
P R 0 G R A M M E R'S 
' 

C 0 0 K B 0 0 K 



BYTE'S Mac 
Programmer's 
Cookbook 

Rob-Terrell 

Osborne McGraw-Hill 
Berkeley· New York· St. Louis • San Francisco ·Auckland 
Bogota • Hamburg • London • Madrid • Mexico City • Milan 
Montreal • New Delhi • Panama City· Paris • Sao Paulo 
Singapore • Sydney ·Tokyo • Toronto 



Osborne McGraw-Hill 
2600 Tenth Street 
Berkeley, California 94710 
U.S.A. 

For information on software, translations, or book 
distributors outside of the U.S.A., please write to Osborne 
McGraw-Hill at the above address. 

BYTE's Mac Programmer's Cookbook 

Copyright © 1994 by McGraw-Hill, Inc. All rights reserved. 
Printed in the United States of America. Except as permitted 
under the Copyright Act of 1976, no part of this publication 
may be reproduced or distributed in any form or by any 
means, or stored in a database or retrieval system, without 
the prior written permission of the publisher, with the 
exception that the program listings may be entered, stored, 
and executed in a computer system, but they may not be 
reproduced for publication. 

234567890 DOC 9987654 

ISBN 0-07-882062-6 

Publisher 
Lawrence Levitsky 

Acquisitions Editor 
Scott Rogers 

Project Editor 
Cindy Brown 

Computer Designer 
Peter F. Hancik 

Illustrator 
Marla Shelasky 

Series Design 
Ruffin Prevost 

Cover Designer 
Jamie Davison Design, Inc. 

Information has been obtained by Osborne McGraw-Hill 
from sources believed to be reliable. However, because of 
the possibility of human or mechanical error by our sources, 
Osborne McGraw-Hill, or others, Osborne McGraw-Hill 
does not guarantee the accuracy, adequacy, or completeness 
of any information and is not responsible for any errors or 
omissions or the results obtained from use of such 
information. 



To all Mac programmers everywhere 



Contents At a Glance 
Part I: The Easy Stuff 
1: Tricks of the Trade: Secrets of the Shadow Warriors • • • • . • . . • • • . 3 
2: Getting the Goods • • • • • • • . . . . • • • • • . . . . • . • . • • • . • • • • . . . . . • • • 13 
3: Trouble in Hacksville: When Good Macs Go Bad • • • . • • • • • • • • • • . . 27 
4: Altering Reality: Utilities for a Better Life • • • . • . . . . • • • • • . • • • • • • 43 

Part II: The Hard Stuff 
5: External Commands: Help for the Working Stiff . . . . . . . . . . . . • . . . 79 
6: Ciphers and Secret Messages: Programming Languages • • • • • • • • • 111 
7: Object Libraries, Class Libraries, and You • • • • • • • • . • . • . • • • • • • • • 125 
8: The Zen of Good Code: Debuggers • • • • • • . . . • • • • • . • • • • . . . . • • • • 149 

Part Ill: The Extra Stuff 
A: How to Make a Million Bucks in Shareware • • • . . . . • • • • • • . . • • • • 167 
B: Try 'em Out for Size: Exploring the Disk • • • • • • • • • • . • • • • • • • • • • • • 175 
C: It Came From the Internet, Kinda • • • • • • • • . • • • • • • . • • • • • • • • • .. • 183 
D: Local Heroes . • . • • • • • • • • • • • • • • • • . . • • • • • • • • • • . • • • • • • • • • • • • 221 

Index . • • . . • • . • • • • • . . . . • • • • • • • • • . . • . • • • • . . . . • • . . . • . • • • . • 235 



Contents 
Acknowledgments • • • • • • • • • • • • • • • • • • xiii 

Part I: The Easy Stuff 

1: Tricks of the Trade: Secrets of the 
Shadow Warriors . . . . . . . . . . . . . . . . . 3 

The Mac Hacker Culture . . . . . • . • • • • • • • • • • . • • . . • . • • • • • • • • • • • . • • 4 
Never Underestimate the Power of Hacks • • • . • • • • • • • • • • • • • • • • • . • • 5 
What the Heck Is a Hack? • • . • • • • • • • • • • • • • • • . • • • • • • . . • • • • • • . • • 6 

The Good, the Bad, and the Ugly • • • • • • • . . • . . . . • • . • • • • . • • 6 
Whither Hack? . • • • . • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • 8 

I've Never Paid for It in My Life • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 10 
The Cookbook Manifesto • • • . • . • • • • • • • • • • • • • • • • • • • • . . . . . • • • • • • 11 
Coming Up Next . . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • . . . • • • • • • 12 

2: Getting the Goods . . . . . . . . . . . . . . . . . 13 
Once Upon a lime in the Net . • • • • • • • • • . • • • • • • • • • • . • • . . . • • • • • • • 13 
Online Services and the Single Hacker • • . • • • • • • • • • • • • • . . • • • • • • • • 15 
Cyberspace on Less Than $25 a Month • • . • • • • • • • • • • • • • . • . • • • • • • • 18 
How to Make Smartfriends and Influence People • • • • • • . . • • . . . . • • • 19 
The Quest for Shareware • • • • • • • . • • • • . . . • • • • • • • • • • . • • • . • • • • • • • 21 
Netsurfing USA . . • • • • • . . . . • • • • • . • . • . . • • • • • • • • • • • • • • • • • • • . • • • 22 

WAIS Servers • • • . . • . . . • • • • • • . • . . • • . . . . • • • • • • • • • • • • • • 23 
The Shareware Tool Chest . . . . • • • • • . . • . • • • • • • • • • • • • • • • . . . . . . • • 24 
Coming Up Next: Crash, Bam, Thank you, Man • • • . • . . • . • • • • • • • • • • • 25 



3: Trouble in Hacksville: When Good 
Macs Go Bad ••••.•••.••..•••••• ~ • 27 

Dodging the Bullet • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 28 
Extensions from Hell land How to Deal with Theml • • • • • • • • • • 28 
Mo' Me11a..,. • . • . . . . • • . • . • • • • . . . . . • . • . . . . • . . • • • • • • • • • 30 

Crawl ta the Mirage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 32 
Patching Traps and Other Scary Stuff • • • • • . . . . . . • . . . . . . • • • • • • • • • • 34 
The Moral of Ille Stoll' • • • • • . . . . . • • . . . . . • . . . . . . . • . . • . . . • • • • • . . . 3!i 

Passing the test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Macsbug, the Wonder Drug • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 36 

In the hnches with Macsbug, Part I • • • • • • • • • • • • • • • • • • • • • 37 
In the hnches with Macsbug, Part II • • • • • • • • • • • • • • • • • • • • 39 

Prevention Is the Cure • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • 48 
Crash and Burn • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 41 
Coming Up Next Shareware-at-Large • • • • • • • • • • • . • • • • • • • • • • • • • • • 42 

4: Altering Reality: Utilities for a Better 
Life ••.••••••••••••••••••••••••• 43 

Utilities far a Better Life • • • • • • • • • • • • • . • • • • • . . . • • • • • • • . • • • • • ". • • 43 
The &loves Co11e Off . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 41 

BaseToBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 
AppDisk ...................... · ............ 47 
BBEdit Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
BNDL Banger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
ConvertProjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
CodeSucker . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . 53 
CopyRGB ................................. 54 
Ctools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
DarkSide of the Mac . . . . . . . . . . . . . . . . . . . . . . . . . 56 
FileBuddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 
Global Variables Viewer . . . . . . . . . . . . . . . . . . . . . . 58 
Referential Expansion . . . . . . . . . . . . . . . . . . . . . . . . 59 
PRAM ..................................... 60 
RIPEM Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
ROMmie ................................... 65 
ScriptGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 
Task-It .................................... 69 



Hell's Programmer Font . . . . . . . . . . . . . . . . . . . . . . 71 
WindowShade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
ZoneRanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

Coming Up Next-Getting External ••••••• ·• • • • • • • • • • • • • • • • • • • • • • • 75 

Part II: The Hard Stuff 

5: External Commands: Help for the 
Working Stiff . • • . • • . • • • • . • • . . . . • • 79 

Volksware: HyperCard, 40, and So Forth • • • • • • • • • • • • • • • • • • • • • • • • • 81 
Mac-Crazed Univenity + Cheap student labor = 

Externals with Zing! • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • 83 
Developer Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 
TiffWindow XCMD . . . . . . . . . . . . . . . . . . . . . . . . . . 92 
MikePack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 
X-Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 
Bet Ya Can't Pick Just One • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 97 
X Marks the Spot • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 DO 
JSrson's XCMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
X Marks the Spot • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 103 
One Caveat • • • • • • • • • • • • • • • • • • • ·• • • • • • • • • • • • • • • • • • • • • • 104 

OSAX and the Single Hacker • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 104 
GTQ Scripting Library . . . . . . . . . . . . . . . . . . . . . . . 105 
&reg Brady- Surfboard + AppleScript = &reg Quinn? 

You Decide! ••••••••••••••••••••• ~ • • • • • • • • • • • • • .• • • 107 
Coming Up Next-Building with Blocks • • • • • • . • • • • • • • • • • • • • • • • • • 109 

6: Ciphers and Secret Messages: 
Programming Languages • . • . . • • . • • 111 

&o Forth Young lad • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 112 
Neon Fades On • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 113 

Yerk ..................................... 114 
MOPS .................................... 114 
PocketForth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

Usp • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 117 
PowerLisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 



Swimming in the Shareware C • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 111 
GCC .................................... 120 
Harvest C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 

Coming Up Next: Putting the Pieces Together • • • • • • • • • • • • • • • • • • • • • 124 

7: Object Libraries, Class Libraries, 
and You •••••••.•••••••••••••••• 125 

Uving in Object Poverty • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 127 
The ROM Mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 
TransSkel (C version) . . . . . . . . . . . . . . . . . . . . . . . 130 
TransSkel (Pascal version) . . . . . . . . . . . . . . . . . . . . 130 
Mercutio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

Seeking the Source • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 133 
clut_fade 1.0 • . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 
Huffman Eumple • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 134 
launchfile XCMD Source • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 134 
POV 3.0, Rrrace 1.0 . • • . . . . • • • . • • • . . . . . . . . . . . . . . . . . . . . 134 
PwrSwill:her . . • . • • • . • . . . • • • • • • . . • • • • . . . . . . • • • • • • • • • 134 
tie Example . • • • . . . . • . • • . . . . . . . . . . . . . . . • . . . . . . . . . . . 134 
Writeswll Jr • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 135 

Use that Usenet • . . . . • • • • • . . . . . • • • . . • . . • . . . . . . . . • • . • • • . . . . . . 135 
Toolbar manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 
Vaccinate Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7 
Graphllb .......................... .- . . . . . . 139 
TE32K ................................... 139 

Battle af Ille Sprites • • • . . . . . • . . . . . . . . . . • . . • • • • • • • • . . . • • • • . • . 148 
SpriteWorld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 
SAT ..................................... 144 

Thinking Objectively: TCL Clams • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • 146 
Coming Up Next: From Theory to Reality • • • • • • • • • • • • • • • • • • • • • • • • 148 

8: The Zen of Good Code: Debuggers • • • • 149 
Slinking Inside the Heart of the Machine • • • • • • • • • • • • • • • • • • • • • • • • 150 
The Big Picture: Memory • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 150 

Swatch ................................... 150 
Ramadillo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 
Debug Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 



Programmer's Key . . . . . . . . . . . . . . . . . . . . . . . . . . I 54 
System Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 5 5 

The low End Theory: Debuggers • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 156 
ABZMon .................................. 156 

Adding to Macsbug • • • • • • . . . • . • • • • • • • • • • • • • • • • • • • . . . • • • • • . • • 159 
The Ari of Debugging • • • • • • . • . • • • • • • • • • • • . • • • • • • • • • • • • . . • • . • • 163 

Part Ill: The Extra Stuff 

A: How to Make a Million Bucks in 
Shareware . . . . . . . . . . . . . . . . . . . . . 16 7 

Readme the Right Way • • • • • • • • • • • • . • • • • • • • • • • • • • • • . • • • 1 69 
Testlike the Wind • . • • • • • • • . . • • • • • • • • . . • • • • • • • • • • • • • • • 170 
Call the Exterminator . • • • • • • • • • • • • . • • • • • • • • • . . • • • • • . • • • 170 
If You love Something, Set It Free • • • . • • • • • • • • • • • • • • • • . • • • 171 
A Gentle Prodding vs. a Cattle Prod • • • • • • • • • • • • • • • • • • • . . • . 171 
Collecting the loot . . • • • • • • • . • . • • • • • • • • • • . . . . • • . • • • . • • . 172 
The Final 10 Percent • . • • • • • . • • . • . . . • • • • • . • • • • • . . • • . • • • 173 

B: Try 'em Out for Size: Exploring the 
Disk . . . . . . . . . . . . . . . . . . . . . . . . . . 175 

To Install the Programs • • • • • • • • • • • • • • . • • • • • . . • • • • • • • • • • • • • • • 17 5 
To Use the Programs • • • . • • • • • • • • • • • • • • • • • • • • • • . . • • • • • • • • • • • • 176 
The Programs • • . • • . • • • . . • • • • • • • • • • • • • • • • • • • • • • . . . • • • . • • . . . 176 

C: It Came From the Internet, Kinda . . . . 183 

D: Local Heroes . . . . . . . . . . . . . . . . . . . . 221 

Index . . . . . . . . . . . . . . . . . . . . . . . . . 235 



Acknowledgments 
Thanks to Bob and Nancy Terrell, from whose computer 
store I stole most of my programming books from while just 
a wee tot, and whose customers taught me how to program 
while the other kids were outside getting fresh air and 
sunshine. 

Heartfelt thanks to friends who made the grueling work of 
writing this book almost fun. To Jason Torchinsky, Kat Cook, 
and Charlie McGrath for the read-throughs, late-night Waffle 
House sessions, and the seemingly endless supply of 
caffeine and the occasional beer that helped me get through. 

at Osborne: Scott Rogers, who hated playing the 
heavy as much as I hated playing the heavied. 
You're a much nicer guy than your receptionist had 

led me to believe. Larry Levitsky, who believed in this 
project from the outset and is a great guy to boot. Cindy 
Brown, who made sure my writing didn't betray my 
apparently near-total ignorance of proper English diction. 

Thanks to folks who don't even know me: To David Smith, 
for putting out such a cool magazine-MacTutor-for so , 
long. To Scott Boyd, whose articles in the early MacTutor 
taught me more about good programming than any of the 
classes I ever took. To Andy Hertzfeld, who treated me like a 
human being when at the age of 14 I asked him stupid 
questions on the MacWorld show floor. And all the other Mac 
gurus who never failed to supply wisdom in a moment of 
need. 

A special thanks goes out to the members of the Van 
Gogh-Goghs, the sketch comedy troupe I'm a member of. 
While we never canceled a show due to this book, I was 
certainly less funny and more cranky. 

xiii 



xiv t BYTE's Mac Programmer's Cookbook 

Jason 
Galen 
Charles 
T.Mike 

Thanks for putting up with me. 

and a big block of thanks: Charles Overbeck, Robin 
Monteith, Sam Radel, Leonard Buck, Glenn 
Clingroth, Bob Beckett, Larry Harris, Uncle Dave 

Moffet, Tom Wimbish, Chris Ogden, Mary Whitesides, Hal 
Hartley, Ross Mcllwee, Soylen T. Green, Admiral Tommy 
Veers (Ret.), Carl Stewart, David Skeels, Paul Philion, Mike 
Morrison, Tim Greening, Gary and Bonnie Moore. All you 
wonderful denizens of comp.sys.mac.programmer: this 
book's for you. 

And finally, to Ruffin Prevost, who I honestly don't know 
how to thank, except with a bottle of Wild Turkey and a 
really big check. I wouldn't be writing today if it weren't for 
Ruffin.Truly a best friend while he was in Chapel Hill and 
sorely missed now that he's moved on to the big time. 

Cool things that made this book happen: 

Tom Waits - The Black Rider 
They Might Be Giants - Apollo 18 
Maria McKee -You Gotta Sin To Be Saved 
Geezer Lake - Feet In Mud Again 
Mile Davis & Quincy Jones - Live at Montreux 
Fishbone - Give a Monkey a Brain 
Mazzy Star - So That Tonight I Might See 
The Internet 
June - those killer live shows 
Mountain Dew, Sam Adams Cream Ale 

Cool things that almost destroyed ~his book: 

The Internet 
June - those time-consuming live shows 
Sam Adams Cream Ale 



Myst 
Iron Helix 
The X-Files 

Acknowledgments ,t 
UNC Men's Basketball 
The Simpsons 
Wired Magazine, which always managed to arrive just 
before a deadline 

xv 



011010 11000110 0011010 11001001 100010001 

111010 11000110 0011010 11001001 100010001 

0011010 11001001 100010001 

The Easy Stuff 



Tricks of the Trade= 
Secrets of the Shadow 
Warriors 

When Steve Jobs's Macintosh hit the computer scene in 1984, 
it set the standard for human-machine interaction for at 
least a decade. But it had one minor problem: it was a closed 
box with limited software. And there was no way to write 
new software on it. But that didn't deter the hackers. 

From the very first days, the true supporters of the 
Macintosh were hackers. Most early adopters emigrated from 
the Apple II world-people who'd become part of the cult of 
the 6502, graphic artists, designers, and others who couldn't 
relate to the Intel-dominated world of the time and fell for 
the first Macintosh, despite the conventional wisdom of the 
day. These mavericks bucked the system, using their 
Macintoshes to do the impossible. 

Quote 
This book is for the people of the United States of America .... 
Radical groups don't need this book. They already know 
everything that's in here. If the real people of America, the 
silent majority, are going to survive, they must educate 
themselves. That is the purpose of this book. 

-William Powell, in the foreword to The Anarchiet Cookbook 

3 



4 ~ BYTE's Mac Programmer's Cookbook 

For some reason these mavericks fell in love with the jumble 
of circuits and wires that Steve Jobs's Macintosh team built. 
Jobs pushed his people hard, and they produced a machine 
to be proud of. But after the strain of the production effort, 
the team could not continue the pace and intensity-.,-team 
members were too drained and burned out to focus on 
software for their new creation. 

So in the early years, programming and developer support 
from Apple was weak at best. Users could rely on the 
existing dealer network to answer questions and solve 
problems. But hackers? Ah, that's another story. 

The Mac Hacker Culture 
Apple sold a Macintosh development system that was 
actually Apple's $10,000 Lisa computer. This was not the 
way to make friends in the developer community. Few of the 
early adopters, folks who jumped ship from their $2000 
Apple Ils, could afford such a luxury. So they used their 
considerable skills to make up for what they lacked in bucks 
(a key principle of the hacker ethic). Through a combination 
of brute force, finesse, and sheer programming talent, the 
early Mac hackers slowly began to pry their way into the 
closed Macintosh. 

that "against all odds" mentality is the spirit that 
inspired this book. "The power to be your best," as 
the old Apple ads went. This cookbook is designed 

to provide you with the instructions and ingredients you 
need to make your Macintosh the best tool it can be. 
Whether you plan to explore your Mac's potential or write 
better programs faster, this book is your source for tasty 
code recipes. 

In the 1960s, The Anarchist Cookbook provided a sourcebook 
tuned to the tenor of the times. In its pages, you could find 
recipes for marijuana brownies, pipe bombs, and phone 
taps. These were the tools of the revolutionary, fighting the 
invisible oppression, fighting to take control. 



Tricks of the Trade: Secrets of the Shadow Warriors ~ 5 

Today, a different revolution is taking place, a grassroots 
digital uprising. Consider this cookbook your call to arms in 
the new revolution. Take control of your computer. No 
longer be oppressed by its strange ways; no longer be 
powerless to control it. A computer is a tool-an incredibly 
varied and flexible multipurpose tool-but still just a tool. 
You can easily learn all it takes to master it. 

Never Underestimate the Power 
of Hacks 

Got to get up off of 
that thing. Yeah. 
Get on it. 

-Jameg Brown 

The nice thing about a big computer industry is that no 
matter what problem you encounter, chances are someone 
has already solved it. There are very few original problems. 
However, many of the problems you'll encounter as a 
programmer require especially clever solutions. You can 
come up with one of these clever solutions or sit back and 
discover how some hacker has already solved the problem 
for you. 

Consider the PowerBook cursor dilemma. When PowerBooks 
first came out, everyone had the same complaint: the thin, 
faint "I-beam" cursor was difficult to see against the liquid 
crystal screen. So how did smart people solve the problem? 
They waited a week or two until even smarter people wrote a 
whole host of hacks to make the cursor more visible and 
posted their extensions and control panels on online 
services. 

The key is to know where smart people hang out, and hang 
out with them. 

As I finish this first chapter, the Macintosh is celebrating its 
tenth birthday. That's a decade of smart people playing with 
their Macintoshes, running into problems, and finding clever 
ways around them. You don't have ten years to catch up! 

This book shows you how to be more productive through the 
use of really clever things that smart people have been doing 
for ten years. Whether you're a spreadsheet jockey or a total 
code warrior, some hacker probably solved your specific 



6 ~ BYTE's Mac Programmer's Cookbook 

problems years ago. This book gives you those solutions; it's 
up to you to use them. 

What the Heck Is a Hack? 

Fiie Edit 

Haak (hak) vt.1. to 
chop or cut crudely 
2. a harah, dry 
cough 3. [ 6lang] to 
carryout or 
manage 60methlng 
6UCCe66fu//y 

In this book I'll be referring to hacks quite a bit. What is a 
hack? I'm glad you asked: 

• a clever, elegant, inspired, or inventive solution to a 
problem 

• a piece of programming code that achieves the 
impossible, or at least the improbable 

• just plain old brute force-the ultimate hack 

The term hack isn't always confined to computerdom; you'll 
find computer people referring to other things (such as cold 
fusion and all Sony products) as hacks, too. And it's usually 
a compliment. 

Breaking the cods 
When I refer to code, I'm talking about computer programming. 
For e;ome reae;on, computer programe; are referred to ae; code, 
perhape; due to their near-illegibility to the lay pere;on. 

From time to time, I'll e;how actual exampfee; of programming 
code. Code will appear in a e;pecia/ typeface to e;et it off from 
the body of the chapter. 

The code will look like this. 
It will appear in this monospaced typeface. 

The Good, the Bad, and the Ugly 
Sometimes, though, calling something a hack isn't always a 
compliment. You've got to learn the gestalt. There are good 
hacks and ugly hacks. 



Tricks of the Trade: Secrets of the Shadow Warriors ~ 7 

3€H 
. I 

Copy It' 3€C 

It is impossible to 
predict the time 
and progress of 
revolution. It is 
governed by its own 
more or less 
mysterious laws. 

-Lenin 

I have a cordless Sony Walkman; it sends the music to the 
headphone via radio waves, so there's no cord to get tangled. 
That's a neat hack. I also have a portable Sony CD player that 
plugs into my car's tape deck through a weird and 
cumbersome cassette-tape-shaped plug. That's an ugly hack. 

This terminology applies in the computer world as well. 
Virex, which traps disk-insertion events and uses the 
opportunity to scan for viruses, is a neat hack. ClickLock, 
which simulates a locking button for your mouse or 
trackball, does so by mucking about with the system's 
low-memory globals. It's an ugly hack. But it works-for now 
at least. 

Ugly hacks depend on undocumented features that the 
programmer exploits. Low-memory globals, for instance, are 
not very well documented, and Apple sternly warns 
programmers to avoid playing with them, since one day they 
all may change. But some of the best hacks-ugly hacks, 
all-depend upon low-memory globals to work their magic. 

n 0 one knows for sure what will happen to ugly hacks 
when the system changes. How likely is that? Well, 
ever hear of the PowerPC? As Apple moves its 

Macintosh product line to Motorola's new RISC chip, all bets 
are off, low-memory-globalwise. I guarantee that many ugly 
hacks will disappear when that day comes. 

Give me back my name 
Way back-and I mean way back, like in 1982-the term 
"hacker" was a good word. It was a blessing you bestowed 
upon your friends sparingly, when you really liked them, and 
only if they were really good programmers. People were proud 
to be hackers. I remember thinking of myself as a hacker. (At 
the age of 11, I also thought a plastic pocket protector was a 
good idea. I didn't realize how close I came to being a geek, but 
that's another story.) 

Thanks to our sensationalist and largely ignorant mass 
media, the term "hacker" has been taken away from us. It's 



8 ~ BYTE's Mac Programmer's Cookbook 

still used inside the circle in the manner in which it was 
intended. Someone could say, "That Bill Atkine;on, now there'e; 
a true hacker;" with a wistful gleam in one's eye. Inside the 
circle we undere;tand that Bill'e; a cool guy, a total genius, a 
programmer extraordinaire. The man speaks in 68000 
assembly, his dreame; have a vertical blanking interrupt. But 
to call him a hacker today (at leae;t in "mixed" company) 
would imply that he's a criminal. 

You don't usually call people hackers anymore, unless they've 
been one for a long time, or tend to practice e;leep-deprivation 
coding, eat meals comprie;ed entirely of junk food, and wear 
Microsoft T-e;hirts. And mostly it'e; a comment about lifee;tyle, 
not programming prowess. 

Well, scrog that. Let's take back the term. It belongs to 
us-the real hackers, from an age long since gon~the crazy 
people who gave the computer industry to Wall Street. They 
can keep the corporate cultu~just give ue; back our name. 

Whither Hack? 
So why do you want hacks in your life? 

• They can make your life easier. Who wants to keep 
your finger on the mouse button all day? Get Clicklock 
and forget about it. Why move the mouse six inches 
when three will do? Get Mouse2 and delay carpal tunnel 
syndrome for another day. 

• They can make your life richer. Why shell out big 
bucks for development environments when you can get 
shareware versions that work just as well and cost nothing? 

• They can make your life longer. Who wants to write 
the code necessary to create full-color, full-motion, 
multilayer game sprites? Maybe some freak computer 



Tricks of the Trade: Secrets of the Shadow Warriors ~ 9 

maniac who hasn't left his basement in six years, but 
personally, I've got better things to do with my 
time-like focusing on the game itself, not the graphics 
programming. 

To stand againet a C of troublee 
Right now, despite the attempts of rational, sane people, the 
C programming language is the most popular language in use 
for the Macintosh. For those of you unfamiliar with it, C is a 
vile, strange, unfriendly beast, a witch's brew of unintuitive 
commands and silly rules. 

Computers have been growing more powerful at a geometric 
rate. The computer I'm typing on is probably the functional 
equivalent of all the computers of the 1974 Hungarian 
government. 

Ancient computers were programmed in antiquated ways, 
using punch cards and paper tape, in obscure and difficult 
languages. We've tossed the silly paper cards, but we're still 
using ancient and abstruse languages. 

My dad worked for AT&T about the time they came up with C 
and UNIX. My dad (still) programs in C. I don't want my dad's 
old suits with the flared pants nor do I want his programming 
language. (However, I do covet his '65 Mustang convertible 
and original Elvis albums.) 

The conventional wisdom seems to be, "harder is better." This is 
ridiculous. And it will end. Mark my words--you heard it here first. 

A whole host of new languages, from Ka/eida Lab's ScriptX to 
the new object-oriented Pink operating system from Taligent, 
will fly into a no-holds barred, fists-of-fury free-for-all with C. 
And when C is banished from respectable programming circles, 
I'll be the head of the cheerleading squad. 



10 ~ BYTE's Mac Programmer's Cookbook 

I've Never Paid for it in My Life 
One important thing to remember is that nothing is free. 
Well, okay, water is free to me and everyone in my apartment 
complex, but besides that, nothing is free. 

Many hack-creators-dare I say hackers?-will release their 
programs to the world for free. Sometimes, if you're a 
programmer, they may ask for a mention in your program's 
About Box or documentation. In that case, you're in luck. 

S Orne hacks are categorized as "postcardware", "beerware," 
or "fill-in-the-blank-ware." The basic premise is "Hey, 
I've just written this cool hack that you're using, so 

you send me a postcard or a six-pack of beer or whatever." I 
can't imagine that this works well, but it's probably a brilliant 
way to get beer if you're an underage programmer. (Oddly 
enough, I've never heard of "Penthouseware.") 

But as often as not, a hack will be shareware. Shareware is a 
unique concept by which you can acquire the software via 
any means-from an online service, from a friend's hard 
drive or floppy, from an act of God-and use it free for a 
period of time. When the time's up, if you decide to keep it, 
you've gotta pay up. 

It's an amazing testament to the human race that it works at 
all. Sadly, it rarely does work. I've spoken with dozens of 
shareware authors who are broke, while their program has 
been downloaded hundreds or even thousands of times from 
CompuServe or America Online. 

b Ut a rare few authors actually ~ake some money at it. 
Sometimes it's their livelihood. They check the 
mailbox every day, their eyes alive with the hopes 

of finally receiving a few piddling checks. 

Here's the litmus test. Call your mom and ask her what you 
should do. Think about how the conversation would go: "Hi, 
Mom, guess what I did today? I got this really neat program 
that I didn't pay a dime for! I'm ripping off that poor 
hardworking sucker!" If you can live with your conscience, 



Tricks of the Trade: Secrets of the Shadow Warriors ~ 11 

well, then, I guess you're like all those other people who are 
downloading shareware and not paying for it. But that 
doesn't make it right. (And I think your mom would agree.) 

A shiny red bicycle 
Remember the Red Bicycle Movement? No, of course you 
don't, because no one does. The Red Bicycle Movement was a 
turn-of-the-century effort toward benevolent Marxism. The 
Movement bought hundreds of bicycles, painted them bright 
red, and distributed them throughout the city. The idea was 
that if you needed to get somewhere, you could grab a red 
bicycle and just go. When you reached your destination, you 
left it so someone else could use it. 

As youa expect, in about three weeks, every red bicycle was 
stolen and hocked to some used-bicycle-consortium in the 
islands, leaving the townspeople a little bewildered and a little 
less mobile, and leaving our idealistic heroes in the movement 
dispirited and broken people, who probably began to cheat on 
their taxes. 

If you can't see the moral of this story, call your mom right 
now and ask her to explain it to you. You might also ask her to 
explain the moral fine points of a seven-state killing spree 
while you're at it ... you see, there aren't any fine points to a 
killing spree, it's pretty cut and dried, and so is shareware. 

The Cookbook Manifesto 
This book is for people who use and work with Macintoshes 
on a practical level. It is not written for an elite inner circle 
of high Mac druids, lifetime subscribers of Mac Tech 
Magazine, or Leonard Rosenthal. Those radical groups don't 
need this book. They already know everything that's in here, 
or at least think they do. If the real Mac users of America, 
the silent majority who blush when they buy books with 
titles like More Crazy Mac Tricks for Brain-Dead Idiots want 



, 12 ~ BYTE's Mac Programmer's Cookbook 

In thie world a man 
muet either be anvil 
or hammer. 

-Longfellow 

to survive, then they must educate themselves. That is the 
purpose of this book. 

Hacks are for everyone. They just take a bit of snooping 
around to find them, and a bit of knowledge to use them 
effectively. Even if you've just joined the Macintosh 
revolution, you'll need a few tools. And even if you've been 
programming for years-like I have-you can always use a 
smart friend to do the tough stuff for you. 

This book is divided into two sections: the easy stuff and the 
hard stuff. The easy stuff is filled with hacks that make your 
life easier-things that anyone can use, today, to make their 
computing experience better, richer, and more productive. 

the hard stuff is for more advanced folks, those who 
actually program the Mac. Finding the right hacks 
can be the key between a five-hour project and a 

week-long nightmare. If you had to write all the XCMDs that 
Frederick Rinaldi gives away for free, you'd be insane, 
muttering to yourself incoherently like that vagrant behind 
the Exxon station. Frederick Rinaldi is a smart guy. Don't 
redo all the work he's done. Borrow from him. Just like they 
taught you in school, in real life you can do very well if you 
learn to cheat properly. 

Coming Up Next 
Now that you know what a hack is, the next question is: 
where are they? In Chapter 2, "Getting the Goods," we'll talk 
about the places to find great hacks: from bulletin boards to 
user groups to commercial services. What do you look for? 
Where's the best place to find the hack you need? 

Welcome to the revolution. Next we'll be issuing supplies. 
Pay attention: the successful computer warrior chooses 
weapons carefully. Don't lag behind, or you'll fall prey to the 
adversaries on all sides. We're going to suit up in bug-proof 
Kevlar, load one in the chamber, switch off the safeties, and 
start nailing some first-class hacks. 



Getting the Goods 
Welcome to the code wars. We're heading into dangerous 
territory, the hangouts and hiding places of hackers, 
crackers, and nuts. We're going deep into uncharted regions, 
so stay close; I'll be your guide. Don't lose your step! Don't 
fall behind! In cyberspace, no one can hear you scream . 

• 1 n this chapter we're going to show you the way to the 
best hacks, the creme de la creme, the dopest, 
flyest, most helpful shareware in the realm. For the 

last ten years, really great hackers have been learning the 
secrets of the Mac ROMS, spelunking 68000 code in the dead 
of night, losing their eyesight from staring at nine-inch 
screens. They've learned these suckers inside and out, and 
their efforts have provided you with these resources. Use 
them. Respect them. 

Once Upon a Time in the Net 

3CH 
. I 

Copy " 3CC 

A!5k not what, but 
what for. 

-Ed Poindexter 

My first modem was a Hayes 300-baud modem that plugged 
into an S-100 bus computer called the Exidy Sorcerer. 
(Remember Exidy? It once made console-style video games . 
Now, it's just another fallen warrior in the personal computer 
hardware wars.) Back then, CompuServe was fighting for the 
computer-communications market with a company called the 
Source. (CompuServe swallowed the Source whole not so 

13 



14 + BYTE's Mac Programmer's Cookbook 

long ago-another victim of the computer content-provider 
wars.) I used the Source because I had a free demo account. 

ba Ck then, chatting with other users was the focus of 
online services. The Source let you chat with one 
person at a time; CompuServe had a "CB Simulator" 

that let many people converse at once, using "handles" to 
identify themselves. (This was so long ago, CB radio was still 
considered hip and cutting edge.) 

At some point the focus shifted. Online chatting, while still 
an important part of the whole experience, fell from grace 
among hardcore hackers. The online file library became the 
Holy Grail of service providers: whoever could have the 
biggest, baddest, most eclectic collection of files for 
downloading would rule the online universe. 

See you in oy'1er6pace 
In 1986, William Gib@on wrote a book called Neuromancer, in 
which he coined the word cyberopace. Cybere;pace perfectly 
de@Cribe@ the univeroe of computer connection@ created by the 
explo@ion of technology in the field@ of telephony, modem@, and 
computera. (Not a bad book, either. Rob @ay@ read it. Real 
hackero already own the Voyager interactive hypertext veroion.) 

When thi@ book mention@ cybere;pace, I'm talking about the 
Internet, or even more generally, the entire @uper@et of 
electronic computer communication@ of which the Internet i@ 
merely a part. When I'm talking about "the net," I mean the 
collection of online @ervice@, bulletin board@, and cyberopace@ 
where programmer@ and hacker@ hang out. But @ometime@, 
''the net" i@ ju@t a convenient abbreviation for the Internet. 
You may have to figure it out from context. 



Getting the Goods + 15 

Online Services and the Single 
Hacker 

These days, it's hard not to be a member of an online 
service. What with the software and online time given away 
free with modems, and the massive PR blitzes culminating in 
a barrage of annoying ads for an array of information 
superhighway-based services, you've got to tread carefully 
to avoid being snared in the net. (No pun intended.) 

b Ut you ought to join an online service because it 
really is the best way to learn more about your 
computer. Online services are to today's 

communication network what swamps were to the American 
Revolution-a retreat full of independents and radicals, the 
last refuge of scoundrels, the birthplace of guerrilla fighting 
tactics. Head for the online services to get the straight dope 
on all that matters (and much that doesn't). 

Plus, online is where the files are. All sorts of shareware, 
freeware, beerware, postcardware, and otherware lie 
archived in these huge electron vaults. It's easy for any 
anarchist programmer to waltz in and pick and choose from 
the thousands and thousands of programs. 

There are six major online services: 

• CompuServe The oldest and the biggest, the monster 
shark that swallowed all of its competition, CompuServe 
has a well-deserved reputation for being complicated, 
although it offers software with a graphical user 
interface (the CompuServe Information Manager, as well 
as the CompuServe Navigator) that does a good job of 
hiding much of the complexity. 



16 + BYTE's Mac Programmer's Cookbook 

1 never realized 
there were so many 
places to go and 
yet so few places to 
stop and relax. 

-Charles Mingus 

• 

• 

• 

America Online The dolphin-that is, the mortal 
enemy of the shark-AOL is making a decent run at 
besting CompuServe. Its file libraries and user base are 
not as large or diverse as CompuServe's, but they're 
certainly big enough to accommodate the needs of most 
users. I use AOL daily for personal and business tasks. 

Prodigy The great experiment of IBM and Sears, this 
service has been hemorrhaging money for years and has 
become a bit of an online joke. Prodigy makes you pay 
for the service, and then fills your screen with ads. Plus, 
the folks at Prodigy reserve the right to censor people's 
messages. There's really no compelling reason to use 
Prodigy over the other online services. 

GEnie Run by General Electric, GEnie has been an 
also-ran for so long it hurts my brain just to think about 
it. This service has started offering a nice graphical user 
interface along the lines of America Online or the 
CompuServe Information Manager, which should 
improve its chances in the online service wars. There is 
good Mac support from a cluster of helpful Mac fanatics. 

• AppleLink Apple's private information toll road has 
been around for years. Originally it was created for 
Apple dealers, distributors, and salespeople, and quickly 
became the main place for Mac developers to hang out 
and ask questions. Although its popularity has waned in 
recent years (mostly due to its outrageous $37.50 per 
hour access charges), it's still a great place to look for 
wisdom. If you are in the Apple certified Developer 
program (which means you pony up $1200 a year to 
Apple), you can submit programming questions to Apple 
Developer Technical Support via AppleLink and quickly 
get an answer you can trust. But it's too pricey for most 
of us. 

• Delphi My personal favorite online service is making a 
comeback. Recently Rupert Murdoch bought Delphi, and 
the top-notch Delphi programming team has a chance to 
strut its stuff by integrating Murdoch's other holdings 
(20th Century Fox Television programs and countless 
magazines) online. Delphi was one of the first 



Getting the Goods + · 17 

commercial online services to off er extensive access to 
the Internet. Keep an eye out for these guys: they're 
going places fast. 

Prodigy, the wonder flub 
I refuse to use Prodigy. When I tried the service (soon after it 
started), it didn't support the Mac interface. Being a Mac 
user; I found myself unable to return to a world where cut, 
copy, and paste were things only kindergartners were allowed 
to do. I'm sure Prodigy has added a nice, Apple-compliant user 
interface by now, but I was offended by those early lame 
attempts a~ attracting customers. 

Plus, I can't stand the continuous stream of on-screen 
advertisements. When I pay for a TV channel-like HBO
/don't have to see ads. (Except, I suppose, for HBO's own 
plugs.) When I don't pay for a channel, like WTBS, I know I'll 
have to sit through hundreds of brain-numbing and insulting ads 
for expectorante;. 

When you're in Prodigy, some ad lies in some corner of your 
screen at every moment. (Even TV hasn't gotten that bad. 
Yet.) Who was the genius at Prodigy who thought up the idea 
of charging me to watch ads? This guy probably thinks the 
moon landing was faked and that pro wrestling is real. Wake 
up! Americans may have extremely short attention spans but 
we're not stupid! Prodigy's minuscule member numbers and 
waning market share prove that there is hope left for America. 

There are a few others worth mentioning. Apple licensed 
technology from America Online and launched eWorld in an 
attempt to create an online dynasty. Apple already has their 
online service (see above), but it's very expensive and not 
aimed at regular users. eWorld will someday encompass the 
existing AppleLink system, and if Apple has its wishes, take 
over the markets of some other services as well. If you're a 
Mac hacker, it may be worth your while to check it out. 



18 + BYTE's Mac Programmer's Cookbook 

the WELL, or Whole Earth 'Lectronic Link (try to refrain 
from gagging at the cutesy name), has been very 
popular with true hackers, underground 

subversives, and Grateful Dead fans. It's a place to see and 
be seen. It offers Internet connectivity to and from the net, 
so you can get the usual Internet services from the WELL, or 
get to the WELL from your usual Internet connection. There's 
not a strong focus on a software library, since WELL 
subscribers represent a diverse array of computing 
hardware. It's worth a look, if nothing else. 

Cyberspace on Less Than $25 a 
Month 

There's only one electronic frontier that's still wild, 
untamed, unregulated, and mostly unexploited by corporate 
America: the Internet. If you haven't heard about the 
Internet, welcome back to the planet, and how is the 
Andromeda galaxy anyway? The Internet has become the 
focus of the national debate on America's information 
infrastructure, thanks to Slick Willie and Stiff Al. 

At its most basic, the Internet is a large number of 
government, military, and mostly university computers 
interconnected through various networking schemes, all using 
a common way of sending data (the TCP/IP protocol). From this 
base, many services have grown: e-mail, so you can send a 
message to your buddy in Alaska instantly; FTP, so you can 
browse through software collections at hundreds of sites; WAIS 
(wide area information search),· so you can search for an 
information needle in a digital haystack; plus the incredibly 
popular newsgroups, which have become universally accepted 
to the point of being almost unwieldy, so that you can discuss 
topics with your electronic neighbors. 

W h 1·1eit's great for politicians to notice something and 
frame a national policy arou_nd it, what truly sucks 
is that someone may decide that they actually own 

it, and try to control it. It's already happening-more and 



Copy 

GettingtheGoods + 19 

more big corporations are joining the net. And there's a bill 
winding its way through Congress that will sell off parts of 
the Internet, just like so many parcels of land from the 
Northwest Territories. 

Who do you want running the net? 
Consider how these two extremely different entities view the 
information infrastructure: 

To a haoker: The Information Infrastructure = the cross 
connection of computers and services to make the world a 
better place. 

To big oonglomerate6: The Information Infrastructure = the 
cross connection of computers and services to suck the 
money out of American households 24 hours a day. 

Who do you want in charge of the Internet? (Hint: there is a 
right answer.) 

3€H 

The Internet is dying, folks. Some old-timers might even say 
it's already dead. Some view it as less of a death than a 
transformation, but to those of us who've been there a while, 
any change is frightening and threatening. 

Freedom of the 
press [and the net] 
belongs to those 
who own it. 

As of 11:58 A.M. on January 5, 1994, the Internet is still the 
best place to find clever hacks, obscure and nifty 
programming languages, and smart friends. So until the 
boys in Washington sell off the whole thing to Time-Warner 
so they can make it into an interactive version of 
"Jeopardy!," get plugged in. 

-Ruffin Prevost 

How to Make SmartFriends and 
Influence People 

If you're not already online-plugged in, modeming, wired, 
use whatever term you like-your competition has an 
advantage that you can only imagine. The online world has 



20 + BYTE's Mac Programmer's Cookbook 

been a source of software, support, and gossip for as long as 
there have been personal computers. How else can you get 
advice from professionals like Keith Rollin and Leonard 
Rosenthal? Or get the real story from the employees at 
Apple, Microsoft, or Taligent? You couldn't talk to these folks 
by calling them up on the phone. That's the beauty of the 
net. It's the great equalizer. 

get your battles back on track. Got a question? Find the 
right place to ask the question-then ask it. 
SmartFriends are more powerful than technical 

support. Able to leap taller problems in a single bound. 

Note 

So you've decided to find a SmartFriend-one of those 
immortals who breathes code, a total Mac hacker-but you 
don't know where to start? No problem. Just follow these 
easy steps: 

1. Get online. Now. Or risk being terminally unhip and 
hopeless. 

2. Hang out. Frequent the popular places, both electronic 
and analog. Like in the old west, the only way to find a 
gunslinger is to drink in the saloons. Look for help · 
online, but also at local user groups, universities, and 
computer stores (are there any left anymore?). 

3. Help others. If someone has a question and you've got 
the answer, well, speak up already. That's the only way 
the Borg-like collective-consciousness of electronic 
communication can work. 

Although it's great to help out whenever you can, if six people 
have already answered a particular question, it would be truly 
annoying for you to add the same response. Be heads-up and 
see what messages were posted after each question before 
you waste network bandwidth. You're fellow e-denizens will 
thank you. 



Getting the Goods + 21 

On CompuServe, real programmers spend their time in the 
Programmer's SIG. Visit this area and you'll be in the 
company of some of the best Mac hackers around. 

On America Online, a good place to get general questions 
answered is in the Mac Operating System forum. Talk to 
AFAGene; he can help you, or guide you to one of his 
SmartFriends. 

On the Internet, listen in on the comp.sys.mac. 
newsgroups. I especially like comp.sys.mac.comm 
due to the friendly people, most of whom seem quick 

to answer thorny communications and network questions 
(things I absolutely hate). The comp.sys.mac.programmer 
newsgroup is required reading for anyone who toils over Mac 
code. The best of the best hang out here; this is the end of 
the bar where Clint Eastwood's characters would sit if 
they happened to program Macs, which is a bit of a 
metaphorical stretch. 

The Quest for Shareware 
One hundred thousand years ago, our ancestors tried to find 
natural occurrences of fire, struggling to save and protect 
the valuable resource wherever they could find it. Like our 
ancestors following thunderstorms looking for lightning 
strikes, we stroll through the online service of our choice 
and collect shareware at our leisure. (Come to think of it, 
there's really no comparison at all. Sorry.) 

All of the major online services mentioned earlier, as well as 
the Internet, offer immense libraries of shareware. It's from 
these libraries that I've pulled much of the contents of this 
book. 

Folks have been posting shareware for a long, long time. 
There're lots out there. In the coming chapters, I'll show you 
what you can find and where to look. But don't just take my 
word for it. Get out there, root around, see what you can 
find. Think of a huge library with tall stacks filled with 
books: there's so much stuff, you can spend the rest of your 



22 + BYTE's Mac Programmer's Cookbook 

life just poking around. I'll show you the hot spots to check, 
but it's always more fun to discover things on your own. So 
go out and surf the net. It's very likely you'll find the 
shareware of your dreams. 

Netsurfing USA 

Note 

Here's where to go on the Internet to find all the really useful 
information any programmer could want: 

Usenet Newsgroups 
People post messages to these groups every hour of the day. 
Computer programmers looking for lively discussions about 
their language of choice may find the following groups 
interesting: 

Groupe; come and go. If you can't find one below, then e;urf the 
net and find it'e; equivalent. 

File Edit 

About ••• 
'----~ 
NBteurflng 

(net-~r-fi11) n: the 

6port of crui6ing 

the electronic online 

world 

comp.lang.c 
comp.lang.c++ 
comp.forth 
comp.forth.mac 
comp.lisp 
comp.lisp.mcl 
comp.Jang.pascal 
comp.lang.smalltalk 

Mac Programmers will especially like: 

comp.sys.mac.programmer 
This group is the nexus for net-based discussions between 
real live Mac programmers. 



Getting the Goods + 23 

comp.sys.mac.databases 
If you do anything with databases-4D, Filemaker Pro, 
Omnis, or Helix-you should definitely hang out here. 

comp.sys.mac.comm 
Use this newsgroup to get any of your communications 
questions answered-from "what kind of modem is best" to 
"how do I terminate a MacTCP connection?" 

comp.sys.mac.oop.macapp3 

comp.sys.mac.oop.tcl 
Object-oriented programming has already become a 
standard of Macintosh programming. If you use one of these 
class libraries, then you should watch the traffic in these 
groups. I've had many a bug fixed by helpful posts here. 

comp.sys.powerpc 
To get the latest scoop on programming for the PowerPC 
chip, stick your nose in here every once in a while. It pays to 
keep current on new technology even if it doesn't affect you. 
It will someday soon. 

comp.sys.newton.programmer 
Programming for the Newton is a relatively new area, but 
there's more than enough traffic to keep this group 
interesting. If you're thinking about writing Newton apps, 
definitely check this out. 

WAIS Servers 
While newsgroups are great, there's no general way to look 
up past answers. If someone said anything three weeks ago 
about that printing bug you've encountered, you're just 
plum out of luck. WAIS (wide-area information search) will 
let you search an Internet-based database for certain topics. 
There are two good Mac databases: 



24 + BYTE's Mac Programmer's Cookbook 

Ree;u/te;! Why. man, I 
have gotten a lot of 
ree;u/te;. I know e;even 
thoue;and thinge; 
that won't work 
-Thomae; A. Edie;on 

tel. talk.src 
The database stores the traffic from the tel-talk mailing list. 
You can search for any word or combination of words. It's an 
awe-inspiring thing, for instance, to search for "Printing and 
bug" and see what comes up. 

mac.FAQ.src 
The frequently updated Mac FAQ (list of Frequently Asked 
Questions) is stored here. Thanks to WAIS, you can search 
through the whole thing (which is fairly large) and find the 
passage you need pronto. · 

The Shareware Tool Chest 
The waters can be treacherous if you aren't prepared. You 
might find these tools useful while netsurfing. 

• ZTerm This is the best shareware terminal emulation 
program available on the Mac. In fact, it's almost better 
than commercial programs costing four times as much. 
With it, you get scripting, on-screen PC-ANSI graphics, 
and Z-Modem transfers (which are a special kind of 
transfer that can resume where they were left off if you 
are interrupted, a truly cool feature). 

• Stufflt Expander This workhorse should never be far 
from your desktop. Files you download will be 
compressed, so you can download them faster (and save 
bucks on the online charges). Stufflt Expander will 
decompress just about any kind of compressed file: 
Stufflt Lite, Stufflt Deluxe, AppleLink package files, and 
Compactor Pro files. Plus, it will de-binhex files that you 
collect from the Internet. The only file format it doesn't 
decompress is Disk Doubler. 

• Stufflt Lite If you're going to be uploading files for the 
world to see, then you'll need to compress them first. 
Stufflt Lite is the shareware version of the popular 
Stufflt Deluxe program. It compresses files very quickly, 



Getting the Goods + 25 

and in the ongoing battle for world's best compressor, I 
think the Stufflt family has the edge (for the moment). 

• UnZip If you connect with BBSs often or download files 
that come from MS-DOS machines, you'll need Unzip. 
The most commonly used compression program in the 
MS-DOS universe is PK Zip. Any Zip files you download 
(and it's easy to tell, since the name ends with .ZIP) will 
need to be decompressed with this program. 

• Disinfectant A sad fact of the computer world is 
viruses. While the Mac hasn't had a real virus scare in a 
while, anyone who regularly downloads software from 
online services needs to be concerned about viruses. An 
online service is like a bathtub in a brothel: you never 
know what you'll catch. Disinfectant is a free program 
that will scan your hard disk (or a floppy, external 
drives, or even single files) for any known viruses. It 
also will install a system extension that scans 
continuously for virus-like activity. Use this program 
regularly, or one day you'll be sorry. 

(For your convenience, and because I'm a really nice guy, I've 
loaded onto the disks that accompany this book the five 
programs just mentioned.) 

Coming Up Next: Crash, Barn, 
Thank you, Man 

Okay, we're nearly ready to head out into the dangerous 
online world. Check your disk for your online tools. Get 
them ready for the adventure ahead. Got your map? Then 
dig your trenches and set your trip-wires. This is war, people. 

In the next chapter, we'll be covering first aid: what to do 
when your computer crashes. How do you recover? How do 
you prevent crashes from happening? Read Chapter 3 and 
take it to heart, that's what you do. 



Trouble in Hacksville1 
When Good Macs Go 
Bad 

Computers, because 
of their very nature, 
are extremely easy 
to render 
inoperative. 
-William Powell, The 
Anarchist Cookbook 

Computers crash. Any third-grade joystick jockey can tell 
you that. Crashes can occur with painful ease. It's not that 
computers are inherently unreliable-in fact, as far as their 
electrical components go, they're incredibly reliable. 
Ironic, eh? 

So why does everyone fear crashing the system whenever they 
pick up the mouse? Software is the culprit, and lazy 
programmers deserve most of the blame. It's not impossible to 
make a program that almost never crashes, but it's a lot easier 
to make one that "only" crashes four or five times a day. 

So, as a programmer striving for perfect code, you'll have to 
work defensively. Set up razor wire around your system 
folder. Place sandbags and machine-gun nests around your 
hard drive. Run sentry wires out to the memory. You get the 
idea-this is war. 

You might find it strange that this entire chapter is about 
setting up rules to follow to avoid crashing, but programmers 
spend 80 percent of their time breaking all the rules. 
Ironic, right? 

27 



28 t BYTE's Mac Programmer's Cookbook 

Note 

• 1 n this chapter, you'll find some simple strategies for 
keeping clear of crashes. No matter what kind of 
computer you have, there are some rules to keep in 

mind. I'll make it easy for you. Follow the rules: ©. Don't 
follow the rules: ®. Get the picture? 

This chapter; while chock full o' technical goodness, is meant 
for readers with a little less experience. While there's 
something in here for everybody. I'm certain most readers will 
gloss over it. That's okay. I would skip this chapter if I had just 
bought this book. Go ahead. You won't hurt my feelings. But 
someday you'll be back. 

Dodging the Bullet 
Psst, hey you, c'mere. Wanna know how to never, ever crash? 
There are some simple things you can do to make your 
computing life longer, fuller, and richer. Here are the basics: 

• Use as few extensions (INITs, extensions, Cdevs, control 
panels, TSRs, whatever you call them) as possible. 

• Add more RAM to your system. 

That's all there is to it. I bet your glad you're reading this 
now and not after your computer crashed. 

Extensions from Hell (and How to Deal with 
Them) 

A guy I work with has three rows of extensions on his screen at 
startup. (And this guy has a 21-inch monitor!) He installs 
anything and everything he can get his hands on, and then he 
wonders (aloud) why his machine crashes so much. Well, duh! 

It's easy to go extension crazy. Everyone has a spell of it at 
some point. Most of us grow out of it. Many others don't. 



Trouble in Hacksville: When Good Macs Go Bad ,t 29 

Because extensions are fun, crazy, zany, and sometimes even 
useful, it's a sad fact of life that to avoid crashes you have to 
use extensions sparingly. These days some of the coolest 
system software (QuickTime, QuickDraw GX, AppleScript) 
come as extensions. It's tough to pare down to the 
essentials. 

Four steps to a better Mac 
If your machine crashes regularly, follow these steps: 

1. Start your Mac while holding the SHIFT key down. (You 
knew this, right?) 

2. Remove all your extensions. If you fit the profile, you've 
already got Startup Manager by Now Utilities or the 
shareware Extensions Manager (that comes on the disk 
with this book) or something similar: Use it. 

3. One by one, return the extensions to your System Folder 
and then restart. 

4. When you find the culprit, call the 800 number for the 
company that made it and complain for a long, long time. 

The following lists some extensions that are usually 
fail-safe-and some you're better off not using: 

• More than likely, basic system-level components in your 
standard extension set from Apple are safe: QuickTime, 
AppleScript, and so forth. That's not to say these 
standard Apple extensions won't conflict with other 
software, but alone they almost never cause problems. 

• Less common stuff from Apple, such as Plaintalk Speech 
Recognition, the Telephone Manager, or the Express 
Modem software, is generally safe but somewhat 
suspect. Apple even goes so far as to officially 
discourage use of some of its older and more esoteric 
extensions, such as the infamous Macintalk "speech 
synthesis" extension used before the release of the 
Quadra AVs. If you're having trouble, turn these off. 



30 t BYTE's Mac Programmer's Cookbook 

• Third-party extensions are always suspect unless you've 
run them for a long time and know them to be safe. 
Based on my experience, products from Now Software, 
Fifth Generation Systems, and Aladdin Software tend to 
be bulletproof. But many other smaller software shops 
have looser beta-test procedures and smaller test 
groups, and therefore can't predict and prevent every 
problem. Use the remove-restart method given earlier to 
catch conflicts. 

Mo' Memory 

Most system 
crashes are caused 
by lazy programmers 
who don't do their 
homework. 
Low-memory 
conditions are just 
the stresses that 
bring structural 
faults into the light. 

Like money, compact discs, and Hummel figurines, when it 
comes to memory, you can never have too much. Memory 
(RAM, in.this instance) is the good stuff you need. Every 
program you run uses it. Low-memory conditions can lead to 
system crashes. 

If you're a programmer and you don't check MemError (or for 
a nil handle) after every allocation, you're guilty. (Hey, relax, 
I'm just as guilty as anyone. We're all pretty lazy when we 
can get away with it.) 

If you've forced yourself to cut back on extensions, but still 
have enough to choke your system memory partition, the 
next best thing is to add lots o' RAM. If you run lots and lots 
of extensions, they'll chew up a significant portion of your 
system memory, and your applications will feel the squeeze. 
Buy as much RAM as you can. These days 8 megabytes (MB) 
is the minimum, 16 MB is reasonable, and 32 MB is probably 
more than most people need. 

Programmers need plenty of RAM-for the compilers, 
editors, debuggers, and so forth that they'll want to run. 
Don't skimp on RAM. No other factor-not even processor 
speed-so directly affects your user experience. 

ram is pretty much a commodity these days, like 
orange juice or pork bellies. No one prints prices in 
magazines or books anymore: you have to call and 

get the price du jour, which can fluctuate wildly from 
yesterday's or tomorrow's price. When a Japanese RAM glue 



Trouble in Hacksville: When Good Macs Go Bad ,!' 31 

factory caught fire in 1993, RAM prices went through the 
roof for several months. The opportunity to gouge was 
apparently too great to resist. 

Watch the prices for a while and ask a Smartfriend to 
make sure you're not getting juked. Buy only RAM 
that has a lifetime warranty. Some day you'll be 

glad you did. Also, buy RAM from established companies. 
Most will match the lower prices from the Joe's House O' 
RAM-type joints, and they'll probably be around a lot longer 
to honor their warranties. I usually buy RAM from these 
good fellas: 

Tech Works 1-(800)-278-7090 

Peripheral Outlet 1-(800)-256-6581 

They have overnight service, great manuals and tech 
support, and a lifetime guarantee. I have been buying RAM 
from both of them for years, and I don't see any reason to 
switch to anyone else. (And no, they didn't give me a freebie 
in exchange for this plug.) 

Virtually Speaking 
Virtual memory is a control panel feature that takes a 
portion of your hard disk and pretends it's actually RAM. 
This way, you can have as much "RAM" as you have free 
space on your hard drive. (Don't confuse virtual memory-or 
virtual RAM-with a RAM disk, which creates a "virtual hard 
disk" out of available RAM memory.) 

I use virtual memory, but know very few other people who 
do. Virtual memory slows the computer down, since it has to 
swap information from RAM to the hard drive and vice versa. 
Hard drive access takes much longer than RAM access, which 
means all of your programs run more slowly. 

and some programs can't truck with virtual memory. 
Adobe Photoshop uses its own virtual memory 
scheme, which confuses your system's virtual 

memory. Many CD-ROM games try to improve their speed by 
loading as much data into RAM as possible; since virtual 



32 t BYTE's Mac Programmer's Cookbook 

memory isn't really RAM, they end up being slower than they 
would have been. 

You'll need to give up a chunk of your hard drive to make 
virtual memory work. If you turn on 32 MB of virtual 
memory on your 8 MB Mac, you'll need to have 24 MB of disk 
space free. It's a trade-off: (virtually) more RAM in exchange 
for some hard disk space. If you're tight on disk space, you 
may not be able to swing it. 

All that said, I like using virtual memory. I have 16 MB of 
RAM on my computer, and 60 MB of virtual "RAM" memory. 
Most everything I run fits in RAM, and there's very little 
swapping. But whenever I do run a program that kicks me 
over the 16 MB limit, virtual memory lets me avoid the 
annoying "Not enough memory" dialogs and I don't have to 
dig through menus for a program to close. 

Crawl to the Mirage 
If you're a programmer, you'll probably be crashing more 
often than not. Here's a tip I use to keep from crashing my 
hard drive: use a RAM disk. 

Craehl 8aml Boom/ 
There's a difference between crashing your computer and 
crashing your hard drive. Your computer crashes because it is 
forced to execute some instruction it logically can't, such as 
"divide by zero" (which results in infinity, for those of us who 
are mathematically challenged-don't feel bad, I had to look 
it up myself). The result is you restart your computer and 
things are more or less as they were before the crash, except 
for some lost or scrambled data. 

Hard disk crashes are caused by a corruption of some data 
on your hard drive, usually in the directory portion of the disk 
that lists where all of the files are located, or sometimes in 
the section of the disk that informs the computer how to 
start itself (called the boot blocks). The result is your Mac 
won't boot up properly, or perhaps won't boot at all. 

Crashing your computer can crash your hard drive, especially 
during disk operations. Recommendation: back up early and often. 



Trouble in Hacksville: When Good Macs Go Bad lk7 33 

Since a RAM disk simulates a real disk in memory, anything 
that happens to it won't affect your hard drive. If you have 
enough RAM, you can even load your entire system on it and 
run the entire computer from it. 

th l• s way, when you crash (or trash the system file, or 
whatever) it happens to the RAM disk, not (you 
hope) your hard disk. And (the best part) if you 

totally, completely, absolutely screw up everything in the 
active system, you can just reboot from the hard drive and 
start over. 

Another great benefit: there's no faster way to run your Mac 
than from a RAM disk. It's amazingly fast. Your compile and 
link times will be much faster, resources get copied into the 
application with great alacrity, and if you need to do a global 
search, it's done in mere seconds. 

Try it; you'll like it. Of course, this means you'll need more 
RAM again. Ironic, no? (Honestly, I do not work for the RAM 
cartel...yet. It's just one of the things you need to bite the 
bullet and buy.) 

Yin V6. Yang 
A client of mine, a guy at a large firm, claimed his Mac was 
running slow. I dropped by to take a look. He was low on 
RAM, so he did the obvious thing: he turned on virtual 
memory. And then, since he felt his Mac was still slow, he 
set up a RAM disk. 

Virtual memory fakes the system into thinking that part of 
the hard disk is system memory. And a RAM disk fakes the 
system into thinking that part of the system RAM is actually 
a hard disk. So in the end, not only did this guy gain nothing, 
he slowed things down substantially thanks to his yin vs. yang 
virtual memory and RAM disk programs. 

Moral of the story: think. (You know that's IBM's corporate 
slogan: Think! More irony.) Steve Jobs's fantasy about an 
appliance computer has failed to materialize. Sadly, you must 
learn a few basic facts about how these things work. There's 
just no other way to happily use a computer: 



34 ,t BYTE's Mac Programmer's Cookbook 

Patching Traps and Other Scary 
Stuff 

And now for the moment you've been waiting for: 
techno-babble. Hang onto your hats! Kids, check with you 
parents first! 

When an application calls upon the system to do 
something-say, draw a rectangle-the program uses what's 
known as a trap. It's called this because of the mechanism 
behind the scenes: when the system routine is called, an 
error condition is generated; the 680x0 chip actually traps 
the error code and transfers control to a routine, pulled from 
a big ol' list of routines, called the "trap dispatch table." 

Since there is a table of traps and their addresses in ROM 
memory, it's not too hard to change the trap table so that 
some code you've written can be executed instead of the 
ROM code. In fact, that's what nearly all extensions or INITs 
do; they "patch the traps," so that they (the INITs) get run 
instead of a system trap, and then they (the INITs again) call 
the system's code as the last thing they do. 

,• f this seems complicated, don't worry: all you really 
need to know is that the system has a list of all the 
routines it calls to do any work, and you can 

replace those routines with one of your own. Whenever you 
install an extension or a control panel, at some level it's 
what they do. 

This explains why many INITs or extensions can conflict with 
each other. Say, for instance, you install two extensions that 
patch the FrameRect procedure inside the ROM~ Which one is 
run? The last one to load. What happens to the first one? It's 
stranded deep in hyperspace. What if it depends on code in 
that routine? Crash city, most likely. 



Trouble in Hacksville: When Good Macs Go Bad ,t 35 

The Moral of the Story 
The moral: test your shareware! Not just on your own 
machine, but on as many different Macs as you can. If you 
can't do it, ask around online-you're sure to dig up some 
warm bodies who are always willing to test whatever's new. 
(There is a class of people who only want software that no 
one else has. Find these people and exploit them 
mercilessly.) Your end users will thank you. I will thank you. 
Personally, if I must. 

Passing the test 
A complete test suite would include running your program 
on every different processor Apple ever shipped: 

• Mac Plus, Mac SE, Mac Portable, or PowerBook 100 
(68000 chip) 

• Mac II, Mac LC (68020 chip) 

• Mac SE/30, Mac Ilsi, Mac Iici (68030 chip) 

• Quadra 700, Quadra 950, Quadra 605, and so on 

• Power Macintosh 6100, 7100, 8100, as well as the 
PowerPC PDS upgrade card (PowerPC 601 chip) 

Many people will skimp on the 68000 and the 68020. And 
that's too bad, because there are many simple-to-stumble-upon 
yet easy-to-fix crashes on the 68000. 

the art of testing software deserves a book in its own 
right. Suffice it to say, you need to test every 
function in your program under every 

environment. The number of variables quickly becomes 



36 ,t BYTE's Mac Programmer's Cookbook 

staggering, and too many programmers become 
overwhelmed by the magnitude of this step and do their 
testing in the marketplace, i.e. by releasing untested 
shareware to the world. While this has worked for some, you 
can very possibly earn a really· bad name in the shareware 
market if things go wrong with your release. 

Your average shareware jockey has a line like this in his or 
her ReadMe file "I wrote this Cdev. It runs on my Hex, but not 
on my sister's Performa or my buddy's Quadra. Try it out on 
your system. It's pretty cool." At best, this attitude is 
unprofessional; at worst, it's criminal. Test that shareware! 
You'll be glad you did. 

Macsbug, the Wonder Drug 
A debugger is a program that you use to help squash the 
bugs in your own programs. Debuggers patch into the 
system at the lowest level, and provide a way for you to step 
through each machine language instruction of your program, 
or even Apple's ROM code. 

Of course, you'll need to understand at least a little machine 
language to get by in the debugger. The more you know, the 
more you can get out of it. But even if you know nothing 
about machine language, you can do amazing things with a 
debugger installed. 

,• f you're an official Macintosh developer, or you 
hang with the right user-group crowds, or you 
scour net-land, you can get a copy of Macsbug, 

Apple's official debugger for the Macintosh. Macsbug is a 
powerful tool-indeed we'll spend much time discussing it 
in later chapters-but even for simple crashes, it can be 
immensely helpful. 

In the end, it's tools like Macsbug that separate us-the 
·programmers, hackers, and overall smart users-from other 
Mac fanatics. We use a debugger. People who don't are sheep 
who have lost their way. They see the bomb icon 50 times a 
day and peck at the INTERRUPT button and slap around at the 



Trouble in Hacksville: When Good Macs Go Bad ~ 37 

COMMAND-OPTIONcESCAPE combo like a trout tossed onto a 
Georgia parking lot on the Fourth of July. We just install 
Macsbug, tap a couple of keys, and keep on trucking. 

Macsbug Sources 
Macsbug is a product from Apple. You can purchase it from 
APDA (800-282-2732 US, 716-71-6555 for non-American 
callers). Since they sell it, it's not generally available on on line 
services or BBSs. Many user groups have it and can provide it 
to you free of cost. 

Also, check the Apple Developer CD-ROMs (which Apple sends 
to you if you're an official developer; in which case you're not 
bothering to read this sidebar). To become an official Apple 
developer; call the Developer Support Center at 
-(408)-974-4897 or send them e-mail at 
devsupport@applelink.apple.com. 

Or check with your favorite SmartFriend. 

When your Mac crashes, it will attempt to use the debugger 
to inform you of the crash. Under really serious 
circumstances, even this won't work: you may find your 
mouse frozen, immobile, pathetically trapped. Don't panic. 
Try pressing the INTERRUPT button on your computer. 
Sometimes you'll get the debugger; other times, you'll be 
just as stuck as you were before. If this happens, your only 
recourse is to reboot. (The other switch-Restart-is a 
bang-up way to get this done.) 

In the Trenches with Macsbug, Part I 
Once you've crashed, you'll want to recover. These 
commands can get you back on your feet. Many people 
suspect that when you crash with Macsbug, recovery is 
much more successful. People report that when using 
Macsbug with the commands given next, the dreaded "hard 
reboot" appears onscreen far less often. I can't imagine why 



38 ,t' BYTE's Mac Programmer's Cookbook 

this would be-I think our brains are playing tricks on us. 
But it sure seems that Macsbug helps. 

When your computer presents the Macsbug screen, type 
them in on the command line. You can type "?" in 
Macsbug for a full list of commands (and there are 

many) so I'll list just the most useful ones here: 

Find out the subtle 
points over which it 
is easy to prevail, 
attack what can be 
overcome, do not 
attack what cannot 
be overcome. 

-Sun Tzu 

ES Exit to Shell (which takes you back to the desktop). 

EA Exit to Application (which never works) 

RB Reboot the Mac. This is the same as pressing the RESET 
button on your Mac's programmer's switch. 

RS Restart the Macintosh; this is the same as selecting 
RESTART from the Finder's "Special" menu. Use this with 
caution, however. RESTART will flush the disk cache-the area 
of memory where recent changes to the disk are stored. If 
you've crashed, you may have hosed this cache. If you write 
a hosed cache out to the disk, you've just corrupted the 
thing. If all this scares you, use RB instead of RS. (For the 
record, I use RS and have never had a problem.) 

Dissecting crashes is interesting and fun. It also can get you 
serious respect on tech-support phone lines (saying things like 
"Yeah, your program crashed with a zero divide in 
DrawNextWord" can really impress bored tech support 
drones). 

On the flip side, a crash is less fun to dissect if it's 
your own program that crashed. Usually there's a 
lot of work involved in finding out what happened; 

it's not uncommon for a Mac crash to occur far from the 
offensive line of code. Debugging is its own art, and it's best 
covered by itself. We'll talk more about debuggers in Chapter 
8. Also check out the Torah of Mac debugging guides, How To 
Write Macintosh Software by Scott Knaster (Reading, MA: 
Addison Wesley, 1992). If you don't own that book yet, I feel 
your shame. Now go buy it. 

When you write shareware, it's a good idea to ask users who 
have Macsbug to give you more information when they 



Trouble In Hacksville: When Good Macs Go Bad ,t 39 

crash. For instance, if you build your application with 
Debugger Names on, anyone with Macsbug can trace your 
code to see exactly where the crash occurred. This helps 
immensely in solving a problem your user is having from a 
long way away. Also, you can instruct your users to do a 
stack crawl, so you can see all of the procedures and 
functions called up until the crash. 

In the Trenches with Macsbug, Part II 

Tip 

If you're a programmer, here's a few Macsbug commands to 
get you by: 

SC Stack Crawl will list all of the procedures and functions 
that have been called up until the point of the crash, so you 
can track where your program has been. It doesn't always 
work; it's easy to hose the data structures that store this 
information. Try "SC?" if SC doesn't help. 

HT Heap Total will show you the amount of free memory in 
your program's partition. It also shows how many blocks are 
locked, purgeable, or both. 

HD Heap Display shows you the actual blocks on memory in 
the heap. You can type "HD PICT" to see all of the pictures 
loaded from resources, or "HD SND" to see all of the sounds, 
for instance. 

A good way to cause a sneaky crash is to dispose of a NIL 
handle. Or; even worse, you might access a handle after it's 
been disposed of. But both of these are pretty easy to avoid. 
Just stick this code into your program: 

procedure MyDisposeHandle(var h : univ Handle); 
var 

tempH: Handle; 
begin 
tempH := h; 
if (tempH<> nil) then begin 

h :=nil; 
DisposeHandle(tempH); 

end; 



40 ,t BYTE's Mac Programmer's Cookbook 

That'e; Think Pae;cal, for thoe;e you of wondering. C 
program mere;, you'll jue;t have to trane;late. Anyway, thie; 
routine dodgee; the bullet by only die;poe;ing of a· handle if it'e; 
not nil; ale;o, it e;ete; the handle to nil aft:;er it die;poe;ee; of it, e;o 
that you won't be tempted to accee;e; memory that you no 
longer own. Ue;e it every time, and you'll be wie;er and happier. 
(More wie;dom of thie; e;ort can be found on the Apple 
Developer CD-ROMe;, in the pagee; of MacTech Magazine, and 
from your favorite SmartFriend.) 

Prevention Is the Cure 
The best way to recover from a crash is to prepare ahead 
of time. 

• Set up an external disk (a removable Syquest cartridge, 
an external hard disk, whatever) with a copy of your 
System Folder and a drive repair utility. Even if you just 
take a 20 MB hard drive and stick a minimal System 
Folder on it, or just use a floppy disk with the System 
and Finder on it, you'll be able to boot the computer. 

• If you have a hard disk utility program, such as the 
popular Norton Utilities (from Symantec), or the equally 
good Public Utilities (from Fifth Generation Systems), 
put it on the disk too. If you don't, put a copy of Apple's 
Disk First Aid on it. If that's all you do, it's better than 
sending your hard disk to DiskSavers at $180 an hour 
for data recovery. 

• I recommend Norton and Public Utilities because each 
one can automatically create an emergency startup disk 
tailored for your computer, including all of the Enabler 
files you'll need. 

• Back up, back up, back up. I know I sound like your 
mother. Do it now, scumbag! I know no one likes to do it, 
and God knows I do it rarely enough, but it's the only 
way to be sure. It's the only way to be safe. Back up your 
hard disk at least every week, and more often if you can. 



Trouble in Hacksville: When Good Macs Go Bad ,t 41 

Crash and Burn 

Tip 

So you've finally done it. You've crashed the whole dang 
thing. Your computer won't even boot anymore. Don't feel 
bad, we've all done it. It's a fact of computing life. Dry your 
eyes and reach for these floppies. 

l• f you followed the instructions given earlier, you're 
eating pork with a fork. Just use your special 
Emergency Disk and let it work its magic. 

These kinds of programs can usually recover from any 
common crash, and many uncommon ones. In fact, I've 
never had a crash where Public Utilities couldn't save my 
butt. 

Too cheap to buy a hard disk utility? There's still hope. Boot 
your computer with the "Disk Tools" floppy that comes with 
every Mac. 

If you have a ferforma, you didn't get disks when you bought 
your computer. You were supposed to make some from disk 
images on the hard disk, first thing after you got home. You 
did make those floppies, didn't you? 

Disk Tools should boot your computer; and it also should let 
you run a program called Disk First Aid. (It's a good idea to 
make a copy of the Disk Tools disk and store it in a cool, dry 
place.) Disk First Aid will check for common problems-bad 
blocks in the directory sectors, inconsistencies in the file 
control blocks, and so forth, 

In the end, if the utilities fail you, you'll need to boot from a 
floppy or a CD and reformat your hard drive. Ugly and 
messy, I know, but usually necessary. I really, really hope 
you're reading this while your computer is safe and sound. If 
it is, great. Put this book down and go back up your hard 
drive. This book will wait. 

Any programmer worth his or her salt will totally screw up a 
hard drive at some point. You know it's going to happen. 



42 t BYTE's Mac Programmer's Cookbook 

Prepare for it. Laugh at it when it .happens. You're safe. 
You're backed up. 

Coming Up Next: 
Shareware-at-Large 

Starting with the next chapter, we'll get into reviews of 
actual products you can use to make life easier. Some 
all-time shareware favorites, along with a few forgotten 
gems and even an unheralded masterpiece or two, await just 
pages ahead. Don't be shy. Turn that page. 



Altering Reality= 
Utilities for a Better Life 

Utilities for a Better Life 

Certain drugs 
affect the mind and 
allow the individual, 
for the first time, 
to see the world 
freely, without 
enforced values and 
rituals. For the first 
time the person can 
see clearly the real 
inequities and the 
farcical absurdities. 
-William Powell, The 
Anarchist Cookbook 

Good shareware utilities are to hackers what LSD was to 
hippies: both alter the user's perception of the world. In this 
chapter, and those that follow, we're going to take an 
in-depth look at dozens of the very best available hacks for 
programmers. These aren't just for fun and games: this 
shareware can change your work habits (and maybe even 
your life) for the better. 

There are many good Mac utility packages out there. Before I 
discuss my favorite shareware offerings, I first want to cover 
one commercial package that I find invaluable, and that you 
might consider using also. The Now Utilities package, from 
Now Software, is available from your favorite retail or 
mail-order outlet. I recommend the Now Utilities because 
they are useful and stable. Now Software has been through 
several versions of the Now Utilities package, which is 
compatible with most utilities you're likely to use. Also, I 
haven't come across a single shareware offering (or suite of 
shareware programs) that provides so much functionality. 
Many come close, but none provides so much power and 
flexibility. Consider these Now Utilities benefits: 

43 



44 i!I!!; BVTE's Mac Programmer's Cookbook 

• SuperBoomerang, part of Now Utilities, makes the task 
of finding and using files much, much easier. Whenever 
you reach an Open dialog box (that's an SFGetFile to you 
programmers), a series of pop-up menus lets you 
quickly switch to your favorite folders. Using 
SuperBoomerang, you can easily jump between the 
directories that contain your source code, your class 
libraries, the standard interfaces, and so on. 

• You also can create folders as you're saving a file, a 
feature that Apple should have added to the Save As 
dialog box long ago. And you can search for a file from 
the Open dialog box; so even if you have no idea where 
you put that durn source code file, you can locate and 
open it in a flash. 

• NowMenus adds hierarchical menus to the items under 
the Apple menu. So if you place aliases to folders in 
your Apple Menu Items folder, you'll be able to get to 
any file that is in that directory from the Apple menu. 

• There are several good shareware alternatives to 
NowMenus (one that I've used is MenuChoice), but 
NowMenus has a few other features that its shareware 
competitors can't match. NowMenus lets you create 
keyboard shortcuts for virtually any menu choice. Think 
Pascal doesn't have a key equivalent for the Build 
Application menu option? No problem! NowMenus will 
let you set one. 

• Imagine the standard Mac Scrapbook on a strict diet of 
red meat and rye whiskey and you get a pretty good idea 
of what NowScrapbook is like. It has a scrollable table of 
contents (each item can be given a descriptive name), so 
finding that TIFF file you pasted in two weeks ago isn't a 
laborious process. You also can view thumbnail-sized 
images of all items in the scrapbook, which is very 
handy if you use lots of pictures. And speaking of 
pictures, you can edit them with the clipboard editor 
it provides. 



Altering Reality: Utilities for a Better Life i:!tl!!: 45 

Tip 
I keep multiple NowScrapbook files, each with a different kind 
of content. For example, as I come across cool and useful 
source code fragments online or on the Internet, I clip them 
and store them in a NowScrapbook file. I keep a separate file 
for each kind of code-one file for QuickDraw stuff, another 
for CDEV samples, and so on. 

:ICH 
. I 

You don't get dirty 
in banks. You go 
home with neckties 
on and not one 
piece of dirt on your 
clothes. 

-John Fay 

Don't think I'm a traitor to the shareware cause. Most aspects 
of Now Utilities started life as shareware, and like many 
people I got hooked on this stuff early. When it went 
commercial, I had to buy it-how else could I get the latest 
features and bug fixes? 

This is sort of like liking the band REM. I liked REM when 
every album held indecipherable gibberish. When the band 
got big, some huge corporation forced the group to became 
listenable. It seems all the other old fans got on the band's 
case for "going commercial". Hey, at least now you can hear 
what they're saying! Is that so bad? It's the same with Now 
Utilities. I love SuperBoomerang even more now, since the 
bugs get fixed regularly! · 

So~ware licenses suck 
Most software comes shrink-wrapped with an annoying little 
sticker on the package that says, "This software is the 
property of the huge MicroStuff conglomerate. You, unworthy 
peon, are only licensing it. You're lucky we even let you do that. 
If you have a problem with it, stick it in your ear." 

A long time ago, in a galaxy far; far away; this was a good 
thing for everyone. If you wrote an incredible accounting 
application (an oxymoron, I realize) for some client, it was 
best to license it. Licensing was good for programmers, 
because it meant they owned their code and it wasn't a work 
for hire, so they could sell it again and again. Licensing was 
good for the client who bought it, because the programmers 
would be tied to them via the license agreement and couldn't 
get away with lousy; buggy software. 



46 i1Jt!!: BYTE's Mac Programmer's Cookbook 

Of course licensing today has different connotations. 
MicroStuff licenses the software to you, and you live with the 
buggy software you (and millions of other schmucks) paid for 
but do not own. Think about it: we as Americans have given 
MicroStuff billions of dollars. MicroStuff has given us nothing 
in return, except the right to use their buggy software until 
they decide to terminate the agreement. 

When the midwest was flooded, many people lost master 
floppy disks of their software. One company in particular 
(which shall remain nameless, but it sells a popular desktop 
publishing application) refused to replace the master disks. 
Even though these folks were registered users, and were in the 
company's database of legit owners, they were refused new 
master disks. "Pony up the bucks for a new copy," the 
company said. Some users even offered to send in blank 
floppies but the company refused to help these folks as well. 

This sucks. Licensing agreements are laughable, insulting, and (if 
there was any justice in this world) indefensible in court. If you're 
a programmer; avoid the temptation to pay some slick la~er 
thousands of dollars to write one. Pol/ow the lead of folks like 
DeltaTau Software, who avoid insulting your intelligence by 
actually selling, not licensing, the software to you. 

The Gloves Come Off 
The rest of this chapter lists useful programs from around 
the shareware universe. I've scanned the world over. I've 
asked around on the Internet. And this is it: the top 
shareware for programmers and hackers. 

Based on the things I see online, most Mac programmers 
don't know about many of the following hacks. That's too 
bad-your efforts can be aided immeasurably by applying a 
specific hack at the right time. 

Get some leverage from the folks who've done the hard work 
for you. These are things that can make your programming 



AppDisk 
APPL 

Altering Reality: Utilities. for a Better Life i!Jt!!: 47 

- -

life easier. Your code will fly off your fingertips. Debugging 
time will whiz by. Life gets good. 

Hack Facts 

Versionl.5 
Mark Adams 

AppDisk is a RAM disk utility. (What's a 
RAM disk? See chapter 3.) Sure, you 
could just use Apple's built-in RAM 
disk, which you control from the 
Memory control panel, but AppDisk has 
several nice features that the control 
panel lacks. 1215 Research Blvd. 

Austin, TX 78759 
$15 

#20 36 
ppDisk is implemented as an 
application. To use it, just double-click 
it. A new disk icon will appear on your 
desktop. To change the amount of 
memory the disk is using, simply 
change the application's memory size 

Tip 

in the "Get Info" box in the Finder. 

AppDisk can save the RAM disk contents when you shut 
down, or it can be set to save every few minutes (if you're as 
anal as I am, you'll like this). This information is saved in the 
data fork of the application, so there are no rogue or 
invisible files hanging around your hard disk just to keep 
your RAM disk contents. 

When using Think Pascal or C, you can substantially speed up 
your program build cycle by placing the project, source code, 
and resource files on a RAM disk. 

~Iii Hack Facts 

BaseToBase 
DMOV (Desk Accessory) 
Remy Malan 
10,760 bytes 

Back in the old days, hackers worth 
their salt could not only count in 
hexadecimal, but add, subtract, 
multiply, and divide in it as well. 
Nowadays, most hackers are like me: 
I'd love to learn how, but since I got 
cable, who has the time? 



48 f!I!!: BYTE's Mac Programmer's Cookbook 

Hexadecimal rock 
The hexadecimal system is, in lay terms, another way of 
counting things. In mathematician's terms, hexadecimal is a 
base 16 numbering system. When you count on your fingers, 
that's base 10. (Base 20 if you use your toes.) In hexadecimal 
you count like this: 1,2,3,4,5,6, 7,8,9,A,B,C,D,E,F,10, 11, 12, 13, 
14,15,16,17,18,19,1A,1B,1C,1D,1E,1F,20. And so on. Hex numbers 
are used extensively in low-level programming and debugging. 

al 

That's why BaseToBase has a hallowed spot in my Apple 
Menu Items folder. I'd much rather watch ten hours of 
mindless TV than learn a valuable skill that could make me a 
more productive person. 

BaseToBase will convert numbers from decimal to hex, octal, 
and binary (see Figure 4-1). You can change on the fly-for 
instance, you can do some calculations in decimal, and then 
switch to hex to see the result. This is very handy for 
tracking down the location of a bitmap in Macsbug. 

S 0 handy are the logical functions: and, not, or, nor, 
xor. If you've ever wondered why· your mask bits 
weren't working right, you probably needed 

something like this. 

I also had one shareware tester laud the benefits of BaseToBase 
as an aid for working with his digital sampling keyboard. 

Figure 4- 1. FFFEA isn't the Federal Fund For Exterminating 
Animals, though there is a nice ring to it. It's 
simply the number 1,048,554 



Altering Reality: Utlllties for a Better Life i1ft!!/: 49 

Although this guy spent way too many hours sampling 
sounds from the Kennedy assassination and World 
Championship Wrestling, he swears BaseToBase made it 
easier. 

Wonder of wonders: this program is a desk accessory. I've 
had it since 1986. And it still works today on my Quadra. 
They don't lie when they tell you to follow Apple's 
programming guidelines! 

~iii- H.ack Facts While Apple provides a simple program 
for editing text, it doesn't have any of 
the features a programmer needs. It 
doesn't open files larger than 32K. It 
doesn't even open more than one file at 
a time. 

BBEdit Lite 
APPL 
Version 2.3.2 
Bare Bones Software 
c!o Rich Siegel BBEdit Lite is an "industrial-strength" 

text editor, made for people who use 
really long text documents-not just 
programmers, but also engineers, 
mathematicians, and others who need 
to view huge text files as shown in 
Figure 4-2. 

1 Larkspur Way #4 
Natick, MA 01760 
Free 
168,793 bytes 

BBEdit is not a word processor-it offers very little flexibility 
in terms of fonts, text sizes, and so forth. That's not what it's 
about. BBEdit Lite was made to munch text files as quickly 
and painlessly as possible. 

If your system has sufficient memory, there's no limit to the 
number of file windows you can have open. There's no limit 
to the length of a file. BBEdit Lite was designed for serious 
text editing. 

These are just some of the features BBEdit Lite gives you: 

• The ability to search all of the files in a folder for a word 
or phrase, even if the files aren't BBEdit Lite files, or 
aren't even text files. Search and replace is easy--and 
even the difficult-to-grok Grep search is an easy-to-use 
option. 



50 ~ BYTE's Mac Programmer's Cookbook 

Tip 

~: i ~h~0~~~~~~u~~~~ !~~ goes in here *I mm 
~ ong t i me ; / * you can change the parameter to be !!Jil1 

I* 
YOUR CODE GOES I N HERE 

*I 

Showi.i i ndow <b i gL.I i ndow ); 
OffsetRect<&r , t, t ); 
i f ( wh i chFrame == Frame 1 > 

wh i chFrame = Frame2; 
else whichFrame = Frame1; 

Ora wP i c t u re < wh i chFrame , &r ) ; 
/I DrawP i c ture ( Frame2, &r); 

return; 

Figure 4-2. BBEdit tells you the date and time you last saved 
the document at the top of the window, so you 
can always remember exactly how much of a 
lifeless troll you've become 

• A "Twiddle" command, which can rearrange two switched 
characters in a typo. 

• Parenthesis balancing, so you don't have to sit around 
and count how many you've typed. 

• Some cool extensions that make commenting out a 
section of code a breeze. Programmers can extend 
BBEdit Lite using code resources they write themselves. 

There is a commercial version of BBEdit, the features of which 
are far too numerous to list here. Suffice it to say that if you 
like BBEdit Lite, you 'll love the commercial BBEdit. And even 
though it's commercial software, it's reasonably priced like 
shareware. Contact Rich Siegel at the above address for more 
information. 

You can use it to edit your C or C++ files in conjunction with 
something like the Think Project Manager, although if you're 



Altering Reality: Utilities for a Better Life i!!!: 51 

oi File Edit TeHt Search EHtensions Windows 

Hearl of Darkness 

Search for: 
MAnylh i ng approach I ng the 

h i s features I hove never se 
to see again . Oh , I wasn ' t t 
It was as t hough a vel I had b 
ivory face the expre:ssion of 
power, of craven terror -- of 
despair . D id he I ive h i s 11 fe 
desire, temptation , and :surre 
preme nomenl of comp l ete know l 
a whisper a l some image, at s 

Replace with: 11 swallowed a bug 

tw .1. c~rrh: ~~~r~\;:s h~~~~~ 
"I b lew the cand le out and I 

gri111s uere di n ing i n the Mss
p I ace oppos i le t he manager, wh 
give me a quest i on i ng g l ance, 
nored. He leaned back, 5erene, 
smi l a of his sealing the unexp 
meanness . A continuous shower 
upon t he lamp, upon t he c lo th , 
f aces . Sudden l 1.1 the manager's 
b I ock head i n the doorway , and 
ing contempt : 

" 'M i s t ah Kurtz -- he dead . ' 

D Match Case 
D Entire Word 
D Wrap Rround 
D Search Backw11rds 

D Multi-File Se11rch 

[ Options ... 

D Grep Patterns: G 

Cancel 

Figure 4-3. BBEdit Lite can open huge text files, in this case 
Joseph Conrad's Heart of Darkness 

going to use it as your only programming editor, I would 
recommend purchasing the commercial version, which 
knows how to read Think Project Manager and Code Warrior 
project files. · 

But even if you're not, I recommend BBEdit Lite for anyone 
who telecommunicates. The Internet is full of huge text files. 
As shown in Figure 4-3, BBEdit Ute's the best way to tame 
them. And you can't beat the price. 

Hack Fact s 
A common frustration for Mac 
programmers, aside from the fact that 
Star Trek comes on but once a day, is 
that file icons never seem to show up 
when you make a new program. 

BNDL Banger 
Ver s i on 1. 2 
Tim Swihart 
P.O. Box· 160643 
Cupertin o, CA 950 16 
Free ($7 f or BNDL Bange r 

What happens is that the Finder's 
invisible Desktop file is not being 
updated; the Finder really has no way 
of knowing that you've just compiled 
and built your masterpiece, and so it 
doesn't load your program's special 

icon (which you doubtless spent far more hours futzing with 



52 , i!t!/: BYTE's Mac Programmer's Cookbook 

Fears for security 
really do louse up 
the free flow of 
information. 

-Cliff Stoll 

than you ever would have spent programming) into the 
Desktop file. 

A simple way to remedy this is to rebuild the Desktop file, 
which you can do by holding down the COMMAND and OPTION 

keys as you reboot or by using a program such as File 
Buddy. However, if you've got a big hard drive (and who 
doesn't these days) this can take a very long time. 

BNDL Banger solves this problem by cleverly inserting your 
program's special icon directly into the Desktop file. It's a 
messy hack that may not survive in future System versions, 
but so what? It works great for now. You still need to reboot, 
but generally that doesn't take nearly as long as rebuilding 
the Desktop file . 

For the measly seven bucks he's asking, Tim will send you 
BNDL Banger Pro, which has additional features and the 
source code. (Remember, source code is Good.) 

Hack Facts This wholesome American beauty 
converts Think Pascal and C project 
files to work with the new Code Warrior 
development environment. Code 
Warrior exploded onto the scene in 
early 1994 with the only compiler for 
PowerPC chips that actually worked on 
Macs. Before that, you had to compile 
PowerPC programs on an IBM 
RS/600workstation. (Gag, vomit, puke.) 

Convert Projects 
APPL 
Version 1. Ob2 
Rich Siegel 
Bare Bones Software 
1 Larkspur Way #4 
Natick, MA 01760 
Internet:bbedit@world. std.com 
CIS: 73051, 3255 
AppleLink: BARE.BONES 
508-651-3561--voice 
508-651-7584--fa x 

Of course, Code Warrior has lost that 
PPC edge, but it still has a cool 
environment (despite the interface 
atrocity of toolbars). Gregory Dow (of 

Free the original Think Class Library fame) 
48. 6 7 4 b!':'!'ly~t'!"'!e~s=~====="'~~ wrote the fantastic class library. It 

compiles both C and Pascal under the 
same umbrella, even for the same 

project, so you can use either code as you go. 

ConvertProjects will take a project file for the Think Project 
Manager and convert it into a project file for the Code 
Warrior. If you decide to take the Code Warrior plunge, this 



Altering Reality: Utilities for a Better Life ~ 53 

Note 

will make your entry as smooth and splash-free as possible. 
Just drag your project file onto ConvertProjects and let go. 

One slap on the wrist for ConvertProjects is that it requires 
the Think Project Manager to operate. This is a pain. Not 
everyone who needs to convert projects has Think Project 
Manager: For instance, I just bought Code Warrior, and never 
bothered to update my Think C to version 6, which means 
ConvertProjects doesn't work for me. 

- -
= Hack Facts CodeSucker, as you can surmise from 

its name, sucks code resources (or any 
other resource) from running 
programs. You can save these sucked 
resources to disk, to examine at your 
leisure. As one of my Internet contacts 
put it, CodeSucker is the program I 
always wanted to write. 

CodeSucker 
Version 
Michael 
Flat 5, 
London, 
$1 

1. 02 
van Kleef 
4 St. Quintin Ave. 
Wl06NU. Engl and 

Figure 4-4 shows proof of wasted RAM: 
Why does my Quadras System use a 
driver that powers a PowerBook's 

backlight? Some Apple engineering whiz kid was asleep at 
the keys. CodeSucker is great for this kind of snooping. Note 
the two lists in Figure 4-4: one lists resource types and the 
other lists individual resources. By selecting a resource type 
and then any one resource, you can save the resource to disk 

CodeSucker Y 1.02 Rsrc File : System 

-16519 .MNP 22006 1 -16517 .LTM 13968 

-16499 . App I eSound ... 3764 !!§• 
• 2 .Print 410 !~ .. ! 

9 .MPP 4920 ;11;!! 
10 .ATP 4214 11 
40 .XPP 3412 

Figure 4-4. Using CodeSucker to find examples of wasted RAM 



54 ~ BYTE's Mac Programmer's Cookbook 

using the Save menu. The File menu will let you switch to 
any open resource file (although this did crash me when I 
switched to font files under System 7). 

This provides a neat way of exploring the inner contents of 
programs you buy. It's also good for examining and 
debugging your own programs as they run. For instance, I 
wrote a program that keeps its current data in a resource 
handle; with CodeSucker, I could save these resources before 
I had a crash to examine their contents. 

Michael van Kleef, the author, points out that this is a great 
way to save readable copies of compressed or encrypted 
resources. Since all resources are compressed by the 
resource manager when the resource is read into memory, 
when you suck a resource out of memory, you can be sure 
it's decompressed. And some programs (games, mostly) use 
encryption algorithms to hide their resources. CodeSucker 
slides around this otherwise impenetrable wall. 

Super geeky bonus: Michael included the source code for this 
FKEY. It's in Pascal (yes!) and you can read through the files for 
a quick tutorial in writing FKEYs or using the List Manager or 
pop-up menus. This (like all source code) is essential reading if 
you're just starting out. 

=im - - This FKEY-author unknown, please 
= Hack Facts send me mail if it's you!-copies the 
CopyRGB RGB values of any color to the 

clipboard. FKEY 
2,236 bytes Activating the FKEY presents you with a 

standard color wheel. You choose the 
color you want, and the correct red, 
green, and blue values are pasted onto 
the clipboard. 

Hmmwmmm1mm~immmm~1mmmrnm This is really handy when you're 
programming at a fast clip and don't 

want to waste time switching into Photoshop or whatever. 



Ctools 
APPL 

Altering Reality: Utilities for a Better Life f!I!!: 55 

You just hit your COPYRGB key to paste the resulting RGB 
values into your program. FKEY is great for anyone who 
programs using Color QuickDraw and QuickDraw GX. 

Hack Facts 

Graham Haddock 

I found this program on the Internet 
when I needed to convert a bunch of C 
routines into Pascal, which is only one 
of its many tricks. Here are just a few 
examples of what this program can do: 

GEnie: G.HADDOCK 
CompuServe: 70611,1530 
Free 

• Format C source code 

• Convert Pascal source into C source 
50,198 bytes 

i!'!ilil'!"!iW'!"lm":!"'mi'-!'iii!'!'im'!':!m'!"lm~'-!"m:!'!'1m'!"!'im'!"lm'!"im'-!'m!'!'mi'!"!'lll'!r.~i =.i~ • Check a C file for balancing {and}, as 
well as correct usage of= versus = = 

• List the program flow for any C file 

• Give variable and function cross-referencing 

Since it uses standard TextEdit in its window, CTools can't 
handle files larger than 32K. The author says in the readme 
file, "Of course, you are never supposed to let your C source 
files get that long anyway." Yeah, right. Earth to Graham! 
Welcome to reality, bud. 

It does everything adequately, and some things poorly. The 
Pascal to C converter requires quite a bit of hand-tuning. 
Luckily, a dialog box warns you of the kind of things to look 
for while hand-tuning, but you can't print or save these 
instructions. The Source code formatter didn't do much in 
the way of formatting. However, it did provide a very 
effective way to crash into the debugger. 

Get it and try it if you think you'll need it but in the end you 
may decide (like me) just to chuck it and do it yourself. It's a 
wonderful idea-a bunch of handy source code massagers in 
a convenient package. It may be useful in certain 
circumstances. Unfortunately, it doesn't live up to its 
potential. 



56 C!Jlft BYTE's Mac Programmer's Cookbook 

-
·.· ffJt.pl(Jj.tcts 

I'm gonna go out on a limb and say that 
the single program that best defines 
the totality of Macness is ... After Dark, 
the screen saver from Berkeley 
Systems. I think more Macs have been 
sold by flying toasters than by, well, 
definitely flying helocars. 

DarkSide of the Mac 
APPL 
Version 3.2 
Tom Dowdy 
1610 Kamsack Dr. 
Sunnyvale, CA 94087 
$15 

Screen savers, as a software genre, 
were born from the fear of a single 
static image burning permanently into 
the phosphors on your monitor (think 
of all those green monitors at your 
local library). But, in the quest for the 

40,551 bytes 

coolest moving images to keep the 
phosphors from burning forever, programmers churned out 
some of the most creati".'e Mac code yet. 

But as much as I love it, After Dark is not perfect. Being an 
extension, it sometimes conflicts with other programs. Also, 
it tends to crash. Sometimes it crashes a lot. 

Enter DarkSide of the Mac. DarkSide provides all of the fun, 
wit, and irreverence of After Dark, without the risk. I like 
DarkSide for two reasons: it's an application, and therefore 
it's a simple conceptual unit; you don't have to worry about 
where to put it or how to use it. 

Also, it crashes much less frequently than After Dark. And in 
those rare instances when it does crash, it just quits to the 
Finder, leaving all of your other programs intact. Since After 
Dark loads into the system heap, odds are it will trash the 
system heap when it crashes. 

True, the art used in DarkSide is not as professional as the 
art featured in After Dark. And while DarkSide imitates many 



Altering Reality: Utilities for a Better Life i!fl!t: 57 

After Dark modules, you'll never be fooled into thinking one 
is the other based on speed and looks alone. But since 
switching to DarkSide, I've crashed a whole lot less, and 
that's all I need to know. 

Hack Facts Files are the heart of the operating 
system-and controlling your files 
means you can control, at least in part, 
the operating system. FileBuddy gives 
you that control. 

FileBuddy 
APPL 
Version 2.0.6 
Laurence Harris 
1100 West Highway 54 

FileBuddy is sort of the Finder's Get 
Info box on steroids. It displays all of 
the file's attributes (things like file 
name, file size, icon, and color). And, 
unlike the Finder, you can change just 
about any file attribute. 

Bypass Apt.29J 
Chapel Hill, NC 27516-2826 
America Online: lharris 
$25 
317,479 bytes For instance, if you need to change a 

file's type or creator (which is 
something you'll want to do more than 

once), you can type the new type or creator code into 
FileBuddy. Can't remember those pesky file codes? Don't 
sweat it. Show FileBuddy an application or file, and 
FileBuddy will use the type or creator code for it. You can 
even change the file's creation or modification date. (If 
you're like me, you can probably think of hundreds of 
morally troubling uses for this feature.) 

The author, Larry Harris, has been very responsive to my 
bug reports, and he's added every feature I've requested. (In 
the interest of fair disclosure, I need to point out that I work 
with Larry, and I've been beta testing FileBuddy since it first 
arrived. That probably helps.) 



58 f!tl!!: BYTE's Mac Programmer's Cookbook 

-

l§!m Hack Facts 
Your Mac's low-memory region is filled 
with fascinating global variables. These 
store all kinds of important values that 
make your Mac tick. Although Apple 
always says to ignore these when 
programming, clearly you can't always 
do that. 

Global Variables 
Viewer 
APPL 
Takashi Suzuki 
338-45 Miyagawa Haruno-cho 
Shuchi-gun Shizuoka, Japan 
Internet:setsu@ 
lab2.yamaha.co.jp 
orGAF03072@ II 

For instance, if you want to hide the 
menu bar in your program, the way to 
do it is to save the old menu bar height 
(which you read from the global 
variable mBarHeight), change the menu 
bar height to 0, and then call 
DrawMenuBar. There's no other way to 
do it (that I've heard of, at least). But 
Apple doesn't support tinkering with 
such low-memory variables, so 
someday this hack may break. 

niftyserve.or.jp 
$10 

111111 
51. 324 bytes 

Notice in Figure 4-5 that GW displays three important things: 
the address of the memory location, its length in bytes, and its 
current value. A description of the value is given also; this is 
very helpful as there are tons of secret memory locations, and 
many are poorly pocumented by Apple. 

Does anybody remember the monkey mentioned in Figure 
4-5? This was a program that would simulate a user by 
sending random events to a program. It acts as sort of a 
virtual user except the monkey could erase files, initialize 
hard drives, and basically totally wreck your computer much 
more efficiently than any virtual user. Anyway, thanks to 

Global Uariables Uiewer 
Name MonkeyL i ves 
Meaning Monkey I i ves if content is >== 0 
Address 0 100 
Leng th 2by tes 
Value FFFF 

Figure 4-5. You can use the arrow keys to scroll through all 
the global variables 

I 
I 



Altering Reality: Utilities for a Better Life Cj!I!!! 59 

GVV, I've had a pleasant reverie, and if I want to bring the 
monkey back, all I gotta do is put a positive number into 
memory location $100. 

You can search for a global variable by using the program's 
Find menu item. For example, you could search for 
t:awmouse and see the variables' values change as you move 
the mouse. 

Hack Facts You will use thousands of Macintosh 
ROM routines in the course of writing a 
Mac program. When programming, it's 
usually easy to remember which 
routine to use-for instance, I'll 
probably never forget that CopyBits 
draws a bitmap. But it's never easy to 
remember all the arguments to any 
particular routine. 

Referential Expansion 
CDEV 
Version 1.0.2 
Chris Prinos 
Internet 
cprinos@symantec.com 
Free 
36,242 bytes Referential Expansion takes care of this 

by looking up the arguments in the 
Think Reference database. When you 
type the name of a routine, and then 

"(?", Referential Expansion looks up the arguments and types 
it into your program. 

For example, typing this: 

CopyBits(? 

gives you these results: 

CopyBits( &srcMap, &destMap. &srcRect, &destRect. 
tMode, maskRgn ) 

If you'd like to read the description of that ROM call, simply 
exchange the "?" for a ">" symbol: 

CopyBits (> 



60 i!Jt!!: BYTE's Mac Programmer's Cookbook 

will open that correct page of Think Reference, and move it 
in front of all other applications. 

Other programs exist that do the same kind of thing, but this 
is my favorite. It's fast and unobtrusive, it doesn't interrupt 
your work flow, and it makes life so much easier. 

Think Reference=lnside Macintosh -
Pain - Agony - Paper Cuts 
Think Reference is a must-have for any Mac programmer. 
You can instantly look up all of the ROM calls from Inside 
Macintosh volumes I through VI. It provides a description, and 
often some very handy sample code (unfortunately, it's in C). 
Plus, you can copy the function templates and paste them 
into your program. 

Referential Expansion works in conjunction with Think 
Reference. You can't use Referential Expansion without it. 

Think Reference is the envy of all Windows programmers. 
Symantec sells it. You should buy it. 

• Hack Facts 
PRAM stands for Parameter RAM, and 
like those little gnomes who spin the 
wheels that make your Mac work, every 
Mac's got some. PRAM is just like 
regular RAM, except it's backed up 

PRAM 
Ve r s i o·n 5 . 0 
Ken Winograd by a battery. 
2039 Country Club Dr. 
Manchester. NH 03102 
Freeware 

When your Mac is turned off or 
unplugged, this memory stays intact. 
Things like the current date and time, 
your background desktop pattern, your 
serial port settings, and so on are 
stored there. 

PRAM (the freeware program) provides 
a way to explore the things stored in this special memory. 
You can see what the speaker volume is, or the number of 
times the menu blinks, or what the current alarm setting is. 



-· 

Altering Reality: Utilities for a Better Life i11!!: 61 

Note 

And you can change all of these settings, too. Usually the 
Finder's control panels offer a much cleaner and easier way 
of changing these settings, but the Finder's for wimps. 
Use PRAM. 

PRAM can also zap the parameter RAM. Sometimes when a 
program crashes, it may do hideous things to the parameter 
RAM and trash all your settings. You'll know this has 
happened if all of a sudden your settings seem wrong. Zapping 
the PRAM is the only way back to safety. 

Hack Facts 

RIPEM Mac 
APPL 

If anyone wants to send secure, 
encrypted, digitally-signed files to 
me, use RIPEM-my public key is 
included later in this chapter. 

Raymond Lau 
Internet: raylau@mit.edu 
Free 

If you don't know what I'm talking 
about, shame on you-you should if 
you're a frequent e-mail user. Electronic 
mail can be easily read by any number 
of people, including your system 
administrator, America Online staff 
people, or sneaky snoopers on the 

156,035 bytes 

Internet, some of whom are quite 
unsavory. Trust me, if you send four or five e-mail messages 
a day, someone, somewhere is reading at least part of it. If 
you doubt this, consider how the Internet works. 

Basically, all e-mail on the Internet is just plain text. 
Although every e-mail has an address and is directed at one 
or several specific users, anyone with system-level access 
can read your mail. Generally, this is okay, since you usually 
trust this person to be honest. But, when you think of the 
Internet as a cross-connection of many, many computers, 
you get a sense of just how many people have access to what 
you write. If you look at the bottom of your Internet e-mail, 
you can see the path your mail message took, bouncing from 
machine to machine as it found its way to you. At each step 
of the way, anyone who wanted to (which includes 
thousands of misanthropic, bored, and maladjusted 



62 ~ BYTE's Mac Programmer's Cookbook 

comp-sci geeks who manage the local university file server) 
could have read your mail. It's just text with an address. All 
they have to do is ignore the address. 

You can run what's called a "snooper," and this program will 
just watch the Internet and return the packets (chunks of data) 
as they flow past your computer. This can be anything: print 
jobs, files being transferred, or directory listings. But it's also 
your e-mail, or (heaven forbid) "private" chat sessions. 

but as the Internet becomes the medium for more and 
more important and sensitive business documents, 
you need to consider what you're sending: Is this 

message something you want your competition to read? Is 

I hold it, that a 
little rebel//on, now 
and then, ie; a good 
thing, and ae; 
necee;e;ary in the 
political world ae; 
e;torme; in the 
phye;ical. 
-Thomae; Jeffere;on 

this correspondence something you want anyone in the 
general public reading? 

The standard analogy is a postcard: all e-mail can be read by 
anyone who carries it. The only way to keep prying eyes out 
is with some sort of envelope. Encryption provides an 
envelope for e-mail. 

I don't carry out illegal activities over the Net. I'm not a 
criminal. But I think my privacy is very important. There are 
many things that I don't want the entire world to know about 
(i.e. new book ideas, my awesome secret family lasagna 
recipe, that I flirt with a friend from college via e-mail). And 
as I conduct more and more business over the Net, I want all 
of my business correspondence to be protected. 

The simple solution to this problem is encryption. If 
encryption can be as easy and painless as possible, then it 
will be used, and the world will be safe for e-mail flirting (or 
whatever). It's not quite that easy yet. The popular program 
MacPGP (Pretty Good Privacy), is about as simple to learn 
and use as a proton accelerator configured in Sanskrit. 
RIPEM Mac is at least as good, and much easier to figure out. 

The slickest feature in both PGP and RIPEM Mac is what's 
known as public-key cryptography. In both programs, 
everyone who uses it makes their own secret password. 



Altering Reality: Utilities for a Better Life i!J!!f: 63 

Traditionally, after you've encrypted something, you have to 
find a way to tell the recipient what the password is. But if 
you could communicate via a secure channel in the first 
place, you wouldn't need to encrypt the message, would you? 

RIPEM Mac and PGP use what's known as a public key. When 
you create your super-secret password, you also create a 
not-so-secret public key. This, as its name implies, is for the 
whole world. You can pass this out with impunity. 

By some arcane mathematical formula, anything encrypted 
with your public key can be decrypted only by your private 
key. So, to send me private mail, you'd encrypt it with my 
public key, which I send to anyone who asks for it. Then, you 
send me the encrypted mail, which looks like gibberish. After I 
get the mail, I decrypt it using my private password. Magic. 

PGP vs. RIPEM 
there are two big contenders for the Mac encryption throne: 
PGP and RIPEM. RIPEM, based on the RSA encryption algorithms 
from RSA Data Security, Inc., was invented in 1977 by Ron 
Rivest, Adi Shamir, and Leonard Adleman. They have licensed 
these algorithms to many big computer companies (such as 
Microsoft, Apple, Sun, and Novell). PGP, on the other hand, was 
created by Phil Zimmerman, on his own time, from his own 
algorithms. RSA claims that Zimmerman's work violates their 
patents; Zimmerman claims that, since he doesn't charge for 
PGP, it violates nothing. 

h. h is better? Well, PGP is probably stronger W 1 C encryption. Since Phil Zimmerman was writing his 
program for himself, he made it as strong as he 

could. RSA, on the other hand, had to satisfy the demands of 
the State Department in order to get an export license. Part 
of what the State Department demands is that the NSA, our 
National Security Agency, be able to decrypt data in other 
countries. So it's a safe bet that PGP is more secure than the 
for-export RSA. 



64 ~ BYTE's Mac Programmer's Cookbook 

But overall, both are pretty secure. To quote from the RIPEM 
Mac manual: 

"By even generous estimates, an attack against a 512-bit key, 
the smallest size supported by RIPEM Mac, would take a few 
years unless mathematical miracles are discovered." 

,• t will be years before anyone breaks these systems, 
so you're safe for at least that long. (If you're 
wondering about key size, go with the largest key 

you can-the larger the key, the more secure the encryption.) 

I have chosen RIPEM Mac for my personal use only because the 
user interface is much, much simpler than PGP's. The 
encryption used in RIPEM is fast becoming the industry 
standard. It's even being incorporated in the Internet's 
upcoming Privacy Enhanced Mail. There are versions for your 
DOS friends to use. But remember, your mileage may vary. 

RIPEM Mac provides some cool features for Mac folks. You 
can encrypt any file, not just text files, which is truly cool. 
RIPEM Mac can be controlled via AppleEvents. The author of 
RIPEM Mac includes QuickKey macros that will automatically 
encrypt text from the clipboard. Also, RIPEM Mac supports 
DES triple-encoding, which means even more security. 

RSA is the engine behind Apple's System 7 Pro encryption. In 
theory, you can cross-crypt between System 7 Pro and RIPEM 
Mac. Encryption is provided automatically in System 7 Pro, and 
as that gets more and more widespread, I think encryption will 
be more accepted. In System 7 Pro, it's so amazingly easy to 
encrypt mail that it doesn't make sense not to. 

Here's my public key. 
If you'd rather not type it in-which i!5 a real pain-15end me 
e-mail (my addre!5!5 i!5 "RobTerrell@aol.com") and I'll mail it 
back to you. 



ROMmie 
APPL 

Altering Reality: Utilities for a Better Life ~ 65 

-----BEGIN PUBLIC KEY----
User: 

Rob Terrell 
PublicKeyinfo: 

MIGcMAoGBFUIAQECAgQAA4GNADCBiQKBgQDU4Pf093g6NVUOFxuROVASGL8 
9QugZ 

/Jh+UvKGD5SZtb2/w2ul2xOLTrSWsYeX24Qb2LgplN70mlyBpfLFshV9zjJ 
+BOHT 

7XUUFwo06kSUdwsoMikClm93Bgd96ylcifGH7nC12fL7kPBlol5aT2Men3i 
AWOPy 
MLy8G3ae53ukhQIDAQAB 
MD50fPublicKey: 40CC406B74716C5DAA72CE77E7219728 
---- -E ND PUBLIC KEY-----

Anyone who wants to send mail that they don't want an 
unintentional audience reading should use RIPEM or PGP, or 
an equivalent program. I don't care which you use (unless 
you want to send secure mail to me!), just pick one horse 
and stick with it. 

Hack Facts 
ROMmie is a tiny application that scans 
your Mac's ROM, makes a list of 
everything it finds, and dumps the 
entire contents to your disk. 

Version 1.0 While it's not legal to do anything with 
this ROM dump (after all, it's still the 
property of Apple Computer) it's fun to 
look through and see what you can find. 

Rolan Misson 
roland.mansson@ldc.lu.se 
Public domain 
32,648 bytes ROMmie outputs a ResEdit file, so 

you can browse through and look at 
the different resources. Check the SND 
resource, which contains interesting 
sounds. Why are they there? 

Only Apple engineers know. 



66 i!fJ!!: BYTE's Mac Programmer's Cookbook 

Also, there have been some hidden pictures of Apple 
engineers stuck in the ROMs of various Macs over the years. 
ROMmie is a great way to find and display these pictures. 

PICT pirates and COEV commander-
sacking through App€3 with ResEdit: ResEdit is the only 
must-have tool I can recommend. Every certified Macgeek 
needs to keep this one handy. 

ResEdit, as its n<?me implies, allows you to edit res. Ha ha. 
I mean, ResEdit allows you to edit resources. Whats a resource? 
If you don't know, then you're definitely on the left side of the bell 
curve for readers of this book, but I'll explain anyway. 

All Mac files-that is, everything on your hard drive-can 
contain two kinds of stuff. Jn the data fork of a file, data gets 
stored (i.e. as I type this book and save it, the words go into 
the data fork of the file). But there's a schizophrenic split, 
and some files also have resource forks. In the resource fork 
you can store icons, pictures, sounds, code.just about 
anything. Applications are generally all resources. Very little 
exists in the data fork of most applications. For a better 
explanation of what resources are, check volume I of Inside 
Macintosh. 

ResEdit lets you snoop inside programs. See that cool picture 
in the About box of Photoshop? Want to lift it for your 
startup screen? No problemo, chief. Copy and Paste in ResEdit 
and you're done. 

ResEdit often is the easiest, most efficient way to 
personalize and modify your Mac and the programs you run on 
that faithful machine of yours. Plus, ResEdit hacks are usually 
extremely visible and can affect some fundamental "look and 
feel" aspects of programs, making it seem as though you did 
a lot more work than you actually did, which in turn can make 
you seem far brighter; which in turn can help to win over 
potential mates. 



Altering Reality: Utilities for a Better Life i:!tt!!: 67 

All of that is true up until that last part, sadly. But you really 
can use ResEdit for quick, fun hacks. In the System file itself, 
for example, some simple and fun icon-related hacks can be 
quite safely made. (Keep in mind this is your System file I'm 
talking about, so don't go nuts.) For example, let's say you 
had a special symbol or your initials, or something like that 
that you would just love to have on all of your folders. Sure, 
you could just use System 7's Get Info copy-and-paste 
method to change icon types after you've toyed with the icon 
in some image-manipulation program, but then you would have 
to cut and paste every time you created a new folder. What 
a hassle. 

Open up ResEdit instead. Then open your System file, OK your 
way through the warnings, and find the icon marked ICL8. 
Double-click on that. You should see a big screen full of all of 
the icons the System normally uses. Just pick the one you 
want to modify, in this case the folder; and click twice on it. 
You'll see more warnings. Just, you know, accept them. Now 
look! A nifty icon-editing window! Change the icon as you wish, 
close the window, and boom! Custom icons, always ready. The 
floppy icon is also good to change, and it's always fun to put 
yucky stuff dripping out of the trash as well. Maybe add some 
flies, too. 

One note 
My friend modified the Centris 610 icon so it would be his 
custom one in the "About This Macintosh" window. It never 
worked. The icon appeared all weird. Nothing else, though. 

ResEdit is also useful for modifying other software. Take the 
popular shareware screen saver; DarkSide. DarkSide has a 
module called "Snowblower" which has this nice animation of 
snow blowing out of this blocky and boring looking Binford 
snowblower. With ResEdit, a friend who digs VWs found the 
PICT files for that module, and pasted a picture of his bug 
over the boring snowblower. Now, when his screen saver kicks 
in, there's a nice personal image of his yellow bug with some 
weasel leaning out the window spraying everywhere. 



68 i!J!!!: BYTE's Mac Programmer's Cookbook 

§!W Hack Facts r-

At some point, every Mac developer 
will need to make an installer. The 
Apple Installer-that thing you ran 
when you first got your computer, or 
whenever you get new software from 
Apple-provides a simple, friendly 
interface and a painless user 
experience. Most Mac users have no 
problem using the Apple Installer. 

Sc r i ptGe n 
APPL 
Version 2.1. 3 
Jeff Benjamin 
StepUp Software 
3883 Turtle Creek Blvd . 
Penthou se 10 
Dalla s , TX 75219 
Voice: 214-520-7717 
Applelink: StepUp 
$25/I ndi vi duals 
$SO/Organization 
820,009 ·bytes 

Contrast this with programmers, who 
have great problems working with the 
Apple Installer. The internal workings 
of the Installer are pure hell 
incarnate-a weird stew of odd 
resource types that must be created 
with exactly the right IDs. It's very 
difficult to make one right. 

ScriptGen provides a simple, intuitive, 
point-and-click way to create those Installer resources. In 
short, you load up the floppies, decide where everything will 
be saved on the user's hard drive, and save the script. 
ScriptGen creates the necessary Installer file, and you're 
ready to go! 

Of course nothing is that simple. There're tons of options: 
you can create a splash screen for your installer (and 
ScriptGen even provides painting tools to do this, as Figure 
4-6 shows). 

There's no better way to create installer scripts than ScriptGen. 
And using Apple's installer is a good idea for your beleaguered 
users, who have to figure out how to use all this stuff. 

ScriptGen vs. ScriptGen Pro 
Whereas ScriptGen is a shareware product, ScriptGen Pro is 
a commercial product written by the same author. Many 
users believe it provides an even easier interface with more 
control over the installer scripts it generates. 

Also, Aladdin Software offers lnstallerMaker, which is based 
on its Stufflt technology. lnstallerMaker is no harder to 



Altering Reality: Utilities for a Better Life ~ 69 

This will install the files for the Mac Programmer's Cookbook 

Draw your splash screen wi thin the box. 

[gl Include splosh screen 
l( OK )J 

Figure 4-6. ScriptGen gives you painting tools to create your 
installer's splash screen 

master than Stufflt Deluxe, but it creates very powerful 
installer programs. Plus, it will compress all of the files you're 
installing, so it saves on floppy disks. 

~· Hack Facts 
When System 7 came out, it included the 
Process Manager. This example of 
toolbox wizardry gave Mac users 
something UNIX programmers enjoyed 
for years: the ability to ask the system 
about the programs that were 
running-called processes, or tasks-and 
find out how much RAM they were using, 
or how much processor time they were 
bogging down. 

Task-It 
APPL 
Version 1. Odl 
130,690 bytes 

Note 
UNIX is the operating system used most by universities, 
researchers, and government sites. Most high-end 
workstations (Silicon Graphics, Sun Microsystems, and so 
forth) come with UNIX. You can get UNIX for your Macintosh, 
but I don't recommend it since there's no real advantage to 
using it on the Mac. 



70 i!fti!: BYTE's Mac Programmer's Cookbook 

Task-It gives a glimpse inside the Process Manager. It shows 
a window that lists all of the current processes. And, as 
shown in Figure 4-7, Task-It can tell you which program is 
taking all the processor's time. 

Note in Figure 4-7 the listings for "File Sharing Extension" 
and "Express Modem." The small ".B" character in front of 
these indicates that the process is running in the 
background, and hence there's no way to call it to the front 
or interact with it. Sometimes you'll want to quit these 
background processes. But how can you, since there's no 
way to interact with them? 

Task-It can stop a process at any time. By selecting a process 
and then performing Kill Process (under the "Action" pop-up 
menu), the process will be sent to the great RAM disk in the sky. 

Also note that this is a way to turn off file sharing-just kill the 
"File Sharing Extension" process. It niay not be as easy as using 
the Sharing Setup control panel, but it'll impress your friends 
that much more, especially if you toss around some serious 
techno-jargon while you're doing it. ("I would use the control 
panel, but all the diatronic waves are reversing the polarity.") 
Then again, they'll probably just think you're a geek. 

Task 

l2J Finder 

li!f'.l Fi le Sharing Ex tensi on 

!!ii (l Express Modem 

I! Dar kSide 

~ Microsof t Wor d 

~ BaseToBase 

ITask-Itl l Action Tl 

Type Crt Time 
FNDR MACS 2 :44 

INIT hhgg 0:05 

cdev 3615 0 :20 

APPL DSOM 0 : 14 

APPL MSWD 1:47 

dfi I movr 1:32 

Total Memory: 32768K 

- Free Memory : 24155K 

Hog Free Heap 
018 23K 324K 

018 23K 167K 

818 52K 433K 

718 267K 300K 

118 766K 2048K 

4018 7K 1gK 

Figure 4-7. Task-It's window Jets you see which program is 
hogging the processor time 

0;; 

~ 

~ ..(} 



Altering Reality: Utilities for a Better Life i:ft!!: 71 

-

Hack Facts 

Hell's Programmer Font 
FFIL (Font) 
Version 1.1 
Paul Cunningham 
P.O. Bo x 1923 
Mango, FL 33550-1923 
CompuServe: 75020,3540 
Internet: 75020.3540@ 
compuserve.com 

Since time immemorial (which means 
1984 on the Macintosh), programmers 
as a rule have been using the Monaco 
font to display their code. Why use 
such a boring, mundane font? Well, the 
.answer is steeped in history. The Mac 
was the first computer to use 

1111 !!~~~;~~~~~e~,:::::::::~~, 
ff.- heard many people ask, "But can it 

::l!~~m1 ..... ml!'!rnl""'m ..... m:~:i~il!'!m~mi ..... ml!'![W""'m ..... m,!T!':w""'[!f~~m ..... m""'ill~~~\li!'-1 ~}~ic~~i :~s~0~~~~ss .. ~~~~~t;~~~~hiee 's 

Monaco font," although it should have 
been "yes, but why in God's name would you want to?" The 
80-column display was a barbaric convention forced upon us 
by the limitations of early computers. Proportionally spaced 
type, which is the way type appears in newspapers, 
magazines, and this book among others, feels much 
more natural. 

Programmers know the usefulness of monospaced type. If you 
are writing a program, it helps to line up sections of code at 
the same horizontal tab mark. And most programming editors 
don't deal with proportional fonts very well. 

The problem with Monaco is that it's remained unchanged 
since 1984, and it contains the same oversights it had back 
then. For instance, the number 1 and the letter I are 
indistinguishable from one another. The zero and the capital 
0 are also identical. And there's no support for the 
nonstandard Mac menu bar characters. 

Hell's Programmer Font solves these problems nicely. It 
starts with the basic Monaco font, with the characters spaced 
a little bit tighter, so you can see more lines of code in a 
window. It then adds distinguishing marks to similar-looking 
characters, such as a slash to the zero. And it also adds 
control characters, so you can see when you've typed a 
CONTROL-L (which is a line feed) into a text string. 



72 ~ BYTE's Mac Programmer's Cookbook 

No matter what language you program in, you will find this 
font useful. 

§§ l Hack Facts On Macs with small screens
PowerBooks especially-windows tend 
to proliferate. And it always seems that 
the window you want is piled under 
tons of other windows. 

WindowShade 
CDEV 
Version 1.2 
Rob Johnston 
26,192 bytes 

WindowShade can help. This control 
panel watches your mouse clicks and, 
when you double-click in a window's 
title bar, it shrinks the window down to 
just the title bar. 

You can still drag this title bar around. 
It's still a window in the respect that you can reorder it with 
other windows, or close it, or zoom it. But until you 
double-click in the title bar, its contents are hidden. 

You can choose to have a sound play-an appropriate 
"shoop"-when the window is shrunken or expanded. I've 
found that this level of tactile feedback really helps new 
users understand what has just happened. 

For programmers especially-for whom there are endless 
windows filled with source code files-WindowShade is 
a godsend. 

~iii Hack Facts' - Inside the Macintosh, every application 
runs in its own "heap zone." If you 
wanted to look at the heap, 
traditionally you'd explore it with a 
debugger such as Macsbug. But thanks 
to ZoneRanger, you can do it just by 
pointing and clicking. 

ZoneRanger 
APPL 
Version 1.0.0 
Joshua Golub 
62 Timber Hill Rd. 
Buffalo Grove, IL 60089 
(Voice) 708-304 -7573 
golub@sgi.siemens.com 
171,361 bytes !Iii 

ZoneRanger lists all of the currently 
running programs in its Overview 
window, as shown in Figure 4-8. You 
can see a graphical representation of 
the amount of memory a program is 
using (as in "About the Finder" from the 
Finder's Apple menu). You also can see 



Altering Reality: Utilities for a Better Life [!!!!: 73 

the number of different types of memory blocks. For 
instance, in Figure 4-8, the Finder has allocated only 12 
pointers. That's pretty good (competent programmers use 
handles instead of pointers, since handles are relocatable 
blocks). 

Pointere; ve;. hand/ee; 
Pointer = indicates the starting address of a block of memory. 
This memory can't be moved by the system, or else when you 
tried to use the pointer, it would be invalid. 
Handle = indicates a pointer to an area of memory. This 
memory can be moved, since using the handle instead of the -
pointer allows the pointer to be changed willy-nilly by the 
system. 
Confused? Read Inside Macintosh: Memory (Addison Wesley, 
New York, 1992). 

s File Edit Configure Special 

Name Free Blocks Pointers Handles ... i 

~ System 229 569 2778 271 

~ Mui tifinder 6 2 107 36 

~ Finder 21 12 116 14 

~ Express Modem 7 25 23 17 

241 

13 

46 

11 

279 

0 

65 

12 

~ DarkSide 18 51 1 3 _._~_!__-2.._~7 

~ M i croso ft Word 

~ Fi le Buddy 2.0 ... 

~ TeachTex t 

~ ZoneRonger 1. 0 ... 

18 Zone : OarkS i de 70 
Count: 5 

52 Size: 1264 56 

29 · ~ype ···· ··········~i·;~···~-~~;·~~p~·····; ~· ~·;~·~·· 13 

12 ...... . ............................................. ··································· 15 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 

0 lions ... 

272 • . 
272 •. 
272 • 
272 • 
176 •. 

Figure 4·8. ZoneRanger shows the various types of blocks of 
memory in an interactive, easy-to-browse fashion 



74 f!t1!!: BYTE's Mac Programmer's Cookbook 

ZoneRanger can do three things to a heap zone: 

• Compact it, which moves relocatable blocks so that a 
large chunk of contiguous memory is available. 

• Purge it, which deletes all purgeable and unlocked 
handles. 

• Compact and Purge, to see the maximum amount of 
memory available in your program's heap. 

ZoneRanger also lets you open a graphical view of any heap 
zone. Pointers and handles are shown in different colors. 
Locked, purgeable, and resource bits of handles are shown 
via special highlight colors. By clicking on any block, you 
can see the block's address and other flag bits. Also, clicking 
on a block shows some of the data stored in that block. You 
can dump that data to a disk file or the clipboard for further 
study. As shown in Figure 4-9, ZoneRanger shows a memory 
map of the program in question. When you click on a block 
of memory, it shows the actual data held by each block; you 

DarkSide 

Type : Handle 
Size : 24 bytes 
Addr : 003 1790564 

8000 OOOC I 12 unused bytes 
0000 0030 I 48 phys i ca I bytes 
0000 2044 I master po i n ter offset 

0000 ooo 1 0000 ooo 1 I 
0000 FFFF FFFF FFFF I 
ooo 1 0000 0000 0000 I 
140C 140C 180C 180C I 
180C 180C 8000 oooc I 

Figure 4-9. ZoneRanger shows a memory map of the 
program DarkSide 



Altering Reality: Utilities for a Better Life i!Jti!: 75 

can dump the listing to the clipboard or a file for further 
examination. Notice all the diamonds on the top of the 
screen in Figure 4-9: these indicate that the block is from a 
resource file. 

the one fault I have with ZoneRanger is that the 
amount of free space is not immediately obvious. 
Knowing how much space you have would be 

helpful for those times when you're trying to track down 
memory leaks. 

Coming Up Next-Getting External 
In Chapter 5, we'll be surveying a wide range of external 
commands for use with HyperCard, AppleScript, and other 
programming environments. If you've ever spent hours 
trying to custom-craft a special piece of code to take care of 
a problem that you're sure everyone else has encountered as 
well, then the odds are someone else has already solved the 
problem. Check out the external commands in the next 
chapter if you still doubt me. 



011010 11000110 0011010 11001001 100010001 

11010 11000110 0011010 11001001 100010001 

0011010 11001001 100010001 

The Hard Stun 



External Commands= 
Help for the Working 
Stiff 

A friend of mine is a big fan of Volkswagen Beetles. His little 
yellow bug is less a method of locomotion than it is a hobby. 
His somewhat blind love for those odd little cars causes him, 
knowingly or not, to analogize nearly anything born, forged, 
or smelt into the terms of the VW Bug. 

Usually when he does this I dismiss it with a roll of my eyes 
and that finger-gagging motion or sometimes I twirl my 
index finger next to my ear in the international gesture for 
insanity. But recently, he had an analogy that actually came 
close to being useful-one that was astute enough for me 
not to attribute it to the sad rantings of a machine-obsessed 
madman. It dealt with things called external commands. 

External commands, or XCMDs, are electronic beasts that 
work with high-level languages, such as HyperTalk, to help 
them (and you) use these scripting tongues to do things 
their original builders never thought you could do. These 
external commands (ranted my friend) are a lot like 
third-party and aftermarket accessories to his beloved 
Volkswagen. 

79 



80 ~ BYTE's Mac Programmer's Cookbook 

Load the code 
Externals are code resources-technically, they are resources 
of type code. To use them in a HyperCard stack, open both the 
stack and the external command file in ResEdit. Simply copy 
the code resource from the external command file into the 
stack you need it in. The name of the code resource is the 
actual command you type in HyperCard to make it work. 

For example, the external "Flash", which flashes the Mac's 
screen, is a code resource named (oddly enough) "Flash". The 
resource ID doesn't matter; just make sure it doesn't conflict 
with any other code resources. 

You can add code resources to a HyperCard stack until you 
run out of disk space or the resource manager can't handle 
any more stuff, which in my experience is around 15 MB. 

When the Volkswagen was first built out of the ruins of a 
war-torn factory in Wolfsburg, no one thought it would be 
popular. Were they ever wrong! Just remember, there's never 
been a series of Disney movies about a sentient Corvair. 
Anyway, as much as people loved the bug, and as tough and 
fine a car as it was, it had limitations that the factory had no 
pressing urge to address. So others did. 

Want to make your little four-cylinder bug go faster? Easy. 
Look through one of the many aftermarket catalogs and pick 
up a dual-carb system, some headers, a mechanical-advance 
distributor, or maybe some bigger bolt-on cylinders. Want to 
make it last longer? Order an external oil cooler. Go through 
deep mud? A limited-slip transaxle. Too cold? A gas heater. 
Not funky enough? Headlight visors. And so on. 

Quote 
A watch that's fast, that's ahead, at least it keeps time. But 
a watch that's behind doesn't keep time, you know that. 

-Bill Hughes 

All of these add-ons are the Volkswagen equivalent of XCMDs. 
The original doesn't quite do what you need, the company 
doesn't really care, and you can't fake it, so build it and bolt 



External Commands: Help for the Working Stiff ~ 81 . 

it on. Just make sure it hooks up in all the right places, and 
you're set. Whether it's a color TIFF in HyperCard or a 6-to-12 
volt converter for your old '61, it's the same principle. One's 
better for desktop publishing, but the other one's louder. 

I hear some guy in Seattle converts bugs to electrical power, 
so maybe someday high-level scripting languages and VWs 
will converge. Maybe. 

Volksware: HyperCard, 40, and 
So Forth 

3CH 
. I 

Copy It ace 

We go about our 
daily lives 
understanding 
almost nothing of 
the world. 

--Carl Sagan 

Let's say you're just getting into programming the Mac. Let's 
say you have little or no programming experience. And let's 
say you have a life and can't spend the rest of the summer 
learning how to do this stuff. 

What you need is a tool-something that does 90 percent of 
the programming for you. Like the fabled Volkswagen, you 
need something you can add attachments to until you've got 
the super-coup of your dreams. 

You can do so much with an environment like HyperCard, 
but sometimes there are things you just can't do. There are 
certain things, usually dealing directly with the Macintosh 
Toolbox ROMs, that you'll need external commands to 
handle. Don't sweat it. That's why we're at Chapter 5. 

Believe it or not, you can create some amazing programs 
using these tools. The company I work for has shipped 
several commercial products based on both HyperCard and 
4D. Not every problem can be solved in HyperCard or 4D; 
sometimes you've just got to bite the bullet and do it in C or 
Pascal (or hire some code warrior to do it for you). 

But sometimes you can straddle the line, write most of your 
cool program in something quick, easy, and painless like 
HyperCard, and do the rest through external commands. 
Plus, you can get external commands for more than just 



82 't BYTE's Mac Programmer's Cookbook 

HyperCard. Just about every scripting-language-based tool 
supports external commands, including: 

• AppleScript Apple's system-wide scripting language 
loads external commands from "Scripting Addition" files 
(which technically are known as OSAXes or by the more 
hip but silly plural OSAXen). · 

• 4th Dimension This popular database program 
supports 4DEXes (which is just the company's name for 
an external command). Sadly, there is not a large 
collection of high-quality 4DEXes out there in netland. 

• Foxbase Pro Microsoft's entry in the database wars can 
use XCMDs created for the older versions of HyperCard 
(that is, XCMDs that don't try to create special external 
windows). 

Since HyperCard has been wildly popular, there are tons 
more XCMDs for it than there are 4DEXes for 4th Dimension. 
Since AppleScript is fairly new, there's not yet a wide range 
of external commands to choose from. However, with these 
external commands, you can still do powerful new things in 
any of the environments, such as: 

• open new windows to display text or pictures 

• scan the hard drive for files, or get the contents of folders 

• connect to servers over AppleShare or even TCP /IP 

And so on. The whole point of external commands is to give 
you the power to improve the system. The designers 
couldn't anticipate everything, so they gave a reasonable 
amount of functionality. If you need more, hey, go build it 
yourself and tack it on. It's totally modular. 

Building your own XCMO with tools you have 
around the home 
Creating external commande; ie; addictive. It'@ not a terribly 
difficult programming tae;k, e;ince by definition moe;t externale; 



External Commands: Help for the Working Stiff ~ 83 

are short, sweet, one-hit wonders. Although it's a little bit 
different for every environment, a few basic principles remain 
the same. 

In a nutshell, an external command is just a code resource; 
there's no header; the first thing in the resource is the first 
instruction. (Compare this to the business of writing desk 
accessories or drivers, which can use complicated headers.) 

Your externals can receive parameters. In OSAXen, you must 
unwrap your parameters from their Apple Event Containers. In 
HyperCard, up to 16 parameters are given to your XCMD in a 
big array. 

All Mac compilers will generate a single code resource from 
your program. If your external command gets really big, you 
can find yourself over the 32K limit for code resources. The 
Think compilers have an option to generate code resources 
that break the 32K limit. It's quite painless to use, and as a 
bonus, you get to use global variables (which code resources 
normally can't access). 

The actual hows and whys can get pretty complicated, and 
really is the subject of another book. In fact, Gary Bond's 
XCMDs for HyperCard (MIS Press: Portland, Oregon, 1988), 
although out of date, is a great source to learn more about 
how and why. 

Also, check online or with your favorite neighborhood 
SmartFriend. 

Mac-Crazed University + Cheap Student 
Labor = Externals with Zing! 

Dartmouth was one of the first schools that Apple seeded 
with Macintoshes, and has been a hotbed of Mac fanaticism 
ever since. Dartmouth's computer whizzes have produced 
some incredible teaching tools and more than their share of 
shareware, as well as multimedia student orientation guides 
long before "multimedia" became a corporate buzzword. 



84 " BYTE's Mac Programmer's Cookbook 

HyperCard also has been the object of fanatical reverence at 
Dartmouth. Its strengths and weaknesses were discovered 
long ago, and over time a whole series of XCMDs were 
developed to overcome these limitations. (See Figure 5-1.) 

Many of the XCMDs show their age. For instance, the 
commands that let you create your own menus in the menu 
bar are definitely outdated-HyperCard's had that capability 
since version 2.0 came out many years ago. 

All of the authors are affiliated with Dartmouth. You can use 
these XCMDs freely in your own stacks, but any commercial 
distribution requires an agreement with Dartmouth. 

Quote 
This was for me the greatest contradiction in my life; getting 
money for showing up at campus to tell students to burn 
down their schools. 

I* lniiia1ize the window . *I 

void XCMDlnit'b'indow(void) 
{ 

int wid1h,heigh1; 
Red r ; 
Re10t vReot~dRe-ct; 
Handle- scriee-nRe-ctH; 
XCmdPlr savePlr ; 
Windo'Yt'Ptr savt-\T"iridow; 
Slatio01obal5H >0Ye-GH; 

-Jerry Rubin 

I* r.eot dime-nsions * / 
f« utility reot ~r 

I* TE r eels +/ 
I* hc!indle to the :screen re-ct from HC *I 

/+remember the globals handle +I 
(('tlindowPeek)g'tlindow)->rofCoo = (long)gH; 

/+ iniii•li•• sorolling * r 

Figure 5-1. The Dartmouth collection includes source code 
for most of the XCMDs 



External Commands: Help for the Working Stiff ~ 85 

The authors of the XCMDs are all HyperCard experts. Some 
XCMDs were created by Kevin Calhoun, who later became 
Apple's lead engineer on the HyperCard 2.1 project. 

The following is the full list of XCMDs with short 
· descriptions of each: 

XCMD 

AuxActive Returns TRUE if A/UX (Apple's UNIX) is currently 
running. 

Reaqs and writes binary (i.e. non~text) files. 
Useful if you want ~o read another program's data 
files. 

ChooserName Returns the user's name as it is stored in the 
Chooser (System 6) or the Sharing Setup control 
panel (System 7). 

Clipboard Lets you get or se.t the clipboard contents (text 
only-; sor , no ictures). 

ClipToPICT Creates a PICT resource from the image on the 
clipboard, and adds it to the current stack's 
resource fork. 

CompareStrings Performs a case-sensitive comparison of two 
strings, and returns the range of ,characters that 
do not match. 

ConvertDate Works like HyperCard's standard date conversion 
routines, but works for a larger range of dates. 
Instead of January 1, 1904 to February 6, 2040, 
ConvertDate works from January 1, 0001 to -
December 31, 9999. 

DeleteResfork Deletes the resource fork of a stack while leaving 
the data fork untouched; good for a total 
cleansing of all icons, pictures, and other junk that 
accumulates there. 

DelimitedChunk Gets an item in a text string, given t'he chara~er 
used to delimit the items. Not so useful since you 
can now (since version 2.0) set HyperCard's item 
delimiter ourself. 

EditWindow Opens an editable text window. 



86 ~ BYTE's Mac Programmer's Cookbook 

XCMD 

FileToClip 

FileToField 

FileToPICTRes 

FindlnField 

Find Key 

GetFieldText.: 
DisposeFieldText, 
SetFieldText 

GetResources 

HC Utilities· 

HyperFolder 

LastVisibleChar 

· DESCRIPTIO!li 

Copies a text file to the clipboard. 

Co~ies a text file to a given field. 

Copies a picture from a PICT or PTNG file, and 
adds the resource to the current stack. 

f,indsthe given string in a 'field . Returns the. 
character offset where the strin be ins. 

Searches the given field for a character string. 
Unlike FindlnField, you can specify the character 
position to start from. 

These three commands let you copy styled text 
between fields. 

Copies all XCMD, XFCN, and other specified 
resources from a source file into the current stack. 

These are a set of low-level C functions that 
XCMD authors mi ht find useful. 

Returns the path to the currently running copy of 
HyperCard. Useful? Probably not. 

Returns the position of the last character that can 
be seen in a text field. 

J..eaftQame ' Removes the:P.ath from a filename. 

ListDialog Displays a dialog with a list box. You can specify 
several optional buttons as well. Returns the 
selection of the list, and the name of the button 
that was pressed. 

MenuHandler Adds a menu to HyperCard's menu bar. 
~~----~~~--.--~~~--~--~ ........ ,...._---~-· 

ModalDialog Displays any dialog box stored in a DLOG 

MultiSort 

ObjectExists 

resources in the current stack. 

Sorts the contents of a field by any item of each 
line. Works numerically and alphabetically, in both 
descending and ascending order. 

Returns TRUE if the specified object actually 
exists. 



External Commands: Help for the Working Stiff ~ 87 

XCMD 

Password 

PICTFileToRes 

PictureShow, 
PictureHide 

Poplist , 

Printfield 

PrintPictRes 

RandOrder 

ReplaceChar 

Res List 

Rinstall 

Serial Handler 

SizeCardWindow 

Sortfield 

SortFieldByltem 

System Folder 

TD Window 

TextStream 

WritePermission 

Wrl.teToFlle 

DESCRIPTION 

Hides the password as you type it, unlike 
HyperCard's Password command. 

Creates a PICT resource from a PICT file. 

Displays a picture in a window, and hides the 
window. 

Creates a popup menu that displays the text you 
s ecify. 

Prints the contents of a field. 

Reorders a container randomly by word, line, or 
character. 

Sf!ar.ches tnrougfi the text iA a containerfor a 
sp~cified string, and optionally replaces it with 
another string: 

Replaces all occurrences of one character with 
another. 

Usts the resources in a file. 

Copies any resource to any specified file. 

OQens, reads from, writes to, and closes the serial 
rts. 

Sorts a field based on an item of each line. 

Returns the path to the currently active system 
folder. 

Displays styled text in a window. 

Dumps text items directly !t6 your laser Rrinter for 
output; is much faster than other printing 
methods, but uses the printer's default font 
<usually Courier). 

Returns TRUE if the specified file can be written to. 

Dumps a container to a text file. 



88 ~ BYTE's Mac Programmer's Cookbook 

Although many of the Dartmouth XCMDs righted wrongs that 
were rectified in later versions of HyperCard, there are still 
some gems and jewels among them. I'm especially fond of 
these XCMDs: 

• Clipboard because I often want to dump some variable 
to the clipboard. 

• SerialHandler because it's small and an easy-to-use way 
to send serial data from HyperCard. 

Check them out yourself, and see which you add to your 
collection. If you use any of them in a commercial stack, 
don't forget to contact Dartmouth regarding licensing issues. 

Hack Facts One of the oldest collections of externals 
for HyperCard has to be Developer Stack. 
Developer Stack boasts a simple interface. 
You can scroll the collection of externals 
and, if you like, try them out as you go. 
You don't have to guess about whether an 
external will suit your purpose! 

Developer Stack 
STAK 
Version 1.3r 
Steve Drazga (individual 
contributions are credited 
individually) 
P.O. Box 388 
Southampton, PA 18966 
215-750-0792-voice 
GEnie: S.DRAZGA 
CompuServe: 76530,1107 
Free 
676,980 bytes 

I like this collection's breadth. It offers a 
little bit of everything, but it doesn't push 
the size envelope. One of my favorites in 
here is OSErr. Simply pass OSErr an error 
code (from any other XCMD or from 
HyperCard) and it will display a dialog box 
that explains the error in sane English 
instead of computerese. 

Over time, many people have contributed 
to Developer Stack. It's a well-known 
resource for XCMD writers and users. If 

you've written an XCMD that you think the world should 
know about, send it to Steve at one of the addresses given in 
the Hack Fact. 

One problem: under HyperCard 2.2, the index buttons don't 
work (look at the seven buttons along the bottom of the 
window shown in Figure 5-2). For some reason, the 
DialogList external displays give you one very long line 



External Commands: Help for the Working Stiff ~ 89 

Deueloper Stack I .3r 

ShutDown XCMD 

Figure 5-2. 

O Syntax: 0 
When called, this command wm provide 
the same function as selecting 'Shut Down' ... ,. 
from the finder. ··· · 

Thanks to : 
\/ill Cate 
Gaithersburg, MD 

On CompuServe: 71360 ,3122 
On GEnie: II.CATE 
Twighlight Clon• BBS : 

Install 

Resource Mouer 

! ! 
XFCNs... XCMDS ... 

No arguments or variables are passed to it. 

As you browse the Developer Stack, you can use 
the "install" button to copy the commands you 
like into your own stacks 

containing all of the items, instead of a list of items that you can 
select from. Bummer, dude. Let's hope Steve gets on this soon. 

AboutMe CheckMenu 

Alert CheckString 

Arrow Keys Cl ipToPICTRes 

ART HyperText Trick Color 

Auto Scroll CombineFile 

BarButton Commands 

ChangeCase Comm I nit 

ChangeFileType Comm Read 

ChangeMenu Comm Write 

ChangeObjectlayer CompactStacks 



90 ~ BYTE's Mac Programmer's Cookbook 

Constants FormatNum 

Control Structures FormatNumPadded 

convertDate FormatPhoneNum 

CopyFile Functions 

CStoHCdateconversion GetDANames 

daysBetweenDates GetFullPath 

Delete File GetVolume 

DeleteFile2 HPopUpMenu 

DeleteMenu HyperSND 

De Protect Import 

DispPict lmportPict 

Do gear initial Caps 

Do list lnitMidi 

do Restart In Key 

Dragon lnsertl nlist 

DrawPict Interpolate 

Ejector isRunning 

EnableMenu LastOffset 

FileAtRoot LastPathComponent 

FileCreator LastPathltem 

FileExists LineNumber 

File length lower 

FileModDate massCompact 

File Name Menu Bar 

Files Merge Stacks 

File Type More Dog Ears 

FileVisFlag MoveFile 

FontName Multi Finder 

FontSizesize MungeMCTB 



External Commands: Help for the Working Stiff ~ 91 

NewFileName send Serial 

NewMenu SetFile 

noButtonDelete SetVolume 

noFieldDelete ShowMenu 

NumberofChars ShowScripts 

NumberOfDAs ShutDown 

OS Err Slider 

Path Items sortltems 

Pin Pointer SortReals 

Pop Up SortRealsl I 

PopUpMenu SoundCapToRes 

PowerCreate Speak 

Power Toggle Std File 

PrintClip Strip 

Progress StripNum 

Properties Stripper 

Read Cat sublaunch 

~enameFile Sum Int 

ResCopy System Messages 

ResetMIDI Tabs2Spaces 

ResetPrinter Talk 

Resources Text Import 

ReturnkeylnField the Pixel 

rnd Title Bar 

RxMIDI TxMIDI 

Screen Size upper 

Scroll Text Button 1 VolumeName 

ScrollingFields ZipCheck 

Self Naming Button 



92 ~ BYTE's Mac Programmer's Cookbook 

- . Hack Facts Trust me, you don't want to write TIFF 
file reading code; it's a huge chore. I 
did it-once. I'll never do it 
again-mainly because I can reuse my 
code. But you can't reuse my code, or 
I'll sue you till your ears bleed, so you 
need a tool like TIFFWindow. 

TiffWindow XCMD 
STAK 
Version 1.1 
Robert Morris 
P.O. Bo x 1044 
Harvard Square Station 
Cambridge , MA 02238 
ecognome@aol.com II 

And this tool is a breeze to use. This 
XCMD opens a window to display a TIFF 
file. You jwst specify the file to be 
opened and a bunch of parameters for 
the window: size, location, zoom level, 
and so on. 

$2 for commercial 
distribution 

TIFF= Tagged Image File Format 
ff FF is a picture file format that is supposedly 
platform-independent, resolution-independent, and 
colorspace-model-independent. In practice it's actually pretty 
darn dependent, but still it's one of the most popular 
bitmapped graphics file formats. 

The window it opens is a standard HyperCard XWindow, 
which means it handles all of the usual window events 
(redraw, activate, deactivate, and so on) with the usual 
aplomb. Figure 5-3 shows a picture that I drew in MacPaint 
(well, sort of) displayed in a window created by TIFFWindow. 

I've never run into any bombs or bugs while using this 
external command. It's solid enough for my uses, and 
probably even for a commercial release. So if you're making 
a commercial application with HyperCard and you need to 
display Tiffs, then you could do much worse than 
TIFFWindow. 

And, as a bonus, TIFFWindow comes with its C source code. 
If you need to modify the source code to handle another 
nonstandard part of the TIFF "standard" (for instance, 16-bit 
color Tiffs), then just add the requisite code and recompile. 
Or, take the code apart to learn how to make your own TIFF 
reader program. 



External Commands: Help for the Working Stiff 't 93 

Quote 

( TIFFWindow) 

181 Off-Screen Buffer 

181 [us tom Palette D 
D Dither 

181 Scrollbars 

ADAM.TIF: B bits 424x297 

Tiff Stack 

( Zoom In 

( Zoom Out 

Figure 5·3. Elitist art reappropriated for the people thanks 
to TIFFWindow 

You can't be perfect holding things in your hand all the time, 
you've got to drop something once in a while. 

Hack Facts 

MikePack 
Version 1. 65 
Mike Jimenez 

--Gene Edwards 

There aren't many complete packages 
of 40 externals out there despite 40's 
immense popularity with the Mac 
database community. This doesn't 
surprise me too much because the size 
of the Mac database community pales 
in comparison to the Mac HyperCard 
community. 

You'll find many one-shot 40 externals 
mmmmmmmmrnmrnmmmmmrniimrn posted on the info-macarchive: 

externals that work with Microsoft Mail, 
externals that control list areas, externals that deal with 
pictures, and so on. But MikePack is the only complete 
package of externals I could find-and it's a doozy. The more 



94 ~ BYTE's Mac Programmer's Cookbook 

than 30 externals in this package can do things that 40 just 
can't handle or that 40 normally does very slowly. 

Not being much of a 40 whiz, I pawned the actual task of 
looking at these externals to my friend, Glenn Clingroth. 
(The latest version of 40 that I have, 2.2.3, doesn't load the 
demo files that come with this package.) Glenn recommends 
this package for any serious 40 programmer. 

My favorites (well, actually Glenn's favorites) include these four: 

• MP Array2Clip Copies an array variable to the 
clipboard. This and MP Pict2Clip are essential if you plan 
to make a stand-alone application. 

• MP Pict2Clip Copies a 40 picture variable to the 
clipboard. 

• MP MergeArrays Combines any two arrays you send it. 

• MP MoveWindow Moves any window to a specified 
location on the screen. This is very handy for getting 
those dang 40 windows exactly where you want them. 

MikePack comes with a handy-dandy installer program, 
shown in Figure 5-4. You can use this to install just the set of 
externals you're interested in. This is especially handy for 
those 40 users who aren't real ResEdit jockeys. 

mike:S externals may be brilliant, but his readmes aren't 
all that smart. He gives complete documentation, 
very good examples, and no e-mail address, no 

phone number-not even an address that the U.S. Postal 
Service could use. 

So how does one register these extensions? I have no clue. 
How much money does Mike ask for them? He doesn't say in 
the documentation or in the readme. Mike, my man, drop me 
a line at RobTerrell@aol.com and let me know how to pay you! 



External Commands: Help for the Working Stiff " 95 

MIKEPACK Installer 

Curnmt SE-lection : 
Current File : no file selected 
Currently Installed : 

o en ... 

New ... 

Register: . 

Quit ••• 

©t993 Michael Jimenez 

Figure 5-4. The easy-to-use installer program provides 
context-sensitive help. 

MP APPLY2ARRAY MP FRAMERECT 

MP Array2Clip MP Gestalt 

MP Array2File MP JustifyText 

MP Array2Text MP MERGEARRAYS 

MP ARRAYSELECT MP MOVEWINDOW 

MP DISTINCT MP MultiDrag 

MP DragBlock MP N2S_Array 

MP Dragltem MP PadText 

MP DragText MP Pict2Clip 

MP DRAWTEXT MP POPULATE 

MP ERASERECT MP PopupMenu 

MP FILE2TEXT MP PopupPlus 

MP FILLARRAY MP S2N_Array 



I 

96 ~ BYTE's Mac Programmer's Cookbook 

MP SCROLLRECT 

MP SCROLLTEXT 

MP SearchArray 

MP SIZEWINDOW 

MP TEXT2ARRAY 

MP Trimleft 

MP TrimRight 

MP TrimText 

MP WINDOWLOC 

MP WINDOWSIZE 

i_.;.; - - - ~ 

§ Hack Facts 
Sure, lots of annoying geeks make 
icons of their faces. And many even 
plaster their works with these same 
self-serving icons. But this geek has 
more than enough programming 
prowess to back it up. Ladies and 
gentlemen, I give you ... Frederic Rinaldi 
and his amazing XCMDs! 

X-Archive 
STAK 
Version 3.1 
Frederic Rinaldi 
Applelink: RINALDil 
CIS: 71170,2111 
See price details below 
1,224,329 bytes 

This is the definitive collection of 
external commands and functions for 
HyperCard. If you get no other 
collection, get this one. This has all the 
good stuff. The documentation stack is 

elegantly designed, as Figure 5-5 shows, and lets you try out 
commands as you learn about them. Frederic's XCMDs are 
widely used by the HyperCard developer community. The 
collection is free for unlimited non-commercial use with 
mention of the author's name and copyright, but commercial 
use must be licensed and acknowledged by the author. 

Rinaldi (and his external commands) have a fantastic 
reputation in the HyperCard universe because Rinaldi's 
XCMDs are well-designed, tested, and debugged. The stack 
describes each in full detail. It even lists all of the error 
messages you may encounter while using the command. 

Thanke for Caring: 
One convention of XCMDs and XFCNs is that, whenever "?"is 
passed as a parameter; the XCMD should put the author's 
name into HyperCard's message box; when "!" is passed in, the 
XCMD should display version information. 



External Commands: Help for the Working Stiff ~ 97 

H-Rrchiue 3.1 

F. Rinaldi 

GetBootVol 
GetBootVol 1 .1 

by Fred@dc RINALDI 

GetBootYol returns the name of the boot volume . 

Figure 5-5. The elegant design of Frederie Rinaldi's 
documentation stack 

To paraphrase some guy, Christopher Marlowe I think, this rule 
is honored more in the breach than the observance. Our mortal 
enemy, the Lazy Programmer; usually doesn't bother adding 
the few lines of code it takes to supply this information. 

Frederic Rinaldi ain't lazy. All of his XCMDs provide this 
information. It's as much for his benefit (so you know who to 
thank) as it is for your benefit (so you see if you're using the 
latest version or not). I wish more folks were like Frederic. 

Bet Ya Can't Pick Just One 
What follows is a list of every XCMD in Frederic's collection. I 
am not going to explain every last one, as the names are 
fairly self-explanatory. Plus, the documentation is a killer, 
and since I'm insisting that you download it anyway, you'll 
get rriore info then. Right? 

Align 2.7 

ArchiveContent 1.0 

ATalkZones 1.5 

Calendoid 1.4 

Capslock 1.0 

ChooseColor 1.1 



98 ~ BVTE's Mac Programmer's Cookbook 

Chooser 1.7 FontMaster 1.3 

Cliplnfo 1.0 FormatNum 1.0 

ClipToPict 1.4 FullBalloons 1.0 

CompressPictFile 1.2 FullDrag 1.3 

CopyFolder 2.1 FullFind 1.4 

CopyRes2.0 FullHPop 1.5 

CreateAlias 1.0 FullMove 1.2 

CreateCustomlcon 1.1 FullOffset 1.0 

CreateFolder 1.2 FullRemove 1.1 

CreateMenuHelp 1.0 FullRename 1.4 

CreateMenuHelp -2 FullReplace 1.1 

CreateStack 1.1 FullReslist 2.1 

CreateThumbnail 1.2 FullSFPack 1. 7 

DateConverter 1.2 FullSFPut 1.3 

DateSort 1.0 FullSort 3.5 

DocCreator 1.5 FullSort-2 

DocTypes 1.6 FullSort -3 

DoMenu 1.0 FullText 1.0 

EraseFile 1 .2 GetBootVol 1.1 

Extractltems 1 .4 GetDir2.2 

FileCopy 2.6 GetFlnfo 1.3 

FilelsOpen 1.2 Getlcon 1.0 

FileMaker 1.2 GetMode 1.3 

FileSharingMaster 1.0 GetPassword 1.3 

FindFolder 1.1 GetSysFolder 1.0 

FolderSize 1.4 GetVlnfo 1.0 



External Commands: Help for the Working Stiff ~ 99 

Globallist 1.1 PPCList 1.0 

GlobalMaster 1.0 Printerlnfo 1.0 

HowMany 1.1 PrintPICT 1.4 

ICNTolCON 1.8 PrintPictlist 1.2 

lnfoid 1.1 Privileges 1.3 

lsDate 1.0 Prompt 2.5 

lsFile 1.0 Promptoid 1.5 

lsFinderlocked 1 .2 QCopy 1.2 

lsFolder 1.0 RemoveFolder 1.2 

lsObject 1.0 ReplaceCharSet 1.0 

KillRes 1.4 ResolveAlias 1 .1 

LaunchDoc 1.0 ResText 1.4 

LineCount 1. 7 ScrapXCMDs 1.9 

ListComponents 1.0 SelectDir 1.1 

Listlogic 1.6 SelectFile 1.0 

Listoid 3.0 SendPS 1.4 

ListSelect 4.8 SetFileFlag 1 .2 

MacType 1.3 SetFinderlock 1 .2 

Menu 2.1 SetFlnfo 1.0 

Menu -2 SetMode 1.2 

Mousoid 1.1 Set 1.1 

NameNewFile 1.0 ShowHideFolder 1.2 

Notification 1.0 SoundRecord 1.7 

Nubuslist 1.0 StripDup 1.1 

PictFile 1.7 StrWidth 1.0 

PictToClip 1.4 Switch 1.3 



100 ~ BYTE's Mac Programmer's Cookbook 

Tabloid 1.1 

Textoid 3.9 

TextRes 1.4 

X Marks the Spot 

WindName 1.1 

XRef 1.31 

These are commands that I find myself using often: 

• SoundRecord is a great way to get sounds into your Mac 
via the built-in microphone. I once made an impressive 
kiosk-based voice mail system using just this XCMD. 

• FileSharingMaster gives your stacks total control over 
System 7's File Sharing. You can turn sharing on or off 
for the entire machine or just a particular folder, or look 
up the list of users and groups. 

• Calendoid puts a by-month calendar in a floatiqg window. 

• ArchiveContent returns a list of the contents of a given 
Compactor Pro archive. Wanna make a diskette 
organizer? This could play a key part. 

Try it, you'll like it. I'm sure you'll find your own favorites. 

- -
~Iii Hack Facts 

J5rson's XCMDs 
STAK 
Jeffrey Iverson's Software 
Jeffrey Donald Iverson 
2800 Se lkir k Dr., C-104 
Burnsville MN 55337-5662 
612-890 -8292 - voice 
CompuServe: 76675,1772 
American Online: J5rson 
App l elink: J5rson 
$10 per XCMD for single-use: 
$50 for commercial product 

This is one of the largest XCMD 
collections I've seen from a single 
individual. And next to Frederic 
Rinaldi's, it's the best presented and 
documented. Every external comes 
with good docs and and an on-screen 
example, so you can try it out. Plus, 
the license fee is spelled out in no 
uncertain terms, as Figure 5-6 shows. 

Luckily for Jeffrey, unluckily for you, 
most of these XCMDs aren't very 
complicated. For the most part, they 
inquire as to the state of the system 
and return a TRUE or FALSE. This can 
be handy if you need to know some 
specific system information. 



External Commands: Help for the Working Stiff " 101 

GetROMVerslon takes no parameters. It returns the version number of the 
installed ROM. Click on and/or examine the script of the button above to see 
how i t works! 

A I icense fee of $10.00 is requested if you use this external in any 1'.

1
111
1

11!'! 
"in-house•, shareware or freeware products. The I icense fee for uni imited 

:~~l~i:ls=~i~or~~:~~pr;:~~t!5i~2gg:~~en:e'TTt~ime I 
registrations. You are entitled to al I future updates without further cost. ·1

1
!!

11

\ 

Permission is hereby granted to a I I groups who d I str i bute shareware I e i ther for 111 
profit <such as EduCorp) or not for prof It <such as a Macintosh Usel"'S Group), I 
to include this file in their collection. My goal is to get as much exposure J.1i .. 
for my products as poss i b I e, and I be I i eve that these groups offer an Ii'!'!! 
i nva I uob I e service to shareware pub I i shers I i ke rnysa I f. illlll! 
I f you have questions or comments I can be reached through the fo I I owing: 

Jeffrey Donald Iverson 
2800 Selkirk Or-., C-104 

'1i'ili 
:!1!111 

0 

Figure 5-6. The licensing terms for Jeffrey lverson's XCMDs 

Some of Jeffrey's XCMDs are superfluous. For instance, 
GetFileExists returns a TRUE if the given file is on the hard 
drive. Well, HyperCard will already do that. But for those 
other programs that use HyperCard XCMDs (such as FoxBase 
or MicroPhone II), these seemingly redundant externals can 
be lifesavers. 

but then again, when in a HyperCard stack will you 
ever need to know if virtual memory is turned on? 

' Or why would you care what the TrueType outline 
mode is? I suppose there are obscure yet entirely valid 
reasons, so thank God that Jeffrey's done this work for us. 
These are some of his handier XCMDs: 

• GetFileCopy, which (despite its odd name) copies a file. 

• Play AIFF, which plays an Alff-format sound file. 

• SpeakString, which uses Apple's Speech Manager (a 
text-to-speech synthesis system) to read the string 
aloud. This in and of itself is no great feat, there being a 
bazillion other XCMDs for this, but Jeffrey also includes 
GetSpeechBusy, which tells you if the Speech Manager is 
still saying something. Cool! Otherwise, you might speak 



102 ~ BYTE's Mac Programmer's Cookbook 

two words at the same time, and I think we all know how 
painful that can be. 

X Marks the Spot 
Jeffrey has been a busy boy. Here's a list of all the XCMDs he 
has created. Since there are so many, and since most of the 
names are self-explanatory, I won't bother writing a 
description of each. 

d'Eject XCMD 1.0.1 GetDBAccessManager XFCN 2.0.1 

FlushEvents XCMD 1.0.1 GetDITLExtensions XFCN 2.0.1 

Gestalt XFCN 4.1.1 GetEasyAccess XFCN 2.0.1 

Get/SetCreateDate 2.0.1 GetEditionManager XFCN 2.0.1 

Get/SetCreator 3.0.1 GetEjectable XFCN 2.0.1 

Get/Setlnvisible 2.0.1 GetFileCopy XCMD 1.0.1 

GeUSetModDate 1.0.1 GetFileExists XFCN 1.0.1 

Get/SetNamelock 2.0.1 GetFileSystemMgr XFCN 2.0.1 

Get/SetStationery 2.0.1 GetFileTransferMgr XFCN 2.0.1 

GetA/UXVersion XFCN 2.0.1 GetFindFolder XFCN 2.0.1 

GetAddressingMode XFCN 2.0.1 GetFontManager XFCN 2.0.1 

GetAliasManager XFCN 2.0.1 GetFPUType XFCN 2.0.1 

GetAppleEvents XFCN 2.0.1 GetFreeK XFCN 2.0.1 

GetAppleTalk XFCN 2.0.1 GetGestaltVersion XFCN 2.0.1 

GetApplication XFCN 1.0.1 GetHardware XFCN 2.0.1 

GetCapslock XFCN 1.0.1 GetHelpManager XFCN 2.0.1 

GetConnectionManager XFCN 2.0.1 GetKeyboard XFCN 2.0.1 

GetCRM XFCN 2.0.1 

GetCTBVersion XFCN 2.0.1 

GetlocalVolumes XFCN 2.0.1 

GetlogicalPageSize XFCN 2.0.1 



External Commands: Help for the Working Stiff ~ 103 

GetlogicalRAMSize XFCN 2.0.1 

GetlowMemorySize XFCN 2.0.1 

GetMachine XFCN 2.0.1 

GetMacName XFCN 1.0.1 

GetMiscellaneous XFCN 2.0.1 

GetMMU XFCN 2.0.1 

GetMonitors XFCN 1.2.1 

GetNotificationMgr XFCN 2.0.1 

GetOS XFCN 2.0.1 

GetOStable XFCN 2.0.1 

GetOutlineMethod XFCN 1.0.1 • 

GetOwnerName XFCN 1.0.1 

GetParity XFCN 2.0.1 

GetPhysicalRAM XFCN 2.0.1 

GetPopUp XFCN 2.0.1 

GetPopUpMenu XFCN 1.0.1 

GetPowerManager XFCN 2.0.1 

GetProcesses XFCN 2.0.1 

GetProcessor XFCN 2.0.1 

GetQuickDraw XFCN 2.0.1 

GetResourcelist XFCN 1.0.1 

GetResourceMgr XFCN 2.0.1 

GetROMsize XFCN 2.0.1 

GetROMVersion XFCN 2.0.1 

GetScriptCount XFCN 2.0.1 

GetScriptMgr XFCN 2.0.1 

GetSerialMgr XFCN 2.0.1 

GetSIZE XFCN 2.0.1 

GetSound XFCN 2.0.1 

GetSpeechBusy XFCN 1.0.1 

GetSpeechManager XFCN 1.0.1 

GetStandardFile XFCN 2.0.1 

GetStandardNBP XFCN 2.0.1 

GetSystemVersion XFCN 2.0.1 

GetTermManager XFCN 2.0.1 

GetTextEdit XFCN 2.0.1 

GetThreadManager XFCN 1.0.1 

GetlimeManager XFCN 2.0.1 

GetToolbox XFCN 2.0.1 

GetVirtualMemory XFCN 2.0.1 

GetVolumes XFCN 1.0.1 

MakeAlias XCMD 1.0.1 

PlayAIFF XCMD 1.0.1 

ScreenSize XFCN 1.2.1 

SetDate XCMD 3.0.1 

SetGlobal XCMD 3.0.1 

Setlock XCMD 2.2.1 

SpeakString XCMD 1.0.1 

Unmounter XCMD 2.0.1 

WipeOut XCMD 2.0.1 



104 ~ BYTE's Mac Programmer's Cookbook 

One Caveat 
Jeffrey's XCMDs come in a Stufflt archive. There is one stack 
per XCMD. This might lead the less generous folk among us 
to wonder why Jeff just didn't upload his XCMDs 
individually, so that one could pick and choose online and 
save the download charges for a package so big. But we're 
not that petty, are we? 

Gone Commercial 
You can squeak by using only shareware and freeware 
externals, but keep in mind that there's a large number of cool 
externals for sale. 

Heizer Software has a catalog of cool tools for HyperCard 
programmers. You can get WindowScript-a tool for creating 
window (and even complete) user-interfaces from within 
HyperCard. Or Compilelt-which takes your HyperTalk 
commands and compiles them into externals. (Yes! The easy 
way to make externals.) Or Colorlt-complete color control of 
your stacks. And that's just the beginning of the list. 

They sell more than HyperCard tools, too. Definitely worth 
checking out. Give them a call at 510-943-7667 and ask for 
their latest catalog. 

OSAX and the Single Hacker 
AppleScript is Apple's totally hot new scripting language. 
You can write scripts that work with certain applications. It's 
system-wide, so that you can control many different 
applications simultaneously. 

Cool as it is, the command set is profoundly limited. There's 
very little in the way of native commands in AppleScript. It's 
easy to extend the AppleScript command set, however: just 
use an OSAX. An OSAX is an external command for 
AppleScript. Believe it or not, most of the commands you'd 
expect to be built into the AppleScript language are actually 
in OSAXes. ("Like what?" you ask. How about things like, oh, 



External Commands: Help for the Working Stiff " 105 

Note 

addition and subtraction? String handling? Variable 
coercion? Pretty crazy, huh?) 

For some bizarre reason (mostly having to do with trendy 
cuteness I fear) the plural form of OSAX is generally known as 
OSAXen. Use whatever term you're comfortable with. I have to 
be trendy and cute, since it's in my contract. 

In Case You Were 
Wondering ... IMHO= 
In My Humble 
Opinion. (Don't you 
get e-mail? Sheesh.) 

But this means that OSAXen can do almost anything. Open 
windows, create files, make menus, play sounds-you name 
it, and an OSAX can do it. There has been a proliferation of 
cool OSAXen ever since the first version of AppleScript came 
out. 

(This flood is not nearly proportional to the number of users 
working with AppleScript. What does this mean? There's a 
really dedicated core of hackers using this stuff. This is 
always a sign that something will soon explode.) 

IMHO, AppleScript represents the future of 
programming-using higher-level languages as tools to do 
real programs. OSAXen are the bridge between the 
traditional C world and the realm of AppleScript. Below 
you'll find one of the best collections of OSAXen for 
AppleScript. I heartily recommend that you download these 
and try them out. 

- -

~- Hack Facts - J 
Since the art of OSAXing is fairly new, I 
was surprised to find a solid and 
mature collection of OSAXen already 
existed. Greg Quinn has done a 
fantastic job of creating OSAXen for 
every conceivable need. 

GTQ Scripting Library 
OSAX 
Version 1. 0 
Greg Quinn 
Applelink: 03297 
Internet: gtql@cornell .edu 
Free 
128,743 bytes 

111111 

I found Greg's collection on AppleLink, 
inside the AppleScript discussion 
folder. If you write AppleScripts, you'll 
want to hang out there as much as 
possible. This is the secret source of 
the Nile, the hidden Fountain of Youth, 
the scripting lounge of your dreams, 



106 ~ BYTE's Mac Programmer's Cookbook 

where any scripting question is answered quickly, and 
usually by a member of the AppleScript team to boot. 

Power chitchat 
Many of Greg's OSAXen provide a way to control PowerTalk, 
which is part of System 7 Pro. Most users don't have 
PowerTalk yet. Many people have preconceived biases against 
it. I know I do. It clutters up my desktop with five new icons. 
Heck, I can do that wit hout any help from system software! 
But we need to relax and see what new capabilities PowerTalk 
can give us. And with these PowerTalk OSAXen, I'm sure we can 
put a cool, human face on it no matter how hideously Apple 
has screwed it up. 

Greg's OSAX collection offers some unique functionality. 
Among the commands that improve PowerTalk, some track 
down information about the monitors (as shown in Figure 
5-7), play QuickTime movies and sounds, or even let you 
switch the active printer. Of all these , I have my favorites : 

• Is Application Running lets you know if an application 
has already been opened. This is great to use before 
sending a Quit command to an application. (Think about 

GTQ Test 

[ Gee, Wally, how many monitors are there? J 

2 

on hilited theObj 
copy (number of monitors) to text box "txtNeme 1" 

end hilite~ 

Figure S-7. In this AppleScript application I created, clicking 
on the button will return the number of monitors 
currently connected to the Macintosh 



External Commands: Help for the Working Stiff ~ 107 

it. If it's not already open, the application is opened, just 
so it can then quit. Silly.) 

• Request Attention provides support for the 
Notification Manager. This has been badly needed by 
scripters forever. With this OSAX, a script can perform a 
time-consuming task in the background and then let the 
user know it's finished by placing a small icon in the 
menu bar. Very handy, especially if you've written 
scripts to watch for special e-mail or flag downloaded 
files for key words. 

• Omit bridges the biggest hole in AppleScript: the lack of 
a delete function. Believe it or not, there is no way to 
delete things in AppleScript. For instance, if you had a 
list of stuff such as {"Ham", "Turkey", "Swiss", "Rye" and 
wanted to delete the "Rye" (I know how you feel), you 
can't. But if you had the Omit OSAX and the string 
"Ham,Turkey,Swiss,Rye" you could just say 

Omit in "Ham,Turkey,Swiss,Rye" at 17 for 4 

You would get this: and Rye would be gone 

"Ham,Turkey,Swiss" 

which is all the chow you really need. 

Greg Brady - Surfboard + AppleScript = Greg 
Quinn? You Decide! 

Below is the full list of Greg Quinn's OSAXen. Since he did 
such a bang-up job of naming them, I won't describe them in 
detail. Suffice it to say, I can't recommend them more highly. 
I use these OSAXen every day both at work and at home. I'm 
sure you will too. 

Address of 

Application Info for 

Available Dialects 

Choose Address 



108 ~ BYTE's Mac Programmer's Cookbook 

Choose from List 

Choose Link 

Current Date in Seconds 

Current Dialect 

Date String for 

Depth 

Does Monitor Support Depth 

Front Application 

Get User 

Index of (monitor) 

Is Application Running 

List Applications 

List Links 

List Nodes 

List Zones 

Mail To 

Make Alias 

Number of Monitors 

Number of Sounds 

Offsets of 

Omit 

Play Movie in 

Play (Sound) 

Record Sound to 

Relocate 

Remove 

Rename 

Request Attention 

Set Printer to 

Sharing Information 

Sort 

String to Application Coercion Handler 

Switch to Launcher 

This Application 

Time String for 

Version of 

Greg Quinn's OSAX collection includes a great 
documentation file, which offers many scripting samples. 
Plus, it also comes with a folder filled with scripting 
examples, which you can open and examine in the Script 
Editor (or even just use as is. The drag-and-drop printer idea 
he includes is very cool.) 

If you do any AppleScripting at all, make sure you grab this 
collection. It's available on Applelink (Developer 
Services:AppleScript Discussion:OSAX Swap), or you can 
probably locate it on the Internet. 



External Commands: Help for the Working Stiff ~ 109 

Coming Up Next-Building with 
Blocks 

That about wraps up our discussion of external code 
add-ons for HyperCard. I hope you learned that HyperCard, 
AppleScript, and other scripting environments offer great 
functionality and flexibility when coupled with external 
commands, and that it all comes much easier than writing in 
traditional programming languages. 

Speaking of traditional programming languages, we're next 
going to delve into the world of shareware programming 
languages for the Macintosh. We'll look at some mainstream 
stuff, as well as alternative languages-sort of the computer 
equivalent of Esperanto. So if you're stuck in a C rut, this is the 
chance to cut loose with that dusty LISP you learned in college! 



Ciphers and Secret 
Messages= 
Programming 
Languages 

Nothing ir:; true. 
Everything ir:; 
permitted. 

-William 
S.Burroughr:; 

Back in the Renaissance, if memory serves, the language one 
spoke served more purpose than just inquiring directions to 
the nearest outhouse from the closest serf. For certain 
groups of people-usually royal types-the language spoken 
at any given time had more to do with diplomacy-a concern 
for what was appropriate-than simple communication. Why 
else would a Czar speak French? Because, silly, French was 
the, and I do mean the, language of cultured types all over 
the dragon-sprinkled globe. Want to make the finest clocks 
of the post-middle ages? Then you would have been best off 
speaking German. Want to hang around the cathedrals, 
appearing religious and smart? Learn Latin. See? 

In this respect, the computer world is strangely similar to 
the multilingual silliness played out at Renaissance festivals. 
Computer languages, like their aural counterparts, have their 
appropriate niches. Where parlez-ing in French would be 
appropriate for some powdered aesthete, an equally pale 
computer jock who wanted to write artificial intelligence 
programs would chat with an electronic pal in Lisp. Why? Is 

111 



112 ~ BYTE's Mac Programmer's Cookbook 

Lisp that much better than other languages for AI work? 
Partially. But it only got that way out of tradition. Lisp is 
what people use for AI work. Same with French. French was 
not inherently better for discussing culture, but after all 
these years of tradition and association, I'll be damned if I 
find someone who doesn't think that French sounds at least 
a little artsy. 

Oh, there's more. Computer languages have histories behind 
them as well; external factors that formed them into what 
they are today. Just as Eskimos have many words for snow 
because they needed words to describe a major part of their 
environment, Forth is fast and lean because it was used 
originally in the tiny computers used by astronomers to 
control telescopes. 

And your darling little Mac is more than cosmopolitan 
enough to chat easily in many, many of these different 
tongues. In fact, if your Mac were human, it's smooth 
delivery of any language would enable it to pick up anybody 
it wanted to at any party, impressing the swooning prey with 
bon mots from varied tongues, and peppering its 
conversation with the mysterious and seductive accents of a 
well-designed graphical interface. 

To be a programmer, you've got to write code in some 
language, and the Mac universe contains many wonderful yet 
little-known programming environments. We're going to look 
at some environments for doing real work in the Forth, C, 
and Lisp programming languages. 

Go Forth Young Lad 
I'm not sure why, but Forth is a terribly popular Macintosh 
shareware programming language. As far as I can tell, Forth 
never quite cut it in the real world-the few folks who made 



Ciphers and Secret M11ssages: Programming Languages ~ 113 

Forth interpreters have either gone out of business, or are 
fighting for recognition in a jaded C marketplace. 

Kriya Systems had one of the earliest programming 
languages for the Macintosh. Called Neon, it offered a fast 
object-oriented Forth interpreter. Back then, no one knew 
what object-oriented meant-I thought it referred to 
kleptomania, myself. 

Well, after a while Apple got all serious about object-oriented 
programming, and Larry Tessler at MacWorld started talking 
about Classcal and MacApp, and object-oriented anything 
became hot. Everyone whipped up an object-oriented 
version of their language, and Neon was left in the dust. 

Quote 
Once you are informed-and have started to inform 
others-you must start acting. Knowledge without action 
produces demoralization. 

-John A. Stormer, None Dare Call It Treason 

Neon Fades On 
Neon-or, more accurately, its progeny, MOPS and Yerk-is 
totally cool. IMHO, they exceed the promise of 
object-oriented C or Pascal. Unfortunately, you're not going 
to find many employers who will make the switch to a weird, 
halfway-supported shareware language. And who can blame 
them for resisting the temptation, since if you're using the 
language for mission-critical apps, it helps to have tools 
with a track record and tech support (although Symantec's 
recent efforts at tech support make shareware look more and 
more attractive). 



114 ~ BYTE's Mac Programmer's Cookbook 

But if you're in this for yourself, if you find your bliss 
hacking at your Mac for sheer enlightenment and enjoyment, 
you could do much worse than to play with these languages. 

-
Hack Facts 

MOPS 
Michael Hore 
54 Frederick St. 
Sydenham NSW 2044, 
Australia 
Internet: 
mikeh@kralizec.zeta.org.au 
CompuServe: 100033,3164 
Free 

Yerk 
APPL 

--
Hack Facts 

Version 3.6.4 
Bob Loewenstein 
Dept. of Astronomy and 
Astrophysics 
University of Chicago 
Yerkes Observatory 
Williams Bay, WI 53191 
414-245-5555 
rfl@yerkes.uchicago.edu 
Free 
28,382 bytes (but support 
fi l es consume 2.9 MB) if" 
~ mmm Hmmm1~ijmmm~w1rnmmmmmmmn1m • 

MOPS and Yerk are so similar, it's 
frightening. Both are based on the 
Neon Forth engine. At startup, they 
look nearly identical. In fact, if you 
look at the manuals for both you'll 
swear one was copied from the other 
with minimal changes, like some 
junior-high-schooler's homework. 

Both programs have been tweaked on a 
low level, and offer some interesting 
twists from the original neon. For 
example, both products can do early or 
late binding, depending on what you'd 
prefer. This wasn't a feature of the 
original Neon. 

The differences lie in the library of 
classes and the quality of support that 
is available, as well as the future 
direction of the products. I'm not a 
Forth guru, so I asked around. If you 
want to choose between them, use 
these guidelines: 

• Many experienced users think Yerk 
has the more complete class 
library. MOPS is smaller and more 
compact. But both class libraries 
are terribly complete and 
well-documented. 

• Yerk's interpreter lets you try out 
program snippets as you go, as Figure 6-1, shows. (Note 
that the code shown in Figure 6-1, which draws a few 
boxes in a window, would produce the same output if 
used in MOPS.) 



Ciphers and Secret Messages: Programming Languages ~ 115 

~ [Hample 

0- >draw: box 
0- >paint: box 
0- >_ 

II 
Figure 6-1. Code to try painting and drawing in Yerk 

• Both products are supported by a core group of 
dedicated hackers. There's no company behind their 
efforts. There's no tech-support phone line, but you can 
e-mail questions to the authors. 

• Both products are in the public domain. The hackers 
who support each system are responsible for the future 
direction of the products. Yerk is maintained by the 
University of Chicago, which uses Yerk for some internal 
development efforts. MOPS is maintained by Michael 
Hore and a group of very dedicated people. 

So which do you pick? It's a mixed bag in my book. You can 
use either to create commercial software. Download them 
both and try them out. Read the manuals. You can pick up 
the basic concepts of Forth in a few minutes, and be doing 
some neat programming within a day. It's worthwhile if you 
program for a living. Stretch your mind, why don't you? 

Word up 
Here's a quote from Michael Hare's Mops manual: 

"My hope is that over a period of time, Mops users will, by 
sharing their developments, contribute to the ongoing Mops 
effort. As a one-man, very part-time operation, I can't hope by 
myself to compete with all the commercial outfits producing 
gigantic, all-singing, all-dancing development systems for the 
Mac. I would be happy to concentrate on the low-level 
implementation of the Mops nucleus and basic system code." 



116 ~ BVTE's Mac Programmer's Cookbook 

I couldn't have put it better myself (without my ghostwriters, 
that is). This is the way to give back to the shareware 
community: create cool code objects that do wonderful and 
sorely needed things, and share these code objects with 
everyone else. Give back to that great yawning shareware maw. 

§Iii Hack Facts PocketForth epitomizes the Forth 
language: its small, lean, mean, and 
fast. Unlike MOPS and YERK, which 
utilize object-oriented extensions to 
the Forth language and offer class 
libraries to boot, PocketForth provides 
a minimalist Forth interpreter with 
only the basic Forth functions. 

PocketForth 
APPL 
Ver s ion 6.3 
Chris Heilman 

~~~~~~(~~i:m~~:m~'" l/llJ 

This isn't to say that you can't write 
advanced software in PocketForth. In 
fact, PocketForth provides support for 
all of the Mac toolbox calls, in addition 
to floating-point SANE math and a 
standard Forth function set. 

~ 

You can send and receive Apple Events; you can draw 
graphics and text in color; you can even make your compiled 
Forth program a drag-and-drop application. There's nothing 
shabby about this Forth. 

All of this in l 6k! Well, not really; the dictionary files can be 
larger, and you'll most likely need to load at least some of 
the dictionaries. The sample programs make it easy to learn 
Forth as you go. This is a great beginners Forth; a wonderful 
and inexpensive way to get started in a new language. 

It also comes in a DA version, so you can run it under 
System 6 as a DA. This was essential back in the days when 
memory was limited and System 6 ruled. Even nowadays, I 
can use the small DA on my PowerBook 100 and still have 
enough memory left over to multitask. 



Ciphers and Secret Messages: Programming Languages ~ 117 

Lisp 

When using 
PowerUsp, save 
early, save often. 

OK. On the one hand, you have Forth, a language designed to 
have a tiny executable size and low memory requirement. 
On the other hand, you have Lisp, which is designed for 
extensive and easy list processing-the upshot of which is 
that it eats memory and processor cycles like a cop eats 
donuts. 

Lisp is the teacher's pet language of the artificial-intelligence 
and natural-language-processing crowd. I've been playing 
with a natural-language system someone built in Apple's 
MCL, and it's very cool: I can type English statements and 
have it interpret them. It's also rather uncool in that it takes 
30 MB of RAM and a Quadra 840AV to run at a respectable 
speed. 

Hack Facts 
The first thing you notice about 
Powerlisp is its user interface (see 
Figure 6-2). Of all the shareware 
programming products I've seen, this 
has the most professional and 
complete user interface by far. The 
next thing you notice is its speed-it 
compiles to native 680x0 code. It's 
blazing. 

Powerlisp 
APPL 
Version 1.0.l 
Roger Corman 
2124 Cummings Dr. 
Santa Rosa, CA 95404 
Internet: roger@island.com 
America Online: ROGERC34 
707-528-3321 (evenings and 
weekends) 
707-523-4465 (days) 
$50 
446,006 bytes (840K 
entire acka e) 

for 

The next thing you may notice is, 
you've crashed into the debugger. At 
least I did. I crashed a couple of times 
while getting to know this program. Be 
prepared to save often and use your 
reset switch. 

PowerLISP conforms to the Common 
Lisp standard, which is like the ANSI 
library standard for C. You can rely on 

a set of common functions, predefined in the language and 
available for your use. Generally, the functions are things 
like string manipulations and file handling, but they don't 
stop there. The Common Lisp standard is fairly 
massive-you'll want to check out a book to learn more. 



118 ~ BYTE's Mac Programmer's Cookbook 

Spoonman:Powerlisp 1.01 :Powerlisp Worksheet ~ 

T<bs: ~ Font : l ......... Mo-..na .... co __ ... _.I Size : CJ::!) Mode : I Normal •I 
D Line Wrap Ready for input . 

Po•erLisp Copyright ~ 1gg3 by Roger Cor•an 

Cl i s l -a I I -packages ) 
<•< package : COnPILER > 
•< package: cannon-LISP-USER > •< package : cannon-LISP > •< package: KEY~ORD >> 

Figure 6-2. PowerLISP offers simple control over the display 
of programs. Remember, use the ENTER key, not 
the RETURN key 

The libraries that come with PowerLISP aren't compiled. They 
come as text files, and they are interpreted as needed. To 
speed things up, you can compile them yourself by executing 
the file "compile-libraries.lisp". If you're doing more than 
just playing with PowerLISP, I recommend this highly. 

PowerLISP uses a built-in editor called PowerEdit. PowerEdit 
does some very cool things. I wish other Mac programming 
environments did just some of this stuff (hint, hint Symantec): 

• When you drag the scroll bar thumb, the text scrolls 
interactively. No more hunting for the right portion of 
your source code! 

• Text font and size, as well as tab stops, can be set in the 
editor from the menus at the top of the window. These 
settings are stored in the resource fork of each file, so 
they stick between sessions. 

• Comments are displayed in italics, and any text the 
interpreter gives back to you is displayed in bold. 

If you've ever had any interest in Lisp, Power LISP is the bes•t 
way to get that bug out of your butt. Apple's MCL costs $300, 



Ciphers and Secret Messages: Programming Languages ~ 119 

consumes a huge amount of hard disk space.and doesn't 
have an editor that's nearly as cool. 

Swimming in the Shareware C 

lt'15 not the !5ize of 
the dog in the 
fight, but the !5ize 
of the fight in the 
dog 

-Terry Robbin!5, 
Weather 

Underground 

Note 

You know how I feel about C. Yet C remains the most popular 
programming language around today. You can't spit in a 
bookstore without hitting an array of books on C 
programming. (Actually, you can't spit in a bookstore 
without getting arrested.) C is available for all kinds of 
computers, and to some degree source code is platform 
independent. People from all walks of life have written 
programs in C and lived to tell the tale. So I just need to 
relax, right? 

Despite my grave personal misgivings about this-I think C 
should be banned and I think Kernighan & Ritchie should be 
fed to the sharks-I will now discuss a couple of generally 
available freeware C compilers. Both GCC and GNU are 
available on the Internet at the info-mac archive (FTP to 
sumex-aim.stanford.edu) in the /dev directory. 

Keep in mind that I don't recommend using these, and it has 
nothing to do with my loathing of C. If you're writing programs, 
doubtless you'll want to give them to people. If you give your 
programs to people, you'll want them to not crash. If you want 
them to not crash, you want a compiler you can trust. And as 
of right now, trusting a shareware C compiler not to crash is a 
little like hopping a seat on the training flights at Air 
Bangladesh. 

"Shut your steakcatcher;" I can hear you yelling. Okay, okay, 
enough of my pontificating, it's on to the programs. 



120 ~ BYTE's Mac Programmer's Cookbook 

- --
Ha ck Facts 

GCC 
MPST (Macintosh 
Programmer 's Workshop Tool) 
TEXT (Source code files) 
Version l.37.lr14 

II 

GCC is a high-quality C and C++ 
compiler that was developed by Apple's 
Advanced Technology Group for some 
internal project they were working on. 
They decided to release it to the world 
at large, albeit without any support. 

This compiler is the GNU C compiler 
(GCC, get it?) The GNU project of the 
Free Software Foundation is working to 
create freely available clones of the 
UNIX operating system, the Postscript 
page-description language, and the C++ 
programming language. GCC belongs to 
the C++ effort. 

Apple Computer, Inc. and 
the Free Software 
Foundation, Inc. 
Free 

This compiler runs under MPW (Macintosh Programmer's 
Workshop), and works just like Apple's MPW C compiler. You 
enter commands in the Worksheet window to compile your 
programs, or you can execute makefiles. GCC can simply 
replace the standard MPW C you've been using. 

The compiler cleverly translates source code into an internal 
language called RTL (Register Transfer .Language). From 
there, it compiles the RTL code into machine-dependent 
assembly language. This scheme was chosen so that the 
compiler could make highly optimized object code for any 
target microprocessor. 

The benefits are clear: it's a simple matter to write programs 
for a wide range of machines. The same source file can be 
cross-compiled to work on Macs, UNIX machines, Windows 
boxes, and so on. The list of target machines you can port to 
is embarrassingly long. 

Portly listing 
Here's the list of processors you can port your GCC code to: 

3b1, a29k, aix385, alpha, altos3068, amix, arm, convex, 
crds, elxsi, fx2800, fx80, genix, hp320, clipper; Intel 386 
(running under DOS, isc, sea, sysv.3, sysv.4, mach, bsd, 
linux, windows, or OS/2), iris, i860, i960, irix4, m68k, 
m88ksvsv.3, mips-news, mot3300, next, ns32k, 



Ciphers and Secret Messages: Programming Languages ~ 121 

nws3250-v.4, hp-pa, pc532, plexus, pyramid, romp, 
rs6000, sparc-sunos, sparc-solaris2, sparc-sysv.4, spur; 
sun386, tahoe, tow, umpis, vax-vms, vax-bsd, we32k, 
hitachi-(SH,8300) 

I found this list on the Internet in comp.sys.mac.programmer. 
Many thanks to Jacques Marcoux who posted it 
( <esrilcmc.aes.doe.CAljmarcoux> ). F'lease note that 
Macintosh falls under the "m68k" category. 

I don't recommend using GCC on the Mac. Why? Well, once 
again, it's unsupported software. Apple doesn't lay claim to 
it and won't support it. And Freesoft hates all things Apple, 
and in fact they ask folks to boycott Apple products, so I 
doubt they would be very much help. 

Also, you need more than this package to get started. You'll 
need to purchase MPW (Macintosh Programmer's Workshop, 
Apple's editing and building environment) from APDA. You'll 
also need to buy Apple's MPW C compiler. Huh? Yeah, you 
see, GCC doesn't come with any C libraries, so you'll need to 
scarf them from Apple's official C. So, you end up saving no 
money over buying the official Apple thing outright. 

I GNU you could 
Believe it or not, there actually are people even more altruistic 
than shareware authors. 

The Free Software Foundation, Inc., the inventors of GCC and 
everything prefixed with a "GNU," gives away all of its source 
code. All of it. Everything. For all of its products. And you can 
use it in any way, in any project you're working on. But there's 
one small catch: your own source code must be equally 
available to your users. 

It's what some call a "copyleft" (as opposed to a copyright). 
You own the portions of your code that you write yourself. 
Anything else that you borrowed from the GNU stuff, you 
must make freely available to your users. 

It's a clever idea, and it strikes back at the same software 
licensing issues that make me kick and scream. If everyone 



122 ~ BYTE's Mac Programmer's Cookbook 

: Iii 

has source code, then everyone is free to fix bugs or make 
incremental changes or simply rip off good ideas. (This 
assumes that all computer users are programmers, which is 
no longer a safe assumption.) The Freesoft Company is 
interested in the spreading of good ideas. 

"The word free doesn't refer to price; it refers to freedom." 
-Richard Stallman, president of the Free Software Foundation. 

Naturally no companies use GNU products for anything real. I 
mean, corporations have to make huge investments in their 
code. They're not going to hand it out to just anyone. Even at 
the small company I work at, source code is a jealously 
guarded secret. 

I shouldn't say nobody-lots of people actually use GNU 
products every day. Many real programmers use it to develop 
great software, and they simply include their source code (or 
make it available on the Internet at an FTP site). It's just 
that corporations-with so much to hide and so much to 
lose-wouldn't get caught dead in a GNU license. 

Secrets aside, Freesoft is after bigger fish. They're out to 
change the world, and they're liable to do it. 

Unless you have a compelling reason to use GCC-like a huge 
body of existing work in GNU C for another platform that 
you want to port to the Mac-I would use something else. 

Hack Facts 

Harvest C 

Mac folk don't take kindly to 
command-line interfaces and cryptic 
commands; or else we'd all still be 
using an Atari 5 l 2st. That's a problem 
with Apple's MPW environment: it's got 
all the power of a scripting language, 
with all the typing, memorization, and 
headaches of a scripting language. 

APPL 
Version 1.3 
Eric W. Sink 
3101 Amy Dr. 
Champaign, IL 61821 
es ink@spyglas s .com 
Free 
2,034,309 bytes for 
folder 

entire 

Harvest C follows in the footsteps of 
the Think C compiler from Symantec. It 
has the same project-based metaphor, 
in which one window lists all of the 
files in a project; these are the source 



Ciphers and Secret Messages: Programming Languages ~ 123 

File Edit 

Since it uses the 
GCC compiler; the 
compiler code is 
available and is 
reusable in your own 
projects under the 
same GNU copyleft. 

code files that will become your compiled application. In 
fact, many of Harvest C's menu commands echo 
resoundingly from Think C so if you've used that compiler, 
you won't have any conceptual hurdles here. Harvest C's 
Project window also is reminiscent of Think C, as Figure 6-3 
shows. The Project window lists all of the files used; 
double-clicking a file will launch it in a (not-included) text 
editor. 

The compiler itself is the GCC compiler. In version 1.2 of 
Harvest C, the compiler was based on Eric Sink's own 
experiments in compiler design. In the ReadMe file, Eric 
claims that it was one hell of a learning process, and he 
seems vaguely embarrassed by the code it generated. In 
addition, he had trouble tracking dmyn various compiler 
code-generation bugs, so he switched to the GCC compiler in 
this version. 

Since it uses the GCC compiler, you'll still need to get the 
header files from Apple (although, thankfully, Eric gives full 
contact information for getting the goods from APDA; it's 
only $40 for the headers alone on a floppy). 

I've asked around on the net about Harvest C, and the 
general consensus seems to be that, while a neat idea, it's 

,. s File Edit Project Source 

=Iii~ RobsFirst.11 ~Iii 
In terface.a 0 

·R·u·n·tTm·e·.·a ................................... · 
tiu.ii.Fi8.illi5".c····· 
tiuilSe.ye.:"C"···· 

Figure 6-3. Check out the menus-they'll be familiar to any 
Think C user. 



124 ~ BYTE's Mac Programmer's Cookbook 

nowhere near commercial quality, even with the GCC 
compiler. Most people would like to see it improved; many 
of the bugs listed in the early ReadMe files remain, and Eric 
says that he doesn't have the time required to tackle the 
all-consuming project of perfecting Harvest C. 

Should you get this? If you're a C nut, definitely. It's worth 
playing with and experimenting with. Remember to report 
any and all bugs to the author, (and don't be a jerk about it, 
either; he's got a day job too). 

Coming Up Next: Putting the 
Pieces Together 

If being fluent in the right programming language is an 
important part of writing good code, then keeping a 
well-stocked library of objects and classes is a little like 
building up your vocabulary. Knowing the rudiments of the 
language will help you get by, but you'll never impress, 
amaze, charm, and delight the natives unless you toss in a 
few SAT vocabulary hummers. 

In Chapter 7, we'll examine some powerful object and class 
libraries that can save you tons of time and effort, and in the 
process make you appear slick and sophisticated. 



Object Libraries, Class 
Libraries, and You 

When I was a kid, some of my favorite toys were Lego 
building blocks. I loved them. My first set was this really old 
one that had huge blocks. My later sets were even better. I 
had a moon-base Lego set that had (in addition to the 
standard types of Lego blocks) these special pieces shaped 
like rocket nozzles, radar dishes, hinges, seats-you name it. 
As I got more sets, I found within each one some great new 
development in Lego-piece technology-a distinct piece that 
solved a given building problem perfectly-and so I replaced 
my clumsy ersatz radar dishes and hinges and nozzles 
(crudely formed out of discolored, blocky Legos) with 
more specialized pieces that allowed me to create more 
and more complex objects with far less hassle and 
frustration. It was . . . . sublime. 

f 0 r me, programming has been reminiscent of those 
early Lego productions. My first attempts at 
programming were rather inefficient and clunky 

affairs, relying often on brute force over elegance. Then, 
object-oriented programming came around. 

125 



126 ~ BYTE's Mac Programmer's Cookbook 

Hoola OOPs 
For those of you who've @pent too much time in your 
basement programming an Al brain for your oolar-powered 
mechanical dog-bot pet substitute, object-oriented 
programming involves writing programs in a language that ha@ 
been @pecifically designed to use an object-a chunk of a 
program that contains both data and function. 

Object-oriented programming (or OOP) was a new 
approach-I could write programs and incorporate my rare 
well-written sections of code into other programs. So, if I 
had this really great sorting algorithm (yeah, as if), I could 
put it into an object (which is just a chunk of a program that 
contains both data and functions) and plug that object in 
wherever it was needed. What I realized is that these 
programming objects are just special pieces-the computer 
equivalent of, say, that swiveling right-angle Lego piece. You 
could achieve the same effect with regular blocks, but not 
nearly as easily, quickly, or efficiently. 

Object-oriented programming is the only way to go these 
days. Objects make your programming life simpler and 
easier. And they are the perfect way to share code with 
fellow programmers. In this chapter, we'll look at some of 
the best objects around. 

Object-oriented programming, with its independently mobile 
sections of code, has another great advantage. Other people, 
with more experience than you, can make really clever 
hunks of code that, eventually, you or I can use to make 
massively cool programs. That's what I plan to show you in 
this chapter. 

even if you don't use an object-oriented programming 
language, you're still covered in this chapter. You'll 
learn about neat code libraries. A code library is 

something that you just drop into your project and use; it 
requires little knowledge or understanding of what goes on 



Object Libraries, Class Libraries, and You + 127 

under the hood. Very cool and highly useful. We'll look at 
these libraries specifically: 

• Toolbar manager creates Microsoft-style toolbars for 
any program you write. 

• SpriteWorld is a set of routines that can be used to 
create high-speed color games. 

• TE32K breaks the 32K limit on the Mac's built-in 
TextEdit. 

Li_ving in Object Poverty 
The terminology can get confusing, so I want to be very clear 
about what we're talking about. As noted earlier, an object is 
a chunk of a program that contains both data and functions. 
Generally, the data is private to an object, but the object's 
functions can be called by outside forces. 

For instance, in the Think Class Library, a CWindow is an 
object that implements a standard Macintosh window. It 
keeps private data such as the window's height and width. It 
has functions that allow you to activate, deactivate, move, 
resize, or close the window. This object is known as a class. 

W h at we're looking at here are classes created by folks 
and distributed as freeware or shareware. For 
instance, Joe Zobkiw distributes his CMoviePlayer 

class via the net; you can download it, add it to your 
program's existing classes, compile it with your program, 
and play QuickTime movies with generally a few lines of 
code. 

Object libraries refer to something totally different. The 
word object in this case refers to object code, which is the 
end result of source code. Object code is what comes out of 
a compiler. 

Object code libraries are basically a set of procedures or 
functions that someone has written and offered to let you 
use. Unlike with a class, you don't get the source code; what 



128 + BYTE's Mac Programmer's Cookbook 

It is a veritable 
wonder that we can 
carry out this 
business without 
getting into the 
greatest difficulties. 

-Albert Einstein 

you get is precompiled and ready to run. You simply add it 
to your project, and leave it to your language's linker to 
worry about the hows and whys of hooking in the code. 

For instance, the SpriteWorld is a code object written in C. 
Since it's a precompiled code object, you can sling it into any 
project·of your own. So if you're thinking about creating the· 
next Kung-Fu Nazi Bloodfeast and need some way to display 
the cool color graphics you've made, you simply load the 
library into your project and let 'er rip. 

Object code libraries tend to be easier to use, but 
object-oriented programming objects are pretty 
straightforward, too. It all depends on what you need, and 
the language you'll be using to write in. If you're not using 
Object Pascal or C++, then object-oriented stuff would be as 
useful as a dentist at a wedding. (Which means not very 
useful, folks. Must I explain everything?) 

The ROM Maze 
Ever since day one, the biggest complaint about 
programming the Macintosh was the complexity of its ROMs. 
I can remember a comment in St. Mac magazine issue #3 
(yes, St. Mac-published by the beloved Softalk Apple II 
magazine-now I am definitely showing my age) along the 
lines of "we expected lots more software to be out by now, 
but looking at the book Inside Macintosh, we understand it's 
an undertaking." At that point Inside Macintosh was already 
so big Apple had to get a company that usually printed 
phone books to print it. (I've still got one: it's a real 
collector's item.) And that was in 1984. Inside Macintosh has 
grown to six volumes, plus specialized manuals for 
QuickTime, PowerTalk, and so on. 

Object-oriented programming ien't perfect 
The problem with object-oriented languages is the wretched 
complexity involved in learning the class libraries needed to 
use the languages. Class libraries are generally functionally 
complete and wonderful to use, but miserable to learn. 



Object Libraries, Class Libraries, and You + 129 

In the early days of programming, a program was a very linear 
sequence of instructions to the machine. Then along came 
procedural programming, which is both an art and a science. 
Procedures can be used to hide the complexities and break 
the program down into logical units. 

In object-oriented programming, objects hide data and 
instructions inside themselves. This is both a blessing and a 
curse. The blessing is that they are little robots that you tell 
what to do and don't need to know how they are built or how 
their mechanics were created. The curse is that what you gain 
in ease of use, you lose in control. 

Have you ever closed your eyes, held your arms out to your 
sides, and then tried to touch your fingers together without 
looking? Well, making links with objects that you can't delve 
into is about as easy. What do you do to change the font 
used in the Think .Class Library, for example? Which object 
traps the command, and which carries it out? The problem 
has become one of scope. 

The trend is to make smaller and smaller objects, but to build 
more complex combinations of objects. We're reducing the 
complexity of each individual object, but increasing the 
complexity of the relationship between objects. 

This relationship between objects is very, very hard to describe 
visually. Look at our code browsers; they've become 
spiderwebs of interrelationships. Nowadays the hard part is 
figuring out how objects interact, and our existing tools don't 
work well for that. 

I don't have an easy answer for this one, but I'm still a big 
disciple in the church of object-oriented programming. I 
wouldn't write a Mac application any other way. But it's 
getting harder and harder to work with our existing tools. 

Interestingly, the brain works in a similar fashion. Each 
individual neuron is pretty stupid; it's the connections of 
neurons that have the real power. So maybe we're heading in 
the right direction. Then again, maybe our brains are as 
screwed up as object-oriented programming. A scary thought. 



130 + BYTE's Mac Programmer's Cookbook 

Suffice it to say, the learning curve for programming a Mac 
looks something like the Olympic ski-jumping ramp, only 
backward. It's a hell of a climb for folks just starting out. But 
luckily, there are some things out there to help you. 

Hack Facts 

TransSkel 
C version: Paul DuBois 
Wi scons in Regional Primate 
Research Center 
1220 Capitol Court 
Madison, WI 53715-1299 
Internet: 
dubois@primate.wisc.edu 
Free 

~Iii Hack Facts 

TransSkel 
Pa sc al version: Owen 
Hartnett 
OHM Software Company 
163 Richard Dr. 
Tiverton, RI 02878 
Internet: omh@cs.brown.edu 
Free 

Ill 

TransSkel is an application framework. 
Basically, it provides a "skeleton" 
application that handles all the basics: 
dealing with the menu bar, opening and 
closing windows, tracking mousedowns 
in scrollbars, etc. In theory, all you 
have to do is put some meat on the 
skeleton, and voila! Instant program. 

It's not quite that simple, sadly. You 
still need to learn the real basics: about 
the resource manager and how 
resources work, what events are and 
what they mean, things like that. But 
these are the low-level basics. 

For example, the TransSkel calls a 
routine of yours when a window is 
opened. You need to supply the routine 
to display stuff in that window. 

I'd say if you have comfortably 
skimmed volume I of Inside Macintosh, 
and you have a vague understanding of 
it, dive into TransSkel and see what 
happens. Put SysBeeps in various 
places and find out how things work. 

TransSkel can be a great learning tool, 
immm1mm11mmmmm~m11m~1Hmmmm but it's also useful as a starting point 

for your own programming projects, no 
matter how experienced you are. Many veteran programmers 
on the Internet have told me they use TransSkel to 
jump-start their own applications. 

It makes sense. Every time you write a Mac app you need to 
write the code to handle events, menu selections, and so on. 
You'll make a huge efficiency leap if you start reusing that 
code. And if you make a huge efficiency leap, think about 



Object Libraries, Class Libraries, and You + 131 

the result: you can spend all that free time watching The 
Simpsons and The Real World. 

One nice thing that TransSkel does is separate your 
application-specific code from its shell code. So you can 
compile the shell once and use it an infinite number of 
times. All you have to do for each new program is write the 
code that makes your new application unique. 

TAN5TAAFL, folks 
No matter which application framework you use, you're gonna 
be stuck with a learning curve of some kind. (There Ain't No 
Such Thing As A Free Lunch.) Either you need to learn a bunch 
of stuff up front-in which case, you're not gaining much from 
the application framework-or you'll have to learn the dirty 
details later; when you want to modify the framework to do 
something unique and interesting. 

Either way, you've got some learning ahead of you. But there's 
much less to learn when a framework is doing all the really 
hard stuff. And TraneSkel is a nice framework. 

The newest final version of TransSkel I could find was 2.6. 
There is a beta version numbered 3.03b that appears to 
implement some new features, but I have yet to find 
documentation of the changes and known bugs, so stick with 
the older version for now. 

Cu6tom Code Re6ource6 and You 
Well, there's another way to add libraries of code to your 
program. The Macintosh ROMe support the standard menus, 
windows, and controls, but the ROMe also allow customizable 
versions of these same interface elements. So, for example, if 
you want to create a special kind of menu that displays a 
color palette for a paint program, you can make a customized 
menu definition. Another example of a custom menu definition 
is Mercutio. 



132 + BYTE's Mac Programmer's Cookbook 

Mercutio 
MDEF 
Version 1.1.4 
Ramon M. Felciano 
1326 Masonic Ave. 
San Francisco, CA 94117 
Internet 
felciano@summit.stanford.edu 
Applelink : SUMMIT 
America Online : SUMMITDev 
CompuServe : 76166,3627 
Freeware 

On the Macintosh, menu items can 
have command-key equivalents. That 
is, when you press a letter key along 
with a command key, the Menu 
Manager treats it the same as when you 
use the mouse to invoke a menu item. 

Many commercial applications use 
special menus that, in addition to 
command-key combinations, use shift
and option-command key 
combinations. How can you do that? 
The problem is, the Mac's menu 
manager doesn't deal with key 
combinations. It only traps the 
command key. If you press 
command-option and some other key, 
it wouldn't know or care. 

Mercutio cares. Deeply. You can use 
Mercutio to create and use menus that use shift, option and 
command key combinations. The program is split into 

3€H three parts: •mm••··• Copy If 3€C 

The computer has 
become a common 
denominator that 
knows no intellectual, 
political, or 
bureaucratic bounds. 

-Cliff Stoll 

• 

• 
• 

A custom MDEF that you copy into your program with 
ResEdit. This MDEF knows how to draw the shift- and 
option-command key symbols. 

A special font that has the shift and option characters . 

Some C and Pascal code that works just like the 
Toolbox's MenuKey, only it knows how to check for shift
and option-command key sequences. 

So when you use Mercutio, it's pretty simple to make menus 
that use SHIFT-COMMAND-B for "Bold" or OPTION-COMMAND-F for 
"Bring to Front". It's also very easy to create some hideously 
unintuitive menus with Mercutio, so keep the user interface 
guidelines in mind as you use it. 



Object Libraries, Class Libraries, and You + 133 

There's also a few caveats: Mercutio uses standard menu 
resources, so you can create your menus in ResEdit or any 
other menu editor. To specify a shift- or option-command 
key, you set the "Condense" or "Expanded" text style for that 
menu item. These styles are ignored-in Mercutio's MDEF, no 
menu items can be drawn in the Condensed or Expanded 
style-but they are used as flags to indicate which key 
combination to display and watch for. 

Seeking the Source 
Another way you can flatten that learning curve is to learn 
from others' examples. Apple provides sample programs on 
its Developer CD-ROMs and at its FTP site, but sometimes 
you need more-or sometimes, the Apple-approved solution 
isn't enough. In those cases, you need to look for example 
code elsewhere. 

One of my favorite pastimes is what I call code 
snarfing-stealing good bits of code from wherever 
I can. (I mean, legitimately borrowing legally 

available code, of course. Please don't steal code.) Whenever 
I come across a good bit on the Internet or America Online, I 
paste it into my special code scrapbook. What I look for are 
inspired solutions, elegant implementations, or just stuff I 
think I'll find handy someday. 

The programs described next are good sources for snarfing. 
Look for them on the info-mac server at 
sumex-aim@stanford.edu, or in the Mac Developer's Forum 
on America Online. Also, keep a close eye on the 
alt.mac.sources newsgroup, and of course the 
comp.sys.mac.programmer newsgroup as well. 

clut_fade 1.0 
Ever wonder how games and screen savers do that cool 
smooth-as-silk fade-out and fade-in effect? Well, Andrew 
Welch shows you how. Jonas Englund added a demo 
application that shows the fader code in action. This 



134 + BYTE's Mac Programmer's Cookbook 

recently saved my butt on a project, so I highly recommend 
it. Note that it doesn't work in 16- or 24-bit color modes. 

Huffman Example 
This demonstrates how to use Huffman encoding, which is a 
type of compression. Watch out: this code doesn't show you 
how to do Huffman decoding! But it's still great for learning 
purposes. 

LaunchFile XCMD Source 
Writing external commands is a minor art of its own. You 
need your code to be small, quick, and global-variable free. 
This source code demonstrates how to create good externals 
in Pascal. 

POV 3.0, RTrace 1.0 
This provides great examples of ray tracing with Phong and 
Gourad shading, off-screen pixmaps, background processing. 

PwrSwitcher 
This control panel used to be popular freeware, but the 
author has stopped supporting it and has released the 
source code to the world. You can learn things like: how to 
make a control panel, how to switch between processes, how 
to watch for a particular keydown. 

Trie Example 
One step beyond binary trees, a trie is a data structure that 
holds repetitive data in a small amount of memory. Source 
code and data structures are easily reusable. 



Object Libraries, Class Libraries, and You + 135 

Writeswll Jr 
This is an AppleEvent-callable spelling checker; it's good to 
read this code and see how to handle AppleEvent in general, 
and the Text Suite in particular. 

Use that Usenet 
I've already suggested a few newsgroups to watch 
for Mac programming tips and tricks, primarily 
comp.sys.mac.programmer. But before you jump out 
there and ask really innocent questions that bore and annoy 
the old-timers, it's smart to run a background check. 

at the info-mac ftp site (sumex-aim@stanford.edu), 
you can download archives full of question-answer 
repartee called the Usenet Macintosh Programmer's 

Guide, UMPG for short. UMPG contains answers to the most 
common questions posted to the c.s.m.p newsgroup since 
1988. It comes as a folder of 19 files in Microsoft Word 
format. Matthew Mora compiled the files, which were last 
updated in 1992. They cover specific Macintosh 
programming problems. 

Also, you can get the comp.sys.mac.programmer FAQ 
(Frequently Asked Questions list) from the same ftp site. 
This list contains answers to more general questions, such 
as brands of compilers and good magazines to read. It is 
updated regularly and posted to the 
comp.sys.mac.programmer newsgroup. (We have included a 
copy of this FAQ in Appendix C. Check it out.) 

The best way to use these files is to read them straight 
through, using your programmer's total recall to remember 
everything. (Ha!) The next best way is to use Microsoft 
Word's multi-file search. Word can search all of the files in a 
folder, so you can search for all instances of "copybits," for 
instance, and see everything anyone had to say on that topic. 



136 + BYTE's Mac Programmer's Cookbook 

Hack Facts 

Toolbar manager 

I hate toolbars. Despise them. But that 
doesn't stop Microsoft from making 
them, so I'm learning to deal with 

OBJ (T hink Pasca l code them.Ifforsomereasonyoudecide 
l; bra ry) that you'd like a tool bar in your own 
SN R Enterpri ses program, you could figure out how to 

~m;: ~ ;~~~~:e~:~ vBeC.. V7 N 3 K9 1 .. ''1 .. ,'1,'.1.''. 1 .. ,'1 .. '' t;;~;;~~~;~~;i.:J~~~~:;r ~;:;.::;~: 
Free (s ee t ex t ) _ size (small icons or large icons), and 
97 . 780 byte s I+ you can even have a "sliding" toolbar 

~,,.,W,.,.m"'"m1""m.,.,im""'rn.,..,m'."":m""'1H""ii!i"""m""m1"""m""W""'~m""'~H"'"W~""if='°Qi~ :; t~:u~i~i--~C:~~~t:i ng at the bottom, 

Quick, call the user-interface police! I think Narayan got 
carried away while coding this. If the point of a toolbar is to 
show you all of your options, and to make them readily 
available , then why hide them? The scroll-thingy should 
have been smothered at birth. 

But if you just want to make normal toolbars, give this a try. 
The API is a bit convoluted, but decipherable. It handles 
things like off-screen pixmaps , floating windows, and palette 
window definitions, all of which generally give me hives . 

If your program is public domain or freeware, Toolbar 
manager is free. If you are making shareware, the cost is the 
equivalent of three copies of your shareware product. Either 

Figure 7-1 . This sample too/bar from Too/bar Manager can 
make your programs easier to use. Uh-huh 



Object Libraries, Class Libraries, and You + 137 

way, you must put a notice in your "About" box that gives 
appropriate credit to SNR. 

Hack Facts 
Vaccinate Plus 

Viruses are coming! Viruses are coming! 
Michelangelo will wipe your hard drive! 
Call Dan Rather! Alert the President! 

OBJ, TEXT (Pascal source Granny,gettheguns! 
and object files). It wasn't too long ago that the great 
Patrick M. Gormley fourth estate, our beloved press, went 
4247 Vernor Rd. ga-ga over a virus called Michaelangelo. 
Attic a , MI 48412 It was supposed to erase your hard 
America Online: PatrickG21 driveonAprilFools'Day.Luckyforus 
Free Mac users, it was restricted to the DOS 
56, 768 bytes ~ world, but the resultant hype and 

!!Ji ·~~iim ·. ;~iilj~~k~f:~~iimi~ii~~i!1~1im~!l~ii~ii~i ~ 'iii absolutely frantic predictions went 
unrestricted. Peter Jennings told 

It turns out to be 
very difficult to 
devise a theory to 
describe the 
universe all in one go. 
-Stephen Hawking 

people on the six o'clock news to back 
up their hard drive, nagging like he was their mother or 
something. Like I'm going to do anything that Peter Jennings 
tells me to. And what happened? Not much. A few people got 
their hard drives wiped out-I guess they lived in caves or 
something. 

Ever since, the viral menace has been out of the news. And 
since System 7 came out for the Mac, viruses have been 
relatively unheard of. Have viruses run their course? I doubt 
it. More likely the guys who wrote viruses graduated from 
high school and had to get real jobs. 

Even so, it's quite possible that some 12-year-old kid, after 
breaking her leg on her skateboard and being stuck in a 
hospital bed for two weeks, could whip up some nasty little 
virus on her PowerBook to keep her brain from imploding 
out of sheer boredom. Were this to happen, would your 
programs be ready? 

If your answer is no, look to Vaccinate Plus. This simple code 
object, which you link into your program using either C or 
Pascal, checks the size of all your resources. If it notices a 
change in the size, it returns an error. It's up to your code to 



138 + BYTE's Mac Programmer's Cookbook 

Note 

report the error to the user. (Might I suggest a nice modal 
dialog box?) 

Many commercial programs already do this. I was pleasantly 
surprised by ClarisWorks one day, when it told me it had 
been infected by "Scores" and needed to be replaced. It's 
good to do this for your users, and it doesn't cost you 
anything in terms of code: just link in Vaccinate Plus. 

You will need to have your resources finalized before you 
can use Vaccinate Plus, so save it for the last bit of coding. 
The author suggests setting compiler variables, so the virus 
checking code isn't run until after you're done making . 
changes to the program. Here's the sample code he provides: 

{$1FC DEVELOPMENT} 
{$ELSEC} 
if not (ApplicationCanRun) then begin 

{Any necessary clean-up code} 
Halt; 

end; 
{$ENDC} 

Set "DEVELOPMENT" to TRUE while working on the code, and 
FALSE when making an application build. The routine 
ApplicationCanRun is provided by Vaccinate Plus. It does all 
the dirty work, and simply returns a TRUE or FALSE. Cool! 

Thie; won't protect your e;oftware againe;t all virue;ee; at all 
timee;. It e;imply checke; for conditione; where extra ree;ourcee; 
have been added to the program, or ree;ourcee; have gotten 
larger. Thie; ie; not total protection; it ie; conceivable that a 
future virue; might not work thie; way. Or; a virue; that knew how 
Vaccinate Plue; worke; could fool it; becaue;e the author 
providee; e;ome e;ource code, it wouldn't be difficult for 
e;omeone to write e;uch a virue;. But ue;ing Vaccinate Plue; ie; 
much better than not adding any protection to your program. 



Object Libraries, Class Libraries, and You + 139 

- c 

219 Hack Facts 

GraphLib 
LIB (Think C object code 
library) 
Masters Publishing 
P.O. Box 1940 
Ann Arbor, MI 48106 
AppleLink: MASTERS 
AOL: Ardussi 
$100 per application 

:. m1\~m mmmmirnrnmmmmmmmimirnP:mmm 

!!!Ii 

Making graphs-those bar-chart things 
that Excel excels at-is always a tedious 
chore. But GraphLib makes it easy. And 
GraphLib comes in both C and Pascal 
flavors, so both sides of that holy war 
can benefit. 

Here's how it works: first, you set up all 
the data structures. These are things 
like the name of the graph, the names 
of the axes, the scales of the axes, and 

!+ so on. Then you decide what kind of 
go graph you want it to be. Then you add 

points to the graph. Then you plot it. 
The routines exist in the precompiled code library file. 

It's pretty simple, although you need to do a few things on 
your side first: you will probably plot the graph into an 
off-screen GrafPort so you can capture it to a PICT. So you'll 
need to create the port and do any associated housekeeping. 

Hack Facts 
When you write a Mac program that 
includes some editable text, most 
products use the TextEdit package built 
into the Mac ROMs. At least most 
non-word processors do: TeachText, 
AppleLink and America Online, to name 
just a few. 

TE32K 
TEXT CC source code files) 
Version 1.2 
Roy Wood 
122 Britannia Ave. 
London, Ontario. N6H 2J5 
CANADA 
519-438-3177 
rrwood@canrem.com, 
rrwood@canrem.uucp 
Free 
200,742 bytes 

We do it because it's easy: just a few 
calls to the Mac toolbox, and voila, 
instant editable text in a box. No 
sweating over the details. No problems. 
Except there's a limitation: the built-in 
TextEdit routines have a limit of 32K of 
data. And worse, they have a limit on 
the height of all the text, which must 
be less than 32k pixels tall. 

TE32K solves this by providing a code 
library that you can use in place of the 

normal TextEdit routines. TE32K deals with the low-level 
drudgery of tracking all that text. It uses routine names and 
data structures that are almost exactly the same as the 



140 + BYTE's Mac Programmer's Cookbook 

standard TextEdit routines, so adding it to an existing 
program would be as easy as cake. Your program's calls 
would stay basically the same. 

As TE32K author Roy Wood says, "There are a few other 
differences as well, most of which are shortcomings due to 
laziness on my part." At least he's honest. There are some 
odd redraw flashes in the text, but nothing serious, and 
since it comes with source code, you can fix the problems 
yourself if you have the inclination. As Wood says much 
better than l ever could, "Please feel free to modify it in 
whatever twisted way your warped little heart desires." Yeah. 

th l• s is source code; you'll need to add the code to your 
project and compile it yourself. It's not 
object-oriented code, but if that's what you need, 

the author suggests using Chris Wysoki's CText. I think you 
could slip these routines into a descendent of the standard 
TCL CEditText class without much trouble, though. What's 
TCL, you ask? Read on. 

Battle of the Sprites 
I'm going to spend a significant amount of time discussing 
sprites because, IMHO, there aren't enough cool Mac games 
out there. One reason for this is that, despite the incredible 
power of QuickDraw, writing super-fast graphics routines 
isn't easy. 

Every programmer who plays Andrew Welch's Maelstrom gets 
really excited about making Mac games. Some people even 
crank up the C compiler and get about two hours into 
writing a game, when they find themselves all mucked up in 
GWorlds and color pixmaps, at which point they start 
mumbling to themselves and singing little happy songs 
about color depths, then forget what the game they wanted 
to make was all about, so they just doodle some color icons 
in ResEdit before finally admitting defeat and returning to 
playing Maelstrom. 



Object Libraries, Class Libraries, and You + 141 

Using the right tools-which I'll cover in detail later in this 
chapter-you can concentrate on the game, and not worry 
about the mechanics behind the scenes: Who wants to worry 
about allocating pixmaps in MultiFinder temporary memory? 
Let someone else worry about that. You should spend your 
energy inventing the next Pac-Mac for Generation Z to waste 
their brain cells over. 

About 
Sprite (sprit) n. a graphical image, usually composed of 
several frames, capable of being moved around the screen. 
Generally, sprites handle the tough work of graphics 
programming for you: collision detection, multi-layering, and 
frame animation should be built into whatever package you're 
using. 

~ Hack Facts 
Tony Myles's SpriteWorld offers a truly 
complete sprite-management package. 
It has full, very readable docu
mentation; a good AP! (application 
programming interface, or the routines 
you call to use it); and some very cool 
examples that are worth showing off to 
friends. 

SpriteWorld 
LIB (Think C object code 
library) 
Version l.Ob3 
Tony Myles 
America Online: Suiryu 
CompuServe: 72070,3000 
Internet: suiryu@aol .com 
Free 
1,015,174 bytes (library, 
headers, and examples) 

SpriteWorld provides routines that 
perform smooth multi-layered 
animation, with collision detection. 
SpriteWorld uses "custom bit-blitting 
routines" for drawing off-screen 
pixmaps-and for copying those 
pixmaps to the screen. It will 

I+ synchronize the animation on 
""irn""iH=m:..,..,~iH""'rn""11~t""m""tm""~1l=rnl""W,..,.m""~iH=m=m~""m=ml=""\il..... millisecond intervals Cthanks to the 

Time Manager). Figure 7-2 shows an 
example from SpriteWorld that 

illustrates how sprites exist in separate layers. 

SpriteWorld's interfaces are simple to pick up. They follow 
the Macintosh ROM conventions: initialize a package, use the 
routines, clean up after yourself when you quit. It's pretty 
straightforward. 



142 + BYTE's Mac Programmer's Cookbook 

Figure 7-2. The text is sandwiched between the two spinning 
globes 

You can import sprites from PICT resources, or from color 
icons. Color icons are better because they come with a mask 
for erasing the background; plus, you can edit them in 
ResEdit directly. 

This package is popular. From what I hear on the net, many 
people are using this in shareware, and even in commercial 
software. The routines are certainly fast enough for any 
arcade-style games. 

The latest version adds compatibility with non-QuickDraw 
machines, faster 8-bit animation, and minor bug fixes. The 
cost is nearly free; if you make any cool games with 
SpriteWorld, you must make Tony Myles a registered user 
and send him a copy. What a deal! 

Join or die 
I know it must seem like I have this holy vendetta against C, 
and well, I do. C sucks. To put it mildly. 

I have wasted literally days at a time staring at C code, 
trying to figure out why something didn't compile, cursing the 
criminally vague Symantec C error messages, always 
wondering in the back of my mind if I had the time to convert 
everything to Pascal. 

Sure, C is a very low-level language. You can do all kinds of 
tweaks to the code to improve performance. But these are 



Object Libraries, Class Libraries, and You + 143 

the very tweaks that make C so unreadable. You know how I 
usually solve C syntax errors? Trial and error. I literally try one 
thing after another and recompile until the blasted thing 
works. 

Years ago, pretty much everyone concurred on how horrible C 
was. Columns in Byte magazine used to decry its advent. But 
like the Blob overtaking that small town, C moved in and took 
over so slowly no one noticed. Now it's like those American 
Revolutionary War flags: "Join or Die." I feel besieged. 

Symantec hasn't released an update to Think Pascal in eons, 
in the hope that Pascal programmers will just switch to C. I 
reported a Pascal bug to them almost two years ago: 

if you run a QuickTime movie in the environment, when you quit 
the program, your machine will always crash. Always. Never 
fails. I reported it. Tech support verified it. I still have the fax. 
But they've never fixed it. And now they don't even pretend 
they're going to fix it. Code Warrior, a new environment from 
Metrowerks that offers both C and Pascal compilers, should 
offer some serious competition. Maybe Symantec will get on 
the ball and support their product. 

Even with the minor bugs, Pascal trounces C in the 
leveraged-tools department. Why waste time tweaking your 
code? Before long we'll all be using RISC machines. All code will 
be screamingly fast, no matter how poorly written. We'll have 
cycles to burn. All that low-level C coding, all that 
byte-tweaking for speed--which is poor programming practice 
and will probably lead to a crash if you port that code to 
R/SC--will have been pointless for the great majority of 
programmers. 

Don't get me wrong. I program in C when my job requires it. But I 
don't like it. And only programmers who need /ow-level control 
of their machines will be using it in the future. To misquote 
those wonderful American Revolutionary flags, "Join and die." 



144 + BYTE's Mac Programmer's Cookbook 

- ~ 

Hack Facts Like SpriteWorld, SAT provides routines 
for animating sprites. But unlike the 
C-only SpriteWorld, SAT is provided as 
a code library for Pascal programmers 
(although there are C interface files, too). 

SAT 
OBJ (Think Pascal code 
library), PROJ (Think C 
project) SAT offers a few features that 

SpriteWorld doesn't: Version 2.0b5 
Ingemar Ragnemalm 
Pl ojarega tan 73 
S-58330 Linkoping • SAT works at any bit depth, and it 

detects switches on the fly. So if 
the user switches from 16 colors to 
256 colors while playing your 
game, everything just keeps 
working. And if SAT can't use its 
high-speed bit-blitting routines, 
then it uses the Mac's built-in 
QuickDraw as a backup. 
SpriteWorld only works at 256 

SWEDEN 
ingemar@isy.liu.se 
Free 
991,620 bytes 

colors, so games that use it can't run on the Mac Plus, 
SE, or Classic. 

• SAT provides routines to play sounds asynchronously 
(which means, the sound plays while you do other 
things, as opposed to HyperCard's freeze-the-Mac
while-playing-the-sound synchronous method). While 
this isn't terribly difficult to do yourself, it's nice that 
SAT handles it, so beginning programmers don't feel 
overwhelmed. 

On the other hand, SpriteWorld does come with full source 
code. If you want to modify it or fix a bug that you've 
discovered, just open the code and edit away. SAT, on the 
other hand, is a compiled code object. There's no way to 
crawl inside and modify it. 

SAT makes it easy to create sprite-based action games in 
Pascal, as Figure 7-3 shows. SAT handles the layering of 
sprites-as well as collision detection-automatically. 



Object Libraries, Class Libraries, and You + 145 

Figure 7·3. With SAT you can easily produce sprite-based 
games in Pascal 

SAT uses resources of type cicn (color icons) to make its 
sprites. SpriteWorld can use cicns or PICTs. SpriteWorld 
sprites can be any size; SAT sprites must be in even 
multiples of 8 pixels wide. So there are trade-offs with both 
products. 

According to the author, Ingemar Ragnemalm, SAT has been 
used by several popular Mac games, among them Bachman 
and Slime Invaders (both of which Ingemar wrote). Bachman 
is one of my favorites, too, so I was psyched to learn this. 
It's been tested in the real world, and we know it works. 

SAT costs you nothing; however, you must send author 
Ingemar Ragnemalm a copy of whatever shareware or 
freeware you create with his SAT routines. If you want to use 
SAT in commercial software, contact Ingemar Ragnemalm 
first for licensing information. 



" 

146 + BYTE's Mac Programmer's Cookbook 

Thinking Objectively: TCL Classes 

Make the enemy live 
up to their own book 
of rules. 

-Saul D. Alinsky, 
Rules for Radicals 

When the Think Class Library, better known as TCL, debuted, 
it ushered in a whole new method of programming 
previously limited to users of such oddities as Smalltalk. 
The whole idea of a library of class, which was totally 
extensible via classes that could be shared with others, was 
new to most Mac programmers. 

Right after TCL came out, I took it for a test drive, matching 
it against a program I had been working on for about a 
month. In one week I had duplicated all of the work to date 
in TCL. That convinced me totally: OOP was not just a cool, 
hip buzzword, but was actually useful. I tossed out a 
month's worth of work-depressingly little had been done, 
to be honest-and never looked back. 

(Not long after that, the owner of the company that enslaved 
me read something about Apple's application framework 
MacApp, and after much heated debate he made us switch to 
it. MacApp is wonderful but much more complex than TCL. 
We threw out months of work-again-and started over in 
MacApp. My company never did finish that product. Hey, all 
the cool programming tools in the world won't save you 
from stupid management.) 

The best place to look for TCL classes is on the net. Keep an 
ear to the ground and watch the network traffic in the 
comp.sys.mac.oop.tcl and comp.sys.mac.programmer 
newsgroups. The FTP site ftp.brown.edu serves as the net 
repository for TCL classes (although this may change soon). 
This is also where you can find the TCL FAQ (Frequently 
Asked Questions list), notes on bugs in the TCL classes, and 
the entire comp.sys.mac.oop.tcl newsgroup archive, which is 
searchable by WAIS (Wide Area Information Search). 

Here's a list of all of the classes available on the 
ftp.brown.edu server as of press time. You can find these in 
the directory pub/tel/classes. 



Object Libraries, Class Libraries, and You + 147 

CCoolAbout-1.0b3-P-classes 

CCoolDecorator-1.0b2-P-classes 

CDateText-1.0-C-classes 

CDecimalText-1.0-C++-classes 

CDevicelter-1.0.1-C++-classes 

CDictionary-1.0-C-classes 

CDividedPane-1.0-C-classes 

CDragAcrossTable-1.0b1-C-classes 

CFile-1.1-C-classes 

CFlexiDataFile-1.1-C-classes 

CHiliteDialog_CStringArray-1.0-C-classes 

ClconBuddy-1.0-C-classes 

ClconFamily-1.0-C-classes 

CJanitor-1.0-C++-classes 

CListMgrPane-1.0-C-classes 

CMIDl-2.2-C-classes 

CMovie_Run-1.0-C-classes 

CMultStdPopupPane-1.0-C-classes 

CMultStdPopupPane-2.0-C++-classes 

COrderedlist-2-C-classes 

CPEditText-1.2-C-classes 

CPasswordText-1.0-C-classes 

CPixelWorld-1.2-C-classes 

CPrefFile-1.0-C-classes 

CPrefsFile-1.2b2-P-classes 

CRandom-1.0-C-classes 

CSICNPane-1.0-C-classes 

CScrolllist-1.0-C-classes 

CScrollorama-1 .1-C-classes 

CStaticTextPane-1.0-C-classes 

CStatusBar-1.0-C-classes 

CStatusPane-1.0-C++-classes 

CStream-1.0-C-classes 

CTCP-1.0-C-classes 

CTerminalPane-1.0-C-classes 

CTextFile-1.1-P-classes 

CThermometerDirector-1.0-C-classes 

CTreeViewer-1.0-C-classes 

CVblSync-1.0.1-C-classes 

CWhoisEngine-1.0-C-classes 

CWindowZoomer-1.0b3-P-classes 

CXCharGrid-1.0-C-classes 

CommunicationsToolbox-1.0-C-classes 

Intelligent_ Classes-1.0-C-classes 

ltemClass-1.0-C-classes 

MacTCP-1.2-C-classes 

NodeViewer-1.0-C-classes 

TCLscript-1.0d1-C++-classes 

TurboTCP-1.0.1-C-classes 



148 + BYTE's Mac Programmer's Cookbook 

Allow me to recommend a few favorites: 

• CPrefsFile This class works under both System 6 and 
System 7, and implements the standard behavior for a 
preferences file, (i.e. it lives in a folder called 
"Preferences" inside the System folder). 

• CMovieRun Opens and displays a QuickTime movie in a 
TCL pane. 

• CMIDI Written by the good Paul Ferguson, CMIDI 
provides a nifty class for communicating with 
MIDI-compatible musical instruments. 

Coming Up Next: 
From Theory to Reality 

Writing a program is a lot like inventing a hypothesis. It's all 
well and good in the lab, but until you test it in the real 
world, it means nothing. That's where debugging comes in. 
The real world is a cruel and harsh place. Doubtless, your 
programs will crash countless times before you can perfect 
them. Don't take it personally. Everyone writes crashers. 

The next chapter will show off some cool debugging tools 
that make the tracking down and elimination of bugs in your 
code as easy and painless as possible. Lace up them combat 
boots, flick off the safeties-we're heading into the hottest 
LZ yet. Destination: Macsbug. 



• 
I 

The Zen of Good Code= 
Debuggers 

Cut 3CH 

Computers are 
useless. They can 
only give you 
answers. 

-Pablo Picasso 

When an airplane crashes, after all the survivors are rescued, 
but before the casualties are sent home and the luggage is 
scanned for valuables, there is usually a prime objective: 
find the black box. 

The black box, the flight recorder, is the treasure sought by 
all the investigators. Within the confines of that little box lie 
the secrets of the disaster. Inside that box is nothing other 
than Just What the Hell Happened. 

Computers crash, too, though far less dramatically; but your 
Mac didn't really come with anything like a black box. It 
would be great if a dialog box popped up to tell you that 
your hard drive had iced over or wind shear on your 
keyboard made Word 5.1 seize up your Centris. Luckily, our 
hacker pals are out there, putting together virtual black 
boxes for your Mac that tell you exactly what happened, and 
how you can recover and get on with your life, armed with 
new knowledge so that this won't happen again. 

In the computer world, these black boxes are called 
debuggers. 

149 



150 ,t BYTE's Mac Programmer's Cookbook 

Slinking Inside the Heart of the 
Machine 

So your program crashes. What now? Debuggers are the only 
way to find out what's happening deep inside the bowels of 
your computer. This chapter will cover the basics of using 
Apple's popular Macsbug debugger with some handy external 
commands you can get for free. Plus we'll talk about the 
ABZMon debugger, which is public domain and widely available. 

Freely available shareware programmer's helpers abound. In 
addition to the expensive stuff, we'll concentrate on the free 
stuff that can put more jolt into your programming sessions 
than your cola. 

The Big Picture: Memory 

-

The best debugging tools, besides actual debuggers, fall into 
that class of program that shows you information about 

• memory allocation. After all, your program is nothing more 
than bits in memory. And probably three out of four crashes 
are caused by accessing memory locations that you shouldn't. 

Back in Chapter 4 I talked about a program called 
ZoneRanger. I like it quite a bit, but many people on the net 
have pointed to Swatch as their favorite memory watcher. 
And, to be honest, I use Swatch more than ZoneRanger, but 
only because Swatch is simpler to use. 

§Iii Hack Facts 
Swatch, short for system watch, 
displays a graph of the memory usage 
of all applications. You can zoom in on 
a graph for more detail using the 
magnifying glass tool. 

Swatch 
APPL 
Version 1.2.2 
Joe Holt 
Internet: jholt@adobe.com 
America Online: Jholt 
Applelink: ADOBE.APDENG 
(attn: joe) 
415-962-2097 (voice) 
41,076 bytes 

Swatch displays the heap in an 
easy-to-grok color display, as shown in 
Figure 8-1. By clicking on the 
application's name, you will compact 
that application's heap. Why would you 
want to do that? Well, compacting the 



The Zen of Good Code: Debuggers ,t 151 

Ht.!Q..Size Free 

System 5,926,076 151 ,152 

Finder 283,648 17,440 

Express Modem 402,816 48 ,080 

Microsoft Word 2 ,088,336 688,960 

BBEdit L;te 490,912 309,616 

Fetch 434,656 161,840 

Claris'W'orks 2 ,01 S ,408 1 ,563 ,280 

Amerlca Online ... 750,816 125,200 
~ 

~: Heap is at $018943FO <BBEd l t L it 

~tern Wntch 
LJ>jxel : 4 n<lELl!!ill!. 

• 

• • 
Figure 8-1. Heaps shown in Swatch's color display. [Clicking 

on the bomb icon, shown in the lower-left corner 
of the screen, drops you into the debugger] 

heap generally involves moving memory blocks around, And 
the system may compact the heap at any time, usually when 
you least expect it. When the system does that, poorly 
written code of yours may crash . 

• use Swatch's free memory display to find memory 
leaks. Try this: run an application you've made, 1 and then run Swatch. Jot down the amount of free 

memory your application has. Now open and close a few 
windows. Eventually, return all the windows to the state they 
were in when you opened the application and check Swatch 
again. Now jot down this number, too. 

Do the numbers match? If not, you probably have a leak. 
By carefully checking the numbers, you can determine 
how much you lose each time you open a window. That 
may help you find the data structure that's not being 
deallocated. 

There is a DCMD (a debugger command-see the "Adding 
to Macsbug" section at the end of this chapter for details) 
for Macsbug called Leaks, but it can't handle big OOPs 
programs that allocate lots of handles; there's just too 
much going on for it to track. In that case, Swatch is not a 
bad choice. But then, Ramadillo (reviewed next) can help 
you find leaks, too. 



152 ,t BYTE's Mac Programmer's Cookbook 

-
• Hack Facts 

Ramadillo 
APPL 
Russ Coffman 
Aldus Corp., Persuasion Div. 
Dallas, TX 
Internet: Armadillo@AOL.com 
America Online: AFC Russ 
Applelink: BSTOUT 
Sort of free (see below) 
23,119 byte s ~ 

~i~~i~~!ii~~H~~~~~~~~~~~~~~~i~~~~~i~~~fi~~~~~j!ili!~~~ Iii 

Adobe vs. Aldus 

Ramadillo graphically displays the free 
RAM in the heap of one other open 
application. Ramadillo helps you discover 
memory leaks by checking memory at 
regular intervals (you set the amount of 
time per interval), and at the end of 
each time period it shows you the 
difference between memory snapshots. 

Ramadillo's graph isn't quite as cute or 
informative as Swatch's graph, but it's 
much better suited to the task of 
finding memory leaks because it gives 
the deltas you'd normally have to 
compute by hand, as Figure 8-2 shows. 

How about that fierce rivalry between Adobe and Aldus? They 
make competing illustration programs, and now competing 
shareware heap-watching programs. Like two superpowers 
fueling the space program, their battle enables all of us 
third-world denizens to benefit. (Just look what we got from 
the space program: Tang, ballpoin~ pens that write upside 
down, and freeze-dried ice cream.) 

BBEdlt Lite 
R*ch 

Return !SR 

( NeHt Process !SN J 
Lo: 275728 

;.pp sin: 540672 
I I 

• Ramadlllo • 

( Purge Heop !SP J 

Hi : 309632 20298934 +32 
Limit : 70000 

-----,. 30 

Free memory Amount of memory 
now consumed since 

last interval 

Figure 8-Z. ~ Ramadil/o shows the deltas in memory use 
between heap snapshots 



The Zen of Good Code: Debuggers ,t 153 

Ramadillo is listed as "Persuasionware." To quote Russ 
Coffman: "Ramadillo is Altering Reality: Utilities for a Better 
Life Persuasionware. If you need a presentation program, 
please look at Aldus Persuasion and help me keep my job! 
It's No. 1 anyway, but every little bit helps." Ya dig? Help the 
man out. 

NO'te6 from the trenches-don't double dispose 
A few daye; ago, I had an interee;ting crae;h that took a while 
to figure out. I had a handle that held a Mac e;ound. The 
e;econd time a e;ound finie;hed playing, my program would 
crae;h. (Well, there'@ actually more to it than that, but for the 
e;ake of brevity /et'e; e;tick with thie; explanation.) 

It turne; out I wae; die;poe;ing the e;ound handle twice. Thie; 
really e;crewe; up the Memory Manager; the e;econd time 
through, it doee; all e;orte; of awful thinge; (like e;crewing up the 
mae;ter pointer /ie;t). 

Apple hae; releae;ed a couple of extene;ione; on ite; Developer 
CD-ROMe;: DoubleTrouble and Die;poe;eRee;ource. DoubleTrouble 
will detect thie; e;ituation (that ie;, when you die;poe;e of a 
handle twice). Die;poe;eRee;ource will alert you to a e;imilar 
condition: when you call Die;poe;eHandle on a re;e;ource handle 
(which ie; a/e;o a big no-no). 

A/e;o, you can get the infamoue; EvenBetterBue;Error; which 
detecte; the dangeroue; ue;age of nil hand/ee;. I ue;ed to run my 
e;ye;tem with EvenBetterBue;Error on all the time, but it 
depree;e;ed me to e;ee how many commercial applicatione; 
actually read and write to nil hand/ea Now I only run it when I 
am tee;ting my own appe;. All three are available on the Apple 
Developer CD-ROMe;, or on Apple'@ ftp e;ite (ftp.apple.com). 



154 ,t BYTE's Mac Programmer's Cookbook 

-

Hack Facts It used to be that every Mac had 
hard-wired switches for interrupt and 
reset. Sometimes you had to put the 
switches on yourself, but all machines 
had them. And programmers would 
often use both switches. 

Programmer's Key 
Ver s ion 1.4. 2 
Paul Mercer 
P.O. Box 160165 
Cupertino, CA 95014-0165 
Internet: pmercer@apple.com 
AppleLin k: MERCERl 

11 · ~l~~~~E~i~~~~i?llt~:~~!i;m. Free 
6,510 bytes 

Tip 

interrupt and reset switches, since 
almost anyone who wants to use those 
switches has a keyboard with a POWER 
key. This extension will drop into the 

debugger-the functional equivalent of hitting the interrupt 
switch-when you press the COMMAND-POWER key. (On 
PowerBooks, press COMMAND-DELETE.) 

Hold the OPTION key down and you'll drop into the debugger in 
the frontmost process only. 

-

~Iii Hack Facts 
Half the time when you're debugging, 
you're chasing your own tail. For 
instance, let's say you have this huge 
array of names, and for the sake of 
argument, you've written a routine that 
will print them all on command, so you 
can see if they're entered in memory 
correctly. 

Debug Window 
APPL 
Version 2. 0 
Ken Ledbetter 
America Online: Kledbetter 
63,505 bytes 
Free So you run the program and bring up 

:ii~iiililmliimmlilH!llmmmmmmmmmi the names. Whoops! Garbage fills the 
window. What happened? You can't 

be certain. Is the problem in the array, or the code that 
displays it? 

Heisenberg was right with his uncertainty principle (he said 
that just by looking at something you change it), but 
fortunately we've got DebugWindow (unlike our 
particle-physics colleagues, who have nothing of the sort). 



~ -

The Zen of Good Code: Debuggers ~ 155 

-· Debu Window 
repeat with I = 1 to number o f I ines in rlDs 

put "Copying: " &theType&& I ine I of rlDs :!!Ji! 
resCopyQu i ck fromF i I e, toS tock, the type, ( I i ne I H!!!! 
if the result is not empty then answer the resu !!!!!! 
put TRUE i n to go tone 

end repeat 

end repeat 
if not go t One then answer "Nothing moved! " 
if the shi ftKey is not down then exit repeat 

end repeat 
put "Copying Completed ." 

Figure 8-3. DebugWindow will display any text you ask it to, 
as well as hexadecimal values 

DebugWindow is a separate application that runs by itself. 
This means you can be confident that your code can't 
contaminate it, and that it can't contaminate your code. 

The author, Ken Ledbetter, provides a few C routines and 
HyperCard XCMDs to let you print stuff to the window. You 
can print text or hexadecimal numbers. I typed in HyperCard 
"xDebug the script of this stack" to get the display shown in 
Figure 8-3. You can even have your lines of text time-stamped. 

While this isn't extraordinarily helpful in HyperCard-where the 
"answer" command takes care of displaying variables for 
you-it can be a godsend when working with C programs, or 
long values in HyperCard. 

Too bad Ken Ledbetter didn't include a Pascal library. Since 
he's using AppleEvents to send the text back and forth, it 
probably would be a simple matter to create the analogous 
Pascal routines. I'll leave this as an exercise to the reader. 

Hack Facts 
The canonical (if I were playing Scrabble, 
I'd challenge you on canonical, which 
means authoritative, official, or orthodox) 
set of Macintosh system error codes is 
spread across six volumes of Inside 
Macintosh (and on countless interface 
files). And who can remember that system 
error 87 is "couldn't find WDEF?" Not 

System Errors 
Version 7.0.1 
Dr. "Pete" Corless 
Apple Computer 
20525 Mariani Ave. 
Cupertino, CA 95015 
Free; 89,290 bytes 

• mmm mimimimmmmmwnrnmmmmmrnmm 



156 ~ BYTE's Mac Programmer's Cookbook 

me, that's for sure. So I like to use an online reference. And 
the best online reference I've found is System Errors. 

System Errors is an application that displays the list of error 
codes on several pages. You can scroll through the text or 
jump to any page. Explanations never exceed one line, so 
sometimes they're a bit cryptic, but you can usually figure 
out what the message means with little trouble. 

The Low End Theory: Debuggers 
While those high-level heap displayers will show you all 
kinds of valuable information, they can't do it all. Sometimes 
you've just gotta hunker down and crawl inside that code at 
the lowest level to figure out what the hell's going on. And to 
do that, you need a debugger. 

Hack Facts Although Apple will sell you their 
debugger Macsbug-and others will 
sell you TMON and MacNosy, worthy 
competition to Macsbug-only one 
person will give you a debugger 
with full documentation for free. 
Alain Birtz. 

ABZMon 
INIT 
Alain Birtz 
650 Grand St-Charles, 
St-Paul d'Abbotsford 
P.O., JOE-lAO 
CANADA 
CompuServe: 72467,2770 
Free 
122,635 bytes 

11 

ABZMon is a debugger, like Macsbug. It 
loads as an init and is immediately 
ready-you can even use it to debug 
other inits. You can drop into it by 
using any of these methods (which are 
the same ones you use to drop into 
Macsbug): 

• Using the interrupt switch or Programmer's Key 

• Using the "Debugger" call 

• Using the "DebugStr" call, with a Pascal string 

• Using the "DebugNum" call, which is unique to ABZMon 



The Zen of Good Code: Debuggers ,t 157 

Once you land in the debugger, you'll notice that it looks 
nothing like Macsbug, but elements are still vaguely familiar. 
The difference is because ABZMon uses homegrown versions 
of the Macintosh's windows and menus to display its 
information. (It can't use the real things, or else it would 
depend on certain ROM calls that may have crashed already.) 
What's familiar are window contents: displays of registers, a 
memory dump, and code disassembly. 

the The scrolling windows in particular are very 
powerful. If you see an address, you can 
double-click to see its contents. You can zip 

through a memory dump in no time using the pseudo-scroll 
bars. And if you want to, you can even display a text file 
from your hard drive (a lifesaver if you need to compare 
source code with the debugger code). 

If a Mac cra5he6 in a fore5t, doe6 a 
programmer 5omewhere writhe in agony? 
What is the sound of one hand clapping'? What happens when 
an irresistible force meets an immovable object'? Can God 
make a stone so large that even He cannot lift it'? How does 
one find bugs in a debugger'? These are the great philosophical 
questions of our time. 

I have to admit, I didn't have the guts to do more than just run 
this on my Mac and look at the windows. When it came to 
actual debugging, my knees got weak. Debugging a debugger? 
That takes bigger cojones than I can muster. So I had a friend 
well-versed in assembly language give it a whirl. (Remember, 
I'm Mister High-Level Language. Assembly gives me hives.) 

My main man, programmer Kevin Martin (let's give him a 
hand), said that ABZMon worked very well. He especially 
liked the windows for the disassembly listings. It's easy to see 
why, as anyone who has tried digging through code knows 
the pain of a thousand keystrokes. (As they say, even the 
pain of a thousand keystrokes begins with a single crash.) 



158 ,t BYTE's Mac Programmer's Cookbook 

Our tendency to 
concentrate power 
in the hands of a 
few men deeply 
concerns me. 

-Barry Goldwater 

The whole idea of a freeware debugger is a little strange at 
first, but once you get used to it, it's cool. It has features 
that no one else has really emulated: the ability to take 
screendumps, for instance, or read text files while debugging. 

I'm sure there will be many more features added. I 
recommend that everyone try ABZMon for a little while, just 
to see what it's like. After all, it won't cost you anything 
except your time. But then, time is money, so maybe ... oh, 
never mind. 

Kill your Macintosh 
So it's three A.M., you've just crashed into the debugger for 
the septillionth time, there's absolutely no reason why your 
code should crash, you've banged your head against the 
proverbial wall so many times your forehead is forming a flat 
spot. What to do'? Shoot your Mac. Since this book is about 
tools for programmers, I'd be remiss if I didn't recommend the 
best guns around for blowing your Mac away. 

Now let me point out that I don't recommend this. Guns are 
dangerous. They're not toys. And Macs are expensive non-toys 
too, unless you can get a good deal on a cheap government 
surplus Mac Plus. (By the way, don't keep your gun near your 
Mac. Debugging late at night can make you want to play 
Russian roulette, and with today's semiautomatic handguns, 
it would be a game sorely lacking in suspense.) 

The Beretta 92F is a 9-mm handgun with a muzzle velocity 
above the speed of sound. It packs a helluva whallop when its 
slug hits a CRT. The Glock 10-mm is a nice choice, too, except 
that it doesn't have a real safety. 

Shotgun. Any brand will do, but I'm partial to a Mossberg 
12-gauge. This will make your Mac look like it went through 
Desert Storm on the wrong side of the border. Serious case 
damage will be a very popular look on campus this fall. Use bird 
shot or rock salt if you're more interested in the cosmetic 
effect than actually destroying your Mac (poseur!). 



Gambling is not 

The Zen of Good Code: Debuggers ,t 159 

If you can't afford the high cost of a first-class handgun, the 
shareware equivalent of this programmer's tool would be a 
large rock, steel-toed boots, a crowbar; aluminum bat (unplug 
the Mac first), or golf club. 

Make sure you use some kind of hollow-point ammo (the FBI 
rates Hydra-Shock as the best brand), else you're liable to 
put the bullet through the Mac and into your coworker in the 
next cubicle. Aim for the center of the screen. If you cover it 
with clear adhesive tape first, it will make a really cool spider's 
web pattern that the implosion won't wreck. Remember; 
depending on the model Mac you're aiming at, shooting the 
monitor isn't necessarily the same thing as shooting the Mac 
itself. Don't lose sight of this elusive technicality in the heat 
of the moment'. Shoot to kill--at least two slugs through the 
motherboard, then drop the gun to your side and walk away 
quickly. Don't run, and don't look anyone directly in the eye, 
but don't avoid anyone's gaze either. 

And remember; there's no shame in shooting your Mac. We all 
want to do it. Hell, if Elvis had been a hacker; there's no doubt 
he would have shot his SE/30. 

This sidebar is dedicated to Ruffin Prevost and David Ramsey, 
who should both know why. 

Adding to Macsbug 
as destructive as 
war or boring as 
pornography. It is 
not as immoral as 
business or as 
suicidal as watching 
television. And the 
percentages are 
better than religion. 

The standard debugger, of course, is Apple's own Macsbug. 
It's based on an earlier Motorola debugger product-believe 
it or not, the "Macs" in the name has nothing to do with 
Macintoshes! Pointless trivia aside, all serious programmers 
must have and use Macsbug to struggle through the last and 
bloodiest stage of development: debugging. 

While Macsbug technically isn't shareware, it's about as 
ubiquitous as the most popular freeware programs around. 
If you don't have Macsbug, you can buy a copy from APDA, 
or if you're a developer, you're likely to find the latest 

-Mario Puzo 



160 ,t BYTE's Mac Programmer's Cookbook 

For information on 
writing your own 
DCMDs, refer to the 
Apple publication 
Debugging 
Macintosh Software 
with Macsbug. 

version of it on a developer's CD lying around your shop 
somewhere. 

Earlier in this book I've given some Macsbug tips. Those tips 
dealt with the commands that were built into Macsbug. But 
what if Macsbug is lacking commands you need? 

That's right, you guessed it: Macsbug can take external 
commands, just like HyperCard. They're called DCMDs (for 
Debugger Commands), and they are just code fragments 
that Macsbug calls upon. You install them by copying the 
"dcmd" resource into your "Debugger Prefs" file in your 
System Folder. 

s 0 m e of these DCMDs have been in my system for ages, 
and their origins are lost in the mists of time. I've 
included whatever contact information I could 

locate. In general, you can find these DCMDs on AppleLink, 
info-mac, or on America Online. 

If you're not a programmer, then much of this list will be 
meaningless to you. Sorry 'bout that, but then, if you're not a 
Mac programmer, why are you reading this book? 

DCMDCOMMAND 

AEDesc 

AEP-escData 

aevt 

cards (v1mb1) 

codecseq 

di~ 

DESCRIPTION 

Prints out contents of an Apple event 
Descriptor. 

Prints out contents of an Apple event 
DescriP.tor from imbedded descri tor. 

Prints out contents of an Apple event with 
parameters formatted . 

Displays information about caras installed-in 
~our machine. 

Displays codec sequences. 

Installs and uninstalls the discipline package., 
which checks every call yea mal<e to the Mac 
ROMs to assure you: re not going anything stugid. 



The Zen of Good Code: Debuggers ,t 161 

'" DCMD COMMAND Dq CRIPTION 

DPRAM Displays value of parameter RAM. You must 
know the address you want to view. 

drive Displays drive queue information for the given 
[drvNumldRefNum] drive number, driver number, or all drives. 

drvr [refnumlnum] Displays driver information for the given 
refnum or all installed drivers. 

echo .. Echoes the command line earameters 

error [expr] Displays text message corresponding to error 
number in expr. Handy for looking up those 
weird error messages. 

events Keeps track of a user-selectable number of 
the most recent events in the event queue. 
You can then view this list. 

file [fRefNuml"file Displays file information for the given 
name"] fRefNum, file name or all open files . 

heap Displays information about all the existing 

..l3. -"' 
heae blocks . 

leaks Watches the stack crawl to track down 
potential memory leaks in your code. 

men u Displays information about the currently ·I 

installed menus. 

printf "format" arg Just like the C printf, except its output goes to 
the debugger. Very handy for C freaks. 

~roe (1.0a1) Lists all erocesses running under MultiFinder. 

RAMDump (1.1 b1) Dumps all memory to floppy disks. 

RD [resType[ Displays the specified resources and resource 
resNum]] files. Very handy for tracking d9wn 
[, "fileName"lfileNum] resource-file-chain eroblems .. 

SD (1.0a1) In theory, this lists the elements in the 
shutdown queue. I've never gotten it to 
work, however; it always reports that the 
Shutdown Manager is patched out. Your 
mileage may vary. 

SPRAM Assigns a value to parameter RAM. You must 
know the address you want to set. 



162 ,t BYTE's Mac Programmer's Cookbook 

DCMD COMMAND DESCRIPTION 

SSC [addr] Displays the stack frame chain starting at addr 
(default is ra6). 

stopif Stops in Macsbug if expr is true. Otherwise 
continues execution of the command line. 

stopxpp Causes all XPP sessions to time out soon. 
1-----· 

sysswell <buffer Installs or removes a buffer in the System 
size> heae of ~ecifed size. 

systop Installs and locks a four-byte handle at the top 
of the system heap; the handle is not installed. 

thing r'thing type"] Displays thing information for the given thing 
type or all known thiAgs. Things are used by 
the ComRonent Manager. 

timebase 11 Everything you never wanted to know about 
timebases. 11 limebases are used by 
Quicklime data structures. 

I-' 
timedump Displays info about active time mgr tasks and 

time mgr globals. 

USFN [Address of Displays the number of user functions 
userFnHead from currently queued up. 
VMG] 

·-I 
vbl Di~P-!~s vertical retrace gueue information. 

VMDump Displays status of pages of memory. 

vol Displays volume information for a given 
vrefnum, volume name, or all mounted 
volumes. 

where Displays information about an address or trap. 
If no parameter exists, it displays the PC. 

whip ""'"" "'" Finds the name and addr of a linked patch. 



The first law of war 
is to preserve 
ourselves and 
destroy the enemy. 

--Mao Tse-Tung 

The Zen of Good Code: Debuggers ,t 163 

The Art of Debugging 
I can't teach you how to effectively use a debugger like 
Macsbug-that would take a whole book. In fact, Scott 
Knaster's classic How To Write Macintosh Software is just that 
book. If you need more tutorials on making the most of 
Macsbug, check it out. (You should be ashamed if you don't 
already have it.) 

Even so, the shareware in this chapter should go a long way 
toward making your debugging sessions quicker, less 
hair-tearingly frustrating, and more successful. 

With these tools, we've made it to the other side. Good work! 
Now you're ready to fight the code wars on your own. Take 
these supplies, head for the safety of your own Macintosh, 
and dig in. Sure, you've got a long, hard fight ahead of you. 
But you've got strength, stamina, and some great tools to 
help you. 

Good luck! 



011010 11000110 0011010 11001001 100010001 

llOlO 11000110 0011010 11001001 100010001 

0011010 11001001 100010001 

The Extra Stun 



How to Make a Million 
Bucks in Shareware 

Ha, ha. You can't make a million bucks in shareware. You 
can, however, make decent money in shareware if you follow 
a few simple rules. This appendix is a guide to writing 
software for money, without the hassle and bother of finding 
a software publisher. 

It's the dream of every programmer. Start your own software 
company, compete with the big boys, break into the market, 
get treated to trade shows, a speaking spot at MacWorld, 
perhaps a review in MacWeek. Unfortunately, this dream 
rarely comes true. It costs huge sums of money to start a 
software company these days. From the incredible ad dollars 
it takes to crack the major publications, to the expensive yet 
imperative trade shows, a software company needs cash. 
The era of garage-based software companies is waning. 

the good news is, if you release your creations as 
shareware, you're living the entrepreneurial life. 
You're your own boss. You write the programs you 

think need to be written. No idiot managers hang over your 
shoulders. You get direct feedback from your users, without 
marketing bozos interfering. 

Plus, shareware gets lots of free credit the big boys can't 
buy. For example, Now Software can't get the free press 

167 



168 ~ BYTE's Mac Programmer's Cookbook 

88H 

88C 

When cho6ing 
between two evi/6, I 
alway6 like to try 
the one I've never 
tried before. 

-MaeWe6t 

coverage a shareware offering like BeHierarchical can. This 
is a huge advantage only shareware authors can enjoy. 

While working on this book and others, I've talked to 
countless shareware authors. I've learned a few of their rules 
for success, and I've added my own observations. Although 
following the suggestions in this appendix doesn't guarantee 
great shareware, it can optimize whatever potential your 
shareware creation has. 

When it comes to shareware, there is a Golden Rule. Price it 
seriously. And take it seriously. 

For a while, there was a nasty trend of $ 3 shareware. Some 
tiny, insignificant program would be let loose on the world, 
and the author would beg for a couple of bucks in the About 
dialog box. 

Forget it, folks. No one takes this seriously, least of all you. 
You probably can't afford to support a program that makes 
you $15 a week. And no one wants to pay for unsupported 
software. If you write a small program that doesn't do much, 
and you haven't fully tested it, don't make it shareware. 
Release it as freeware, or postcardware, or beerware, or 
whateverware. Just not shareware. When people pay money, 
they expect results. This is not to say that low-priced 
shareware is a bad idea. Larry Harris released his program 
FontFaker, at the bargain price of just $5. That's all he felt it 
was worth. But he fully supports and stands behind his 
software, and in return, he gets enough cash to splurge on a 
pizza every so often. 

h ON much to charge? Once again, don't ask for too 
little. Be serious in your effort. Offer a good 
product, with good support, for a reasonable price. 

At the moment, $25 seems to be the average, although there 
has been successful shareware at both ends of the price 
curve ($5 for FontFaker, $40 for Mariner). 

Bottom line: I'd recommend $25 for a good, general-purpose 
utility program. Stick to $25 for even a high-quality game. 
Exceed this amount at your own peril. 



How to Make a Million Bucks in Shareware i!J!!!: 169 

Readme the Right Way 
Think of the readme file as a voodoo doll. It's the physical 
manifestation of you, the shareware author, in the hands of 
the user. You get to be cute, witty, knowledgeable, 
informative, and damn helpful. 

But if you're not, your users will poke needles into your 
eyes. A bad readme with inaccurate information, poor 
instructions, or out-of-date version information can deaden 
otherwise glitzy shareware. · 

Here's a sample readme. Notice that it includes all sorts of 
important information. Feel free to rip off this sample. If you 
don't rip this off, make sure you include the same 
information in your readmes. (Note that this is not really 
complete; it's only an example.) 

[Name] MacFizzBin 

[Version number] 1.0b3 

[Copyright notice] c 1994 Rob Terrell 

[Contact information] AOL: RobTerrell 

Internet: Robt@vnet.net 

[Short description] This program leaps tall buildings in a single bound. 

[Requirements] AppleScript, Quicklime 1.61 

[Known incompatibilities] Incompatible with NowMenus 

[Installation instructions] Double-dick the installer program 

[How to use] Double-dick the application from the Finder. Nothing will happen 

[Version History] 1.0b3 - Fixed bug under System 7. 
1.0b2 - Corrected spelling in menus. 
1.0b1 - First general release. 



170 f!tl!!: BYTE's Mac Programmer's Cookbook 

Don't be afraid to let your readme have a friendly, folksy air. 
People like to read things that have a personal touch. (Or so 
my editors keep telling me, chapter after tortuous chapter.) 
Just don't overdo it. Don't be overly cute. Get to the point-in 
style, with a little wit and flair-but don't get crazy on us. 

Test Like the Wind 
I actually released a shareware program recently. My beta 
testers are a good bunch, and are finding all kinds of stupid 
mistakes I made. Better them than real users, or heaven 
forbid, the editors at MacWorld! 

Far too many shareware authors overlook the testing phase. 
I'm tired of readme files that say things like "this works on 
my Centris, but I've heard it may not work on a Performa." 
Get real, kids. Test it. Find someone online who can test it 
for you. 

In chapter 3 there is a section "Passing the Test" on testing 
your software. Do it. Test on every class of machine, from 
the lowly 68000 to the latest PowerPC. Try different system 
software versions. 

Call the Exterminator 
Bug fixes are more important than new features. Get your 
existing user base working, bug free, before adding bells and 
whistles. Your reputation will be much better if folks 
don't crash. 

I recently loaded a shareware program, double-clicked it, 
and immediately slammed my Mac into a virtual tree. Bad 
news. Somebody never tested their shareware, at least not 
on my kind of Mac. 

Good users will start removing INITS and restarting to try 
and find the troublemaker. I'm not a good user. Hey, if my 
machine crashed when I ran shareware, the shareware must 
be at fault, right? I mean, the Mac was working just fine 
before. (This is the kind of thinking you're up against.) 



How to Make a Million Bucks in Shareware ~ 171 

If You Love Something, Set It Free 

Tip 

Once you've written the program, had it sufficiently tested, 
written the readme, and put the whole thing into a stuffit 
archive, you're ready to release it to the world. This can be a 
scary step. It also can be thrilling. It's exciting to see one of 
your creations online! 

There are a few places you must be sure and upload your 
creation. Make sure you post it in the appropriate forum, 
and also send it to the forum leader for his or her 
consideration. 

CompuServe 
America Online 
sumex-aim@stanford.edu 
michigan archives 

Also post it on GEnie, Delphi, AppleLink, and other eWorlds 
as you see fit. If you don't have access to any of these, check 
with friends, local computer stores, or user groups for folks 
who can post it for you. 

Make sure people know about your program. Poet notices that 
your program is available on all relevant message boards. Tell 
what it does and how much it costs. List any special features 
and any cool comments from your beta teeters. 

A Gentle Prodding vs. a Cattle Prod 
You need to get paid. How do you ensure that users-who 
will acquire your shareware for free-actually end up paying 
you for it? 

Shame them into it. File Buddy displays a dialog box 
reminding users to pay every three days. That seems like 
just the right amount of time; any more, and people get 
annoyed. Any less, and they forget all about paying you. 



172 f!1!: BYTE's Mac Programmer's Cookbook 

Tip 
Don't piss off your users. Programs that cripple the 
softwar-that is, deactivate features until the fee is 
paid-have done very poorly historically. 

Once users pay, they should be able to disable the 
reminders. A good way to do this is to offer some way to 
enter a registration code into the program, say, from the 
About This Program dialog box. 

Commercial software often uses a complex scheme of 
verifying serial numbers to determine if the code is valid. 
(This is usually done by XORing the serial number with a 
large prime number and checking the result.) Making up a 
special code for each user is more effort than the average 
shareware author can afford. Instead, create some secret 
code and have it work for all users. Odds are, people won't 
share the code. And the determined few who really want to 
crack your program will crack it no matter how sophisticated 
your code. (Shame on anyone low enough to crack 
shareware, for Christ's sake.) 

Collecting the Loot 
In the end, it may be that only a small percentage of your 
users will actually pay you. Keep in mind that the easier you 
make it for people to pay you, the more money you will 
make. So make every effort to make it easy. Be sure your 
address is clearly visible in both the readme and the About 
box. Include an option to print a registration form; and offer 
a fax-based registration service if you can. 

CompuServe has a service called SWReg, which lets users 
charge shareware fees to a credit card. This is the easiest way 
for users to pay. Although CompuServe levies a 15-percent 
surcharge, you'll make up that money in extra registrations. In 
order for you to be successful, it's imperative that users be 
able to register their software this way. 



Copy 

How to Make a Mllllon Bucks In Shareware ~ 173 

Tip 
Don't forget that Uncle Sam wants his cut. The IRS will snag 
you if you're not careful. The money you get from users is, 
after all, income, and there's a whole raft of tax laws dealing 
with money from self-employment, which writing shareware is. 

The Final 10 Percent 

xc 

When you get lucky do you call that special friend the 
morning after? If you're not that kind of person, well, no 
wonder you're still single. If you want to be successful in 
shareware (and romance) respond. Answer your users' 
letters. Address the comments, both kind and unkind. Make 
it clear that you've heard them, and thank them for their 
input. That final 10 percent of the effort-which usually 
takes 90 percent of your time-is spent in support. Take the 
time to do it right. 

l• f your callers/emailers/visitors (yikes!) haven't paid, 
urge them gently to do so. Remember, selling 
yourself and your wares is a necessary evil in this 

world. Your email to users will be the closest thing to a sales 
pitch you'll ever get (besides the actual shareware and 
readme). If you hate sales as much as I do, then practice the 
fine art of the soft sell. Don't be pushy; be a good, honest, 
.and deserving human being. Good things will follow. 

Keep up 
appearancee;, 
whatever you do. 

-Char/ee; Dickene; 



Try 'em Out for Size= 
Exploring the Disk 

You'd think, for the incredibly low cost of this book, all 
you'd get would be the pages contained herein. I know I 
would. But no! There's more! We've taken a bunch of 
programs reviewed in this book and included them on a disk. 

To Install the Programs 

Note 

To install these programs, insert the floppy disk into your 
computer. Double-click the file "PROGRAMMER'S COOKBOOK 
INSTALLER.". After the splash screen, you will see some text 
explaining what's going on. Click the Continue button. 

At this point, you will need. to choose a location on your 
hard drive to which you can save the files. The entire set of 
files, when decompressed, takes up about 3 MB of disk 
space. After you click Okay, the files will be installed. 

Some anti-viral programs, such as Virex, GateKeeper; SAM, 
etc. may prevent the installer from working properly. If so, you 
may want to disable any anti-viral programs you have 
installed before performing the installation. 

175 



176 ~ BYTE's Mac Programmer's Cookbook 

To Use the Programs 

Note 

The next section lists the programs and gives you some 
simple instructions for using the shareware included on the 
disk. These instructions are not all-inclusive; please refer to 
the readme files that come with each program for complete 
instructions. 

Also, remember this important point: pay for what you use. 
These authors worked long and hard to create these 
programs. If you use something, pay for it. 

Tech support for these programs is provided soley by the 
program's author. Please do not call me, the editors, or the 
pubisher of this book for tech support for any program 
contained on the disk. Pay the authors, and they'll support you. 

The Programs 
Here, in alphabetical order, are all the programs you'll find 
on the disk. Enjoy! · 

AppDisk 1.5 
Mark Adams 
America Online MarkA38 

AppDisk is a RAM disk utility. To use it, simply double-click 
the AppDisk icon. AppDisk will make a RAM disk of whatever 
RAM size the application is currently set to use. You can 
change this amount in the Get Info box for AppDisk in the 
Finder. (See chapter 4 for more details.) 

BNDL Banger v.1.2 
Tim Swihart 
P.O. Box 160643 
Cupertino, CA 95016 
Freeware ($7 for BNDL Banger Pro) 

BNDL Banger is a drag-and-drop application. You use it by 
dragging a program-generally something you just 



Try 'em Out for Size: Exploring the Disk ~ 177 

created-onto it, and then restarting your Mac. The 
program's unique icon will then be used by the Finder. (See 
chapter 4 for more details.) 

DebugWindow 1.4 
Keith Ledbetter 
Freeware 
America Online: Kledbetter 

To use DebugWindow, youll need to add an XCMD to your 
HyperCard stack, or link in the C code library included with 
the program. (See chapter 8 for more details.) 

Disinfectant 
John Norstad 
email j-norstad @ nwu.edu 
Freeware 

Disinfectant is an application-simply double-click the icon 
to run it.The Scan button will scan your hard disk for 
viruses. You can also have Disinfectant install an extension 
that watches for viral activity all the time. (See chapter 2 for 
more details.) 

Extensions Manager 2.0.1 
Ricardo Batista 
Free ware 

This extension will let you turn on or off other extensions. 
Its priceless when you're trying to track down an extension 
conflict. To install it, place Extensions Manager in your 
Control Panel folder. (See chapter 3 for more details on 
extensions.) 

File Buddy 2.0.6 
Laurence Harris 
1100 West Highway 
54 Bypass Apt.29J 
Chapel Hill, NC 27516-2826 
America Online: Lharris 
$25 



178 ~ BYTE's Mac Programmer's Cookbook 

This drag-and-drop application displays a dialog box filled 
with file information, much of which you probably never 
even knew existed. Just drag a file onto it and it works its 
magic. (See chapter 4 for more details.) 

GTQ Scripting Library 1.0 
Gregory T. Quinn 
Applelink 03297 
Internet: gtql@cornell.edu 
Freeware 

GTQ Scripting Library adds over 40 new commands to 
AppleScript. You must have already installed AppleScript for 
this package to work. Add these files into your Scripting 
Additions folder, inside your Extensions folder. They will be 
usable the next time you run a Script Editor. (See chapter 5 
for more details.) 

Hells Programmer Font 1.1 
Paul Cunningham 
P.O. Box 1923 
Mango, FL 33550-1923 
CompuServe: 75020,3540 

This is a great font for programmers. For System 7.1, drop 
the font file into your Font folder inside your System folder. 
For System 7, drop the font file onto your System suitcase 
file inside your System folder. (See chapter 4 for more 
details.) 

LaunchFile XCMD Source 
David B. Lamkins 
Freeware 

This is source code: use it, read it, learn it, know it. You'll 
need at least a text editor to read it. If you want to compile 
the XCMD yourself, you'll need a Pascal compiler (either 
Think, MPW, or Code Warrior will do nicely.) (See chapter 7 
for more details.) 



Try 'em Out for Size: Exploring the Disk ~ 179 

Mercutio 1.1.4 
Raymon M. Selciano 
CompuServe: 76166,3627 
Applelink: SUMMIT 
Freeware 

Mercutio is an MDEF that allows you to use shift- and 
option-command key combinations to activate menu items. 
You can add this MDEF to your own programs for a real 
professional look. Refer to the documentation that 
accompanies this file for usage information.( See chapter 7 
for more details.) 

PocketForth 6.3 
Chris Heilman 
CompuServe: 70566,1474 
America Online: cheilman 

Pocket Forth is a great way to get started learning the 
programming language Forth. Start this Forth interpreter by 
double-clicking its icon. (See chapter 6 for more details.) 

Reference Link 
James W. Walker 
CompuServe 76367,2271 

Place this in your Extensions folder. When you 
command-option click on any word in any text editing 
window, it will attempt to look up that word in the Think 
Reference databse. Please note that this requires Think 
Reference, which is a commercial product available from 
Symantec. (See chapter 4 for more details on Think 
Reference.) 

ROMmie 1.0 
Rolan M 
roland.mansson@ldc.lu.se 
Freeware 



180 '-t BYTE's Mac Programmer's Cookbook 

When you run ROMmie, it will create a copy of the resources 
inside your Mac's ROMs. It generates a file you can open with 
ResEdit. (See chapter 4 for more details.) 

Stufflt Expander 
Leonard Rosenthol, Aladdin Systems, Inc. 
Free ware 

To decompress Stuffit or Compactor Pro archives, AppleLink 
packages, or BinHex files, drag them onto the Stuffit 
Expander icon. (See chapter 2 for more details.) 

Swatch 1.2.2 
Joe Holt 
Internet: jholt@adobe.com 
America Online: Jholt 
AppleLink: ADOBE.APDENG (attn: joe) 

Run this application to see a graphical display of the 
memory usage of all running programs. (See chapter 8 for 
more details.) 

System Errors 7.0.1 
"Dr. Pete" Corless 
Apple Computer 
20525 Mariani Ave. 
Cupertino, CA 95015 
Freeware 

This program displays a list of all System error codes. 
Simply double-click its icon in the Finder to see the list. (See 
chapter 8 for more details.) 

TE32K 1.2 
Roy Wood 
122 Britannia Ave. 
London, Ontario, N6H 2J5 
CANADA 
rrwood@canrem.com 
rrwood@canrem.uucp 
Free ware 



Try 'em Out for Size: Exploring the Disk ~ 181 

This source code requires a C compiler, such as the Think, 
MPW, or CodeWarrior development environments. (See 
chapter 6 for more details.) 

TIFFWindow 1.1 
Robert Morris 
P.O. Box 1044 
Harvard Square Station 
Cambridge, MA 02238 
ecognome@aol.com 
$2 for commercial distribution 

This stack requires HyperCard version 2.0 or later. To 
use,double-click the program icon. The source code included 
requires a C compiler, such as the Think, MPW, or Code 
Warrior environments. (See chapter 5 for more details.) 

UnZip 1.1.0 
Samuel H. Smith 
The Toolshop BBS 
602-279-2673 

The compression program PKZIP is big in the DOS/Windows 
world. If you need to decompress something in PKZIP 
format, simply drag it onto this icon. (See chapter 2 for more 
details.) 

ZTerm 
David P. Alverson 
Compuserve 72155,1560 

ZTerm is a terminal emulation program that you can use to 
connect with BBSs and commercial online services such as 
CompuServe Please refer to the documentation that 
accompanies this application for specific instructions 
regarding its use. (See chapter 2 for more details.) 



It Came From the 
Internet, Kinda 

Remember when I said in Chapter 1 that there were lots of 
great people out there solving all your problems for you? 
Well, here's where that happens. This appendix contains the 
entire FAQ (or Frequently Asked Questions) file for the 
usenet newsgroup "comp.sys.mac.programmer." When I was 
just starting out, I learned quite a bit from documents like 
these. 

Although it was never the intention of this book to teach 
readers how to program, I knew I would be remiss if I didn't 
at least address the basic questions: How do I get started? 
Where can I turn for help? Why does my GWorld code always 
crash? Well, I can't help you with the last one, but for the 
other questions, look no further. 

Network in the raw 
This appendix is totally internet-verite If you logged onto the 
internet and downloaded this file, this is exactly what you'd 
see. It's like that raw brown sugar for folks who think 
processed sugar is bad for them. The internet is a raw, 
unrefined place. I wanted to provide you with a safe, friendly 
environment for meeting the kind of in-your-face help the net 
provides. 

183 



184 ~ BYTE's Mac Programmer's Cookbook 

See what you can glean from this, and if you need more, surf 
the newsgroup. You'll be amazed what you can find. 

A big hearty thanks goes out to Jon W{tte, who provided this 
file. 

Archive-name: macintosh/programming-faq 

The Public Domain Mac Programming FAQ Answer sheet . 

.Last update: 931023 

This sheet was started by and is presently maintained by Jon 
W{tte, whom you may reach as h+@nada.kth.se. If there is 
anything you find errant, missing, or in need of an update, 
please send me your submission and I will include it (I can't 
promise correct attributions, but I will try). All FAQ Answer 
submissions sent to me will be considered to be in the 
public domain unless stated otherwise (in which case they 
will not be included in this FAQ sheet). 

This sheet is currently archived on nada.kth.se where you 
can reach it using afs as 
/afs/nada.kth.se/public/ftp/pub/hacks/mac-f 
aq/CSMP _PD_FAQ or using anonymous FTP (GIVE YOUR 
E-MAIL ADDRESS AS PASSWORD!) as 
pub/hacks/mac-faq/CSMP _PD_FAQ. 

I will try to update this sheet every three weeks or so. 
Changes since first revision: 

Fixed spelling and formatting. Added question 
numbering. 
Files and Networks: [Mattias Ullrich] 
Lisp and SmallTalk: [Rainer Joswig] 
Free development languages: [Bob Loewenstein] 
Various: [Pete Gontier] 
Lots of suggestions: [Lewis] 
Wake Up And Smell The Glue: [Matthias Neeracher] 
Development environments: [Howard Berkey] 
SmallTalk: [Alun ap Rhisiart] 
CustomGetFile: Uim Walker] 



It Came From the Internet, Kinda h 185 

This sheet is divided into several parts; each of which covers 
a general area which often gets asked about in the Internet 
newsgroup comp.sys.mac.programmer. Please download a 
copy of this answer sheet and search it before you post to 
the 'net, to help reduce bandwidth. 

There is NO or VERY LIMITED error checking in these code 
examples, FOR BREVITY ONLY. You should make sure you 
ALWAYS check ALL return codes, and handle any that you are 
not prepared to deal with appropriately. 

The coding style used in the example C code is my own, and 
you'll have to live with it. 

The groups are (you may search for *<number>* to jump 
directly to a group with its questions and answers) 

0) Development and debugging tools and documentation 
for the Mac 

1) Files and the File Manager 
2) Serial ports 
3) TCP/IP and sockets 
4) AppleEvents and the Apple Object Model 
5) AppleScript 
6) Drawing using QuickDraw · 
7) Drawing NOT using QuickDraw (aka directly to screen) 
8) Cache issues and other processor differences 
9) What about pre-emptive multitasking? 
10) Handles; they are driving me crazy; Memory issues 
11) _Gestalt and compatibility 
12) Standalone code and dynamic linking 
13) Reading the keyboard for games and screen savers 
14) QuickTime 
15) Ice Cream and Frozen Yoghurt 



186 ~ BYTE's Mac Programmer's Cookbook 

*O* Development and debugging tools for the 
Macintosh 

0.1) Q: What do I need to start writing Macintosh 
softwal'e? 
A: A Mac, a lot of time, and a few hundred $. Although you 
can develop software on a Classic-type machine, it is not to 
be attempted by the weak of heart or stressed of time. If 
you're doing paid work and/or work for a company, a 
Quadra-class machine or Centris 650 or better is almost a 
must; remember that your time costs your employer much 
more than just your salary. 8 MB is a minimum to run at all 
comfortably, and Virtual Memory is not suited for 
development work. Similarly, if you don't have at least 20 MB 
free on your hard disk (40 MB for MPW), you need to buy 
more space. 

You need a development system such as Think C, Think 
Pascal , MPW C or Prograph, you need at least some of the 
New Inside Mac books (Toolbox Essentials, Files, Memory 
come to mind) and a good entry-level third-party book may 
help. 

Once you are up to speed on the general layout of the Mac 
and its toolboxes, you should call APDA and order the 
monthly developer mailing, which will give you a CD chock 
full of documentation, utilities, and system software once a 
month. You will also, obviously, need a CD player; one of 
which Apple's own CD300 is a very good buy at the time of 
writing this. If you don't have the dough for the monthly 
mailing ($250/year) you can order a _develop_ subscription; 
this quarterly magazine ($30-$50/year) comes with a CD 
containing all Inside Mac documentation. 

Another tool which many find a must-have is the Think 
Reference version 2.0, containing reference material on the 
most used parts of the Mac toolbox with lightning-fast 
look-up and mostly correct usage hints and code snippets. 



It came From the Internet, Kinda ~ 187 

0.2) Q: What is the most used Macintosh development 
language? 
A: Out of products on the market, I have no idea; both MPW 
and Think products appear to be used. Among hobbyists, 
the Think products from Symantec are most popular because 
of the low price, and steep educational discounts, and, of 
course, the easily approachable interface! 

The Think C linker only strips dead code on a FILE level 
basis (and this is when you turn on "Smart Linking"). The 
MPW linker (of no specified IQ, as someone so eloquently put 
it :-) strips dead code by the function. That may be part of 
the reason the Think C linker is ten times faster than the 
MPW linker. 

In the beginning, the Mac was programmed using Mc68000 
assembly or Pascal; this was reflected in the Old Inside Mac 
volumes which only gave Pascal-style and assembly-style 
interfaces to the Mac toolbox. These days, Apple tells us to 
use C or even better C++ for developing new applications, as 
that will speed up the transition to PowerPC and also coming 
cross-platform efforts. 

There are also at least two Fortran compilers, at least three 
SmallTalk implementations (ObjectWorks, SmallTalk/V and 
SmallTalkAgents), a world-class LISP/CLOS implementation 
(Macintosh Common Lisp 2.0), and a Modula/2 
implementation. Apparently, using Envy /packager, you can 
strip out unused code pretty effectively from Digitalk and PP 
apps, which are then smaller (and of course more memory 
efficient) than C++ apps. 

Metrowerks have a Pascal and a Modula II compiler. Rumour 
has it they're building C and C++ for both 68K and coming 
PPC Macs. 

CSI has Macf orth, of which I only know the name and 
someone who says it's pretty good. 

There is another good Common Lisp implementation: 
Procyon Common Lisp. I don't know if it is actively 
supported, but Procyon CL is also available for DOS, OS/2 
and Windows (as Allegro CL/PC) and actively developed. 



188 h BYTE's Mac Programmer's Cookbook 

0.3) Q; Where do I find a public domain C compiler for 
the Mac. Is there a GCC for the mac? What about the 
FSF boycott of Apple products? 
A: There is no really good solution for a "for-free" C 
development system for the Mac. GCC has been ported, but 
requires the MPW shell and MPW assembler to run; these 
have to be bought from APDA. There is a standalone port of 
GCC 1.37 underway, but it is presently on hold because of 
licensing issues. There was a freely available C compiler 
called Harvest C, which was somewhat unstable but usable 
for smaller programs; it was abandoned by the original 
author Eric W. Sink because of a lack of time. 

The FSF boycott of Apple products means they will not talk 
to you if you ask them for help in doing a Mac port, and they 
will not incorporate your changes into their main code base. 
However, they still allow others to port GNU stuff to the Mac, 
and it has been done with most of the application-like GNU 
programs (bison, flex, perl (not really part of GNU), ... ) 

0.4) Q; Are there any other free Mac development 
platforms? 
A: Yerk and Mops. These are object-oriented languages based 
on the old product Neon which itself was based on Forth. 
They are available with Manuals at oddjob.uchicago.edu 
(anonymous FTP). 

Plus, there's MacGambit, MacScheme, xlisp, and MacMETH 
which is the actual ETH (read: Nick Wirth's group) Modula 2, 
all for free via FTP. 

And OpenProlog. And SIOD (Scheme in One Defun) And [mail 
in more if you dare] 

O.S) Q; What's the difference between the MPW and 
Think environments? 
A: The main difference is that Think is an integrated 
environment, while MPW provides you with a command-line 
shell for your Mac and tools to use in it. MPW also has a 
slightly higher systems demand and a much slower linker. 

The good thing about MPW is that you can write scripts and 
make files to do anything you want in the way you want it. 



It Came From the Internet, Kinda ~ 189 

Think still doesn't have a viable solution to do a build that 
requires more than one link operation, or has more than one 
destination file. 

For the MPW environment, there are three source level 
debuggers; SADE, SourceBug, and Voodoo Monkey. The latter 
is an experimental debugger with support for threads 
debugging; the middle is bundled with MPW while SADE has 
to be bought separately (but is fully scriptable in its own 
scripting language). 

The Think environments have their own integrated 
debuggers; the Think Pascal one has a lot of useful features 
while the Think C/C++ one is a little more basic (but is 
gaining in functionality with each release). Stepping through 
source code and looking at variables is generally faster and 
easier in Think than in the MPW debuggers. 

Any commercial Mac developer should have both Think and 
MPW of whatever language they prefer (Pascal, C or C++). 

0.6) Q: What is a good low-level debugger for the Mac? 
A: MacsBug is freely available for ftp from ftp.apple.com; log 
in as user anonymous and give your FULL e-mail address as 
password. MacsBug is your basic monitor-type debugger that 
takes a few hundred Ks of memory, and lets you break, step, 
disassemble, look at the stack, etc. of most anything running 
on your Mac. Since it's free (it's also on the developer CDs) 
and provides most of the functionality you need, this is a 
popular choice. 

TMON is another debugger which sports a more mac-like 
interface; it provides windows and uses the mouse. It can 
take as little or as much memory as you want by excluding 
or including certain areas of functionality. A nice touch is 
the 6502 disassembler that you can use to debug the code 
the IOP processors run on the Mac Ilfx and Quadra 900/950. 

Jasik Designs have a debugger called The Debugger which 
can do both low- and high-level debugging, with or without 
source and for all types of code, application, code resources, 
everything. This is the debugger of choice for many large 
developers because of its high power and many features not 
found anywhere else. However, newcomers beware! This is 



190 ~ BYTE's Mac Programmer's Cookbook 

the Lamborghini of debuggers; if you know how to drive it, it 
is the fastest way from A to B; if you don't, you'll just end up 
in the ditch. 

o. 7) Q: Are there any visual developments 
environments for the Mac (comparable to Visual C++)? 
A: There is no Visual C++ as such. However, there is a C++ 
parser/editor called ObjectMaster which provides good 
browsing and editing capabilities if you already have a C++ 
compiler. Think C++ also comes with a browser built-in, and 
you can draw dialogs/windows using plain old ResEdit, even 
for your custom view types. 

AppMaker is a GUI builder/code generator. Granted, it's not 
as nice as VC++, but it's quite a product in any case. 

Also, Neuron Data has their UI tool called Open Interface, 
which is better than VC++ and creates code portable across 
35 platforms. Unfortunately it's $2500 per developer per 
platform. (There's also two other cross-platform products 
called XVT and Galaxy; the former has gotten flak on UseNet 
while the latter reportedly has decent networking support.) 

There is a fully visual, dynamic, object-oriented 
data-flow-drive. 

n programming language for the Mac called Prograph 
Corporate Programming Something-or-other (CPX). It is 
expensive ($1500) but offers a built-in database, easy 
interfaces to existing data bases, very high productivity in 
implement-test-debug cycling and also offers cross-platform 
capabilities (it comes with a class library which, when your 
code is written using it, works under Windows after 
re-compilation.) 

There is a crossing between SmallTalk and C++ that is called · 
Component Workshop; although it seems large and slowly 
evolving, it does offer some promising features not found in 
C++ itself. 

There is also something called SmallTalkAgents that makes it 
easy to create Mac applications using SmallTalk. If you'd 
rather do Common Lisp, Macintosh Common Lisp offers a 
Common Lisp Object System with support for most Mac 



It Came From the lntemet, Kinda ~ 191 

interface items; you can edit code while it is running and 
build standalone applications. 

However, all of these tools generate rather larger binaries 
with larger system demands than a program written in C. On 
the other hand, C++ programs require more memory and 
disk space than programs written in assembly. It's a 
trade-off, and I believe this type of tools is the wave of the 
near future. 

0.8) Q: What class libraries are there for the Mac? 
A: Apart from the libraries mentioned above, there are three 
contenders: MacApp, TCL, and OOPC. On the horizon may be 
Bedrock. 

MacApp is a heavy-duty class library that has tons of 
features and a steep learning curve; it runs under MPW with 
Pascal or C++, and also under Think Pascal 4.0. A major 
application written in MacApp is PhotoShop. 

TCL stands for Think Class Library and comes with Think. 
Pascal, C, or C++. It is a smaller library that still fills most 
peoples' needs; since Think C implements a subset of C++ 
(the most important 00 concepts such as virtual functions 
and inheritance) and the TCL is carefully written not to take 
advantage of any C++ features not in Think C, you can use it 
with Think C. A major application written in TCL is Lotus 
1-2-3. 

OOPC is a newcomer in the field, and uses plain ANSI C. 
However, it mangles the pre-processor to provide you with a 
system with full inheritance, virtual functions, and dynamic 
re-binding of functions for classes or individual objects. 
Start-up is slow, since all "linking" of virtual functions and 
classes is made at run-time, but performance otherwise is 
good. A Windows version is promised for later this year. 

0.9) Q: How should I debug and test my software? 
A: Get ah old of, and install, the extensions Double Trouble, 
DisposeResource, and EvenBetterBusError. They will catch 
80% of any memory-related bugs you may have, including 
many bugs that follow NULL handles or pointers. 



192 ~ BYTE's Mac Programmer's Cookbook 

*code* 
FILE * 

A low-level debugger is required, and while you install it, 
install the "leaks" dcmd which will help you catch memory 
leaks in your application. All of these tools are available 
from ftp.apple.com. 

*1 *Files and the File Manager 

1.1) Q; How do I tell fopen() to open a file the user has 
selected using StandardGetFile? 
A: The "standard" ANSI C file functions are less than well 
suited for the Macintosh way of doing things. However, if 
you are doing a port for your own enjoyment and benefit (or 
maybe for in-house work) you can use the following function 
(see below about converting a wdRefNum into a 
vRefNum/parID pair): 

fopen_mac C short vRefNum , long parID . char * fileName . char 
* mode ) { 
short ol dVol ; 
short aVol ; 
long aDir . aProc 
FILE * ret = NULL ; 

if C GetVol C NULL • & oldVol ) { return NULL ; 
} 

if C GetWDinfo ol dVol . & a Vol , & a Dir . & aProc 
return NULL 

} 
if ( HSetVol C NULL . vRefNum , parID ) ) { 

return NULL ; 
} 
ret = fopen ( fileName • mode ) 
if ( HSetVol C aVol . aDir ) ) { 

I* an error we can't currently handle */ 
} 
if ( SetVol ( oldVol)) 

I* an error we can't currently handle */ 

return ret ; 

*end* 



It Came From the Internet, Kinda ~ 193 

All of the above is necessary for one reason or another-if 
you are interested, by all means look HSetVol up in Think 
Reference 2.0 or New Inside Mac: Files. 

In older versions of MPW this wouldn't work since the MPW 
libraries used to do a GetVol and explicitly use that value by 
itself. 

1.2) Q: When can I use the HOpen, HCreate, etc. file 
calls? Are they only System 7 calls? 
A: All the HXxx calls that take a vRefNum and parID as well 
as the file name are implemented in glue that works on any 
system that has HFS (meaning 3.2 and up with the HD20 
INIT, and all systems from System 6 and up). 

The glue is available in MPW 3.2 and up, and Think C 5.0 and 
up. This goes for all HXxx calls except HOpenDF; therefore, if 
you are interested in System 6 compatibility, use HOpen 
instead and make sure you don't allow file names beginning 
with a period. 

1.3) Q: Why do you say wdRefNum sometimes and 
vRefNum sometimes? Why do you say parlD sometimes 
and dirlD sometimes? 
A: When the Mac first made an appearance in 1984, it 
identified files by using a vRefNum (volume reference 
number meaning a floppy disk or later hard disk) and a 
name. Once HFS saw the light of day, folders within folders 
became a reality, and you needed a dirlD as well to point out 
what folder you really meant on the volume. However, older 
programs that weren't being rewritten still knew nothing 
about directory IDs, so Apple had SFGetFile make up "fake" 
vRefNums that didn't just specify a volume, but also a 
parent folder. These are called wdRefNums (for working 
directory) and were a necessary evil invented in 1985. You 
should not create (or, indeed, use) wdRefNums yourself. 

There is a system-wide table that maps wdRefNums onto 
vRefNum/parID pairs. There is a limit to the size of this 
table. A dirID and a parID is almost the same thing; you say 
"parID" when you mean the folder something is in, while you 
say a "dirlD" when you mean the folder itself. If you, for 



194 ~ BYTE's Mac Programmer's Cookbook 

*code* 

instance, have a folder called "Foo" with a folder called "Bar" 
in it, the parID for "Bar" would be the dirID for "Foo." 

1.4) Q: How do I convert a wdRefNum as returned by 
SFGetFile into a vRefNum/parlD pair to use with the 
HXxx calls. 
A: Use GetWDlnfo, which is declared as: 

Pascal OSErr GetWDlnfo ( short wdRefNum , short * 
vRefNum , long * parID , OSType * procID ) ; 

The procID parameter must be non-NULL and point to an 
OSType variable, but the value of that variable can and 
should be ignored. 

It is recommended that, as soon as you get your hands on a 
wdRefNum, for instance from SFGetFile, you directly convert 
it into a vRefNum/parID pair and always use the latter to 
reference the folder. 

1.5) Q: How do I select a. folder using SFGetFile? 
A: This requires a custom dialog with a filter proc. It is too 
complicated to show here, but not totally impossible to 
comprehend. There is sample code on ftp.apple.com, in the 
directory dts/snippets, on how to do this. 

1.6) Q: How do I get the full path of a file referenced 
by a vRefNum, parlD, and name? 
A: You don't. 

OK, I cheated you. There is exactly ONE valid reason to get 
the full path of a file (or folder, for that matter) and that is to 
display its location to the user in, say, a settings dialog. To 
actually save the location of the file you should do this 
(assuming the file is in an FSSpec called theFile-you can use 
FSSpecs in your program even if you don't run under System 
7; just make your own MyFSMakeFSSpec that fills in the 
FSSpec manually if it's not implemented): 

if ( ! aliasManagerAvailable ) { /* System 6 ? *I 



It Came From the Internet. Kinda ~ 195 

GetVolumeName ( theFile -> vRefNum . vName 
( vRefNum . & date ) ; 

GetVolumeModDate 

Save ( vName • date . parID fileName 
} else { 
NewAlias ( NULL . theFile . & theAlias 

Save ( theAlias ) ; 
DisposeHandle ( ( Handle theAlias 

*end* 

*code* 
OSErr 

If you are really concerned about these issues (of course you 
are!) you should save BOTH of these methods when 
available, and load back whatever is there that you can 
handle, since users may be using your application in a mixed 
System 6/System 7 environment. 

To get back to the file is left as an exercise for the reader. 

To open a file using fopen() or the Pascal equivalent, see 
above about using and not using HSetVol. 

1.7) Q: What about actually getting the full path for a 
file? I promise I will only use it to show the location of 
a file to the user! 
A: Enter PBGetCatlnfo, the Vegimatic of the Mac file system. 
Any Mac hacker of knowledge has taken this system call to 
his heart. What you do is this: 

GetFolderParent ( FSSpec * fss . FSSpec * parent ) { 
CinfoPBRec rec ; 
short err ; 

* parent = * fss • 
rec . hFilelnfo. ioNamePtr = parent -> name ; 
rec . hFileinfo. ioVRefNum = parent -> vRefNum 
rec . hFileinfo. ioDirID = parent -> parID 
if ( parent -> name [ 0 J ) { 

rec hFilelnfo ioFDirindex = 0 ; 
} else { 

rec . hFileinfo . ioFDirlndex -1 ; 

rec . hFilelnfo. ioFVersNum = 0 ; 
err = PBGetCatlnfoSync ( & rec ) ; 

if ( ! ( rec . hFilelnfo . ioFlAttrib & OxlO ) ) 
{ /* Not a folder */ if ( ! err ) ( 



196 ~ BVTE's Mac Programmer's Cookbook 

err= dirNFErr : 

} 
parent -> parID = rec . dirinfo . ioDrParID 
parent -> name [ 0 J = 0 : 
return err : 

} 
OS Err 
GetFullPathHandle FSSpec * fss . Handle * h ) 
{ 

Handle tempH = NULL : 
short err : 

FSSpec fs = * fss ; 
while ( fs . parID > 1 ) 

tempH = NULL ; 
PtrToHand ( & fs . name [ 1 J , & tempH , fs . name [ 0 J ) 
PtrAndHand ( ( void* ) ":" , 
tempH , 1 ) ; 

HandAndHand ( * h , tempH ) ; 
SetHandleSize ( * h , OL ) : HandAndHand ( tempH , * h ) 
DisposeHandle ( tempH ) : tempH = NULL 
GetFolderParent ( & fs , & sSpec ) 

fs = sSpec ; 
} 

GetVolName ( fs. vRefNum , fs . name 
PtrToHand ( & fs . name [ 1 J , & tempH 
PtrAndHand ( ( void* ) ":" , tempH . 1 

HandAndHand ( * h , tempH ) : 
SetHandleSize ( * h . OL ) ; 
HandAndHand ( tempH , * h ) 
DisposeHandle ( tempH ) ; 

tempH = NULL ; 
if ( ! IsFolder ( fss ) ) { 
SetHandleSize ( * h , GetHandleSize 

II Remove colon l 
return 0 ; 

*end* 

. 
fs . name [ 0 J ) 

(*h) -1) 

1.8) Q: So how do I get the names of the files in a 
directory? 
A: You use PBGetCatlnfo again, but this time you set 
ioFDirlndex to 1 or more (you need to know the dirID and 
vRefNum of the folder you're interested in). You then call 
PBGetCatlnfoSync for values of ioFDirlndex from 1 and up, 
until you get an fnfErr. Any other err means you are not 
allowed to get info about THAT item, but you may be for the 



*code* 
OS Err 

It Came From the Internet, Kinda ~ 197 

next. Then collect the names in the string you made 
ioNamePtr point to as you go along. Note that you need to 
fill in the ioDirID field for each iteration through the loop, 
and preferrably clear the ioFVersNum as well. 

Note that the contents of a directory may very well change 
while you are iterating over it; this is most likely on a file 
server that more than one user uses, or under System 7 
where you run Personal File Share. 

1.9) Q: How do I find the name of a folder for which I 
only know the dirlD and vRefNum? 
A: You call (surprise!) PBGetCatlnfo! Make ioNamePtr point to 
an empty string (but NOT NULL) of length 63 (like, an Str63) 
and ioFDirlndex negative (-1 is a given winner)-this makes 
PBGetCatlnfo return information about the vRefNum/dirID 
folder instead of the file/folder specified by vRefNum, parID 
and name. 

1.10) Q: How do I make the Finder see a new file that I 
created? Or if I changed the type of it, how do I display 
a new icon for it? 
A: You call (surprise!) PBGetCatlnfo followed by PBSetCatlnfo 
for the FOLDER the file is in. In between, you should set 
ioDrMdDat to the current date&time. Code: 

TouchFolder ( short vRefNum , long parID ) { 
CinfoPBRec rec ; 
Str63 name ; 
short err ; 
rec . hFileinfo . ioNamePtr =name ; name [ 0 J = 0 ; 
rec . hFilelnfo . ioVRefNum = vRefNum ; rec . hFileinfo 
ioDirID = parID ; rec . 
Filelnfo . ioFDirlndex = -1 ; rec . hFileinfo . ioFVersNum = 0 
; err = PBGetCatinfo ( & 
ec ) ; 
if ( err ) { 

return err ; 
} 

GetDateTime ( & rec . dirlnfo . ioDrMdDat ) ; rec . hFileinfo 
ioVRefNum = vRefNum ; 
rec . hFileinfo . ioDirID = parID ; rec . hFileinfo 



198 ~ BYTE's Mac Programmer's Cookbook 

ioFDirlndex = -1 ; rec hFilelnfo 
ioFVersNum = 0 ; 

err = PBSetCatlnfo & rec ) ; 
return err ; 

} 
*end* 

1.11) Q: Aren't we done with PBGetCatlnfo soon? 
A: Well, it turns out that you can also find out whether an 
FSSpec is a file or a folder by calling PBGetCatlnfo and check 
bit 4 (OxlO) of ioFIAttr to see whether it is a folder. You may 
prefer to call ResolveAliasFile for this instead. 

You can also check the script of the file's title using 
PBGetCatlnfo and check the ioFIFndrXInfo field if you want 
to work with other script systems than the Roman system. 

Another common use is to find out how many items are in a 
folder; the modification date of something or the correct 
capitalization of its name (since the Mac file system is case 
independent BUT preserves the case the user uses). 

1.12) Q: How do I set what folder should initially be 
shown in the SFGetFile boxes? 
A: You stuff the dirID you want to show into the lo-mem 
global CurDirStore, and the NEGATIVE of the vRefNum you 
want into the lo-mem global SFSaveDisk. 

If you are using CustomGetFile and return 
sfSelectionChanged from an "init" message handler, you 
must remember to clear the script code, else the selection 
will not change. 

1.13) Q: How do I find the folder my application 
started from? How do I find the application file that's 
running? 
A: Under System 7, you call GetCurrentProcess, followed by 
GetProcesslnformation with a pointer to an existing FSSpec 
in the parameter block. This will give you your file, and, by 
using the vRefNum and parlD, the folder the application is in. 

Beware from writing to your applications resource or data 
forks; the former breaks on CDs/write protected 



*code* 

It Came From the Internet, Kinda ~ 199 

floppies/file servers/virus checkers, the latter fails on 
PowerPC as well as in the above cases. 

*2* Serial ports 

2.1) Q: How do I get at the serial ports? 
A: You call OpenDriver for the names "\p.AOut" and "\p.Aln" 
to get at the modem port, and "\p.BOut" and "\p.Bln" for the 
printer port. The function RAMSDOpen was designed for the 
original Mac with 128 KB of memory and 64 KB of ROM, and 
has been extinct for several years. 

However, many users use their serial ports for MIDI, 
LocalTalk, graphic tablets, or what have you and have 
installed an additional serial port card to get more ports. 
What you SHOULD do as a good application is to use the 
Comms Toolbox Resource Manager to search for serial 
resources; this requires that the Comms Toolbox is present 
(true on earlier System 6 with an INIT, on later System 6 and 
System 7 always, as well as on A/UX) and that you have 
initialized the comms resource manager. The exact code 
follows (adapted from Inside Mac Comms Toolbox): 

#include <CommsResources.h> 
OS Err 
FindPorts ( Handle * portOutNames , Handle * portinNames , 
Handle * names , 
Handle * iconHandles ) { 
OSErr ret = noErr : 
short old = 0 ; 
CRMRec theCRMRec , * found CRMSerialRecord * serial : 
* portOutNames = NewHandle OL ) ; * portinNames = NewHandle 
OL ) : * 
names = NewHandle ( OL ) ; 
* i conHandl es = NewHandl e ( OL ) : while ( ! ret ) { 

theCRMRec . crmDeviceType = crmSerialDevice 
theCRMRec . crmDeviceID = old : 
found= ( CRMRec * ) CRMSearch ( ( OElementPtr ) & 

theCRMRec ) ; 
if ( found ) { 

serial = ( CRMSerialRec * ) found -> crmAttributes 
old = found -> crm DeviceID ; 

PtrAndHand ( & serial -> outputDriverName . * portOutNames . 



200 ~ BYTE's Mac Programmer's Cookbook 

sizeof ( 
serial-> outputDriverName)); 
PtrAndHand ( & serial -> inputDriverName , * portinNames , 
sizeof ( serial 
-> inputDriverName ) ) ; 

PtrAndHand ( & serial-> name *names, sizeof 
s er i al -> name ) ) ; 
PtrAndHand ( & serial -> devicelcon * iconHandles sizeof ( 
serial -> 
devicelcon ) ) 

l else { 
break 

} 

*end* 

} 
return err ; 

This will create four handles with the driver names, device 
names, and driver icon handles for all of the available serial 
devices. Then let the user choose with a pop-up menu or 
scrolling list, and save the choice in your settings file. 

You can use OpenDriver, SetReset, SetHShake, SetSetBuf, 
SerGetBuf, and the other Serial Manager functions on these 
drivers. To write to the serial port, use FSWrite for 
synchronous writes that wait until all is written, or PBWrite 
asynchronously for queuing up data that is supposed to go 
out but you don't want to wait for it. At least once each time 
through your event loop, you should call SerGetBuf on the in 
driver reference number you got from OpenDriver, and call 
FSRead for that many bytes-neither more nor less. 

If you are REALLY interested in doing the right thing, you 
will use the Communications Toolbox Connection Manager 
instead; this will give you access to modems, direct lines, 
and networks of various kinds using the same API! Great for 
stuff like BBSes that may be on a network as well, etc. The 
Comms Toolbox also provides modularized terminal 
emulation and file transfer tools, although the 
Apple-supplied VT102 tool is pretty lame, as is the VT102 
mode of the VT320 tool. 



It Came From the Internet, Kinda ~ 201 

*3* TCP/IP and sockets 

3.1) Q: Where is a Berkley sockets library for the Mac? 
A: There are some problems with that. MacTCP, the Mac 
Toolbox implementation of TCP/IP, doesn't have an API that 
looks at all like Berkley sockets. For instance, there is ONE 
paramater-block call to do a combined 
listen()/accept()/bind()-sort of I have heard that there may 
be a socket library available by ftp from MIT but haven't 
seen it myself. 

There is also a pretty good C++ TCP implementation called 
GUSI which is easily handled, and it also is callable from C 
using the Berkley socket APL Apart from TCP, it also handles 
"standard" Mac network protocols such as ADSP. The big 
disadvantage is that it is currently only implemented for 
MPW. The ftp site is nic.switch.ch, software/mac/src/mpw_c. 

I can also recommend the Communications Toolbox; for the 
price of using an API that is simpler than the Berkley 
sockets, you get the benefit of being able to use any kind of 
connection (TCP tools are available). Novell and Wollogong 
offer commercial socket-like libraries. 

3.2) Q: Where do I find MacTCP? 
A: You can buy the MacTCP developers kit from APDA. It is 
also available on ET 0, and if you want saner headers than 
those, try ftp to seeding.apple.com. 

*4* AppleEvents and the AppleEvent Object 
Model 

4.1) Q: What are AppleEvents? 
A: AppleEvents are a level-5 network protocol. If you are not 
familiar with the ISO network stack, this means it's a way of 
structuring sessions between network entities (programs) 
that is not dependent on the underlying protocol (such as 
PPC or TCP/IP). Despite being a network protocol, they can 
be very useful on Macs that are not on a network. In short, 
they provide applications with a comprehensive way to send 



202 ~ BYTE's Mac Programmer's Cookbook 

arbitrary structured data to other applications (or 
themselves) which receive the events through their main 
event loop. 

The AppleEvent Object Model is a way of looking at 
applications and the data they contain, and also a level-6 
network protocol. You _can_ send AppleEvent Object Model 
data through AppleEvents (and the standard AppleEvents 
defined in the AppleEvent Registry use it) but you don't have 
to-unless you want to talk with other applications, of 
course, then the AEOM is a lingua franca. 

4.2) Q: What are the four required AppleEvents? 
A: There are four events your application really must 
implement if you want to sell it: the kCoreEventClass class, 
kAEOpenApplication, kAEQuitApplication, 
kAEOpenDocuments, and kAEPrintDocuments events IDs. 
When you support these events (or any AppleEvents) you 
will not get sta.rtup info through GetAppParams() anymore, 
unless you run under System 6 of course. The 
kAEOpenApplication event will be sent to you when the user 
double-clicks your app and it's not started yet. When 
receiving it, you can put up a new untitled window. 

kAEOpenDocuments is sent when the user double-clicks 
your apps documents. Note that if the first AppleEvent you 
receive is a kAEOpenDocuments· event, the user started your 
app by double-clicking its documents. 

kAEPrintDocuments is sent when the user selects your 
documents and chooses "Print" in the Finder menu. If this is 
the first AppleEvent you receive, you should print the 
documents and then quit the application again; if you 
received a kAEOpenApplication or kAEOpenDocuments event 
before this, you should just print the documents and close 
them when you're done. 

kAEQuitApplication is sent to you when the user chooses 
"Shutdown" or "Restart" from the Apple Menu. You should 
ask the user whether he wants to save any unsaved changed 
documents, and then quit unless the user presses Cancel. 



It Came From the Internet, Kinda ~ 203 

Interestingly enough, you can use these four AppleEvents to 
send even to non-AE-aware applications, and the system will 
translate these events into fake menu selections for you. 

A good way of shutting down the Finder is to send it a Quit 
AppleEvent. You should send a Quit AppleEvent to File 
Sharing Extension before you shut down the Finder, though; 
the FSE is found by looking for a process with the creator 
'hhgg'. 

4.3) Q: Are there any limits or trade-offs with 
Apple Events? 
A: As always, more power means more responsibility. 

AppleEvents sent to applications on other Macs require 
authentification the first time they are sent. If the remote 
Mac allows Guests to link to programs, the INIT AutoGuest 
2.0 might help (or the code solution that comes with it and 
you can build into your application). 

In the first version of the AppleEvent manager, there was a 
total 64K limit on the size of data and overhead. This limit 
has been lifted with the version of the AppleEvent manager 
that comes with AppleScript. 

AppleEvents require a lot of memory copying and handle 
resizing in their construction; this means that large 
AppleEvents may be slow in construction, especially when 
compared to a pure PPC Toolbox or ADSP I ASDSP link. 

You should use your own application signature as event 
class for AppleEvents you make up, in order not to collide 
with anybody else. Other than that, you are free to make 
your own events for your own needs, though supporting the 
required events and at least a subset of the Core event suite 
will buy you a lot of functionality from within AppleScript. 
Especially important are the Get Current Selection and Set 
Current Selection events (which are really Get/Set Data on 
the contents of the current selection of the application). 

The signature for your application SHOULD be registered 
with DTS to avoid conflicts; this is done through e-mail to 
DEVSUPPORT@AppleLink.Apple.Com and the form you use is 
located on the developer CDs and found on ftp.apple.com. 



204 ~ BYTE's Mac Programmer's Cookbook 

*5* AppleScript 

5.1) Q: How does AppleEvents interface with 
AppleScript? 
A: AppleEvents are the meat and potatoes of AppleScript. If 
you support the AppleEvent Object Model from within your 
application, users can control you through AppleScript. 

The first thing you should do is get ahold of Inside Mac: 
Interapplication Communication, and a copy of the 
AppleEvents Registry. The former tells you all you ever need 
to know about AppleEvents, while the latter is paramount for 
implementing the right standard events. If everybody uses 
the standard events, dynamic data interchange between any 
applications will become sweet reality! 

Then there is the 'aete' resource which lets you put names 
on the events you support, so that users can "Open 
Terminology" on your application from within the Apple 
Script Editor and use the proper AppleScript commands in 
their scripts. The format of an aete resource is defined in 
Inside Macintosh: Interapplication Communication. 

5.2) Q: Can I compile and run scripts from within mv 
application? 
A: Yes, this is very simple. There are toolbox calls for 
reading scripts, compiling scripts, and executing scripts. 
(OSACompile, OSAExecute). These are all documented in 
Inside Mac: Interapplication Communication. 

5.3) Q: Is this a good way of getting a macro language 
almost for free? 
A: "Good" is an understatement. Just let users write scripts, 
load them into menu items and go. Total systems integration 
in under a week, including adding support for the AEOM to 
your application. 

There is source code for an application called "MenuScipter" 
on the developer CD which shows you how to do an 
application with all of the menus being AppleScript scripts. 



It Came From the Internet, Kinda h 205 

*6* Drawing using QuickDraw 

6.1) Q: Why is CopyBits so slow? 
A: It is not. It just requires some hand-holding to get good 
results. The main rules are: Make sure the source and 
destination pixMaps are of the same depth. 

Make sure the front color is black and the back color is white. 

Use srcCopy and don't use a masking region. 

Copy to an unclipped window (the frontmost window). 

Make sure the ctSeed values of the source pixMap and dest 
pixMap match. 

Copying few and large pixMaps is faster than copying many 
and small ones. Icon-sized sprites count as small ones. 

Make sure your source bitmap or pixelMap has the same 
alignment, when adjusted for the source and destination rect 
expressed in global screen coordinates. The necessary 
alignment is 32 bits (4 bytes), although 128 bit (16 byte) 
alignment is probably even better on 68040 macs and won't 
hurt on other macs. 

Example of global alignment: 

Your window is positioned at (42,100) (H,V) 

Your destination rectangle is (10,20)-(74,52) 

The alignment coefficient of the rectangle in global 
coordinates is (42+10)*bitDepth where bitDepth is one of 
1,2,4,8,16 or 32. 

Make sure your source pixmap rect has the same coeffecient 
modulo as your alignment factor (in bits). For black&white 
macs, this is still true, although bitDepth is fixed at 1. 
Offscreen pixMaps can calculate with a "global position" of 
0,0 and get correct results. 

6.2) Q: Why is CopyBits still too slow? 
A: Because there is always some overhead involved in calling 
QuickDraw; you have the trap dispatcher, clipping checks, 



206 ~ BYTE's Mac Programmer's Cookbook 

*code* 

and checking whether the CopyBits call is being recorded in 
a PICT handle (if you called OpenPicture). 

If you can't live with this, look at *7* below, but PLEASE try 
and make CopyBits work, and retain the CopyBits code in 
your application, so users with special monitors (accellerator 
cards, PowerBook color screens, Radius Pivot screens) can 
still play your game. (Non-game applications don't need 
more speed than CopyBits can give at its max. Promise!) 

6.3) Q: What is tbe fastest way to set one pixel? 
A: NOT SetCPixel()! Assuming you have the correct 
ForeColor() set, you can set the pen size to (1,0) and call Line 
(0,1) 

I have heard PaintRect is good for this but requires slightly 
more code. Using PaintRect eliminates a trap call. 

6.4) Q: Why do pictures I record suddenly draw as 
empty space or not draw at all? 
A: When recording pictures, you have to set the clipping area 
to exactly the frame of the picture you are recording. This is 
because it is initally set at -32768,32727 in both directions, 
and offsetting the picture even one pixel when drawing it 
will result in the region wrapping around and becoming 
empty. 

When recording pictures, do this: 

PicHandle h = OpenPicture ( & theRect ) ClipRect ( & theRect 
) : 

I* draw the picture */ 
ClosePicture ( ) : 

*end* 

6.5) Q: Where can I find the format of picture files and 
resources? 
A: The format of a picture resource version I is defined in a 
technical note. This format is obsolete. 

The format of a picture resource version 2 is defined in Old 
Inside Mac vol V, with addenda in Old Inside Mac vol VI. 



It Came From the Internet, Kinda ~ 207 

Some things happen with QuickTime compressed pictures; 
try the Inside Mac: QuickTime book or wait for Inside Mac: 
Imaging which is the definitive reference on QuickDraw. 

The format of a picture file is the same as that of a picture 
resource with 512 added 0 bytes in front. 

6.6) Q: GWorlds? 
A: What about them? They're great. Look them up in Old 
Inside Mac vol VI. Don't forget to SetGWorld back to what it 
was before calling WaitNextEvent. 

6. 7) Q: How do I find the current depth of the screen? 
A: My question to you is: What screen? Many macs have 
more than one screen attached. You can use GetDeviceList 
and walk the devices to find the screen you're looking for 
(use TestDeviceAttrib to see whether it's a screen) or you can 
call GetMaxDevice() to find the deepest device your window 
intersects. 

Once you have the device handle, finding the depth is just a 
matter of looking at the dgPMap pixMapHandle, and 
dereference it to the pmSize field. Done. 

*7* Drawing directly to screen 

7 .1) Q: Why is it a bad idea to draw directly to screen? 
A: Because of several reasons: 

• You will be incompatible with future display hardware. 

• You will be incompatible with some present-day display 
hardware, such as Radius Pivots and PowerBook color 
screens. 

• You have to think about a lot of things; testing it all on 
your own machine is not possible and the chances of 
crashing are great. 

• You will be incompatible with future hardware where 
devices may live in some unaccessible 1/0 space. 



208 ~ BYTE's Mac Programmer's Cookbook 

7 .2) Q: But I really need to do it. I can't make my 
animation into a QuickTime movie, and CopyBits is too 
slow, even when syncing to the screen retrace. 
You have to prepare yourself, and ask these questions: 

1. Do I want to support all screens, or just 8-bit devices? 

2. Do I have a few weeks of free time to make it work? 

3. Do I want to get nasty mail when I break on some 
hardware and have to rev the application-even if I may 
not be able to get ahold of the hardware that makes it 
break? 

If all you're doing is rendering an image pixel-by-pixel or 
line-by-line, maybe you can draw directly into an offscreen 
pixMap/GWorld and then CopyBits the entire GWorld to 
screen? That will be more compatible, especially if you use 
the keeplocal flag when creating the GWorld. 

7.3) Q: Okay, so how do I get the base address of the 
screen? 
A: "The" screen? Which screen? There may be several. The 
base address may be on an accellerated screen card. There 
may be more than one screen covering the same desktop 
area. 

Due to unfortunate circumstances, there is a bug in 
GetPixBaseAddr() that causes it to return incorrect results for 
some versions of System 7. Instead, get the baseAddr 
directly from the gdPMap handle of the GDHandle for the 
screen you draw to. This address may need switching to 
32-bit mode to be valid. 

7 .4) Q: Quit stalling and give me code! 
A: Okay, but I'll let you sweat over Inside Mac to figure out 
what it does. All of it is important, believe me! To make this 
code run faster, a lot of the things it does can be done once 
before starting to draw. 

Make sure that you have a window that covers the area 
where you are drawing, so other windows will not be 



It Came From the Internet, Kinda ~ 209 

overdrawn. Also make sure that you do not do 
direct-to-screen-drawing while you are in the background. 

*code* 
I* This is presently untested code */ 
/*value is dependent on what depth the screen has*/ 
/* this code doesn't work on non-color-quickdraw Macs */ 
I* Ci e the MacClassic) */ 
I* where is in GLOBAL coordinates */ 
void 
SetPixel ( Point where , unsigned long value ) { 
Rect r ; 
GDHandle theGD ; 
char * ptr ; 
long rowBytes ; 
short bitsPerPixel 
PixMapHandle pmh ; 
Boolean oldMode ; 

r . left =where . h 
r . top = where. v ; 
r . right = r . left + 1 ; 

r . bottom = r . top + 1 ; 
theGD = GetMaxDevice C & r ) ; 
if ( theGD ) { 

where . v -= ( * theGD ) -> gdRect left ; where . h -= C * 
theGD ) -> gdRect . top ; pmh 
= C * theGD ) -> gdPMap ; 
rowBytes = C C * pmh ) -> rowBytes & Ox3fff ; ptr C char * 
) ( * pmh ) -> baseAddr ; 
bitsPerPixel = C * pmh ) -> pixelSize ; oldMode true32b ; 

ptr += where . v * rowBytes ; 
SwapMMUMode C & oldMode ) switch C bitsPerPixel ) { case 1 
if C value & 1 ) { 
ptr [ where . h >> 3 J I= C 128 >> C where . h & 7 ) ) ; 

} else {" 

) ; 
ptr [ 
h & 3 

ptr [ 
h & 1 

ptr [ where . h >> 3 J &= C 128 >> C where . h & 7 ) ) 
} 
break ; 
case 2 : 

ptr [ where . h >> 2 J &= ( 192 >> 2 * where h & 3 

where h » 2 J 
) ) ; break ; 

case 4 
ptr [ where 

where h » 1 J 
) ) ; break ; 

I= C value & 3 ) << 2 * C 3 - where 

h >> 1 J &= ( where . h & 1 ) ? Oxf : OxfO 
I= C value & 15 ) << 4 * C 1 - C where . 



210 ~ BYTE's Mac Programmer's Cookbook 

} 
} 

case 8 : 
ptr [ where h J =value ; 
break : 

case 16 : 
unsigned short * ptr ) [ where . h J = value ; 

break : 
case 32 : 

unsigned long* ) ptr ) where . h J =value ; 
break : 

} 
SwapMMUMode C & oldMode 

*end* 

*8* Cache issues and other processor differences 

8.1) Q: Why does my application work on an SE with 
accellerator (or a Mac II or Quadra), but not on one 
without? 
A: Assuming you're not calling Color QuickDraw (which is 
not available on accellerated SEs), you most probably have 
an odd-aligned word access somewhere. 

The 68000 does not allow words or longwords to be read from 
odd addresses, while the 68020 and up relaxes this restriction 
(it still is slower than aligned-word access though). 

This may or may not crash depending on your compiler: 

*code* 
struct foo 
char cl 
char c2 
char c3 
char c4 
char c5 

l bar ; 
long * x = C long * ) & bar . c2 : 
* x = Ox12345678 ; I* X is odd if compiler doesn't pad */ 

This WILL crash on an SE/Plus/Classic/PBlOO: 
char foo [ 10 J : 
long * x = C long * ) & foo [ 1 J ; 
* x = Ox12345678 

*end* 



It Came From the Internet, Kinda ~ 211 

8.2) Q: Why does my application work on a llci but not 
on a Quadra? 
A: Two reasons: 

1. The Quadras 900 and 950 have special processors that 
handle the serial ports; if you write directly to the serial 
chips, you will crash (this goes for the Ilfx as well). 

2. The Quadras have 68040 processors, as have the 
Centrises. These processors have separate instruction 
and data caches (like the 68030) but they are larger (4K 
each) and unlike the 68030 which is write-through data 
cached, the 68040 is copy-back data cached. This means 
that changes you make to "your code" aren't really 
changed all the time, since the changes may still be in 
the data cache and not written to memory when the CPU 
reads that part of memory into its I-cache. Even worse; 
that part might already have been read into the I-cache 
before you change it in the D-cache, meaning that 
writing out the D-cache will still not be enough. You 
need to flush both the caches when writing 
self-modifying code. 

Self-modifying code includes code that builds its own jump 
tables and code that decrypts itself and code that "stubs" 
MDEFs or WDEFs to jump back into the application code. 

You flush the cache using FlushDataCache() which is 
implemented if Gestalt says you have a 68020 or better 
processor (or if the _HwDispatch trap is implemented). 

8.3) Q: Why does my application work on my Quadra 
but not on my accellerated SE? 
A: You're probably calling Color QuickDraw without first 
checking if it's available. The following machines do not 
have color QuickDraw in ROM nor RAM: 

Mac Plus, Mac SE, Mac Classic, Mac Luggable, Power Book I 00, 
Outbound 



212 ~ BYTE's Mac Programmer's Cookbook 

8.4) Q: I do check for color quickdraw, but crash 
nevertheless. 
A: _Gestalt lies under some versions of System 7; it says that 
non-color machines HAVE color QuickDraw when you test 
using the gestaltQuickdrawFeatures selector. 

Instead, check the gestaltQuickdrawVersion selector; if it 
returns >= gestalt8BitQuickdraw then you can safely use 
gestaltQuickdrawFeatures, else you only have b/w 
QuickDraw. 

8.5) Q: Why are there no C/C++ compilers that 
optimize for the Mc68040? 
A: Beats me; optimizing for the 68040 can make programs 
up to 50% faster on that chip while still losing nothing, or 
very little (less than 10%) on older chips. 

*9* Inflammatory subjects 

9.1) Q: What about pre-emptive multitasking? 
A: To the user, the Mac multitasking method, which builds 
upon each application calling WaitNextEvent, GetNextEvent 
or EventAvail every so often and the Process 
Manager/MultiFinder switching applications only at such 
calls, is at least as good as preemptive multitasking, because 
the present system prioritizes user interface responsiveness 
over everything else. The only shortfall about this is 
formatting floppies, which locks up the Mac CPU. This is 
because the Mac floppy controller is really stupid, and would 
happen even if the Mac multitasked preemptively. 

There IS "real" pre-emptive multitasking available for use in 
Mac applications; the expensive way is buying A/UX 3.0 
which can have Mac applications written as UNIX processes; 
the cheap way is installing the Thread Manager which will 
allow you to create pre-emptive threads. However, the 
restrictions on those threads are the same as those on Time 
Manager tasks: don't call any function in an unloaded 
segment, and don't call QuickDraw or any toolbox call which 
may move memory (which are most ToolBox calls; 



It Came From the Internet, Kinda ~ 213 

paradoxally, BlockMove is safe :-) as are, surprisingly, FSRead 
and FSWrite). 

There are several problems with making the Mac OS 
preemptive, including apps that draw outside their windows 
or directly to screen, user dragging, and other issues. 

9.2) Q: What about protected memory? I'm sick and 
tired of re-booting when my application crashes. 
A: Write better software! 

Or install The Debugger from Jasik Designs, which can 
provide your application with write-protection of critical 
parts of memory. This may only work for 030 Macs, though. 

Making the Mac OS memory-protected is tricky, because 
applications expect to be able to write to low memory, the 
system heap, temporary memory, window lists, and even each 
other's heaps in some interapplication communication solutions 
that date back to before AppleEvents and the PPC Toolbox. 

*1 O* Handles-they are driving me crazy 

10.1) Q: What is a handle? 
A: A handle is a pointer to a pointer to something. However, 
it is more than that; creating a handle by taking the address 
of one of your own pointers does NOT create a handle; the 
Memory Manager will only deal properly with handles that 
are created using NewHandle or something that calls it (such 
as NewRgn or GetResource). 

10.2) Q: When do I have to lock a handle? 
A: The contents of a handle may move, and when they do, 
the pointer your handle is pointing to is changed to point to 
the new address so your handle is always valid. The toolbox 
may call the memory manager to allocate more memory 
pretty much anytime you call it (the toolbox) and when 
memory is allocated, your handle may move in memory. 
Don't dereference a handle into a pointer (or take the 
address of a field in a record a handle is double-pointing to) 
and then call the toolbox and expect the pointer to still be 



214 h BYTE's Mac Programmer's Cookbook 

valid. The only way to ensure that the pointer will still be 
valid is to call HLock on the handle to lock it. 

Use HGetState and HSetState to save & restore the "locked" 
state of a handle when you lock it. 

10.3) Q= How do I dispose of Handles? 
A: DisposeHandle (formerly called DisposHandle) once and 
ONLY once will do the trick. Trying to dispose of an already 
disposed Handle is an error. DoubleTrouble (see above) will 
catch such bugs when they do occur. 

10.4) Q= What about resources? 
A: Calling GetResource returns NULL if the resource is not 
found or there is not enough memory, else it returns a 
handle to the resource. This handle may be moved or locked 
like any other handle, but DO NOT call DisposeHandle to get 
rid of a resource handle-call ReleaseResource. 
DisposeResource (see above) will catch this kind of bug. 

Remember that AddResource makes a resource handle out of 
an ordinary handle, and RmveResource or DetachResource 
makes an ordinary handle out of a resource handle. You 
cannot call AddResource with a resource handle; you have to 
DetachResource it first. 

Resource handles are automagically disposed when the 
resource file they belong to is closed. 

10.S) Q= I'm trying to use a largish array in Think C, 
but get a "code overflow" error. This is valid C, why 
doesn't it work? 
A: The ANSI standard does not guarantee that any structure 
larger than 32767 bytes will be correctly handled. Because of 
historical constraints, the Mac memory model is built 
around several small blocks of size 32K or less; these are 
used both for code and global/static data. If you want to use 
more code or data, you have to turn on "far code" or "far 
data"-you still will not get around the restriction of 32K 
code or data per compiled file, though. 

As opposed to, say, DOS or Windows, however, you can 
allocate as much memory as you want (and there is in the 



It Came From the Internet, Kinda ~ 215 

machine) and step through it using ordinary pointers; it's 
just that global and static data space is addressed off the AS 
register using a l 6bit displacement addressing mode in the 
68000 processor. 

*11 *_Gestalt and compatibility 

11.1) Q: I see all these people call Gestalt without first 
checking whether it's implemented. Isn't that bad? 
A: No; Gestalt and a few other traps (the HXxx file manager 
traps, and FindFolder) are implemented using glue so they 
do the right thing even if the trap is not implemented. 

If you want to get rid of the glue, you can #define 
SystemSevenOrLater (and, using Think C/C++, re-pre-compile 
MacHeaders). However, then you will be responsible for 
checking for these features before you use them. 

11.2) Q: What more functions are implemented in glue? 
A: Wake Up and Smell the Glue! [by Matthias Neeracher] 

How often have you wished you could use that cool new 
ToolBox call, but didn't want to make your application 
System 7 dependent? Well, it might be that you *could* in 
fact have used the call. Several traps are implemented in 
glue, that is, much of their functionality is linked into your 
application and thus available even if you are running under 
an old System. 

This list applies to MPW 3.2 and should also be valid for the 
current version of Think C. If you find any inaccuracies, 
please report them to me. (neeri@iis.ee.ethz.ch) 

FSOpen: Tries first OpenDF, then Open. 

HOpenResFile: Full functionality emulated if trap not 
available 

HCreateResFile: Full functionality emulated if trap not 
available 



216 ~ BYTE's Mac Programmer's Cookbook 

FindFolder: Under System 6, understands the following 
values for folderType and returns the System Folder for all 
of them: 

kAppleMenuFolderType 

kControlPanelFolderType 

kExtensionFolderType 

kPreferencesFolderType 

kPrintMonitorDocsFolderType 

kStartupFolderType 

kSystemFolderType 

kTemporaryFolderType 

SysEnvirons: Full functionality emulated if trap not available 

NewGestalt: Returns an error if not implemented 

ReplaceGestalt: Returns an error if not implemented 

Gestalt: The following selectors are always implemented: 

vers mach sysv proc fpu 

qd kbd atlk ram lram 

11.3) Q: I have to support System 6, don't I? 
A: It would be foolish to lock yourself out of the many 
benefits the System 7 API provides for software that you 
start to write now. Some of the System 6 and older things 
(likely SFGetFile and wdRefNums among others) will be 
phased out of the interfaces and lose support, especially on 
future platforms. 

The installed base of System 7 is larger than that of System 
6; this is not surprising because Apple has been shipping 
System 7 for several years with all new machines, including 
the LCll, Classic II, Performas, and Color Classic. Another 
argument is that newer computer owners (having System 7) 
are much more likely to buy new software than old computer 
owners who have systems that already do what they want 
them to. 



*code* 
long 

It Came From the Internet, Kinda ~ 217 

The added work to support both System 6 and System 7 is 
significant; if you have the time and money you may want to 
do it, but only supporting System 6 and not System 7 is 
doomed to fail in the market of today. 

Some may call this position subjective; I call it business 
sense based on market demographics. A rule of thumb may 
be that if you target color machines only, you can just as 
well demand System 7 as well. 

*12* Standalone code and dynamic linking 

12.1) Q: I've got a CODE resource off in limboland 
(sometimes called the resource fork) and I want to 
open it ... what do I do? 
A: You open the file you have the code resource in, load the 
resource and lock it high (don't unlock it first, since 
someone else may be using it). Then you cast the handle to a 
function pointer, and call it normally. 

Suppose your code resource is compiled as a SACO id 128, 
and is defined as: 

main C MyParams * params ) I 
switch C params -> message l { 
case messagelnit : 

return init ( params ) ; 

return OL 
} 
*end* 

*code* 

Also suppose you already have the vRefNum, parID, and 
name of the resource file you want to use. Do this: 

setup_paramblock ( & the_params ) ; 
the_params . message = messagelnit ; 



218 ~ BYTE's Mac Programmer's Cookbook 

refNum = HOpenResFile ( vRefNum , parID , name , fsRdPerm ) 
if ( refNum < 1 ) { 

fail ( ResError ) ) ; 
} 
the_code = GetResource 'SACO' , 128 ) ; 
HLockHi ( the_code ) ; 
retval = ( * ( ( long ( * ) ( MyParams * ) ) StripAddress ( * 

the_code ) ) ) ( & the_params ) ; 

*end* 

The StripAddress is important; if your app is running in 
24-bit mode, the resource handle may contain tag bits and 
you don't want strange things to happen if the code resource 
switches into 32-bit mode (which QuickDraw may do, 
incidentally). 

Exactly how you structure your calling conventions is up to 
you; there is no accepted standard (except for HyperCard 
XCMDs, but that is probably overkill for you). 

*13* Reading the keyboard for games and screen 
savers 

13.1) Q: How do I read the modifier keys of the 
keyboard? 
A: Just call EventAvail and check the event.modifiers field. 
Only works when you are in the foreground. You can also 
use GetKeys(), or (as a last resort) check the lo-mem global 
KeyMap directly. 

*14* Quicklime 

14.1) Q: I want to write a Amiga QuickTime player and 
need the CODEC format details. 
A: Although the structure of QuickTime movies is well 
documented in Inside Mac: QuickTime, the inner workings of 
the Apple compression modules is a trade secret that Apple 
will only license to you at great cost. Perhaps it's time for a 
freeware, cross-platform QuickTime codec? 



It Came From the Internet, Kinda ~ 219 

* 15* Ice Cream and Frozen Yoghurt 

15.1) Q: Dessert? 
A: Honey Hill Farms Cookie Jar Frozen Yoghurt or 
Haagen-Dazs Raspberry & Cream Ice Cream. 

Hokey-Pokey icecream with chocolate sauce and (for those 
who like their brain food firmer) Almond and Double 
Chocolate CookieTime cookies!? [Denis Birnie] 

-Jon W{tte, h+@nada.kth.se, Mac Hacker Deluxe
"From now on I will re-label the EQ on the deck as Fizz 
and Wobble instead of HF and LF." 



I ) 
Local Heroes 

While it may seem that I've stressed the importance of 
finding online friends to help you think through 
programming problems, don't forget the local factor. Most 
every community in the country (and many other countries) 
has a user group you can join. 

Mac user groups used to rule the Mac universe. It was very 
. satisfying to watch self-important tie-wearing MicroStuff 
employees kowtow to a crowd of geeks in t-shirts. Ah, those 
were the days. 

The salad days of user groups may have passed, but they're 
still an important resource for anyone who uses computers. 
There are a whole host of niggling problems that a user 
group can help you solve-why isn't my network working? 
My printer uses the wrong fonts?-and so on. Yes, even you 
programmers, the top of the Mac food chain, will slam into 
these kinds of problems some day. Be humble and know 
where to turn for advice~ 

And importantly, the following user groups all have 
Programming Special Interest Groups. So if you need help 
with a programming problem-like, what do I pass to 
CopyBits?-you can ask the resident guru. 

This list was provided by the User Group Connection (UGC). 
Thanks to Sam Decker for allowing us to reproduce it here. 
Note that the folks at the User Group Connection are nice 
enough to help you find the user group in your local area 

221 



222 + BYTE's Mac Programmer's Cookbook 

. (and with a toll-free call!). Here's a short description of what 
the User Group Connection is all about and a list of user 
groups from across the country. 

User Group Connection provides FREE support and benefits 
to computer user groups. UGC maintains the Apple 
Authorized User Group Database and Apple's User Group 
program. Benefits to user groups include monthly mailings 
full of vendor discounts and Apple product information, 
user group development support, the annual user group 
satellite T.V. show, quarterly videos, beta testing 
opportunities, MacWorld breakfasts, and much more. 

To find a local Apple User Group in your area, call 
1-800-538-9696. If you are interested in starting your own 
user group, and would like to register with the User Group 
Connection, call 408-461-5700. You can also reach User 
Group Connection at: 408-461-5701, Applelink: User.Groups, 
America Online: Apple UGC. 

Alabama 
Birmingham Apple Core 
Birmingham, AL 
205-967-4714 

Macinsteins 
Montgomery, AL 
205-242-2670 

Arizona 
Mac Explorers 
Phoenix, AZ 
602-863-3763 

Mountain View Computer Users Group 
Sierra Vista, AZ 
602-458-3042 

Tucson Apple Core 
Tucson, AZ 
602-296-5491 



Local Heroes + 223 

Arkansas 
Fayetteville Apple Users Group 
Fayetteville, AR 
501-442-7040 

Pine Bluff Users Group 
Pine Bluff, AR 
501-535-2859 

California 
Almaden Apple II Users 
San Jose, CA 
408-997-3725 

America Japan Macintosh Users Group 
Los Altos, CA 
415-949-5602 

Apple Salinas Monterey User Group 
Carmel, CA 
408-424-2525 

Applejacks Of The Inland Empire 
San Bernardino, CA 
714-864-2309 

Hellenic User Group 
Los Altos, CA 
415-726-8 738 

Los Angeles Macintosh Group 
Los Angeles, CA 
310-278-5264 

Mac Valley Users Group 
Sherman Oaks, CA 
818-784-2666 

Mendocino Coast Macintosh Users Group 
Comptche, CA 
707-937-1002 



224 + BYTE's Mac Programmer's Cookbook 

North Coast Mac User Group 
Santa Rosa, CA 
707-887-7778 

North San Diego Apple User Group 
San Diego, CA 
619-571-0757 

Original Apple Corps 
Los Angeles, CA 
310-475-8400 

Sierra Local User Group 
Soulsbyville, CA 
209-532-1419 

So. California Electronic Mug 
Cardiff By The Sea, CA 

Colorado 
Apple Three User Group 
Highlands Ranch, CO 
303-791-2077 

Computer C.A.C.H.E./Tawug 
Denver, CO 
303-771-2019 

Connecticut 
Mac Owners, Users & System Enthusiasts 
Monroe, CT 
203-854-4109 

Thames River Apple User Group 
Gales Ferry, CT 
203-464-9372 



Local Heroes + 225 

Delaware 
Delaware Valley Apple Club For The Gs 
Wilmington, DE 
302-999-9282 

Florida 
Fort Walton Beach Apple Club 
Fort Walton Beach, FL 
904-862-3047 

Mug Of Orlando 
Winter Park, FL 
407-275-1418 

Pensacola Apple II Ug 
Pensacola, FL 
904-456-7096 

S.W.A.C.K.S. 
N. Fort Myers, FL 
813-543-6329 

Georgia 
Boy Scout Troop 479-Golden Eagles Patrol 
Marietta, GA 
404-578-1344 

Chattahoochee Mac Usergroup 
Columbus, GA 
205-480-9975 

Idaho 
Apple Boise User Group 
Boise, ID 
208-344-9506 

North End Macintosh Users Group 
Boise, ID 
208-336-7890 



226 + BYTE's Mac Programmer's Cookbook 

Illinois 
Hutsonville Computer Users Club 
Hutsonville, IL 
618-563-4912 

Metroeast Macintosh Users Group 
Belleville, IL 
618-624-5776 

Oswego Apple/Mac User Group 
Oswego, IL 
708-554-3444 

Technological Renaissance Users Group 
Marengo, IL 
815-568-8751 

Indiana 
Lafayette Apple Forum: Toward Educating The Future 
Lafayette, IN 
317-474-1327 

Iowa 
Applecorp User Group Of Central Iowa 
Stanhope, IA 
515-826-3537 

Bits & Pc's 
Cresco, IA 
319-547-5329 

Kansas 
Apple Tree User Group, Inc. 
Hutchinson, KS 
316-663-1582 

Lawrence Apple User Group 
Lawrence, KS 
913-842-1172 



Parsons Apple Users Group 
Parsons, KS 
316-421-6953 

Kentucky 

Local Heroes + 227 

Eastern Kentucky Apple Users Group 
Prestonsburg, KY 
606-886-8044 

Louisiana 
Centenary Apple User Group 
Shreveport, LA 
318-742-7061 

Chevron Macintosh Users Group 
Slidell, LA 
504-592-6748 

Shreveport Area Macintosh User Group 
Shreveport, LA 
318-868-799 7 

Maine 
Downeast MacintQsh User Group 
Woodland, ME 
207-427-3325 

Valley Computer Users Group 
Kennebunkport, ME 
207-967-8824 

Maryland 
Columbia Apple Slice 
Columbia, MD 
301-596-6443 



228 + BYTE's Mac Programmer's Cookbook 

Washington Apple Pi, Ltd. 
Bethesda, MD 
301-654-8060 

Massachusetts 
Boston Computer Society 
Waltham, MA 
617-290-5700 

Michigan 
Gateway Online Macintosh User Group 
Livonia, MI 
313-721-6070 

Mactechnics-The Ann Arbor Computer Ug 
Ann Arbor, MI 
313-482-0501 

Minnesota 
Minnesota Apple Computer Ug 
Hopkins, MN 
612-229-6952 

Missouri 
Gateway Area Mac User Group 
St. Louis, MO 
314-664-6972 

Nebraska 
Apple Computer Enthusiasts 
Omaha, NE 
402-339-3590 



Local Heroes + 229 

Nevada 
We The People Macintosh Users Group 
Las Vegas, NV 
702-258-0660 

New Jersey 
Amateur Computer Group Of NJ 
North Brunswick, NJ 
908-821-9063 

Princeton Apple II User Group 
Trenton, NJ 
609-587-8334 

South Jersey Apple Users Group 
Cherry Hill, NJ 
609-784-3028 

New Mexico 
Space Port Apple Users Group 
Alamagordo, NM 
505-434-1786 

New York 
Mac-Rug 
Clinton, NY 
315-792-9606 

Macintosh Users Group Of Syracuse 
Syracuse, NY 
315-479-6023 

North Country Mug 
Cape Vincent, NY 
315-773-1721 

Suffolk Macintosh User Group 
Stony Brook, NY 
516-473-7175 



230 + BYTE's Mac Programmer's Cookbook 

North Carolina 
Charlotte Apple Computer Club 
Charlotte, NC 
704-335-8661 

Rural User Group 
Brasstown, NC 
704-837-7432 

Ohio 
Appleciders Of Cincinnati 
Cincinnati, OH 
513-741-4329 

Buckeye Macintosh Group 
Hilliard, OH 
614-462-7066 

Columbus Apple Core 
Columbus, OH 
614-268-1056 

Future World Bbs 
Akron, OH 
216-773-9870 

Gahanna Apple Users 
Gahanna, OH 
614-855-0937 

Macincinnati 
Cincinnati, OH 
513-681-1647 

Nautilus ( A Division Of Metatec Corp) 
Dublin, OH 
614-761-2000 

Oklahoma 
Tulsa Users Of Macintosh Society 
Tulsa, OK 
918-621-2216 



Oregon 
Rogue Apple Ii Users Group 
Ashland, OR 
503-482-3377 

Pennsylvania 

Local Heroes + 231 

Delaware Valley Apple Branch 
Berwyn, PA 
215-644-2690 

Erie Apple Crunchers Inc. 
Erie, PA 
814-459-0992 

Keystone Apple Core 
East Berlin, PA 
717-259-0827 

Level Green Macintosh User Group 
Trafford, PA 
412-372-9258 

Pennsylvania Apples 
Boalsburg, PA 
814-466-3322 

Waynesboro Apple Core 
Waynesboro, PA 
717-762-1680 

Rhode Island 
Rhode Island Mug 
Providence, RI 
401-253-8528 

Tennessee 
Appleachian User's Group 
Knoxville, TN 
615-588-5406 



232 + BYTE's Mac Programmer's Cookbook 

Chattanooga Macintosh Users Group 
Chattanooga, TN 
615-755-4268 

Texas 
Apple Corps Of Dallas 
Dallas, TX 
214-238-1224 

Central Texas Macintosh Users' Group 
Waco, TX 
817-755-3190 

Clear Lake Area Machine Support 
League City, TX 
713-332-2398 

Concho Valley Computer Support Group 
San Angelo, TX 
915-944-1688 

Lone Star Mac-Online 
Ft. Worth, TX 
817-346-0885 

Mac Office Girls Mug 
San Antonio, TX 
210-494-1004 

Nasa Area Macintosh Users 
Webster, TX 
713-488-2262 

Utah 
Alpine Computing Microage Exec. Mug 
Orem, UT 
801-226-1510 



Local Heroes + 233 

Virginia 
Greater Reston Area Macintosh Assoc. 
Reston, VA 
703-620-2686 

Peninsula Apple Core 
Williamsburg, VA 
804-229-9339 

Washington 
Macintosh Downtown Business Ug 
Lynnwood, WA 
206-624-9329 

Macintosh User Group Connection 
Wenatchee, WA 
509-663-1950 

The Apple Franklin Laser Ug Of Spokane 
Spokane, WA 
509-624-1510 

Wisconsin 
Command-Option's 
Lancaster, WI 
608-72 3-646 7 

Double Click Mug 
Milwaukee, WI 
414-964-3147 

Wisconsin Apple User Club 
Wauwatosa, WI 
414-771-6086 



Index 
LOlOOl 1010011 011010 1010111 1010011 011010 

4th Dimension, external commands 
for, 81, 82, 93-96 

! (exclamation point), in XCMDs, 
96-97 

? (question mark) 

A 

great philosophical questions, 
157 

in XCMDs, 96-97 

ABZMon debugger, 15 6-15 8 
Adding 

code resources to HyperCard 
stacks, 80 

items to Apple menu, 44 
Adobe Systems, 152 
After Dark, 56 
Aladdin Software, InstallerMaker, 

68-69 
Aldus Corporation, 15 2-15 3 
America Online, 16, 21, 133 
Ammunition, 159 
Animation 

SAT code library, 144-145 
SpriteWorld, 141-142 

ANSI C file functions, 192-193 
Anti-virus software 

Disinfectant, 25, 177 

Vaccinate Plus, 13 7-138 
AppDisk, 47, 176 
Apple Developer CD-ROMs, 153 
Apple menu, adding items to, 44 
AppleEvents, 135, 201-203 
AppleLink, 16 
AppleScript 

external commands for, 82, 
104-105 

Frequently Asked Questions, 
204 

Applications 
Frequently Asked Questions, 

210-211 
MacApp application 

framework, 146 
monitoring memory usage, 

150-153 
TransSkel application 

framework, 130-202 
Artificial intelligence, 111-112, 117 

B 
Background processing, 134 
Backing up 

because Peter Jennings says 
so, 137 

crash prevention and, 40 



236 ,t BYTE's Mac Programmer's Cookbook 

Base address, of screens, 208 
BaseToBase, 47-49 
BBEdit Lite, 49-51 
BBSs. See Online services 
Beretta 92F, 158 
Berkeley sockets library, 201 
Binary numbers, converting, 47-49 
BNDL Banger, 51-52, 176-177 
Book's diskette, shareware listed, 

176-181 
Booting, after crashes, 29, 40, 41-42 
Bulletin board systems. See Online 

services 

c 
Clanguage, 119-124 

ANSI C file functions, 192-193 
"code overflow" errors, 

214-215 
converting project files for 

Code Warrior, 52-53 
converting to Pascal, 5 5 
GNU C compiler (GCC), 

119-122, 123 
Graphlib, 139 
Harvest C compiler, 122-124 
limitations of, 9, 142-143 
public domain C compilers, 

188 
Think C, 214-215 
TransSkel, 130-202 
Vaccinate Plus, 137-138 
See also Programming 

languages 
Caches, 210-212 
Class libraries, 127-128, 191 

See also Code libraries; Object 
code libraries 

Clipboard, copying RGB values to, 54 
CluLfade 1.0, 133-134 

Code 
book's representation of, 6 
porting GCC code, 120-121 
snarfing, 133 
stand alone code and 

dynamic linking, 217-218 
tools needed to write, 186 

Code libraries, 125-148 
class libraries, 127-128, 191 
cluLfade 1.0, 133-134 
defined, 126-12 7 
Graphlib, 139 
Huffman example, 134 
LaunchFile XCMD Source, 134, 

178 
Mercutio, 132-133, 178 
newsgroups for programming 

tips, 133, 135 
object code libraries, 127-128 

. POV 3.0, 134 
PwrSwitcher, 134 
RTrace 1.0, 134 
SAT, 144-145 
for sprites, 140-146 
SpriteWorld, 141-142 
TANSTAAFL (There Ain't No 

Such Thing As A Free 
Lunch), 131 

TE32K, 139-140, 180-181 
Think Class Library (TCL), 

146-148 
Toolbar manager, 136-13 7 
TransSkel, 130-202 
Trie example, 134 
UMPG (Usenet Macintosh 

Programmer's Guide), 135 
Vaccinate Plus, 13 7-138 
Writeswll Jr, 135 

"Code overflow" errors, in C, 214-215 
Code resources 

adding to HyperCard stacks, 
80 

custom, 131 



external commands and, 80, 
83 

opening, 217-218 
sucking, 53-54 
See also External commands; 

Resources 
Code Warrior, 52-53 
CodeSucker, 53-54 
Color, copying RGB values to 

clipboard, 54 
Colorlt, 104 
Command key combinations, 132-133 
Commands. See External commands 
Common Lisp standard, 117 
Compacting heap, 150-151 
Compilelt, 104 
Compilers 

crashes and, 119 
GNU C compiler (GCC), 

119-122, 123 
Harvest C compiler, 122-124 
public domain C compilers, 

188 
Compression programs, 24-25, 180, 

181 
CompuServe 

best forums, 21 
history of, 13-14 
overview of, 15 
shareware payment service, 

172 
Conflicts, extension, 29-30, 34 
Control panels, creating, 134 
Converting 

C to Pascal, 5 5 
numbers from base to base, 

47-49 
Think Pascal and C project 

files for Code Warrior, 52-53 
ConvertProjects, 52-53 
CopyBlts, 205-206, 208 
Copying, RGB values to clipboard, 54 
Copyleft, versus copyright, 121 

Index ~ 237 

CopyRGB, 54-55 
Crashes, 27-42 

After Dark and, 56-57 
booting after, 29, 40, 41-42 
compilers and, 119 
crashes and, 27-28 
extensions and, 28-30 
handles and, 39-40 
memory and, 30-32 
and patching traps, 34 
Performa computers and, 41 
preventing, 27-28, 40 
RAM disks and, 32-33 
shareware testing and, 35-36 
sound handles and, 15 3 
system crashes versus hard 

disk crashes, 32 
virtual memory and, 31-32 
See also Debuggers 

Creating 
control panels, 134 
external commands in Pascal, 

134 
folders while saving files, 44 
installers, 68-69 
key combinations, 132-133 
menus, 131-133 

Ctools, 55 
Cyberspace, 14 

D 
DarkSide of the Mac, 56-57 
Dartmouth XCMD collection, 83-88 
DCMDs, for Macsbug, 151, 160-162 
Debuggers, 36-40, 149-163, 189-190 

ABZMon, 156-158 
The Debugger, 189-190, 213 
debugging, 15 7 
DebugWindow, 154-15 5, 177 



238 t BYTE'S Mac Programmer's Cookbook 

DisposeResource, 15 3, 191, 
214 

DoubleTrouble, 153, 191, 214 
EvenBetterBusError, 15 3, 191 
low-level debuggers, 189-190, 

192 
Macsbug, 36-40, 151, 

160-163, 189 
overview of, 149-150 
Programmer's Key, 154 
Ramadillo, 152-153 
Swatch, 150-151, 180 
System Errors, 155-156, 180 
TMON, 189 

Debugging shareware, 170, 191-192 
Decimal numbers, converting, 47-49 
Decompressing programs, 24, 25, 

180, 181 
Delphi, 16-17 
Desktop files, updating, 51-52 
Developer CD-ROMs, Apple, 153 
Developer Stack XCMDs, 88-91 
Development environments, 120, 

122, 186-192 
Digital sampling, 48-49 
Directories, getting names of files in, 

196-197 
dirID, 193-194 
Disinfectant, 25, 177 
Disk First Aid, 41 
Disk Tools, 41 
Disk, book's disk shareware listed, 

176-181 
DisposeHandle, 214 
DisposeResource, 153, 191, 214 
DoubleTrouble, 153, 191, 214 
Drawing 

directly to screen, 207-210 
with QuickDraw, 205-207, 212 

Drugs. See Utilities 
Dynamic linking, 217-218 

E 
Editable text, 139 
Editors, BBEdit Lite, 49-51 
Emergency disks, 40, 41 
Encrypting e-mail, 61-65 
EvenBetterBusError debugger, 15 3, 

191 
eWorld, 17 
Exclamation point (!), in XCMDs, 

96-97 
Extensions 

conflicts, 29-30, 34 
crashes and, 28-30 
and patching traps, 34 

Extensions Manager, 1.77 
External commands (XCMDs), 79-109 

for 4th Dimension, 81, 82, 
93-96 

for AppleScript, 82, 104-105 
code resources and, 80, 83 
creating in Pascal, 134 
Dartmouth collection, 83-88 
Developer Stack, 88-91 
for Foxbase Pro, 82 
GTQ Scripting Library, 

105-108, 178 
J5rson's XCMDs, 100-104 
LaunchFile XCHD Source, 134, 

178 
for Macsbug (DCMDs), 151, 

160-162 
MikePack, 93-96 
OSAXen, 104-108, 178 
overview of, 82-83 
for PowerTalk, 106-107 
question marks (?) in, 96-97 
TiffWindow XCMD, 92-93, 181 
Volkswagens and, 79-81 
X-Archive, 96-100 
See also HyperCard 



F 
4th Dimension, external commands 

for, 81, 82, 93-96 
Fade-in/fade-out effects, 133-134 
FAQ (Frequently Asked Questions) 

file, 183-219 
AppleEvents and AppleEvent 

Object Model, 201-203 
AppleScript, 204 
cache issues and other 

processor differences, 
210-212 

development and debugging 
tools, 186-192 

drawing directly to screen, 
207-210 

drawing with QuickDraw, 
205-207, 212 

files and File Manager, 
192-199 

_Gestalt, 212, 215-217 · 
handles, 213-215 
ice cream and frozen yogurt, 

219 
inflammatory subjects, 

212-213 
overview of, 183-185 
QuickTime, 218 
reading keyboards for games 

and screen savers, 218 
serial ports, 199-200 
standalone code and dynamic 

linking, 217-218 
TCP/IP and sockets, 201 

File Buddy utility, 57, 171, 177-178 
Files 

compression/ decompression 
software, 24-25, 180, 181 

creating folders while saving, 
44 

Index 239 

picture files and resources, 
206-207 

.ZIP files, 2 5 
Finder, 197-198 
FKEYs, 54-55 
Folders 

creating while saving files, 44 
FAQ (Frequently Asked 

Questions) 192-199 
Fonts, Hell's Programmer Font, 

71-72, 178 
FORTH 

MOPS and Yerk, 114-116 
Neon, 113, 114 
overview of, 112-113 
PocketForth interpreter, 116, 

179 
See also Programming 

languages 
Forums. See Online services 
Foxbase Pro, 82 
Free Software Foundation, Inc., 120, 

121-122 
Frequently Asked Questions. See FAQ 

file 

G 
Games 

reading keyboards for, 218 
SAT code library, 144-145 
screen fade-in/fade-out 

effects, 133-134 
sprites and, 140-141 
SpriteWorld, 141-142 

GCC code, porting, 120-121 
GCC compiler, 119-122, 123 
GEnie, 16 
_Gestalt, 212, 215-217 
Global Variables Viewer, 58-59 
GNU C compiler (GCC), 119-122, 123 



240 ~ BYTE's Mac Programmer's Cookbook 

God, and stones, 15 7 
Gourad shading, 134 
GraphLib, 139 
GTQ Scripting Library, 105-108, 178 
Guns, 158-159 
GWorlds, 207, 208 

H 
Hackers 

Hacks 

definition of, 7-8 
history of Macintosh, 3-6 

advantages of, 8-9 
defined,6 
good versus ugly, 6-7 
paying for, 10-11 
See also Shareware 

Handles 
crashes and, 39-40 
Frequently Asked Questions, 

213-215 
Hard disks 

hard disk crashes versus 
system crashes, 32 

RAM disks, 32-33 
utility programs, 40, 41 
virtual memory, 31-32, 33 

Harvest C compiler, 122-124 
Heap 

compacting, 150-151 
viewing heap zones, 72-75 
See also Memory 

Heisenberg, 154 
Heizer Software tools, 104 
Hell's Programmer Font, 71-72, 178 
Hexadecimal numbers, converting, 

47-49 
How To Write Macintosh Software 

(Knaster), 38, 163 
Huffman example, 134 

HXxx calls, 193, 194 
Hydra-Shock hollow-point 

ammunition, 159 
HyperCard 

I 
Icons 

adding code resources to 
HyperCard stacks, 80 

Developer Stack XCMDs, 88-91 
Heizer Software tools, 104 
J5rson's XCMDs, 100-104 
TiffWindow XCMD, 92-93, 181 
X-Archive XCMDs, 96-100 
See also 4th Dimension; 

AppleScript 

displaying for new files, 
197-198 

inserting in Desktop file, 
. 51-52 

IMHO (In My Humble Opinion), 105 
Inflammatory subjects, 212-213 
INITs, and patching traps, 34 
Inside Macintosh, 128, 15 5 
InstallerMaker, 68-69 
Internet . 

best newsgroups, 21, 22-23, 
133 

control of, 17-18 
defined, 14 
encrypting e-mail, 61-65 
GCC and GNU compilers, 

119-122, 123 
netsurfing, 22-24 
newsgroups for programming 

tips, 133, 135, 183-185 
overview of, 18-19 
Think Class Library (TCL) 

classes, 146-148 



UMPG (Usenet Macintosh 
Programmer's Guide), 135 

WAIS Macintosh databases, 
23-24 

See also FAQ (Frequently 
Asked Questions) file 

Interrupt switch, 154 

.J 
J5rson's XCMDs, 100-104 

K 
Key combinations, 132-133 
Keyboards, reading for games and 

screen savers, 218 
Killing, Macintosh computers, 

158-159 

l 
Languages. See Programming 

languages 
LaunchFile XCHD Source, 134, 178 
Leaks, memory, 151-15 3 
Libraries 

object code and class 
libraries, 127-128 

See also Code libraries 
Licenses, 45-46 
Lisp 

Common Lisp standard, 117 
overview of, 111-112, 117 
PowerLISP, 117-119 

Index ,t 241 

See also Programming 
languages 

Locking handles, 213-214 
Low-level debuggers, 189-190, 192 
Low-memory conditions, 30 
Low-memory variables, 58-59 

M 
MacApp application framework, 146 
Macintosh computers 

Macintosh Ilci, 211 
Macintosh Performa, 41 
Macintosh Quadra, 211 
Macintosh SE, 210, 211 
user groups, 221-234 

Macintosh Programmer's Workshop 
(MPW), 120, 122, 188-189 

MacPGP, 62-64 
Macsbug debugger 

crash recovery and, 36-40 
external commands (DCMDs) 

for, 151, 160-162 
How To Write Macintosh 

Software and, 163 
sources for, 3 7, 159-160, 189 

MacTCP, 201 
Memory, 30-33 

Menus 

eras!:) prevention and, 30-32 
displaying free RAM, 152-153 
memory leaks, 151-153 
monitoring use of, 150-153, 

180 
protected memory, 213 
RAM disks, 31, 32-33 
virtual memory, 31-32, 33 
ZoneRangerand, 72-75, 150 
See also Heap; RAM 

adding items to Apple menu, 
44 



242 ,t BYTE's Mac Programmer's Cookbook 

creating, 131-133 
Mercutio, 132-133, 178 
Michelangelo, 13 7 
MikePack XCMDs, 93-96 
Monaco font, 71-72 
Monitoring memory usage, 150-153 
Monospaced fonts, 71-72 
MOPS, 114-116 
Most used development language, 

187 
MP (MikePack) XCMDs, 93-96 
MPW (Macintosh Programmer's 

Workshop), 120, 122, 188-189 
Multitasking, 212-213 

N 
Neon, 113, 114 
"The net," 14, See also Internet 
Netsurfing, 22-24 
Neuromancer (Gibson), 14 
Newsgroups 

best Internet, 21, 22-23, 133 
for programming tips, 133, 

135, 183-185 
NIL handles, 39-40 
Now Utilities package, 43-45 

0 
Object code libraries, 127-128 

See also Class libraries; Code 
libraries 

Object-oriented programming, 
125-127, 128-129 

Octal numbers, converting, 4 7-49 
Off-screen pixmaps, 134 
Online services, 13-25 

advantages of, 19-21 
code snarfing resources, 133 
history of, 13-14 
listed, 15-18 
posting shareware to, 171 
shareware for using, 24-25, 

181 
shareware libraries, 21-22 
See also entries for specific 

services; Internet 
Option key combinations, 132-133 
OSAXen, 104-108, 178 

p 
parID, 193-195 
Pascal 

versus C, 143 
converting C to, 5 5 
creating external commands, 

134 
GraphLib, 139 
Think Pascal, 52-53, 143, 

144-145 
TransSkel, 130-202 

Vaccinate Plus, 137-138 
Patching traps, 34 
Paths, getting full path for files, 

195-196 
Paying for shareware, 10-11, 171-172 
Performa computers, 41 
Persuasionware, 153 
PGP (Pretty Good Privacy), 62-64 
Philosophical questions, great, 15 7 
Phong shading, 134 
PICT files, 6 7 
Picture files and resources, 206-207 
Pixels, 206 
PKZIP, UnZip utility, 25, 181 
PocketForth interpreter, 116, 179 
Porting GCC code, 120-121 



Ports, serial ports, 199-200 
Posting shareware to online services 

171 ' 
Postscript language, 120 
POV 3.0, 134 
PowerLISP, 117-119 
PowerPC. See Code Warrior 
PowerTalk, external commands for, 

106-107 
PRAM, 60-61 
Pre-emptive multitasking, 212-213 
Pricing shareware, 168 
Procedures, 129 
Process Manager, 69-70 
Prodigy, 16, 17 
Programmer's Key, 154 
Programming languages, 111-124 

development environments 
120, 122, 187-189, 190-191 

FORTH, 112-113, 114-116, 179 
Lisp, 111-112, 117 
overview of, 111-112 
visual development 

environments, 190-191 
See also C language; Pascal 

Proportional fonts, 71-72 
Protected memory, 213 
Public domain C compilers, 188 
Public-key cryptography, 62-63, 64-65 
PwrSwitcher, 134 

0 
Quadra computers, 211 
Question mark (?), in XCMDs, 96-97 
Questions 

great philosophical questions, 
157 

See also FAQ file 
QuickDraw, 205-207, 212 
QuickTime, 218 

Index 243 

R 
RAM 

crash prevention and, 30-32 
displaying free RAM, 15 2-15 3 
PRAM, 60-61 
purchasing, 30-31 
versus virtual memory, 31-32 
See also Heap; Memory 

RAM disks 
AppDisk utility, 47, 176 
crash prevention and, 32-33 
performance and, 33 

Ramadillo, 152-153 
Ray tracing, 134 
Reading keyboards for games and 

screen savers, 218 
Readme files, 169-170 
Reference Link, 1 79 
Referential Expansion, 59-60 
ResEdit, 65-67 
Reset switch, 154 
Resources 

handles and, 214 
picture files and resources, 

206-207 
sucking, 53-54 
See also Code resources 

RGB values, copying to clipboard, 54 
RIPEM Mac, 61-65 
ROM 

complexity of, 128 
custom code resources and, 

131 
viewing contents of, 65-66 

ROM routines, 59-60 
ROMmie, 65-67, 179-180 
RTrace 1.0, 134 



244 ,t BYTE's Mac Programmer's Cookbook 

s 
St. Mac magazine, 128 
Sampling, digital, 48-49 
SAT, 144-145 
Saving, creating folders while saving 

files, 44 
Screen savers 

DarkSide of the Mac, 56-57 
fade-in/fade-out effects, 

133-134 
reading keyboards for, 218 

Screens 
base address of, 208 
drawing directly to, 207-210 
drawing with QuickDraw, 

205-207' 2-12 
fade-in/fade-out effects, 

133-134 
finding current depth of, 207 

ScriptGen, 68-69 
Serial ports, 199-200 
Shareware, 167-173, 175-181 

book's disk shareware listed, 
176-181 

CompuServe payment service 
for, 172 

debugging, 170, 191-192 
installing book's, 175 
licenses, 45-46 
paying for, 10-11, 171-172 
posting to online services, 171 
pricing, 168 
readme files, 169-170 
shareware libraries on online 

services, 21-22 
supporting, 173 
testing, 35-36, 170, 191-192 
tools needed to write, 186 
for using online services, 

24-25 

See also Hacks 
Shift-key combinations, 132-133 
Shooting Macintosh computers, 

158-159 
Shortcut keys, 132-133 
Snarfing code, 133 
Sockets, Berkeley sockets library, 201 
Software. See Hacks; Shareware 
Sound handles, crashes and, 153 
Spelling checkers, 135 
Sprites 

defined, 140-141 
SAT code library, 144-145 
SpriteWorld, 141-142 

Standalone code and dynamic 
linking, 217-218 

Stones, God and, 15 7 
Stufflt Expander, 24, 180 
Stufflt Lite, 24-25 
Sucking, code resources, 53-54 
SuperBoomerang, 44 
Supporting shareware, 173 
Swatch, 150-151, 180 
Switches, interrupt and reset, 154 
System 6, 216-217 
System 7 

Process Manager, 69-70 
and Wake Up and Smell the 

Glue!, 215-216 
System crashes. See Crashes 
System Errors program, 155-156, 180 

T 
Tagged Image File Format. See TIFF 
TANSTAAFL, 131 
Task-It, 69-70 
TCL (Think Class Library), 146-148 
TCP /IP protocol, 201 
TE32K, 139-140, 180-181 
Terminal emulators, 24, 181 



Testing shareware, 35-36, 170, 
191-192 

Text, editable text, 139 
Text editors, BBEdit Lite, 49-51 
Text Suite, 135 
TextEdit (TE), 139-140 
Think C, 214-215 
Think Class Library (TCL), 146-148 
Think development environments, 

188-189 
Think Pascal 

versus C, 143 
converting project files for 

Code Warrior, 52-53 
SAT code library, 144-145 

Think Reference database, 59-60, 179 
TiffWindow XCMD, 92-93, 181 
TMON debugger, 189 
Tool bar manager, 136-13 7 
TransSkel, 130-202 
Traps, patching, 34 
Trie example, 134 

u 
UMPG (Usenet Macintosh 

Programmer's Guide), 13 5 
Unix, 69, 120 
UnZip, 25, 181 
Updating desktop files, 51-52 
User groups, 221-234 
Utilities, 43-75 

AppDisk, 47, 176 
BaseToBase, 4 7-49 
BBEdit Lite, 49-51 
BNDL Banger, 51-52, 176-177 
CodeSucker, 53-54 
ConvertProjects, 52-53 
CopyRGB, 54-55 
Ctools, 55 
DarkSide of the Mac, 56-57 

v 

Index ,t 245 

File Buddy, 57, 177-178 
FKEYs, 54-55 
Global Variables Viewer, 58-59 
Hell's Programmer Font, 

71-72, 178 
MacPGP, 62-64 
Now Utilities package, 43-45 
NowMenus, 44 
NowScrapbook, 44-45 
PRAM, 60-61 
Reference Link, 179 
Referential Expansion, 59-60 
ResEdit, 65-67 
RIPEM Mac, 61-65 
ROMmie, 65-67, 179-180 
ScriptGen, 68-69 
SuperBoomerang, 44 
Task-It, 69-70 
Think Reference database, 

59-60, 179 
WindowShade, 72 
ZoneRanger, 72-75 

Vaccinate Plus, 137-138 
Variables, Global Variables Viewer, 

58-59 
Viewing 

contents of Process Manager, 
69-70 

contents of ROM, 65-66 
global variables, 58-59 
heap zones, 72-75 

Virtual memory 
crash prevention and, 31-32 
performance and, 33 

Virus protection 
Disinfectant, 25, 177 
Vaccinate Plus, 137-138 



246 ,t BYTE's Mac Programmer's Cookbook 

Visual development environments, 
190-191 

Volkswagens, XCMDs and, 79-81 
vRefNum, 193, 194-195 

w 
WAIS Macintosh databases, 23-24 
wdRefNum, 193 
The WELL (Whole Earth 'Lectronic 

Link), 18 
WindowScript, 104 
WindowShade, 72 
Writeswll Jr, 135 

x 
X-Archive XCMDs, 96-100 
XCMDs. See External commands 

y 
Yerk, 114-116 

z 
.ZIP files, 25 
ZoneRanger, 72-75, 150 
ZTerm, 24, 181 



About the Software That Accompanies This Book 
We've chosen twenty programs reviewed in this book and included them on a disk. 
Here's a quick guide to help you install the contents of the disk onto your computer: 

To Install the Programs 

Insert the floppy disk into your Macintosh. Double-click the file "PROGRAMMER'S 
COOKBOOK INSTALLER." After the splash screen, you will see some text explaining 
what to do.Click the Continue button. Next, choose a location on your hard drive to 
which you can save the files. The entire set of files, when decompressed, takes up about 
3 MB of disk space. After you click Okay, the files will be installed. 

To Use the Software 

Instructions for using the software are contained in the readme files that come with each 
program.To get a complete list of the software contained on the disk and for more 
information on the installation of the disk, turn to Appendix B"Try 'em Out for Size: 
Exploring the Disk." 

Note: Tech support for these programs is provided soley by the program's author. 
Contact names and registraion information can be found in Appendix 8 of this book. 
Please do not contact either Osborne/ McGraw-Hill or the author of this book for tech 
support for any program contained on the disk. Register the programs with the 
program's authors, and they'll support you. If the disk is unreadable or fails to boot 
properly, call Osborne/McGraw-Hill at 510-549-6600. Any other problem with the disk 
must be addressed to the program's author. 

WARNING: BEFORE OPENING THE DISK PACKAGE, CAREFULLY READ THE TERMS AND CONDITIONS OF 
THE FOLLOWING DISK WARRANTY. 

Disk Warranty 

This software is protected by both United States copyright law and international 
copyright treaty provision. You must treat this software just like a book, except that you 
may copy it into a computer to be used and you may make archival copies of the 
software for the sole purpose of backing up our software and protecting your investment 
from loss. By saying, "just like a book," Osborne/McGraw-Hill means, for example, that 
this software may be used by any number of people and may be freely moved from one 
computer location to another, so long as there is no possibility of its being used at one 
location or on one computer while it is being used at another. Just as a book cannot be 
read by two different people in two different places at the same time, neither can the 
software be used by two different pe_ople in two different places at the same time 
(unless, of course, Osborne's copyright is being violated). 



Timely Computing lntellige 
in a Fast-Paced World of C 

Save 53 % off the newsstand price fo 

(Available only to purchasers of this book!) 

If you need to know 

the best solutions .. . 

the latest thinking .. . 

the most advanced insight ... 

regardless of platform, operating systems, application, 
vendor, or system architecture ... 

your best bet for timely information is 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 42 HIGHTSTOWN. NJ 

POSTAGE WILL BE PAID BY ADDRESSEE: 

B'JTE 
Subscription Department 
P.O. Box 558 
Hightstown. N.J. 08520-9409 

111 ... 1 •• 1 •• 1.1 ••• 1.111 ... 1.1 ... 1 •• 111 ... 1.1 .... 11.1 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

I 



' EMPOWERMENT I 
• 

Shouldn't you be reading BYTE? 

The purchase of this book will help 
you expand your computing skills 

and know-how. And so will BYTE mag
azine-in every area of computing! 

BYTE gives you the insight needed to 
do a lot more computing with what 
you've got. And know a lot more about 
what you're getting-before you buy. 

At BYTE, we believe skills and know
how are the very core of computing 
power. So we keep you on top of all the 
latest news. From hot scoops to first-

word briefings on breakthrough prod
ucts, BYTE delivers state-of-the-art 
computing intelligence like no other 
magazine in America. 

ArtiCles that compare and evaluate 
equipment across platforms. Late-break
ing reports on advanced technologies . 
Hardware and software reviews that real
ly appreciate end-user needs. Database, 
word processor, spreadsheet, and utilities 
innovations. 

And BYTE (unlike most magazines) 
owes no allegiance to any one operating 
system, application, vendor, or architec
ture. For 17 years, BYTE's mission has 
been to fulfill your need to know the best 
solutions to challenging computing prob
lems-regardless of brand name, environ
ments of origin, or trend-of-the-month. 

Receive your FREE copy of BYTE 
magazine by returning the coupon below 
today-Or call 1-800-257-9402 for even 
faster delivery! Please refer to OSBK012 

~end me the next issue of BYTE Magazine--FREE! If BYTE is for me 
I'll return your invoice and pay just $19.97 for 11 more issues (12 in all} . 
If not, I'll write "cancel " on your invoice, return it, and hear no more from 
you . And the sample copy of BYTE you send will still be mine to keep, 
ABSOLUTELY FREE! 

OSBK012 

NAME 

COMPANY 

ADDRESS 

Your first issue of BYTE is a CITY STATE ZIP 

FREE ISSUE! Basic annual ratP.: $29 .95. Annual Newsstand price : $42.00. Please allow six to eight weeks for delivery of FREE issue. 

IJ\IJE ·P.O. Box 558 ·Hightstown, NJ• 08520 



20 Fabulous Hacks! 
Whether you're looking for solutions to work-related problems or hunting 
for ways to enhance your game playing, the programs included here can 
help you make better use of your computing time. These are just a few of 
the programs on the disk: 

• BNDL Banger 1.2 - Peeved when your file icons don't appear when you 
create a new program? This shareware cleverly inserts your program's 
special icon directly into the Desktop file. 

• DebugWindow 1.4 - A separate application that runs by itself, 
Debug Window can't contaminate code or be contaminated by code so 
it makes debugging faster and simpler. 

• FileBuddy 2. 06 - Sort of a Finder's Get Info box on steroids, FileBuddy 
displays all of a file's attributes AND lets you change them. 

• GTQ Scripting Library - This solid, mature collection provides OSAXen for 
every need. 

• Hell's Programmer Font 1. 1 - Tighten up boring old Monaco, add some 
distinguishing marks and control characters, and you've got this font, 
great no matter which language you program in. 

• Reference Link - This handy extension makes using the Think Reference 
database a breeze,· with a single command you can use it to look up any 
word you select. 

• ZTerm - This terminal emulation program connects you with BBSs and 
commercial online services such as CompuServe. 

To install all the programs on this disk, simply insert the disk into your 
computer and double-click the file "PROGRAMMER'S COOKBOOK 
INSTALLER." You choose where the files will go on your hard drive, and 
click Okay. When decompressed the entire set of files takes up about 3 
MB of disk space. 



About the Author 

Rob Terrell, coauthor of The Mac 

Shareware 500, is a veteran 

Macintosh authority. He owns a company 

that specializes in the design and creation 

of multimedia environments and titles. He 

lives in Chapel Hill, North Carolina. 



,. 

: 

ATTENTION! 
While we do everything we can to ensure the quality of this disk package, 

occasional problems may arise. If you experience problems with this disk, please call: 
Osbome/McGraw-Hill 1-800-227-0900 (Mon .-Fri., 8:30-4:30, Pacific Standard Time) 



INCLUDES 
3.S'' DISK 

lmagiNe 
Albert Ein~tein , 

Dr. Franken~tein , 
and the Frugal 

Gourmet all 
rolled into one ... 
in~ide your Mac! 

Unbelievably, ingenious. Frighteningly clever. Incredibly 

cheap. And way past cool. That's how remarkable this 

collection of "gotta have" Mac hacks and amazing code 

really is. Written by Mac guru Rob Terrell, BYTE's Mac 

Programmer's Cookbook is the only book to round 

up the most impressive high-end solutions to your 

computing problems. 

• Insider reviews of powerful, high-level shareware and 

freeware - including utilities, debuggers, compressors, 

object libraries and more. 

• Time and money saving hacks that Mac programmers and 

advanced users will clamor for. 

• Troubleshooting tips for when the "bomb" goes off. 

• Plus, a high-density disk packed with 20 classic Mac hacks, 

including code objects you can add to your programs, 
memory-trackers, and - for the truly sophisticated 

user - bug finders. 

For programmers of every level as well as serious users, this 

book/disk combo is a must. BYTE's Mac Programmer's 

Cookbook takes you beyond the low-level "kid's stuff" 

code that other books cover to explore hacks that are 

creative, fun, and occasionally off the wall - in other words, 

typically Mac! 


