SAMS o

Artificial Intelligence
Programming on
the Macintosh

Dan Shafer

Artificial Intelligence
Programming for
the Macintosh®

Dan Shafer

Howard W. Sams & Co.
A Division of Macmillan, Inc.
4300 West 62nd Sireet, Indianapolis, IN 46268 USA

©1986 by The Waite Group, Inc.

FIRST EDITION
FIRST PRINTING—1986

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-22447-X
Library of Congress Catalog Card Number: 86-60027

Edited by: Don MacLaren

Designed by: T. R. Emrick

Cover Art by: Ron Troxell

Computer Art by: Don Clemons

Chapter Opening Cartoons by: Bob Johnson

Printed in the United States of America
Macintosh is a registered trademark of Apple Computer Co.

ExperLogo is a registered trademark of ExperTelligence Co.
Microsoft Logo is a registered trademark of Microsoft Corp.

Contents

Preface vii

PART I ARTIFICIAL INTELLIGENCE PROGRAMMING
TECHNIQUES 1

Chapter 1 Overview: What Makes a Program Intelligent?
What Has This to Do with Programs? 5
Major Al Research Themes 5
Language Issues in Al 13
Conclusion 13

Chapter 2 Classic Missionary-Cannibal Problem 15
Refining the Problem 16
Applying the Ideas to the Missionary-Cannibal Problem 21
Using Search Techniques 26
The Missionary-Cannibal Program 28
Exploring Al with Missionaries and Cannibals 37
Summary: What We've Learned about Al Programming 33

Chapter 3 Micro-Logician 39
What You'll Learn 40
The Program 40
How Micro-Logician Works 43
Exploring Al with Micro-Logician 49
Summary: What We've Learned about Al Programming 50

Chapter 4 The Digital Poet 55
Two Types of Text Generation in Al 56
The Program 59
A Few Words about Poetry 62
How the Program Works 64
Exploring Al with Poetry Maker 73
Summary: What We've Learned about Al Programming 76

3

iv / Al Programming on the Macintosh

Chapter 5 Micro Blocks World 83

Parsing Natural Language 84

The Role of Grammars 88

The Program 91

Exploring Al with Micro Blocks World 702
Summary: What We've Learned about Al 103

Chapter 6 Intelligent Maze Game 111
Pattern-Matching in Al 172
When Prediction Is Less Certain 115
Three Types of Pattern-Matching 116
The Intelligent Maze Program 117
How It Works 179
PLAY Procedure Group 179
Exploring Al with the Intelligent Maze Program 122
Summary: What We've Learned about Al 122

PART Il ARTIFICIAL INTELLIGENCE DATA BASES 129

Chapter 7 A Prolog Interpreter 131

Why Prolog or Prologo? 132
The Program’s Background 132
Prolog and Expert Systems 132
What Is Prolog? 133

Prologo: An Overview 136

The Program 143

Exploring Al with Prologo 148
Summary 150

Chapter 8 Two Prologo Knowledge Bases 157
Knowledge Acquisition: The Key Roadblock? 158
Constructing Knowledge Bases: General Principles 162
Querying Knowledge Bases 166
The Literary Knowledge Base 167
The Geography Knowledge Base 173
Exploring Al Further with Prologo 177
What We've Learned about Al 178

PART Il ARTIFICIAL INTELLIGENCE LANGUAGES 179

Chapter 9 Does the Language Make a Difference? 181
Where’s the Super Language? 182
What Programming Languages Do. . .and Don’t Do 182
What an Al Language Needs 183
Popular Languages and Al 185
Summary and Looking Ahead 186

Chapter 10 A Quick Logo Refresher 189
Logo’s Image 190

Anatomy of a Logo Program 190

The Language of Logo 193

Graphics Commands 793

Macintosh® QuickDraw Graphics Commands 197
Input/Output Commands 197

Conditionals and Program Flow Control 799
Math Functions 202

List-Processing Commands 204

Arrays 208

Predicate Commands: Testing 209

Property Lists 209

Workspace Management 2171

Chapter 11 A LISP Refresher 213

Introduction to LISP 274
Basic LISP Syntax 274

Data Structures in LISP 215
Program Structure in LISP 276
Operations on Lists 218
Defining Functions 221
Setting Up Variables 2217
Conditional Processing 222
Essential Input/Output 225
Math Operators and Functions 228
LISP: Rich and Extensible 230

Chapter 12 A Brief Prolog Tutorial 233

Introduction and Purpose 234

Describing Data Relationships 236

Queries 239

Arithmetic Processing in Prolog 243

Creating Rules with Conditional Sentences 245
List-Processing Fundamentals 247
Input/Output Primitives 250

Concluding Remarks 252

Chapter 13 For BASIC Programmers 255

Fundamental Differences 256

Specific Implementation Concerns 257
Property Lists 260

Other Considerations 262

Appendix A LISP Listings of Selected Programs 265
Appendix B Converting Between Mac Logos 271
Appendix C Suggestions for Further Reading 279
Index 285 |

Contents / v

Preface

Artificial Intelligence (Al) has fascinated me from the first time | heard about it.
My first exposure to it came on a tour of the Stanford Artificial Intelligence Labo-
ratory (SAIL). | was entranced at the work the people at SAIL were doing with
computer music generation, robotics, and problem-solving. This book is the
beginning of the fulfillment of my intense desire to be part of what is happening
in that community.

I also wanted this book to fill what seemed to me to be a rather large gap in
the literature of Al. | have searched fruitlessly for a book that did not assume the
reader was already knowledgeable about programming in an esoteric language
such as LISP and aware of such fundamental computer science ideas as heuris-
tics and search mechanisms. | hope this book takes a small step toward filling
the need of interesting more and more people in the field of Al.

Few would argue with the proposition that Al is the next frontier in the
world of computers. In the past two years, real Al development tools and lan-
guages have become available on microcomputers, making hands-on experi-
mentation with and exploration of this fascinating field accessible to millions
who otherwise would have had to content themselves with reading about the
subject.

The growing importance of Al is enough of a practical reason for you to
spend your time reading this book, examining the programs it contains, and
exploring Al with the book as a guide. But the value of learning more about
intelligence—artificial or natural—transcends even the practical benefit of learn-
ing about a field that promises to have a tremendous impact on our daily lives.

Who This Book Is For

On one level, this is an introductory book about Al programming techniques. To
read the first part of each chapter in Part | and all of Part Il requires no program-
ming background in particular, though a nodding acquaintance with some of
the basic ideas of computers and programming would be useful. On another
level, the book abounds with examples and complete Al programs written in
ExperLogo® from ExperTelligence of Santa Barbara, California. To make full use
of these programs, you should have some Logo programming knowledge
(though Chapter 10 may give you enough of an introduction to the language),
access to an Apple Macintosh® computer, and a copy of ExperLogo®.

v

viii / Al Programming on the Macintosh

If you use ExperLogo® on your Macintosh®, you’ll also find that an external
drive is extremely helpful and a printer almost a requirement.

Two Decisions

Two aspects of this book deserve an explanation. Why did | focus on the
Macintosh® and why did | choose Logo as the principal language?

The Mac, with its desktop, icons, and windows, comes closer to what most
Al researchers view as a ‘rich and supportive’” programming environment than
any other machine on the market. As you program the examples in this book,
you will be doing so in an environment that is quite similar to that enjoyed by
professional Al workers. In addition, the Mac is fun to use and seems more
accessible to those new to computers than any other computer.

Logo is an excellent compromise selection between LISP, which is clearly
the Al language of choice but is difficult to learn and not readily available on the
Mac, and BASIC, which is far more available but not well suited to Al program-
ming. | deal with the issue of language selection at some length in Part Il of this
book.

Besides, Logo is easy to learn and is gaining increasing acceptance in the
educational community as a superb language for the exploration of new ideas.
And that is precisely what | wish for you: exploration of new ideas.

DAN SHAFER

Acknowledgements

As | was developing the ideas for this book, | was fortunate enough to find
myself involved with a small group of programmers and Al fans who helped me
to focus the content, the direction, and the approach of the book. | am grateful
to these people—Chuck Blanchard, John Worthington, Jason Christofilos, Mike
VanHorn, and my editor, Robert Lafore—for helping to brainstorm the book and
for believing in it.

Along the way, | have had the chance to discuss the book and its contents
with some truly helpful, even inspirational, Al workers. A special vote of thanks
goes to Steve Lurya of Santa Barbara, a former ExperTelligence programmer
who made a particular contribution to Chapter 7 and also helped me grapple
with some of the ideas of Al and Al programming and thus helped improve the
book as a whole.

ExperTelligence personnel—notably, President Denison Bollay, Marketing
VP Tony Uhler, and programmer-engineer Robert Reali—have also been very
helpful in aiding my understanding of their fine products, ExperLogo and
ExperlLisp.

As usual, my editorial associate and research aide Don Huntington made a
major contribution to this work. | am grateful to him for tightened sentences,
crystallized thinking, and organizational help.

My editor, Robert Lafore, has been a source of continuing support and
inspiration as this book has grown from a collection of Mac programs about Al
into a cohesive introductory book on Al techniques and languages. In brain-
storming sessions and in editing discussions, he has questioned, probed, prod-
ded, and cajoled me into making this book as good as | could possibly make it.

Ken Schieser is a remarkable young man with an excellent grasp of Logo
who wrote two of the more intriguing programs in this book: ‘“Micro Blocks
World” and the “Intelligent Maze.”” He is the first person I've met who is as
good as he is at programming yet doesn’t want to make it a career.

Finally, my family has continued, as they have with all of my previous writ-
ing efforts, to be supportive and patient with me. | appreciate their love and
closeness—even when that closeness is to the back of my head or through a
closed office door—more than words can express.

This book is dedicated to Albert and Mary Lee Hunton. Your natural
common sense and wisdom about how the world and people work
far exceed any intelligence—real or artifical—I know about.
God bless you both.

xi

Atrtificial Intelligence
Programming Techniques

Overview: What Makes a
Program Intelligent?

O What Is AlI? O Basic Research in Search
O Getting the Computer to Techniques
Understand Humans O Current Work in Expert
Systems

O Importance of Computer Learning

4 / Al Programming on the Macintosh

At its root, the difficulty with Artificial Intelligence (Al) as a discipline is the lack
of a good definition of the key word, “intelligence.”” We think we know what
we mean when we say a particular person, animal, or thing exhibits intelligence.
But think of each of the following scenarios and ask yourself whether intelli-
gence is involved in any.

Scenario 1. A man and a woman sit across a table from each other. On the
table chess pieces are arrayed on a chessboard. A glance reveals no particular
pattern to the arrangement of the pieces. You watch the scene for 15 minutes
and neither player moves a piece.

Scenario 2. Same setting as the first, except that you’ve now watched for 15
minutes and 1 second and the woman picks up one of her pieces and moves it a
few squares. The move follows the rules for how that particular piece should be
moved, but the move is not a very good one.

Scenario 3. One person is in the room with a chessboard and pieces in
front of him. Off to the side, a small computer displays the chessboard and
pieces on its screen. The screen reads out a move, ‘‘Rook to Queen’s Rook 5.”
The move follows the rules for how a rook should be moved, but the move is
not a very good one.

Scenario 4. You are in a small laboratory. A white rat is placed in the center
of a complex maze. In less than 30 seconds, it finds its way to the center of the
maze, gets some food, and finds its way back out. You are convinced that, faced
with a maze of similar complexity, you'd be awfully hungry before you found
the food.

Scenario 5. Same maze, different rat. This rat goes into the maze and blun-
ders about for 10 minutes, getting no closer to the food, and running down the
same blind alley several times.

Scenario 6. A mechanical rat is placed into the same maze. In less than 15
seconds, it finds its way to the center of the maze, presses a button, and exits the
maze without making a single wrong turn.

We could go on. But you probably get the idea. Intelligence is difficult to
relate to in the abstract; instead, we tend to think of it in terms of behavior. And,
though we talk about our species as intelligent, our intelligence doesn’t pre-
clude our doing some things that require little or no intelligence, or are just plain
dumb. Similarly, you may not believe a rat could ever achieve intelligence, but
the behavior of the rat in Scenario 4 certainly has some of the characteristics of
intelligence.

In Scenario 1, you may have concluded that the people were intelligent,
even though they did nothing during your period of observation. They were ob-
serving a complex situation with apparent understanding. Perhaps you thought
that chess is a difficult game and figured that anyone who could understand the
game and concentrate that hard upon a single move had to be intelligent. But
you didn't really know that, did you? It's possible that the players had gone to
sleep—or were mannequins!

The point is, we can define intelligence by looking at specific behaviors,
tangible or presumed, and drawing conclusions. In other words, we can discuss
intelligence in the specifics, but in the abstract it is a difficult subject, one which
continues to elude meaningful definition.

Two interesting points derive from this brief discussion.

First, intelligence quite often appears to be largely a matter of problem-
solving. Chess players are trying to solve a problem—finding the best move from

What Makes a Program Intelligent? / 5

a huge array of possible and legal ones. The rats in the maze are trying to solve a
problem—finding the right path to the food. Alternatively, we could think of
these expressions of intelligence in terms of goal attainment. The chess players
have a goal of victory and the rats a goal of satisfying hunger. Both ways of look-
ing at intelligence are valid, up to a point, and they encompass a great deal of
what we think of as intelligent. Neither presents a complete or comprehensive
view of the subject, however.

The second point is that intelligence is a concept here, not a measurement.
Even a dumb chess move requires intelligence to make. Thus we are not con-
cerned with whether the behavior involved is ““wise’’ or “fruitful,’”” only that it
exhibits ““intelligence.”’

What Has This to Do with Programs?

This book is only indirectly about intelligence in the abstract. My purpose is to
enable you to use your Macintosh® to explore the fundamental ideas involved
in artificially intelligent computer programs. So why spend time discussing an
abstract, or noncomputer, definition of intelligence? | do so because defining a
program as intelligent is as difficult as trying to define intelligence in humans or
laboratory animals. Obviously | consider the programs in this book to be in
some sense intelligent, or their inclusion here would be foolish, given our
objective.

So I've adopted a somewhat circular definition of intelligence which has
been used by many researchers in the field of Al, even though it begs the under-
lying philosophical question of what constitutes intelligence.

For our purposes in this book, we will consider a program intelligent if it does
something that we would feel exhibited intelligence if a human did the same
thing.

This definition spares us the niceties—and the tedium—of an extended les-
son on the subject of intelligence and moves us into our main interest: writing
programs to explore the ideas behind Al. The fact is, we don’t have to write pro-
grams that are indisputably intelligent, even by our broad definition, to explore
some of the concepts underlying Al.

Major Al Research Themes

Research in Al has taken on greater emphasis and importance during the past
few years and the field has undergone an inevitable segmentation. Today, Al
work is concentrated in six major categories of discovery: search techniques,
natural language processing (NLP), expert systems, pattern recognition, learning,
and planning/problem-solving.

We will now turn to a brief discussion of the subject matter and relative
importance of each of these areas to gain a good foundation of understanding of
Al, though our programs will not deal with all of these areas.

6 / Al Programming on the Macintosh

Search Techniques: Brute Force vs. Finesse

There are many problems to which computers can be applied that involve the
need to search through a number of possible solutions and come up with the
best one, the only one, or any one that works. In fact, for a time many of those
involved in Al research felt that the idea of search was the core on which all else
would be built. The concept no longer enjoys such a lofty position, but its
importance is not in doubt.

There are dozens of design methods that permit Al programs to carry out
searches. We will examine a small subset of those that have been proposed or
tried.

The most obvious and effective—but least efficient—search technique is
called “’brute force.” Using this technique to solve the chess problem of which
move to make, a computer program would look at every single legal move the
computer could make at the time, every single response its human opponent
could make, and perhaps every single countermove the computer could make.
A value could then be assigned to each such ‘‘solution.” Then the program
could simply sort the results of this massive search into a list and pick the solu-
tion with the highest value.

This approach will obviously work. It is, in fact, applied by many computer-
ized chess-playing programs. However, there are at least two fundamental prob-
lems with this method. First, it can be extremely time and resource consuming.
The design requires a great deal of memory, or disk capacity, for holding the val-
ues of all the moves. There will be tens of millions of such moves in any given
situation. Second, the brute force technique, as Margaret Boden (1977, 346) has
pointed out, ‘“relies on speed of computation, slavish adherence to some ex-
haustive procedure, and faultless memory, as opposed to intelligent ways of
minimizing thinking.” In other words, the approach really isn’t very intelligent
or enlightening.

Using a brute force method leads to something called the ‘“‘combinatorial
explosion.” The number of possible points of solution increases geometrically as
the number of ““moves’ or decisions increases. I'll have more to say about this
when we explore specific solutions offered by our search-exploration programs.
For now it is enough to know that brute force approaches seldom work well for
any but the most trivial of problems, particularly in the world of microcom-
puters.

As a result of combinatorial explosion, Al researchers spend a great deal of
time attempting to limit the search space of a problem-solving program.

Broadly speaking, search strategies fall into the two major categories:
depth-first and breadth-first. A ‘‘depth-first’”’ search approach follows each possi-
ble solution to its ultimate limit before turning to other possible solutions. A
"’breadth-first’”” approach examines all possible alternatives in a somewhat cur-
sory fashion and decides on some basis which to follow first. At each level of
complexity, a breadth-first approach looks at each possible next step before
deciding how to proceed.

Neither search strategy is inherently more efficient than the other. Which
strategy will reach the desired goal sooner is a function of how far down the
search ‘“‘tree’’ the solution appears rather than a function of the strategy chosen.

Figure 1-1 provides an example of how the two search strategies differ from
one another. In that figure, we begin at the top of the search tree and place our
goal—for example, the food at the center of the laboratory maze—at the point

What Makes a Program Intelligent? / 7

labeled 7. A depth-first search approach moving down the search tree to the end
of any given line of investigation and, for the sake of argument, always choosing
the right-most path, would find the cheese before a breadth-first search.

Figure 1-1. Depth-first search ‘‘defeats”’
breadth-first

A depth-first search would follow the steps in this order: 1, 2, 3, 4, 3, 5, 3,
2, 6, 7. A total of 10 steps would be required. A breadth-first search would fol-
low the steps in this order: 1, 2, 9, 10, 11, 3, 6, 12, 13, 14, 4, 5, 7—a total of 13
steps. But in Figure 1-2 we put the cheese goal at position 13. The depth-first
search now goes through the following steps to find the goal: 1, 2, 3, 4, 3, 5, 3,
2,6,7,6,8,6,2,1,9, 12,9, 13—for a total of 19 steps. The breadth-first search,
meanwhile, uses just 9 steps to reach the goal: 1, 2,9, 10, 11, 3,6, 12, 13,

Figure 1-2. Breadth-first search turns the
tables

Both search strategies will work with a goal-oriented problem—one in
which we know where we are trying to go. But both lean more in the direction
of brute force than in the direction of finesse. More intelligent search techniques
apply principles from the field of computer science known as heuristics.

Broadly understood, ‘‘heuristics’’ applies to a computer program being
able to adjust its actions as it proceeds to carry out tasks. In other words, the
program ‘‘learns’’—at least in a rudimentary sense—which paths are likely to be
fruitful and which are not. The concept of heuristic search is one in which infor-
mation gained is used to explore the problem at various points. The points may
be summarized as follows:

1. Determining the ‘‘node,”” or decision point, to expand on next, rather than
proceeding in either a depth-first or breadth-first order without regard to the
situation.

8 / Al Programming on the Macintosh

2. Deciding which subsequent node to move to at a given decision point,
rather than blindly following a right-left or left-right strategy.

3. Discerning certain nodes as unprofitable and discarding them from the
search tree completely—a process known, not surprisingly, as ‘‘pruning.”’

Such searches are sometimes referred to as ‘‘ordered”’ searches. One ex-
ample is the concept of a ““best-first search’”” in which heuristics are used only at
point 1 to determine which node to analyze next, choosing the most promising
on some basis.

One other search concept is worth mentioning. In game searches—in
which an opponent tries to thwart the computer program’s goal—the computer
often uses an approach called ‘‘minmax’’ searching. The term comes from the
fact that the computer, using such search techniques, tries to find a proper
course of action, assuming that its opponent will attempt to minimize the com-
puter’s gain and that the computer will always find it advantageous to maximize
its position.

We will examine searching techniques as we study and explore two pro-
grams: ‘‘Micro-Logician”’ (Chapter 3) and “Intelligent Maze’’ (Chapter 6). This
last, a computer vs. human game, uses minmax search techniques.

Natural Language Processing: Computer Understanding

Many Al researchers argue persuasively that the fundamental characteristic of a
truly intelligent program is that it can understand information fed into it. The
problem is that this definition substitutes the difficult word ‘“understand’”’ in
place of our initial difficult word, “‘intelligence.”

Dr. Roger C. Schank and his colleagues at the Yale University Atrtificial
Intelligence Laboratory have become well known in Al circles for their strong
emphasis on computer understanding. (One of Dr. Schank’s books is the source
for some of the programs and ideas contained in this book.) Getting computers
to understand human language is clearly recognized in the Al community as a
goal that is foundational to other Al research. The ultimate role of computer
understanding will be to make the computer a supremely useful tool in many
fields of human endeavor.

The goal of natural language processing (NLP) is to design computer pro-
grams that can process human speech patterns. (‘“Speech” refers to verbal
communication—communication carried out by manipulation of meaningful
symbols. Speech is used here in its broadest sense; in fact, the word almost
always refers to nonoral communication. Voice and speech recognition are not
formally part of Al, though the two disciplines are certain to be intertwined with
NLP at some point in the future.)

This goal is elusive, though we may be closer. to reaching it than we are to
reaching many other intermediate goals of Al. The fact is, however, that pro-
grams that process human language at all, do so in a very limited fashion. Given
the amount of miscommunication that goes on among human beings, it should
not surprise us to find that communicating in ‘“natural”’ language poses many
problems and challenges. Take, for example, the simple sentence: ‘“Mary
walked up and kissed Kevin."”

We understand that this sentence means that a girl named Mary saw a boy
named Kevin, walked to where he was, and pressed her lips against his lips (or

What Makes a Program Intelligent? / 9

perhaps his forehead or his cheek?). But a computer, to understand this sen-
tence, would have to know or be told:

« that the phrase ‘“walked up’’ does not imply an ability to climb walls or
thin air;

« that a kiss is something good and connotes a liking for the person being
kissed;

« that Mary is a girl’s name and Kevin a boy’s name and that kissing between
members of the opposite sex has a particular connotation.

In the absence of this information, the computer could not answer ques-
tions about that sentence that humans wouldn’t even have to think about. These
questions might include:

 Did Mary hate Kevin?
» Was Mary standing close to Kevin when she kissed him?
e Was Mary driving a car at the time?

Designing a computer program that can understand human speech re-
quires a great deal of design effort and energy. It also requires, so far at least, a
willingness to limit things about which the computer will “’know’’—referred to
as the system’s ‘’knowledge domain.” It is far easier to teach a computer about
the words and ideas involved in moving blocks around on a tabletop (as we do
in Chapter 5, ‘“Micro Blocks World"’) than to teach it about human emotions.

One technique for discovering some of the ideas and problems behind NLP
is to create programs which generate words, sentences, and poems. We have
such a program in this book: ‘“The Digital Poet”” (Chapter 4). The ‘“Micro Blocks
World”” program of Chapter 5 is a microcomputer version of a famous Al pro-
gram called SHRDLU. Micro Blocks Worlds operates within a limited domain—a
set of blocks of various sizes, shapes, and colors and the relationships among
their surfaces. It understands English sentences that tell it what to do with those
blocks. The program contains elements of search and decision-making, but its
real attraction lies in an ability to process and respond to natural-language input.

Expert Systems: Getting Advice from a Computer

This major area of Al research combines a number of different areas. It is also, at
the moment, the one aspect of Al that is producing commercial products and, as
a result, the one about which many people have at least some knowledge.
Expert systems are being touted as the next major thrust in microcomputer
technology.

An expert system can be thought of most simply as a computer program
that offers advice based on its knowledge or experience in the field it is being
questioned about.

There are many expert systems, with many different designs, on the market
and in the literature of Al. Commercial products which are now on the market,
or soon will be, assist human decision-makers in such areas as the following:

« commercial loan analysis and decision-making;
* wine selection;

10 / Al Programming on the Macintosh

+ disease diagnosis;
* prospecting for mineral deposits;
» tax and investment decisions.

All expert systems have certain components in common. They have a
knowledge base of information from which they draw conclusions and make
recommendations. Many times, the knowledge base contains rules about, or
examples of, decisions. Expert systems also have inference engines—programs at
the heart of the systems—which enable the computer to analyze its knowledge
base and determine what decision-making rules are being followed. In that way
it can respond to the question being asked of it. The term ‘inference engine’’
refers to the fact that it draws conclusions from information (an inference is a
conclusion drawn from facts). The term ‘““engine’’ has long been used in com-
puting circles to symbolize a somewhat stand-alone device or section of pro-
gramming code which ““drives’’ the program or system of which it is a part.

We will look at two programs in the field of expert systems. Chapter 7 pre-
sents an implementation, in ExperLogo®, of the popular expert systems program-
ming language, Prolog. The program is known as “’Prologo’”’ and it is capable of
drawing some relatively sophisticated conclusions about knowledge bases we
provide for it. It is completely functional and can be used as a model to create
an expert system on any subject we wish. Chapter 8 integrates the inference
engine (which is what Prologo and its ‘’big brother,” Prolog, really are) into
two full-blown, if small-scale, knowledge bases. As Prologo manipulates these
knowledge bases and applies facts and rules intelligently, it displays many of the
earmarks of an expert system.

Our expert system will not do two things that some Al researchers would
say are requisite to a true expert system. It will not be able to explain how it
reached its conclusions, and it will not be able to learn from experience. In
other words, if it reaches a conclusion and we indicate that its advice is incor-
rect or incomplete, it will not avoid making the same mistake the next time. As a
matter of fact, most commercial expert systems don’t do either of these things
yet, either.

Pattern Recognition

Early in its development, Al was blessed with a number of researchers who real-
ized that human intelligence was often based on patterns and relationships. We
could look at a situation that we had not encountered previously and still under-
stand it in great detail by comparing it with other similar experiences.
~ The ideas behind true pattern-matching of this kind are extremely complex.
The fundamental idea in pattern-matching is that events of a certain type—
sentences, for example—tend to fall into groups of patterns. A question often
has a verb followed by a noun followed by a noun phrase, as shown in Figure
1-3. A declaratory sentence, which simply imparts information, usually has a
noun phrase first, then a verb, and sometimes a noun phrase after the verb. Fig-
ure 1-4 shows this structure.
If a computer were given those patterns and information about vocabulary
(what words are nouns, noun phrases, and verbs, for our present example), it
could use pattern-matching to determine the type of sentence ‘handed” it by

What Makes a Program Intelligent? / 11

Is this aball?

Figure 1-3. A question’s pattern NOUN
PHRASE

NOUN

VERB

This is a ball.

Figure 1-4. A declaratory sentence’s
NOUN
pattern PHRASE

VERB

NOUN
(SUBJECT)

the user. It could do that, provided the sentence fit into one of the patterns it
“’knew’’ about.

Thus our hypothetical computer program could determine the type of each
of these sentences:

* Are you a programmer? (question)
* John hit the ball. (declaratory)
« Is she going to the dance? (question)

but would be totally confused by these:

* Watch out!
 Apparently, John hit the ball.
« John and Rick were chasing the bull across the green fields.

Extending the pattern descriptions would, of course, enable the program to
identify these sentence structures as well.

We will see pattern-matching emerge as part of the concept behind the
programs in Chapters 2-6. It is subtly present in other programs as well.

The most prevalent use of pattern-matching is in the field of computer
vision systems, where its application to the robot technology is being widely
discussed.

Learning
It is frequently argued that a computer program that cannot learn is not really, in
the final analysis, intelligent. By learning, the Al community usually means that
the program is capable of extending its own knowledge, understanding, and
skills—within a limited domain.

In the field of expert systems, perhaps more than any other area of Al

12 / Al Programming on the Macintosh

research, the ability of the computer program to learn from its experiences and
from information given by the user is a characteristic most designers would
dearly love to develop.

The question of how people learn is incredibly complex. Researchers have
been able to determine that most learning takes place in one of four ways.

First, people may acquire new information by rote learning. In school,
basic skills—for example, multiplication—are usually taught by rote learning.
No processing, thinking, or analysis is required. The learner merely memorizes
incoming information for later retrieval and use.

Another method by which people learn is advice taking, or learning by
being told. Classroom lectures are often sources of advice-giving learning. Lim-
ited processing is required to understand the information being provided and
to connect it with previous information, but fundamentally the learner is not
required to perform a detailed analysis simply to gain the knowledge.

Learning by example is the most common method of teaching skills and the
least used method of teaching ideas. We can learn to tie a shoe, for example, by
watching someone else tie many shoelaces. We can learn how to position a
telescope by watching an astronomer. We can learn by reading hundreds of
chess games how to play the game better. The process of learning and extending
knowledge from examples is referred to as induction.

Finally, the little-known method of learning by analogy must be briefly con-
sidered. People learn a great deal by analogy. The concept is simple: if we know
how to do task X and we can see even superficial similarities between it and task
Y, we may be able to learn a great deal about task Y simply by analogizing what
we know about task X. Not much serious work has been published in the field of
Al research on applying this idea to systems and programs.

Planning/Problem-Solving

In one sense, all computer programs that are artificially intelligent solve a prob-
lem. But in a narrower sense, a great deal of Al research has the ultimate goal of
designing programs that analyze a problem, develop an approach to its solution,
monitor their progress in solving the problem, and adjust to changing condi-
tions. In the general sense, all the programs in this book are in the planning and
problem-solving category. In the narrow sense, however, none of the programs
specifically deal with this concept.

Al programs that fall into the problem-solving category of research are goal
directed; they have objectives. A plan is a course of action, usually an ordered
collection of interrelated goals and subgoals, designed to attain an objective. In
an earlier example, the objective was to reach the cheese in the center of the
maze and the plan would spell out the steps to be taken to get to the cheese.

In the absence of a plan, programs that merely solve problems are likely to
lead to the wrong results, even though their user might consider them extremely
valuable. “If you don’t know where you’re going, you’ll probably end up some-
place.” A problem-solving program that isn’t based on a planned approach to
the problem may find itself solving the wrong problem or, more likely, ap-
proaching the right problem from a wrong direction.

The concepts behind planning programs are so complex and cumbersome
that | have largely left them out of this book. Refer to the annotated bibliography
in Appendix C for sources of meaningful information on this subject.

What Makes a Program Intelligent? / 13

Language Issues in Al

The second major thrust of this book is to provide exposure to the primary lan-
guages used in Al programming and research. Chapters 9-13 are devoted to the
subject. Chapter 9 contains an overview of the language issues involved. Follow-
ing that introduction, we examine in some detail each of three key languages:
Logo, LISP, and Prolog. We conclude that section of the book with some hints
for programmers who are familiar with BASIC, providing some insight and direc-
tion into how these programs could be converted to that popular programming
language.

The purpose of each chapter on a specific language is to provide the reader
with background material and a short refresher course in the basic ideas, com-
mands, structures, and uses of the language. In this way, these chapters serve
the purpose of introducing concepts to those who are unfamiliar with the lan-
guages at all and affording an opportunity to refresh their skills to those who
once used these languages but who have grown “‘rusty’’ from lack of use.

Conclusion

The broad, slippery, and intriguing field of Artificial Intelligence can be divided
into six major areas of research and activity. We will examine four of these
in some depth—search, natural language processing, pattern recognition, and
expert systems. The other two concepts—learning and planning/problem-
solving—are woven into the programs but are not discussed in great depth.

Classic Missionary-Cannibal
Problem

O Refining Problem Definition O Describing Moves in a Problem
O Describing Start and Goal Set
States O Choosing Representative Data
Structures Appropriately

O Basic Search Decision: Brute Force vs. Finesse

15

16 / Al Programming on the Macintosh

If you have any interest in logic puzzles, you know of the problem posed (and
solved) by the program in this chapter. The scenario is simple enough. Three
missionaries and three cannibals are on the left bank of a river. They have a boat
that will hold two people; any combination of missionaries and cannibals can
operate the boat. The objective is to move everyone from the left bank of the
river to the right bank of the river.

There’s a catch: if the cannibals ever outnumber the missionaries on either
bank, they will do their thing and convert the missionaries into a meal.

Solving the problem requires two steps which play critical roles in the
world of Al programming: precisely defining the rules of the problem and
searching for the solution. The two steps are common to many kinds of
problem-solving programs we might design, so we will discuss the basic ideas of
both processes as they relate to the missionary-cannibal problem. Along the
way, we'll develop a better understanding of the general steps and considera-
tions involved in processes.

Refining the Problem

As with computer programming in general, our first step in an Al program design
is to refine the problem. But the process is more complex in an Al program than
in an accounting program, for example. The rules of accounting are well known.
If asked to write a program that calculates net profit on a set of sales transac-
tions, you would expect to be given information about volume of sales, cost of
sales, overhead costs associated with sales, and a number of other factors. You
would insert those values into a known formula and, voila, out pops the solu-
tion.

Many, if not most, Al problems, though, lack a preset rule for solving the
problem. In fact, if we had such a rule, we wouldn’t need an Al-oriented pro-
gram to deal with it. Unless you went to an atypical kind of school, for example,
you haven't learned a rule for moving missionaries and cannibals in groups of
one or two between two banks of a river safely! (If you did, you might want to
skip this chapter.)

To deal with the missionary-cannibal problem, we must provide three parts
of the problem-refinement process:

» descriptions of the start and goal states described incomputer terms;

* an acceptable (to the computer) means for describing the state of the
problem at any given time; and

* a way of describing the ““moves’’ to be made by the user.

Start and Goal State Description

Al professionals use the term ‘’state’’—a particular condition or circumstance—
to talk about problem-solving programs. An Al problem is in a particular state at
any given moment. Any problem can be broken down into discrete and unique
states, similar to that shown in Figure 2-1.

The object of problem-solving programs is to transform the initial, or start-
ing, state into the solution, or goal, state. The problem’s solution is then de-
scribed in terms of the start state, the set of intermediate states through which it
passes, and the goal state. Each state describes the ‘‘space’” of the problem.

Classic Missionary-Cannibal Problem / 17

START
STATE

Figure 2-1. A problem and its states

Each step between states constitutes a “‘move.” In Figure 2-1, for example, the
combination of Start State-Move A-Move D-Move G-Move J-Goal State repre-
sents one solution to the problem.

One other point should be made: real-life problems and typical complex Al
problems will involve more than one start state and more than one goal state. In
other words, the start state may be a function of what has gone on elsewhere in
the system and the solution may be described in terms of reaching any of several
alternative goal states.

This may seem pretty abstract, so let’s look at a concrete example that is
often used in teaching basic Al courses and concepts.

Three-Coins Problem This classic puzzle begins with three coins (see Figure
2-2). One coin is placed tails up and the other two are placed heads up. The
objective is to position the coins same side up—all heads or all tails. That would
be easy—just turn each of the heads coins so the tails up or, easier yet, turn only
the coin which had tails showing—except for the additional rule that this must
be accomplished in exactly three moves.

Figure 2-3 shows a typical state-space diagram for the three-coins problem.
Note that it is a more specific version of the general diagram shown in Figure
2-1. We use “H” to mean “heads” and “T" to mean “tails.” (This brings up
the question of symbolic representation, about which | will have more to say
shortly.) Note, too, that there are only three moves possible in the problem
we've described. We label them ““1,”” ““2,”" and ‘3,”” meaning, respectively, flip
over the first coin, flip over the second coin, and flip over the third coin.

18 / Al Programming on the Macintosh

Figure 2-3. State-space diagram of three-coins problem

From each state of the problem’s state-space, three moves are possible. If
you examine Figure 2-3, you’ll find that all three moves lead to three additional
states for each state.

Beginning with the start state in the upper left corner of the diagram, if we
choose Move 2—i.e., if we turn the middle coin over—we reach the state called
HTT. From there, flipping the first coin over—i.e., choosing Move 1—leads to
the goal of TTT. Unfortunately, we did not reach that goal in three moves, but in
two, so our solution fails to meet a requirement that is outside the space-state
diagram of the problem. Similarly, if we start from the start state and choose
Move 3, we reach the HHH goal state in one step.

You may have noticed that each state in a state-space diagram can be
reached from any state to which it can be converted. In other words, there is a
one-move relationship between connected states. In Figure 2-3, for example, we
can move from the start state to the HTT state by using Move 2. Similarly, if we
found ourselves in the HTT state at some point in our problem and wanted to

Classic Missionary-Cannibal Problem / 19

return to the start state, we could apply Move 2 and do so. This move-for-move
correspondence is a key feature of a space-state diagram.

Now a final examination of Figure 2-3 reveals that one way to solve the
problem is to apply Moves 1, 3, and 1 in that sequence. There are five other
solutions to the problem. Can you find them? If you want that challenge, stop
now and try to find them, because I'll provide the answer in the next para-
graph.

Four of the five solutions are readily apparent. The new sequences are
1-1-3, 2-2-3, 3-1-1, 2-3-2, and 3-2-2. The other, less obvious solution, is the
sequence 3-3-3, a solution which meets the criteria of our problem definition,
even if it is a little maddening!

Describing the State of the Problem

Now that we can define the problem’s start, intermediate, and goal states in a
state-space diagram, the next task is to decide how the computer should store
the information about the state it is in at any given point. This step involves the
concept of symbolic representation. A complete discussion is beyond the scope
of this book, but we will discuss the concept in a broader sense than the
missionary-cannibals problem encompasses.

The field of knowledge representation is of great interest to Al researchers
because of the emphasis on natural language processing and expert systems as
areas of commercially viable applications of Al. Processing natural language and
drawing conclusions from information ‘‘known’’ about a given situation both
require the computer to represent this knowledge.

Storing information in a computer requires a data structure. There are
many such data structures available. Some depend on the programming lan-
guage being used but others are more or less common to most programming
languages. Some of the more widely available and useful types of data structures
include:

» Lists. These are collections of individual elements grouped into single data
structures. Logo typically encloses these in square brackets. We might have a
list called BIRDS represented as [ROBIN CANARY EGRET GULL MACAW
PARAKEET].

* Property Lists. A special type of list, Al frequently uses property lists. They
are almost always part of LISP and Logo languages. This type of list consists of
paired attributes and values. For example, a property list called ROBIN might
have the attributes SIZE, HABITAT, and KEY_COLOR filled in with the values
MEDIUM, NORTH__AMERICA, and RED. Our property list would then look
like this: [SIZE MEDIUM HABITAT NORTH__AMERICA KEY__COLOR RED].

* Arrays. Strictly speaking, a list is an array and so, by extension, is a
property list. What | mean here, though, are arrays that have two or more
dimensions. The most common array, perhaps, is the two-dimensional matrix.
Figure 2-4 extends the idea of a property list into a two-dimensional array called
BIRD_PROPERTIES.

» Records. The Macintosh® often stores information on a disk as a collection
of one or more records. Each record can contain several different kinds of
information. As with arrays and unlike property lists, the attributes—those
portions of the data structure that tell us what individual pieces of information

20 / Al Programming on the Macintosh

mean or what they relate to—are not stored in the record itself. Instead, the
computer program must be told what each item, or field, in a record represents.
The record for the robin would look like this:

MEDIUM,NORTH__AMERICA,RED.

* Files. A file is a collection of records. Each row of the two-dimensional
array, BIRD_PROPERTIES, in Figure 2-4 would become a single record in a file
called (perhaps) BIRD_ATTRIBUTES. Each record would look like the one
described for the robin.

Species Size Habitat Key__Color
ROBIN MEDIUM NORTH_AMERICAN RED
CANARY SMALL WORLD YELLOW
EGRET LARGE SOUTHEAST__TROPICS VARIES
GULL LARGE WATER_SALT WHITE
MACAW LARGE JUNGLES VARIES
PARAKEET SMALL WORLD VARIES

Figure 2-4. An array of bird information

There are no right or wrong data structures. Rather, selection of the appro-
priate data structure is a function of several factors, including the kind of data to
be stored, the amount of information to be available, the programming language
being used, and the need for permanence of the information.

The goal of knowledge representation is to find the most natural way to
mirror information considered by the programmer to be important in solving the
problem. At the same time, the representation should make efficient use of stor-
age space while granting rapid access to the information when it is needed by
the program. Not surprisingly, these goals sometimes conflict with one another.
As one writer puts it, “/In Al programs, data structures tend to become large and
complex. But complex data structures are inefficient, so the tendency is to sacri-
fice some naturalness and convenience in order to make do with simpler data
structures.”” (Barr 1981, 2:34)

Describing Three-Coin States In making a decision about representation of the
knowledge needed by the computer at each step to solve the three-coins prob-
lem, we may conclude:

1. The information needed is minimal—one of two states in each of three
coins.

2. There is no need for permanence (once the problem is solved, it is solved,
and generating the data structures again is quite easy).

3. There are no complex values to be stored.

As we are programming in Logo, the list is the easiest structure to use for
such storage. So we define each state as a list containing three elements, each of
which would be either an “H’" or a ““T.” The eight possible states shown in Fig-

Classic Missionary-Cannibal Problem / 21

ure 2-3 are then represented as lists which look like this: [HHTI[HTTI[TTT],
and so on.

Describing the Moves

The problems of describing the moves to be made in the course of solving a
problem by a computer program are similar to those involved in making knowl-
edge representation decisions. The goals are naturalness of expression (par-
ticularly if the user is to inform the system of the moves rather than having the
computer figure them out itself) and economy of programming space and mem-
ory. Again, the two are often inconsistent with one another.

Ideally, if the user were to enter information into the computer and have
the program determine the consequence of the move—in other words, generate
the next state—we would permit the user to type full sentences. “Flip over the
first coin’”’ would be the kind of input we would permit. As we will see later, we
can in fact achieve something close to such natural language entry, but only at
the expense of programming time and placing a sizable burden on the Mac’s
memory. '

On the other hand, we could simply require the user to type in one of three
numbers to correspond to the moves defined earlier: where ‘“1”” means ‘’Flip
over the first coin,” 2" flips the second coin, and ‘“3" the third coin. Some
people would consider this to be perhaps too sparse. But if we used this kind of
move description language for the computer itself, and permitted the computer

-to generate the moves and solve the problem, we would find such cryptic
descriptions satisfactory.

The question of move description becomes intricate and interesting even in
the context of this relatively simple problem. For example, we could define the
moves to be variations on the Logo MAKE primitive. We would begin by defin-
ing the start state as follows:

MAKE START__STATE [H HT]

We could then define a move procedure called FLIP which would invert
the value of an element of the current state’s description from H to T or vice
versa. Another move procedure called STAY would define a no-change situa-
tion. In that event, the move we've called ‘1" would be programmed some-
thing like this:

MAKE STATE [FLIP STAY STAY]

This is more cumbersome than other ways we’ve discussed. The point is
that there are a great many ways—some of them quite creative—to express
movement from one state to another.

Applying the Ideas to the Missionary-Cannibal
Problem

So much for the theoretical discussion. Let’s return to the missionary-cannibals
problem. (From now on, we'll use M-C instead of missionary-cannibals.) First,
we’'ll consider the state-space representation issue. Next, we’ll turn our attention

22 / Al Programming on the Macintosh

to the question of symbolic representation of the knowledge contained in the
program while it is running. Finally, we'll look briefly at the issue of move
description since the computer will be trying to find the solution to the problem
in our program.

Describing the M-C States

Figure 2-5 shows all 32 possible combinations, including those that result in the
loss of the problem’s solution because of the cannibals’ propensity to eat mis-
sionaries—which can arise on either bank of the river.

Left Bank Right Bank
Miss Cann. Boat Miss. Cann. Boat
3 3 1 stat@ 0 0 0
3 2 1 2 0 1 0
3 1 1 3 0 2 0
3 0 1 4 0 3 0
2 3 1 5 1 0 0
2 2 1 6 1 1 0
2 1 1 7 1 2 0
2 0 1 8 1 3 0
1 3 1 9 2 0 0
1 2 1 10 2 1 0
1 1 1 11 2 2 0
1 0 1 12 2 3 0
0 3 1 13 3 0 0
0 2 1 14 3 1 0
0 1 1 15 3 2 0
0 0 0 Goal® 3 3 1
3 2 0 17 0 1 1
3 1 0 18 0 2 1
3 0 0 19 0 3 1
2 3 0 20 1 0 1
2 2 0 21 1 1 1
2 1 0 22 1 2 1
2 0 0 23 1 3 1
1 3 0 24 2 0 1
1 2 0 25 2 1 1
1 1 0 26 2 2 1
1 0 0 27 2 3 1
0 3 0 28 3 0 1
0 2 0 29 3 1 1
0 1 0 30 3 2 1

Figure 2-5. All possible states of M-C problem

The list of possible moves that can be made within the constraints of the
problem definition is relatively small. In fact, there are only five combinations,
as shown in Figure 2-6. Note that the issue of missionaries being eaten in the
boat never arises because only two people can be in the boat at a time. Note,

" too, that we have purposely omitted the boat from each scenario; you can't
move without it, so it is unnecessary to include it in each description.

By combining the possible states in Figure 2-5 with the possible moves in
Figure 2-6, we could generate a state-space diagram of the M-C problem. A

Classic Missionary-Cannibal Problem / 23

Move Number of Missionaries Number of Cannibals
A 0 2
B 0 1
C 1 1
D 1 0
E 2 0

Figure 2-6. All possible moves in M-C problem

small portion of the diagram that would result is reproduced as Figure 2-7. Each
circle represents a state, and has three sets of numbers. The top number corre-
sponds to the state number in Figure 2-5, the second and third describe the situ-
ations on the left bank and the right bank. They consist of three values. The first
designates the number of missionaries, the second the number of cannibals, and
the third whether the boat is present (‘/1”) or not (“0”").

If even that small part of the state-space diagram in Figure 2-7 looks like
spaghetti, it's because the problem permits a larger number of possible states
and moves than the three-coins problem. We have actually illustrated less than
one-fourth of the total diagram required to define the M-C problem completely!

The point is not whether we can—or should—construct the complete state-
space diagram of a problem, but that we should create at least the concept of
the diagram so that we can determine the variety and number of states with
which our program has to deal. This makes our decisions about knowledge rep-
resentation more straightforward and fact based. Let’s now turn our attention to
those decisions.

Choosing Representation for the M-C Problem
Analysis of the possible states of the M-C problem gives at least two ways to rep-
resent the state of the problem at any moment.

First, we could simply use three numbers, as we did in Figure 2-5 and in the
state-space diagram itself, to represent the state. Thus we would represent two
missionaries and two cannibals on the left bank and the other missionary and
cannibal on the right bank with the boat by two lists:

MAKE LEFT_BANK [2 2 0]
MAKE RIGHT_BANK [11 1]

Second, we could represent each missionary by the letter “M’’ in a list,
each cannibal by a ““C,”” and the boat by a “/B.”” The same situation would then
be represented:

MAKE LEFT_BANK [M M C (]
MAKE RIGHT__BANK [M C B]

The first method, using numbers, has two advantages. First, it takes up less
space and, therefore, less computer memory. Second, we can completely de-
scribe any situation by describing only one of the banks. Thus knowing that the
left bank is represented as [2 2 0], for example, we can calculate that the right
bank’s representation for the same setup is [1 1 1]. This method has a disadvan-

24 / Al Programming on the Macintosh

18 START

A E
310 331
021 000

o
@

[2)

ol w
wlele
ol o

.

.

...

.

@ w
@

N
B DY
Ll
3 VL
NE)
311 NS
NI
020 ' E "/‘.,B
) ‘.,
1B .
E NS
N
o
\ .
) .
c »
L} 0’
7
B A Y, =

Figure 2-7. Partial state-space diagram of M-C problem

tage, though. If we are going to allow the program to move missionaries and
cannibals by using the letters “M’’ and “C" (for reasons of clarity and natural-
ness), it will be cumbersome to use numbers to represent the states. If, for exam-
ple, the state of the system is represented as [2 2 0] and the program generates
the move [M (], the program will have to determine where the boat is (in this
case, it’s on the right bank), calculate how many Ms, Cs, and Bs are present (one
of each), count the number of Ms and Cs in the move (one of each), subtract

Classic Missionary-Cannibal Problem / 25

each of the moved values from the number in the starting position (yielding,
temporarily, a state on the right bank of [0 0 1]), and then perform similar calcu-
lations to update the left bank status, including the boat, when the move is
complete.

The second method—using a list of letter symbols—is more cumbersome
than using numbers. It also does not permit an easy calculation to determine the
state of the other side of the bank. At the very least, we’d have to count the
number of Ms and Cs involved in the move and on each bank and then perform
the mathematical processing to subtract and add Ms and Cs and the B to and
from the appropriate banks. That's a fairly indirect way to approach the prob-
lem. Using a list, we can simply delete and add new components to each side as
events (moves) take place in the problem.

It turns out we need two representations of the states of the system. One is
the current state. That need is best served by using letter symbols to represent
each bank. Logo’s impressive list-manipulating instructions can manage the cur-
rent state of affairs and change it. The representation is more natural than the
numeric representation, though not as natural as one that uses the words ‘‘mis-
sionary,”” ‘“cannibal,”” and “’boat’’ rather than letters M, C, and B. It also permits
direct movement and display of the situation, since we merely work with exist-
ing lists.

The second need for representation in the system is to remember the pre-
viously experienced states. If the computer didn’t know which situations it had
already encountered, it could end up trying the same paths and steps repeat-
edly. Conceivably, it might never get around to trying a path that yields a solu-
tion! This need is best served by numeric representation because any one state
on the left bank corresponds to one and only one situation on the right bank, so
we need only store information about the state of one bank. In addition, since
this information will not be used to generate moves but only to check on their
uniqueness in the current solution process, it need not be natural at all.

As you will see in our discussion of the program, both approaches repre-
sent the state of the problem at a given point in time.

Describing Moves in the M-C Program
In large part, deciding how to describe moves inside the Logo version of the
M-C program depends on the choice of how to represent data in the system. If
we had chosen to use arrays (a viable option in this case) or property lists (prob-
ably not workable in this problem), we would have approached the description
of moves differently.

Because we chose to use list representations of the states of the system, our
method of describing moves is to manipulate those lists.

As you will see when you type in the program and run it, movements are
defined by a process made up of the following steps:

1. Select a move from the list of the five legal moves. (We do this selection
sequentially to ensure no duplication.)

2. Determine where the boat is. Th|s defines the bank from which the
movement must take place.

3. Find out if the move is possible. The move is defined as a list of objects to
be moved. For example, [M C B] means to move a missionary and a cannibal. If

26 / Al Programming on the Macintosh

no missionaries or no cannibals are on the bank where the boat is, the move is
rejected.

4. Remove items in the list to be moved from the list of objects on the bank
and add them to the other bank.

The entire moving process consists of manipulating lists—creating them,
checking them against one another, deleting information from them, and adding
information to them. This describes the entire process by which moves are han-
dled and represented in the M-C program.

This direct method of representing moves is natural; each list presents
exactly the items to be moved rather than pointing to them or encoding them
somehow. Given the limited nature of the program and the problem to be
solved, the method is satisfactory. If there were 25 or 30 different types of
objects to be taken into account in a move and hundreds of possible states, we
might well wish to use a process that would result in faster execution of the pro-
gram.

Using Search Techniques

The second phase of program design involves the selection and use of appropri-
ate search techniques. Searching is a critical part of Al programming. It finds its
way into all types of Al systems, whether expert systems, natural language proc-
essors, or problem-solving programs.

One authoritative book offers this observation about searching and its
importance: ‘“At one time Al researchers believed that the problem of search
was the central problem of Al. A parser would search through the possible syn-
tactic structures of a sentence; a game player, through the possible legal moves
in a game, etc. People now tend to emphasize the fact that programs with suffi-
cient knowledge of their domains can avoid searching large spaces, but it is rec-
ognized that in some cases one will still have to resort to search.” (Cherniak et
al. 1980, 257). That comment is certainly still valid.

What Is a Search?
It may seem trivial to define ‘’search.” After all, who hasn’t lost something and
ended up spending time searching for it? Well, a computer search has some
things in common with our human searches, but it also has a key difference or
two worth noting.

Like a human search, a computer search begins with an initial state and has
a goal state. In fact, we could generate a state-space diagram for a human search
like the whimsical Figure 2-8. If we did that, we might draw curious looks from
our friends and neighbors. But in a sense we do unconsciously draw such a dia-
gram though we take a lot of mental shortcuts in the process. As part of the
search process we actually generate each intermediate step between the initial
state and the goal state.

I think I'll look in the garage,” defines an intermediate state of determin-
ing whether the lost object is among those objects stored in the garage. (If your
garage is like mine, that intermediate state might be more accurately labeled
““Chaos” instead of ‘“Garage.”’) We don't, of course, generate the garage itself,
but we do create the idea of searching there. In a computer sense, we generate
the state of looking in the garage.

Classic Missionary-Cannibal Problem / 27

LOOK IN
BIRD-BATH

LOOK IN
SILVERWARE
DRAWER

Figure 2-8. State-space diagram of dog search

A computer program engaged in a search does the same thing. It begins
with a start state and has in its structures a definition of the goal state. In
between, it generates new states based on rules, parameters, and understand-
ings it has been given in its programming design, and it examines each to see if it
is the solution or if it leads to another step toward the solution.

A human search, though, is more intelligent than any computer search.
Humans draw inferences from circumstances which would require huge
amounts of memory and mammoth programs to make available in a useful way
to a computer. For example, if your dog is a Doberman, the chances of it hiding
under a flowerpot in the garage are pretty slim (no pun intended). Storing the
information in a computer program that a Doberman is a type of dog and that it
is larger than a flower pot, for example, won’t stop the program from searching
in a breadbox, which is, after all, larger than a flower pot. Computer searches,
even those that apply machine intelligence concepts, are more inclined to use
techniques and processes that humans would discard immediately. This, among
other things, prevents computer programs from being as intelligent as we might
expect.

Types of Search: An Overview

We will return to the subject of searching several times in this book, each time
adding more to our fund of knowledge about the subject. But for the moment,
let us take a brief look at some key search techniques which are widely utilized
in Al programming.

28 / Al Programming on the Macintosh

The “Brute Force”” Method The Missionary-Cannibals program in this chapter
uses the “brute force” search method. It simply tries every possible path at
every possible point in the state-space diagram of the problem until it reaches a
solution, breathes a heavy sigh, and quits.

Brute force search is, as you can imagine, inefficient. Many blind alleys are
pursued. With no means of ensuring that the program didn’t repeat unsuccess-
ful routes and patterns, the program could theoretically search forever without
finding a solution. Our M-C program computer ‘‘recognizes’” that it has tried a
particular path previously without success. Although this clearly constitutes a
useful modification of the brute force search methad, it hardly approaches the
addition of intelligence to the search process.

Intelligent Search Concepts Search techniques which use intelligence often un-
dertake their assignments using such approaches as:

 ‘‘best-first’” searching, in which evaluation takes place at each state in the
state-space and findings of the search to that point are compared with findings
from other partial searches; the most promising route is then pursued for one
more level, and so on

« ‘‘depth-first’” searching, in which the program follows a given path to its
ultimate conclusion and, if unsuccessful, backtracks to the next earliest level
and checks the next path until it finally finds a solution

* ‘breadth-first’”” searching, in which each possible path is followed to one
level of depth in the search space and then each is pursued one additional
level, and so on, so that the conclusion is reached when the goal state is
discovered in a horizontal movement of the search process.

Chapter 3 presents the ‘““Micro-Logician” program and we will discuss
more about search techniques and how they differ from one another then. As
with knowledge representation, there are no ‘’right’”” and ‘“wrong’’ search tech-
niques. Selection of a search technique derives from a host of factors including
size of the state space to be searched, the language being used, machine limita-
tions, and need for speed.

Search in the M-C Problem
In designing the M-C program, we realized that the number of states to be
searched is relatively small and certainly manageable within the constraints of
the Mac’s 512K memory. Speed is not significant, since our primary objective is
to learn about Al programming techniques and not to create commercially sal-
able programs. So we used a brute force method, modified to avoid repeating
previously tried paths.

We will describe the search processing itself when we reach that part of the
program description.

The Missionary-Cannibal Program

Figure 2-9 is a box diagram of the program called, appropriately enough,
SAVE_MISSIONARIES. The main procedure calls the SETUP_PROBLEM rou-
tine, which initializes some key variable information and returns control to the

Classic Missionary-Cannibal Problem / 29

main procedure. The SHOW__STATUS procedure is then called to display the
starting situation: three missionaries, three cannibals, and the boat, all on the left
bank. The program then calls the main ‘‘workhorse’”’ procedure, TRY, which
determines whether or not a solution has been found (one always is, since we
have designed it that way, but for debugging purposes, leaving the alternative
possibility in the program is a good idea.)

MAIN DRIVER: | SAVE _ MISSIONARIES I

| serue_peosLEm |

| TaY |
EXAMINE . MOVE VALID _ MOVE I
SHOW _ STATUS :_I:: MAKE_MOVE |
SUCCESS | | LBAVE_LEFT DEPART |
| LeAvE_ Ricar ARRIVE |
1w |
] mm_or |

e

— suow_soLution |

'_Ii MOVE _ BAK]

Figure 2-9. Box diagram of missionaries and cannibals

SETUP__PROBLEM Procedure

This procedure initializes variables describing each of the banks at starting posi-
tion (BANKL and BANKR, for left and right bank, respectively). It then sets up a
variable called ALL__MOVES, which is a list of lists, each element of which is
one of the five possible combinations of legal moves that can be made in a given
situation. Finally, it sets up the variable BEEN__HERE, which keeps track of each
position the program encounters to ensure that blind alleys aren’t continually
tried.

SHOW__STATUS Procedure

Besides displaying the left and right bank status at the end of each move,
SHOW__STATUS affords a convenient place to update the variable BEEN__
HERE. We simply place the contents of the left bank into the list variable
BEEN__HERE.

30 / Al Programming on the Macintosh

TRY: Second Main Driver Procedure

Once everything is set up, the main procedure passes control to a collection of
procedures. The main driver, TRY, is called with the ALL__MOVES variable so
that it is passed a list of all legal moves. TRY goes through the list one move at a
time using the EXAMINE_MOVE procedure, which we will soon discuss, to
determine if a move is legal and, if so, what its effect will be.

After each move, TRY checks to see if a solution has been found. TRY calls
the SUCCESS procedure, which outputs TRUE if a solution has been found (i.e.,
the left bank is empty) and nil if the problem has not been solved. If a solution
has not been found, TRY displays the status of the left and right banks at that
point using SHOW__STATUS.

When a move has been successfully made with no missionaries being
eaten and no solution being found, TRY calls itself again with the list of legal
moves called ALL__MOVES to work through another sequence of potential
moves from the now-changed state of the problem.

EXAMINE_MOVE Procedure

The procedure EXAMINE_MOVE first calls another procedure, VALID_MOVE
(discussed in the next section) to determine if the move is legal. If so, VALID__
MOVE prints “‘true’’; otherwise, it passes NIL to the calling procedure,
EXAMINE_MOVE. If the move isn’t valid for the circumstances, EXAMINE__
MOVE stops and control returns to TRY.

Similarly, if the move creates a situation that the program has previously
seen or if the procedure EATEN indicates that a missionary has been lost, the
program calls the procedure MOVE_BACK, which retracts the move. Control
then returns to TRY.

If the move is legal and does not result in a lost missionary, then the pro-
gram sets a variable called SOLUTION to be ‘true.” This variable is used
throughout the program as a means of loop control, not to indicate that a solu-
tion has necessarily been found (though it would also be used in that situation).

VALID_MOVE Procedure

This procedure determines which bank will be the departure bank by identifying
the boat’s location. It then checks to see if the move being tested is legal by
ensuring that the number of missionaries and cannibals being moved is less than
or equal to the number of missionaries and cannibals on the bank at the
moment. Note that we have used the construction:

IF AND
(OR ((NUMBER_OF ‘M :MOVE) < (NUMBER__OF 'M :BANK))
((NUMBER_OF ‘M :MOVE) = (NUMBER__OF 'M :BANK)))
(OR ((NUMBER__OF 'C :MOVE) < (NUMBER__OF ’'C :BANK))
((NUMBER_OF 'D :MOVE) = (NUMBER__OF ’C :BANK)))

instead of the ExperLogo® construction:

IF AND (OR ((NUMBER_OF ‘M :MOVE) < (NUMBER__OF ’M :BANK))
((NUMBER_OF 'C :MOVE) < (NUMBER__OF 'C :BANK))))

This is because most Logo implementations do not include a single less-
than-or-equal-to symbol like ExperLogo’s <.

Classic Missionary-Cannibal Problem / 31

EATEN Test Procedure The EATEN procedure uses similar AND/OR logic to that
in VALID_MOVE to ensure that the number of cannibals on one bank is not
greater than the number of missionaries. (Note that it must also check to be sure
there aren’t ‘“no missionaries,” because then it wouldn’t matter if there were
more cannibals; theéy’d have nothing to eat!)

LEAVE__LEFT and LEAVE__RIGHT
The LEAVE__LEFT and LEAVE__RIGHT procedures are identical except for the
arguments sent to the next-level procedures, DEPART and ARRIVE. Each sets up
a variable called TEMP_BANK to hold information during processing. This
makes it possible to move things around without disturbing variables that may
be needed for further evaluation.

After completing this setup, these procedures call on the DEPART proce-
dure, which builds a list of who is left on the bank from which the boat is leav-
ing, places that in the variable TEMP_BANK, and returns control to the calling
procedure. There, TEMP__BANK's contents are swapped into the departure
bank’s list so that it contains an updated description of who is left on the bank
following the departure.

TEMP_BANK is now reinitialized to be an empty list and the procedure
ARRIVE is called. This procedure is more complex than DEPART because it must
keep track of the order of missionaries and cannibals in the boat when moving
from the right bank to the left so that the variable BEEN__HERE will contain
accurate and pattern-matchable information about what has gone before.

Figure 2-10 reproduces the listing which appears in the ExperLogo® Lis-
tener Window (the Text Window in other Logos) as the program solves this puz-
zZle. It is self-explanatory.

Exploring Al with Missionaries and Cannibals

The program we have been discussing here cannot be greatly modified since its
knowledge domain is limited to ‘“knowing” about moving cannibals and mis-
sionaries around. But a couple of things might make the program more inter-
esting. ,

For one thing, a random number generator could pick our moves instead
of going through the same sequence each time. Over time, this should result in
the program finding many solutions to the problem. Another approach would
be to place the lists in the variable ALL__MOVES in another order to see how
that affects the decision making of the program.

If you're interested in seeing in greater depth how the program draws its
conclusions, change the program so that when it runs into an illegal move or
one that results in a missionary’s demise, it prints a message indicating what
move it tried and what the result was. This will, of course, make the program
run more slowly but it may prove helpful in trying to figure out how the program
works.

You might also try changing the number of missionaries and cannibals or
the number of people the boat can hold—though the results will be unpredict-
able with some combinations. When you make these changes, be sure to think
about what a state-space diagram would look like in identifying the possible
legal moves. :

32 / Al Programming on the Macintosh

SAVE__MISSIONARIES

The left bank is hostto: MMM CCCB
The right bank is host to: nil

move C C B from left bank to right bank.

The left bank is host to: MMM C
The right bank is host to: CCB
move C B from right bank to left bank.

The left bank is host to: MMM CCB
The right bank is host to: C
move C C B from left bank to right bank.

The left bank is host to: MM M
The right bank is host to: CCCB
move C B from right bank to left bank.

The left bank is host to: MMM CB
The right bank is host to: C C
move M M B from left bank to right bank.

The left bank is host to: M C
The right bank is hostto: CCM M B
move M C B from right bank to left bank.

The left bank is host to: MM CCB
The right bank is host to: M C
move M M B from left bank to right bank.

The left bank is host to: C C
The right bank is hostto: MM CMB
move C B from right bank to left bank.

The left bank is host to: CCCB
The right bank is host to: MM M
move C C B from left bank to right bank.

The left bank is host to: C
The right bank is host to: MMM CCB
move C B from right bank to left bank.

The left bank is host to: CCB
The right bank is host to: MM M C
move C C B from left bank to right bank.

The left bank is host to: nil

The right bank is hostto: MMM CCCB
IDIDIT!

IDIDIT!

Figure 2-10. How the problem gets solved

Classic Missionary-Cannibal Problem / 33

Summary: What We’ve Learned about Al
Programming

In this chapter, we've taken our first steps in learning about Artificial Intelligence
and the considerations behind intelligent programs. We’ve covered a great deal
of new material here, including:

+ defining the state of a problem and the goals associated with its solutions;

+ making decisions about how to represent the knowledge contained in a
problem’s ““world’’ system;

* accurately and concisely describing moves from one state to another in
ways which are consistent with programming language syntax.

In the next chapter, ““Micro Logician,” we will further explore the ideas of
searching.

{Missionaries & Cannibals ©1985, The Waite Group}
{Logo program by Ken Schieser}

{Main calling procedure}

TO SAVE_MISSIONARIES
SETUP_PROBLEM
SHOW__STATUS
TRY :ALL_MOVES
IF EQUALP :SOLUTION :FOUND

[PR[I DID IT!]]
[PR[SOLUTION NOT FOUND!]]
END

{Sets initial conditions}
TO SETUP_PROBLEM
{FOUND is a boolean variable. It holds a value of true throughout the program. Its
main purpose is to make the program readable.}
MAKE FOUND 'TRUE
MAKE BANKLIMMMCCCB]
MAKE BANKR []
MAKE ALL__MOVES [[C C B][C B][M B}[M C B]{]M M B]]
MAKE BEEN__HERE[]
END
{Shows status, adds contents of left bank to BEEN__HERE, initializes loop control
variable}
TO SHOW__STATUS
PR SE [The left bank is host to:] :BANKL
PR SE [The right bank is host to:] :BANKR
{Loop control variable see TO TRY & TO EXAMINE}
MAKE SOLUTION NIL '
MAKE BEEN__HERE LPUT :BANKL :BEEN__HERE
END

34 / Al Programming on the Macintosh

{Prints out the correct move}
TO SHOW__SOLUTION
IF MEMBERP ’'B :BANKR
[MAKE BANKT [left bank] MAKE BANK2 [right bank.]]
[MAKE BANKT [right bank] MAKE BANK?2 [left bank.]]
PR (SE [Move] :MOVE [from] :BANK1 [to] :BANK2)
PR<<>>
END

{Recursively test all moves}
TO TRY :MOVES

IF EMPTYP :MOVES [STOP]

{The variable MOVE, used in all lower level procedures, is made to be the first set of
the variable MOVES (or ALL__MOVES, since TRY is called with the argument
ALL_MOVES)}

MAKE MOVE FIRST :MOVES

EXAMINE_MOVE

{Test to see if a solution has been found—if not TRY is called recursively without the
first member of the set MOVES. This continues until the solution is found or MOVES
becomes the empty set. The stop is needed to prevent complex recursion.}

IF EQUALP :SOLUTION NOT :FOUND [TRY BF :MOVES STOP]

{If the program has made it past the above test, a solution has been found. At this
point SHOW__STATUS is called—printing out the new banks & reinitializing the loop
control variable}

SHOW__STATUS

{1f the left bank is empty, the second level is stopped; control is passed back to the
main level}

IF SUCCESS [MAKE SOLUTION :FOUND STOP]

{If the left bank is not empty, TRY is called again with an argument of :ALL__MOVES

TRY :ALL_MOVES
END

TO SUCCESS
IF EMPTYP :BANKL [OP 'TRUE][OP NIL]
END

{Third level}
TO EXAMINE_MOVE

{1f the move contains characters that are not members of the bank to be moved from,
control is passed back to second level}

IF NOT VALID_MOVE [STOP]

MAKE__MOVE

{Test for repetition}

IF MEMBERP :BANKL :BEEN__HERE [MOVE__BACK STOP]

{Test for more cannibals on either bank}

IF EATEN [MOVE__BACK STOP]

{If either of the preceding tests pass, control is handed back to second level. lf not,
the loop control variable FOUND is made ‘“true’” and the solution is printed out}

Classic Missionary-Cannibal Problem / 35

MAKE SOLUTION :FOUND
SHOW__SOLUTION
END
{Function: Outputs ‘‘true’’ or “’nil”’} TO VALID_MOVE
{A variable BANK is made equal to the bank with the boat}
IF MEMBERP 'B :BANKL [MAKE BANK :BANKL][MAKE BANK :BANKR]
IF AND
(OR ((NUMBER_OF 'M :MOVE) < (NUMBER__OF 'M :BANK))
((NUMBER_OF 'M :MOVE) = (NUMBER_OF 'M :BANK)))
(OR ((NUMBER__OF 'C :MOVE) < (NUMBER_OF ’C :BANK))
((NUMBER__OF 'C :MOVE) = (NUMBER__OF 'C :BANK)))
[OP 'TRUE][OP NIL]
END
{Function: Outputs ‘‘true’’ or “/nil’’}
TO EATEN
IFOR
(AND((NUMBER_OF 'M :BANKL) >0)
((NUMBER_OF "M :BANKL) < (NUMBER__OF 'C :BANKL)))
(AND((NUMBER_OF 'M :BANKR) >0)
((NUMBER_OF 'M :BANKR) < (NUMBER__OF 'C :BANKR)))
[OP 'TRUE]J[OP NIL]
END

{Function: Outputs a number}
TO NUMBER_OF :LETTER :COLLECTION
MAKE NUM 0
COUNT__LETTER :LETTER :COLLECTION
OP :NUM
END

{Counts letters in collection}

TO COUNT__LETTER :LETTER :COLLECTION
IF EMPTYP :COLLECTION [STOP]
IF EQUALP FIRST :LETTER FIRST :COLLECTION [MAKE NUM :NUM + 1]
COUNT__LETTER :LETTER BF :COLLECTION

END

{Same as MAKE__MOVE, purpose: readability}
TO MOVE_BACK
MAKE_MOVE
END

TO MAKE_MOVE
IF MEMBERP ’B :BANKL [LEAVE__LEFT][LEAVE__RIGHT]
END

TO LEAVE__LEFT
MAKE TEMP__BANK []
DEPART :BANKL :MOVE
MAKE :BANKL :TEMP__BANK

36 / Al Programming on the Macintosh

MAKE TEMP__BANK(]

ARRIVE :BANKR :MOVE

MAKE BANKR :TEMP__BANK
END

TO LEAVE__RIGHT
MAKE TEMP__BANK []
DEPART :BANKR :MOVE
MAKE BANKR :TEMP__BANK
MAKE TEMP__BANK []
ARRIVE :BANKL :MOVE
MAKE BANKL :TEMP__BANK
END

{Places only those members of B that are not in M into TEMP_BANK}
TO DEPART :B :M
IF EMPTYP :B [STOP]
IF EMPTYP :M
[MAKE TEMP_BANK LPUT FIRST :B :TEMP__BANK
DEPART BF :B :M STOP]
IF EQUALP FIRST :B FIRST :M
[DEPART BF :B BF :M STOP]
MAKE TEMP_BANK LPUT FIRST :B :TEMP_BANK
DEPART BF :B :M
END

{The order of arriving to the right is not important, but it is crucial when arriving to the
left. ARRIVE places all the Ms together, Cs together, and puts the boat on the end}
TO ARRIVE :B :M
IF EMPTYP :M [STOP]
IF EMPTYP :B
[MAKE TEMP__BANK LPUT FIRST :M :TEMP_BANK
ARRIVE :B BF :M STOP)
IF EQUALP FIRST :B FIRST :M
[MAKE TEMP_BANK LPUT FIRST :M :TEMP_BANK
MAKE TEMP__BANK LPUT FIRST :B :TEMP__BANK
ARRIVE BF :B BF :M STOP]
MAKE TEMP_BANK LPUT FIRST :B :TEMP_BANK
ARRIVE BF :B :M
END

Micro-Logician

.
130 .0

£ efet,
CAROOL

R

CREATE 5
SYMBOL 'A

O Backward-Chaining in Search
Strategies

O Elementary Pattern-Matching
in Natural Language Processing

O Basic Logic Processing

O Using Limits to Language
Entries for Manageable
Programs

39

40 / Al Programming on the Macintosh

The idea of searching is so important that we have included this program as
another example of how it is done. This chapter adds one significant concept
to the Missionaries and Cannibals program in Chapter 2: backward-chaining.
Along the way, we'll present some ideas about natural language processing,
which will be a primary topic of several of our programs.

What You’ll Learn

As you read this chapter, type in the program it discusses. When you run and
analyze that program, you'll appreciate the importance of selecting the right
approach to searching through the possible solutions to a problem. More specif-
ically, you’ll understand the significance of the differences between forward-
and backward-chaining, which relate to how we search for a solution to a
problem.

The ideas of forward- and backward-chaining have gained prominence
as expert systems have become commercially available. Promoters of specific
expert system development tools tout their products as forward-chaining,
backward-chaining, or combination products, which do chaining of both kinds.
As we will see, the differences between these kinds of chaining are technical
rather than qualitative.

The Program

This chapter will analyze a program called ‘‘Micro-Logician.” The program
seems intelligent because it accepts information and then answers questions
about that information that it can only know about indirectly. In other words, it
appears to draw conclusions and inferences from facts without having been told
the conclusions.

In handling inquiries about fact patterns, the program performs backward-
chaining so that it can determine where, if at all, in its “’knowledge base’’ it has
the data needed to answer the question.

This chapter will also demonstrate the concept of pattern-matching as it is
used in natural language processing. We'll see how we can determine content
by examining the pattern and structure of input from the user. (See Figure 3-1.)
(We will discuss the idea of pattern-matching using such templates as predeter-
mined sentence patterns in more detail when we reach the subject of natural
language later in our study. The current program simply demonstrates that idea.)

What the Program Does
Micro-Logician permits the user to enter three kinds of input:

1. statements of fact (for example, ““The house is large.”’)
2. questions (for example, “‘Is a robin a bird?"’)
3. general inquiries (for example, ““What do you know about television?’’)

The program uses statements of fact provided by the user without trying to
evaluate their truth or practical value. The statements of fact form the basis for
building a set of property lists in the program’s memory. Property lists are an
important characteristic of Logo and of other languages which are best suited for
Al programming tasks. They provide a convenient way for the program to
“remember’’ information passed to it by the user.

Micro-Logician / 41

Figure 3-1. Pattern-matching: fitting incoming ideas to predefined structures

If the user types in a question, the computer recognizes it as a question,
searches through its property lists to see if it knows anything about the subject,
and, if so, tries to reach a conclusion as to whether the question being asked
should be answered ‘“yes’” or “‘no’’ or “‘l don’t know.”

When the user types in a sentence starting with the word ““Inquire’”’—for
example, ““Inquire about taxes’’—the program searches through its list of topics
to see if it knows anything about the subject. If it does, it performs a ‘‘memory
dump,”” simply providing a list of all the facts it has been told about the subject.

"~ The program is terminated by the user typing ““Quit” at the outermost pro-
cedural block when being asked for an entry.

Narrowing the Domain of Entries ‘

Ideally, a program like Micro-Logician would accept all kinds of statements and
questions from its user. Obviously, it can understand such simple statements as
“The box is blue.” But it should also be able to handle complex sentences and
thoughts like, “‘The big box over in the corner, which belongs to Steve and has a
pink bow on it, is blue.” After all, both sentences involve the same essential
data—there is a box and its color is blue.

42 / Al Programming on the Macintosh

We will see in our discussions of programs that are part of the Al discipline
of natural language processing that such a capability would place a huge de-
mand on the resources of the Macintosh® or any other desktop personal com-
puter. We must, therefore, be willing to live with something less than total com-
prehension.

Micro-Logician doesn’t limit the subjects about which the computer will be
told; the subject is under the user’s control. The program will, though, limit the
kinds of sentences to which it will respond.

Factual Statements Statements of fact will always require the following format:

SUBJECT IS PREDICATE.

The subject must be simple, rather than compound or complex. It may,
however, include an article (a, an, or the). The following will be acceptable sub-
jects in a factual statement entered into Micro-Logician:

A writer is often out of cash.
Computing is a fine art.
The box is in the corner.

The following subjects will not work:

Writers are often out of cash. (The subject is plural. Since it requires a verb
other than ““is,” it won’t be recognized.)

Computing with a Macintosh® is a fine art. (The compound subject won't
be understood.)

The big box is in the corner. (The adjective ‘‘big”’ makes the subject
unacceptable to Micro-Logician.)

Singularly Important Only the verb ““is” will be understood by our micro ver-
sion of this logical program. This simplifies the programming though it limits the
input that the program can understand and use.

Verbal Freedom The predicate—everything after the word ‘‘is”’—can be convo-
luted or complex and the program will still accept it. The program, however,
may not understand it as we intended. An example or two will clarify what we
mean here.

Look at the sentence:

The programmer is tall and thin.

Anyone listening to that sentence understands that the word ““and’’ means
that the programmer is both tall and thin. If we heard that sentence and were
then asked, ‘“Is the programmer thin?”’ we would answer ‘‘yes.”” But Micro-
Logician doesn’t understand words like ““and”’ to have logical value; as far as the
program is concerned, logical connectives are just words. Thus, if we ask
Micro-Logician, after entering the above sentence, “Is the programmer thin?’’ it
will insist he is not. If we ask, on the other hand, “Is the programmer tall and
thin?”’ the program will agree that he is both of those things.

Micro-Logician / 43

A Concluding Mark Every sentence or question typed into Micro-Logician must
close with a period, question mark, or other punctuation. The punctuation need
not be correct, but must be present.

Logical Questions

With that discussion behind us, we can quickly examine the format requirement
of the other two types of sentences with which Micro-Logician has been pro-
grammed to cope. A logical question must take the form:

IS SUBJECT PREDICATE?

The first word must be “is.”” The subject, therefore, must be simple. The
program will consider everything after the subject to be a predicate defining the
character trait of the subject.

General Inquiries
We have adopted the word INQUIRE to signal Micro-Logician that what follows
is an inquiry about the information it has stored on the subject.

The required form for such an inquiry is:

INQUIRE SUBJECT.

The subject may contain an article (though it almost never makes sense to
include one) but otherwise must be simple. No predicate containing the trait
involved is required since the inquiry elicits all available information about the
subject.

For example, we could type in the following query:

INQUIRE WRITER.

The program would then tell us every fact it knows about writers. Assuming
we had stored the information, it would respond:

WRITER IS AN INTELLECTUAL.
WRITER IS POOR.
WRITER IS LONELY.

How Micro-Logician Works

As shown in the box diagram in Figure 3-2, Micro-Logician is divided into six
Level 2 procedures: SET.UP, CLEAN.UP, SCANNER, ADD.A.FACT, INQUIRY,
and LOGIC.FINDER.

Micro-Logician lacks the ‘‘pure’”” main program that most of the other pro-
grams in this book have. That is because we have two different kinds of setup or
housekeeping chores to do at the beginning and we want to call one of the sets
only once. So the start of the program calls for us to type in the command
SET.UP. That routine in turn calls the main driver routine MICRO.LOGIC. In a
sense, MICRO.LOGIC is the main procedure.

44 / Al Programming on the Macintosh

MAIN DRIVER ROUTINES
[smup | MicRaLoGIC |
CLEAN.UP |

DELETEARTICLES |

[Cooomm]

SEPARATESENTENCE |

NEW.SUBJECT J

INQUIRY

SHOW.KNOWLEDGE I

LOGICFINDER

SEPARATESENTENCE I

CHECK.SUBJECT |

CHECK.KXNOWLEDGE I

L| CHECKTOPICAREA |
L‘| CHBCK.SUBJECT 2 |

Figure 3-2. Box diagram of Micro-Logician

SET.UP
The SET.UP procedure is the Micro-Logician initialization routine. It initializes
variables which will be needed through the rest of the program. Specifically, the
Logo implementation of the SET.UP routine defines the articles ““a,”” ‘‘an,” and
“the’’ as articles for later deletion and initializes the list called TOPICS to be the
empty list. Ultimately, this list will store topics the program ‘’knows” about
based on subsequent user input. The SET.UP procedure is called by the user typ-
ing in its name.

The program is kept running by the MICRO.LOGIC procedure, which is
called by other procedures. We can restart the program during a run of Micro-
Logician by recalling SET.UP, which reinitializes the topic list. We can also call

Micro-Logician / 45

the MICRO.LOGIC routine in order to continue processing after some kind of
halt without the program ‘“forgetting’’ all it had been told.

CLEAN.UP

After SET.UP and before CLEAN.UP, we invoke the main procedure, MI-
CRO.LOGIC. This routine takes care of our request for user input and stores the
routine to check to see if the user is done. It would be equally acceptable to
design another procedure—perhaps called GET.INPUT—to handle input and at
the same time check to see if the user is finished. Because of the way Logo han-
dles the STOP command, however, our current method is the more straightfor-
ward and easier to implement.

The MICRO.LOGIC procedure also initializes a temporary holding variable
called SENT2 which must be reset each time through the program’s main proce-
dures.

The CLEAN.UP procedure puts the English-like data entered by the user
into a more usable form. The procedure strips the punctuation mark at the end
of the sentence and then scans the sentence for articles and removes them.
When this CLEAN.UP procedure is completed, the sentence:

THE BOX IS A CUBE.
has been transformed into:
BOX IS CUBE.

This enables the program to store information efficiently about the subject
Ilbox.ll

SCANNER

The procedure SCANNER determines which of the three types of sentence—
factual statement, logical question, or general inquiry—has been entered by the
user.

Since we have arbitrarily fixed the formats of each type of input, SCANNER
has a quite simple task. It looks at the first and second words of the sentence
that was entered. The first word is placed into a variable called KEY1 and the
second word into the variable KEY2.

If KEY1 is ‘“is,”” then the program knows it is faced with a logical question. If
it is “inquire,” it knows that it is going to be asked to handle a general inquiry.
Any other input could be designed to add a factual statement to the program’s
property lists. But we check explicitly for the word “is’ as the second word in
our stripped-down sentence, just to be sure. Micro-Logician will be able to han-
dle a sentence like:

The programmers are always broke!

quite nicely without doing something unexpected or unwanted.

If the sentence turns out to be a statement of fact, the procedure called
ADD.A.FACT is invoked. If a logical question is belng posed, the LOG-
IC.FINDER procedure is called into action. General inquiries are handled by the
procedure called INQUIRY.

46 / Al Programming on the Macintosh

ADD.A.FACT

The ADD.A.FACT procedure is actually divided into two procedures. Besides
ADD.A.FACT, itself, there is a subordinate, Level 3, procedure called
NEW.SUBJECT.

ADD.A.FACT first sets up the subject and predicate. It now begins to refer
to the predicate by its more proper name ‘“‘trait.”” The procedure takes the first
word of the sentence as the subject and everything after the word IS as the trait.
Using the Logo primitives FIRST and BUTFIRST, this process is quite simple.

The procedure determines if the subject is a new one or if new data is
being provided concerning a topic it already knows about. It does this by check-
ing to see if an attempt to read information about the subject results in an
answer of ““‘nil.” Nil in Logo means either that nothing is found or that an
answer is false. When nil is returned, ADD.A.FACT calls on the procedure
NEW.SUBJECT. Otherwise, it adds the value “1”’ to the number of facts it knows
to be available about the subject and tacks the new information onto the end of
the property list.

NEW.SUBJECT The first time Micro-Logician encounters a particular subject,
the NEW.SUBJECT procedure adds it to the variable list TOPICS, which keeps
track of the subjects it knows about. It then puts the number ““1”” in place as the
number of pieces of information—or traits—stored on the subject and places the
trait in the property list.

INQUIRY

Micro-Logician permits two types of inquiries. The simpler is a request for
all information available on a given subject. This assignment is handled by
the Level 2 procedure INQUIRY. It in turn has a Level 3 procedure called
SHOW.KNOWLEDGE.

The sentence has to begin with the word “INQUIRE” in order to be classi-
fied as a general inquiry sentence. INQUIRY then begins by defining the subject
of the inquiry as everything following INQUIRE. It checks to see if that subject is
on the list of subjects contained in the list called TOPICS it has been building. If
not, it prints a polite message and asks for the next input.

However, if INQUIRY finds that it does have information about the subject,
it looks up how many pieces of data have been given to it about that subject and
then calls the Level 3 procedure SHOW.KNOWLEDGE. This procedure, in turn,
loops through the property list belonging to the subject, displaying each value
until all have been displayed.

LOGIC.FINDER

The meat of Micro-Logician is in this procedure and its associated Level 3 pro-
cedures, particularly concerning search techniques. This procedure group re-
sponds to questions that may require it to draw conclusions from information it
has been given, but not explicitly.

For example, if we gave Micro-Logician the following two pieces of infor-
mation:

SOCRATES IS A MAN.
MAN IS INTELLIGENT.

Micro-Logician / 47
Micro-Logician should be able to handle the question:

IS SOCRATES INTELLIGENT?

even though it has not been specifically told that he is.
To accomplish this task, the LOGIC.FINDER procedure uses a series of
searches aimed at backward-chaining to the solution to the question posed.

What Is Backward-Chaining?

Backward-chaining searches are extremely important in Al research. Many ex-
pert systems use backward-chaining exclusively as a means of solving problems
posed by their human designers and users.

Simply stated, ‘‘backward-chaining’” embodies the idea of beginning with
the goal and following a logical chain back to the proof or solution. This is
opposed to ‘“forward-chaining’”’ techniques, which begin with the problem and
attempt to move forward through a knowledge base to a solution. (See Figure
3-3.) Neither of these techniques is inherently superior to the other; each has its
use and its application. Many systems combine the methods.

FORWARD-CHAINING BACKWARD-CHAINING

4 ™ [
GOAL OR GOAL OR
EXPECTATION EXPECTATION

\ J \ J

i ‘

() (

LAST CONCLUSION EVIDENCE IN
‘WHICH LEADS PREDECESSORS
Jo REACHING GOALJ L TO SUPPORT GOALJ

\

Figure 3-3. Backward- vs.

forward-chaining in f l
Al programs - ~\ ~ N
FINAL SET OF
FIRST CONCLUSION EVIDENCE TO

SUPPORT GOAL
\. y, . J

i j!

(N s
START STATE ?;::g‘l:sg::f
OF PROBLEM SET
\) IS CORRECT)

In a typical inquiry of Micro-Logician, the program begins with the goal—
that is, the status about which the question has been posed—and attempts to
work backwards to the point of linking the question to the answer.

An example may help to clarify this.

Backward-Chaining to Socrates Staying with our Socratic example, assume that
we have stored the following information in our very small knowledge base.

48 / Al Programming on the Macintosh

SOCRATES IS A MAN.

SOCRATES IS A PHILOSOPHER.

A MAN IS TWO-LEGGED.

A PHILOSOPHER IS EXASPERATING.

Suppose we wish to know whether Socrates is exasperating. Humans can,
of course, quickly determine that to be the case by looking at the information
provided. But the computer is not nearly as capable of drawing such inferences.
(At least, not yet!)

To get the computer to draw inferences requires a program that will cer-
tainly meet our criterion for an artificially intelligent program: the program will
do something which, if a human did it, would require intelligence.

Our program will first attempt to solve the question by a form of forward-
chaining. It will look through its TOPICS list to see if Socrates is there and, find-
ing it present, will examine the Socrates property list item-by-item to see if
“‘exasperating’’ is present. For this approach to work, we would have had to tell
the program that Socrates is exasperating. We know from the data listed above
that we did not do that.

(Please don’t conclude from this single example that forward-chaining is
less elegant or intelligent than backward-chaining. The example is not at all
exemplary of how such an approach might be used effectively and intelligently
in a computer program.)

Having failed to find the information explicitly present, Micro-Logician
moves to a backward-chaining approach to the problem. It starts at the trait
““exasperating’”’ and examines each property list in its memory to see if the term
appears there. In this case, it finds the word ‘‘exasperating’’ in the property list
associated with the word “’philosopher.””

It now returns to the Socrates property list to see if it has the trait ‘‘phil-
osopher” in it. It does, so the program dutifully reports that Socrates is, in fact,
exasperating. If the program failed either to find the word ‘‘exasperating’’ in its
collection of traits or failed to find the associated term in the Socrates property
list, it would inform us that it didn’t have enough information to respond to the
query.

We could, in theory, expand this backward-chaining search technique ad
infinitum in our example. For instance, we could have had the sentence:

AN INTELLECTUAL IS EXASPERATING.

in place of the sentence about the philosopher and added a new sentence
informing the system that:

A PHILOSOPHER IS AN INTELLECTUAL.
To achieve the correct response, Micro-Logician would take the following steps:

1. Forward-chain through the Socrates property list. Failing to find
““exasperating,”’ it would then take the next step.

2. Find “exasperating’”’ in the property list labeled “intellectual.”
3. Look in the Socrates property list for the word “‘intellectual.”

Micro-Logician / 49

4. Not finding the word “intellectual”’ in the Socrates property list, look for
the word “intellectual’” in other property lists.

5. Find the word “’intellectual”’ in the property list labeled ‘‘philosopher.”
6. Examine the Socrates property list and find the word ““philosopher”’ there.
7. Report its conclusion that Socrates is exasperating.

You can see that the extent of the search—and the resources of memory
and time required to carry it out—will expand greatly as each additional level of
search is encountered. The technical term for these levels is “/ply’’; scientists
speak of a two-ply or three-ply search. We have confined ourselves to the sim-
plest approach.

The LOGIC.FINDER Procedure Set

Let's examine the LOGIC.FINDER procedure itself, now that we understand
how the chaining process it implements actually works. We find that the proce-
dure first separates the subject of the inquiry—in our example, ‘‘Socrates’’—from
the predicate, which is the question being asked. The procedure checks if the
subject is in the list of TOPICS. If it doesn’t find it there, it prints a message to
that effect and goes back for another input. If it does find it, the program carries
out the simplest check first, finding whether the trait is part of the property list of
the subject. It reads the number of traits it has stored and examines each in turn
to see if it matches. In our program, CHECK.SUBJECT handles this process.

Failing to find the predicate in the subject’s property list, the program then
calls on the CHECK.TOPIC.AREA procedure. This sets up a copy of the list. It
uses a MEMBERP primitive to check if the predicate for which we are searching
is a member of any property list associated with any of the topics.

When we ask about Socrates’s two-leggedness, a match is found in the
property list for “man’’. The program then makes the name of the new property
list (in this case, “‘man’’) the new trait for a search through the subject’s property
list. In other words, having found ‘‘two-legged”” as a trait in the property list
associated with man, the program tries to find “‘man’’ in the property list of Soc-
rates. If it finds it, it will have successfully backward-chained to the answer and
will report that Socrates is indeed two-legged. Any other result will produce the
answer “Not enough data’” and a request for the next input.

Special Logo Primitive Used

This program uses only one nonstandard Logo primitive—PRINC, used in the
INQUIRY procedure. This would be replaced by the more conventional TYPE
in most versions of Logo. Other than that, the rest of the program should run
as well in Microsoft Logo® or any other “‘standard’’ Logo available on the Mac-
intosh®.

Exploring Al with Micro-Logician

A number of improvements or enhancements may be made to our basic Micro-
Logician program.

For example, consider storing the property lists created by the program in a
disk file and then storing and retrieving them with the disk access primitives
LOAD and SAVE. The entire process could even be menu-driven in ExperLogo®.

50 / Al Programming on the Macintosh

Another refinement would permit use of other verbs besides 1S (ARE, for
example). If you undertake this, consider whether you should be concerned
about singular and plural nouns during output of information as well as during
its entry.

Or add the word ““about” to the list of words that could be extracted by the
program. This would enable you to type

INQUIRE ABOUT SOCRATES.

which is a far more natural way of expressing the request than the somewhat
arbitrary and rigid way we’ve designed.

Incidentally, consider making punctuation optional by checking the last
character in the SENT1 variable to see if it is punctuation and removing it only if
it is. Again, this would make the program a bit easier to use.

A more complicated refinement would permit multiple-ply backward-
chaining. This would require considerable program modification, though basic
procedures to accomplish the task are generally provided in the listing.

Summary: What We’ve Learned about
Al Programming

Search techniques are an important aspect of Al programming. In this chapter,
we’ve looked at the following:

 The backward-chaining method of moving from a stated goal or objective
to the cause or proof required;

« the forward-chaining approach, though not in an optimum implementa-
tion;
« natural language usage to see how relatively ‘‘normal’”’ English can be

accommodated as a program input when the right intelligence is built into the
program itself.

{Micro-Logician ©1985, The Waite Group}
{Logo program by Dan Shafer}

TO MICRO.LOGIC
MAKE SENT2{]
PRINT [Let’s have a sentence. . .]
MAKE SENT1 READLIST
IF :SENT1 = [QUIT] [STOP]
CLEAN.UP
SCANNER
MICRO.LOGIC
END

TO SET.UP
MAKE ARTICLES [A AN THE]

Micro-Logician / 51

MAKE TOPICS []
MICRO.LOGIC
END

TO CLEAN.UP
MAKE SENT1 SENTENCE BUTLAST :SENT1 BUTLAST LAST :SENT1
DELETE.ARTICLES
MAKE SENT1 BUTLAST :SENT2

END

TO DELETE.ARTICLES

MAKE WORD1 FIRST :SENT1

IF EQUALP MEMBERP :WORD1 :ARTICLES NIL [MAKE SENT2 LPUT :WORDT1
:SENT2]

IF EMPTYP :SENT1 [STOP]

MAKE :SENT1 BUTFIRST :SENT1

DELETE.ARTICLES
END

TO SCANNER
MAKE KEY1 FIRST :SENT1
MAKE KEY2 FIRST BUTFIRST :SENT1
IF :KEY2="IS [ADD.A.FACT]
IF :KEY1="IS [LOGIC.FINDER]
IF :KEY1="INQUIRE [INQUIRY]
END

TO ADD.A.FACT

SEPARATE.SENTENCE

IF EQUALP GPROP :SUBJECT ‘“NO__VALUES NIL
[NEW.SUBJECT]

MAKE N GPROP :SUBJECT ‘“NO__VALUES

MAKE N :N+1

PPROP :SUBJECT ‘“NO__VALUES :N

PPROP :SUBJECT WORD ‘‘P :N :TRAIT
END

TO SEPARATE.SENTENCE

MAKE SUBJECT FIRST :SENT1

MAKE TRAIT BUTFIRST BUTFIRST :SENT1
END

TO NEW.SUBJCT
MAKE TOPICS LPUT :SUBJECT :TOPICS
PPROP :SUBJECT ‘“NO__VALUES 0
END

TO INQUIRY
MAKE SUBJECT FIRST BUTFIRST :SENT1

52 / Al Programming on the Macintosh

IF EQUALP MEMBERP :SUBJECT :TOPICS NIL [PRINT< < I have no data on that
subject. > > STOP]

MAKE N GPROP :SUBJECT ‘“NO__VALUES

PRINC :SUBJECT PRINT<< IS. . .>>

SHOW.KNOWLEDGE
END

TO SHOW.KNOWLEDGE
PRINT GPROP :SUBJECT WORD ‘P :N
MAKE N :N-1
IF :N# 0 [SHOW.KNOWLEDGE]

END

TO LOGIC.FINDER
MAKE ANSWER [NOT ENOUGH DATA]
MAKE SUBJECT FIRST BUTFIRST :SENT1
MAKE TRAIT BUTFIRST BUTFIRST :SENT1
IF EQUALP MEMBERP :SUBJECT :TOPICS NIL [< <1 have no data on that
subject. > >STOP]
MAKE N GPROP :SUBJECT ‘“NO__VALUES
CHECK.SUBJECT
IF :ANSWER = [NOT ENOUGH DATA]
[CHECK.KNOWLEDGE]
PRINT :ANSWER
END

TO CHECK.SUBJECT
IF EQUALP GPROP :SUBJECT WORD ‘P :N :TRAIT [MAKE ANSWER [YES] STOP]
MAKE N :N-1
IF :N# 0 [CHECK.SUBJECT]

END

TO CHECK.KNOWLEDGE
MAKE TEMPLIST COPYLIST :TOPICS
CHECK.TOPIC.AREA

END

TO CHECK.TOPIC.AREA
MAKE SEARCH. SUBJECT FIRST :TEMPLIST
MAKE NEW.LIST PLIST :SEARCH.SUBJECT
MAKE SEARCH.SUBJECT (LIST :SEARCH.SUBJECT)
IF NOT EQUALP MEMBERP :TRAIT :NEW.LIST NIL
[IF NOT EQUALP MEMBERP :SEARCH.SUBJECT PLIST :SUBJECT NIL
[MAKE ANSWER [YES] [RETURN :ANSWER]]
IF EMPTYP :TEMPLIST [STOP]
MAKE TEMPLIST BUTFIRST :TEMPLIST
CHECK.TOPIC.AREA
END

The Digital Poet

L. .
-.n;‘iu'

it

O Text Generation Techniques O Haiku Poetry and the
and Uses Computer: A Neat Connection
O The Connection to Natural O Importance of Vocabulary as
Language Processing Text Generation Driver

55

56 / Al Programming on the Macintosh

The Digital Poet exemplifies a basic form of natural language processing pro-
grams known as ‘‘text generation’”’ software. Before we can create computer
programs that can comprehend human speech patterns, we need to analyze
those speech patterns and find sensible, manageable rules. One efficient (and
fun) way of doing that is to design programs that create stories, poems, and
other human speech patterns.

This program is a variation on themes that have been used in college class-
rooms, Al laboratories, and homes for many years. | have written such programs
in several computer languages on mainframes, minis, and micros. But as an
amateur poet, | have never been satisfied with the programs’ poetry. Nonethe-
less, this program illustrates the ideas and techniques involved in text-genera-
tion programs.

In some ways, poetry is the easiest form to use for generating text. Poetry
can be short, and | have chosen here a form which is quite brief. Poetry may
also be structured. These traits make poetry such as that produced by the pro-
gram in this chapter easy to manage by a moderately sized computer program.

Designing a program that can ‘‘make up’’ entire stories is a far more com-
plex task. A real story contains a beginning, middle, and end; a plot of sorts; and
perhaps even characters. The process of generating story text is much more diffi-
cult than that of generating poetry.

In this chapter, then, we take our first tentative steps on the path of natural
language processing. We have already examined some peripheral areas of inter-
est in Chapter 3 as we examined the need to limit the type of input that would
permit a program to ‘““understand’’ and respond. Now we begin to take human
writing patterns apart and see what goes into the computer creating meaningful
written products.

Two Types of Text Generation in Al

Investigation into the area of automatic text generation has been going on for
some 20 years without agreement on the part of Al researchers on principles
and approaches. In part, this is because text generation has arguably less value
to a commercial product implementing Al principles than does natural language
processing, which permits the understanding of the natural language by the
computer.

Researchers and students of Al conducting experimental work in text
generation have divided the field into two main types: random and meaning-
ful. The line between the two types of text generation is not clear-cut. Random-
ly generated text can sometimes be meaningful, particularly in the area of
poetry where so much of the meaning is subjective. Similarly, even the best-
designed ‘‘meaningful’”’ text generation programs produce occasional or fre-
quent gibberish.

Random Generation of Text

All text generation operates in the context of some rules of grammar and so is
not truly random. However, when text is created randomly within the con-
straints of a grammar, it is described as ‘‘random text generation.” We will
examine this relatively straightforward type of text generation in the ‘‘Poetry
Maker’’ program in this chapter.

The Digital Poet / 57

Programs that generate text pseudo-randomly, like Poetry Maker, select the
words randomly from a vocabulary available to the program, but the sequence
of their use—and, generally, of their selection as well—is determined by rules,
formats, or patterns supplied in the program. Poetry Maker has four predefined
poetry formats. Random selection of nouns, verbs, adjectives, adverbs, preposi-
tions, and articles takes place in conformance with these formats. Thus, genera-
tion of the text may seem random, but it is only somewhat so.

Randomly generated text, as you will see when you type in and run the
Poetry Maker program in this chapter, can be perfectly correct from a grammati-
cal perspective and yet nonsensical, even confusing, to people trying to under-
stand what the computer has created. For example, one of the first poems
Poetry Maker turned out after we had programmed it read:

SEA TO A WATERFALL
A YELLOW RIVER NEAR A MOUNTAIN
RED EVENING

Even for blank verse this is pretty difficult to understand! But it makes sense
grammatically; it follows a pattern of parts of speech that will often produce
meaningful sentences. The same grammatical rules that produced this nonsense
are capable of producing this more comprehensible poetry:

END OF A WATERFALL
A MUDDY RIVER AT THE MOUNTAIN
ETERNAL CYCLES

We may not appreciate or even understand this bit of poetry but at least we
know that waterfalls have ends, rivers get muddy and find themselves at moun-
tains, and some cycles are eternal. That's clearly more than we can say about
““sea to a waterfall’’!

Meaningful Text Generation

The other form of text generation used by Al researchers is far more complex.
Programs designed to handle this meaningful text generation are generally large.
They are not beyond the capability of the Mac but are beyond the scope of this
book.

Generally speaking, the reason for creating meaningful text generators is to
convert some internal representation of information into an appropriate string of
words that may be understood by the user. In other words, it emphasizes the
meaning rather than the syntactical form of natural language.

As it turns out, the computer can never be said to “‘understand’’ the infor-
mation it contains. For example, it might have stored somewhere in its memory
the information that someone named ‘‘Rex Sole’’ has a string of convictions for
stealing information from computers. The information may be stored in a data
base so that everything the computer ‘knows’ is represented by fields of data
(see Figure 4-1). The computer, if programmed to produce natural language
responses to inquiries, might even be able to produce the result:

REX SOLE STEALS INFORMATION FROM COMPUTERS.

58 / Al Programming on the Macintosh

Last__Name First__Name Age Sex Occupation Code
Jones Alan 39 M 27.023

Meltz Deborah 26 F 19.113

Sole Rex 29 M 09.119

Wilson Todd 19 M 0

Figure 4-1. Data stored about Rex Sole, computer thief

But if Rex Sole comes to the system and types in his name, unless the com-
puter is programmed to search its data base for such an individual, it will blithely
let Mr. Sole extract whatever data he wants. The computer doesn’t understand
what ‘‘steals information from computers’’ means in the same sense that we do.

Nonetheless, a computer programmed to generate text in a way that is con-
cerned with meaning and not just form will appear to be more intelligent than
one which, like most modern systems, is capable only of telegraph English
communication. (‘‘Telegraph English”’ refers to sentences like ‘“Rex Sole com-
puter thief,”” which employ the fewest possible words to convey an idea, with
no regard to-the correctness of the sentence or to the aesthetic of the use of arti-
cles and verbs, adjectives and adverbs.) More important, we can learn a great
deal from designing, using, and analyzing the output of such text generation
programs.

A Learning Example Al researchers learned early in their work in text generation
that there are hundreds of possible sentence forms or structures in the English
language. They also learned that the ambiguity of words is not necessarily a
function of where they fall in a sentence. Dr. Roger C. Schank of Yale Univer-
sity’s Al Laboratory provides the following example in his popular book The
Cognitive Computer.

We start with a sample sentence that says:

JOHN GAVE MARY A BOOK.

Now we program the computer to understand that when we say ‘‘gave’”
we mean that, when the action depicted in the sentence is complete, the person
named as having been given something is now in possession of it. The computer
is now able to understand if we type in the sentence and then ask it:

IS MARY IN POSSESSION OF A BOOK?

that the answer is ‘‘yes.” -
But what will the computer do with this understanding of the word “‘gave’’
in the following sentences?

JOHN GAVE MARY A HARD TIME.

JOHN GAVE MARY A NIGHT ON THE TOWN.
JOHN GAVE UP.

JOHN GAVE A PARTY.

JOHN GAVE HIS LIFE FOR FREEDOM

The Digital Poet / 59

If we now ask the computer:
IS MARY IN POSSESSION OF A HARD TIME?

the answer will still be affirmative, even though you and | know that both the
question and the answer are nonsense.

This excursion into the ambiguity of the word ‘“gave’”” does not carry the
solution to such ambiguity. We'll discuss this more in later chapters on NLP con-
cepts, but an actual solution to the problem still awaits Al researchers. Perhaps
you will find the answer! Our intent in the example is to show something that Al
researchers learned about language by using text generation programs that pro-
duced sentences having logical understanding errors in them. By analyzing such
sentences in terms of their grammar and content, researchers learned more
about human language and how the computer would have to be programmed
to deal with its intricacies.

The Program

Poetry Maker has two main subprograms which do not interact directly with
one another. The first, ADD.VOCABULARY, permits us to put new words
into the vocabulary from which the program will create poetry. The second,
MAKE.UP.POEM, generates a poem in one of four predefined formats. The two
modules are loosely stuck together at the beginning of the program with a rou-
tine called POETRY.MAKER whose job is to ask the user which of the two main
functions is desired to perform and then to call the appropriate subprogram.

Figure 4-2 is a box diagram of the Poetry Maker program. Referring to
it may help you understand the following discussion about the program’s con-
tents.

What the Program Does
Figure 4-3 shows the opening menu of the program. The menu is displayed and
managed by the main routine, POETRY.MAKER.

The main program uses READCHAR to get the user’s response to the menu
request, so no [RETURN] key is needed. The user types in one of the three let-
ters and the program follows instructions. The menu is repeated if a letter other
than A, M, or Q is pressed.

Adding Vocabulary: An Overview If users indicate that they want to add new
words to the files of Poetry Words stored on the disk called “Logo Files,” the
program calls the ADD.VOCABULARY routine. This routine reads the existing
file of words from the disk, if any are present, and informs the user that it is cre-
ating a new file if no previous file exists on the disk.

The rest of the ADD.VOCABULARY routines allow the user to enter new
word(s) and identify their parts of speech and number of syllables. It adds these
new words to the file in the appropriate property list for later retrieval and use
by the MAKE.UP.POEM routines. If any articles or particles (‘“a,’” ‘‘an,” and
“the’’) are present, they are stripped from the input. The routine which handles
this task is an old friend, the DELETE.ARTICLES routine found in Chapter 3 in the
Micro Logician program.

When the ADD.VOCABULARY routines finish their task, they return con-
trol to the main POETRY.MAKER routine, where the menu is repeated.

60 / Al Programming on the Macintosh

LEVEL 1

POETRY.MAKER J

MAIN MENU DRIVER

—|7 ADD.VOCABULARY I——

PROVIDES FOR ADDING
‘WORDS TO POETIC
VOCABULARY FILE

eodececcnscrrccsra

LEVEL 2

—{ GET.WORDS |ll

'RBADS FILE OF WORDS
AND BUILDS PROPERTY
LISTS

~ maxsurrorm |

GENERATES POEMS
FROM PATTERNS
AND WORD LISTS

PR R R PP RRPIDEPIDE R D L L LT P PR PP PP R R R R T g

-

1 weurnew.woros |

READS LISTS OF NEW
'WORDS FOR VOCABULARY

1 omerearrics |

STRIPS ARTICLES FROM
WORDS ENTERED BY
USER

— GET.WORD.INFO |

ASKS USER FOR INFORMATION
ABOUT WORDS ENTERED

_| UPDATEFILE |

WRITES NEW VOCABULARY
TO DISK FILE

SELECT.PATTERN J

CHOOSES PATTERN FOR
POEM TO BE GENERATED
COMPOSER n'l
ASSEMBLES AND DISPLAYS
POEMS

Figure 4-2. Partial box diagram of Poetry Maker

e fyperlogo Listener ee——o8———

Do you want to:

[A)dd VYocabulary Hords to the File
[Mlake Up Poem(s)

&

[<al

Figure 4-3. Opening menu of Poetry Maker

The Digital Poet / 61

Creating Poems: A Quick Look If, at the main menu, users indicate that they
want the program to make up a new poem, the routines associated with the
MAKE.UP.POEM subprogram take over. This set of routines asks users for the
poem pattern they want the program to use, leaving the choice up to the pro-
gram if desired. It then sets up the patterns of parts of speech needed to create
the lines of poetry to match the chosen form and composes the poem.

Composing the poem consists of going through each line of the poem’s for-
mat and generating words randomly from property lists for each part of speech.
Each line is printed as it is composed. This process continues until a three-line
poem has been composed and displayed. Control then returns to the main
POETRY.MAKER menu.

Sample Runs of the Program

Figure 4-4 shows a sample run of the POETRY.MAKER program’s ADD.VOCAB-
ULARY routines. Note that users are asked to enter all the words to be added to
the vocabulary, separating them with spaces. This method permits users to add
entire poems to the vocabulary if they desire to do so. You could choose your
favorite short poems and put them into the vocabulary (but punctuation must be
omitted in the program’s present form).

Poetry.Maker

Do you want to:

[Aldd Vocabulary Words to the File

[M]ake Up Poem(s)

[QJuit

Please enter new words, separated by spaces.
You can even enter a whole new poem if you like!

When you’re done, just enter a RETURN at the start of a line. Then I'll ask you about the
new words you’ve given me before | add them to the vocabulary file.
POETS WORK INSPIRATIONALLY

HOW MANY SYLLABLES DOES POETS HAVE?

WHAT PART OF SPEECH IS POETS?

N = NOUNYV = VERB A = ADJECTIVE D = ADVERB P = PREPOSITION
HOW MANY SYLLABLES DOES WORK HAVE?

WHAT PART OF SPEECH IS WORK?

N = NOUNYV = VERB A = ADJECTIVE D = ADVERB P = PREPOSITION
HOW MANY SYLLABLES DOES INSPIRATIONALLY HAVE?

WHAT PART OF SPEECH 1S INSPIRATIONALLY?

N = NOUNYV = VERB A = ADJECTIVE D = ADVERB P = PREPOSITION
Do you want to:

[A]ldd Vocabulary Words to the File
[M]ake Up Poem(s)
[QJuit

Figure 4-4. Sample run of ADD.VOCABULARY routines

62 / Al Programming on the Macintosh

After the words have been entered, the program goes through the word list
and asks about each word (except articles, which it skips), the part of speech it
is, and the number of syllables it contains. (The program as presented here
doesn’t use this information about number of syllables, but we ask for it and
store it to enable an interesting modification discussed later.)

The program writes the new vocabulary on the ‘‘Poetry Words” file on the
““Logo Files’ disk and returns to the main menu.

Figure 4-5 shows a sample run of the MAKE.UP.POEM routines. There is, as
you can see, very little for users to do. After choosing the “M’" option from the
main menu, they need only type a single-digit number in response to the com-
puter’s request for the format of the poem to be used. Then, in a few seconds, a
poem appears on the screen and users are asked if they’d like to see another.

Do you want to:

[Aldd Vocabulary Words to the File
[M]ake Up Poem(s)
[Qluit

I know four Haiku poetry patterns.

Enter the number of the pattern you want me to use (1-4) or use any other number to
tell me to pick one at random.

SOARING EARLY AFTERNOON

THE POOR SHIMMERS UNDER GREEN PEOPLE
LITTLE QUIET GRASS

Do you want me to compose another poem?

I know four Haiku poetry patterns.

Enter the number of the pattern you want me to use (1-4) or use any other number to
tell me to pick one at random.

AN DARK HAZY RIVER

AT THE RED LEAVES

THE LEAVES DIES

Do you want me to compose another poem?
nil

Figure 4-5. Sample Run of MAKE.UP.POEM Routines

A Few Words about Poetry

Before analyzing the program listing to see how Poetry Maker works, it will be
useful to discuss poetry in general and the Haiku form specifically. This will
enable you to understand better why the poems produced by Poetry Maker
sound the way they do.

The Digital Poet / 63

The poems created by Poetry Maker don’t rhyme. At least they don’t
automatically rhyme. They are of the form called “blank verse’’ and, though
they don't often rhyme, they are poems.

Not all poetry is structured in a definable way, but much poetry is struc-
tured in terms of rhyme and meter. Meter refers to the way syllables are empha-
sized and the kind of “singing’’ effect that results from. particular patterns of
such syllables. For example, the famous Joyce Kilmer poem, ‘‘Trees,” uses the
simplest meter—emphasizing alternate syllables. The dark syllables are empha-
sized:

| think that I shall never see
a poem as lovely as a tree.

Other forms of meter emphasize varying patterns of syllables; and some meter
patterns can be quite complex and sophisticated.

What’s Haiku Poetry?

While the poems created by this program are not structured as to their meter,
they are, never the less, highly structured compositions. They are English varia-
tions on the Japanese theme of poetry known as Haiku. They are not true Haiku
because they do not pay attention to syllable count, but they are attempts at
emulating the Haiku form.

Haiku is an ancient form of verse-making that lends itself better to Japanese
than to English. In Japanese, Haiku has two important characteristics. Most
important, it attempts to distill deep and eternal truths and ideas into a very
small number of words. Each composition is supposed to contain power and
depth. Some Haiku poems, even in Japanese, fail to do this, but that doesn’t
change the fact that the poet’s intent was to focus a great idea into a small
poem. Second, each Haiku poem has the same kind of syllable structure, with
five syllables in the first line, seven in the second, and five in the third.

Because of their brevity, intense imagery is essential in Haiku. Most of the
poems focus on events and images in nature; it is with this in mind that we
chose the vocabulary for the program. You may wish your Poetry Maker pro-
gram to produce poems with themes of sports, or love and romance, or religion.
In that case, you choose appropriate nouns, verbs, adjectives, and adverbs—
prepositions are somewhat limited and of more general use—and watch as your
program cranks out masterpiece after masterpiece. Well, poem after poem.

People who have the time to pursue such studies have determined that the
vast majority of published Haiku poetry can be seen as falling into one of four
different patterns or formats. We have chosen these four formats for Poetry
Maker. You can alter them in almost any way you wish, as | will explain when
we discuss the routines that contain representations of the formats. The formats
themselves are described as sequences and combinations of articles, nouns,
verbs, adjectives, adverbs, and prepositions.

Do you need a review of the parts of speech? If not, skip to ‘‘How the Pro-
gram Works."”

* Articles point to the thing about which we are talking. Particles allow the
thing to remain indefinite. The common article is “the.”” Particles are ‘‘a,”” and
“an.” The book is different from a book. An alligator is far different from
the alligator which just bit the end off your stick!

64 / Al Programming on the Macintosh

« Nouns are names of people, places, things, or ideas. Nouns include
“book’’ and ““alligator’’ from the two previous examples.

« Verbs are of two types: action and state-of-being. The former express what
a particular noun is doing or having done to it. In the sentence, ““The alligator
just bit the end off my stick!”” the word “’bit"” is an action verb. Verbs that
describe the state of being of something tend to be variations on the verb ‘‘to
be.” In the sentence, ““The alligator is very large,”” the verb “is”’ indicates the
state of being or condition of the noun ““alligator.”

« Adjectives describe or tell something about nouns or pronouns. The word
“/large’’ in the preceding example is an adjective that describes, or modifies, the
noun “alligator.”

» Adverbs describe (modify) verbs, adjectives, or other adverbs. In the
sentence, ‘‘The alligator quickly bit the end off the stick,” the word ““quickly”’ is
an adverb which describes how the alligator bit the stick.

* Prepositions are connecting words such as ‘‘to,”” “‘toward,” “‘at,”” and
“in,”” which indicate relationships between objects. They often indicate place
or position: The book is in the car. The alligator came toward the dog.

How the Program Works

We have already seen what the program does. We have gained an appreciation
for the program’s overall operation. Now let’s look at the Logo procedures that
carry out the functions. The three major routines in the program are POET-
RY.MAKER, ADD.VOCABULARY, and MAKE.UP.POEM. We will examine each
in turn, describing subprocedures as we encounter them.

POETRY.MAKER Procedure
The POETRY.MAKER procedure is a straightforward menu handler.

Figure 4-2 provides a partial box diagram of the Poetry Maker program. It
shows the major functional blocks that make up the program. Figure 4-6 pro-
vides a more detailed box diagram of ADD.VOCABULARY and its associated
routines, showing their relationships and briefly defining their purposes.

The first statement, CLEARTEXT, erases the contents of the Listener Win-
dow, which is the only text window permitted in ExperLogo®. In Microsoft
Logo®, the command CT will have the same effect on the current text window.

A series of PRINT statements follows. A peculiarity in these statements is
the use of guillemets (<< and >>) instead of the more traditional quotation
marks. These marks are made by holding down the [OPTION] and [bs] keys
simultaneously, along with the [SHIFT] key for the closing guillemets. In Micro-
soft Logo®, ordinary double quotation marks will work nicely.

After using READCHAR to get the user’s response, the next three lines call
the appropriate procedures or the primitive STOP, as appropriate. If the user’s
input is not A, M, or Q, the program calls POETRY.MAKER again and redisplays
the menu.

ADD.VOCABULARY and Related Procedures
When users select A, indicating they wish to add to the file, the POETRY.MAKER
routine calls the ADD.VOCABULARY procedure.

The Digital Poet / 65

LEVEL 2 : LEVEL 3 : LEVEL 4+
— GEr.worns F—— resumwpsLists T BUILDALIST |
ENSURES FILE IS PRESENT; CONTROLS REBUILDINGOF | ASSEMBLES BACH PROPERTY
CLOSES AT END PROPERTY LISTS ! LIST IN SBQUENCE FROM
!\ FILE
— INPUT-NEW.WORDS ADD.A.LINE —— BRBAK.LIST |
GIVES USER INSTRUCTIONS ACCEPTS INPUT LINES : DIVIDES LIST ENTERED
ON ENTERING WORDS AND CHBCXS FOR EMPTY INTO INDIVIDUAL
LINB WORDS

_I

DELETEARTICLES |

REMOVES ARTICLES FROM
WORD LISTS ENTERED BY
USER

.
.
.
.
.
.
.
.
.
)
.

GET.WORD.INFO

GETS PART OF SPEECH,
SYLLABLE COUNT FOR
EACH WORD ENTERED

_'l UPDATEFILE I

REPLACES OLD VOCABULARY
WITH OLD AND NEW ON
FILE; CLOSES FILE

B R T P LT T T T YT T YT Y rrY s S

Figure 4-6. Detailed box diagram of ADD.VOCABULARY routines

The ADD.VOCABULARY routine provides our first example of how a com-
puter might “learn’”” something new—in this case, new words for use in poetry.
I’ll have more to say about the subject later in the book, but you should know
that the learning involved here is called “‘explicit instruction’” learning. The
computer is given information and retains it in some form for later use. The
process parallels rote memorization for humans. The computer learns new
vocabulary words in the same way most of us ‘/learned” our multiplication
tables—by committing them to memory. Its “‘memory’’ is a disk file.

The procedure first calls the GET.WORDS procedure (discussed in the next
section in greater detail), which reads in the existing file of poetry words and sets
up the propetty lists for adding words to them. ADD.VOCABULARY then initial-
izes three variables that will be needed by the procedures that follow. These
variables must not be reinitialized during vocabulary input.

The main work of the procedure is then handled by the next four state-
ments. INPUT.NEW.WORDS gets new words from the user. DELETE.ARTICLES
is the same procedure of the same name in the Micro-Logician program in
Chapter 3. The next statement converts the output from the DELETE.AR-
TICLES routine back to the WORD.LIST with which the program works.
GET.WORD.INFO goes through WORD.LIST and asks the user to enter the part
of speech and number of syllables for each word and adds this information to
the property lists. Finally, UPDATE.FILE writes the property lists to the file, closes
the file, and returns control to the POETRY.MAKER menu.

GET.WORDS This procedure attempts to open a poetry words file on the Logo
Files disk. If the result of this is ““nil,”” there is no such file. In that case, the pro-
cedure prints a message to that effect and STOPs, returning control to the
ADD.VOCABULARY procedure.

66 / Al Programming on the Macintosh

Note

If this is the first time you are creating a file of words, be certain to put at least
one word of each type—noun, verb, adjective, adverb, and preposition—into
the file. Failure to do so may result in the file becoming garbled later when
you attempt to add more words. The poetry produced will contain “nil,”
perhaps with some frequency.

Assuming GET.WORDS finds the file it expected to find, it then sets up a list
called WORDTYPES to contain the letters “N’’ (noun), V'’ (verb), A" (adjec-
tive), /D"’ (adverb—we couldn’t use /A’ again, so we punted!), and P"’ (prep-
osition). Then it calls the REBUILD.PLISTS procedure.

(Note that if you are using Microsoft Logo® rather than ExperLogo®, the
disk file handling routine must be substantially rewritten. See Appendix B for
details.)

REBUILD.PLISTS Information about words in the vocabulary is contained in five
property lists, each of which is named after one part of speech. After storing
information in a disk file, retrieve it and print out the property list showing, for
example, all nouns in the file by typing:

PRINT PLIST'N

Substitute the other letters—V, A, D, or P—for the N in order to examine
the property lists for the other<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>