence defn for a topic of the topic area "Using the Dictionary"
<Define sequence> 11 SequenceCreateCustomDictionaryn, 11 How do I create
a custom dictionary?~~

<SNBS> 11 Std nav barn
<Panel> 11 CreateCustomintro 11

<Panel> 11 CreateCustomDecision 11

#branch based on state of radio buttons in previous panel
<IF> radioButtonState(11 automatically create a custom dictionary~~,
11 CreateCustomDecision")
#if user chose ~~automatically" do this sequence of panels
<Skip If> Activewindow(1 MACS 1

, "SurfWriter Scripts 11
) AND

ActiveAppiS(1 MACS 1
)

<Panel> 11 CreateCustomAuto1 11

<Make Sure> Activewindow(1 MACS 1
, "SurfWriter Scripts"),

11 SWContinueSeqCustomAutol"
<Make Sure> OpenWindow(1 MACS 1

,
11 SurfWriter Scripts"),

11 SWContinueSeqCustomAutol 11

<Make Sure> ActiveAppis(1 MACS 1
), "SWContinueSeqCustomAutol"

<Panel> 11 CreateCustomAuto2 11

<Else>
#if user chose 11 manually 11 do this sequence of panels

<Skip If> Activewindow(1 ttxt 1 , "Dictionary") AND ActiveAppis (1 ttxt 1)

<Panel> "CreateCustomManuall 11

<Make Sure> ActiveAppis(1 ttxt 1
) 1

11 SWContinuePanelSeq 11

<Make Sure> Activewindow(1 ttxt I ,
11 Dictionary 11

),

11 SWContinueSeqCustomManuall"
<Panel> 11 CreateCustomManual2"

<Make Sure> ActiveAppis(1 ttxt 1
), "SWContinuePanelSeq"

<Make Sure> ActiveWindow(I ttxt I, "Dictionary"),
11 SWContinueSeqCustomManual1 11

<Panel> 11 CreateCustomManual3 11

<End If>

Help Content C-19

en
c:

~
::::!. m ...,

APPENDIX C

SurfWriter Guide and Its Source Files

#common closure panel
<Panel> "CreateCustomAllDone"

<End sequence>

#A sequence definition for a Continue sequence in the topic,
"How do I create a custom dictionary (automatically)?"
<Define Sequence> "SWContinueSeqCustomAutol", "Oops"

<Panel> "SWContinuePanelCustomAutol"
<End Sequence>
#A sequence defn for another Continue sequence in the topic,
"How do I create a custom dictionary (manually)?"
<Define Sequence> "SWContinueSeqCustomManuall", "Oops"

<Panel> "SWContinuePanelCustomManuall"
<End Sequence>

The remaining sequence definitions used by panels of the sequence "How do I
create a custom dictionary?" are self-explanatory and are shown in Listing C-12.

Listing C-12 Sequence definitions for Huh?, Definition, and Related Topics (from the
------------'=' "Sequence Definitions.src" file)

#A sequence defn for "Definition:AppleScript"
<Define sequence> "Defns:AppleScript", "Definition: AppleScript"

<SNBS> "Std nav bar"
<Panel> "HotT AppleScript"

<End Sequence>

#A sequence definition for a Huh? sequence
<Define sequence> "HuhCompareManualAndAuto", "Comparison of manual
and automatic methods"

<SNBS> "Std nav bar"
<Panel> "CompareManualAndAuto"

<End Sequence>

C-20 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

#A sequence defn for a Tip sequence of creating a custom dictionary
<Define sequence> "Tip:CustomDictionary", "Tip: How do I create a
custom dictionary?"

<SNBS> "Std nav bar"
<Panel> 11 TipForCustomDictionary"

<End sequence>

#A seq defn for Related Topics sequence of creating custom dictionary
<Define sequence> "Related Topics:CustomDictionary", "Related Topics:
Bow do I create a custom dictionary?"

<SNBS> "Std nav bar"
<Panel> "RelatedTopicsForCustomDictionary"

<End sequence>

#A sequence definition for a Huh? sequence
<Define sequence> "BuhScriptsFolder", "Scripts in the SurfWriter
Scripts folder"

<SNBS> "Std nav bar"
<Panel> "ScriptsFolder"

<End sequence>

#Bere•s a seq defn for the panel that defines "Standard Dictionary"
<Define sequence> "SequenceDefnStdDictionary", "Definition: standard
dictionary"

<SNBS> "Std nav bar"
<Panel> "PanelDefineStandardDictionary"

<End sequence>

#Bere•s a sequence defn for the panel that defines "Custom Dictionary"
<Define sequence> "SequenceDefnCustomDictionary", "Definition: custom
dictionary"
<SNBS> "Std nav bar"

<Panel> "PanelDefineCustomDictionary"
<End sequence>

Help Content C-21

APPENDIX C

SurfWriter Guide and Its Source Files

Panels

This section focuses on the file II Panel Definitions.src", which specifies the
panels for SurfWriter Guide.

The Placeholder Panel

SurfWriter Guide uses the placeholder panel shown in Listing C-13 for all
topics other than those associated with "Using the Dictionary'' and "Using the
Toolbar". Thus the guide file displays a generic panel for these topics. In this
way, the actual content of the panels can be added incrementally and at a later
time.

Listing C-13 Placeholder panel (from the "Panel Definitions.src" file) ---------------=

<Define Panel> "PanelGeneric"
Placeholder for information that you supply.
<End Panel>

"How do I use the tools in the toolbar?" Panels

The panel definitions shown in Listing C-14 are simple examples of various
Apple Guide features. They show how to place a standard button on a panel,
how to use the Tag and Body formats, how to specify prompts, and how to use
a Tip or Related Topics button to launch a new sequence.

Listing C-14 Panels for "How do I use the tools in the toolbar?" (from the
------------------=: "Panel Definitions.src" file)

<Define Panel> "Use Tools"
<Panel Prompt> "introToolsprompts"
The SurfWriter toolbar contains tools that you use to create and
manipulate graphics.

For an overview of each tool in the toolbar, click Toolbar Tour. For
background information on graphics, click Designing Graphics.

C-22 Help Content

APPENDIX C

SurlWriter Guide and Its Source Files

#When you specifically place an object you place it relative to the
#current pen location. Note that the current pen location isn't reset
#after an object is absolutely placed. The current pen location's
horizontal coordinate is the left edge of the current format;
the vertical coordinate corresponds to the last object not
specifically placed using coordinates.
#it's (x, y)
#The first button is placed 50 pixels to the right and 20 pixels
down of the current pen location; the second button is placed 50
pixels to the right and 80 pixels down of the current pen location.
<Standard Button> "Toolbar Tour", Point(50,20), doNothingEvent()
<Standard Button> "Designing Graphics", Point(50,80), doNothingEvent()
<End Panel>

<Define Panel> "Tools 2"
<Panel Prompt> "doThisprompt"
<Format> "Tag"
Do This
<Format> "Body"
Click the Pencil icon in the toolbar.
<End Panel>

<Define Panel> "Tools 3"
#panel that shows default features
<Panel Prompt> NONE

<End Panel>

Help Content C-23

•
(j)
c
a:
CD
I»
~
a.
6f
en
0 c: a
CD

:!! co
(/)

APPENDIX C

SurfWriter Guide and Its Source Files

<Define Panel> "Tools with Tip"
#panel that shows a Tip button
<Panel Prompt> "doThisprompt 11

<Format> "Tag"
Do This
<Format> "Body"
Click the Pen icon in the toolbar.

For information about quickly selecting tools, click the Tip button.

<Standard Button> "Tip", RIGHT, LaunchNewSequenceNewWindow("Toolbar
TipSeq")
<End Panel>

<Define Panel> "Toolbar Tip"
<Panel Prompt> "Defn&HuhPrompts"
You can also select tools by using Command-key equivalents. See the
Shortcuts Guide for a complete list of these keys.
<End Panel>

<Define Panel> "Tools 4"
<Panel Prompt> "YouAreDone2"
<Format> "Tag"
Do This
<Format> "Body"
Close the toolbar.

<Standard Button> "Related Topics .. , CENTER, doNothingEvent()
<End Panel>

"How do I add a word to the dictionary?" Panels

SurfWriter Guide includes the topic "How do I add a word to the dictionary?"
Figure C-4 shows illustrations of the panels associated with this topic.

C-24 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

Figure C-4 "How do I add a word to the dictionary?" panels

ti:l:m:m:::m:::mm::::mm:::m:m::::::::::::::::::: ai

How do I add~ .word to the dictionary?

Surtwriter comes with the Surtwriter dictionary,
which you can use to check the spelling in your
documents.

To begin, click the right arrow.

s:m:::m::::::::::mm::m:::::::::::::::::::::::::m:::::::::::::::::::m::::::::::::::::::::::: Iii
liow do. I "tid.~ word ~o the diCtiQn~fy?. ' • •·

Do This Choose Dictionary from the Utilities menu to
open the Dictionary window.

Do this step, then click the right arrow.

GIJ)J Huh?

How do I add a word to the dictionary?.

Do This

Iii ::m:::mm:m::::;:::::::m:::::::::::::::::mm:::::::::::::::::mm:m::::::::::::::::::::: SJ

How do I add a word to the dictionary?

Your word is now part of the Surtwriter dictionary.

That's all, you're done.

The panel definitions for this topic (see Listing C-15) show use of coachmarks
and show how to implement a Continue panel. Note that to perform an action
for the user, the Continue panel includes an <On Panel Show> command that
specifies an event function. This guide file uses the DoAppleScript built-in
event function to execute a specified script. This particular script opens a file
containing a picture of the dictionary. Note that this guide file was originally

Help Content C-25

.en
c:

~ ;: ..,
Ci)
c: a:
CD
I»
:::J a.
£if
en
0
c:
a
CD

::!!
CD'
en

APPENDIX C

SurtWriter Guide and Its Source Files

designed for use with the SurfWriter application; however, for illustrative
purposes SimpleText is used in this example.

Listing C-15 Panels for "How do I add a word to the dictionary?" (from the
-----------=- "Panel Definitions.src" file)

<Define Panel> "AddWordsl"
<Panel Prompt> "introprompts"

SurfWriter comes with the SurfWriter dictionary, which you can use to
check the spelling in your documents.
<End Panel>

<Define Panel> "AddWords2"
<Panel Prompt> "doThisPrompt"

<Coach Mark> "UtilsOpenDictionary"
<Format> "Tag"
Do This
<Format> "Body"
Choose Dictionary from the Utilities menu to open the Dictionary
window.
<End Panel>

<Define Panel> "AddWords3"
<Panel Prompt> "doThisprompt"

<Format> "Tag"
Do This
<Format> "Body"
Type your word to add to the dictionary in the New Word text box.
#for SurfWriter, you would use:
#<Coach Mark> "DictionaryNewWord"
#for an application similar to SimpleText:
<Coach Mark> "DictionaryNewWordSimpleText"
<End Panel>

<Define Panel> "SWContinuePanel"

C-26 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

#open the dictionary for the user, by sending an Apple event to the
SurfWriter application requesting it to open the Dictionary window
#Apple Guide sends this event to SurfWriter when it shows this panel
#<On Panel Show> SWOpenDictionary(11 Dictionary 11

)

<Panel Prompt> 11 COntinuePrompt 11

Please wait a moment. Apple Guide is assisting you by opening the
dictionary.

<3D Button> 1070, 1072, Center, GoBack()

#(For illustrative purposes, this example uses SimpleText instead of
SurfWriter.)
<On Panel Show> DoAppleScript(11 :SurfWriter Scripts
src:OpenDictionarySimpleText ..)
<End Panel>

<Define Panel> "AddWords4 11

<Panel Prompt> .. YouAreDone ..
Your word is now part of the SurfWriter dictionary.
<End Panel>

#Example of an Oops panel
#(If you use Oops instead of Continue panel in the above sequence)
<Define Panel> 11 SWOopsPanel 11

<Panel Prompt> NONE
<Format> "Tag ..
Oops
<Format> "Body ..
You did not open the dictionary. Click OK for instructions (or open
the dictionary, then click OK).

<Standard Button> 11 0K 11
, Center, GoBack()

<End Panel>

Help Content C-27

(j)
c a:
<D
Q)
::::J a.
fj
(f)
0
c
a m
:n
a;
(/)

APPENDIX C

SurtWriter Guide and Its Source Files

"How do I create a custom dictionary?" Panels

SurfWriter Guide also includes the topic ~~How do I create a custom
dictionary?" Figure C-5 and Figure C-6 show illustrations of the panels
associated with this topic. Figure C-5 shows the panels a user views when
using the automatic method, and Figure C-6 shows the panels a user views
when using the manual method.

C-28 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

Figure C-5 "How do I create a custom dictionary?" panels (automatic branch)

Which do you want to do? Click one:

0 manually create a custom dictionary
® automatically create a custom dictionary

Make your choice, then click the right arrow.

Do This Open the SurtWriter Scripts folder. For
information about this folder, click Huh?
below.

Related Topics

Do this step, then ctick the right arrow.

Help Content C-29

G)
1:
c:
CD
I»
:::::J
0.

s:
(/)
0
1:

~
!!
<D
C/J

APPENDIX C

SurfWriter Guide and Its Source Files

Figure C-6 "How do I create a custom dictionary?" panels (manual branch)

rs:::::::::mmm::::m:::::::m::mmmmm:: 13 am:::::::::::::::::::mmmmm:::mm::m:::::::::::::::mmmmm:::mm:::::::::m:: 1B

How do I aeate a custom diclionary? How do I create a cUStom cOctlonary?

You can create a custom dictionary manually or by Which do you want to do? Click one:
using AP.P.leScrip_!. For a comparison of these two
methods, click Huh? below. ®manually create a custom dictionary
To begin, cHck the right arrow. 0 automatically create a custom dictionary

I! Huh? 1;r::':~fiiJ~ ':':a;t;~~I;l;ti,;;:,;~:;::~:':nan)·r I> 1 ;;· :; ~~~$~i~~~l" JM I> J

ra::::mm::::::m::::::m::::::::::::::::::::::::::::::::m:m:::::::::::::::::m::::::::::::::::; Iii
HOw dol create a custom dictionary?

DoTitis Choose Dictionary from the Utilities menu to
open the Dictionary window.

Do this step, then did(the right arrow.

f5 :::mm:::m::::::::::::::::::::::::::::::m:m::m::m:::~ e 13 ::::::::::::::::::::::::mmm:m;::::::::mm:mm:::m::m::::n:mmmm::m:mm::: w
How do I create a custom dictionary?

Do This Type your word in the New Word textbox of
the Dictionary window. Repeat this step for all
your words. For a shortcut, click the Tip
button.

Tip

Do this step, then cfid(the right arrow.

How do I create a CUstom dictionary?

Your custom dictionary is now created.

That's all, you're done!

The panel definitions for this topic, shown in Listing C-16, show use of hot
text with a Definition panel and also illustrate how to place radio buttons on
a panel. In addition, Listing C-16 shows use of Huh?, Tip, and Related Topics
panels.

C-30 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

Listing C-16 Panels for "How do I create a custom dictionary?" (from the
-------~ "Panel Definitions.src" file)

#To use styled text in a panel, you can either directly embed the
style information in the file (if you have the appropriate XTND
translator) or you can specify the style information
using format commands, as shown here.
#introduction panel
<Define Panel> "CreateCustomintro"
#this panel has an active Huh? button
<Dimmable Button Data> "Huh?", "HuhCompareManualAndAuto"

<Panel Prompt> "introprompts"
<Format> "PlainText"
You can create a custom dictionary manually or by using
<Format> "UnderlineText"
<Hot Text> "AppleScript", FIRST,
LaunchNewSequenceNewWindow("Defns:AppleScript")
AppleScript.
<Format> "PlainTextReset"
For a comparison of these two
<Format> "PlainTextNormal"
methods, click Huh? below.
<End Panel>

#Alternatively to using format commands for styled text, you can
define the panels that contain styled text in a separate file
and save the file in a format for which you have an XTND translator,
to more easily assign style information to the hot text.
#Here's an example (from a file saved in an appropriate format,
"Panels with Styleinfo.src")
#<Define Panel> "CreateCustomintro"
#this panel has an active Huh? button
#<Dimmable Button Data> "Huh?", "HuhCompareManualAndAuto"

#<Panel Prompt> "introprompts"
#<Format> "Full2"

Help Content C-31

APPENDIX C

SurfWriter Guide and Its Source Files

#Here's the panel text:
#You can create a custom dictionary manually
#<Hot Text> "AppleScript", FIRST,
LaunchNewSequenceNewwindow("Defns:AppleScript")
#or by using AppleScript. For a comparison of these two
#methods, click Huh? below.
#<End Panel>

#definition panel for AppleScript
<Define Panel> "HotT AppleScript"

<Panel Prompt> "Defn&HuhPrompts"
AppleScript is a scripting language that lets you
create sets of written instructions ("scripts")
to automate tasks you perform in an application.
<End Panel>
#definition panel for Huh? panel that compares Auto vs Manual methods
<Define Panel> "CompareManualAndAuto"
<Panel Prompt> "Defn&HuhPrompts"

You can create a custom dictionary by individually entering each word
yourself or by using a script that searches an open document for
tagged words and places them in the dictionary for you.
<End Panel>

#decision panel
<Define Panel> "CreateCustomDecision"
<Panel Prompt> "standard"

Which do you want to do? Click one:

#for <Radio Button> command, provide title of button,
default setting, and font
<Radio Button> "manually create a custom dictionary", FALSE, ,,,
APPLEGUIDE
<Radio Button> "automatically create a custom dictionary", TRUE,
APPLEGUIDE
<End Panel>

C-32 Help Content

, , ,

APPENDIX C

SurfWriter Guide and Its Source Rles

#first panel for "manually create a custom dictionary" branch
<Define Panel> "CreateCustomManual1"
<Coach Mark> "UtilsOpenDictionary"
<Panel Prompt> "doThisPrompt"

<Format> "Tag"
Do This
<Format> "Body"
Choose Dictionary from the Utilities menu to open the Dictionary
window.
<End Panel>

#Continue panel for "CreateCustomManual1" panel
<Define Panel> "SWContinuePanelCustomManual1"
#open the Dictionary window for the user, by sending an Apple event to
the SurfWriter application requesting it to perform this action
#[for example, <On Panel Show> SWOpenDictionary("Dictionary")]
#Apple Guide sends this event to SurfWriter when it shows this panel

<Panel Prompt> "continuePrompt"
Please wait a moment. Apple Guide is assisting you by opening the
Dictionary window.

<3D Button> 1070, 1072, Center, GoBack()

#(For illustrative purposes, this example uses SimpleText instead of
SurfWriter.)
<On Panel Show> DoAppleScript(":SurfWriter Scripts
src:OpenDictionarySimpleText")
<End Panel>

#second panel for "manually create a custom dictionary .. branch
<Define Panel> "CreateCustomManual2"

<Panel Prompt> 11 doThisPrompt 11

<Format> "Tag"
Do This

Help Content C-33

• en
c

~
ar
""' (j)
c a:
(I)

p)
:l a.
s=
en
0 c
0
(])

!!
CD"
0

APPENDIX C

SurfWriter Guide and Its Source Files

<Format> "Body"
Click the Create New Custom Dictionary button to create and name a
new custom dictionary.
#For SurfWriter, you would use:
#<Coach Mark> "CustomDictionary"
<Coach Mark> "CustomDictionaryButtonSimpleText"
<End Panel>

#third panel for "manually create a custom dictionary" branch
<Define Panel> "CreateCustomManual3 11

<Panel Prompt> "doThisPrompt"
<Format> "Tag"
Do This
<Format> "Body"
Type your word in the New Word textbox of the Dictionary window.
Repeat this step for all your words. For a shortcut, click the Tip
button.

<Coach Mark> 11 DictionaryNewWordSimpleText 11

<Standard Button> "Tip", RIGHT,
LaunchNewSequenceNewWindow("Tip:CustomDictionary")
<End Panel>

#Tip panel for nmanually create a custom dictionary~~ branch
<Define Panel> "TipForCustomDictionary"

<Panel Prompt> "Defn&HuhPrompts"
To quickly add a word to the dictionary, select the word in your
document and then click the Add word button in the Dictionary window.
<End Panel>

C-34 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

#first panel for "automatically create a custom dictionary" branch
<Define Panel> 11 CreateCustomAutol"
#this panel has an active Huh? button
<Dinunable Button Data> "Huh?", "HuhScriptsFolder"

<Panel Prompt> "doThisPrompt"
<Format> "Tag"
Do This
<Format> "Body 11

Open the SurfWriter Scripts folder. For information about this
folder, click Huh? below.

<Standard Button> 11 Related Topics", RIGHT,
LaunchNewSequenceNewWindow("Related Topics:CustomDictionary")
<End Panel>

#Related Topics panel for "automatically create a custom dictionary"
<Define Panel> "RelatedTopicsForCustomDictionary"

<Panel Prompt> "Defn&HuhPrompts"
Also see these topic areas:

Scripting
Writing excellent prose

<End Panel>

#Huh panel for "automatically create a custom dictionary" branch
<Define Panel> "ScriptsFolder"

<Panel Prompt> 11 Defn&HuhPrompts"
The SurfWriter Scripts folder contains three scripts: Custom
Dictionary, Create Glossary, and Create Bibliography.
<End Panel>

#Continue panel for "CreateCustomAutol" panel
<Define Panel> "SWContinuePanelCustomAutol"
#Open the SurfWriter Scripts folder for the user,
by providing a script that performs the action for the user.
Use the DoAppleScript event function to run the script.

Help Content C-35

G>
c: a:
CD
g)
~ a.
;:
en
0
c a
CD

:n
m en

APPENDIX C

SurfWriter Guide and Its Source Files

<Panel Prompt> "continuePrompt"
Please wait a moment. Apple Guide is assisting you by opening the
SurfWriter Scripts folder.

<3D Button> 1070, 1072, Center, GoBack()

<On Panel Show> DoAppleScript(":SurfWriter Scripts
src:OpenSurfWriterScriptsFolder")
<End Panel>

#second panel for "automatically create a custom dictionary" branch
<Define Panel> "CreateCustomAuto2"

<Panel Prompt> "doThisPrompt"
<Format> "Tag"
Do This
<Format> "Body"
Double-click the Custom Dictionary script.
<Coach Mark> "Custom Dictionary File"
<End Panel>

#closure panel for ,.creating a custom dictionary,.
<Define Panel> "CreateCustomAllDone"

<Panel Prompt> "standard2"
~our custom dictionary is now created.
<End Panel>
*******panels for Definition panels*******
<Define Panel> "PanelDefineStandardDictionary"
<Panel Prompt> "Defn&HuhPrompts"
Placeholder for information that you supply.
<End Panel>
<Define Panel> "PanelDefineCustomDictionary"
<Panel Prompt> "Defn&HuhPrompts"
Placeholder for information that you supply.
<End Panel>

C-36 Help Content

APPENDIX C

SurtWriter Guide and Its Source Files

Coach marks
The file "CoachMarks SW.src" specifies the coachmarks for the guide file.
Listing C-17 shows the contents of this file. The commands that define a
coachmark first specify the name of the coachmark, the signature of the target
application, and the coachmark style (red circle or red underline, for example).
For menu coaches, the menu title and menu item to coach are also provided.
For item coaches, the name of the dialog box and the dialog item to coach are
also provided. For window coaches, the name of the window and location to
coach are also provided.

Listing C·17 Coachmarks ("CoachMarks SW. src" file) ---------------=

#coach SurfWriter's Dictionary menu item in the Utilities menu
<Define Menu Coach> "UtilsOpenDictionary", 'WAVE', REDCIRCLE,
"Utilities", "Dictionary ... ", RED

#coach dialog item 3 in SurfWriter's "Dictionary" dialog box
<Define Item Coach> "DictionaryNewWord", 'WAVE', REDUNDERLINE,
"Dictionary", DialogiD(3)
#coach dialog item 8 in SurfWriter's "Dictionary" dialog box
<Define Item Coach> "CustomDictionary", 'WAVE', REDCIRCLE,
"Dictionary", DialogiD(B)

#coach a specific area in a window opened by SimpleText
<Define Window Coach> "DictionaryNewWordSimpleText", 'ttxt',
REDUNDERLINE, "Dictionary", Rect(74,250,82,395)

#coach a specific area in a window opened by SimpleText
<Define Window Coach> "CustomDictionaryButtonSimpleText", 'ttxt',
REDCIRCLE, "Dictionary", Rect(250,155,262,360)

#coach a specific area in the SurfWriter Scripts folder
<Define AppleScript Coach> "Custom Dictionary File",
REDCIRCLE,":SurfWriter Scripts src:Finder Coach Surf Custom File"

Help Content C-37

APPENDIX C

SurfWriter Guide and Its Source Files

Context Checks

SurfWriter Guide uses context checks to dynamically adjust the sequence of
display of its panels based on the state of the user's environment. For example,
SurfWriter Guide verifies that a certain window is open and active before
displaying a panel that coachmarks an item within the window. For panels that
contain radio buttons, it also adjusts the display of panels that follow it. These
panels are displayed based on the state of the radio buttons.

SurfWriter Guide defines its condition functions (context checks) with the
<Define Context Check> command. It then specifies that condition function in
commands related to conditional execution, such as the <If>, <Skip If>, <Make
Sure>, and <Start Making Sure> commands.

This guide file uses the radioButtonState built-in condition function and
also uses the ActiveWindow, OpenWindow, and ActiveAppis condition
functions defined in the Standard Setup file. See Listing C-10 on page C-17 and
Listing C-11 on page C-19 for examples of the use of these condition functions.
The file 11DCC SW.src" on the CD-ROM shows additional examples of
condition functions.

Event Functions

SurfWriter Guide uses event functions to perform some action for the
user. SurfWriter Guide defines its event functions using the <Define Event>
command and then specifies these event functions or built-in event functions
when using the <Standard Button>, <Hot Text>, and <On Panel Show>
commands.

For example, SurfWriter Guide often uses a Tips or Related Topics button.
SurfWriter Guide uses the LaunchNewSequenceNewWindow built-in event
function to display a new sequence to the user when the user clicks the button.

SurfWriter Guide also uses Continue panels. By using the <On Panel Show>
command to associate an event function (such as the built-in event function
DoAppleScript) with the display of a Continue panel, SurfWriter Guide
performs an action for the user.

See Listing C-16 on page C-31 for examples of the use of these event functions.
The file "Event Functions SW.src" on the CD-ROM shows additional examples
of event functions.

C-38 Help Content

APPENDIX C

SurfWriter Guide and Its Source Files

Index and Look For Content

This section focuses on the files that specify the Index and Look For content
for SurfWriter Guide. illustrations of SurfWriter Guide's access window when
Index is active and when Look For is active are shown, along with explanatory
text describing how SurfWriter Guide implements its Index and Look For
content.

SurfWriter Guide provides a list of its index terms. And to enhance Apple
Guide's searching facility, in addition to its index terms, SurfWriter Guide
provides three lists: the ignore list, exception list, and synonym list.

Index Terms
The file "Index Entries.src" specifies the index terms for SurfWriter Guide.
Figure C-7 shows SurfWriter Guide's access window when Index is active.

Figure C-7

Apple menu
clipboard
closing
copying
custom
deleting
dictionary

fonts
formats

The Index window

v How dol
save a document?
open a document?
close a document?
print a document?

Index and Look For Content

OK

C-39

(j)
c:
a:
CD
Ill
:J
a.
(jj
(/)
0
c:
0
CD

:I!
10
(/)

APPENDIX C

SurfWriter Guide and Its Source Files

SurfWriter Guide's index terms, and the headers and topics associated with
each index term, are shown in Listing C-18.

Listing C-18 Index terms ("Index Entries.src" file)
----------------~

<Index> "dictionary" #index entry
specify headers and topics for this index term

<Header> "How do I" #header
#topics

<Topic> "add a word to the dictionary?","SequenceAddWords"
<Topic> "look up a word in the dictionary?","SequenceGeneric"
<Topic> "create a custom dictionary?","SequenCreatCustDictionry"
<Topic> "add or remove a dictionary?","SequenceGeneric"

<Header> "Why can't I"
<Topic> "open the dictionary?","SequenceGeneric"

<Header> "Definitions"
<Topic> "custom dictionary","SequenceDefnCustomDictionary"
<Topic> "standard dictionary","SequenceDefnStdDictionary"

<Index> "toolbar" #index entry
<Header> "How do I"

<Topic> "use the tools in the toolbar?","Toolbar"
<Index> "tools" #index entry

<Header> "How do I"
<Topic> "use the tools in the toolbar?","Toolbar"

<Index> "pencil" #index entry
<Header> "How do I"

<Topic> "use the tools in the toolbar?","Toolbar"
<Index> "hammer" #index entry

<Header> "How do I"
<Topic> "use the tools in the toolbar?","Toolbar"

C-40 Index and Look For Content

APPENDIX C

SurfWriter Guide and Its Source Files

<Index> "opening"
<Header> "How do I"

<Topic> "open a document?","SequenceGeneric"
<Header> "Why can't I"

<Topic> "open the dictionary?","SequenceGeneric"

#index entry

<Index> "custom.. #index entry
<Header> "How do I ..

<Topic> "create a custom dictionary? .. , .. SequenCreatCustDictionry ..
<Header> "Definitions"

<Topic> "custom dictionary","SequenceDefnCustomDictionary"
<Index> .. standard" #index entry

<Header> .. Definitions"
<Topic> .. standard dictionary .. , .. SequenceDefnStdDictionary ..

<Index> .. Utilities menu.. #index entry
<Header> 11 How do I ..

<Topic> 11 USe the dictionary? .. , .. SequenceGeneric ..
<Topic> "use the thesaurus? .. , .. SequenceGeneric ..

#specify invisible index terms.
#invisible index terms do not appear in the index, but are included
when the user searches using the Look For feature
<Index> "customizing", FALSE #index entry (invisible)

<Header> .. How do I"
<Topic> "add a word to the dictionary? 11

,
11 SequenceAddWords 11

<Topic> .. add or remove a dictionary? 11

1
11 SequenceGeneric ..

<Topic> 11 Create a custom dictionary? 11
, .. SequenCreatCustDictionry ..

<Header> .. Definitions ..
<Topic> .. custom dictionary .. , .. SequenceDefnCustomDictionary ..

<Index> 11 Spell .. , FALSE #index entry (invisible)
<Header> .. How do I ..

<Topic> .. look up a word in the dictionary?", .. SequenceGeneric ..
<Index> 11 bitmap .. , FALSE #index entry (invisible)

<Header> .. How do I"
<Topic> .. use bitmapped fonts? 11

1

11 SequenceGeneric"
<Topic> .. create bitmapped graphics? .. , .. SequenceGeneric ..
<Topic> .. placeholder for topic? .. , .. SequenceGeneric ..

Index and Look For Content C-41

G>
c
a:
CD
I»
::l a.
s=
en
0 c a
CD

!!
(i)
fJ)

APPENDIX C

SurfWriter Guide and Its Source Files

<Index> "definitions", FALSE #index entry (invisible)
<Header> "Definitions"

<Topic> "custom dictionary","SequenceDefnCustomDictionary"
<Topic> "standard dictionary","SequenceDefnStdDictionary"

#other index terms (that use placeholders for now)
<Index> "Apple menu"

<Header> "How do I"
#index entry

<Topic> "placeholder for topic?","SequenceGeneric"
<Index> "clipboard" #index entry

<Header> "How do I"
<Topic> "placeholder for topic?"," SequenceGeneric" ·

<Index> "closing" #index entry
<Header> "How do I"

<Topic> "close a document?","SequenceGeneric"
<Index> "copying"

<Header> "How do I"
#index entry

<Topic> "placeholder for topic?","SequenceGeneric"
<Index> "deleting" #index entry

<Header> "How do I"
<Topic> "placeholder for topic? 11 ,"SequenceGeneric"

<Index> "documents" #index entry
<Header> "How do I"

<Topic> "save a document?","SequenceGeneric"
<Topic> "open a document?","SequenceGeneric"
<Topic> "close a document?","SequenceGeneric"
<Topic> "print a document?","SequenceGeneric"

<Index> "fonts"
<Header> "How do I"

#index entry

<Topic> "use bitmapped fonts?", 11 SequenceGeneric"
<Topic> "placeholder for topic?","SequenceGeneric"

<Index> "formats" #index entry
<Header> "How do I"

<Topic> "placeholder for topic?","SequenceGeneric"

C-42 Index and Look For Content

APPENDIX C

SurfWriter Guide and Its Source Files

<Index> "graphics" #index entry
<Header> "How do I"

<Topic> "create bitmapped graphics?","SequenceGeneric"
<Topic> "placeholder for topic?","SequenceGeneric"

<Index> "pasting" #index entry
<Header> "How do I"

<Topic> "placeholder for topic?","SequenceGeneric"
<Index> "preferences" #index entry

<Header> "How do I"
<Topic> "placeholder for topic?","SequenceGeneric"

<Index> "printing" #index entry
<Header> "How do I"

<Topic> "placeholder for topic?","SequenceGeneric"
<Topic> "print a document?","SequenceGeneric"

<Index> "replacing"
<Header> "How do I"

#index entry

<Topic> "placeholder for topic?","SequenceGeneric"
<Index> "saving" #index entry

<Header> "How do I"
<Topic> "save a document?","SequenceGeneric"

<Index> "searching" #index entry
<Header> "How do I"

<Topic> "placeholder for topic?","SequenceGeneric"
<Index> "selecting" #index entry

<Header> "How do I"
<Topic> "placeholder for topic?","SequenceGeneric"

<Index> "styles" #index entry
<Header> "How do Iu

<Topic> "placeholder for topic?","SequenceGeneric"
<Index> "writing" #index entry

<Header> "How do In

<Topic> "placeholder for topic?","SequenceGeneric"

Note that several invisible index terms are defined in the ''Index Entries.src"
file. Apple Guide does not display invisible index terms in the Index window.

Index and Look For Content C-43

Ci)
c:
a:
CD
$»
:l a.
~
en
0
c:
a
CD

:n
(i)
(/)

C-44

APPENDIX C

SurfWriter Guide and Its Source Files

However, Apple Guide includes both visible and invisible index terms when
it searches the index as a result of the user entering a search phrase in the
Look For window.

The Ignore List

The file "Ignore List.src" specifies the words in SurfWriter Guide's ignore list.
When first parsing a search phrase entered by the user, Apple Guide removes
from the phrase any words that appear on the ignore list. For example, if the
user enters the phrase "how do i use dictionary?" Apple Guide removes
"how", "do", "I", and "use" from the phrase, resulting in the phrase
"dictionary". "Dictionary" is an index term and, after checking the exception
and synonym list, Apple Guide reports a match, as shown in Figure C-8.

Figure C-8 Matching a search phrase

1. Click the arrow button to
begin, then type one or
more words to look for:

rn ~~se -~.i~~-~!!:.1

2. Click Search:

~fr!("""'s"""'e"""'ar"""'ch~)J

~mll
Topics Index

3. Click a phrase, then click OK:
v How dol

add a word to the dictionary?
look up a word in the dictionary?
create a custom dictionary?
add or remove a dictionary?

v Why can't I
open the dictionary?

v Definitions
custom tictlonary
standard dictionary

OK

Apple Guide automatically removes from the user's search phrase numerals
and other special characters, such as"$","&","+", "o/o", "?",and "-". For
example, Apple Guide reduces the phrase "32-bit addressing" to "bit address".
Listing C-19 shows words on SurfWriter Guide's ignore list.

Index and Look For Content

APPENDIX C

SurfWriter Guide and Its Source Files

Listing C-19 Ignore words ("Ignore List.src" file)

<ignore> "how"
<ignore> "do"
<ignore> "I"

<ignore> "my"
<ignore> "the"
<ignore> "and"
<ignore> "or"
<ignore> "real"
<ignore> "really"
<ignore> "a"
<ignore> "also"
<ignore> "any" I
<ignore> "in"
<ignore> "into"
<ignore> "on"
<ignore> "an"
<ignore> "as"
<ignore> "by"
<ignore> "for"
<ignore> "from"
<ignore> 11 0f"
<ignore> 11 if"
<ignore> "is"
<ignore> "isn't"
<ignore> "to"
<ignore> "it"
<ignore> "its"
<ignore> 11 it's"
<ignore> 11 look 11

<ignore> uupu

<ignore> 11 this"
<ignore> "that"
<ignore> "why"

Index and Look For Content C-45

APPENDIX C

SurfWriter Guide and Its Source Files

<ignore> "when"
<ignore> "these"
<ignore> "can"
<ignore> "can't"
<ignore> "cannot"
<ignore> "won't"
<ignore> "create"
<ignore> "use"
<ignore> "add"
<ignore> "remove"
<ignore> "lookup"
<ignore> "word"

The Exception List
The file "Exception List.src" specifies the words in SurfWriter Guide's
exception list. Listing C-20 shows the contents of this file. SurfWriter Guide
places a word on its exception list only if the stemmed form of the word
matches an existing index term. For example, SurfWriter Guide defines
"custom" and "customizing" as two separate index terms. To prevent
Apple Guide from stemming "customizing" to its root form ("custom"),
"customizing" is included on the exception list. Thus, if the user enters
"customizing" as a search phrase Apple Guide reports the correct matching
index term. "Customize" is also placed on the exception list, to prevent
stemming to "custom". In addition, "customize" is placed on the synonym list,
associating it with the index term "customizing".

Listing C-20 Words on the exception list ("Exception List.src" file) ----------------=

C-46

#you usually place an index term on the exception list
ONLY when the term would otherwise stem to another
index term or whose root form has an alternate meaning

Index and Look For Content

APPENDIX C

SurlWriter Guide and Its Source Files

<exception> .. customize ..
<exception> .. customizing ..
<exception> .. preferences ..

The Synonym List
The file ~~synonym List.src" specifies the words in SurfWriter Guide's synonym
list. As you recall, when parsing a phrase, after removing words on the ignore
list and stemming words except those on the exception list, Apple Guide then
checks the synonym list. Apple Guide first checks whether the synonym list
specifies the entire phrase as a synonym. If Apple Guide finds the phrase on
the synonym list, it replaces the synonym with its associated phrase (usually
its index term) then checks the index for a term matching this phrase. If it finds
a matching index term, Apple Guide reports a match.

For example, if the user enters "How do I create a site dictionary?" Apple
Guide removes words on the ignore list and sterns words not on the exception
list. This results in the phrase 11Site dictionary". Apple Guide then checks the
synonym list and replaces the synonym 11Site dictionary" with its associated
index term, "dictionary". Apple Guide then searches the index for this phrase
and finds a matching index term. Also note that one index term can have many
synonyms; for example, SurfWriter Guide defines "palette" and "tool bar" as
synonyms for 1/toolbar".

If Apple Guide does not find the phrase in the synonym list, then for each
individual word, if the word is a synonym in the synonym list, it replaces the
synonym with its index term. It then looks in the index for a term matching the
parsed phrase (this time any words that are synonyms have been replaced by
their equivalent index terms). If Apple Guide finds a match for the phrase, it
displays the topics for the index term. If it doesn't find the phrase in the index,
it looks in the list of index terms for each word. If Apple Guide finds a
matching index term for more than one word in the phrase, Apple Guide
intersects the results and displays any topics that are common to both words.

For example, if the user enters the search phrase "customize dictionaries",
Apple Guide stems "dictionaries" to II dictionary" (it does not stem
"customize" because this word is on the exception list). Apple Guide then
looks in the synonym list for the phrase "customize dictionary". Because
"customize dictionary" is not on the synonym list, Apple Guide then checks
the synonym list again, this time for each word in the phrase. ~~customize"
is on the synonym list, so Apple Guide replaces it with the index term

Index and Look For Content C-47

I
en
c

~
:!.

~
G)
c a:
<1>
I»
:::::J
a.

6f
en
0 c
a
<1>

::n
m
f/)

C-48

APPENDIX C

SurfWriter Guide and Its Source Files

"customizing". "Dictionary" is not on the synonym list so Apple Guide
leaves "dictionary" as is. Next, Apple Guide looks in the index for the phrase
"customizing dictionary". Because this phrase isn' t in the index, Apple Guide
then looks in the index for the term "dictionary" and for the term
"customizing", and finally displays the intersection of this list. Figure C-9
shows the results of this search. Note that Apple Guide displays only those
topics that are common to both index terms.

Figure C-9 Results of an intersection between two index terms

1. Click the arrow button to
begin, then type one or
more words to look for:

2. Click Search:

~f'f""(=s"""ea=r=ch~JJ

'V How do I
add a word to the dict ionary?
add or remove a dictionary?
create a custom dictionary?

"" Definitions
custom dictionary

OK

Listing C-21 shows the words on the SurfWriter Guide's synonym list.

Listing C-21 Words on the synonym list ("Synonym List.src" file)

#specify the index term, then specify the synonym

<syn> "clipboard", "clip"

<syn> "clipboard", "show clipboard"

<syn> "clipboard", "hide clipboard"

<syn> "clipboard", "scrap"

Index and Look For Content

APPENDIX C

SurtWriter Guide and Its Source Files

<syn>
<syn>
<syn>
<syn>
<syn>
<syn>
<syn>
<syn>

"closing",
"closing",
"closing",
"closing",
"copying",
"copying",
"copying",
"copying",

"close"
"closebox"
"close bOX 11

"close window"
"clone"
"copy"
"copy command"
"duplic"

<syn> "customizing", "customize"
<syn> "definitions", "definit"
<syn> "deleting", "clear"
<syn> "deleting", "clear command"
<syn> "deleting", "cut"
<syn> "deleting", "cut command"
<syn> "deleting", "delet"
<syn> "deleting", "delete"
<syn> "dictionary", "site dictionary"
<syn> "documents", "docum"
<syn> "documents", "file"
<syn> "fonts", "font"
<syn> "fonts", "bitmap font"
<syn> "fonts", "outline font"
<syn> "formats", "format"
<syn> "graphics", "graphic"
<syn> "graphics", "bitmap graphic"
<syn> "hammer", "hammer icon"
<syn> "opening", "open"
<syn> "opening", "open command"
<syn> "opening", "double click"
<syn> "pasting", "past"
<syn> "pasting", "paste"
<syn> "pencil", "pencil icon"
<syn> "printing", "print"
<syn> "printing", "print command"
<syn> "printing", "printer"

Index and Look For Content C-49

I
(J)
c:

~
<D ...,
G>
c: a:
CD
fl)
~ a.
(if
(J)
0
c:
0
CD

::!!
<D en

APPENDIX C

SurfWriter Guide and Its Source Files

<syn> "printing", 11 LaserWrit 11

<syn> "printing", 11 ImageWrit"
<syn> "printing", "spool"
<syn> .. replacing", "replac"
<syn> "replacing", "replace ..
<syn> "saving", .. save"

<syn> "saving", "save command"
<syn> "saving", "save work"
<syn> .. saving", "store ..
<syn> "searching", "searche 11

<syn> 11 Searching .. , 11 Search"
<syn> "selecting", "select"
<syn> 11 Styles", "style"
<syn> .. styles", "bold"
<syn> "styles .. , "ital"
<syn> "styles", "underline"
<syn> "styles", "shadow"
<syn> "tools", "tool"
<syn> "toolbar", "palette ..
<syn> "toolbar", "tool bar"
<syn> "utilities menu", "util"
<syn> "utilities menu", 11 Util menu"
<syn> "writing", "write"

C-50 Index and Look For Content

APPENDIX D

Checklist

This appendix is a checklist you can use to design, script, build, and test guide
files; modify and localize them; and integrate them into your application. It
consists of a series of actions for accomplishing the given tasks and includes
page numbers referring you to information within the book. The first four
sections show how to perform the tasks required to create a guide file
designing, scripting, building, and testing-as shown in Figure 0-1.

Figure D-1 Tasks required to create a guide file

Design

Q
rCJ=n
CJCJ

Completed
guide file

~

Script

Guide Script

Build

D-1

I

APPENDIX D

Checklist

The last section shows three tasks you can perform on your guide files after
you complete them. These are

• localizing your guide file

• modifying your guide file using a mixin

• integrating your guide file into your application

Designing Your Guide File Content

D-2

You should perform these tasks before you begin scripting your guide file:

• Determine which information is appropriate for your guide files (see
page 3-4)

• Decide which types of guide files you want to create (see page 2-5)

• Find out how the following items should look:

- access windows (see page 2-15)

- topic areas and topics (see page 2-30)

~ panels (see page 2-35 and page 2-50)

- sequences (see page 2-66)

branches (see page 2-67)

" buttons (see page 2-70)

c: hot areas (see page 2-77)

" coachmarks (see page 2-79)

context checks (see page 2-83)

• Create your guide file topic areas and topics (see page 3-4)

• Design your guide file in a hard-copy format (page 3-7)

:::J Plan panels and sequences (see page 2-35, page 2-50, and page 2-66)

_j Design navigation bar buttons (see page 2-71)

' : Design content area buttons (see page 2-72)

-~ Design prompt sets (see page 2-39)

c Decide whether to use Oops or Continue panels for context checks (see
page 2-85)

Designing Your Guide File Content

APPENDIX D

Checklist

:· Design your context checks and associated panels (see page 2-83)

• Design your access window features

·- Design your application logo (see page 2-18)

o Compose your howdy text, if used (see page 2-28)

o Create a preliminary guide file index for the Index and Look For features
in the Full Access window (see page 3-19)

:1 Create preliminary ignore, exception, and synonym lists for the Look For
feature in the Full Access window (see page 3-23 and page 3-24))

• Design your panel features

tJ Plan the panel layout and format (see page 2-43 and page 2-45)

L Compose your help instructions (see page 2-38)

u Prepare your graphics (see page 2-46)

u Determine all navigation and content buttons (see page 2-71 and
page 2-72)

:::1 Assign the appropriate prompt (see page 2-39)

- Plan for localization (see page 2-91)

Scripting Your Source Files

After designing your guide file, script your source files as follows:

• Set up the organization of your source files

c1 Split your content into multiple source files (see page 5-3)

11 Include the Standard Setup file (see page 5-4)

c: Import resources from the Standard Resources file (see page 5-4)

1 · Create your build file (see page 5-5)

• Customize the information in the Standard Setup file

Define your prompt sets (see page 10-35 and page 10-37)

_1 Define your formats (see page 10-30 and page 10-85)

·~ Define your navigation button sets (see page 10-32, page 10-71, and
page 10-80)

Scripting Your Source Files D-3

•

APPENDIX D

Checklist

• Provide basic information about your guide file

::J Import your application logo (see page 10-25)

::J Specify howdy text, if any (see page 10-24)

o Specify the type of access window (see page 10-21)

o Specify the menu item text that should appear in the Help menu when
your guide is available (see page 10-14)

o Specify help balloon text for your guide's item in the Help menu (see
page 10-16)

o Specify the application associated with your guide file (see page 10-8)

o Specify WorldScript information (see page 10-13)

o Specify version information for your guide file (see page 10-11)

o Specify whether your guide is a mixin (see page 10-19)

o Specify whether other guides can mix into your guide file or whether it
can be mixed in with other guides (see page 10-20)

• Specify your topic areas and topics (see page 10-125, page 10-135, and
page 10-137)

• For mixins, add or modify topic areas, index terms, and topics (see
page 10-190)

• Define your sequences (see page 10-39)

c Specify the sequence prompt set (see page 10-42)

L., Specify the sequence navigation button set (see page 10-43)

L: Specify panels and conditional display of panels (see page 10-45,
page 10-52, and page 10-152)

o Provide condition functions for context checks (see page 10-172)

• Provide the content of your panels

::J Text (see page 10-52 and page 10-85)

:::J Graphics (see page 10-95)

n Movies (see page 10-98)

o Standard buttons (see page 10-57)

c::: Three-dimensional buttons (see page 10-60)

o Radio buttons (see page 10-64)

o Checkboxes (see page 10-69)

ll Hot text (see page 10-122)

D-4 Scripting Your Source Files

APPENDIX D

Checklist

o Event functions (page 10-178)

o Coachmarks (see page 10-118)

o Prompts (see page 10-55)

• Define your index tenns

o Index terms (see page 10-128)

o Associated help topics (see page 10-135)

o Topics associated with headings (see page 10-137)

• Define your Look For content

n Ignore list (see page 10-145)

c Exception list (see page 10-147)

c Synonym list (see page 10-149)

Building Your Guide File

Compile your source files into a guide file by performing these tasks:

• Open Guide Maker (see page 4-5)

• Compile your source files (see page 5-6)

• Save your guide file (see page 5-8)

Testing Your Guide File

Mter building your guide file, test it as follows:

• Test your Look For content (see page 6-8)

• Test your guide file's interface (see page 6-3)

• Verify coachmarks, context checks, and event functions (see page 6-18)

• Do user testing (see page 6-20)

Building Your Guide File

•

D-5

APPENDIX D

Checklist

Additional Guide File Tasks

D-6

After you complete your guide file, at some point you will want to modify its
contents; you do this using a mixin. Apple recommends that you also localize
your guide file for other regions. In addition to making your guide file
available from your application's Help menu, you can integrate help into
your application. These three guide file tasks are listed next.

• Localize your guide file

[' Extract language-specific text strings from your source files using
Guide Maker's Localize utility (see page 7-3)

L Translate the text strings using various tools (see page 7-6)

~ Merge the translated text strings back into your source files using
Guide Maker's Localize utility (see page 7-6)

.=J Localize any other elements of your guide file, such as pictures, as
necessary (see page 7-6)

c:::; Compile your translated source files into a new guide file (see page 5-6)

• Modify a guide file by creating a mixin source file (see page 2-14)

:::J Specify that the guide file is a mixin (see page 10-19)

Indicate whether it can be mixed in with any guide or only a specific
guide (see page 10-20)

i~ Specify additions and modifications to the main guide file's content (see
page 10-190)

., Compile your mixin source files into a Mixin guide file (see page 5-6)

Save your Mixin guide file (see page 5-8)

• Integrate your guide file with your application

Refer to Chapter 9 for a description of the complete set of functions that
allow you to provide the user with context-sensitive help from within your
application.

Additional Guide File Tasks

Glossary

About Apple Guide A guide file
included with system software that
describes the help system· provided with
the Macintosh computer.

About guide file A type of guide file that
describes the available help systems in an
application. See also guide file, guide file
types, and Macintosh Guide.

access window The window-Full,
Single List, or Simple-that appears
whenever the user selects a guide file from
the Help Menu and from where the user
selects to view (or goes directly to view)
help topics. See also Full Access window,
Single List Access window, and Simple
Access window.

action panel A panel that presents a
single step in a procedure (for example,
to tell the user to open a menu).

additions See Mixin guide file.

Apple Guide A system extension
provided with system software that
provides an onscreen help system.

Apple Guide API A set of functions, or
application programming interface, that lets
you start up, access, and work with Apple
Guide from within your application.

Apple Guide font The attributes,
10-point Espy Serif Plain black,
automatically applied by Apple Guide
to text on the panel content area.

AppleScript coach A coachmark for an
object whose location is determined by a
script. See also coachmark, item coach,
menu coach, object coach, window coach.

Balloon Help A System 7 (and higher)
feature that provides users information
about such objects on the Macintosh screen
as icons, windows, and commands.

Body format A format that provides a
right column and that is designed for use
with the Tag format.

branch A panel sequence within another
sequence.

build To compile a help source file using
Guide Maker.

build file A file that contains only
<Include> and <Resource> commands.

Build utility The Guide Maker utility
you use to build guide files. See build and
guide file.

closure panel At the end of a sequence,
a panel that summarizes the information
covered by that sequence.

coachmark An onscreen graphic that
circles or points to an item on the screen.
See also coachmark types.

GL-1

GLOSSARY

coachmark types The five different kinds
of coaches-menu, item, object, window,
and AppleScript-that you can create with
Apple Guide. See also menu coach, item
coach, object coach, window coach, and
AppleScript coach.

compile See build.

content area The part of a panel between
the panel sequence title area and the
navigation bar that contains help
instructions, possibly including text,
control features (such as radio buttons
and checkboxes), I PICT I graphics, and
QuickTnne movies. See also sequence
display title area and navigation bar.

content area button Control features that
appear in the content area of a panel and
that are generally associated with an event
or navigation route specific to that panel.
See also content area.

context checks Functions that verify the
user's environment so that Apple Guide
can dynamically skip or show certain
panels to the user based on their
appropriateness.

Continue panel A panel that offers to
complete for the user a condition that has
not been met when the user attempts to
continue to the next panel in the sequence.
Compare Oops panel.

Convert utility The Guide Maker utility
you use to convert a Windows Help file to
a Guide Script source file.

GL-2

decision panel A panel from which the
user can select one or more tasks by using
radio buttons or checkboxes. Each button
or checkbox has a distinct panel branch
associated with it.

default prompt set The prompt set that
Apple Guide automatically applies to
panels in a sequence unless you override it.
See also prompt and prompt set.

definition panel A panel that defines
terminology appearing on a panel.

"Definitions" heading A heading for
term definitions that relate directly to the
selected topic area. See also "How do I"
heading and "Why can't I" heading.

Diagnose utility The Guide Maker
utility you use to step through the panels
of a guide file.

exception list A list of words that Apple
Guide does not reduce to a root word if
entered as a user search phrase with Look
For features selected in the Full Access
window. See also ignore list, synonym list,
and Look For buttons.

first-level panels In a sequence, the
panels that lead the user directly through
the task or concept of the associated topic.
See also second-level panels.

GLOSSARY

first previous panel In a sequence, the
panel that Apple Guide displays when the
user clicks the OK button on an Oops panel
without making the condition true. This
panel is the first panel that Apple Guide
finds, searching backward through the
sequence, that meets one of two criteria: it
does not have a <Make Sure> command
specified for it, or it has a <Make Sure>
command whose condition evaluates to
true. See also Oops panel.

Full Access window A window that
includes three built-in buttons-Topics,
Index, and Look For-from which the user
makes selections or enters a search phrase.
See also Simple Access window and Single
List Access window.

Full format A one-column format that
Apple Guide applies by default to all
panels. See also Tag and Body format.

GoStart button A lightbulb-shaped
button that appears in the navigation bar of
a panel and that takes the user back to the
access screen. See also navigation button.

guide file A single file containing help
content that conforms to one of five guide
file types supported by Apple Guide. See
also guide file types.

guide file index A list of terms that point
to the topics appearing in the right column
of the Full Access window. Apple Guide
uses the index to retrieve topics for the user
when Look For or Index features are
selected on the Full Access screen. See also
Index button and Look For button.

guide file types Five guide files specified
by the Apple Guide Human Interface
Guidelines-About, Tutorial, Help,
Shortcuts, and Other-that each have
a particular focus, content, naming
convention, and Help menu location. See
also About guide file, Help guide file,
Shortcuts guide file, Tutorial guide file,
and Other guide file.

Guide Maker A tool for building and
testing guide files.

Guide Script An authoring language for
developing guide files.

Guide Script source files See help source
files.

Help guide file A type of guide file that
provides the main information in a help
system through a wide range of
task-oriented information about an
application. See also guide file, guide file
types, and Macintosh Guide.

help source files Files containing Guide
Script commands that define the look,
content, and navigation path of all panels
in a guide file. See also Guide Script.

hot area On a panel, the area containing
a rectangle, object, or text that the user can
click to view another panel containing
related information.

hot object On a panel, a hot area
specified by the rectangle of the next object
(either text or a graphic) in the panel
definition.

hot rectangle On a panel, a hot area that
is a specific rectangle.

GL-3

GLOSSARY

hot text On a panel, a hot area that
consists of designated text. See also hot
area, hot object, and hot rectangle.
11How do I" heading In the Full Access
window, a heading for topics that show the
user how to accomplish a task. See also
11De.finitions" heading and 11Why can't I"
heading.

howdy text Text that describes a guide
file and that appears in the access window's
instructions.

Huh? button A button that appears in the
navigation bar of a panel and that, when
active, the user can click to view an
associated panel with crucial information.

ignore list A list of words you tell Apple
Guide to remove from a user search phrase
entered with Look For features selected in
the Full Access window. See also Look For
button, exception list, and synonym list.

Index button On the Full Access screen,
a built-in button that the user can click to
display a list of index terms for the guide
file contents. This list appears in the left
column of the window.

information panel A panel that provides
brief conceptual explanations.

introductory panel A panel that begins a
panel sequence or branch and that describes
its contents.

invisible index term A term that does
not correspond to a visible term in the Look
For index but that Apple Guide uses to
match a search phrase with guide file
topics. See also visible index term.

GL-4

item coach A coachmark for an item in
a dialog box or other interface element
in a window (or dialog box). See also
coachmark, menu coach, object coach,
window coach, and AppleScript coach.

Localize utility The Guide Maker utility
you use to localize all elements of your
guide files that are language-specific, such
as text strings and pictures.

Look For button In the Full Access
window, a built-in button that the user can
click to access information in the guide file
using a search phrase.

Macintosh Guide A guide file included
with system software that provides its main
help through step-by-step instructions for a
variety of tasks.

Macintosh Guide additions Four guide
files-PowerBook Guide, Speech Guide,
Video Guide, Video Player-that add
content to Macintosh Guide about a specific
piece of hardware attached to the
Macintosh computer or about certain
system software features.

main guide file A guide file containing
help instructions that can be modified using
a Mixin guide file. See also Mixin guide file.

menu coach A coachmark for a specific
menu or menu item. See also AppleScript
coach, coachmark, item coach, object
coach, and window coach.

Mixin guide file A file you use to add to
or modify the contents of a main guide file.
See also main guide file.

GLOSSARY

navigation bar On the lower portion of
a panel, the bar that displays the left and
right navigation arrows that the user clicks
to move between panels. This bar may
contain additional navigation buttons (such
as GoStart and Huh?). See also content area
and sequence display title area.

navigation button A button that always
appears in the navigation bar of a panel that
takes the user to different parts of the guide
file. See also GoStart button and Huh?
button.

object coach A coachmark for an object
based on a rectangle that an application
returns for the named object. See also
coachmark, menu coach, item coach,
window coach, and AppleScript coach.

Oops panel A panel that tells the user
a condition specified on a previous panel
was not met. The user needs to make the
condition true to continue to the next panel.
Compare Continue panel

Other guide file A guide file that does
not conform to the content guidelines for
the four other Apple Guide guide files
(About, Tutorial, Help, and Shortcuts) or
that is a particularly advanced or
specialized version of these other types. See
also guide file types.

panel An Apple Guide help window that
describes a concept or step.

panel associated with a Huh? button A
panel that appears when the user clicks a
Huh? button on a panel. This associated
panel provides information crucial to
understanding the original panel.

panel branch See branch.

panel height On a panel, the distance
between the title area and the navigation
bar.

panel number The number appearing
on a panel between the left and right
navigation arrows. Guide Maker
automatically assigns this number in a
dynamic sequence.

panel sequence See sequence.

panel width The area across the panel,
which is a fixed measurement of 344 pixels.

presentation panel See panel.

prompt The panel text that tells the user
what to do and where to go (for example,
click the right arrow to continue).

prompt set A collection of four prompts
that Apple Guide chooses to display based
on what a panel's position in the sequence
is (first, middle, or last) or whether it
contains controls (radio buttons,
checkboxes, or standard buttons). See also
default prompt set and prompt.

random access A method of access in
which the user can select help topics in any
order.

related topics panel A panel that
describes topics in a guide file pertaining to
either a specific panel or sequence.

ResetPen Format A format that resets the
current format to the default format.

second-level panels The panels that
provide supplemental help, and Oops and
Continue panels. See also first-level panels.

GL-5

GLOSSARY

sequence A set of related panels that the
user can access linearly using left and right
navigation arrows.

sequence display title area In the upper
portion of a panel, the bar that contains the
panel title. See also content area and
navigation bar.

sequential access A method of access in
which the user can select help topics in a
structured order.

Shortcuts A guide file included with
system software that provides Macintosh
keyboard commands and tips.

Shortcuts guide file A guide file that
provides condensed reference material
similar to that found on a quick reference
card. See also guide file types and guide
file. ·

Simple Access window A window that
takes the user directly to the help
information unless you provide your own
access method. See also Full Access
window and Single List Access window.

Single List Access window A window
that provides a single scrollable list of topics
for the user to choose from. See also Full
Access window and Simple Access
window.

standard button A two-dimensional
button, drawn by the Macintosh toolbox,
that has an event associated with it. See also
content area button.

standard panel types A set of panel
designs that apply to and should be used
for specific categories of help information.

GL-6

stemming The process by which Apple
Guide reduces common word variations to
root words in search phrases entered by the
user.

synonym list A list containing words that
have identical meaning to index terms but
that do not appear in the index. See also
exception list, ignore list, and Look For
button.

Tag In the left coluinn of a panel, a bold
phrase that describes the Body text that
appears in the right column of the panel.
See also Tag and Body format.

Tag and Body format A two-column
format for panels created by two Guide
Script commands. See also Full format,
Tag, Tag format, and Body format.

Tag format A format that provides a left
column that you can use to format tags and
that is designed for use with the Body
format.

three-dimensional button A button
whose appearance is determined by a
graphic that you place in it. See also content
area button, navigation button, and
standard button.

tip panel A panel that gives a hint about
how to perform an action or use an
application feature.

topic A category of help information in
a guide file that the user views from an
access window.

topic area A broad category of help that
breaks into one or more topics. It appears in
the left column of the Full Access window
when the user selects the Topics button.

GLOSSARY

Topics button A built-in button on the
Full Access window that the user clicks to
display topic areas in the left column of the
window.

transition panel A panel that connects
parts of multipart panel sequences.

Tutorial A guide file included with
system software that provides training
in Macintosh skills.

Tutorial guide file A type of guide file
that leads users through the basic features
of an application. See also guide file types
and guide files.

visible index term A term that appears
in the left column of the Full Access
window with Index features selected. See
also invisible index terms.

"Why can't I" heading In the Full Access
window, a heading for topics that explain
why a certain action cannot be performed.
See also "Definitions" heading and "How
do I" heading.

window coach A coachmark for a specific
area of a window. See also coachmark,
menu coach, item coach, object coach, and
AppleScript coach.

GL-7

Index

Symbols

#command 10-17

Numerals

<30 Button> command 10-60 to 10-64

A

About Apple Guide 1-5
About guide files 2-7,2-9 to 2-10
access windows 2-15 to 2-30

features of 1-9 to 1-13
Full 2-16 to 2-24

creating Look For features for 3-12 to 3-26
defined 2-15
features of 2-16 to 2-19
headings for 2-33 to 2-35
for Help guide files 2-11
howdy text on 2-28 to 2-30
designing Index features for 2-20 to 2-21
designing Look For features for 2-21 to 2-24
topic areas for 2-31 to 2-32
designing Topics features for 2-19 to 2-20
topics for 2-31 to 2-32

Simple
buttons in 2-26
defined 2-15
features of 2-26 to 2-28
howdy text on 2-28 to 2-30
for Shortcuts guide files 2-14
topics for 2-33

Single List
defined 2-15

features of 2-25 to 2-26
howdy text on 2-28 to 2-30
topics for 2-32 to 2-33

action panels 2-53 to 2-54
additions. See Mixin guide files
AGClose function 9-17 to 9-18
AGFileGetDBCount function 9-9
AGFileGetDBCountry function 9-28 to 9-29
AGFileGetDBMenuName function 9-23 to 9-24
AGFileGetDBType function 9-26 to 9-27
AGFileGetDBVersion function 9-29 to 9-30
AGFileGetHelpBalloonText function 9-24

to 9-25
AGFileGetHelpMenuAppCreator

function 9-25 to 9-26
AGFileGetindDB function 9-10 to 9-11
AGFileGetMixinMatchSelector

function 9-32 to 9-33
AGFileGetSelectorCount function 9-30
AGFileGetSelector function 9-31
AGFileisMixin function 9-28 to 9-32
AGFile library 9-3
AGGeneral function 9-20 to 9-21
AGGetAvailableDBTypes function 9-7 to 9-8
AGGetFrontWindowKind function 9-19 to 9-20
AGGetFSSpec function 9-22
AGGetStatus function 9-6 to 9-7
AGinstallCoachHandler function 9-34 to

9-35
AGinstallContextHandler function 9-36 to

9-37
AGisDatabaseOpen function 9-17 to 9-19
AGOpen function 9-12 to 9-13
AGOpenWithSearch function 9-14 to 9-15
AGOpenWithSequence function 9-16 to 9-17
AGOpenWithView function 9-13 to 9-14
AGQui t function 9-6
AGRemoveCoachHandler function 9-35

IN-1

INDEX

AGRemoveContextHandler function 9-37 to
9-38

AGStart function 9-5
<Allow Prompts> command 10-34 to 10-35
<App Creator> command 10-8 to 10-9
Apple Guide

compared with Balloon Help 1-5
components of 1-4 to 1-5
features of 1-3 to 1-8
typical help session with 1-9 to 1-13
uses of 1-8

Apple Guide API
functions in 9-5 to 9-38

Apple Guide Debug extension 6-6, 9-4
Apple Guide extension 9-4

determining if installed 9-4
Apple Guide font 2-48
Apple Guide icon 2-19
AppleScript

and coachmarks 2-80
determining location of coachmarks

with 10-116 to 10-117
localizing 2-95
running a compiled script 10-189

application creator 10-8 to 10-9
application logo 2-18 to 2-19, 2-25, 10-25 to 10-26
application programming interface for Apple

Guide. See Apple Guide API
application signature 10-8 to 10-9
<App Logo> command 10-25 to 10-26
<App Text> command 10-27
authoring tips 2-5 to 2-95
autosaving guide files, compile option 5-9

8

Balloon Help 1-5
BallooniD function 10-110, 10-111
<Balloon Menu Text> command 10-16
Body format 2-44
branches 2-67 to 2-69
build files

IN-2

compiling 5-6
creating 5-3 to 5-4
and the <Include> command 10-18

building
source files into a guide file 5-6 to 5-8

Build menu 4-7
<Build Sequence> command 10-50 to 10-51
Build utility 5-6
Build window 5-6
built-in event functions 10-188 to 10-190
buttons

c

content area 2-55, 2-70, 2-72
creating 10-57 to 10-82
dimmable 2-72, 10-78 to 10-79
formatting 2-72 to 2-74
GoStart 2-71
Huh? 2-71
Index 2-17, 2-20
localizing 2-94
Look For 2-17,2-21
navigation 2-70, 2-71 to 2-72, 10-71 to 10-82
radio 2-76 to 2-77, 10-64 to 10-68

on decision panels 2-52
on related topics panels 2-58
titles for 2-76

standard 2-70, 2-74, 10-57 to 10-60
three-dimensional 2-70, 2-74 to 2-76, 10-60 to

10-64
Topics 2-17,2-19
in Tutorial guide file 2-13
types of 2-70

<Checkbox> command 10-69 to 10-71
checkboxes

on decision panels 2-52
titles for 2-76

checkBoxState context check 10-175 to 10-176
closure panels 2-60
<Coach Mark> command 10-118 to 10-119
coachmarks

INDEX

AppleScript 10-116 to 10-117
associating with a panel 10-118 to 10-119
item 10-108 to 10-111
localizing 2-95
menu 10-105 to 10-108
object 10-111 to 10-113
styles of 2-80 to 2-83
testing 6-19
types of 2-80
window 10-113 to 10-115

Column function 1Q-7, 1Q-85
<Comment> command 10-17
company name in access window 2-18, 2-25
Compile arrow 5-7
compile messages in Guide Maker

errors 5-10
interpreting 5-10 to 5-11
warnings 5-11

compile options
autosaving guide files 5-9
creating symbol files 5-9
setting 5-8 to 5-9
warning when panels split 5-9

compiling help source files 5-6 to 5-11,5-14
compiling help source files. See building help

source files
composing help instructions 2-39,2-54
condition functions

checkBoxState 10-175 to 10-176
defining 10-172 to 10-175
radioButtonState 10-176 to 10-177

content area buttons 2-70,2-72
content area of panel 2-39
context checks

and Continue panels 2-85, 2-87
defining 10-172 to 10-175
determining 2-85 to 2-88
displaying branches based on 2-69
evaluation of 2-89 to 2-91
and first previous panels 2-89 to 2-90
in flowcharts 3-12
introduced 1-7 to 1-8
localizing 2-95
and Oops panels 2-85, 2-87 to 2-88, 2-91

testing 6-19
using 2-83 to 2-91

Continue panels 2-65 to 2-66
compared with Oops panels 2-66
and context checks 2-85, 2-87

control features. See buttons
Convert arrow 8-6
converting with Guide Maker 8-5 to 8-6
Convert menu 4-7
Convert utility 8-5
Convert window 8-5

D

decision panels 2-52 to 2-53, 2-69
<Default Format> command 1Q-30 to 1Q-32
<Default Nav Button Set> command 10-32 to

10-34
default prompt set 2-40 to 2-43
<Default Prompt Set> command 10-35 to 10-36
<Define AppleScript Coach> command 10-116

to 10-117
<Define Context Check> command 10-172 to

10-175
<Define Event> command 10-178 to 10-181
<Define Event List> command 10-181 to 10-182
<Define Format> command 10-85 to 10-91
<Define Item Coach> command 10-108 to 10-111
<Define Menu Coach> command 10-105 to

10-108
<Define Nav Button> command 10-71 to 10-77
<Define Nav Button Set> command 10-80 to

10-82
<Define Object Coach> command 10-111 to

10-113
<Define Panel> command 10-52 to 10-54
<Define Prompt Set> command 10-37 to 10-39
<Define Sequence> command 10-39 to 10-42
<Define Text Block> command 10-82 to 1Q-83
<Define Transparent Format> command 10-91

to 10-92

IN-3

INDEX

<Define Window Coach> command 10-113 to
10-115

definition panels 2-56 to 2-58
"Definitions" heading 2-57
<Delete Index> command 10-201 to 10-202
<Delete Index Header> command 10-202 to

10-203
<Delete Index Topic> command 10-203 to 10-204
<Delete Topic Area> command 10-198
<Delete Topic Area Header> command 10-199 to

10-200
<Delete Topic Area Topic> command 10-200 to

10-201
Diagnose menu 4-7
Diagnose utility 6-3 to 6-7
dialog boxes

coaching items in 10-108 to 10-115
DialogiD function 10-110, 10-111
<Dimmable Button Data> command 10-78 to

10-79
DoAppleScript event function 10-189
DoScript event function 10-189

E

<Else> command 10-156 to 10-158
<End If> command 10-158 to 10-160
<End Making Sure> command 10-171 to 10-172
<End Panel> command 10-56 to 10-57
<End Sequence> command 10-51 to 10-52
<End Text Block> command 10-83 to 10-84
Espy font 2-47
event functions

built-in 10-188 to 10-190
defining 10-178 to 10-181
testing 6-19

event lists
defining 10-181 to 10-182

<Exception> command 10-147 to 10-148
exception lists 3-13
Export Guide File command 5-12

IN-4

F

Finder, and system help 1-5
first-level panels 2-66 to 2-67
first previous panel 2-89 to 2-90
flowcharts, designing help content with 3-7 to

3-12
fonts

Espy 2-47
recommended 2-47

footnotes in Wmdows Help files 8-4
<Format> command 10-93 to 10-94
formats

Body 2-44
creating 10-85 to 10-91
default 10-30 to 10-32
designing 2-45 to 2-46
Full 2-43 to 2-45, 2-50
localizing 2-93
recommended 2-43 to 2-45
specifying 10-93 to 10-94
Tag 2-44
Tag and Body 2-43 to 2-45
transparent 10-91 to 10-92

formatting
buttons 2-72 to 2-74
graphics 2-46 to 2-47
panel text 2-47 to 2-48

Full Access windows
creating Look For features for 3-12 to 3-26
defined 2-15
features of 2-16 to 2-19
headings for 2-33 to 2-35
for Help guide files 2-11
howdy text on 2-28 to 2-30
designing Index features for 2-20 to 2-21
designing Look For features for 2-21 to 2-24
topic areas for 2-31 to 2-32
designing Topics features for 2-19 to 2-20
topics for 2-31 to 2-32

Full format 2-43 to 2-45, 2-50
for introductory panels 2-51

INDEX

G

<Gestalt> command 10-10 to 10-11
GoBack event function 10-163 to 10-167
GoPanel event function 10-189
GoStart button

and the <Define Nav Button> command 10-71
to 10-77

using 2-71
graphics in panels

formatting 2-46 to 2-47
green "X" character coachmarks 2-80 to 2-82
guide file additions. See Mixin guide files
guide file index 3-19 to 3-22
Guide File Info report 6-16 to 6-18
guide files

About 2-7, 2-9 to 2-10
compiling 5-6 to 5-11
designing 2-5 to 2-6
designing with flowcharts 3-7 to 3-12
developing content for 3-3 to 3-26
Help 2-7
in Help menu 2-7 to 2-8
inappropriate material for 3-4
indexes. See indexes
invoking

from Help menu 1-10 to 1-11
with Command key shortcuts 2-8

localizing 7-3 to 7-14
main 2-14
Mixin 2-5,2-14 to 2-15
navigating through 2-48 to 2-49
Other 2-7,2-14
Shortcuts 2-7,2-13 to 2-14
system software 1-4
testing 6-3 to 6-20
Tutorial 2-7,2-11 to 2-13
types of 2-6 to 2-7
uses of 1-8

Guide Maker
Build utility 5-6 to 5-8
Convert utility 8-3 to 8-10
Diagnose utility 6-3 to 6-7
introduction to 4-3 to 4-7

Localize utility 7-3 to 7-14
menus 4-6 to 4-7
Reports feature 6-13 to 6-17
Test Look For utility 6-8 to 6-12

Guide Script 1-5
Guide Script commands

abbreviations A-1 to A-5
descriptions 10-5 to 10-204
quick reference to B-1 to B-6

Guide Script source files. See help source files

H

<Header> command 10-135 to 10-137
headings 2-33 to 2-35
height

of navigation buttons 10-74
of panels

default maximum 10-28
default minimum 10-29

of standard buttons 10-58
help content

deriving from reference documentation 3-4 to
3-6

designing with flowcharts 3-7 to 3-12
inappropriate material for 3-4

Help guide files 2-7
Help menu 2-7 to 2-8
<Help Menu> command 10-14 to 10-16
help source files 2-6
hot areas 2-77
<Hot Object> command 10-119 to 10-120
hot objects 2-77 to 2-78
<Hot Rectangle> command 10-120 to 10-122
hot rectangles 2-77 to 2-78
hot text 2-77 to 2-79

compared with panels associated with Huh?
buttons 2-78

on related topics panels 2-58
<Hot Text> command 10-122 to 10-123
"How do I" heading 2-33
<Howdy> command 10-24 to 10-25

IN-S

INDEX

howdy text 2-16, 2-28 to 2-30
Huh? button

and the <Define Nav Button> command 10-71
to 10-77

and the <Dimmable Button Data>
command 10-78 to 10-79

panels associated with 2-61 to 2-63
using a 2-71

<If> command 10-153 to 10-156
<Ignore> command 10-145 to 10-147
ignore lists 3-12,3-23 to 3-24
Import Resources command 5-12
<Include> command 10-18 to 10-19
Index button 2-17, 2-20
<Index> command 10-128 to 10-130
indexes

designing 3-20 to 3-22
terms in

invisible 3-22
visible 3-20 to 3-22

testing 6-8 to 6-12
<Index Instruction> command 10-127 to 10-128
Index instructions 2-17
<Index Sorting> command 10-132 to 10-133
Index Sort Strings report 6-15 to 6-16
index terms

commands for 10-128 to 10-130, 10-130 to
10-133

invisible 3-22
visible 3-20 to 3-22

information panels 2-54 to 2-55
<Insert Index Header> command 10-195 to

10-196
<Insert Index Topic> command 10-196 to 10-197
<Insert Sequence> command 10-46 to 10-47
<Insert Topic Area Header> command 10-192 to

10-193
<Insert Topic Area Topic> command 10-193 to

10-194

IN-6

introducing users to help system 2-16, 2-28 to
2-30

introductory panels 2-51
invisible index terms 3-22
item coachmarks 10-108 to 10-111

J, K

<Jump Sequence> command 10-47 to 10-49

L

<Launch New Sequence> command 10-49 to
10-50

LaunchNewSequence event function 10-189
LaunchNewsequenceNewWindowevent

function 10-189
Localize menu 4-7
localizing

AppleScript 2-95
buttons 2-94
coachmarks 2-95
context checks 2-95
formats 2-93
panel text 2-92 to 2-93
sequence display area 2-94
source files 7-3 to 7-14
and stemming 3-14

Look For button 2-17, 2-21
Look For features

designing 2-21 to 2-24,3-12 to 3-26
exception lists 3-13
ignore lists 3-13, 3-23 to 3-24
matching search phrases with topics 3-15 to

3-19
stemming 3-12 to 3-14
synonym lists 3-13
testing 6-8 to 6-12

<Look For Instruction> command 10-141 to
10-142

Look For instructions 2-17

INDEX

<Look For Results Instruction>
command 10-144 to 10-145

<Look For Search Btn Instruction>
command 10-143 to 10-144

<Look For String> command 10-143

M

Macintosh Guide 1-5
Macintosh Guide additions 1-4 to 1-5
Macintosh Operating System, and system

help 1-5
main guide files 2-14
<Make Sure> command 10-162 to 10-168
<Max Height> command 10-28 to 10-29
Menu Appearance command 5-12 to 5-13
menu coachmarks 2-80,10-105 to 10-108
<Min Height> command 10-29 to 10-30
<Mixin> command 10-19 to 10-20
Mixin guide files

additional commands for 10-19 to 10-20,
10-190 to 10-204

and topic areas and topics 2-31
creating 5-13 to 5-14
designing 2-14 to 2-15
introduced 2-5

<Mixin Match> command 10-20 to 10-21
movies

specifying 10-98 to 10-100

N

Names to IDs report 6-14 to 6-15
navigation arrows 2-39
navigation bar 2-39
navigation buttons 2-70, 2-71 to 2-72
navigation button set

specifying 10-32 to 10-34, 10-43 to 10-44, 10-80
to 10-82

navigation methods 2-48 to 2-49

0

object coachmarks 2-80, 10-111 to 10-113
<On Panel Create> command 10-183 to 10-184
<On Panel Destroy> command 10-184 to 10-185
<On Panel Hide> command 10-187 to 10-188
<On Panel Show> command 10-185 to 10-187
Oops panels 2-63 to 2-65

compared with Continue panels 2-65
and context checks 2-85, 2-87 to 2-88, 2-91

Other guide files 2-7, 2-14

p

panel branches. See branches
<Panel> command 10-45 to 10-46
panel number 2-39
<Panel Prompt> command 10-55 to 10-56
panels 2-39 to 2-66

buttons in 2-70 to 2-77
characteristics of 2-35 to 2-39
commands for creating 10-52 to 10-57
content area of 2-39
default features of 2-37 to 2-39
features of 1-5 to 1-6
first level 2-67
first-level 2-66 to 2-67
first previous 2-89 to 2-90
formatting 2-43 to 2-48
formatting text in 2-47 to 2-48
graphics in

formatting 2-46 to 2-47
localizing 2-94

height of 2-36
navigating through 2-48 to 2-49
navigation bar on 2-39
numbering of 2-39
prompts for 2-39 to 2-43
second level 2-67
second-level 2-67. See also standard panel

types
sequence display title area 2-38

IN-7

INDEX

panels (continued)
width of 2-36

panels associated with Huh? buttons 2-61 to 2-63
compared with hot text 2-78

panel sequences. See sequences
<PICT> command 10-95 to 10-98
I PICT I graphics 2-45
pictures

application logo 10-25 to 10-26
specifying 10-95 to 10-98

PlaySound event function 10-189
Point function 10-7, 10-58, 10-59
Power Book Guide 1-5
presentation panels. See panels
presenting help instructions. See panels
presenting topics to users. See access windows
prompts

default 2-40 to 2-43
defining 10-34 to 10-39, 10-55 to 10-56
designing 2-39 to 2-43
formatting 2-40
overriding 2-42 to 2-43
sets of 2-40 to 2-42

Q

<QuickTime> command 10-98 to 10-100
QuickTime movies 2-45

R

<Radio Button> command 10-64 to 10-66
<Radio Button Launch New Seq>

command 10-66 to 10-68
radio buttons 2-76 to 2-77

in Simple Access windows 2-26
on decision panels 2-52
on related topics panels 2-58
title for 2-76

radioButtonState context check 10-176 to
10-177

IN-8

random access 2-16
RECT function 10-7
red arrow coachmarks 2-80 to 2-81
RedArrow function 10-109
red circle coachmarks 2-80 to 2-81
red underline coachmarks 2-80 to 2-82
reference documentation, deriving help content

from 3-4 to 3-6
related topics panels 2-58 to 2-59
<Replace Sequence> command 10-190 to 10-191
reports

generating from Guide Maker 6-13 to 6-17
Reports menu 4-7
<Resource> command 10-101 to 10-103
resources

importing 10-100 to 10-105
movie 10-98 to 10-100
picture 10-95 to 10-98
script 10-189
sound 10-189
version 10-11 to 10-12

resource types
I PICT I 10-95 to 10-98
I sept I 10-189
I snd I 10-189

RGBColor function 10-7, 10-86

s
saving guide files 5-8
Scopes and Keys report 6-13 to 6-14
second-level panels 2-67
<Seq Nav Button Set> command 10-43 to 10-44
sequence display title area 2-38
<Sequence Prompt Set> command 10-42 to 10-43
sequences

commands for creating 10-39 to 10-52
designing 2-66 to 2-69
within other sequences 2-67 to 2-69

sequential access 2-16
Set Compile Options command 5-8
Shortcuts 1-5

INDEX

Shortcuts guide files 2-7,2-13 to 2-14
Simple Access windows

buttons in 2-26
defined 2-15
features of 2-26 to 2-28
howdy text on 2-28 to 2-30
for Shortcuts guide files 2-14
topics for 2-33

Single List Access windows
defined 2-15
features of 2-25 to 2-26
howdy text on 2-28 to 2-30
topics for 2-32 to 2-33

<Skip If> command 10-160 to 10-162
<Sorting> command 10-130 to 10-131
sounds

specifying 10-189
source files

compiling 5-6
Speech Guide 1-5
split panels 5-9
<Standard Button> command 10-57 to 10-60
standard buttons 2-70, 2-74
standard panel types

action 2-53 to 2-54
closure 2-60
Continue 2-65 to 2-66, 2-85

and context checks 2-87
decision 2-52 to 2-53,2-69
definition 2-56 to 2-58
information 2-54 to 2-55
introductory 2-51
Oops 2-63 to 2-65, 2-85

and context checks 2-87 to 2-88, 2-91
panels associated with Huh? buttons 2-61 to

2-63,2-79
related topics 2-58 to 2-59
tip 2-55 to 2-56
transition 2-59 to 2-60

Standard Resources file 5-4, C-5
Standard Setup file 5-4, C-4 to C-5
<Starting Res Number> command 10-103 to

10-105
<Start Making Sure> command 10-168 to 10-171

<Startup Window> command 10-21 to 1Q-23
stemming 2-32,3-12 to 3-14
strings

specifying 10-6
styled text 2-47. See also formats
styles 2-47
SurfWriter Guide

source files for C-1 to C-50
symbol files

compile option 5-9
creating 5-9

<Synonym> command 10-149 to 10-152
synonym lists 3-13
system software guide files 1-4

T

Tag and Body format 2-43 to 2-45
for action panels 2-51,2-54
for long introductory panels 2-51

Tag format 2-44
tags 2-47, 2-54. See also Tag and Body format
testing guide files 6-3 to 6-20
Test Look For menu 4-7
Test Look For utility 6-8 to 6-12
text attributes

and the <Define Format> command 10-85 to
10-91

default for panel text 10-84
of checkboxes 10-69
of radio buttons 10-64 to 10-65
of standard buttons 10-57 to 10-58

text blocks
defining 10-82 to 10-84

text in panels
formatting 2-47 to 2-48

<3D Button> command 10-60 to 10-64
three-dimensional buttons 2-26, 2-70, 2-74 to 2-76
tip panels 2-55 to 2-56
title area 2-18 to 2-19, 2-25
<Topic Area> command 10-125 to 10-126
topic areas 2-30 to 2-35

IN-9

INDEX

<Topic Areas Instruction> command 10-124
<Topic> command 10-137 to 10-139
Topic instructions 2-17
topics 2-30 to 2-35
Topics button 2-17,2-19
<Topics Instruction> command 10-134 to 10-135
transition panels 2-59 to 2-60
transparent formats 10-91 to 10-92
Tutorial, component of Apple Guide 1-5
Tutorial guide files 2-7,2-11 to 2-13

u
user interface 2-5 to 2-95
utilities

Build 5-6
Convert 8-5
Diagnose 6-3 to 6-8
Localize 7-3 to 7-6
Test Look For 6-8 to 6-12

Utilities palette 4-5 to 4-7

v
<Version> command 10-11 to 10-12
version resource 10-11 to 10-12
Video Guide 1-5
Video Player 1-5
visible index terms 3-20 to 3-22

W,X,Y,Z

"Why can't I" heading 2-33
window coachmarks 2-80
windows

coaching items in 10-108 to 10-113, 10-113 to
10-115

Windows Help files
footnotes in 8-4

IN-10

preparing for conversion 8-3
underlined hidden text in 8-3

windows. See access windows
<World Script> command 10-13
<WorldScript> command 3-14

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
Laser Writer Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe lllustratorTM and
Adobe Photoshopn.'. PostScript'', the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are lTC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS
Sharon Everson, Ulla Hald, Daphne Steck

EDITOR
Jeanne Woodward

PROOFREADER
Wendy Krafft

ILLUSTRATORs
Ruth Anderson, Deborah Dennis

COVER ART /COVER DESIGN
Ruth Anderson

PRODUCTION EDITOR
Gerri Gray

LEAD WRITER
Sharon Everson

PROJECT MANAGER
Patricia Eastman

Special thanks to Peter Commons,
Brian Glenn, Jeremy Hewes, Glenn Katz,
Stephanie Koester, and John Powers.

Acknowledgments to Shemin Gau,
Devon Hubbard, James Miyake,
Georgiann Puckett, and Susan Torres.

~

I
I -

Also available from
Addison-wesley and

Apple Computet; Inc.

Electronic
Guide to
Macintosh
Human
Interface
IJesign

Macintosh Human Interface Guidelines
Apple Computer, Inc.
This book provides authoritative information on the
theory behind the Macintosh "look and feel" and the
practice of using individual interface components.
Anyone designing or creating a product for Macintosh
computers needs to understand these core principles.
Key topics address how people interact with computers,
effective use of color, guidelines for using language
clearly and consistently, and suggestions for creating
an effective design process.
0-201-62216-5 $29.95 paperback, 416 pages

Electronic Guide to Macintosh Human
Interface Design
Apple Computer, Inc.
This CD-ROM combines the full electronic text of the
classic book, Macintosh Human Inteiface Design with
the multimedia presentations of Making It Macintosh on
one convenient and easy-to-use disc. This interactive
guide contains more than l 00 animated examples that
demonstrate the correct use of Macintosh interface
elements, including visual examples illustrating the
appearance and behavior of menus, windows, dialog
boxes, and icons.
0-201-409 7 6-X $49.95, Macintosh CD-ROM

AppleScript

Order Information

AppleScript Finder Guide
Apple Computer, Inc.
The defmitive description of how the exciting new
AppleScript scripting language works with the Finder,
the application that controls the Macintosh desktop.
You'll learn how to automate some of the most com
monly performed activities on the Macintosh, such as
opening and closing folders, and manipulating files.
0-207-40970-0 $79.95 paperback, 776 pages

AppleScript Language Guide
Apple Computer, Inc.
This invaluable introduction to AppleScript contains
an exhaustive reference section that describes how to
use the value classes, commands, object classes, refer
ence forms, expressions, control statements, handlers,
and script objects recognized by AppleScript. Three
handy appendices summarize AppleScript terms, define
terms understood by the Scriptable Text Editor, and
detail error messages.
0-207-40735-3 $29.95 paperback, 476 pages

AppleScript Scripting Additions Guide
Apple Computer, Inc.
A companion to AppleScript Language Guide, this book
provides all the information a programmer needs to
begin writing effective scripting additions. Together
with introductory material, this book shows how to
install any scripting additions and invoke their com
mands, write scripting additions, and use the standard
scripting additions commands.
0-207 -40736-7 $78.95 paperback, 744 pages

Available wherever computer books are sold. Please calll-800-822-6339 for the location
of your nearest booksto re or to place your order. If you would like information about bulk
quantity discounts direct from the publisher, please call our Corporate, Government, and
Special Sales Department at 1-800-238-9682.

Addison-Wesley warrants the enclosed disc to be free of defects in materi
als and faulty workmanship under normal use for a period of ninety days
after purchase. If a defect is discovered in the disc during this warranty
period, a replacement disc can be obtained at no charge by sending the
defective disc, postage prepaid, with proof of purchase to:

Addison-Wesley Publishing Company
Editorial Department

Trade Computer Books Division
One Jacob Way

Reading, MA 01867

After the 90-day period, a replacement will be sent upon receipt of the
defective disc and a check or money order for $10.00, payable to Addison
Wesley Publishing Company.

Addison-Wesley makes no warranty or representation, either express or
implied, with respect to this software, its quality, performance, merchanta
bility, or fitness for a particular purpose. In no event will Addison-Wesley,
its distributors, or dealers be liable for direct, indirect, special, incidental, or
consequential damages arising out of the use or inability to use the soft
ware. The exclusion of implied warranties is not permitted in some states.
Therefore, the above exclusion may not apply to you. This warranty pro
vides you with specific legal rights. There may be other rights that you may
have that vary from state to state.

The CD contains essential tools and
resources to develop guide files, including:

• Guide Maker, the software you need to build, test, and
localize guide files

• sample guide files

• sample source files

• sample context checks

• Apple Guide interface files

• a searchable command reference to all Guide
Script commands

